content
stringlengths
7
928k
avg_line_length
float64
3.5
33.8k
max_line_length
int64
6
139k
alphanum_fraction
float64
0.08
0.96
licenses
sequence
repository_name
stringlengths
7
104
path
stringlengths
4
230
size
int64
7
928k
lang
stringclasses
1 value
#!/usr/bin/env python3 # Copyright (c) 2017-2020 The Ludirium Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test wallet load on startup. Verify that a ludiriumd node can maintain list of wallets loading on startup """ from test_framework.test_framework import LudiriumTestFramework from test_framework.util import ( assert_equal, ) class WalletStartupTest(LudiriumTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 1 self.supports_cli = True def skip_test_if_missing_module(self): self.skip_if_no_wallet() def setup_nodes(self): self.add_nodes(self.num_nodes) self.start_nodes() def run_test(self): self.log.info('Should start without any wallets') assert_equal(self.nodes[0].listwallets(), []) assert_equal(self.nodes[0].listwalletdir(), {'wallets': []}) self.log.info('New default wallet should load by default when there are no other wallets') self.nodes[0].createwallet(wallet_name='', load_on_startup=False) self.restart_node(0) assert_equal(self.nodes[0].listwallets(), ['']) self.log.info('Test load on startup behavior') self.nodes[0].createwallet(wallet_name='w0', load_on_startup=True) self.nodes[0].createwallet(wallet_name='w1', load_on_startup=False) self.nodes[0].createwallet(wallet_name='w2', load_on_startup=True) self.nodes[0].createwallet(wallet_name='w3', load_on_startup=False) self.nodes[0].createwallet(wallet_name='w4', load_on_startup=False) self.nodes[0].unloadwallet(wallet_name='w0', load_on_startup=False) self.nodes[0].unloadwallet(wallet_name='w4', load_on_startup=False) self.nodes[0].loadwallet(filename='w4', load_on_startup=True) assert_equal(set(self.nodes[0].listwallets()), set(('', 'w1', 'w2', 'w3', 'w4'))) self.restart_node(0) assert_equal(set(self.nodes[0].listwallets()), set(('', 'w2', 'w4'))) self.nodes[0].unloadwallet(wallet_name='', load_on_startup=False) self.nodes[0].unloadwallet(wallet_name='w4', load_on_startup=False) self.nodes[0].loadwallet(filename='w3', load_on_startup=True) self.nodes[0].loadwallet(filename='') self.restart_node(0) assert_equal(set(self.nodes[0].listwallets()), set(('w2', 'w3'))) if __name__ == '__main__': WalletStartupTest().main()
43.101695
98
0.69013
[ "MIT" ]
ludirium/ludirium
test/functional/wallet_startup.py
2,543
Python
# Copyright (C) 2018-2022 Intel Corporation # SPDX-License-Identifier: Apache-2.0 import numpy as np from openvino.tools.mo.front.common.partial_infer.utils import mo_array from openvino.tools.mo.front.extractor import FrontExtractorOp from openvino.tools.mo.front.kaldi.loader.utils import read_binary_bool_token, read_binary_integer32_token, collect_until_token, \ read_binary_float_token from openvino.tools.mo.front.kaldi.utils import read_binary_vector, read_binary_matrix from openvino.tools.mo.ops.tdnncomponent import TdnnComponent class TdnnComponentFrontExtractor(FrontExtractorOp): op = 'tdnncomponent' enabled = True @classmethod def extract(cls, node): pb = node.parameters collect_until_token(pb, b'<MaxChange>') max_change = read_binary_float_token(pb) collect_until_token(pb, b'<L2Regularize>') collect_until_token(pb, b'<LearningRate>') collect_until_token(pb, b'<TimeOffsets>') time_offsets = read_binary_vector(pb, False, np.int32) collect_until_token(pb, b'<LinearParams>') weights, weights_shape = read_binary_matrix(pb) collect_until_token(pb, b'<BiasParams>') bias_params = read_binary_vector(pb) collect_until_token(pb, b'<OrthonormalConstraint>') orthonormal_constraint = read_binary_float_token(pb) # used only on training collect_until_token(pb, b'<UseNaturalGradient>') use_natural_grad = read_binary_bool_token(pb) # used only on training collect_until_token(pb, b'<NumSamplesHistory>') num_samples_hist = read_binary_float_token(pb) collect_until_token(pb, b'<AlphaInOut>') alpha_in_out = read_binary_float_token(pb), read_binary_float_token(pb) # for training, usually (4, 4) # according to Kaldi documentation http://kaldi-asr.org/doc/classkaldi_1_1nnet3_1_1TdnnComponent.html#details # it looks like it's used only during training (but not 100% sure) collect_until_token(pb, b'<RankInOut>') rank_in_out = read_binary_integer32_token(pb), read_binary_integer32_token(pb) biases = mo_array(bias_params) if len(bias_params) != 0 else None attrs = { 'weights': np.reshape(weights, weights_shape), 'biases': biases, 'time_offsets': time_offsets, } TdnnComponent.update_node_stat(node, attrs) return cls.enabled
40.6
130
0.719212
[ "Apache-2.0" ]
3Demonica/openvino
tools/mo/openvino/tools/mo/front/kaldi/extractors/tdnncomponent_ext.py
2,436
Python
from fastcore.foundation import L # 0~11 ์ˆซ์ž๋ฅผ ํฌํ•จํ•œ L์„ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค (range ์‚ฌ์šฉ) t = ____________ print(t) # L์˜ ๋‚ด์šฉ์„ ๋‘ ๋ฐฐ ๋ถˆ๋ฆฝ๋‹ˆ๋‹ค t __ 2 print(t) # 0์ด ๋‹ด๊ธด ์œ„์น˜ (0, 12) ๋ฅผ ํŠœํ”Œ ๋ฐฉ์‹์œผ๋กœ ์ฐพ์•„์„œ ๋ฐ˜ํ™˜ํ•ฉ๋‹ˆ๋‹ค t_1 = t[_, __] print(t_1) # 0์ด ๋‹ด๊ธด ์œ„์น˜ (0, 12) ๋ฅผ ๋งˆ์Šคํ‚น ๋ฐฉ์‹์œผ๋กœ ์ฐพ์•„์„œ ๋ฐ˜ํ™˜ํ•ฉ๋‹ˆ๋‹ค # - ๋งˆ์Šคํฌ๋ฅผ ๋งŒ๋“ญ๋‹ˆ๋‹ค 0๊ณผ 12๋ฒˆ์งธ ์œ„์น˜์—๋งŒ True๋ฅผ ๋„ฃ์Šต๋‹ˆ๋‹ค mask = L([True]) mask += L([False] * 11) mask += L([True]) mask += L([False] * 11) t_2 = t______ print(t_2)
16.73913
39
0.631169
[ "MIT" ]
deep-diver/fastai-course
exercises/chapter01/exc_01_07.py
555
Python
from setuptools import setup, find_packages setup(name='nisrep', version='1.0', packages=find_packages())
26.75
61
0.775701
[ "MIT" ]
NGoetz/NF
setup.py
107
Python
''' Advent of Code - 2019 --- Day 2: 1202 Program Alarm --- ''' from utils import * from intcode import IntcodeRunner, HaltExecution def parse_input(day): return day_input(day, integers)[0] def part1(program, noun=12, verb=2): runner = IntcodeRunner(program) runner.set_mem(1, noun) runner.set_mem(2, verb) while True: try: next(runner.run()) except HaltExecution: break return runner.get_mem(0) def part2(program, target=19690720): runner = IntcodeRunner(program) for noun in range(100, -1, -1): for verb in range(100): runner.set_mem(1, noun) runner.set_mem(2, verb) while True: try: next(runner.run()) except HaltExecution: break if runner.get_mem(0) == target: return 100*noun+verb runner.reset() if __name__ == '__main__': data = parse_input('02') print(f'Part One: {part1(data)}') print(f'Part Two: {part2(data)}')
21.82
48
0.549954
[ "MIT" ]
basoares/advent-of-code
challenges/2019/python/d02.py
1,091
Python
"""Workout schema module""" import graphene from exercises.schema import ExerciseType from exercises.models import Exercise class Query(graphene.ObjectType): """Workout query class""" workout = graphene.List(ExerciseType, body_part=graphene.String(), exercise_name=graphene.String(), equipment=graphene.String(), level=graphene.String()) def resolve_workout(self, info, **kwargs): """query resolver for workout property""" all_exercises = Exercise.objects.all() if kwargs.get('body_part'): all_exercises = all_exercises.select_related('body_part').filter( body_part__name=kwargs.get('body_part').lower()) if kwargs.get('level'): all_exercises = all_exercises.select_related('level').filter( level__difficulty=kwargs.get('level').lower()) if kwargs.get('exercise_name'): all_exercises = all_exercises.filter( name__icontains=kwargs.get('exercise_name').lower()) if kwargs.get('equipment'): all_exercises = all_exercises.select_related('equipment').filter( equipment__name=kwargs.get('equipment').lower()) return all_exercises
36.805556
77
0.612075
[ "MIT" ]
adeoke/django-quarantine-workout-graphql
quarantineworkout/workout/schema.py
1,325
Python
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for tensorflow.ops.tf.variable_op.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.ops import array_ops from tensorflow.python.ops import gen_state_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import state_ops from tensorflow.python.ops import variables from tensorflow.python.platform import test _NP_TO_TF = { np.float32: dtypes.float32, np.float64: dtypes.float64, np.int32: dtypes.int32, np.int64: dtypes.int64, } class VariableOpTest(test.TestCase): def _initFetch(self, x, tftype, use_gpu=None): with self.test_session(use_gpu=use_gpu): p = state_ops.variable_op(x.shape, tftype) op = state_ops.assign(p, x) op.op.run() return p.eval() def _testTypes(self, vals): for dtype in [np.float32, np.float64, np.int32, np.int64]: self.setUp() x = vals.astype(dtype) tftype = _NP_TO_TF[dtype] self.assertAllEqual(x, self._initFetch(x, tftype, use_gpu=False)) # NOTE(touts): the GPU test should pass for all types, whether the # Variable op has an implementation for that type on GPU as we expect # that Variable and Assign have GPU implementations for matching tf. self.assertAllEqual(x, self._initFetch(x, tftype, use_gpu=True)) def testBasic(self): self._testTypes(np.arange(0, 20).reshape([4, 5])) def testset_shape(self): p = state_ops.variable_op([1, 2], dtypes.float32) self.assertEqual([1, 2], p.get_shape()) p = state_ops.variable_op([1, 2], dtypes.float32, set_shape=False) self.assertEqual(tensor_shape.unknown_shape(), p.get_shape()) def testAssign(self): value = np.array([[42.0, 43.0]]) var = state_ops.variable_op(value.shape, dtypes.float32) self.assertShapeEqual(value, var) assigned = state_ops.assign(var, value) self.assertShapeEqual(value, assigned) def testAssignNoValidateShape(self): value = np.array([[42.0, 43.0]]) var = state_ops.variable_op(value.shape, dtypes.float32) self.assertShapeEqual(value, var) assigned = state_ops.assign(var, value, validate_shape=False) self.assertShapeEqual(value, assigned) def testAssignNoVarShape(self): value = np.array([[42.0, 43.0]]) var = state_ops.variable_op(value.shape, dtypes.float32, set_shape=False) self.assertEqual(tensor_shape.unknown_shape(), var.get_shape()) assigned = state_ops.assign(var, value) self.assertShapeEqual(value, assigned) def testAssignNoVarShapeNoValidateShape(self): value = np.array([[42.0, 43.0]]) var = state_ops.variable_op(value.shape, dtypes.float32, set_shape=False) self.assertEqual(tensor_shape.unknown_shape(), var.get_shape()) assigned = state_ops.assign(var, value, validate_shape=False) self.assertShapeEqual(value, assigned) def _NewShapelessTensor(self): tensor = array_ops.placeholder(dtypes.float32) self.assertEqual(tensor_shape.unknown_shape(), tensor.get_shape()) return tensor def testAssignNoValueShape(self): value = self._NewShapelessTensor() shape = [1, 2] var = state_ops.variable_op(shape, dtypes.float32) assigned = state_ops.assign(var, value) self.assertEqual(shape, var.get_shape()) self.assertEqual(shape, assigned.get_shape()) def testAssignNoValueShapeNoValidateShape(self): value = self._NewShapelessTensor() shape = [1, 2] var = state_ops.variable_op(shape, dtypes.float32) self.assertEqual(shape, var.get_shape()) assigned = state_ops.assign(var, value, validate_shape=False) self.assertEqual(tensor_shape.unknown_shape(), assigned.get_shape()) def testAssignNoShape(self): with self.test_session(): value = self._NewShapelessTensor() var = state_ops.variable_op([1, 2], dtypes.float32, set_shape=False) self.assertEqual(tensor_shape.unknown_shape(), var.get_shape()) self.assertEqual(tensor_shape.unknown_shape(), state_ops.assign(var, value).get_shape()) def testAssignNoShapeNoValidateShape(self): with self.test_session(): value = self._NewShapelessTensor() var = state_ops.variable_op([1, 2], dtypes.float32, set_shape=False) self.assertEqual(tensor_shape.unknown_shape(), var.get_shape()) self.assertEqual( tensor_shape.unknown_shape(), state_ops.assign( var, value, validate_shape=False).get_shape()) def testAssignUpdate(self): var = state_ops.variable_op([1, 2], dtypes.float32) added = state_ops.assign_add(var, [[2.0, 3.0]]) self.assertEqual([1, 2], added.get_shape()) subbed = state_ops.assign_sub(var, [[12.0, 13.0]]) self.assertEqual([1, 2], subbed.get_shape()) def testAssignUpdateNoVarShape(self): var = state_ops.variable_op([1, 2], dtypes.float32, set_shape=False) added = state_ops.assign_add(var, [[2.0, 3.0]]) self.assertEqual([1, 2], added.get_shape()) subbed = state_ops.assign_sub(var, [[12.0, 13.0]]) self.assertEqual([1, 2], subbed.get_shape()) def testAssignUpdateNoValueShape(self): var = state_ops.variable_op([1, 2], dtypes.float32) added = state_ops.assign_add(var, self._NewShapelessTensor()) self.assertEqual([1, 2], added.get_shape()) subbed = state_ops.assign_sub(var, self._NewShapelessTensor()) self.assertEqual([1, 2], subbed.get_shape()) def testAssignUpdateNoShape(self): var = state_ops.variable_op([1, 2], dtypes.float32, set_shape=False) added = state_ops.assign_add(var, self._NewShapelessTensor()) self.assertEqual(tensor_shape.unknown_shape(), added.get_shape()) subbed = state_ops.assign_sub(var, self._NewShapelessTensor()) self.assertEqual(tensor_shape.unknown_shape(), subbed.get_shape()) def testTemporaryVariable(self): with self.test_session(use_gpu=True): var = gen_state_ops._temporary_variable( [1, 2], dtypes.float32, var_name="foo") var = state_ops.assign(var, [[4.0, 5.0]]) var = state_ops.assign_add(var, [[6.0, 7.0]]) final = gen_state_ops._destroy_temporary_variable(var, var_name="foo") self.assertAllClose([[10.0, 12.0]], final.eval()) def testDestroyNonexistentTemporaryVariable(self): with self.test_session(use_gpu=True): var = gen_state_ops._temporary_variable([1, 2], dtypes.float32) final = gen_state_ops._destroy_temporary_variable(var, var_name="bad") with self.assertRaises(errors.NotFoundError): final.eval() def testDuplicateTemporaryVariable(self): with self.test_session(use_gpu=True): var1 = gen_state_ops._temporary_variable( [1, 2], dtypes.float32, var_name="dup") var1 = state_ops.assign(var1, [[1.0, 2.0]]) var2 = gen_state_ops._temporary_variable( [1, 2], dtypes.float32, var_name="dup") var2 = state_ops.assign(var2, [[3.0, 4.0]]) final = var1 + var2 with self.assertRaises(errors.AlreadyExistsError): final.eval() def testDestroyTemporaryVariableTwice(self): with self.test_session(use_gpu=True): var = gen_state_ops._temporary_variable([1, 2], dtypes.float32) val1 = gen_state_ops._destroy_temporary_variable(var, var_name="dup") val2 = gen_state_ops._destroy_temporary_variable(var, var_name="dup") final = val1 + val2 with self.assertRaises(errors.NotFoundError): final.eval() def testTemporaryVariableNoLeak(self): with self.test_session(use_gpu=True): var = gen_state_ops._temporary_variable( [1, 2], dtypes.float32, var_name="bar") final = array_ops.identity(var) final.eval() def testTwoTemporaryVariablesNoLeaks(self): with self.test_session(use_gpu=True): var1 = gen_state_ops._temporary_variable( [1, 2], dtypes.float32, var_name="var1") var2 = gen_state_ops._temporary_variable( [1, 2], dtypes.float32, var_name="var2") final = var1 + var2 final.eval() def testAssignDependencyAcrossDevices(self): with self.test_session(use_gpu=True): # The variable and an op to increment it are on the GPU. var = state_ops.variable_op([1], dtypes.float32) state_ops.assign(var, [1.0]).eval() increment = state_ops.assign_add(var, [1.0]) with ops.control_dependencies([increment]): with ops.device("/cpu:0"): # This mul op is pinned to the CPU, but reads the variable from the # GPU. The test ensures that the dependency on 'increment' is still # honored, i.e., the Send and Recv from GPU to CPU should take place # only after the increment. result = math_ops.multiply(var, var) self.assertAllClose([4.0], result.eval()) def testIsVariableInitialized(self): for use_gpu in [True, False]: with self.test_session(use_gpu=use_gpu): v0 = state_ops.variable_op([1, 2], dtypes.float32) self.assertEqual(False, variables.is_variable_initialized(v0).eval()) state_ops.assign(v0, [[2.0, 3.0]]).eval() self.assertEqual(True, variables.is_variable_initialized(v0).eval()) if __name__ == "__main__": test.main()
41.110204
80
0.700655
[ "Apache-2.0" ]
1559603450/tensorflow
tensorflow/python/kernel_tests/variable_ops_test.py
10,072
Python
import pylab as pl from get_fish_info import get_fish_info from fit_integrator_model import get_model_result, get_target_result import numpy as np from pathlib import Path import gmm_model_fit import pandas as pd from pymoo.factory import get_problem, get_visualization, get_decomposition # import random # # for dt in [0.001, 0.002, 0.005, 0.01, 0.1]: # # tau = 4 # Is = np.arange(0, 30, dt) # xs = np.empty_like(Is) # xs[0] # # for i in range(1, len(Is)): # dx = random.gauss(0.2, 5) - xs[i - 1] # xs[i] = xs[i - 1] + dx * dt / tau # pl.plot(Is, xs) # pl.show() # sdf root_path = Path("/Users/arminbahl/Desktop/mutant_behavior_data/surrogate_fish1") #root_path = Path("/Users/arminbahl/Desktop/mutant_behavior_data/scn1lab_NIBR") #root_path = Path("/Users/arminbahl/Desktop/mutant_behavior_data/disc1_hetinx") df = pd.read_hdf(root_path / "all_data.h5", key="all_bouts") # # df_extracted_features, df_extracted_binned_features, \ # df_extracted_binned_features_same_direction, \ # df_extracted_binned_features_heading_angle_change_histograms, \ # df_extracted_binned_features_inter_bout_interval_histograms = get_mean_fish_info(df) # # print(df_extracted_features) # pl.plot(df_extracted_features.loc["wt", :]["correctness"]) # pl.plot(df_extracted_features.loc["het", :]["correctness"]) # pl.plot(df_extracted_features.loc["hom", :]["correctness"]) # # pl.figure() # pl.plot(df_extracted_features.loc["wt", :]["inter_bout_interval"]) # pl.plot(df_extracted_features.loc["het", :]["inter_bout_interval"]) # pl.plot(df_extracted_features.loc["hom", :]["inter_bout_interval"]) # # pl.figure() # pl.plot(df_extracted_binned_features.loc["wt", 0]) # pl.plot(df_extracted_binned_features.loc["wt", 1]) # pl.plot(df_extracted_binned_features.loc["wt", 2]) # pl.plot(df_extracted_binned_features.loc["wt", 3]) # # pl.figure() # pl.plot(df_extracted_binned_features_same_direction.loc["wt"]) # pl.plot(df_extracted_binned_features_same_direction.loc["het"]) # pl.plot(df_extracted_binned_features_same_direction.loc["hom"]) # # # pl.figure() # pl.plot(df_extracted_binned_features_heading_angle_change_histograms.loc["wt", 0]) # pl.plot(df_extracted_binned_features_heading_angle_change_histograms.loc["wt", 1]) # pl.plot(df_extracted_binned_features_heading_angle_change_histograms.loc["wt", 2]) # pl.plot(df_extracted_binned_features_heading_angle_change_histograms.loc["wt", 3]) # # pl.show() # # # pl.show() # # # print(df_extracted_features) # gg # sdf genotype = "hom" target_df_correctness_as_function_of_coherence, \ target_df_inter_bout_interval_as_function_of_coherence, \ target_df_binned_correctness, \ target_df_binned_same_direction, \ target_df_binned_features_heading_angle_change_histograms, \ target_df_binned_features_inter_bout_interval_histograms, \ target_df_gmm_fitting_results = get_target_result(root_path, genotype) # colors = ["#000000", "#330000", "#990000", "#CC3333"] # # for i in range(4): # pl.plot(target_df_binned_features_heading_angle_change_histograms.loc[i, :].droplevel("stim"), label=f"Coherence {i*25}%", color=colors[i], linewidth=2) # # pl.xlabel("Heading angle change (deg)") # pl.ylabel("Probability") # pl.legend() # # fig = pl.figure() # fig.suptitle("Target functions") # pl.subplot(211) # pl.plot(target_df_correctness_as_function_of_coherence, 'o-', color='black') # pl.xlabel("Coherence (%)") # pl.ylabel("Correctness (%)") # pl.subplot(212) # pl.plot(target_df_inter_bout_interval_as_function_of_coherence, 'o-', color='black') # pl.xlabel("Coherence (%)") # pl.ylabel("Inter-bout interval (s)") # medianprops = dict(linestyle='-.', linewidth=2.5, color='firebrick') errornames = ["Error: 'Correctness as function of coherence'", "Error: 'Inter-bout interval as function of coherence'", "Error: 'Binned correctness at 25, 50, 100 %'", "Error: 'Binned same direction'", "Error: 'Histogram weights'"] #errornames = ["Mixed"] repeat = 1 X = np.load(root_path / f"leaky_integrator_model2_X_{genotype}_{repeat}.npy") F = np.load(root_path / f"leaky_integrator_model2_F_{genotype}_{repeat}.npy") # # # for i in range(7): # F[-1, :, i] = F[-1, :, i] / np.max(F[-1, :, i]) # print(F.shape) # # i6 = np.argmin(F[-1, :, 0] + F[-1, :, 1] + F[-1, :, 2] + F[-1, :, 3] + F[-1, :, 4] + F[-1, :, 5] + F[-1, :, 6]) # print(F[-1, i6, 0]) # dd #get_decomposition("asf").do(F[-1], [1, 1, 1, 1, 1, 1, 1]).argmin() #print(I) #sdfsdf #X = np.load(root_path / f"leaky_integrator_model2_X_{genotype}_{repeat}_single_error.npy") #F = np.load(root_path / f"leaky_integrator_model2_F_{genotype}_{repeat}_single_error.npy") # from pymoo.factory import get_decision_making, get_reference_directions # # ref_dirs = get_reference_directions("das-dennis", 4, n_partitions=12) # F = get_problem("dtlz1").pareto_front(ref_dirs) # # weights = np.array([10.25, 10.25, 0.25, 0.25]) # a, pseudo_weights = get_decision_making("pseudo-weights", weights).do(F, return_pseudo_weights=True) # pl.plot(F[:, 0], F[:,1], 'o') # pl.plot(F[a, 0], F[a,1], 'o') # pl.show() # # print(a, pseudo_weights, F.shape) # ghj from pymoo.factory import get_decision_making, get_reference_directions #weights = [1000, 1000, 1000, 0, 0, 0, 0] #a, pseudo_weights = get_decision_making("pseudo-weights", weights).do(F[-1], return_pseudo_weights=True) #print(pseudo_weights[0]) #print(a, pseudo_weights) #dfg for i in range(5): #pl.hist(F[-1, :, i]) #pl.show() #print(np.percentile(F[-1, :, i], 75)) #print(np.max(F[-1, :, i]) - np.min(F[-1, :, i])) F[-1, :, i] = F[-1, :, i] / np.percentile(F[-1, :, i], 75) # print(F.shape) # #i6 = a #i1 = np.argmin(F[-1, :, 0]) # i2 = np.argmin(F[-1, :, 1]) # i3 = np.argmin(F[-1, :, 0] + F[-1, :, 1]*500) # i4 = np.argmin(F[-1, :, 0] + F[-1, :, 1]*500 + F[-1, :, 3]) # i5 = np.argmin(F[-1, :, 0] + F[-1, :, 1]*500 + F[-1, :, 3] + F[-1, :, 5]*0.25) # #i6 = np.argmin(F[-1, :, 0] + F[-1, :, 1]*500 + F[-1, :, 3] + F[-1, :, 5]*0.25 + F[-1, :, 6]*5800) # #i6 = np.argmin(F[-1, :, 0] + F[-1, :, 1] * 2500 + F[-1, :, 3] * 5 + F[-1, :, 5] * 0.5 + F[-1, :, 6] * 6800) # i6 = np.argmin(F[-1, :, 0]*500 + F[-1, :, 1]*2500 + F[-1, :, 3]*50 + F[-1, :, 5]*0.5 + F[-1, :, 6]*4500) i6 = np.argmin(F[-1, :, 0] + 3*F[-1, :, 1] + F[-1, :, 2] + F[-1, :, 3] + F[-1, :, 4]) #from pymoo.factory import get_decision_making #dm = get_decision_making("high-tradeoff") #I = dm.do(pf) # print(F.shape) # np.set_printoptions(precision=4, suppress=True) # print((X[-1, i])) # #gdfgh # for error_i in range(len(errornames)): # pl.figure() # pl.title(errornames[error_i]) # bp = pl.boxplot(F[:, :, error_i].T, whis=[5, 95], showfliers=False, medianprops=medianprops) # for gen in range(50): # sc = pl.scatter([gen+1], [F[gen, :, error_i].min()], s=5, marker='.', c='firebrick') # pl.yscale("log") # pl.xlabel("Generation") # pl.ylabel("Log Error") # pl.show() # dd # # pl.figure() # pl.title("Compromise between all error functions") # #error = F[:, :, 0] + F[:, :, 1]*500 + F[:, :, 3] + F[:, :, 5]*0.25 + F[:, :, 6]*500 # error = F[:, :, 0] + F[:, :, 1]*2500 + F[:, :, 3]*5 + F[:, :, 5]*0.5 + F[:, :, 6]*1500 # # bp = pl.boxplot(error.T, whis=[5, 95], showfliers=False, medianprops=medianprops) # for gen in range(50): # sc = pl.scatter([gen + 1], [error[gen].min()], s=10, marker='.', c='firebrick') # pl.yscale("log") # pl.xlabel("Generation") # pl.ylabel("Log Error") # pl.show() # pl.figure() # pl.scatter(F[-1, :, 0], F[-1, :, 1], s=10, marker='.', c='C0', label='Individual') # pl.scatter(F[-1, i1, 0], F[-1, i1, 1], s=15, marker='o', c='C1', label="Best for 'Correctness as function of coherence'") # pl.scatter(F[-1, i2, 0], F[-1, i2, 1], s=15, marker='o', c='C2', label="Best for 'Inter-bout interval as function of coherence'") # pl.scatter(F[-1, i3, 0], F[-1, i3, 1], s=15, marker='o', c='C3', label="Compromise") # pl.legend() # pl.xlabel(errornames[0]) # pl.ylabel(errornames[1]) # # # pl.figure() # pl.scatter(F[-1, :, 0] + F[-1, :, 1]*500, F[-1, :, 3], s=10, marker='.', c='C0', label='Individual') # pl.scatter(F[-1, i1, 0] + F[-1, i1, 1]*500, F[-1, i1, 3], s=15, marker='o', c='C1', label="Best for 'Correctness as function of coherence'") # pl.scatter(F[-1, i2, 0] + F[-1, i2, 1]*500, F[-1, i2, 3], s=15, marker='o', c='C2', label="Best for 'Inter-bout interval as function of coherence'") # pl.scatter(F[-1, i3, 0] + F[-1, i3, 1]*500, F[-1, i3, 3], s=15, marker='o', c='C3', label="Compromise between 1 and 2") # pl.scatter(F[-1, i4, 0] + F[-1, i4, 1]*500, F[-1, i4, 3], s=15, marker='o', c='C4', label="Compromise between all") # pl.legend() # pl.xlabel("Compromise between 1 and 2") # pl.ylabel(errornames[3]) # # pl.figure() # pl.scatter(F[-1, :, 0] + F[-1, :, 1]*500 + F[-1, :, 3], F[-1, :, 5], s=10, marker='.', c='C0', label='Individual') # pl.scatter(F[-1, i1, 0] + F[-1, i1, 1]*500 + F[-1, i1, 3], F[-1, i1, 5], s=15, marker='o', c='C1', label="Best for 'Correctness as function of coherence'") # pl.scatter(F[-1, i2, 0] + F[-1, i2, 1]*500 + F[-1, i2, 3], F[-1, i2, 5], s=15, marker='o', c='C2', label="Best for 'Inter-bout interval as function of coherence'") # pl.scatter(F[-1, i3, 0] + F[-1, i3, 1]*500 + F[-1, i3, 3], F[-1, i3, 5], s=15, marker='o', c='C3', label="Compromise between 1 and 2") # pl.scatter(F[-1, i4, 0] + F[-1, i4, 1]*500 + F[-1, i4, 3], F[-1, i4, 5], s=15, marker='o', c='C4', label="Compromise between 1, 2, and 3") # pl.scatter(F[-1, i5, 0] + F[-1, i5, 1]*500 + F[-1, i5, 3], F[-1, i5, 5], s=15, marker='o', c='C5', label="Compromise between all") # pl.legend() # pl.xlabel("Compromise between 1, 2, and 3") # pl.ylabel(errornames[5]) # # # pl.figure() # pl.scatter(F[-1, :, 0] + F[-1, :, 1]*500 + F[-1, :, 3] + F[-1, :, 5]*0.25, F[-1, :, 6], s=10, marker='.', c='C0', label='Individual') # pl.scatter(F[-1, i1, 0] + F[-1, i1, 1]*500 + F[-1, i1, 3] + F[-1, i1, 5]*0.25, F[-1, i1, 6], s=15, marker='o', c='C1', label="Best for 'Correctness as function of coherence'") # pl.scatter(F[-1, i2, 0] + F[-1, i2, 1]*500 + F[-1, i2, 3] + F[-1, i2, 5]*0.25, F[-1, i2, 6], s=15, marker='o', c='C2', label="Best for 'Inter-bout interval as function of coherence'") # pl.scatter(F[-1, i3, 0] + F[-1, i3, 1]*500 + F[-1, i3, 3] + F[-1, i3, 5]*0.25, F[-1, i3, 6], s=15, marker='o', c='C3', label="Compromise between 1 and 2") # pl.scatter(F[-1, i4, 0] + F[-1, i4, 1]*500 + F[-1, i4, 3] + F[-1, i4, 5]*0.25, F[-1, i4, 6], s=15, marker='o', c='C4', label="Compromise between 1, 2, and 3") # pl.scatter(F[-1, i5, 0] + F[-1, i5, 1]*500 + F[-1, i5, 3] + F[-1, i5, 5]*0.25, F[-1, i5, 6], s=15, marker='o', c='C5', label="Compromise between 1, 2, 3, and 4") # pl.scatter(F[-1, i6, 0] + F[-1, i6, 1]*500 + F[-1, i6, 3] + F[-1, i6, 5]*0.25, F[-1, i6, 6], s=15, marker='o', c='C6', label="Compromise between all") # pl.legend() # pl.xlabel("Compromise between 1, 2, 3, and 4") # pl.ylabel(errornames[6]) # # fig = pl.figure() # model_df_correctness_as_function_of_coherence, \ # model_df_inter_bout_interval_as_function_of_coherence, \ # model_df_binned_correctness, \ # model_df_binned_same_direction, \ # model_df_binned_features_heading_angle_change_histograms, \ # model_df_binned_features_inter_bout_interval_histograms, \ # model_df_gmm_fitting_results = get_model_result(X[-1, i1]) # fig.suptitle("Best for 'Correctness as function of coherence'") # pl.subplot(211) # pl.plot([0, 25, 50, 100], target_df_correctness_as_function_of_coherence.values, 'o-', color='black') # pl.plot([0, 25, 50, 100], model_df_correctness_as_function_of_coherence.values, 'o--', color='C1') # pl.xlabel("Coherence (%)") # pl.ylabel("Correctness (%)") # pl.subplot(212) # pl.plot([0, 25, 50, 100], target_df_inter_bout_interval_as_function_of_coherence.values, 'o-', color='black') # pl.plot([0, 25, 50, 100], model_df_inter_bout_interval_as_function_of_coherence.values, 'o--', color='C1') # pl.xlabel("Coherence (%)") # pl.ylabel("Inter-bout interval (s)") # # fig = pl.figure() # model_df_correctness_as_function_of_coherence, \ # model_df_inter_bout_interval_as_function_of_coherence, \ # model_df_binned_correctness, \ # model_df_binned_same_direction, \ # model_df_binned_features_heading_angle_change_histograms, \ # model_df_binned_features_inter_bout_interval_histograms, \ # model_df_gmm_fitting_results = get_model_result(X[-1, i2]) # fig.suptitle("Best for 'Inter-bout interval as function of coherence'") # pl.subplot(211) # pl.plot([0, 25, 50, 100], target_df_correctness_as_function_of_coherence.values, 'o-', color='black') # pl.plot([0, 25, 50, 100], model_df_correctness_as_function_of_coherence.values, 'o--', color='C2') # pl.xlabel("Coherence (%)") # pl.ylabel("Correctness (%)") # pl.subplot(212) # pl.plot([0, 25, 50, 100], target_df_inter_bout_interval_as_function_of_coherence.values, 'o-', color='black') # pl.plot([0, 25, 50, 