effect
stringclasses 48
values | original_source_type
stringlengths 0
23k
| opens_and_abbrevs
listlengths 2
92
| isa_cross_project_example
bool 1
class | source_definition
stringlengths 9
57.9k
| partial_definition
stringlengths 7
23.3k
| is_div
bool 2
classes | is_type
null | is_proof
bool 2
classes | completed_definiton
stringlengths 1
250k
| dependencies
dict | effect_flags
sequencelengths 0
2
| ideal_premises
sequencelengths 0
236
| mutual_with
sequencelengths 0
11
| file_context
stringlengths 0
407k
| interleaved
bool 1
class | is_simply_typed
bool 2
classes | file_name
stringlengths 5
48
| vconfig
dict | is_simple_lemma
null | source_type
stringlengths 10
23k
| proof_features
sequencelengths 0
1
| name
stringlengths 8
95
| source
dict | verbose_type
stringlengths 1
7.42k
| source_range
dict |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FStar.Tactics.Effect.Tac | val instantiate (fa x: term) : Tac binding | [
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let instantiate (fa : term) (x : term) : Tac binding =
try pose (`__forall_inst_sq (`#fa) (`#x)) with | _ ->
try pose (`__forall_inst (`#fa) (`#x)) with | _ ->
fail "could not instantiate" | val instantiate (fa x: term) : Tac binding
let instantiate (fa x: term) : Tac binding = | true | null | false | try pose (`__forall_inst_sq (`#fa) (`#x))
with
| _ -> try pose (`__forall_inst (`#fa) (`#x)) with | _ -> fail "could not instantiate" | {
"checked_file": "FStar.Tactics.V2.Logic.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Derived.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Logic.fst"
} | [] | [
"FStar.Tactics.NamedView.term",
"FStar.Tactics.V2.Derived.try_with",
"FStar.Tactics.NamedView.binding",
"Prims.unit",
"FStar.Tactics.V2.Derived.pose",
"Prims.exn",
"FStar.Tactics.V2.Derived.fail"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Logic
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.V2.Derived
open FStar.Tactics.V2.SyntaxCoercions
open FStar.Tactics.NamedView
open FStar.Tactics.Util
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binding =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binding =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac (list binding) = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binding =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binding =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac (list binding) = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
// FIXME: should this take a binding? It's less general...
// but usually what we want. Coercions could help.
let hyp (x:namedv) : Tac unit = l_exact (namedv_to_term x)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h ()
let pose_lemma (t : term) : Tac binding =
let c = tcc (cur_env ()) t in
let pre, post =
match c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(reqb <: term)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b
let explode () : Tac unit =
ignore (
repeatseq (fun () -> first [(fun () -> ignore (l_intro ()));
(fun () -> ignore (split ()))]))
let rec visit (callback:unit -> Tac unit) : Tac unit =
focus (fun () ->
or_else callback
(fun () ->
let g = cur_goal () in
match term_as_formula g with
| Forall _b _sort _phi ->
let binders = forall_intros () in
seq (fun () -> visit callback) (fun () -> l_revert_all binders)
| And p q ->
seq split (fun () -> visit callback)
| Implies p q ->
let _ = implies_intro () in
seq (fun () -> visit callback) l_revert
| _ ->
()
)
)
let rec simplify_eq_implication () : Tac unit =
let e = cur_env () in
let g = cur_goal () in
let r = destruct_equality_implication g in
match r with
| None ->
fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in // G, eq_h:x=e |- P
rewrite eq_h; // G, eq_h:x=e |- P[e/x]
clear_top (); // G |- P[e/x]
visit simplify_eq_implication
let rewrite_all_equalities () : Tac unit =
visit simplify_eq_implication
let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit =
let g = cur_goal () in
match term_as_formula g with
| App hd arg ->
if term_eq hd tm
then trivial ()
else ()
| _ -> begin
let r = destruct_equality_implication g in
match r with
| None -> fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in
rewrite eq_h;
clear_top ();
visit (fun () -> unfold_definition_and_simplify_eq tm)
end
private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q
let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f)
(** A tactic to unsquash a hypothesis. Perhaps you are looking
for [unsquash_term].
Pre:
goal =
G |- e : squash s
t : squash r
Post:
G, x:r |- e : squash s
`x` is returned as a term
*)
let unsquash (t : term) : Tac term =
let v = `vbind in
apply_lemma (mk_e_app v [t]);
let b = intro () in
pack (Tv_Var b)
private val or_ind : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p \/ q) ->
(squash (p ==> phi)) ->
(squash (q ==> phi)) ->
Lemma phi
let or_ind #p #q #phi o l r = ()
let cases_or (o:term) : Tac unit =
apply_lemma (mk_e_app (`or_ind) [o])
private val bool_ind : (b:bool) -> (phi:Type) -> (squash (b == true ==> phi)) ->
(squash (b == false ==> phi)) ->
Lemma phi
let bool_ind b phi l r = ()
let cases_bool (b:term) : Tac unit =
let bi = `bool_ind in
seq (fun () -> apply_lemma (mk_e_app bi [b]))
(fun () -> let _ = trytac (fun () -> let b = implies_intro () in rewrite b; clear_top ()) in ())
private val or_intro_1 : (#p:Type) -> (#q:Type) -> squash p -> Lemma (p \/ q)
let or_intro_1 #p #q _ = ()
private val or_intro_2 : (#p:Type) -> (#q:Type) -> squash q -> Lemma (p \/ q)
let or_intro_2 #p #q _ = ()
let left () : Tac unit =
apply_lemma (`or_intro_1)
let right () : Tac unit =
apply_lemma (`or_intro_2)
private val __and_elim : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim #p #q #phi p_and_q f = ()
private val __and_elim' : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
squash (p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim' #p #q #phi p_and_q f = ()
let and_elim (t : term) : Tac unit =
begin
try apply_lemma (`(__and_elim (`#t)))
with | _ -> apply_lemma (`(__and_elim' (`#t)))
end
let destruct_and (t : term) : Tac (binding * binding) =
and_elim t;
(implies_intro (), implies_intro ())
private val __witness : (#a:Type) -> (x:a) -> (#p:(a -> Type)) -> squash (p x) -> squash (exists (x:a). p x)
private let __witness #a x #p _ = ()
let witness (t : term) : Tac unit =
apply_raw (`__witness);
exact t
private
let __elim_exists' #t (#pred : t -> Type0) #goal (h : (exists x. pred x))
(k : (x:t -> pred x -> squash goal)) : squash goal =
FStar.Squash.bind_squash #(x:t & pred x) h (fun (|x, pf|) -> k x pf)
(* returns witness and proof as binders *)
let elim_exists (t : term) : Tac (binding & binding) =
apply_lemma (`(__elim_exists' (`#(t))));
let x = intro () in
let pf = intro () in
(x, pf)
private
let __forall_inst #t (#pred : t -> Type0) (h : (forall x. pred x)) (x : t) : squash (pred x) =
()
(* GM: annoying that this doesn't just work by SMT *)
private
let __forall_inst_sq #t (#pred : t -> Type0) (h : squash (forall x. pred x)) (x : t) : squash (pred x) =
FStar.Squash.bind_squash h (fun (f : (forall x. pred x)) -> __forall_inst f x) | false | false | FStar.Tactics.V2.Logic.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val instantiate (fa x: term) : Tac binding | [] | FStar.Tactics.V2.Logic.instantiate | {
"file_name": "ulib/FStar.Tactics.V2.Logic.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | fa: FStar.Tactics.NamedView.term -> x: FStar.Tactics.NamedView.term
-> FStar.Tactics.Effect.Tac FStar.Tactics.NamedView.binding | {
"end_col": 32,
"end_line": 296,
"start_col": 4,
"start_line": 294
} |
FStar.Tactics.Effect.Tac | val elim_exists (t: term) : Tac (binding & binding) | [
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let elim_exists (t : term) : Tac (binding & binding) =
apply_lemma (`(__elim_exists' (`#(t))));
let x = intro () in
let pf = intro () in
(x, pf) | val elim_exists (t: term) : Tac (binding & binding)
let elim_exists (t: term) : Tac (binding & binding) = | true | null | false | apply_lemma (`(__elim_exists' (`#(t))));
let x = intro () in
let pf = intro () in
(x, pf) | {
"checked_file": "FStar.Tactics.V2.Logic.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Derived.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Logic.fst"
} | [] | [
"FStar.Tactics.NamedView.term",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Tactics.NamedView.binding",
"FStar.Pervasives.Native.tuple2",
"FStar.Reflection.V2.Data.binding",
"FStar.Tactics.V2.Builtins.intro",
"Prims.unit",
"FStar.Tactics.V2.Derived.apply_lemma"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Logic
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.V2.Derived
open FStar.Tactics.V2.SyntaxCoercions
open FStar.Tactics.NamedView
open FStar.Tactics.Util
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binding =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binding =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac (list binding) = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binding =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binding =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac (list binding) = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
// FIXME: should this take a binding? It's less general...
// but usually what we want. Coercions could help.
let hyp (x:namedv) : Tac unit = l_exact (namedv_to_term x)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h ()
let pose_lemma (t : term) : Tac binding =
let c = tcc (cur_env ()) t in
let pre, post =
match c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(reqb <: term)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b
let explode () : Tac unit =
ignore (
repeatseq (fun () -> first [(fun () -> ignore (l_intro ()));
(fun () -> ignore (split ()))]))
let rec visit (callback:unit -> Tac unit) : Tac unit =
focus (fun () ->
or_else callback
(fun () ->
let g = cur_goal () in
match term_as_formula g with
| Forall _b _sort _phi ->
let binders = forall_intros () in
seq (fun () -> visit callback) (fun () -> l_revert_all binders)
| And p q ->
seq split (fun () -> visit callback)
| Implies p q ->
let _ = implies_intro () in
seq (fun () -> visit callback) l_revert
| _ ->
()
)
)
let rec simplify_eq_implication () : Tac unit =
let e = cur_env () in
let g = cur_goal () in
let r = destruct_equality_implication g in
match r with
| None ->
fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in // G, eq_h:x=e |- P
rewrite eq_h; // G, eq_h:x=e |- P[e/x]
clear_top (); // G |- P[e/x]
visit simplify_eq_implication
let rewrite_all_equalities () : Tac unit =
visit simplify_eq_implication
let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit =
let g = cur_goal () in
match term_as_formula g with
| App hd arg ->
if term_eq hd tm
then trivial ()
else ()
| _ -> begin
let r = destruct_equality_implication g in
match r with
| None -> fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in
rewrite eq_h;
clear_top ();
visit (fun () -> unfold_definition_and_simplify_eq tm)
end
private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q
let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f)
(** A tactic to unsquash a hypothesis. Perhaps you are looking
for [unsquash_term].
Pre:
goal =
G |- e : squash s
t : squash r
Post:
G, x:r |- e : squash s
`x` is returned as a term
*)
let unsquash (t : term) : Tac term =
let v = `vbind in
apply_lemma (mk_e_app v [t]);
let b = intro () in
pack (Tv_Var b)
private val or_ind : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p \/ q) ->
(squash (p ==> phi)) ->
(squash (q ==> phi)) ->
Lemma phi
let or_ind #p #q #phi o l r = ()
let cases_or (o:term) : Tac unit =
apply_lemma (mk_e_app (`or_ind) [o])
private val bool_ind : (b:bool) -> (phi:Type) -> (squash (b == true ==> phi)) ->
(squash (b == false ==> phi)) ->
Lemma phi
let bool_ind b phi l r = ()
let cases_bool (b:term) : Tac unit =
let bi = `bool_ind in
seq (fun () -> apply_lemma (mk_e_app bi [b]))
(fun () -> let _ = trytac (fun () -> let b = implies_intro () in rewrite b; clear_top ()) in ())
private val or_intro_1 : (#p:Type) -> (#q:Type) -> squash p -> Lemma (p \/ q)
let or_intro_1 #p #q _ = ()
private val or_intro_2 : (#p:Type) -> (#q:Type) -> squash q -> Lemma (p \/ q)
let or_intro_2 #p #q _ = ()
let left () : Tac unit =
apply_lemma (`or_intro_1)
let right () : Tac unit =
apply_lemma (`or_intro_2)
private val __and_elim : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim #p #q #phi p_and_q f = ()
private val __and_elim' : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
squash (p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim' #p #q #phi p_and_q f = ()
let and_elim (t : term) : Tac unit =
begin
try apply_lemma (`(__and_elim (`#t)))
with | _ -> apply_lemma (`(__and_elim' (`#t)))
end
let destruct_and (t : term) : Tac (binding * binding) =
and_elim t;
(implies_intro (), implies_intro ())
private val __witness : (#a:Type) -> (x:a) -> (#p:(a -> Type)) -> squash (p x) -> squash (exists (x:a). p x)
private let __witness #a x #p _ = ()
let witness (t : term) : Tac unit =
apply_raw (`__witness);
exact t
private
let __elim_exists' #t (#pred : t -> Type0) #goal (h : (exists x. pred x))
(k : (x:t -> pred x -> squash goal)) : squash goal =
FStar.Squash.bind_squash #(x:t & pred x) h (fun (|x, pf|) -> k x pf)
(* returns witness and proof as binders *) | false | false | FStar.Tactics.V2.Logic.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val elim_exists (t: term) : Tac (binding & binding) | [] | FStar.Tactics.V2.Logic.elim_exists | {
"file_name": "ulib/FStar.Tactics.V2.Logic.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | t: FStar.Tactics.NamedView.term
-> FStar.Tactics.Effect.Tac (FStar.Tactics.NamedView.binding * FStar.Tactics.NamedView.binding) | {
"end_col": 9,
"end_line": 282,
"start_col": 2,
"start_line": 279
} |
FStar.Tactics.Effect.Tac | val and_elim (t: term) : Tac unit | [
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let and_elim (t : term) : Tac unit =
begin
try apply_lemma (`(__and_elim (`#t)))
with | _ -> apply_lemma (`(__and_elim' (`#t)))
end | val and_elim (t: term) : Tac unit
let and_elim (t: term) : Tac unit = | true | null | false | try apply_lemma (`(__and_elim (`#t))) with | _ -> apply_lemma (`(__and_elim' (`#t))) | {
"checked_file": "FStar.Tactics.V2.Logic.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Derived.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Logic.fst"
} | [] | [
"FStar.Tactics.NamedView.term",
"FStar.Tactics.V2.Derived.try_with",
"Prims.unit",
"FStar.Tactics.V2.Derived.apply_lemma",
"Prims.exn"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Logic
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.V2.Derived
open FStar.Tactics.V2.SyntaxCoercions
open FStar.Tactics.NamedView
open FStar.Tactics.Util
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binding =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binding =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac (list binding) = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binding =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binding =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac (list binding) = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
// FIXME: should this take a binding? It's less general...
// but usually what we want. Coercions could help.
let hyp (x:namedv) : Tac unit = l_exact (namedv_to_term x)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h ()
let pose_lemma (t : term) : Tac binding =
let c = tcc (cur_env ()) t in
let pre, post =
match c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(reqb <: term)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b
let explode () : Tac unit =
ignore (
repeatseq (fun () -> first [(fun () -> ignore (l_intro ()));
(fun () -> ignore (split ()))]))
let rec visit (callback:unit -> Tac unit) : Tac unit =
focus (fun () ->
or_else callback
(fun () ->
let g = cur_goal () in
match term_as_formula g with
| Forall _b _sort _phi ->
let binders = forall_intros () in
seq (fun () -> visit callback) (fun () -> l_revert_all binders)
| And p q ->
seq split (fun () -> visit callback)
| Implies p q ->
let _ = implies_intro () in
seq (fun () -> visit callback) l_revert
| _ ->
()
)
)
let rec simplify_eq_implication () : Tac unit =
let e = cur_env () in
let g = cur_goal () in
let r = destruct_equality_implication g in
match r with
| None ->
fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in // G, eq_h:x=e |- P
rewrite eq_h; // G, eq_h:x=e |- P[e/x]
clear_top (); // G |- P[e/x]
visit simplify_eq_implication
let rewrite_all_equalities () : Tac unit =
visit simplify_eq_implication
let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit =
let g = cur_goal () in
match term_as_formula g with
| App hd arg ->
if term_eq hd tm
then trivial ()
else ()
| _ -> begin
let r = destruct_equality_implication g in
match r with
| None -> fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in
rewrite eq_h;
clear_top ();
visit (fun () -> unfold_definition_and_simplify_eq tm)
end
private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q
let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f)
(** A tactic to unsquash a hypothesis. Perhaps you are looking
for [unsquash_term].
Pre:
goal =
G |- e : squash s
t : squash r
Post:
G, x:r |- e : squash s
`x` is returned as a term
*)
let unsquash (t : term) : Tac term =
let v = `vbind in
apply_lemma (mk_e_app v [t]);
let b = intro () in
pack (Tv_Var b)
private val or_ind : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p \/ q) ->
(squash (p ==> phi)) ->
(squash (q ==> phi)) ->
Lemma phi
let or_ind #p #q #phi o l r = ()
let cases_or (o:term) : Tac unit =
apply_lemma (mk_e_app (`or_ind) [o])
private val bool_ind : (b:bool) -> (phi:Type) -> (squash (b == true ==> phi)) ->
(squash (b == false ==> phi)) ->
Lemma phi
let bool_ind b phi l r = ()
let cases_bool (b:term) : Tac unit =
let bi = `bool_ind in
seq (fun () -> apply_lemma (mk_e_app bi [b]))
(fun () -> let _ = trytac (fun () -> let b = implies_intro () in rewrite b; clear_top ()) in ())
private val or_intro_1 : (#p:Type) -> (#q:Type) -> squash p -> Lemma (p \/ q)
let or_intro_1 #p #q _ = ()
private val or_intro_2 : (#p:Type) -> (#q:Type) -> squash q -> Lemma (p \/ q)
let or_intro_2 #p #q _ = ()
let left () : Tac unit =
apply_lemma (`or_intro_1)
let right () : Tac unit =
apply_lemma (`or_intro_2)
private val __and_elim : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim #p #q #phi p_and_q f = ()
private val __and_elim' : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
squash (p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim' #p #q #phi p_and_q f = ()
let and_elim (t : term) : Tac unit = | false | false | FStar.Tactics.V2.Logic.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val and_elim (t: term) : Tac unit | [] | FStar.Tactics.V2.Logic.and_elim | {
"file_name": "ulib/FStar.Tactics.V2.Logic.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | t: FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac Prims.unit | {
"end_col": 51,
"end_line": 258,
"start_col": 5,
"start_line": 257
} |
FStar.Tactics.Effect.Tac | val using_lemma (t: term) : Tac binding | [
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let using_lemma (t : term) : Tac binding =
try pose_lemma (`(lem1_fa (`#t))) with | _ ->
try pose_lemma (`(lem2_fa (`#t))) with | _ ->
try pose_lemma (`(lem3_fa (`#t))) with | _ ->
fail "using_lemma: failed to instantiate" | val using_lemma (t: term) : Tac binding
let using_lemma (t: term) : Tac binding = | true | null | false | try pose_lemma (`(lem1_fa (`#t)))
with
| _ ->
try pose_lemma (`(lem2_fa (`#t)))
with
| _ -> try pose_lemma (`(lem3_fa (`#t))) with | _ -> fail "using_lemma: failed to instantiate" | {
"checked_file": "FStar.Tactics.V2.Logic.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Derived.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Logic.fst"
} | [] | [
"FStar.Tactics.NamedView.term",
"FStar.Tactics.V2.Derived.try_with",
"FStar.Tactics.NamedView.binding",
"Prims.unit",
"FStar.Tactics.V2.Logic.pose_lemma",
"Prims.exn",
"FStar.Tactics.V2.Derived.fail"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Logic
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.V2.Derived
open FStar.Tactics.V2.SyntaxCoercions
open FStar.Tactics.NamedView
open FStar.Tactics.Util
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binding =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binding =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac (list binding) = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binding =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binding =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac (list binding) = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
// FIXME: should this take a binding? It's less general...
// but usually what we want. Coercions could help.
let hyp (x:namedv) : Tac unit = l_exact (namedv_to_term x)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h ()
let pose_lemma (t : term) : Tac binding =
let c = tcc (cur_env ()) t in
let pre, post =
match c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(reqb <: term)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b
let explode () : Tac unit =
ignore (
repeatseq (fun () -> first [(fun () -> ignore (l_intro ()));
(fun () -> ignore (split ()))]))
let rec visit (callback:unit -> Tac unit) : Tac unit =
focus (fun () ->
or_else callback
(fun () ->
let g = cur_goal () in
match term_as_formula g with
| Forall _b _sort _phi ->
let binders = forall_intros () in
seq (fun () -> visit callback) (fun () -> l_revert_all binders)
| And p q ->
seq split (fun () -> visit callback)
| Implies p q ->
let _ = implies_intro () in
seq (fun () -> visit callback) l_revert
| _ ->
()
)
)
let rec simplify_eq_implication () : Tac unit =
let e = cur_env () in
let g = cur_goal () in
let r = destruct_equality_implication g in
match r with
| None ->
fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in // G, eq_h:x=e |- P
rewrite eq_h; // G, eq_h:x=e |- P[e/x]
clear_top (); // G |- P[e/x]
visit simplify_eq_implication
let rewrite_all_equalities () : Tac unit =
visit simplify_eq_implication
let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit =
let g = cur_goal () in
match term_as_formula g with
| App hd arg ->
if term_eq hd tm
then trivial ()
else ()
| _ -> begin
let r = destruct_equality_implication g in
match r with
| None -> fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in
rewrite eq_h;
clear_top ();
visit (fun () -> unfold_definition_and_simplify_eq tm)
end
private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q
let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f)
(** A tactic to unsquash a hypothesis. Perhaps you are looking
for [unsquash_term].
Pre:
goal =
G |- e : squash s
t : squash r
Post:
G, x:r |- e : squash s
`x` is returned as a term
*)
let unsquash (t : term) : Tac term =
let v = `vbind in
apply_lemma (mk_e_app v [t]);
let b = intro () in
pack (Tv_Var b)
private val or_ind : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p \/ q) ->
(squash (p ==> phi)) ->
(squash (q ==> phi)) ->
Lemma phi
let or_ind #p #q #phi o l r = ()
let cases_or (o:term) : Tac unit =
apply_lemma (mk_e_app (`or_ind) [o])
private val bool_ind : (b:bool) -> (phi:Type) -> (squash (b == true ==> phi)) ->
(squash (b == false ==> phi)) ->
Lemma phi
let bool_ind b phi l r = ()
let cases_bool (b:term) : Tac unit =
let bi = `bool_ind in
seq (fun () -> apply_lemma (mk_e_app bi [b]))
(fun () -> let _ = trytac (fun () -> let b = implies_intro () in rewrite b; clear_top ()) in ())
private val or_intro_1 : (#p:Type) -> (#q:Type) -> squash p -> Lemma (p \/ q)
let or_intro_1 #p #q _ = ()
private val or_intro_2 : (#p:Type) -> (#q:Type) -> squash q -> Lemma (p \/ q)
let or_intro_2 #p #q _ = ()
let left () : Tac unit =
apply_lemma (`or_intro_1)
let right () : Tac unit =
apply_lemma (`or_intro_2)
private val __and_elim : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim #p #q #phi p_and_q f = ()
private val __and_elim' : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
squash (p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim' #p #q #phi p_and_q f = ()
let and_elim (t : term) : Tac unit =
begin
try apply_lemma (`(__and_elim (`#t)))
with | _ -> apply_lemma (`(__and_elim' (`#t)))
end
let destruct_and (t : term) : Tac (binding * binding) =
and_elim t;
(implies_intro (), implies_intro ())
private val __witness : (#a:Type) -> (x:a) -> (#p:(a -> Type)) -> squash (p x) -> squash (exists (x:a). p x)
private let __witness #a x #p _ = ()
let witness (t : term) : Tac unit =
apply_raw (`__witness);
exact t
private
let __elim_exists' #t (#pred : t -> Type0) #goal (h : (exists x. pred x))
(k : (x:t -> pred x -> squash goal)) : squash goal =
FStar.Squash.bind_squash #(x:t & pred x) h (fun (|x, pf|) -> k x pf)
(* returns witness and proof as binders *)
let elim_exists (t : term) : Tac (binding & binding) =
apply_lemma (`(__elim_exists' (`#(t))));
let x = intro () in
let pf = intro () in
(x, pf)
private
let __forall_inst #t (#pred : t -> Type0) (h : (forall x. pred x)) (x : t) : squash (pred x) =
()
(* GM: annoying that this doesn't just work by SMT *)
private
let __forall_inst_sq #t (#pred : t -> Type0) (h : squash (forall x. pred x)) (x : t) : squash (pred x) =
FStar.Squash.bind_squash h (fun (f : (forall x. pred x)) -> __forall_inst f x)
let instantiate (fa : term) (x : term) : Tac binding =
try pose (`__forall_inst_sq (`#fa) (`#x)) with | _ ->
try pose (`__forall_inst (`#fa) (`#x)) with | _ ->
fail "could not instantiate"
let instantiate_as (fa : term) (x : term) (s : string) : Tac binding =
let b = instantiate fa x in
rename_to b s
private
let sklem0 (#a:Type) (#p : a -> Type0) ($v : (exists (x:a). p x)) (phi:Type0) :
Lemma (requires (forall x. p x ==> phi))
(ensures phi) = ()
private
let rec sk_binder' (acc:list binding) (b:binding) : Tac (list binding & binding) =
focus (fun () ->
try
apply_lemma (`(sklem0 (`#b)));
if ngoals () <> 1 then fail "no";
clear b;
let bx = forall_intro () in
let b' = implies_intro () in
sk_binder' (bx::acc) b' (* We might have introduced a new existential, so possibly recurse *)
with | _ -> (acc, b) (* If the above failed, just return *)
)
(* Skolemizes a given binder for an existential, returning the introduced new binders
* and the skolemized formula. *)
let sk_binder b = sk_binder' [] b
let skolem () =
let bs = vars_of_env (cur_env ()) in
map sk_binder bs
private
val lemma_from_squash : #a:Type -> #b:(a -> Type) -> (x:a -> squash (b x)) -> x:a -> Lemma (b x)
private
let lemma_from_squash #a #b f x = let _ = f x in assert (b x)
private
let easy_fill () =
let _ = repeat intro in
(* If the goal is `a -> Lemma b`, intro will fail, try to use this switch *)
let _ = trytac (fun () -> apply (`lemma_from_squash); intro ()) in
smt ()
val easy : #a:Type -> (#[easy_fill ()] _ : a) -> a
let easy #a #x = x
private
let lem1_fa #a #pre #post
($lem : (x:a -> Lemma (requires pre x) (ensures post x))) :
Lemma (forall (x:a). pre x ==> post x) =
let l' x : Lemma (pre x ==> post x) =
Classical.move_requires lem x
in
Classical.forall_intro l'
private
let lem2_fa #a #b #pre #post
($lem : (x:a -> y:b -> Lemma (requires pre x y) (ensures post x y))) :
Lemma (forall (x:a) (y:b). pre x y ==> post x y) =
let l' x y : Lemma (pre x y ==> post x y) =
Classical.move_requires (lem x) y
in
Classical.forall_intro_2 l'
private
let lem3_fa #a #b #c #pre #post
($lem : (x:a -> y:b -> z:c -> Lemma (requires pre x y z) (ensures post x y z))) :
Lemma (forall (x:a) (y:b) (z:c). pre x y z ==> post x y z) =
let l' x y z : Lemma (pre x y z ==> post x y z) =
Classical.move_requires (lem x y) z
in
Classical.forall_intro_3 l'
(** Add a lemma into the local context, quantified for all arguments.
Only works for lemmas with up to 3 arguments for now. It is expected
that `t` is a top-level name, this has not been battle-tested for other
kinds of terms. *) | false | false | FStar.Tactics.V2.Logic.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val using_lemma (t: term) : Tac binding | [] | FStar.Tactics.V2.Logic.using_lemma | {
"file_name": "ulib/FStar.Tactics.V2.Logic.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | t: FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac FStar.Tactics.NamedView.binding | {
"end_col": 43,
"end_line": 378,
"start_col": 2,
"start_line": 375
} |
FStar.Tactics.Effect.Tac | val cases_bool (b: term) : Tac unit | [
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let cases_bool (b:term) : Tac unit =
let bi = `bool_ind in
seq (fun () -> apply_lemma (mk_e_app bi [b]))
(fun () -> let _ = trytac (fun () -> let b = implies_intro () in rewrite b; clear_top ()) in ()) | val cases_bool (b: term) : Tac unit
let cases_bool (b: term) : Tac unit = | true | null | false | let bi = `bool_ind in
seq (fun () -> apply_lemma (mk_e_app bi [b]))
(fun () ->
let _ =
trytac (fun () ->
let b = implies_intro () in
rewrite b;
clear_top ())
in
()) | {
"checked_file": "FStar.Tactics.V2.Logic.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Derived.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Logic.fst"
} | [] | [
"FStar.Tactics.NamedView.term",
"FStar.Tactics.V2.Derived.seq",
"Prims.unit",
"FStar.Tactics.V2.Derived.apply_lemma",
"FStar.Reflection.V2.Derived.mk_e_app",
"Prims.Cons",
"FStar.Reflection.Types.term",
"Prims.Nil",
"FStar.Pervasives.Native.option",
"FStar.Tactics.V2.Derived.trytac",
"FStar.Tactics.V2.Builtins.clear_top",
"FStar.Tactics.V2.Builtins.rewrite",
"FStar.Tactics.NamedView.binding",
"FStar.Tactics.V2.Logic.implies_intro"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Logic
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.V2.Derived
open FStar.Tactics.V2.SyntaxCoercions
open FStar.Tactics.NamedView
open FStar.Tactics.Util
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binding =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binding =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac (list binding) = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binding =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binding =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac (list binding) = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
// FIXME: should this take a binding? It's less general...
// but usually what we want. Coercions could help.
let hyp (x:namedv) : Tac unit = l_exact (namedv_to_term x)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h ()
let pose_lemma (t : term) : Tac binding =
let c = tcc (cur_env ()) t in
let pre, post =
match c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(reqb <: term)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b
let explode () : Tac unit =
ignore (
repeatseq (fun () -> first [(fun () -> ignore (l_intro ()));
(fun () -> ignore (split ()))]))
let rec visit (callback:unit -> Tac unit) : Tac unit =
focus (fun () ->
or_else callback
(fun () ->
let g = cur_goal () in
match term_as_formula g with
| Forall _b _sort _phi ->
let binders = forall_intros () in
seq (fun () -> visit callback) (fun () -> l_revert_all binders)
| And p q ->
seq split (fun () -> visit callback)
| Implies p q ->
let _ = implies_intro () in
seq (fun () -> visit callback) l_revert
| _ ->
()
)
)
let rec simplify_eq_implication () : Tac unit =
let e = cur_env () in
let g = cur_goal () in
let r = destruct_equality_implication g in
match r with
| None ->
fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in // G, eq_h:x=e |- P
rewrite eq_h; // G, eq_h:x=e |- P[e/x]
clear_top (); // G |- P[e/x]
visit simplify_eq_implication
let rewrite_all_equalities () : Tac unit =
visit simplify_eq_implication
let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit =
let g = cur_goal () in
match term_as_formula g with
| App hd arg ->
if term_eq hd tm
then trivial ()
else ()
| _ -> begin
let r = destruct_equality_implication g in
match r with
| None -> fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in
rewrite eq_h;
clear_top ();
visit (fun () -> unfold_definition_and_simplify_eq tm)
end
private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q
let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f)
(** A tactic to unsquash a hypothesis. Perhaps you are looking
for [unsquash_term].
Pre:
goal =
G |- e : squash s
t : squash r
Post:
G, x:r |- e : squash s
`x` is returned as a term
*)
let unsquash (t : term) : Tac term =
let v = `vbind in
apply_lemma (mk_e_app v [t]);
let b = intro () in
pack (Tv_Var b)
private val or_ind : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p \/ q) ->
(squash (p ==> phi)) ->
(squash (q ==> phi)) ->
Lemma phi
let or_ind #p #q #phi o l r = ()
let cases_or (o:term) : Tac unit =
apply_lemma (mk_e_app (`or_ind) [o])
private val bool_ind : (b:bool) -> (phi:Type) -> (squash (b == true ==> phi)) ->
(squash (b == false ==> phi)) ->
Lemma phi
let bool_ind b phi l r = () | false | false | FStar.Tactics.V2.Logic.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val cases_bool (b: term) : Tac unit | [] | FStar.Tactics.V2.Logic.cases_bool | {
"file_name": "ulib/FStar.Tactics.V2.Logic.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | b: FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac Prims.unit | {
"end_col": 104,
"end_line": 229,
"start_col": 36,
"start_line": 226
} |
FStar.Tactics.Effect.Tac | val unsquash (t: term) : Tac term | [
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let unsquash (t : term) : Tac term =
let v = `vbind in
apply_lemma (mk_e_app v [t]);
let b = intro () in
pack (Tv_Var b) | val unsquash (t: term) : Tac term
let unsquash (t: term) : Tac term = | true | null | false | let v = `vbind in
apply_lemma (mk_e_app v [t]);
let b = intro () in
pack (Tv_Var b) | {
"checked_file": "FStar.Tactics.V2.Logic.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Derived.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Logic.fst"
} | [] | [
"FStar.Tactics.NamedView.term",
"FStar.Tactics.NamedView.pack",
"FStar.Tactics.NamedView.Tv_Var",
"FStar.Tactics.V2.SyntaxCoercions.binding_to_namedv",
"FStar.Reflection.V2.Data.binding",
"FStar.Tactics.V2.Builtins.intro",
"Prims.unit",
"FStar.Tactics.V2.Derived.apply_lemma",
"FStar.Reflection.V2.Derived.mk_e_app",
"Prims.Cons",
"FStar.Reflection.Types.term",
"Prims.Nil"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Logic
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.V2.Derived
open FStar.Tactics.V2.SyntaxCoercions
open FStar.Tactics.NamedView
open FStar.Tactics.Util
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binding =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binding =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac (list binding) = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binding =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binding =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac (list binding) = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
// FIXME: should this take a binding? It's less general...
// but usually what we want. Coercions could help.
let hyp (x:namedv) : Tac unit = l_exact (namedv_to_term x)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h ()
let pose_lemma (t : term) : Tac binding =
let c = tcc (cur_env ()) t in
let pre, post =
match c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(reqb <: term)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b
let explode () : Tac unit =
ignore (
repeatseq (fun () -> first [(fun () -> ignore (l_intro ()));
(fun () -> ignore (split ()))]))
let rec visit (callback:unit -> Tac unit) : Tac unit =
focus (fun () ->
or_else callback
(fun () ->
let g = cur_goal () in
match term_as_formula g with
| Forall _b _sort _phi ->
let binders = forall_intros () in
seq (fun () -> visit callback) (fun () -> l_revert_all binders)
| And p q ->
seq split (fun () -> visit callback)
| Implies p q ->
let _ = implies_intro () in
seq (fun () -> visit callback) l_revert
| _ ->
()
)
)
let rec simplify_eq_implication () : Tac unit =
let e = cur_env () in
let g = cur_goal () in
let r = destruct_equality_implication g in
match r with
| None ->
fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in // G, eq_h:x=e |- P
rewrite eq_h; // G, eq_h:x=e |- P[e/x]
clear_top (); // G |- P[e/x]
visit simplify_eq_implication
let rewrite_all_equalities () : Tac unit =
visit simplify_eq_implication
let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit =
let g = cur_goal () in
match term_as_formula g with
| App hd arg ->
if term_eq hd tm
then trivial ()
else ()
| _ -> begin
let r = destruct_equality_implication g in
match r with
| None -> fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in
rewrite eq_h;
clear_top ();
visit (fun () -> unfold_definition_and_simplify_eq tm)
end
private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q
let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f)
(** A tactic to unsquash a hypothesis. Perhaps you are looking
for [unsquash_term].
Pre:
goal =
G |- e : squash s
t : squash r
Post:
G, x:r |- e : squash s
`x` is returned as a term | false | false | FStar.Tactics.V2.Logic.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val unsquash (t: term) : Tac term | [] | FStar.Tactics.V2.Logic.unsquash | {
"file_name": "ulib/FStar.Tactics.V2.Logic.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | t: FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac FStar.Tactics.NamedView.term | {
"end_col": 19,
"end_line": 209,
"start_col": 36,
"start_line": 205
} |
FStar.Tactics.Effect.Tac | val cases_or (o: term) : Tac unit | [
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let cases_or (o:term) : Tac unit =
apply_lemma (mk_e_app (`or_ind) [o]) | val cases_or (o: term) : Tac unit
let cases_or (o: term) : Tac unit = | true | null | false | apply_lemma (mk_e_app (`or_ind) [o]) | {
"checked_file": "FStar.Tactics.V2.Logic.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Derived.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Logic.fst"
} | [] | [
"FStar.Tactics.NamedView.term",
"FStar.Tactics.V2.Derived.apply_lemma",
"FStar.Reflection.V2.Derived.mk_e_app",
"Prims.Cons",
"FStar.Reflection.Types.term",
"Prims.Nil",
"Prims.unit"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Logic
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.V2.Derived
open FStar.Tactics.V2.SyntaxCoercions
open FStar.Tactics.NamedView
open FStar.Tactics.Util
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binding =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binding =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac (list binding) = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binding =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binding =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac (list binding) = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
// FIXME: should this take a binding? It's less general...
// but usually what we want. Coercions could help.
let hyp (x:namedv) : Tac unit = l_exact (namedv_to_term x)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h ()
let pose_lemma (t : term) : Tac binding =
let c = tcc (cur_env ()) t in
let pre, post =
match c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(reqb <: term)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b
let explode () : Tac unit =
ignore (
repeatseq (fun () -> first [(fun () -> ignore (l_intro ()));
(fun () -> ignore (split ()))]))
let rec visit (callback:unit -> Tac unit) : Tac unit =
focus (fun () ->
or_else callback
(fun () ->
let g = cur_goal () in
match term_as_formula g with
| Forall _b _sort _phi ->
let binders = forall_intros () in
seq (fun () -> visit callback) (fun () -> l_revert_all binders)
| And p q ->
seq split (fun () -> visit callback)
| Implies p q ->
let _ = implies_intro () in
seq (fun () -> visit callback) l_revert
| _ ->
()
)
)
let rec simplify_eq_implication () : Tac unit =
let e = cur_env () in
let g = cur_goal () in
let r = destruct_equality_implication g in
match r with
| None ->
fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in // G, eq_h:x=e |- P
rewrite eq_h; // G, eq_h:x=e |- P[e/x]
clear_top (); // G |- P[e/x]
visit simplify_eq_implication
let rewrite_all_equalities () : Tac unit =
visit simplify_eq_implication
let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit =
let g = cur_goal () in
match term_as_formula g with
| App hd arg ->
if term_eq hd tm
then trivial ()
else ()
| _ -> begin
let r = destruct_equality_implication g in
match r with
| None -> fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in
rewrite eq_h;
clear_top ();
visit (fun () -> unfold_definition_and_simplify_eq tm)
end
private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q
let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f)
(** A tactic to unsquash a hypothesis. Perhaps you are looking
for [unsquash_term].
Pre:
goal =
G |- e : squash s
t : squash r
Post:
G, x:r |- e : squash s
`x` is returned as a term
*)
let unsquash (t : term) : Tac term =
let v = `vbind in
apply_lemma (mk_e_app v [t]);
let b = intro () in
pack (Tv_Var b)
private val or_ind : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p \/ q) ->
(squash (p ==> phi)) ->
(squash (q ==> phi)) ->
Lemma phi
let or_ind #p #q #phi o l r = () | false | false | FStar.Tactics.V2.Logic.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val cases_or (o: term) : Tac unit | [] | FStar.Tactics.V2.Logic.cases_or | {
"file_name": "ulib/FStar.Tactics.V2.Logic.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | o: FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac Prims.unit | {
"end_col": 40,
"end_line": 219,
"start_col": 4,
"start_line": 219
} |
FStar.Tactics.Effect.Tac | val explode: Prims.unit -> Tac unit | [
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let explode () : Tac unit =
ignore (
repeatseq (fun () -> first [(fun () -> ignore (l_intro ()));
(fun () -> ignore (split ()))])) | val explode: Prims.unit -> Tac unit
let explode () : Tac unit = | true | null | false | ignore (repeatseq (fun () -> first [(fun () -> ignore (l_intro ())); (fun () -> ignore (split ()))])
) | {
"checked_file": "FStar.Tactics.V2.Logic.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Derived.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Logic.fst"
} | [] | [
"Prims.unit",
"FStar.Pervasives.ignore",
"FStar.Tactics.V2.Derived.repeatseq",
"FStar.Tactics.V2.Derived.first",
"Prims.Cons",
"FStar.Tactics.NamedView.binding",
"FStar.Tactics.V2.Logic.l_intro",
"FStar.Tactics.V2.Logic.split",
"Prims.Nil"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Logic
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.V2.Derived
open FStar.Tactics.V2.SyntaxCoercions
open FStar.Tactics.NamedView
open FStar.Tactics.Util
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binding =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binding =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac (list binding) = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binding =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binding =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac (list binding) = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
// FIXME: should this take a binding? It's less general...
// but usually what we want. Coercions could help.
let hyp (x:namedv) : Tac unit = l_exact (namedv_to_term x)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h ()
let pose_lemma (t : term) : Tac binding =
let c = tcc (cur_env ()) t in
let pre, post =
match c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(reqb <: term)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b | false | false | FStar.Tactics.V2.Logic.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val explode: Prims.unit -> Tac unit | [] | FStar.Tactics.V2.Logic.explode | {
"file_name": "ulib/FStar.Tactics.V2.Logic.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | {
"end_col": 64,
"end_line": 135,
"start_col": 4,
"start_line": 133
} |
FStar.Tactics.Effect.Tac | val instantiate_as (fa x: term) (s: string) : Tac binding | [
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let instantiate_as (fa : term) (x : term) (s : string) : Tac binding =
let b = instantiate fa x in
rename_to b s | val instantiate_as (fa x: term) (s: string) : Tac binding
let instantiate_as (fa x: term) (s: string) : Tac binding = | true | null | false | let b = instantiate fa x in
rename_to b s | {
"checked_file": "FStar.Tactics.V2.Logic.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Derived.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Logic.fst"
} | [] | [
"FStar.Tactics.NamedView.term",
"Prims.string",
"FStar.Tactics.V2.Builtins.rename_to",
"FStar.Reflection.V2.Data.binding",
"FStar.Tactics.NamedView.binding",
"FStar.Tactics.V2.Logic.instantiate"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Logic
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.V2.Derived
open FStar.Tactics.V2.SyntaxCoercions
open FStar.Tactics.NamedView
open FStar.Tactics.Util
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binding =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binding =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac (list binding) = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binding =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binding =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac (list binding) = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
// FIXME: should this take a binding? It's less general...
// but usually what we want. Coercions could help.
let hyp (x:namedv) : Tac unit = l_exact (namedv_to_term x)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h ()
let pose_lemma (t : term) : Tac binding =
let c = tcc (cur_env ()) t in
let pre, post =
match c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(reqb <: term)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b
let explode () : Tac unit =
ignore (
repeatseq (fun () -> first [(fun () -> ignore (l_intro ()));
(fun () -> ignore (split ()))]))
let rec visit (callback:unit -> Tac unit) : Tac unit =
focus (fun () ->
or_else callback
(fun () ->
let g = cur_goal () in
match term_as_formula g with
| Forall _b _sort _phi ->
let binders = forall_intros () in
seq (fun () -> visit callback) (fun () -> l_revert_all binders)
| And p q ->
seq split (fun () -> visit callback)
| Implies p q ->
let _ = implies_intro () in
seq (fun () -> visit callback) l_revert
| _ ->
()
)
)
let rec simplify_eq_implication () : Tac unit =
let e = cur_env () in
let g = cur_goal () in
let r = destruct_equality_implication g in
match r with
| None ->
fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in // G, eq_h:x=e |- P
rewrite eq_h; // G, eq_h:x=e |- P[e/x]
clear_top (); // G |- P[e/x]
visit simplify_eq_implication
let rewrite_all_equalities () : Tac unit =
visit simplify_eq_implication
let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit =
let g = cur_goal () in
match term_as_formula g with
| App hd arg ->
if term_eq hd tm
then trivial ()
else ()
| _ -> begin
let r = destruct_equality_implication g in
match r with
| None -> fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in
rewrite eq_h;
clear_top ();
visit (fun () -> unfold_definition_and_simplify_eq tm)
end
private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q
let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f)
(** A tactic to unsquash a hypothesis. Perhaps you are looking
for [unsquash_term].
Pre:
goal =
G |- e : squash s
t : squash r
Post:
G, x:r |- e : squash s
`x` is returned as a term
*)
let unsquash (t : term) : Tac term =
let v = `vbind in
apply_lemma (mk_e_app v [t]);
let b = intro () in
pack (Tv_Var b)
private val or_ind : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p \/ q) ->
(squash (p ==> phi)) ->
(squash (q ==> phi)) ->
Lemma phi
let or_ind #p #q #phi o l r = ()
let cases_or (o:term) : Tac unit =
apply_lemma (mk_e_app (`or_ind) [o])
private val bool_ind : (b:bool) -> (phi:Type) -> (squash (b == true ==> phi)) ->
(squash (b == false ==> phi)) ->
Lemma phi
let bool_ind b phi l r = ()
let cases_bool (b:term) : Tac unit =
let bi = `bool_ind in
seq (fun () -> apply_lemma (mk_e_app bi [b]))
(fun () -> let _ = trytac (fun () -> let b = implies_intro () in rewrite b; clear_top ()) in ())
private val or_intro_1 : (#p:Type) -> (#q:Type) -> squash p -> Lemma (p \/ q)
let or_intro_1 #p #q _ = ()
private val or_intro_2 : (#p:Type) -> (#q:Type) -> squash q -> Lemma (p \/ q)
let or_intro_2 #p #q _ = ()
let left () : Tac unit =
apply_lemma (`or_intro_1)
let right () : Tac unit =
apply_lemma (`or_intro_2)
private val __and_elim : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim #p #q #phi p_and_q f = ()
private val __and_elim' : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
squash (p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim' #p #q #phi p_and_q f = ()
let and_elim (t : term) : Tac unit =
begin
try apply_lemma (`(__and_elim (`#t)))
with | _ -> apply_lemma (`(__and_elim' (`#t)))
end
let destruct_and (t : term) : Tac (binding * binding) =
and_elim t;
(implies_intro (), implies_intro ())
private val __witness : (#a:Type) -> (x:a) -> (#p:(a -> Type)) -> squash (p x) -> squash (exists (x:a). p x)
private let __witness #a x #p _ = ()
let witness (t : term) : Tac unit =
apply_raw (`__witness);
exact t
private
let __elim_exists' #t (#pred : t -> Type0) #goal (h : (exists x. pred x))
(k : (x:t -> pred x -> squash goal)) : squash goal =
FStar.Squash.bind_squash #(x:t & pred x) h (fun (|x, pf|) -> k x pf)
(* returns witness and proof as binders *)
let elim_exists (t : term) : Tac (binding & binding) =
apply_lemma (`(__elim_exists' (`#(t))));
let x = intro () in
let pf = intro () in
(x, pf)
private
let __forall_inst #t (#pred : t -> Type0) (h : (forall x. pred x)) (x : t) : squash (pred x) =
()
(* GM: annoying that this doesn't just work by SMT *)
private
let __forall_inst_sq #t (#pred : t -> Type0) (h : squash (forall x. pred x)) (x : t) : squash (pred x) =
FStar.Squash.bind_squash h (fun (f : (forall x. pred x)) -> __forall_inst f x)
let instantiate (fa : term) (x : term) : Tac binding =
try pose (`__forall_inst_sq (`#fa) (`#x)) with | _ ->
try pose (`__forall_inst (`#fa) (`#x)) with | _ ->
fail "could not instantiate" | false | false | FStar.Tactics.V2.Logic.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val instantiate_as (fa x: term) (s: string) : Tac binding | [] | FStar.Tactics.V2.Logic.instantiate_as | {
"file_name": "ulib/FStar.Tactics.V2.Logic.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | fa: FStar.Tactics.NamedView.term -> x: FStar.Tactics.NamedView.term -> s: Prims.string
-> FStar.Tactics.Effect.Tac FStar.Tactics.NamedView.binding | {
"end_col": 17,
"end_line": 300,
"start_col": 70,
"start_line": 298
} |
FStar.Pervasives.Lemma | val lem2_fa
(#a #b #pre #post: _)
($lem: (x: a -> y: b -> Lemma (requires pre x y) (ensures post x y)))
: Lemma (forall (x: a) (y: b). pre x y ==> post x y) | [
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lem2_fa #a #b #pre #post
($lem : (x:a -> y:b -> Lemma (requires pre x y) (ensures post x y))) :
Lemma (forall (x:a) (y:b). pre x y ==> post x y) =
let l' x y : Lemma (pre x y ==> post x y) =
Classical.move_requires (lem x) y
in
Classical.forall_intro_2 l' | val lem2_fa
(#a #b #pre #post: _)
($lem: (x: a -> y: b -> Lemma (requires pre x y) (ensures post x y)))
: Lemma (forall (x: a) (y: b). pre x y ==> post x y)
let lem2_fa #a #b #pre #post ($lem: (x: a -> y: b -> Lemma (requires pre x y) (ensures post x y)))
: Lemma (forall (x: a) (y: b). pre x y ==> post x y) = | false | null | true | let l' x y : Lemma (pre x y ==> post x y) = Classical.move_requires (lem x) y in
Classical.forall_intro_2 l' | {
"checked_file": "FStar.Tactics.V2.Logic.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Derived.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Logic.fst"
} | [
"lemma"
] | [
"Prims.unit",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern",
"FStar.Classical.forall_intro_2",
"Prims.l_imp",
"Prims.l_True",
"FStar.Classical.move_requires",
"Prims.l_Forall"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Logic
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.V2.Derived
open FStar.Tactics.V2.SyntaxCoercions
open FStar.Tactics.NamedView
open FStar.Tactics.Util
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binding =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binding =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac (list binding) = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binding =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binding =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac (list binding) = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
// FIXME: should this take a binding? It's less general...
// but usually what we want. Coercions could help.
let hyp (x:namedv) : Tac unit = l_exact (namedv_to_term x)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h ()
let pose_lemma (t : term) : Tac binding =
let c = tcc (cur_env ()) t in
let pre, post =
match c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(reqb <: term)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b
let explode () : Tac unit =
ignore (
repeatseq (fun () -> first [(fun () -> ignore (l_intro ()));
(fun () -> ignore (split ()))]))
let rec visit (callback:unit -> Tac unit) : Tac unit =
focus (fun () ->
or_else callback
(fun () ->
let g = cur_goal () in
match term_as_formula g with
| Forall _b _sort _phi ->
let binders = forall_intros () in
seq (fun () -> visit callback) (fun () -> l_revert_all binders)
| And p q ->
seq split (fun () -> visit callback)
| Implies p q ->
let _ = implies_intro () in
seq (fun () -> visit callback) l_revert
| _ ->
()
)
)
let rec simplify_eq_implication () : Tac unit =
let e = cur_env () in
let g = cur_goal () in
let r = destruct_equality_implication g in
match r with
| None ->
fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in // G, eq_h:x=e |- P
rewrite eq_h; // G, eq_h:x=e |- P[e/x]
clear_top (); // G |- P[e/x]
visit simplify_eq_implication
let rewrite_all_equalities () : Tac unit =
visit simplify_eq_implication
let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit =
let g = cur_goal () in
match term_as_formula g with
| App hd arg ->
if term_eq hd tm
then trivial ()
else ()
| _ -> begin
let r = destruct_equality_implication g in
match r with
| None -> fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in
rewrite eq_h;
clear_top ();
visit (fun () -> unfold_definition_and_simplify_eq tm)
end
private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q
let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f)
(** A tactic to unsquash a hypothesis. Perhaps you are looking
for [unsquash_term].
Pre:
goal =
G |- e : squash s
t : squash r
Post:
G, x:r |- e : squash s
`x` is returned as a term
*)
let unsquash (t : term) : Tac term =
let v = `vbind in
apply_lemma (mk_e_app v [t]);
let b = intro () in
pack (Tv_Var b)
private val or_ind : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p \/ q) ->
(squash (p ==> phi)) ->
(squash (q ==> phi)) ->
Lemma phi
let or_ind #p #q #phi o l r = ()
let cases_or (o:term) : Tac unit =
apply_lemma (mk_e_app (`or_ind) [o])
private val bool_ind : (b:bool) -> (phi:Type) -> (squash (b == true ==> phi)) ->
(squash (b == false ==> phi)) ->
Lemma phi
let bool_ind b phi l r = ()
let cases_bool (b:term) : Tac unit =
let bi = `bool_ind in
seq (fun () -> apply_lemma (mk_e_app bi [b]))
(fun () -> let _ = trytac (fun () -> let b = implies_intro () in rewrite b; clear_top ()) in ())
private val or_intro_1 : (#p:Type) -> (#q:Type) -> squash p -> Lemma (p \/ q)
let or_intro_1 #p #q _ = ()
private val or_intro_2 : (#p:Type) -> (#q:Type) -> squash q -> Lemma (p \/ q)
let or_intro_2 #p #q _ = ()
let left () : Tac unit =
apply_lemma (`or_intro_1)
let right () : Tac unit =
apply_lemma (`or_intro_2)
private val __and_elim : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim #p #q #phi p_and_q f = ()
private val __and_elim' : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
squash (p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim' #p #q #phi p_and_q f = ()
let and_elim (t : term) : Tac unit =
begin
try apply_lemma (`(__and_elim (`#t)))
with | _ -> apply_lemma (`(__and_elim' (`#t)))
end
let destruct_and (t : term) : Tac (binding * binding) =
and_elim t;
(implies_intro (), implies_intro ())
private val __witness : (#a:Type) -> (x:a) -> (#p:(a -> Type)) -> squash (p x) -> squash (exists (x:a). p x)
private let __witness #a x #p _ = ()
let witness (t : term) : Tac unit =
apply_raw (`__witness);
exact t
private
let __elim_exists' #t (#pred : t -> Type0) #goal (h : (exists x. pred x))
(k : (x:t -> pred x -> squash goal)) : squash goal =
FStar.Squash.bind_squash #(x:t & pred x) h (fun (|x, pf|) -> k x pf)
(* returns witness and proof as binders *)
let elim_exists (t : term) : Tac (binding & binding) =
apply_lemma (`(__elim_exists' (`#(t))));
let x = intro () in
let pf = intro () in
(x, pf)
private
let __forall_inst #t (#pred : t -> Type0) (h : (forall x. pred x)) (x : t) : squash (pred x) =
()
(* GM: annoying that this doesn't just work by SMT *)
private
let __forall_inst_sq #t (#pred : t -> Type0) (h : squash (forall x. pred x)) (x : t) : squash (pred x) =
FStar.Squash.bind_squash h (fun (f : (forall x. pred x)) -> __forall_inst f x)
let instantiate (fa : term) (x : term) : Tac binding =
try pose (`__forall_inst_sq (`#fa) (`#x)) with | _ ->
try pose (`__forall_inst (`#fa) (`#x)) with | _ ->
fail "could not instantiate"
let instantiate_as (fa : term) (x : term) (s : string) : Tac binding =
let b = instantiate fa x in
rename_to b s
private
let sklem0 (#a:Type) (#p : a -> Type0) ($v : (exists (x:a). p x)) (phi:Type0) :
Lemma (requires (forall x. p x ==> phi))
(ensures phi) = ()
private
let rec sk_binder' (acc:list binding) (b:binding) : Tac (list binding & binding) =
focus (fun () ->
try
apply_lemma (`(sklem0 (`#b)));
if ngoals () <> 1 then fail "no";
clear b;
let bx = forall_intro () in
let b' = implies_intro () in
sk_binder' (bx::acc) b' (* We might have introduced a new existential, so possibly recurse *)
with | _ -> (acc, b) (* If the above failed, just return *)
)
(* Skolemizes a given binder for an existential, returning the introduced new binders
* and the skolemized formula. *)
let sk_binder b = sk_binder' [] b
let skolem () =
let bs = vars_of_env (cur_env ()) in
map sk_binder bs
private
val lemma_from_squash : #a:Type -> #b:(a -> Type) -> (x:a -> squash (b x)) -> x:a -> Lemma (b x)
private
let lemma_from_squash #a #b f x = let _ = f x in assert (b x)
private
let easy_fill () =
let _ = repeat intro in
(* If the goal is `a -> Lemma b`, intro will fail, try to use this switch *)
let _ = trytac (fun () -> apply (`lemma_from_squash); intro ()) in
smt ()
val easy : #a:Type -> (#[easy_fill ()] _ : a) -> a
let easy #a #x = x
private
let lem1_fa #a #pre #post
($lem : (x:a -> Lemma (requires pre x) (ensures post x))) :
Lemma (forall (x:a). pre x ==> post x) =
let l' x : Lemma (pre x ==> post x) =
Classical.move_requires lem x
in
Classical.forall_intro l'
private
let lem2_fa #a #b #pre #post | false | false | FStar.Tactics.V2.Logic.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lem2_fa
(#a #b #pre #post: _)
($lem: (x: a -> y: b -> Lemma (requires pre x y) (ensures post x y)))
: Lemma (forall (x: a) (y: b). pre x y ==> post x y) | [] | FStar.Tactics.V2.Logic.lem2_fa | {
"file_name": "ulib/FStar.Tactics.V2.Logic.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | $lem: (x: a -> y: b -> FStar.Pervasives.Lemma (requires pre x y) (ensures post x y))
-> FStar.Pervasives.Lemma (ensures forall (x: a) (y: b). pre x y ==> post x y) | {
"end_col": 29,
"end_line": 359,
"start_col": 52,
"start_line": 355
} |
FStar.Pervasives.Lemma | val lem3_fa
(#a #b #c #pre #post: _)
($lem: (x: a -> y: b -> z: c -> Lemma (requires pre x y z) (ensures post x y z)))
: Lemma (forall (x: a) (y: b) (z: c). pre x y z ==> post x y z) | [
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lem3_fa #a #b #c #pre #post
($lem : (x:a -> y:b -> z:c -> Lemma (requires pre x y z) (ensures post x y z))) :
Lemma (forall (x:a) (y:b) (z:c). pre x y z ==> post x y z) =
let l' x y z : Lemma (pre x y z ==> post x y z) =
Classical.move_requires (lem x y) z
in
Classical.forall_intro_3 l' | val lem3_fa
(#a #b #c #pre #post: _)
($lem: (x: a -> y: b -> z: c -> Lemma (requires pre x y z) (ensures post x y z)))
: Lemma (forall (x: a) (y: b) (z: c). pre x y z ==> post x y z)
let lem3_fa
#a
#b
#c
#pre
#post
($lem: (x: a -> y: b -> z: c -> Lemma (requires pre x y z) (ensures post x y z)))
: Lemma (forall (x: a) (y: b) (z: c). pre x y z ==> post x y z) = | false | null | true | let l' x y z : Lemma (pre x y z ==> post x y z) = Classical.move_requires (lem x y) z in
Classical.forall_intro_3 l' | {
"checked_file": "FStar.Tactics.V2.Logic.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Derived.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Logic.fst"
} | [
"lemma"
] | [
"Prims.unit",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern",
"FStar.Classical.forall_intro_3",
"Prims.l_imp",
"Prims.l_True",
"FStar.Classical.move_requires",
"Prims.l_Forall"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Logic
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.V2.Derived
open FStar.Tactics.V2.SyntaxCoercions
open FStar.Tactics.NamedView
open FStar.Tactics.Util
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binding =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binding =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac (list binding) = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binding =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binding =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac (list binding) = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
// FIXME: should this take a binding? It's less general...
// but usually what we want. Coercions could help.
let hyp (x:namedv) : Tac unit = l_exact (namedv_to_term x)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h ()
let pose_lemma (t : term) : Tac binding =
let c = tcc (cur_env ()) t in
let pre, post =
match c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(reqb <: term)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b
let explode () : Tac unit =
ignore (
repeatseq (fun () -> first [(fun () -> ignore (l_intro ()));
(fun () -> ignore (split ()))]))
let rec visit (callback:unit -> Tac unit) : Tac unit =
focus (fun () ->
or_else callback
(fun () ->
let g = cur_goal () in
match term_as_formula g with
| Forall _b _sort _phi ->
let binders = forall_intros () in
seq (fun () -> visit callback) (fun () -> l_revert_all binders)
| And p q ->
seq split (fun () -> visit callback)
| Implies p q ->
let _ = implies_intro () in
seq (fun () -> visit callback) l_revert
| _ ->
()
)
)
let rec simplify_eq_implication () : Tac unit =
let e = cur_env () in
let g = cur_goal () in
let r = destruct_equality_implication g in
match r with
| None ->
fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in // G, eq_h:x=e |- P
rewrite eq_h; // G, eq_h:x=e |- P[e/x]
clear_top (); // G |- P[e/x]
visit simplify_eq_implication
let rewrite_all_equalities () : Tac unit =
visit simplify_eq_implication
let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit =
let g = cur_goal () in
match term_as_formula g with
| App hd arg ->
if term_eq hd tm
then trivial ()
else ()
| _ -> begin
let r = destruct_equality_implication g in
match r with
| None -> fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in
rewrite eq_h;
clear_top ();
visit (fun () -> unfold_definition_and_simplify_eq tm)
end
private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q
let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f)
(** A tactic to unsquash a hypothesis. Perhaps you are looking
for [unsquash_term].
Pre:
goal =
G |- e : squash s
t : squash r
Post:
G, x:r |- e : squash s
`x` is returned as a term
*)
let unsquash (t : term) : Tac term =
let v = `vbind in
apply_lemma (mk_e_app v [t]);
let b = intro () in
pack (Tv_Var b)
private val or_ind : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p \/ q) ->
(squash (p ==> phi)) ->
(squash (q ==> phi)) ->
Lemma phi
let or_ind #p #q #phi o l r = ()
let cases_or (o:term) : Tac unit =
apply_lemma (mk_e_app (`or_ind) [o])
private val bool_ind : (b:bool) -> (phi:Type) -> (squash (b == true ==> phi)) ->
(squash (b == false ==> phi)) ->
Lemma phi
let bool_ind b phi l r = ()
let cases_bool (b:term) : Tac unit =
let bi = `bool_ind in
seq (fun () -> apply_lemma (mk_e_app bi [b]))
(fun () -> let _ = trytac (fun () -> let b = implies_intro () in rewrite b; clear_top ()) in ())
private val or_intro_1 : (#p:Type) -> (#q:Type) -> squash p -> Lemma (p \/ q)
let or_intro_1 #p #q _ = ()
private val or_intro_2 : (#p:Type) -> (#q:Type) -> squash q -> Lemma (p \/ q)
let or_intro_2 #p #q _ = ()
let left () : Tac unit =
apply_lemma (`or_intro_1)
let right () : Tac unit =
apply_lemma (`or_intro_2)
private val __and_elim : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim #p #q #phi p_and_q f = ()
private val __and_elim' : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
squash (p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim' #p #q #phi p_and_q f = ()
let and_elim (t : term) : Tac unit =
begin
try apply_lemma (`(__and_elim (`#t)))
with | _ -> apply_lemma (`(__and_elim' (`#t)))
end
let destruct_and (t : term) : Tac (binding * binding) =
and_elim t;
(implies_intro (), implies_intro ())
private val __witness : (#a:Type) -> (x:a) -> (#p:(a -> Type)) -> squash (p x) -> squash (exists (x:a). p x)
private let __witness #a x #p _ = ()
let witness (t : term) : Tac unit =
apply_raw (`__witness);
exact t
private
let __elim_exists' #t (#pred : t -> Type0) #goal (h : (exists x. pred x))
(k : (x:t -> pred x -> squash goal)) : squash goal =
FStar.Squash.bind_squash #(x:t & pred x) h (fun (|x, pf|) -> k x pf)
(* returns witness and proof as binders *)
let elim_exists (t : term) : Tac (binding & binding) =
apply_lemma (`(__elim_exists' (`#(t))));
let x = intro () in
let pf = intro () in
(x, pf)
private
let __forall_inst #t (#pred : t -> Type0) (h : (forall x. pred x)) (x : t) : squash (pred x) =
()
(* GM: annoying that this doesn't just work by SMT *)
private
let __forall_inst_sq #t (#pred : t -> Type0) (h : squash (forall x. pred x)) (x : t) : squash (pred x) =
FStar.Squash.bind_squash h (fun (f : (forall x. pred x)) -> __forall_inst f x)
let instantiate (fa : term) (x : term) : Tac binding =
try pose (`__forall_inst_sq (`#fa) (`#x)) with | _ ->
try pose (`__forall_inst (`#fa) (`#x)) with | _ ->
fail "could not instantiate"
let instantiate_as (fa : term) (x : term) (s : string) : Tac binding =
let b = instantiate fa x in
rename_to b s
private
let sklem0 (#a:Type) (#p : a -> Type0) ($v : (exists (x:a). p x)) (phi:Type0) :
Lemma (requires (forall x. p x ==> phi))
(ensures phi) = ()
private
let rec sk_binder' (acc:list binding) (b:binding) : Tac (list binding & binding) =
focus (fun () ->
try
apply_lemma (`(sklem0 (`#b)));
if ngoals () <> 1 then fail "no";
clear b;
let bx = forall_intro () in
let b' = implies_intro () in
sk_binder' (bx::acc) b' (* We might have introduced a new existential, so possibly recurse *)
with | _ -> (acc, b) (* If the above failed, just return *)
)
(* Skolemizes a given binder for an existential, returning the introduced new binders
* and the skolemized formula. *)
let sk_binder b = sk_binder' [] b
let skolem () =
let bs = vars_of_env (cur_env ()) in
map sk_binder bs
private
val lemma_from_squash : #a:Type -> #b:(a -> Type) -> (x:a -> squash (b x)) -> x:a -> Lemma (b x)
private
let lemma_from_squash #a #b f x = let _ = f x in assert (b x)
private
let easy_fill () =
let _ = repeat intro in
(* If the goal is `a -> Lemma b`, intro will fail, try to use this switch *)
let _ = trytac (fun () -> apply (`lemma_from_squash); intro ()) in
smt ()
val easy : #a:Type -> (#[easy_fill ()] _ : a) -> a
let easy #a #x = x
private
let lem1_fa #a #pre #post
($lem : (x:a -> Lemma (requires pre x) (ensures post x))) :
Lemma (forall (x:a). pre x ==> post x) =
let l' x : Lemma (pre x ==> post x) =
Classical.move_requires lem x
in
Classical.forall_intro l'
private
let lem2_fa #a #b #pre #post
($lem : (x:a -> y:b -> Lemma (requires pre x y) (ensures post x y))) :
Lemma (forall (x:a) (y:b). pre x y ==> post x y) =
let l' x y : Lemma (pre x y ==> post x y) =
Classical.move_requires (lem x) y
in
Classical.forall_intro_2 l'
private
let lem3_fa #a #b #c #pre #post | false | false | FStar.Tactics.V2.Logic.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lem3_fa
(#a #b #c #pre #post: _)
($lem: (x: a -> y: b -> z: c -> Lemma (requires pre x y z) (ensures post x y z)))
: Lemma (forall (x: a) (y: b) (z: c). pre x y z ==> post x y z) | [] | FStar.Tactics.V2.Logic.lem3_fa | {
"file_name": "ulib/FStar.Tactics.V2.Logic.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | $lem: (x: a -> y: b -> z: c -> FStar.Pervasives.Lemma (requires pre x y z) (ensures post x y z))
-> FStar.Pervasives.Lemma (ensures forall (x: a) (y: b) (z: c). pre x y z ==> post x y z) | {
"end_col": 29,
"end_line": 368,
"start_col": 62,
"start_line": 364
} |
FStar.Tactics.Effect.Tac | val pose_lemma (t: term) : Tac binding | [
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let pose_lemma (t : term) : Tac binding =
let c = tcc (cur_env ()) t in
let pre, post =
match c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(reqb <: term)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b | val pose_lemma (t: term) : Tac binding
let pose_lemma (t: term) : Tac binding = | true | null | false | let c = tcc (cur_env ()) t in
let pre, post =
match c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in
let post = norm_term [] post in
match term_as_formula' pre with
| True_ -> pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(reqb <: term)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b | {
"checked_file": "FStar.Tactics.V2.Logic.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Derived.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Logic.fst"
} | [] | [
"FStar.Tactics.NamedView.term",
"FStar.Reflection.Types.term",
"FStar.Tactics.V2.Derived.pose",
"FStar.Tactics.NamedView.binding",
"FStar.Reflection.V2.Formula.formula",
"Prims.unit",
"FStar.Pervasives.ignore",
"FStar.Pervasives.Native.option",
"FStar.Tactics.V2.Derived.trytac",
"FStar.Tactics.V2.Derived.trivial",
"FStar.Tactics.V2.Derived.flip",
"FStar.Tactics.V2.SyntaxCoercions.binding_to_term",
"FStar.Tactics.V2.Derived.tcut",
"FStar.Reflection.V2.Formula.term_as_formula'",
"FStar.Tactics.V2.Derived.norm_term",
"Prims.Nil",
"FStar.Pervasives.norm_step",
"FStar.Pervasives.Native.tuple2",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Reflection.V2.Data.comp_view",
"FStar.Tactics.V2.Derived.fail",
"FStar.Tactics.NamedView.comp",
"FStar.Tactics.NamedView.tcc",
"FStar.Reflection.Types.env",
"FStar.Tactics.V2.Derived.cur_env"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Logic
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.V2.Derived
open FStar.Tactics.V2.SyntaxCoercions
open FStar.Tactics.NamedView
open FStar.Tactics.Util
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binding =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binding =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac (list binding) = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binding =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binding =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac (list binding) = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
// FIXME: should this take a binding? It's less general...
// but usually what we want. Coercions could help.
let hyp (x:namedv) : Tac unit = l_exact (namedv_to_term x)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h () | false | false | FStar.Tactics.V2.Logic.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val pose_lemma (t: term) : Tac binding | [] | FStar.Tactics.V2.Logic.pose_lemma | {
"file_name": "ulib/FStar.Tactics.V2.Logic.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | t: FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac FStar.Tactics.NamedView.binding | {
"end_col": 5,
"end_line": 130,
"start_col": 41,
"start_line": 111
} |
FStar.Tactics.Effect.Tac | val sk_binder' (acc: list binding) (b: binding) : Tac (list binding & binding) | [
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec sk_binder' (acc:list binding) (b:binding) : Tac (list binding & binding) =
focus (fun () ->
try
apply_lemma (`(sklem0 (`#b)));
if ngoals () <> 1 then fail "no";
clear b;
let bx = forall_intro () in
let b' = implies_intro () in
sk_binder' (bx::acc) b' (* We might have introduced a new existential, so possibly recurse *)
with | _ -> (acc, b) (* If the above failed, just return *)
) | val sk_binder' (acc: list binding) (b: binding) : Tac (list binding & binding)
let rec sk_binder' (acc: list binding) (b: binding) : Tac (list binding & binding) = | true | null | false | focus (fun () ->
try
(apply_lemma (`(sklem0 (`#b)));
if ngoals () <> 1 then fail "no";
clear b;
let bx = forall_intro () in
let b' = implies_intro () in
sk_binder' (bx :: acc) b')
with
| _ -> (acc, b)) | {
"checked_file": "FStar.Tactics.V2.Logic.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Derived.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Logic.fst"
} | [] | [
"Prims.list",
"FStar.Tactics.NamedView.binding",
"FStar.Tactics.V2.Derived.focus",
"FStar.Pervasives.Native.tuple2",
"Prims.unit",
"FStar.Tactics.V2.Derived.try_with",
"FStar.Tactics.V2.Logic.sk_binder'",
"Prims.Cons",
"FStar.Tactics.V2.Logic.implies_intro",
"FStar.Tactics.V2.Logic.forall_intro",
"FStar.Tactics.V2.Builtins.clear",
"FStar.Tactics.V2.Derived.fail",
"Prims.bool",
"Prims.op_disEquality",
"Prims.int",
"FStar.Tactics.V2.Derived.ngoals",
"FStar.Tactics.V2.Derived.apply_lemma",
"FStar.Reflection.Types.term",
"FStar.Tactics.V2.SyntaxCoercions.binding_to_term",
"Prims.exn",
"FStar.Pervasives.Native.Mktuple2"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Logic
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.V2.Derived
open FStar.Tactics.V2.SyntaxCoercions
open FStar.Tactics.NamedView
open FStar.Tactics.Util
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binding =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binding =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac (list binding) = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binding =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binding =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac (list binding) = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
// FIXME: should this take a binding? It's less general...
// but usually what we want. Coercions could help.
let hyp (x:namedv) : Tac unit = l_exact (namedv_to_term x)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h ()
let pose_lemma (t : term) : Tac binding =
let c = tcc (cur_env ()) t in
let pre, post =
match c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(reqb <: term)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b
let explode () : Tac unit =
ignore (
repeatseq (fun () -> first [(fun () -> ignore (l_intro ()));
(fun () -> ignore (split ()))]))
let rec visit (callback:unit -> Tac unit) : Tac unit =
focus (fun () ->
or_else callback
(fun () ->
let g = cur_goal () in
match term_as_formula g with
| Forall _b _sort _phi ->
let binders = forall_intros () in
seq (fun () -> visit callback) (fun () -> l_revert_all binders)
| And p q ->
seq split (fun () -> visit callback)
| Implies p q ->
let _ = implies_intro () in
seq (fun () -> visit callback) l_revert
| _ ->
()
)
)
let rec simplify_eq_implication () : Tac unit =
let e = cur_env () in
let g = cur_goal () in
let r = destruct_equality_implication g in
match r with
| None ->
fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in // G, eq_h:x=e |- P
rewrite eq_h; // G, eq_h:x=e |- P[e/x]
clear_top (); // G |- P[e/x]
visit simplify_eq_implication
let rewrite_all_equalities () : Tac unit =
visit simplify_eq_implication
let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit =
let g = cur_goal () in
match term_as_formula g with
| App hd arg ->
if term_eq hd tm
then trivial ()
else ()
| _ -> begin
let r = destruct_equality_implication g in
match r with
| None -> fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in
rewrite eq_h;
clear_top ();
visit (fun () -> unfold_definition_and_simplify_eq tm)
end
private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q
let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f)
(** A tactic to unsquash a hypothesis. Perhaps you are looking
for [unsquash_term].