100], model_df_inter_bout_interval_as_function_of_coherence.values, 'o--', color='C2') # pl.xlabel("Coherence (%)") # pl.ylabel("Inter-bout interval (s)") # # fig = pl.figure() # model_df_correctness_as_function_of_coherence, \ # model_df_inter_bout_interval_as_function_of_coherence, \ # model_df_binned_correctness, \ # model_df_binned_same_direction, \ # model_df_binned_features_heading_angle_change_histograms, \ # model_df_binned_features_inter_bout_interval_histograms, \ # model_df_gmm_fitting_results = get_model_result(X[-1, i3]) # fig.suptitle("Compromise between 'Correctness and inter-bout interval as function of coherence'") # pl.subplot(211) # pl.plot([0, 25, 50, 100], target_df_correctness_as_function_of_coherence.values, 'o-', color='black') # pl.plot([0, 25, 50, 100], model_df_correctness_as_function_of_coherence.values, 'o--', color='C3') # pl.xlabel("Coherence (%)") # pl.ylabel("Correctness (%)") # pl.subplot(212) # pl.plot([0, 25, 50, 100], target_df_inter_bout_interval_as_function_of_coherence.values, 'o-', color='black') # pl.plot([0, 25, 50, 100], model_df_inter_bout_interval_as_function_of_coherence.values, 'o--', color='C3') # pl.xlabel("Coherence (%)") # pl.ylabel("Inter-bout interval (s)") # # fig = pl.figure() # model_df_correctness_as_function_of_coherence, \ # model_df_inter_bout_interval_as_function_of_coherence, \ # model_df_binned_correctness, \ # model_df_binned_same_direction, \ # model_df_binned_features_heading_angle_change_histograms, \ # model_df_binned_features_inter_bout_interval_histograms, \ # model_df_gmm_fitting_results = get_model_result(X[-1, i3]) # fig.suptitle("Compromise between 'Correctness and inter-bout interval as function of coherence'") # pl.subplot(221) # pl.plot([0, 25, 50, 100], target_df_correctness_as_function_of_coherence.values, 'o-', color='black') # pl.plot([0, 25, 50, 100], model_df_correctness_as_function_of_coherence.values, 'o--', color='C3') # pl.xlabel("Coherence (%)") # pl.ylabel("Correctness (%)") # pl.subplot(222) # pl.plot([0, 25, 50, 100], target_df_inter_bout_interval_as_function_of_coherence.values, 'o-', color='black') # pl.plot([0, 25, 50, 100], model_df_inter_bout_interval_as_function_of_coherence.values, 'o--', color='C3') # pl.xlabel("Coherence (%)") # pl.ylabel("Inter-bout interval (s)") # pl.subplot(223) # for i in range(4): # pl.plot(target_df_binned_correctness.loc[i, :].droplevel("stim"), 'o-', color='black') # pl.plot(model_df_binned_correctness.loc[i, :].droplevel("stim"), 'o--', color='C3') # pl.xlabel("Correctness (%)") # pl.ylabel("Time (s)") # # # fig = pl.figure() # model_df_correctness_as_function_of_coherence, \ # model_df_inter_bout_interval_as_function_of_coherence, \ # model_df_binned_correctness, \ # model_df_binned_same_direction, \ # model_df_binned_features_heading_angle_change_histograms, \ # model_df_binned_features_inter_bout_interval_histograms, \ # model_df_gmm_fitting_results = get_model_result(X[-1, i4]) # fig.suptitle("Compromise between all three error functions") # pl.subplot(221) # pl.plot([0, 25, 50, 100], target_df_correctness_as_function_of_coherence.values, 'o-', color='black') # pl.plot([0, 25, 50, 100], model_df_correctness_as_function_of_coherence.values, 'o--', color='C4') # pl.xlabel("Coherence (%)") # pl.ylabel("Correctness (%)") # pl.subplot(222) # pl.plot([0, 25, 50, 100], target_df_inter_bout_interval_as_function_of_coherence.values, 'o-', color='black') # pl.plot([0, 25, 50, 100], model_df_inter_bout_interval_as_function_of_coherence.values, 'o--', color='C4') # pl.xlabel("Coherence (%)") # pl.ylabel("Inter-bout interval (s)") # pl.subplot(223) # for i in range(4): # pl.plot(target_df_binned_correctness.loc[i, :].droplevel("stim"), 'o-', color='black') # pl.plot(model_df_binned_correctness.loc[i, :].droplevel("stim"), 'o--', color='C4') # pl.xlabel("Correctness (%)") # pl.ylabel("Time (s)") # # # fig = pl.figure() # model_df_correctness_as_function_of_coherence, \ # model_df_inter_bout_interval_as_function_of_coherence, \ # model_df_binned_correctness, \ # model_df_binned_same_direction, \ # model_df_binned_features_heading_angle_change_histograms, \ # model_df_binned_features_inter_bout_interval_histograms, \ # model_df_gmm_fitting_results = get_model_result(X[-1, i5]) # fig.suptitle("Compromise between all four error functions") # pl.subplot(221) # pl.plot([0, 25, 50, 100], target_df_correctness_as_function_of_coherence.values, 'o-', color='black') # pl.plot([0, 25, 50, 100], model_df_correctness_as_function_of_coherence.values, 'o--', color='C5') # pl.xlabel("Coherence (%)") # pl.ylabel("Correctness (%)") # pl.subplot(222) # pl.plot([0, 25, 50, 100], target_df_inter_bout_interval_as_function_of_coherence.values, 'o-', color='black') # pl.plot([0, 25, 50, 100], model_df_inter_bout_interval_as_function_of_coherence.values, 'o--', color='C5') # pl.xlabel("Coherence (%)") # pl.ylabel("Inter-bout interval (s)") # pl.subplot(223) # for i in range(4): # pl.plot(target_df_binned_correctness.loc[i, :].droplevel("stim"), 'o-', color='black') # pl.plot(model_df_binned_correctness.loc[i, :].droplevel("stim"), 'o--', color='C5') # pl.xlabel("Correctness (%)") # pl.ylabel("Time (s)") # pl.subplot(224) # pl.plot(target_df_binned_same_direction, 'o-', color='black') # pl.plot(model_df_binned_same_direction, 'o--', color='C5') # pl.xlabel("Time since last bout (s)") # pl.ylabel("Correctness (%)") fig = pl.figure() model_df_correctness_as_function_of_coherence, \ model_df_inter_bout_interval_as_function_of_coherence, \ model_df_binned_correctness, \ model_df_binned_same_direction, \ model_df_binned_features_heading_angle_change_histograms, \ model_df_binned_features_inter_bout_interval_histograms, \ model_df_gmm_fitting_results = get_model_result(X[-1, i6]) fig.suptitle("Compromise between all five error functions") pl.subplot(231) pl.plot([0, 25, 50, 100], target_df_correctness_as_function_of_coherence.values, 'o-', color='black') pl.plot([0, 25, 50, 100], model_df_correctness_as_function_of_coherence.values, 'o--', color='C6') pl.xlabel("Coherence (%)") pl.ylabel("Correctness (%)") pl.subplot(232) pl.plot([0, 25, 50, 100], target_df_inter_bout_interval_as_function_of_coherence.values, 'o-', color='black') pl.plot([0, 25, 50, 100], model_df_inter_bout_interval_as_function_of_coherence.values, 'o--', color='C6') pl.xlabel("Coherence (%)") pl.ylabel("Inter-bout interval (s)") pl.subplot(233) for i in range(4): pl.plot(target_df_binned_correctness.loc[i, :].droplevel("stim"), 'o-', color='black') pl.plot(model_df_binned_correctness.loc[i, :].droplevel("stim"), 'o--', color='C6') pl.xlabel("Time (s)") pl.ylabel("Correctness (%)") pl.subplot(234) pl.plot(target_df_binned_same_direction, 'o-', color='black') pl.plot(model_df_binned_same_direction, 'o--', color='C6') pl.xlabel("Time since last bout (s)") pl.ylabel("Correctness (%)") # pl.subplot(235) # pl.plot(target_df_gmm_fitting_results.index*25, target_df_gmm_fitting_results["w_left"].values, '-o', color='black', label='s_left') # pl.plot(target_df_gmm_fitting_results.index*25, target_df_gmm_fitting_results["w_center"].values, '-o', color='black', label='s_center') # pl.plot(target_df_gmm_fitting_results.index*25, target_df_gmm_fitting_results["w_right"].values, '-o', color='black', label='s_right') # # pl.plot(model_df_gmm_fitting_results.index*25, model_df_gmm_fitting_results["w_left"].values, '--o', color='C6', label='s_left') # pl.plot(model_df_gmm_fitting_results.index*25, model_df_gmm_fitting_results["w_center"].values, '--o', color='C6', label='s_center') # pl.plot(model_df_gmm_fitting_results.index*25, model_df_gmm_fitting_results["w_right"].values, '--o', color='C6', label='s_right') # pl.xlabel("Coherence (%)") # pl.ylabel("Weight") # pl.legend() pl.subplot(235) for i in range(4): pl.plot(target_df_binned_features_heading_angle_change_histograms.loc[i, :].droplevel("stim"), color=f"black") pl.plot(model_df_binned_features_heading_angle_change_histograms.loc[i, :].droplevel("stim"), color=f"C6", linestyle='--') pl.xlabel("Heading angle change") pl.ylabel("Probability") pl.show() found_parameters = [] for repeat in range(12): for genotype in ["wt", "het", "hom"]: X = np.load(root_path / f"leaky_integrator_model2_X_{genotype}_{repeat}.npy") F = np.load(root_path / f"leaky_integrator_model2_F_{genotype}_{repeat}.npy") for i in range(5): #F[-1, :, i] = F[-1, :, i] / np.median(F[-1, :, i]) F[-1, :, i] = F[-1, :, i] / np.percentile(F[-1, :, i], 75) #i6 = np.argmin(F[-1, :, 0] + F[-1, :, 1] + 5 * F[-1, :, 3] + F[-1, :, 5] + 5 * F[-1, :, 6]) #i6 = np.argmin(F[-1, :, 0] + 5 * F[-1, :, 1] + 20 * F[-1, :, 4] + F[-1, :, 5] + 5 * F[-1, :, 6]) i6 = np.argmin(F[-1, :, 0] + 3 * F[-1, :, 1] + F[-1, :, 2] + F[-1, :, 3] + F[-1, :, 4]) #i6 = np.argmin(F[-1, :, 0] + 2 * F[-1, :, 1] + F[-1, :, 2] + 3 * F[-1, :, 3] + F[-1, :, 5] + F[-1, :, 6]) #i6 = np.argmin(F[-1, :, 0] + F[-1, :, 1] * 500 + F[-1, :, 3] + F[-1, :, 5] * 0.25 + F[-1, :, 6] * 500) #i6 = np.argmin(F[-1, :, 0] + F[-1, :, 1] * 2500 + F[-1, :, 3] * 5 + F[-1, :, 5] * 0.5 + F[-1, :, 6] * 1500) #i6 = np.argmin(F[-1, :, 0]*500 + F[-1, :, 1]*2500 + F[-1, :, 3]*50 + F[-1, :, 5]*0.5 + F[-1, :, 6]*4500) found_parameters.append([genotype, repeat, 49] + list(X[-1, i6, :])) df = pd.DataFrame(found_parameters, columns=["genotype", "repeat", "gen", "tau", "sigma", "T", "p_below", "p_above"]).astype(dtype={"repeat": "int64", "gen": "int64"}, copy=False) df.set_index(["genotype", 'repeat', 'gen'], inplace=True) df.sort_index(inplace=True) df.to_hdf(root_path / "found_parameters.h5", key="parameters", complevel=9)
47.092975
185
0.660641
[ "MIT" ]
arminbahl/mutant_zebrafish_behavior
armin_analysis/model_tests.py
22,793
Python
from django.db import models from django.utils import timezone from django.core.exceptions import ValidationError # from django.contrib.auth.models import User from users.models import Student, College from django.urls import reverse from django.core import validators class AbstractPostModel(models.Model): title = models.CharField(validators=[validators.MinLengthValidator(10)], null=False, max_length=500) content = models.TextField(validators=[validators.MinLengthValidator(10)], null=False) post_date = models.DateTimeField(default=timezone.now) author = models.ForeignKey(Student, on_delete=models.CASCADE) rating = models.IntegerField(default=0) college = models.ForeignKey(College, on_delete=models.CASCADE) class Meta: abstract = True def __str__(self): return self.title def get_absolute_url(self): return reverse('post-detail', kwargs={'pk': self.pk, 'title': self.title}) class Question(AbstractPostModel): is_answered = models.BooleanField(default=False) class Answer(AbstractPostModel): is_approved = models.BooleanField(default=False) question = models.ForeignKey(Question, on_delete=models.CASCADE, null=True) class Voter(models.Model): Question = models.ForeignKey(Question, on_delete=models.CASCADE) Answer = models.ForeignKey(Answer, on_delete=models.CASCADE, null=True) user = models.ForeignKey(Student, on_delete=models.CASCADE) def __str__(self): return self.user.username + ' vote on post: ' + self.Question.title class Comment(AbstractPostModel): Question = models.ForeignKey(Question, on_delete=models.CASCADE) author = models.ForeignKey(Student, on_delete=models.CASCADE) content = models.TextField(null=False) def __str__(self): return self.author.username + ' comment on post: ' + self.Question.title def get_absolute_url(self): return reverse('post-detail', kwargs={'pk': self.pk, 'title': self.Question.title})
35.403509
91
0.733399
[ "MIT" ]
franndyabreu/oncollegehub
app/blog/models.py
2,018
Python
""" Wrapper to get ROVA calendar from Rova's API Acces to this ROVA API has been simplified since version 0.2.1 of this wrapper Just use https://www.rova.nl/api/waste-calendar/upcoming?postalcode=1000AA&houseNumber=1&addition=&take=5 with a existing combination of postalcode, housenumber, housenumber addition Be aware that this API has not been officially published by ROVA. """ from datetime import datetime import random import requests __title__ = "rova" __version__ = "0.3.0" __author__ = "Gido Hakvoort and synoniem <[email protected]>" __license__ = "MIT" class Rova: """ ROVA class """ def __init__(self, zip_code, house_number, house_addition=""): """ To fetch the garbage calendar, you need to set a zip_code and house_number. """ self.zip_code = zip_code.replace(' ', '') self.house_number = house_number.strip() self.house_addition = house_addition.strip() def is_rova_area(self): """ Check if ROVA collects garbage at this address """ url = 'https://www.rova.nl/api/waste-calendar/upcoming' # request data from rova API and check if garbage is collected at this address # requesting with a non-existing postalcode will result in a error message response = requests.get(url, params={ 'postalcode': self.zip_code, 'houseNumber': self.house_number, 'addition': self.house_addition, 'take': '1', }) response.raise_for_status() rova_response = response.text.strip() if rova_response != '[]': rova_response = "OK" return rova_response == "OK" def get_calendar_items(self, take=5): """ Get next pickup date for each garbage types """ url = 'https://www.rova.nl/api/waste-calendar/upcoming' # request data from rova API and save response first 5 items (default) response = requests.get(url, params={ 'postalcode': self.zip_code, 'houseNumber': self.house_number, 'addition': self.house_addition, 'take': take, }) response.raise_for_status() rova_response = response.json() items = [] types = [] # add next pickup date for each garbage type for item in rova_response: date = datetime.strptime(item["date"], "%Y-%m-%dT%H:%M:%SZ") date = date.strftime("%Y-%m-%dT%H:%M:%S") garbage_type = item["garbageTypeCode"].upper() items.append({ 'GarbageTypeCode': garbage_type, 'Date': date }) types.append(garbage_type) return items
31.261364
105
0.608142
[ "MIT" ]
synoniem/rova
rova/rova.py
2,751
Python
import numpy as np import random from collections import namedtuple, deque from model import QNetwork import torch import torch.nn.functional as F import torch.optim as optim BUFFER_SIZE = int(1e5) # replay buffer size BATCH_SIZE = 64 # minibatch size GAMMA = 0.99 # discount factor TAU = 1e-3 # for soft update of target parameters LR = 5e-4 # learning rate UPDATE_EVERY = 4 # how often to update the network device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") class Agent(): """Interacts with and learns from the environment.""" def __init__(self, state_size, action_size, seed): """Initialize an Agent object. Params ====== state_size (int): dimension of each state action_size (int): dimension of each action seed (int): random seed """ self.state_size = state_size self.action_size = action_size self.seed = random.seed(seed) # Q-Network self.qnetwork_local = QNetwork(state_size, action_size, seed).to(device) self.qnetwork_target = QNetwork(state_size, action_size, seed).to(device) self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=LR) # Replay memory self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, seed) # Initialize time step (for updating every UPDATE_EVERY steps) self.t_step = 0 def step(self, state, action, reward, next_state, done): # Save experience in replay memory self.memory.add(state, action, reward, next_state, done) # Learn every UPDATE_EVERY time steps. self.t_step = (self.t_step + 1) % UPDATE_EVERY if self.t_step == 0: # If enough samples are available in memory, get random subset and learn if len(self.memory) > BATCH_SIZE: experiences = self.memory.sample() self.learn(experiences, GAMMA) def act(self, state, eps=0.): """Returns actions for given state as per current policy. Params ====== state (array_like): current state eps (float): epsilon, for epsilon-greedy action selection """ # from_numpy creates tensor without copying numpy array data # float == to(float), to() can be used for dtype and device conversions state = torch.from_numpy(state).float().unsqueeze(0).to(device) # eval mode as opposed to training (ignores dropout, batchnorm) self.qnetwork_local.eval() with torch.no_grad(): # call the nn.Module rather than explicitly using nn.Module.forward() action_values = self.qnetwork_local(state) self.qnetwork_local.train() # Epsilon-greedy action selection if random.random() > eps: return np.argmax(action_values.cpu().data.numpy()) else: return random.choice(np.arange(self.action_size)) def learn(self, experiences, gamma): """Update value parameters using given batch of experience tuples. Params ====== experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples gamma (float): discount factor """ states, actions, rewards, next_states, dones = experiences ## TODO: compute and minimize the loss "*** YOUR CODE HERE ***" # Max q value over all next actions given their next states (this is for a whole batch) # i.e. max_a(Q(s_{j+1}, a, w-)) from the one step look ahead Q_targets_next = self.qnetwork_local(next_states).detach().max(1)[0].unsqueeze(1) # Compute Q targets for current states Q_targets = rewards + gamma * Q_targets_next * (1 - dones) # set y_i = r if done # Get expected Q values from local model - used in gradient update as diff from target Q_expected = self.qnetwork_local(states).gather(1, actions) # Compute Loss loss = F.mse_loss(Q_expected, Q_targets) # Minimise loss by backprop self.optimizer.zero_grad() loss.backward() self.optimizer.step() # ------------------- update target network ------------------- # self.soft_update(self.qnetwork_local, self.qnetwork_target, TAU) def soft_update(self, local_model, target_model, tau): """Soft update model parameters. ฮธ_target = ฯ„*ฮธ_local + (1 - ฯ„)*ฮธ_target Params ====== local_model (PyTorch model): weights will be copied from target_model (PyTorch model): weights will be copied to tau (float): interpolation parameter """ for target_param, local_param in zip(target_model.parameters(), local_model.parameters()): target_param.data.copy_(tau*local_param.data + (1.0-tau)*target_param.data) class ReplayBuffer: """Fixed-size buffer to store experience tuples.""" def __init__(self, action_size, buffer_size, batch_size, seed): """Initialize a ReplayBuffer object. Params ====== action_size (int): dimension of each action buffer_size (int): maximum size of buffer batch_size (int): size of each training batch seed (int): random seed """ self.action_size = action_size self.memory = deque(maxlen=buffer_size) self.batch_size = batch_size self.experience = namedtuple("Experience", field_names=["state", "action", "reward", "next_state", "done"]) self.seed = random.seed(seed) def add(self, state, action, reward, next_state, done): """Add a new experience to memory.""" e = self.experience(state, action, reward, next_state, done) self.memory.append(e) def sample(self): """Randomly sample a batch of experiences from memory.""" experiences = random.sample(self.memory, k=self.batch_size) states = torch.from_numpy(np.vstack([e.state for e in experiences if e is not None])).float().to(device) actions = torch.from_numpy(np.vstack([e.action for e in experiences if e is not None])).long().to(device) rewards = torch.from_numpy(np.vstack([e.reward for e in experiences if e is not None])).float().to(device) next_states = torch.from_numpy(np.vstack([e.next_state for e in experiences if e is not None])).float().to(device) dones = torch.from_numpy(np.vstack([e.done for e in experiences if e is not None]).astype(np.uint8)).float().to(device) return (states, actions, rewards, next_states, dones) def __len__(self): """Return the current size of internal memory.""" return len(self.memory)
41.652439
127
0.624799
[ "MIT" ]
0xtristan/deep-reinforcement-learning
dqn/exercise/dqn_agent.py
6,836
Python
from __future__ import print_function, division, absolute_import import os import unittest from six import string_types from .. import * from ..compat import as_text, as_str, as_bytes DEFAULT_VP_TEST_HOST = '127.0.0.1' DEFAULT_VP_TEST_PORT = 5433 DEFAULT_VP_TEST_USER = 'dbadmin' DEFAULT_VP_TEST_PASSWD = '' DEFAULT_VP_TEST_DB = 'docker' DEFAULT_VP_TEST_TABLE = 'vertica_python_unit_test' class VerticaPythonTestCase(unittest.TestCase): """Base class for tests that query Vertica.""" @classmethod def setUpClass(cls): cls._host = os.getenv('VP_TEST_HOST', DEFAULT_VP_TEST_HOST) cls._port = int(os.getenv('VP_TEST_PORT', DEFAULT_VP_TEST_PORT)) cls._user = os.getenv('VP_TEST_USER', DEFAULT_VP_TEST_USER) cls._password = os.getenv('VP_TEST_PASSWD', DEFAULT_VP_TEST_PASSWD) cls._database = os.getenv('VP_TEST_DB', DEFAULT_VP_TEST_DB) cls._table = os.getenv('VP_TEST_TABLE', DEFAULT_VP_TEST_TABLE) cls._conn_info = { 'host': cls._host, 'port': cls._port, 'database': cls._database, 'user': cls._user, 'password': cls._password, } @classmethod def tearDownClass(cls): with cls._connect() as conn: cur = conn.cursor() cur.execute("DROP TABLE IF EXISTS {0}".format(cls._table)) @classmethod def _connect(cls): """Connects to vertica. :return: a connection to vertica. """ return connect(**cls._conn_info) def _query_and_fetchall(self, query): """Creates a new connection, executes a query and fetches all the results. :param query: query to execute :return: all fetched results as returned by cursor.fetchall() """ with self._connect() as conn: cur = conn.cursor() cur.execute(query) results = cur.fetchall() return results def _query_and_fetchone(self, query): """Creates a new connection, executes a query and fetches one result. :param query: query to execute :return: the first result fetched by cursor.fetchone() """ with self._connect() as conn: cur = conn.cursor() cur.execute(query) result = cur.fetchone() return result def assertTextEqual(self, first, second, msg=None): first_text = as_text(first) second_text = as_text(second) self.assertEqual(first=first_text, second=second_text, msg=msg) def assertStrEqual(self, first, second, msg=None): first_str = as_str(first) second_str = as_str(second) self.assertEqual(first=first_str, second=second_str, msg=msg) def assertBytesEqual(self, first, second, msg=None): first_bytes = as_bytes(first) second_bytes = as_bytes(second) self.assertEqual(first=first_bytes, second=second_bytes, msg=msg) def assertResultEqual(self, value, result, msg=None): if isinstance(value, string_types): self.assertTextEqual(first=value, second=result, msg=msg) else: self.assertEqual(first=value, second=result, msg=msg) def assertListOfListsEqual(self, list1, list2, msg=None): self.assertEqual(len(list1), len(list2), msg=msg) for l1, l2 in zip(list1, list2): self.assertListEqual(l1, l2, msg=msg)
32.971154
82
0.642461
[ "MIT" ]
etsy/vertica-python
vertica_python/tests/base.py
3,429
Python
from selenium_test.selenium_utils import * from file_and_system.windows_os_utils import WindowsOsUtil from python_common.global_param import GlobalParam from http_request.request_utils import request_download_file_by_url import cv2 as cv import time WindowsOsUtil.kill_process_by_name('MicrosoftWebDriver.exe') # mail_lists=['mail.hoperun.com', 'mail.qq.com', 'mail.163.com] mail_lists = ['mail.163.com'] mail_driver = init_driver('edge', GlobalParam.get_edge_driver_path()) open_browser_multi_tab(mail_driver, mail_lists) wait_for_page_full_loaded(mail_driver) def hoperun_login(hoperun_driver, user_name, user_pass): hoperun_driver.execute_script("document.getElementById('usernameTip').removeAttribute('readonly');") element = find_element_by_id(hoperun_driver, 'usernameTip') element.click() element = find_element_by_id(hoperun_driver, 'username') element.send_keys(user_name) element = find_element_by_id(hoperun_driver, 'userType') element.click() element = find_element_by_id(hoperun_driver, 'userTypePwd') element.send_keys(user_pass) element = find_element_by_id(hoperun_driver, 'wmSubBtn') element.click() def hoperun_check_mail(hoperun_driver, mail_sender, mail_title): wait_for_frame_and_switch_to_frame(hoperun_driver, 'treeBox') element = find_element_by_id(hoperun_driver, 'tree_folder_1_span') element.click() wait_for_page_full_loaded(hoperun_driver) wait_for_frame_and_switch_to_frame(hoperun_driver, 'tabsHome') wait_for_page_full_loaded(hoperun_driver) element = hoperun_driver.find_elements_by_xpath(''.join(('//div[text()="', mail_sender, '"]/../../../..'))) for e in element: if e.find_element_by_xpath('li[2]/div[3]/span').text.__contains__(mail_title): e.find_element_by_xpath('li[2]/div[3]/span').click() def qq_login(qq_driver, user_name, user_pass): element = find_element_by_id(qq_driver, 'qqLoginTab') element.click() qq_driver.switch_to.frame('login_frame') element = find_element_by_id(qq_driver, 'u') element.click() element.send_keys(user_name) element = find_element_by_id(qq_driver, 'p') element.click() element.send_keys(user_pass) element = find_element_by_id(qq_driver, 'login_button') element.click() wait_for_frame_and_switch_to_frame(qq_driver, 'tcaptcha_iframe') img_element = find_element_by_id(qq_driver, 'slideBg') wait_for_element_appeared(qq_driver, img_element) big = img_element.get_attribute('src') request_download_file_by_url(big, GlobalParam.get_test_image_path() + 'test_qq_mail_big.png') img_element = find_element_by_id(qq_driver, 'slideBlock') wait_for_element_appeared(qq_driver, img_element) small = img_element.get_attribute('src') request_download_file_by_url(small, GlobalParam.get_test_image_path() + 'test_qq_mail_small.png') def netcase_163_login(netcase_163_driver, user_name, user_pass): netcase_login_frame = netcase_163_driver.find_element_by_tag_name('iframe') wait_for_frame_and_switch_to_frame(netcase_163_driver, netcase_login_frame) wait_for_element_exist(netcase_163_driver, '//input[@name="email"]') element = find_element_by_name(netcase_163_driver, 'email') element.click() element.send_keys(user_name) wait_for_element_exist(netcase_163_driver, '//input[@name="password"]') element = find_element_by_name(netcase_163_driver, 'password') element.click() element.send_keys(user_pass) element = find_element_by_id(netcase_163_driver, 'dologin') element.click() # ------------------------security mail captcha not show---------------------- # wait_for_element_exist(netcase_163_driver,'//div[@class="yidun_panel"]') # element = find_element_by_class_name(netcase_163_driver, 'yidun_panel') # netcase_163_driver.execute_script("arguments[0].style['display'] = 'block';",element) # # element = find_element_by_class_name(netcase_163_driver, 'yidun_bg-img') # # netcase_mail_captcha = element.get_attribute('src') # # request_download_file_by_url(netcase_mail_captcha, test_image_path+'test_netcase_mail_captcha.png') # time.sleep(4) # element = find_element_by_class_name(netcase_163_driver, 'yidun_refresh') # element.click() # # element = find_element_by_class_name(netcase_163_driver, 'yidun_tips__point') # print(element.location) # # # element = find_element_by_class_name(netcase_163_driver, 'yidun_tips__point') # # print(element.get_attribute("innerHTML")) # ------------------------security mail captcha not show---------------------- def netcase_163_check_mail(netcase_163_driver, mail_sender, mail_title): wait_for_element_to_be_clickable(netcase_163_driver, '//div[@id="_mail_component_140_140"]/span[@title="ๆ”ถไปถ็ฎฑ"]') time.sleep(2) # rF0 kw0 nui-txt-flag0 : not read # rF0 nui-txt-flag0 : readed # element = netcase_163_driver.find_elements_by_xpath('//div[@class="rF0 nui-txt-flag0"]/div/div[2]/span') element = netcase_163_driver.find_elements_by_xpath('//div[@class="rF0 nui-txt-flag0"]') for e in element: print(e.find_element_by_xpath('.//div/div[2]/span').text) # if e.text.__contains__(mail_title): # print(e.text) def qq_captcha_pass(): big_image = cv.imread(GlobalParam.get_test_image_path() + 'test_qq_mail_big.png') small_image = cv.imread(GlobalParam.get_test_image_path() + 'test_qq_mail_small.png') cv.imshow('1', small_image) cv.waitKey(0) def netcase_captcha_pass(): return '' # login hoperun mail and check mail # hoperun_login(mail_driver, 'user', 'password') # wait_for_page_full_loaded(mail_driver) # hoperun_check_mail(mail_driver, 'sender', 'title') netcase_163_login(mail_driver, '****', '****') wait_for_page_full_loaded(mail_driver) netcase_163_check_mail(mail_driver, '', '123') # qq_login(mail_driver, '', '') # netcase_163_login(mail_driver, '', '') # captcha_pass()
44.537313
115
0.744135
[ "MIT" ]
ivanlevsky/cowabunga-potato
selenium_test/sele_test_mail_login.py
5,974
Python
# -*- coding: utf-8 -*- # @Time : 2020/10/3 # @Author : Changxin Tian # @Email : [email protected] r""" KGNNLS ################################################ Reference: Hongwei Wang et al. "Knowledge-aware Graph Neural Networks with Label Smoothness Regularization for Recommender Systems." in KDD 2019. Reference code: https://github.com/hwwang55/KGNN-LS """ import torch import torch.nn as nn import numpy as np import random from recbole.utils import InputType from recbole.model.abstract_recommender import KnowledgeRecommender from recbole.model.loss import BPRLoss, EmbLoss from recbole.model.init import xavier_normal_initialization class KGNNLS(KnowledgeRecommender): r"""KGNN-LS is a knowledge-based recommendation model. KGNN-LS transforms the knowledge graph into a user-specific weighted graph and then apply a graph neural network to compute personalized item embeddings. To provide better inductive bias, KGNN-LS relies on label smoothness assumption, which posits that adjacent items in the knowledge graph are likely to have similar user relevance labels/scores. Label smoothness provides regularization over the edge weights and it is equivalent to a label propagation scheme on a graph. """ input_type = InputType.PAIRWISE def __init__(self, config, dataset): super(KGNNLS, self).__init__(config, dataset) # load parameters info self.embedding_size = config['embedding_size'] self.neighbor_sample_size = config['neighbor_sample_size'] self.aggregator_class = config['aggregator'] # which aggregator to use # number of iterations when computing entity representation self.n_iter = config['n_iter'] self.reg_weight = config['reg_weight'] # weight of l2 regularization # weight of label Smoothness regularization self.ls_weight = config['ls_weight'] # define embedding self.user_embedding = nn.Embedding(self.n_users, self.embedding_size) self.entity_embedding = nn.Embedding( self.n_entities, self.embedding_size) self.relation_embedding = nn.Embedding( self.n_relations + 1, self.embedding_size) # sample neighbors and construct interaction table kg_graph = dataset.kg_graph(form='coo', value_field='relation_id') adj_entity, adj_relation = self.construct_adj(kg_graph) self.adj_entity, self.adj_relation = adj_entity.to( self.device), adj_relation.to(self.device) inter_feat = dataset.dataset.inter_feat.values pos_users = torch.from_numpy(inter_feat[:, 0]) pos_items = torch.from_numpy(inter_feat[:, 1]) pos_label = torch.ones(pos_items.shape) pos_interaction_table, self.offset = self.get_interaction_table( pos_users, pos_items, pos_label) self.interaction_table = self.sample_neg_interaction( pos_interaction_table, self.offset) # define function self.softmax = nn.Softmax(dim=-1) self.linear_layers = torch.nn.ModuleList() for i in range(self.n_iter): self.linear_layers.append(nn.Linear( self.embedding_size if not self.aggregator_class == 'concat' else self.embedding_size * 2, self.embedding_size)) self.ReLU = nn.ReLU() self.Tanh = nn.Tanh() self.bce_loss = nn.BCEWithLogitsLoss() self.l2_loss = EmbLoss() # parameters initialization self.apply(xavier_normal_initialization) def get_interaction_table(self, user_id, item_id, y): r"""Get interaction_table that is used for fetching user-item interaction label in LS regularization. Args: user_id(torch.Tensor): the user id in user-item interactions, shape: [n_interactions, 1] item_id(torch.Tensor): the item id in user-item interactions, shape: [n_interactions, 1] y(torch.Tensor): the label in user-item interactions, shape: [n_interactions, 1] Returns: tuple: - interaction_table(dict): key: user_id * 10^offset + item_id; value: y_{user_id, item_id} - offset(int): The offset that is used for calculating the key(index) in interaction_table """ offset = len(str(self.n_entities)) offset = 10 ** offset keys = user_id * offset + item_id keys = keys.int().cpu().numpy().tolist() values = y.float().cpu().numpy().tolist() interaction_table = dict(zip(keys, values)) return interaction_table, offset def sample_neg_interaction(self, pos_interaction_table, offset): r"""Sample neg_interaction to construct train data. Args: pos_interaction_table(dict): the interaction_table that only contains pos_interaction. offset(int): The offset that is used for calculating the key(index) in interaction_table Returns: interaction_table(dict): key: user_id * 10^offset + item_id; value: y_{user_id, item_id} """ pos_num = len(pos_interaction_table) neg_num = 0 neg_interaction_table = {} while neg_num < pos_num: user_id = random.randint(0, self.n_users) item_id = random.randint(0, self.n_items) keys = user_id * offset + item_id if keys not in pos_interaction_table: neg_interaction_table[keys] = 0. neg_num += 1 interaction_table = {**pos_interaction_table, **neg_interaction_table} return interaction_table def construct_adj(self, kg_graph): r"""Get neighbors and corresponding relations for each entity in the KG. Args: kg_graph(scipy.sparse.coo_matrix): an undirected graph Returns: tuple: - adj_entity (torch.LongTensor): each line stores the sampled neighbor entities for a given entity, shape: [n_entities, neighbor_sample_size] - adj_relation (torch.LongTensor): each line stores the corresponding sampled neighbor relations, shape: [n_entities, neighbor_sample_size] """ # self.logger.info('constructing knowledge graph ...') # treat the KG as an undirected graph kg_dict = dict() for triple in zip(kg_graph.row, kg_graph.data, kg_graph.col): head = triple[0] relation = triple[1] tail = triple[2] if head not in kg_dict: kg_dict[head] = [] kg_dict[head].append((tail, relation)) if tail not in kg_dict: kg_dict[tail] = [] kg_dict[tail].append((head, relation)) # self.logger.info('constructing adjacency matrix ...') # each line of adj_entity stores the sampled neighbor entities for a given entity # each line of adj_relation stores the corresponding sampled neighbor relations entity_num = kg_graph.shape[0] adj_entity = np.zeros( [entity_num, self.neighbor_sample_size], dtype=np.int64) adj_relation = np.zeros( [entity_num, self.neighbor_sample_size], dtype=np.int64) for entity in range(entity_num): if entity not in kg_dict.keys(): adj_entity[entity] = np.array( [entity] * self.neighbor_sample_size) adj_relation[entity] = np.array( [0] * self.neighbor_sample_size) continue neighbors = kg_dict[entity] n_neighbors = len(neighbors) if n_neighbors >= self.neighbor_sample_size: sampled_indices = np.random.choice(list(range(n_neighbors)), size=self.neighbor_sample_size, replace=False) else: sampled_indices = np.random.choice(list(range(n_neighbors)), size=self.neighbor_sample_size, replace=True) adj_entity[entity] = np.array( [neighbors[i][0] for i in sampled_indices]) adj_relation[entity] = np.array( [neighbors[i][1] for i in sampled_indices]) return torch.from_numpy(adj_entity), torch.from_numpy(adj_relation) def get_neighbors(self, items): r"""Get neighbors and corresponding relations for each entity in items from adj_entity and adj_relation. Args: items(torch.LongTensor): The input tensor that contains item's id, shape: [batch_size, ] Returns: tuple: - entities(list): Entities is a list of i-iter (i = 0, 1, ..., n_iter) neighbors for the batch of items. dimensions of entities: {[batch_size, 1], [batch_size, n_neighbor], [batch_size, n_neighbor^2], ..., [batch_size, n_neighbor^n_iter]} - relations(list): Relations is a list of i-iter (i = 0, 1, ..., n_iter) corresponding relations for entities. Relations have the same shape as entities. """ items = torch.unsqueeze(items, dim=1) entities = [items] relations = [] for i in range(self.n_iter): index = torch.flatten(entities[i]) neighbor_entities = torch.reshape(torch.index_select( self.adj_entity, 0, index), (self.batch_size, -1)) neighbor_relations = torch.reshape(torch.index_select( self.adj_relation, 0, index), (self.batch_size, -1)) entities.append(neighbor_entities) relations.append(neighbor_relations) return entities, relations def aggregate(self, user_embeddings, entities, relations): r"""For each item, aggregate the entity representation and its neighborhood representation into a single vector. Args: user_embeddings(torch.FloatTensor): The embeddings of users, shape: [batch_size, embedding_size] entities(list): entities is a list of i-iter (i = 0, 1, ..., n_iter) neighbors for the batch of items. dimensions of entities: {[batch_size, 1], [batch_size, n_neighbor], [batch_size, n_neighbor^2], ..., [batch_size, n_neighbor^n_iter]} relations(list): relations is a list of i-iter (i = 0, 1, ..., n_iter) corresponding relations for entities. relations have the same shape as entities. Returns: item_embeddings(torch.FloatTensor): The embeddings of items, shape: [batch_size, embedding_size] """ entity_vectors = [self.entity_embedding(i) for i in entities] relation_vectors = [self.relation_embedding(i) for i in relations] for i in range(self.n_iter): entity_vectors_next_iter = [] for hop in range(self.n_iter - i): shape = (self.batch_size, -1, self.neighbor_sample_size, self.embedding_size) self_vectors = entity_vectors[hop] neighbor_vectors = torch.reshape( entity_vectors[hop + 1], shape) neighbor_relations = torch.reshape( relation_vectors[hop], shape) # mix_neighbor_vectors user_embeddings = torch.reshape(user_embeddings, (self.batch_size, 1, 1, self.embedding_size)) # [batch_size, 1, 1, dim] user_relation_scores = torch.mean(user_embeddings * neighbor_relations, dim=-1) # [batch_size, -1, n_neighbor] user_relation_scores_normalized = torch.unsqueeze(self.softmax(user_relation_scores), dim=-1) # [batch_size, -1, n_neighbor, 1] neighbors_agg = torch.mean(user_relation_scores_normalized * neighbor_vectors, dim=2) # [batch_size, -1, dim] if self.aggregator_class == 'sum': output = torch.reshape( self_vectors + neighbors_agg, (-1, self.embedding_size)) # [-1, dim] elif self.aggregator_class == 'neighbor': output = torch.reshape( neighbors_agg, (-1, self.embedding_size)) # [-1, dim] elif self.aggregator_class == 'concat': # [batch_size, -1, dim * 2] output = torch.cat([self_vectors, neighbors_agg], dim=-1) output = torch.reshape( output, (-1, self.embedding_size * 2)) # [-1, dim * 2] else: raise Exception("Unknown aggregator: " + self.aggregator_class) output = self.linear_layers[i](output) # [batch_size, -1, dim] output = torch.reshape( output, [self.batch_size, -1, self.embedding_size]) if i == self.n_iter - 1: vector = self.Tanh(output) else: vector = self.ReLU(output) entity_vectors_next_iter.append(vector) entity_vectors = entity_vectors_next_iter res = torch.reshape( entity_vectors[0], (self.batch_size, self.embedding_size)) return res def label_smoothness_predict(self, user_embeddings, user, entities, relations): r"""Predict the label of items by label smoothness. Args: user_embeddings(torch.FloatTensor): The embeddings of users, shape: [batch_size*2, embedding_size], user(torch.FloatTensor): the index of users, shape: [batch_size*2] entities(list): entities is a list of i-iter (i = 0, 1, ..., n_iter) neighbors for the batch of items. dimensions of entities: {[batch_size*2, 1], [batch_size*2, n_neighbor], [batch_size*2, n_neighbor^2], ..., [batch_size*2, n_neighbor^n_iter]} relations(list): relations is a list of i-iter (i = 0, 1, ..., n_iter) corresponding relations for entities. relations have the same shape as entities. Returns: predicted_labels(torch.FloatTensor): The predicted label of items, shape: [batch_size*2] """ # calculate initial labels; calculate updating masks for label propagation entity_labels = [] # True means the label of this item is reset to initial value during label propagation reset_masks = [] holdout_item_for_user = None for entities_per_iter in entities: users = torch.unsqueeze(user, dim=1) # [batch_size, 1] user_entity_concat = users * self.offset + \ entities_per_iter # [batch_size, n_neighbor^i] # the first one in entities is the items to be held out if holdout_item_for_user is None: holdout_item_for_user = user_entity_concat def lookup_interaction_table(x, _): x = int(x) label = self.interaction_table.setdefault(x, 0.5) return label initial_label = user_entity_concat.clone().cpu().double() initial_label.map_(initial_label, lookup_interaction_table) initial_label = initial_label.float().to(self.device) # False if the item is held out holdout_mask = (holdout_item_for_user - user_entity_concat).bool() # True if the entity is a labeled item reset_mask = (initial_label - 0.5).bool() reset_mask = torch.logical_and( reset_mask, holdout_mask) # remove held-out items initial_label = holdout_mask.float() * initial_label + torch.logical_not( holdout_mask).float() * 0.5 # label initialization reset_masks.append(reset_mask) entity_labels.append(initial_label) # we do not need the reset_mask for the last iteration reset_masks = reset_masks[:-1] # label propagation relation_vectors = [self.relation_embedding(i) for i in relations] for i in range(self.n_iter): entity_labels_next_iter = [] for hop in range(self.n_iter - i): masks = reset_masks[hop] self_labels = entity_labels[hop] neighbor_labels = torch.reshape(entity_labels[hop + 1], [self.batch_size, -1, self.neighbor_sample_size]) neighbor_relations = torch.reshape(relation_vectors[hop], [self.batch_size, -1, self.neighbor_sample_size, self.embedding_size]) # mix_neighbor_labels user_embeddings = torch.reshape(user_embeddings, [self.batch_size, 1, 1, self.embedding_size]) # [batch_size, 1, 1, dim] user_relation_scores = torch.mean(user_embeddings * neighbor_relations, dim=-1) # [batch_size, -1, n_neighbor] user_relation_scores_normalized = self.softmax( user_relation_scores) # [batch_size, -1, n_neighbor] neighbors_aggregated_label = torch.mean(user_relation_scores_normalized * neighbor_labels, dim=2) # [batch_size, -1, dim] # [batch_size, -1] output = masks.float() * self_labels + torch.logical_not(masks).float() * \ neighbors_aggregated_label entity_labels_next_iter.append(output) entity_labels = entity_labels_next_iter predicted_labels = entity_labels[0].squeeze(-1) return predicted_labels def forward(self, user, item): self.batch_size = item.shape[0] # [batch_size, dim] user_e = self.user_embedding(user) # entities is a list of i-iter (i = 0, 1, ..., n_iter) neighbors for the batch of items. dimensions of entities: # {[batch_size, 1], [batch_size, n_neighbor], [batch_size, n_neighbor^2], ..., [batch_size, n_neighbor^n_iter]} entities, relations = self.get_neighbors(item) # [batch_size, dim] item_e = self.aggregate(user_e, entities, relations) return user_e, item_e def calculate_ls_loss(self, user, item, target): r"""Calculate label smoothness loss. Args: user(torch.FloatTensor): the index of users, shape: [batch_size*2], item(torch.FloatTensor): the index of items, shape: [batch_size*2], target(torch.FloatTensor): the label of user-item, shape: [batch_size*2], Returns: ls_loss: label smoothness loss """ user_e = self.user_embedding(user) entities, relations = self.get_neighbors(item) predicted_labels = self.label_smoothness_predict( user_e, user, entities, relations) ls_loss = self.bce_loss(predicted_labels, target) return ls_loss def calculate_loss(self, interaction): user = interaction[self.USER_ID] pos_item = interaction[self.ITEM_ID] neg_item = interaction[self.NEG_ITEM_ID] target = torch.zeros( len(user) * 2, dtype=torch.float32).to(self.device) target[:len(user)] = 1 users = torch.cat((user, user)) items = torch.cat((pos_item, neg_item)) user_e, item_e = self.forward(users, items) predict = torch.mul(user_e, item_e).sum(dim=1) rec_loss = self.bce_loss(predict, target) ls_loss = self.calculate_ls_loss(users, items, target) l2_loss = self.l2_loss(user_e, item_e) loss = rec_loss + self.ls_weight * ls_loss + self.reg_weight * l2_loss return loss def predict(self, interaction): user = interaction[self.USER_ID] item = interaction[self.ITEM_ID] user_e, item_e = self.forward(user, item) return torch.mul(user_e, item_e).sum(dim=1) def full_sort_predict(self, interaction): user_index = interaction[self.USER_ID] item_index = torch.tensor(range(self.n_items)).to(self.device) user = torch.unsqueeze(user_index, dim=1).repeat( 1, item_index.shape[0]) user = torch.flatten(user) item = torch.unsqueeze(item_index, dim=0).repeat( user_index.shape[0], 1) item = torch.flatten(item) user_e, item_e = self.forward(user, item) score = torch.mul(user_e, item_e).sum(dim=1) return score.view(-1)
46.091703
120
0.597726
[ "MIT" ]
xingkongxiaxia/RecBole
recbole/model/knowledge_aware_recommender/kgnnls.py
21,110
Python
""" JSONField automatically serializes most Python terms to JSON data. Creates a TEXT field with a default value of "{}". See test_json.py for more information. from django.db import models from django_extensions.db.fields import json class LOL(models.Model): extra = json.JSONField() """ import datetime from decimal import Decimal from django.db import models from django.conf import settings from django.utils import simplejson from django.utils.encoding import smart_unicode class JSONEncoder(simplejson.JSONEncoder): def default(self, obj): if isinstance(obj, Decimal): return str(obj) elif isinstance(obj, datetime.datetime): assert settings.TIME_ZONE == 'UTC' return obj.strftime('%Y-%m-%dT%H:%M:%SZ') return simplejson.JSONEncoder.default(self, obj) def dumps(value): return JSONEncoder().encode(value) def loads(txt): value = simplejson.loads( txt, parse_float=Decimal, encoding=settings.DEFAULT_CHARSET ) return value class JSONDict(dict): """ Hack so repr() called by dumpdata will output JSON instead of Python formatted data. This way fixtures will work! """ def __repr__(self): return dumps(self) class JSONList(list): """ As above """ def __repr__(self): return dumps(self) class JSONField(models.TextField): """JSONField is a generic textfield that neatly serializes/unserializes JSON objects seamlessly. Main thingy must be a dict object.""" # Used so to_python() is called __metaclass__ = models.SubfieldBase def __init__(self, *args, **kwargs): if 'default' not in kwargs: kwargs['default'] = '{}' models.TextField.__init__(self, *args, **kwargs) def to_python(self, value): """Convert our string value to JSON after we load it from the DB""" if value is None or value == '': return {} elif isinstance(value, basestring): res = loads(value) if isinstance(res, dict): return JSONDict(**res) else: return JSONList(res) else: return value def get_db_prep_save(self, value, connection): """Convert our JSON object to a string before we save""" if not isinstance(value, (list, dict)): return super(JSONField, self).get_db_prep_save("", connection=connection) else: return super(JSONField, self).get_db_prep_save(dumps(value), connection=connection) def south_field_triple(self): "Returns a suitable description of this field for South." # We'll just introspect the _actual_ field. from south.modelsinspector import introspector field_class = "django.db.models.fields.TextField" args, kwargs = introspector(self) # That's our definition! return (field_class, args, kwargs)
29.607843
85
0.636755
[ "BSD-3-Clause" ]
Mozilla-GitHub-Standards/b6a5bb5c98b18d87c72c770f29c4270008fc6fc6b787d531a2afcd382dc4cbad
vendor-local/src/django-extensions/build/lib/django_extensions/db/fields/json.py
3,020
Python
import uuid import arrow from collections import namedtuple HEADERS = ('start', 'stop', 'project', 'id', 'tags', 'updated_at') class Frame(namedtuple('Frame', HEADERS)): def __new__(cls, start, stop, project, id, tags=None, updated_at=None,): try: if not isinstance(start, arrow.Arrow): start = arrow.get(start) if not isinstance(stop, arrow.Arrow): stop = arrow.get(stop) if updated_at is None: updated_at = arrow.utcnow() elif not isinstance(updated_at, arrow.Arrow): updated_at = arrow.get(updated_at) except (ValueError, TypeError) as e: from .watson import WatsonError raise WatsonError("Error converting date: {}".format(e)) start = start.to('local') stop = stop.to('local') if tags is None: tags = [] return super(Frame, cls).__new__( cls, start, stop, project, id, tags, updated_at ) def dump(self): start = self.start.to('utc').int_timestamp stop = self.stop.to('utc').int_timestamp updated_at = self.updated_at.int_timestamp return (start, stop, self.project, self.id, self.tags, updated_at) @property def day(self): return self.start.floor('day') def __lt__(self, other): return self.start < other.start def __lte__(self, other): return self.start <= other.start def __gt__(self, other): return self.start > other.start def __gte__(self, other): return self.start >= other.start class Span(object): def __init__(self, start, stop, timeframe='day'): self.timeframe = timeframe self.start = start.floor(self.timeframe) self.stop = stop.ceil(self.timeframe) def overlaps(self, frame): return frame.start <= self.stop and frame.stop >= self.start def __contains__(self, frame): return frame.start >= self.start and frame.stop <= self.stop class Frames(object): def __init__(self, frames=None): if not frames: frames = [] rows = [Frame(*frame) for frame in frames] self._rows = rows self.changed = False def __len__(self): return len(self._rows) def __getitem__(self, key): if key in HEADERS: return tuple(self._get_col(key)) elif isinstance(key, int): return self._rows[key] else: return self._rows[self._get_index_by_id(key)] def __setitem__(self, key, value): self.changed = True if isinstance(value, Frame): frame = value else: frame = self.new_frame(*value) if isinstance(key, int): self._rows[key] = frame else: frame = frame._replace(id=key) try: self._rows[self._get_index_by_id(key)] = frame except KeyError: self._rows.append(frame) def __delitem__(self, key): self.changed = True if isinstance(key, int): del self._rows[key] else: del self._rows[self._get_index_by_id(key)] def _get_index_by_id(self, id): try: return next( i for i, v in enumerate(self['id']) if v.startswith(id) ) except StopIteration: raise KeyError("Frame with id {} not found.".format(id)) def _get_col(self, col): index = HEADERS.index(col) for row in self._rows: yield row[index] def add(self, *args, **kwargs): self.changed = True frame = self.new_frame(*args, **kwargs) self._rows.append(frame) return frame def new_frame(self, project, start, stop, tags=None, id=None, updated_at=None): if not id: id = uuid.uuid4().hex return Frame(start, stop, project, id, tags=tags, updated_at=updated_at) def dump(self): return tuple(frame.dump() for frame in self._rows) def filter( self, projects=None, tags=None, ignore_projects=None, ignore_tags=None, span=None, include_partial_frames=False, ): for frame in self._rows: if projects is not None and frame.project not in projects: continue if ignore_projects is not None and\ frame.project in ignore_projects: continue if tags is not None and not any(tag in frame.tags for tag in tags): continue if ignore_tags is not None and\ any(tag in frame.tags for tag in ignore_tags): continue if span is None: yield frame elif frame in span: yield frame elif include_partial_frames and span.overlaps(frame): # If requested, return the part of the frame that is within the # span, for frames that are *partially* within span or reaching # over span start = span.start if frame.start < span.start else frame.start stop = span.stop if frame.stop > span.stop else frame.stop yield frame._replace(start=start, stop=stop) def span(self, start, stop): return Span(start, stop)
29.27957
79
0.565736
[ "MIT" ]
blaulan/Watson
watson/frames.py
5,446
Python
import torch import numpy as np from allennlp.nn import util from relex.modules.offset_embedders import OffsetEmbedder def position_encoding_init(n_position: int, embedding_dim: int): position_enc = np.array([[pos / np.power(10000, 2 * (j // 2) / embedding_dim) for j in range(embedding_dim)] if pos != 0 else np.zeros(embedding_dim) for pos in range(n_position)]) # apply sin on 0th,2nd,4th...embedding_dim position_enc[1:, 0::2] = np.sin(position_enc[1:, 0::2]) # apply cos on 1st,3rd,5th...embedding_dim position_enc[1:, 1::2] = np.cos(position_enc[1:, 1::2]) return torch.from_numpy(position_enc).type(torch.FloatTensor) @OffsetEmbedder.register("sine") class SineOffsetEmbedder(OffsetEmbedder): def __init__(self, n_position: int, embedding_dim: int) -> None: super(SineOffsetEmbedder, self).__init__() self._n_position = n_position self._embedding_dim = embedding_dim self._embedding = torch.nn.Embedding(2 * n_position + 1, embedding_dim, padding_idx=0) self._embedding.weight.data = position_encoding_init(2 * n_position + 1, embedding_dim) # TODO: add zero vector for padding def get_output_dim(self) -> int: return self._embedding_dim def is_additive(self) -> bool: return True def forward(self, inputs: torch.Tensor, mask: torch.Tensor, span: torch.Tensor) -> torch.Tensor: # pylint: disable=arguments-differ # input -> [B x seq_len x d], offset -> [B x 2] batch_size, seq_len, _ = inputs.size() offset = span[:, 0] position_range = util.get_range_vector( seq_len, util.get_device_of(inputs)).repeat((batch_size, 1)) relative_positions = (1 + self._n_position + position_range - offset.unsqueeze(dim=1)) # mask padding so it won't receive a positional embedding relative_positions = relative_positions * mask.long() return self._embedding(relative_positions)
38.081967
81
0.584158
[ "Apache-2.0" ]
DFKI-NLP/RelEx
relex/modules/offset_embedders/sine_offset_embedder.py
2,323
Python
""" Quotes API For Digital Portals The quotes API combines endpoints for retrieving security end-of-day, delayed, and realtime prices with performance key figures and basic reference data on the security and market level. The API supports over 20 different price types for each quote and comes with basic search endpoints based on security identifiers and instrument names. Market coverage is included in the *Sample Use Cases* section below. The Digital Portal use case is focused on high-performance applications that are * serving millions of end-users, * accessible by client browsers via the internet, * supporting subscriptions for streamed updates out-of-the-box, * typically combining a wide variety of *for Digital Portals*-APIs into a highly use-case specific solution for customers, * integrated into complex infrastructures such as existing frontend frameworks, authentication services. All APIs labelled *for Digital Portals* have been designed for direct use by client web applications and feature extreme low latency: The average response time across all endpoints is 30 ms whereas 99% of all requests are answered in close to under 300ms. See the Time Series API for Digital Portals for direct access to price histories, and the News API for Digital Portals for searching and fetching related news. # noqa: E501 The version of the OpenAPI document: 2 Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 from fds.sdk.QuotesAPIforDigitalPortals.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, OpenApiModel ) from fds.sdk.QuotesAPIforDigitalPortals.exceptions import ApiAttributeError def lazy_import(): from fds.sdk.QuotesAPIforDigitalPortals.model.inline_response20013_data import InlineResponse20013Data from fds.sdk.QuotesAPIforDigitalPortals.model.inline_response200_meta import InlineResponse200Meta globals()['InlineResponse20013Data'] = InlineResponse20013Data globals()['InlineResponse200Meta'] = InlineResponse200Meta class InlineResponse20013(ModelNormal): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { } validations = { } @cached_property def additional_properties_type(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded """ lazy_import() return (bool, date, datetime, dict, float, int, list, str, none_type,) # noqa: E501 _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ lazy_import() return { 'data': ([InlineResponse20013Data],), # noqa: E501 'meta': (InlineResponse200Meta,), # noqa: E501 } @cached_property def discriminator(): return None attribute_map = { 'data': 'data', # noqa: E501 'meta': 'meta', # noqa: E501 } read_only_vars = { } _composed_schemas = {} @classmethod @convert_js_args_to_python_args def _from_openapi_data(cls, *args, **kwargs): # noqa: E501 """InlineResponse20013 - a model defined in OpenAPI Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) data ([InlineResponse20013Data]): List of Internet media types.. [optional] # noqa: E501 meta (InlineResponse200Meta): [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) self = super(OpenApiModel, cls).__new__(cls) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value) return self required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', ]) @convert_js_args_to_python_args def __init__(self, *args, **kwargs): # noqa: E501 """InlineResponse20013 - a model defined in OpenAPI Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) data ([InlineResponse20013Data]): List of Internet media types.. [optional] # noqa: E501 meta (InlineResponse200Meta): [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value) if var_name in self.read_only_vars: raise ApiAttributeError(f"`{var_name}` is a read-only attribute. Use `from_openapi_data` to instantiate " f"class with read only attributes.")