Pre:
goal =
G |- e : squash s
t : squash r
Post:
G, x:r |- e : squash s
`x` is returned as a term
*)
let unsquash (t : term) : Tac term =
let v = `vbind in
apply_lemma (mk_e_app v [t]);
let b = intro () in
pack (Tv_Var b)
private val or_ind : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p \/ q) ->
(squash (p ==> phi)) ->
(squash (q ==> phi)) ->
Lemma phi
let or_ind #p #q #phi o l r = ()
let cases_or (o:term) : Tac unit =
apply_lemma (mk_e_app (`or_ind) [o])
private val bool_ind : (b:bool) -> (phi:Type) -> (squash (b == true ==> phi)) ->
(squash (b == false ==> phi)) ->
Lemma phi
let bool_ind b phi l r = ()
let cases_bool (b:term) : Tac unit =
let bi = `bool_ind in
seq (fun () -> apply_lemma (mk_e_app bi [b]))
(fun () -> let _ = trytac (fun () -> let b = implies_intro () in rewrite b; clear_top ()) in ())
private val or_intro_1 : (#p:Type) -> (#q:Type) -> squash p -> Lemma (p \/ q)
let or_intro_1 #p #q _ = ()
private val or_intro_2 : (#p:Type) -> (#q:Type) -> squash q -> Lemma (p \/ q)
let or_intro_2 #p #q _ = ()
let left () : Tac unit =
apply_lemma (`or_intro_1)
let right () : Tac unit =
apply_lemma (`or_intro_2)
private val __and_elim : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim #p #q #phi p_and_q f = ()
private val __and_elim' : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
squash (p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim' #p #q #phi p_and_q f = ()
let and_elim (t : term) : Tac unit =
begin
try apply_lemma (`(__and_elim (`#t)))
with | _ -> apply_lemma (`(__and_elim' (`#t)))
end
let destruct_and (t : term) : Tac (binding * binding) =
and_elim t;
(implies_intro (), implies_intro ())
private val __witness : (#a:Type) -> (x:a) -> (#p:(a -> Type)) -> squash (p x) -> squash (exists (x:a). p x)
private let __witness #a x #p _ = ()
let witness (t : term) : Tac unit =
apply_raw (`__witness);
exact t
private
let __elim_exists' #t (#pred : t -> Type0) #goal (h : (exists x. pred x))
(k : (x:t -> pred x -> squash goal)) : squash goal =
FStar.Squash.bind_squash #(x:t & pred x) h (fun (|x, pf|) -> k x pf)
(* returns witness and proof as binders *)
let elim_exists (t : term) : Tac (binding & binding) =
apply_lemma (`(__elim_exists' (`#(t))));
let x = intro () in
let pf = intro () in
(x, pf)
private
let __forall_inst #t (#pred : t -> Type0) (h : (forall x. pred x)) (x : t) : squash (pred x) =
()
(* GM: annoying that this doesn't just work by SMT *)
private
let __forall_inst_sq #t (#pred : t -> Type0) (h : squash (forall x. pred x)) (x : t) : squash (pred x) =
FStar.Squash.bind_squash h (fun (f : (forall x. pred x)) -> __forall_inst f x)
let instantiate (fa : term) (x : term) : Tac binding =
try pose (`__forall_inst_sq (`#fa) (`#x)) with | _ ->
try pose (`__forall_inst (`#fa) (`#x)) with | _ ->
fail "could not instantiate"
let instantiate_as (fa : term) (x : term) (s : string) : Tac binding =
let b = instantiate fa x in
rename_to b s
private
let sklem0 (#a:Type) (#p : a -> Type0) ($v : (exists (x:a). p x)) (phi:Type0) :
Lemma (requires (forall x. p x ==> phi))
(ensures phi) = ()
private | false | false | FStar.Tactics.V2.Logic.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val sk_binder' (acc: list binding) (b: binding) : Tac (list binding & binding) | [
"recursion"
] | FStar.Tactics.V2.Logic.sk_binder' | {
"file_name": "ulib/FStar.Tactics.V2.Logic.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | acc: Prims.list FStar.Tactics.NamedView.binding -> b: FStar.Tactics.NamedView.binding
-> FStar.Tactics.Effect.Tac
(Prims.list FStar.Tactics.NamedView.binding * FStar.Tactics.NamedView.binding) | {
"end_col": 3,
"end_line": 318,
"start_col": 2,
"start_line": 309
} |
FStar.Tactics.Effect.Tac | val forall_intro: Prims.unit -> Tac binding | [
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let forall_intro () : Tac binding =
apply_lemma (`fa_intro_lem);
intro () | val forall_intro: Prims.unit -> Tac binding
let forall_intro () : Tac binding = | true | null | false | apply_lemma (`fa_intro_lem);
intro () | {
"checked_file": "FStar.Tactics.V2.Logic.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Derived.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Logic.fst"
} | [] | [
"Prims.unit",
"FStar.Tactics.V2.Builtins.intro",
"FStar.Reflection.V2.Data.binding",
"FStar.Tactics.V2.Derived.apply_lemma",
"FStar.Tactics.NamedView.binding"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Logic
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.V2.Derived
open FStar.Tactics.V2.SyntaxCoercions
open FStar.Tactics.NamedView
open FStar.Tactics.Util
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *) | false | false | FStar.Tactics.V2.Logic.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val forall_intro: Prims.unit -> Tac binding | [] | FStar.Tactics.V2.Logic.forall_intro | {
"file_name": "ulib/FStar.Tactics.V2.Logic.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | _: Prims.unit -> FStar.Tactics.Effect.Tac FStar.Tactics.NamedView.binding | {
"end_col": 12,
"end_line": 53,
"start_col": 4,
"start_line": 52
} |
FStar.Tactics.Effect.Tac | val hyp (x: namedv) : Tac unit | [
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let hyp (x:namedv) : Tac unit = l_exact (namedv_to_term x) | val hyp (x: namedv) : Tac unit
let hyp (x: namedv) : Tac unit = | true | null | false | l_exact (namedv_to_term x) | {
"checked_file": "FStar.Tactics.V2.Logic.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Derived.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Logic.fst"
} | [] | [
"FStar.Tactics.NamedView.namedv",
"FStar.Tactics.V2.Logic.l_exact",
"FStar.Tactics.V2.SyntaxCoercions.namedv_to_term",
"Prims.unit"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Logic
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.V2.Derived
open FStar.Tactics.V2.SyntaxCoercions
open FStar.Tactics.NamedView
open FStar.Tactics.Util
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binding =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binding =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac (list binding) = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binding =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binding =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac (list binding) = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
// FIXME: should this take a binding? It's less general... | false | false | FStar.Tactics.V2.Logic.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val hyp (x: namedv) : Tac unit | [] | FStar.Tactics.V2.Logic.hyp | {
"file_name": "ulib/FStar.Tactics.V2.Logic.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | x: FStar.Tactics.NamedView.namedv -> FStar.Tactics.Effect.Tac Prims.unit | {
"end_col": 58,
"end_line": 105,
"start_col": 32,
"start_line": 105
} |
FStar.Tactics.Effect.Tac | val right: Prims.unit -> Tac unit | [
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let right () : Tac unit =
apply_lemma (`or_intro_2) | val right: Prims.unit -> Tac unit
let right () : Tac unit = | true | null | false | apply_lemma (`or_intro_2) | {
"checked_file": "FStar.Tactics.V2.Logic.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Derived.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Logic.fst"
} | [] | [
"Prims.unit",
"FStar.Tactics.V2.Derived.apply_lemma"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Logic
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.V2.Derived
open FStar.Tactics.V2.SyntaxCoercions
open FStar.Tactics.NamedView
open FStar.Tactics.Util
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binding =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binding =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac (list binding) = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binding =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binding =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac (list binding) = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
// FIXME: should this take a binding? It's less general...
// but usually what we want. Coercions could help.
let hyp (x:namedv) : Tac unit = l_exact (namedv_to_term x)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h ()
let pose_lemma (t : term) : Tac binding =
let c = tcc (cur_env ()) t in
let pre, post =
match c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(reqb <: term)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b
let explode () : Tac unit =
ignore (
repeatseq (fun () -> first [(fun () -> ignore (l_intro ()));
(fun () -> ignore (split ()))]))
let rec visit (callback:unit -> Tac unit) : Tac unit =
focus (fun () ->
or_else callback
(fun () ->
let g = cur_goal () in
match term_as_formula g with
| Forall _b _sort _phi ->
let binders = forall_intros () in
seq (fun () -> visit callback) (fun () -> l_revert_all binders)
| And p q ->
seq split (fun () -> visit callback)
| Implies p q ->
let _ = implies_intro () in
seq (fun () -> visit callback) l_revert
| _ ->
()
)
)
let rec simplify_eq_implication () : Tac unit =
let e = cur_env () in
let g = cur_goal () in
let r = destruct_equality_implication g in
match r with
| None ->
fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in // G, eq_h:x=e |- P
rewrite eq_h; // G, eq_h:x=e |- P[e/x]
clear_top (); // G |- P[e/x]
visit simplify_eq_implication
let rewrite_all_equalities () : Tac unit =
visit simplify_eq_implication
let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit =
let g = cur_goal () in
match term_as_formula g with
| App hd arg ->
if term_eq hd tm
then trivial ()
else ()
| _ -> begin
let r = destruct_equality_implication g in
match r with
| None -> fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in
rewrite eq_h;
clear_top ();
visit (fun () -> unfold_definition_and_simplify_eq tm)
end
private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q
let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f)
(** A tactic to unsquash a hypothesis. Perhaps you are looking
for [unsquash_term].
Pre:
goal =
G |- e : squash s
t : squash r
Post:
G, x:r |- e : squash s
`x` is returned as a term
*)
let unsquash (t : term) : Tac term =
let v = `vbind in
apply_lemma (mk_e_app v [t]);
let b = intro () in
pack (Tv_Var b)
private val or_ind : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p \/ q) ->
(squash (p ==> phi)) ->
(squash (q ==> phi)) ->
Lemma phi
let or_ind #p #q #phi o l r = ()
let cases_or (o:term) : Tac unit =
apply_lemma (mk_e_app (`or_ind) [o])
private val bool_ind : (b:bool) -> (phi:Type) -> (squash (b == true ==> phi)) ->
(squash (b == false ==> phi)) ->
Lemma phi
let bool_ind b phi l r = ()
let cases_bool (b:term) : Tac unit =
let bi = `bool_ind in
seq (fun () -> apply_lemma (mk_e_app bi [b]))
(fun () -> let _ = trytac (fun () -> let b = implies_intro () in rewrite b; clear_top ()) in ())
private val or_intro_1 : (#p:Type) -> (#q:Type) -> squash p -> Lemma (p \/ q)
let or_intro_1 #p #q _ = ()
private val or_intro_2 : (#p:Type) -> (#q:Type) -> squash q -> Lemma (p \/ q)
let or_intro_2 #p #q _ = ()
let left () : Tac unit =
apply_lemma (`or_intro_1) | false | false | FStar.Tactics.V2.Logic.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val right: Prims.unit -> Tac unit | [] | FStar.Tactics.V2.Logic.right | {
"file_name": "ulib/FStar.Tactics.V2.Logic.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | {
"end_col": 29,
"end_line": 241,
"start_col": 4,
"start_line": 241
} |
FStar.Tactics.Effect.Tac | val visit (callback: (unit -> Tac unit)) : Tac unit | [
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec visit (callback:unit -> Tac unit) : Tac unit =
focus (fun () ->
or_else callback
(fun () ->
let g = cur_goal () in
match term_as_formula g with
| Forall _b _sort _phi ->
let binders = forall_intros () in
seq (fun () -> visit callback) (fun () -> l_revert_all binders)
| And p q ->
seq split (fun () -> visit callback)
| Implies p q ->
let _ = implies_intro () in
seq (fun () -> visit callback) l_revert
| _ ->
()
)
) | val visit (callback: (unit -> Tac unit)) : Tac unit
let rec visit (callback: (unit -> Tac unit)) : Tac unit = | true | null | false | focus (fun () ->
or_else callback
(fun () ->
let g = cur_goal () in
match term_as_formula g with
| Forall _b _sort _phi ->
let binders = forall_intros () in
seq (fun () -> visit callback) (fun () -> l_revert_all binders)
| And p q -> seq split (fun () -> visit callback)
| Implies p q ->
let _ = implies_intro () in
seq (fun () -> visit callback) l_revert
| _ -> ())) | {
"checked_file": "FStar.Tactics.V2.Logic.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Derived.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Logic.fst"
} | [] | [
"Prims.unit",
"FStar.Tactics.V2.Derived.focus",
"FStar.Tactics.V2.Derived.or_else",
"FStar.Tactics.NamedView.bv",
"FStar.Reflection.Types.typ",
"FStar.Tactics.NamedView.term",
"FStar.Tactics.V2.Derived.seq",
"FStar.Tactics.V2.Logic.visit",
"FStar.Tactics.V2.Logic.l_revert_all",
"Prims.list",
"FStar.Tactics.NamedView.binding",
"FStar.Tactics.V2.Logic.forall_intros",
"FStar.Tactics.V2.Logic.split",
"FStar.Tactics.V2.Logic.l_revert",
"FStar.Tactics.V2.Logic.implies_intro",
"FStar.Reflection.V2.Formula.formula",
"FStar.Reflection.V2.Formula.term_as_formula",
"FStar.Tactics.V2.Derived.cur_goal"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Logic
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.V2.Derived
open FStar.Tactics.V2.SyntaxCoercions
open FStar.Tactics.NamedView
open FStar.Tactics.Util
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binding =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binding =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac (list binding) = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binding =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binding =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac (list binding) = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
// FIXME: should this take a binding? It's less general...
// but usually what we want. Coercions could help.
let hyp (x:namedv) : Tac unit = l_exact (namedv_to_term x)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h ()
let pose_lemma (t : term) : Tac binding =
let c = tcc (cur_env ()) t in
let pre, post =
match c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(reqb <: term)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b
let explode () : Tac unit =
ignore (
repeatseq (fun () -> first [(fun () -> ignore (l_intro ()));
(fun () -> ignore (split ()))])) | false | false | FStar.Tactics.V2.Logic.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val visit (callback: (unit -> Tac unit)) : Tac unit | [
"recursion"
] | FStar.Tactics.V2.Logic.visit | {
"file_name": "ulib/FStar.Tactics.V2.Logic.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | callback: (_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit)
-> FStar.Tactics.Effect.Tac Prims.unit | {
"end_col": 11,
"end_line": 154,
"start_col": 4,
"start_line": 138
} |
Prims.Tot | val __elim_exists'
(#t: _)
(#pred: (t -> Type0))
(#goal: _)
(h: (exists x. pred x))
(k: (x: t -> pred x -> squash goal))
: squash goal | [
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let __elim_exists' #t (#pred : t -> Type0) #goal (h : (exists x. pred x))
(k : (x:t -> pred x -> squash goal)) : squash goal =
FStar.Squash.bind_squash #(x:t & pred x) h (fun (|x, pf|) -> k x pf) | val __elim_exists'
(#t: _)
(#pred: (t -> Type0))
(#goal: _)
(h: (exists x. pred x))
(k: (x: t -> pred x -> squash goal))
: squash goal
let __elim_exists'
#t
(#pred: (t -> Type0))
#goal
(h: (exists x. pred x))
(k: (x: t -> pred x -> squash goal))
: squash goal = | false | null | true | FStar.Squash.bind_squash #(x: t & pred x) h (fun (| x , pf |) -> k x pf) | {
"checked_file": "FStar.Tactics.V2.Logic.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Derived.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Logic.fst"
} | [
"total"
] | [
"Prims.l_Exists",
"Prims.squash",
"FStar.Squash.bind_squash",
"Prims.dtuple2"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Logic
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.V2.Derived
open FStar.Tactics.V2.SyntaxCoercions
open FStar.Tactics.NamedView
open FStar.Tactics.Util
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binding =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binding =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac (list binding) = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binding =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binding =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac (list binding) = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
// FIXME: should this take a binding? It's less general...
// but usually what we want. Coercions could help.
let hyp (x:namedv) : Tac unit = l_exact (namedv_to_term x)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h ()
let pose_lemma (t : term) : Tac binding =
let c = tcc (cur_env ()) t in
let pre, post =
match c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(reqb <: term)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b
let explode () : Tac unit =
ignore (
repeatseq (fun () -> first [(fun () -> ignore (l_intro ()));
(fun () -> ignore (split ()))]))
let rec visit (callback:unit -> Tac unit) : Tac unit =
focus (fun () ->
or_else callback
(fun () ->
let g = cur_goal () in
match term_as_formula g with
| Forall _b _sort _phi ->
let binders = forall_intros () in
seq (fun () -> visit callback) (fun () -> l_revert_all binders)
| And p q ->
seq split (fun () -> visit callback)
| Implies p q ->
let _ = implies_intro () in
seq (fun () -> visit callback) l_revert
| _ ->
()
)
)
let rec simplify_eq_implication () : Tac unit =
let e = cur_env () in
let g = cur_goal () in
let r = destruct_equality_implication g in
match r with
| None ->
fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in // G, eq_h:x=e |- P
rewrite eq_h; // G, eq_h:x=e |- P[e/x]
clear_top (); // G |- P[e/x]
visit simplify_eq_implication
let rewrite_all_equalities () : Tac unit =
visit simplify_eq_implication
let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit =
let g = cur_goal () in
match term_as_formula g with
| App hd arg ->
if term_eq hd tm
then trivial ()
else ()
| _ -> begin
let r = destruct_equality_implication g in
match r with
| None -> fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in
rewrite eq_h;
clear_top ();
visit (fun () -> unfold_definition_and_simplify_eq tm)
end
private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q
let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f)
(** A tactic to unsquash a hypothesis. Perhaps you are looking
for [unsquash_term].
Pre:
goal =
G |- e : squash s
t : squash r
Post:
G, x:r |- e : squash s
`x` is returned as a term
*)
let unsquash (t : term) : Tac term =
let v = `vbind in
apply_lemma (mk_e_app v [t]);
let b = intro () in
pack (Tv_Var b)
private val or_ind : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p \/ q) ->
(squash (p ==> phi)) ->
(squash (q ==> phi)) ->
Lemma phi
let or_ind #p #q #phi o l r = ()
let cases_or (o:term) : Tac unit =
apply_lemma (mk_e_app (`or_ind) [o])
private val bool_ind : (b:bool) -> (phi:Type) -> (squash (b == true ==> phi)) ->
(squash (b == false ==> phi)) ->
Lemma phi
let bool_ind b phi l r = ()
let cases_bool (b:term) : Tac unit =
let bi = `bool_ind in
seq (fun () -> apply_lemma (mk_e_app bi [b]))
(fun () -> let _ = trytac (fun () -> let b = implies_intro () in rewrite b; clear_top ()) in ())
private val or_intro_1 : (#p:Type) -> (#q:Type) -> squash p -> Lemma (p \/ q)
let or_intro_1 #p #q _ = ()
private val or_intro_2 : (#p:Type) -> (#q:Type) -> squash q -> Lemma (p \/ q)
let or_intro_2 #p #q _ = ()
let left () : Tac unit =
apply_lemma (`or_intro_1)
let right () : Tac unit =
apply_lemma (`or_intro_2)
private val __and_elim : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim #p #q #phi p_and_q f = ()
private val __and_elim' : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
squash (p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim' #p #q #phi p_and_q f = ()
let and_elim (t : term) : Tac unit =
begin
try apply_lemma (`(__and_elim (`#t)))
with | _ -> apply_lemma (`(__and_elim' (`#t)))
end
let destruct_and (t : term) : Tac (binding * binding) =
and_elim t;
(implies_intro (), implies_intro ())
private val __witness : (#a:Type) -> (x:a) -> (#p:(a -> Type)) -> squash (p x) -> squash (exists (x:a). p x)
private let __witness #a x #p _ = ()
let witness (t : term) : Tac unit =
apply_raw (`__witness);
exact t
private
let __elim_exists' #t (#pred : t -> Type0) #goal (h : (exists x. pred x)) | false | false | FStar.Tactics.V2.Logic.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val __elim_exists'
(#t: _)
(#pred: (t -> Type0))
(#goal: _)
(h: (exists x. pred x))
(k: (x: t -> pred x -> squash goal))
: squash goal | [] | FStar.Tactics.V2.Logic.__elim_exists' | {
"file_name": "ulib/FStar.Tactics.V2.Logic.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | h: (exists (x: t). pred x) -> k: (x: t -> _: pred x -> Prims.squash goal) -> Prims.squash goal | {
"end_col": 70,
"end_line": 275,
"start_col": 2,
"start_line": 275
} |
Prims.Tot | val __lemma_to_squash:
#req: _ ->
#ens: _ ->
squash req ->
h: (unit -> Lemma (requires req) (ensures ens))
-> squash ens | [
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h () | val __lemma_to_squash:
#req: _ ->
#ens: _ ->
squash req ->
h: (unit -> Lemma (requires req) (ensures ens))
-> squash ens
let __lemma_to_squash #req #ens (_: squash req) (h: (unit -> Lemma (requires req) (ensures ens)))
: squash ens = | false | null | true | h () | {
"checked_file": "FStar.Tactics.V2.Logic.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Derived.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Logic.fst"
} | [
"total"
] | [
"Prims.squash",
"Prims.unit",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Logic
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.V2.Derived
open FStar.Tactics.V2.SyntaxCoercions
open FStar.Tactics.NamedView
open FStar.Tactics.Util
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binding =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binding =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac (list binding) = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binding =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binding =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac (list binding) = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
// FIXME: should this take a binding? It's less general...
// but usually what we want. Coercions could help.
let hyp (x:namedv) : Tac unit = l_exact (namedv_to_term x)
private | false | false | FStar.Tactics.V2.Logic.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val __lemma_to_squash:
#req: _ ->
#ens: _ ->
squash req ->
h: (unit -> Lemma (requires req) (ensures ens))
-> squash ens | [] | FStar.Tactics.V2.Logic.__lemma_to_squash | {
"file_name": "ulib/FStar.Tactics.V2.Logic.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | _: Prims.squash req -> h: (_: Prims.unit -> FStar.Pervasives.Lemma (requires req) (ensures ens))
-> Prims.squash ens | {
"end_col": 6,
"end_line": 109,
"start_col": 2,
"start_line": 109
} |
FStar.Pervasives.Lemma | val lemma_from_squash : #a:Type -> #b:(a -> Type) -> (x:a -> squash (b x)) -> x:a -> Lemma (b x) | [
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_from_squash #a #b f x = let _ = f x in assert (b x) | val lemma_from_squash : #a:Type -> #b:(a -> Type) -> (x:a -> squash (b x)) -> x:a -> Lemma (b x)
let lemma_from_squash #a #b f x = | false | null | true | let _ = f x in
assert (b x) | {
"checked_file": "FStar.Tactics.V2.Logic.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Derived.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Logic.fst"
} | [
"lemma"
] | [
"Prims.squash",
"Prims._assert",
"Prims.unit"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Logic
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.V2.Derived
open FStar.Tactics.V2.SyntaxCoercions
open FStar.Tactics.NamedView
open FStar.Tactics.Util
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binding =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binding =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac (list binding) = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binding =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binding =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac (list binding) = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
// FIXME: should this take a binding? It's less general...
// but usually what we want. Coercions could help.
let hyp (x:namedv) : Tac unit = l_exact (namedv_to_term x)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h ()
let pose_lemma (t : term) : Tac binding =
let c = tcc (cur_env ()) t in
let pre, post =
match c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(reqb <: term)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b
let explode () : Tac unit =
ignore (
repeatseq (fun () -> first [(fun () -> ignore (l_intro ()));
(fun () -> ignore (split ()))]))
let rec visit (callback:unit -> Tac unit) : Tac unit =
focus (fun () ->
or_else callback
(fun () ->
let g = cur_goal () in
match term_as_formula g with
| Forall _b _sort _phi ->
let binders = forall_intros () in
seq (fun () -> visit callback) (fun () -> l_revert_all binders)
| And p q ->
seq split (fun () -> visit callback)
| Implies p q ->
let _ = implies_intro () in
seq (fun () -> visit callback) l_revert
| _ ->
()
)
)
let rec simplify_eq_implication () : Tac unit =
let e = cur_env () in
let g = cur_goal () in
let r = destruct_equality_implication g in
match r with
| None ->
fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in // G, eq_h:x=e |- P
rewrite eq_h; // G, eq_h:x=e |- P[e/x]
clear_top (); // G |- P[e/x]
visit simplify_eq_implication
let rewrite_all_equalities () : Tac unit =
visit simplify_eq_implication
let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit =
let g = cur_goal () in
match term_as_formula g with
| App hd arg ->
if term_eq hd tm
then trivial ()
else ()
| _ -> begin
let r = destruct_equality_implication g in
match r with
| None -> fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in
rewrite eq_h;
clear_top ();
visit (fun () -> unfold_definition_and_simplify_eq tm)
end
private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q
let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f)
(** A tactic to unsquash a hypothesis. Perhaps you are looking
for [unsquash_term].
Pre:
goal =
G |- e : squash s
t : squash r
Post:
G, x:r |- e : squash s
`x` is returned as a term
*)
let unsquash (t : term) : Tac term =
let v = `vbind in
apply_lemma (mk_e_app v [t]);
let b = intro () in
pack (Tv_Var b)
private val or_ind : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p \/ q) ->
(squash (p ==> phi)) ->
(squash (q ==> phi)) ->
Lemma phi
let or_ind #p #q #phi o l r = ()
let cases_or (o:term) : Tac unit =
apply_lemma (mk_e_app (`or_ind) [o])
private val bool_ind : (b:bool) -> (phi:Type) -> (squash (b == true ==> phi)) ->
(squash (b == false ==> phi)) ->
Lemma phi
let bool_ind b phi l r = ()
let cases_bool (b:term) : Tac unit =
let bi = `bool_ind in
seq (fun () -> apply_lemma (mk_e_app bi [b]))
(fun () -> let _ = trytac (fun () -> let b = implies_intro () in rewrite b; clear_top ()) in ())
private val or_intro_1 : (#p:Type) -> (#q:Type) -> squash p -> Lemma (p \/ q)
let or_intro_1 #p #q _ = ()
private val or_intro_2 : (#p:Type) -> (#q:Type) -> squash q -> Lemma (p \/ q)
let or_intro_2 #p #q _ = ()
let left () : Tac unit =
apply_lemma (`or_intro_1)
let right () : Tac unit =
apply_lemma (`or_intro_2)
private val __and_elim : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim #p #q #phi p_and_q f = ()
private val __and_elim' : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
squash (p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim' #p #q #phi p_and_q f = ()
let and_elim (t : term) : Tac unit =
begin
try apply_lemma (`(__and_elim (`#t)))
with | _ -> apply_lemma (`(__and_elim' (`#t)))
end
let destruct_and (t : term) : Tac (binding * binding) =
and_elim t;
(implies_intro (), implies_intro ())
private val __witness : (#a:Type) -> (x:a) -> (#p:(a -> Type)) -> squash (p x) -> squash (exists (x:a). p x)
private let __witness #a x #p _ = ()
let witness (t : term) : Tac unit =
apply_raw (`__witness);
exact t
private
let __elim_exists' #t (#pred : t -> Type0) #goal (h : (exists x. pred x))
(k : (x:t -> pred x -> squash goal)) : squash goal =
FStar.Squash.bind_squash #(x:t & pred x) h (fun (|x, pf|) -> k x pf)
(* returns witness and proof as binders *)
let elim_exists (t : term) : Tac (binding & binding) =
apply_lemma (`(__elim_exists' (`#(t))));
let x = intro () in
let pf = intro () in
(x, pf)
private
let __forall_inst #t (#pred : t -> Type0) (h : (forall x. pred x)) (x : t) : squash (pred x) =
()
(* GM: annoying that this doesn't just work by SMT *)
private
let __forall_inst_sq #t (#pred : t -> Type0) (h : squash (forall x. pred x)) (x : t) : squash (pred x) =
FStar.Squash.bind_squash h (fun (f : (forall x. pred x)) -> __forall_inst f x)
let instantiate (fa : term) (x : term) : Tac binding =
try pose (`__forall_inst_sq (`#fa) (`#x)) with | _ ->
try pose (`__forall_inst (`#fa) (`#x)) with | _ ->
fail "could not instantiate"
let instantiate_as (fa : term) (x : term) (s : string) : Tac binding =
let b = instantiate fa x in
rename_to b s
private
let sklem0 (#a:Type) (#p : a -> Type0) ($v : (exists (x:a). p x)) (phi:Type0) :
Lemma (requires (forall x. p x ==> phi))
(ensures phi) = ()
private
let rec sk_binder' (acc:list binding) (b:binding) : Tac (list binding & binding) =
focus (fun () ->
try
apply_lemma (`(sklem0 (`#b)));
if ngoals () <> 1 then fail "no";
clear b;
let bx = forall_intro () in
let b' = implies_intro () in
sk_binder' (bx::acc) b' (* We might have introduced a new existential, so possibly recurse *)
with | _ -> (acc, b) (* If the above failed, just return *)
)
(* Skolemizes a given binder for an existential, returning the introduced new binders
* and the skolemized formula. *)
let sk_binder b = sk_binder' [] b
let skolem () =
let bs = vars_of_env (cur_env ()) in
map sk_binder bs
private
val lemma_from_squash : #a:Type -> #b:(a -> Type) -> (x:a -> squash (b x)) -> x:a -> Lemma (b x) | false | false | FStar.Tactics.V2.Logic.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_from_squash : #a:Type -> #b:(a -> Type) -> (x:a -> squash (b x)) -> x:a -> Lemma (b x) | [] | FStar.Tactics.V2.Logic.lemma_from_squash | {
"file_name": "ulib/FStar.Tactics.V2.Logic.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | f: (x: a -> Prims.squash (b x)) -> x: a -> FStar.Pervasives.Lemma (ensures b x) | {
"end_col": 61,
"end_line": 331,
"start_col": 33,
"start_line": 331
} |
FStar.Tactics.Effect.Tac | val l_revert_all (bs: list binding) : Tac unit | [
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec l_revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end | val l_revert_all (bs: list binding) : Tac unit
let rec l_revert_all (bs: list binding) : Tac unit = | true | null | false | match bs with
| [] -> ()
| _ :: tl ->
l_revert ();
l_revert_all tl | {
"checked_file": "FStar.Tactics.V2.Logic.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Derived.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Logic.fst"
} | [] | [
"Prims.list",
"FStar.Tactics.NamedView.binding",
"Prims.unit",
"FStar.Tactics.V2.Logic.l_revert_all",
"FStar.Tactics.V2.Logic.l_revert"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Logic
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.V2.Derived
open FStar.Tactics.V2.SyntaxCoercions
open FStar.Tactics.NamedView
open FStar.Tactics.Util
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *) | false | false | FStar.Tactics.V2.Logic.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val l_revert_all (bs: list binding) : Tac unit | [
"recursion"
] | FStar.Tactics.V2.Logic.l_revert_all | {
"file_name": "ulib/FStar.Tactics.V2.Logic.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | bs: Prims.list FStar.Tactics.NamedView.binding -> FStar.Tactics.Effect.Tac Prims.unit | {
"end_col": 53,
"end_line": 44,
"start_col": 4,
"start_line": 42
} |
FStar.Pervasives.Lemma | val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q | [
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f) | val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q
let vbind #p #q sq f = | false | null | true | FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f) | {
"checked_file": "FStar.Tactics.V2.Logic.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Derived.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Logic.fst"
} | [
"lemma"
] | [
"Prims.squash",
"FStar.Classical.give_witness_from_squash",
"FStar.Squash.bind_squash",
"Prims.unit"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Logic
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.V2.Derived
open FStar.Tactics.V2.SyntaxCoercions
open FStar.Tactics.NamedView
open FStar.Tactics.Util
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binding =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binding =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac (list binding) = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binding =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binding =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac (list binding) = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
// FIXME: should this take a binding? It's less general...
// but usually what we want. Coercions could help.
let hyp (x:namedv) : Tac unit = l_exact (namedv_to_term x)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h ()
let pose_lemma (t : term) : Tac binding =
let c = tcc (cur_env ()) t in
let pre, post =
match c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(reqb <: term)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b
let explode () : Tac unit =
ignore (
repeatseq (fun () -> first [(fun () -> ignore (l_intro ()));
(fun () -> ignore (split ()))]))
let rec visit (callback:unit -> Tac unit) : Tac unit =
focus (fun () ->
or_else callback
(fun () ->
let g = cur_goal () in
match term_as_formula g with
| Forall _b _sort _phi ->
let binders = forall_intros () in
seq (fun () -> visit callback) (fun () -> l_revert_all binders)
| And p q ->
seq split (fun () -> visit callback)
| Implies p q ->
let _ = implies_intro () in
seq (fun () -> visit callback) l_revert
| _ ->
()
)
)
let rec simplify_eq_implication () : Tac unit =
let e = cur_env () in
let g = cur_goal () in
let r = destruct_equality_implication g in
match r with
| None ->
fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in // G, eq_h:x=e |- P
rewrite eq_h; // G, eq_h:x=e |- P[e/x]
clear_top (); // G |- P[e/x]
visit simplify_eq_implication
let rewrite_all_equalities () : Tac unit =
visit simplify_eq_implication
let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit =
let g = cur_goal () in
match term_as_formula g with
| App hd arg ->
if term_eq hd tm
then trivial ()
else ()
| _ -> begin
let r = destruct_equality_implication g in
match r with
| None -> fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in
rewrite eq_h;
clear_top ();
visit (fun () -> unfold_definition_and_simplify_eq tm)
end | false | false | FStar.Tactics.V2.Logic.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q | [] | FStar.Tactics.V2.Logic.vbind | {
"file_name": "ulib/FStar.Tactics.V2.Logic.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | sq: Prims.squash p -> f: (_: p -> Prims.squash q) -> FStar.Pervasives.Lemma (ensures q) | {
"end_col": 95,
"end_line": 191,
"start_col": 23,
"start_line": 191
} |
FStar.Pervasives.Lemma | val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b) | [
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f)) | val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f = | false | null | true | FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x: squash a) ->
FStar.Squash.bind_squash x f)) | {
"checked_file": "FStar.Tactics.V2.Logic.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Derived.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Logic.fst"
} | [
"lemma"
] | [
"Prims.squash",
"FStar.Classical.give_witness",
"Prims.l_imp",
"FStar.Classical.arrow_to_impl",
"FStar.Squash.bind_squash",
"Prims.unit"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Logic
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.V2.Derived
open FStar.Tactics.V2.SyntaxCoercions
open FStar.Tactics.NamedView
open FStar.Tactics.Util
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binding =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binding =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac (list binding) = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b) | false | false | FStar.Tactics.V2.Logic.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b) | [] | FStar.Tactics.V2.Logic.imp_intro_lem | {
"file_name": "ulib/FStar.Tactics.V2.Logic.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | f: (_: a -> Prims.squash b) -> FStar.Pervasives.Lemma (ensures a ==> b) | {
"end_col": 113,
"end_line": 76,
"start_col": 2,
"start_line": 76
} |
Prims.Tot | val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x) | [
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in () | val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = | false | null | true | let x:(_: unit{forall x. b x}) = s in
() | {
"checked_file": "FStar.Tactics.V2.Logic.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Derived.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Logic.fst"
} | [
"total"
] | [
"Prims.squash",
"Prims.l_Forall",
"Prims.unit"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Logic
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.V2.Derived
open FStar.Tactics.V2.SyntaxCoercions
open FStar.Tactics.NamedView
open FStar.Tactics.Util
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) -> | false | false | FStar.Tactics.V2.Logic.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x) | [] | FStar.Tactics.V2.Logic.revert_squash | {
"file_name": "ulib/FStar.Tactics.V2.Logic.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | s: Prims.squash (forall (x: a). b x) -> x: a -> Prims.squash (b x) | {
"end_col": 71,
"end_line": 33,
"start_col": 29,
"start_line": 33
} |
FStar.Tactics.Effect.Tac | val simplify_eq_implication: Prims.unit -> Tac unit | [
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec simplify_eq_implication () : Tac unit =
let e = cur_env () in
let g = cur_goal () in
let r = destruct_equality_implication g in
match r with
| None ->
fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in // G, eq_h:x=e |- P
rewrite eq_h; // G, eq_h:x=e |- P[e/x]
clear_top (); // G |- P[e/x]
visit simplify_eq_implication | val simplify_eq_implication: Prims.unit -> Tac unit
let rec simplify_eq_implication () : Tac unit = | true | null | false | let e = cur_env () in
let g = cur_goal () in
let r = destruct_equality_implication g in
match r with
| None -> fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in
rewrite eq_h;
clear_top ();
visit simplify_eq_implication | {
"checked_file": "FStar.Tactics.V2.Logic.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Derived.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Logic.fst"
} | [] | [
"Prims.unit",
"FStar.Tactics.V2.Derived.fail",
"FStar.Reflection.V2.Formula.formula",
"FStar.Tactics.NamedView.term",
"FStar.Tactics.V2.Logic.visit",
"FStar.Tactics.V2.Logic.simplify_eq_implication",
"FStar.Tactics.V2.Builtins.clear_top",
"FStar.Tactics.V2.Builtins.rewrite",
"FStar.Tactics.NamedView.binding",
"FStar.Tactics.V2.Logic.implies_intro",
"FStar.Pervasives.Native.option",
"FStar.Pervasives.Native.tuple2",
"FStar.Tactics.V2.Derived.destruct_equality_implication",
"FStar.Reflection.Types.typ",
"FStar.Tactics.V2.Derived.cur_goal",
"FStar.Reflection.Types.env",
"FStar.Tactics.V2.Derived.cur_env"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Logic
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.V2.Derived
open FStar.Tactics.V2.SyntaxCoercions
open FStar.Tactics.NamedView
open FStar.Tactics.Util
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binding =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binding =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac (list binding) = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binding =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binding =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac (list binding) = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
// FIXME: should this take a binding? It's less general...
// but usually what we want. Coercions could help.
let hyp (x:namedv) : Tac unit = l_exact (namedv_to_term x)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h ()
let pose_lemma (t : term) : Tac binding =
let c = tcc (cur_env ()) t in
let pre, post =
match c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(reqb <: term)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b
let explode () : Tac unit =
ignore (
repeatseq (fun () -> first [(fun () -> ignore (l_intro ()));
(fun () -> ignore (split ()))]))
let rec visit (callback:unit -> Tac unit) : Tac unit =
focus (fun () ->
or_else callback
(fun () ->
let g = cur_goal () in
match term_as_formula g with
| Forall _b _sort _phi ->
let binders = forall_intros () in
seq (fun () -> visit callback) (fun () -> l_revert_all binders)
| And p q ->
seq split (fun () -> visit callback)
| Implies p q ->
let _ = implies_intro () in
seq (fun () -> visit callback) l_revert
| _ ->
()
)
) | false | false | FStar.Tactics.V2.Logic.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val simplify_eq_implication: Prims.unit -> Tac unit | [
"recursion"
] | FStar.Tactics.V2.Logic.simplify_eq_implication | {
"file_name": "ulib/FStar.Tactics.V2.Logic.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | {
"end_col": 37,
"end_line": 167,
"start_col": 47,
"start_line": 156
} |
FStar.Tactics.Effect.Tac | val unfold_definition_and_simplify_eq (tm: term) : Tac unit | [
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit =
let g = cur_goal () in
match term_as_formula g with
| App hd arg ->
if term_eq hd tm
then trivial ()
else ()
| _ -> begin
let r = destruct_equality_implication g in
match r with
| None -> fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in
rewrite eq_h;
clear_top ();
visit (fun () -> unfold_definition_and_simplify_eq tm)
end | val unfold_definition_and_simplify_eq (tm: term) : Tac unit
let rec unfold_definition_and_simplify_eq (tm: term) : Tac unit = | true | null | false | let g = cur_goal () in
match term_as_formula g with
| App hd arg -> if term_eq hd tm then trivial ()
| _ ->
let r = destruct_equality_implication g in
match r with
| None -> fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in
rewrite eq_h;
clear_top ();
visit (fun () -> unfold_definition_and_simplify_eq tm) | {
"checked_file": "FStar.Tactics.V2.Logic.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Derived.fst.checked",
"FStar.Tactics.V2.Builtins.fsti.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Logic.fst"
} | [] | [
"FStar.Tactics.NamedView.term",
"FStar.Reflection.V2.Builtins.term_eq",
"FStar.Tactics.V2.Derived.trivial",
"Prims.unit",
"Prims.bool",
"FStar.Reflection.V2.Formula.formula",
"FStar.Tactics.V2.Derived.fail",
"FStar.Tactics.V2.Logic.visit",
"FStar.Tactics.V2.Logic.unfold_definition_and_simplify_eq",
"FStar.Tactics.V2.Builtins.clear_top",
"FStar.Tactics.V2.Builtins.rewrite",
"FStar.Tactics.NamedView.binding",
"FStar.Tactics.V2.Logic.implies_intro",
"FStar.Pervasives.Native.option",
"FStar.Pervasives.Native.tuple2",
"FStar.Tactics.V2.Derived.destruct_equality_implication",
"FStar.Reflection.V2.Formula.term_as_formula",
"FStar.Reflection.Types.typ",
"FStar.Tactics.V2.Derived.cur_goal"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Logic
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Tactics.V2.Builtins
open FStar.Tactics.V2.Derived
open FStar.Tactics.V2.SyntaxCoercions
open FStar.Tactics.NamedView
open FStar.Tactics.Util
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binding =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binding =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac (list binding) = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binding =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binding =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac (list binding) = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
// FIXME: should this take a binding? It's less general...
// but usually what we want. Coercions could help.
let hyp (x:namedv) : Tac unit = l_exact (namedv_to_term x)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h ()
let pose_lemma (t : term) : Tac binding =
let c = tcc (cur_env ()) t in
let pre, post =
match c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(reqb <: term)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b
let explode () : Tac unit =
ignore (
repeatseq (fun () -> first [(fun () -> ignore (l_intro ()));
(fun () -> ignore (split ()))]))
let rec visit (callback:unit -> Tac unit) : Tac unit =
focus (fun () ->
or_else callback
(fun () ->
let g = cur_goal () in
match term_as_formula g with
| Forall _b _sort _phi ->
let binders = forall_intros () in
seq (fun () -> visit callback) (fun () -> l_revert_all binders)
| And p q ->
seq split (fun () -> visit callback)
| Implies p q ->
let _ = implies_intro () in
seq (fun () -> visit callback) l_revert
| _ ->
()
)
)
let rec simplify_eq_implication () : Tac unit =
let e = cur_env () in
let g = cur_goal () in
let r = destruct_equality_implication g in
match r with
| None ->
fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in // G, eq_h:x=e |- P
rewrite eq_h; // G, eq_h:x=e |- P[e/x]
clear_top (); // G |- P[e/x]
visit simplify_eq_implication
let rewrite_all_equalities () : Tac unit =
visit simplify_eq_implication | false | false | FStar.Tactics.V2.Logic.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val unfold_definition_and_simplify_eq (tm: term) : Tac unit | [
"recursion"
] | FStar.Tactics.V2.Logic.unfold_definition_and_simplify_eq | {
"file_name": "ulib/FStar.Tactics.V2.Logic.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | tm: FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac Prims.unit | {
"end_col": 11,
"end_line": 188,
"start_col": 64,
"start_line": 172
} |
Prims.Tot | val bn_mod_slow_precomp:
#t:limb_t
-> #len:BN.bn_len t
-> n:lbignum t len
-> mu:limb t
-> r2:lbignum t len
-> a:lbignum t (len + len) ->
lbignum t len | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.AlmostMontgomery",
"short_module": "BAM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.AlmostMontgomery.Lemmas",
"short_module": "AM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bn_mod_slow_precomp #t #len n mu r2 a =
let a_mod = BAM.bn_almost_mont_reduction n mu a in
let res = BM.bn_to_mont n mu r2 a_mod in
res | val bn_mod_slow_precomp:
#t:limb_t
-> #len:BN.bn_len t
-> n:lbignum t len
-> mu:limb t
-> r2:lbignum t len
-> a:lbignum t (len + len) ->
lbignum t len
let bn_mod_slow_precomp #t #len n mu r2 a = | false | null | false | let a_mod = BAM.bn_almost_mont_reduction n mu a in
let res = BM.bn_to_mont n mu r2 a_mod in
res | {
"checked_file": "Hacl.Spec.Bignum.ModReduction.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"Hacl.Spec.Bignum.Montgomery.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.AlmostMontgomery.fsti.checked",
"Hacl.Spec.Bignum.fsti.checked",
"Hacl.Spec.AlmostMontgomery.Lemmas.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.ModReduction.fst"
} | [
"total"
] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Hacl.Spec.Bignum.bn_len",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Hacl.Spec.Bignum.Definitions.limb",
"Prims.op_Addition",
"Hacl.Spec.Bignum.Montgomery.bn_to_mont",
"Hacl.Spec.Bignum.AlmostMontgomery.bn_almost_mont_reduction"
] | [] | module Hacl.Spec.Bignum.ModReduction
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Hacl.Spec.Bignum.Definitions
module M = Hacl.Spec.Montgomery.Lemmas
module AM = Hacl.Spec.AlmostMontgomery.Lemmas
module BM = Hacl.Spec.Bignum.Montgomery
module BAM = Hacl.Spec.Bignum.AlmostMontgomery
module BN = Hacl.Spec.Bignum
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
/// Modular reduction based on Montgomery arithmetic
val bn_mod_slow_precomp:
#t:limb_t
-> #len:BN.bn_len t
-> n:lbignum t len
-> mu:limb t
-> r2:lbignum t len
-> a:lbignum t (len + len) ->
lbignum t len | false | false | Hacl.Spec.Bignum.ModReduction.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bn_mod_slow_precomp:
#t:limb_t
-> #len:BN.bn_len t
-> n:lbignum t len
-> mu:limb t
-> r2:lbignum t len
-> a:lbignum t (len + len) ->
lbignum t len | [] | Hacl.Spec.Bignum.ModReduction.bn_mod_slow_precomp | {
"file_name": "code/bignum/Hacl.Spec.Bignum.ModReduction.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
n: Hacl.Spec.Bignum.Definitions.lbignum t len ->
mu: Hacl.Spec.Bignum.Definitions.limb t ->
r2: Hacl.Spec.Bignum.Definitions.lbignum t len ->
a: Hacl.Spec.Bignum.Definitions.lbignum t (len + len)
-> Hacl.Spec.Bignum.Definitions.lbignum t len | {
"end_col": 5,
"end_line": 33,
"start_col": 43,
"start_line": 30
} |
Prims.Pure | val bn_mod_slow:
#t:limb_t
-> #len:BN.bn_len t
-> nBits:size_nat
-> n:lbignum t len
-> a:lbignum t (len + len) ->
Pure (lbignum t len)
(requires
1 < bn_v n /\ bn_v n % 2 = 1 /\
nBits / bits t < len /\ pow2 nBits < bn_v n)
(ensures fun res ->
bn_v res == bn_v a % bn_v n) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.AlmostMontgomery",
"short_module": "BAM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.AlmostMontgomery.Lemmas",
"short_module": "AM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bn_mod_slow #t #len nBits n a =
let r2, mu = BM.bn_mont_precomp nBits n in
bn_mod_slow_precomp_lemma n mu r2 a;
bn_mod_slow_precomp n mu r2 a | val bn_mod_slow:
#t:limb_t
-> #len:BN.bn_len t
-> nBits:size_nat
-> n:lbignum t len
-> a:lbignum t (len + len) ->
Pure (lbignum t len)
(requires
1 < bn_v n /\ bn_v n % 2 = 1 /\
nBits / bits t < len /\ pow2 nBits < bn_v n)
(ensures fun res ->
bn_v res == bn_v a % bn_v n)
let bn_mod_slow #t #len nBits n a = | false | null | false | let r2, mu = BM.bn_mont_precomp nBits n in
bn_mod_slow_precomp_lemma n mu r2 a;
bn_mod_slow_precomp n mu r2 a | {
"checked_file": "Hacl.Spec.Bignum.ModReduction.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"Hacl.Spec.Bignum.Montgomery.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.AlmostMontgomery.fsti.checked",
"Hacl.Spec.Bignum.fsti.checked",
"Hacl.Spec.AlmostMontgomery.Lemmas.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.ModReduction.fst"
} | [] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Hacl.Spec.Bignum.bn_len",
"Lib.IntTypes.size_nat",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Prims.op_Addition",
"Hacl.Spec.Bignum.Definitions.limb",
"Hacl.Spec.Bignum.ModReduction.bn_mod_slow_precomp",
"Prims.unit",
"Hacl.Spec.Bignum.ModReduction.bn_mod_slow_precomp_lemma",
"FStar.Pervasives.Native.tuple2",
"Hacl.Spec.Bignum.Montgomery.bn_mont_precomp"
] | [] | module Hacl.Spec.Bignum.ModReduction
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Hacl.Spec.Bignum.Definitions
module M = Hacl.Spec.Montgomery.Lemmas
module AM = Hacl.Spec.AlmostMontgomery.Lemmas
module BM = Hacl.Spec.Bignum.Montgomery
module BAM = Hacl.Spec.Bignum.AlmostMontgomery
module BN = Hacl.Spec.Bignum
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
/// Modular reduction based on Montgomery arithmetic
val bn_mod_slow_precomp:
#t:limb_t
-> #len:BN.bn_len t
-> n:lbignum t len
-> mu:limb t
-> r2:lbignum t len
-> a:lbignum t (len + len) ->
lbignum t len
let bn_mod_slow_precomp #t #len n mu r2 a =
let a_mod = BAM.bn_almost_mont_reduction n mu a in
let res = BM.bn_to_mont n mu r2 a_mod in
res
val bn_mod_slow_precomp_lemma:
#t:limb_t
-> #len:BN.bn_len t
-> n:lbignum t len
-> mu:limb t
-> r2:lbignum t len
-> a:lbignum t (len + len) -> Lemma
(requires
BM.bn_mont_pre n mu /\
bn_v r2 == pow2 (2 * bits t * len) % bn_v n)
(ensures bn_v (bn_mod_slow_precomp n mu r2 a) == bn_v a % bn_v n)
let bn_mod_slow_precomp_lemma #t #len n mu r2 a =
let r = pow2 (bits t * len) in
let d, _ = M.eea_pow2_odd (bits t * len) (bn_v n) in
M.mont_preconditions_d (bits t) len (bn_v n);
assert (M.mont_pre (bits t) len (bn_v n) (v mu));
let a_mod = BAM.bn_almost_mont_reduction n mu a in
let res = BM.bn_to_mont n mu r2 a_mod in
BAM.bn_almost_mont_reduction_lemma n mu a;
BM.bn_to_mont_lemma n mu r2 a_mod;
bn_eval_bound a (len + len);
assert (bn_v a < pow2 (bits t * (len + len)));
Math.Lemmas.pow2_plus (bits t * len) (bits t * len);
assert (bn_v a < r * r);
AM.almost_mont_reduction_lemma (bits t) len (bn_v n) (v mu) (bn_v a);
assert (bn_v a_mod % bn_v n == bn_v a * d % bn_v n);
calc (==) {
bn_v res;
(==) { M.to_mont_lemma (bits t) len (bn_v n) (v mu) (bn_v a_mod) }
bn_v a_mod * r % bn_v n;
(==) { Math.Lemmas.lemma_mod_mul_distr_l (bn_v a_mod) r (bn_v n) }
bn_v a_mod % bn_v n * r % bn_v n;
(==) { }
(bn_v a * d % bn_v n) * r % bn_v n;
(==) { M.lemma_mont_id1 (bn_v n) r d (bn_v a) }
bn_v a % bn_v n;
};
assert (bn_v res == bn_v a % bn_v n)
val bn_mod_slow:
#t:limb_t
-> #len:BN.bn_len t
-> nBits:size_nat
-> n:lbignum t len
-> a:lbignum t (len + len) ->
Pure (lbignum t len)
(requires
1 < bn_v n /\ bn_v n % 2 = 1 /\
nBits / bits t < len /\ pow2 nBits < bn_v n)
(ensures fun res ->
bn_v res == bn_v a % bn_v n) | false | false | Hacl.Spec.Bignum.ModReduction.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bn_mod_slow:
#t:limb_t
-> #len:BN.bn_len t
-> nBits:size_nat
-> n:lbignum t len
-> a:lbignum t (len + len) ->
Pure (lbignum t len)
(requires
1 < bn_v n /\ bn_v n % 2 = 1 /\
nBits / bits t < len /\ pow2 nBits < bn_v n)
(ensures fun res ->
bn_v res == bn_v a % bn_v n) | [] | Hacl.Spec.Bignum.ModReduction.bn_mod_slow | {
"file_name": "code/bignum/Hacl.Spec.Bignum.ModReduction.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
nBits: Lib.IntTypes.size_nat ->
n: Hacl.Spec.Bignum.Definitions.lbignum t len ->
a: Hacl.Spec.Bignum.Definitions.lbignum t (len + len)
-> Prims.Pure (Hacl.Spec.Bignum.Definitions.lbignum t len) | {
"end_col": 31,
"end_line": 98,
"start_col": 35,
"start_line": 95
} |
FStar.Pervasives.Lemma | val bn_mod_slow_precomp_lemma:
#t:limb_t
-> #len:BN.bn_len t
-> n:lbignum t len
-> mu:limb t
-> r2:lbignum t len
-> a:lbignum t (len + len) -> Lemma
(requires
BM.bn_mont_pre n mu /\
bn_v r2 == pow2 (2 * bits t * len) % bn_v n)
(ensures bn_v (bn_mod_slow_precomp n mu r2 a) == bn_v a % bn_v n) | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.AlmostMontgomery",
"short_module": "BAM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.AlmostMontgomery.Lemmas",
"short_module": "AM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bn_mod_slow_precomp_lemma #t #len n mu r2 a =
let r = pow2 (bits t * len) in
let d, _ = M.eea_pow2_odd (bits t * len) (bn_v n) in
M.mont_preconditions_d (bits t) len (bn_v n);
assert (M.mont_pre (bits t) len (bn_v n) (v mu));
let a_mod = BAM.bn_almost_mont_reduction n mu a in
let res = BM.bn_to_mont n mu r2 a_mod in
BAM.bn_almost_mont_reduction_lemma n mu a;
BM.bn_to_mont_lemma n mu r2 a_mod;
bn_eval_bound a (len + len);
assert (bn_v a < pow2 (bits t * (len + len)));
Math.Lemmas.pow2_plus (bits t * len) (bits t * len);
assert (bn_v a < r * r);
AM.almost_mont_reduction_lemma (bits t) len (bn_v n) (v mu) (bn_v a);
assert (bn_v a_mod % bn_v n == bn_v a * d % bn_v n);
calc (==) {
bn_v res;
(==) { M.to_mont_lemma (bits t) len (bn_v n) (v mu) (bn_v a_mod) }
bn_v a_mod * r % bn_v n;
(==) { Math.Lemmas.lemma_mod_mul_distr_l (bn_v a_mod) r (bn_v n) }
bn_v a_mod % bn_v n * r % bn_v n;
(==) { }
(bn_v a * d % bn_v n) * r % bn_v n;
(==) { M.lemma_mont_id1 (bn_v n) r d (bn_v a) }
bn_v a % bn_v n;
};
assert (bn_v res == bn_v a % bn_v n) | val bn_mod_slow_precomp_lemma:
#t:limb_t
-> #len:BN.bn_len t
-> n:lbignum t len
-> mu:limb t
-> r2:lbignum t len
-> a:lbignum t (len + len) -> Lemma
(requires
BM.bn_mont_pre n mu /\
bn_v r2 == pow2 (2 * bits t * len) % bn_v n)
(ensures bn_v (bn_mod_slow_precomp n mu r2 a) == bn_v a % bn_v n)
let bn_mod_slow_precomp_lemma #t #len n mu r2 a = | false | null | true | let r = pow2 (bits t * len) in
let d, _ = M.eea_pow2_odd (bits t * len) (bn_v n) in
M.mont_preconditions_d (bits t) len (bn_v n);
assert (M.mont_pre (bits t) len (bn_v n) (v mu));
let a_mod = BAM.bn_almost_mont_reduction n mu a in
let res = BM.bn_to_mont n mu r2 a_mod in
BAM.bn_almost_mont_reduction_lemma n mu a;
BM.bn_to_mont_lemma n mu r2 a_mod;
bn_eval_bound a (len + len);
assert (bn_v a < pow2 (bits t * (len + len)));
Math.Lemmas.pow2_plus (bits t * len) (bits t * len);
assert (bn_v a < r * r);
AM.almost_mont_reduction_lemma (bits t) len (bn_v n) (v mu) (bn_v a);
assert (bn_v a_mod % bn_v n == bn_v a * d % bn_v n);
calc ( == ) {
bn_v res;
( == ) { M.to_mont_lemma (bits t) len (bn_v n) (v mu) (bn_v a_mod) }
bn_v a_mod * r % bn_v n;
( == ) { Math.Lemmas.lemma_mod_mul_distr_l (bn_v a_mod) r (bn_v n) }
(bn_v a_mod % bn_v n) * r % bn_v n;
( == ) { () }
(bn_v a * d % bn_v n) * r % bn_v n;
( == ) { M.lemma_mont_id1 (bn_v n) r d (bn_v a) }
bn_v a % bn_v n;
};
assert (bn_v res == bn_v a % bn_v n) | {
"checked_file": "Hacl.Spec.Bignum.ModReduction.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"Hacl.Spec.Bignum.Montgomery.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.AlmostMontgomery.fsti.checked",
"Hacl.Spec.Bignum.fsti.checked",
"Hacl.Spec.AlmostMontgomery.Lemmas.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.ModReduction.fst"
} | [
"lemma"
] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Hacl.Spec.Bignum.bn_len",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Hacl.Spec.Bignum.Definitions.limb",
"Prims.op_Addition",
"Prims.int",
"Prims._assert",
"Prims.eq2",
"Hacl.Spec.Bignum.Definitions.bn_v",
"Prims.op_Modulus",
"Prims.unit",
"FStar.Calc.calc_finish",
"Prims.nat",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"FStar.Calc.calc_step",
"FStar.Mul.op_Star",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Hacl.Spec.Montgomery.Lemmas.to_mont_lemma",
"Lib.IntTypes.bits",
"Lib.IntTypes.v",
"Lib.IntTypes.SEC",
"Prims.squash",
"FStar.Math.Lemmas.lemma_mod_mul_distr_l",
"Hacl.Spec.Montgomery.Lemmas.lemma_mont_id1",
"Hacl.Spec.AlmostMontgomery.Lemmas.almost_mont_reduction_lemma",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.Math.Lemmas.pow2_plus",
"Prims.pow2",
"Hacl.Spec.Bignum.Definitions.bn_eval_bound",
"Hacl.Spec.Bignum.Montgomery.bn_to_mont_lemma",
"Hacl.Spec.Bignum.AlmostMontgomery.bn_almost_mont_reduction_lemma",
"Hacl.Spec.Bignum.Montgomery.bn_to_mont",
"Hacl.Spec.Bignum.AlmostMontgomery.bn_almost_mont_reduction",
"Hacl.Spec.Montgomery.Lemmas.mont_pre",
"Hacl.Spec.Montgomery.Lemmas.mont_preconditions_d",
"FStar.Pervasives.Native.tuple2",
"Hacl.Spec.Montgomery.Lemmas.eea_pow2_odd",
"Prims.pos"
] | [] | module Hacl.Spec.Bignum.ModReduction
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Hacl.Spec.Bignum.Definitions
module M = Hacl.Spec.Montgomery.Lemmas
module AM = Hacl.Spec.AlmostMontgomery.Lemmas
module BM = Hacl.Spec.Bignum.Montgomery
module BAM = Hacl.Spec.Bignum.AlmostMontgomery
module BN = Hacl.Spec.Bignum
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
/// Modular reduction based on Montgomery arithmetic
val bn_mod_slow_precomp:
#t:limb_t
-> #len:BN.bn_len t
-> n:lbignum t len
-> mu:limb t
-> r2:lbignum t len
-> a:lbignum t (len + len) ->
lbignum t len
let bn_mod_slow_precomp #t #len n mu r2 a =
let a_mod = BAM.bn_almost_mont_reduction n mu a in
let res = BM.bn_to_mont n mu r2 a_mod in
res
val bn_mod_slow_precomp_lemma:
#t:limb_t
-> #len:BN.bn_len t
-> n:lbignum t len
-> mu:limb t
-> r2:lbignum t len
-> a:lbignum t (len + len) -> Lemma
(requires
BM.bn_mont_pre n mu /\
bn_v r2 == pow2 (2 * bits t * len) % bn_v n)
(ensures bn_v (bn_mod_slow_precomp n mu r2 a) == bn_v a % bn_v n) | false | false | Hacl.Spec.Bignum.ModReduction.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bn_mod_slow_precomp_lemma:
#t:limb_t
-> #len:BN.bn_len t
-> n:lbignum t len
-> mu:limb t
-> r2:lbignum t len
-> a:lbignum t (len + len) -> Lemma
(requires
BM.bn_mont_pre n mu /\
bn_v r2 == pow2 (2 * bits t * len) % bn_v n)
(ensures bn_v (bn_mod_slow_precomp n mu r2 a) == bn_v a % bn_v n) | [] | Hacl.Spec.Bignum.ModReduction.bn_mod_slow_precomp_lemma | {
"file_name": "code/bignum/Hacl.Spec.Bignum.ModReduction.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
n: Hacl.Spec.Bignum.Definitions.lbignum t len ->
mu: Hacl.Spec.Bignum.Definitions.limb t ->
r2: Hacl.Spec.Bignum.Definitions.lbignum t len ->
a: Hacl.Spec.Bignum.Definitions.lbignum t (len + len)
-> FStar.Pervasives.Lemma
(requires
Hacl.Spec.Bignum.Montgomery.bn_mont_pre n mu /\
Hacl.Spec.Bignum.Definitions.bn_v r2 ==
Prims.pow2 ((2 * Lib.IntTypes.bits t) * len) % Hacl.Spec.Bignum.Definitions.bn_v n)
(ensures
Hacl.Spec.Bignum.Definitions.bn_v (Hacl.Spec.Bignum.ModReduction.bn_mod_slow_precomp n
mu
r2
a) ==
Hacl.Spec.Bignum.Definitions.bn_v a % Hacl.Spec.Bignum.Definitions.bn_v n) | {
"end_col": 38,
"end_line": 79,
"start_col": 49,
"start_line": 48
} |
Prims.Tot | val from_felem (x: felem) : nat | [
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let from_felem (x:felem) : nat = x | val from_felem (x: felem) : nat
let from_felem (x: felem) : nat = | false | null | false | x | {
"checked_file": "Spec.Poly1305.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Poly1305.fst"
} | [
"total"
] | [
"Spec.Poly1305.felem",
"Prims.nat"
] | [] | module Spec.Poly1305
#reset-options "--z3rlimit 60 --initial_fuel 0 --max_fuel 0 --initial_ifuel 0 --max_ifuel 0"
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
/// Constants and Types
(* Field types and parameters *)
let prime : pos =
let p = pow2 130 - 5 in
assert_norm (p > 0);
p
let felem = x:nat{x < prime}
let fadd (x:felem) (y:felem) : felem = (x + y) % prime
let fmul (x:felem) (y:felem) : felem = (x * y) % prime | false | true | Spec.Poly1305.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 60,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val from_felem (x: felem) : nat | [] | Spec.Poly1305.from_felem | {
"file_name": "specs/Spec.Poly1305.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x: Spec.Poly1305.felem -> Prims.nat | {
"end_col": 34,
"end_line": 24,
"start_col": 33,
"start_line": 24
} |
Prims.Tot | val poly1305_update1 (r: felem) (len: size_nat{len <= size_block}) (b: lbytes len) (acc: felem)
: Tot felem | [
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let poly1305_update1 (r:felem) (len:size_nat{len <= size_block}) (b:lbytes len) (acc:felem) : Tot felem =
(encode len b `fadd` acc) `fmul` r | val poly1305_update1 (r: felem) (len: size_nat{len <= size_block}) (b: lbytes len) (acc: felem)
: Tot felem
let poly1305_update1 (r: felem) (len: size_nat{len <= size_block}) (b: lbytes len) (acc: felem)
: Tot felem = | false | null | false | ((encode len b) `fadd` acc) `fmul` r | {
"checked_file": "Spec.Poly1305.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Poly1305.fst"
} | [
"total"
] | [
"Spec.Poly1305.felem",
"Lib.IntTypes.size_nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Spec.Poly1305.size_block",
"Lib.ByteSequence.lbytes",
"Spec.Poly1305.fmul",
"Spec.Poly1305.fadd",
"Spec.Poly1305.encode"
] | [] | module Spec.Poly1305
#reset-options "--z3rlimit 60 --initial_fuel 0 --max_fuel 0 --initial_ifuel 0 --max_ifuel 0"
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
/// Constants and Types
(* Field types and parameters *)
let prime : pos =
let p = pow2 130 - 5 in
assert_norm (p > 0);
p
let felem = x:nat{x < prime}
let fadd (x:felem) (y:felem) : felem = (x + y) % prime
let fmul (x:felem) (y:felem) : felem = (x * y) % prime
let to_felem (x:nat{x < prime}) : felem = x
let from_felem (x:felem) : nat = x
let zero : felem = to_felem 0
(* Poly1305 parameters *)
let size_block : size_nat = 16
let size_key : size_nat = 32
type block = lbytes size_block
type tag = lbytes size_block
type key = lbytes size_key
/// Specification
let poly1305_encode_r (rb:block) : Tot felem =
let lo = uint_from_bytes_le (sub rb 0 8) in
let hi = uint_from_bytes_le (sub rb 8 8) in
let mask0 = u64 0x0ffffffc0fffffff in
let mask1 = u64 0x0ffffffc0ffffffc in
let lo = lo &. mask0 in
let hi = hi &. mask1 in
assert_norm (pow2 128 < prime);
to_felem (uint_v hi * pow2 64 + uint_v lo)
let poly1305_init (k:key) : Tot (felem & felem) =
let r = poly1305_encode_r (slice k 0 16) in
zero, r
let encode (len:size_nat{len <= size_block}) (b:lbytes len) : Tot felem =
Math.Lemmas.pow2_le_compat 128 (8 * len);
assert_norm (pow2 128 + pow2 128 < prime);
fadd (pow2 (8 * len)) (nat_from_bytes_le b) | false | false | Spec.Poly1305.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 60,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val poly1305_update1 (r: felem) (len: size_nat{len <= size_block}) (b: lbytes len) (acc: felem)
: Tot felem | [] | Spec.Poly1305.poly1305_update1 | {
"file_name": "specs/Spec.Poly1305.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
r: Spec.Poly1305.felem ->
len: Lib.IntTypes.size_nat{len <= Spec.Poly1305.size_block} ->
b: Lib.ByteSequence.lbytes len ->
acc: Spec.Poly1305.felem
-> Spec.Poly1305.felem | {
"end_col": 36,
"end_line": 57,
"start_col": 2,
"start_line": 57
} |
Prims.Tot | val poly1305_mac (msg: bytes) (k: key) : Tot tag | [
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let poly1305_mac (msg:bytes) (k:key) : Tot tag =
let acc, r = poly1305_init k in
let acc = poly1305_update msg acc r in
poly1305_finish k acc | val poly1305_mac (msg: bytes) (k: key) : Tot tag
let poly1305_mac (msg: bytes) (k: key) : Tot tag = | false | null | false | let acc, r = poly1305_init k in
let acc = poly1305_update msg acc r in
poly1305_finish k acc | {
"checked_file": "Spec.Poly1305.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Poly1305.fst"
} | [
"total"
] | [
"Lib.ByteSequence.bytes",
"Spec.Poly1305.key",
"Spec.Poly1305.felem",
"Spec.Poly1305.poly1305_finish",
"Spec.Poly1305.poly1305_update",
"Spec.Poly1305.tag",
"FStar.Pervasives.Native.tuple2",
"Spec.Poly1305.poly1305_init"
] | [] | module Spec.Poly1305
#reset-options "--z3rlimit 60 --initial_fuel 0 --max_fuel 0 --initial_ifuel 0 --max_ifuel 0"
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
/// Constants and Types
(* Field types and parameters *)
let prime : pos =
let p = pow2 130 - 5 in
assert_norm (p > 0);
p
let felem = x:nat{x < prime}
let fadd (x:felem) (y:felem) : felem = (x + y) % prime
let fmul (x:felem) (y:felem) : felem = (x * y) % prime
let to_felem (x:nat{x < prime}) : felem = x
let from_felem (x:felem) : nat = x
let zero : felem = to_felem 0
(* Poly1305 parameters *)
let size_block : size_nat = 16
let size_key : size_nat = 32
type block = lbytes size_block
type tag = lbytes size_block
type key = lbytes size_key
/// Specification
let poly1305_encode_r (rb:block) : Tot felem =
let lo = uint_from_bytes_le (sub rb 0 8) in
let hi = uint_from_bytes_le (sub rb 8 8) in
let mask0 = u64 0x0ffffffc0fffffff in
let mask1 = u64 0x0ffffffc0ffffffc in
let lo = lo &. mask0 in
let hi = hi &. mask1 in
assert_norm (pow2 128 < prime);
to_felem (uint_v hi * pow2 64 + uint_v lo)
let poly1305_init (k:key) : Tot (felem & felem) =
let r = poly1305_encode_r (slice k 0 16) in
zero, r
let encode (len:size_nat{len <= size_block}) (b:lbytes len) : Tot felem =
Math.Lemmas.pow2_le_compat 128 (8 * len);
assert_norm (pow2 128 + pow2 128 < prime);
fadd (pow2 (8 * len)) (nat_from_bytes_le b)
let poly1305_update1 (r:felem) (len:size_nat{len <= size_block}) (b:lbytes len) (acc:felem) : Tot felem =
(encode len b `fadd` acc) `fmul` r
let poly1305_finish (k:key) (acc:felem) : Tot tag =
let s = nat_from_bytes_le (slice k 16 32) in
let n = (from_felem acc + s) % pow2 128 in
nat_to_bytes_le 16 n
let poly1305_update_last (r:felem) (l:size_nat{l < 16}) (b:lbytes l) (acc:felem) =
if l = 0 then acc else poly1305_update1 r l b acc
let poly1305_update (text:bytes) (acc:felem) (r:felem) : Tot felem =
repeat_blocks #uint8 #felem size_block text
(poly1305_update1 r size_block)
(poly1305_update_last r)
acc | false | true | Spec.Poly1305.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 60,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val poly1305_mac (msg: bytes) (k: key) : Tot tag | [] | Spec.Poly1305.poly1305_mac | {
"file_name": "specs/Spec.Poly1305.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | msg: Lib.ByteSequence.bytes -> k: Spec.Poly1305.key -> Spec.Poly1305.tag | {
"end_col": 23,
"end_line": 77,
"start_col": 48,
"start_line": 74
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let felem = x:nat{x < prime} | let felem = | false | null | false | x: nat{x < prime} | {
"checked_file": "Spec.Poly1305.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Poly1305.fst"
} | [
"total"
] | [
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Spec.Poly1305.prime"
] | [] | module Spec.Poly1305
#reset-options "--z3rlimit 60 --initial_fuel 0 --max_fuel 0 --initial_ifuel 0 --max_ifuel 0"
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
/// Constants and Types
(* Field types and parameters *)
let prime : pos =
let p = pow2 130 - 5 in
assert_norm (p > 0);
p | false | true | Spec.Poly1305.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 60,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val felem : Type0 | [] | Spec.Poly1305.felem | {
"file_name": "specs/Spec.Poly1305.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Type0 | {
"end_col": 28,
"end_line": 19,
"start_col": 12,
"start_line": 19
} |
|
Prims.Tot | val to_felem (x: nat{x < prime}) : felem | [
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let to_felem (x:nat{x < prime}) : felem = x | val to_felem (x: nat{x < prime}) : felem
let to_felem (x: nat{x < prime}) : felem = | false | null | false | x | {
"checked_file": "Spec.Poly1305.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Poly1305.fst"
} | [
"total"
] | [
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Spec.Poly1305.prime",
"Spec.Poly1305.felem"
] | [] | module Spec.Poly1305
#reset-options "--z3rlimit 60 --initial_fuel 0 --max_fuel 0 --initial_ifuel 0 --max_ifuel 0"
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
/// Constants and Types
(* Field types and parameters *)
let prime : pos =
let p = pow2 130 - 5 in
assert_norm (p > 0);
p
let felem = x:nat{x < prime}
let fadd (x:felem) (y:felem) : felem = (x + y) % prime
let fmul (x:felem) (y:felem) : felem = (x * y) % prime | false | false | Spec.Poly1305.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 60,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val to_felem (x: nat{x < prime}) : felem | [] | Spec.Poly1305.to_felem | {
"file_name": "specs/Spec.Poly1305.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x: Prims.nat{x < Spec.Poly1305.prime} -> Spec.Poly1305.felem | {
"end_col": 43,
"end_line": 23,
"start_col": 42,
"start_line": 23
} |
Prims.Tot | val prime:pos | [
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let prime : pos =
let p = pow2 130 - 5 in
assert_norm (p > 0);
p | val prime:pos
let prime:pos = | false | null | false | let p = pow2 130 - 5 in
assert_norm (p > 0);
p | {
"checked_file": "Spec.Poly1305.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Poly1305.fst"
} | [
"total"
] | [
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_GreaterThan",
"Prims.int",
"Prims.op_Subtraction",
"Prims.pow2"
] | [] | module Spec.Poly1305
#reset-options "--z3rlimit 60 --initial_fuel 0 --max_fuel 0 --initial_ifuel 0 --max_ifuel 0"
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
/// Constants and Types | false | true | Spec.Poly1305.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 60,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val prime:pos | [] | Spec.Poly1305.prime | {
"file_name": "specs/Spec.Poly1305.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Prims.pos | {
"end_col": 3,
"end_line": 17,
"start_col": 17,
"start_line": 14
} |
Prims.Tot | val zero:felem | [
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let zero : felem = to_felem 0 | val zero:felem
let zero:felem = | false | null | false | to_felem 0 | {
"checked_file": "Spec.Poly1305.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Poly1305.fst"
} | [
"total"
] | [
"Spec.Poly1305.to_felem"
] | [] | module Spec.Poly1305
#reset-options "--z3rlimit 60 --initial_fuel 0 --max_fuel 0 --initial_ifuel 0 --max_ifuel 0"
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
/// Constants and Types
(* Field types and parameters *)
let prime : pos =
let p = pow2 130 - 5 in
assert_norm (p > 0);
p
let felem = x:nat{x < prime}
let fadd (x:felem) (y:felem) : felem = (x + y) % prime
let fmul (x:felem) (y:felem) : felem = (x * y) % prime
let to_felem (x:nat{x < prime}) : felem = x | false | true | Spec.Poly1305.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 60,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val zero:felem | [] | Spec.Poly1305.zero | {
"file_name": "specs/Spec.Poly1305.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Spec.Poly1305.felem | {
"end_col": 29,
"end_line": 25,
"start_col": 19,
"start_line": 25
} |
Prims.Tot | val poly1305_init (k: key) : Tot (felem & felem) | [
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let poly1305_init (k:key) : Tot (felem & felem) =
let r = poly1305_encode_r (slice k 0 16) in
zero, r | val poly1305_init (k: key) : Tot (felem & felem)
let poly1305_init (k: key) : Tot (felem & felem) = | false | null | false | let r = poly1305_encode_r (slice k 0 16) in
zero, r | {
"checked_file": "Spec.Poly1305.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Poly1305.fst"
} | [
"total"
] | [
"Spec.Poly1305.key",
"FStar.Pervasives.Native.Mktuple2",
"Spec.Poly1305.felem",
"Spec.Poly1305.zero",
"Spec.Poly1305.poly1305_encode_r",
"Lib.Sequence.slice",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Spec.Poly1305.size_key",
"FStar.Pervasives.Native.tuple2"
] | [] | module Spec.Poly1305
#reset-options "--z3rlimit 60 --initial_fuel 0 --max_fuel 0 --initial_ifuel 0 --max_ifuel 0"
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
/// Constants and Types
(* Field types and parameters *)
let prime : pos =
let p = pow2 130 - 5 in
assert_norm (p > 0);
p
let felem = x:nat{x < prime}
let fadd (x:felem) (y:felem) : felem = (x + y) % prime
let fmul (x:felem) (y:felem) : felem = (x * y) % prime
let to_felem (x:nat{x < prime}) : felem = x
let from_felem (x:felem) : nat = x
let zero : felem = to_felem 0
(* Poly1305 parameters *)
let size_block : size_nat = 16
let size_key : size_nat = 32
type block = lbytes size_block
type tag = lbytes size_block
type key = lbytes size_key
/// Specification
let poly1305_encode_r (rb:block) : Tot felem =
let lo = uint_from_bytes_le (sub rb 0 8) in
let hi = uint_from_bytes_le (sub rb 8 8) in
let mask0 = u64 0x0ffffffc0fffffff in
let mask1 = u64 0x0ffffffc0ffffffc in
let lo = lo &. mask0 in
let hi = hi &. mask1 in
assert_norm (pow2 128 < prime);
to_felem (uint_v hi * pow2 64 + uint_v lo) | false | true | Spec.Poly1305.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 60,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val poly1305_init (k: key) : Tot (felem & felem) | [] | Spec.Poly1305.poly1305_init | {
"file_name": "specs/Spec.Poly1305.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | k: Spec.Poly1305.key -> Spec.Poly1305.felem * Spec.Poly1305.felem | {
"end_col": 9,
"end_line": 49,
"start_col": 49,
"start_line": 47
} |
Prims.Tot | val fmul (x y: felem) : felem | [
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let fmul (x:felem) (y:felem) : felem = (x * y) % prime | val fmul (x y: felem) : felem
let fmul (x y: felem) : felem = | false | null | false | (x * y) % prime | {
"checked_file": "Spec.Poly1305.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Poly1305.fst"
} | [
"total"
] | [
"Spec.Poly1305.felem",
"Prims.op_Modulus",
"FStar.Mul.op_Star",
"Spec.Poly1305.prime"
] | [] | module Spec.Poly1305
#reset-options "--z3rlimit 60 --initial_fuel 0 --max_fuel 0 --initial_ifuel 0 --max_ifuel 0"
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
/// Constants and Types
(* Field types and parameters *)
let prime : pos =
let p = pow2 130 - 5 in
assert_norm (p > 0);
p
let felem = x:nat{x < prime} | false | true | Spec.Poly1305.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 60,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val fmul (x y: felem) : felem | [] | Spec.Poly1305.fmul | {
"file_name": "specs/Spec.Poly1305.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x: Spec.Poly1305.felem -> y: Spec.Poly1305.felem -> Spec.Poly1305.felem | {
"end_col": 54,
"end_line": 21,
"start_col": 39,
"start_line": 21
} |
Prims.Tot | val size_block:size_nat | [
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let size_block : size_nat = 16 | val size_block:size_nat
let size_block:size_nat = | false | null | false | 16 | {
"checked_file": "Spec.Poly1305.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Poly1305.fst"
} | [
"total"
] | [] | [] | module Spec.Poly1305
#reset-options "--z3rlimit 60 --initial_fuel 0 --max_fuel 0 --initial_ifuel 0 --max_ifuel 0"
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
/// Constants and Types
(* Field types and parameters *)
let prime : pos =
let p = pow2 130 - 5 in
assert_norm (p > 0);
p
let felem = x:nat{x < prime}
let fadd (x:felem) (y:felem) : felem = (x + y) % prime
let fmul (x:felem) (y:felem) : felem = (x * y) % prime
let to_felem (x:nat{x < prime}) : felem = x
let from_felem (x:felem) : nat = x
let zero : felem = to_felem 0 | false | false | Spec.Poly1305.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 60,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val size_block:size_nat | [] | Spec.Poly1305.size_block | {
"file_name": "specs/Spec.Poly1305.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | n: Prims.nat{n <= Prims.pow2 32 - 1} | {
"end_col": 30,
"end_line": 28,
"start_col": 28,
"start_line": 28
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let poly1305_update_last (r:felem) (l:size_nat{l < 16}) (b:lbytes l) (acc:felem) =
if l = 0 then acc else poly1305_update1 r l b acc | let poly1305_update_last (r: felem) (l: size_nat{l < 16}) (b: lbytes l) (acc: felem) = | false | null | false | if l = 0 then acc else poly1305_update1 r l b acc | {
"checked_file": "Spec.Poly1305.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Poly1305.fst"
} | [
"total"
] | [
"Spec.Poly1305.felem",
"Lib.IntTypes.size_nat",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.ByteSequence.lbytes",
"Prims.op_Equality",
"Prims.int",
"Prims.bool",
"Spec.Poly1305.poly1305_update1"
] | [] | module Spec.Poly1305
#reset-options "--z3rlimit 60 --initial_fuel 0 --max_fuel 0 --initial_ifuel 0 --max_ifuel 0"
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
/// Constants and Types
(* Field types and parameters *)
let prime : pos =
let p = pow2 130 - 5 in
assert_norm (p > 0);
p
let felem = x:nat{x < prime}
let fadd (x:felem) (y:felem) : felem = (x + y) % prime
let fmul (x:felem) (y:felem) : felem = (x * y) % prime
let to_felem (x:nat{x < prime}) : felem = x
let from_felem (x:felem) : nat = x
let zero : felem = to_felem 0
(* Poly1305 parameters *)
let size_block : size_nat = 16
let size_key : size_nat = 32
type block = lbytes size_block
type tag = lbytes size_block
type key = lbytes size_key
/// Specification
let poly1305_encode_r (rb:block) : Tot felem =
let lo = uint_from_bytes_le (sub rb 0 8) in
let hi = uint_from_bytes_le (sub rb 8 8) in
let mask0 = u64 0x0ffffffc0fffffff in
let mask1 = u64 0x0ffffffc0ffffffc in
let lo = lo &. mask0 in
let hi = hi &. mask1 in
assert_norm (pow2 128 < prime);
to_felem (uint_v hi * pow2 64 + uint_v lo)
let poly1305_init (k:key) : Tot (felem & felem) =
let r = poly1305_encode_r (slice k 0 16) in
zero, r
let encode (len:size_nat{len <= size_block}) (b:lbytes len) : Tot felem =
Math.Lemmas.pow2_le_compat 128 (8 * len);
assert_norm (pow2 128 + pow2 128 < prime);
fadd (pow2 (8 * len)) (nat_from_bytes_le b)
let poly1305_update1 (r:felem) (len:size_nat{len <= size_block}) (b:lbytes len) (acc:felem) : Tot felem =
(encode len b `fadd` acc) `fmul` r
let poly1305_finish (k:key) (acc:felem) : Tot tag =
let s = nat_from_bytes_le (slice k 16 32) in
let n = (from_felem acc + s) % pow2 128 in
nat_to_bytes_le 16 n | false | false | Spec.Poly1305.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 60,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val poly1305_update_last : r: Spec.Poly1305.felem ->
l: Lib.IntTypes.size_nat{l < 16} ->
b: Lib.ByteSequence.lbytes l ->
acc: Spec.Poly1305.felem
-> Spec.Poly1305.felem | [] | Spec.Poly1305.poly1305_update_last | {
"file_name": "specs/Spec.Poly1305.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
r: Spec.Poly1305.felem ->
l: Lib.IntTypes.size_nat{l < 16} ->
b: Lib.ByteSequence.lbytes l ->
acc: Spec.Poly1305.felem
-> Spec.Poly1305.felem | {
"end_col": 51,
"end_line": 65,
"start_col": 2,
"start_line": 65
} |
|
Prims.Tot | val poly1305_update (text: bytes) (acc r: felem) : Tot felem | [
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let poly1305_update (text:bytes) (acc:felem) (r:felem) : Tot felem =
repeat_blocks #uint8 #felem size_block text
(poly1305_update1 r size_block)
(poly1305_update_last r)
acc | val poly1305_update (text: bytes) (acc r: felem) : Tot felem
let poly1305_update (text: bytes) (acc r: felem) : Tot felem = | false | null | false | repeat_blocks #uint8
#felem
size_block
text
(poly1305_update1 r size_block)
(poly1305_update_last r)
acc | {
"checked_file": "Spec.Poly1305.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Poly1305.fst"
} | [
"total"
] | [
"Lib.ByteSequence.bytes",
"Spec.Poly1305.felem",
"Lib.Sequence.repeat_blocks",
"Lib.IntTypes.uint8",
"Spec.Poly1305.size_block",
"Spec.Poly1305.poly1305_update1",
"Spec.Poly1305.poly1305_update_last"
] | [] | module Spec.Poly1305
#reset-options "--z3rlimit 60 --initial_fuel 0 --max_fuel 0 --initial_ifuel 0 --max_ifuel 0"
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
/// Constants and Types
(* Field types and parameters *)
let prime : pos =
let p = pow2 130 - 5 in
assert_norm (p > 0);
p
let felem = x:nat{x < prime}
let fadd (x:felem) (y:felem) : felem = (x + y) % prime
let fmul (x:felem) (y:felem) : felem = (x * y) % prime
let to_felem (x:nat{x < prime}) : felem = x
let from_felem (x:felem) : nat = x
let zero : felem = to_felem 0
(* Poly1305 parameters *)
let size_block : size_nat = 16
let size_key : size_nat = 32
type block = lbytes size_block
type tag = lbytes size_block
type key = lbytes size_key
/// Specification
let poly1305_encode_r (rb:block) : Tot felem =
let lo = uint_from_bytes_le (sub rb 0 8) in
let hi = uint_from_bytes_le (sub rb 8 8) in
let mask0 = u64 0x0ffffffc0fffffff in
let mask1 = u64 0x0ffffffc0ffffffc in
let lo = lo &. mask0 in
let hi = hi &. mask1 in
assert_norm (pow2 128 < prime);
to_felem (uint_v hi * pow2 64 + uint_v lo)
let poly1305_init (k:key) : Tot (felem & felem) =
let r = poly1305_encode_r (slice k 0 16) in
zero, r
let encode (len:size_nat{len <= size_block}) (b:lbytes len) : Tot felem =
Math.Lemmas.pow2_le_compat 128 (8 * len);
assert_norm (pow2 128 + pow2 128 < prime);
fadd (pow2 (8 * len)) (nat_from_bytes_le b)
let poly1305_update1 (r:felem) (len:size_nat{len <= size_block}) (b:lbytes len) (acc:felem) : Tot felem =
(encode len b `fadd` acc) `fmul` r
let poly1305_finish (k:key) (acc:felem) : Tot tag =
let s = nat_from_bytes_le (slice k 16 32) in
let n = (from_felem acc + s) % pow2 128 in
nat_to_bytes_le 16 n
let poly1305_update_last (r:felem) (l:size_nat{l < 16}) (b:lbytes l) (acc:felem) =
if l = 0 then acc else poly1305_update1 r l b acc | false | true | Spec.Poly1305.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 60,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val poly1305_update (text: bytes) (acc r: felem) : Tot felem | [] | Spec.Poly1305.poly1305_update | {
"file_name": "specs/Spec.Poly1305.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | text: Lib.ByteSequence.bytes -> acc: Spec.Poly1305.felem -> r: Spec.Poly1305.felem
-> Spec.Poly1305.felem | {
"end_col": 5,
"end_line": 72,
"start_col": 2,
"start_line": 69
} |
Prims.Tot | val fadd (x y: felem) : felem | [
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let fadd (x:felem) (y:felem) : felem = (x + y) % prime | val fadd (x y: felem) : felem
let fadd (x y: felem) : felem = | false | null | false | (x + y) % prime | {
"checked_file": "Spec.Poly1305.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Poly1305.fst"
} | [
"total"
] | [
"Spec.Poly1305.felem",
"Prims.op_Modulus",
"Prims.op_Addition",
"Spec.Poly1305.prime"
] | [] | module Spec.Poly1305
#reset-options "--z3rlimit 60 --initial_fuel 0 --max_fuel 0 --initial_ifuel 0 --max_ifuel 0"
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
/// Constants and Types
(* Field types and parameters *)
let prime : pos =
let p = pow2 130 - 5 in
assert_norm (p > 0);
p | false | true | Spec.Poly1305.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 60,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val fadd (x y: felem) : felem | [] | Spec.Poly1305.fadd | {
"file_name": "specs/Spec.Poly1305.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x: Spec.Poly1305.felem -> y: Spec.Poly1305.felem -> Spec.Poly1305.felem | {
"end_col": 54,
"end_line": 20,
"start_col": 39,
"start_line": 20
} |
Prims.Tot | val size_key:size_nat | [
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let size_key : size_nat = 32 | val size_key:size_nat
let size_key:size_nat = | false | null | false | 32 | {
"checked_file": "Spec.Poly1305.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Poly1305.fst"
} | [
"total"
] | [] | [] | module Spec.Poly1305
#reset-options "--z3rlimit 60 --initial_fuel 0 --max_fuel 0 --initial_ifuel 0 --max_ifuel 0"
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
/// Constants and Types
(* Field types and parameters *)
let prime : pos =
let p = pow2 130 - 5 in
assert_norm (p > 0);
p
let felem = x:nat{x < prime}
let fadd (x:felem) (y:felem) : felem = (x + y) % prime
let fmul (x:felem) (y:felem) : felem = (x * y) % prime
let to_felem (x:nat{x < prime}) : felem = x
let from_felem (x:felem) : nat = x
let zero : felem = to_felem 0
(* Poly1305 parameters *) | false | false | Spec.Poly1305.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 60,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val size_key:size_nat | [] | Spec.Poly1305.size_key | {
"file_name": "specs/Spec.Poly1305.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | n: Prims.nat{n <= Prims.pow2 32 - 1} | {
"end_col": 30,
"end_line": 29,
"start_col": 28,
"start_line": 29
} |
Prims.Tot | val poly1305_finish (k: key) (acc: felem) : Tot tag | [
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let poly1305_finish (k:key) (acc:felem) : Tot tag =
let s = nat_from_bytes_le (slice k 16 32) in
let n = (from_felem acc + s) % pow2 128 in
nat_to_bytes_le 16 n | val poly1305_finish (k: key) (acc: felem) : Tot tag
let poly1305_finish (k: key) (acc: felem) : Tot tag = | false | null | false | let s = nat_from_bytes_le (slice k 16 32) in
let n = (from_felem acc + s) % pow2 128 in
nat_to_bytes_le 16 n | {
"checked_file": "Spec.Poly1305.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Poly1305.fst"
} | [
"total"
] | [
"Spec.Poly1305.key",
"Spec.Poly1305.felem",
"Lib.ByteSequence.nat_to_bytes_le",
"Lib.IntTypes.SEC",
"Prims.int",
"Prims.op_Modulus",
"Prims.op_Addition",
"Spec.Poly1305.from_felem",
"Prims.pow2",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.op_Multiply",
"Lib.Sequence.length",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.Sequence.slice",
"Spec.Poly1305.size_key",
"Lib.ByteSequence.nat_from_bytes_le",
"Lib.IntTypes.uint_t",
"Spec.Poly1305.tag"
] | [] | module Spec.Poly1305
#reset-options "--z3rlimit 60 --initial_fuel 0 --max_fuel 0 --initial_ifuel 0 --max_ifuel 0"
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
/// Constants and Types
(* Field types and parameters *)
let prime : pos =
let p = pow2 130 - 5 in
assert_norm (p > 0);
p
let felem = x:nat{x < prime}
let fadd (x:felem) (y:felem) : felem = (x + y) % prime
let fmul (x:felem) (y:felem) : felem = (x * y) % prime
let to_felem (x:nat{x < prime}) : felem = x
let from_felem (x:felem) : nat = x
let zero : felem = to_felem 0
(* Poly1305 parameters *)
let size_block : size_nat = 16
let size_key : size_nat = 32
type block = lbytes size_block
type tag = lbytes size_block
type key = lbytes size_key
/// Specification
let poly1305_encode_r (rb:block) : Tot felem =
let lo = uint_from_bytes_le (sub rb 0 8) in
let hi = uint_from_bytes_le (sub rb 8 8) in
let mask0 = u64 0x0ffffffc0fffffff in
let mask1 = u64 0x0ffffffc0ffffffc in
let lo = lo &. mask0 in
let hi = hi &. mask1 in
assert_norm (pow2 128 < prime);
to_felem (uint_v hi * pow2 64 + uint_v lo)
let poly1305_init (k:key) : Tot (felem & felem) =
let r = poly1305_encode_r (slice k 0 16) in
zero, r
let encode (len:size_nat{len <= size_block}) (b:lbytes len) : Tot felem =
Math.Lemmas.pow2_le_compat 128 (8 * len);
assert_norm (pow2 128 + pow2 128 < prime);
fadd (pow2 (8 * len)) (nat_from_bytes_le b)
let poly1305_update1 (r:felem) (len:size_nat{len <= size_block}) (b:lbytes len) (acc:felem) : Tot felem =
(encode len b `fadd` acc) `fmul` r | false | true | Spec.Poly1305.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 60,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val poly1305_finish (k: key) (acc: felem) : Tot tag | [] | Spec.Poly1305.poly1305_finish | {
"file_name": "specs/Spec.Poly1305.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | k: Spec.Poly1305.key -> acc: Spec.Poly1305.felem -> Spec.Poly1305.tag | {
"end_col": 22,
"end_line": 62,
"start_col": 51,
"start_line": 59
} |
Prims.Tot | val encode (len: size_nat{len <= size_block}) (b: lbytes len) : Tot felem | [
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let encode (len:size_nat{len <= size_block}) (b:lbytes len) : Tot felem =
Math.Lemmas.pow2_le_compat 128 (8 * len);
assert_norm (pow2 128 + pow2 128 < prime);
fadd (pow2 (8 * len)) (nat_from_bytes_le b) | val encode (len: size_nat{len <= size_block}) (b: lbytes len) : Tot felem
let encode (len: size_nat{len <= size_block}) (b: lbytes len) : Tot felem = | false | null | false | Math.Lemmas.pow2_le_compat 128 (8 * len);
assert_norm (pow2 128 + pow2 128 < prime);
fadd (pow2 (8 * len)) (nat_from_bytes_le b) | {
"checked_file": "Spec.Poly1305.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Poly1305.fst"
} | [
"total"
] | [
"Lib.IntTypes.size_nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Spec.Poly1305.size_block",
"Lib.ByteSequence.lbytes",
"Spec.Poly1305.fadd",
"Prims.pow2",
"FStar.Mul.op_Star",
"Lib.ByteSequence.nat_from_bytes_le",
"Lib.IntTypes.SEC",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.op_LessThan",
"Prims.op_Addition",
"Spec.Poly1305.prime",
"FStar.Math.Lemmas.pow2_le_compat",
"Spec.Poly1305.felem"
] | [] | module Spec.Poly1305
#reset-options "--z3rlimit 60 --initial_fuel 0 --max_fuel 0 --initial_ifuel 0 --max_ifuel 0"
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
/// Constants and Types
(* Field types and parameters *)
let prime : pos =
let p = pow2 130 - 5 in
assert_norm (p > 0);
p
let felem = x:nat{x < prime}
let fadd (x:felem) (y:felem) : felem = (x + y) % prime
let fmul (x:felem) (y:felem) : felem = (x * y) % prime
let to_felem (x:nat{x < prime}) : felem = x
let from_felem (x:felem) : nat = x
let zero : felem = to_felem 0
(* Poly1305 parameters *)
let size_block : size_nat = 16
let size_key : size_nat = 32
type block = lbytes size_block
type tag = lbytes size_block
type key = lbytes size_key
/// Specification
let poly1305_encode_r (rb:block) : Tot felem =
let lo = uint_from_bytes_le (sub rb 0 8) in
let hi = uint_from_bytes_le (sub rb 8 8) in
let mask0 = u64 0x0ffffffc0fffffff in
let mask1 = u64 0x0ffffffc0ffffffc in
let lo = lo &. mask0 in
let hi = hi &. mask1 in
assert_norm (pow2 128 < prime);
to_felem (uint_v hi * pow2 64 + uint_v lo)
let poly1305_init (k:key) : Tot (felem & felem) =
let r = poly1305_encode_r (slice k 0 16) in
zero, r | false | false | Spec.Poly1305.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 60,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val encode (len: size_nat{len <= size_block}) (b: lbytes len) : Tot felem | [] | Spec.Poly1305.encode | {
"file_name": "specs/Spec.Poly1305.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | len: Lib.IntTypes.size_nat{len <= Spec.Poly1305.size_block} -> b: Lib.ByteSequence.lbytes len
-> Spec.Poly1305.felem | {
"end_col": 45,
"end_line": 54,
"start_col": 2,
"start_line": 52
} |
Prims.Tot | val poly1305_encode_r (rb: block) : Tot felem | [
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let poly1305_encode_r (rb:block) : Tot felem =
let lo = uint_from_bytes_le (sub rb 0 8) in
let hi = uint_from_bytes_le (sub rb 8 8) in
let mask0 = u64 0x0ffffffc0fffffff in
let mask1 = u64 0x0ffffffc0ffffffc in
let lo = lo &. mask0 in
let hi = hi &. mask1 in
assert_norm (pow2 128 < prime);
to_felem (uint_v hi * pow2 64 + uint_v lo) | val poly1305_encode_r (rb: block) : Tot felem
let poly1305_encode_r (rb: block) : Tot felem = | false | null | false | let lo = uint_from_bytes_le (sub rb 0 8) in
let hi = uint_from_bytes_le (sub rb 8 8) in
let mask0 = u64 0x0ffffffc0fffffff in
let mask1 = u64 0x0ffffffc0ffffffc in
let lo = lo &. mask0 in
let hi = hi &. mask1 in
assert_norm (pow2 128 < prime);
to_felem (uint_v hi * pow2 64 + uint_v lo) | {
"checked_file": "Spec.Poly1305.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Poly1305.fst"
} | [
"total"
] | [
"Spec.Poly1305.block",
"Spec.Poly1305.to_felem",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Lib.IntTypes.uint_v",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Prims.pow2",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_LessThan",
"Spec.Poly1305.prime",
"Lib.IntTypes.int_t",
"Lib.IntTypes.op_Amp_Dot",
"Prims.eq2",
"Prims.int",
"Lib.IntTypes.range",
"Lib.IntTypes.v",
"Lib.IntTypes.u64",
"Lib.ByteSequence.uint_from_bytes_le",
"Lib.Sequence.sub",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Spec.Poly1305.size_block",
"Spec.Poly1305.felem"
] | [] | module Spec.Poly1305
#reset-options "--z3rlimit 60 --initial_fuel 0 --max_fuel 0 --initial_ifuel 0 --max_ifuel 0"
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
/// Constants and Types
(* Field types and parameters *)
let prime : pos =
let p = pow2 130 - 5 in
assert_norm (p > 0);
p
let felem = x:nat{x < prime}
let fadd (x:felem) (y:felem) : felem = (x + y) % prime
let fmul (x:felem) (y:felem) : felem = (x * y) % prime
let to_felem (x:nat{x < prime}) : felem = x
let from_felem (x:felem) : nat = x
let zero : felem = to_felem 0
(* Poly1305 parameters *)
let size_block : size_nat = 16
let size_key : size_nat = 32
type block = lbytes size_block
type tag = lbytes size_block
type key = lbytes size_key
/// Specification | false | true | Spec.Poly1305.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 60,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val poly1305_encode_r (rb: block) : Tot felem | [] | Spec.Poly1305.poly1305_encode_r | {
"file_name": "specs/Spec.Poly1305.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | rb: Spec.Poly1305.block -> Spec.Poly1305.felem | {
"end_col": 44,
"end_line": 45,
"start_col": 46,
"start_line": 37
} |
Prims.Tot | val clens_ifthenelse_tag (#p: parse_ifthenelse_param) (s: serialize_ifthenelse_param p)
: Tot (clens p.parse_ifthenelse_t p.parse_ifthenelse_tag_t) | [
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.IfThenElse",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let clens_ifthenelse_tag
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
: Tot (clens p.parse_ifthenelse_t p.parse_ifthenelse_tag_t)
= {
clens_cond = (fun _ -> True);
clens_get = (fun (x: p.parse_ifthenelse_t) -> dfst (s.serialize_ifthenelse_synth_recip x));
} | val clens_ifthenelse_tag (#p: parse_ifthenelse_param) (s: serialize_ifthenelse_param p)
: Tot (clens p.parse_ifthenelse_t p.parse_ifthenelse_tag_t)
let clens_ifthenelse_tag (#p: parse_ifthenelse_param) (s: serialize_ifthenelse_param p)
: Tot (clens p.parse_ifthenelse_t p.parse_ifthenelse_tag_t) = | false | null | false | {
clens_cond = (fun _ -> True);
clens_get = (fun (x: p.parse_ifthenelse_t) -> dfst (s.serialize_ifthenelse_synth_recip x))
} | {
"checked_file": "LowParse.Low.IfThenElse.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"LowParse.Spec.IfThenElse.fst.checked",
"LowParse.Low.Combinators.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.IfThenElse.fst"
} | [
"total"
] | [
"LowParse.Spec.IfThenElse.parse_ifthenelse_param",
"LowParse.Spec.IfThenElse.serialize_ifthenelse_param",
"LowParse.Low.Base.Spec.Mkclens",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_t",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_tag_t",
"Prims.l_True",
"FStar.Pervasives.dfst",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_payload_t",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_tag_cond",
"LowParse.Spec.IfThenElse.__proj__Mkserialize_ifthenelse_param__item__serialize_ifthenelse_synth_recip",
"LowParse.Low.Base.Spec.clens"
] | [] | module LowParse.Low.IfThenElse
include LowParse.Spec.IfThenElse
include LowParse.Low.Combinators
module U32 = FStar.UInt32
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module B = LowStar.Buffer
module Cast = FStar.Int.Cast
module U64 = FStar.UInt64
let valid_ifthenelse_intro
(p: parse_ifthenelse_param)
(h: HS.mem)
(#rrel #rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma
(requires (
valid p.parse_ifthenelse_tag_parser h sl pos /\ (
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t
)))
(ensures (
valid p.parse_ifthenelse_tag_parser h sl pos /\ (
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t /\
valid_content_pos
(parse_ifthenelse p) h sl pos
(p.parse_ifthenelse_synth
t
(contents (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)
(get_valid_pos (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)))
= valid_facts (parse_ifthenelse p) h sl pos;
valid_facts p.parse_ifthenelse_tag_parser h sl pos;
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid_facts (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t;
parse_ifthenelse_eq p (bytes_of_slice_from h sl pos)
let valid_ifthenelse_elim
(p: parse_ifthenelse_param)
(h: HS.mem)
(#rrel #rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma
(requires (valid (parse_ifthenelse p) h sl pos))
(ensures (
valid p.parse_ifthenelse_tag_parser h sl pos /\ (
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t /\
valid_content_pos
(parse_ifthenelse p) h sl pos
(p.parse_ifthenelse_synth
t
(contents (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)
(get_valid_pos (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)))
= valid_facts (parse_ifthenelse p) h sl pos;
parse_ifthenelse_eq p (bytes_of_slice_from h sl pos);
valid_facts p.parse_ifthenelse_tag_parser h sl pos;
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid_facts (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t
inline_for_extraction
type test_ifthenelse_tag
(p: parse_ifthenelse_param)
= (#rrel: _) -> (#rel: _) ->
(input: slice rrel rel) ->
(pos: U32.t) ->
HST.Stack bool
(requires (fun h -> valid p.parse_ifthenelse_tag_parser h input pos))
(ensures (fun h res h' ->
B.modifies B.loc_none h h' /\
res == p.parse_ifthenelse_tag_cond (contents p.parse_ifthenelse_tag_parser h input pos)
))
inline_for_extraction
let validate_ifthenelse
(p: parse_ifthenelse_param)
(vt: validator p.parse_ifthenelse_tag_parser)
(test: test_ifthenelse_tag p)
(vp: (b: bool) -> Tot (validator (dsnd (p.parse_ifthenelse_payload_parser b))))
: Tot (validator (parse_ifthenelse p))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
Classical.move_requires (valid_ifthenelse_intro p h input) (uint64_to_uint32 pos);
Classical.move_requires (valid_ifthenelse_elim p h input) (uint64_to_uint32 pos)
in
let pos_after_t = vt input pos in
if is_error pos_after_t
then pos_after_t
else
let b = test input (uint64_to_uint32 pos) in
if b (* eta-expansion here *)
then vp true input pos_after_t
else vp false input pos_after_t
inline_for_extraction
let jump_ifthenelse
(p: parse_ifthenelse_param)
(vt: jumper p.parse_ifthenelse_tag_parser)
(test: test_ifthenelse_tag p)
(vp: (b: bool) -> Tot (jumper (dsnd (p.parse_ifthenelse_payload_parser b))))
: Tot (jumper (parse_ifthenelse p))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
Classical.move_requires (valid_ifthenelse_elim p h input) pos
in
let pos_after_t = vt input pos in
let b = test input pos in
if b (* eta-expansion here *)
then vp true input pos_after_t
else vp false input pos_after_t
let clens_ifthenelse_tag
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
: Tot (clens p.parse_ifthenelse_t p.parse_ifthenelse_tag_t) | false | false | LowParse.Low.IfThenElse.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val clens_ifthenelse_tag (#p: parse_ifthenelse_param) (s: serialize_ifthenelse_param p)
: Tot (clens p.parse_ifthenelse_t p.parse_ifthenelse_tag_t) | [] | LowParse.Low.IfThenElse.clens_ifthenelse_tag | {
"file_name": "src/lowparse/LowParse.Low.IfThenElse.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | s: LowParse.Spec.IfThenElse.serialize_ifthenelse_param p
-> LowParse.Low.Base.Spec.clens (Mkparse_ifthenelse_param?.parse_ifthenelse_t p)
(Mkparse_ifthenelse_param?.parse_ifthenelse_tag_t p) | {
"end_col": 95,
"end_line": 137,
"start_col": 4,
"start_line": 136
} |
Prims.Tot | val accessor_ifthenelse_payload
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(j: jumper p.parse_ifthenelse_tag_parser)
(b: bool)
: Tot (accessor (gaccessor_ifthenelse_payload s b)) | [
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.IfThenElse",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let accessor_ifthenelse_payload
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(j: jumper p.parse_ifthenelse_tag_parser)
(b: bool)
: Tot (accessor (gaccessor_ifthenelse_payload s b))
= fun #rrel #rel -> accessor_ifthenelse_payload' s j b #rrel #rel | val accessor_ifthenelse_payload
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(j: jumper p.parse_ifthenelse_tag_parser)
(b: bool)
: Tot (accessor (gaccessor_ifthenelse_payload s b))
let accessor_ifthenelse_payload
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(j: jumper p.parse_ifthenelse_tag_parser)
(b: bool)
: Tot (accessor (gaccessor_ifthenelse_payload s b)) = | false | null | false | fun #rrel #rel -> accessor_ifthenelse_payload' s j b #rrel #rel | {
"checked_file": "LowParse.Low.IfThenElse.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"LowParse.Spec.IfThenElse.fst.checked",
"LowParse.Low.Combinators.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.IfThenElse.fst"
} | [
"total"
] | [
"LowParse.Spec.IfThenElse.parse_ifthenelse_param",
"LowParse.Spec.IfThenElse.serialize_ifthenelse_param",
"LowParse.Low.Base.jumper",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_tag_kind",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_tag_t",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_tag_parser",
"Prims.bool",
"LowParse.Slice.srel",
"LowParse.Bytes.byte",
"LowParse.Low.IfThenElse.accessor_ifthenelse_payload'",
"LowParse.Slice.slice",
"FStar.UInt32.t",
"FStar.Monotonic.HyperStack.mem",
"Prims.l_and",
"LowParse.Low.Base.Spec.valid",
"LowParse.Spec.IfThenElse.parse_ifthenelse_kind",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_t",
"LowParse.Spec.IfThenElse.parse_ifthenelse",
"LowParse.Low.Base.Spec.__proj__Mkclens__item__clens_cond",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_payload_t",
"LowParse.Low.IfThenElse.clens_ifthenelse_payload",
"LowParse.Low.Base.Spec.contents",
"LowStar.Monotonic.Buffer.modifies",
"LowStar.Monotonic.Buffer.loc_none",
"Prims.eq2",
"LowParse.Low.Base.Spec.slice_access",
"Prims.__proj__Mkdtuple2__item___1",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_payload_parser",
"FStar.Pervasives.dsnd",
"LowParse.Low.IfThenElse.gaccessor_ifthenelse_payload",
"LowParse.Low.Base.accessor"
] | [] | module LowParse.Low.IfThenElse
include LowParse.Spec.IfThenElse
include LowParse.Low.Combinators
module U32 = FStar.UInt32
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module B = LowStar.Buffer
module Cast = FStar.Int.Cast
module U64 = FStar.UInt64
let valid_ifthenelse_intro
(p: parse_ifthenelse_param)
(h: HS.mem)
(#rrel #rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma
(requires (
valid p.parse_ifthenelse_tag_parser h sl pos /\ (
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t
)))
(ensures (
valid p.parse_ifthenelse_tag_parser h sl pos /\ (
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t /\
valid_content_pos
(parse_ifthenelse p) h sl pos
(p.parse_ifthenelse_synth
t
(contents (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)
(get_valid_pos (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)))
= valid_facts (parse_ifthenelse p) h sl pos;
valid_facts p.parse_ifthenelse_tag_parser h sl pos;
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid_facts (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t;
parse_ifthenelse_eq p (bytes_of_slice_from h sl pos)
let valid_ifthenelse_elim
(p: parse_ifthenelse_param)
(h: HS.mem)
(#rrel #rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma
(requires (valid (parse_ifthenelse p) h sl pos))
(ensures (
valid p.parse_ifthenelse_tag_parser h sl pos /\ (
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t /\
valid_content_pos
(parse_ifthenelse p) h sl pos
(p.parse_ifthenelse_synth
t
(contents (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)
(get_valid_pos (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)))
= valid_facts (parse_ifthenelse p) h sl pos;
parse_ifthenelse_eq p (bytes_of_slice_from h sl pos);
valid_facts p.parse_ifthenelse_tag_parser h sl pos;
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid_facts (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t
inline_for_extraction
type test_ifthenelse_tag
(p: parse_ifthenelse_param)
= (#rrel: _) -> (#rel: _) ->
(input: slice rrel rel) ->
(pos: U32.t) ->
HST.Stack bool
(requires (fun h -> valid p.parse_ifthenelse_tag_parser h input pos))
(ensures (fun h res h' ->
B.modifies B.loc_none h h' /\
res == p.parse_ifthenelse_tag_cond (contents p.parse_ifthenelse_tag_parser h input pos)
))
inline_for_extraction
let validate_ifthenelse
(p: parse_ifthenelse_param)
(vt: validator p.parse_ifthenelse_tag_parser)
(test: test_ifthenelse_tag p)
(vp: (b: bool) -> Tot (validator (dsnd (p.parse_ifthenelse_payload_parser b))))
: Tot (validator (parse_ifthenelse p))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
Classical.move_requires (valid_ifthenelse_intro p h input) (uint64_to_uint32 pos);
Classical.move_requires (valid_ifthenelse_elim p h input) (uint64_to_uint32 pos)
in
let pos_after_t = vt input pos in
if is_error pos_after_t
then pos_after_t
else
let b = test input (uint64_to_uint32 pos) in
if b (* eta-expansion here *)
then vp true input pos_after_t
else vp false input pos_after_t
inline_for_extraction
let jump_ifthenelse
(p: parse_ifthenelse_param)
(vt: jumper p.parse_ifthenelse_tag_parser)
(test: test_ifthenelse_tag p)
(vp: (b: bool) -> Tot (jumper (dsnd (p.parse_ifthenelse_payload_parser b))))
: Tot (jumper (parse_ifthenelse p))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
Classical.move_requires (valid_ifthenelse_elim p h input) pos
in
let pos_after_t = vt input pos in
let b = test input pos in
if b (* eta-expansion here *)
then vp true input pos_after_t
else vp false input pos_after_t
let clens_ifthenelse_tag
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
: Tot (clens p.parse_ifthenelse_t p.parse_ifthenelse_tag_t)
= {
clens_cond = (fun _ -> True);
clens_get = (fun (x: p.parse_ifthenelse_t) -> dfst (s.serialize_ifthenelse_synth_recip x));
}
let gaccessor_ifthenelse_tag'
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
: Tot (gaccessor' (parse_ifthenelse p) p.parse_ifthenelse_tag_parser (clens_ifthenelse_tag s))
= fun input ->
parse_ifthenelse_eq p input;
if Some? (parse (parse_ifthenelse p) input)
then parse_ifthenelse_parse_tag_payload s input;
0
let gaccessor_ifthenelse_tag
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
: Tot (gaccessor (parse_ifthenelse p) p.parse_ifthenelse_tag_parser (clens_ifthenelse_tag s))
= gaccessor_prop_equiv (parse_ifthenelse p) p.parse_ifthenelse_tag_parser (clens_ifthenelse_tag s) (gaccessor_ifthenelse_tag' s);
gaccessor_ifthenelse_tag' s
inline_for_extraction
let accessor_ifthenelse_tag
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
: Tot (accessor (gaccessor_ifthenelse_tag s))
= fun #rrel #rel sl pos ->
let h = HST.get () in
slice_access_eq h (gaccessor_ifthenelse_tag s) sl pos;
pos
let clens_ifthenelse_payload
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
: Tot (clens p.parse_ifthenelse_t (p.parse_ifthenelse_payload_t b))
= {
clens_cond = (fun (x: p.parse_ifthenelse_t) -> p.parse_ifthenelse_tag_cond (dfst (s.serialize_ifthenelse_synth_recip x)) == b);
clens_get = (fun (x: p.parse_ifthenelse_t) -> dsnd (s.serialize_ifthenelse_synth_recip x) <: Ghost (p.parse_ifthenelse_payload_t b) (requires (p.parse_ifthenelse_tag_cond (dfst (s.serialize_ifthenelse_synth_recip x)) == b)) (ensures (fun _ -> True)));
}
let gaccessor_ifthenelse_payload''
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
(input: bytes)
: Ghost nat
(requires (
gaccessor_pre (parse_ifthenelse p) (dsnd (p.parse_ifthenelse_payload_parser b)) (clens_ifthenelse_payload s b) input
))
(ensures (fun res ->
gaccessor_post' (parse_ifthenelse p) (dsnd (p.parse_ifthenelse_payload_parser b)) (clens_ifthenelse_payload s b) input res
))
= parse_ifthenelse_eq p input;
parse_ifthenelse_parse_tag_payload s input;
let Some (t, consumed) = parse p.parse_ifthenelse_tag_parser input in
consumed
let gaccessor_ifthenelse_payload'
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
: Tot (gaccessor' (parse_ifthenelse p) (dsnd (p.parse_ifthenelse_payload_parser b)) (clens_ifthenelse_payload s b))
= fun (input: bytes) ->
match parse (parse_ifthenelse p) input with
| Some (x, _) ->
if p.parse_ifthenelse_tag_cond (dfst (s.serialize_ifthenelse_synth_recip x)) = b
then gaccessor_ifthenelse_payload'' s b input
else 0 (* dummy *)
| _ -> 0 (* dummy *)
let gaccessor_ifthenelse_payload_injective
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
(sl sl' : bytes)
: Lemma
(requires (
gaccessor_pre (parse_ifthenelse p) (dsnd (p.parse_ifthenelse_payload_parser b)) (clens_ifthenelse_payload s b) sl /\
gaccessor_pre (parse_ifthenelse p) (dsnd (p.parse_ifthenelse_payload_parser b)) (clens_ifthenelse_payload s b) sl' /\
injective_precond (parse_ifthenelse p) sl sl'
))
(ensures (gaccessor_ifthenelse_payload' s b sl == gaccessor_ifthenelse_payload' s b sl'))
= parse_ifthenelse_eq p sl;
parse_ifthenelse_eq p sl';
parse_ifthenelse_parse_tag_payload s sl;
parse_ifthenelse_parse_tag_payload s sl' ;
parse_injective p.parse_ifthenelse_tag_parser sl sl'
let gaccessor_ifthenelse_payload_no_lookahead
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
(sl sl' : bytes)
: Lemma
(requires (
(parse_ifthenelse_kind p).parser_kind_subkind == Some ParserStrong /\
gaccessor_pre (parse_ifthenelse p) (dsnd (p.parse_ifthenelse_payload_parser b)) (clens_ifthenelse_payload s b) sl /\
gaccessor_pre (parse_ifthenelse p) (dsnd (p.parse_ifthenelse_payload_parser b)) (clens_ifthenelse_payload s b) sl' /\
no_lookahead_on_precond (parse_ifthenelse p) sl sl'
))
(ensures (gaccessor_ifthenelse_payload' s b sl == gaccessor_ifthenelse_payload' s b sl'))
= parse_ifthenelse_eq p sl;
parse_ifthenelse_eq p sl';
parse_ifthenelse_parse_tag_payload s sl;
parse_ifthenelse_parse_tag_payload s sl' ;
parse_strong_prefix (parse_ifthenelse p) sl sl';
parse_injective p.parse_ifthenelse_tag_parser sl sl'
let gaccessor_ifthenelse_payload
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
: Tot (gaccessor (parse_ifthenelse p) (dsnd (p.parse_ifthenelse_payload_parser b)) (clens_ifthenelse_payload s b))
= Classical.forall_intro_2 (fun x -> Classical.move_requires (gaccessor_ifthenelse_payload_injective s b x));
Classical.forall_intro_2 (fun x -> Classical.move_requires (gaccessor_ifthenelse_payload_no_lookahead s b x));
gaccessor_prop_equiv (parse_ifthenelse p) (dsnd (p.parse_ifthenelse_payload_parser b)) (clens_ifthenelse_payload s b) (gaccessor_ifthenelse_payload' s b);
gaccessor_ifthenelse_payload' s b
inline_for_extraction
let accessor_ifthenelse_payload'
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(j: jumper p.parse_ifthenelse_tag_parser)
(b: bool)
(#rrel #rel: _)
(input: slice rrel rel)
(pos: U32.t)
: HST.Stack U32.t
(requires (fun h ->
valid (parse_ifthenelse p) h input pos /\
(clens_ifthenelse_payload s b).clens_cond (contents (parse_ifthenelse p) h input pos)
))
(ensures (fun h pos' h' ->
B.modifies B.loc_none h h' /\
pos' == slice_access h (gaccessor_ifthenelse_payload s b) input pos
))
= let h = HST.get () in
[@inline_let]
let _ =
let pos' = get_valid_pos (parse_ifthenelse p) h input pos in
let large = bytes_of_slice_from h input pos in
slice_access_eq h (gaccessor_ifthenelse_payload s b) input pos;
valid_facts (parse_ifthenelse p) h input pos;
parse_ifthenelse_eq p large;
valid_facts p.parse_ifthenelse_tag_parser h input pos
in
j input pos
inline_for_extraction
let accessor_ifthenelse_payload
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(j: jumper p.parse_ifthenelse_tag_parser)
(b: bool) | false | false | LowParse.Low.IfThenElse.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val accessor_ifthenelse_payload
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(j: jumper p.parse_ifthenelse_tag_parser)
(b: bool)
: Tot (accessor (gaccessor_ifthenelse_payload s b)) | [] | LowParse.Low.IfThenElse.accessor_ifthenelse_payload | {
"file_name": "src/lowparse/LowParse.Low.IfThenElse.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
s: LowParse.Spec.IfThenElse.serialize_ifthenelse_param p ->
j: LowParse.Low.Base.jumper (Mkparse_ifthenelse_param?.parse_ifthenelse_tag_parser p) ->
b: Prims.bool
-> LowParse.Low.Base.accessor (LowParse.Low.IfThenElse.gaccessor_ifthenelse_payload s b) | {
"end_col": 65,
"end_line": 292,
"start_col": 2,
"start_line": 292
} |
Prims.Tot | val clens_ifthenelse_payload
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
: Tot (clens p.parse_ifthenelse_t (p.parse_ifthenelse_payload_t b)) | [
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.IfThenElse",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let clens_ifthenelse_payload
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
: Tot (clens p.parse_ifthenelse_t (p.parse_ifthenelse_payload_t b))
= {
clens_cond = (fun (x: p.parse_ifthenelse_t) -> p.parse_ifthenelse_tag_cond (dfst (s.serialize_ifthenelse_synth_recip x)) == b);
clens_get = (fun (x: p.parse_ifthenelse_t) -> dsnd (s.serialize_ifthenelse_synth_recip x) <: Ghost (p.parse_ifthenelse_payload_t b) (requires (p.parse_ifthenelse_tag_cond (dfst (s.serialize_ifthenelse_synth_recip x)) == b)) (ensures (fun _ -> True)));
} | val clens_ifthenelse_payload
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
: Tot (clens p.parse_ifthenelse_t (p.parse_ifthenelse_payload_t b))
let clens_ifthenelse_payload
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
: Tot (clens p.parse_ifthenelse_t (p.parse_ifthenelse_payload_t b)) = | false | null | false | {
clens_cond
=
(fun (x: p.parse_ifthenelse_t) ->
p.parse_ifthenelse_tag_cond (dfst (s.serialize_ifthenelse_synth_recip x)) == b);
clens_get
=
(fun (x: p.parse_ifthenelse_t) ->
dsnd (s.serialize_ifthenelse_synth_recip x)
<:
Ghost (p.parse_ifthenelse_payload_t b)
(requires (p.parse_ifthenelse_tag_cond (dfst (s.serialize_ifthenelse_synth_recip x)) == b))
(ensures (fun _ -> True)))
} | {
"checked_file": "LowParse.Low.IfThenElse.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"LowParse.Spec.IfThenElse.fst.checked",
"LowParse.Low.Combinators.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.IfThenElse.fst"
} | [
"total"
] | [
"LowParse.Spec.IfThenElse.parse_ifthenelse_param",
"LowParse.Spec.IfThenElse.serialize_ifthenelse_param",
"Prims.bool",
"LowParse.Low.Base.Spec.Mkclens",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_t",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_payload_t",
"Prims.eq2",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_tag_cond",
"FStar.Pervasives.dfst",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_tag_t",
"LowParse.Spec.IfThenElse.__proj__Mkserialize_ifthenelse_param__item__serialize_ifthenelse_synth_recip",
"FStar.Pervasives.dsnd",
"Prims.l_True",
"LowParse.Low.Base.Spec.clens"
] | [] | module LowParse.Low.IfThenElse
include LowParse.Spec.IfThenElse
include LowParse.Low.Combinators
module U32 = FStar.UInt32
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module B = LowStar.Buffer
module Cast = FStar.Int.Cast
module U64 = FStar.UInt64
let valid_ifthenelse_intro
(p: parse_ifthenelse_param)
(h: HS.mem)
(#rrel #rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma
(requires (
valid p.parse_ifthenelse_tag_parser h sl pos /\ (
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t
)))
(ensures (
valid p.parse_ifthenelse_tag_parser h sl pos /\ (
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t /\
valid_content_pos
(parse_ifthenelse p) h sl pos
(p.parse_ifthenelse_synth
t
(contents (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)
(get_valid_pos (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)))
= valid_facts (parse_ifthenelse p) h sl pos;
valid_facts p.parse_ifthenelse_tag_parser h sl pos;
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid_facts (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t;
parse_ifthenelse_eq p (bytes_of_slice_from h sl pos)
let valid_ifthenelse_elim
(p: parse_ifthenelse_param)
(h: HS.mem)
(#rrel #rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma
(requires (valid (parse_ifthenelse p) h sl pos))
(ensures (
valid p.parse_ifthenelse_tag_parser h sl pos /\ (
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t /\
valid_content_pos
(parse_ifthenelse p) h sl pos
(p.parse_ifthenelse_synth
t
(contents (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)
(get_valid_pos (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)))
= valid_facts (parse_ifthenelse p) h sl pos;
parse_ifthenelse_eq p (bytes_of_slice_from h sl pos);
valid_facts p.parse_ifthenelse_tag_parser h sl pos;
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid_facts (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t
inline_for_extraction
type test_ifthenelse_tag
(p: parse_ifthenelse_param)
= (#rrel: _) -> (#rel: _) ->
(input: slice rrel rel) ->
(pos: U32.t) ->
HST.Stack bool
(requires (fun h -> valid p.parse_ifthenelse_tag_parser h input pos))
(ensures (fun h res h' ->
B.modifies B.loc_none h h' /\
res == p.parse_ifthenelse_tag_cond (contents p.parse_ifthenelse_tag_parser h input pos)
))
inline_for_extraction
let validate_ifthenelse
(p: parse_ifthenelse_param)
(vt: validator p.parse_ifthenelse_tag_parser)
(test: test_ifthenelse_tag p)
(vp: (b: bool) -> Tot (validator (dsnd (p.parse_ifthenelse_payload_parser b))))
: Tot (validator (parse_ifthenelse p))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
Classical.move_requires (valid_ifthenelse_intro p h input) (uint64_to_uint32 pos);
Classical.move_requires (valid_ifthenelse_elim p h input) (uint64_to_uint32 pos)
in
let pos_after_t = vt input pos in
if is_error pos_after_t
then pos_after_t
else
let b = test input (uint64_to_uint32 pos) in
if b (* eta-expansion here *)
then vp true input pos_after_t
else vp false input pos_after_t
inline_for_extraction
let jump_ifthenelse
(p: parse_ifthenelse_param)
(vt: jumper p.parse_ifthenelse_tag_parser)
(test: test_ifthenelse_tag p)
(vp: (b: bool) -> Tot (jumper (dsnd (p.parse_ifthenelse_payload_parser b))))
: Tot (jumper (parse_ifthenelse p))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
Classical.move_requires (valid_ifthenelse_elim p h input) pos
in
let pos_after_t = vt input pos in
let b = test input pos in
if b (* eta-expansion here *)
then vp true input pos_after_t
else vp false input pos_after_t
let clens_ifthenelse_tag
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
: Tot (clens p.parse_ifthenelse_t p.parse_ifthenelse_tag_t)
= {
clens_cond = (fun _ -> True);
clens_get = (fun (x: p.parse_ifthenelse_t) -> dfst (s.serialize_ifthenelse_synth_recip x));
}
let gaccessor_ifthenelse_tag'
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
: Tot (gaccessor' (parse_ifthenelse p) p.parse_ifthenelse_tag_parser (clens_ifthenelse_tag s))
= fun input ->
parse_ifthenelse_eq p input;
if Some? (parse (parse_ifthenelse p) input)
then parse_ifthenelse_parse_tag_payload s input;
0
let gaccessor_ifthenelse_tag
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
: Tot (gaccessor (parse_ifthenelse p) p.parse_ifthenelse_tag_parser (clens_ifthenelse_tag s))
= gaccessor_prop_equiv (parse_ifthenelse p) p.parse_ifthenelse_tag_parser (clens_ifthenelse_tag s) (gaccessor_ifthenelse_tag' s);
gaccessor_ifthenelse_tag' s
inline_for_extraction
let accessor_ifthenelse_tag
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
: Tot (accessor (gaccessor_ifthenelse_tag s))
= fun #rrel #rel sl pos ->
let h = HST.get () in
slice_access_eq h (gaccessor_ifthenelse_tag s) sl pos;
pos
let clens_ifthenelse_payload
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
: Tot (clens p.parse_ifthenelse_t (p.parse_ifthenelse_payload_t b)) | false | false | LowParse.Low.IfThenElse.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val clens_ifthenelse_payload
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
: Tot (clens p.parse_ifthenelse_t (p.parse_ifthenelse_payload_t b)) | [] | LowParse.Low.IfThenElse.clens_ifthenelse_payload | {
"file_name": "src/lowparse/LowParse.Low.IfThenElse.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | s: LowParse.Spec.IfThenElse.serialize_ifthenelse_param p -> b: Prims.bool
-> LowParse.Low.Base.Spec.clens (Mkparse_ifthenelse_param?.parse_ifthenelse_t p)
(Mkparse_ifthenelse_param?.parse_ifthenelse_payload_t p b) | {
"end_col": 255,
"end_line": 174,
"start_col": 4,
"start_line": 173
} |
Prims.Tot | val gaccessor_ifthenelse_tag (#p: parse_ifthenelse_param) (s: serialize_ifthenelse_param p)
: Tot (gaccessor (parse_ifthenelse p) p.parse_ifthenelse_tag_parser (clens_ifthenelse_tag s)) | [
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.IfThenElse",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let gaccessor_ifthenelse_tag
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
: Tot (gaccessor (parse_ifthenelse p) p.parse_ifthenelse_tag_parser (clens_ifthenelse_tag s))
= gaccessor_prop_equiv (parse_ifthenelse p) p.parse_ifthenelse_tag_parser (clens_ifthenelse_tag s) (gaccessor_ifthenelse_tag' s);
gaccessor_ifthenelse_tag' s | val gaccessor_ifthenelse_tag (#p: parse_ifthenelse_param) (s: serialize_ifthenelse_param p)
: Tot (gaccessor (parse_ifthenelse p) p.parse_ifthenelse_tag_parser (clens_ifthenelse_tag s))
let gaccessor_ifthenelse_tag (#p: parse_ifthenelse_param) (s: serialize_ifthenelse_param p)
: Tot (gaccessor (parse_ifthenelse p) p.parse_ifthenelse_tag_parser (clens_ifthenelse_tag s)) = | false | null | false | gaccessor_prop_equiv (parse_ifthenelse p)
p.parse_ifthenelse_tag_parser
(clens_ifthenelse_tag s)
(gaccessor_ifthenelse_tag' s);
gaccessor_ifthenelse_tag' s | {
"checked_file": "LowParse.Low.IfThenElse.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"LowParse.Spec.IfThenElse.fst.checked",
"LowParse.Low.Combinators.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.IfThenElse.fst"
} | [
"total"
] | [
"LowParse.Spec.IfThenElse.parse_ifthenelse_param",
"LowParse.Spec.IfThenElse.serialize_ifthenelse_param",
"LowParse.Low.IfThenElse.gaccessor_ifthenelse_tag'",
"Prims.unit",
"LowParse.Low.Base.Spec.gaccessor_prop_equiv",
"LowParse.Spec.IfThenElse.parse_ifthenelse_kind",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_t",
"LowParse.Spec.IfThenElse.parse_ifthenelse",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_tag_kind",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_tag_t",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_tag_parser",
"LowParse.Low.IfThenElse.clens_ifthenelse_tag",
"LowParse.Low.Base.Spec.gaccessor"
] | [] | module LowParse.Low.IfThenElse
include LowParse.Spec.IfThenElse
include LowParse.Low.Combinators
module U32 = FStar.UInt32
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module B = LowStar.Buffer
module Cast = FStar.Int.Cast
module U64 = FStar.UInt64
let valid_ifthenelse_intro
(p: parse_ifthenelse_param)
(h: HS.mem)
(#rrel #rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma
(requires (
valid p.parse_ifthenelse_tag_parser h sl pos /\ (
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t
)))
(ensures (
valid p.parse_ifthenelse_tag_parser h sl pos /\ (
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t /\
valid_content_pos
(parse_ifthenelse p) h sl pos
(p.parse_ifthenelse_synth
t
(contents (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)
(get_valid_pos (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)))
= valid_facts (parse_ifthenelse p) h sl pos;
valid_facts p.parse_ifthenelse_tag_parser h sl pos;
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid_facts (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t;
parse_ifthenelse_eq p (bytes_of_slice_from h sl pos)
let valid_ifthenelse_elim
(p: parse_ifthenelse_param)
(h: HS.mem)
(#rrel #rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma
(requires (valid (parse_ifthenelse p) h sl pos))
(ensures (
valid p.parse_ifthenelse_tag_parser h sl pos /\ (
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t /\
valid_content_pos
(parse_ifthenelse p) h sl pos
(p.parse_ifthenelse_synth
t
(contents (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)
(get_valid_pos (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)))
= valid_facts (parse_ifthenelse p) h sl pos;
parse_ifthenelse_eq p (bytes_of_slice_from h sl pos);
valid_facts p.parse_ifthenelse_tag_parser h sl pos;
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid_facts (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t
inline_for_extraction
type test_ifthenelse_tag
(p: parse_ifthenelse_param)
= (#rrel: _) -> (#rel: _) ->
(input: slice rrel rel) ->
(pos: U32.t) ->
HST.Stack bool
(requires (fun h -> valid p.parse_ifthenelse_tag_parser h input pos))
(ensures (fun h res h' ->
B.modifies B.loc_none h h' /\
res == p.parse_ifthenelse_tag_cond (contents p.parse_ifthenelse_tag_parser h input pos)
))
inline_for_extraction
let validate_ifthenelse
(p: parse_ifthenelse_param)
(vt: validator p.parse_ifthenelse_tag_parser)
(test: test_ifthenelse_tag p)
(vp: (b: bool) -> Tot (validator (dsnd (p.parse_ifthenelse_payload_parser b))))
: Tot (validator (parse_ifthenelse p))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
Classical.move_requires (valid_ifthenelse_intro p h input) (uint64_to_uint32 pos);
Classical.move_requires (valid_ifthenelse_elim p h input) (uint64_to_uint32 pos)
in
let pos_after_t = vt input pos in
if is_error pos_after_t
then pos_after_t
else
let b = test input (uint64_to_uint32 pos) in
if b (* eta-expansion here *)
then vp true input pos_after_t
else vp false input pos_after_t
inline_for_extraction
let jump_ifthenelse
(p: parse_ifthenelse_param)
(vt: jumper p.parse_ifthenelse_tag_parser)
(test: test_ifthenelse_tag p)
(vp: (b: bool) -> Tot (jumper (dsnd (p.parse_ifthenelse_payload_parser b))))
: Tot (jumper (parse_ifthenelse p))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
Classical.move_requires (valid_ifthenelse_elim p h input) pos
in
let pos_after_t = vt input pos in
let b = test input pos in
if b (* eta-expansion here *)
then vp true input pos_after_t
else vp false input pos_after_t
let clens_ifthenelse_tag
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
: Tot (clens p.parse_ifthenelse_t p.parse_ifthenelse_tag_t)
= {
clens_cond = (fun _ -> True);
clens_get = (fun (x: p.parse_ifthenelse_t) -> dfst (s.serialize_ifthenelse_synth_recip x));
}
let gaccessor_ifthenelse_tag'
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
: Tot (gaccessor' (parse_ifthenelse p) p.parse_ifthenelse_tag_parser (clens_ifthenelse_tag s))
= fun input ->
parse_ifthenelse_eq p input;
if Some? (parse (parse_ifthenelse p) input)
then parse_ifthenelse_parse_tag_payload s input;
0
let gaccessor_ifthenelse_tag
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p) | false | false | LowParse.Low.IfThenElse.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val gaccessor_ifthenelse_tag (#p: parse_ifthenelse_param) (s: serialize_ifthenelse_param p)
: Tot (gaccessor (parse_ifthenelse p) p.parse_ifthenelse_tag_parser (clens_ifthenelse_tag s)) | [] | LowParse.Low.IfThenElse.gaccessor_ifthenelse_tag | {
"file_name": "src/lowparse/LowParse.Low.IfThenElse.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | s: LowParse.Spec.IfThenElse.serialize_ifthenelse_param p
-> LowParse.Low.Base.Spec.gaccessor (LowParse.Spec.IfThenElse.parse_ifthenelse p)
(Mkparse_ifthenelse_param?.parse_ifthenelse_tag_parser p)
(LowParse.Low.IfThenElse.clens_ifthenelse_tag s) | {
"end_col": 29,
"end_line": 155,
"start_col": 2,
"start_line": 154
} |
Prims.Ghost | val gaccessor_ifthenelse_payload''
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
(input: bytes)
: Ghost nat
(requires
(gaccessor_pre (parse_ifthenelse p)
(dsnd (p.parse_ifthenelse_payload_parser b))
(clens_ifthenelse_payload s b)
input))
(ensures
(fun res ->
gaccessor_post' (parse_ifthenelse p)
(dsnd (p.parse_ifthenelse_payload_parser b))
(clens_ifthenelse_payload s b)
input
res)) | [
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.IfThenElse",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let gaccessor_ifthenelse_payload''
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
(input: bytes)
: Ghost nat
(requires (
gaccessor_pre (parse_ifthenelse p) (dsnd (p.parse_ifthenelse_payload_parser b)) (clens_ifthenelse_payload s b) input
))
(ensures (fun res ->
gaccessor_post' (parse_ifthenelse p) (dsnd (p.parse_ifthenelse_payload_parser b)) (clens_ifthenelse_payload s b) input res
))
= parse_ifthenelse_eq p input;
parse_ifthenelse_parse_tag_payload s input;
let Some (t, consumed) = parse p.parse_ifthenelse_tag_parser input in
consumed | val gaccessor_ifthenelse_payload''
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
(input: bytes)
: Ghost nat
(requires
(gaccessor_pre (parse_ifthenelse p)
(dsnd (p.parse_ifthenelse_payload_parser b))
(clens_ifthenelse_payload s b)
input))
(ensures
(fun res ->
gaccessor_post' (parse_ifthenelse p)
(dsnd (p.parse_ifthenelse_payload_parser b))
(clens_ifthenelse_payload s b)
input
res))
let gaccessor_ifthenelse_payload''
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
(input: bytes)
: Ghost nat
(requires
(gaccessor_pre (parse_ifthenelse p)
(dsnd (p.parse_ifthenelse_payload_parser b))
(clens_ifthenelse_payload s b)
input))
(ensures
(fun res ->
gaccessor_post' (parse_ifthenelse p)
(dsnd (p.parse_ifthenelse_payload_parser b))
(clens_ifthenelse_payload s b)
input
res)) = | false | null | false | parse_ifthenelse_eq p input;
parse_ifthenelse_parse_tag_payload s input;
let Some (t, consumed) = parse p.parse_ifthenelse_tag_parser input in
consumed | {
"checked_file": "LowParse.Low.IfThenElse.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"LowParse.Spec.IfThenElse.fst.checked",
"LowParse.Low.Combinators.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.IfThenElse.fst"
} | [] | [
"LowParse.Spec.IfThenElse.parse_ifthenelse_param",
"LowParse.Spec.IfThenElse.serialize_ifthenelse_param",
"Prims.bool",
"LowParse.Bytes.bytes",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_tag_t",
"LowParse.Spec.Base.consumed_length",
"Prims.nat",
"FStar.Pervasives.Native.option",
"FStar.Pervasives.Native.tuple2",
"LowParse.Spec.Base.parse",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_tag_parser",
"Prims.unit",
"LowParse.Spec.IfThenElse.parse_ifthenelse_parse_tag_payload",
"LowParse.Spec.IfThenElse.parse_ifthenelse_eq",
"LowParse.Low.Base.Spec.gaccessor_pre",
"LowParse.Spec.IfThenElse.parse_ifthenelse_kind",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_t",
"LowParse.Spec.IfThenElse.parse_ifthenelse",
"Prims.__proj__Mkdtuple2__item___1",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_payload_t",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_payload_parser",
"FStar.Pervasives.dsnd",
"LowParse.Low.IfThenElse.clens_ifthenelse_payload",
"LowParse.Low.Base.Spec.gaccessor_post'"
] | [] | module LowParse.Low.IfThenElse
include LowParse.Spec.IfThenElse
include LowParse.Low.Combinators
module U32 = FStar.UInt32
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module B = LowStar.Buffer
module Cast = FStar.Int.Cast
module U64 = FStar.UInt64
let valid_ifthenelse_intro
(p: parse_ifthenelse_param)
(h: HS.mem)
(#rrel #rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma
(requires (
valid p.parse_ifthenelse_tag_parser h sl pos /\ (
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t
)))
(ensures (
valid p.parse_ifthenelse_tag_parser h sl pos /\ (
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t /\
valid_content_pos
(parse_ifthenelse p) h sl pos
(p.parse_ifthenelse_synth
t
(contents (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)
(get_valid_pos (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)))
= valid_facts (parse_ifthenelse p) h sl pos;
valid_facts p.parse_ifthenelse_tag_parser h sl pos;
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid_facts (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t;
parse_ifthenelse_eq p (bytes_of_slice_from h sl pos)
let valid_ifthenelse_elim
(p: parse_ifthenelse_param)
(h: HS.mem)
(#rrel #rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma
(requires (valid (parse_ifthenelse p) h sl pos))
(ensures (
valid p.parse_ifthenelse_tag_parser h sl pos /\ (
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t /\
valid_content_pos
(parse_ifthenelse p) h sl pos
(p.parse_ifthenelse_synth
t
(contents (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)
(get_valid_pos (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)))
= valid_facts (parse_ifthenelse p) h sl pos;
parse_ifthenelse_eq p (bytes_of_slice_from h sl pos);
valid_facts p.parse_ifthenelse_tag_parser h sl pos;
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid_facts (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t
inline_for_extraction
type test_ifthenelse_tag
(p: parse_ifthenelse_param)
= (#rrel: _) -> (#rel: _) ->
(input: slice rrel rel) ->
(pos: U32.t) ->
HST.Stack bool
(requires (fun h -> valid p.parse_ifthenelse_tag_parser h input pos))
(ensures (fun h res h' ->
B.modifies B.loc_none h h' /\
res == p.parse_ifthenelse_tag_cond (contents p.parse_ifthenelse_tag_parser h input pos)
))
inline_for_extraction
let validate_ifthenelse
(p: parse_ifthenelse_param)
(vt: validator p.parse_ifthenelse_tag_parser)
(test: test_ifthenelse_tag p)
(vp: (b: bool) -> Tot (validator (dsnd (p.parse_ifthenelse_payload_parser b))))
: Tot (validator (parse_ifthenelse p))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
Classical.move_requires (valid_ifthenelse_intro p h input) (uint64_to_uint32 pos);
Classical.move_requires (valid_ifthenelse_elim p h input) (uint64_to_uint32 pos)
in
let pos_after_t = vt input pos in
if is_error pos_after_t
then pos_after_t
else
let b = test input (uint64_to_uint32 pos) in
if b (* eta-expansion here *)
then vp true input pos_after_t
else vp false input pos_after_t
inline_for_extraction
let jump_ifthenelse
(p: parse_ifthenelse_param)
(vt: jumper p.parse_ifthenelse_tag_parser)
(test: test_ifthenelse_tag p)
(vp: (b: bool) -> Tot (jumper (dsnd (p.parse_ifthenelse_payload_parser b))))
: Tot (jumper (parse_ifthenelse p))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
Classical.move_requires (valid_ifthenelse_elim p h input) pos
in
let pos_after_t = vt input pos in
let b = test input pos in
if b (* eta-expansion here *)
then vp true input pos_after_t
else vp false input pos_after_t
let clens_ifthenelse_tag
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
: Tot (clens p.parse_ifthenelse_t p.parse_ifthenelse_tag_t)
= {
clens_cond = (fun _ -> True);
clens_get = (fun (x: p.parse_ifthenelse_t) -> dfst (s.serialize_ifthenelse_synth_recip x));
}
let gaccessor_ifthenelse_tag'
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
: Tot (gaccessor' (parse_ifthenelse p) p.parse_ifthenelse_tag_parser (clens_ifthenelse_tag s))
= fun input ->
parse_ifthenelse_eq p input;
if Some? (parse (parse_ifthenelse p) input)
then parse_ifthenelse_parse_tag_payload s input;
0
let gaccessor_ifthenelse_tag
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
: Tot (gaccessor (parse_ifthenelse p) p.parse_ifthenelse_tag_parser (clens_ifthenelse_tag s))
= gaccessor_prop_equiv (parse_ifthenelse p) p.parse_ifthenelse_tag_parser (clens_ifthenelse_tag s) (gaccessor_ifthenelse_tag' s);
gaccessor_ifthenelse_tag' s
inline_for_extraction
let accessor_ifthenelse_tag
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
: Tot (accessor (gaccessor_ifthenelse_tag s))
= fun #rrel #rel sl pos ->
let h = HST.get () in
slice_access_eq h (gaccessor_ifthenelse_tag s) sl pos;
pos
let clens_ifthenelse_payload
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
: Tot (clens p.parse_ifthenelse_t (p.parse_ifthenelse_payload_t b))
= {
clens_cond = (fun (x: p.parse_ifthenelse_t) -> p.parse_ifthenelse_tag_cond (dfst (s.serialize_ifthenelse_synth_recip x)) == b);
clens_get = (fun (x: p.parse_ifthenelse_t) -> dsnd (s.serialize_ifthenelse_synth_recip x) <: Ghost (p.parse_ifthenelse_payload_t b) (requires (p.parse_ifthenelse_tag_cond (dfst (s.serialize_ifthenelse_synth_recip x)) == b)) (ensures (fun _ -> True)));
}
let gaccessor_ifthenelse_payload''
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
(input: bytes)
: Ghost nat
(requires (
gaccessor_pre (parse_ifthenelse p) (dsnd (p.parse_ifthenelse_payload_parser b)) (clens_ifthenelse_payload s b) input
))
(ensures (fun res ->
gaccessor_post' (parse_ifthenelse p) (dsnd (p.parse_ifthenelse_payload_parser b)) (clens_ifthenelse_payload s b) input res | false | false | LowParse.Low.IfThenElse.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val gaccessor_ifthenelse_payload''
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
(input: bytes)
: Ghost nat
(requires
(gaccessor_pre (parse_ifthenelse p)
(dsnd (p.parse_ifthenelse_payload_parser b))
(clens_ifthenelse_payload s b)
input))
(ensures
(fun res ->
gaccessor_post' (parse_ifthenelse p)
(dsnd (p.parse_ifthenelse_payload_parser b))
(clens_ifthenelse_payload s b)
input
res)) | [] | LowParse.Low.IfThenElse.gaccessor_ifthenelse_payload'' | {
"file_name": "src/lowparse/LowParse.Low.IfThenElse.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
s: LowParse.Spec.IfThenElse.serialize_ifthenelse_param p ->
b: Prims.bool ->
input: LowParse.Bytes.bytes
-> Prims.Ghost Prims.nat | {
"end_col": 12,
"end_line": 192,
"start_col": 4,
"start_line": 189
} |
Prims.Tot | val gaccessor_ifthenelse_payload
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
: Tot
(gaccessor (parse_ifthenelse p)
(dsnd (p.parse_ifthenelse_payload_parser b))
(clens_ifthenelse_payload s b)) | [
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.IfThenElse",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let gaccessor_ifthenelse_payload
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
: Tot (gaccessor (parse_ifthenelse p) (dsnd (p.parse_ifthenelse_payload_parser b)) (clens_ifthenelse_payload s b))
= Classical.forall_intro_2 (fun x -> Classical.move_requires (gaccessor_ifthenelse_payload_injective s b x));
Classical.forall_intro_2 (fun x -> Classical.move_requires (gaccessor_ifthenelse_payload_no_lookahead s b x));
gaccessor_prop_equiv (parse_ifthenelse p) (dsnd (p.parse_ifthenelse_payload_parser b)) (clens_ifthenelse_payload s b) (gaccessor_ifthenelse_payload' s b);
gaccessor_ifthenelse_payload' s b | val gaccessor_ifthenelse_payload
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
: Tot
(gaccessor (parse_ifthenelse p)
(dsnd (p.parse_ifthenelse_payload_parser b))
(clens_ifthenelse_payload s b))
let gaccessor_ifthenelse_payload
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
: Tot
(gaccessor (parse_ifthenelse p)
(dsnd (p.parse_ifthenelse_payload_parser b))
(clens_ifthenelse_payload s b)) = | false | null | false | Classical.forall_intro_2 (fun x ->
Classical.move_requires (gaccessor_ifthenelse_payload_injective s b x));
Classical.forall_intro_2 (fun x ->
Classical.move_requires (gaccessor_ifthenelse_payload_no_lookahead s b x));
gaccessor_prop_equiv (parse_ifthenelse p)
(dsnd (p.parse_ifthenelse_payload_parser b))
(clens_ifthenelse_payload s b)
(gaccessor_ifthenelse_payload' s b);
gaccessor_ifthenelse_payload' s b | {
"checked_file": "LowParse.Low.IfThenElse.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"LowParse.Spec.IfThenElse.fst.checked",
"LowParse.Low.Combinators.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.IfThenElse.fst"
} | [
"total"
] | [
"LowParse.Spec.IfThenElse.parse_ifthenelse_param",
"LowParse.Spec.IfThenElse.serialize_ifthenelse_param",
"Prims.bool",
"LowParse.Low.IfThenElse.gaccessor_ifthenelse_payload'",
"Prims.unit",
"LowParse.Low.Base.Spec.gaccessor_prop_equiv",
"LowParse.Spec.IfThenElse.parse_ifthenelse_kind",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_t",
"LowParse.Spec.IfThenElse.parse_ifthenelse",
"Prims.__proj__Mkdtuple2__item___1",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_payload_t",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_payload_parser",
"FStar.Pervasives.dsnd",
"LowParse.Low.IfThenElse.clens_ifthenelse_payload",
"FStar.Classical.forall_intro_2",
"LowParse.Bytes.bytes",
"Prims.l_imp",
"Prims.l_and",
"Prims.eq2",
"FStar.Pervasives.Native.option",
"LowParse.Spec.Base.parser_subkind",
"LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_subkind",
"FStar.Pervasives.Native.Some",
"LowParse.Spec.Base.ParserStrong",
"LowParse.Low.Base.Spec.gaccessor_pre",
"LowParse.Spec.Base.no_lookahead_on_precond",
"Prims.nat",
"FStar.Classical.move_requires",
"LowParse.Low.IfThenElse.gaccessor_ifthenelse_payload_no_lookahead",
"Prims.l_True",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern",
"LowParse.Spec.Base.injective_precond",
"LowParse.Low.IfThenElse.gaccessor_ifthenelse_payload_injective",
"LowParse.Low.Base.Spec.gaccessor"
] | [] | module LowParse.Low.IfThenElse
include LowParse.Spec.IfThenElse
include LowParse.Low.Combinators
module U32 = FStar.UInt32
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module B = LowStar.Buffer
module Cast = FStar.Int.Cast
module U64 = FStar.UInt64
let valid_ifthenelse_intro
(p: parse_ifthenelse_param)
(h: HS.mem)
(#rrel #rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma
(requires (
valid p.parse_ifthenelse_tag_parser h sl pos /\ (
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t
)))
(ensures (
valid p.parse_ifthenelse_tag_parser h sl pos /\ (
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t /\
valid_content_pos
(parse_ifthenelse p) h sl pos
(p.parse_ifthenelse_synth
t
(contents (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)
(get_valid_pos (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)))
= valid_facts (parse_ifthenelse p) h sl pos;
valid_facts p.parse_ifthenelse_tag_parser h sl pos;
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid_facts (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t;
parse_ifthenelse_eq p (bytes_of_slice_from h sl pos)
let valid_ifthenelse_elim
(p: parse_ifthenelse_param)
(h: HS.mem)
(#rrel #rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma
(requires (valid (parse_ifthenelse p) h sl pos))
(ensures (
valid p.parse_ifthenelse_tag_parser h sl pos /\ (
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t /\
valid_content_pos
(parse_ifthenelse p) h sl pos
(p.parse_ifthenelse_synth
t
(contents (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)
(get_valid_pos (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)))
= valid_facts (parse_ifthenelse p) h sl pos;
parse_ifthenelse_eq p (bytes_of_slice_from h sl pos);
valid_facts p.parse_ifthenelse_tag_parser h sl pos;
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid_facts (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t
inline_for_extraction
type test_ifthenelse_tag
(p: parse_ifthenelse_param)
= (#rrel: _) -> (#rel: _) ->
(input: slice rrel rel) ->
(pos: U32.t) ->
HST.Stack bool
(requires (fun h -> valid p.parse_ifthenelse_tag_parser h input pos))
(ensures (fun h res h' ->
B.modifies B.loc_none h h' /\
res == p.parse_ifthenelse_tag_cond (contents p.parse_ifthenelse_tag_parser h input pos)
))
inline_for_extraction
let validate_ifthenelse
(p: parse_ifthenelse_param)
(vt: validator p.parse_ifthenelse_tag_parser)
(test: test_ifthenelse_tag p)
(vp: (b: bool) -> Tot (validator (dsnd (p.parse_ifthenelse_payload_parser b))))
: Tot (validator (parse_ifthenelse p))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
Classical.move_requires (valid_ifthenelse_intro p h input) (uint64_to_uint32 pos);
Classical.move_requires (valid_ifthenelse_elim p h input) (uint64_to_uint32 pos)
in
let pos_after_t = vt input pos in
if is_error pos_after_t
then pos_after_t
else
let b = test input (uint64_to_uint32 pos) in
if b (* eta-expansion here *)
then vp true input pos_after_t
else vp false input pos_after_t
inline_for_extraction
let jump_ifthenelse
(p: parse_ifthenelse_param)
(vt: jumper p.parse_ifthenelse_tag_parser)
(test: test_ifthenelse_tag p)
(vp: (b: bool) -> Tot (jumper (dsnd (p.parse_ifthenelse_payload_parser b))))
: Tot (jumper (parse_ifthenelse p))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
Classical.move_requires (valid_ifthenelse_elim p h input) pos
in
let pos_after_t = vt input pos in
let b = test input pos in
if b (* eta-expansion here *)
then vp true input pos_after_t
else vp false input pos_after_t
let clens_ifthenelse_tag
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
: Tot (clens p.parse_ifthenelse_t p.parse_ifthenelse_tag_t)
= {
clens_cond = (fun _ -> True);
clens_get = (fun (x: p.parse_ifthenelse_t) -> dfst (s.serialize_ifthenelse_synth_recip x));
}
let gaccessor_ifthenelse_tag'
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
: Tot (gaccessor' (parse_ifthenelse p) p.parse_ifthenelse_tag_parser (clens_ifthenelse_tag s))
= fun input ->
parse_ifthenelse_eq p input;
if Some? (parse (parse_ifthenelse p) input)
then parse_ifthenelse_parse_tag_payload s input;
0
let gaccessor_ifthenelse_tag
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
: Tot (gaccessor (parse_ifthenelse p) p.parse_ifthenelse_tag_parser (clens_ifthenelse_tag s))
= gaccessor_prop_equiv (parse_ifthenelse p) p.parse_ifthenelse_tag_parser (clens_ifthenelse_tag s) (gaccessor_ifthenelse_tag' s);
gaccessor_ifthenelse_tag' s
inline_for_extraction
let accessor_ifthenelse_tag
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
: Tot (accessor (gaccessor_ifthenelse_tag s))
= fun #rrel #rel sl pos ->
let h = HST.get () in
slice_access_eq h (gaccessor_ifthenelse_tag s) sl pos;