48.712687
1,302
0.603294
[ "Apache-2.0" ]
factset/enterprise-sdk
code/python/QuotesAPIforDigitalPortals/v3/fds/sdk/QuotesAPIforDigitalPortals/model/inline_response20013.py
13,055
Python
def calculalaNotafinalRGHT1(): #defenir variables calculalanotaFinalRGHT=20 #datos de entrada notaFinalRGHT=float(input("Ingrese la nota final")) calculalaNotafinalRGHT=float(input("ingrese")) #Proceso if primeraUnidad<=20% and notaObotenida>=14: primeranota=notaFinalRGHT elif segundaUnidad<=15% and notaObotenida>=17: segundanota=notaFinalRGHT*2 elif terceraUnidad<=15% and notaObotenida>=15: terceranota=notaObotenida*3 elif mientraselTrabajofinal<=50% and notaObotenida>=20: trabajofinalnota=notaObotenida*4 #datos de salida print("la nota final de Fundamentos de programaciรณn:",notaObotenida) } } def bonoDocenteRGHT2(): #definir Variables bonoObtenido=0.0 #Datos de Endrada salarioMinimoRGHT=float(input("Ingrese el salario minimo:")) puntuacionObtenidaRGHT=float(input("Ingrese la puntuaciรณn que ha obtenido:")) #Proceso if puntuacionObtenida<=100 and puntuacionObtenida>=0: bonoObtenido=salarioMinimo elif puntuacionObtenida >=101 and puntuacionObtenida<=150: bonoObtenido=salarioMinimo*2 elif puntuacionObtenida>150: bonoObtenido=salarioMinimo*3 #Datos de salida print("El docente obtendra un bono de:", bonoObtenido ) } def calculalaNotafinalRGHT1() #bonoDocenteRGHT
29.255814
79
0.771065
[ "Apache-2.0" ]
royturpo123/EXAMEN-01
EstCondicional.py
1,260
Python
import argparse import os import numpy as np import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter from ignite.metrics import IoU, Precision, Recall import torchsat.transforms.transforms_cd as T from torchsat.datasets.folder import ChangeDetectionDataset from torchsat.models import FC_EF, FC_Siam_Conc, FC_Siam_Diff def train_one_epoch(epoch, dataloader, model, criterion, optimizer, device, writer): print('train epoch {}'.format(epoch)) model.train() for idx, (pre_img, post_img, targets) in enumerate(dataloader): pre_img, post_img, targets = pre_img.to(device), post_img.to(device), targets.to(device) outputs = model(pre_img, post_img) loss = criterion(outputs, targets) optimizer.zero_grad() loss.backward() optimizer.step() print('train-epoch:{} [{}/{}], loss: {:5.3}'.format(epoch, idx+1, len(dataloader), loss.item())) writer.add_scalar('train/loss', loss.item(), len(dataloader)*epoch+idx) def evalidation(epoch, dataloader, model, criterion, device, writer, tb_test_imgs): print('\neval epoch {}'.format(epoch)) model.eval() recall = Recall(lambda x: (x[0], x[1])) precision = Precision(lambda x: (x[0], x[1])) mean_recall = [] mean_precision = [] mean_loss = [] with torch.no_grad(): for idx, (pre_img, post_img, targets) in enumerate(dataloader): pre_img, post_img, targets = pre_img.to(device), post_img.to(device), targets.to(device) outputs = model(pre_img, post_img) loss = criterion(outputs, targets) preds = outputs.argmax(1) precision.update((preds, targets)) recall.update((preds, targets)) mean_loss.append(loss.item()) mean_recall.append(recall.compute().item()) mean_precision.append(precision.compute().item()) # print('val-epoch:{} [{}/{}], loss: {:5.3}'.format(epoch, idx + 1, len(dataloader), loss.item())) writer.add_scalar('test/loss', loss.item(), len(dataloader) * epoch + idx) if idx < tb_test_imgs: writer.add_image('test/pre', pre_img[0], idx) writer.add_image('test/post', post_img[0], idx) writer.add_image('test/label', label[0], idx) writer.add_image('test/pred', preds, idx) mean_precision, mean_recall = np.array(mean_precision).mean(), np.array(mean_recall).mean() f1 = mean_precision * mean_recall * 2 / (mean_precision + mean_recall + 1e-20) print('precision: {:07.5}, recall: {:07.5}, f1: {:07.5}\n'.format(mean_precision, mean_recall, f1)) writer.add_scalar('test/epoch-loss', np.array(mean_loss).mean(), epoch) writer.add_scalar('test/f1', f1, epoch) writer.add_scalar('test/precision', mean_precision, epoch) writer.add_scalar('test/recall', mean_recall, epoch) def load_data(traindir, valdir, **kwargs): """generate the train and val dataloader, you can change this for your specific task Args: traindir (str): train dataset dir valdir (str): validation dataset dir Returns: tuple: the train dataset and validation dataset """ train_transform = T.Compose([ T.RandomCrop(512), T.RandomHorizontalFlip(), T.RandomVerticalFlip(), T.ToTensor(), T.Normalize(), ]) val_transform = T.Compose([ T.ToTensor(), T.Normalize(), ]) dataset_train = ChangeDetectionDataset(traindir, extentions=kwargs['extensions'], transforms=train_transform, ) dataset_val = ChangeDetectionDataset(valdir, extentions=kwargs['extensions'], transforms=val_transform) return dataset_train, dataset_val def main(args): torch.backends.cudnn.benchmark = True device = torch.device('cuda' if args.device == 'cuda' else 'cpu') # dataset and dataloader train_data, val_data = load_data(args.train_path, args.val_path, extensions=args.extensions) train_loader = DataLoader(train_data, batch_size=args.batch_size, shuffle=True) val_loader = DataLoader(val_data, batch_size=1, shuffle=False) # model # model = get_model(args.model, args.num_classes, pretrained=args.pretrained) # model = FC_EF(num_classes=args.num_classes) model = FC_Siam_Diff(num_classes=args.num_classes) model.to(device) if args.resume: model.load_state_dict(torch.load(args.resume, map_location=device)) # TODO: resume learning rate # loss criterion = nn.CrossEntropyLoss().to(device) criterion = nn.BCELoss() # optim and lr scheduler optimizer = optim.Adam(model.parameters(), lr=args.lr) lr_scheduler = optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0=10, T_mult=1, eta_min=1e-8) # lr_scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1) writer = SummaryWriter(args.ckp_dir) for epoch in range(args.epochs): writer.add_scalar('train/lr', lr_scheduler.get_lr()[0], epoch) train_one_epoch(epoch, train_loader, model, criterion, optimizer, device, writer) evalidation(epoch, val_loader, model, criterion, device, writer, args.tb_test_imgs) lr_scheduler.step() if epoch % 2 == 0: torch.save(model.state_dict(), os.path.join(args.ckp_dir, 'cd_epoch_{}.pth'.format(epoch))) def parse_args(): parser = argparse.ArgumentParser(description='TorchSat Change Detection Training Script') parser.add_argument('--train-path', help='train dataset path') parser.add_argument('--val-path', help='validate dataset path') parser.add_argument('--extensions', nargs='+', default='jpg', help='the train image extension') parser.add_argument('--model', default="unet34", help='model name. default, unet34') parser.add_argument('--pretrained', default=True, help='use ImageNet pretrained params') parser.add_argument('--resume', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)') parser.add_argument('--num-classes', default=3, type=int, help='num of classes') parser.add_argument('--in-channels', default=3, type=int, help='input image channels') parser.add_argument('--device', default='cpu', help='device') parser.add_argument('-b', '--batch-size', default=16, type=int, help='batch size') parser.add_argument('--epochs', default=90, type=int, help='epochs') parser.add_argument('--lr', default=0.01, type=float, help='initial learning rate') parser.add_argument('--print-freq', default=10, type=int, help='print frequency') parser.add_argument('--ckp-dir', default='./', help='path to save checkpoint') parser.add_argument('--tb-test-imgs', default=10, help='the num of test image show in tensorboard') args = parser.parse_args() return args if __name__ == "__main__": args = parse_args() main(args)
42.393939
115
0.674482
[ "MIT" ]
alina2204/contrastive_SSL_ship_detection
torchsat/scripts/train_cd.py
6,995
Python
# -*- coding: utf-8 -*- """Converts .pyfr[m, s] files to a Paraview VTK UnstructuredGrid File""" from collections import defaultdict import os import numpy as np from pyfr.shapes import BaseShape from pyfr.util import subclass_where from pyfr.writers import BaseWriter class ParaviewWriter(BaseWriter): # Supported file types and extensions name = 'paraview' extn = ['.vtu', '.pvtu'] def __init__(self, args): super().__init__(args) self.dtype = np.dtype(args.precision).type self.divisor = args.divisor or self.cfg.getint('solver', 'order') def _get_npts_ncells_nnodes(self, mk): m_inf = self.mesh_inf[mk] # Get the shape and sub division classes shapecls = subclass_where(BaseShape, name=m_inf[0]) subdvcls = subclass_where(BaseShapeSubDiv, name=m_inf[0]) # Number of vis points npts = shapecls.nspts_from_order(self.divisor + 1)*m_inf[1][1] # Number of sub cells and nodes ncells = len(subdvcls.subcells(self.divisor))*m_inf[1][1] nnodes = len(subdvcls.subnodes(self.divisor))*m_inf[1][1] return npts, ncells, nnodes def _get_array_attrs(self, mk=None): dtype = 'Float32' if self.dtype == np.float32 else 'Float64' dsize = np.dtype(self.dtype).itemsize ndims = self.ndims vvars = self.elementscls.visvarmap[ndims] names = ['', 'connectivity', 'offsets', 'types'] types = [dtype, 'Int32', 'Int32', 'UInt8'] comps = ['3', '', '', ''] for fname, varnames in vvars.items(): names.append(fname.capitalize()) types.append(dtype) comps.append(str(len(varnames))) # If a mesh has been given the compute the sizes if mk: npts, ncells, nnodes = self._get_npts_ncells_nnodes(mk) nb = npts*dsize sizes = [3*nb, 4*nnodes, 4*ncells, ncells] sizes.extend(len(varnames)*nb for varnames in vvars.values()) return names, types, comps, sizes else: return names, types, comps def write_out(self): name, extn = os.path.splitext(self.outf) parallel = extn == '.pvtu' parts = defaultdict(list) for mk, sk in zip(self.mesh_inf, self.soln_inf): prt = mk.split('_')[-1] pfn = '{0}_{1}.vtu'.format(name, prt) if parallel else self.outf parts[pfn].append((mk, sk)) write_s_to_fh = lambda s: fh.write(s.encode('utf-8')) for pfn, misil in parts.items(): with open(pfn, 'wb') as fh: write_s_to_fh('<?xml version="1.0" ?>\n<VTKFile ' 'byte_order="LittleEndian" ' 'type="UnstructuredGrid" ' 'version="0.1">\n<UnstructuredGrid>\n') # Running byte-offset for appended data off = 0 # Header for mk, sk in misil: off = self._write_serial_header(fh, mk, off) write_s_to_fh('</UnstructuredGrid>\n' '<AppendedData encoding="raw">\n_') # Data for mk, sk in misil: self._write_data(fh, mk, sk) write_s_to_fh('\n</AppendedData>\n</VTKFile>') if parallel: with open(self.outf, 'wb') as fh: write_s_to_fh('<?xml version="1.0" ?>\n<VTKFile ' 'byte_order="LittleEndian" ' 'type="PUnstructuredGrid" ' 'version="0.1">\n<PUnstructuredGrid>\n') # Header self._write_parallel_header(fh) # Constitutent pieces for pfn in parts: write_s_to_fh('<Piece Source="{0}"/>\n' .format(os.path.basename(pfn))) write_s_to_fh('</PUnstructuredGrid>\n</VTKFile>\n') def _write_darray(self, array, vtuf, dtype): array = array.astype(dtype) np.uint32(array.nbytes).tofile(vtuf) array.tofile(vtuf) def _write_serial_header(self, vtuf, mk, off): names, types, comps, sizes = self._get_array_attrs(mk) npts, ncells = self._get_npts_ncells_nnodes(mk)[:2] write_s = lambda s: vtuf.write(s.encode('utf-8')) write_s('<Piece NumberOfPoints="{0}" NumberOfCells="{1}">\n' .format(npts, ncells)) write_s('<Points>\n') # Write vtk DaraArray headers for i, (n, t, c, s) in enumerate(zip(names, types, comps, sizes)): write_s('<DataArray Name="{0}" type="{1}" ' 'NumberOfComponents="{2}" ' 'format="appended" offset="{3}"/>\n' .format(n, t, c, off)) off += 4 + s # Write ends/starts of vtk file objects if i == 0: write_s('</Points>\n<Cells>\n') elif i == 3: write_s('</Cells>\n<PointData>\n') # Write end of vtk element data write_s('</PointData>\n</Piece>\n') # Return the current offset return off def _write_parallel_header(self, vtuf): names, types, comps = self._get_array_attrs() write_s = lambda s: vtuf.write(s.encode('utf-8')) write_s('<PPoints>\n') # Write vtk DaraArray headers for i, (n, t, s) in enumerate(zip(names, types, comps)): write_s('<PDataArray Name="{0}" type="{1}" ' 'NumberOfComponents="{2}"/>\n'.format(n, t, s)) if i == 0: write_s('</PPoints>\n<PCells>\n') elif i == 3: write_s('</PCells>\n<PPointData>\n') write_s('</PPointData>\n') def _write_data(self, vtuf, mk, sk): name = self.mesh_inf[mk][0] mesh = self.mesh[mk] soln = self.soln[sk] # Get the shape and sub division classes shapecls = subclass_where(BaseShape, name=name) subdvcls = subclass_where(BaseShapeSubDiv, name=name) # Dimensions nspts, neles = mesh.shape[:2] # Sub divison points inside of a standard element svpts = shapecls.std_ele(self.divisor) nsvpts = len(svpts) # Shape soln_b = shapecls(nspts, self.cfg) # Generate the operator matrices mesh_vtu_op = soln_b.sbasis.nodal_basis_at(svpts) soln_vtu_op = soln_b.ubasis.nodal_basis_at(svpts) # Calculate node locations of vtu elements vpts = np.dot(mesh_vtu_op, mesh.reshape(nspts, -1)) vpts = vpts.reshape(nsvpts, -1, self.ndims) # Calculate solution at node locations of vtu elements vsol = np.dot(soln_vtu_op, soln.reshape(-1, self.nvars*neles)) vsol = vsol.reshape(nsvpts, self.nvars, -1).swapaxes(0, 1) # Append dummy z dimension for points in 2D if self.ndims == 2: vpts = np.pad(vpts, [(0, 0), (0, 0), (0, 1)], 'constant') # Write element node locations to file self._write_darray(vpts.swapaxes(0, 1), vtuf, self.dtype) # Perform the sub division nodes = subdvcls.subnodes(self.divisor) # Prepare vtu cell arrays vtu_con = np.tile(nodes, (neles, 1)) vtu_con += (np.arange(neles)*nsvpts)[:, None] # Generate offset into the connectivity array vtu_off = np.tile(subdvcls.subcelloffs(self.divisor), (neles, 1)) vtu_off += (np.arange(neles)*len(nodes))[:, None] # Tile vtu cell type numbers vtu_typ = np.tile(subdvcls.subcelltypes(self.divisor), neles) # Write vtu node connectivity, connectivity offsets and cell types self._write_darray(vtu_con, vtuf, np.int32) self._write_darray(vtu_off, vtuf, np.int32) self._write_darray(vtu_typ, vtuf, np.uint8) # Primitive and visualisation variable maps privarmap = self.elementscls.privarmap[self.ndims] visvarmap = self.elementscls.visvarmap[self.ndims] # Convert from conservative to primitive variables vsol = np.array(self.elementscls.conv_to_pri(vsol, self.cfg)) # Write out the various fields for vnames in visvarmap.values(): ix = [privarmap.index(vn) for vn in vnames] self._write_darray(vsol[ix].T, vtuf, self.dtype) class BaseShapeSubDiv(object): vtk_types = dict(tri=5, quad=9, tet=10, pyr=14, pri=13, hex=12) vtk_nodes = dict(tri=3, quad=4, tet=4, pyr=5, pri=6, hex=8) @classmethod def subcells(cls, n): pass @classmethod def subcelloffs(cls, n): return np.cumsum([cls.vtk_nodes[t] for t in cls.subcells(n)]) @classmethod def subcelltypes(cls, n): return np.array([cls.vtk_types[t] for t in cls.subcells(n)]) @classmethod def subnodes(cls, n): pass class TensorProdShapeSubDiv(BaseShapeSubDiv): @classmethod def subnodes(cls, n): conbase = np.array([0, 1, n + 2, n + 1]) # Extend quad mapping to hex mapping if cls.ndim == 3: conbase = np.hstack((conbase, conbase + (1 + n)**2)) # Calculate offset of each subdivided element's nodes nodeoff = np.zeros((n,)*cls.ndim) for dim, off in enumerate(np.ix_(*(range(n),)*cls.ndim)): nodeoff += off*(n + 1)**dim # Tile standard element node ordering mapping, then apply offsets internal_con = np.tile(conbase, (n**cls.ndim, 1)) internal_con += nodeoff.T.flatten()[:, None] return np.hstack(internal_con) class QuadShapeSubDiv(TensorProdShapeSubDiv): name = 'quad' ndim = 2 @classmethod def subcells(cls, n): return ['quad']*(n**2) class HexShapeSubDiv(TensorProdShapeSubDiv): name = 'hex' ndim = 3 @classmethod def subcells(cls, n): return ['hex']*(n**3) class TriShapeSubDiv(BaseShapeSubDiv): name = 'tri' @classmethod def subcells(cls, n): return ['tri']*(n**2) @classmethod def subnodes(cls, n): conlst = [] for row in range(n, 0, -1): # Lower and upper indices l = (n - row)*(n + row + 3) // 2 u = l + row + 1 # Base offsets off = [l, l + 1, u, u + 1, l + 1, u] # Generate current row subin = np.ravel(np.arange(row - 1)[..., None] + off) subex = [ix + row - 1 for ix in off[:3]] # Extent list conlst.extend([subin, subex]) return np.hstack(conlst) class TetShapeSubDiv(BaseShapeSubDiv): name = 'tet' @classmethod def subcells(cls, nsubdiv): return ['tet']*(nsubdiv**3) @classmethod def subnodes(cls, nsubdiv): conlst = [] jump = 0 for n in range(nsubdiv, 0, -1): for row in range(n, 0, -1): # Lower and upper indices l = (n - row)*(n + row + 3) // 2 + jump u = l + row + 1 # Lower and upper for one row up ln = (n + 1)*(n + 2) // 2 + l - n + row un = ln + row rowm1 = np.arange(row - 1)[..., None] # Base offsets offs = [(l, l + 1, u, ln), (l + 1, u, ln, ln + 1), (u, u + 1, ln + 1, un), (u, ln, ln + 1, un), (l + 1, u, u+1, ln + 1), (u + 1, ln + 1, un, un + 1)] # Current row conlst.extend(rowm1 + off for off in offs[:-1]) conlst.append(rowm1[:-1] + offs[-1]) conlst.append([ix + row - 1 for ix in offs[0]]) jump += (n + 1)*(n + 2) // 2 return np.hstack(np.ravel(c) for c in conlst) class PriShapeSubDiv(BaseShapeSubDiv): name = 'pri' @classmethod def subcells(cls, n): return ['pri']*(n**3) @classmethod def subnodes(cls, n): # Triangle connectivity tcon = TriShapeSubDiv.subnodes(n).reshape(-1, 3) # Layer these rows of triangles to define prisms loff = (n + 1)*(n + 2) // 2 lcon = [[tcon + i*loff, tcon + (i + 1)*loff] for i in range(n)] return np.hstack(np.hstack(l).flat for l in lcon) class PyrShapeSubDiv(BaseShapeSubDiv): name = 'pyr' @classmethod def subcells(cls, n): cells = [] for i in range(n, 0, -1): cells += ['pyr']*(i**2 + (i - 1)**2) cells += ['tet']*(2*i*(i - 1)) return cells @classmethod def subnodes(cls, nsubdiv): lcon = [] # Quad connectivity qcon = [QuadShapeSubDiv.subnodes(n + 1).reshape(-1, 4) for n in range(nsubdiv)] # Simple functions def _row_in_quad(n, a=0, b=0): return np.array([(n*i + j, n*i + j + 1) for i in range(a, n + b) for j in range(n - 1)]) def _col_in_quad(n, a=0, b=0): return np.array([(n*i + j, n*(i + 1) + j) for i in range(n - 1) for j in range(a, n + b)]) u = 0 for n in range(nsubdiv, 0, -1): l = u u += (n + 1)**2 lower_quad = qcon[n - 1] + l upper_pts = np.arange(n**2) + u # First set of pyramids lcon.append([lower_quad, upper_pts]) if n > 1: upper_quad = qcon[n - 2] + u lower_pts = np.hstack(range(k*(n + 1)+1, (k + 1)*n + k) for k in range(1, n)) + l # Second set of pyramids lcon.append([upper_quad[:, ::-1], lower_pts]) lower_row = _row_in_quad(n + 1, 1, -1) + l lower_col = _col_in_quad(n + 1, 1, -1) + l upper_row = _row_in_quad(n) + u upper_col = _col_in_quad(n) + u # Tetrahedra lcon.append([lower_col, upper_row]) lcon.append([lower_row[:, ::-1], upper_col]) return np.hstack(np.column_stack(l).flat for l in lcon)
31.074236
77
0.531057
[ "BSD-3-Clause" ]
tjcorona/PyFR
pyfr/writers/paraview.py
14,232
Python
#!/c/python27/python import os from utils import * def cli_cpp(parms): return os.path.join(parms['OVPN3'], "core", "test", "ovpncli", "cli.cpp") def src_fn(parms, srcfile): # Get source file name if srcfile: if '.' not in os.path.basename(srcfile): srcfile += ".cpp" else: srcfile = cli_cpp(parms) return srcfile def is_unit_test(argv): unit_test = False if len(argv) >= 2: unit_test = argv[1] == "unittest" return unit_test def src_fn_argv(parms, argv): srcfile = None if len(argv) >= 1: srcfile = argv[0] return src_fn(parms, srcfile) def build(parms, srcfile, unit_test=False): # Debug? if parms['DEBUG']: dbg_rel_flags = "/Zi" else: dbg_rel_flags = "/O2" # Dictionary we will use to substitute parameters # onto VC command line. options = { "ovpn3" : parms['OVPN3'], "tap" : os.path.join(parms['TAP'], 'src'), "tap_component_id" : parms['TAP_WIN_COMPONENT_ID'], "asio" : os.path.join(build_dir(parms), "asio"), "mbedtls" : os.path.join(build_dir(parms), "mbedtls"), "lz4" : os.path.join(build_dir(parms), "lz4", "lib"), "srcfile" : srcfile, "extra_defs" : parms['CPP_EXTRA'], "extra_inc" : "", "extra_lib_path" : "", "extra_lib" : "", } vc_parms(parms, options) # Do we need to support XP and Win 2003? arch = os.environ.get("ARCH", parms['ARCH']) if arch == "x86_xp": options['extra_defs'] += " /D_WIN32_WINNT=0x0501" # pre-Vista else: options['extra_defs'] += " /D_WIN32_WINNT=0x0600" # Vista and later options['extra_lib'] += " fwpuclnt.lib" # Add jsoncpp (optional) if 'jsoncpp' in parms['LIB_VERSIONS']: options["jsoncpp"] = os.path.join(build_dir(parms), "jsoncpp") options['extra_inc'] += " /DHAVE_JSONCPP /I %(jsoncpp)s/dist" % options options['extra_lib_path'] += " /LIBPATH:%(jsoncpp)s/dist" % options options['extra_lib'] += " jsoncpp.lib" if unit_test: options['extra_lib'] += " gtest.lib" options['extra_inc'] += " /I %s" % os.path.join(parms["GTEST_ROOT"], "googletest", "include") options['extra_lib_path'] += " /LIBPATH:%s" % os.path.join(parms["GTEST_ROOT"], "googlemock", "gtest", "Debug") # Build OpenVPN Connect if parms.get("CONNECT"): options['extra_inc'] += " /I " + os.path.join(parms['OVPN3'], "common") # build it vc_cmd(parms, r"cl %(extra_defs)s /DNOMINMAX /D_CRT_SECURE_NO_WARNINGS /DUSE_ASIO /DASIO_STANDALONE /DASIO_NO_DEPRECATED /I %(asio)s\asio\include /DUSE_MBEDTLS /I %(mbedtls)s\include /DHAVE_LZ4 /I %(lz4)s%(extra_inc)s -DTAP_WIN_COMPONENT_ID=%(tap_component_id)s /I %(tap)s /I %(ovpn3)s\core /EHsc %(link_static_dynamic_flags)s /W0 %(dbg_rel_flags)s /nologo %(srcfile)s /link /LIBPATH:%(mbedtls)s\library /LIBPATH:%(lz4)s%(extra_lib_path)s mbedtls.lib lz4.lib%(extra_lib)s ws2_32.lib crypt32.lib iphlpapi.lib winmm.lib user32.lib gdi32.lib advapi32.lib wininet.lib shell32.lib ole32.lib rpcrt4.lib" % options, arch=os.environ.get("ARCH")) if __name__ == "__main__": import sys from parms import PARMS # some parameters might be redefined, like in Jenkins multibranch pipeline case PARMS['BUILD'] = os.environ.get('BUILD', PARMS['BUILD']) PARMS['OVPN3'] = os.environ.get('OVPN3', PARMS['OVPN3']) src = src_fn_argv(PARMS, sys.argv[1:]) unit_test = is_unit_test(sys.argv[1:]) build(PARMS, src, unit_test)
37.882979
641
0.624544
[ "MIT" ]
february29/FchVPN
Carthage/Checkouts/openvpn-adapter/OpenVPN Adapter/Vendors/openvpn/win/build.py
3,561
Python
#!/usr/bin/env python ## @package teleop_joy A node for controlling the P3DX with an XBox controller import rospy from geometry_msgs.msg import Twist from nav_msgs.msg import Odometry from sensor_msgs.msg import Joy import numpy as np def quat2yaw(q): return np.arctan2(2*(q.y*q.z + q.w*q.x), 1 - 2*(q.z**2 + q.w**2)) def joyCallback(msg): global cmd_vel_pub global linear_axis global linear_scale global rotation_axis global rotation_scale global yaw cmd_vel_msg = Twist() cmd_vel_msg.linear.x = msg.axes[linear_axis] * linear_scale cmd_vel_msg.angular.z = msg.axes[rotation_axis] * rotation_scale cmd_vel_msg.angular.y = np.inf cmd_vel_pub.publish(cmd_vel_msg) if __name__ == '__main__': rospy.init_node('teleop_joy') global cmd_vel_pub global linear_axis global linear_scale global rotation_axis global rotation_scale global yaw linear_axis = rospy.get_param('linear_axis' , 1) linear_scale = rospy.get_param('linear_scale' , 5) rotation_axis = rospy.get_param('rotation_axis' , 3) rotation_scale = rospy.get_param('rotation_scale', 1) cmd_vel_pub = rospy.Publisher("/asv/cmd_vel", Twist, queue_size=1) rospy.Subscriber("joy", Joy, joyCallback) rospy.spin()
24.615385
78
0.715625
[ "MIT" ]
Lovestarni/asv_simulator
nodes/teleop_joy.py
1,280
Python
import os import fs from .utils import Docs, custom_dedent class TestTutorial(Docs): def test_level_1(self): expected = "world" folder = "level-1-jinja2-cli" self._moban(folder, expected) def test_level_1_custom_define(self): expected = "maailman" folder = "level-1-jinja2-cli" args = [ "moban", "-d", "hello=maailman", "-t", "a.template", "-o", "moban.output", ] self.run_moban(args, folder, [("moban.output", expected)]) def test_level_2(self): expected = """ ========header============ world ========footer============ """ expected = custom_dedent(expected) folder = "level-2-template-inheritance" self._moban(folder, expected) def test_level_3(self): expected = """ ========header============ world shijie ========footer============ """ expected = custom_dedent(expected) folder = "level-3-data-override" self._moban(folder, expected) def test_level_4(self): expected = """ ========header============ world shijie ========footer============ """ expected = custom_dedent(expected) folder = "level-4-single-command" self.run_moban(["moban"], folder, [("a.output", expected)]) def test_level_5(self): expected = """ ========header============ world shijie this demonstrates jinja2's include statement ========footer============ """ expected = custom_dedent(expected) folder = "level-5-custom-configuration" self.run_moban(["moban"], folder, [("a.output", expected)]) def test_level_6(self): expected = """ ========header============ world2 shijie this demonstrates jinja2's include statement ========footer============ """ expected = custom_dedent(expected) folder = "level-6-complex-configuration" self.run_moban(["moban"], folder, [("a.output2", expected)]) def test_level_20(self): expected = """ ========header============ world2 shijie this demonstrates jinja2's include statement ========footer============ """ expected = custom_dedent(expected) folder = "level-20-templates-configs-in-zip-or-tar" self.run_moban_with_fs( ["moban"], folder, [("zip://a.zip!/a.output2", expected)] ) def test_level_7(self): expected = """ Hello, you are in level 7 example Hello, you are not in level 7 """ expected = custom_dedent(expected) folder = "level-7-use-custom-jinja2-filter-test-n-global" self.run_moban(["moban"], folder, [("test.output", expected)]) def test_level_8(self): expected = "it is a test\n" folder = "level-8-pass-a-folder-full-of-templates" check_file = fs.path.join("templated-folder", "my") self.run_moban(["moban"], folder, [(check_file, expected)]) def test_level_9(self): expected = "pypi-mobans: moban dependency as pypi package" folder = "level-9-moban-dependency-as-pypi-package" self.run_moban(["moban"], folder, [("test.txt", expected)]) def test_level_24(self): expected = "pypi-mobans: files over http protocol" folder = "level-24-files-over-http" self.run_moban(["moban"], folder, [("test.txt", expected)]) def test_level_9_deprecated(self): expected = "pypi-mobans: moban dependency as pypi package" folder = "deprecated-level-9-moban-dependency-as-pypi-package" self.run_moban(["moban"], folder, [("test.txt", expected)]) def test_level_10(self): expected = "pypi-mobans: moban dependency as git repo" folder = "level-10-moban-dependency-as-git-repo" self.run_moban(["moban"], folder, [("test.txt", expected)]) def test_level_10_deprecated(self): expected = "pypi-mobans: moban dependency as git repo" folder = "deprecated-level-10-moban-dependency-as-git-repo" self.run_moban(["moban"], folder, [("test.txt", expected)]) def test_level_11(self): expected = "handlebars does not support inheritance\n" folder = "level-11-use-handlebars" self.run_moban(["moban"], folder, [("a.output", expected)]) def test_level_12(self): expected_a = """ world world world world b.template exists a/b Static text generator using any template, any data and any location. """ expected_b = """ 142 42 142 """ expected_a = custom_dedent(expected_a) expected_b = custom_dedent(expected_b) folder = "level-12-use-template-engine-extensions" self.run_moban( ["moban"], folder, [("a.output", expected_a), ("b.output", expected_b)], ) def test_level_13_json(self): expected = """ ========header============ world from child.json shijie from parent.yaml ========footer============ """ expected = custom_dedent(expected) folder = "level-13-any-data-override-any-data" commands = [ "moban", "-c", "child.json", "-t", "a.template", "-o", "moban.output", ] self.run_moban(commands, folder, [("moban.output", expected)]) def test_level_13_yaml(self): expected = """ ========header============ world from child.yaml shijie from parent.json ========footer============ """ expected = custom_dedent(expected) folder = "level-13-any-data-override-any-data" commands = [ "moban", "-c", "child.yaml", "-t", "a.template", "-o", "moban.output", ] self.run_moban(commands, folder, [("moban.output", expected)]) def test_level_14_custom(self): expected = """ ========header============ world from child.cusom shijie from parent.json ========footer============ """ expected = custom_dedent(expected) folder = "level-14-custom-data-loader" commands = ["moban"] self.run_moban(commands, folder, [("a.output", expected)]) def test_level_15_copy_templates_as_target(self): expected = "test file\n" folder = "level-15-copy-templates-as-target" assertions = [ ("simple.file", expected), ( "target_without_template_type", "file extension will trigger copy engine\n", ), ( "target_in_short_form", ( "it is OK to have a short form, " + "but the file to be 'copied' shall have 'copy' extension, " + "so as to trigger ContentForwardEngine, 'copy' engine.\n" ), ), ( "output_is_copied.same_file_extension", "it is implicit copy as well", ), ] self.run_moban(["moban"], folder, assertions) def test_level_21_copy_templates_into_zips(self): expected = "test file\n" folder = "level-21-copy-templates-into-an-alien-file-system" long_url = ( "zip://my.zip!/test-recursive-dir/sub_directory_is_copied" + "/because_star_star_is_specified.txt" ) criterias = [ ["zip://my.zip!/simple.file", expected], [ "zip://my.zip!/target_without_template_type", "file extension will trigger copy engine\n", ], [ "zip://my.zip!/target_in_short_form", ( "it is OK to have a short form, " + "but the file to be 'copied' shall have 'copy' extension, " + "so as to trigger ContentForwardEngine, 'copy' engine.\n" ), ], ["zip://my.zip!/test-dir/afile.txt", "dir for copying\n"], [long_url, "dest_directory: source_directory/**\n"], ] self.run_moban_with_fs(["moban"], folder, criterias) def test_level_16_group_targets_using_template_type(self): expected = "test file\n" folder = "level-16-group-targets-using-template-type" self.run_moban(["moban"], folder, [("simple.file", expected)]) def test_level_17_force_template_type_from_moban_file(self): expected = "test file\n" folder = "level-17-force-template-type-from-moban-file" self.run_moban(["moban"], folder, [("simple.file", expected)]) def test_level_18_user_defined_template_types(self): from datetime import datetime expected = "{date}\n".format(date=datetime.now().strftime("%Y-%m-%d")) folder = "level-18-user-defined-template-types" self.run_moban( ["moban"], folder, [("a.output", expected), ("b.output", "shijie\n")], ) def test_level_19_without_group_target(self): expected = "test file\n" folder = "level-19-moban-a-sub-group-in-targets" assertions = [ ("simple.file", expected), ("a.output", "I will not be selected in level 19\n"), ] self.run_moban(["moban"], folder, assertions) def test_level_19_with_group_target(self): expected = "test file\n" folder = "level-19-moban-a-sub-group-in-targets" self.run_moban( ["moban", "-g", "copy"], folder, [("simple.file", expected)] ) # make sure only copy target is executed assert False == os.path.exists("a.output") def test_level_22_intermediate_targets(self): expected = "a world\n" folder = "level-22-intermediate-targets" self.run_moban(["moban"], folder, [("final", expected)]) assert os.path.exists("intermediate.jj2") def test_level_25_delete_intermediate_targets(self): expected = "a world\n" folder = "level-25-delete-intermediate-targets" self.run_moban(["moban"], folder, [("final", expected)]) assert not os.path.exists("intermediate.jj2") assert not os.path.exists("intermediate2.jj2") assert not os.path.exists("intermediate3.jj2") def test_level_26_strip_intermediate_targets(self): expected = "a world" folder = "level-26-strip-rendered-content" self.run_moban(["moban"], folder, [("final", expected)]) assert not os.path.exists("intermediate.strip") def test_level_23_inherit_parent_moban_file(self): folder = "level-23-inherit-organisational-moban-file" self.run_moban( ["moban"], folder, [("output_a", "I am template a"), ("output_b", "I am template b")], ) def test_misc_1(self): expected = "test file\n" folder = "misc-1-copying-templates" self.run_moban(["moban"], folder, [("simple.file", expected)]) def _moban(self, folder, expected): args = [ "moban", "-c", "data.yml", "-t", "a.template", "-o", "moban.output", ] self.run_moban(args, folder, [("moban.output", expected)])