pos
let clens_ifthenelse_payload
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
: Tot (clens p.parse_ifthenelse_t (p.parse_ifthenelse_payload_t b))
= {
clens_cond = (fun (x: p.parse_ifthenelse_t) -> p.parse_ifthenelse_tag_cond (dfst (s.serialize_ifthenelse_synth_recip x)) == b);
clens_get = (fun (x: p.parse_ifthenelse_t) -> dsnd (s.serialize_ifthenelse_synth_recip x) <: Ghost (p.parse_ifthenelse_payload_t b) (requires (p.parse_ifthenelse_tag_cond (dfst (s.serialize_ifthenelse_synth_recip x)) == b)) (ensures (fun _ -> True)));
}
let gaccessor_ifthenelse_payload''
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
(input: bytes)
: Ghost nat
(requires (
gaccessor_pre (parse_ifthenelse p) (dsnd (p.parse_ifthenelse_payload_parser b)) (clens_ifthenelse_payload s b) input
))
(ensures (fun res ->
gaccessor_post' (parse_ifthenelse p) (dsnd (p.parse_ifthenelse_payload_parser b)) (clens_ifthenelse_payload s b) input res
))
= parse_ifthenelse_eq p input;
parse_ifthenelse_parse_tag_payload s input;
let Some (t, consumed) = parse p.parse_ifthenelse_tag_parser input in
consumed
let gaccessor_ifthenelse_payload'
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
: Tot (gaccessor' (parse_ifthenelse p) (dsnd (p.parse_ifthenelse_payload_parser b)) (clens_ifthenelse_payload s b))
= fun (input: bytes) ->
match parse (parse_ifthenelse p) input with
| Some (x, _) ->
if p.parse_ifthenelse_tag_cond (dfst (s.serialize_ifthenelse_synth_recip x)) = b
then gaccessor_ifthenelse_payload'' s b input
else 0 (* dummy *)
| _ -> 0 (* dummy *)
let gaccessor_ifthenelse_payload_injective
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
(sl sl' : bytes)
: Lemma
(requires (
gaccessor_pre (parse_ifthenelse p) (dsnd (p.parse_ifthenelse_payload_parser b)) (clens_ifthenelse_payload s b) sl /\
gaccessor_pre (parse_ifthenelse p) (dsnd (p.parse_ifthenelse_payload_parser b)) (clens_ifthenelse_payload s b) sl' /\
injective_precond (parse_ifthenelse p) sl sl'
))
(ensures (gaccessor_ifthenelse_payload' s b sl == gaccessor_ifthenelse_payload' s b sl'))
= parse_ifthenelse_eq p sl;
parse_ifthenelse_eq p sl';
parse_ifthenelse_parse_tag_payload s sl;
parse_ifthenelse_parse_tag_payload s sl' ;
parse_injective p.parse_ifthenelse_tag_parser sl sl'
let gaccessor_ifthenelse_payload_no_lookahead
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
(sl sl' : bytes)
: Lemma
(requires (
(parse_ifthenelse_kind p).parser_kind_subkind == Some ParserStrong /\
gaccessor_pre (parse_ifthenelse p) (dsnd (p.parse_ifthenelse_payload_parser b)) (clens_ifthenelse_payload s b) sl /\
gaccessor_pre (parse_ifthenelse p) (dsnd (p.parse_ifthenelse_payload_parser b)) (clens_ifthenelse_payload s b) sl' /\
no_lookahead_on_precond (parse_ifthenelse p) sl sl'
))
(ensures (gaccessor_ifthenelse_payload' s b sl == gaccessor_ifthenelse_payload' s b sl'))
= parse_ifthenelse_eq p sl;
parse_ifthenelse_eq p sl';
parse_ifthenelse_parse_tag_payload s sl;
parse_ifthenelse_parse_tag_payload s sl' ;
parse_strong_prefix (parse_ifthenelse p) sl sl';
parse_injective p.parse_ifthenelse_tag_parser sl sl'
let gaccessor_ifthenelse_payload
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool) | false | false | LowParse.Low.IfThenElse.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val gaccessor_ifthenelse_payload
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
: Tot
(gaccessor (parse_ifthenelse p)
(dsnd (p.parse_ifthenelse_payload_parser b))
(clens_ifthenelse_payload s b)) | [] | LowParse.Low.IfThenElse.gaccessor_ifthenelse_payload | {
"file_name": "src/lowparse/LowParse.Low.IfThenElse.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | s: LowParse.Spec.IfThenElse.serialize_ifthenelse_param p -> b: Prims.bool
-> LowParse.Low.Base.Spec.gaccessor (LowParse.Spec.IfThenElse.parse_ifthenelse p)
(FStar.Pervasives.dsnd (Mkparse_ifthenelse_param?.parse_ifthenelse_payload_parser p b))
(LowParse.Low.IfThenElse.clens_ifthenelse_payload s b) | {
"end_col": 35,
"end_line": 253,
"start_col": 2,
"start_line": 250
} |
FStar.Pervasives.Lemma | val gaccessor_ifthenelse_payload_injective
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
(sl sl': bytes)
: Lemma
(requires
(gaccessor_pre (parse_ifthenelse p)
(dsnd (p.parse_ifthenelse_payload_parser b))
(clens_ifthenelse_payload s b)
sl /\
gaccessor_pre (parse_ifthenelse p)
(dsnd (p.parse_ifthenelse_payload_parser b))
(clens_ifthenelse_payload s b)
sl' /\ injective_precond (parse_ifthenelse p) sl sl'))
(ensures (gaccessor_ifthenelse_payload' s b sl == gaccessor_ifthenelse_payload' s b sl')) | [
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.IfThenElse",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let gaccessor_ifthenelse_payload_injective
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
(sl sl' : bytes)
: Lemma
(requires (
gaccessor_pre (parse_ifthenelse p) (dsnd (p.parse_ifthenelse_payload_parser b)) (clens_ifthenelse_payload s b) sl /\
gaccessor_pre (parse_ifthenelse p) (dsnd (p.parse_ifthenelse_payload_parser b)) (clens_ifthenelse_payload s b) sl' /\
injective_precond (parse_ifthenelse p) sl sl'
))
(ensures (gaccessor_ifthenelse_payload' s b sl == gaccessor_ifthenelse_payload' s b sl'))
= parse_ifthenelse_eq p sl;
parse_ifthenelse_eq p sl';
parse_ifthenelse_parse_tag_payload s sl;
parse_ifthenelse_parse_tag_payload s sl' ;
parse_injective p.parse_ifthenelse_tag_parser sl sl' | val gaccessor_ifthenelse_payload_injective
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
(sl sl': bytes)
: Lemma
(requires
(gaccessor_pre (parse_ifthenelse p)
(dsnd (p.parse_ifthenelse_payload_parser b))
(clens_ifthenelse_payload s b)
sl /\
gaccessor_pre (parse_ifthenelse p)
(dsnd (p.parse_ifthenelse_payload_parser b))
(clens_ifthenelse_payload s b)
sl' /\ injective_precond (parse_ifthenelse p) sl sl'))
(ensures (gaccessor_ifthenelse_payload' s b sl == gaccessor_ifthenelse_payload' s b sl'))
let gaccessor_ifthenelse_payload_injective
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
(sl sl': bytes)
: Lemma
(requires
(gaccessor_pre (parse_ifthenelse p)
(dsnd (p.parse_ifthenelse_payload_parser b))
(clens_ifthenelse_payload s b)
sl /\
gaccessor_pre (parse_ifthenelse p)
(dsnd (p.parse_ifthenelse_payload_parser b))
(clens_ifthenelse_payload s b)
sl' /\ injective_precond (parse_ifthenelse p) sl sl'))
(ensures (gaccessor_ifthenelse_payload' s b sl == gaccessor_ifthenelse_payload' s b sl')) = | false | null | true | parse_ifthenelse_eq p sl;
parse_ifthenelse_eq p sl';
parse_ifthenelse_parse_tag_payload s sl;
parse_ifthenelse_parse_tag_payload s sl';
parse_injective p.parse_ifthenelse_tag_parser sl sl' | {
"checked_file": "LowParse.Low.IfThenElse.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"LowParse.Spec.IfThenElse.fst.checked",
"LowParse.Low.Combinators.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.IfThenElse.fst"
} | [
"lemma"
] | [
"LowParse.Spec.IfThenElse.parse_ifthenelse_param",
"LowParse.Spec.IfThenElse.serialize_ifthenelse_param",
"Prims.bool",
"LowParse.Bytes.bytes",
"LowParse.Spec.Base.parse_injective",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_tag_kind",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_tag_t",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_tag_parser",
"Prims.unit",
"LowParse.Spec.IfThenElse.parse_ifthenelse_parse_tag_payload",
"LowParse.Spec.IfThenElse.parse_ifthenelse_eq",
"Prims.l_and",
"LowParse.Low.Base.Spec.gaccessor_pre",
"LowParse.Spec.IfThenElse.parse_ifthenelse_kind",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_t",
"LowParse.Spec.IfThenElse.parse_ifthenelse",
"Prims.__proj__Mkdtuple2__item___1",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_payload_t",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_payload_parser",
"FStar.Pervasives.dsnd",
"LowParse.Low.IfThenElse.clens_ifthenelse_payload",
"LowParse.Spec.Base.injective_precond",
"Prims.squash",
"Prims.eq2",
"Prims.nat",
"LowParse.Low.IfThenElse.gaccessor_ifthenelse_payload'",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module LowParse.Low.IfThenElse
include LowParse.Spec.IfThenElse
include LowParse.Low.Combinators
module U32 = FStar.UInt32
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module B = LowStar.Buffer
module Cast = FStar.Int.Cast
module U64 = FStar.UInt64
let valid_ifthenelse_intro
(p: parse_ifthenelse_param)
(h: HS.mem)
(#rrel #rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma
(requires (
valid p.parse_ifthenelse_tag_parser h sl pos /\ (
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t
)))
(ensures (
valid p.parse_ifthenelse_tag_parser h sl pos /\ (
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t /\
valid_content_pos
(parse_ifthenelse p) h sl pos
(p.parse_ifthenelse_synth
t
(contents (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)
(get_valid_pos (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)))
= valid_facts (parse_ifthenelse p) h sl pos;
valid_facts p.parse_ifthenelse_tag_parser h sl pos;
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid_facts (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t;
parse_ifthenelse_eq p (bytes_of_slice_from h sl pos)
let valid_ifthenelse_elim
(p: parse_ifthenelse_param)
(h: HS.mem)
(#rrel #rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma
(requires (valid (parse_ifthenelse p) h sl pos))
(ensures (
valid p.parse_ifthenelse_tag_parser h sl pos /\ (
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t /\
valid_content_pos
(parse_ifthenelse p) h sl pos
(p.parse_ifthenelse_synth
t
(contents (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)
(get_valid_pos (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)))
= valid_facts (parse_ifthenelse p) h sl pos;
parse_ifthenelse_eq p (bytes_of_slice_from h sl pos);
valid_facts p.parse_ifthenelse_tag_parser h sl pos;
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid_facts (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t
inline_for_extraction
type test_ifthenelse_tag
(p: parse_ifthenelse_param)
= (#rrel: _) -> (#rel: _) ->
(input: slice rrel rel) ->
(pos: U32.t) ->
HST.Stack bool
(requires (fun h -> valid p.parse_ifthenelse_tag_parser h input pos))
(ensures (fun h res h' ->
B.modifies B.loc_none h h' /\
res == p.parse_ifthenelse_tag_cond (contents p.parse_ifthenelse_tag_parser h input pos)
))
inline_for_extraction
let validate_ifthenelse
(p: parse_ifthenelse_param)
(vt: validator p.parse_ifthenelse_tag_parser)
(test: test_ifthenelse_tag p)
(vp: (b: bool) -> Tot (validator (dsnd (p.parse_ifthenelse_payload_parser b))))
: Tot (validator (parse_ifthenelse p))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
Classical.move_requires (valid_ifthenelse_intro p h input) (uint64_to_uint32 pos);
Classical.move_requires (valid_ifthenelse_elim p h input) (uint64_to_uint32 pos)
in
let pos_after_t = vt input pos in
if is_error pos_after_t
then pos_after_t
else
let b = test input (uint64_to_uint32 pos) in
if b (* eta-expansion here *)
then vp true input pos_after_t
else vp false input pos_after_t
inline_for_extraction
let jump_ifthenelse
(p: parse_ifthenelse_param)
(vt: jumper p.parse_ifthenelse_tag_parser)
(test: test_ifthenelse_tag p)
(vp: (b: bool) -> Tot (jumper (dsnd (p.parse_ifthenelse_payload_parser b))))
: Tot (jumper (parse_ifthenelse p))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
Classical.move_requires (valid_ifthenelse_elim p h input) pos
in
let pos_after_t = vt input pos in
let b = test input pos in
if b (* eta-expansion here *)
then vp true input pos_after_t
else vp false input pos_after_t
let clens_ifthenelse_tag
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
: Tot (clens p.parse_ifthenelse_t p.parse_ifthenelse_tag_t)
= {
clens_cond = (fun _ -> True);
clens_get = (fun (x: p.parse_ifthenelse_t) -> dfst (s.serialize_ifthenelse_synth_recip x));
}
let gaccessor_ifthenelse_tag'
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
: Tot (gaccessor' (parse_ifthenelse p) p.parse_ifthenelse_tag_parser (clens_ifthenelse_tag s))
= fun input ->
parse_ifthenelse_eq p input;
if Some? (parse (parse_ifthenelse p) input)
then parse_ifthenelse_parse_tag_payload s input;
0
let gaccessor_ifthenelse_tag
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
: Tot (gaccessor (parse_ifthenelse p) p.parse_ifthenelse_tag_parser (clens_ifthenelse_tag s))
= gaccessor_prop_equiv (parse_ifthenelse p) p.parse_ifthenelse_tag_parser (clens_ifthenelse_tag s) (gaccessor_ifthenelse_tag' s);
gaccessor_ifthenelse_tag' s
inline_for_extraction
let accessor_ifthenelse_tag
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
: Tot (accessor (gaccessor_ifthenelse_tag s))
= fun #rrel #rel sl pos ->
let h = HST.get () in
slice_access_eq h (gaccessor_ifthenelse_tag s) sl pos;
pos
let clens_ifthenelse_payload
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
: Tot (clens p.parse_ifthenelse_t (p.parse_ifthenelse_payload_t b))
= {
clens_cond = (fun (x: p.parse_ifthenelse_t) -> p.parse_ifthenelse_tag_cond (dfst (s.serialize_ifthenelse_synth_recip x)) == b);
clens_get = (fun (x: p.parse_ifthenelse_t) -> dsnd (s.serialize_ifthenelse_synth_recip x) <: Ghost (p.parse_ifthenelse_payload_t b) (requires (p.parse_ifthenelse_tag_cond (dfst (s.serialize_ifthenelse_synth_recip x)) == b)) (ensures (fun _ -> True)));
}
let gaccessor_ifthenelse_payload''
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
(input: bytes)
: Ghost nat
(requires (
gaccessor_pre (parse_ifthenelse p) (dsnd (p.parse_ifthenelse_payload_parser b)) (clens_ifthenelse_payload s b) input
))
(ensures (fun res ->
gaccessor_post' (parse_ifthenelse p) (dsnd (p.parse_ifthenelse_payload_parser b)) (clens_ifthenelse_payload s b) input res
))
= parse_ifthenelse_eq p input;
parse_ifthenelse_parse_tag_payload s input;
let Some (t, consumed) = parse p.parse_ifthenelse_tag_parser input in
consumed
let gaccessor_ifthenelse_payload'
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
: Tot (gaccessor' (parse_ifthenelse p) (dsnd (p.parse_ifthenelse_payload_parser b)) (clens_ifthenelse_payload s b))
= fun (input: bytes) ->
match parse (parse_ifthenelse p) input with
| Some (x, _) ->
if p.parse_ifthenelse_tag_cond (dfst (s.serialize_ifthenelse_synth_recip x)) = b
then gaccessor_ifthenelse_payload'' s b input
else 0 (* dummy *)
| _ -> 0 (* dummy *)
let gaccessor_ifthenelse_payload_injective
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
(sl sl' : bytes)
: Lemma
(requires (
gaccessor_pre (parse_ifthenelse p) (dsnd (p.parse_ifthenelse_payload_parser b)) (clens_ifthenelse_payload s b) sl /\
gaccessor_pre (parse_ifthenelse p) (dsnd (p.parse_ifthenelse_payload_parser b)) (clens_ifthenelse_payload s b) sl' /\
injective_precond (parse_ifthenelse p) sl sl'
)) | false | false | LowParse.Low.IfThenElse.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val gaccessor_ifthenelse_payload_injective
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
(sl sl': bytes)
: Lemma
(requires
(gaccessor_pre (parse_ifthenelse p)
(dsnd (p.parse_ifthenelse_payload_parser b))
(clens_ifthenelse_payload s b)
sl /\
gaccessor_pre (parse_ifthenelse p)
(dsnd (p.parse_ifthenelse_payload_parser b))
(clens_ifthenelse_payload s b)
sl' /\ injective_precond (parse_ifthenelse p) sl sl'))
(ensures (gaccessor_ifthenelse_payload' s b sl == gaccessor_ifthenelse_payload' s b sl')) | [] | LowParse.Low.IfThenElse.gaccessor_ifthenelse_payload_injective | {
"file_name": "src/lowparse/LowParse.Low.IfThenElse.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
s: LowParse.Spec.IfThenElse.serialize_ifthenelse_param p ->
b: Prims.bool ->
sl: LowParse.Bytes.bytes ->
sl': LowParse.Bytes.bytes
-> FStar.Pervasives.Lemma
(requires
LowParse.Low.Base.Spec.gaccessor_pre (LowParse.Spec.IfThenElse.parse_ifthenelse p)
(FStar.Pervasives.dsnd (Mkparse_ifthenelse_param?.parse_ifthenelse_payload_parser p b))
(LowParse.Low.IfThenElse.clens_ifthenelse_payload s b)
sl /\
LowParse.Low.Base.Spec.gaccessor_pre (LowParse.Spec.IfThenElse.parse_ifthenelse p)
(FStar.Pervasives.dsnd (Mkparse_ifthenelse_param?.parse_ifthenelse_payload_parser p b))
(LowParse.Low.IfThenElse.clens_ifthenelse_payload s b)
sl' /\
LowParse.Spec.Base.injective_precond (LowParse.Spec.IfThenElse.parse_ifthenelse p) sl sl')
(ensures
LowParse.Low.IfThenElse.gaccessor_ifthenelse_payload' s b sl ==
LowParse.Low.IfThenElse.gaccessor_ifthenelse_payload' s b sl') | {
"end_col": 54,
"end_line": 223,
"start_col": 2,
"start_line": 219
} |
Prims.Tot | val gaccessor_ifthenelse_payload'
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
: Tot
(gaccessor' (parse_ifthenelse p)
(dsnd (p.parse_ifthenelse_payload_parser b))
(clens_ifthenelse_payload s b)) | [
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.IfThenElse",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let gaccessor_ifthenelse_payload'
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
: Tot (gaccessor' (parse_ifthenelse p) (dsnd (p.parse_ifthenelse_payload_parser b)) (clens_ifthenelse_payload s b))
= fun (input: bytes) ->
match parse (parse_ifthenelse p) input with
| Some (x, _) ->
if p.parse_ifthenelse_tag_cond (dfst (s.serialize_ifthenelse_synth_recip x)) = b
then gaccessor_ifthenelse_payload'' s b input
else 0 (* dummy *)
| _ -> 0 | val gaccessor_ifthenelse_payload'
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
: Tot
(gaccessor' (parse_ifthenelse p)
(dsnd (p.parse_ifthenelse_payload_parser b))
(clens_ifthenelse_payload s b))
let gaccessor_ifthenelse_payload'
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
: Tot
(gaccessor' (parse_ifthenelse p)
(dsnd (p.parse_ifthenelse_payload_parser b))
(clens_ifthenelse_payload s b)) = | false | null | false | fun (input: bytes) ->
match parse (parse_ifthenelse p) input with
| Some (x, _) ->
if p.parse_ifthenelse_tag_cond (dfst (s.serialize_ifthenelse_synth_recip x)) = b
then gaccessor_ifthenelse_payload'' s b input
else 0
| _ -> 0 | {
"checked_file": "LowParse.Low.IfThenElse.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"LowParse.Spec.IfThenElse.fst.checked",
"LowParse.Low.Combinators.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.IfThenElse.fst"
} | [
"total"
] | [
"LowParse.Spec.IfThenElse.parse_ifthenelse_param",
"LowParse.Spec.IfThenElse.serialize_ifthenelse_param",
"Prims.bool",
"LowParse.Bytes.bytes",
"LowParse.Spec.Base.parse",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_t",
"LowParse.Spec.IfThenElse.parse_ifthenelse",
"LowParse.Spec.Base.consumed_length",
"Prims.op_Equality",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_tag_cond",
"FStar.Pervasives.dfst",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_tag_t",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_payload_t",
"LowParse.Spec.IfThenElse.__proj__Mkserialize_ifthenelse_param__item__serialize_ifthenelse_synth_recip",
"LowParse.Low.IfThenElse.gaccessor_ifthenelse_payload''",
"Prims.nat",
"FStar.Pervasives.Native.option",
"FStar.Pervasives.Native.tuple2",
"LowParse.Low.Base.Spec.gaccessor'",
"LowParse.Spec.IfThenElse.parse_ifthenelse_kind",
"Prims.__proj__Mkdtuple2__item___1",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_payload_parser",
"FStar.Pervasives.dsnd",
"LowParse.Low.IfThenElse.clens_ifthenelse_payload"
] | [] | module LowParse.Low.IfThenElse
include LowParse.Spec.IfThenElse
include LowParse.Low.Combinators
module U32 = FStar.UInt32
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module B = LowStar.Buffer
module Cast = FStar.Int.Cast
module U64 = FStar.UInt64
let valid_ifthenelse_intro
(p: parse_ifthenelse_param)
(h: HS.mem)
(#rrel #rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma
(requires (
valid p.parse_ifthenelse_tag_parser h sl pos /\ (
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t
)))
(ensures (
valid p.parse_ifthenelse_tag_parser h sl pos /\ (
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t /\
valid_content_pos
(parse_ifthenelse p) h sl pos
(p.parse_ifthenelse_synth
t
(contents (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)
(get_valid_pos (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)))
= valid_facts (parse_ifthenelse p) h sl pos;
valid_facts p.parse_ifthenelse_tag_parser h sl pos;
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid_facts (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t;
parse_ifthenelse_eq p (bytes_of_slice_from h sl pos)
let valid_ifthenelse_elim
(p: parse_ifthenelse_param)
(h: HS.mem)
(#rrel #rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma
(requires (valid (parse_ifthenelse p) h sl pos))
(ensures (
valid p.parse_ifthenelse_tag_parser h sl pos /\ (
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t /\
valid_content_pos
(parse_ifthenelse p) h sl pos
(p.parse_ifthenelse_synth
t
(contents (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)
(get_valid_pos (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)))
= valid_facts (parse_ifthenelse p) h sl pos;
parse_ifthenelse_eq p (bytes_of_slice_from h sl pos);
valid_facts p.parse_ifthenelse_tag_parser h sl pos;
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid_facts (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t
inline_for_extraction
type test_ifthenelse_tag
(p: parse_ifthenelse_param)
= (#rrel: _) -> (#rel: _) ->
(input: slice rrel rel) ->
(pos: U32.t) ->
HST.Stack bool
(requires (fun h -> valid p.parse_ifthenelse_tag_parser h input pos))
(ensures (fun h res h' ->
B.modifies B.loc_none h h' /\
res == p.parse_ifthenelse_tag_cond (contents p.parse_ifthenelse_tag_parser h input pos)
))
inline_for_extraction
let validate_ifthenelse
(p: parse_ifthenelse_param)
(vt: validator p.parse_ifthenelse_tag_parser)
(test: test_ifthenelse_tag p)
(vp: (b: bool) -> Tot (validator (dsnd (p.parse_ifthenelse_payload_parser b))))
: Tot (validator (parse_ifthenelse p))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
Classical.move_requires (valid_ifthenelse_intro p h input) (uint64_to_uint32 pos);
Classical.move_requires (valid_ifthenelse_elim p h input) (uint64_to_uint32 pos)
in
let pos_after_t = vt input pos in
if is_error pos_after_t
then pos_after_t
else
let b = test input (uint64_to_uint32 pos) in
if b (* eta-expansion here *)
then vp true input pos_after_t
else vp false input pos_after_t
inline_for_extraction
let jump_ifthenelse
(p: parse_ifthenelse_param)
(vt: jumper p.parse_ifthenelse_tag_parser)
(test: test_ifthenelse_tag p)
(vp: (b: bool) -> Tot (jumper (dsnd (p.parse_ifthenelse_payload_parser b))))
: Tot (jumper (parse_ifthenelse p))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
Classical.move_requires (valid_ifthenelse_elim p h input) pos
in
let pos_after_t = vt input pos in
let b = test input pos in
if b (* eta-expansion here *)
then vp true input pos_after_t
else vp false input pos_after_t
let clens_ifthenelse_tag
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
: Tot (clens p.parse_ifthenelse_t p.parse_ifthenelse_tag_t)
= {
clens_cond = (fun _ -> True);
clens_get = (fun (x: p.parse_ifthenelse_t) -> dfst (s.serialize_ifthenelse_synth_recip x));
}
let gaccessor_ifthenelse_tag'
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
: Tot (gaccessor' (parse_ifthenelse p) p.parse_ifthenelse_tag_parser (clens_ifthenelse_tag s))
= fun input ->
parse_ifthenelse_eq p input;
if Some? (parse (parse_ifthenelse p) input)
then parse_ifthenelse_parse_tag_payload s input;
0
let gaccessor_ifthenelse_tag
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
: Tot (gaccessor (parse_ifthenelse p) p.parse_ifthenelse_tag_parser (clens_ifthenelse_tag s))
= gaccessor_prop_equiv (parse_ifthenelse p) p.parse_ifthenelse_tag_parser (clens_ifthenelse_tag s) (gaccessor_ifthenelse_tag' s);
gaccessor_ifthenelse_tag' s
inline_for_extraction
let accessor_ifthenelse_tag
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
: Tot (accessor (gaccessor_ifthenelse_tag s))
= fun #rrel #rel sl pos ->
let h = HST.get () in
slice_access_eq h (gaccessor_ifthenelse_tag s) sl pos;
pos
let clens_ifthenelse_payload
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
: Tot (clens p.parse_ifthenelse_t (p.parse_ifthenelse_payload_t b))
= {
clens_cond = (fun (x: p.parse_ifthenelse_t) -> p.parse_ifthenelse_tag_cond (dfst (s.serialize_ifthenelse_synth_recip x)) == b);
clens_get = (fun (x: p.parse_ifthenelse_t) -> dsnd (s.serialize_ifthenelse_synth_recip x) <: Ghost (p.parse_ifthenelse_payload_t b) (requires (p.parse_ifthenelse_tag_cond (dfst (s.serialize_ifthenelse_synth_recip x)) == b)) (ensures (fun _ -> True)));
}
let gaccessor_ifthenelse_payload''
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
(input: bytes)
: Ghost nat
(requires (
gaccessor_pre (parse_ifthenelse p) (dsnd (p.parse_ifthenelse_payload_parser b)) (clens_ifthenelse_payload s b) input
))
(ensures (fun res ->
gaccessor_post' (parse_ifthenelse p) (dsnd (p.parse_ifthenelse_payload_parser b)) (clens_ifthenelse_payload s b) input res
))
= parse_ifthenelse_eq p input;
parse_ifthenelse_parse_tag_payload s input;
let Some (t, consumed) = parse p.parse_ifthenelse_tag_parser input in
consumed
let gaccessor_ifthenelse_payload'
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool) | false | false | LowParse.Low.IfThenElse.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val gaccessor_ifthenelse_payload'
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
: Tot
(gaccessor' (parse_ifthenelse p)
(dsnd (p.parse_ifthenelse_payload_parser b))
(clens_ifthenelse_payload s b)) | [] | LowParse.Low.IfThenElse.gaccessor_ifthenelse_payload' | {
"file_name": "src/lowparse/LowParse.Low.IfThenElse.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | s: LowParse.Spec.IfThenElse.serialize_ifthenelse_param p -> b: Prims.bool
-> LowParse.Low.Base.Spec.gaccessor' (LowParse.Spec.IfThenElse.parse_ifthenelse p)
(FStar.Pervasives.dsnd (Mkparse_ifthenelse_param?.parse_ifthenelse_payload_parser p b))
(LowParse.Low.IfThenElse.clens_ifthenelse_payload s b) | {
"end_col": 12,
"end_line": 205,
"start_col": 2,
"start_line": 199
} |
Prims.Tot | val jump_ifthenelse
(p: parse_ifthenelse_param)
(vt: jumper p.parse_ifthenelse_tag_parser)
(test: test_ifthenelse_tag p)
(vp: (b: bool -> Tot (jumper (dsnd (p.parse_ifthenelse_payload_parser b)))))
: Tot (jumper (parse_ifthenelse p)) | [
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.IfThenElse",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let jump_ifthenelse
(p: parse_ifthenelse_param)
(vt: jumper p.parse_ifthenelse_tag_parser)
(test: test_ifthenelse_tag p)
(vp: (b: bool) -> Tot (jumper (dsnd (p.parse_ifthenelse_payload_parser b))))
: Tot (jumper (parse_ifthenelse p))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
Classical.move_requires (valid_ifthenelse_elim p h input) pos
in
let pos_after_t = vt input pos in
let b = test input pos in
if b (* eta-expansion here *)
then vp true input pos_after_t
else vp false input pos_after_t | val jump_ifthenelse
(p: parse_ifthenelse_param)
(vt: jumper p.parse_ifthenelse_tag_parser)
(test: test_ifthenelse_tag p)
(vp: (b: bool -> Tot (jumper (dsnd (p.parse_ifthenelse_payload_parser b)))))
: Tot (jumper (parse_ifthenelse p))
let jump_ifthenelse
(p: parse_ifthenelse_param)
(vt: jumper p.parse_ifthenelse_tag_parser)
(test: test_ifthenelse_tag p)
(vp: (b: bool -> Tot (jumper (dsnd (p.parse_ifthenelse_payload_parser b)))))
: Tot (jumper (parse_ifthenelse p)) = | false | null | false | fun #rrel #rel input pos ->
let h = HST.get () in
[@@ inline_let ]let _ = Classical.move_requires (valid_ifthenelse_elim p h input) pos in
let pos_after_t = vt input pos in
let b = test input pos in
if b then vp true input pos_after_t else vp false input pos_after_t | {
"checked_file": "LowParse.Low.IfThenElse.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"LowParse.Spec.IfThenElse.fst.checked",
"LowParse.Low.Combinators.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.IfThenElse.fst"
} | [
"total"
] | [
"LowParse.Spec.IfThenElse.parse_ifthenelse_param",
"LowParse.Low.Base.jumper",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_tag_kind",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_tag_t",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_tag_parser",
"LowParse.Low.IfThenElse.test_ifthenelse_tag",
"Prims.bool",
"Prims.__proj__Mkdtuple2__item___1",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_payload_t",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_payload_parser",
"FStar.Pervasives.dsnd",
"LowParse.Slice.srel",
"LowParse.Bytes.byte",
"LowParse.Slice.slice",
"FStar.UInt32.t",
"Prims.unit",
"FStar.Classical.move_requires",
"LowParse.Low.Base.Spec.valid",
"LowParse.Spec.IfThenElse.parse_ifthenelse_kind",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_t",
"LowParse.Spec.IfThenElse.parse_ifthenelse",
"Prims.l_and",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_tag_cond",
"LowParse.Low.Base.Spec.contents",
"LowParse.Low.Base.Spec.get_valid_pos",
"LowParse.Low.Base.Spec.valid_content_pos",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_synth",
"LowParse.Low.IfThenElse.valid_ifthenelse_elim",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get"
] | [] | module LowParse.Low.IfThenElse
include LowParse.Spec.IfThenElse
include LowParse.Low.Combinators
module U32 = FStar.UInt32
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module B = LowStar.Buffer
module Cast = FStar.Int.Cast
module U64 = FStar.UInt64
let valid_ifthenelse_intro
(p: parse_ifthenelse_param)
(h: HS.mem)
(#rrel #rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma
(requires (
valid p.parse_ifthenelse_tag_parser h sl pos /\ (
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t
)))
(ensures (
valid p.parse_ifthenelse_tag_parser h sl pos /\ (
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t /\
valid_content_pos
(parse_ifthenelse p) h sl pos
(p.parse_ifthenelse_synth
t
(contents (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)
(get_valid_pos (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)))
= valid_facts (parse_ifthenelse p) h sl pos;
valid_facts p.parse_ifthenelse_tag_parser h sl pos;
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid_facts (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t;
parse_ifthenelse_eq p (bytes_of_slice_from h sl pos)
let valid_ifthenelse_elim
(p: parse_ifthenelse_param)
(h: HS.mem)
(#rrel #rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma
(requires (valid (parse_ifthenelse p) h sl pos))
(ensures (
valid p.parse_ifthenelse_tag_parser h sl pos /\ (
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t /\
valid_content_pos
(parse_ifthenelse p) h sl pos
(p.parse_ifthenelse_synth
t
(contents (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)
(get_valid_pos (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)))
= valid_facts (parse_ifthenelse p) h sl pos;
parse_ifthenelse_eq p (bytes_of_slice_from h sl pos);
valid_facts p.parse_ifthenelse_tag_parser h sl pos;
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid_facts (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t
inline_for_extraction
type test_ifthenelse_tag
(p: parse_ifthenelse_param)
= (#rrel: _) -> (#rel: _) ->
(input: slice rrel rel) ->
(pos: U32.t) ->
HST.Stack bool
(requires (fun h -> valid p.parse_ifthenelse_tag_parser h input pos))
(ensures (fun h res h' ->
B.modifies B.loc_none h h' /\
res == p.parse_ifthenelse_tag_cond (contents p.parse_ifthenelse_tag_parser h input pos)
))
inline_for_extraction
let validate_ifthenelse
(p: parse_ifthenelse_param)
(vt: validator p.parse_ifthenelse_tag_parser)
(test: test_ifthenelse_tag p)
(vp: (b: bool) -> Tot (validator (dsnd (p.parse_ifthenelse_payload_parser b))))
: Tot (validator (parse_ifthenelse p))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
Classical.move_requires (valid_ifthenelse_intro p h input) (uint64_to_uint32 pos);
Classical.move_requires (valid_ifthenelse_elim p h input) (uint64_to_uint32 pos)
in
let pos_after_t = vt input pos in
if is_error pos_after_t
then pos_after_t
else
let b = test input (uint64_to_uint32 pos) in
if b (* eta-expansion here *)
then vp true input pos_after_t
else vp false input pos_after_t
inline_for_extraction
let jump_ifthenelse
(p: parse_ifthenelse_param)
(vt: jumper p.parse_ifthenelse_tag_parser)
(test: test_ifthenelse_tag p)
(vp: (b: bool) -> Tot (jumper (dsnd (p.parse_ifthenelse_payload_parser b)))) | false | false | LowParse.Low.IfThenElse.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val jump_ifthenelse
(p: parse_ifthenelse_param)
(vt: jumper p.parse_ifthenelse_tag_parser)
(test: test_ifthenelse_tag p)
(vp: (b: bool -> Tot (jumper (dsnd (p.parse_ifthenelse_payload_parser b)))))
: Tot (jumper (parse_ifthenelse p)) | [] | LowParse.Low.IfThenElse.jump_ifthenelse | {
"file_name": "src/lowparse/LowParse.Low.IfThenElse.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
p: LowParse.Spec.IfThenElse.parse_ifthenelse_param ->
vt: LowParse.Low.Base.jumper (Mkparse_ifthenelse_param?.parse_ifthenelse_tag_parser p) ->
test: LowParse.Low.IfThenElse.test_ifthenelse_tag p ->
vp:
(b: Prims.bool
-> LowParse.Low.Base.jumper (FStar.Pervasives.dsnd (Mkparse_ifthenelse_param?.parse_ifthenelse_payload_parser
p
b)))
-> LowParse.Low.Base.jumper (LowParse.Spec.IfThenElse.parse_ifthenelse p) | {
"end_col": 33,
"end_line": 129,
"start_col": 2,
"start_line": 120
} |
FStar.HyperStack.ST.Stack | val accessor_ifthenelse_payload'
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(j: jumper p.parse_ifthenelse_tag_parser)
(b: bool)
(#rrel #rel: _)
(input: slice rrel rel)
(pos: U32.t)
: HST.Stack U32.t
(requires
(fun h ->
valid (parse_ifthenelse p) h input pos /\
(clens_ifthenelse_payload s b).clens_cond (contents (parse_ifthenelse p) h input pos)))
(ensures
(fun h pos' h' ->
B.modifies B.loc_none h h' /\
pos' == slice_access h (gaccessor_ifthenelse_payload s b) input pos)) | [
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.IfThenElse",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let accessor_ifthenelse_payload'
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(j: jumper p.parse_ifthenelse_tag_parser)
(b: bool)
(#rrel #rel: _)
(input: slice rrel rel)
(pos: U32.t)
: HST.Stack U32.t
(requires (fun h ->
valid (parse_ifthenelse p) h input pos /\
(clens_ifthenelse_payload s b).clens_cond (contents (parse_ifthenelse p) h input pos)
))
(ensures (fun h pos' h' ->
B.modifies B.loc_none h h' /\
pos' == slice_access h (gaccessor_ifthenelse_payload s b) input pos
))
= let h = HST.get () in
[@inline_let]
let _ =
let pos' = get_valid_pos (parse_ifthenelse p) h input pos in
let large = bytes_of_slice_from h input pos in
slice_access_eq h (gaccessor_ifthenelse_payload s b) input pos;
valid_facts (parse_ifthenelse p) h input pos;
parse_ifthenelse_eq p large;
valid_facts p.parse_ifthenelse_tag_parser h input pos
in
j input pos | val accessor_ifthenelse_payload'
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(j: jumper p.parse_ifthenelse_tag_parser)
(b: bool)
(#rrel #rel: _)
(input: slice rrel rel)
(pos: U32.t)
: HST.Stack U32.t
(requires
(fun h ->
valid (parse_ifthenelse p) h input pos /\
(clens_ifthenelse_payload s b).clens_cond (contents (parse_ifthenelse p) h input pos)))
(ensures
(fun h pos' h' ->
B.modifies B.loc_none h h' /\
pos' == slice_access h (gaccessor_ifthenelse_payload s b) input pos))
let accessor_ifthenelse_payload'
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(j: jumper p.parse_ifthenelse_tag_parser)
(b: bool)
(#rrel #rel: _)
(input: slice rrel rel)
(pos: U32.t)
: HST.Stack U32.t
(requires
(fun h ->
valid (parse_ifthenelse p) h input pos /\
(clens_ifthenelse_payload s b).clens_cond (contents (parse_ifthenelse p) h input pos)))
(ensures
(fun h pos' h' ->
B.modifies B.loc_none h h' /\
pos' == slice_access h (gaccessor_ifthenelse_payload s b) input pos)) = | true | null | false | let h = HST.get () in
[@@ inline_let ]let _ =
let pos' = get_valid_pos (parse_ifthenelse p) h input pos in
let large = bytes_of_slice_from h input pos in
slice_access_eq h (gaccessor_ifthenelse_payload s b) input pos;
valid_facts (parse_ifthenelse p) h input pos;
parse_ifthenelse_eq p large;
valid_facts p.parse_ifthenelse_tag_parser h input pos
in
j input pos | {
"checked_file": "LowParse.Low.IfThenElse.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"LowParse.Spec.IfThenElse.fst.checked",
"LowParse.Low.Combinators.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.IfThenElse.fst"
} | [] | [
"LowParse.Spec.IfThenElse.parse_ifthenelse_param",
"LowParse.Spec.IfThenElse.serialize_ifthenelse_param",
"LowParse.Low.Base.jumper",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_tag_kind",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_tag_t",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_tag_parser",
"Prims.bool",
"LowParse.Slice.srel",
"LowParse.Bytes.byte",
"LowParse.Slice.slice",
"FStar.UInt32.t",
"Prims.unit",
"LowParse.Low.Base.Spec.valid_facts",
"LowParse.Spec.IfThenElse.parse_ifthenelse_eq",
"LowParse.Spec.IfThenElse.parse_ifthenelse_kind",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_t",
"LowParse.Spec.IfThenElse.parse_ifthenelse",
"LowParse.Low.Base.Spec.slice_access_eq",
"Prims.__proj__Mkdtuple2__item___1",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_payload_t",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_payload_parser",
"FStar.Pervasives.dsnd",
"LowParse.Low.IfThenElse.clens_ifthenelse_payload",
"LowParse.Low.IfThenElse.gaccessor_ifthenelse_payload",
"LowParse.Bytes.bytes",
"LowParse.Slice.bytes_of_slice_from",
"LowParse.Low.Base.Spec.get_valid_pos",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"Prims.l_and",
"LowParse.Low.Base.Spec.valid",
"LowParse.Low.Base.Spec.__proj__Mkclens__item__clens_cond",
"LowParse.Low.Base.Spec.contents",
"LowStar.Monotonic.Buffer.modifies",
"LowStar.Monotonic.Buffer.loc_none",
"Prims.eq2",
"LowParse.Low.Base.Spec.slice_access"
] | [] | module LowParse.Low.IfThenElse
include LowParse.Spec.IfThenElse
include LowParse.Low.Combinators
module U32 = FStar.UInt32
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module B = LowStar.Buffer
module Cast = FStar.Int.Cast
module U64 = FStar.UInt64
let valid_ifthenelse_intro
(p: parse_ifthenelse_param)
(h: HS.mem)
(#rrel #rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma
(requires (
valid p.parse_ifthenelse_tag_parser h sl pos /\ (
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t
)))
(ensures (
valid p.parse_ifthenelse_tag_parser h sl pos /\ (
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t /\
valid_content_pos
(parse_ifthenelse p) h sl pos
(p.parse_ifthenelse_synth
t
(contents (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)
(get_valid_pos (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)))
= valid_facts (parse_ifthenelse p) h sl pos;
valid_facts p.parse_ifthenelse_tag_parser h sl pos;
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid_facts (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t;
parse_ifthenelse_eq p (bytes_of_slice_from h sl pos)
let valid_ifthenelse_elim
(p: parse_ifthenelse_param)
(h: HS.mem)
(#rrel #rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma
(requires (valid (parse_ifthenelse p) h sl pos))
(ensures (
valid p.parse_ifthenelse_tag_parser h sl pos /\ (
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t /\
valid_content_pos
(parse_ifthenelse p) h sl pos
(p.parse_ifthenelse_synth
t
(contents (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)
(get_valid_pos (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)))
= valid_facts (parse_ifthenelse p) h sl pos;
parse_ifthenelse_eq p (bytes_of_slice_from h sl pos);
valid_facts p.parse_ifthenelse_tag_parser h sl pos;
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid_facts (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t
inline_for_extraction
type test_ifthenelse_tag
(p: parse_ifthenelse_param)
= (#rrel: _) -> (#rel: _) ->
(input: slice rrel rel) ->
(pos: U32.t) ->
HST.Stack bool
(requires (fun h -> valid p.parse_ifthenelse_tag_parser h input pos))
(ensures (fun h res h' ->
B.modifies B.loc_none h h' /\
res == p.parse_ifthenelse_tag_cond (contents p.parse_ifthenelse_tag_parser h input pos)
))
inline_for_extraction
let validate_ifthenelse
(p: parse_ifthenelse_param)
(vt: validator p.parse_ifthenelse_tag_parser)
(test: test_ifthenelse_tag p)
(vp: (b: bool) -> Tot (validator (dsnd (p.parse_ifthenelse_payload_parser b))))
: Tot (validator (parse_ifthenelse p))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
Classical.move_requires (valid_ifthenelse_intro p h input) (uint64_to_uint32 pos);
Classical.move_requires (valid_ifthenelse_elim p h input) (uint64_to_uint32 pos)
in
let pos_after_t = vt input pos in
if is_error pos_after_t
then pos_after_t
else
let b = test input (uint64_to_uint32 pos) in
if b (* eta-expansion here *)
then vp true input pos_after_t
else vp false input pos_after_t
inline_for_extraction
let jump_ifthenelse
(p: parse_ifthenelse_param)
(vt: jumper p.parse_ifthenelse_tag_parser)
(test: test_ifthenelse_tag p)
(vp: (b: bool) -> Tot (jumper (dsnd (p.parse_ifthenelse_payload_parser b))))
: Tot (jumper (parse_ifthenelse p))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
Classical.move_requires (valid_ifthenelse_elim p h input) pos
in
let pos_after_t = vt input pos in
let b = test input pos in
if b (* eta-expansion here *)
then vp true input pos_after_t
else vp false input pos_after_t
let clens_ifthenelse_tag
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
: Tot (clens p.parse_ifthenelse_t p.parse_ifthenelse_tag_t)
= {
clens_cond = (fun _ -> True);
clens_get = (fun (x: p.parse_ifthenelse_t) -> dfst (s.serialize_ifthenelse_synth_recip x));
}
let gaccessor_ifthenelse_tag'
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
: Tot (gaccessor' (parse_ifthenelse p) p.parse_ifthenelse_tag_parser (clens_ifthenelse_tag s))
= fun input ->
parse_ifthenelse_eq p input;
if Some? (parse (parse_ifthenelse p) input)
then parse_ifthenelse_parse_tag_payload s input;
0
let gaccessor_ifthenelse_tag
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
: Tot (gaccessor (parse_ifthenelse p) p.parse_ifthenelse_tag_parser (clens_ifthenelse_tag s))
= gaccessor_prop_equiv (parse_ifthenelse p) p.parse_ifthenelse_tag_parser (clens_ifthenelse_tag s) (gaccessor_ifthenelse_tag' s);
gaccessor_ifthenelse_tag' s
inline_for_extraction
let accessor_ifthenelse_tag
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
: Tot (accessor (gaccessor_ifthenelse_tag s))
= fun #rrel #rel sl pos ->
let h = HST.get () in
slice_access_eq h (gaccessor_ifthenelse_tag s) sl pos;
pos
let clens_ifthenelse_payload
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
: Tot (clens p.parse_ifthenelse_t (p.parse_ifthenelse_payload_t b))
= {
clens_cond = (fun (x: p.parse_ifthenelse_t) -> p.parse_ifthenelse_tag_cond (dfst (s.serialize_ifthenelse_synth_recip x)) == b);
clens_get = (fun (x: p.parse_ifthenelse_t) -> dsnd (s.serialize_ifthenelse_synth_recip x) <: Ghost (p.parse_ifthenelse_payload_t b) (requires (p.parse_ifthenelse_tag_cond (dfst (s.serialize_ifthenelse_synth_recip x)) == b)) (ensures (fun _ -> True)));
}
let gaccessor_ifthenelse_payload''
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
(input: bytes)
: Ghost nat
(requires (
gaccessor_pre (parse_ifthenelse p) (dsnd (p.parse_ifthenelse_payload_parser b)) (clens_ifthenelse_payload s b) input
))
(ensures (fun res ->
gaccessor_post' (parse_ifthenelse p) (dsnd (p.parse_ifthenelse_payload_parser b)) (clens_ifthenelse_payload s b) input res
))
= parse_ifthenelse_eq p input;
parse_ifthenelse_parse_tag_payload s input;
let Some (t, consumed) = parse p.parse_ifthenelse_tag_parser input in
consumed
let gaccessor_ifthenelse_payload'
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
: Tot (gaccessor' (parse_ifthenelse p) (dsnd (p.parse_ifthenelse_payload_parser b)) (clens_ifthenelse_payload s b))
= fun (input: bytes) ->
match parse (parse_ifthenelse p) input with
| Some (x, _) ->
if p.parse_ifthenelse_tag_cond (dfst (s.serialize_ifthenelse_synth_recip x)) = b
then gaccessor_ifthenelse_payload'' s b input
else 0 (* dummy *)
| _ -> 0 (* dummy *)
let gaccessor_ifthenelse_payload_injective
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
(sl sl' : bytes)
: Lemma
(requires (
gaccessor_pre (parse_ifthenelse p) (dsnd (p.parse_ifthenelse_payload_parser b)) (clens_ifthenelse_payload s b) sl /\
gaccessor_pre (parse_ifthenelse p) (dsnd (p.parse_ifthenelse_payload_parser b)) (clens_ifthenelse_payload s b) sl' /\
injective_precond (parse_ifthenelse p) sl sl'
))
(ensures (gaccessor_ifthenelse_payload' s b sl == gaccessor_ifthenelse_payload' s b sl'))
= parse_ifthenelse_eq p sl;
parse_ifthenelse_eq p sl';
parse_ifthenelse_parse_tag_payload s sl;
parse_ifthenelse_parse_tag_payload s sl' ;
parse_injective p.parse_ifthenelse_tag_parser sl sl'
let gaccessor_ifthenelse_payload_no_lookahead
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
(sl sl' : bytes)
: Lemma
(requires (
(parse_ifthenelse_kind p).parser_kind_subkind == Some ParserStrong /\
gaccessor_pre (parse_ifthenelse p) (dsnd (p.parse_ifthenelse_payload_parser b)) (clens_ifthenelse_payload s b) sl /\
gaccessor_pre (parse_ifthenelse p) (dsnd (p.parse_ifthenelse_payload_parser b)) (clens_ifthenelse_payload s b) sl' /\
no_lookahead_on_precond (parse_ifthenelse p) sl sl'
))
(ensures (gaccessor_ifthenelse_payload' s b sl == gaccessor_ifthenelse_payload' s b sl'))
= parse_ifthenelse_eq p sl;
parse_ifthenelse_eq p sl';
parse_ifthenelse_parse_tag_payload s sl;
parse_ifthenelse_parse_tag_payload s sl' ;
parse_strong_prefix (parse_ifthenelse p) sl sl';
parse_injective p.parse_ifthenelse_tag_parser sl sl'
let gaccessor_ifthenelse_payload
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
: Tot (gaccessor (parse_ifthenelse p) (dsnd (p.parse_ifthenelse_payload_parser b)) (clens_ifthenelse_payload s b))
= Classical.forall_intro_2 (fun x -> Classical.move_requires (gaccessor_ifthenelse_payload_injective s b x));
Classical.forall_intro_2 (fun x -> Classical.move_requires (gaccessor_ifthenelse_payload_no_lookahead s b x));
gaccessor_prop_equiv (parse_ifthenelse p) (dsnd (p.parse_ifthenelse_payload_parser b)) (clens_ifthenelse_payload s b) (gaccessor_ifthenelse_payload' s b);
gaccessor_ifthenelse_payload' s b
inline_for_extraction
let accessor_ifthenelse_payload'
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(j: jumper p.parse_ifthenelse_tag_parser)
(b: bool)
(#rrel #rel: _)
(input: slice rrel rel)
(pos: U32.t)
: HST.Stack U32.t
(requires (fun h ->
valid (parse_ifthenelse p) h input pos /\
(clens_ifthenelse_payload s b).clens_cond (contents (parse_ifthenelse p) h input pos)
))
(ensures (fun h pos' h' ->
B.modifies B.loc_none h h' /\
pos' == slice_access h (gaccessor_ifthenelse_payload s b) input pos | false | false | LowParse.Low.IfThenElse.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val accessor_ifthenelse_payload'
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(j: jumper p.parse_ifthenelse_tag_parser)
(b: bool)
(#rrel #rel: _)
(input: slice rrel rel)
(pos: U32.t)
: HST.Stack U32.t
(requires
(fun h ->
valid (parse_ifthenelse p) h input pos /\
(clens_ifthenelse_payload s b).clens_cond (contents (parse_ifthenelse p) h input pos)))
(ensures
(fun h pos' h' ->
B.modifies B.loc_none h h' /\
pos' == slice_access h (gaccessor_ifthenelse_payload s b) input pos)) | [] | LowParse.Low.IfThenElse.accessor_ifthenelse_payload' | {
"file_name": "src/lowparse/LowParse.Low.IfThenElse.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
s: LowParse.Spec.IfThenElse.serialize_ifthenelse_param p ->
j: LowParse.Low.Base.jumper (Mkparse_ifthenelse_param?.parse_ifthenelse_tag_parser p) ->
b: Prims.bool ->
input: LowParse.Slice.slice rrel rel ->
pos: FStar.UInt32.t
-> FStar.HyperStack.ST.Stack FStar.UInt32.t | {
"end_col": 13,
"end_line": 283,
"start_col": 1,
"start_line": 273
} |
Prims.Tot | val accessor_ifthenelse_tag (#p: parse_ifthenelse_param) (s: serialize_ifthenelse_param p)
: Tot (accessor (gaccessor_ifthenelse_tag s)) | [
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.IfThenElse",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let accessor_ifthenelse_tag
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
: Tot (accessor (gaccessor_ifthenelse_tag s))
= fun #rrel #rel sl pos ->
let h = HST.get () in
slice_access_eq h (gaccessor_ifthenelse_tag s) sl pos;
pos | val accessor_ifthenelse_tag (#p: parse_ifthenelse_param) (s: serialize_ifthenelse_param p)
: Tot (accessor (gaccessor_ifthenelse_tag s))
let accessor_ifthenelse_tag (#p: parse_ifthenelse_param) (s: serialize_ifthenelse_param p)
: Tot (accessor (gaccessor_ifthenelse_tag s)) = | false | null | false | fun #rrel #rel sl pos ->
let h = HST.get () in
slice_access_eq h (gaccessor_ifthenelse_tag s) sl pos;
pos | {
"checked_file": "LowParse.Low.IfThenElse.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"LowParse.Spec.IfThenElse.fst.checked",
"LowParse.Low.Combinators.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.IfThenElse.fst"
} | [
"total"
] | [
"LowParse.Spec.IfThenElse.parse_ifthenelse_param",
"LowParse.Spec.IfThenElse.serialize_ifthenelse_param",
"LowParse.Slice.srel",
"LowParse.Bytes.byte",
"LowParse.Slice.slice",
"FStar.UInt32.t",
"Prims.unit",
"LowParse.Low.Base.Spec.slice_access_eq",
"LowParse.Spec.IfThenElse.parse_ifthenelse_kind",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_t",
"LowParse.Spec.IfThenElse.parse_ifthenelse",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_tag_kind",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_tag_t",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_tag_parser",
"LowParse.Low.IfThenElse.clens_ifthenelse_tag",
"LowParse.Low.IfThenElse.gaccessor_ifthenelse_tag",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"LowParse.Low.Base.accessor"
] | [] | module LowParse.Low.IfThenElse
include LowParse.Spec.IfThenElse
include LowParse.Low.Combinators
module U32 = FStar.UInt32
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module B = LowStar.Buffer
module Cast = FStar.Int.Cast
module U64 = FStar.UInt64
let valid_ifthenelse_intro
(p: parse_ifthenelse_param)
(h: HS.mem)
(#rrel #rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma
(requires (
valid p.parse_ifthenelse_tag_parser h sl pos /\ (
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t
)))
(ensures (
valid p.parse_ifthenelse_tag_parser h sl pos /\ (
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t /\
valid_content_pos
(parse_ifthenelse p) h sl pos
(p.parse_ifthenelse_synth
t
(contents (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)
(get_valid_pos (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)))
= valid_facts (parse_ifthenelse p) h sl pos;
valid_facts p.parse_ifthenelse_tag_parser h sl pos;
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid_facts (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t;
parse_ifthenelse_eq p (bytes_of_slice_from h sl pos)
let valid_ifthenelse_elim
(p: parse_ifthenelse_param)
(h: HS.mem)
(#rrel #rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma
(requires (valid (parse_ifthenelse p) h sl pos))
(ensures (
valid p.parse_ifthenelse_tag_parser h sl pos /\ (
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t /\
valid_content_pos
(parse_ifthenelse p) h sl pos
(p.parse_ifthenelse_synth
t
(contents (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)
(get_valid_pos (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)))
= valid_facts (parse_ifthenelse p) h sl pos;
parse_ifthenelse_eq p (bytes_of_slice_from h sl pos);
valid_facts p.parse_ifthenelse_tag_parser h sl pos;
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid_facts (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t
inline_for_extraction
type test_ifthenelse_tag
(p: parse_ifthenelse_param)
= (#rrel: _) -> (#rel: _) ->
(input: slice rrel rel) ->
(pos: U32.t) ->
HST.Stack bool
(requires (fun h -> valid p.parse_ifthenelse_tag_parser h input pos))
(ensures (fun h res h' ->
B.modifies B.loc_none h h' /\
res == p.parse_ifthenelse_tag_cond (contents p.parse_ifthenelse_tag_parser h input pos)
))
inline_for_extraction
let validate_ifthenelse
(p: parse_ifthenelse_param)
(vt: validator p.parse_ifthenelse_tag_parser)
(test: test_ifthenelse_tag p)
(vp: (b: bool) -> Tot (validator (dsnd (p.parse_ifthenelse_payload_parser b))))
: Tot (validator (parse_ifthenelse p))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
Classical.move_requires (valid_ifthenelse_intro p h input) (uint64_to_uint32 pos);
Classical.move_requires (valid_ifthenelse_elim p h input) (uint64_to_uint32 pos)
in
let pos_after_t = vt input pos in
if is_error pos_after_t
then pos_after_t
else
let b = test input (uint64_to_uint32 pos) in
if b (* eta-expansion here *)
then vp true input pos_after_t
else vp false input pos_after_t
inline_for_extraction
let jump_ifthenelse
(p: parse_ifthenelse_param)
(vt: jumper p.parse_ifthenelse_tag_parser)
(test: test_ifthenelse_tag p)
(vp: (b: bool) -> Tot (jumper (dsnd (p.parse_ifthenelse_payload_parser b))))
: Tot (jumper (parse_ifthenelse p))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
Classical.move_requires (valid_ifthenelse_elim p h input) pos
in
let pos_after_t = vt input pos in
let b = test input pos in
if b (* eta-expansion here *)
then vp true input pos_after_t
else vp false input pos_after_t
let clens_ifthenelse_tag
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
: Tot (clens p.parse_ifthenelse_t p.parse_ifthenelse_tag_t)
= {
clens_cond = (fun _ -> True);
clens_get = (fun (x: p.parse_ifthenelse_t) -> dfst (s.serialize_ifthenelse_synth_recip x));
}
let gaccessor_ifthenelse_tag'
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
: Tot (gaccessor' (parse_ifthenelse p) p.parse_ifthenelse_tag_parser (clens_ifthenelse_tag s))
= fun input ->
parse_ifthenelse_eq p input;
if Some? (parse (parse_ifthenelse p) input)
then parse_ifthenelse_parse_tag_payload s input;
0
let gaccessor_ifthenelse_tag
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
: Tot (gaccessor (parse_ifthenelse p) p.parse_ifthenelse_tag_parser (clens_ifthenelse_tag s))
= gaccessor_prop_equiv (parse_ifthenelse p) p.parse_ifthenelse_tag_parser (clens_ifthenelse_tag s) (gaccessor_ifthenelse_tag' s);
gaccessor_ifthenelse_tag' s
inline_for_extraction
let accessor_ifthenelse_tag
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p) | false | false | LowParse.Low.IfThenElse.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val accessor_ifthenelse_tag (#p: parse_ifthenelse_param) (s: serialize_ifthenelse_param p)
: Tot (accessor (gaccessor_ifthenelse_tag s)) | [] | LowParse.Low.IfThenElse.accessor_ifthenelse_tag | {
"file_name": "src/lowparse/LowParse.Low.IfThenElse.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | s: LowParse.Spec.IfThenElse.serialize_ifthenelse_param p
-> LowParse.Low.Base.accessor (LowParse.Low.IfThenElse.gaccessor_ifthenelse_tag s) | {
"end_col": 7,
"end_line": 165,
"start_col": 2,
"start_line": 162
} |
FStar.Pervasives.Lemma | val gaccessor_ifthenelse_payload_no_lookahead
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
(sl sl': bytes)
: Lemma
(requires
((parse_ifthenelse_kind p).parser_kind_subkind == Some ParserStrong /\
gaccessor_pre (parse_ifthenelse p)
(dsnd (p.parse_ifthenelse_payload_parser b))
(clens_ifthenelse_payload s b)
sl /\
gaccessor_pre (parse_ifthenelse p)
(dsnd (p.parse_ifthenelse_payload_parser b))
(clens_ifthenelse_payload s b)
sl' /\ no_lookahead_on_precond (parse_ifthenelse p) sl sl'))
(ensures (gaccessor_ifthenelse_payload' s b sl == gaccessor_ifthenelse_payload' s b sl')) | [
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.IfThenElse",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let gaccessor_ifthenelse_payload_no_lookahead
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
(sl sl' : bytes)
: Lemma
(requires (
(parse_ifthenelse_kind p).parser_kind_subkind == Some ParserStrong /\
gaccessor_pre (parse_ifthenelse p) (dsnd (p.parse_ifthenelse_payload_parser b)) (clens_ifthenelse_payload s b) sl /\
gaccessor_pre (parse_ifthenelse p) (dsnd (p.parse_ifthenelse_payload_parser b)) (clens_ifthenelse_payload s b) sl' /\
no_lookahead_on_precond (parse_ifthenelse p) sl sl'
))
(ensures (gaccessor_ifthenelse_payload' s b sl == gaccessor_ifthenelse_payload' s b sl'))
= parse_ifthenelse_eq p sl;
parse_ifthenelse_eq p sl';
parse_ifthenelse_parse_tag_payload s sl;
parse_ifthenelse_parse_tag_payload s sl' ;
parse_strong_prefix (parse_ifthenelse p) sl sl';
parse_injective p.parse_ifthenelse_tag_parser sl sl' | val gaccessor_ifthenelse_payload_no_lookahead
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
(sl sl': bytes)
: Lemma
(requires
((parse_ifthenelse_kind p).parser_kind_subkind == Some ParserStrong /\
gaccessor_pre (parse_ifthenelse p)
(dsnd (p.parse_ifthenelse_payload_parser b))
(clens_ifthenelse_payload s b)
sl /\
gaccessor_pre (parse_ifthenelse p)
(dsnd (p.parse_ifthenelse_payload_parser b))
(clens_ifthenelse_payload s b)
sl' /\ no_lookahead_on_precond (parse_ifthenelse p) sl sl'))
(ensures (gaccessor_ifthenelse_payload' s b sl == gaccessor_ifthenelse_payload' s b sl'))
let gaccessor_ifthenelse_payload_no_lookahead
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
(sl sl': bytes)
: Lemma
(requires
((parse_ifthenelse_kind p).parser_kind_subkind == Some ParserStrong /\
gaccessor_pre (parse_ifthenelse p)
(dsnd (p.parse_ifthenelse_payload_parser b))
(clens_ifthenelse_payload s b)
sl /\
gaccessor_pre (parse_ifthenelse p)
(dsnd (p.parse_ifthenelse_payload_parser b))
(clens_ifthenelse_payload s b)
sl' /\ no_lookahead_on_precond (parse_ifthenelse p) sl sl'))
(ensures (gaccessor_ifthenelse_payload' s b sl == gaccessor_ifthenelse_payload' s b sl')) = | false | null | true | parse_ifthenelse_eq p sl;
parse_ifthenelse_eq p sl';
parse_ifthenelse_parse_tag_payload s sl;
parse_ifthenelse_parse_tag_payload s sl';
parse_strong_prefix (parse_ifthenelse p) sl sl';
parse_injective p.parse_ifthenelse_tag_parser sl sl' | {
"checked_file": "LowParse.Low.IfThenElse.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"LowParse.Spec.IfThenElse.fst.checked",
"LowParse.Low.Combinators.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.IfThenElse.fst"
} | [
"lemma"
] | [
"LowParse.Spec.IfThenElse.parse_ifthenelse_param",
"LowParse.Spec.IfThenElse.serialize_ifthenelse_param",
"Prims.bool",
"LowParse.Bytes.bytes",
"LowParse.Spec.Base.parse_injective",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_tag_kind",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_tag_t",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_tag_parser",
"Prims.unit",
"LowParse.Spec.Base.parse_strong_prefix",
"LowParse.Spec.IfThenElse.parse_ifthenelse_kind",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_t",
"LowParse.Spec.IfThenElse.parse_ifthenelse",
"LowParse.Spec.IfThenElse.parse_ifthenelse_parse_tag_payload",
"LowParse.Spec.IfThenElse.parse_ifthenelse_eq",
"Prims.l_and",
"Prims.eq2",
"FStar.Pervasives.Native.option",
"LowParse.Spec.Base.parser_subkind",
"LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_subkind",
"FStar.Pervasives.Native.Some",
"LowParse.Spec.Base.ParserStrong",
"LowParse.Low.Base.Spec.gaccessor_pre",
"Prims.__proj__Mkdtuple2__item___1",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_payload_t",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_payload_parser",
"FStar.Pervasives.dsnd",
"LowParse.Low.IfThenElse.clens_ifthenelse_payload",
"LowParse.Spec.Base.no_lookahead_on_precond",
"Prims.squash",
"Prims.nat",
"LowParse.Low.IfThenElse.gaccessor_ifthenelse_payload'",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module LowParse.Low.IfThenElse
include LowParse.Spec.IfThenElse
include LowParse.Low.Combinators
module U32 = FStar.UInt32
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module B = LowStar.Buffer
module Cast = FStar.Int.Cast
module U64 = FStar.UInt64
let valid_ifthenelse_intro
(p: parse_ifthenelse_param)
(h: HS.mem)
(#rrel #rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma
(requires (
valid p.parse_ifthenelse_tag_parser h sl pos /\ (
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t
)))
(ensures (
valid p.parse_ifthenelse_tag_parser h sl pos /\ (
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t /\
valid_content_pos
(parse_ifthenelse p) h sl pos
(p.parse_ifthenelse_synth
t
(contents (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)
(get_valid_pos (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)))
= valid_facts (parse_ifthenelse p) h sl pos;
valid_facts p.parse_ifthenelse_tag_parser h sl pos;
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid_facts (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t;
parse_ifthenelse_eq p (bytes_of_slice_from h sl pos)
let valid_ifthenelse_elim
(p: parse_ifthenelse_param)
(h: HS.mem)
(#rrel #rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma
(requires (valid (parse_ifthenelse p) h sl pos))
(ensures (
valid p.parse_ifthenelse_tag_parser h sl pos /\ (
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t /\
valid_content_pos
(parse_ifthenelse p) h sl pos
(p.parse_ifthenelse_synth
t
(contents (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)
(get_valid_pos (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)))
= valid_facts (parse_ifthenelse p) h sl pos;
parse_ifthenelse_eq p (bytes_of_slice_from h sl pos);
valid_facts p.parse_ifthenelse_tag_parser h sl pos;
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid_facts (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t
inline_for_extraction
type test_ifthenelse_tag
(p: parse_ifthenelse_param)
= (#rrel: _) -> (#rel: _) ->
(input: slice rrel rel) ->
(pos: U32.t) ->
HST.Stack bool
(requires (fun h -> valid p.parse_ifthenelse_tag_parser h input pos))
(ensures (fun h res h' ->
B.modifies B.loc_none h h' /\
res == p.parse_ifthenelse_tag_cond (contents p.parse_ifthenelse_tag_parser h input pos)
))
inline_for_extraction
let validate_ifthenelse
(p: parse_ifthenelse_param)
(vt: validator p.parse_ifthenelse_tag_parser)
(test: test_ifthenelse_tag p)
(vp: (b: bool) -> Tot (validator (dsnd (p.parse_ifthenelse_payload_parser b))))
: Tot (validator (parse_ifthenelse p))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
Classical.move_requires (valid_ifthenelse_intro p h input) (uint64_to_uint32 pos);
Classical.move_requires (valid_ifthenelse_elim p h input) (uint64_to_uint32 pos)
in
let pos_after_t = vt input pos in
if is_error pos_after_t
then pos_after_t
else
let b = test input (uint64_to_uint32 pos) in
if b (* eta-expansion here *)
then vp true input pos_after_t
else vp false input pos_after_t
inline_for_extraction
let jump_ifthenelse
(p: parse_ifthenelse_param)
(vt: jumper p.parse_ifthenelse_tag_parser)
(test: test_ifthenelse_tag p)
(vp: (b: bool) -> Tot (jumper (dsnd (p.parse_ifthenelse_payload_parser b))))
: Tot (jumper (parse_ifthenelse p))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
Classical.move_requires (valid_ifthenelse_elim p h input) pos
in
let pos_after_t = vt input pos in
let b = test input pos in
if b (* eta-expansion here *)
then vp true input pos_after_t
else vp false input pos_after_t
let clens_ifthenelse_tag
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
: Tot (clens p.parse_ifthenelse_t p.parse_ifthenelse_tag_t)
= {
clens_cond = (fun _ -> True);
clens_get = (fun (x: p.parse_ifthenelse_t) -> dfst (s.serialize_ifthenelse_synth_recip x));
}
let gaccessor_ifthenelse_tag'
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
: Tot (gaccessor' (parse_ifthenelse p) p.parse_ifthenelse_tag_parser (clens_ifthenelse_tag s))
= fun input ->
parse_ifthenelse_eq p input;
if Some? (parse (parse_ifthenelse p) input)
then parse_ifthenelse_parse_tag_payload s input;
0
let gaccessor_ifthenelse_tag
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
: Tot (gaccessor (parse_ifthenelse p) p.parse_ifthenelse_tag_parser (clens_ifthenelse_tag s))
= gaccessor_prop_equiv (parse_ifthenelse p) p.parse_ifthenelse_tag_parser (clens_ifthenelse_tag s) (gaccessor_ifthenelse_tag' s);
gaccessor_ifthenelse_tag' s
inline_for_extraction
let accessor_ifthenelse_tag
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
: Tot (accessor (gaccessor_ifthenelse_tag s))
= fun #rrel #rel sl pos ->
let h = HST.get () in
slice_access_eq h (gaccessor_ifthenelse_tag s) sl pos;
pos
let clens_ifthenelse_payload
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
: Tot (clens p.parse_ifthenelse_t (p.parse_ifthenelse_payload_t b))
= {
clens_cond = (fun (x: p.parse_ifthenelse_t) -> p.parse_ifthenelse_tag_cond (dfst (s.serialize_ifthenelse_synth_recip x)) == b);
clens_get = (fun (x: p.parse_ifthenelse_t) -> dsnd (s.serialize_ifthenelse_synth_recip x) <: Ghost (p.parse_ifthenelse_payload_t b) (requires (p.parse_ifthenelse_tag_cond (dfst (s.serialize_ifthenelse_synth_recip x)) == b)) (ensures (fun _ -> True)));
}
let gaccessor_ifthenelse_payload''
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
(input: bytes)
: Ghost nat
(requires (
gaccessor_pre (parse_ifthenelse p) (dsnd (p.parse_ifthenelse_payload_parser b)) (clens_ifthenelse_payload s b) input
))
(ensures (fun res ->
gaccessor_post' (parse_ifthenelse p) (dsnd (p.parse_ifthenelse_payload_parser b)) (clens_ifthenelse_payload s b) input res
))
= parse_ifthenelse_eq p input;
parse_ifthenelse_parse_tag_payload s input;
let Some (t, consumed) = parse p.parse_ifthenelse_tag_parser input in
consumed
let gaccessor_ifthenelse_payload'
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
: Tot (gaccessor' (parse_ifthenelse p) (dsnd (p.parse_ifthenelse_payload_parser b)) (clens_ifthenelse_payload s b))
= fun (input: bytes) ->
match parse (parse_ifthenelse p) input with
| Some (x, _) ->
if p.parse_ifthenelse_tag_cond (dfst (s.serialize_ifthenelse_synth_recip x)) = b
then gaccessor_ifthenelse_payload'' s b input
else 0 (* dummy *)
| _ -> 0 (* dummy *)
let gaccessor_ifthenelse_payload_injective
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
(sl sl' : bytes)
: Lemma
(requires (
gaccessor_pre (parse_ifthenelse p) (dsnd (p.parse_ifthenelse_payload_parser b)) (clens_ifthenelse_payload s b) sl /\
gaccessor_pre (parse_ifthenelse p) (dsnd (p.parse_ifthenelse_payload_parser b)) (clens_ifthenelse_payload s b) sl' /\
injective_precond (parse_ifthenelse p) sl sl'
))
(ensures (gaccessor_ifthenelse_payload' s b sl == gaccessor_ifthenelse_payload' s b sl'))
= parse_ifthenelse_eq p sl;
parse_ifthenelse_eq p sl';
parse_ifthenelse_parse_tag_payload s sl;
parse_ifthenelse_parse_tag_payload s sl' ;
parse_injective p.parse_ifthenelse_tag_parser sl sl'
let gaccessor_ifthenelse_payload_no_lookahead
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
(sl sl' : bytes)
: Lemma
(requires (
(parse_ifthenelse_kind p).parser_kind_subkind == Some ParserStrong /\
gaccessor_pre (parse_ifthenelse p) (dsnd (p.parse_ifthenelse_payload_parser b)) (clens_ifthenelse_payload s b) sl /\
gaccessor_pre (parse_ifthenelse p) (dsnd (p.parse_ifthenelse_payload_parser b)) (clens_ifthenelse_payload s b) sl' /\
no_lookahead_on_precond (parse_ifthenelse p) sl sl'
)) | false | false | LowParse.Low.IfThenElse.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val gaccessor_ifthenelse_payload_no_lookahead
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
(sl sl': bytes)
: Lemma
(requires
((parse_ifthenelse_kind p).parser_kind_subkind == Some ParserStrong /\
gaccessor_pre (parse_ifthenelse p)
(dsnd (p.parse_ifthenelse_payload_parser b))
(clens_ifthenelse_payload s b)
sl /\
gaccessor_pre (parse_ifthenelse p)
(dsnd (p.parse_ifthenelse_payload_parser b))
(clens_ifthenelse_payload s b)
sl' /\ no_lookahead_on_precond (parse_ifthenelse p) sl sl'))
(ensures (gaccessor_ifthenelse_payload' s b sl == gaccessor_ifthenelse_payload' s b sl')) | [] | LowParse.Low.IfThenElse.gaccessor_ifthenelse_payload_no_lookahead | {
"file_name": "src/lowparse/LowParse.Low.IfThenElse.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
s: LowParse.Spec.IfThenElse.serialize_ifthenelse_param p ->
b: Prims.bool ->
sl: LowParse.Bytes.bytes ->
sl': LowParse.Bytes.bytes
-> FStar.Pervasives.Lemma
(requires
Mkparser_kind'?.parser_kind_subkind (LowParse.Spec.IfThenElse.parse_ifthenelse_kind p) ==
FStar.Pervasives.Native.Some LowParse.Spec.Base.ParserStrong /\
LowParse.Low.Base.Spec.gaccessor_pre (LowParse.Spec.IfThenElse.parse_ifthenelse p)
(FStar.Pervasives.dsnd (Mkparse_ifthenelse_param?.parse_ifthenelse_payload_parser p b))
(LowParse.Low.IfThenElse.clens_ifthenelse_payload s b)
sl /\
LowParse.Low.Base.Spec.gaccessor_pre (LowParse.Spec.IfThenElse.parse_ifthenelse p)
(FStar.Pervasives.dsnd (Mkparse_ifthenelse_param?.parse_ifthenelse_payload_parser p b))
(LowParse.Low.IfThenElse.clens_ifthenelse_payload s b)
sl' /\
LowParse.Spec.Base.no_lookahead_on_precond (LowParse.Spec.IfThenElse.parse_ifthenelse p)
sl
sl')
(ensures
LowParse.Low.IfThenElse.gaccessor_ifthenelse_payload' s b sl ==
LowParse.Low.IfThenElse.gaccessor_ifthenelse_payload' s b sl') | {
"end_col": 54,
"end_line": 243,
"start_col": 2,
"start_line": 238
} |
FStar.Pervasives.Lemma | val valid_ifthenelse_elim
(p: parse_ifthenelse_param)
(h: HS.mem)
(#rrel #rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma (requires (valid (parse_ifthenelse p) h sl pos))
(ensures
(valid p.parse_ifthenelse_tag_parser h sl pos /\
(let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t /\
valid_content_pos (parse_ifthenelse p)
h
sl
pos
(p.parse_ifthenelse_synth t
(contents (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t))
(get_valid_pos (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)))) | [
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.IfThenElse",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let valid_ifthenelse_elim
(p: parse_ifthenelse_param)
(h: HS.mem)
(#rrel #rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma
(requires (valid (parse_ifthenelse p) h sl pos))
(ensures (
valid p.parse_ifthenelse_tag_parser h sl pos /\ (
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t /\
valid_content_pos
(parse_ifthenelse p) h sl pos
(p.parse_ifthenelse_synth
t
(contents (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)
(get_valid_pos (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)))
= valid_facts (parse_ifthenelse p) h sl pos;
parse_ifthenelse_eq p (bytes_of_slice_from h sl pos);
valid_facts p.parse_ifthenelse_tag_parser h sl pos;
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid_facts (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t | val valid_ifthenelse_elim
(p: parse_ifthenelse_param)
(h: HS.mem)
(#rrel #rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma (requires (valid (parse_ifthenelse p) h sl pos))
(ensures
(valid p.parse_ifthenelse_tag_parser h sl pos /\
(let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t /\
valid_content_pos (parse_ifthenelse p)
h
sl
pos
(p.parse_ifthenelse_synth t
(contents (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t))
(get_valid_pos (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t))))
let valid_ifthenelse_elim
(p: parse_ifthenelse_param)
(h: HS.mem)
(#rrel #rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma (requires (valid (parse_ifthenelse p) h sl pos))
(ensures
(valid p.parse_ifthenelse_tag_parser h sl pos /\
(let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t /\
valid_content_pos (parse_ifthenelse p)
h
sl
pos
(p.parse_ifthenelse_synth t
(contents (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t))
(get_valid_pos (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)))) = | false | null | true | valid_facts (parse_ifthenelse p) h sl pos;
parse_ifthenelse_eq p (bytes_of_slice_from h sl pos);
valid_facts p.parse_ifthenelse_tag_parser h sl pos;
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid_facts (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t | {
"checked_file": "LowParse.Low.IfThenElse.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"LowParse.Spec.IfThenElse.fst.checked",
"LowParse.Low.Combinators.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.IfThenElse.fst"
} | [
"lemma"
] | [
"LowParse.Spec.IfThenElse.parse_ifthenelse_param",
"FStar.Monotonic.HyperStack.mem",
"LowParse.Slice.srel",
"LowParse.Bytes.byte",
"LowParse.Slice.slice",
"FStar.UInt32.t",
"LowParse.Low.Base.Spec.valid_facts",
"Prims.__proj__Mkdtuple2__item___1",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_payload_t",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_payload_parser",
"FStar.Pervasives.dsnd",
"Prims.bool",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_tag_cond",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_tag_t",
"LowParse.Low.Base.Spec.contents",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_tag_kind",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_tag_parser",
"LowParse.Low.Base.Spec.get_valid_pos",
"Prims.unit",
"LowParse.Spec.IfThenElse.parse_ifthenelse_eq",
"LowParse.Slice.bytes_of_slice_from",
"LowParse.Spec.IfThenElse.parse_ifthenelse_kind",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_t",
"LowParse.Spec.IfThenElse.parse_ifthenelse",
"LowParse.Low.Base.Spec.valid",
"Prims.squash",
"Prims.l_and",
"LowParse.Low.Base.Spec.valid_content_pos",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_synth",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module LowParse.Low.IfThenElse
include LowParse.Spec.IfThenElse
include LowParse.Low.Combinators
module U32 = FStar.UInt32
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module B = LowStar.Buffer
module Cast = FStar.Int.Cast
module U64 = FStar.UInt64
let valid_ifthenelse_intro
(p: parse_ifthenelse_param)
(h: HS.mem)
(#rrel #rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma
(requires (
valid p.parse_ifthenelse_tag_parser h sl pos /\ (
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t
)))
(ensures (
valid p.parse_ifthenelse_tag_parser h sl pos /\ (
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t /\