29.903553
81
0.534035
[ "MIT" ]
chfw/moban
tests/test_docs.py
11,782
Python
# Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. An additional grant # of patent rights can be found in the PATENTS file in the same directory. from parlai.core.agents import Agent from parlai.core.dict import DictionaryAgent from torch.autograd import Variable from torch import optim import torch.nn as nn import torch import os import random import pdb class Seq2seqAgent(Agent): """Simple agent which uses an RNN to process incoming text observations. The RNN generates a vector which is used to represent the input text, conditioning on the context to generate an output token-by-token. For more information, see Sequence to Sequence Learning with Neural Networks `(Sutskever et al. 2014) <https://arxiv.org/abs/1409.3215>`_. """ @staticmethod def add_cmdline_args(argparser): """Add command-line arguments specifically for this agent.""" DictionaryAgent.add_cmdline_args(argparser) agent = argparser.add_argument_group('Seq2Seq Arguments') agent.add_argument('-hs', '--hiddensize', type=int, default=128, help='size of the hidden layers and embeddings') agent.add_argument('-nl', '--numlayers', type=int, default=2, help='number of hidden layers') agent.add_argument('-lr', '--learningrate', type=float, default=0.001, help='learning rate') agent.add_argument('-dr', '--dropout', type=float, default=0.1, help='dropout rate') # agent.add_argument('-att', '--attention', type='bool', default=False, # help='whether to use attention over the context during decoding') # agent.add_argument('-bi', '--bidirectional', type='bool', default=False, # help='whether to encode the context with a bidirectional RNN') agent.add_argument('--no-cuda', action='store_true', default=False, help='disable GPUs even if available') agent.add_argument('--gpu', type=int, default=-1, help='which GPU device to use') agent.add_argument('-rc', '--rank-candidates', type='bool', default=False, help='rank candidates if available. this is done by computing the' + ' mean score per token for each candidate and selecting the ' + 'highest scoring one.') def __init__(self, opt, shared=None): # initialize defaults first super().__init__(opt, shared) if not shared: # this is not a shared instance of this class, so do full # initialization. if shared is set, only set up shared members. # check for cuda self.use_cuda = not opt.get('no_cuda') and torch.cuda.is_available() if self.use_cuda: print('[ Using CUDA ]') torch.cuda.set_device(opt['gpu']) if opt.get('model_file') and os.path.isfile(opt['model_file']): # load model parameters if available print('Loading existing model params from ' + opt['model_file']) new_opt, self.states = self.load(opt['model_file']) # override options with stored ones opt = self.override_opt(new_opt) self.dict = DictionaryAgent(opt) self.id = 'Seq2Seq' # we use START markers to start our output self.START = self.dict.start_token self.START_TENSOR = torch.LongTensor(self.dict.parse(self.START)) # we use END markers to end our output self.END = self.dict.end_token self.END_TENSOR = torch.LongTensor(self.dict.parse(self.END)) # get index of null token from dictionary (probably 0) self.NULL_IDX = self.dict.txt2vec(self.dict.null_token)[0] # logFile #self.logFile = opt['logFile'] # store important params directly hsz = opt['hiddensize'] self.hidden_size = hsz self.num_layers = opt['numlayers'] self.learning_rate = opt['learningrate'] self.rank = opt['rank_candidates'] self.longest_label = 1 # set up tensors self.zeros = torch.zeros(self.num_layers, 1, hsz) self.xs = torch.LongTensor(1, 1) self.ys = torch.LongTensor(1, 1) self.cands = torch.LongTensor(1, 1, 1) self.cand_scores = torch.FloatTensor(1) self.cand_lengths = torch.LongTensor(1) # set up modules self.criterion = nn.NLLLoss() # lookup table stores word embeddings self.lt = nn.Embedding() # FILL HERE # encoder captures the input text self.encoder = nn.GRU() # FILL HERE # decoder produces our output states self.decoder = nn.GRU() # FILL HERE # linear layer helps us produce outputs from final decoder state self.h2o = nn.Linear() # FILL HERE # droput on the linear layer helps us generalize self.dropout = nn.Dropout(opt['dropout']) # softmax maps output scores to probabilities self.softmax = nn.LogSoftmax() # set up optims for each module lr = opt['learningrate'] """ self.optims = { 'lt': optim.SGD(self.lt.parameters(), lr=lr), 'encoder': optim.SGD(self.encoder.parameters(), lr=lr), 'decoder': optim.SGD(self.decoder.parameters(), lr=lr), 'h2o': optim.SGD(self.h2o.parameters(), lr=lr), } """ self.optims = { 'lt': optim.Adam(self.lt.parameters(), lr=lr), 'encoder': optim.Adam(self.encoder.parameters(), lr=lr), 'decoder': optim.Adam(self.decoder.parameters(), lr=lr), 'h2o': optim.Adam(self.h2o.parameters(), lr=lr), } if hasattr(self, 'states'): # set loaded states if applicable self.set_states(self.states) if self.use_cuda: self.cuda() self.episode_done = True def override_opt(self, new_opt): """Print out each added key and each overriden key. Only override args specific to the model. """ model_args = {'hiddensize', 'numlayers'} for k, v in new_opt.items(): if k not in model_args: # skip non-model args continue if k not in self.opt: print('Adding new option [ {k}: {v} ]'.format(k=k, v=v)) elif self.opt[k] != v: print('Overriding option [ {k}: {old} => {v}]'.format( k=k, old=self.opt[k], v=v)) self.opt[k] = v return self.opt def parse(self, text): return self.dict.txt2vec(text) def v2t(self, vec): return self.dict.vec2txt(vec) def cuda(self): self.START_TENSOR = self.START_TENSOR.cuda(async=True) self.END_TENSOR = self.END_TENSOR.cuda(async=True) self.zeros = self.zeros.cuda(async=True) self.xs = self.xs.cuda(async=True) self.ys = self.ys.cuda(async=True) self.cands = self.cands.cuda(async=True) self.cand_scores = self.cand_scores.cuda(async=True) self.cand_lengths = self.cand_lengths.cuda(async=True) self.criterion.cuda() self.lt.cuda() self.encoder.cuda() self.decoder.cuda() self.h2o.cuda() self.dropout.cuda() self.softmax.cuda() def hidden_to_idx(self, hidden, dropout=False): """Converts hidden state vectors into indices into the dictionary.""" if hidden.size(0) > 1: raise RuntimeError('bad dimensions of tensor:', hidden) hidden = hidden.squeeze(0) scores = # FILL HERE if dropout: scores = # FILL HERE scores = # FILL HERE _max_score, idx = scores.max(1) return idx, scores def zero_grad(self): for optimizer in self.optims.values(): optimizer.zero_grad() def update_params(self): for optimizer in self.optims.values(): optimizer.step() def reset(self): self.observation = None self.episode_done = True def observe(self, observation): # shallow copy observation (deep copy can be expensive) observation = observation.copy() if not self.episode_done: # if the last example wasn't the end of an episode, then we need to # recall what was said in that example prev_dialogue = self.observation['text'] observation['text'] = prev_dialogue + '\n' + observation['text'] self.observation = observation self.episode_done = observation['episode_done'] return observation def predict(self, xs, ys=None, cands=None): """Produce a prediction from our model. Update the model using the targets if available. """ batchsize = len(xs) text_cand_inds = None # first encode context #xes = self.lt(xs).t() xes = self.lt(xs).transpose(0,1) # Ken if self.zeros.size(1) != batchsize: self.zeros.resize_(self.num_layers, batchsize, self.hidden_size).fill_(0) h0 = Variable(self.zeros) _output, hn = self.encoder(xes, h0) # next we use END as an input to kick off our decoder x = Variable(self.START_TENSOR) xe = self.lt(x).unsqueeze(1) xes = xe.expand(xe.size(0), batchsize, xe.size(2)) # list of output tokens for each example in the batch output_lines = [[] for _ in range(batchsize)] if ys is not None: # update the model based on the labels self.zero_grad() loss = 0 # keep track of longest label we've ever seen self.longest_label = max(self.longest_label, ys.size(1)) for i in range(ys.size(1)): output, hn = self.decoder(xes, hn) preds, scores = self.hidden_to_idx(output, dropout=True) y = ys.select(1, i) loss += self.criterion(scores, y) # use the true token as the next input instead of predicted # this produces a biased prediction but better training xes = self.lt(y).unsqueeze(0) for b in range(batchsize): # convert the output scores to tokens token = self.v2t([preds.data[b][0]]) #token = self.v2t([preds.data[b]]) # Ken output_lines[b].append(token) loss.backward() #pdb.set_trace() self.update_params() if random.random() < 0.01: # sometimes output a prediction for debugging self.nWord = ys.data.nonzero().size()[0] self.nll_per_word = loss.data[0]/self.nWord print('prediction:', ' '.join(output_lines[0]), '\nlabel:', self.dict.vec2txt(ys.data[0])) else: # just produce a prediction without training the model done = [False for _ in range(batchsize)] total_done = 0 max_len = 0 if cands: # score each candidate separately # cands are exs_with_cands x cands_per_ex x words_per_cand # cview is total_cands x words_per_cand cview = cands.view(-1, cands.size(2)) cands_xes = xe.expand(xe.size(0), cview.size(0), xe.size(2)) sz = hn.size() cands_hn = ( hn.view(sz[0], sz[1], 1, sz[2]) .expand(sz[0], sz[1], cands.size(1), sz[2]) .contiguous() .view(sz[0], -1, sz[2]) ) cand_scores = Variable( self.cand_scores.resize_(cview.size(0)).fill_(0)) cand_lengths = Variable( self.cand_lengths.resize_(cview.size(0)).fill_(0)) for i in range(cview.size(1)): output, cands_hn = self.decoder(cands_xes, cands_hn) preds, scores = self.hidden_to_idx(output, dropout=False) cs = cview.select(1, i) non_nulls = cs.ne(self.NULL_IDX) cand_lengths += non_nulls.long() score_per_cand = torch.gather(scores, 1, cs.unsqueeze(1)) cand_scores += score_per_cand.squeeze() * non_nulls.float() cands_xes = self.lt(cs).unsqueeze(0) # set empty scores to -1, so when divided by 0 they become -inf cand_scores -= cand_lengths.eq(0).float() # average the scores per token cand_scores /= cand_lengths.float() cand_scores = cand_scores.view(cands.size(0), cands.size(1)) srtd_scores, text_cand_inds = cand_scores.sort(1, True) text_cand_inds = text_cand_inds.data # now, generate a response from scratch while(total_done < batchsize) and max_len < self.longest_label: # keep producing tokens until we hit END or max length for each # example in the batch #pdb.set_trace() output, hn = self.decoder(xes, hn) preds, scores = self.hidden_to_idx(output, dropout=False) #xes = self.lt(preds.t()) # original """ if (self.opt['mode'] == 'train'): xes = torch.unsqueeze(self.lt(preds),0) # torch.unsqueeze makes error when prediction elif(self.opt['mode'] == 'interactive'): xes = self.lt(preds) """ xes = torch.unsqueeze(self.lt(preds),0) # KB-KAIST max_len += 1 for b in range(batchsize): if not done[b]: # only add more tokens for examples that aren't done yet #pdb.set_trace() #token = self.v2t(preds.data[b]) token = self.v2t([preds.data[b]]) # KB-KAIST if token == self.END: # if we produced END, we're done done[b] = True total_done += 1 else: output_lines[b].append(token) if (random.random() < 0.1 and self.opt['mode'] == 'train'): # sometimes output a prediction for debugging print('prediction:', ' '.join(output_lines[0])) return output_lines, text_cand_inds def batchify(self, observations): """Convert a list of observations into input & target tensors.""" # valid examples exs = [ex for ex in observations if 'text' in ex] # the indices of the valid (non-empty) tensors valid_inds = [i for i, ex in enumerate(observations) if 'text' in ex] # set up the input tensors batchsize = len(exs) # tokenize the text xs = None if batchsize > 0: parsed = [self.parse(ex['text']) for ex in exs] min_x_len = min([len(x) for x in parsed]) max_x_len = max([len(x) for x in parsed]) parsed_x_len = min(min_x_len + 12, max_x_len, 48) # shrink xs to to limit batch computation parsed = [x[:parsed_x_len] for x in parsed] xs = torch.LongTensor(batchsize, parsed_x_len).fill_(0) # pack the data to the right side of the tensor for this model for i, x in enumerate(parsed): offset = parsed_x_len - len(x) for j, idx in enumerate(x): xs[i][j + offset] = idx if self.use_cuda: # copy to gpu self.xs.resize_(xs.size()) self.xs.copy_(xs, async=True) xs = Variable(self.xs) else: xs = Variable(xs) # set up the target tensors ys = None if batchsize > 0 and any(['labels' in ex for ex in exs]): # randomly select one of the labels to update on, if multiple # append END to each label labels = [random.choice(ex.get('labels', [''])) + ' ' + self.END for ex in exs] parsed = [self.parse(y) for y in labels] min_y_len = min(len(y) for y in parsed) max_y_len = max(len(y) for y in parsed) # shrink ys to to limit batch computation parsed_y_len = min(min_y_len + 6, max_y_len) parsed = [y[:parsed_y_len] for y in parsed] ys = torch.LongTensor(batchsize, parsed_y_len).fill_(0) for i, y in enumerate(parsed): for j, idx in enumerate(y): ys[i][j] = idx if self.use_cuda: # copy to gpu self.ys.resize_(ys.size()) self.ys.copy_(ys, async=True) ys = Variable(self.ys) else: ys = Variable(ys) # set up candidates cands = None valid_cands = None if ys is None and self.rank: # only do ranking when no targets available and ranking flag set parsed = [] valid_cands = [] for i in valid_inds: if 'label_candidates' in observations[i]: # each candidate tuple is a pair of the parsed version and # the original full string cs = list(observations[i]['label_candidates']) parsed.append([self.parse(c) for c in cs]) valid_cands.append((i, cs)) if len(parsed) > 0: # TODO: store lengths of cands separately, so don't have zero # padding for varying number of cands per example # found cands, pack them into tensor max_c_len = max(max(len(c) for c in cs) for cs in parsed) max_c_cnt = max(len(cs) for cs in parsed) cands = torch.LongTensor(len(parsed), max_c_cnt, max_c_len).fill_(0) for i, cs in enumerate(parsed): for j, c in enumerate(cs): for k, idx in enumerate(c): cands[i][j][k] = idx if self.use_cuda: # copy to gpu self.cands.resize_(cands.size()) self.cands.copy_(cands, async=True) cands = Variable(self.cands) else: cands = Variable(cands) return xs, ys, valid_inds, cands, valid_cands def batch_act(self, observations): batchsize = len(observations) # initialize a table of replies with this agent's id batch_reply = [{'id': self.getID()} for _ in range(batchsize)] # convert the observations into batches of inputs and targets # valid_inds tells us the indices of all valid examples # e.g. for input [{}, {'text': 'hello'}, {}, {}], valid_inds is [1] # since the other three elements had no 'text' field xs, ys, valid_inds, cands, valid_cands = self.batchify(observations) if xs is None: # no valid examples, just return the empty responses we set up return batch_reply # produce predictions either way, but use the targets if available predictions, text_cand_inds = self.predict(xs, ys, cands) for i in range(len(predictions)): # map the predictions back to non-empty examples in the batch # we join with spaces since we produce tokens one at a time curr = batch_reply[valid_inds[i]] curr['text'] = ' '.join(c for c in predictions[i] if c != self.END and c != self.dict.null_token) if text_cand_inds is not None: for i in range(len(valid_cands)): order = text_cand_inds[i] batch_idx, curr_cands = valid_cands[i] curr = batch_reply[batch_idx] curr['text_candidates'] = [curr_cands[idx] for idx in order if idx < len(curr_cands)] return batch_reply def act(self): # call batch_act with this batch of one return self.batch_act([self.observation])[0] def save(self, path=None): path = self.opt.get('model_file', None) if path is None else path if path and hasattr(self, 'lt'): model = {} model['lt'] = self.lt.state_dict() model['encoder'] = self.encoder.state_dict() model['decoder'] = self.decoder.state_dict() model['h2o'] = self.h2o.state_dict() model['longest_label'] = self.longest_label model['opt'] = self.opt with open(path, 'wb') as write: torch.save(model, write) def shutdown(self): """Save the state of the model when shutdown.""" path = self.opt.get('model_file', None) if path is not None: self.save(path + '.shutdown_state') super().shutdown() def load(self, path): """Return opt and model states.""" with open(path, 'rb') as read: model = torch.load(read) return model['opt'], model def set_states(self, states): """Set the state dicts of the modules from saved states.""" #pdb.set_trace() self.lt.load_state_dict(states['lt']) self.encoder.load_state_dict(states['encoder']) self.decoder.load_state_dict(states['decoder']) self.h2o.load_state_dict(states['h2o']) self.longest_label = states['longest_label']
42.251429
105
0.552069
[ "BSD-3-Clause" ]
gmkim90/KBKAIST_Chatbot
parlai/agents/seq2seq/seq2seq.py
22,182
Python
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utilities for cross_device_ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections as pycoll import threading from tensorflow.python.distribute import all_reduce from tensorflow.python.distribute import values as value_lib from tensorflow.python.framework import device as pydev from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import collective_ops from tensorflow.python.ops import gradients_impl from tensorflow.python.ops import math_ops from tensorflow.python.ops import nccl_ops def aggregate_gradients_using_nccl(replica_grads): """Aggregate gradients using nccl allreduce.""" agg_all_g_and_v = [] for single_g_and_v in zip(*replica_grads): single_grads = [g for g, _ in single_g_and_v] agg_grads = nccl_ops.all_sum(single_grads) agg_all_g_and_v.append( [(g, v) for g, (_, v) in zip(agg_grads, single_g_and_v)]) agg_all_g_and_v = list(zip(*agg_all_g_and_v)) return agg_all_g_and_v def aggregate_gradients_using_hierarchical_copy(avail_devices, replica_grads): """Aggregate gradients using hierarchical copies. Args: avail_devices: available GPU devices. replica_grads: List of lists of (gradient, variable) tuples. The outer list is over replicas. The inner list is over individual gradients. Returns: The list of (aggregated_gradient, variable), where the gradient has been summed across all replicas and the variable is chosen from the first replica. """ # This only works for DGX-1 type of machine topology # Device peer to peer matrix # DMA: 0 1 2 3 4 5 6 7 # 0: Y Y Y Y Y N N N # 1: Y Y Y Y N Y N N # 2: Y Y Y Y N N Y N # 3: Y Y Y Y N N N Y # 4: Y N N N Y Y Y Y # 5: N Y N N Y Y Y Y # 6: N N Y N Y Y Y Y # 7: N N N Y Y Y Y Y agg_grads = [] num_devices = len(avail_devices) # In the special case of DGX-1 machine topology, the two groups have equal # size. group_size = num_devices // 2 for i, single_grads in enumerate(zip(*replica_grads)): group_0_main_device = i % num_devices group_1_main_device = (group_0_main_device + group_size) % num_devices if group_0_main_device < group_size: group_0_begin = 0 group_1_begin = group_size else: group_0_begin = group_size group_1_begin = 0 # Aggregate the first group. group_0_device_grads = single_grads[group_0_begin: group_0_begin + group_size] with ops.device(avail_devices[group_0_main_device]): group_0_agg_grads, _ = aggregate_single_gradient_using_copy( group_0_device_grads, False, False) # Aggregate the second group. group_1_device_grads = single_grads[group_1_begin: group_1_begin + group_size] with ops.device(avail_devices[group_1_main_device]): group_1_agg_grads, _ = aggregate_single_gradient_using_copy( group_1_device_grads, False, False) # Aggregate between the groups. with ops.device(avail_devices[group_0_main_device]): (agg_total_grads, _), _ = aggregate_single_gradient_using_copy( [group_0_agg_grads, group_1_agg_grads], False, False) # Broadcast the result back into the root of each group. with ops.device(avail_devices[group_0_main_device]): group_0_agg_grads_bcast = array_ops.identity(agg_total_grads) with ops.device(avail_devices[group_1_main_device]): group_1_agg_grads_bcast = array_ops.identity(agg_total_grads) agg_grads_bcast = [] for j in range(len(single_grads)): with ops.device(avail_devices[j]): # Broadcast the result back to each member in the group from the root. if (group_0_main_device < group_size) == (j < group_size): src_device_grad = group_0_agg_grads_bcast else: src_device_grad = group_1_agg_grads_bcast agg_grads_bcast.append(array_ops.identity(src_device_grad)) agg_grads.append( [(g, v) for g, (_, v) in zip(agg_grads_bcast, single_grads)]) agg_grads = list(zip(*agg_grads)) return agg_grads def aggregate_single_gradient_using_copy(grad_and_vars, use_mean, check_inf_nan): """Calculate the average gradient for a shared variable across all replicas. Note that this function provides a synchronization point across all replicas. Args: grad_and_vars: A list or tuple of (gradient, variable) tuples. Each (gradient, variable) pair within the outer list represents the gradient of the variable calculated for a single replica, and the number of pairs equals the number of replicas. use_mean: if True, mean is taken, else sum of gradients is taken. check_inf_nan: check grads for nans and infs. Returns: The tuple ([(average_gradient, variable),], has_nan_or_inf) where the gradient has been averaged across all replicas. The variable is chosen from the first replica. The has_nan_or_inf indicates the grads has nan or inf. """ grads = [g for g, _ in grad_and_vars] grad = math_ops.add_n(grads) if use_mean and len(grads) > 1: grad = array_ops.multiply(grad, 1.0 / len(grads)) v = grad_and_vars[0][1] if check_inf_nan: has_nan_or_inf = array_ops.logical_not( array_ops.reduce_all(array_ops.is_finite(grads))) return (grad, v), has_nan_or_inf else: return (grad, v), None def group_device_names(devices, group_size): """Group device names into groups of group_size. Args: devices: a list of canonical device strings. group_size: integer which is equal to or greater than 1. Returns: list of lists of devices, where each inner list is group_size long, and each device appears at least once in an inner list. If len(devices) % group_size == 0 then each device will appear exactly once. Raises: ValueError: if group_size > len(devices) """ num_devices = len(devices) if group_size > num_devices: raise ValueError( 'only %d devices, but group_size=%d' % (num_devices, group_size)) num_groups = ( num_devices // group_size + (1 if (num_devices % group_size != 0) else 0)) groups = [[] for i in range(num_groups)] for i in range(num_groups * group_size): groups[i % num_groups].append(devices[i % num_devices]) return groups def split_grads_by_size(threshold_size, device_grads): """Break gradients into two sets according to tensor size. Args: threshold_size: int size cutoff for small vs large tensor. device_grads: List of lists of (gradient, variable) tuples. The outer list is over devices. The inner list is over individual gradients. Returns: small_grads: Subset of device_grads where shape is <= threshold_size elements. large_grads: Subset of device_grads where shape is > threshold_size elements. """ small_grads = [] large_grads = [] for dl in device_grads: small_dl = [] large_dl = [] for (g, v) in dl: tensor_size = g.get_shape().num_elements() if tensor_size <= threshold_size: small_dl.append([g, v]) else: large_dl.append([g, v]) if small_dl: small_grads.append(small_dl) if large_dl: large_grads.append(large_dl) return small_grads, large_grads # threading.Lock() and threading.local() cannot be pickled and therefore cannot # be a field of CollectiveKeys. Right now _thread_local is not necessary to be # an instance member of CollectiveKeys since we always create a new thread for # each replica. _lock = threading.Lock() _thread_local = threading.local() # TODO(yuefengz): use random key starts to avoid reusing keys? class CollectiveKeys(object): """Class that manages collective keys. We need to manage three different keys for collective: *Group key*: an integer key to identify the set of cooperative devices. Collective ops work under the same set of devices must using the same group key. *Instance key*: an integer key to identify the set of same counterpart of tensors on different devices in a device group that need to be all-reduced. "Graph key": an integer key that is unique key graph. This is used to support multiple graphs per client session. It must be non-zero and set in the `config` argument of each call to `session.run`. """ def __init__(self, group_key_start=1, instance_key_start=100, instance_key_with_id_start=10000): """Initializes the object. Args: group_key_start: the starting integer of group key. instance_key_start: the starting integer of instance key. instance_key_with_id_start: the starting integer of instance key that is recorded with an id. """ self._group_key = group_key_start self._group_key_table = dict() # For instance keys with ids self._instance_key_id_to_key_table = dict() self._instance_key_with_id_counter = instance_key_with_id_start # For instance keys without ids self._instance_key_start = instance_key_start def _get_thread_local_object(self): # We make instance key without key ids thread local so that it will work # with MirroredStrategy and distribute coordinator. if not hasattr(_thread_local, 'instance_key'): _thread_local.instance_key = self._instance_key_start return _thread_local def get_group_key(self, devices): """Returns a group key for the set of devices. Args: devices: list of strings naming devices in a collective group. Returns: int key uniquely identifying the set of device names. """ parsed = [pydev.DeviceSpec.from_string(d) for d in devices] # In the between-graph replicated training, different workers need to get # the same device key. So we remove the task_type and task_id from the # devices. # TODO(yuefengz): in the in-graph replicated training, we need to include # task_type and task_id. names = sorted(['%s:%d' % (d.device_type, d.device_index) for d in parsed]) key_id = ','.join(names) with _lock: if key_id not in self._group_key_table: new_key = self._group_key self._group_key += 1 self._group_key_table[key_id] = new_key return self._group_key_table[key_id] def get_instance_key(self, key_id=None): """Returns a new instance key for use in defining a collective op. Args: key_id: optional string. If set, key will be recorded and the same key will be returned when the same key_id is provided. If not, an increasing instance key will be returned. """ if key_id: with _lock: if key_id not in self._instance_key_id_to_key_table: self._instance_key_with_id_counter += 1 self._instance_key_id_to_key_table[key_id] = ( self._instance_key_with_id_counter) return self._instance_key_id_to_key_table[key_id] else: v = self._get_thread_local_object().instance_key self._get_thread_local_object().instance_key += 1 return v def build_collective_reduce(input_tensors, num_workers, collective_keys, reduction_op='Add', unary_op='Id'): """Build a subgraph that does one full all-reduce, using the collective Op. Args: input_tensors: tensors within a single worker graph that are to be reduced together; must be one per device. num_workers: total number of workers with identical independent graphs that will be doing this same reduction. The reduction will actually include the corresponding tensors at all these workers. collective_keys: a CollectiveKeys object. reduction_op: string naming the reduction op. unary_op: string naming the unary final op. Returns: An array of final tensors, one per device, computed by the full reduction. Raises: ValueError: There must be at least two tensors over all the workers. """ group_size = len(input_tensors) * num_workers if group_size < 2: raise ValueError('num_workers * len(input_tensors) must be 2 or greater') devices = [t.device for t in input_tensors] num_devices = len(devices) group_key = collective_keys.get_group_key(devices) instance_key = collective_keys.get_instance_key() out_tensors = [] subdiv_offsets = [0] # TODO(tucker): maybe support non-default subdiv spec for d in range(num_devices): with ops.device(devices[d]): reduce_op = collective_ops.all_reduce( input_tensors[d], group_size, group_key, instance_key, reduction_op, unary_op, subdiv_offsets) out_tensors.append(reduce_op) return