valid_content_pos
(parse_ifthenelse p) h sl pos
(p.parse_ifthenelse_synth
t
(contents (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)
(get_valid_pos (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)))
= valid_facts (parse_ifthenelse p) h sl pos;
valid_facts p.parse_ifthenelse_tag_parser h sl pos;
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid_facts (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t;
parse_ifthenelse_eq p (bytes_of_slice_from h sl pos)
let valid_ifthenelse_elim
(p: parse_ifthenelse_param)
(h: HS.mem)
(#rrel #rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma
(requires (valid (parse_ifthenelse p) h sl pos))
(ensures (
valid p.parse_ifthenelse_tag_parser h sl pos /\ (
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t /\
valid_content_pos
(parse_ifthenelse p) h sl pos
(p.parse_ifthenelse_synth
t
(contents (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)
(get_valid_pos (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t) | false | false | LowParse.Low.IfThenElse.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val valid_ifthenelse_elim
(p: parse_ifthenelse_param)
(h: HS.mem)
(#rrel #rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma (requires (valid (parse_ifthenelse p) h sl pos))
(ensures
(valid p.parse_ifthenelse_tag_parser h sl pos /\
(let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t /\
valid_content_pos (parse_ifthenelse p)
h
sl
pos
(p.parse_ifthenelse_synth t
(contents (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t))
(get_valid_pos (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)))) | [] | LowParse.Low.IfThenElse.valid_ifthenelse_elim | {
"file_name": "src/lowparse/LowParse.Low.IfThenElse.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
p: LowParse.Spec.IfThenElse.parse_ifthenelse_param ->
h: FStar.Monotonic.HyperStack.mem ->
sl: LowParse.Slice.slice rrel rel ->
pos: FStar.UInt32.t
-> FStar.Pervasives.Lemma
(requires LowParse.Low.Base.Spec.valid (LowParse.Spec.IfThenElse.parse_ifthenelse p) h sl pos)
(ensures
LowParse.Low.Base.Spec.valid (Mkparse_ifthenelse_param?.parse_ifthenelse_tag_parser p)
h
sl
pos /\
(let t =
LowParse.Low.Base.Spec.contents (Mkparse_ifthenelse_param?.parse_ifthenelse_tag_parser p
)
h
sl
pos
in
let pos_after_t =
LowParse.Low.Base.Spec.get_valid_pos (Mkparse_ifthenelse_param?.parse_ifthenelse_tag_parser
p)
h
sl
pos
in
let b = Mkparse_ifthenelse_param?.parse_ifthenelse_tag_cond p t in
LowParse.Low.Base.Spec.valid (FStar.Pervasives.dsnd (Mkparse_ifthenelse_param?.parse_ifthenelse_payload_parser
p
b))
h
sl
pos_after_t /\
LowParse.Low.Base.Spec.valid_content_pos (LowParse.Spec.IfThenElse.parse_ifthenelse p)
h
sl
pos
(Mkparse_ifthenelse_param?.parse_ifthenelse_synth p
t
(LowParse.Low.Base.Spec.contents (FStar.Pervasives.dsnd (Mkparse_ifthenelse_param?.parse_ifthenelse_payload_parser
p
b))
h
sl
pos_after_t))
(LowParse.Low.Base.Spec.get_valid_pos (FStar.Pervasives.dsnd (Mkparse_ifthenelse_param?.parse_ifthenelse_payload_parser
p
b))
h
sl
pos_after_t))) | {
"end_col": 75,
"end_line": 76,
"start_col": 2,
"start_line": 70
} |
FStar.Pervasives.Lemma | val valid_ifthenelse_intro
(p: parse_ifthenelse_param)
(h: HS.mem)
(#rrel #rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma
(requires
(valid p.parse_ifthenelse_tag_parser h sl pos /\
(let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)))
(ensures
(valid p.parse_ifthenelse_tag_parser h sl pos /\
(let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t /\
valid_content_pos (parse_ifthenelse p)
h
sl
pos
(p.parse_ifthenelse_synth t
(contents (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t))
(get_valid_pos (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)))) | [
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.IfThenElse",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let valid_ifthenelse_intro
(p: parse_ifthenelse_param)
(h: HS.mem)
(#rrel #rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma
(requires (
valid p.parse_ifthenelse_tag_parser h sl pos /\ (
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t
)))
(ensures (
valid p.parse_ifthenelse_tag_parser h sl pos /\ (
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t /\
valid_content_pos
(parse_ifthenelse p) h sl pos
(p.parse_ifthenelse_synth
t
(contents (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)
(get_valid_pos (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)))
= valid_facts (parse_ifthenelse p) h sl pos;
valid_facts p.parse_ifthenelse_tag_parser h sl pos;
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid_facts (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t;
parse_ifthenelse_eq p (bytes_of_slice_from h sl pos) | val valid_ifthenelse_intro
(p: parse_ifthenelse_param)
(h: HS.mem)
(#rrel #rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma
(requires
(valid p.parse_ifthenelse_tag_parser h sl pos /\
(let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)))
(ensures
(valid p.parse_ifthenelse_tag_parser h sl pos /\
(let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t /\
valid_content_pos (parse_ifthenelse p)
h
sl
pos
(p.parse_ifthenelse_synth t
(contents (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t))
(get_valid_pos (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t))))
let valid_ifthenelse_intro
(p: parse_ifthenelse_param)
(h: HS.mem)
(#rrel #rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma
(requires
(valid p.parse_ifthenelse_tag_parser h sl pos /\
(let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)))
(ensures
(valid p.parse_ifthenelse_tag_parser h sl pos /\
(let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t /\
valid_content_pos (parse_ifthenelse p)
h
sl
pos
(p.parse_ifthenelse_synth t
(contents (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t))
(get_valid_pos (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)))) = | false | null | true | valid_facts (parse_ifthenelse p) h sl pos;
valid_facts p.parse_ifthenelse_tag_parser h sl pos;
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid_facts (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t;
parse_ifthenelse_eq p (bytes_of_slice_from h sl pos) | {
"checked_file": "LowParse.Low.IfThenElse.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"LowParse.Spec.IfThenElse.fst.checked",
"LowParse.Low.Combinators.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.IfThenElse.fst"
} | [
"lemma"
] | [
"LowParse.Spec.IfThenElse.parse_ifthenelse_param",
"FStar.Monotonic.HyperStack.mem",
"LowParse.Slice.srel",
"LowParse.Bytes.byte",
"LowParse.Slice.slice",
"FStar.UInt32.t",
"LowParse.Spec.IfThenElse.parse_ifthenelse_eq",
"LowParse.Slice.bytes_of_slice_from",
"Prims.unit",
"LowParse.Low.Base.Spec.valid_facts",
"Prims.__proj__Mkdtuple2__item___1",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_payload_t",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_payload_parser",
"FStar.Pervasives.dsnd",
"Prims.bool",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_tag_cond",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_tag_t",
"LowParse.Low.Base.Spec.contents",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_tag_kind",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_tag_parser",
"LowParse.Low.Base.Spec.get_valid_pos",
"LowParse.Spec.IfThenElse.parse_ifthenelse_kind",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_t",
"LowParse.Spec.IfThenElse.parse_ifthenelse",
"Prims.l_and",
"LowParse.Low.Base.Spec.valid",
"Prims.squash",
"LowParse.Low.Base.Spec.valid_content_pos",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_synth",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module LowParse.Low.IfThenElse
include LowParse.Spec.IfThenElse
include LowParse.Low.Combinators
module U32 = FStar.UInt32
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module B = LowStar.Buffer
module Cast = FStar.Int.Cast
module U64 = FStar.UInt64
let valid_ifthenelse_intro
(p: parse_ifthenelse_param)
(h: HS.mem)
(#rrel #rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma
(requires (
valid p.parse_ifthenelse_tag_parser h sl pos /\ (
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t
)))
(ensures (
valid p.parse_ifthenelse_tag_parser h sl pos /\ (
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t /\
valid_content_pos
(parse_ifthenelse p) h sl pos
(p.parse_ifthenelse_synth
t
(contents (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)
(get_valid_pos (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t) | false | false | LowParse.Low.IfThenElse.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val valid_ifthenelse_intro
(p: parse_ifthenelse_param)
(h: HS.mem)
(#rrel #rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma
(requires
(valid p.parse_ifthenelse_tag_parser h sl pos /\
(let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)))
(ensures
(valid p.parse_ifthenelse_tag_parser h sl pos /\
(let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t /\
valid_content_pos (parse_ifthenelse p)
h
sl
pos
(p.parse_ifthenelse_synth t
(contents (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t))
(get_valid_pos (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)))) | [] | LowParse.Low.IfThenElse.valid_ifthenelse_intro | {
"file_name": "src/lowparse/LowParse.Low.IfThenElse.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
p: LowParse.Spec.IfThenElse.parse_ifthenelse_param ->
h: FStar.Monotonic.HyperStack.mem ->
sl: LowParse.Slice.slice rrel rel ->
pos: FStar.UInt32.t
-> FStar.Pervasives.Lemma
(requires
LowParse.Low.Base.Spec.valid (Mkparse_ifthenelse_param?.parse_ifthenelse_tag_parser p)
h
sl
pos /\
(let t =
LowParse.Low.Base.Spec.contents (Mkparse_ifthenelse_param?.parse_ifthenelse_tag_parser p
)
h
sl
pos
in
let pos_after_t =
LowParse.Low.Base.Spec.get_valid_pos (Mkparse_ifthenelse_param?.parse_ifthenelse_tag_parser
p)
h
sl
pos
in
let b = Mkparse_ifthenelse_param?.parse_ifthenelse_tag_cond p t in
LowParse.Low.Base.Spec.valid (FStar.Pervasives.dsnd (Mkparse_ifthenelse_param?.parse_ifthenelse_payload_parser
p
b))
h
sl
pos_after_t))
(ensures
LowParse.Low.Base.Spec.valid (Mkparse_ifthenelse_param?.parse_ifthenelse_tag_parser p)
h
sl
pos /\
(let t =
LowParse.Low.Base.Spec.contents (Mkparse_ifthenelse_param?.parse_ifthenelse_tag_parser p
)
h
sl
pos
in
let b = Mkparse_ifthenelse_param?.parse_ifthenelse_tag_cond p t in
let pos_after_t =
LowParse.Low.Base.Spec.get_valid_pos (Mkparse_ifthenelse_param?.parse_ifthenelse_tag_parser
p)
h
sl
pos
in
LowParse.Low.Base.Spec.valid (FStar.Pervasives.dsnd (Mkparse_ifthenelse_param?.parse_ifthenelse_payload_parser
p
b))
h
sl
pos_after_t /\
LowParse.Low.Base.Spec.valid_content_pos (LowParse.Spec.IfThenElse.parse_ifthenelse p)
h
sl
pos
(Mkparse_ifthenelse_param?.parse_ifthenelse_synth p
t
(LowParse.Low.Base.Spec.contents (FStar.Pervasives.dsnd (Mkparse_ifthenelse_param?.parse_ifthenelse_payload_parser
p
b))
h
sl
pos_after_t))
(LowParse.Low.Base.Spec.get_valid_pos (FStar.Pervasives.dsnd (Mkparse_ifthenelse_param?.parse_ifthenelse_payload_parser
p
b))
h
sl
pos_after_t))) | {
"end_col": 54,
"end_line": 46,
"start_col": 2,
"start_line": 40
} |
Prims.Tot | val gaccessor_ifthenelse_tag' (#p: parse_ifthenelse_param) (s: serialize_ifthenelse_param p)
: Tot (gaccessor' (parse_ifthenelse p) p.parse_ifthenelse_tag_parser (clens_ifthenelse_tag s)) | [
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.IfThenElse",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let gaccessor_ifthenelse_tag'
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
: Tot (gaccessor' (parse_ifthenelse p) p.parse_ifthenelse_tag_parser (clens_ifthenelse_tag s))
= fun input ->
parse_ifthenelse_eq p input;
if Some? (parse (parse_ifthenelse p) input)
then parse_ifthenelse_parse_tag_payload s input;
0 | val gaccessor_ifthenelse_tag' (#p: parse_ifthenelse_param) (s: serialize_ifthenelse_param p)
: Tot (gaccessor' (parse_ifthenelse p) p.parse_ifthenelse_tag_parser (clens_ifthenelse_tag s))
let gaccessor_ifthenelse_tag' (#p: parse_ifthenelse_param) (s: serialize_ifthenelse_param p)
: Tot (gaccessor' (parse_ifthenelse p) p.parse_ifthenelse_tag_parser (clens_ifthenelse_tag s)) = | false | null | false | fun input ->
parse_ifthenelse_eq p input;
if Some? (parse (parse_ifthenelse p) input) then parse_ifthenelse_parse_tag_payload s input;
0 | {
"checked_file": "LowParse.Low.IfThenElse.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"LowParse.Spec.IfThenElse.fst.checked",
"LowParse.Low.Combinators.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.IfThenElse.fst"
} | [
"total"
] | [
"LowParse.Spec.IfThenElse.parse_ifthenelse_param",
"LowParse.Spec.IfThenElse.serialize_ifthenelse_param",
"LowParse.Bytes.bytes",
"Prims.unit",
"FStar.Pervasives.Native.uu___is_Some",
"FStar.Pervasives.Native.tuple2",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_t",
"LowParse.Spec.Base.consumed_length",
"LowParse.Spec.Base.parse",
"LowParse.Spec.IfThenElse.parse_ifthenelse",
"LowParse.Spec.IfThenElse.parse_ifthenelse_parse_tag_payload",
"Prims.bool",
"LowParse.Spec.IfThenElse.parse_ifthenelse_eq",
"Prims.nat",
"LowParse.Low.Base.Spec.gaccessor'",
"LowParse.Spec.IfThenElse.parse_ifthenelse_kind",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_tag_kind",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_tag_t",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_tag_parser",
"LowParse.Low.IfThenElse.clens_ifthenelse_tag"
] | [] | module LowParse.Low.IfThenElse
include LowParse.Spec.IfThenElse
include LowParse.Low.Combinators
module U32 = FStar.UInt32
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module B = LowStar.Buffer
module Cast = FStar.Int.Cast
module U64 = FStar.UInt64
let valid_ifthenelse_intro
(p: parse_ifthenelse_param)
(h: HS.mem)
(#rrel #rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma
(requires (
valid p.parse_ifthenelse_tag_parser h sl pos /\ (
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t
)))
(ensures (
valid p.parse_ifthenelse_tag_parser h sl pos /\ (
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t /\
valid_content_pos
(parse_ifthenelse p) h sl pos
(p.parse_ifthenelse_synth
t
(contents (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)
(get_valid_pos (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)))
= valid_facts (parse_ifthenelse p) h sl pos;
valid_facts p.parse_ifthenelse_tag_parser h sl pos;
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid_facts (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t;
parse_ifthenelse_eq p (bytes_of_slice_from h sl pos)
let valid_ifthenelse_elim
(p: parse_ifthenelse_param)
(h: HS.mem)
(#rrel #rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma
(requires (valid (parse_ifthenelse p) h sl pos))
(ensures (
valid p.parse_ifthenelse_tag_parser h sl pos /\ (
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t /\
valid_content_pos
(parse_ifthenelse p) h sl pos
(p.parse_ifthenelse_synth
t
(contents (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)
(get_valid_pos (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)))
= valid_facts (parse_ifthenelse p) h sl pos;
parse_ifthenelse_eq p (bytes_of_slice_from h sl pos);
valid_facts p.parse_ifthenelse_tag_parser h sl pos;
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid_facts (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t
inline_for_extraction
type test_ifthenelse_tag
(p: parse_ifthenelse_param)
= (#rrel: _) -> (#rel: _) ->
(input: slice rrel rel) ->
(pos: U32.t) ->
HST.Stack bool
(requires (fun h -> valid p.parse_ifthenelse_tag_parser h input pos))
(ensures (fun h res h' ->
B.modifies B.loc_none h h' /\
res == p.parse_ifthenelse_tag_cond (contents p.parse_ifthenelse_tag_parser h input pos)
))
inline_for_extraction
let validate_ifthenelse
(p: parse_ifthenelse_param)
(vt: validator p.parse_ifthenelse_tag_parser)
(test: test_ifthenelse_tag p)
(vp: (b: bool) -> Tot (validator (dsnd (p.parse_ifthenelse_payload_parser b))))
: Tot (validator (parse_ifthenelse p))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
Classical.move_requires (valid_ifthenelse_intro p h input) (uint64_to_uint32 pos);
Classical.move_requires (valid_ifthenelse_elim p h input) (uint64_to_uint32 pos)
in
let pos_after_t = vt input pos in
if is_error pos_after_t
then pos_after_t
else
let b = test input (uint64_to_uint32 pos) in
if b (* eta-expansion here *)
then vp true input pos_after_t
else vp false input pos_after_t
inline_for_extraction
let jump_ifthenelse
(p: parse_ifthenelse_param)
(vt: jumper p.parse_ifthenelse_tag_parser)
(test: test_ifthenelse_tag p)
(vp: (b: bool) -> Tot (jumper (dsnd (p.parse_ifthenelse_payload_parser b))))
: Tot (jumper (parse_ifthenelse p))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
Classical.move_requires (valid_ifthenelse_elim p h input) pos
in
let pos_after_t = vt input pos in
let b = test input pos in
if b (* eta-expansion here *)
then vp true input pos_after_t
else vp false input pos_after_t
let clens_ifthenelse_tag
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
: Tot (clens p.parse_ifthenelse_t p.parse_ifthenelse_tag_t)
= {
clens_cond = (fun _ -> True);
clens_get = (fun (x: p.parse_ifthenelse_t) -> dfst (s.serialize_ifthenelse_synth_recip x));
}
let gaccessor_ifthenelse_tag'
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p) | false | false | LowParse.Low.IfThenElse.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val gaccessor_ifthenelse_tag' (#p: parse_ifthenelse_param) (s: serialize_ifthenelse_param p)
: Tot (gaccessor' (parse_ifthenelse p) p.parse_ifthenelse_tag_parser (clens_ifthenelse_tag s)) | [] | LowParse.Low.IfThenElse.gaccessor_ifthenelse_tag' | {
"file_name": "src/lowparse/LowParse.Low.IfThenElse.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | s: LowParse.Spec.IfThenElse.serialize_ifthenelse_param p
-> LowParse.Low.Base.Spec.gaccessor' (LowParse.Spec.IfThenElse.parse_ifthenelse p)
(Mkparse_ifthenelse_param?.parse_ifthenelse_tag_parser p)
(LowParse.Low.IfThenElse.clens_ifthenelse_tag s) | {
"end_col": 5,
"end_line": 148,
"start_col": 2,
"start_line": 144
} |
Prims.Tot | val validate_ifthenelse
(p: parse_ifthenelse_param)
(vt: validator p.parse_ifthenelse_tag_parser)
(test: test_ifthenelse_tag p)
(vp: (b: bool -> Tot (validator (dsnd (p.parse_ifthenelse_payload_parser b)))))
: Tot (validator (parse_ifthenelse p)) | [
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.IfThenElse",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let validate_ifthenelse
(p: parse_ifthenelse_param)
(vt: validator p.parse_ifthenelse_tag_parser)
(test: test_ifthenelse_tag p)
(vp: (b: bool) -> Tot (validator (dsnd (p.parse_ifthenelse_payload_parser b))))
: Tot (validator (parse_ifthenelse p))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
Classical.move_requires (valid_ifthenelse_intro p h input) (uint64_to_uint32 pos);
Classical.move_requires (valid_ifthenelse_elim p h input) (uint64_to_uint32 pos)
in
let pos_after_t = vt input pos in
if is_error pos_after_t
then pos_after_t
else
let b = test input (uint64_to_uint32 pos) in
if b (* eta-expansion here *)
then vp true input pos_after_t
else vp false input pos_after_t | val validate_ifthenelse
(p: parse_ifthenelse_param)
(vt: validator p.parse_ifthenelse_tag_parser)
(test: test_ifthenelse_tag p)
(vp: (b: bool -> Tot (validator (dsnd (p.parse_ifthenelse_payload_parser b)))))
: Tot (validator (parse_ifthenelse p))
let validate_ifthenelse
(p: parse_ifthenelse_param)
(vt: validator p.parse_ifthenelse_tag_parser)
(test: test_ifthenelse_tag p)
(vp: (b: bool -> Tot (validator (dsnd (p.parse_ifthenelse_payload_parser b)))))
: Tot (validator (parse_ifthenelse p)) = | false | null | false | fun #rrel #rel input pos ->
let h = HST.get () in
[@@ inline_let ]let _ =
Classical.move_requires (valid_ifthenelse_intro p h input) (uint64_to_uint32 pos);
Classical.move_requires (valid_ifthenelse_elim p h input) (uint64_to_uint32 pos)
in
let pos_after_t = vt input pos in
if is_error pos_after_t
then pos_after_t
else
let b = test input (uint64_to_uint32 pos) in
if b then vp true input pos_after_t else vp false input pos_after_t | {
"checked_file": "LowParse.Low.IfThenElse.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"LowParse.Spec.IfThenElse.fst.checked",
"LowParse.Low.Combinators.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.IfThenElse.fst"
} | [
"total"
] | [
"LowParse.Spec.IfThenElse.parse_ifthenelse_param",
"LowParse.Low.Base.validator",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_tag_kind",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_tag_t",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_tag_parser",
"LowParse.Low.IfThenElse.test_ifthenelse_tag",
"Prims.bool",
"Prims.__proj__Mkdtuple2__item___1",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_payload_t",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_payload_parser",
"FStar.Pervasives.dsnd",
"LowParse.Slice.srel",
"LowParse.Bytes.byte",
"LowParse.Slice.slice",
"FStar.UInt64.t",
"LowParse.Low.ErrorCode.is_error",
"LowParse.Low.ErrorCode.uint64_to_uint32",
"Prims.unit",
"FStar.Classical.move_requires",
"FStar.UInt32.t",
"LowParse.Low.Base.Spec.valid",
"LowParse.Spec.IfThenElse.parse_ifthenelse_kind",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_t",
"LowParse.Spec.IfThenElse.parse_ifthenelse",
"Prims.l_and",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_tag_cond",
"LowParse.Low.Base.Spec.contents",
"LowParse.Low.Base.Spec.get_valid_pos",
"LowParse.Low.Base.Spec.valid_content_pos",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_synth",
"LowParse.Low.IfThenElse.valid_ifthenelse_elim",
"LowParse.Low.IfThenElse.valid_ifthenelse_intro",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get"
] | [] | module LowParse.Low.IfThenElse
include LowParse.Spec.IfThenElse
include LowParse.Low.Combinators
module U32 = FStar.UInt32
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module B = LowStar.Buffer
module Cast = FStar.Int.Cast
module U64 = FStar.UInt64
let valid_ifthenelse_intro
(p: parse_ifthenelse_param)
(h: HS.mem)
(#rrel #rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma
(requires (
valid p.parse_ifthenelse_tag_parser h sl pos /\ (
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t
)))
(ensures (
valid p.parse_ifthenelse_tag_parser h sl pos /\ (
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t /\
valid_content_pos
(parse_ifthenelse p) h sl pos
(p.parse_ifthenelse_synth
t
(contents (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)
(get_valid_pos (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)))
= valid_facts (parse_ifthenelse p) h sl pos;
valid_facts p.parse_ifthenelse_tag_parser h sl pos;
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid_facts (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t;
parse_ifthenelse_eq p (bytes_of_slice_from h sl pos)
let valid_ifthenelse_elim
(p: parse_ifthenelse_param)
(h: HS.mem)
(#rrel #rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma
(requires (valid (parse_ifthenelse p) h sl pos))
(ensures (
valid p.parse_ifthenelse_tag_parser h sl pos /\ (
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t /\
valid_content_pos
(parse_ifthenelse p) h sl pos
(p.parse_ifthenelse_synth
t
(contents (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)
(get_valid_pos (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)))
= valid_facts (parse_ifthenelse p) h sl pos;
parse_ifthenelse_eq p (bytes_of_slice_from h sl pos);
valid_facts p.parse_ifthenelse_tag_parser h sl pos;
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid_facts (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t
inline_for_extraction
type test_ifthenelse_tag
(p: parse_ifthenelse_param)
= (#rrel: _) -> (#rel: _) ->
(input: slice rrel rel) ->
(pos: U32.t) ->
HST.Stack bool
(requires (fun h -> valid p.parse_ifthenelse_tag_parser h input pos))
(ensures (fun h res h' ->
B.modifies B.loc_none h h' /\
res == p.parse_ifthenelse_tag_cond (contents p.parse_ifthenelse_tag_parser h input pos)
))
inline_for_extraction
let validate_ifthenelse
(p: parse_ifthenelse_param)
(vt: validator p.parse_ifthenelse_tag_parser)
(test: test_ifthenelse_tag p)
(vp: (b: bool) -> Tot (validator (dsnd (p.parse_ifthenelse_payload_parser b)))) | false | false | LowParse.Low.IfThenElse.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val validate_ifthenelse
(p: parse_ifthenelse_param)
(vt: validator p.parse_ifthenelse_tag_parser)
(test: test_ifthenelse_tag p)
(vp: (b: bool -> Tot (validator (dsnd (p.parse_ifthenelse_payload_parser b)))))
: Tot (validator (parse_ifthenelse p)) | [] | LowParse.Low.IfThenElse.validate_ifthenelse | {
"file_name": "src/lowparse/LowParse.Low.IfThenElse.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
p: LowParse.Spec.IfThenElse.parse_ifthenelse_param ->
vt: LowParse.Low.Base.validator (Mkparse_ifthenelse_param?.parse_ifthenelse_tag_parser p) ->
test: LowParse.Low.IfThenElse.test_ifthenelse_tag p ->
vp:
(b: Prims.bool
-> LowParse.Low.Base.validator (FStar.Pervasives.dsnd (Mkparse_ifthenelse_param?.parse_ifthenelse_payload_parser
p
b)))
-> LowParse.Low.Base.validator (LowParse.Spec.IfThenElse.parse_ifthenelse p) | {
"end_col": 35,
"end_line": 111,
"start_col": 2,
"start_line": 98
} |
Prims.Tot | val member: #a:eqtype -> #len: size_nat -> a -> lseq a len -> Tot bool | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let member #a #len x l = Seq.count x l > 0 | val member: #a:eqtype -> #len: size_nat -> a -> lseq a len -> Tot bool
let member #a #len x l = | false | null | false | Seq.count x l > 0 | {
"checked_file": "Lib.Sequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.fst"
} | [
"total"
] | [
"Prims.eqtype",
"Lib.IntTypes.size_nat",
"Lib.Sequence.lseq",
"Prims.op_GreaterThan",
"FStar.Seq.Properties.count",
"Prims.bool"
] | [] | module Lib.Sequence
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 --using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence'"
let index #a #len s n = Seq.index s n
let create #a len init = Seq.create #a len init
let concat #a #len0 #len1 s0 s1 = Seq.append s0 s1
let to_list #a s = Seq.seq_to_list s
let of_list #a l = Seq.seq_of_list #a l
let of_list_index #a l i =
Seq.lemma_seq_of_list_index #a l i
let equal #a #len s1 s2 =
forall (i:size_nat{i < len}).{:pattern (index s1 i); (index s2 i)} index s1 i == index s2 i
let eq_intro #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_intro #a (to_seq s1) (to_seq s2)
let eq_elim #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_elim #a s1 s2
let upd #a #len s n x = Seq.upd #a s n x | false | false | Lib.Sequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val member: #a:eqtype -> #len: size_nat -> a -> lseq a len -> Tot bool | [] | Lib.Sequence.member | {
"file_name": "lib/Lib.Sequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x: a -> l: Lib.Sequence.lseq a len -> Prims.bool | {
"end_col": 42,
"end_line": 37,
"start_col": 25,
"start_line": 37
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let generate_blocks_simple_a (a:Type) (bs:size_nat) (max:nat) (i:nat{i <= max}) = s:seq a{length s == i * bs} | let generate_blocks_simple_a (a: Type) (bs: size_nat) (max: nat) (i: nat{i <= max}) = | false | null | false | s: seq a {length s == i * bs} | {
"checked_file": "Lib.Sequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.fst"
} | [
"total"
] | [
"Lib.IntTypes.size_nat",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Lib.Sequence.seq",
"Prims.eq2",
"Prims.int",
"Lib.Sequence.length",
"FStar.Mul.op_Star"
] | [] | module Lib.Sequence
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 --using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence'"
let index #a #len s n = Seq.index s n
let create #a len init = Seq.create #a len init
let concat #a #len0 #len1 s0 s1 = Seq.append s0 s1
let to_list #a s = Seq.seq_to_list s
let of_list #a l = Seq.seq_of_list #a l
let of_list_index #a l i =
Seq.lemma_seq_of_list_index #a l i
let equal #a #len s1 s2 =
forall (i:size_nat{i < len}).{:pattern (index s1 i); (index s2 i)} index s1 i == index s2 i
let eq_intro #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_intro #a (to_seq s1) (to_seq s2)
let eq_elim #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_elim #a s1 s2
let upd #a #len s n x = Seq.upd #a s n x
let member #a #len x l = Seq.count x l > 0
let sub #a #len s start n = Seq.slice #a s start (start + n)
let update_sub #a #len s start n x =
let o =
Seq.append
(Seq.append (Seq.slice s 0 start) x)
(Seq.slice s (start + n) (length s)) in
Seq.lemma_eq_intro (Seq.slice o start (start + n)) x;
o
let lemma_update_sub #a #len dst start n src res =
let res1 = update_sub dst start n src in
Seq.lemma_split (sub res 0 (start + n)) start;
Seq.lemma_split (sub res1 0 (start + n)) start;
Seq.lemma_split res (start + n);
Seq.lemma_split res1 (start + n);
Seq.lemma_eq_intro res (update_sub dst start n src)
let lemma_concat2 #a len0 s0 len1 s1 s =
Seq.Properties.lemma_split s len0;
Seq.Properties.lemma_split (concat s0 s1) len0;
Seq.lemma_eq_intro s (concat s0 s1)
let lemma_concat3 #a len0 s0 len1 s1 len2 s2 s =
let s' = concat (concat s0 s1) s2 in
Seq.Properties.lemma_split (sub s 0 (len0 + len1)) len0;
Seq.Properties.lemma_split (sub s' 0 (len0 + len1)) len0;
Seq.Properties.lemma_split s (len0 + len1);
Seq.Properties.lemma_split s' (len0 + len1);
Seq.lemma_eq_intro s (concat (concat s0 s1) s2)
let createi_a (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (k:nat{k <= len}) =
lseq a k
let createi_pred (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (k:nat{k <= len})
(s:createi_a a len init k) =
forall (i:nat).{:pattern (index s i)} i < k ==> index s i == init i
let createi_step (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (i:nat{i < len})
(si:createi_a a len init i)
: r:createi_a a len init (i + 1)
{createi_pred a len init i si ==> createi_pred a len init (i + 1) r}
=
assert (createi_pred a len init i si ==> (forall (j:nat). j < i ==> index si j == init j));
Seq.snoc si (init i)
#push-options "--max_fuel 1 --using_facts_from '+Lib.LoopCombinators +FStar.List'"
let createi #a len init_f =
repeat_gen_inductive len
(createi_a a len init_f)
(createi_pred a len init_f)
(createi_step a len init_f)
(of_list [])
#pop-options
inline_for_extraction
let mapi_inner (#a:Type) (#b:Type) (#len:size_nat)
(f:(i:nat{i < len} -> a -> b)) (s:lseq a len) (i:size_nat{i < len}) =
f i s.[i]
let mapi #a #b #len f s =
createi #b len (mapi_inner #a #b #len f s)
inline_for_extraction
let map_inner (#a:Type) (#b:Type) (#len:size_nat)
(f:(a -> Tot b)) (s:lseq a len) (i:size_nat{i < len}) =
f s.[i]
let map #a #b #len f s =
createi #b len (map_inner #a #b #len f s)
let map2i #a #b #c #len f s1 s2 =
createi #c len (fun i -> f i s1.[i] s2.[i])
inline_for_extraction
let map2_inner (#a:Type) (#b:Type) (#c:Type) (#len:size_nat)
(f:(a -> b -> Tot c)) (s1:lseq a len) (s2:lseq b len) (i:size_nat{i < len}) =
f s1.[i] s2.[i]
let map2 #a #b #c #len f s1 s2 =
createi #c len (map2_inner #a #b #c #len f s1 s2)
let for_all #a #len f x = Seq.for_all f x
let for_all2 #a #b #len f x y =
let r = map2 (fun xi yi -> f xi yi) x y in
Seq.for_all (fun bi -> bi = true) r
(** Selecting a subset of an unbounded Sequence *)
val seq_sub:
#a:Type
-> s1:seq a
-> start:nat
-> n:nat{start + n <= length s1}
-> s2:seq a{length s2 == n /\
(forall (k:nat{k < n}). {:pattern (Seq.index s2 k)} Seq.index s2 k == Seq.index s1 (start + k))}
let seq_sub #a s start n =
Seq.slice #a s start (start + n)
(** Updating a subset of an unbounded Sequence with another Sequence *)
val seq_update_sub:
#a:Type
-> i:seq a
-> start:nat
-> n:nat{start + n <= length i}
-> x:seq a{length x == n}
-> o:seq a{length o == length i /\ seq_sub o start n == x /\
(forall (k:nat{(0 <= k /\ k < start) \/ (start + n <= k /\ k < length i)}).
{:pattern (Seq.index o k)} Seq.index o k == Seq.index i k)}
let seq_update_sub #a s start n x =
let o =
Seq.append
(Seq.append (Seq.slice s 0 start) x)
(Seq.slice s (start + n) (length s)) in
Seq.lemma_eq_intro (Seq.slice o start (start + n)) x;
o
val repeati_blocks_f:
#a:Type0
-> #b:Type0
-> blocksize:size_nat{blocksize > 0}
-> inp:seq a
-> f:(i:nat{i < length inp / blocksize} -> lseq a blocksize -> b -> b)
-> nb:nat{nb == length inp / blocksize}
-> i:nat{i < nb}
-> acc:b
-> b
let repeati_blocks_f #a #b bs inp f nb i acc =
assert ((i+1) * bs <= nb * bs);
let block = seq_sub inp (i * bs) bs in
f i block acc
let repeati_blocks #a #b bs inp f g init =
let len = length inp in
let nb = len / bs in
let rem = len % bs in
let acc = repeati nb (repeati_blocks_f bs inp f nb) init in
let last = seq_sub inp (nb * bs) rem in
g nb rem last acc
let repeat_blocks #a #b #c bs inp f l init =
let len = length inp in
let nb = len / bs in
let rem = len % bs in
let acc = repeati nb (repeat_blocks_f bs inp f nb) init in
let last = seq_sub inp (nb * bs) rem in
l rem last acc
let lemma_repeat_blocks #a #b #c bs inp f l init = ()
let repeat_blocks_multi #a #b bs inp f init =
let len = length inp in
let nb = len / bs in
repeati nb (repeat_blocks_f bs inp f nb) init
let lemma_repeat_blocks_multi #a #b bs inp f init = ()
let generate_blocks_a (t:Type) (blocklen:size_nat) (max:nat) (a:(i:nat{i <= max} -> Type)) (i:nat{i <= max}) = a i & s:seq t{length s == i * blocklen}
let generate_blocks_inner (t:Type) (blocklen:size_nat) (max:nat) (a:(i:nat{i <= max} -> Type)) (f:(i:nat{i < max} -> a i -> a (i + 1) & s:seq t{length s == blocklen})) (i:nat{i < max}) (acc:generate_blocks_a t blocklen max a i) : generate_blocks_a t blocklen max a (i + 1) =
let acc, o = acc in
let acc', block = f i acc in
let o' : s:seq t{length s == ((i + 1) * blocklen)} = Seq.append o block in
acc', o'
let generate_blocks #t len max n a f acc0 =
let a0 = (acc0, (Seq.empty <: s:seq t{length s == 0 * len})) in
repeat_gen n (generate_blocks_a t len max a) (generate_blocks_inner t len max a f) a0 | false | false | Lib.Sequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val generate_blocks_simple_a : a: Type0 -> bs: Lib.IntTypes.size_nat -> max: Prims.nat -> i: Prims.nat{i <= max} -> Type0 | [] | Lib.Sequence.generate_blocks_simple_a | {
"file_name": "lib/Lib.Sequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Type0 -> bs: Lib.IntTypes.size_nat -> max: Prims.nat -> i: Prims.nat{i <= max} -> Type0 | {
"end_col": 109,
"end_line": 210,
"start_col": 82,
"start_line": 210
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let map_inner (#a:Type) (#b:Type) (#len:size_nat)
(f:(a -> Tot b)) (s:lseq a len) (i:size_nat{i < len}) =
f s.[i] | let map_inner
(#a #b: Type)
(#len: size_nat)
(f: (a -> Tot b))
(s: lseq a len)
(i: size_nat{i < len})
= | false | null | false | f s.[ i ] | {
"checked_file": "Lib.Sequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.fst"
} | [
"total"
] | [
"Lib.IntTypes.size_nat",
"Lib.Sequence.lseq",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.Sequence.op_String_Access"
] | [] | module Lib.Sequence
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 --using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence'"
let index #a #len s n = Seq.index s n
let create #a len init = Seq.create #a len init
let concat #a #len0 #len1 s0 s1 = Seq.append s0 s1
let to_list #a s = Seq.seq_to_list s
let of_list #a l = Seq.seq_of_list #a l
let of_list_index #a l i =
Seq.lemma_seq_of_list_index #a l i
let equal #a #len s1 s2 =
forall (i:size_nat{i < len}).{:pattern (index s1 i); (index s2 i)} index s1 i == index s2 i
let eq_intro #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_intro #a (to_seq s1) (to_seq s2)
let eq_elim #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_elim #a s1 s2
let upd #a #len s n x = Seq.upd #a s n x
let member #a #len x l = Seq.count x l > 0
let sub #a #len s start n = Seq.slice #a s start (start + n)
let update_sub #a #len s start n x =
let o =
Seq.append
(Seq.append (Seq.slice s 0 start) x)
(Seq.slice s (start + n) (length s)) in
Seq.lemma_eq_intro (Seq.slice o start (start + n)) x;
o
let lemma_update_sub #a #len dst start n src res =
let res1 = update_sub dst start n src in
Seq.lemma_split (sub res 0 (start + n)) start;
Seq.lemma_split (sub res1 0 (start + n)) start;
Seq.lemma_split res (start + n);
Seq.lemma_split res1 (start + n);
Seq.lemma_eq_intro res (update_sub dst start n src)
let lemma_concat2 #a len0 s0 len1 s1 s =
Seq.Properties.lemma_split s len0;
Seq.Properties.lemma_split (concat s0 s1) len0;
Seq.lemma_eq_intro s (concat s0 s1)
let lemma_concat3 #a len0 s0 len1 s1 len2 s2 s =
let s' = concat (concat s0 s1) s2 in
Seq.Properties.lemma_split (sub s 0 (len0 + len1)) len0;
Seq.Properties.lemma_split (sub s' 0 (len0 + len1)) len0;
Seq.Properties.lemma_split s (len0 + len1);
Seq.Properties.lemma_split s' (len0 + len1);
Seq.lemma_eq_intro s (concat (concat s0 s1) s2)
let createi_a (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (k:nat{k <= len}) =
lseq a k
let createi_pred (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (k:nat{k <= len})
(s:createi_a a len init k) =
forall (i:nat).{:pattern (index s i)} i < k ==> index s i == init i
let createi_step (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (i:nat{i < len})
(si:createi_a a len init i)
: r:createi_a a len init (i + 1)
{createi_pred a len init i si ==> createi_pred a len init (i + 1) r}
=
assert (createi_pred a len init i si ==> (forall (j:nat). j < i ==> index si j == init j));
Seq.snoc si (init i)
#push-options "--max_fuel 1 --using_facts_from '+Lib.LoopCombinators +FStar.List'"
let createi #a len init_f =
repeat_gen_inductive len
(createi_a a len init_f)
(createi_pred a len init_f)
(createi_step a len init_f)
(of_list [])
#pop-options
inline_for_extraction
let mapi_inner (#a:Type) (#b:Type) (#len:size_nat)
(f:(i:nat{i < len} -> a -> b)) (s:lseq a len) (i:size_nat{i < len}) =
f i s.[i]
let mapi #a #b #len f s =
createi #b len (mapi_inner #a #b #len f s)
inline_for_extraction
let map_inner (#a:Type) (#b:Type) (#len:size_nat) | false | false | Lib.Sequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val map_inner : f: (_: a -> b) -> s: Lib.Sequence.lseq a len -> i: Lib.IntTypes.size_nat{i < len} -> b | [] | Lib.Sequence.map_inner | {
"file_name": "lib/Lib.Sequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | f: (_: a -> b) -> s: Lib.Sequence.lseq a len -> i: Lib.IntTypes.size_nat{i < len} -> b | {
"end_col": 9,
"end_line": 107,
"start_col": 2,
"start_line": 107
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let generate_blocks_a (t:Type) (blocklen:size_nat) (max:nat) (a:(i:nat{i <= max} -> Type)) (i:nat{i <= max}) = a i & s:seq t{length s == i * blocklen} | let generate_blocks_a
(t: Type)
(blocklen: size_nat)
(max: nat)
(a: (i: nat{i <= max} -> Type))
(i: nat{i <= max})
= | false | null | false | a i & s: seq t {length s == i * blocklen} | {
"checked_file": "Lib.Sequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.fst"
} | [
"total"
] | [
"Lib.IntTypes.size_nat",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"FStar.Pervasives.Native.tuple2",
"Lib.Sequence.seq",
"Prims.eq2",
"Prims.int",
"Lib.Sequence.length",
"FStar.Mul.op_Star"
] | [] | module Lib.Sequence
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 --using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence'"
let index #a #len s n = Seq.index s n
let create #a len init = Seq.create #a len init
let concat #a #len0 #len1 s0 s1 = Seq.append s0 s1
let to_list #a s = Seq.seq_to_list s
let of_list #a l = Seq.seq_of_list #a l
let of_list_index #a l i =
Seq.lemma_seq_of_list_index #a l i
let equal #a #len s1 s2 =
forall (i:size_nat{i < len}).{:pattern (index s1 i); (index s2 i)} index s1 i == index s2 i
let eq_intro #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_intro #a (to_seq s1) (to_seq s2)
let eq_elim #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_elim #a s1 s2
let upd #a #len s n x = Seq.upd #a s n x
let member #a #len x l = Seq.count x l > 0
let sub #a #len s start n = Seq.slice #a s start (start + n)
let update_sub #a #len s start n x =
let o =
Seq.append
(Seq.append (Seq.slice s 0 start) x)
(Seq.slice s (start + n) (length s)) in
Seq.lemma_eq_intro (Seq.slice o start (start + n)) x;
o
let lemma_update_sub #a #len dst start n src res =
let res1 = update_sub dst start n src in
Seq.lemma_split (sub res 0 (start + n)) start;
Seq.lemma_split (sub res1 0 (start + n)) start;
Seq.lemma_split res (start + n);
Seq.lemma_split res1 (start + n);
Seq.lemma_eq_intro res (update_sub dst start n src)
let lemma_concat2 #a len0 s0 len1 s1 s =
Seq.Properties.lemma_split s len0;
Seq.Properties.lemma_split (concat s0 s1) len0;
Seq.lemma_eq_intro s (concat s0 s1)
let lemma_concat3 #a len0 s0 len1 s1 len2 s2 s =
let s' = concat (concat s0 s1) s2 in
Seq.Properties.lemma_split (sub s 0 (len0 + len1)) len0;
Seq.Properties.lemma_split (sub s' 0 (len0 + len1)) len0;
Seq.Properties.lemma_split s (len0 + len1);
Seq.Properties.lemma_split s' (len0 + len1);
Seq.lemma_eq_intro s (concat (concat s0 s1) s2)
let createi_a (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (k:nat{k <= len}) =
lseq a k
let createi_pred (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (k:nat{k <= len})
(s:createi_a a len init k) =
forall (i:nat).{:pattern (index s i)} i < k ==> index s i == init i
let createi_step (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (i:nat{i < len})
(si:createi_a a len init i)
: r:createi_a a len init (i + 1)
{createi_pred a len init i si ==> createi_pred a len init (i + 1) r}
=
assert (createi_pred a len init i si ==> (forall (j:nat). j < i ==> index si j == init j));
Seq.snoc si (init i)
#push-options "--max_fuel 1 --using_facts_from '+Lib.LoopCombinators +FStar.List'"
let createi #a len init_f =
repeat_gen_inductive len
(createi_a a len init_f)
(createi_pred a len init_f)
(createi_step a len init_f)
(of_list [])
#pop-options
inline_for_extraction
let mapi_inner (#a:Type) (#b:Type) (#len:size_nat)
(f:(i:nat{i < len} -> a -> b)) (s:lseq a len) (i:size_nat{i < len}) =
f i s.[i]
let mapi #a #b #len f s =
createi #b len (mapi_inner #a #b #len f s)
inline_for_extraction
let map_inner (#a:Type) (#b:Type) (#len:size_nat)
(f:(a -> Tot b)) (s:lseq a len) (i:size_nat{i < len}) =
f s.[i]
let map #a #b #len f s =
createi #b len (map_inner #a #b #len f s)
let map2i #a #b #c #len f s1 s2 =
createi #c len (fun i -> f i s1.[i] s2.[i])
inline_for_extraction
let map2_inner (#a:Type) (#b:Type) (#c:Type) (#len:size_nat)
(f:(a -> b -> Tot c)) (s1:lseq a len) (s2:lseq b len) (i:size_nat{i < len}) =
f s1.[i] s2.[i]
let map2 #a #b #c #len f s1 s2 =
createi #c len (map2_inner #a #b #c #len f s1 s2)
let for_all #a #len f x = Seq.for_all f x
let for_all2 #a #b #len f x y =
let r = map2 (fun xi yi -> f xi yi) x y in
Seq.for_all (fun bi -> bi = true) r
(** Selecting a subset of an unbounded Sequence *)
val seq_sub:
#a:Type
-> s1:seq a
-> start:nat
-> n:nat{start + n <= length s1}
-> s2:seq a{length s2 == n /\
(forall (k:nat{k < n}). {:pattern (Seq.index s2 k)} Seq.index s2 k == Seq.index s1 (start + k))}
let seq_sub #a s start n =
Seq.slice #a s start (start + n)
(** Updating a subset of an unbounded Sequence with another Sequence *)
val seq_update_sub:
#a:Type
-> i:seq a
-> start:nat
-> n:nat{start + n <= length i}
-> x:seq a{length x == n}
-> o:seq a{length o == length i /\ seq_sub o start n == x /\
(forall (k:nat{(0 <= k /\ k < start) \/ (start + n <= k /\ k < length i)}).
{:pattern (Seq.index o k)} Seq.index o k == Seq.index i k)}
let seq_update_sub #a s start n x =
let o =
Seq.append
(Seq.append (Seq.slice s 0 start) x)
(Seq.slice s (start + n) (length s)) in
Seq.lemma_eq_intro (Seq.slice o start (start + n)) x;
o
val repeati_blocks_f:
#a:Type0
-> #b:Type0
-> blocksize:size_nat{blocksize > 0}
-> inp:seq a
-> f:(i:nat{i < length inp / blocksize} -> lseq a blocksize -> b -> b)
-> nb:nat{nb == length inp / blocksize}
-> i:nat{i < nb}
-> acc:b
-> b
let repeati_blocks_f #a #b bs inp f nb i acc =
assert ((i+1) * bs <= nb * bs);
let block = seq_sub inp (i * bs) bs in
f i block acc
let repeati_blocks #a #b bs inp f g init =
let len = length inp in
let nb = len / bs in
let rem = len % bs in
let acc = repeati nb (repeati_blocks_f bs inp f nb) init in
let last = seq_sub inp (nb * bs) rem in
g nb rem last acc
let repeat_blocks #a #b #c bs inp f l init =
let len = length inp in
let nb = len / bs in
let rem = len % bs in
let acc = repeati nb (repeat_blocks_f bs inp f nb) init in
let last = seq_sub inp (nb * bs) rem in
l rem last acc
let lemma_repeat_blocks #a #b #c bs inp f l init = ()
let repeat_blocks_multi #a #b bs inp f init =
let len = length inp in
let nb = len / bs in
repeati nb (repeat_blocks_f bs inp f nb) init
let lemma_repeat_blocks_multi #a #b bs inp f init = () | false | false | Lib.Sequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val generate_blocks_a : t: Type0 ->
blocklen: Lib.IntTypes.size_nat ->
max: Prims.nat ->
a: (i: Prims.nat{i <= max} -> Type) ->
i: Prims.nat{i <= max}
-> Type | [] | Lib.Sequence.generate_blocks_a | {
"file_name": "lib/Lib.Sequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
t: Type0 ->
blocklen: Lib.IntTypes.size_nat ->
max: Prims.nat ->
a: (i: Prims.nat{i <= max} -> Type) ->
i: Prims.nat{i <= max}
-> Type | {
"end_col": 150,
"end_line": 198,
"start_col": 111,
"start_line": 198
} |
|
Prims.Tot | val for_all:#a:Type -> #len:size_nat -> (a -> Tot bool) -> lseq a len -> bool | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let for_all #a #len f x = Seq.for_all f x | val for_all:#a:Type -> #len:size_nat -> (a -> Tot bool) -> lseq a len -> bool
let for_all #a #len f x = | false | null | false | Seq.for_all f x | {
"checked_file": "Lib.Sequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.fst"
} | [
"total"
] | [
"Lib.IntTypes.size_nat",
"Prims.bool",
"Lib.Sequence.lseq",
"FStar.Seq.Properties.for_all"
] | [] | module Lib.Sequence
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 --using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence'"
let index #a #len s n = Seq.index s n
let create #a len init = Seq.create #a len init
let concat #a #len0 #len1 s0 s1 = Seq.append s0 s1
let to_list #a s = Seq.seq_to_list s
let of_list #a l = Seq.seq_of_list #a l
let of_list_index #a l i =
Seq.lemma_seq_of_list_index #a l i
let equal #a #len s1 s2 =
forall (i:size_nat{i < len}).{:pattern (index s1 i); (index s2 i)} index s1 i == index s2 i
let eq_intro #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_intro #a (to_seq s1) (to_seq s2)
let eq_elim #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_elim #a s1 s2
let upd #a #len s n x = Seq.upd #a s n x
let member #a #len x l = Seq.count x l > 0
let sub #a #len s start n = Seq.slice #a s start (start + n)
let update_sub #a #len s start n x =
let o =
Seq.append
(Seq.append (Seq.slice s 0 start) x)
(Seq.slice s (start + n) (length s)) in
Seq.lemma_eq_intro (Seq.slice o start (start + n)) x;
o
let lemma_update_sub #a #len dst start n src res =
let res1 = update_sub dst start n src in
Seq.lemma_split (sub res 0 (start + n)) start;
Seq.lemma_split (sub res1 0 (start + n)) start;
Seq.lemma_split res (start + n);
Seq.lemma_split res1 (start + n);
Seq.lemma_eq_intro res (update_sub dst start n src)
let lemma_concat2 #a len0 s0 len1 s1 s =
Seq.Properties.lemma_split s len0;
Seq.Properties.lemma_split (concat s0 s1) len0;
Seq.lemma_eq_intro s (concat s0 s1)
let lemma_concat3 #a len0 s0 len1 s1 len2 s2 s =
let s' = concat (concat s0 s1) s2 in
Seq.Properties.lemma_split (sub s 0 (len0 + len1)) len0;
Seq.Properties.lemma_split (sub s' 0 (len0 + len1)) len0;
Seq.Properties.lemma_split s (len0 + len1);
Seq.Properties.lemma_split s' (len0 + len1);
Seq.lemma_eq_intro s (concat (concat s0 s1) s2)
let createi_a (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (k:nat{k <= len}) =
lseq a k
let createi_pred (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (k:nat{k <= len})
(s:createi_a a len init k) =
forall (i:nat).{:pattern (index s i)} i < k ==> index s i == init i
let createi_step (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (i:nat{i < len})
(si:createi_a a len init i)
: r:createi_a a len init (i + 1)
{createi_pred a len init i si ==> createi_pred a len init (i + 1) r}
=
assert (createi_pred a len init i si ==> (forall (j:nat). j < i ==> index si j == init j));
Seq.snoc si (init i)
#push-options "--max_fuel 1 --using_facts_from '+Lib.LoopCombinators +FStar.List'"
let createi #a len init_f =
repeat_gen_inductive len
(createi_a a len init_f)
(createi_pred a len init_f)
(createi_step a len init_f)
(of_list [])
#pop-options
inline_for_extraction
let mapi_inner (#a:Type) (#b:Type) (#len:size_nat)
(f:(i:nat{i < len} -> a -> b)) (s:lseq a len) (i:size_nat{i < len}) =
f i s.[i]
let mapi #a #b #len f s =
createi #b len (mapi_inner #a #b #len f s)
inline_for_extraction
let map_inner (#a:Type) (#b:Type) (#len:size_nat)
(f:(a -> Tot b)) (s:lseq a len) (i:size_nat{i < len}) =
f s.[i]
let map #a #b #len f s =
createi #b len (map_inner #a #b #len f s)
let map2i #a #b #c #len f s1 s2 =
createi #c len (fun i -> f i s1.[i] s2.[i])
inline_for_extraction
let map2_inner (#a:Type) (#b:Type) (#c:Type) (#len:size_nat)
(f:(a -> b -> Tot c)) (s1:lseq a len) (s2:lseq b len) (i:size_nat{i < len}) =
f s1.[i] s2.[i]
let map2 #a #b #c #len f s1 s2 =
createi #c len (map2_inner #a #b #c #len f s1 s2) | false | false | Lib.Sequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val for_all:#a:Type -> #len:size_nat -> (a -> Tot bool) -> lseq a len -> bool | [] | Lib.Sequence.for_all | {
"file_name": "lib/Lib.Sequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | f: (_: a -> Prims.bool) -> x: Lib.Sequence.lseq a len -> Prims.bool | {
"end_col": 41,
"end_line": 123,
"start_col": 26,
"start_line": 123
} |
Prims.Tot | val equal (#a:Type) (#len:size_nat) (s1:lseq a len) (s2:lseq a len) : Type0 | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let equal #a #len s1 s2 =
forall (i:size_nat{i < len}).{:pattern (index s1 i); (index s2 i)} index s1 i == index s2 i | val equal (#a:Type) (#len:size_nat) (s1:lseq a len) (s2:lseq a len) : Type0
let equal #a #len s1 s2 = | false | null | false | forall (i: size_nat{i < len}). {:pattern (index s1 i); (index s2 i)} index s1 i == index s2 i | {
"checked_file": "Lib.Sequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.fst"
} | [
"total"
] | [
"Lib.IntTypes.size_nat",
"Lib.Sequence.lseq",
"Prims.l_Forall",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.eq2",
"Prims.l_or",
"FStar.Seq.Base.index",
"Lib.Sequence.to_seq",
"Lib.Sequence.index"
] | [] | module Lib.Sequence
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 --using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence'"
let index #a #len s n = Seq.index s n
let create #a len init = Seq.create #a len init
let concat #a #len0 #len1 s0 s1 = Seq.append s0 s1
let to_list #a s = Seq.seq_to_list s
let of_list #a l = Seq.seq_of_list #a l
let of_list_index #a l i =
Seq.lemma_seq_of_list_index #a l i | false | false | Lib.Sequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val equal (#a:Type) (#len:size_nat) (s1:lseq a len) (s2:lseq a len) : Type0 | [] | Lib.Sequence.equal | {
"file_name": "lib/Lib.Sequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | s1: Lib.Sequence.lseq a len -> s2: Lib.Sequence.lseq a len -> Type0 | {
"end_col": 93,
"end_line": 23,
"start_col": 2,
"start_line": 23
} |
Prims.Tot | val index:
#a:Type
-> #len:size_nat
-> s:lseq a len
-> i:size_nat{i < len} ->
Tot (r:a{r == Seq.index (to_seq s) i}) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let index #a #len s n = Seq.index s n | val index:
#a:Type
-> #len:size_nat
-> s:lseq a len
-> i:size_nat{i < len} ->
Tot (r:a{r == Seq.index (to_seq s) i})
let index #a #len s n = | false | null | false | Seq.index s n | {
"checked_file": "Lib.Sequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.fst"
} | [
"total"
] | [
"Lib.IntTypes.size_nat",
"Lib.Sequence.lseq",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.Seq.Base.index",
"Prims.eq2",
"Lib.Sequence.to_seq"
] | [] | module Lib.Sequence
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 --using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence'" | false | false | Lib.Sequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val index:
#a:Type
-> #len:size_nat
-> s:lseq a len
-> i:size_nat{i < len} ->
Tot (r:a{r == Seq.index (to_seq s) i}) | [] | Lib.Sequence.index | {
"file_name": "lib/Lib.Sequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | s: Lib.Sequence.lseq a len -> i: Lib.IntTypes.size_nat{i < len}
-> r: a{r == FStar.Seq.Base.index (Lib.Sequence.to_seq s) i} | {
"end_col": 37,
"end_line": 9,
"start_col": 24,
"start_line": 9
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let mapi_inner (#a:Type) (#b:Type) (#len:size_nat)
(f:(i:nat{i < len} -> a -> b)) (s:lseq a len) (i:size_nat{i < len}) =
f i s.[i] | let mapi_inner
(#a #b: Type)
(#len: size_nat)
(f: (i: nat{i < len} -> a -> b))
(s: lseq a len)
(i: size_nat{i < len})
= | false | null | false | f i s.[ i ] | {
"checked_file": "Lib.Sequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.fst"
} | [
"total"
] | [
"Lib.IntTypes.size_nat",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.Sequence.lseq",
"Lib.Sequence.op_String_Access"
] | [] | module Lib.Sequence
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 --using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence'"
let index #a #len s n = Seq.index s n
let create #a len init = Seq.create #a len init
let concat #a #len0 #len1 s0 s1 = Seq.append s0 s1
let to_list #a s = Seq.seq_to_list s
let of_list #a l = Seq.seq_of_list #a l
let of_list_index #a l i =
Seq.lemma_seq_of_list_index #a l i
let equal #a #len s1 s2 =
forall (i:size_nat{i < len}).{:pattern (index s1 i); (index s2 i)} index s1 i == index s2 i
let eq_intro #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_intro #a (to_seq s1) (to_seq s2)
let eq_elim #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_elim #a s1 s2
let upd #a #len s n x = Seq.upd #a s n x
let member #a #len x l = Seq.count x l > 0
let sub #a #len s start n = Seq.slice #a s start (start + n)
let update_sub #a #len s start n x =
let o =
Seq.append
(Seq.append (Seq.slice s 0 start) x)
(Seq.slice s (start + n) (length s)) in
Seq.lemma_eq_intro (Seq.slice o start (start + n)) x;
o
let lemma_update_sub #a #len dst start n src res =
let res1 = update_sub dst start n src in
Seq.lemma_split (sub res 0 (start + n)) start;
Seq.lemma_split (sub res1 0 (start + n)) start;
Seq.lemma_split res (start + n);
Seq.lemma_split res1 (start + n);
Seq.lemma_eq_intro res (update_sub dst start n src)
let lemma_concat2 #a len0 s0 len1 s1 s =
Seq.Properties.lemma_split s len0;
Seq.Properties.lemma_split (concat s0 s1) len0;
Seq.lemma_eq_intro s (concat s0 s1)
let lemma_concat3 #a len0 s0 len1 s1 len2 s2 s =
let s' = concat (concat s0 s1) s2 in
Seq.Properties.lemma_split (sub s 0 (len0 + len1)) len0;
Seq.Properties.lemma_split (sub s' 0 (len0 + len1)) len0;
Seq.Properties.lemma_split s (len0 + len1);
Seq.Properties.lemma_split s' (len0 + len1);
Seq.lemma_eq_intro s (concat (concat s0 s1) s2)
let createi_a (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (k:nat{k <= len}) =
lseq a k
let createi_pred (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (k:nat{k <= len})
(s:createi_a a len init k) =
forall (i:nat).{:pattern (index s i)} i < k ==> index s i == init i
let createi_step (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (i:nat{i < len})
(si:createi_a a len init i)
: r:createi_a a len init (i + 1)
{createi_pred a len init i si ==> createi_pred a len init (i + 1) r}
=
assert (createi_pred a len init i si ==> (forall (j:nat). j < i ==> index si j == init j));
Seq.snoc si (init i)
#push-options "--max_fuel 1 --using_facts_from '+Lib.LoopCombinators +FStar.List'"
let createi #a len init_f =
repeat_gen_inductive len
(createi_a a len init_f)
(createi_pred a len init_f)
(createi_step a len init_f)
(of_list [])
#pop-options
inline_for_extraction
let mapi_inner (#a:Type) (#b:Type) (#len:size_nat) | false | false | Lib.Sequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val mapi_inner : f: (i: Prims.nat{i < len} -> _: a -> b) ->
s: Lib.Sequence.lseq a len ->
i: Lib.IntTypes.size_nat{i < len}
-> b | [] | Lib.Sequence.mapi_inner | {
"file_name": "lib/Lib.Sequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
f: (i: Prims.nat{i < len} -> _: a -> b) ->
s: Lib.Sequence.lseq a len ->
i: Lib.IntTypes.size_nat{i < len}
-> b | {
"end_col": 11,
"end_line": 99,
"start_col": 2,
"start_line": 99
} |
|
FStar.Pervasives.Lemma | val eq_elim: #a:Type -> #len:size_nat -> s1:lseq a len -> s2:lseq a len ->
Lemma
(requires equal s1 s2)
(ensures s1 == s2)
[SMTPat (equal s1 s2)] | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let eq_elim #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_elim #a s1 s2 | val eq_elim: #a:Type -> #len:size_nat -> s1:lseq a len -> s2:lseq a len ->
Lemma
(requires equal s1 s2)
(ensures s1 == s2)
[SMTPat (equal s1 s2)]
let eq_elim #a #len s1 s2 = | false | null | true | assert (forall (i: nat{i < len}). {:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_elim #a s1 s2 | {
"checked_file": "Lib.Sequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.size_nat",
"Lib.Sequence.lseq",
"FStar.Seq.Base.lemma_eq_elim",
"Prims.unit",
"Prims._assert",
"Prims.l_Forall",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.eq2",
"Prims.l_or",
"FStar.Seq.Base.index",
"Lib.Sequence.to_seq",
"Lib.Sequence.index"
] | [] | module Lib.Sequence
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 --using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence'"
let index #a #len s n = Seq.index s n
let create #a len init = Seq.create #a len init
let concat #a #len0 #len1 s0 s1 = Seq.append s0 s1
let to_list #a s = Seq.seq_to_list s
let of_list #a l = Seq.seq_of_list #a l
let of_list_index #a l i =
Seq.lemma_seq_of_list_index #a l i
let equal #a #len s1 s2 =
forall (i:size_nat{i < len}).{:pattern (index s1 i); (index s2 i)} index s1 i == index s2 i
let eq_intro #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_intro #a (to_seq s1) (to_seq s2) | false | false | Lib.Sequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val eq_elim: #a:Type -> #len:size_nat -> s1:lseq a len -> s2:lseq a len ->
Lemma
(requires equal s1 s2)
(ensures s1 == s2)
[SMTPat (equal s1 s2)] | [] | Lib.Sequence.eq_elim | {
"file_name": "lib/Lib.Sequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | s1: Lib.Sequence.lseq a len -> s2: Lib.Sequence.lseq a len
-> FStar.Pervasives.Lemma (requires Lib.Sequence.equal s1 s2)
(ensures s1 == s2)
[SMTPat (Lib.Sequence.equal s1 s2)] | {
"end_col": 28,
"end_line": 33,
"start_col": 2,
"start_line": 31
} |
Prims.Tot | val concat:
#a:Type
-> #len0:size_nat
-> #len1:size_nat{len0 + len1 <= max_size_t}
-> s0:lseq a len0
-> s1:lseq a len1 ->
Tot (s2:lseq a (len0 + len1){to_seq s2 == Seq.append (to_seq s0) (to_seq s1)}) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let concat #a #len0 #len1 s0 s1 = Seq.append s0 s1 | val concat:
#a:Type
-> #len0:size_nat
-> #len1:size_nat{len0 + len1 <= max_size_t}
-> s0:lseq a len0
-> s1:lseq a len1 ->
Tot (s2:lseq a (len0 + len1){to_seq s2 == Seq.append (to_seq s0) (to_seq s1)})
let concat #a #len0 #len1 s0 s1 = | false | null | false | Seq.append s0 s1 | {
"checked_file": "Lib.Sequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.fst"
} | [
"total"
] | [
"Lib.IntTypes.size_nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"Lib.IntTypes.max_size_t",
"Lib.Sequence.lseq",
"FStar.Seq.Base.append",
"Prims.eq2",
"FStar.Seq.Base.seq",
"Lib.Sequence.to_seq"
] | [] | module Lib.Sequence
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 --using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence'"
let index #a #len s n = Seq.index s n
let create #a len init = Seq.create #a len init | false | false | Lib.Sequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val concat:
#a:Type
-> #len0:size_nat
-> #len1:size_nat{len0 + len1 <= max_size_t}
-> s0:lseq a len0
-> s1:lseq a len1 ->
Tot (s2:lseq a (len0 + len1){to_seq s2 == Seq.append (to_seq s0) (to_seq s1)}) | [] | Lib.Sequence.concat | {
"file_name": "lib/Lib.Sequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | s0: Lib.Sequence.lseq a len0 -> s1: Lib.Sequence.lseq a len1
-> s2:
Lib.Sequence.lseq a (len0 + len1)
{ Lib.Sequence.to_seq s2 ==
FStar.Seq.Base.append (Lib.Sequence.to_seq s0) (Lib.Sequence.to_seq s1) } | {
"end_col": 50,
"end_line": 13,
"start_col": 34,
"start_line": 13
} |
FStar.Pervasives.Lemma | val of_list_index:
#a:Type
-> l:list a{List.Tot.length l <= max_size_t}
-> i:nat{i < List.Tot.length l} ->
Lemma (index (of_list l) i == List.Tot.index l i)
[SMTPat (index (of_list l) i)] | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let of_list_index #a l i =
Seq.lemma_seq_of_list_index #a l i | val of_list_index:
#a:Type
-> l:list a{List.Tot.length l <= max_size_t}
-> i:nat{i < List.Tot.length l} ->
Lemma (index (of_list l) i == List.Tot.index l i)
[SMTPat (index (of_list l) i)]
let of_list_index #a l i = | false | null | true | Seq.lemma_seq_of_list_index #a l i | {
"checked_file": "Lib.Sequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.fst"
} | [
"lemma"
] | [
"Prims.list",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"FStar.List.Tot.Base.length",
"Lib.IntTypes.max_size_t",
"Prims.nat",
"Prims.op_LessThan",
"FStar.Seq.Properties.lemma_seq_of_list_index",
"Prims.unit"
] | [] | module Lib.Sequence
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 --using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence'"
let index #a #len s n = Seq.index s n
let create #a len init = Seq.create #a len init
let concat #a #len0 #len1 s0 s1 = Seq.append s0 s1
let to_list #a s = Seq.seq_to_list s
let of_list #a l = Seq.seq_of_list #a l | false | false | Lib.Sequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val of_list_index:
#a:Type
-> l:list a{List.Tot.length l <= max_size_t}
-> i:nat{i < List.Tot.length l} ->
Lemma (index (of_list l) i == List.Tot.index l i)
[SMTPat (index (of_list l) i)] | [] | Lib.Sequence.of_list_index | {
"file_name": "lib/Lib.Sequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
l: Prims.list a {FStar.List.Tot.Base.length l <= Lib.IntTypes.max_size_t} ->
i: Prims.nat{i < FStar.List.Tot.Base.length l}
-> FStar.Pervasives.Lemma
(ensures Lib.Sequence.index (Lib.Sequence.of_list l) i == FStar.List.Tot.Base.index l i)
[SMTPat (Lib.Sequence.index (Lib.Sequence.of_list l) i)] | {
"end_col": 36,
"end_line": 20,
"start_col": 2,
"start_line": 20
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let createi_a (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (k:nat{k <= len}) =
lseq a k | let createi_a (a: Type) (len: size_nat) (init: (i: nat{i < len} -> a)) (k: nat{k <= len}) = | false | null | false | lseq a k | {
"checked_file": "Lib.Sequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.fst"
} | [
"total"
] | [
"Lib.IntTypes.size_nat",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.op_LessThanOrEqual",
"Lib.Sequence.lseq"
] | [] | module Lib.Sequence
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 --using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence'"
let index #a #len s n = Seq.index s n
let create #a len init = Seq.create #a len init
let concat #a #len0 #len1 s0 s1 = Seq.append s0 s1
let to_list #a s = Seq.seq_to_list s
let of_list #a l = Seq.seq_of_list #a l
let of_list_index #a l i =
Seq.lemma_seq_of_list_index #a l i
let equal #a #len s1 s2 =
forall (i:size_nat{i < len}).{:pattern (index s1 i); (index s2 i)} index s1 i == index s2 i
let eq_intro #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_intro #a (to_seq s1) (to_seq s2)
let eq_elim #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_elim #a s1 s2
let upd #a #len s n x = Seq.upd #a s n x
let member #a #len x l = Seq.count x l > 0
let sub #a #len s start n = Seq.slice #a s start (start + n)
let update_sub #a #len s start n x =
let o =
Seq.append
(Seq.append (Seq.slice s 0 start) x)
(Seq.slice s (start + n) (length s)) in
Seq.lemma_eq_intro (Seq.slice o start (start + n)) x;
o
let lemma_update_sub #a #len dst start n src res =
let res1 = update_sub dst start n src in
Seq.lemma_split (sub res 0 (start + n)) start;
Seq.lemma_split (sub res1 0 (start + n)) start;
Seq.lemma_split res (start + n);
Seq.lemma_split res1 (start + n);
Seq.lemma_eq_intro res (update_sub dst start n src)
let lemma_concat2 #a len0 s0 len1 s1 s =
Seq.Properties.lemma_split s len0;
Seq.Properties.lemma_split (concat s0 s1) len0;
Seq.lemma_eq_intro s (concat s0 s1)
let lemma_concat3 #a len0 s0 len1 s1 len2 s2 s =
let s' = concat (concat s0 s1) s2 in
Seq.Properties.lemma_split (sub s 0 (len0 + len1)) len0;
Seq.Properties.lemma_split (sub s' 0 (len0 + len1)) len0;
Seq.Properties.lemma_split s (len0 + len1);
Seq.Properties.lemma_split s' (len0 + len1);
Seq.lemma_eq_intro s (concat (concat s0 s1) s2) | false | false | Lib.Sequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val createi_a : a: Type0 ->
len: Lib.IntTypes.size_nat ->
init: (i: Prims.nat{i < len} -> a) ->
k: Prims.nat{k <= len}
-> Type0 | [] | Lib.Sequence.createi_a | {
"file_name": "lib/Lib.Sequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
a: Type0 ->
len: Lib.IntTypes.size_nat ->
init: (i: Prims.nat{i < len} -> a) ->
k: Prims.nat{k <= len}
-> Type0 | {
"end_col": 10,
"end_line": 71,
"start_col": 2,
"start_line": 71
} |
|
Prims.Tot | val for_all2:#a:Type -> #b:Type -> #len:size_nat
-> (a -> b -> Tot bool)
-> s1:lseq a len
-> s2:lseq b len ->
Tot bool | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let for_all2 #a #b #len f x y =
let r = map2 (fun xi yi -> f xi yi) x y in
Seq.for_all (fun bi -> bi = true) r | val for_all2:#a:Type -> #b:Type -> #len:size_nat
-> (a -> b -> Tot bool)
-> s1:lseq a len
-> s2:lseq b len ->
Tot bool
let for_all2 #a #b #len f x y = | false | null | false | let r = map2 (fun xi yi -> f xi yi) x y in
Seq.for_all (fun bi -> bi = true) r | {
"checked_file": "Lib.Sequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.fst"
} | [
"total"
] | [
"Lib.IntTypes.size_nat",
"Prims.bool",
"Lib.Sequence.lseq",
"FStar.Seq.Properties.for_all",
"Prims.op_Equality",
"Prims.l_Forall",
"Prims.nat",
"Prims.l_imp",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.eq2",
"Lib.Sequence.index",
"Lib.Sequence.map2"
] | [] | module Lib.Sequence
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 --using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence'"
let index #a #len s n = Seq.index s n
let create #a len init = Seq.create #a len init
let concat #a #len0 #len1 s0 s1 = Seq.append s0 s1
let to_list #a s = Seq.seq_to_list s
let of_list #a l = Seq.seq_of_list #a l
let of_list_index #a l i =
Seq.lemma_seq_of_list_index #a l i
let equal #a #len s1 s2 =
forall (i:size_nat{i < len}).{:pattern (index s1 i); (index s2 i)} index s1 i == index s2 i
let eq_intro #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_intro #a (to_seq s1) (to_seq s2)
let eq_elim #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_elim #a s1 s2
let upd #a #len s n x = Seq.upd #a s n x
let member #a #len x l = Seq.count x l > 0
let sub #a #len s start n = Seq.slice #a s start (start + n)
let update_sub #a #len s start n x =
let o =
Seq.append
(Seq.append (Seq.slice s 0 start) x)
(Seq.slice s (start + n) (length s)) in
Seq.lemma_eq_intro (Seq.slice o start (start + n)) x;
o
let lemma_update_sub #a #len dst start n src res =
let res1 = update_sub dst start n src in
Seq.lemma_split (sub res 0 (start + n)) start;
Seq.lemma_split (sub res1 0 (start + n)) start;
Seq.lemma_split res (start + n);
Seq.lemma_split res1 (start + n);
Seq.lemma_eq_intro res (update_sub dst start n src)
let lemma_concat2 #a len0 s0 len1 s1 s =
Seq.Properties.lemma_split s len0;
Seq.Properties.lemma_split (concat s0 s1) len0;
Seq.lemma_eq_intro s (concat s0 s1)
let lemma_concat3 #a len0 s0 len1 s1 len2 s2 s =
let s' = concat (concat s0 s1) s2 in
Seq.Properties.lemma_split (sub s 0 (len0 + len1)) len0;
Seq.Properties.lemma_split (sub s' 0 (len0 + len1)) len0;
Seq.Properties.lemma_split s (len0 + len1);
Seq.Properties.lemma_split s' (len0 + len1);
Seq.lemma_eq_intro s (concat (concat s0 s1) s2)
let createi_a (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (k:nat{k <= len}) =
lseq a k
let createi_pred (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (k:nat{k <= len})
(s:createi_a a len init k) =
forall (i:nat).{:pattern (index s i)} i < k ==> index s i == init i
let createi_step (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (i:nat{i < len})
(si:createi_a a len init i)
: r:createi_a a len init (i + 1)
{createi_pred a len init i si ==> createi_pred a len init (i + 1) r}
=
assert (createi_pred a len init i si ==> (forall (j:nat). j < i ==> index si j == init j));
Seq.snoc si (init i)
#push-options "--max_fuel 1 --using_facts_from '+Lib.LoopCombinators +FStar.List'"
let createi #a len init_f =
repeat_gen_inductive len
(createi_a a len init_f)
(createi_pred a len init_f)
(createi_step a len init_f)
(of_list [])
#pop-options
inline_for_extraction
let mapi_inner (#a:Type) (#b:Type) (#len:size_nat)
(f:(i:nat{i < len} -> a -> b)) (s:lseq a len) (i:size_nat{i < len}) =
f i s.[i]
let mapi #a #b #len f s =
createi #b len (mapi_inner #a #b #len f s)
inline_for_extraction
let map_inner (#a:Type) (#b:Type) (#len:size_nat)
(f:(a -> Tot b)) (s:lseq a len) (i:size_nat{i < len}) =
f s.[i]
let map #a #b #len f s =
createi #b len (map_inner #a #b #len f s)
let map2i #a #b #c #len f s1 s2 =
createi #c len (fun i -> f i s1.[i] s2.[i])
inline_for_extraction
let map2_inner (#a:Type) (#b:Type) (#c:Type) (#len:size_nat)
(f:(a -> b -> Tot c)) (s1:lseq a len) (s2:lseq b len) (i:size_nat{i < len}) =
f s1.[i] s2.[i]
let map2 #a #b #c #len f s1 s2 =
createi #c len (map2_inner #a #b #c #len f s1 s2)
let for_all #a #len f x = Seq.for_all f x | false | false | Lib.Sequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val for_all2:#a:Type -> #b:Type -> #len:size_nat
-> (a -> b -> Tot bool)
-> s1:lseq a len
-> s2:lseq b len ->
Tot bool | [] | Lib.Sequence.for_all2 | {
"file_name": "lib/Lib.Sequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | f: (_: a -> _: b -> Prims.bool) -> s1: Lib.Sequence.lseq a len -> s2: Lib.Sequence.lseq b len
-> Prims.bool | {
"end_col": 37,
"end_line": 127,
"start_col": 31,
"start_line": 125
} |
Prims.Tot | val of_list:
#a:Type
-> l:list a{List.Tot.length l <= max_size_t} ->
Tot (s:lseq a (List.Tot.length l){to_seq s == Seq.seq_of_list l}) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let of_list #a l = Seq.seq_of_list #a l | val of_list:
#a:Type
-> l:list a{List.Tot.length l <= max_size_t} ->
Tot (s:lseq a (List.Tot.length l){to_seq s == Seq.seq_of_list l})
let of_list #a l = | false | null | false | Seq.seq_of_list #a l | {
"checked_file": "Lib.Sequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.fst"
} | [
"total"
] | [
"Prims.list",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"FStar.List.Tot.Base.length",
"Lib.IntTypes.max_size_t",
"FStar.Seq.Properties.seq_of_list",
"Lib.Sequence.lseq",
"Prims.eq2",
"FStar.Seq.Base.seq",
"Lib.Sequence.to_seq"
] | [] | module Lib.Sequence
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 --using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence'"
let index #a #len s n = Seq.index s n
let create #a len init = Seq.create #a len init
let concat #a #len0 #len1 s0 s1 = Seq.append s0 s1
let to_list #a s = Seq.seq_to_list s | false | false | Lib.Sequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val of_list:
#a:Type
-> l:list a{List.Tot.length l <= max_size_t} ->
Tot (s:lseq a (List.Tot.length l){to_seq s == Seq.seq_of_list l}) | [] | Lib.Sequence.of_list | {
"file_name": "lib/Lib.Sequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | l: Prims.list a {FStar.List.Tot.Base.length l <= Lib.IntTypes.max_size_t}
-> s:
Lib.Sequence.lseq a (FStar.List.Tot.Base.length l)
{Lib.Sequence.to_seq s == FStar.Seq.Properties.seq_of_list l} | {
"end_col": 39,
"end_line": 17,
"start_col": 19,
"start_line": 17
} |
Prims.Tot | val to_list:
#a:Type
-> s:seq a ->
Tot (l:list a{List.Tot.length l = length s /\ l == Seq.seq_to_list s}) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let to_list #a s = Seq.seq_to_list s | val to_list:
#a:Type
-> s:seq a ->
Tot (l:list a{List.Tot.length l = length s /\ l == Seq.seq_to_list s})
let to_list #a s = | false | null | false | Seq.seq_to_list s | {
"checked_file": "Lib.Sequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.fst"
} | [
"total"
] | [
"Lib.Sequence.seq",
"FStar.Seq.Properties.seq_to_list",
"Prims.list",
"Prims.l_and",
"Prims.b2t",
"Prims.op_Equality",
"Prims.nat",
"FStar.List.Tot.Base.length",
"Lib.Sequence.length",
"Prims.eq2"
] | [] | module Lib.Sequence
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 --using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence'"
let index #a #len s n = Seq.index s n
let create #a len init = Seq.create #a len init
let concat #a #len0 #len1 s0 s1 = Seq.append s0 s1 | false | false | Lib.Sequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val to_list:
#a:Type
-> s:seq a ->
Tot (l:list a{List.Tot.length l = length s /\ l == Seq.seq_to_list s}) | [] | Lib.Sequence.to_list | {
"file_name": "lib/Lib.Sequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | s: Lib.Sequence.seq a
-> l:
Prims.list a
{ FStar.List.Tot.Base.length l = Lib.Sequence.length s /\
l == FStar.Seq.Properties.seq_to_list s } | {
"end_col": 36,
"end_line": 15,
"start_col": 19,
"start_line": 15
} |
Prims.Tot | val mapi:#a:Type -> #b:Type -> #len:size_nat
-> f:(i:nat{i < len} -> a -> Tot b)
-> s1:lseq a len ->
Tot (s2:lseq b len{(forall (i:nat).