out_tensors def sum_grad_and_var_all_reduce(grad_and_vars, num_workers, alg, gpu_indices, aux_devices=None, num_shards=1): """Apply all-reduce algorithm over specified gradient tensors.""" with ops.name_scope('allreduce'): # Note that each grad_and_vars looks like the following: # ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN)) scaled_grads = [g for g, _ in grad_and_vars] if alg == 'nccl': summed_grads = nccl_ops.all_sum(scaled_grads) elif alg == 'xring': summed_grads = all_reduce.build_ring_all_reduce( scaled_grads, num_workers, num_shards, gpu_indices, math_ops.add) elif alg == 'nccl/xring': summed_grads = all_reduce.build_nccl_then_ring(scaled_grads, num_shards, math_ops.add) elif alg == 'nccl/rechd': summed_grads = all_reduce.build_nccl_then_recursive_hd( scaled_grads, math_ops.add) elif alg == 'nccl/pscpu': summed_grads = all_reduce.build_nccl_then_shuffle( scaled_grads, aux_devices, math_ops.add, math_ops.add_n) elif alg == 'pscpu/pscpu': second_gather_devices = aux_devices[:num_shards] summed_grads = all_reduce.build_shuffle_then_shuffle( scaled_grads, aux_devices, second_gather_devices, math_ops.add_n) elif alg in ['pscpu', 'psgpu']: summed_grads = all_reduce.build_shuffle_all_reduce( scaled_grads, aux_devices, math_ops.add_n) else: raise ValueError('unsupported all_reduce alg: ', alg) result = [] for (_, v), g in zip(grad_and_vars, summed_grads): result.append([g, v]) return result def sum_gradients_all_reduce(dev_prefixes, replica_grads, num_workers, alg, num_shards, gpu_indices): """Apply all-reduce algorithm over specified gradient tensors. Args: dev_prefixes: list of prefix strings to use to generate PS device names. replica_grads: the gradients to reduce. num_workers: number of worker processes across entire job. alg: the all-reduce algorithm to apply. num_shards: alg-specific sharding factor. gpu_indices: indices of local GPUs in order usable for ring-reduce. Returns: list of reduced tensors """ alg_contains_shuffle = any([n in alg for n in ['pscpu', 'psgpu']]) is_hierarchical = '/' in alg if 'pscpu' in alg: aux_devices = [prefix + '/cpu:0' for prefix in dev_prefixes] elif 'psgpu' in alg: aux_devices = [ prefix + '/gpu:%d' % i for i in range(len(gpu_indices)) for prefix in dev_prefixes ] else: aux_devices = ['/job:localhost/cpu:0'] # Auxiliary devices for hierarchical all-reduces. aux_device_groups = group_device_names( aux_devices, num_shards if alg_contains_shuffle else 1) group_index = 0 reduced_gv_list = [] for grad_and_vars in zip(*replica_grads): reduced_gv_list.append( sum_grad_and_var_all_reduce( grad_and_vars, num_workers, alg, gpu_indices, aux_devices if is_hierarchical else aux_device_groups[group_index], num_shards)) group_index = (group_index + 1) % len(aux_device_groups) new_replica_grads = [list(x) for x in zip(*reduced_gv_list)] return new_replica_grads def extract_ranges(index_list, range_size_limit=32): """Extract consecutive ranges and singles from index_list. Args: index_list: List of monotone increasing non-negative integers. range_size_limit: Largest size range to return. If a larger consecutive range exists, it will be returned as multiple ranges. Returns: (ranges, singles) where ranges is a list of [first, last] pairs of consecutive elements in index_list, and singles is all of the other elements, in original order. """ if not index_list: return [], [] first = index_list[0] last = first ranges = [] singles = [] for i in index_list[1:]: if i == last + 1 and (last - first) <= range_size_limit: last = i else: if last > first: ranges.append([first, last]) else: singles.append(first) first = i last = i if last > first: ranges.append([first, last]) else: singles.append(first) return ranges, singles GradPackTuple = pycoll.namedtuple('GradPackTuple', 'indices vars shapes') def pack_range(key, packing, grad_vars, rng): """Form the concatenation of a specified range of gradient tensors. Args: key: Value under which to store meta-data in packing that will be used later to restore the grad_var list structure. packing: Dict holding data describing packed ranges of small tensors. grad_vars: List of (grad, var) pairs for one replica. rng: A pair of integers giving the first, last indices of a consecutive range of tensors to be packed. Returns: A tensor that is the concatenation of all the specified small tensors. """ to_pack = grad_vars[rng[0]:rng[1] + 1] members = [] variables = [] restore_shapes = [] with ops.name_scope('pack'): for g, v in to_pack: variables.append(v) restore_shapes.append(g.shape) with ops.device(g.device): members.append(array_ops.reshape(g, [-1])) packing[key] = GradPackTuple( indices=range(rng[0], rng[1] + 1), vars=variables, shapes=restore_shapes) with ops.device(members[0].device): return array_ops.concat(members, 0) def unpack_grad_tuple(gv, gpt): """Unpack a previously packed collection of gradient tensors. Args: gv: A (grad, var) pair to be unpacked. gpt: A GradPackTuple describing the packing operation that produced gv. Returns: A list of (grad, var) pairs corresponding to the values that were originally packed into gv, maybe following subsequent operations like reduction. """ elt_widths = [x.num_elements() for x in gpt.shapes] with ops.device(gv[0][0].device): with ops.name_scope('unpack'): splits = array_ops.split(gv[0], elt_widths) unpacked_gv = [] for idx, s in enumerate(splits): unpacked_gv.append((array_ops.reshape(s, gpt.shapes[idx]), gpt.vars[idx])) return unpacked_gv def pack_small_tensors(replica_grads, max_bytes=0, max_group=0): """Concatenate small gradient tensors together for reduction. Args: replica_grads: List of lists of (gradient, variable) tuples. max_bytes: Int giving max number of bytes in a tensor that may be considered small. max_group: Int giving max number of small tensors that may be concatenated into one new tensor. Returns: new_replica_grads, packing where new_replica_grads is identical to replica_grads except that all feasible small_tensors have been removed from their places and concatenated into larger tensors that are now in the front of the list for each replica, and packing contains the data necessary to restore the replica_grads structure. Look through the first replica for gradients of the same type (float), and small size, that are all sequential. For each such group, replace by a new tensor that is a flattened concatenation. Note that the corresponding variable will be absent, which doesn't matter because it isn't used during all-reduce. Requires: Every gv_list in replicas must have isomorphic structure including identical tensor sizes and types. """ small_indices = [] large_indices = [] for idx, (g, _) in enumerate(replica_grads[0]): if g.dtype == dtypes.float32 and (4 * g.shape.num_elements()) <= max_bytes: small_indices.append(idx) else: large_indices.append(idx) small_ranges, small_singles = extract_ranges( small_indices, range_size_limit=max_group) large_indices = sorted(large_indices + small_singles) num_gv = len(replica_grads[0]) packing = {} if small_ranges: new_replica_grads = [] for dev_idx, gv_list in enumerate(replica_grads): assert len(gv_list) == num_gv new_gv_list = [] for r in small_ranges: key = '%d:%d' % (dev_idx, len(new_gv_list)) new_gv_list.append((pack_range(key, packing, gv_list, r), 'packing_var_placeholder')) for i in large_indices: new_gv_list.append(gv_list[i]) new_replica_grads.append(new_gv_list) return new_replica_grads, packing else: return replica_grads, None def unpack_small_tensors(replica_grads, packing): """Undo the structure alterations to replica_grads done by pack_small_tensors. Args: replica_grads: List of List of (grad, var) tuples. packing: A dict generated by pack_small_tensors describing the changes it made to replica_grads. Returns: new_replica_grads: identical to replica_grads except that concatenations of small tensors have been split apart and returned to their original positions, paired with their original variables. """ if not packing: return replica_grads new_replica_grads = [] num_devices = len(replica_grads) num_packed = len(packing.keys()) // num_devices for dev_idx, gv_list in enumerate(replica_grads): gv_list = list(gv_list) new_gv_list = gv_list[num_packed:] for i in range(num_packed): k = '%d:%d' % (dev_idx, i) gpt = packing[k] gv = unpack_grad_tuple(gv_list[i], gpt) for gi, idx in enumerate(gpt.indices): assert idx == gpt.indices[gi] new_gv_list.insert(idx, gv[gi]) new_replica_grads.append(new_gv_list) return new_replica_grads def aggregate_tensors_or_indexed_slices(values, accumulation_fn=math_ops.add_n): """Aggregate tensors using `accumulation_fn` and IndexedSlices via concat.""" if any(isinstance(v, ops.IndexedSlices) for v in values): return gradients_impl._AggregateIndexedSlicesGradients(values) # pylint: disable=protected-access else: return accumulation_fn(values) def divide_by_n_tensors_or_indexed_slices(value, n): if isinstance(value, ops.IndexedSlices): value = gradients_impl._HandleNestedIndexedSlices(value) # pylint: disable=protected-access return ops.IndexedSlices( value.values / n, value.indices, value.dense_shape) else: return value / n def copy_tensor_or_indexed_slices_to_device(value, device): with ops.device(device): if isinstance(value, ops.IndexedSlices): copied_values = array_ops.identity(value.values) copied_indices = array_ops.identity(value.indices) copied_shape = array_ops.identity(value.dense_shape) result = ops.IndexedSlices(copied_values, copied_indices, copied_shape) else: result = array_ops.identity(value) return result def contains_indexed_slices(value): """Check whether the value is `IndexedSlices` or contains `IndexedSlices`.""" if isinstance(value, ops.IndexedSlices): return True elif isinstance(value, (list, tuple)) and value: return any(contains_indexed_slices(v) for v in value) elif isinstance(value, value_lib.DistributedValues): return contains_indexed_slices(list(value._index.values())) # pylint: disable=protected-access else: return False
37.004464
102
0.699441
[ "Apache-2.0" ]
DeuroIO/Deuro-tensorflow
tensorflow/python/distribute/cross_device_utils.py
24,867
Python
from time import sleep from ec2mc import __main__ def test_user_commands(): """test all user commands.""" assert __main__.main([ "user", "create", "ec2mc_test_user", "setup_users", "--default" ]) is not False sleep(5) assert __main__.main([ "user", "list" ]) is not False assert __main__.main([ "user", "set_group", "EC2MC_TEST_USER", "basic_users" ]) is not False assert __main__.main([ "user", "be", "takingitcasual" ]) is not False assert __main__.main([ "user", "rotate_key", "Ec2Mc_TeSt_UsEr" ]) is not False assert __main__.main([ "user", "delete", "eC2mC_tEsT_uSeR" ]) is not False
26.730769
71
0.604317
[ "MIT" ]
TakingItCasual/easymc
tests/test_user_commands.py
695
Python
import numpy as np import tensorlayerx as tlx import gammagl.mpops as mpops from .num_nodes import maybe_num_nodes from .check import check_is_numpy def coalesce(edge_index, edge_attr=None, num_nodes=None, reduce="add", is_sorted=False, sort_by_row=True): """Row-wise sorts :obj:`edge_index` and removes its duplicated entries. Duplicate entries in :obj:`edge_attr` are merged by scattering them together according to the given :obj:`reduce` option. Args: edge_index (LongTensor): The edge indices. edge_attr (Tensor or List[Tensor], optional): Edge weights or multi- dimensional edge features. If given as a list, will re-shuffle and remove duplicates for all its entries. (default: :obj:`None`) num_nodes (int, optional): The number of nodes, *i.e.* :obj:`max_val + 1` of :attr:`edge_index`. (default: :obj:`None`) reduce (string, optional): The reduce operation to use for merging edge features (:obj:`"add"`, :obj:`"mean"`, :obj:`"min"`, :obj:`"max"`, :obj:`"mul"`). (default: :obj:`"add"`) is_sorted (bool, optional): If set to :obj:`True`, will expect :obj:`edge_index` to be already sorted row-wise. sort_by_row (bool, optional): If set to :obj:`False`, will sort :obj:`edge_index` column-wise. :rtype: :class:`LongTensor` if :attr:`edge_attr` is :obj:`None`, else (:class:`LongTensor`, :obj:`Tensor` or :obj:`List[Tensor]]`) """ if tlx.is_tensor(edge_index): edge_index = tlx.convert_to_numpy(edge_index) nnz = edge_index.shape[1] num_nodes = maybe_num_nodes(edge_index, num_nodes) idx = np.zeros(nnz+1) idx[0] = -1 idx[1:] = edge_index[1 - int(sort_by_row)] idx[1:] = (np.add(np.multiply(idx[1:], num_nodes), edge_index[int(sort_by_row)])) if not is_sorted: perm = np.argsort(idx[1:]) idx[1:] = np.sort(idx[1:]) edge_index = edge_index[:, perm] if edge_attr is not None and tlx.ops.is_tensor(edge_attr): edge_attr = tlx.gather(edge_attr, tlx.convert_to_tensor(perm), axis=0) elif edge_attr is not None and check_is_numpy(edge_attr): edge_attr = edge_attr[perm] elif edge_attr is not None: # edge_attr is List. edge_attr = [tlx.gather(e, perm, axis=0) for e in edge_attr] mask = idx[1:] > idx[:-1] # Only perform expensive merging in case there exists duplicates: if mask.all(): edge_index = tlx.convert_to_tensor(edge_index, dtype=tlx.int64) return edge_index if edge_attr is None else (edge_index, edge_attr) edge_index = edge_index[:, mask] edge_index = tlx.convert_to_tensor(edge_index, dtype=tlx.int64) if edge_attr is None: return edge_index idx = np.arange(0, nnz) idx = tlx.convert_to_tensor(idx - (1 - mask).cumsum(axis=0)) if tlx.ops.is_tensor(edge_attr): edge_attr = mpops.segment_sum(edge_attr, idx) return edge_index, edge_attr
42.704225
106
0.649406
[ "Apache-2.0" ]
BUPT-GAMMA/GammaGL
gammagl/utils/coalesce.py
3,032
Python
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from mox3 import mox from nova.compute import power_state from nova.compute import utils as compute_utils from nova.conductor.tasks import live_migrate from nova import db from nova import exception from nova import objects from nova.scheduler import utils as scheduler_utils from nova import test from nova.tests.unit import fake_instance class LiveMigrationTaskTestCase(test.NoDBTestCase): def setUp(self): super(LiveMigrationTaskTestCase, self).setUp() self.context = "context" self.instance_host = "host" self.instance_uuid = "uuid" self.instance_image = "image_ref" db_instance = fake_instance.fake_db_instance( host=self.instance_host, uuid=self.instance_uuid, power_state=power_state.RUNNING, memory_mb=512, image_ref=self.instance_image) self.instance = objects.Instance._from_db_object( self.context, objects.Instance(), db_instance) self.destination = "destination" self.block_migration = "bm" self.disk_over_commit = "doc" self._generate_task() def _generate_task(self): self.task = live_migrate.LiveMigrationTask(self.context, self.instance, self.destination, self.block_migration, self.disk_over_commit) def test_execute_with_destination(self): self.mox.StubOutWithMock(self.task, '_check_host_is_up') self.mox.StubOutWithMock(self.task, '_check_requested_destination') self.mox.StubOutWithMock(self.task.compute_rpcapi, 'live_migration') self.task._check_host_is_up(self.instance_host) self.task._check_requested_destination() self.task.compute_rpcapi.live_migration(self.context, host=self.instance_host, instance=self.instance, dest=self.destination, block_migration=self.block_migration, migrate_data=None).AndReturn("bob") self.mox.ReplayAll() self.assertEqual("bob", self.task.execute()) def test_execute_without_destination(self): self.destination = None self._generate_task() self.assertIsNone(self.task.destination) self.mox.StubOutWithMock(self.task, '_check_host_is_up') self.mox.StubOutWithMock(self.task, '_find_destination') self.mox.StubOutWithMock(self.task.compute_rpcapi, 'live_migration') self.task._check_host_is_up(self.instance_host) self.task._find_destination().AndReturn("found_host") self.task.compute_rpcapi.live_migration(self.context, host=self.instance_host, instance=self.instance, dest="found_host", block_migration=self.block_migration, migrate_data=None).AndReturn("bob") self.mox.ReplayAll() self.assertEqual("bob", self.task.execute()) def test_check_instance_is_running_passes(self): self.task._check_instance_is_running() def test_check_instance_is_running_fails_when_shutdown(self): self.task.instance['power_state'] = power_state.SHUTDOWN self.assertRaises(exception.InstanceNotRunning, self.task._check_instance_is_running) def test_check_instance_host_is_up(self): self.mox.StubOutWithMock(db, 'service_get_by_compute_host') self.mox.StubOutWithMock(self.task.servicegroup_api, 'service_is_up') db.service_get_by_compute_host(self.context, "host").AndReturn("service") self.task.servicegroup_api.service_is_up("service").AndReturn(True) self.mox.ReplayAll() self.task._check_host_is_up("host") def test_check_instance_host_is_up_fails_if_not_up(self): self.mox.StubOutWithMock(db, 'service_get_by_compute_host') self.mox.StubOutWithMock(self.task.servicegroup_api, 'service_is_up') db.service_get_by_compute_host(self.context, "host").AndReturn("service") self.task.servicegroup_api.service_is_up("service").AndReturn(False) self.mox.ReplayAll() self.assertRaises(exception.ComputeServiceUnavailable, self.task._check_host_is_up, "host") def test_check_instance_host_is_up_fails_if_not_found(self): self.mox.StubOutWithMock(db, 'service_get_by_compute_host') db.service_get_by_compute_host(self.context, "host").AndRaise(exception.NotFound) self.mox.ReplayAll() self.assertRaises(exception.ComputeServiceUnavailable, self.task._check_host_is_up, "host") def test_check_requested_destination(self): self.mox.StubOutWithMock(db, 'service_get_by_compute_host') self.mox.StubOutWithMock(self.task, '_get_compute_info') self.mox.StubOutWithMock(self.task.servicegroup_api, 'service_is_up') self.mox.StubOutWithMock(self.task.compute_rpcapi, 'check_can_live_migrate_destination') db.service_get_by_compute_host(self.context, self.destination).AndReturn("service") self.task.servicegroup_api.service_is_up("service").AndReturn(True) hypervisor_details = { "hypervisor_type": "a", "hypervisor_version": 6.1, "free_ram_mb": 513 } self.task._get_compute_info(self.destination)\ .AndReturn(hypervisor_details) self.task._get_compute_info(self.instance_host)\ .AndReturn(hypervisor_details) self.task._get_compute_info(self.destination)\ .AndReturn(hypervisor_details) self.task.compute_rpcapi.check_can_live_migrate_destination( self.context, self.instance, self.destination, self.block_migration, self.disk_over_commit).AndReturn( "migrate_data") self.mox.ReplayAll() self.task._check_requested_destination() self.assertEqual("migrate_data", self.task.migrate_data) def test_check_requested_destination_fails_with_same_dest(self): self.task.destination = "same" self.task.source = "same" self.assertRaises(exception.UnableToMigrateToSelf, self.task._check_requested_destination) def test_check_requested_destination_fails_when_destination_is_up(self): self.mox.StubOutWithMock(db, 'service_get_by_compute_host') db.service_get_by_compute_host(self.context, self.destination).AndRaise(exception.NotFound) self.mox.ReplayAll() self.assertRaises(exception.ComputeServiceUnavailable, self.task._check_requested_destination) def test_check_requested_destination_fails_with_not_enough_memory(self): self.mox.StubOutWithMock(self.task, '_check_host_is_up') self.mox.StubOutWithMock(db, 'service_get_by_compute_host') self.task._check_host_is_up(self.destination) db.service_get_by_compute_host(self.context, self.destination).AndReturn({ "compute_node": [{"free_ram_mb": 511}] }) self.mox.ReplayAll() self.assertRaises(exception.MigrationPreCheckError, self.task._check_requested_destination) def test_check_requested_destination_fails_with_hypervisor_diff(self): self.mox.StubOutWithMock(self.task, '_check_host_is_up') self.mox.StubOutWithMock(self.task, '_check_destination_has_enough_memory') self.mox.StubOutWithMock(self.task, '_get_compute_info') self.task._check_host_is_up(self.destination) self.task._check_destination_has_enough_memory() self.task._get_compute_info(self.instance_host).AndReturn({ "hypervisor_type": "b" }) self.task._get_compute_info(self.destination).AndReturn({ "hypervisor_type": "a" }) self.mox.ReplayAll() self.assertRaises(exception.InvalidHypervisorType, self.task._check_requested_destination) def test_check_requested_destination_fails_with_hypervisor_too_old(self): self.mox.StubOutWithMock(self.task, '_check_host_is_up') self.mox.StubOutWithMock(self.task, '_check_destination_has_enough_memory') self.mox.StubOutWithMock(self.task, '_get_compute_info') self.task._check_host_is_up(self.destination) self.task._check_destination_has_enough_memory() self.task._get_compute_info(self.instance_host).AndReturn({ "hypervisor_type": "a", "hypervisor_version": 7 }) self.task._get_compute_info(self.destination).AndReturn({ "hypervisor_type": "a", "hypervisor_version": 6 }) self.mox.ReplayAll() self.assertRaises(exception.DestinationHypervisorTooOld, self.task._check_requested_destination) def test_find_destination_works(self): self.mox.StubOutWithMock(compute_utils, 'get_image_metadata') self.mox.StubOutWithMock(scheduler_utils, 'build_request_spec') self.mox.StubOutWithMock(scheduler_utils, 'setup_instance_group') self.mox.StubOutWithMock(self.task.scheduler_client, 'select_destinations') self.mox.StubOutWithMock(self.task, '_check_compatible_with_source_hypervisor') self.mox.StubOutWithMock(self.task, '_call_livem_checks_on_host') compute_utils.get_image_metadata(self.context, self.task.image_api, self.instance_image, self.instance).AndReturn("image") scheduler_utils.build_request_spec(self.context, mox.IgnoreArg(), mox.IgnoreArg()).AndReturn({}) scheduler_utils.setup_instance_group( self.context, {}, {'ignore_hosts': [self.instance_host]}) self.task.scheduler_client.select_destinations(self.context, mox.IgnoreArg(), mox.IgnoreArg()).AndReturn( [{'host': 'host1'}]) self.task._check_compatible_with_source_hypervisor("host1") self.task._call_livem_checks_on_host("host1") self.mox.ReplayAll() self.assertEqual("host1", self.task._find_destination()) def test_find_destination_no_image_works(self): self.instance['image_ref'] = '' self.mox.StubOutWithMock(scheduler_utils, 'build_request_spec') self.mox.StubOutWithMock(scheduler_utils, 'setup_instance_group') self.mox.StubOutWithMock(self.task.scheduler_client, 'select_destinations') self.mox.StubOutWithMock(self.task, '_check_compatible_with_source_hypervisor') self.mox.StubOutWithMock(self.task, '_call_livem_checks_on_host') scheduler_utils.build_request_spec(self.context, None, mox.IgnoreArg()).AndReturn({}) scheduler_utils.setup_instance_group( self.context, {}, {'ignore_hosts': [self.instance_host]}) self.task.scheduler_client.select_destinations(self.context, mox.IgnoreArg(), mox.IgnoreArg()).AndReturn( [{'host': 'host1'}]) self.task._check_compatible_with_source_hypervisor("host1") self.task._call_livem_checks_on_host("host1") self.mox.ReplayAll() self.assertEqual("host1", self.task._find_destination()) def _test_find_destination_retry_hypervisor_raises(self, error): self.mox.StubOutWithMock(compute_utils, 'get_image_metadata') self.mox.StubOutWithMock(scheduler_utils, 'build_request_spec') self.mox.StubOutWithMock(scheduler_utils, 'setup_instance_group') self.mox.StubOutWithMock(self.task.scheduler_client, 'select_destinations') self.mox.StubOutWithMock(self.task, '_check_compatible_with_source_hypervisor') self.mox.StubOutWithMock(self.task, '_call_livem_checks_on_host') compute_utils.get_image_metadata(self.context, self.task.image_api, self.instance_image, self.instance).AndReturn("image") scheduler_utils.build_request_spec(self.context, mox.IgnoreArg(), mox.IgnoreArg()).AndReturn({}) scheduler_utils.setup_instance_group( self.context, {}, {'ignore_hosts': [self.instance_host]}) self.task.scheduler_client.select_destinations(self.context, mox.IgnoreArg(), mox.IgnoreArg()).AndReturn( [{'host': 'host1'}]) self.task._check_compatible_with_source_hypervisor("host1")\ .AndRaise(error) scheduler_utils.setup_instance_group( self.context, {}, {'ignore_hosts': [self.instance_host, "host1"]}) self.task.scheduler_client.select_destinations(self.context, mox.IgnoreArg(), mox.IgnoreArg()).AndReturn( [{'host': 'host2'}]) self.task._check_compatible_with_source_hypervisor("host2") self.task._call_livem_checks_on_host("host2") self.mox.ReplayAll() self.assertEqual("host2", self.task._find_destination()) def test_find_destination_retry_with_old_hypervisor(self): self._test_find_destination_retry_hypervisor_raises( exception.DestinationHypervisorTooOld) def test_find_destination_retry_with_invalid_hypervisor_type(self): self._test_find_destination_retry_hypervisor_raises( exception.InvalidHypervisorType) def test_find_destination_retry_with_invalid_livem_checks(self): self.flags(migrate_max_retries=1) self.mox.StubOutWithMock(compute_utils, 'get_image_metadata') self.mox.StubOutWithMock(scheduler_utils, 'build_request_spec') self.mox.StubOutWithMock(scheduler_utils, 'setup_instance_group') self.mox.StubOutWithMock(self.task.scheduler_client, 'select_destinations') self.mox.StubOutWithMock(self.task, '_check_compatible_with_source_hypervisor') self.mox.StubOutWithMock(self.task, '_call_livem_checks_on_host') compute_utils.get_image_metadata(self.context, self.task.image_api, self.instance_image, self.instance).AndReturn("image") scheduler_utils.build_request_spec(self.context, mox.IgnoreArg(), mox.IgnoreArg()).AndReturn({}) scheduler_utils.setup_instance_group( self.context, {}, {'ignore_hosts': [self.instance_host]}) self.task.scheduler_client.select_destinations(self.context, mox.IgnoreArg(), mox.IgnoreArg()).AndReturn( [{'host': 'host1'}]) self.task._check_compatible_with_source_hypervisor("host1") self.task._call_livem_checks_on_host("host1")\ .AndRaise(exception.Invalid) scheduler_utils.setup_instance_group( self.context, {}, {'ignore_hosts': [self.instance_host, "host1"]}) self.task.scheduler_client.select_destinations(self.context, mox.IgnoreArg(), mox.IgnoreArg()).AndReturn( [{'host': 'host2'}]) self.task._check_compatible_with_source_hypervisor("host2") self.task._call_livem_checks_on_host("host2") self.mox.ReplayAll() self.assertEqual("host2", self.task._find_destination()) def test_find_destination_retry_exceeds_max(self): self.flags(migrate_max_retries=0) self.mox.StubOutWithMock(compute_utils, 'get_image_metadata') self.mox.StubOutWithMock(scheduler_utils, 'build_request_spec') self.mox.StubOutWithMock(scheduler_utils, 'setup_instance_group') self.mox.StubOutWithMock(self.task.scheduler_client, 'select_destinations') self.mox.StubOutWithMock(self.task, '_check_compatible_with_source_hypervisor') compute_utils.get_image_metadata(self.context, self.task.image_api, self.instance_image, self.instance).AndReturn("image") scheduler_utils.build_request_spec(self.context, mox.IgnoreArg(), mox.IgnoreArg()).AndReturn({}) scheduler_utils.setup_instance_group( self.context, {}, {'ignore_hosts': [self.instance_host]}) self.task.scheduler_client.select_destinations(self.context, mox.IgnoreArg(), mox.IgnoreArg()).AndReturn( [{'host': 'host1'}]) self.task._check_compatible_with_source_hypervisor("host1")\ .AndRaise(exception.DestinationHypervisorTooOld) self.mox.ReplayAll() self.assertRaises(exception.NoValidHost, self.task._find_destination) def test_find_destination_when_runs_out_of_hosts(self): self.mox.StubOutWithMock(compute_utils, 'get_image_metadata') self.mox.StubOutWithMock(scheduler_utils, 'build_request_spec') self.mox.StubOutWithMock(scheduler_utils, 'setup_instance_group') self.mox.StubOutWithMock(self.task.scheduler_client, 'select_destinations') compute_utils.get_image_metadata(self.context, self.task.image_api, self.instance_image, self.instance).AndReturn("image") scheduler_utils.build_request_spec(self.context, mox.IgnoreArg(), mox.IgnoreArg()).AndReturn({}) scheduler_utils.setup_instance_group( self.context, {}, {'ignore_hosts': [self.instance_host]}) self.task.scheduler_client.select_destinations(self.context, mox.IgnoreArg(), mox.IgnoreArg()).AndRaise( exception.NoValidHost(reason="")) self.mox.ReplayAll() self.assertRaises(exception.NoValidHost, self.task._find_destination) def test_not_implemented_rollback(self): self.assertRaises(NotImplementedError, self.task.rollback)
46.513514
78
0.665258
[ "Apache-2.0" ]
Metaswitch/calico-nova
nova/tests/unit/conductor/tasks/test_live_migrate.py
18,931
Python
""" Script to show the wireframe of a given mesh (read from a file) in an interactive Viewer. """ from viewer import * from mesh.obj import OBJFile import sys if __name__ == "__main__": app = Viewer() if len(sys.argv) > 1: try: obj = OBJFile.read(sys.argv[1]) app.scene.addObject(obj) app.title(sys.argv[1]) app.scene.setTarget(obj.centroid) except Exception as e: raise e else: print("No input file given. Nothing to render.") print("Try 'python3 wireframe.py yourobj.obj'") app.show()
23.038462
81
0.592654
[ "MIT" ]
fwidmaier/mesh_handler
wireframe.py
599
Python
# The MIT License (MIT) # Copyright (c) 2015 Yanzheng Li # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. ## ----------------------------------------------------------------------------- def test_assert_true(): try: assert True assert True, 'I want to believe.' except AssertionError: print 'This should not happen' ## ----------------------------------------------------------------------------- def test_assert_false(): try: assert False except AssertionError: print 'I cannot believe' ## ----------------------------------------------------------------------------- def test_assert_on_truthy_exprs(): try: assert 1 assert 1 + 1 assert 3.14 - 3.12 assert not False except AssertionError: print 'This should not happen' ## ----------------------------------------------------------------------------- def test_assert_on_falsy_exprs(): try: assert 0 except AssertionError: print 'I cannot believe' try: assert 0 - 1 except AssertionError: print 'I cannot believe' try: assert not True except AssertionError: print 'I cannot believe' try: assert 3.12 - 3.14 except AssertionError: print 'I cannot believe' ## ----------------------------------------------------------------------------- test_assert_true() test_assert_false() test_assert_on_truthy_exprs() test_assert_on_falsy_exprs() ## -----------------------------------------------------------------------------
31.52439