{:pattern (index s2 i)} i < len ==> index s2 i == f i s1.[i])}) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let mapi #a #b #len f s =
createi #b len (mapi_inner #a #b #len f s) | val mapi:#a:Type -> #b:Type -> #len:size_nat
-> f:(i:nat{i < len} -> a -> Tot b)
-> s1:lseq a len ->
Tot (s2:lseq b len{(forall (i:nat).
{:pattern (index s2 i)} i < len ==> index s2 i == f i s1.[i])})
let mapi #a #b #len f s = | false | null | false | createi #b len (mapi_inner #a #b #len f s) | {
"checked_file": "Lib.Sequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.fst"
} | [
"total"
] | [
"Lib.IntTypes.size_nat",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.Sequence.lseq",
"Lib.Sequence.createi",
"Lib.Sequence.mapi_inner",
"Prims.l_Forall",
"Prims.l_imp",
"Prims.eq2",
"Lib.Sequence.index",
"Lib.Sequence.op_String_Access"
] | [] | module Lib.Sequence
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 --using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence'"
let index #a #len s n = Seq.index s n
let create #a len init = Seq.create #a len init
let concat #a #len0 #len1 s0 s1 = Seq.append s0 s1
let to_list #a s = Seq.seq_to_list s
let of_list #a l = Seq.seq_of_list #a l
let of_list_index #a l i =
Seq.lemma_seq_of_list_index #a l i
let equal #a #len s1 s2 =
forall (i:size_nat{i < len}).{:pattern (index s1 i); (index s2 i)} index s1 i == index s2 i
let eq_intro #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_intro #a (to_seq s1) (to_seq s2)
let eq_elim #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_elim #a s1 s2
let upd #a #len s n x = Seq.upd #a s n x
let member #a #len x l = Seq.count x l > 0
let sub #a #len s start n = Seq.slice #a s start (start + n)
let update_sub #a #len s start n x =
let o =
Seq.append
(Seq.append (Seq.slice s 0 start) x)
(Seq.slice s (start + n) (length s)) in
Seq.lemma_eq_intro (Seq.slice o start (start + n)) x;
o
let lemma_update_sub #a #len dst start n src res =
let res1 = update_sub dst start n src in
Seq.lemma_split (sub res 0 (start + n)) start;
Seq.lemma_split (sub res1 0 (start + n)) start;
Seq.lemma_split res (start + n);
Seq.lemma_split res1 (start + n);
Seq.lemma_eq_intro res (update_sub dst start n src)
let lemma_concat2 #a len0 s0 len1 s1 s =
Seq.Properties.lemma_split s len0;
Seq.Properties.lemma_split (concat s0 s1) len0;
Seq.lemma_eq_intro s (concat s0 s1)
let lemma_concat3 #a len0 s0 len1 s1 len2 s2 s =
let s' = concat (concat s0 s1) s2 in
Seq.Properties.lemma_split (sub s 0 (len0 + len1)) len0;
Seq.Properties.lemma_split (sub s' 0 (len0 + len1)) len0;
Seq.Properties.lemma_split s (len0 + len1);
Seq.Properties.lemma_split s' (len0 + len1);
Seq.lemma_eq_intro s (concat (concat s0 s1) s2)
let createi_a (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (k:nat{k <= len}) =
lseq a k
let createi_pred (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (k:nat{k <= len})
(s:createi_a a len init k) =
forall (i:nat).{:pattern (index s i)} i < k ==> index s i == init i
let createi_step (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (i:nat{i < len})
(si:createi_a a len init i)
: r:createi_a a len init (i + 1)
{createi_pred a len init i si ==> createi_pred a len init (i + 1) r}
=
assert (createi_pred a len init i si ==> (forall (j:nat). j < i ==> index si j == init j));
Seq.snoc si (init i)
#push-options "--max_fuel 1 --using_facts_from '+Lib.LoopCombinators +FStar.List'"
let createi #a len init_f =
repeat_gen_inductive len
(createi_a a len init_f)
(createi_pred a len init_f)
(createi_step a len init_f)
(of_list [])
#pop-options
inline_for_extraction
let mapi_inner (#a:Type) (#b:Type) (#len:size_nat)
(f:(i:nat{i < len} -> a -> b)) (s:lseq a len) (i:size_nat{i < len}) =
f i s.[i] | false | false | Lib.Sequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val mapi:#a:Type -> #b:Type -> #len:size_nat
-> f:(i:nat{i < len} -> a -> Tot b)
-> s1:lseq a len ->
Tot (s2:lseq b len{(forall (i:nat).
{:pattern (index s2 i)} i < len ==> index s2 i == f i s1.[i])}) | [] | Lib.Sequence.mapi | {
"file_name": "lib/Lib.Sequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | f: (i: Prims.nat{i < len} -> _: a -> b) -> s1: Lib.Sequence.lseq a len
-> s2:
Lib.Sequence.lseq b len
{ forall (i: Prims.nat). {:pattern Lib.Sequence.index s2 i}
i < len ==> Lib.Sequence.index s2 i == f i s1.[ i ] } | {
"end_col": 44,
"end_line": 102,
"start_col": 2,
"start_line": 102
} |
FStar.Pervasives.Lemma | val eq_intro: #a:Type -> #len:size_nat -> s1:lseq a len -> s2:lseq a len ->
Lemma
(requires forall i. {:pattern index s1 i; index s2 i} index s1 i == index s2 i)
(ensures equal s1 s2)
[SMTPat (equal s1 s2)] | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let eq_intro #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_intro #a (to_seq s1) (to_seq s2) | val eq_intro: #a:Type -> #len:size_nat -> s1:lseq a len -> s2:lseq a len ->
Lemma
(requires forall i. {:pattern index s1 i; index s2 i} index s1 i == index s2 i)
(ensures equal s1 s2)
[SMTPat (equal s1 s2)]
let eq_intro #a #len s1 s2 = | false | null | true | assert (forall (i: nat{i < len}). {:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_intro #a (to_seq s1) (to_seq s2) | {
"checked_file": "Lib.Sequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.size_nat",
"Lib.Sequence.lseq",
"FStar.Seq.Base.lemma_eq_intro",
"Lib.Sequence.to_seq",
"Prims.unit",
"Prims._assert",
"Prims.l_Forall",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.eq2",
"Prims.l_or",
"FStar.Seq.Base.index",
"Lib.Sequence.index"
] | [] | module Lib.Sequence
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 --using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence'"
let index #a #len s n = Seq.index s n
let create #a len init = Seq.create #a len init
let concat #a #len0 #len1 s0 s1 = Seq.append s0 s1
let to_list #a s = Seq.seq_to_list s
let of_list #a l = Seq.seq_of_list #a l
let of_list_index #a l i =
Seq.lemma_seq_of_list_index #a l i
let equal #a #len s1 s2 =
forall (i:size_nat{i < len}).{:pattern (index s1 i); (index s2 i)} index s1 i == index s2 i | false | false | Lib.Sequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val eq_intro: #a:Type -> #len:size_nat -> s1:lseq a len -> s2:lseq a len ->
Lemma
(requires forall i. {:pattern index s1 i; index s2 i} index s1 i == index s2 i)
(ensures equal s1 s2)
[SMTPat (equal s1 s2)] | [] | Lib.Sequence.eq_intro | {
"file_name": "lib/Lib.Sequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | s1: Lib.Sequence.lseq a len -> s2: Lib.Sequence.lseq a len
-> FStar.Pervasives.Lemma
(requires
forall (i: Lib.IntTypes.size_nat{i < len /\ i < len}).
{:pattern Lib.Sequence.index s1 i; Lib.Sequence.index s2 i}
Lib.Sequence.index s1 i == Lib.Sequence.index s2 i)
(ensures Lib.Sequence.equal s1 s2)
[SMTPat (Lib.Sequence.equal s1 s2)] | {
"end_col": 47,
"end_line": 28,
"start_col": 2,
"start_line": 26
} |
FStar.Pervasives.Lemma | val mod_interval_lt: b:pos -> n:int -> i:int -> j:int -> Lemma
(requires n * b <= i /\ i < j /\ j < (n + 1) * b)
(ensures i % b < j % b) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let mod_interval_lt b n i j =
div_interval b n i;
div_interval b n j | val mod_interval_lt: b:pos -> n:int -> i:int -> j:int -> Lemma
(requires n * b <= i /\ i < j /\ j < (n + 1) * b)
(ensures i % b < j % b)
let mod_interval_lt b n i j = | false | null | true | div_interval b n i;
div_interval b n j | {
"checked_file": "Lib.Sequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.fst"
} | [
"lemma"
] | [
"Prims.pos",
"Prims.int",
"Lib.Sequence.div_interval",
"Prims.unit"
] | [] | module Lib.Sequence
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 --using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence'"
let index #a #len s n = Seq.index s n
let create #a len init = Seq.create #a len init
let concat #a #len0 #len1 s0 s1 = Seq.append s0 s1
let to_list #a s = Seq.seq_to_list s
let of_list #a l = Seq.seq_of_list #a l
let of_list_index #a l i =
Seq.lemma_seq_of_list_index #a l i
let equal #a #len s1 s2 =
forall (i:size_nat{i < len}).{:pattern (index s1 i); (index s2 i)} index s1 i == index s2 i
let eq_intro #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_intro #a (to_seq s1) (to_seq s2)
let eq_elim #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_elim #a s1 s2
let upd #a #len s n x = Seq.upd #a s n x
let member #a #len x l = Seq.count x l > 0
let sub #a #len s start n = Seq.slice #a s start (start + n)
let update_sub #a #len s start n x =
let o =
Seq.append
(Seq.append (Seq.slice s 0 start) x)
(Seq.slice s (start + n) (length s)) in
Seq.lemma_eq_intro (Seq.slice o start (start + n)) x;
o
let lemma_update_sub #a #len dst start n src res =
let res1 = update_sub dst start n src in
Seq.lemma_split (sub res 0 (start + n)) start;
Seq.lemma_split (sub res1 0 (start + n)) start;
Seq.lemma_split res (start + n);
Seq.lemma_split res1 (start + n);
Seq.lemma_eq_intro res (update_sub dst start n src)
let lemma_concat2 #a len0 s0 len1 s1 s =
Seq.Properties.lemma_split s len0;
Seq.Properties.lemma_split (concat s0 s1) len0;
Seq.lemma_eq_intro s (concat s0 s1)
let lemma_concat3 #a len0 s0 len1 s1 len2 s2 s =
let s' = concat (concat s0 s1) s2 in
Seq.Properties.lemma_split (sub s 0 (len0 + len1)) len0;
Seq.Properties.lemma_split (sub s' 0 (len0 + len1)) len0;
Seq.Properties.lemma_split s (len0 + len1);
Seq.Properties.lemma_split s' (len0 + len1);
Seq.lemma_eq_intro s (concat (concat s0 s1) s2)
let createi_a (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (k:nat{k <= len}) =
lseq a k
let createi_pred (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (k:nat{k <= len})
(s:createi_a a len init k) =
forall (i:nat).{:pattern (index s i)} i < k ==> index s i == init i
let createi_step (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (i:nat{i < len})
(si:createi_a a len init i)
: r:createi_a a len init (i + 1)
{createi_pred a len init i si ==> createi_pred a len init (i + 1) r}
=
assert (createi_pred a len init i si ==> (forall (j:nat). j < i ==> index si j == init j));
Seq.snoc si (init i)
#push-options "--max_fuel 1 --using_facts_from '+Lib.LoopCombinators +FStar.List'"
let createi #a len init_f =
repeat_gen_inductive len
(createi_a a len init_f)
(createi_pred a len init_f)
(createi_step a len init_f)
(of_list [])
#pop-options
inline_for_extraction
let mapi_inner (#a:Type) (#b:Type) (#len:size_nat)
(f:(i:nat{i < len} -> a -> b)) (s:lseq a len) (i:size_nat{i < len}) =
f i s.[i]
let mapi #a #b #len f s =
createi #b len (mapi_inner #a #b #len f s)
inline_for_extraction
let map_inner (#a:Type) (#b:Type) (#len:size_nat)
(f:(a -> Tot b)) (s:lseq a len) (i:size_nat{i < len}) =
f s.[i]
let map #a #b #len f s =
createi #b len (map_inner #a #b #len f s)
let map2i #a #b #c #len f s1 s2 =
createi #c len (fun i -> f i s1.[i] s2.[i])
inline_for_extraction
let map2_inner (#a:Type) (#b:Type) (#c:Type) (#len:size_nat)
(f:(a -> b -> Tot c)) (s1:lseq a len) (s2:lseq b len) (i:size_nat{i < len}) =
f s1.[i] s2.[i]
let map2 #a #b #c #len f s1 s2 =
createi #c len (map2_inner #a #b #c #len f s1 s2)
let for_all #a #len f x = Seq.for_all f x
let for_all2 #a #b #len f x y =
let r = map2 (fun xi yi -> f xi yi) x y in
Seq.for_all (fun bi -> bi = true) r
(** Selecting a subset of an unbounded Sequence *)
val seq_sub:
#a:Type
-> s1:seq a
-> start:nat
-> n:nat{start + n <= length s1}
-> s2:seq a{length s2 == n /\
(forall (k:nat{k < n}). {:pattern (Seq.index s2 k)} Seq.index s2 k == Seq.index s1 (start + k))}
let seq_sub #a s start n =
Seq.slice #a s start (start + n)
(** Updating a subset of an unbounded Sequence with another Sequence *)
val seq_update_sub:
#a:Type
-> i:seq a
-> start:nat
-> n:nat{start + n <= length i}
-> x:seq a{length x == n}
-> o:seq a{length o == length i /\ seq_sub o start n == x /\
(forall (k:nat{(0 <= k /\ k < start) \/ (start + n <= k /\ k < length i)}).
{:pattern (Seq.index o k)} Seq.index o k == Seq.index i k)}
let seq_update_sub #a s start n x =
let o =
Seq.append
(Seq.append (Seq.slice s 0 start) x)
(Seq.slice s (start + n) (length s)) in
Seq.lemma_eq_intro (Seq.slice o start (start + n)) x;
o
val repeati_blocks_f:
#a:Type0
-> #b:Type0
-> blocksize:size_nat{blocksize > 0}
-> inp:seq a
-> f:(i:nat{i < length inp / blocksize} -> lseq a blocksize -> b -> b)
-> nb:nat{nb == length inp / blocksize}
-> i:nat{i < nb}
-> acc:b
-> b
let repeati_blocks_f #a #b bs inp f nb i acc =
assert ((i+1) * bs <= nb * bs);
let block = seq_sub inp (i * bs) bs in
f i block acc
let repeati_blocks #a #b bs inp f g init =
let len = length inp in
let nb = len / bs in
let rem = len % bs in
let acc = repeati nb (repeati_blocks_f bs inp f nb) init in
let last = seq_sub inp (nb * bs) rem in
g nb rem last acc
let repeat_blocks #a #b #c bs inp f l init =
let len = length inp in
let nb = len / bs in
let rem = len % bs in
let acc = repeati nb (repeat_blocks_f bs inp f nb) init in
let last = seq_sub inp (nb * bs) rem in
l rem last acc
let lemma_repeat_blocks #a #b #c bs inp f l init = ()
let repeat_blocks_multi #a #b bs inp f init =
let len = length inp in
let nb = len / bs in
repeati nb (repeat_blocks_f bs inp f nb) init
let lemma_repeat_blocks_multi #a #b bs inp f init = ()
let generate_blocks_a (t:Type) (blocklen:size_nat) (max:nat) (a:(i:nat{i <= max} -> Type)) (i:nat{i <= max}) = a i & s:seq t{length s == i * blocklen}
let generate_blocks_inner (t:Type) (blocklen:size_nat) (max:nat) (a:(i:nat{i <= max} -> Type)) (f:(i:nat{i < max} -> a i -> a (i + 1) & s:seq t{length s == blocklen})) (i:nat{i < max}) (acc:generate_blocks_a t blocklen max a i) : generate_blocks_a t blocklen max a (i + 1) =
let acc, o = acc in
let acc', block = f i acc in
let o' : s:seq t{length s == ((i + 1) * blocklen)} = Seq.append o block in
acc', o'
let generate_blocks #t len max n a f acc0 =
let a0 = (acc0, (Seq.empty <: s:seq t{length s == 0 * len})) in
repeat_gen n (generate_blocks_a t len max a) (generate_blocks_inner t len max a f) a0
let generate_blocks_simple_a (a:Type) (bs:size_nat) (max:nat) (i:nat{i <= max}) = s:seq a{length s == i * bs}
let generate_blocks_simple_f
(#a:Type)
(bs:size_nat{bs > 0})
(max:nat)
(f:(i:nat{i < max} -> lseq a bs))
(i:nat{i < max})
(acc:generate_blocks_simple_a a bs max i) : generate_blocks_simple_a a bs max (i + 1)
=
Seq.append acc (f i)
let generate_blocks_simple #a bs max nb f =
repeat_gen nb (generate_blocks_simple_a a bs max)
(generate_blocks_simple_f #a bs max f) Seq.empty
#restart-solver
let div_interval b n i =
Math.Lemmas.lemma_div_le (n * b) i b;
Math.Lemmas.cancel_mul_div n b | false | false | Lib.Sequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val mod_interval_lt: b:pos -> n:int -> i:int -> j:int -> Lemma
(requires n * b <= i /\ i < j /\ j < (n + 1) * b)
(ensures i % b < j % b) | [] | Lib.Sequence.mod_interval_lt | {
"file_name": "lib/Lib.Sequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b: Prims.pos -> n: Prims.int -> i: Prims.int -> j: Prims.int
-> FStar.Pervasives.Lemma (requires n * b <= i /\ i < j /\ j < (n + 1) * b)
(ensures i % b < j % b) | {
"end_col": 20,
"end_line": 233,
"start_col": 2,
"start_line": 232
} |
Prims.Tot | val seq_sub:
#a:Type
-> s1:seq a
-> start:nat
-> n:nat{start + n <= length s1}
-> s2:seq a{length s2 == n /\
(forall (k:nat{k < n}). {:pattern (Seq.index s2 k)} Seq.index s2 k == Seq.index s1 (start + k))} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let seq_sub #a s start n =
Seq.slice #a s start (start + n) | val seq_sub:
#a:Type
-> s1:seq a
-> start:nat
-> n:nat{start + n <= length s1}
-> s2:seq a{length s2 == n /\
(forall (k:nat{k < n}). {:pattern (Seq.index s2 k)} Seq.index s2 k == Seq.index s1 (start + k))}
let seq_sub #a s start n = | false | null | false | Seq.slice #a s start (start + n) | {
"checked_file": "Lib.Sequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.fst"
} | [
"total"
] | [
"Lib.Sequence.seq",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"Lib.Sequence.length",
"FStar.Seq.Base.slice",
"Prims.l_and",
"Prims.eq2",
"Prims.l_Forall",
"Prims.op_LessThan",
"FStar.Seq.Base.index"
] | [] | module Lib.Sequence
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 --using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence'"
let index #a #len s n = Seq.index s n
let create #a len init = Seq.create #a len init
let concat #a #len0 #len1 s0 s1 = Seq.append s0 s1
let to_list #a s = Seq.seq_to_list s
let of_list #a l = Seq.seq_of_list #a l
let of_list_index #a l i =
Seq.lemma_seq_of_list_index #a l i
let equal #a #len s1 s2 =
forall (i:size_nat{i < len}).{:pattern (index s1 i); (index s2 i)} index s1 i == index s2 i
let eq_intro #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_intro #a (to_seq s1) (to_seq s2)
let eq_elim #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_elim #a s1 s2
let upd #a #len s n x = Seq.upd #a s n x
let member #a #len x l = Seq.count x l > 0
let sub #a #len s start n = Seq.slice #a s start (start + n)
let update_sub #a #len s start n x =
let o =
Seq.append
(Seq.append (Seq.slice s 0 start) x)
(Seq.slice s (start + n) (length s)) in
Seq.lemma_eq_intro (Seq.slice o start (start + n)) x;
o
let lemma_update_sub #a #len dst start n src res =
let res1 = update_sub dst start n src in
Seq.lemma_split (sub res 0 (start + n)) start;
Seq.lemma_split (sub res1 0 (start + n)) start;
Seq.lemma_split res (start + n);
Seq.lemma_split res1 (start + n);
Seq.lemma_eq_intro res (update_sub dst start n src)
let lemma_concat2 #a len0 s0 len1 s1 s =
Seq.Properties.lemma_split s len0;
Seq.Properties.lemma_split (concat s0 s1) len0;
Seq.lemma_eq_intro s (concat s0 s1)
let lemma_concat3 #a len0 s0 len1 s1 len2 s2 s =
let s' = concat (concat s0 s1) s2 in
Seq.Properties.lemma_split (sub s 0 (len0 + len1)) len0;
Seq.Properties.lemma_split (sub s' 0 (len0 + len1)) len0;
Seq.Properties.lemma_split s (len0 + len1);
Seq.Properties.lemma_split s' (len0 + len1);
Seq.lemma_eq_intro s (concat (concat s0 s1) s2)
let createi_a (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (k:nat{k <= len}) =
lseq a k
let createi_pred (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (k:nat{k <= len})
(s:createi_a a len init k) =
forall (i:nat).{:pattern (index s i)} i < k ==> index s i == init i
let createi_step (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (i:nat{i < len})
(si:createi_a a len init i)
: r:createi_a a len init (i + 1)
{createi_pred a len init i si ==> createi_pred a len init (i + 1) r}
=
assert (createi_pred a len init i si ==> (forall (j:nat). j < i ==> index si j == init j));
Seq.snoc si (init i)
#push-options "--max_fuel 1 --using_facts_from '+Lib.LoopCombinators +FStar.List'"
let createi #a len init_f =
repeat_gen_inductive len
(createi_a a len init_f)
(createi_pred a len init_f)
(createi_step a len init_f)
(of_list [])
#pop-options
inline_for_extraction
let mapi_inner (#a:Type) (#b:Type) (#len:size_nat)
(f:(i:nat{i < len} -> a -> b)) (s:lseq a len) (i:size_nat{i < len}) =
f i s.[i]
let mapi #a #b #len f s =
createi #b len (mapi_inner #a #b #len f s)
inline_for_extraction
let map_inner (#a:Type) (#b:Type) (#len:size_nat)
(f:(a -> Tot b)) (s:lseq a len) (i:size_nat{i < len}) =
f s.[i]
let map #a #b #len f s =
createi #b len (map_inner #a #b #len f s)
let map2i #a #b #c #len f s1 s2 =
createi #c len (fun i -> f i s1.[i] s2.[i])
inline_for_extraction
let map2_inner (#a:Type) (#b:Type) (#c:Type) (#len:size_nat)
(f:(a -> b -> Tot c)) (s1:lseq a len) (s2:lseq b len) (i:size_nat{i < len}) =
f s1.[i] s2.[i]
let map2 #a #b #c #len f s1 s2 =
createi #c len (map2_inner #a #b #c #len f s1 s2)
let for_all #a #len f x = Seq.for_all f x
let for_all2 #a #b #len f x y =
let r = map2 (fun xi yi -> f xi yi) x y in
Seq.for_all (fun bi -> bi = true) r
(** Selecting a subset of an unbounded Sequence *)
val seq_sub:
#a:Type
-> s1:seq a
-> start:nat
-> n:nat{start + n <= length s1}
-> s2:seq a{length s2 == n /\
(forall (k:nat{k < n}). {:pattern (Seq.index s2 k)} Seq.index s2 k == Seq.index s1 (start + k))} | false | false | Lib.Sequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val seq_sub:
#a:Type
-> s1:seq a
-> start:nat
-> n:nat{start + n <= length s1}
-> s2:seq a{length s2 == n /\
(forall (k:nat{k < n}). {:pattern (Seq.index s2 k)} Seq.index s2 k == Seq.index s1 (start + k))} | [] | Lib.Sequence.seq_sub | {
"file_name": "lib/Lib.Sequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | s1: Lib.Sequence.seq a -> start: Prims.nat -> n: Prims.nat{start + n <= Lib.Sequence.length s1}
-> s2:
Lib.Sequence.seq a
{ Lib.Sequence.length s2 == n /\
(forall (k: Prims.nat{k < n}). {:pattern FStar.Seq.Base.index s2 k}
FStar.Seq.Base.index s2 k == FStar.Seq.Base.index s1 (start + k)) } | {
"end_col": 34,
"end_line": 138,
"start_col": 2,
"start_line": 138
} |
Prims.Tot | val map2i:#a:Type -> #b:Type -> #c:Type -> #len:size_nat
-> f:(i:nat{i < len} -> a -> b -> Tot c)
-> s1:lseq a len
-> s2:lseq b len ->
Tot (s3:lseq c len{(forall (i:nat).
{:pattern (index s3 i)} i < len ==> index s3 i == f i s1.[i] s2.[i])}) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let map2i #a #b #c #len f s1 s2 =
createi #c len (fun i -> f i s1.[i] s2.[i]) | val map2i:#a:Type -> #b:Type -> #c:Type -> #len:size_nat
-> f:(i:nat{i < len} -> a -> b -> Tot c)
-> s1:lseq a len
-> s2:lseq b len ->
Tot (s3:lseq c len{(forall (i:nat).
{:pattern (index s3 i)} i < len ==> index s3 i == f i s1.[i] s2.[i])})
let map2i #a #b #c #len f s1 s2 = | false | null | false | createi #c len (fun i -> f i s1.[ i ] s2.[ i ]) | {
"checked_file": "Lib.Sequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.fst"
} | [
"total"
] | [
"Lib.IntTypes.size_nat",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.Sequence.lseq",
"Lib.Sequence.createi",
"Lib.Sequence.op_String_Access",
"Prims.l_Forall",
"Prims.l_imp",
"Prims.eq2",
"Lib.Sequence.index"
] | [] | module Lib.Sequence
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 --using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence'"
let index #a #len s n = Seq.index s n
let create #a len init = Seq.create #a len init
let concat #a #len0 #len1 s0 s1 = Seq.append s0 s1
let to_list #a s = Seq.seq_to_list s
let of_list #a l = Seq.seq_of_list #a l
let of_list_index #a l i =
Seq.lemma_seq_of_list_index #a l i
let equal #a #len s1 s2 =
forall (i:size_nat{i < len}).{:pattern (index s1 i); (index s2 i)} index s1 i == index s2 i
let eq_intro #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_intro #a (to_seq s1) (to_seq s2)
let eq_elim #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_elim #a s1 s2
let upd #a #len s n x = Seq.upd #a s n x
let member #a #len x l = Seq.count x l > 0
let sub #a #len s start n = Seq.slice #a s start (start + n)
let update_sub #a #len s start n x =
let o =
Seq.append
(Seq.append (Seq.slice s 0 start) x)
(Seq.slice s (start + n) (length s)) in
Seq.lemma_eq_intro (Seq.slice o start (start + n)) x;
o
let lemma_update_sub #a #len dst start n src res =
let res1 = update_sub dst start n src in
Seq.lemma_split (sub res 0 (start + n)) start;
Seq.lemma_split (sub res1 0 (start + n)) start;
Seq.lemma_split res (start + n);
Seq.lemma_split res1 (start + n);
Seq.lemma_eq_intro res (update_sub dst start n src)
let lemma_concat2 #a len0 s0 len1 s1 s =
Seq.Properties.lemma_split s len0;
Seq.Properties.lemma_split (concat s0 s1) len0;
Seq.lemma_eq_intro s (concat s0 s1)
let lemma_concat3 #a len0 s0 len1 s1 len2 s2 s =
let s' = concat (concat s0 s1) s2 in
Seq.Properties.lemma_split (sub s 0 (len0 + len1)) len0;
Seq.Properties.lemma_split (sub s' 0 (len0 + len1)) len0;
Seq.Properties.lemma_split s (len0 + len1);
Seq.Properties.lemma_split s' (len0 + len1);
Seq.lemma_eq_intro s (concat (concat s0 s1) s2)
let createi_a (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (k:nat{k <= len}) =
lseq a k
let createi_pred (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (k:nat{k <= len})
(s:createi_a a len init k) =
forall (i:nat).{:pattern (index s i)} i < k ==> index s i == init i
let createi_step (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (i:nat{i < len})
(si:createi_a a len init i)
: r:createi_a a len init (i + 1)
{createi_pred a len init i si ==> createi_pred a len init (i + 1) r}
=
assert (createi_pred a len init i si ==> (forall (j:nat). j < i ==> index si j == init j));
Seq.snoc si (init i)
#push-options "--max_fuel 1 --using_facts_from '+Lib.LoopCombinators +FStar.List'"
let createi #a len init_f =
repeat_gen_inductive len
(createi_a a len init_f)
(createi_pred a len init_f)
(createi_step a len init_f)
(of_list [])
#pop-options
inline_for_extraction
let mapi_inner (#a:Type) (#b:Type) (#len:size_nat)
(f:(i:nat{i < len} -> a -> b)) (s:lseq a len) (i:size_nat{i < len}) =
f i s.[i]
let mapi #a #b #len f s =
createi #b len (mapi_inner #a #b #len f s)
inline_for_extraction
let map_inner (#a:Type) (#b:Type) (#len:size_nat)
(f:(a -> Tot b)) (s:lseq a len) (i:size_nat{i < len}) =
f s.[i]
let map #a #b #len f s =
createi #b len (map_inner #a #b #len f s) | false | false | Lib.Sequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val map2i:#a:Type -> #b:Type -> #c:Type -> #len:size_nat
-> f:(i:nat{i < len} -> a -> b -> Tot c)
-> s1:lseq a len
-> s2:lseq b len ->
Tot (s3:lseq c len{(forall (i:nat).
{:pattern (index s3 i)} i < len ==> index s3 i == f i s1.[i] s2.[i])}) | [] | Lib.Sequence.map2i | {
"file_name": "lib/Lib.Sequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
f: (i: Prims.nat{i < len} -> _: a -> _: b -> c) ->
s1: Lib.Sequence.lseq a len ->
s2: Lib.Sequence.lseq b len
-> s3:
Lib.Sequence.lseq c len
{ forall (i: Prims.nat). {:pattern Lib.Sequence.index s3 i}
i < len ==> Lib.Sequence.index s3 i == f i s1.[ i ] s2.[ i ] } | {
"end_col": 45,
"end_line": 113,
"start_col": 2,
"start_line": 113
} |
Prims.Tot | val generate_blocks_simple:
#a:Type0
-> blocksize:size_pos
-> max:nat
-> n:nat{n <= max}
-> f:(i:nat{i < max} -> lseq a blocksize) ->
Tot (s:seq a{length s == n * blocksize}) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let generate_blocks_simple #a bs max nb f =
repeat_gen nb (generate_blocks_simple_a a bs max)
(generate_blocks_simple_f #a bs max f) Seq.empty | val generate_blocks_simple:
#a:Type0
-> blocksize:size_pos
-> max:nat
-> n:nat{n <= max}
-> f:(i:nat{i < max} -> lseq a blocksize) ->
Tot (s:seq a{length s == n * blocksize})
let generate_blocks_simple #a bs max nb f = | false | null | false | repeat_gen nb (generate_blocks_simple_a a bs max) (generate_blocks_simple_f #a bs max f) Seq.empty | {
"checked_file": "Lib.Sequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.fst"
} | [
"total"
] | [
"Lib.IntTypes.size_pos",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_LessThan",
"Lib.Sequence.lseq",
"Lib.LoopCombinators.repeat_gen",
"Lib.Sequence.generate_blocks_simple_a",
"Lib.Sequence.generate_blocks_simple_f",
"FStar.Seq.Base.empty",
"Lib.Sequence.seq",
"Prims.eq2",
"Prims.int",
"Lib.Sequence.length",
"FStar.Mul.op_Star"
] | [] | module Lib.Sequence
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 --using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence'"
let index #a #len s n = Seq.index s n
let create #a len init = Seq.create #a len init
let concat #a #len0 #len1 s0 s1 = Seq.append s0 s1
let to_list #a s = Seq.seq_to_list s
let of_list #a l = Seq.seq_of_list #a l
let of_list_index #a l i =
Seq.lemma_seq_of_list_index #a l i
let equal #a #len s1 s2 =
forall (i:size_nat{i < len}).{:pattern (index s1 i); (index s2 i)} index s1 i == index s2 i
let eq_intro #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_intro #a (to_seq s1) (to_seq s2)
let eq_elim #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_elim #a s1 s2
let upd #a #len s n x = Seq.upd #a s n x
let member #a #len x l = Seq.count x l > 0
let sub #a #len s start n = Seq.slice #a s start (start + n)
let update_sub #a #len s start n x =
let o =
Seq.append
(Seq.append (Seq.slice s 0 start) x)
(Seq.slice s (start + n) (length s)) in
Seq.lemma_eq_intro (Seq.slice o start (start + n)) x;
o
let lemma_update_sub #a #len dst start n src res =
let res1 = update_sub dst start n src in
Seq.lemma_split (sub res 0 (start + n)) start;
Seq.lemma_split (sub res1 0 (start + n)) start;
Seq.lemma_split res (start + n);
Seq.lemma_split res1 (start + n);
Seq.lemma_eq_intro res (update_sub dst start n src)
let lemma_concat2 #a len0 s0 len1 s1 s =
Seq.Properties.lemma_split s len0;
Seq.Properties.lemma_split (concat s0 s1) len0;
Seq.lemma_eq_intro s (concat s0 s1)
let lemma_concat3 #a len0 s0 len1 s1 len2 s2 s =
let s' = concat (concat s0 s1) s2 in
Seq.Properties.lemma_split (sub s 0 (len0 + len1)) len0;
Seq.Properties.lemma_split (sub s' 0 (len0 + len1)) len0;
Seq.Properties.lemma_split s (len0 + len1);
Seq.Properties.lemma_split s' (len0 + len1);
Seq.lemma_eq_intro s (concat (concat s0 s1) s2)
let createi_a (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (k:nat{k <= len}) =
lseq a k
let createi_pred (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (k:nat{k <= len})
(s:createi_a a len init k) =
forall (i:nat).{:pattern (index s i)} i < k ==> index s i == init i
let createi_step (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (i:nat{i < len})
(si:createi_a a len init i)
: r:createi_a a len init (i + 1)
{createi_pred a len init i si ==> createi_pred a len init (i + 1) r}
=
assert (createi_pred a len init i si ==> (forall (j:nat). j < i ==> index si j == init j));
Seq.snoc si (init i)
#push-options "--max_fuel 1 --using_facts_from '+Lib.LoopCombinators +FStar.List'"
let createi #a len init_f =
repeat_gen_inductive len
(createi_a a len init_f)
(createi_pred a len init_f)
(createi_step a len init_f)
(of_list [])
#pop-options
inline_for_extraction
let mapi_inner (#a:Type) (#b:Type) (#len:size_nat)
(f:(i:nat{i < len} -> a -> b)) (s:lseq a len) (i:size_nat{i < len}) =
f i s.[i]
let mapi #a #b #len f s =
createi #b len (mapi_inner #a #b #len f s)
inline_for_extraction
let map_inner (#a:Type) (#b:Type) (#len:size_nat)
(f:(a -> Tot b)) (s:lseq a len) (i:size_nat{i < len}) =
f s.[i]
let map #a #b #len f s =
createi #b len (map_inner #a #b #len f s)
let map2i #a #b #c #len f s1 s2 =
createi #c len (fun i -> f i s1.[i] s2.[i])
inline_for_extraction
let map2_inner (#a:Type) (#b:Type) (#c:Type) (#len:size_nat)
(f:(a -> b -> Tot c)) (s1:lseq a len) (s2:lseq b len) (i:size_nat{i < len}) =
f s1.[i] s2.[i]
let map2 #a #b #c #len f s1 s2 =
createi #c len (map2_inner #a #b #c #len f s1 s2)
let for_all #a #len f x = Seq.for_all f x
let for_all2 #a #b #len f x y =
let r = map2 (fun xi yi -> f xi yi) x y in
Seq.for_all (fun bi -> bi = true) r
(** Selecting a subset of an unbounded Sequence *)
val seq_sub:
#a:Type
-> s1:seq a
-> start:nat
-> n:nat{start + n <= length s1}
-> s2:seq a{length s2 == n /\
(forall (k:nat{k < n}). {:pattern (Seq.index s2 k)} Seq.index s2 k == Seq.index s1 (start + k))}
let seq_sub #a s start n =
Seq.slice #a s start (start + n)
(** Updating a subset of an unbounded Sequence with another Sequence *)
val seq_update_sub:
#a:Type
-> i:seq a
-> start:nat
-> n:nat{start + n <= length i}
-> x:seq a{length x == n}
-> o:seq a{length o == length i /\ seq_sub o start n == x /\
(forall (k:nat{(0 <= k /\ k < start) \/ (start + n <= k /\ k < length i)}).
{:pattern (Seq.index o k)} Seq.index o k == Seq.index i k)}
let seq_update_sub #a s start n x =
let o =
Seq.append
(Seq.append (Seq.slice s 0 start) x)
(Seq.slice s (start + n) (length s)) in
Seq.lemma_eq_intro (Seq.slice o start (start + n)) x;
o
val repeati_blocks_f:
#a:Type0
-> #b:Type0
-> blocksize:size_nat{blocksize > 0}
-> inp:seq a
-> f:(i:nat{i < length inp / blocksize} -> lseq a blocksize -> b -> b)
-> nb:nat{nb == length inp / blocksize}
-> i:nat{i < nb}
-> acc:b
-> b
let repeati_blocks_f #a #b bs inp f nb i acc =
assert ((i+1) * bs <= nb * bs);
let block = seq_sub inp (i * bs) bs in
f i block acc
let repeati_blocks #a #b bs inp f g init =
let len = length inp in
let nb = len / bs in
let rem = len % bs in
let acc = repeati nb (repeati_blocks_f bs inp f nb) init in
let last = seq_sub inp (nb * bs) rem in
g nb rem last acc
let repeat_blocks #a #b #c bs inp f l init =
let len = length inp in
let nb = len / bs in
let rem = len % bs in
let acc = repeati nb (repeat_blocks_f bs inp f nb) init in
let last = seq_sub inp (nb * bs) rem in
l rem last acc
let lemma_repeat_blocks #a #b #c bs inp f l init = ()
let repeat_blocks_multi #a #b bs inp f init =
let len = length inp in
let nb = len / bs in
repeati nb (repeat_blocks_f bs inp f nb) init
let lemma_repeat_blocks_multi #a #b bs inp f init = ()
let generate_blocks_a (t:Type) (blocklen:size_nat) (max:nat) (a:(i:nat{i <= max} -> Type)) (i:nat{i <= max}) = a i & s:seq t{length s == i * blocklen}
let generate_blocks_inner (t:Type) (blocklen:size_nat) (max:nat) (a:(i:nat{i <= max} -> Type)) (f:(i:nat{i < max} -> a i -> a (i + 1) & s:seq t{length s == blocklen})) (i:nat{i < max}) (acc:generate_blocks_a t blocklen max a i) : generate_blocks_a t blocklen max a (i + 1) =
let acc, o = acc in
let acc', block = f i acc in
let o' : s:seq t{length s == ((i + 1) * blocklen)} = Seq.append o block in
acc', o'
let generate_blocks #t len max n a f acc0 =
let a0 = (acc0, (Seq.empty <: s:seq t{length s == 0 * len})) in
repeat_gen n (generate_blocks_a t len max a) (generate_blocks_inner t len max a f) a0
let generate_blocks_simple_a (a:Type) (bs:size_nat) (max:nat) (i:nat{i <= max}) = s:seq a{length s == i * bs}
let generate_blocks_simple_f
(#a:Type)
(bs:size_nat{bs > 0})
(max:nat)
(f:(i:nat{i < max} -> lseq a bs))
(i:nat{i < max})
(acc:generate_blocks_simple_a a bs max i) : generate_blocks_simple_a a bs max (i + 1)
=
Seq.append acc (f i) | false | false | Lib.Sequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val generate_blocks_simple:
#a:Type0
-> blocksize:size_pos
-> max:nat
-> n:nat{n <= max}
-> f:(i:nat{i < max} -> lseq a blocksize) ->
Tot (s:seq a{length s == n * blocksize}) | [] | Lib.Sequence.generate_blocks_simple | {
"file_name": "lib/Lib.Sequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
blocksize: Lib.IntTypes.size_pos ->
max: Prims.nat ->
n: Prims.nat{n <= max} ->
f: (i: Prims.nat{i < max} -> Lib.Sequence.lseq a blocksize)
-> s: Lib.Sequence.seq a {Lib.Sequence.length s == n * blocksize} | {
"end_col": 51,
"end_line": 224,
"start_col": 1,
"start_line": 223
} |
Prims.Tot | val seq_update_sub:
#a:Type
-> i:seq a
-> start:nat
-> n:nat{start + n <= length i}
-> x:seq a{length x == n}
-> o:seq a{length o == length i /\ seq_sub o start n == x /\
(forall (k:nat{(0 <= k /\ k < start) \/ (start + n <= k /\ k < length i)}).
{:pattern (Seq.index o k)} Seq.index o k == Seq.index i k)} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let seq_update_sub #a s start n x =
let o =
Seq.append
(Seq.append (Seq.slice s 0 start) x)
(Seq.slice s (start + n) (length s)) in
Seq.lemma_eq_intro (Seq.slice o start (start + n)) x;
o | val seq_update_sub:
#a:Type
-> i:seq a
-> start:nat
-> n:nat{start + n <= length i}
-> x:seq a{length x == n}
-> o:seq a{length o == length i /\ seq_sub o start n == x /\
(forall (k:nat{(0 <= k /\ k < start) \/ (start + n <= k /\ k < length i)}).
{:pattern (Seq.index o k)} Seq.index o k == Seq.index i k)}
let seq_update_sub #a s start n x = | false | null | false | let o = Seq.append (Seq.append (Seq.slice s 0 start) x) (Seq.slice s (start + n) (length s)) in
Seq.lemma_eq_intro (Seq.slice o start (start + n)) x;
o | {
"checked_file": "Lib.Sequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.fst"
} | [
"total"
] | [
"Lib.Sequence.seq",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"Lib.Sequence.length",
"Prims.eq2",
"Prims.unit",
"FStar.Seq.Base.lemma_eq_intro",
"FStar.Seq.Base.slice",
"FStar.Seq.Base.seq",
"FStar.Seq.Base.append",
"Prims.l_and",
"Prims.l_or",
"Prims.l_Forall",
"Prims.op_LessThan",
"FStar.Seq.Base.index",
"Lib.Sequence.seq_sub"
] | [] | module Lib.Sequence
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 --using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence'"
let index #a #len s n = Seq.index s n
let create #a len init = Seq.create #a len init
let concat #a #len0 #len1 s0 s1 = Seq.append s0 s1
let to_list #a s = Seq.seq_to_list s
let of_list #a l = Seq.seq_of_list #a l
let of_list_index #a l i =
Seq.lemma_seq_of_list_index #a l i
let equal #a #len s1 s2 =
forall (i:size_nat{i < len}).{:pattern (index s1 i); (index s2 i)} index s1 i == index s2 i
let eq_intro #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_intro #a (to_seq s1) (to_seq s2)
let eq_elim #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_elim #a s1 s2
let upd #a #len s n x = Seq.upd #a s n x
let member #a #len x l = Seq.count x l > 0
let sub #a #len s start n = Seq.slice #a s start (start + n)
let update_sub #a #len s start n x =
let o =
Seq.append
(Seq.append (Seq.slice s 0 start) x)
(Seq.slice s (start + n) (length s)) in
Seq.lemma_eq_intro (Seq.slice o start (start + n)) x;
o
let lemma_update_sub #a #len dst start n src res =
let res1 = update_sub dst start n src in
Seq.lemma_split (sub res 0 (start + n)) start;
Seq.lemma_split (sub res1 0 (start + n)) start;
Seq.lemma_split res (start + n);
Seq.lemma_split res1 (start + n);
Seq.lemma_eq_intro res (update_sub dst start n src)
let lemma_concat2 #a len0 s0 len1 s1 s =
Seq.Properties.lemma_split s len0;
Seq.Properties.lemma_split (concat s0 s1) len0;
Seq.lemma_eq_intro s (concat s0 s1)
let lemma_concat3 #a len0 s0 len1 s1 len2 s2 s =
let s' = concat (concat s0 s1) s2 in
Seq.Properties.lemma_split (sub s 0 (len0 + len1)) len0;
Seq.Properties.lemma_split (sub s' 0 (len0 + len1)) len0;
Seq.Properties.lemma_split s (len0 + len1);
Seq.Properties.lemma_split s' (len0 + len1);
Seq.lemma_eq_intro s (concat (concat s0 s1) s2)
let createi_a (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (k:nat{k <= len}) =
lseq a k
let createi_pred (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (k:nat{k <= len})
(s:createi_a a len init k) =
forall (i:nat).{:pattern (index s i)} i < k ==> index s i == init i
let createi_step (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (i:nat{i < len})
(si:createi_a a len init i)
: r:createi_a a len init (i + 1)
{createi_pred a len init i si ==> createi_pred a len init (i + 1) r}
=
assert (createi_pred a len init i si ==> (forall (j:nat). j < i ==> index si j == init j));
Seq.snoc si (init i)
#push-options "--max_fuel 1 --using_facts_from '+Lib.LoopCombinators +FStar.List'"
let createi #a len init_f =
repeat_gen_inductive len
(createi_a a len init_f)
(createi_pred a len init_f)
(createi_step a len init_f)
(of_list [])
#pop-options
inline_for_extraction
let mapi_inner (#a:Type) (#b:Type) (#len:size_nat)
(f:(i:nat{i < len} -> a -> b)) (s:lseq a len) (i:size_nat{i < len}) =
f i s.[i]
let mapi #a #b #len f s =
createi #b len (mapi_inner #a #b #len f s)
inline_for_extraction
let map_inner (#a:Type) (#b:Type) (#len:size_nat)
(f:(a -> Tot b)) (s:lseq a len) (i:size_nat{i < len}) =
f s.[i]
let map #a #b #len f s =
createi #b len (map_inner #a #b #len f s)
let map2i #a #b #c #len f s1 s2 =
createi #c len (fun i -> f i s1.[i] s2.[i])
inline_for_extraction
let map2_inner (#a:Type) (#b:Type) (#c:Type) (#len:size_nat)
(f:(a -> b -> Tot c)) (s1:lseq a len) (s2:lseq b len) (i:size_nat{i < len}) =
f s1.[i] s2.[i]
let map2 #a #b #c #len f s1 s2 =
createi #c len (map2_inner #a #b #c #len f s1 s2)
let for_all #a #len f x = Seq.for_all f x
let for_all2 #a #b #len f x y =
let r = map2 (fun xi yi -> f xi yi) x y in
Seq.for_all (fun bi -> bi = true) r
(** Selecting a subset of an unbounded Sequence *)
val seq_sub:
#a:Type
-> s1:seq a
-> start:nat
-> n:nat{start + n <= length s1}
-> s2:seq a{length s2 == n /\
(forall (k:nat{k < n}). {:pattern (Seq.index s2 k)} Seq.index s2 k == Seq.index s1 (start + k))}
let seq_sub #a s start n =
Seq.slice #a s start (start + n)
(** Updating a subset of an unbounded Sequence with another Sequence *)
val seq_update_sub:
#a:Type
-> i:seq a
-> start:nat
-> n:nat{start + n <= length i}
-> x:seq a{length x == n}
-> o:seq a{length o == length i /\ seq_sub o start n == x /\
(forall (k:nat{(0 <= k /\ k < start) \/ (start + n <= k /\ k < length i)}). | false | false | Lib.Sequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val seq_update_sub:
#a:Type
-> i:seq a
-> start:nat
-> n:nat{start + n <= length i}
-> x:seq a{length x == n}
-> o:seq a{length o == length i /\ seq_sub o start n == x /\
(forall (k:nat{(0 <= k /\ k < start) \/ (start + n <= k /\ k < length i)}).
{:pattern (Seq.index o k)} Seq.index o k == Seq.index i k)} | [] | Lib.Sequence.seq_update_sub | {
"file_name": "lib/Lib.Sequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
i: Lib.Sequence.seq a ->
start: Prims.nat ->
n: Prims.nat{start + n <= Lib.Sequence.length i} ->
x: Lib.Sequence.seq a {Lib.Sequence.length x == n}
-> o:
Lib.Sequence.seq a
{ Lib.Sequence.length o == Lib.Sequence.length i /\ Lib.Sequence.seq_sub o start n == x /\
(forall (k: Prims.nat{0 <= k /\ k < start \/ start + n <= k /\ k < Lib.Sequence.length i}).
{:pattern FStar.Seq.Base.index o k}
FStar.Seq.Base.index o k == FStar.Seq.Base.index i k) } | {
"end_col": 3,
"end_line": 156,
"start_col": 35,
"start_line": 150
} |
Prims.Tot | val repeat_blocks:
#a:Type0
-> #b:Type0
-> #c:Type0
-> blocksize:size_pos
-> inp:seq a
-> f:(lseq a blocksize -> b -> b)
-> l:(len:nat{len < blocksize} -> s:lseq a len -> b -> c)
-> init:b ->
Tot c | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let repeat_blocks #a #b #c bs inp f l init =
let len = length inp in
let nb = len / bs in
let rem = len % bs in
let acc = repeati nb (repeat_blocks_f bs inp f nb) init in
let last = seq_sub inp (nb * bs) rem in
l rem last acc | val repeat_blocks:
#a:Type0
-> #b:Type0
-> #c:Type0
-> blocksize:size_pos
-> inp:seq a
-> f:(lseq a blocksize -> b -> b)
-> l:(len:nat{len < blocksize} -> s:lseq a len -> b -> c)
-> init:b ->
Tot c
let repeat_blocks #a #b #c bs inp f l init = | false | null | false | let len = length inp in
let nb = len / bs in
let rem = len % bs in
let acc = repeati nb (repeat_blocks_f bs inp f nb) init in
let last = seq_sub inp (nb * bs) rem in
l rem last acc | {
"checked_file": "Lib.Sequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.fst"
} | [
"total"
] | [
"Lib.IntTypes.size_pos",
"Lib.Sequence.seq",
"Lib.Sequence.lseq",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.l_and",
"Prims.eq2",
"Lib.Sequence.length",
"Prims.l_Forall",
"FStar.Seq.Base.index",
"Prims.op_Addition",
"Prims.op_Multiply",
"Lib.Sequence.seq_sub",
"FStar.Mul.op_Star",
"Lib.LoopCombinators.repeati",
"Lib.Sequence.repeat_blocks_f",
"Prims.int",
"Prims.op_Modulus",
"Prims.op_Division"
] | [] | module Lib.Sequence
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 --using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence'"
let index #a #len s n = Seq.index s n
let create #a len init = Seq.create #a len init
let concat #a #len0 #len1 s0 s1 = Seq.append s0 s1
let to_list #a s = Seq.seq_to_list s
let of_list #a l = Seq.seq_of_list #a l
let of_list_index #a l i =
Seq.lemma_seq_of_list_index #a l i
let equal #a #len s1 s2 =
forall (i:size_nat{i < len}).{:pattern (index s1 i); (index s2 i)} index s1 i == index s2 i
let eq_intro #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_intro #a (to_seq s1) (to_seq s2)
let eq_elim #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_elim #a s1 s2
let upd #a #len s n x = Seq.upd #a s n x
let member #a #len x l = Seq.count x l > 0
let sub #a #len s start n = Seq.slice #a s start (start + n)
let update_sub #a #len s start n x =
let o =
Seq.append
(Seq.append (Seq.slice s 0 start) x)
(Seq.slice s (start + n) (length s)) in
Seq.lemma_eq_intro (Seq.slice o start (start + n)) x;
o
let lemma_update_sub #a #len dst start n src res =
let res1 = update_sub dst start n src in
Seq.lemma_split (sub res 0 (start + n)) start;
Seq.lemma_split (sub res1 0 (start + n)) start;
Seq.lemma_split res (start + n);
Seq.lemma_split res1 (start + n);
Seq.lemma_eq_intro res (update_sub dst start n src)
let lemma_concat2 #a len0 s0 len1 s1 s =
Seq.Properties.lemma_split s len0;
Seq.Properties.lemma_split (concat s0 s1) len0;
Seq.lemma_eq_intro s (concat s0 s1)
let lemma_concat3 #a len0 s0 len1 s1 len2 s2 s =
let s' = concat (concat s0 s1) s2 in
Seq.Properties.lemma_split (sub s 0 (len0 + len1)) len0;
Seq.Properties.lemma_split (sub s' 0 (len0 + len1)) len0;
Seq.Properties.lemma_split s (len0 + len1);
Seq.Properties.lemma_split s' (len0 + len1);
Seq.lemma_eq_intro s (concat (concat s0 s1) s2)
let createi_a (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (k:nat{k <= len}) =
lseq a k
let createi_pred (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (k:nat{k <= len})
(s:createi_a a len init k) =
forall (i:nat).{:pattern (index s i)} i < k ==> index s i == init i
let createi_step (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (i:nat{i < len})
(si:createi_a a len init i)
: r:createi_a a len init (i + 1)
{createi_pred a len init i si ==> createi_pred a len init (i + 1) r}
=
assert (createi_pred a len init i si ==> (forall (j:nat). j < i ==> index si j == init j));
Seq.snoc si (init i)
#push-options "--max_fuel 1 --using_facts_from '+Lib.LoopCombinators +FStar.List'"
let createi #a len init_f =
repeat_gen_inductive len
(createi_a a len init_f)
(createi_pred a len init_f)
(createi_step a len init_f)
(of_list [])
#pop-options
inline_for_extraction
let mapi_inner (#a:Type) (#b:Type) (#len:size_nat)
(f:(i:nat{i < len} -> a -> b)) (s:lseq a len) (i:size_nat{i < len}) =
f i s.[i]
let mapi #a #b #len f s =
createi #b len (mapi_inner #a #b #len f s)
inline_for_extraction
let map_inner (#a:Type) (#b:Type) (#len:size_nat)
(f:(a -> Tot b)) (s:lseq a len) (i:size_nat{i < len}) =
f s.[i]
let map #a #b #len f s =
createi #b len (map_inner #a #b #len f s)
let map2i #a #b #c #len f s1 s2 =
createi #c len (fun i -> f i s1.[i] s2.[i])
inline_for_extraction
let map2_inner (#a:Type) (#b:Type) (#c:Type) (#len:size_nat)
(f:(a -> b -> Tot c)) (s1:lseq a len) (s2:lseq b len) (i:size_nat{i < len}) =
f s1.[i] s2.[i]
let map2 #a #b #c #len f s1 s2 =
createi #c len (map2_inner #a #b #c #len f s1 s2)
let for_all #a #len f x = Seq.for_all f x
let for_all2 #a #b #len f x y =
let r = map2 (fun xi yi -> f xi yi) x y in
Seq.for_all (fun bi -> bi = true) r
(** Selecting a subset of an unbounded Sequence *)
val seq_sub:
#a:Type
-> s1:seq a
-> start:nat
-> n:nat{start + n <= length s1}
-> s2:seq a{length s2 == n /\
(forall (k:nat{k < n}). {:pattern (Seq.index s2 k)} Seq.index s2 k == Seq.index s1 (start + k))}
let seq_sub #a s start n =
Seq.slice #a s start (start + n)
(** Updating a subset of an unbounded Sequence with another Sequence *)
val seq_update_sub:
#a:Type
-> i:seq a
-> start:nat
-> n:nat{start + n <= length i}
-> x:seq a{length x == n}
-> o:seq a{length o == length i /\ seq_sub o start n == x /\
(forall (k:nat{(0 <= k /\ k < start) \/ (start + n <= k /\ k < length i)}).
{:pattern (Seq.index o k)} Seq.index o k == Seq.index i k)}
let seq_update_sub #a s start n x =
let o =
Seq.append
(Seq.append (Seq.slice s 0 start) x)
(Seq.slice s (start + n) (length s)) in
Seq.lemma_eq_intro (Seq.slice o start (start + n)) x;
o
val repeati_blocks_f:
#a:Type0
-> #b:Type0
-> blocksize:size_nat{blocksize > 0}
-> inp:seq a
-> f:(i:nat{i < length inp / blocksize} -> lseq a blocksize -> b -> b)
-> nb:nat{nb == length inp / blocksize}
-> i:nat{i < nb}
-> acc:b
-> b
let repeati_blocks_f #a #b bs inp f nb i acc =
assert ((i+1) * bs <= nb * bs);
let block = seq_sub inp (i * bs) bs in
f i block acc
let repeati_blocks #a #b bs inp f g init =
let len = length inp in
let nb = len / bs in
let rem = len % bs in
let acc = repeati nb (repeati_blocks_f bs inp f nb) init in
let last = seq_sub inp (nb * bs) rem in
g nb rem last acc | false | false | Lib.Sequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val repeat_blocks:
#a:Type0
-> #b:Type0
-> #c:Type0
-> blocksize:size_pos
-> inp:seq a
-> f:(lseq a blocksize -> b -> b)
-> l:(len:nat{len < blocksize} -> s:lseq a len -> b -> c)
-> init:b ->
Tot c | [] | Lib.Sequence.repeat_blocks | {
"file_name": "lib/Lib.Sequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
blocksize: Lib.IntTypes.size_pos ->
inp: Lib.Sequence.seq a ->
f: (_: Lib.Sequence.lseq a blocksize -> _: b -> b) ->
l: (len: Prims.nat{len < blocksize} -> s: Lib.Sequence.lseq a len -> _: b -> c) ->
init: b
-> c | {
"end_col": 16,
"end_line": 187,
"start_col": 44,
"start_line": 181
} |
FStar.Pervasives.Lemma | val mod_prop: n:pos -> a:nat -> b:nat{a * n <= b /\ b < (a + 1) * n} ->
Lemma (b - a * n == b % n) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let mod_prop n a b =
Math.Lemmas.modulo_lemma (b - a * n) n;
Math.Lemmas.lemma_mod_sub b n a | val mod_prop: n:pos -> a:nat -> b:nat{a * n <= b /\ b < (a + 1) * n} ->
Lemma (b - a * n == b % n)
let mod_prop n a b = | false | null | true | Math.Lemmas.modulo_lemma (b - a * n) n;
Math.Lemmas.lemma_mod_sub b n a | {
"checked_file": "Lib.Sequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.fst"
} | [
"lemma"
] | [
"Prims.pos",
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"FStar.Mul.op_Star",
"Prims.op_LessThan",
"Prims.op_Addition",
"FStar.Math.Lemmas.lemma_mod_sub",
"Prims.unit",
"FStar.Math.Lemmas.modulo_lemma",
"Prims.op_Subtraction"
] | [] | module Lib.Sequence
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 --using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence'"
let index #a #len s n = Seq.index s n
let create #a len init = Seq.create #a len init
let concat #a #len0 #len1 s0 s1 = Seq.append s0 s1
let to_list #a s = Seq.seq_to_list s
let of_list #a l = Seq.seq_of_list #a l
let of_list_index #a l i =
Seq.lemma_seq_of_list_index #a l i
let equal #a #len s1 s2 =
forall (i:size_nat{i < len}).{:pattern (index s1 i); (index s2 i)} index s1 i == index s2 i
let eq_intro #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_intro #a (to_seq s1) (to_seq s2)
let eq_elim #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_elim #a s1 s2
let upd #a #len s n x = Seq.upd #a s n x
let member #a #len x l = Seq.count x l > 0
let sub #a #len s start n = Seq.slice #a s start (start + n)
let update_sub #a #len s start n x =
let o =
Seq.append
(Seq.append (Seq.slice s 0 start) x)
(Seq.slice s (start + n) (length s)) in
Seq.lemma_eq_intro (Seq.slice o start (start + n)) x;
o
let lemma_update_sub #a #len dst start n src res =
let res1 = update_sub dst start n src in
Seq.lemma_split (sub res 0 (start + n)) start;
Seq.lemma_split (sub res1 0 (start + n)) start;
Seq.lemma_split res (start + n);
Seq.lemma_split res1 (start + n);
Seq.lemma_eq_intro res (update_sub dst start n src)
let lemma_concat2 #a len0 s0 len1 s1 s =
Seq.Properties.lemma_split s len0;
Seq.Properties.lemma_split (concat s0 s1) len0;
Seq.lemma_eq_intro s (concat s0 s1)
let lemma_concat3 #a len0 s0 len1 s1 len2 s2 s =
let s' = concat (concat s0 s1) s2 in
Seq.Properties.lemma_split (sub s 0 (len0 + len1)) len0;
Seq.Properties.lemma_split (sub s' 0 (len0 + len1)) len0;
Seq.Properties.lemma_split s (len0 + len1);
Seq.Properties.lemma_split s' (len0 + len1);
Seq.lemma_eq_intro s (concat (concat s0 s1) s2)
let createi_a (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (k:nat{k <= len}) =
lseq a k
let createi_pred (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (k:nat{k <= len})
(s:createi_a a len init k) =
forall (i:nat).{:pattern (index s i)} i < k ==> index s i == init i
let createi_step (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (i:nat{i < len})
(si:createi_a a len init i)
: r:createi_a a len init (i + 1)
{createi_pred a len init i si ==> createi_pred a len init (i + 1) r}
=
assert (createi_pred a len init i si ==> (forall (j:nat). j < i ==> index si j == init j));
Seq.snoc si (init i)
#push-options "--max_fuel 1 --using_facts_from '+Lib.LoopCombinators +FStar.List'"
let createi #a len init_f =
repeat_gen_inductive len
(createi_a a len init_f)
(createi_pred a len init_f)
(createi_step a len init_f)
(of_list [])
#pop-options
inline_for_extraction
let mapi_inner (#a:Type) (#b:Type) (#len:size_nat)
(f:(i:nat{i < len} -> a -> b)) (s:lseq a len) (i:size_nat{i < len}) =
f i s.[i]
let mapi #a #b #len f s =
createi #b len (mapi_inner #a #b #len f s)
inline_for_extraction
let map_inner (#a:Type) (#b:Type) (#len:size_nat)
(f:(a -> Tot b)) (s:lseq a len) (i:size_nat{i < len}) =
f s.[i]
let map #a #b #len f s =
createi #b len (map_inner #a #b #len f s)
let map2i #a #b #c #len f s1 s2 =
createi #c len (fun i -> f i s1.[i] s2.[i])
inline_for_extraction
let map2_inner (#a:Type) (#b:Type) (#c:Type) (#len:size_nat)
(f:(a -> b -> Tot c)) (s1:lseq a len) (s2:lseq b len) (i:size_nat{i < len}) =
f s1.[i] s2.[i]
let map2 #a #b #c #len f s1 s2 =
createi #c len (map2_inner #a #b #c #len f s1 s2)
let for_all #a #len f x = Seq.for_all f x
let for_all2 #a #b #len f x y =
let r = map2 (fun xi yi -> f xi yi) x y in
Seq.for_all (fun bi -> bi = true) r
(** Selecting a subset of an unbounded Sequence *)
val seq_sub:
#a:Type
-> s1:seq a
-> start:nat
-> n:nat{start + n <= length s1}
-> s2:seq a{length s2 == n /\
(forall (k:nat{k < n}). {:pattern (Seq.index s2 k)} Seq.index s2 k == Seq.index s1 (start + k))}
let seq_sub #a s start n =
Seq.slice #a s start (start + n)
(** Updating a subset of an unbounded Sequence with another Sequence *)
val seq_update_sub:
#a:Type
-> i:seq a
-> start:nat
-> n:nat{start + n <= length i}
-> x:seq a{length x == n}
-> o:seq a{length o == length i /\ seq_sub o start n == x /\
(forall (k:nat{(0 <= k /\ k < start) \/ (start + n <= k /\ k < length i)}).
{:pattern (Seq.index o k)} Seq.index o k == Seq.index i k)}
let seq_update_sub #a s start n x =
let o =
Seq.append
(Seq.append (Seq.slice s 0 start) x)
(Seq.slice s (start + n) (length s)) in
Seq.lemma_eq_intro (Seq.slice o start (start + n)) x;
o
val repeati_blocks_f:
#a:Type0
-> #b:Type0
-> blocksize:size_nat{blocksize > 0}
-> inp:seq a
-> f:(i:nat{i < length inp / blocksize} -> lseq a blocksize -> b -> b)
-> nb:nat{nb == length inp / blocksize}
-> i:nat{i < nb}
-> acc:b
-> b
let repeati_blocks_f #a #b bs inp f nb i acc =
assert ((i+1) * bs <= nb * bs);
let block = seq_sub inp (i * bs) bs in
f i block acc
let repeati_blocks #a #b bs inp f g init =
let len = length inp in
let nb = len / bs in
let rem = len % bs in
let acc = repeati nb (repeati_blocks_f bs inp f nb) init in
let last = seq_sub inp (nb * bs) rem in
g nb rem last acc
let repeat_blocks #a #b #c bs inp f l init =
let len = length inp in
let nb = len / bs in
let rem = len % bs in
let acc = repeati nb (repeat_blocks_f bs inp f nb) init in
let last = seq_sub inp (nb * bs) rem in
l rem last acc
let lemma_repeat_blocks #a #b #c bs inp f l init = ()
let repeat_blocks_multi #a #b bs inp f init =
let len = length inp in
let nb = len / bs in
repeati nb (repeat_blocks_f bs inp f nb) init
let lemma_repeat_blocks_multi #a #b bs inp f init = ()
let generate_blocks_a (t:Type) (blocklen:size_nat) (max:nat) (a:(i:nat{i <= max} -> Type)) (i:nat{i <= max}) = a i & s:seq t{length s == i * blocklen}
let generate_blocks_inner (t:Type) (blocklen:size_nat) (max:nat) (a:(i:nat{i <= max} -> Type)) (f:(i:nat{i < max} -> a i -> a (i + 1) & s:seq t{length s == blocklen})) (i:nat{i < max}) (acc:generate_blocks_a t blocklen max a i) : generate_blocks_a t blocklen max a (i + 1) =
let acc, o = acc in
let acc', block = f i acc in
let o' : s:seq t{length s == ((i + 1) * blocklen)} = Seq.append o block in
acc', o'
let generate_blocks #t len max n a f acc0 =
let a0 = (acc0, (Seq.empty <: s:seq t{length s == 0 * len})) in
repeat_gen n (generate_blocks_a t len max a) (generate_blocks_inner t len max a f) a0
let generate_blocks_simple_a (a:Type) (bs:size_nat) (max:nat) (i:nat{i <= max}) = s:seq a{length s == i * bs}
let generate_blocks_simple_f
(#a:Type)
(bs:size_nat{bs > 0})
(max:nat)
(f:(i:nat{i < max} -> lseq a bs))
(i:nat{i < max})
(acc:generate_blocks_simple_a a bs max i) : generate_blocks_simple_a a bs max (i + 1)
=
Seq.append acc (f i)
let generate_blocks_simple #a bs max nb f =
repeat_gen nb (generate_blocks_simple_a a bs max)
(generate_blocks_simple_f #a bs max f) Seq.empty
#restart-solver
let div_interval b n i =
Math.Lemmas.lemma_div_le (n * b) i b;
Math.Lemmas.cancel_mul_div n b
let mod_interval_lt b n i j =
div_interval b n i;
div_interval b n j
let div_mul_lt b a n = ()
let mod_div_lt b i j =
mod_interval_lt b (j / b) i j
let div_mul_l a b c d =
calc (==) {
a / (c * d);
== { }
a / (d * c);
== { Math.Lemmas.division_multiplication_lemma a d c }
(a / d) / c;
== { }
(b / d) / c;
== { Math.Lemmas.division_multiplication_lemma b d c }
b / (d * c);
== { }
b / (c * d);
}
let map_blocks_multi #a bs max nb inp f =
repeat_gen nb (map_blocks_a a bs max)
(map_blocks_f #a bs max inp f) Seq.empty
let lemma_map_blocks_multi #a bs max nb inp f = ()
private
val mod_prop: n:pos -> a:nat -> b:nat{a * n <= b /\ b < (a + 1) * n} ->
Lemma (b - a * n == b % n) | false | false | Lib.Sequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val mod_prop: n:pos -> a:nat -> b:nat{a * n <= b /\ b < (a + 1) * n} ->
Lemma (b - a * n == b % n) | [] | Lib.Sequence.mod_prop | {
"file_name": "lib/Lib.Sequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | n: Prims.pos -> a: Prims.nat -> b: Prims.nat{a * n <= b /\ b < (a + 1) * n}
-> FStar.Pervasives.Lemma (ensures b - a * n == b % n) | {
"end_col": 33,
"end_line": 267,
"start_col": 2,
"start_line": 266
} |
Prims.Tot | val createi_step
(a: Type)
(len: size_nat)
(init: (i: nat{i < len} -> a))
(i: nat{i < len})
(si: createi_a a len init i)
: r:
createi_a a len init (i + 1)
{createi_pred a len init i si ==> createi_pred a len init (i + 1) r} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let createi_step (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (i:nat{i < len})
(si:createi_a a len init i)
: r:createi_a a len init (i + 1)
{createi_pred a len init i si ==> createi_pred a len init (i + 1) r}
=
assert (createi_pred a len init i si ==> (forall (j:nat). j < i ==> index si j == init j));
Seq.snoc si (init i) | val createi_step
(a: Type)
(len: size_nat)
(init: (i: nat{i < len} -> a))
(i: nat{i < len})
(si: createi_a a len init i)
: r:
createi_a a len init (i + 1)
{createi_pred a len init i si ==> createi_pred a len init (i + 1) r}
let createi_step
(a: Type)
(len: size_nat)
(init: (i: nat{i < len} -> a))
(i: nat{i < len})
(si: createi_a a len init i)
: r:
createi_a a len init (i + 1)
{createi_pred a len init i si ==> createi_pred a len init (i + 1) r} = | false | null | false | assert (createi_pred a len init i si ==> (forall (j: nat). j < i ==> index si j == init j));
Seq.snoc si (init i) | {
"checked_file": "Lib.Sequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.fst"
} | [
"total"
] | [
"Lib.IntTypes.size_nat",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.Sequence.createi_a",
"FStar.Seq.Properties.snoc",
"Prims.unit",
"Prims._assert",
"Prims.l_imp",
"Lib.Sequence.createi_pred",
"Prims.l_Forall",
"Prims.eq2",
"Lib.Sequence.index",
"Prims.op_Addition"
] | [] | module Lib.Sequence
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 --using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence'"
let index #a #len s n = Seq.index s n
let create #a len init = Seq.create #a len init
let concat #a #len0 #len1 s0 s1 = Seq.append s0 s1
let to_list #a s = Seq.seq_to_list s
let of_list #a l = Seq.seq_of_list #a l
let of_list_index #a l i =
Seq.lemma_seq_of_list_index #a l i
let equal #a #len s1 s2 =
forall (i:size_nat{i < len}).{:pattern (index s1 i); (index s2 i)} index s1 i == index s2 i
let eq_intro #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_intro #a (to_seq s1) (to_seq s2)
let eq_elim #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_elim #a s1 s2
let upd #a #len s n x = Seq.upd #a s n x
let member #a #len x l = Seq.count x l > 0
let sub #a #len s start n = Seq.slice #a s start (start + n)
let update_sub #a #len s start n x =
let o =
Seq.append
(Seq.append (Seq.slice s 0 start) x)
(Seq.slice s (start + n) (length s)) in
Seq.lemma_eq_intro (Seq.slice o start (start + n)) x;
o
let lemma_update_sub #a #len dst start n src res =
let res1 = update_sub dst start n src in
Seq.lemma_split (sub res 0 (start + n)) start;
Seq.lemma_split (sub res1 0 (start + n)) start;
Seq.lemma_split res (start + n);
Seq.lemma_split res1 (start + n);
Seq.lemma_eq_intro res (update_sub dst start n src)
let lemma_concat2 #a len0 s0 len1 s1 s =
Seq.Properties.lemma_split s len0;
Seq.Properties.lemma_split (concat s0 s1) len0;
Seq.lemma_eq_intro s (concat s0 s1)
let lemma_concat3 #a len0 s0 len1 s1 len2 s2 s =
let s' = concat (concat s0 s1) s2 in
Seq.Properties.lemma_split (sub s 0 (len0 + len1)) len0;
Seq.Properties.lemma_split (sub s' 0 (len0 + len1)) len0;
Seq.Properties.lemma_split s (len0 + len1);
Seq.Properties.lemma_split s' (len0 + len1);
Seq.lemma_eq_intro s (concat (concat s0 s1) s2)
let createi_a (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (k:nat{k <= len}) =
lseq a k
let createi_pred (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (k:nat{k <= len})
(s:createi_a a len init k) =
forall (i:nat).{:pattern (index s i)} i < k ==> index s i == init i
let createi_step (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (i:nat{i < len})
(si:createi_a a len init i)
: r:createi_a a len init (i + 1)
{createi_pred a len init i si ==> createi_pred a len init (i + 1) r} | false | false | Lib.Sequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val createi_step
(a: Type)
(len: size_nat)
(init: (i: nat{i < len} -> a))
(i: nat{i < len})
(si: createi_a a len init i)
: r:
createi_a a len init (i + 1)
{createi_pred a len init i si ==> createi_pred a len init (i + 1) r} | [] | Lib.Sequence.createi_step | {
"file_name": "lib/Lib.Sequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
a: Type0 ->
len: Lib.IntTypes.size_nat ->
init: (i: Prims.nat{i < len} -> a) ->
i: Prims.nat{i < len} ->
si: Lib.Sequence.createi_a a len init i
-> r:
Lib.Sequence.createi_a a len init (i + 1)
{Lib.Sequence.createi_pred a len init i si ==> Lib.Sequence.createi_pred a len init (i + 1) r} | {
"end_col": 22,
"end_line": 83,
"start_col": 2,
"start_line": 82
} |
FStar.Pervasives.Lemma | val div_interval: b:pos -> n:int -> i:int -> Lemma
(requires n * b <= i /\ i < (n + 1) * b)
(ensures i / b = n) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let div_interval b n i =
Math.Lemmas.lemma_div_le (n * b) i b;
Math.Lemmas.cancel_mul_div n b | val div_interval: b:pos -> n:int -> i:int -> Lemma
(requires n * b <= i /\ i < (n + 1) * b)
(ensures i / b = n)
let div_interval b n i = | false | null | true | Math.Lemmas.lemma_div_le (n * b) i b;
Math.Lemmas.cancel_mul_div n b | {
"checked_file": "Lib.Sequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.fst"
} | [
"lemma"
] | [
"Prims.pos",
"Prims.int",
"FStar.Math.Lemmas.cancel_mul_div",
"Prims.unit",
"FStar.Math.Lemmas.lemma_div_le",
"FStar.Mul.op_Star"
] | [] | module Lib.Sequence
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 --using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence'"
let index #a #len s n = Seq.index s n
let create #a len init = Seq.create #a len init
let concat #a #len0 #len1 s0 s1 = Seq.append s0 s1
let to_list #a s = Seq.seq_to_list s
let of_list #a l = Seq.seq_of_list #a l
let of_list_index #a l i =
Seq.lemma_seq_of_list_index #a l i
let equal #a #len s1 s2 =
forall (i:size_nat{i < len}).{:pattern (index s1 i); (index s2 i)} index s1 i == index s2 i
let eq_intro #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_intro #a (to_seq s1) (to_seq s2)
let eq_elim #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_elim #a s1 s2
let upd #a #len s n x = Seq.upd #a s n x
let member #a #len x l = Seq.count x l > 0
let sub #a #len s start n = Seq.slice #a s start (start + n)
let update_sub #a #len s start n x =
let o =
Seq.append
(Seq.append (Seq.slice s 0 start) x)
(Seq.slice s (start + n) (length s)) in
Seq.lemma_eq_intro (Seq.slice o start (start + n)) x;
o
let lemma_update_sub #a #len dst start n src res =
let res1 = update_sub dst start n src in
Seq.lemma_split (sub res 0 (start + n)) start;
Seq.lemma_split (sub res1 0 (start + n)) start;
Seq.lemma_split res (start + n);
Seq.lemma_split res1 (start + n);
Seq.lemma_eq_intro res (update_sub dst start n src)
let lemma_concat2 #a len0 s0 len1 s1 s =
Seq.Properties.lemma_split s len0;
Seq.Properties.lemma_split (concat s0 s1) len0;
Seq.lemma_eq_intro s (concat s0 s1)
let lemma_concat3 #a len0 s0 len1 s1 len2 s2 s =
let s' = concat (concat s0 s1) s2 in
Seq.Properties.lemma_split (sub s 0 (len0 + len1)) len0;
Seq.Properties.lemma_split (sub s' 0 (len0 + len1)) len0;
Seq.Properties.lemma_split s (len0 + len1);
Seq.Properties.lemma_split s' (len0 + len1);
Seq.lemma_eq_intro s (concat (concat s0 s1) s2)
let createi_a (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (k:nat{k <= len}) =
lseq a k
let createi_pred (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (k:nat{k <= len})
(s:createi_a a len init k) =
forall (i:nat).{:pattern (index s i)} i < k ==> index s i == init i
let createi_step (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (i:nat{i < len})
(si:createi_a a len init i)
: r:createi_a a len init (i + 1)
{createi_pred a len init i si ==> createi_pred a len init (i + 1) r}
=
assert (createi_pred a len init i si ==> (forall (j:nat). j < i ==> index si j == init j));
Seq.snoc si (init i)
#push-options "--max_fuel 1 --using_facts_from '+Lib.LoopCombinators +FStar.List'"
let createi #a len init_f =
repeat_gen_inductive len
(createi_a a len init_f)
(createi_pred a len init_f)
(createi_step a len init_f)
(of_list [])
#pop-options
inline_for_extraction
let mapi_inner (#a:Type) (#b:Type) (#len:size_nat)
(f:(i:nat{i < len} -> a -> b)) (s:lseq a len) (i:size_nat{i < len}) =
f i s.[i]
let mapi #a #b #len f s =
createi #b len (mapi_inner #a #b #len f s)
inline_for_extraction
let map_inner (#a:Type) (#b:Type) (#len:size_nat)
(f:(a -> Tot b)) (s:lseq a len) (i:size_nat{i < len}) =
f s.[i]
let map #a #b #len f s =
createi #b len (map_inner #a #b #len f s)
let map2i #a #b #c #len f s1 s2 =
createi #c len (fun i -> f i s1.[i] s2.[i])
inline_for_extraction
let map2_inner (#a:Type) (#b:Type) (#c:Type) (#len:size_nat)
(f:(a -> b -> Tot c)) (s1:lseq a len) (s2:lseq b len) (i:size_nat{i < len}) =
f s1.[i] s2.[i]
let map2 #a #b #c #len f s1 s2 =
createi #c len (map2_inner #a #b #c #len f s1 s2)
let for_all #a #len f x = Seq.for_all f x
let for_all2 #a #b #len f x y =
let r = map2 (fun xi yi -> f xi yi) x y in
Seq.for_all (fun bi -> bi = true) r
(** Selecting a subset of an unbounded Sequence *)
val seq_sub:
#a:Type
-> s1:seq a
-> start:nat
-> n:nat{start + n <= length s1}
-> s2:seq a{length s2 == n /\
(forall (k:nat{k < n}). {:pattern (Seq.index s2 k)} Seq.index s2 k == Seq.index s1 (start + k))}
let seq_sub #a s start n =
Seq.slice #a s start (start + n)
(** Updating a subset of an unbounded Sequence with another Sequence *)
val seq_update_sub:
#a:Type
-> i:seq a
-> start:nat
-> n:nat{start + n <= length i}
-> x:seq a{length x == n}
-> o:seq a{length o == length i /\ seq_sub o start n == x /\
(forall (k:nat{(0 <= k /\ k < start) \/ (start + n <= k /\ k < length i)}).
{:pattern (Seq.index o k)} Seq.index o k == Seq.index i k)}
let seq_update_sub #a s start n x =
let o =
Seq.append
(Seq.append (Seq.slice s 0 start) x)
(Seq.slice s (start + n) (length s)) in
Seq.lemma_eq_intro (Seq.slice o start (start + n)) x;
o
val repeati_blocks_f:
#a:Type0
-> #b:Type0
-> blocksize:size_nat{blocksize > 0}
-> inp:seq a
-> f:(i:nat{i < length inp / blocksize} -> lseq a blocksize -> b -> b)
-> nb:nat{nb == length inp / blocksize}
-> i:nat{i < nb}
-> acc:b
-> b
let repeati_blocks_f #a #b bs inp f nb i acc =
assert ((i+1) * bs <= nb * bs);
let block = seq_sub inp (i * bs) bs in
f i block acc
let repeati_blocks #a #b bs inp f g init =
let len = length inp in
let nb = len / bs in
let rem = len % bs in
let acc = repeati nb (repeati_blocks_f bs inp f nb) init in
let last = seq_sub inp (nb * bs) rem in
g nb rem last acc
let repeat_blocks #a #b #c bs inp f l init =
let len = length inp in
let nb = len / bs in
let rem = len % bs in
let acc = repeati nb (repeat_blocks_f bs inp f nb) init in
let last = seq_sub inp (nb * bs) rem in
l rem last acc
let lemma_repeat_blocks #a #b #c bs inp f l init = ()
let repeat_blocks_multi #a #b bs inp f init =
let len = length inp in
let nb = len / bs in
repeati nb (repeat_blocks_f bs inp f nb) init
let lemma_repeat_blocks_multi #a #b bs inp f init = ()
let generate_blocks_a (t:Type) (blocklen:size_nat) (max:nat) (a:(i:nat{i <= max} -> Type)) (i:nat{i <= max}) = a i & s:seq t{length s == i * blocklen}
let generate_blocks_inner (t:Type) (blocklen:size_nat) (max:nat) (a:(i:nat{i <= max} -> Type)) (f:(i:nat{i < max} -> a i -> a (i + 1) & s:seq t{length s == blocklen})) (i:nat{i < max}) (acc:generate_blocks_a t blocklen max a i) : generate_blocks_a t blocklen max a (i + 1) =
let acc, o = acc in
let acc', block = f i acc in
let o' : s:seq t{length s == ((i + 1) * blocklen)} = Seq.append o block in
acc', o'
let generate_blocks #t len max n a f acc0 =
let a0 = (acc0, (Seq.empty <: s:seq t{length s == 0 * len})) in
repeat_gen n (generate_blocks_a t len max a) (generate_blocks_inner t len max a f) a0
let generate_blocks_simple_a (a:Type) (bs:size_nat) (max:nat) (i:nat{i <= max}) = s:seq a{length s == i * bs}
let generate_blocks_simple_f
(#a:Type)
(bs:size_nat{bs > 0})
(max:nat)
(f:(i:nat{i < max} -> lseq a bs))
(i:nat{i < max})
(acc:generate_blocks_simple_a a bs max i) : generate_blocks_simple_a a bs max (i + 1)
=
Seq.append acc (f i)
let generate_blocks_simple #a bs max nb f =
repeat_gen nb (generate_blocks_simple_a a bs max)
(generate_blocks_simple_f #a bs max f) Seq.empty
#restart-solver | false | false | Lib.Sequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val div_interval: b:pos -> n:int -> i:int -> Lemma
(requires n * b <= i /\ i < (n + 1) * b)
(ensures i / b = n) | [] | Lib.Sequence.div_interval | {
"file_name": "lib/Lib.Sequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b: Prims.pos -> n: Prims.int -> i: Prims.int
-> FStar.Pervasives.Lemma (requires n * b <= i /\ i < (n + 1) * b) (ensures i / b = n) | {
"end_col": 32,
"end_line": 229,
"start_col": 2,
"start_line": 228
} |
Prims.Tot | val create4: #a:Type -> x0:a -> x1:a -> x2:a -> x3:a -> lseq a 4 | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let create4 #a x0 x1 x2 x3 =
let l = [x0; x1; x2; x3] in
assert_norm (List.Tot.length l = 4);
createL l | val create4: #a:Type -> x0:a -> x1:a -> x2:a -> x3:a -> lseq a 4
let create4 #a x0 x1 x2 x3 = | false | null | false | let l = [x0; x1; x2; x3] in
assert_norm (List.Tot.length l = 4);
createL l | {
"checked_file": "Lib.Sequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.fst"
} | [
"total"
] | [
"Lib.Sequence.createL",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"FStar.List.Tot.Base.length",
"Prims.list",
"Prims.Cons",
"Prims.Nil",
"Lib.Sequence.lseq"
] | [] | module Lib.Sequence
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 --using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence'"
let index #a #len s n = Seq.index s n
let create #a len init = Seq.create #a len init
let concat #a #len0 #len1 s0 s1 = Seq.append s0 s1
let to_list #a s = Seq.seq_to_list s
let of_list #a l = Seq.seq_of_list #a l
let of_list_index #a l i =
Seq.lemma_seq_of_list_index #a l i
let equal #a #len s1 s2 =
forall (i:size_nat{i < len}).{:pattern (index s1 i); (index s2 i)} index s1 i == index s2 i
let eq_intro #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_intro #a (to_seq s1) (to_seq s2)
let eq_elim #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_elim #a s1 s2
let upd #a #len s n x = Seq.upd #a s n x
let member #a #len x l = Seq.count x l > 0
let sub #a #len s start n = Seq.slice #a s start (start + n)
let update_sub #a #len s start n x =
let o =
Seq.append
(Seq.append (Seq.slice s 0 start) x)
(Seq.slice s (start + n) (length s)) in
Seq.lemma_eq_intro (Seq.slice o start (start + n)) x;
o
let lemma_update_sub #a #len dst start n src res =
let res1 = update_sub dst start n src in
Seq.lemma_split (sub res 0 (start + n)) start;
Seq.lemma_split (sub res1 0 (start + n)) start;
Seq.lemma_split res (start + n);
Seq.lemma_split res1 (start + n);
Seq.lemma_eq_intro res (update_sub dst start n src)
let lemma_concat2 #a len0 s0 len1 s1 s =
Seq.Properties.lemma_split s len0;
Seq.Properties.lemma_split (concat s0 s1) len0;
Seq.lemma_eq_intro s (concat s0 s1)
let lemma_concat3 #a len0 s0 len1 s1 len2 s2 s =
let s' = concat (concat s0 s1) s2 in
Seq.Properties.lemma_split (sub s 0 (len0 + len1)) len0;
Seq.Properties.lemma_split (sub s' 0 (len0 + len1)) len0;
Seq.Properties.lemma_split s (len0 + len1);
Seq.Properties.lemma_split s' (len0 + len1);
Seq.lemma_eq_intro s (concat (concat s0 s1) s2)
let createi_a (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (k:nat{k <= len}) =
lseq a k
let createi_pred (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (k:nat{k <= len})
(s:createi_a a len init k) =
forall (i:nat).{:pattern (index s i)} i < k ==> index s i == init i
let createi_step (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (i:nat{i < len})
(si:createi_a a len init i)
: r:createi_a a len init (i + 1)
{createi_pred a len init i si ==> createi_pred a len init (i + 1) r}
=
assert (createi_pred a len init i si ==> (forall (j:nat). j < i ==> index si j == init j));
Seq.snoc si (init i)
#push-options "--max_fuel 1 --using_facts_from '+Lib.LoopCombinators +FStar.List'"
let createi #a len init_f =
repeat_gen_inductive len
(createi_a a len init_f)
(createi_pred a len init_f)
(createi_step a len init_f)
(of_list [])
#pop-options
inline_for_extraction
let mapi_inner (#a:Type) (#b:Type) (#len:size_nat)
(f:(i:nat{i < len} -> a -> b)) (s:lseq a len) (i:size_nat{i < len}) =
f i s.[i]
let mapi #a #b #len f s =
createi #b len (mapi_inner #a #b #len f s)
inline_for_extraction
let map_inner (#a:Type) (#b:Type) (#len:size_nat)
(f:(a -> Tot b)) (s:lseq a len) (i:size_nat{i < len}) =
f s.[i]
let map #a #b #len f s =
createi #b len (map_inner #a #b #len f s)
let map2i #a #b #c #len f s1 s2 =
createi #c len (fun i -> f i s1.[i] s2.[i])
inline_for_extraction
let map2_inner (#a:Type) (#b:Type) (#c:Type) (#len:size_nat)
(f:(a -> b -> Tot c)) (s1:lseq a len) (s2:lseq b len) (i:size_nat{i < len}) =
f s1.[i] s2.[i]
let map2 #a #b #c #len f s1 s2 =
createi #c len (map2_inner #a #b #c #len f s1 s2)
let for_all #a #len f x = Seq.for_all f x
let for_all2 #a #b #len f x y =
let r = map2 (fun xi yi -> f xi yi) x y in
Seq.for_all (fun bi -> bi = true) r
(** Selecting a subset of an unbounded Sequence *)
val seq_sub:
#a:Type
-> s1:seq a
-> start:nat
-> n:nat{start + n <= length s1}
-> s2:seq a{length s2 == n /\
(forall (k:nat{k < n}). {:pattern (Seq.index s2 k)} Seq.index s2 k == Seq.index s1 (start + k))}
let seq_sub #a s start n =
Seq.slice #a s start (start + n)
(** Updating a subset of an unbounded Sequence with another Sequence *)
val seq_update_sub:
#a:Type
-> i:seq a
-> start:nat
-> n:nat{start + n <= length i}
-> x:seq a{length x == n}
-> o:seq a{length o == length i /\ seq_sub o start n == x /\
(forall (k:nat{(0 <= k /\ k < start) \/ (start + n <= k /\ k < length i)}).
{:pattern (Seq.index o k)} Seq.index o k == Seq.index i k)}
let seq_update_sub #a s start n x =
let o =
Seq.append
(Seq.append (Seq.slice s 0 start) x)
(Seq.slice s (start + n) (length s)) in
Seq.lemma_eq_intro (Seq.slice o start (start + n)) x;
o
val repeati_blocks_f:
#a:Type0
-> #b:Type0
-> blocksize:size_nat{blocksize > 0}
-> inp:seq a
-> f:(i:nat{i < length inp / blocksize} -> lseq a blocksize -> b -> b)
-> nb:nat{nb == length inp / blocksize}
-> i:nat{i < nb}
-> acc:b
-> b
let repeati_blocks_f #a #b bs inp f nb i acc =
assert ((i+1) * bs <= nb * bs);
let block = seq_sub inp (i * bs) bs in
f i block acc
let repeati_blocks #a #b bs inp f g init =
let len = length inp in
let nb = len / bs in
let rem = len % bs in
let acc = repeati nb (repeati_blocks_f bs inp f nb) init in
let last = seq_sub inp (nb * bs) rem in
g nb rem last acc
let repeat_blocks #a #b #c bs inp f l init =
let len = length inp in
let nb = len / bs in
let rem = len % bs in
let acc = repeati nb (repeat_blocks_f bs inp f nb) init in
let last = seq_sub inp (nb * bs) rem in
l rem last acc
let lemma_repeat_blocks #a #b #c bs inp f l init = ()
let repeat_blocks_multi #a #b bs inp f init =
let len = length inp in
let nb = len / bs in
repeati nb (repeat_blocks_f bs inp f nb) init
let lemma_repeat_blocks_multi #a #b bs inp f init = ()
let generate_blocks_a (t:Type) (blocklen:size_nat) (max:nat) (a:(i:nat{i <= max} -> Type)) (i:nat{i <= max}) = a i & s:seq t{length s == i * blocklen}
let generate_blocks_inner (t:Type) (blocklen:size_nat) (max:nat) (a:(i:nat{i <= max} -> Type)) (f:(i:nat{i < max} -> a i -> a (i + 1) & s:seq t{length s == blocklen})) (i:nat{i < max}) (acc:generate_blocks_a t blocklen max a i) : generate_blocks_a t blocklen max a (i + 1) =
let acc, o = acc in
let acc', block = f i acc in
let o' : s:seq t{length s == ((i + 1) * blocklen)} = Seq.append o block in
acc', o'
let generate_blocks #t len max n a f acc0 =
let a0 = (acc0, (Seq.empty <: s:seq t{length s == 0 * len})) in
repeat_gen n (generate_blocks_a t len max a) (generate_blocks_inner t len max a f) a0
let generate_blocks_simple_a (a:Type) (bs:size_nat) (max:nat) (i:nat{i <= max}) = s:seq a{length s == i * bs}
let generate_blocks_simple_f
(#a:Type)
(bs:size_nat{bs > 0})
(max:nat)
(f:(i:nat{i < max} -> lseq a bs))
(i:nat{i < max})
(acc:generate_blocks_simple_a a bs max i) : generate_blocks_simple_a a bs max (i + 1)
=
Seq.append acc (f i)
let generate_blocks_simple #a bs max nb f =
repeat_gen nb (generate_blocks_simple_a a bs max)
(generate_blocks_simple_f #a bs max f) Seq.empty
#restart-solver
let div_interval b n i =
Math.Lemmas.lemma_div_le (n * b) i b;
Math.Lemmas.cancel_mul_div n b
let mod_interval_lt b n i j =
div_interval b n i;
div_interval b n j
let div_mul_lt b a n = ()
let mod_div_lt b i j =
mod_interval_lt b (j / b) i j
let div_mul_l a b c d =
calc (==) {
a / (c * d);
== { }
a / (d * c);
== { Math.Lemmas.division_multiplication_lemma a d c }
(a / d) / c;
== { }
(b / d) / c;
== { Math.Lemmas.division_multiplication_lemma b d c }
b / (d * c);
== { }
b / (c * d);
}
let map_blocks_multi #a bs max nb inp f =
repeat_gen nb (map_blocks_a a bs max)
(map_blocks_f #a bs max inp f) Seq.empty
let lemma_map_blocks_multi #a bs max nb inp f = ()
private
val mod_prop: n:pos -> a:nat -> b:nat{a * n <= b /\ b < (a + 1) * n} ->
Lemma (b - a * n == b % n)
let mod_prop n a b =
Math.Lemmas.modulo_lemma (b - a * n) n;
Math.Lemmas.lemma_mod_sub b n a
#push-options "--z3rlimit 200"
let rec index_map_blocks_multi #a bs max n inp f i =
let map_blocks_a = map_blocks_a a bs max in
let map_blocks_f = map_blocks_f #a bs max inp f in
let acc0 = Seq.empty #a in
let s1 = repeat_gen n map_blocks_a map_blocks_f acc0 in
unfold_repeat_gen n map_blocks_a map_blocks_f acc0 (n-1);
let s = repeat_gen (n-1) map_blocks_a map_blocks_f acc0 in
//assert (s1 == map_blocks_f (n-1) s);
let s' = f (n-1) (Seq.slice inp ((n-1)*bs) (n*bs)) in
//assert (s1 == Seq.append s s');
if i < (n-1)*bs then begin
Seq.lemma_index_app1 s s' i;
index_map_blocks_multi #a bs max (n-1) inp f i end
else begin
Seq.lemma_index_app2 s s' i;
mod_prop bs (n-1) i
end
let map_blocks #a blocksize inp f g =
let len = length inp in
let nb = len / blocksize in
let rem = len % blocksize in
let blocks = Seq.slice inp 0 (nb * blocksize) in
let last = Seq.slice inp (nb * blocksize) len in
let bs = map_blocks_multi #a blocksize nb nb blocks f in
if (rem > 0) then
Seq.append bs (g nb rem last)
else bs
let lemma_map_blocks #a blocksize inp f g = ()
let index_map_blocks #a bs inp f g i =
let len = length inp in
let nb = len / bs in
let rem = len % bs in
let blocks = Seq.slice inp 0 (nb * bs) in
if rem > 0 then
begin
let s1 = map_blocks_multi #a bs nb nb blocks f in
let last = Seq.slice inp (nb * bs) len in
calc (==) {
length last;
== { Seq.lemma_len_slice inp (nb * bs) len }
len - nb * bs;
== {mod_prop bs nb len}
len % bs;
== { }
rem;
};
let s2 = g nb rem last in
assert (Seq.equal (map_blocks bs inp f g) (Seq.append s1 s2));
if i < nb * bs then
begin
div_mul_lt bs i nb;
Seq.lemma_index_app1 s1 s2 i;
index_map_blocks_multi bs nb nb blocks f i
end
else
begin
Seq.lemma_index_app2 s1 s2 i;
mod_prop bs nb i
end
end
else index_map_blocks_multi #a bs nb nb blocks f i
let eq_generate_blocks0 #t len n a f acc0 =
let a0 = (acc0, (Seq.empty <: s:seq t{length s == 0 * len})) in
assert (generate_blocks #t len n 0 a f acc0 ==
repeat_gen 0 (generate_blocks_a t len n a) (generate_blocks_inner t len n a f) a0);
eq_repeat_gen0 0 (generate_blocks_a t len n a) (generate_blocks_inner t len n a f) a0
let unfold_generate_blocks #t len n a f acc0 i =
let a0 = (acc0, (Seq.empty <: s:seq t{length s == 0 * len})) in
assert (generate_blocks #t len n (i+1) a f acc0 ==
repeat_gen (i+1) (generate_blocks_a t len n a) (generate_blocks_inner t len n a f) a0);
unfold_repeat_gen (i+1) (generate_blocks_a t len n a) (generate_blocks_inner t len n a f) a0 i
let rec index_generate_blocks #t len max n f i =
assert (0 < n);
let a_spec (i:nat{i <= max}) = unit in
let _,s = generate_blocks #t len max (n-1) a_spec f () in
let _,s' = f (n-1) () in
let _,s1 = generate_blocks #t len max n a_spec f () in
unfold_generate_blocks #t len max a_spec f () (n-1);
Seq.Properties.lemma_split s1 (n * len - len);
Seq.Properties.lemma_split (Seq.append s s') (n * len - len);
Seq.lemma_eq_intro s1 (Seq.append s s');
if i < (n-1) * len then
begin
Seq.lemma_index_app1 s s' i;
index_generate_blocks len max (n-1) f i
end
else
begin
Seq.lemma_index_app2 s s' i;
mod_prop len (n-1) i
end
#push-options "--using_facts_from '+FStar.UInt.pow2_values'"
let create2 #a x0 x1 =
let l = [x0; x1] in
assert_norm (List.Tot.length l = 2);
createL l
let create2_lemma #a x0 x1 =
Seq.elim_of_list [x0; x1] | false | false | Lib.Sequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 200,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val create4: #a:Type -> x0:a -> x1:a -> x2:a -> x3:a -> lseq a 4 | [] | Lib.Sequence.create4 | {
"file_name": "lib/Lib.Sequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x0: a -> x1: a -> x2: a -> x3: a -> Lib.Sequence.lseq a 4 | {
"end_col": 11,
"end_line": 382,
"start_col": 28,
"start_line": 379
} |
Prims.Tot | val repeat_blocks_multi:
#a:Type0
-> #b:Type0
-> blocksize:size_pos
-> inp:seq a{length inp % blocksize = 0}
-> f:(lseq a blocksize -> b -> b)
-> init:b ->
Tot b | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let repeat_blocks_multi #a #b bs inp f init =
let len = length inp in
let nb = len / bs in
repeati nb (repeat_blocks_f bs inp f nb) init | val repeat_blocks_multi:
#a:Type0
-> #b:Type0
-> blocksize:size_pos
-> inp:seq a{length inp % blocksize = 0}
-> f:(lseq a blocksize -> b -> b)
-> init:b ->
Tot b
let repeat_blocks_multi #a #b bs inp f init = | false | null | false | let len = length inp in
let nb = len / bs in
repeati nb (repeat_blocks_f bs inp f nb) init | {
"checked_file": "Lib.Sequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.fst"
} | [
"total"
] | [
"Lib.IntTypes.size_pos",
"Lib.Sequence.seq",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.op_Modulus",
"Lib.Sequence.length",
"Lib.Sequence.lseq",
"Lib.LoopCombinators.repeati",
"Lib.Sequence.repeat_blocks_f",
"Prims.op_Division",
"Prims.nat"
] | [] | module Lib.Sequence
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 --using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence'"
let index #a #len s n = Seq.index s n
let create #a len init = Seq.create #a len init
let concat #a #len0 #len1 s0 s1 = Seq.append s0 s1
let to_list #a s = Seq.seq_to_list s
let of_list #a l = Seq.seq_of_list #a l
let of_list_index #a l i =
Seq.lemma_seq_of_list_index #a l i
let equal #a #len s1 s2 =
forall (i:size_nat{i < len}).{:pattern (index s1 i); (index s2 i)} index s1 i == index s2 i
let eq_intro #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_intro #a (to_seq s1) (to_seq s2)
let eq_elim #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_elim #a s1 s2
let upd #a #len s n x = Seq.upd #a s n x
let member #a #len x l = Seq.count x l > 0
let sub #a #len s start n = Seq.slice #a s start (start + n)
let update_sub #a #len s start n x =
let o =
Seq.append
(Seq.append (Seq.slice s 0 start) x)
(Seq.slice s (start + n) (length s)) in
Seq.lemma_eq_intro (Seq.slice o start (start + n)) x;
o
let lemma_update_sub #a #len dst start n src res =
let res1 = update_sub dst start n src in
Seq.lemma_split (sub res 0 (start + n)) start;
Seq.lemma_split (sub res1 0 (start + n)) start;
Seq.lemma_split res (start + n);
Seq.lemma_split res1 (start + n);
Seq.lemma_eq_intro res (update_sub dst start n src)
let lemma_concat2 #a len0 s0 len1 s1 s =
Seq.Properties.lemma_split s len0;
Seq.Properties.lemma_split (concat s0 s1) len0;
Seq.lemma_eq_intro s (concat s0 s1)
let lemma_concat3 #a len0 s0 len1 s1 len2 s2 s =
let s' = concat (concat s0 s1) s2 in
Seq.Properties.lemma_split (sub s 0 (len0 + len1)) len0;
Seq.Properties.lemma_split (sub s' 0 (len0 + len1)) len0;
Seq.Properties.lemma_split s (len0 + len1);
Seq.Properties.lemma_split s' (len0 + len1);
Seq.lemma_eq_intro s (concat (concat s0 s1) s2)
let createi_a (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (k:nat{k <= len}) =
lseq a k
let createi_pred (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (k:nat{k <= len})
(s:createi_a a len init k) =
forall (i:nat).{:pattern (index s i)} i < k ==> index s i == init i
let createi_step (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (i:nat{i < len})
(si:createi_a a len init i)
: r:createi_a a len init (i + 1)
{createi_pred a len init i si ==> createi_pred a len init (i + 1) r}
=
assert (createi_pred a len init i si ==> (forall (j:nat). j < i ==> index si j == init j));
Seq.snoc si (init i)
#push-options "--max_fuel 1 --using_facts_from '+Lib.LoopCombinators +FStar.List'"
let createi #a len init_f =
repeat_gen_inductive len
(createi_a a len init_f)
(createi_pred a len init_f)
(createi_step a len init_f)
(of_list [])
#pop-options
inline_for_extraction
let mapi_inner (#a:Type) (#b:Type) (#len:size_nat)
(f:(i:nat{i < len} -> a -> b)) (s:lseq a len) (i:size_nat{i < len}) =
f i s.[i]
let mapi #a #b #len f s =
createi #b len (mapi_inner #a #b #len f s)
inline_for_extraction
let map_inner (#a:Type) (#b:Type) (#len:size_nat)
(f:(a -> Tot b)) (s:lseq a len) (i:size_nat{i < len}) =
f s.[i]
let map #a #b #len f s =
createi #b len (map_inner #a #b #len f s)
let map2i #a #b #c #len f s1 s2 =
createi #c len (fun i -> f i s1.[i] s2.[i])
inline_for_extraction
let map2_inner (#a:Type) (#b:Type) (#c:Type) (#len:size_nat)
(f:(a -> b -> Tot c)) (s1:lseq a len) (s2:lseq b len) (i:size_nat{i < len}) =
f s1.[i] s2.[i]
let map2 #a #b #c #len f s1 s2 =
createi #c len (map2_inner #a #b #c #len f s1 s2)
let for_all #a #len f x = Seq.for_all f x
let for_all2 #a #b #len f x y =
let r = map2 (fun xi yi -> f xi yi) x y in
Seq.for_all (fun bi -> bi = true) r
(** Selecting a subset of an unbounded Sequence *)
val seq_sub:
#a:Type
-> s1:seq a
-> start:nat
-> n:nat{start + n <= length s1}
-> s2:seq a{length s2 == n /\
(forall (k:nat{k < n}). {:pattern (Seq.index s2 k)} Seq.index s2 k == Seq.index s1 (start + k))}
let seq_sub #a s start n =
Seq.slice #a s start (start + n)
(** Updating a subset of an unbounded Sequence with another Sequence *)
val seq_update_sub:
#a:Type
-> i:seq a
-> start:nat
-> n:nat{start + n <= length i}
-> x:seq a{length x == n}
-> o:seq a{length o == length i /\ seq_sub o start n == x /\
(forall (k:nat{(0 <= k /\ k < start) \/ (start + n <= k /\ k < length i)}).
{:pattern (Seq.index o k)} Seq.index o k == Seq.index i k)}
let seq_update_sub #a s start n x =
let o =
Seq.append
(Seq.append (Seq.slice s 0 start) x)
(Seq.slice s (start + n) (length s)) in
Seq.lemma_eq_intro (Seq.slice o start (start + n)) x;
o
val repeati_blocks_f:
#a:Type0
-> #b:Type0
-> blocksize:size_nat{blocksize > 0}
-> inp:seq a
-> f:(i:nat{i < length inp / blocksize} -> lseq a blocksize -> b -> b)
-> nb:nat{nb == length inp / blocksize}
-> i:nat{i < nb}
-> acc:b
-> b
let repeati_blocks_f #a #b bs inp f nb i acc =
assert ((i+1) * bs <= nb * bs);
let block = seq_sub inp (i * bs) bs in
f i block acc
let repeati_blocks #a #b bs inp f g init =
let len = length inp in
let nb = len / bs in
let rem = len % bs in
let acc = repeati nb (repeati_blocks_f bs inp f nb) init in
let last = seq_sub inp (nb * bs) rem in
g nb rem last acc
let repeat_blocks #a #b #c bs inp f l init =
let len = length inp in
let nb = len / bs in
let rem = len % bs in
let acc = repeati nb (repeat_blocks_f bs inp f nb) init in
let last = seq_sub inp (nb * bs) rem in
l rem last acc
let lemma_repeat_blocks #a #b #c bs inp f l init = () | false | false | Lib.Sequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val repeat_blocks_multi:
#a:Type0
-> #b:Type0
-> blocksize:size_pos
-> inp:seq a{length inp % blocksize = 0}
-> f:(lseq a blocksize -> b -> b)
-> init:b ->
Tot b | [] | Lib.Sequence.repeat_blocks_multi | {
"file_name": "lib/Lib.Sequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
blocksize: Lib.IntTypes.size_pos ->
inp: Lib.Sequence.seq a {Lib.Sequence.length inp % blocksize = 0} ->
f: (_: Lib.Sequence.lseq a blocksize -> _: b -> b) ->
init: b
-> b | {
"end_col": 47,
"end_line": 194,
"start_col": 45,
"start_line": 191
} |
Prims.Tot | val map_blocks_multi:
#a:Type0
-> blocksize:size_pos
-> max:nat
-> n:nat{n <= max}
-> inp:seq a{length inp == max * blocksize}
-> f:(i:nat{i < max} -> lseq a blocksize -> lseq a blocksize) ->
Tot (out:seq a {length out == n * blocksize}) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let map_blocks_multi #a bs max nb inp f =
repeat_gen nb (map_blocks_a a bs max)
(map_blocks_f #a bs max inp f) Seq.empty | val map_blocks_multi:
#a:Type0
-> blocksize:size_pos
-> max:nat
-> n:nat{n <= max}
-> inp:seq a{length inp == max * blocksize}
-> f:(i:nat{i < max} -> lseq a blocksize -> lseq a blocksize) ->
Tot (out:seq a {length out == n * blocksize})
let map_blocks_multi #a bs max nb inp f = | false | null | false | repeat_gen nb (map_blocks_a a bs max) (map_blocks_f #a bs max inp f) Seq.empty | {
"checked_file": "Lib.Sequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.fst"
} | [
"total"
] | [
"Lib.IntTypes.size_pos",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Lib.Sequence.seq",
"Prims.eq2",
"Prims.int",
"Lib.Sequence.length",
"FStar.Mul.op_Star",
"Prims.op_LessThan",
"Lib.Sequence.lseq",
"Lib.LoopCombinators.repeat_gen",
"Lib.Sequence.map_blocks_a",
"Lib.Sequence.map_blocks_f",
"FStar.Seq.Base.empty"
] | [] | module Lib.Sequence
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 --using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence'"
let index #a #len s n = Seq.index s n
let create #a len init = Seq.create #a len init
let concat #a #len0 #len1 s0 s1 = Seq.append s0 s1
let to_list #a s = Seq.seq_to_list s
let of_list #a l = Seq.seq_of_list #a l
let of_list_index #a l i =
Seq.lemma_seq_of_list_index #a l i
let equal #a #len s1 s2 =
forall (i:size_nat{i < len}).{:pattern (index s1 i); (index s2 i)} index s1 i == index s2 i
let eq_intro #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_intro #a (to_seq s1) (to_seq s2)
let eq_elim #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_elim #a s1 s2
let upd #a #len s n x = Seq.upd #a s n x
let member #a #len x l = Seq.count x l > 0
let sub #a #len s start n = Seq.slice #a s start (start + n)
let update_sub #a #len s start n x =
let o =
Seq.append
(Seq.append (Seq.slice s 0 start) x)
(Seq.slice s (start + n) (length s)) in
Seq.lemma_eq_intro (Seq.slice o start (start + n)) x;
o
let lemma_update_sub #a #len dst start n src res =
let res1 = update_sub dst start n src in
Seq.lemma_split (sub res 0 (start + n)) start;
Seq.lemma_split (sub res1 0 (start + n)) start;
Seq.lemma_split res (start + n);
Seq.lemma_split res1 (start + n);
Seq.lemma_eq_intro res (update_sub dst start n src)
let lemma_concat2 #a len0 s0 len1 s1 s =
Seq.Properties.lemma_split s len0;
Seq.Properties.lemma_split (concat s0 s1) len0;
Seq.lemma_eq_intro s (concat s0 s1)
let lemma_concat3 #a len0 s0 len1 s1 len2 s2 s =
let s' = concat (concat s0 s1) s2 in
Seq.Properties.lemma_split (sub s 0 (len0 + len1)) len0;
Seq.Properties.lemma_split (sub s' 0 (len0 + len1)) len0;
Seq.Properties.lemma_split s (len0 + len1);
Seq.Properties.lemma_split s' (len0 + len1);
Seq.lemma_eq_intro s (concat (concat s0 s1) s2)
let createi_a (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (k:nat{k <= len}) =
lseq a k
let createi_pred (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (k:nat{k <= len})
(s:createi_a a len init k) =
forall (i:nat).{:pattern (index s i)} i < k ==> index s i == init i
let createi_step (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (i:nat{i < len})
(si:createi_a a len init i)
: r:createi_a a len init (i + 1)
{createi_pred a len init i si ==> createi_pred a len init (i + 1) r}
=
assert (createi_pred a len init i si ==> (forall (j:nat). j < i ==> index si j == init j));
Seq.snoc si (init i)
#push-options "--max_fuel 1 --using_facts_from '+Lib.LoopCombinators +FStar.List'"
let createi #a len init_f =
repeat_gen_inductive len
(createi_a a len init_f)
(createi_pred a len init_f)
(createi_step a len init_f)
(of_list [])
#pop-options
inline_for_extraction
let mapi_inner (#a:Type) (#b:Type) (#len:size_nat)
(f:(i:nat{i < len} -> a -> b)) (s:lseq a len) (i:size_nat{i < len}) =
f i s.[i]
let mapi #a #b #len f s =
createi #b len (mapi_inner #a #b #len f s)
inline_for_extraction
let map_inner (#a:Type) (#b:Type) (#len:size_nat)
(f:(a -> Tot b)) (s:lseq a len) (i:size_nat{i < len}) =
f s.[i]
let map #a #b #len f s =
createi #b len (map_inner #a #b #len f s)
let map2i #a #b #c #len f s1 s2 =
createi #c len (fun i -> f i s1.[i] s2.[i])
inline_for_extraction
let map2_inner (#a:Type) (#b:Type) (#c:Type) (#len:size_nat)
(f:(a -> b -> Tot c)) (s1:lseq a len) (s2:lseq b len) (i:size_nat{i < len}) =
f s1.[i] s2.[i]
let map2 #a #b #c #len f s1 s2 =
createi #c len (map2_inner #a #b #c #len f s1 s2)
let for_all #a #len f x = Seq.for_all f x
let for_all2 #a #b #len f x y =
let r = map2 (fun xi yi -> f xi yi) x y in
Seq.for_all (fun bi -> bi = true) r
(** Selecting a subset of an unbounded Sequence *)
val seq_sub:
#a:Type
-> s1:seq a
-> start:nat
-> n:nat{start + n <= length s1}
-> s2:seq a{length s2 == n /\
(forall (k:nat{k < n}). {:pattern (Seq.index s2 k)} Seq.index s2 k == Seq.index s1 (start + k))}
let seq_sub #a s start n =
Seq.slice #a s start (start + n)
(** Updating a subset of an unbounded Sequence with another Sequence *)
val seq_update_sub:
#a:Type
-> i:seq a
-> start:nat
-> n:nat{start + n <= length i}
-> x:seq a{length x == n}
-> o:seq a{length o == length i /\ seq_sub o start n == x /\
(forall (k:nat{(0 <= k /\ k < start) \/ (start + n <= k /\ k < length i)}).
{:pattern (Seq.index o k)} Seq.index o k == Seq.index i k)}
let seq_update_sub #a s start n x =
let o =
Seq.append
(Seq.append (Seq.slice s 0 start) x)
(Seq.slice s (start + n) (length s)) in
Seq.lemma_eq_intro (Seq.slice o start (start + n)) x;
o
val repeati_blocks_f:
#a:Type0
-> #b:Type0
-> blocksize:size_nat{blocksize > 0}
-> inp:seq a
-> f:(i:nat{i < length inp / blocksize} -> lseq a blocksize -> b -> b)
-> nb:nat{nb == length inp / blocksize}
-> i:nat{i < nb}
-> acc:b
-> b
let repeati_blocks_f #a #b bs inp f nb i acc =
assert ((i+1) * bs <= nb * bs);
let block = seq_sub inp (i * bs) bs in
f i block acc
let repeati_blocks #a #b bs inp f g init =
let len = length inp in
let nb = len / bs in
let rem = len % bs in
let acc = repeati nb (repeati_blocks_f bs inp f nb) init in
let last = seq_sub inp (nb * bs) rem in
g nb rem last acc
let repeat_blocks #a #b #c bs inp f l init =
let len = length inp in
let nb = len / bs in
let rem = len % bs in
let acc = repeati nb (repeat_blocks_f bs inp f nb) init in
let last = seq_sub inp (nb * bs) rem in
l rem last acc
let lemma_repeat_blocks #a #b #c bs inp f l init = ()
let repeat_blocks_multi #a #b bs inp f init =
let len = length inp in
let nb = len / bs in
repeati nb (repeat_blocks_f bs inp f nb) init
let lemma_repeat_blocks_multi #a #b bs inp f init = ()
let generate_blocks_a (t:Type) (blocklen:size_nat) (max:nat) (a:(i:nat{i <= max} -> Type)) (i:nat{i <= max}) = a i & s:seq t{length s == i * blocklen}
let generate_blocks_inner (t:Type) (blocklen:size_nat) (max:nat) (a:(i:nat{i <= max} -> Type)) (f:(i:nat{i < max} -> a i -> a (i + 1) & s:seq t{length s == blocklen})) (i:nat{i < max}) (acc:generate_blocks_a t blocklen max a i) : generate_blocks_a t blocklen max a (i + 1) =
let acc, o = acc in
let acc', block = f i acc in
let o' : s:seq t{length s == ((i + 1) * blocklen)} = Seq.append o block in
acc', o'
let generate_blocks #t len max n a f acc0 =
let a0 = (acc0, (Seq.empty <: s:seq t{length s == 0 * len})) in
repeat_gen n (generate_blocks_a t len max a) (generate_blocks_inner t len max a f) a0
let generate_blocks_simple_a (a:Type) (bs:size_nat) (max:nat) (i:nat{i <= max}) = s:seq a{length s == i * bs}
let generate_blocks_simple_f
(#a:Type)
(bs:size_nat{bs > 0})
(max:nat)
(f:(i:nat{i < max} -> lseq a bs))
(i:nat{i < max})
(acc:generate_blocks_simple_a a bs max i) : generate_blocks_simple_a a bs max (i + 1)
=
Seq.append acc (f i)
let generate_blocks_simple #a bs max nb f =
repeat_gen nb (generate_blocks_simple_a a bs max)
(generate_blocks_simple_f #a bs max f) Seq.empty
#restart-solver
let div_interval b n i =
Math.Lemmas.lemma_div_le (n * b) i b;
Math.Lemmas.cancel_mul_div n b
let mod_interval_lt b n i j =
div_interval b n i;
div_interval b n j
let div_mul_lt b a n = ()
let mod_div_lt b i j =
mod_interval_lt b (j / b) i j
let div_mul_l a b c d =
calc (==) {
a / (c * d);
== { }
a / (d * c);
== { Math.Lemmas.division_multiplication_lemma a d c }
(a / d) / c;
== { }
(b / d) / c;
== { Math.Lemmas.division_multiplication_lemma b d c }
b / (d * c);
== { }
b / (c * d);
} | false | false | Lib.Sequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val map_blocks_multi:
#a:Type0
-> blocksize:size_pos
-> max:nat
-> n:nat{n <= max}
-> inp:seq a{length inp == max * blocksize}
-> f:(i:nat{i < max} -> lseq a blocksize -> lseq a blocksize) ->
Tot (out:seq a {length out == n * blocksize}) | [] | Lib.Sequence.map_blocks_multi | {
"file_name": "lib/Lib.Sequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
blocksize: Lib.IntTypes.size_pos ->
max: Prims.nat ->
n: Prims.nat{n <= max} ->
inp: Lib.Sequence.seq a {Lib.Sequence.length inp == max * blocksize} ->
f: (i: Prims.nat{i < max} -> _: Lib.Sequence.lseq a blocksize -> Lib.Sequence.lseq a blocksize)
-> out: Lib.Sequence.seq a {Lib.Sequence.length out == n * blocksize} | {
"end_col": 44,
"end_line": 258,
"start_col": 2,
"start_line": 257
} |
FStar.Pervasives.Lemma | val create2_lemma: #a:Type -> x0:a -> x1:a ->
Lemma (let s = create2 x0 x1 in
s.[0] == x0 /\ s.[1] == x1)
[SMTPat (create2 #a x0 x1)] | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let create2_lemma #a x0 x1 =
Seq.elim_of_list [x0; x1] | val create2_lemma: #a:Type -> x0:a -> x1:a ->
Lemma (let s = create2 x0 x1 in
s.[0] == x0 /\ s.[1] == x1)
[SMTPat (create2 #a x0 x1)]
let create2_lemma #a x0 x1 = | false | null | true | Seq.elim_of_list [x0; x1] | {
"checked_file": "Lib.Sequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.fst"
} | [
"lemma"
] | [
"FStar.Seq.Properties.elim_of_list",
"Prims.Cons",
"Prims.Nil",
"Prims.unit"
] | [] | module Lib.Sequence
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 --using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence'"
let index #a #len s n = Seq.index s n
let create #a len init = Seq.create #a len init
let concat #a #len0 #len1 s0 s1 = Seq.append s0 s1
let to_list #a s = Seq.seq_to_list s
let of_list #a l = Seq.seq_of_list #a l
let of_list_index #a l i =
Seq.lemma_seq_of_list_index #a l i
let equal #a #len s1 s2 =
forall (i:size_nat{i < len}).{:pattern (index s1 i); (index s2 i)} index s1 i == index s2 i
let eq_intro #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_intro #a (to_seq s1) (to_seq s2)
let eq_elim #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_elim #a s1 s2
let upd #a #len s n x = Seq.upd #a s n x
let member #a #len x l = Seq.count x l > 0
let sub #a #len s start n = Seq.slice #a s start (start + n)
let update_sub #a #len s start n x =
let o =
Seq.append
(Seq.append (Seq.slice s 0 start) x)
(Seq.slice s (start + n) (length s)) in
Seq.lemma_eq_intro (Seq.slice o start (start + n)) x;
o
let lemma_update_sub #a #len dst start n src res =
let res1 = update_sub dst start n src in
Seq.lemma_split (sub res 0 (start + n)) start;
Seq.lemma_split (sub res1 0 (start + n)) start;
Seq.lemma_split res (start + n);
Seq.lemma_split res1 (start + n);
Seq.lemma_eq_intro res (update_sub dst start n src)
let lemma_concat2 #a len0 s0 len1 s1 s =
Seq.Properties.lemma_split s len0;
Seq.Properties.lemma_split (concat s0 s1) len0;
Seq.lemma_eq_intro s (concat s0 s1)
let lemma_concat3 #a len0 s0 len1 s1 len2 s2 s =
let s' = concat (concat s0 s1) s2 in
Seq.Properties.lemma_split (sub s 0 (len0 + len1)) len0;
Seq.Properties.lemma_split (sub s' 0 (len0 + len1)) len0;
Seq.Properties.lemma_split s (len0 + len1);
Seq.Properties.lemma_split s' (len0 + len1);
Seq.lemma_eq_intro s (concat (concat s0 s1) s2)
let createi_a (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (k:nat{k <= len}) =
lseq a k
let createi_pred (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (k:nat{k <= len})
(s:createi_a a len init k) =
forall (i:nat).{:pattern (index s i)} i < k ==> index s i == init i
let createi_step (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (i:nat{i < len})
(si:createi_a a len init i)
: r:createi_a a len init (i + 1)
{createi_pred a len init i si ==> createi_pred a len init (i + 1) r}
=
assert (createi_pred a len init i si ==> (forall (j:nat). j < i ==> index si j == init j));
Seq.snoc si (init i)
#push-options "--max_fuel 1 --using_facts_from '+Lib.LoopCombinators +FStar.List'"
let createi #a len init_f =
repeat_gen_inductive len
(createi_a a len init_f)
(createi_pred a len init_f)
(createi_step a len init_f)
(of_list [])
#pop-options
inline_for_extraction
let mapi_inner (#a:Type) (#b:Type) (#len:size_nat)
(f:(i:nat{i < len} -> a -> b)) (s:lseq a len) (i:size_nat{i < len}) =
f i s.[i]
let mapi #a #b #len f s =
createi #b len (mapi_inner #a #b #len f s)
inline_for_extraction
let map_inner (#a:Type) (#b:Type) (#len:size_nat)
(f:(a -> Tot b)) (s:lseq a len) (i:size_nat{i < len}) =
f s.[i]
let map #a #b #len f s =
createi #b len (map_inner #a #b #len f s)
let map2i #a #b #c #len f s1 s2 =
createi #c len (fun i -> f i s1.[i] s2.[i])
inline_for_extraction
let map2_inner (#a:Type) (#b:Type) (#c:Type) (#len:size_nat)
(f:(a -> b -> Tot c)) (s1:lseq a len) (s2:lseq b len) (i:size_nat{i < len}) =
f s1.[i] s2.[i]
let map2 #a #b #c #len f s1 s2 =
createi #c len (map2_inner #a #b #c #len f s1 s2)
let for_all #a #len f x = Seq.for_all f x
let for_all2 #a #b #len f x y =
let r = map2 (fun xi yi -> f xi yi) x y in
Seq.for_all (fun bi -> bi = true) r
(** Selecting a subset of an unbounded Sequence *)
val seq_sub:
#a:Type
-> s1:seq a
-> start:nat
-> n:nat{start + n <= length s1}
-> s2:seq a{length s2 == n /\
(forall (k:nat{k < n}). {:pattern (Seq.index s2 k)} Seq.index s2 k == Seq.index s1 (start + k))}
let seq_sub #a s start n =
Seq.slice #a s start (start + n)
(** Updating a subset of an unbounded Sequence with another Sequence *)
val seq_update_sub:
#a:Type
-> i:seq a
-> start:nat
-> n:nat{start + n <= length i}
-> x:seq a{length x == n}
-> o:seq a{length o == length i /\ seq_sub o start n == x /\
(forall (k:nat{(0 <= k /\ k < start) \/ (start + n <= k /\ k < length i)}).
{:pattern (Seq.index o k)} Seq.index o k == Seq.index i k)}
let seq_update_sub #a s start n x =
let o =
Seq.append
(Seq.append (Seq.slice s 0 start) x)
(Seq.slice s (start + n) (length s)) in
Seq.lemma_eq_intro (Seq.slice o start (start + n)) x;
o
val repeati_blocks_f:
#a:Type0
-> #b:Type0
-> blocksize:size_nat{blocksize > 0}
-> inp:seq a
-> f:(i:nat{i < length inp / blocksize} -> lseq a blocksize -> b -> b)
-> nb:nat{nb == length inp / blocksize}
-> i:nat{i < nb}
-> acc:b
-> b
let repeati_blocks_f #a #b bs inp f nb i acc =
assert ((i+1) * bs <= nb * bs);
let block = seq_sub inp (i * bs) bs in
f i block acc
let repeati_blocks #a #b bs inp f g init =
let len = length inp in
let nb = len / bs in
let rem = len % bs in
let acc = repeati nb (repeati_blocks_f bs inp f nb) init in
let last = seq_sub inp (nb * bs) rem in
g nb rem last acc
let repeat_blocks #a #b #c bs inp f l init =
let len = length inp in
let nb = len / bs in
let rem = len % bs in
let acc = repeati nb (repeat_blocks_f bs inp f nb) init in
let last = seq_sub inp (nb * bs) rem in
l rem last acc
let lemma_repeat_blocks #a #b #c bs inp f l init = ()
let repeat_blocks_multi #a #b bs inp f init =
let len = length inp in
let nb = len / bs in
repeati nb (repeat_blocks_f bs inp f nb) init
let lemma_repeat_blocks_multi #a #b bs inp f init = ()
let generate_blocks_a (t:Type) (blocklen:size_nat) (max:nat) (a:(i:nat{i <= max} -> Type)) (i:nat{i <= max}) = a i & s:seq t{length s == i * blocklen}
let generate_blocks_inner (t:Type) (blocklen:size_nat) (max:nat) (a:(i:nat{i <= max} -> Type)) (f:(i:nat{i < max} -> a i -> a (i + 1) & s:seq t{length s == blocklen})) (i:nat{i < max}) (acc:generate_blocks_a t blocklen max a i) : generate_blocks_a t blocklen max a (i + 1) =
let acc, o = acc in
let acc', block = f i acc in
let o' : s:seq t{length s == ((i + 1) * blocklen)} = Seq.append o block in
acc', o'
let generate_blocks #t len max n a f acc0 =
let a0 = (acc0, (Seq.empty <: s:seq t{length s == 0 * len})) in
repeat_gen n (generate_blocks_a t len max a) (generate_blocks_inner t len max a f) a0
let generate_blocks_simple_a (a:Type) (bs:size_nat) (max:nat) (i:nat{i <= max}) = s:seq a{length s == i * bs}
let generate_blocks_simple_f
(#a:Type)
(bs:size_nat{bs > 0})
(max:nat)
(f:(i:nat{i < max} -> lseq a bs))
(i:nat{i < max})
(acc:generate_blocks_simple_a a bs max i) : generate_blocks_simple_a a bs max (i + 1)
=
Seq.append acc (f i)
let generate_blocks_simple #a bs max nb f =
repeat_gen nb (generate_blocks_simple_a a bs max)
(generate_blocks_simple_f #a bs max f) Seq.empty
#restart-solver
let div_interval b n i =
Math.Lemmas.lemma_div_le (n * b) i b;
Math.Lemmas.cancel_mul_div n b
let mod_interval_lt b n i j =
div_interval b n i;
div_interval b n j
let div_mul_lt b a n = ()
let mod_div_lt b i j =
mod_interval_lt b (j / b) i j
let div_mul_l a b c d =
calc (==) {
a / (c * d);
== { }
a / (d * c);
== { Math.Lemmas.division_multiplication_lemma a d c }
(a / d) / c;
== { }
(b / d) / c;
== { Math.Lemmas.division_multiplication_lemma b d c }
b / (d * c);
== { }
b / (c * d);
}
let map_blocks_multi #a bs max nb inp f =
repeat_gen nb (map_blocks_a a bs max)
(map_blocks_f #a bs max inp f) Seq.empty
let lemma_map_blocks_multi #a bs max nb inp f = ()
private
val mod_prop: n:pos -> a:nat -> b:nat{a * n <= b /\ b < (a + 1) * n} ->
Lemma (b - a * n == b % n)
let mod_prop n a b =
Math.Lemmas.modulo_lemma (b - a * n) n;
Math.Lemmas.lemma_mod_sub b n a
#push-options "--z3rlimit 200"
let rec index_map_blocks_multi #a bs max n inp f i =
let map_blocks_a = map_blocks_a a bs max in
let map_blocks_f = map_blocks_f #a bs max inp f in
let acc0 = Seq.empty #a in
let s1 = repeat_gen n map_blocks_a map_blocks_f acc0 in
unfold_repeat_gen n map_blocks_a map_blocks_f acc0 (n-1);
let s = repeat_gen (n-1) map_blocks_a map_blocks_f acc0 in
//assert (s1 == map_blocks_f (n-1) s);
let s' = f (n-1) (Seq.slice inp ((n-1)*bs) (n*bs)) in
//assert (s1 == Seq.append s s');
if i < (n-1)*bs then begin
Seq.lemma_index_app1 s s' i;
index_map_blocks_multi #a bs max (n-1) inp f i end
else begin
Seq.lemma_index_app2 s s' i;
mod_prop bs (n-1) i
end
let map_blocks #a blocksize inp f g =
let len = length inp in
let nb = len / blocksize in
let rem = len % blocksize in
let blocks = Seq.slice inp 0 (nb * blocksize) in
let last = Seq.slice inp (nb * blocksize) len in
let bs = map_blocks_multi #a blocksize nb nb blocks f in
if (rem > 0) then
Seq.append bs (g nb rem last)
else bs
let lemma_map_blocks #a blocksize inp f g = ()
let index_map_blocks #a bs inp f g i =
let len = length inp in
let nb = len / bs in
let rem = len % bs in
let blocks = Seq.slice inp 0 (nb * bs) in
if rem > 0 then
begin
let s1 = map_blocks_multi #a bs nb nb blocks f in
let last = Seq.slice inp (nb * bs) len in
calc (==) {
length last;
== { Seq.lemma_len_slice inp (nb * bs) len }
len - nb * bs;
== {mod_prop bs nb len}
len % bs;
== { }
rem;
};
let s2 = g nb rem last in
assert (Seq.equal (map_blocks bs inp f g) (Seq.append s1 s2));
if i < nb * bs then
begin
div_mul_lt bs i nb;
Seq.lemma_index_app1 s1 s2 i;
index_map_blocks_multi bs nb nb blocks f i
end
else
begin
Seq.lemma_index_app2 s1 s2 i;
mod_prop bs nb i
end
end
else index_map_blocks_multi #a bs nb nb blocks f i
let eq_generate_blocks0 #t len n a f acc0 =
let a0 = (acc0, (Seq.empty <: s:seq t{length s == 0 * len})) in
assert (generate_blocks #t len n 0 a f acc0 ==
repeat_gen 0 (generate_blocks_a t len n a) (generate_blocks_inner t len n a f) a0);
eq_repeat_gen0 0 (generate_blocks_a t len n a) (generate_blocks_inner t len n a f) a0
let unfold_generate_blocks #t len n a f acc0 i =
let a0 = (acc0, (Seq.empty <: s:seq t{length s == 0 * len})) in
assert (generate_blocks #t len n (i+1) a f acc0 ==
repeat_gen (i+1) (generate_blocks_a t len n a) (generate_blocks_inner t len n a f) a0);
unfold_repeat_gen (i+1) (generate_blocks_a t len n a) (generate_blocks_inner t len n a f) a0 i
let rec index_generate_blocks #t len max n f i =
assert (0 < n);
let a_spec (i:nat{i <= max}) = unit in
let _,s = generate_blocks #t len max (n-1) a_spec f () in
let _,s' = f (n-1) () in
let _,s1 = generate_blocks #t len max n a_spec f () in
unfold_generate_blocks #t len max a_spec f () (n-1);
Seq.Properties.lemma_split s1 (n * len - len);
Seq.Properties.lemma_split (Seq.append s s') (n * len - len);
Seq.lemma_eq_intro s1 (Seq.append s s');
if i < (n-1) * len then
begin
Seq.lemma_index_app1 s s' i;
index_generate_blocks len max (n-1) f i
end
else
begin
Seq.lemma_index_app2 s s' i;
mod_prop len (n-1) i
end
#push-options "--using_facts_from '+FStar.UInt.pow2_values'"
let create2 #a x0 x1 =
let l = [x0; x1] in
assert_norm (List.Tot.length l = 2);
createL l | false | false | Lib.Sequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 200,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val create2_lemma: #a:Type -> x0:a -> x1:a ->
Lemma (let s = create2 x0 x1 in
s.[0] == x0 /\ s.[1] == x1)
[SMTPat (create2 #a x0 x1)] | [] | Lib.Sequence.create2_lemma | {
"file_name": "lib/Lib.Sequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x0: a -> x1: a
-> FStar.Pervasives.Lemma
(ensures
(let s = Lib.Sequence.create2 x0 x1 in
s.[ 0 ] == x0 /\ s.[ 1 ] == x1)) [SMTPat (Lib.Sequence.create2 x0 x1)] | {
"end_col": 27,
"end_line": 377,
"start_col": 2,
"start_line": 377
} |
Prims.Tot | val generate_blocks_inner
(t: Type)
(blocklen: size_nat)
(max: nat)
(a: (i: nat{i <= max} -> Type))
(f: (i: nat{i < max} -> a i -> a (i + 1) & s: seq t {length s == blocklen}))
(i: nat{i < max})
(acc: generate_blocks_a t blocklen max a i)
: generate_blocks_a t blocklen max a (i + 1) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let generate_blocks_inner (t:Type) (blocklen:size_nat) (max:nat) (a:(i:nat{i <= max} -> Type)) (f:(i:nat{i < max} -> a i -> a (i + 1) & s:seq t{length s == blocklen})) (i:nat{i < max}) (acc:generate_blocks_a t blocklen max a i) : generate_blocks_a t blocklen max a (i + 1) =
let acc, o = acc in
let acc', block = f i acc in
let o' : s:seq t{length s == ((i + 1) * blocklen)} = Seq.append o block in
acc', o' | val generate_blocks_inner
(t: Type)
(blocklen: size_nat)
(max: nat)
(a: (i: nat{i <= max} -> Type))
(f: (i: nat{i < max} -> a i -> a (i + 1) & s: seq t {length s == blocklen}))
(i: nat{i < max})
(acc: generate_blocks_a t blocklen max a i)
: generate_blocks_a t blocklen max a (i + 1)
let generate_blocks_inner
(t: Type)
(blocklen: size_nat)
(max: nat)
(a: (i: nat{i <= max} -> Type))
(f: (i: nat{i < max} -> a i -> a (i + 1) & s: seq t {length s == blocklen}))
(i: nat{i < max})
(acc: generate_blocks_a t blocklen max a i)
: generate_blocks_a t blocklen max a (i + 1) = | false | null | false | let acc, o = acc in
let acc', block = f i acc in
let o':s: seq t {length s == ((i + 1) * blocklen)} = Seq.append o block in
acc', o' | {
"checked_file": "Lib.Sequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.fst"
} | [
"total"
] | [
"Lib.IntTypes.size_nat",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_LessThan",
"FStar.Pervasives.Native.tuple2",
"Prims.op_Addition",
"Lib.Sequence.seq",
"Prims.eq2",
"Lib.Sequence.length",
"Lib.Sequence.generate_blocks_a",
"Prims.int",
"FStar.Mul.op_Star",
"FStar.Pervasives.Native.Mktuple2",
"Prims.op_Multiply",
"FStar.Seq.Base.append"
] | [] | module Lib.Sequence
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 --using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence'"
let index #a #len s n = Seq.index s n
let create #a len init = Seq.create #a len init
let concat #a #len0 #len1 s0 s1 = Seq.append s0 s1
let to_list #a s = Seq.seq_to_list s
let of_list #a l = Seq.seq_of_list #a l
let of_list_index #a l i =
Seq.lemma_seq_of_list_index #a l i
let equal #a #len s1 s2 =
forall (i:size_nat{i < len}).{:pattern (index s1 i); (index s2 i)} index s1 i == index s2 i
let eq_intro #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_intro #a (to_seq s1) (to_seq s2)
let eq_elim #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_elim #a s1 s2
let upd #a #len s n x = Seq.upd #a s n x
let member #a #len x l = Seq.count x l > 0
let sub #a #len s start n = Seq.slice #a s start (start + n)
let update_sub #a #len s start n x =
let o =
Seq.append
(Seq.append (Seq.slice s 0 start) x)
(Seq.slice s (start + n) (length s)) in
Seq.lemma_eq_intro (Seq.slice o start (start + n)) x;
o
let lemma_update_sub #a #len dst start n src res =
let res1 = update_sub dst start n src in
Seq.lemma_split (sub res 0 (start + n)) start;
Seq.lemma_split (sub res1 0 (start + n)) start;
Seq.lemma_split res (start + n);
Seq.lemma_split res1 (start + n);
Seq.lemma_eq_intro res (update_sub dst start n src)
let lemma_concat2 #a len0 s0 len1 s1 s =
Seq.Properties.lemma_split s len0;
Seq.Properties.lemma_split (concat s0 s1) len0;
Seq.lemma_eq_intro s (concat s0 s1)
let lemma_concat3 #a len0 s0 len1 s1 len2 s2 s =
let s' = concat (concat s0 s1) s2 in
Seq.Properties.lemma_split (sub s 0 (len0 + len1)) len0;
Seq.Properties.lemma_split (sub s' 0 (len0 + len1)) len0;
Seq.Properties.lemma_split s (len0 + len1);
Seq.Properties.lemma_split s' (len0 + len1);
Seq.lemma_eq_intro s (concat (concat s0 s1) s2)
let createi_a (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (k:nat{k <= len}) =
lseq a k
let createi_pred (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (k:nat{k <= len})
(s:createi_a a len init k) =
forall (i:nat).{:pattern (index s i)} i < k ==> index s i == init i
let createi_step (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (i:nat{i < len})
(si:createi_a a len init i)
: r:createi_a a len init (i + 1)
{createi_pred a len init i si ==> createi_pred a len init (i + 1) r}
=
assert (createi_pred a len init i si ==> (forall (j:nat). j < i ==> index si j == init j));
Seq.snoc si (init i)
#push-options "--max_fuel 1 --using_facts_from '+Lib.LoopCombinators +FStar.List'"
let createi #a len init_f =
repeat_gen_inductive len
(createi_a a len init_f)
(createi_pred a len init_f)
(createi_step a len init_f)
(of_list [])
#pop-options
inline_for_extraction
let mapi_inner (#a:Type) (#b:Type) (#len:size_nat)
(f:(i:nat{i < len} -> a -> b)) (s:lseq a len) (i:size_nat{i < len}) =
f i s.[i]
let mapi #a #b #len f s =
createi #b len (mapi_inner #a #b #len f s)
inline_for_extraction
let map_inner (#a:Type) (#b:Type) (#len:size_nat)
(f:(a -> Tot b)) (s:lseq a len) (i:size_nat{i < len}) =
f s.[i]
let map #a #b #len f s =
createi #b len (map_inner #a #b #len f s)
let map2i #a #b #c #len f s1 s2 =
createi #c len (fun i -> f i s1.[i] s2.[i])
inline_for_extraction
let map2_inner (#a:Type) (#b:Type) (#c:Type) (#len:size_nat)
(f:(a -> b -> Tot c)) (s1:lseq a len) (s2:lseq b len) (i:size_nat{i < len}) =
f s1.[i] s2.[i]
let map2 #a #b #c #len f s1 s2 =
createi #c len (map2_inner #a #b #c #len f s1 s2)
let for_all #a #len f x = Seq.for_all f x
let for_all2 #a #b #len f x y =
let r = map2 (fun xi yi -> f xi yi) x y in
Seq.for_all (fun bi -> bi = true) r
(** Selecting a subset of an unbounded Sequence *)
val seq_sub:
#a:Type
-> s1:seq a
-> start:nat
-> n:nat{start + n <= length s1}
-> s2:seq a{length s2 == n /\
(forall (k:nat{k < n}). {:pattern (Seq.index s2 k)} Seq.index s2 k == Seq.index s1 (start + k))}
let seq_sub #a s start n =
Seq.slice #a s start (start + n)
(** Updating a subset of an unbounded Sequence with another Sequence *)
val seq_update_sub:
#a:Type
-> i:seq a
-> start:nat
-> n:nat{start + n <= length i}
-> x:seq a{length x == n}
-> o:seq a{length o == length i /\ seq_sub o start n == x /\
(forall (k:nat{(0 <= k /\ k < start) \/ (start + n <= k /\ k < length i)}).
{:pattern (Seq.index o k)} Seq.index o k == Seq.index i k)}
let seq_update_sub #a s start n x =
let o =
Seq.append
(Seq.append (Seq.slice s 0 start) x)
(Seq.slice s (start + n) (length s)) in
Seq.lemma_eq_intro (Seq.slice o start (start + n)) x;
o
val repeati_blocks_f:
#a:Type0
-> #b:Type0
-> blocksize:size_nat{blocksize > 0}
-> inp:seq a
-> f:(i:nat{i < length inp / blocksize} -> lseq a blocksize -> b -> b)
-> nb:nat{nb == length inp / blocksize}
-> i:nat{i < nb}
-> acc:b
-> b
let repeati_blocks_f #a #b bs inp f nb i acc =
assert ((i+1) * bs <= nb * bs);
let block = seq_sub inp (i * bs) bs in
f i block acc
let repeati_blocks #a #b bs inp f g init =
let len = length inp in
let nb = len / bs in
let rem = len % bs in
let acc = repeati nb (repeati_blocks_f bs inp f nb) init in
let last = seq_sub inp (nb * bs) rem in
g nb rem last acc
let repeat_blocks #a #b #c bs inp f l init =
let len = length inp in
let nb = len / bs in
let rem = len % bs in
let acc = repeati nb (repeat_blocks_f bs inp f nb) init in
let last = seq_sub inp (nb * bs) rem in
l rem last acc
let lemma_repeat_blocks #a #b #c bs inp f l init = ()
let repeat_blocks_multi #a #b bs inp f init =
let len = length inp in
let nb = len / bs in
repeati nb (repeat_blocks_f bs inp f nb) init
let lemma_repeat_blocks_multi #a #b bs inp f init = ()
let generate_blocks_a (t:Type) (blocklen:size_nat) (max:nat) (a:(i:nat{i <= max} -> Type)) (i:nat{i <= max}) = a i & s:seq t{length s == i * blocklen} | false | false | Lib.Sequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val generate_blocks_inner
(t: Type)
(blocklen: size_nat)
(max: nat)
(a: (i: nat{i <= max} -> Type))
(f: (i: nat{i < max} -> a i -> a (i + 1) & s: seq t {length s == blocklen}))
(i: nat{i < max})
(acc: generate_blocks_a t blocklen max a i)
: generate_blocks_a t blocklen max a (i + 1) | [] | Lib.Sequence.generate_blocks_inner | {
"file_name": "lib/Lib.Sequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
t: Type0 ->
blocklen: Lib.IntTypes.size_nat ->
max: Prims.nat ->
a: (i: Prims.nat{i <= max} -> Type) ->
f:
(i: Prims.nat{i < max} -> _: a i
-> a (i + 1) * s: Lib.Sequence.seq t {Lib.Sequence.length s == blocklen}) ->
i: Prims.nat{i < max} ->
acc: Lib.Sequence.generate_blocks_a t blocklen max a i
-> Lib.Sequence.generate_blocks_a t blocklen max a (i + 1) | {
"end_col": 12,
"end_line": 204,
"start_col": 274,
"start_line": 200
} |
Prims.Tot | val create8: #a:Type -> x0:a -> x1:a -> x2:a -> x3:a -> x4:a -> x5:a -> x6:a -> x7:a -> lseq a 8 | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let create8 #a x0 x1 x2 x3 x4 x5 x6 x7 =
let l = [x0; x1; x2; x3; x4; x5; x6; x7] in
assert_norm (List.Tot.length l = 8);
createL l | val create8: #a:Type -> x0:a -> x1:a -> x2:a -> x3:a -> x4:a -> x5:a -> x6:a -> x7:a -> lseq a 8
let create8 #a x0 x1 x2 x3 x4 x5 x6 x7 = | false | null | false | let l = [x0; x1; x2; x3; x4; x5; x6; x7] in
assert_norm (List.Tot.length l = 8);
createL l | {
"checked_file": "Lib.Sequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.fst"
} | [
"total"
] | [
"Lib.Sequence.createL",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"FStar.List.Tot.Base.length",
"Prims.list",
"Prims.Cons",
"Prims.Nil",
"Lib.Sequence.lseq"
] | [] | module Lib.Sequence
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 --using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence'"
let index #a #len s n = Seq.index s n
let create #a len init = Seq.create #a len init
let concat #a #len0 #len1 s0 s1 = Seq.append s0 s1
let to_list #a s = Seq.seq_to_list s
let of_list #a l = Seq.seq_of_list #a l
let of_list_index #a l i =
Seq.lemma_seq_of_list_index #a l i
let equal #a #len s1 s2 =
forall (i:size_nat{i < len}).{:pattern (index s1 i); (index s2 i)} index s1 i == index s2 i
let eq_intro #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_intro #a (to_seq s1) (to_seq s2)
let eq_elim #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_elim #a s1 s2
let upd #a #len s n x = Seq.upd #a s n x
let member #a #len x l = Seq.count x l > 0
let sub #a #len s start n = Seq.slice #a s start (start + n)
let update_sub #a #len s start n x =
let o =
Seq.append
(Seq.append (Seq.slice s 0 start) x)
(Seq.slice s (start + n) (length s)) in
Seq.lemma_eq_intro (Seq.slice o start (start + n)) x;
o
let lemma_update_sub #a #len dst start n src res =
let res1 = update_sub dst start n src in
Seq.lemma_split (sub res 0 (start + n)) start;
Seq.lemma_split (sub res1 0 (start + n)) start;
Seq.lemma_split res (start + n);
Seq.lemma_split res1 (start + n);
Seq.lemma_eq_intro res (update_sub dst start n src)
let lemma_concat2 #a len0 s0 len1 s1 s =
Seq.Properties.lemma_split s len0;
Seq.Properties.lemma_split (concat s0 s1) len0;
Seq.lemma_eq_intro s (concat s0 s1)
let lemma_concat3 #a len0 s0 len1 s1 len2 s2 s =
let s' = concat (concat s0 s1) s2 in
Seq.Properties.lemma_split (sub s 0 (len0 + len1)) len0;
Seq.Properties.lemma_split (sub s' 0 (len0 + len1)) len0;
Seq.Properties.lemma_split s (len0 + len1);
Seq.Properties.lemma_split s' (len0 + len1);
Seq.lemma_eq_intro s (concat (concat s0 s1) s2)
let createi_a (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (k:nat{k <= len}) =
lseq a k
let createi_pred (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (k:nat{k <= len})
(s:createi_a a len init k) =
forall (i:nat).{:pattern (index s i)} i < k ==> index s i == init i
let createi_step (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (i:nat{i < len})
(si:createi_a a len init i)
: r:createi_a a len init (i + 1)
{createi_pred a len init i si ==> createi_pred a len init (i + 1) r}
=
assert (createi_pred a len init i si ==> (forall (j:nat). j < i ==> index si j == init j));
Seq.snoc si (init i)
#push-options "--max_fuel 1 --using_facts_from '+Lib.LoopCombinators +FStar.List'"
let createi #a len init_f =
repeat_gen_inductive len
(createi_a a len init_f)
(createi_pred a len init_f)
(createi_step a len init_f)
(of_list [])
#pop-options
inline_for_extraction
let mapi_inner (#a:Type) (#b:Type) (#len:size_nat)
(f:(i:nat{i < len} -> a -> b)) (s:lseq a len) (i:size_nat{i < len}) =
f i s.[i]
let mapi #a #b #len f s =
createi #b len (mapi_inner #a #b #len f s)
inline_for_extraction
let map_inner (#a:Type) (#b:Type) (#len:size_nat)
(f:(a -> Tot b)) (s:lseq a len) (i:size_nat{i < len}) =
f s.[i]
let map #a #b #len f s =
createi #b len (map_inner #a #b #len f s)
let map2i #a #b #c #len f s1 s2 =
createi #c len (fun i -> f i s1.[i] s2.[i])
inline_for_extraction
let map2_inner (#a:Type) (#b:Type) (#c:Type) (#len:size_nat)
(f:(a -> b -> Tot c)) (s1:lseq a len) (s2:lseq b len) (i:size_nat{i < len}) =
f s1.[i] s2.[i]
let map2 #a #b #c #len f s1 s2 =
createi #c len (map2_inner #a #b #c #len f s1 s2)
let for_all #a #len f x = Seq.for_all f x
let for_all2 #a #b #len f x y =
let r = map2 (fun xi yi -> f xi yi) x y in
Seq.for_all (fun bi -> bi = true) r
(** Selecting a subset of an unbounded Sequence *)
val seq_sub:
#a:Type
-> s1:seq a
-> start:nat
-> n:nat{start + n <= length s1}
-> s2:seq a{length s2 == n /\
(forall (k:nat{k < n}). {:pattern (Seq.index s2 k)} Seq.index s2 k == Seq.index s1 (start + k))}
let seq_sub #a s start n =
Seq.slice #a s start (start + n)
(** Updating a subset of an unbounded Sequence with another Sequence *)
val seq_update_sub:
#a:Type
-> i:seq a
-> start:nat
-> n:nat{start + n <= length i}
-> x:seq a{length x == n}
-> o:seq a{length o == length i /\ seq_sub o start n == x /\
(forall (k:nat{(0 <= k /\ k < start) \/ (start + n <= k /\ k < length i)}).