80
0.572534
[ "MIT" ]
mizuki-nana/coreVM
python/tests/assert.py
2,585
Python
import logging import pandas as pd from flask import Flask, request from gevent.pywsgi import WSGIServer from time import sleep from func import rms, meas_to_influx, rms_to_influx, config logger = logging.getLogger(config['log_name']) logger.setLevel(logging.INFO) h_stream = logging.StreamHandler() h_stream.setLevel(logging.INFO) logger.addHandler(h_stream) app = Flask(__name__) @app.post('/save') def save(): headers = request.headers if 'X-API-KEY' not in headers or headers['X-API-KEY'] != config['api_key']: sleep(5) return '', 401 data = request.json dt = pd.Timestamp(data['dt']) s_data, power = rms(data['payload'], data['ticks'], dt) if power < 0: logger.error(data) return '', 204 if power < 100: return str(power) # print(s_data) # print(power) rms_to_influx(power, dt) meas_to_influx(s_data) return str(power) if __name__ == '__main__': # app.run(host=config['url'], port=config['port']) WSGIServer((config['url'], config['port']), app).serve_forever()
22.87234
79
0.664186
[ "MIT" ]
dave-cz/esp32_power_meter
server/server.py
1,075
Python
# coding: utf-8 """ Provides the exporter tool. The exporter can be used to export ComodIT entities to local directories. """ from __future__ import print_function from builtins import object import os from comodit_client.api.collection import EntityNotFoundException from comodit_client.api.exceptions import PythonApiException from comodit_client.api.host import Host from comodit_client.rest.exceptions import ApiException from comodit_client.util.path import ensure import six from comodit_client.api import orchestration class ExportException(Exception): """ Exception raised by exporter in case of error. """ pass class Export(object): """ The exporter is a tool that enables to export entities to local directories. Exported entities may later be (re-)imported (see L{Import}). """ def __init__(self, force = False): """ Creates an exporter instance. If force flag is set, all data already present in a destination folder are overwritten on export. @param force: If True, force flag is set. It is not otherwise. @type force: bool """ self._force = force def _export_files_content(self, entity, output_folder): for template in entity.files(): file_name = template.name try: with open(os.path.join(output_folder, file_name), "w") as f: if six.PY2: f.write(template.read_content().encode('utf-8')) else: f.write(template.read_content()) except ApiException as e: if e.code == 404: pass else: raise e def _export_entity(self, res, res_folder, export_files = False, export_thumb = False, backup = False): if backup: print("backup", res.name, "to", res_folder) else: print("exporting", res.name, "to", res_folder) # Ensures local repository does not contain stale data if(os.path.exists(res_folder) and len(os.listdir(res_folder)) > 0) and not self._force: raise ExportException(res_folder + " already exists and is not empty.") res.dump(res_folder) if export_files: # Dump files' content to disk files_folder = os.path.join(res_folder, "files") ensure(files_folder) self._export_files_content(res, files_folder) if export_thumb: # Dump thumbnail to disk try: content = res.read_thumbnail_content() with open(os.path.join(res_folder, "thumb"), "wb") as f: f.write(content) except ApiException as e: if e.code == 404: pass else: raise e def export_application(self, app, path, backup = False): """ Exports an application to a local folder. @param app: The application to export. @type app: L{Application} @param path: Path to local directory. @type path: string @param backup: indicate is a backup. @type path: bool """ self._export_entity(app, path, True, True, backup) def export_distribution(self, dist, path, backup = False): """ Exports a distribution to a local folder. @param dist: The distribution to export. @type dist: L{Distribution} @param path: Path to local directory. @type path: string @param backup: indicate is a backup. @type path: bool """ self._export_entity(dist, path, True, True, backup) def export_platform(self, plat, path, backup = False): """ Exports a platform to a local folder. @param plat: The platform to export. @type plat: L{Platform} @param path: Path to local directory. @type path: string @param backup: indicate is a backup. @type path: bool """ self._export_entity(plat, path, True, backup=backup) def export_environment(self, env, path): """ Exports an environment to a local folder. Hosts of the environment are exported also. @param env: The environment to export. @type env: L{Environment} @param path: Path to local directory. @type path: string """ self._export_entity(env, path) hosts_folder = os.path.join(path, "hosts") for host in env.hosts(): self.export_host(host, os.path.join(hosts_folder, host.name)) def export_job(self, job, path): """ Exports a job to a local folder. @param job: The job to export. @type job: L{Job} @param path: Path to local directory. @type path: string """ self._export_entity(job, path) def export_orchestration(self, orchestration, path): """ Exports a orchestration to a local folder. @param job: The orchestration to export. @type orchestration: L{Orchestration} @param path: Path to local directory. @type path: string """ self._export_entity(orchestration, path) def export_notification(self, notification, path): """ Exports a jobnotificationto a local folder. @param notification: The notification to export. @type notification: L{Notification} @param path: Path to local directory. @type path: string """ self._export_entity(notification, path) def export_host(self, host, path): """ Exports a host to a local folder. Contexts and instance are exported also. @param host: The host to export. @type host: L{Host} @param path: Path to local directory. @type path: string """ self._export_entity(host, path) # Export instance if host.state != Host.State.DEFINED: try: instance = host.get_instance() instance.dump_json(os.path.join(path, "instance.json")) except PythonApiException: pass # Export application contexts app_folder = os.path.join(path, "applications") ensure(app_folder) for context in host.applications(): context.dump_json(os.path.join(app_folder, context.application + ".json")) # Export platform context try: host.get_platform().dump_json(os.path.join(path, "platform.json")) except EntityNotFoundException: pass # Export distribution context try: host.get_distribution().dump_json(os.path.join(path, "distribution.json")) except EntityNotFoundException: pass def export_organization(self, org, path): """ Exports an organization to a local folder. Environments, applications, distributions and platforms are exported also. @param org: The organization to export. @type org: L{Organization} @param path: Path to local directory. @type path: string """ self._export_entity(org, path) for app in org.applications(): self.export_application(app, os.path.join(path, "applications", app.name)) for dist in org.distributions(): self.export_distribution(dist, os.path.join(path, "distributions", dist.name)) for plat in org.platforms(): self.export_platform(plat, os.path.join(path, "platforms", plat.name)) for job in org.jobs(): self.export_job(job, os.path.join(path, "jobs", job.name)) for orch in org.orchestrations(): self.export_orchestration(orch, os.path.join(path, "orchestrations", orch.name)) for env in org.environments(): self.export_environment(env, os.path.join(path, "environments", env.name))
31.822134
106
0.600795
[ "MIT" ]
geoco84/comodit-client
comodit_client/api/exporter.py
8,051
Python
from __future__ import absolute_import, division, print_function import argparse import sys import os import py import pytest from _pytest.config import argparsing as parseopt @pytest.fixture def parser(): return parseopt.Parser() class TestParser(object): def test_no_help_by_default(self, capsys): parser = parseopt.Parser(usage="xyz") pytest.raises(SystemExit, lambda: parser.parse(["-h"])) out, err = capsys.readouterr() assert err.find("error: unrecognized arguments") != -1 def test_argument(self): with pytest.raises(parseopt.ArgumentError): # need a short or long option argument = parseopt.Argument() argument = parseopt.Argument("-t") assert argument._short_opts == ["-t"] assert argument._long_opts == [] assert argument.dest == "t" argument = parseopt.Argument("-t", "--test") assert argument._short_opts == ["-t"] assert argument._long_opts == ["--test"] assert argument.dest == "test" argument = parseopt.Argument("-t", "--test", dest="abc") assert argument.dest == "abc" assert ( str(argument) == ("Argument(_short_opts: ['-t'], _long_opts: ['--test'], dest: 'abc')") ) def test_argument_type(self): argument = parseopt.Argument("-t", dest="abc", type=int) assert argument.type is int argument = parseopt.Argument("-t", dest="abc", type=str) assert argument.type is str argument = parseopt.Argument("-t", dest="abc", type=float) assert argument.type is float with pytest.warns(DeprecationWarning): with pytest.raises(KeyError): argument = parseopt.Argument("-t", dest="abc", type="choice") argument = parseopt.Argument( "-t", dest="abc", type=str, choices=["red", "blue"] ) assert argument.type is str def test_argument_processopt(self): argument = parseopt.Argument("-t", type=int) argument.default = 42 argument.dest = "abc" res = argument.attrs() assert res["default"] == 42 assert res["dest"] == "abc" def test_group_add_and_get(self, parser): group = parser.getgroup("hello", description="desc") assert group.name == "hello" assert group.description == "desc" def test_getgroup_simple(self, parser): group = parser.getgroup("hello", description="desc") assert group.name == "hello" assert group.description == "desc" group2 = parser.getgroup("hello") assert group2 is group def test_group_ordering(self, parser): parser.getgroup("1") parser.getgroup("2") parser.getgroup("3", after="1") groups = parser._groups groups_names = [x.name for x in groups] assert groups_names == list("132") def test_group_addoption(self): group = parseopt.OptionGroup("hello") group.addoption("--option1", action="store_true") assert len(group.options) == 1 assert isinstance(group.options[0], parseopt.Argument) def test_group_addoption_conflict(self): group = parseopt.OptionGroup("hello again") group.addoption("--option1", "--option-1", action="store_true") with pytest.raises(ValueError) as err: group.addoption("--option1", "--option-one", action="store_true") assert str({"--option1"}) in str(err.value) def test_group_shortopt_lowercase(self, parser): group = parser.getgroup("hello") pytest.raises( ValueError, """ group.addoption("-x", action="store_true") """, ) assert len(group.options) == 0 group._addoption("-x", action="store_true") assert len(group.options) == 1 def test_parser_addoption(self, parser): group = parser.getgroup("custom options") assert len(group.options) == 0 group.addoption("--option1", action="store_true") assert len(group.options) == 1 def test_parse(self, parser): parser.addoption("--hello", dest="hello", action="store") args = parser.parse(["--hello", "world"]) assert args.hello == "world" assert not getattr(args, parseopt.FILE_OR_DIR) def test_parse2(self, parser): args = parser.parse([py.path.local()]) assert getattr(args, parseopt.FILE_OR_DIR)[0] == py.path.local() def test_parse_known_args(self, parser): parser.parse_known_args([py.path.local()]) parser.addoption("--hello", action="store_true") ns = parser.parse_known_args(["x", "--y", "--hello", "this"]) assert ns.hello assert ns.file_or_dir == ["x"] def test_parse_known_and_unknown_args(self, parser): parser.addoption("--hello", action="store_true") ns, unknown = parser.parse_known_and_unknown_args( ["x", "--y", "--hello", "this"] ) assert ns.hello assert ns.file_or_dir == ["x"] assert unknown == ["--y", "this"] def test_parse_will_set_default(self, parser): parser.addoption("--hello", dest="hello", default="x", action="store") option = parser.parse([]) assert option.hello == "x" del option.hello parser.parse_setoption([], option) assert option.hello == "x" def test_parse_setoption(self, parser): parser.addoption("--hello", dest="hello", action="store") parser.addoption("--world", dest="world", default=42) class A(object): pass option = A() args = parser.parse_setoption(["--hello", "world"], option) assert option.hello == "world" assert option.world == 42 assert not args def test_parse_special_destination(self, parser): parser.addoption("--ultimate-answer", type=int) args = parser.parse(["--ultimate-answer", "42"]) assert args.ultimate_answer == 42 def test_parse_split_positional_arguments(self, parser): parser.addoption("-R", action="store_true") parser.addoption("-S", action="store_false") args = parser.parse(["-R", "4", "2", "-S"]) assert getattr(args, parseopt.FILE_OR_DIR) == ["4", "2"] args = parser.parse(["-R", "-S", "4", "2", "-R"]) assert getattr(args, parseopt.FILE_OR_DIR) == ["4", "2"] assert args.R is True assert args.S is False args = parser.parse(["-R", "4", "-S", "2"]) assert getattr(args, parseopt.FILE_OR_DIR) == ["4", "2"] assert args.R is True assert args.S is False def test_parse_defaultgetter(self): def defaultget(option): if not hasattr(option, "type"): return if option.type is int: option.default = 42 elif option.type is str: option.default = "world" parser = parseopt.Parser(processopt=defaultget) parser.addoption("--this", dest="this", type=int, action="store") parser.addoption("--hello", dest="hello", type=str, action="store") parser.addoption("--no", dest="no", action="store_true") option = parser.parse([]) assert option.hello == "world" assert option.this == 42 assert option.no is False def test_drop_short_helper(self): parser = argparse.ArgumentParser( formatter_class=parseopt.DropShorterLongHelpFormatter ) parser.add_argument( "-t", "--twoword", "--duo", "--two-word", "--two", help="foo" ).map_long_option = { "two": "two-word" } # throws error on --deux only! parser.add_argument( "-d", "--deuxmots", "--deux-mots", action="store_true", help="foo" ).map_long_option = { "deux": "deux-mots" } parser.add_argument("-s", action="store_true", help="single short") parser.add_argument("--abc", "-a", action="store_true", help="bar") parser.add_argument("--klm", "-k", "--kl-m", action="store_true", help="bar") parser.add_argument( "-P", "--pq-r", "-p", "--pqr", action="store_true", help="bar" ) parser.add_argument( "--zwei-wort", "--zweiwort", "--zweiwort", action="store_true", help="bar" ) parser.add_argument( "-x", "--exit-on-first", "--exitfirst", action="store_true", help="spam" ).map_long_option = { "exitfirst": "exit-on-first" } parser.add_argument("files_and_dirs", nargs="*") args = parser.parse_args(["-k", "--duo", "hallo", "--exitfirst"]) assert args.twoword == "hallo" assert args.klm is True assert args.zwei_wort is False assert args.exit_on_first is True assert args.s is False args = parser.parse_args(["--deux-mots"]) with pytest.raises(AttributeError): assert args.deux_mots is True assert args.deuxmots is True args = parser.parse_args(["file", "dir"]) assert "|".join(args.files_and_dirs) == "file|dir" def test_drop_short_0(self, parser): parser.addoption("--funcarg", "--func-arg", action="store_true") parser.addoption("--abc-def", "--abc-def", action="store_true") parser.addoption("--klm-hij", action="store_true") args = parser.parse(["--funcarg", "--k"]) assert args.funcarg is True assert args.abc_def is False assert args.klm_hij is True def test_drop_short_2(self, parser): parser.addoption("--func-arg", "--doit", action="store_true") args = parser.parse(["--doit"]) assert args.func_arg is True def test_drop_short_3(self, parser): parser.addoption("--func-arg", "--funcarg", "--doit", action="store_true") args = parser.parse(["abcd"]) assert args.func_arg is False assert args.file_or_dir == ["abcd"] def test_drop_short_help0(self, parser, capsys): parser.addoption("--func-args", "--doit", help="foo", action="store_true") parser.parse([]) help = parser.optparser.format_help() assert "--func-args, --doit foo" in help # testing would be more helpful with all help generated def test_drop_short_help1(self, parser, capsys): group = parser.getgroup("general") group.addoption("--doit", "--func-args", action="store_true", help="foo") group._addoption( "-h", "--help", action="store_true", dest="help", help="show help message and configuration info", ) parser.parse(["-h"]) help = parser.optparser.format_help() assert "-doit, --func-args foo" in help def test_multiple_metavar_help(self, parser): """ Help text for options with a metavar tuple should display help in the form "--preferences=value1 value2 value3" (#2004). """ group = parser.getgroup("general") group.addoption( "--preferences", metavar=("value1", "value2", "value3"), nargs=3 ) group._addoption("-h", "--help", action="store_true", dest="help") parser.parse(["-h"]) help = parser.optparser.format_help() assert "--preferences=value1 value2 value3" in help def test_argcomplete(testdir, monkeypatch): if not py.path.local.sysfind("bash"): pytest.skip("bash not available") script = str(testdir.tmpdir.join("test_argcomplete")) pytest_bin = sys.argv[0] if "pytest" not in os.path.basename(pytest_bin): pytest.skip("need to be run with pytest executable, not %s" % (pytest_bin,)) with open(str(script), "w") as fp: # redirect output from argcomplete to stdin and stderr is not trivial # http://stackoverflow.com/q/12589419/1307905 # so we use bash fp.write('COMP_WORDBREAKS="$COMP_WORDBREAKS" %s 8>&1 9>&2' % pytest_bin) # alternative would be exteneded Testdir.{run(),_run(),popen()} to be able # to handle a keyword argument env that replaces os.environ in popen or # extends the copy, advantage: could not forget to restore monkeypatch.setenv("_ARGCOMPLETE", "1") monkeypatch.setenv("_ARGCOMPLETE_IFS", "\x0b") monkeypatch.setenv("COMP_WORDBREAKS", " \\t\\n\"\\'><=;|&(:") arg = "--fu" monkeypatch.setenv("COMP_LINE", "pytest " + arg) monkeypatch.setenv("COMP_POINT", str(len("pytest " + arg))) result = testdir.run("bash", str(script), arg) if result.ret == 255: # argcomplete not found pytest.skip("argcomplete not available") elif not result.stdout.str(): pytest.skip("bash provided no output, argcomplete not available?") else: result.stdout.fnmatch_lines(["--funcargs", "--fulltrace"]) os.mkdir("test_argcomplete.d") arg = "test_argc" monkeypatch.setenv("COMP_LINE", "pytest " + arg) monkeypatch.setenv("COMP_POINT", str(len("pytest " + arg))) result = testdir.run("bash", str(script), arg) result.stdout.fnmatch_lines(["test_argcomplete", "test_argcomplete.d/"])
39.249258
86
0.597112
[ "BSD-3-Clause" ]
2-GARIK20/wpt
tools/third_party/pytest/testing/test_parseopt.py
13,227
Python
# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- # pylint: disable=too-few-public-methods, too-many-instance-attributes # pylint: disable=super-init-not-called, too-many-lines from enum import Enum from azure.storage.blob import LeaseProperties as BlobLeaseProperties from azure.storage.blob import AccountSasPermissions as BlobAccountSasPermissions from azure.storage.blob import ResourceTypes as BlobResourceTypes from azure.storage.blob import UserDelegationKey as BlobUserDelegationKey from azure.storage.blob import ContentSettings as BlobContentSettings from azure.storage.blob import AccessPolicy as BlobAccessPolicy from azure.storage.blob import DelimitedTextDialect as BlobDelimitedTextDialect from azure.storage.blob import DelimitedJsonDialect as BlobDelimitedJSON from azure.storage.blob import ArrowDialect as BlobArrowDialect from azure.storage.blob._models import ContainerPropertiesPaged from ._shared.models import DictMixin class FileSystemProperties(object): """File System properties class. :ivar ~datetime.datetime last_modified: A datetime object representing the last time the file system was modified. :ivar str etag: The ETag contains a value that you can use to perform operations conditionally. :ivar ~azure.storage.filedatalake.LeaseProperties lease: Stores all the lease information for the file system. :ivar str public_access: Specifies whether data in the file system may be accessed publicly and the level of access. :ivar bool has_immutability_policy: Represents whether the file system has an immutability policy. :ivar bool has_legal_hold: Represents whether the file system has a legal hold. :ivar dict metadata: A dict with name-value pairs to associate with the file system as metadata. Returned ``FileSystemProperties`` instances expose these values through a dictionary interface, for example: ``file_system_props["last_modified"]``. Additionally, the file system name is available as ``file_system_props["name"]``. """ def __init__(self): self.name = None self.last_modified = None self.etag = None self.lease = None self.public_access = None self.has_immutability_policy = None self.has_legal_hold = None self.metadata = None @classmethod def _from_generated(cls, generated): props = cls() props.name = generated.name props.last_modified = generated.properties.last_modified props.etag = generated.properties.etag props.lease = LeaseProperties._from_generated(generated) # pylint: disable=protected-access props.public_access = PublicAccess._from_generated( # pylint: disable=protected-access generated.properties.public_access) props.has_immutability_policy = generated.properties.has_immutability_policy props.has_legal_hold = generated.properties.has_legal_hold props.metadata = generated.metadata return props @classmethod def _convert_from_container_props(cls, container_properties): container_properties.__class__ = cls container_properties.public_access = PublicAccess._from_generated( # pylint: disable=protected-access container_properties.public_access) container_properties.lease.__class__ = LeaseProperties return container_properties class FileSystemPropertiesPaged(ContainerPropertiesPaged): """An Iterable of File System properties. :ivar str service_endpoint: The service URL. :ivar str prefix: A file system name prefix being used to filter the list. :ivar str marker: The continuation token of the current page of results. :ivar int results_per_page: The maximum number of results retrieved per API call. :ivar str continuation_token: The continuation token to retrieve the next page of results. :ivar str location_mode: The location mode being used to list results. The available options include "primary" and "secondary". :ivar current_page: The current page of listed results. :vartype current_page: list(~azure.storage.filedatalake.FileSystemProperties) :param callable command: Function to retrieve the next page of items. :param str prefix: Filters the results to return only file systems whose names begin with the specified prefix. :param int results_per_page: The maximum number of file system names to retrieve per call. :param str continuation_token: An opaque continuation token. """ def __init__(self, *args, **kwargs): super(FileSystemPropertiesPaged, self).__init__( *args, **kwargs ) @staticmethod def _build_item(item): return FileSystemProperties._from_generated(item) # pylint: disable=protected-access class DirectoryProperties(DictMixin): """ :ivar str name: name of the directory :ivar str etag: The ETag contains a value that you can use to perform operations conditionally. :ivar bool deleted: if the current directory marked as deleted :ivar dict metadata: Name-value pairs associated with the directory as metadata. :ivar ~azure.storage.filedatalake.LeaseProperties lease: Stores all the lease information for the directory. :ivar ~datetime.datetime last_modified: A datetime object representing the last time the directory was modified. :ivar ~datetime.datetime creation_time: Indicates when the directory was created, in UTC. :ivar int remaining_retention_days: The number of days that the directory will be retained before being permanently deleted by the service. :var ~azure.storage.filedatalake.ContentSettings content_settings: """ def __init__(self, **kwargs): self.name = kwargs.get('name') self.etag = kwargs.get('ETag') self.deleted = None self.metadata = kwargs.get('metadata') self.lease = LeaseProperties(**kwargs) self.last_modified = kwargs.get('Last-Modified') self.creation_time = kwargs.get('x-ms-creation-time') self.deleted_time = None self.remaining_retention_days = None class FileProperties(DictMixin): """ :ivar str name: name of the file :ivar str etag: The ETag contains a value that you can use to perform operations conditionally. :ivar bool deleted: if the current file marked as deleted :ivar dict metadata: Name-value pairs associated with the file as metadata. :ivar ~azure.storage.filedatalake.LeaseProperties lease: Stores all the lease information for the file. :ivar ~datetime.datetime last_modified: A datetime object representing the last time the file was modified. :ivar ~datetime.datetime creation_time: Indicates when the file was created, in UTC. :ivar int size: size of the file :ivar int remaining_retention_days: The number of days that the file will be retained before being permanently deleted by the service. :var ~azure.storage.filedatalake.ContentSettings content_settings: """ def __init__(self, **kwargs): self.name = kwargs.get('name') self.etag = kwargs.get('ETag') self.deleted = None self.metadata = kwargs.get('metadata') self.lease = LeaseProperties(**kwargs) self.last_modified = kwargs.get('Last-Modified') self.creation_time = kwargs.get('x-ms-creation-time') self.size = kwargs.get('Content-Length') self.deleted_time = None self.expiry_time = kwargs.get("x-ms-expiry-time") self.remaining_retention_days = None self.content_settings = ContentSettings(**kwargs) class PathProperties(object): """Path properties listed by get_paths api. :ivar str name: the full path for a file or directory. :ivar str owner: The owner of the file or directory. :ivar str group: he owning group of the file or directory. :ivar str permissions: Sets POSIX access permissions for the file owner, the file owning group, and others. Each class may be granted read, write, or execute permission. The sticky bit is also supported. Both symbolic (rwxrw-rw-) and 4-digit octal notation (e.g. 0766) are supported. :ivar datetime last_modified: A datetime object representing the last time the directory/file was modified. :ivar bool is_directory: is the path a directory or not. :ivar str etag: The ETag contains a value that you can use to perform operations conditionally. :ivar content_length: the size of file if the path is a file. """ def __init__(self, **kwargs): super(PathProperties, self).__init__( **kwargs ) self.name = kwargs.pop('name', None) self.owner = kwargs.get('owner', None) self.group = kwargs.get('group', None) self.permissions = kwargs.get('permissions', None) self.last_modified = kwargs.get('last_modified', None) self.is_directory = kwargs.get('is_directory', False) self.etag = kwargs.get('etag', None) self.content_length = kwargs.get('content_length', None) @classmethod def _from_generated(cls, generated): path_prop = PathProperties() path_prop.name = generated.name path_prop.owner = generated.owner path_prop.group = generated.group path_prop.permissions = generated.permissions path_prop.last_modified = generated.last_modified path_prop.is_directory = bool(generated.is_directory) path_prop.etag = generated.additional_properties.get('etag') path_prop.content_length = generated.content_length return path_prop class LeaseProperties(BlobLeaseProperties): """DataLake Lease Properties. :ivar str status: The lease status of the file. Possible values: locked|unlocked :ivar str state: Lease state of the file. Possible values: available|leased|expired|breaking|broken :ivar str duration: When a file is leased, specifies whether the lease is of infinite or fixed duration. """ class ContentSettings(BlobContentSettings): """The content settings of a file or directory. :ivar str content_type: The content type specified for the file or directory. If no content type was specified, the default content type is application/octet-stream. :ivar str content_encoding: If the content_encoding has previously been set for the file, that value is stored. :ivar str content_language: If the content_language has previously been set for the file, that value is stored. :ivar str content_disposition: content_disposition conveys additional information about how to process the response payload, and also can be used to attach additional metadata. If content_disposition has previously been set for the file, that value is stored. :ivar str cache_control: If the cache_control has previously been set for the file, that value is stored. :ivar str content_md5: If the content_md5 has been set for the file, this response header is stored so that the client can check for message content integrity. :keyword str content_type: The content type specified for the file or directory. If no content type was specified, the default content type is application/octet-stream. :keyword str content_encoding: If the content_encoding has previously been set for the file, that value is stored. :keyword str content_language: If the content_language has previously been set for the file, that value is stored. :keyword str content_disposition: content_disposition conveys additional information about how to process the response payload, and also can be used to attach additional metadata. If content_disposition has previously been set for the file, that value is stored. :keyword str cache_control: If the cache_control has previously been set for the file, that value is stored. :keyword str content_md5: If the content_md5 has been set for the file, this response header is stored so that the client can check for message content integrity. """ def __init__( self, **kwargs): super(ContentSettings, self).__init__( **kwargs ) class AccountSasPermissions(BlobAccountSasPermissions): def __init__(self, read=False, write=False, delete=False, list=False, # pylint: disable=redefined-builtin create=False): super(AccountSasPermissions, self).