{:pattern (Seq.index o k)} Seq.index o k == Seq.index i k)}
let seq_update_sub #a s start n x =
let o =
Seq.append
(Seq.append (Seq.slice s 0 start) x)
(Seq.slice s (start + n) (length s)) in
Seq.lemma_eq_intro (Seq.slice o start (start + n)) x;
o
val repeati_blocks_f:
#a:Type0
-> #b:Type0
-> blocksize:size_nat{blocksize > 0}
-> inp:seq a
-> f:(i:nat{i < length inp / blocksize} -> lseq a blocksize -> b -> b)
-> nb:nat{nb == length inp / blocksize}
-> i:nat{i < nb}
-> acc:b
-> b
let repeati_blocks_f #a #b bs inp f nb i acc =
assert ((i+1) * bs <= nb * bs);
let block = seq_sub inp (i * bs) bs in
f i block acc
let repeati_blocks #a #b bs inp f g init =
let len = length inp in
let nb = len / bs in
let rem = len % bs in
let acc = repeati nb (repeati_blocks_f bs inp f nb) init in
let last = seq_sub inp (nb * bs) rem in
g nb rem last acc
let repeat_blocks #a #b #c bs inp f l init =
let len = length inp in
let nb = len / bs in
let rem = len % bs in
let acc = repeati nb (repeat_blocks_f bs inp f nb) init in
let last = seq_sub inp (nb * bs) rem in
l rem last acc
let lemma_repeat_blocks #a #b #c bs inp f l init = ()
let repeat_blocks_multi #a #b bs inp f init =
let len = length inp in
let nb = len / bs in
repeati nb (repeat_blocks_f bs inp f nb) init
let lemma_repeat_blocks_multi #a #b bs inp f init = ()
let generate_blocks_a (t:Type) (blocklen:size_nat) (max:nat) (a:(i:nat{i <= max} -> Type)) (i:nat{i <= max}) = a i & s:seq t{length s == i * blocklen}
let generate_blocks_inner (t:Type) (blocklen:size_nat) (max:nat) (a:(i:nat{i <= max} -> Type)) (f:(i:nat{i < max} -> a i -> a (i + 1) & s:seq t{length s == blocklen})) (i:nat{i < max}) (acc:generate_blocks_a t blocklen max a i) : generate_blocks_a t blocklen max a (i + 1) =
let acc, o = acc in
let acc', block = f i acc in
let o' : s:seq t{length s == ((i + 1) * blocklen)} = Seq.append o block in
acc', o'
let generate_blocks #t len max n a f acc0 =
let a0 = (acc0, (Seq.empty <: s:seq t{length s == 0 * len})) in
repeat_gen n (generate_blocks_a t len max a) (generate_blocks_inner t len max a f) a0
let generate_blocks_simple_a (a:Type) (bs:size_nat) (max:nat) (i:nat{i <= max}) = s:seq a{length s == i * bs}
let generate_blocks_simple_f
(#a:Type)
(bs:size_nat{bs > 0})
(max:nat)
(f:(i:nat{i < max} -> lseq a bs))
(i:nat{i < max})
(acc:generate_blocks_simple_a a bs max i) : generate_blocks_simple_a a bs max (i + 1)
=
Seq.append acc (f i)
let generate_blocks_simple #a bs max nb f =
repeat_gen nb (generate_blocks_simple_a a bs max)
(generate_blocks_simple_f #a bs max f) Seq.empty
#restart-solver
let div_interval b n i =
Math.Lemmas.lemma_div_le (n * b) i b;
Math.Lemmas.cancel_mul_div n b
let mod_interval_lt b n i j =
div_interval b n i;
div_interval b n j
let div_mul_lt b a n = ()
let mod_div_lt b i j =
mod_interval_lt b (j / b) i j
let div_mul_l a b c d =
calc (==) {
a / (c * d);
== { }
a / (d * c);
== { Math.Lemmas.division_multiplication_lemma a d c }
(a / d) / c;
== { }
(b / d) / c;
== { Math.Lemmas.division_multiplication_lemma b d c }
b / (d * c);
== { }
b / (c * d);
}
let map_blocks_multi #a bs max nb inp f =
repeat_gen nb (map_blocks_a a bs max)
(map_blocks_f #a bs max inp f) Seq.empty
let lemma_map_blocks_multi #a bs max nb inp f = ()
private
val mod_prop: n:pos -> a:nat -> b:nat{a * n <= b /\ b < (a + 1) * n} ->
Lemma (b - a * n == b % n)
let mod_prop n a b =
Math.Lemmas.modulo_lemma (b - a * n) n;
Math.Lemmas.lemma_mod_sub b n a
#push-options "--z3rlimit 200"
let rec index_map_blocks_multi #a bs max n inp f i =
let map_blocks_a = map_blocks_a a bs max in
let map_blocks_f = map_blocks_f #a bs max inp f in
let acc0 = Seq.empty #a in
let s1 = repeat_gen n map_blocks_a map_blocks_f acc0 in
unfold_repeat_gen n map_blocks_a map_blocks_f acc0 (n-1);
let s = repeat_gen (n-1) map_blocks_a map_blocks_f acc0 in
//assert (s1 == map_blocks_f (n-1) s);
let s' = f (n-1) (Seq.slice inp ((n-1)*bs) (n*bs)) in
//assert (s1 == Seq.append s s');
if i < (n-1)*bs then begin
Seq.lemma_index_app1 s s' i;
index_map_blocks_multi #a bs max (n-1) inp f i end
else begin
Seq.lemma_index_app2 s s' i;
mod_prop bs (n-1) i
end
let map_blocks #a blocksize inp f g =
let len = length inp in
let nb = len / blocksize in
let rem = len % blocksize in
let blocks = Seq.slice inp 0 (nb * blocksize) in
let last = Seq.slice inp (nb * blocksize) len in
let bs = map_blocks_multi #a blocksize nb nb blocks f in
if (rem > 0) then
Seq.append bs (g nb rem last)
else bs
let lemma_map_blocks #a blocksize inp f g = ()
let index_map_blocks #a bs inp f g i =
let len = length inp in
let nb = len / bs in
let rem = len % bs in
let blocks = Seq.slice inp 0 (nb * bs) in
if rem > 0 then
begin
let s1 = map_blocks_multi #a bs nb nb blocks f in
let last = Seq.slice inp (nb * bs) len in
calc (==) {
length last;
== { Seq.lemma_len_slice inp (nb * bs) len }
len - nb * bs;
== {mod_prop bs nb len}
len % bs;
== { }
rem;
};
let s2 = g nb rem last in
assert (Seq.equal (map_blocks bs inp f g) (Seq.append s1 s2));
if i < nb * bs then
begin
div_mul_lt bs i nb;
Seq.lemma_index_app1 s1 s2 i;
index_map_blocks_multi bs nb nb blocks f i
end
else
begin
Seq.lemma_index_app2 s1 s2 i;
mod_prop bs nb i
end
end
else index_map_blocks_multi #a bs nb nb blocks f i
let eq_generate_blocks0 #t len n a f acc0 =
let a0 = (acc0, (Seq.empty <: s:seq t{length s == 0 * len})) in
assert (generate_blocks #t len n 0 a f acc0 ==
repeat_gen 0 (generate_blocks_a t len n a) (generate_blocks_inner t len n a f) a0);
eq_repeat_gen0 0 (generate_blocks_a t len n a) (generate_blocks_inner t len n a f) a0
let unfold_generate_blocks #t len n a f acc0 i =
let a0 = (acc0, (Seq.empty <: s:seq t{length s == 0 * len})) in
assert (generate_blocks #t len n (i+1) a f acc0 ==
repeat_gen (i+1) (generate_blocks_a t len n a) (generate_blocks_inner t len n a f) a0);
unfold_repeat_gen (i+1) (generate_blocks_a t len n a) (generate_blocks_inner t len n a f) a0 i
let rec index_generate_blocks #t len max n f i =
assert (0 < n);
let a_spec (i:nat{i <= max}) = unit in
let _,s = generate_blocks #t len max (n-1) a_spec f () in
let _,s' = f (n-1) () in
let _,s1 = generate_blocks #t len max n a_spec f () in
unfold_generate_blocks #t len max a_spec f () (n-1);
Seq.Properties.lemma_split s1 (n * len - len);
Seq.Properties.lemma_split (Seq.append s s') (n * len - len);
Seq.lemma_eq_intro s1 (Seq.append s s');
if i < (n-1) * len then
begin
Seq.lemma_index_app1 s s' i;
index_generate_blocks len max (n-1) f i
end
else
begin
Seq.lemma_index_app2 s s' i;
mod_prop len (n-1) i
end
#push-options "--using_facts_from '+FStar.UInt.pow2_values'"
let create2 #a x0 x1 =
let l = [x0; x1] in
assert_norm (List.Tot.length l = 2);
createL l
let create2_lemma #a x0 x1 =
Seq.elim_of_list [x0; x1]
let create4 #a x0 x1 x2 x3 =
let l = [x0; x1; x2; x3] in
assert_norm (List.Tot.length l = 4);
createL l
let create4_lemma #a x0 x1 x2 x3 =
Seq.elim_of_list [x0; x1; x2; x3] | false | false | Lib.Sequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 200,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val create8: #a:Type -> x0:a -> x1:a -> x2:a -> x3:a -> x4:a -> x5:a -> x6:a -> x7:a -> lseq a 8 | [] | Lib.Sequence.create8 | {
"file_name": "lib/Lib.Sequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x0: a -> x1: a -> x2: a -> x3: a -> x4: a -> x5: a -> x6: a -> x7: a -> Lib.Sequence.lseq a 8 | {
"end_col": 11,
"end_line": 390,
"start_col": 40,
"start_line": 387
} |
FStar.Pervasives.Lemma | val div_mul_l: a:int -> b:int -> c:pos -> d:pos -> Lemma
(requires a / d = b / d)
(ensures a / (c * d) = b / (c * d)) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let div_mul_l a b c d =
calc (==) {
a / (c * d);
== { }
a / (d * c);
== { Math.Lemmas.division_multiplication_lemma a d c }
(a / d) / c;
== { }
(b / d) / c;
== { Math.Lemmas.division_multiplication_lemma b d c }
b / (d * c);
== { }
b / (c * d);
} | val div_mul_l: a:int -> b:int -> c:pos -> d:pos -> Lemma
(requires a / d = b / d)
(ensures a / (c * d) = b / (c * d))
let div_mul_l a b c d = | false | null | true | calc ( == ) {
a / (c * d);
( == ) { () }
a / (d * c);
( == ) { Math.Lemmas.division_multiplication_lemma a d c }
(a / d) / c;
( == ) { () }
(b / d) / c;
( == ) { Math.Lemmas.division_multiplication_lemma b d c }
b / (d * c);
( == ) { () }
b / (c * d);
} | {
"checked_file": "Lib.Sequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.fst"
} | [
"lemma"
] | [
"Prims.int",
"Prims.pos",
"FStar.Calc.calc_finish",
"Prims.eq2",
"Prims.op_Division",
"FStar.Mul.op_Star",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Prims.squash",
"FStar.Math.Lemmas.division_multiplication_lemma"
] | [] | module Lib.Sequence
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 --using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence'"
let index #a #len s n = Seq.index s n
let create #a len init = Seq.create #a len init
let concat #a #len0 #len1 s0 s1 = Seq.append s0 s1
let to_list #a s = Seq.seq_to_list s
let of_list #a l = Seq.seq_of_list #a l
let of_list_index #a l i =
Seq.lemma_seq_of_list_index #a l i
let equal #a #len s1 s2 =
forall (i:size_nat{i < len}).{:pattern (index s1 i); (index s2 i)} index s1 i == index s2 i
let eq_intro #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_intro #a (to_seq s1) (to_seq s2)
let eq_elim #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_elim #a s1 s2
let upd #a #len s n x = Seq.upd #a s n x
let member #a #len x l = Seq.count x l > 0
let sub #a #len s start n = Seq.slice #a s start (start + n)
let update_sub #a #len s start n x =
let o =
Seq.append
(Seq.append (Seq.slice s 0 start) x)
(Seq.slice s (start + n) (length s)) in
Seq.lemma_eq_intro (Seq.slice o start (start + n)) x;
o
let lemma_update_sub #a #len dst start n src res =
let res1 = update_sub dst start n src in
Seq.lemma_split (sub res 0 (start + n)) start;
Seq.lemma_split (sub res1 0 (start + n)) start;
Seq.lemma_split res (start + n);
Seq.lemma_split res1 (start + n);
Seq.lemma_eq_intro res (update_sub dst start n src)
let lemma_concat2 #a len0 s0 len1 s1 s =
Seq.Properties.lemma_split s len0;
Seq.Properties.lemma_split (concat s0 s1) len0;
Seq.lemma_eq_intro s (concat s0 s1)
let lemma_concat3 #a len0 s0 len1 s1 len2 s2 s =
let s' = concat (concat s0 s1) s2 in
Seq.Properties.lemma_split (sub s 0 (len0 + len1)) len0;
Seq.Properties.lemma_split (sub s' 0 (len0 + len1)) len0;
Seq.Properties.lemma_split s (len0 + len1);
Seq.Properties.lemma_split s' (len0 + len1);
Seq.lemma_eq_intro s (concat (concat s0 s1) s2)
let createi_a (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (k:nat{k <= len}) =
lseq a k
let createi_pred (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (k:nat{k <= len})
(s:createi_a a len init k) =
forall (i:nat).{:pattern (index s i)} i < k ==> index s i == init i
let createi_step (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (i:nat{i < len})
(si:createi_a a len init i)
: r:createi_a a len init (i + 1)
{createi_pred a len init i si ==> createi_pred a len init (i + 1) r}
=
assert (createi_pred a len init i si ==> (forall (j:nat). j < i ==> index si j == init j));
Seq.snoc si (init i)
#push-options "--max_fuel 1 --using_facts_from '+Lib.LoopCombinators +FStar.List'"
let createi #a len init_f =
repeat_gen_inductive len
(createi_a a len init_f)
(createi_pred a len init_f)
(createi_step a len init_f)
(of_list [])
#pop-options
inline_for_extraction
let mapi_inner (#a:Type) (#b:Type) (#len:size_nat)
(f:(i:nat{i < len} -> a -> b)) (s:lseq a len) (i:size_nat{i < len}) =
f i s.[i]
let mapi #a #b #len f s =
createi #b len (mapi_inner #a #b #len f s)
inline_for_extraction
let map_inner (#a:Type) (#b:Type) (#len:size_nat)
(f:(a -> Tot b)) (s:lseq a len) (i:size_nat{i < len}) =
f s.[i]
let map #a #b #len f s =
createi #b len (map_inner #a #b #len f s)
let map2i #a #b #c #len f s1 s2 =
createi #c len (fun i -> f i s1.[i] s2.[i])
inline_for_extraction
let map2_inner (#a:Type) (#b:Type) (#c:Type) (#len:size_nat)
(f:(a -> b -> Tot c)) (s1:lseq a len) (s2:lseq b len) (i:size_nat{i < len}) =
f s1.[i] s2.[i]
let map2 #a #b #c #len f s1 s2 =
createi #c len (map2_inner #a #b #c #len f s1 s2)
let for_all #a #len f x = Seq.for_all f x
let for_all2 #a #b #len f x y =
let r = map2 (fun xi yi -> f xi yi) x y in
Seq.for_all (fun bi -> bi = true) r
(** Selecting a subset of an unbounded Sequence *)
val seq_sub:
#a:Type
-> s1:seq a
-> start:nat
-> n:nat{start + n <= length s1}
-> s2:seq a{length s2 == n /\
(forall (k:nat{k < n}). {:pattern (Seq.index s2 k)} Seq.index s2 k == Seq.index s1 (start + k))}
let seq_sub #a s start n =
Seq.slice #a s start (start + n)
(** Updating a subset of an unbounded Sequence with another Sequence *)
val seq_update_sub:
#a:Type
-> i:seq a
-> start:nat
-> n:nat{start + n <= length i}
-> x:seq a{length x == n}
-> o:seq a{length o == length i /\ seq_sub o start n == x /\
(forall (k:nat{(0 <= k /\ k < start) \/ (start + n <= k /\ k < length i)}).
{:pattern (Seq.index o k)} Seq.index o k == Seq.index i k)}
let seq_update_sub #a s start n x =
let o =
Seq.append
(Seq.append (Seq.slice s 0 start) x)
(Seq.slice s (start + n) (length s)) in
Seq.lemma_eq_intro (Seq.slice o start (start + n)) x;
o
val repeati_blocks_f:
#a:Type0
-> #b:Type0
-> blocksize:size_nat{blocksize > 0}
-> inp:seq a
-> f:(i:nat{i < length inp / blocksize} -> lseq a blocksize -> b -> b)
-> nb:nat{nb == length inp / blocksize}
-> i:nat{i < nb}
-> acc:b
-> b
let repeati_blocks_f #a #b bs inp f nb i acc =
assert ((i+1) * bs <= nb * bs);
let block = seq_sub inp (i * bs) bs in
f i block acc
let repeati_blocks #a #b bs inp f g init =
let len = length inp in
let nb = len / bs in
let rem = len % bs in
let acc = repeati nb (repeati_blocks_f bs inp f nb) init in
let last = seq_sub inp (nb * bs) rem in
g nb rem last acc
let repeat_blocks #a #b #c bs inp f l init =
let len = length inp in
let nb = len / bs in
let rem = len % bs in
let acc = repeati nb (repeat_blocks_f bs inp f nb) init in
let last = seq_sub inp (nb * bs) rem in
l rem last acc
let lemma_repeat_blocks #a #b #c bs inp f l init = ()
let repeat_blocks_multi #a #b bs inp f init =
let len = length inp in
let nb = len / bs in
repeati nb (repeat_blocks_f bs inp f nb) init
let lemma_repeat_blocks_multi #a #b bs inp f init = ()
let generate_blocks_a (t:Type) (blocklen:size_nat) (max:nat) (a:(i:nat{i <= max} -> Type)) (i:nat{i <= max}) = a i & s:seq t{length s == i * blocklen}
let generate_blocks_inner (t:Type) (blocklen:size_nat) (max:nat) (a:(i:nat{i <= max} -> Type)) (f:(i:nat{i < max} -> a i -> a (i + 1) & s:seq t{length s == blocklen})) (i:nat{i < max}) (acc:generate_blocks_a t blocklen max a i) : generate_blocks_a t blocklen max a (i + 1) =
let acc, o = acc in
let acc', block = f i acc in
let o' : s:seq t{length s == ((i + 1) * blocklen)} = Seq.append o block in
acc', o'
let generate_blocks #t len max n a f acc0 =
let a0 = (acc0, (Seq.empty <: s:seq t{length s == 0 * len})) in
repeat_gen n (generate_blocks_a t len max a) (generate_blocks_inner t len max a f) a0
let generate_blocks_simple_a (a:Type) (bs:size_nat) (max:nat) (i:nat{i <= max}) = s:seq a{length s == i * bs}
let generate_blocks_simple_f
(#a:Type)
(bs:size_nat{bs > 0})
(max:nat)
(f:(i:nat{i < max} -> lseq a bs))
(i:nat{i < max})
(acc:generate_blocks_simple_a a bs max i) : generate_blocks_simple_a a bs max (i + 1)
=
Seq.append acc (f i)
let generate_blocks_simple #a bs max nb f =
repeat_gen nb (generate_blocks_simple_a a bs max)
(generate_blocks_simple_f #a bs max f) Seq.empty
#restart-solver
let div_interval b n i =
Math.Lemmas.lemma_div_le (n * b) i b;
Math.Lemmas.cancel_mul_div n b
let mod_interval_lt b n i j =
div_interval b n i;
div_interval b n j
let div_mul_lt b a n = ()
let mod_div_lt b i j =
mod_interval_lt b (j / b) i j | false | false | Lib.Sequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val div_mul_l: a:int -> b:int -> c:pos -> d:pos -> Lemma
(requires a / d = b / d)
(ensures a / (c * d) = b / (c * d)) | [] | Lib.Sequence.div_mul_l | {
"file_name": "lib/Lib.Sequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Prims.int -> b: Prims.int -> c: Prims.pos -> d: Prims.pos
-> FStar.Pervasives.Lemma (requires a / d = b / d) (ensures a / (c * d) = b / (c * d)) | {
"end_col": 3,
"end_line": 253,
"start_col": 2,
"start_line": 241
} |
Prims.Tot | val create2: #a:Type -> x0:a -> x1:a -> lseq a 2 | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let create2 #a x0 x1 =
let l = [x0; x1] in
assert_norm (List.Tot.length l = 2);
createL l | val create2: #a:Type -> x0:a -> x1:a -> lseq a 2
let create2 #a x0 x1 = | false | null | false | let l = [x0; x1] in
assert_norm (List.Tot.length l = 2);
createL l | {
"checked_file": "Lib.Sequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.fst"
} | [
"total"
] | [
"Lib.Sequence.createL",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"FStar.List.Tot.Base.length",
"Prims.list",
"Prims.Cons",
"Prims.Nil",
"Lib.Sequence.lseq"
] | [] | module Lib.Sequence
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 --using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence'"
let index #a #len s n = Seq.index s n
let create #a len init = Seq.create #a len init
let concat #a #len0 #len1 s0 s1 = Seq.append s0 s1
let to_list #a s = Seq.seq_to_list s
let of_list #a l = Seq.seq_of_list #a l
let of_list_index #a l i =
Seq.lemma_seq_of_list_index #a l i
let equal #a #len s1 s2 =
forall (i:size_nat{i < len}).{:pattern (index s1 i); (index s2 i)} index s1 i == index s2 i
let eq_intro #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_intro #a (to_seq s1) (to_seq s2)
let eq_elim #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_elim #a s1 s2
let upd #a #len s n x = Seq.upd #a s n x
let member #a #len x l = Seq.count x l > 0
let sub #a #len s start n = Seq.slice #a s start (start + n)
let update_sub #a #len s start n x =
let o =
Seq.append
(Seq.append (Seq.slice s 0 start) x)
(Seq.slice s (start + n) (length s)) in
Seq.lemma_eq_intro (Seq.slice o start (start + n)) x;
o
let lemma_update_sub #a #len dst start n src res =
let res1 = update_sub dst start n src in
Seq.lemma_split (sub res 0 (start + n)) start;
Seq.lemma_split (sub res1 0 (start + n)) start;
Seq.lemma_split res (start + n);
Seq.lemma_split res1 (start + n);
Seq.lemma_eq_intro res (update_sub dst start n src)
let lemma_concat2 #a len0 s0 len1 s1 s =
Seq.Properties.lemma_split s len0;
Seq.Properties.lemma_split (concat s0 s1) len0;
Seq.lemma_eq_intro s (concat s0 s1)
let lemma_concat3 #a len0 s0 len1 s1 len2 s2 s =
let s' = concat (concat s0 s1) s2 in
Seq.Properties.lemma_split (sub s 0 (len0 + len1)) len0;
Seq.Properties.lemma_split (sub s' 0 (len0 + len1)) len0;
Seq.Properties.lemma_split s (len0 + len1);
Seq.Properties.lemma_split s' (len0 + len1);
Seq.lemma_eq_intro s (concat (concat s0 s1) s2)
let createi_a (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (k:nat{k <= len}) =
lseq a k
let createi_pred (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (k:nat{k <= len})
(s:createi_a a len init k) =
forall (i:nat).{:pattern (index s i)} i < k ==> index s i == init i
let createi_step (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (i:nat{i < len})
(si:createi_a a len init i)
: r:createi_a a len init (i + 1)
{createi_pred a len init i si ==> createi_pred a len init (i + 1) r}
=
assert (createi_pred a len init i si ==> (forall (j:nat). j < i ==> index si j == init j));
Seq.snoc si (init i)
#push-options "--max_fuel 1 --using_facts_from '+Lib.LoopCombinators +FStar.List'"
let createi #a len init_f =
repeat_gen_inductive len
(createi_a a len init_f)
(createi_pred a len init_f)
(createi_step a len init_f)
(of_list [])
#pop-options
inline_for_extraction
let mapi_inner (#a:Type) (#b:Type) (#len:size_nat)
(f:(i:nat{i < len} -> a -> b)) (s:lseq a len) (i:size_nat{i < len}) =
f i s.[i]
let mapi #a #b #len f s =
createi #b len (mapi_inner #a #b #len f s)
inline_for_extraction
let map_inner (#a:Type) (#b:Type) (#len:size_nat)
(f:(a -> Tot b)) (s:lseq a len) (i:size_nat{i < len}) =
f s.[i]
let map #a #b #len f s =
createi #b len (map_inner #a #b #len f s)
let map2i #a #b #c #len f s1 s2 =
createi #c len (fun i -> f i s1.[i] s2.[i])
inline_for_extraction
let map2_inner (#a:Type) (#b:Type) (#c:Type) (#len:size_nat)
(f:(a -> b -> Tot c)) (s1:lseq a len) (s2:lseq b len) (i:size_nat{i < len}) =
f s1.[i] s2.[i]
let map2 #a #b #c #len f s1 s2 =
createi #c len (map2_inner #a #b #c #len f s1 s2)
let for_all #a #len f x = Seq.for_all f x
let for_all2 #a #b #len f x y =
let r = map2 (fun xi yi -> f xi yi) x y in
Seq.for_all (fun bi -> bi = true) r
(** Selecting a subset of an unbounded Sequence *)
val seq_sub:
#a:Type
-> s1:seq a
-> start:nat
-> n:nat{start + n <= length s1}
-> s2:seq a{length s2 == n /\
(forall (k:nat{k < n}). {:pattern (Seq.index s2 k)} Seq.index s2 k == Seq.index s1 (start + k))}
let seq_sub #a s start n =
Seq.slice #a s start (start + n)
(** Updating a subset of an unbounded Sequence with another Sequence *)
val seq_update_sub:
#a:Type
-> i:seq a
-> start:nat
-> n:nat{start + n <= length i}
-> x:seq a{length x == n}
-> o:seq a{length o == length i /\ seq_sub o start n == x /\
(forall (k:nat{(0 <= k /\ k < start) \/ (start + n <= k /\ k < length i)}).
{:pattern (Seq.index o k)} Seq.index o k == Seq.index i k)}
let seq_update_sub #a s start n x =
let o =
Seq.append
(Seq.append (Seq.slice s 0 start) x)
(Seq.slice s (start + n) (length s)) in
Seq.lemma_eq_intro (Seq.slice o start (start + n)) x;
o
val repeati_blocks_f:
#a:Type0
-> #b:Type0
-> blocksize:size_nat{blocksize > 0}
-> inp:seq a
-> f:(i:nat{i < length inp / blocksize} -> lseq a blocksize -> b -> b)
-> nb:nat{nb == length inp / blocksize}
-> i:nat{i < nb}
-> acc:b
-> b
let repeati_blocks_f #a #b bs inp f nb i acc =
assert ((i+1) * bs <= nb * bs);
let block = seq_sub inp (i * bs) bs in
f i block acc
let repeati_blocks #a #b bs inp f g init =
let len = length inp in
let nb = len / bs in
let rem = len % bs in
let acc = repeati nb (repeati_blocks_f bs inp f nb) init in
let last = seq_sub inp (nb * bs) rem in
g nb rem last acc
let repeat_blocks #a #b #c bs inp f l init =
let len = length inp in
let nb = len / bs in
let rem = len % bs in
let acc = repeati nb (repeat_blocks_f bs inp f nb) init in
let last = seq_sub inp (nb * bs) rem in
l rem last acc
let lemma_repeat_blocks #a #b #c bs inp f l init = ()
let repeat_blocks_multi #a #b bs inp f init =
let len = length inp in
let nb = len / bs in
repeati nb (repeat_blocks_f bs inp f nb) init
let lemma_repeat_blocks_multi #a #b bs inp f init = ()
let generate_blocks_a (t:Type) (blocklen:size_nat) (max:nat) (a:(i:nat{i <= max} -> Type)) (i:nat{i <= max}) = a i & s:seq t{length s == i * blocklen}
let generate_blocks_inner (t:Type) (blocklen:size_nat) (max:nat) (a:(i:nat{i <= max} -> Type)) (f:(i:nat{i < max} -> a i -> a (i + 1) & s:seq t{length s == blocklen})) (i:nat{i < max}) (acc:generate_blocks_a t blocklen max a i) : generate_blocks_a t blocklen max a (i + 1) =
let acc, o = acc in
let acc', block = f i acc in
let o' : s:seq t{length s == ((i + 1) * blocklen)} = Seq.append o block in
acc', o'
let generate_blocks #t len max n a f acc0 =
let a0 = (acc0, (Seq.empty <: s:seq t{length s == 0 * len})) in
repeat_gen n (generate_blocks_a t len max a) (generate_blocks_inner t len max a f) a0
let generate_blocks_simple_a (a:Type) (bs:size_nat) (max:nat) (i:nat{i <= max}) = s:seq a{length s == i * bs}
let generate_blocks_simple_f
(#a:Type)
(bs:size_nat{bs > 0})
(max:nat)
(f:(i:nat{i < max} -> lseq a bs))
(i:nat{i < max})
(acc:generate_blocks_simple_a a bs max i) : generate_blocks_simple_a a bs max (i + 1)
=
Seq.append acc (f i)
let generate_blocks_simple #a bs max nb f =
repeat_gen nb (generate_blocks_simple_a a bs max)
(generate_blocks_simple_f #a bs max f) Seq.empty
#restart-solver
let div_interval b n i =
Math.Lemmas.lemma_div_le (n * b) i b;
Math.Lemmas.cancel_mul_div n b
let mod_interval_lt b n i j =
div_interval b n i;
div_interval b n j
let div_mul_lt b a n = ()
let mod_div_lt b i j =
mod_interval_lt b (j / b) i j
let div_mul_l a b c d =
calc (==) {
a / (c * d);
== { }
a / (d * c);
== { Math.Lemmas.division_multiplication_lemma a d c }
(a / d) / c;
== { }
(b / d) / c;
== { Math.Lemmas.division_multiplication_lemma b d c }
b / (d * c);
== { }
b / (c * d);
}
let map_blocks_multi #a bs max nb inp f =
repeat_gen nb (map_blocks_a a bs max)
(map_blocks_f #a bs max inp f) Seq.empty
let lemma_map_blocks_multi #a bs max nb inp f = ()
private
val mod_prop: n:pos -> a:nat -> b:nat{a * n <= b /\ b < (a + 1) * n} ->
Lemma (b - a * n == b % n)
let mod_prop n a b =
Math.Lemmas.modulo_lemma (b - a * n) n;
Math.Lemmas.lemma_mod_sub b n a
#push-options "--z3rlimit 200"
let rec index_map_blocks_multi #a bs max n inp f i =
let map_blocks_a = map_blocks_a a bs max in
let map_blocks_f = map_blocks_f #a bs max inp f in
let acc0 = Seq.empty #a in
let s1 = repeat_gen n map_blocks_a map_blocks_f acc0 in
unfold_repeat_gen n map_blocks_a map_blocks_f acc0 (n-1);
let s = repeat_gen (n-1) map_blocks_a map_blocks_f acc0 in
//assert (s1 == map_blocks_f (n-1) s);
let s' = f (n-1) (Seq.slice inp ((n-1)*bs) (n*bs)) in
//assert (s1 == Seq.append s s');
if i < (n-1)*bs then begin
Seq.lemma_index_app1 s s' i;
index_map_blocks_multi #a bs max (n-1) inp f i end
else begin
Seq.lemma_index_app2 s s' i;
mod_prop bs (n-1) i
end
let map_blocks #a blocksize inp f g =
let len = length inp in
let nb = len / blocksize in
let rem = len % blocksize in
let blocks = Seq.slice inp 0 (nb * blocksize) in
let last = Seq.slice inp (nb * blocksize) len in
let bs = map_blocks_multi #a blocksize nb nb blocks f in
if (rem > 0) then
Seq.append bs (g nb rem last)
else bs
let lemma_map_blocks #a blocksize inp f g = ()
let index_map_blocks #a bs inp f g i =
let len = length inp in
let nb = len / bs in
let rem = len % bs in
let blocks = Seq.slice inp 0 (nb * bs) in
if rem > 0 then
begin
let s1 = map_blocks_multi #a bs nb nb blocks f in
let last = Seq.slice inp (nb * bs) len in
calc (==) {
length last;
== { Seq.lemma_len_slice inp (nb * bs) len }
len - nb * bs;
== {mod_prop bs nb len}
len % bs;
== { }
rem;
};
let s2 = g nb rem last in
assert (Seq.equal (map_blocks bs inp f g) (Seq.append s1 s2));
if i < nb * bs then
begin
div_mul_lt bs i nb;
Seq.lemma_index_app1 s1 s2 i;
index_map_blocks_multi bs nb nb blocks f i
end
else
begin
Seq.lemma_index_app2 s1 s2 i;
mod_prop bs nb i
end
end
else index_map_blocks_multi #a bs nb nb blocks f i
let eq_generate_blocks0 #t len n a f acc0 =
let a0 = (acc0, (Seq.empty <: s:seq t{length s == 0 * len})) in
assert (generate_blocks #t len n 0 a f acc0 ==
repeat_gen 0 (generate_blocks_a t len n a) (generate_blocks_inner t len n a f) a0);
eq_repeat_gen0 0 (generate_blocks_a t len n a) (generate_blocks_inner t len n a f) a0
let unfold_generate_blocks #t len n a f acc0 i =
let a0 = (acc0, (Seq.empty <: s:seq t{length s == 0 * len})) in
assert (generate_blocks #t len n (i+1) a f acc0 ==
repeat_gen (i+1) (generate_blocks_a t len n a) (generate_blocks_inner t len n a f) a0);
unfold_repeat_gen (i+1) (generate_blocks_a t len n a) (generate_blocks_inner t len n a f) a0 i
let rec index_generate_blocks #t len max n f i =
assert (0 < n);
let a_spec (i:nat{i <= max}) = unit in
let _,s = generate_blocks #t len max (n-1) a_spec f () in
let _,s' = f (n-1) () in
let _,s1 = generate_blocks #t len max n a_spec f () in
unfold_generate_blocks #t len max a_spec f () (n-1);
Seq.Properties.lemma_split s1 (n * len - len);
Seq.Properties.lemma_split (Seq.append s s') (n * len - len);
Seq.lemma_eq_intro s1 (Seq.append s s');
if i < (n-1) * len then
begin
Seq.lemma_index_app1 s s' i;
index_generate_blocks len max (n-1) f i
end
else
begin
Seq.lemma_index_app2 s s' i;
mod_prop len (n-1) i
end
#push-options "--using_facts_from '+FStar.UInt.pow2_values'" | false | false | Lib.Sequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 200,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val create2: #a:Type -> x0:a -> x1:a -> lseq a 2 | [] | Lib.Sequence.create2 | {
"file_name": "lib/Lib.Sequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x0: a -> x1: a -> Lib.Sequence.lseq a 2 | {
"end_col": 11,
"end_line": 374,
"start_col": 22,
"start_line": 371
} |
FStar.Pervasives.Lemma | val lemma_concat3:
#a:Type0
-> len0:size_nat
-> s0:lseq a len0
-> len1:size_nat{len0 + len1 <= max_size_t}
-> s1:lseq a len1
-> len2:size_nat{len0 + len1 + len2 <= max_size_t}
-> s2:lseq a len2
-> s:lseq a (len0 + len1 + len2) ->
Lemma
(requires
sub s 0 len0 == s0 /\
sub s len0 len1 == s1 /\
sub s (len0 + len1) len2 == s2)
(ensures s == concat (concat s0 s1) s2) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_concat3 #a len0 s0 len1 s1 len2 s2 s =
let s' = concat (concat s0 s1) s2 in
Seq.Properties.lemma_split (sub s 0 (len0 + len1)) len0;
Seq.Properties.lemma_split (sub s' 0 (len0 + len1)) len0;
Seq.Properties.lemma_split s (len0 + len1);
Seq.Properties.lemma_split s' (len0 + len1);
Seq.lemma_eq_intro s (concat (concat s0 s1) s2) | val lemma_concat3:
#a:Type0
-> len0:size_nat
-> s0:lseq a len0
-> len1:size_nat{len0 + len1 <= max_size_t}
-> s1:lseq a len1
-> len2:size_nat{len0 + len1 + len2 <= max_size_t}
-> s2:lseq a len2
-> s:lseq a (len0 + len1 + len2) ->
Lemma
(requires
sub s 0 len0 == s0 /\
sub s len0 len1 == s1 /\
sub s (len0 + len1) len2 == s2)
(ensures s == concat (concat s0 s1) s2)
let lemma_concat3 #a len0 s0 len1 s1 len2 s2 s = | false | null | true | let s' = concat (concat s0 s1) s2 in
Seq.Properties.lemma_split (sub s 0 (len0 + len1)) len0;
Seq.Properties.lemma_split (sub s' 0 (len0 + len1)) len0;
Seq.Properties.lemma_split s (len0 + len1);
Seq.Properties.lemma_split s' (len0 + len1);
Seq.lemma_eq_intro s (concat (concat s0 s1) s2) | {
"checked_file": "Lib.Sequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.fst"
} | [
"lemma"
] | [
"Lib.IntTypes.size_nat",
"Lib.Sequence.lseq",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"Lib.IntTypes.max_size_t",
"FStar.Seq.Base.lemma_eq_intro",
"Lib.Sequence.concat",
"Prims.unit",
"FStar.Seq.Properties.lemma_split",
"Lib.Sequence.sub",
"Prims.eq2",
"FStar.Seq.Base.seq",
"Lib.Sequence.to_seq",
"FStar.Seq.Base.append"
] | [] | module Lib.Sequence
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 --using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence'"
let index #a #len s n = Seq.index s n
let create #a len init = Seq.create #a len init
let concat #a #len0 #len1 s0 s1 = Seq.append s0 s1
let to_list #a s = Seq.seq_to_list s
let of_list #a l = Seq.seq_of_list #a l
let of_list_index #a l i =
Seq.lemma_seq_of_list_index #a l i
let equal #a #len s1 s2 =
forall (i:size_nat{i < len}).{:pattern (index s1 i); (index s2 i)} index s1 i == index s2 i
let eq_intro #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_intro #a (to_seq s1) (to_seq s2)
let eq_elim #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_elim #a s1 s2
let upd #a #len s n x = Seq.upd #a s n x
let member #a #len x l = Seq.count x l > 0
let sub #a #len s start n = Seq.slice #a s start (start + n)
let update_sub #a #len s start n x =
let o =
Seq.append
(Seq.append (Seq.slice s 0 start) x)
(Seq.slice s (start + n) (length s)) in
Seq.lemma_eq_intro (Seq.slice o start (start + n)) x;
o
let lemma_update_sub #a #len dst start n src res =
let res1 = update_sub dst start n src in
Seq.lemma_split (sub res 0 (start + n)) start;
Seq.lemma_split (sub res1 0 (start + n)) start;
Seq.lemma_split res (start + n);
Seq.lemma_split res1 (start + n);
Seq.lemma_eq_intro res (update_sub dst start n src)
let lemma_concat2 #a len0 s0 len1 s1 s =
Seq.Properties.lemma_split s len0;
Seq.Properties.lemma_split (concat s0 s1) len0;
Seq.lemma_eq_intro s (concat s0 s1) | false | false | Lib.Sequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_concat3:
#a:Type0
-> len0:size_nat
-> s0:lseq a len0
-> len1:size_nat{len0 + len1 <= max_size_t}
-> s1:lseq a len1
-> len2:size_nat{len0 + len1 + len2 <= max_size_t}
-> s2:lseq a len2
-> s:lseq a (len0 + len1 + len2) ->
Lemma
(requires
sub s 0 len0 == s0 /\
sub s len0 len1 == s1 /\
sub s (len0 + len1) len2 == s2)
(ensures s == concat (concat s0 s1) s2) | [] | Lib.Sequence.lemma_concat3 | {
"file_name": "lib/Lib.Sequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
len0: Lib.IntTypes.size_nat ->
s0: Lib.Sequence.lseq a len0 ->
len1: Lib.IntTypes.size_nat{len0 + len1 <= Lib.IntTypes.max_size_t} ->
s1: Lib.Sequence.lseq a len1 ->
len2: Lib.IntTypes.size_nat{len0 + len1 + len2 <= Lib.IntTypes.max_size_t} ->
s2: Lib.Sequence.lseq a len2 ->
s: Lib.Sequence.lseq a (len0 + len1 + len2)
-> FStar.Pervasives.Lemma
(requires
Lib.Sequence.sub s 0 len0 == s0 /\ Lib.Sequence.sub s len0 len1 == s1 /\
Lib.Sequence.sub s (len0 + len1) len2 == s2)
(ensures s == Lib.Sequence.concat (Lib.Sequence.concat s0 s1) s2) | {
"end_col": 49,
"end_line": 68,
"start_col": 48,
"start_line": 62
} |
Prims.Tot | val generate_blocks:
#t:Type0
-> len:size_nat
-> max:nat
-> n:nat{n <= max}
-> a:(i:nat{i <= max} -> Type)
-> f:(i:nat{i < max} -> a i -> a (i + 1) & s:seq t{length s == len})
-> init:a 0 ->
Tot (a n & s:seq t{length s == n * len}) | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let generate_blocks #t len max n a f acc0 =
let a0 = (acc0, (Seq.empty <: s:seq t{length s == 0 * len})) in
repeat_gen n (generate_blocks_a t len max a) (generate_blocks_inner t len max a f) a0 | val generate_blocks:
#t:Type0
-> len:size_nat
-> max:nat
-> n:nat{n <= max}
-> a:(i:nat{i <= max} -> Type)
-> f:(i:nat{i < max} -> a i -> a (i + 1) & s:seq t{length s == len})
-> init:a 0 ->
Tot (a n & s:seq t{length s == n * len})
let generate_blocks #t len max n a f acc0 = | false | null | false | let a0 = (acc0, (Seq.empty <: s: seq t {length s == 0 * len})) in
repeat_gen n (generate_blocks_a t len max a) (generate_blocks_inner t len max a f) a0 | {
"checked_file": "Lib.Sequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.fst"
} | [
"total"
] | [
"Lib.IntTypes.size_nat",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_LessThan",
"FStar.Pervasives.Native.tuple2",
"Prims.op_Addition",
"Lib.Sequence.seq",
"Prims.eq2",
"Lib.Sequence.length",
"Lib.LoopCombinators.repeat_gen",
"Lib.Sequence.generate_blocks_a",
"Lib.Sequence.generate_blocks_inner",
"Prims.int",
"Prims.op_Multiply",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Mul.op_Star",
"FStar.Seq.Base.empty"
] | [] | module Lib.Sequence
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 --using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence'"
let index #a #len s n = Seq.index s n
let create #a len init = Seq.create #a len init
let concat #a #len0 #len1 s0 s1 = Seq.append s0 s1
let to_list #a s = Seq.seq_to_list s
let of_list #a l = Seq.seq_of_list #a l
let of_list_index #a l i =
Seq.lemma_seq_of_list_index #a l i
let equal #a #len s1 s2 =
forall (i:size_nat{i < len}).{:pattern (index s1 i); (index s2 i)} index s1 i == index s2 i
let eq_intro #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_intro #a (to_seq s1) (to_seq s2)
let eq_elim #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_elim #a s1 s2
let upd #a #len s n x = Seq.upd #a s n x
let member #a #len x l = Seq.count x l > 0
let sub #a #len s start n = Seq.slice #a s start (start + n)
let update_sub #a #len s start n x =
let o =
Seq.append
(Seq.append (Seq.slice s 0 start) x)
(Seq.slice s (start + n) (length s)) in
Seq.lemma_eq_intro (Seq.slice o start (start + n)) x;
o
let lemma_update_sub #a #len dst start n src res =
let res1 = update_sub dst start n src in
Seq.lemma_split (sub res 0 (start + n)) start;
Seq.lemma_split (sub res1 0 (start + n)) start;
Seq.lemma_split res (start + n);
Seq.lemma_split res1 (start + n);
Seq.lemma_eq_intro res (update_sub dst start n src)
let lemma_concat2 #a len0 s0 len1 s1 s =
Seq.Properties.lemma_split s len0;
Seq.Properties.lemma_split (concat s0 s1) len0;
Seq.lemma_eq_intro s (concat s0 s1)
let lemma_concat3 #a len0 s0 len1 s1 len2 s2 s =
let s' = concat (concat s0 s1) s2 in
Seq.Properties.lemma_split (sub s 0 (len0 + len1)) len0;
Seq.Properties.lemma_split (sub s' 0 (len0 + len1)) len0;
Seq.Properties.lemma_split s (len0 + len1);
Seq.Properties.lemma_split s' (len0 + len1);
Seq.lemma_eq_intro s (concat (concat s0 s1) s2)
let createi_a (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (k:nat{k <= len}) =
lseq a k
let createi_pred (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (k:nat{k <= len})
(s:createi_a a len init k) =
forall (i:nat).{:pattern (index s i)} i < k ==> index s i == init i
let createi_step (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (i:nat{i < len})
(si:createi_a a len init i)
: r:createi_a a len init (i + 1)
{createi_pred a len init i si ==> createi_pred a len init (i + 1) r}
=
assert (createi_pred a len init i si ==> (forall (j:nat). j < i ==> index si j == init j));
Seq.snoc si (init i)
#push-options "--max_fuel 1 --using_facts_from '+Lib.LoopCombinators +FStar.List'"
let createi #a len init_f =
repeat_gen_inductive len
(createi_a a len init_f)
(createi_pred a len init_f)
(createi_step a len init_f)
(of_list [])
#pop-options
inline_for_extraction
let mapi_inner (#a:Type) (#b:Type) (#len:size_nat)
(f:(i:nat{i < len} -> a -> b)) (s:lseq a len) (i:size_nat{i < len}) =
f i s.[i]
let mapi #a #b #len f s =
createi #b len (mapi_inner #a #b #len f s)
inline_for_extraction
let map_inner (#a:Type) (#b:Type) (#len:size_nat)
(f:(a -> Tot b)) (s:lseq a len) (i:size_nat{i < len}) =
f s.[i]
let map #a #b #len f s =
createi #b len (map_inner #a #b #len f s)
let map2i #a #b #c #len f s1 s2 =
createi #c len (fun i -> f i s1.[i] s2.[i])
inline_for_extraction
let map2_inner (#a:Type) (#b:Type) (#c:Type) (#len:size_nat)
(f:(a -> b -> Tot c)) (s1:lseq a len) (s2:lseq b len) (i:size_nat{i < len}) =
f s1.[i] s2.[i]
let map2 #a #b #c #len f s1 s2 =
createi #c len (map2_inner #a #b #c #len f s1 s2)
let for_all #a #len f x = Seq.for_all f x
let for_all2 #a #b #len f x y =
let r = map2 (fun xi yi -> f xi yi) x y in
Seq.for_all (fun bi -> bi = true) r
(** Selecting a subset of an unbounded Sequence *)
val seq_sub:
#a:Type
-> s1:seq a
-> start:nat
-> n:nat{start + n <= length s1}
-> s2:seq a{length s2 == n /\
(forall (k:nat{k < n}). {:pattern (Seq.index s2 k)} Seq.index s2 k == Seq.index s1 (start + k))}
let seq_sub #a s start n =
Seq.slice #a s start (start + n)
(** Updating a subset of an unbounded Sequence with another Sequence *)
val seq_update_sub:
#a:Type
-> i:seq a
-> start:nat
-> n:nat{start + n <= length i}
-> x:seq a{length x == n}
-> o:seq a{length o == length i /\ seq_sub o start n == x /\
(forall (k:nat{(0 <= k /\ k < start) \/ (start + n <= k /\ k < length i)}).
{:pattern (Seq.index o k)} Seq.index o k == Seq.index i k)}
let seq_update_sub #a s start n x =
let o =
Seq.append
(Seq.append (Seq.slice s 0 start) x)
(Seq.slice s (start + n) (length s)) in
Seq.lemma_eq_intro (Seq.slice o start (start + n)) x;
o
val repeati_blocks_f:
#a:Type0
-> #b:Type0
-> blocksize:size_nat{blocksize > 0}
-> inp:seq a
-> f:(i:nat{i < length inp / blocksize} -> lseq a blocksize -> b -> b)
-> nb:nat{nb == length inp / blocksize}
-> i:nat{i < nb}
-> acc:b
-> b
let repeati_blocks_f #a #b bs inp f nb i acc =
assert ((i+1) * bs <= nb * bs);
let block = seq_sub inp (i * bs) bs in
f i block acc
let repeati_blocks #a #b bs inp f g init =
let len = length inp in
let nb = len / bs in
let rem = len % bs in
let acc = repeati nb (repeati_blocks_f bs inp f nb) init in
let last = seq_sub inp (nb * bs) rem in
g nb rem last acc
let repeat_blocks #a #b #c bs inp f l init =
let len = length inp in
let nb = len / bs in
let rem = len % bs in
let acc = repeati nb (repeat_blocks_f bs inp f nb) init in
let last = seq_sub inp (nb * bs) rem in
l rem last acc
let lemma_repeat_blocks #a #b #c bs inp f l init = ()
let repeat_blocks_multi #a #b bs inp f init =
let len = length inp in
let nb = len / bs in
repeati nb (repeat_blocks_f bs inp f nb) init
let lemma_repeat_blocks_multi #a #b bs inp f init = ()
let generate_blocks_a (t:Type) (blocklen:size_nat) (max:nat) (a:(i:nat{i <= max} -> Type)) (i:nat{i <= max}) = a i & s:seq t{length s == i * blocklen}
let generate_blocks_inner (t:Type) (blocklen:size_nat) (max:nat) (a:(i:nat{i <= max} -> Type)) (f:(i:nat{i < max} -> a i -> a (i + 1) & s:seq t{length s == blocklen})) (i:nat{i < max}) (acc:generate_blocks_a t blocklen max a i) : generate_blocks_a t blocklen max a (i + 1) =
let acc, o = acc in
let acc', block = f i acc in
let o' : s:seq t{length s == ((i + 1) * blocklen)} = Seq.append o block in
acc', o' | false | false | Lib.Sequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val generate_blocks:
#t:Type0
-> len:size_nat
-> max:nat
-> n:nat{n <= max}
-> a:(i:nat{i <= max} -> Type)
-> f:(i:nat{i < max} -> a i -> a (i + 1) & s:seq t{length s == len})
-> init:a 0 ->
Tot (a n & s:seq t{length s == n * len}) | [] | Lib.Sequence.generate_blocks | {
"file_name": "lib/Lib.Sequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
len: Lib.IntTypes.size_nat ->
max: Prims.nat ->
n: Prims.nat{n <= max} ->
a: (i: Prims.nat{i <= max} -> Type) ->
f:
(i: Prims.nat{i < max} -> _: a i
-> a (i + 1) * s: Lib.Sequence.seq t {Lib.Sequence.length s == len}) ->
init: a 0
-> a n * s: Lib.Sequence.seq t {Lib.Sequence.length s == n * len} | {
"end_col": 87,
"end_line": 208,
"start_col": 43,
"start_line": 206
} |
Prims.Tot | val repeati_blocks:
#a:Type0
-> #b:Type0
-> blocksize:size_pos
-> inp:seq a
-> f:(i:nat{i < length inp / blocksize} -> lseq a blocksize -> b -> b)
-> l:(i:nat{i == length inp / blocksize} -> len:size_nat{len == length inp % blocksize} -> s:lseq a len -> b -> b)
-> init:b ->
Tot b | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let repeati_blocks #a #b bs inp f g init =
let len = length inp in
let nb = len / bs in
let rem = len % bs in
let acc = repeati nb (repeati_blocks_f bs inp f nb) init in
let last = seq_sub inp (nb * bs) rem in
g nb rem last acc | val repeati_blocks:
#a:Type0
-> #b:Type0
-> blocksize:size_pos
-> inp:seq a
-> f:(i:nat{i < length inp / blocksize} -> lseq a blocksize -> b -> b)
-> l:(i:nat{i == length inp / blocksize} -> len:size_nat{len == length inp % blocksize} -> s:lseq a len -> b -> b)
-> init:b ->
Tot b
let repeati_blocks #a #b bs inp f g init = | false | null | false | let len = length inp in
let nb = len / bs in
let rem = len % bs in
let acc = repeati nb (repeati_blocks_f bs inp f nb) init in
let last = seq_sub inp (nb * bs) rem in
g nb rem last acc | {
"checked_file": "Lib.Sequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.fst"
} | [
"total"
] | [
"Lib.IntTypes.size_pos",
"Lib.Sequence.seq",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.op_Division",
"Lib.Sequence.length",
"Lib.Sequence.lseq",
"Prims.eq2",
"Prims.int",
"Lib.IntTypes.size_nat",
"Prims.op_Modulus",
"Prims.l_and",
"Prims.l_Forall",
"FStar.Seq.Base.index",
"Prims.op_Addition",
"Prims.op_Multiply",
"Lib.Sequence.seq_sub",
"FStar.Mul.op_Star",
"Lib.LoopCombinators.repeati",
"Lib.Sequence.repeati_blocks_f"
] | [] | module Lib.Sequence
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 --using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence'"
let index #a #len s n = Seq.index s n
let create #a len init = Seq.create #a len init
let concat #a #len0 #len1 s0 s1 = Seq.append s0 s1
let to_list #a s = Seq.seq_to_list s
let of_list #a l = Seq.seq_of_list #a l
let of_list_index #a l i =
Seq.lemma_seq_of_list_index #a l i
let equal #a #len s1 s2 =
forall (i:size_nat{i < len}).{:pattern (index s1 i); (index s2 i)} index s1 i == index s2 i
let eq_intro #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_intro #a (to_seq s1) (to_seq s2)
let eq_elim #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_elim #a s1 s2
let upd #a #len s n x = Seq.upd #a s n x
let member #a #len x l = Seq.count x l > 0
let sub #a #len s start n = Seq.slice #a s start (start + n)
let update_sub #a #len s start n x =
let o =
Seq.append
(Seq.append (Seq.slice s 0 start) x)
(Seq.slice s (start + n) (length s)) in
Seq.lemma_eq_intro (Seq.slice o start (start + n)) x;
o
let lemma_update_sub #a #len dst start n src res =
let res1 = update_sub dst start n src in
Seq.lemma_split (sub res 0 (start + n)) start;
Seq.lemma_split (sub res1 0 (start + n)) start;
Seq.lemma_split res (start + n);
Seq.lemma_split res1 (start + n);
Seq.lemma_eq_intro res (update_sub dst start n src)
let lemma_concat2 #a len0 s0 len1 s1 s =
Seq.Properties.lemma_split s len0;
Seq.Properties.lemma_split (concat s0 s1) len0;
Seq.lemma_eq_intro s (concat s0 s1)
let lemma_concat3 #a len0 s0 len1 s1 len2 s2 s =
let s' = concat (concat s0 s1) s2 in
Seq.Properties.lemma_split (sub s 0 (len0 + len1)) len0;
Seq.Properties.lemma_split (sub s' 0 (len0 + len1)) len0;
Seq.Properties.lemma_split s (len0 + len1);
Seq.Properties.lemma_split s' (len0 + len1);
Seq.lemma_eq_intro s (concat (concat s0 s1) s2)
let createi_a (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (k:nat{k <= len}) =
lseq a k
let createi_pred (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (k:nat{k <= len})
(s:createi_a a len init k) =
forall (i:nat).{:pattern (index s i)} i < k ==> index s i == init i
let createi_step (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (i:nat{i < len})
(si:createi_a a len init i)
: r:createi_a a len init (i + 1)
{createi_pred a len init i si ==> createi_pred a len init (i + 1) r}
=
assert (createi_pred a len init i si ==> (forall (j:nat). j < i ==> index si j == init j));
Seq.snoc si (init i)
#push-options "--max_fuel 1 --using_facts_from '+Lib.LoopCombinators +FStar.List'"
let createi #a len init_f =
repeat_gen_inductive len
(createi_a a len init_f)
(createi_pred a len init_f)
(createi_step a len init_f)
(of_list [])
#pop-options
inline_for_extraction
let mapi_inner (#a:Type) (#b:Type) (#len:size_nat)
(f:(i:nat{i < len} -> a -> b)) (s:lseq a len) (i:size_nat{i < len}) =
f i s.[i]
let mapi #a #b #len f s =
createi #b len (mapi_inner #a #b #len f s)
inline_for_extraction
let map_inner (#a:Type) (#b:Type) (#len:size_nat)
(f:(a -> Tot b)) (s:lseq a len) (i:size_nat{i < len}) =
f s.[i]
let map #a #b #len f s =
createi #b len (map_inner #a #b #len f s)
let map2i #a #b #c #len f s1 s2 =
createi #c len (fun i -> f i s1.[i] s2.[i])
inline_for_extraction
let map2_inner (#a:Type) (#b:Type) (#c:Type) (#len:size_nat)
(f:(a -> b -> Tot c)) (s1:lseq a len) (s2:lseq b len) (i:size_nat{i < len}) =
f s1.[i] s2.[i]
let map2 #a #b #c #len f s1 s2 =
createi #c len (map2_inner #a #b #c #len f s1 s2)
let for_all #a #len f x = Seq.for_all f x
let for_all2 #a #b #len f x y =
let r = map2 (fun xi yi -> f xi yi) x y in
Seq.for_all (fun bi -> bi = true) r
(** Selecting a subset of an unbounded Sequence *)
val seq_sub:
#a:Type
-> s1:seq a
-> start:nat
-> n:nat{start + n <= length s1}
-> s2:seq a{length s2 == n /\
(forall (k:nat{k < n}). {:pattern (Seq.index s2 k)} Seq.index s2 k == Seq.index s1 (start + k))}
let seq_sub #a s start n =
Seq.slice #a s start (start + n)
(** Updating a subset of an unbounded Sequence with another Sequence *)
val seq_update_sub:
#a:Type
-> i:seq a
-> start:nat
-> n:nat{start + n <= length i}
-> x:seq a{length x == n}
-> o:seq a{length o == length i /\ seq_sub o start n == x /\
(forall (k:nat{(0 <= k /\ k < start) \/ (start + n <= k /\ k < length i)}).
{:pattern (Seq.index o k)} Seq.index o k == Seq.index i k)}
let seq_update_sub #a s start n x =
let o =
Seq.append
(Seq.append (Seq.slice s 0 start) x)
(Seq.slice s (start + n) (length s)) in
Seq.lemma_eq_intro (Seq.slice o start (start + n)) x;
o
val repeati_blocks_f:
#a:Type0
-> #b:Type0
-> blocksize:size_nat{blocksize > 0}
-> inp:seq a
-> f:(i:nat{i < length inp / blocksize} -> lseq a blocksize -> b -> b)
-> nb:nat{nb == length inp / blocksize}
-> i:nat{i < nb}
-> acc:b
-> b
let repeati_blocks_f #a #b bs inp f nb i acc =
assert ((i+1) * bs <= nb * bs);
let block = seq_sub inp (i * bs) bs in
f i block acc | false | false | Lib.Sequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val repeati_blocks:
#a:Type0
-> #b:Type0
-> blocksize:size_pos
-> inp:seq a
-> f:(i:nat{i < length inp / blocksize} -> lseq a blocksize -> b -> b)
-> l:(i:nat{i == length inp / blocksize} -> len:size_nat{len == length inp % blocksize} -> s:lseq a len -> b -> b)
-> init:b ->
Tot b | [] | Lib.Sequence.repeati_blocks | {
"file_name": "lib/Lib.Sequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
blocksize: Lib.IntTypes.size_pos ->
inp: Lib.Sequence.seq a ->
f:
(
i: Prims.nat{i < Lib.Sequence.length inp / blocksize} ->
_: Lib.Sequence.lseq a blocksize ->
_: b
-> b) ->
l:
(
i: Prims.nat{i == Lib.Sequence.length inp / blocksize} ->
len: Lib.IntTypes.size_nat{len == Lib.Sequence.length inp % blocksize} ->
s: Lib.Sequence.lseq a len ->
_: b
-> b) ->
init: b
-> b | {
"end_col": 19,
"end_line": 179,
"start_col": 42,
"start_line": 173
} |
Prims.Tot | val create16: #a:Type
-> x0:a -> x1:a -> x2:a -> x3:a -> x4:a -> x5:a -> x6:a -> x7:a
-> x8:a -> x9:a -> x10:a -> x11:a -> x12:a -> x13:a -> x14:a -> x15:a -> lseq a 16 | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let create16 #a x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 =
let l = [x0; x1; x2; x3; x4; x5; x6; x7; x8; x9; x10; x11; x12; x13; x14; x15] in
assert_norm (List.Tot.length l = 16);
createL l | val create16: #a:Type
-> x0:a -> x1:a -> x2:a -> x3:a -> x4:a -> x5:a -> x6:a -> x7:a
-> x8:a -> x9:a -> x10:a -> x11:a -> x12:a -> x13:a -> x14:a -> x15:a -> lseq a 16
let create16 #a x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 = | false | null | false | let l = [x0; x1; x2; x3; x4; x5; x6; x7; x8; x9; x10; x11; x12; x13; x14; x15] in
assert_norm (List.Tot.length l = 16);
createL l | {
"checked_file": "Lib.Sequence.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.fst"
} | [
"total"
] | [
"Lib.Sequence.createL",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"FStar.List.Tot.Base.length",
"Prims.list",
"Prims.Cons",
"Prims.Nil",
"Lib.Sequence.lseq"
] | [] | module Lib.Sequence
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 --using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence'"
let index #a #len s n = Seq.index s n
let create #a len init = Seq.create #a len init
let concat #a #len0 #len1 s0 s1 = Seq.append s0 s1
let to_list #a s = Seq.seq_to_list s
let of_list #a l = Seq.seq_of_list #a l
let of_list_index #a l i =
Seq.lemma_seq_of_list_index #a l i
let equal #a #len s1 s2 =
forall (i:size_nat{i < len}).{:pattern (index s1 i); (index s2 i)} index s1 i == index s2 i
let eq_intro #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_intro #a (to_seq s1) (to_seq s2)
let eq_elim #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_elim #a s1 s2
let upd #a #len s n x = Seq.upd #a s n x
let member #a #len x l = Seq.count x l > 0
let sub #a #len s start n = Seq.slice #a s start (start + n)
let update_sub #a #len s start n x =
let o =
Seq.append
(Seq.append (Seq.slice s 0 start) x)
(Seq.slice s (start + n) (length s)) in
Seq.lemma_eq_intro (Seq.slice o start (start + n)) x;
o
let lemma_update_sub #a #len dst start n src res =
let res1 = update_sub dst start n src in
Seq.lemma_split (sub res 0 (start + n)) start;
Seq.lemma_split (sub res1 0 (start + n)) start;
Seq.lemma_split res (start + n);
Seq.lemma_split res1 (start + n);
Seq.lemma_eq_intro res (update_sub dst start n src)
let lemma_concat2 #a len0 s0 len1 s1 s =
Seq.Properties.lemma_split s len0;
Seq.Properties.lemma_split (concat s0 s1) len0;
Seq.lemma_eq_intro s (concat s0 s1)
let lemma_concat3 #a len0 s0 len1 s1 len2 s2 s =
let s' = concat (concat s0 s1) s2 in
Seq.Properties.lemma_split (sub s 0 (len0 + len1)) len0;
Seq.Properties.lemma_split (sub s' 0 (len0 + len1)) len0;
Seq.Properties.lemma_split s (len0 + len1);
Seq.Properties.lemma_split s' (len0 + len1);
Seq.lemma_eq_intro s (concat (concat s0 s1) s2)
let createi_a (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (k:nat{k <= len}) =
lseq a k
let createi_pred (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (k:nat{k <= len})
(s:createi_a a len init k) =
forall (i:nat).{:pattern (index s i)} i < k ==> index s i == init i
let createi_step (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (i:nat{i < len})
(si:createi_a a len init i)
: r:createi_a a len init (i + 1)
{createi_pred a len init i si ==> createi_pred a len init (i + 1) r}
=
assert (createi_pred a len init i si ==> (forall (j:nat). j < i ==> index si j == init j));
Seq.snoc si (init i)
#push-options "--max_fuel 1 --using_facts_from '+Lib.LoopCombinators +FStar.List'"
let createi #a len init_f =
repeat_gen_inductive len
(createi_a a len init_f)
(createi_pred a len init_f)
(createi_step a len init_f)
(of_list [])
#pop-options
inline_for_extraction
let mapi_inner (#a:Type) (#b:Type) (#len:size_nat)
(f:(i:nat{i < len} -> a -> b)) (s:lseq a len) (i:size_nat{i < len}) =
f i s.[i]
let mapi #a #b #len f s =
createi #b len (mapi_inner #a #b #len f s)
inline_for_extraction
let map_inner (#a:Type) (#b:Type) (#len:size_nat)
(f:(a -> Tot b)) (s:lseq a len) (i:size_nat{i < len}) =
f s.[i]
let map #a #b #len f s =
createi #b len (map_inner #a #b #len f s)
let map2i #a #b #c #len f s1 s2 =
createi #c len (fun i -> f i s1.[i] s2.[i])
inline_for_extraction
let map2_inner (#a:Type) (#b:Type) (#c:Type) (#len:size_nat)
(f:(a -> b -> Tot c)) (s1:lseq a len) (s2:lseq b len) (i:size_nat{i < len}) =
f s1.[i] s2.[i]
let map2 #a #b #c #len f s1 s2 =
createi #c len (map2_inner #a #b #c #len f s1 s2)
let for_all #a #len f x = Seq.for_all f x
let for_all2 #a #b #len f x y =
let r = map2 (fun xi yi -> f xi yi) x y in
Seq.for_all (fun bi -> bi = true) r
(** Selecting a subset of an unbounded Sequence *)
val seq_sub:
#a:Type
-> s1:seq a
-> start:nat
-> n:nat{start + n <= length s1}
-> s2:seq a{length s2 == n /\
(forall (k:nat{k < n}). {:pattern (Seq.index s2 k)} Seq.index s2 k == Seq.index s1 (start + k))}
let seq_sub #a s start n =
Seq.slice #a s start (start + n)
(** Updating a subset of an unbounded Sequence with another Sequence *)
val seq_update_sub:
#a:Type
-> i:seq a
-> start:nat
-> n:nat{start + n <= length i}
-> x:seq a{length x == n}
-> o:seq a{length o == length i /\ seq_sub o start n == x /\
(forall (k:nat{(0 <= k /\ k < start) \/ (start + n <= k /\ k < length i)}).
{:pattern (Seq.index o k)} Seq.index o k == Seq.index i k)}
let seq_update_sub #a s start n x =
let o =
Seq.append
(Seq.append (Seq.slice s 0 start) x)
(Seq.slice s (start + n) (length s)) in
Seq.lemma_eq_intro (Seq.slice o start (start + n)) x;
o
val repeati_blocks_f:
#a:Type0
-> #b:Type0
-> blocksize:size_nat{blocksize > 0}
-> inp:seq a
-> f:(i:nat{i < length inp / blocksize} -> lseq a blocksize -> b -> b)
-> nb:nat{nb == length inp / blocksize}
-> i:nat{i < nb}
-> acc:b
-> b
let repeati_blocks_f #a #b bs inp f nb i acc =
assert ((i+1) * bs <= nb * bs);
let block = seq_sub inp (i * bs) bs in
f i block acc
let repeati_blocks #a #b bs inp f g init =
let len = length inp in
let nb = len / bs in
let rem = len % bs in
let acc = repeati nb (repeati_blocks_f bs inp f nb) init in
let last = seq_sub inp (nb * bs) rem in
g nb rem last acc
let repeat_blocks #a #b #c bs inp f l init =
let len = length inp in
let nb = len / bs in
let rem = len % bs in
let acc = repeati nb (repeat_blocks_f bs inp f nb) init in
let last = seq_sub inp (nb * bs) rem in
l rem last acc
let lemma_repeat_blocks #a #b #c bs inp f l init = ()
let repeat_blocks_multi #a #b bs inp f init =
let len = length inp in
let nb = len / bs in
repeati nb (repeat_blocks_f bs inp f nb) init
let lemma_repeat_blocks_multi #a #b bs inp f init = ()
let generate_blocks_a (t:Type) (blocklen:size_nat) (max:nat) (a:(i:nat{i <= max} -> Type)) (i:nat{i <= max}) = a i & s:seq t{length s == i * blocklen}
let generate_blocks_inner (t:Type) (blocklen:size_nat) (max:nat) (a:(i:nat{i <= max} -> Type)) (f:(i:nat{i < max} -> a i -> a (i + 1) & s:seq t{length s == blocklen})) (i:nat{i < max}) (acc:generate_blocks_a t blocklen max a i) : generate_blocks_a t blocklen max a (i + 1) =
let acc, o = acc in
let acc', block = f i acc in
let o' : s:seq t{length s == ((i + 1) * blocklen)} = Seq.append o block in
acc', o'
let generate_blocks #t len max n a f acc0 =
let a0 = (acc0, (Seq.empty <: s:seq t{length s == 0 * len})) in
repeat_gen n (generate_blocks_a t len max a) (generate_blocks_inner t len max a f) a0
let generate_blocks_simple_a (a:Type) (bs:size_nat) (max:nat) (i:nat{i <= max}) = s:seq a{length s == i * bs}
let generate_blocks_simple_f
(#a:Type)
(bs:size_nat{bs > 0})
(max:nat)
(f:(i:nat{i < max} -> lseq a bs))
(i:nat{i < max})
(acc:generate_blocks_simple_a a bs max i) : generate_blocks_simple_a a bs max (i + 1)
=
Seq.append acc (f i)
let generate_blocks_simple #a bs max nb f =
repeat_gen nb (generate_blocks_simple_a a bs max)
(generate_blocks_simple_f #a bs max f) Seq.empty
#restart-solver
let div_interval b n i =
Math.Lemmas.lemma_div_le (n * b) i b;
Math.Lemmas.cancel_mul_div n b
let mod_interval_lt b n i j =
div_interval b n i;
div_interval b n j
let div_mul_lt b a n = ()
let mod_div_lt b i j =
mod_interval_lt b (j / b) i j
let div_mul_l a b c d =
calc (==) {
a / (c * d);
== { }
a / (d * c);
== { Math.Lemmas.division_multiplication_lemma a d c }
(a / d) / c;
== { }
(b / d) / c;
== { Math.Lemmas.division_multiplication_lemma b d c }
b / (d * c);
== { }
b / (c * d);
}
let map_blocks_multi #a bs max nb inp f =
repeat_gen nb (map_blocks_a a bs max)
(map_blocks_f #a bs max inp f) Seq.empty
let lemma_map_blocks_multi #a bs max nb inp f = ()
private
val mod_prop: n:pos -> a:nat -> b:nat{a * n <= b /\ b < (a + 1) * n} ->
Lemma (b - a * n == b % n)
let mod_prop n a b =
Math.Lemmas.modulo_lemma (b - a * n) n;
Math.Lemmas.lemma_mod_sub b n a
#push-options "--z3rlimit 200"
let rec index_map_blocks_multi #a bs max n inp f i =
let map_blocks_a = map_blocks_a a bs max in
let map_blocks_f = map_blocks_f #a bs max inp f in
let acc0 = Seq.empty #a in
let s1 = repeat_gen n map_blocks_a map_blocks_f acc0 in
unfold_repeat_gen n map_blocks_a map_blocks_f acc0 (n-1);
let s = repeat_gen (n-1) map_blocks_a map_blocks_f acc0 in
//assert (s1 == map_blocks_f (n-1) s);
let s' = f (n-1) (Seq.slice inp ((n-1)*bs) (n*bs)) in
//assert (s1 == Seq.append s s');
if i < (n-1)*bs then begin
Seq.lemma_index_app1 s s' i;
index_map_blocks_multi #a bs max (n-1) inp f i end
else begin
Seq.lemma_index_app2 s s' i;
mod_prop bs (n-1) i
end
let map_blocks #a blocksize inp f g =
let len = length inp in
let nb = len / blocksize in
let rem = len % blocksize in
let blocks = Seq.slice inp 0 (nb * blocksize) in
let last = Seq.slice inp (nb * blocksize) len in
let bs = map_blocks_multi #a blocksize nb nb blocks f in
if (rem > 0) then
Seq.append bs (g nb rem last)
else bs
let lemma_map_blocks #a blocksize inp f g = ()
let index_map_blocks #a bs inp f g i =
let len = length inp in
let nb = len / bs in
let rem = len % bs in
let blocks = Seq.slice inp 0 (nb * bs) in
if rem > 0 then
begin
let s1 = map_blocks_multi #a bs nb nb blocks f in
let last = Seq.slice inp (nb * bs) len in
calc (==) {
length last;
== { Seq.lemma_len_slice inp (nb * bs) len }
len - nb * bs;
== {mod_prop bs nb len}
len % bs;
== { }
rem;
};
let s2 = g nb rem last in
assert (Seq.equal (map_blocks bs inp f g) (Seq.append s1 s2));
if i < nb * bs then
begin
div_mul_lt bs i nb;
Seq.lemma_index_app1 s1 s2 i;
index_map_blocks_multi bs nb nb blocks f i
end
else
begin
Seq.lemma_index_app2 s1 s2 i;
mod_prop bs nb i
end
end
else index_map_blocks_multi #a bs nb nb blocks f i
let eq_generate_blocks0 #t len n a f acc0 =
let a0 = (acc0, (Seq.empty <: s:seq t{length s == 0 * len})) in
assert (generate_blocks #t len n 0 a f acc0 ==
repeat_gen 0 (generate_blocks_a t len n a) (generate_blocks_inner t len n a f) a0);
eq_repeat_gen0 0 (generate_blocks_a t len n a) (generate_blocks_inner t len n a f) a0
let unfold_generate_blocks #t len n a f acc0 i =
let a0 = (acc0, (Seq.empty <: s:seq t{length s == 0 * len})) in
assert (generate_blocks #t len n (i+1) a f acc0 ==
repeat_gen (i+1) (generate_blocks_a t len n a) (generate_blocks_inner t len n a f) a0);
unfold_repeat_gen (i+1) (generate_blocks_a t len n a) (generate_blocks_inner t len n a f) a0 i
let rec index_generate_blocks #t len max n f i =
assert (0 < n);
let a_spec (i:nat{i <= max}) = unit in
let _,s = generate_blocks #t len max (n-1) a_spec f () in
let _,s' = f (n-1) () in
let _,s1 = generate_blocks #t len max n a_spec f () in
unfold_generate_blocks #t len max a_spec f () (n-1);
Seq.Properties.lemma_split s1 (n * len - len);
Seq.Properties.lemma_split (Seq.append s s') (n * len - len);
Seq.lemma_eq_intro s1 (Seq.append s s');
if i < (n-1) * len then
begin
Seq.lemma_index_app1 s s' i;
index_generate_blocks len max (n-1) f i
end
else
begin
Seq.lemma_index_app2 s s' i;
mod_prop len (n-1) i
end
#push-options "--using_facts_from '+FStar.UInt.pow2_values'"
let create2 #a x0 x1 =
let l = [x0; x1] in
assert_norm (List.Tot.length l = 2);
createL l
let create2_lemma #a x0 x1 =
Seq.elim_of_list [x0; x1]
let create4 #a x0 x1 x2 x3 =
let l = [x0; x1; x2; x3] in
assert_norm (List.Tot.length l = 4);
createL l
let create4_lemma #a x0 x1 x2 x3 =
Seq.elim_of_list [x0; x1; x2; x3]
let create8 #a x0 x1 x2 x3 x4 x5 x6 x7 =
let l = [x0; x1; x2; x3; x4; x5; x6; x7] in
assert_norm (List.Tot.length l = 8);
createL l
let create8_lemma #a x0 x1 x2 x3 x4 x5 x6 x7 =
Seq.elim_of_list [x0; x1; x2; x3; x4; x5; x6; x7] | false | false | Lib.Sequence.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 200,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val create16: #a:Type
-> x0:a -> x1:a -> x2:a -> x3:a -> x4:a -> x5:a -> x6:a -> x7:a
-> x8:a -> x9:a -> x10:a -> x11:a -> x12:a -> x13:a -> x14:a -> x15:a -> lseq a 16 | [] | Lib.Sequence.create16 | {
"file_name": "lib/Lib.Sequence.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
x0: a ->
x1: a ->
x2: a ->
x3: a ->
x4: a ->
x5: a ->
x6: a ->
x7: a ->
x8: a ->
x9: a ->
x10: a ->
x11: a ->
x12: a ->
x13: a ->
x14: a ->
x15: a
-> Lib.Sequence.lseq a 16 | {
"end_col": 11,
"end_line": 398,
"start_col": 71,
"start_line": 395
} |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.