__init__( read=read, create=create, write=write, list=list, delete=delete ) class FileSystemSasPermissions(object): """FileSystemSasPermissions class to be used with the :func:`~azure.storage.filedatalake.generate_file_system_sas` function. :param bool read: Read the content, properties, metadata etc. :param bool write: Create or write content, properties, metadata. Lease the file system. :param bool delete: Delete the file system. :param bool list: List paths in the file system. :keyword bool move: Move any file in the directory to a new location. Note the move operation can optionally be restricted to the child file or directory owner or the parent directory owner if the saoid parameter is included in the token and the sticky bit is set on the parent directory. :keyword bool execute: Get the status (system defined properties) and ACL of any file in the directory. If the caller is the owner, set access control on any file in the directory. :keyword bool manage_ownership: Allows the user to set owner, owning group, or act as the owner when renaming or deleting a file or directory within a folder that has the sticky bit set. :keyword bool manage_access_control: Allows the user to set permissions and POSIX ACLs on files and directories. """ def __init__(self, read=False, write=False, delete=False, list=False, # pylint: disable=redefined-builtin **kwargs): self.read = read self.write = write self.delete = delete self.list = list self.move = kwargs.pop('move', None) self.execute = kwargs.pop('execute', None) self.manage_ownership = kwargs.pop('manage_ownership', None) self.manage_access_control = kwargs.pop('manage_access_control', None) self._str = (('r' if self.read else '') + ('w' if self.write else '') + ('d' if self.delete else '') + ('l' if self.list else '') + ('m' if self.move else '') + ('e' if self.execute else '') + ('o' if self.manage_ownership else '') + ('p' if self.manage_access_control else '')) def __str__(self): return self._str @classmethod def from_string(cls, permission): """Create a FileSystemSasPermissions from a string. To specify read, write, or delete permissions you need only to include the first letter of the word in the string. E.g. For read and write permissions, you would provide a string "rw". :param str permission: The string which dictates the read, add, create, write, or delete permissions. :return: A FileSystemSasPermissions object :rtype: ~azure.storage.fildatalake.FileSystemSasPermissions """ p_read = 'r' in permission p_write = 'w' in permission p_delete = 'd' in permission p_list = 'l' in permission p_move = 'm' in permission p_execute = 'e' in permission p_manage_ownership = 'o' in permission p_manage_access_control = 'p' in permission parsed = cls(read=p_read, write=p_write, delete=p_delete, list=p_list, move=p_move, execute=p_execute, manage_ownership=p_manage_ownership, manage_access_control=p_manage_access_control) return parsed class DirectorySasPermissions(object): """DirectorySasPermissions class to be used with the :func:`~azure.storage.filedatalake.generate_directory_sas` function. :param bool read: Read the content, properties, metadata etc. :param bool create: Create a new directory :param bool write: Create or write content, properties, metadata. Lease the directory. :param bool delete: Delete the directory. :keyword bool list: List any files in the directory. Implies Execute. :keyword bool move: Move any file in the directory to a new location. Note the move operation can optionally be restricted to the child file or directory owner or the parent directory owner if the saoid parameter is included in the token and the sticky bit is set on the parent directory. :keyword bool execute: Get the status (system defined properties) and ACL of any file in the directory. If the caller is the owner, set access control on any file in the directory. :keyword bool manage_ownership: Allows the user to set owner, owning group, or act as the owner when renaming or deleting a file or directory within a folder that has the sticky bit set. :keyword bool manage_access_control: Allows the user to set permissions and POSIX ACLs on files and directories. """ def __init__(self, read=False, create=False, write=False, delete=False, **kwargs): self.read = read self.create = create self.write = write self.delete = delete self.list = kwargs.pop('list', None) self.move = kwargs.pop('move', None) self.execute = kwargs.pop('execute', None) self.manage_ownership = kwargs.pop('manage_ownership', None) self.manage_access_control = kwargs.pop('manage_access_control', None) self._str = (('r' if self.read else '') + ('c' if self.create else '') + ('w' if self.write else '') + ('d' if self.delete else '') + ('l' if self.list else '') + ('m' if self.move else '') + ('e' if self.execute else '') + ('o' if self.manage_ownership else '') + ('p' if self.manage_access_control else '')) def __str__(self): return self._str @classmethod def from_string(cls, permission): """Create a DirectorySasPermissions from a string. To specify read, create, write, or delete permissions you need only to include the first letter of the word in the string. E.g. For read and write permissions, you would provide a string "rw". :param str permission: The string which dictates the read, add, create, write, or delete permissions. :return: A DirectorySasPermissions object :rtype: ~azure.storage.filedatalake.DirectorySasPermissions """ p_read = 'r' in permission p_create = 'c' in permission p_write = 'w' in permission p_delete = 'd' in permission p_list = 'l' in permission p_move = 'm' in permission p_execute = 'e' in permission p_manage_ownership = 'o' in permission p_manage_access_control = 'p' in permission parsed = cls(read=p_read, create=p_create, write=p_write, delete=p_delete, list=p_list, move=p_move, execute=p_execute, manage_ownership=p_manage_ownership, manage_access_control=p_manage_access_control) return parsed class FileSasPermissions(object): """FileSasPermissions class to be used with the :func:`~azure.storage.filedatalake.generate_file_sas` function. :param bool read: Read the content, properties, metadata etc. Use the file as the source of a read operation. :param bool create: Write a new file :param bool write: Create or write content, properties, metadata. Lease the file. :param bool delete: Delete the file. :keyword bool move: Move any file in the directory to a new location. Note the move operation can optionally be restricted to the child file or directory owner or the parent directory owner if the saoid parameter is included in the token and the sticky bit is set on the parent directory. :keyword bool execute: Get the status (system defined properties) and ACL of any file in the directory. If the caller is the owner, set access control on any file in the directory. :keyword bool manage_ownership: Allows the user to set owner, owning group, or act as the owner when renaming or deleting a file or directory within a folder that has the sticky bit set. :keyword bool manage_access_control: Allows the user to set permissions and POSIX ACLs on files and directories. """ def __init__(self, read=False, create=False, write=False, delete=False, **kwargs): self.read = read self.create = create self.write = write self.delete = delete self.list = list self.move = kwargs.pop('move', None) self.execute = kwargs.pop('execute', None) self.manage_ownership = kwargs.pop('manage_ownership', None) self.manage_access_control = kwargs.pop('manage_access_control', None) self._str = (('r' if self.read else '') + ('c' if self.create else '') + ('w' if self.write else '') + ('d' if self.delete else '') + ('m' if self.move else '') + ('e' if self.execute else '') + ('o' if self.manage_ownership else '') + ('p' if self.manage_access_control else '')) def __str__(self): return self._str @classmethod def from_string(cls, permission): """Create a FileSasPermissions from a string. To specify read, write, or delete permissions you need only to include the first letter of the word in the string. E.g. For read and write permissions, you would provide a string "rw". :param str permission: The string which dictates the read, add, create, write, or delete permissions. :return: A FileSasPermissions object :rtype: ~azure.storage.fildatalake.FileSasPermissions """ p_read = 'r' in permission p_create = 'c' in permission p_write = 'w' in permission p_delete = 'd' in permission p_move = 'm' in permission p_execute = 'e' in permission p_manage_ownership = 'o' in permission p_manage_access_control = 'p' in permission parsed = cls(read=p_read, create=p_create, write=p_write, delete=p_delete, move=p_move, execute=p_execute, manage_ownership=p_manage_ownership, manage_access_control=p_manage_access_control) return parsed class AccessPolicy(BlobAccessPolicy): """Access Policy class used by the set and get access policy methods in each service. A stored access policy can specify the start time, expiry time, and permissions for the Shared Access Signatures with which it's associated. Depending on how you want to control access to your resource, you can specify all of these parameters within the stored access policy, and omit them from the URL for the Shared Access Signature. Doing so permits you to modify the associated signature's behavior at any time, as well as to revoke it. Or you can specify one or more of the access policy parameters within the stored access policy, and the others on the URL. Finally, you can specify all of the parameters on the URL. In this case, you can use the stored access policy to revoke the signature, but not to modify its behavior. Together the Shared Access Signature and the stored access policy must include all fields required to authenticate the signature. If any required fields are missing, the request will fail. Likewise, if a field is specified both in the Shared Access Signature URL and in the stored access policy, the request will fail with status code 400 (Bad Request). :param permission: The permissions associated with the shared access signature. The user is restricted to operations allowed by the permissions. Required unless an id is given referencing a stored access policy which contains this field. This field must be omitted if it has been specified in an associated stored access policy. :type permission: str or ~azure.storage.datalake.FileSystemSasPermissions :param expiry: The time at which the shared access signature becomes invalid. Required unless an id is given referencing a stored access policy which contains this field. This field must be omitted if it has been specified in an associated stored access policy. Azure will always convert values to UTC. If a date is passed in without timezone info, it is assumed to be UTC. :type expiry: ~datetime.datetime or str :keyword start: The time at which the shared access signature becomes valid. If omitted, start time for this call is assumed to be the time when the storage service receives the request. Azure will always convert values to UTC. If a date is passed in without timezone info, it is assumed to be UTC. :paramtype start: ~datetime.datetime or str """ def __init__(self, permission=None, expiry=None, **kwargs): super(AccessPolicy, self).__init__( permission=permission, expiry=expiry, start=kwargs.pop('start', None) ) class ResourceTypes(BlobResourceTypes): """ Specifies the resource types that are accessible with the account SAS. :param bool service: Access to service-level APIs (e.g.List File Systems) :param bool file_system: Access to file_system-level APIs (e.g., Create/Delete file system, List Directories/Files) :param bool object: Access to object-level APIs for files(e.g. Create File, etc.) """ def __init__(self, service=False, file_system=False, object=False # pylint: disable=redefined-builtin ): super(ResourceTypes, self).__init__(service=service, container=file_system, object=object) class UserDelegationKey(BlobUserDelegationKey): """ Represents a user delegation key, provided to the user by Azure Storage based on their Azure Active Directory access token. The fields are saved as simple strings since the user does not have to interact with this object; to generate an identify SAS, the user can simply pass it to the right API. :ivar str signed_oid: Object ID of this token. :ivar str signed_tid: Tenant ID of the tenant that issued this token. :ivar str signed_start: The datetime this token becomes valid. :ivar str signed_expiry: The datetime this token expires. :ivar str signed_service: What service this key is valid for. :ivar str signed_version: The version identifier of the REST service that created this token. :ivar str value: The user delegation key. """ @classmethod def _from_generated(cls, generated): delegation_key = cls() delegation_key.signed_oid = generated.signed_oid delegation_key.signed_tid = generated.signed_tid delegation_key.signed_start = generated.signed_start delegation_key.signed_expiry = generated.signed_expiry delegation_key.signed_service = generated.signed_service delegation_key.signed_version = generated.signed_version delegation_key.value = generated.value return delegation_key class PublicAccess(str, Enum): """ Specifies whether data in the file system may be accessed publicly and the level of access. """ File = 'blob' """ Specifies public read access for files. file data within this file system can be read via anonymous request, but file system data is not available. Clients cannot enumerate files within the container via anonymous request. """ FileSystem = 'container' """ Specifies full public read access for file system and file data. Clients can enumerate files within the file system via anonymous request, but cannot enumerate file systems within the storage account. """ @classmethod def _from_generated(cls, public_access): if public_access == "blob": # pylint:disable=no-else-return return cls.File elif public_access == "container": return cls.FileSystem return None class LocationMode(object): """ Specifies the location the request should be sent to. This mode only applies for RA-GRS accounts which allow secondary read access. All other account types must use PRIMARY. """ PRIMARY = 'primary' #: Requests should be sent to the primary location. SECONDARY = 'secondary' #: Requests should be sent to the secondary location, if possible. class DelimitedJsonDialect(BlobDelimitedJSON): """Defines the input or output JSON serialization for a datalake query. :keyword str delimiter: The line separator character, default value is '\n' """ class DelimitedTextDialect(BlobDelimitedTextDialect): """Defines the input or output delimited (CSV) serialization for a datalake query request. :keyword str delimiter: Column separator, defaults to ','. :keyword str quotechar: Field quote, defaults to '"'. :keyword str lineterminator: Record separator, defaults to '\n'. :keyword str escapechar: Escape char, defaults to empty. :keyword bool has_header: Whether the blob data includes headers in the first line. The default value is False, meaning that the data will be returned inclusive of the first line. If set to True, the data will be returned exclusive of the first line. """ class ArrowDialect(BlobArrowDialect): """field of an arrow schema. All required parameters must be populated in order to send to Azure. :param str type: Required. :keyword str name: The name of the field. :keyword int precision: The precision of the field. :keyword int scale: The scale of the field. """ class ArrowType(str, Enum): INT64 = "int64" BOOL = "bool" TIMESTAMP_MS = "timestamp[ms]" STRING = "string" DOUBLE = "double" DECIMAL = 'decimal' class DataLakeFileQueryError(object): """The error happened during quick query operation. :ivar str error: The name of the error. :ivar bool is_fatal: If true, this error prevents further query processing. More result data may be returned, but there is no guarantee that all of the original data will be processed. If false, this error does not prevent further query processing. :ivar str description: A description of the error. :ivar int position: The blob offset at which the error occurred. """ def __init__(self, error=None, is_fatal=False, description=None, position=None): self.error = error self.is_fatal = is_fatal self.description = description self.position = position class AccessControlChangeCounters(DictMixin): """ AccessControlChangeCounters contains counts of operations that change Access Control Lists recursively. :ivar int directories_successful: Number of directories where Access Control List has been updated successfully. :ivar int files_successful: Number of files where Access Control List has been updated successfully. :ivar int failure_count: Number of paths where Access Control List update has failed. """ def __init__(self, directories_successful, files_successful, failure_count): self.directories_successful = directories_successful self.files_successful = files_successful self.failure_count = failure_count class AccessControlChangeResult(DictMixin): """ AccessControlChangeResult contains result of operations that change Access Control Lists recursively. :ivar ~azure.storage.filedatalake.AccessControlChangeCounters counters: Contains counts of paths changed from start of the operation. :ivar str continuation: Optional continuation token. Value is present when operation is split into multiple batches and can be used to resume progress. """ def __init__(self, counters, continuation): self.counters = counters self.continuation = continuation class AccessControlChangeFailure(DictMixin): """ Represents an entry that failed to update Access Control List. :ivar str name: Name of the entry. :ivar bool is_directory: Indicates whether the entry is a directory. :ivar str error_message: Indicates the reason why the entry failed to update. """ def __init__(self, name, is_directory, error_message): self.name = name self.is_directory = is_directory self.error_message = error_message class AccessControlChanges(DictMixin): """ AccessControlChanges contains batch and cumulative counts of operations that change Access Control Lists recursively. Additionally it exposes path entries that failed to update while these operations progress. :ivar ~azure.storage.filedatalake.AccessControlChangeCounters batch_counters: Contains counts of paths changed within single batch. :ivar ~azure.storage.filedatalake.AccessControlChangeCounters aggregate_counters: Contains counts of paths changed from start of the operation. :ivar list(~azure.storage.filedatalake.AccessControlChangeFailure) batch_failures: List of path entries that failed to update Access Control List within single batch. :ivar str continuation: An opaque continuation token that may be used to resume the operations in case of failures. """ def __init__(self, batch_counters, aggregate_counters, batch_failures, continuation): self.batch_counters = batch_counters self.aggregate_counters = aggregate_counters self.batch_failures = batch_failures self.continuation = continuation class DataLakeAclChangeFailedError(Exception): """The error happened during set/update/remove acl recursive operation. :ivar ~azure.core.exceptions.AzureError error: The exception. :ivar str description: A description of the error. :ivar str continuation: An opaque continuation token that may be used to resume the operations in case of failures. """ def __init__(self, error, description, continuation): self.error = error self.description = description self.continuation = continuation
42.770883
117
0.685843
[ "MIT" ]
Co0olboi/azure-sdk-for-python
sdk/storage/azure-storage-file-datalake/azure/storage/filedatalake/_models.py
35,842
Python
#!/usr/bin/env python from circuits import Component from circuits.web import JSONRPC, Controller from .helpers import urlopen from .jsonrpclib import ServerProxy class App(Component): def eval(self, s): return eval(s) class Root(Controller): def index(self): return "Hello World!" def test(webapp): rpc = JSONRPC("/rpc") test = App() rpc.register(webapp) test.register(webapp) f = urlopen(webapp.server.http.base) s = f.read() assert s == b"Hello World!" url = "%s/rpc" % webapp.server.http.base jsonrpc = ServerProxy(url, allow_none=True, encoding='utf-8') data = jsonrpc.eval("1 + 2") assert data["result"] == 3 rpc.unregister() test.unregister()
18.948718
65
0.645467
[ "MIT" ]
hugovk/circuits
tests/web/test_jsonrpc.py
739
Python
from output.models.saxon_data.all.all001_xsd.all001 import Doc __all__ = [ "Doc", ]
14.833333
62
0.719101
[ "MIT" ]
tefra/xsdata-w3c-tests
output/models/saxon_data/all/all001_xsd/__init__.py
89
Python
from django import forms from .models import Todo class TodoForm(forms.ModelForm): class Meta: model = Todo fields="__all__"
16.375
32
0.755725
[ "MIT" ]
Ronlin1/To-Do-App
app/forms.py
131
Python
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Init module for TensorFlow Model Optimization Python API. ``` import tensorflow_model_optimization as tfmot ``` """ from __future__ import absolute_import from __future__ import division from __future__ import print_function # We need to put some imports inside a function call below, and the function # call needs to come before the *actual* imports that populate the # tensorflow_model_optimization namespace. Hence, we disable this lint check # throughout the file. # # pylint: disable=g-import-not-at-top # Ensure TensorFlow is importable and its version is sufficiently recent. This # needs to happen before anything else, since the imports below will try to # import tensorflow, too. def _ensure_tf_install(): # pylint: disable=g-statement-before-imports """Attempt to import tensorflow, and ensure its version is sufficient. Raises: ImportError: if either tensorflow is not importable or its version is inadequate. """ try: import tensorflow as tf except ImportError: # Print more informative error message, then reraise. print( '\n\nFailed to import TensorFlow. Please note that TensorFlow is not ' 'installed by default when you install TensorFlow Model Optimization. This ' 'is so that users can decide whether to install the GPU-enabled ' 'TensorFlow package. To use TensorFlow Model Optimization, please install ' 'the most recent version of TensorFlow, by following instructions at ' 'https://tensorflow.org/install.\n\n') raise import distutils.version # # Update this whenever we need to depend on a newer TensorFlow release. # required_tensorflow_version = '1.14.0' if (distutils.version.LooseVersion(tf.version.VERSION) < distutils.version.LooseVersion(required_tensorflow_version)): raise ImportError( 'This version of TensorFlow Model Optimization requires TensorFlow ' 'version >= {required}; Detected an installation of version {present}. ' 'Please upgrade TensorFlow to proceed.'.format( required=required_tensorflow_version, present=tf.__version__)) _ensure_tf_install() import inspect as _inspect import os as _os import sys as _sys # To ensure users only access the expected public API, the API structure is # created in the `api` directory. Import all api modules. # pylint: disable=wildcard-import from tensorflow_model_optimization.python.core.api import * # pylint: enable=wildcard-import # Use sparsity module to fetch the path for the `api` directory. # This handles all techniques, not just sparsity. _API_MODULE = sparsity # pylint: disable=undefined-variable # Returns $(install_dir)/tensorflow_model_optimization/api _sparsity_api_dir = _os.path.dirname( _os.path.dirname(_inspect.getfile(_API_MODULE))) # Add the `api` directory to `__path__` so that `from * import module` works. _current_module = _sys.modules[__name__] if not hasattr(_current_module, '__path__'): __path__ = [_sparsity_api_dir] elif _os.path.dirname(_inspect.getfile(_API_MODULE)) not in __path__: __path__.append(_sparsity_api_dir) # Delete python module so that users only access the code using the API path # rather than using the code directory structure. # This will disallow usage such as `tfmot.python.core.sparsity.keras`. # pylint: disable=undefined-variable try: del python except NameError: pass # pylint: enable=undefined-variable
36.424779
84
0.744412
[ "Apache-2.0" ]
13957166977/model-optimization
tensorflow_model_optimization/__init__.py
4,116
Python
""" Constructor functions intended to be shared by pd.array, Series.__init__, and Index.__new__. These should not depend on core.internals. """ from __future__ import annotations from collections import abc from typing import TYPE_CHECKING, Any, Optional, Sequence, Union, cast import numpy as np import numpy.ma as ma from pandas._libs import lib from pandas._libs.tslibs import IncompatibleFrequency, OutOfBoundsDatetime from pandas._typing import AnyArrayLike, ArrayLike, Dtype, DtypeObj from pandas.core.dtypes.base import ExtensionDtype, registry from pandas.core.dtypes.cast import ( construct_1d_arraylike_from_scalar, construct_1d_ndarray_preserving_na, construct_1d_object_array_from_listlike, infer_dtype_from_scalar, maybe_cast_to_datetime, maybe_cast_to_integer_array, maybe_castable, maybe_convert_platform, maybe_upcast, ) from pandas.core.dtypes.common import ( is_datetime64_ns_dtype, is_extension_array_dtype, is_float_dtype, is_integer_dtype, is_iterator, is_list_like, is_object_dtype, is_sparse, is_string_dtype, is_timedelta64_ns_dtype, ) from pandas.core.dtypes.generic import ( ABCExtensionArray, ABCIndexClass, ABCPandasArray, ABCSeries, ) from pandas.core.dtypes.missing import isna import pandas.core.common as com if TYPE_CHECKING: from pandas import ExtensionArray, Index, Series def array( data: Union[Sequence[object], AnyArrayLike], dtype: Optional[Dtype] = None, copy: bool = True, ) -> ExtensionArray: """ Create an array. .. versionadded:: 0.24.0 Parameters ---------- data : Sequence of objects The scalars inside `data` should be instances of the scalar type for `dtype`. It's expected that `data` represents a 1-dimensional array of data. When `data` is an Index or Series, the underlying array will be extracted from `data`. dtype : str, np.dtype, or ExtensionDtype, optional The dtype to use for the array. This may be a NumPy dtype or an extension type registered with pandas using :meth:`pandas.api.extensions.register_extension_dtype`. If not specified, there are two possibilities: 1. When `data` is a :class:`Series`, :class:`Index`, or :class:`ExtensionArray`, the `dtype` will be taken from the data. 2. Otherwise, pandas will attempt to infer the `dtype` from the data. Note that when `data` is a NumPy array, ``data.dtype`` is *not* used for inferring the array type. This is because NumPy cannot represent all the types of data that can be held in extension arrays. Currently, pandas will infer an extension dtype for sequences of ============================== ===================================== Scalar Type Array Type ============================== ===================================== :class:`pandas.Interval` :class:`pandas.arrays.IntervalArray` :class:`pandas.Period` :class:`pandas.arrays.PeriodArray` :class:`datetime.datetime` :class:`pandas.arrays.DatetimeArray` :class:`datetime.timedelta` :class:`pandas.arrays.TimedeltaArray` :class:`int` :class:`pandas.arrays.IntegerArray` :class:`float` :class:`pandas.arrays.FloatingArray` :class:`str` :class:`pandas.arrays.StringArray` :class:`bool` :class:`pandas.arrays.BooleanArray` ============================== ===================================== For all other cases, NumPy's usual inference rules will be used. .. versionchanged:: 1.0.0 Pandas infers nullable-integer dtype for integer data, string dtype for string data, and nullable-boolean dtype for boolean data. .. versionchanged:: 1.2.0 Pandas now also infers nullable-floating dtype for float-like input data copy : bool, default True Whether to copy the data, even if not necessary. Depending on the type of `data`, creating the new array may require copying data, even if ``copy=False``. Returns ------- ExtensionArray The newly created array. Raises ------ ValueError When `data` is not 1-dimensional. See Also -------- numpy.array : Construct a NumPy array. Series : Construct a pandas Series. Index : Construct a pandas Index. arrays.PandasArray : ExtensionArray wrapping a NumPy array. Series.array : Extract the array stored within a Series. Notes ----- Omitting the `dtype` argument means pandas will attempt to infer the best array type from the values in the data. As new array types are added by pandas and 3rd party libraries, the "best" array type may change. We recommend specifying `dtype` to ensure that 1. the correct array type for the data is returned 2. the returned array type doesn't change as new extension types are added by pandas and third-party libraries Additionally, if the underlying memory representation of the returned array matters, we recommend specifying the `dtype` as a concrete object rather than a string alias or allowing it to be inferred. For example, a future version of pandas or a 3rd-party library may include a dedicated ExtensionArray for string data. In this event, the following would no longer return a :class:`arrays.PandasArray` backed by a NumPy array. >>> pd.array(['a', 'b'], dtype=str) <PandasArray> ['a', 'b'] Length: 2, dtype: str32 This would instead return the new ExtensionArray dedicated for string data. If you really need the new array to be backed by a NumPy array, specify that in the dtype. >>> pd.array(['a', 'b'], dtype=np.dtype("<U1")) <PandasArray> ['a', 'b'] Length: 2, dtype: str32 Finally, Pandas has arrays that mostly overlap with NumPy * :class:`arrays.DatetimeArray` * :class:`arrays.TimedeltaArray` When data with a ``datetime64[ns]`` or ``timedelta64[ns]`` dtype is passed, pandas will always return a ``DatetimeArray`` or ``TimedeltaArray`` rather than a ``PandasArray``. This is for symmetry with the case of timezone-aware data, which NumPy does not natively support. >>> pd.array(['2015', '2016'], dtype='datetime64[ns]') <DatetimeArray> ['2015-01-01 00:00:00', '2016-01-01 00:00:00'] Length: 2, dtype: datetime64[ns] >>> pd.array(["1H", "2H"], dtype='timedelta64[ns]') <TimedeltaArray> ['0 days 01:00:00', '0 days 02:00:00'] Length: 2, dtype: timedelta64[ns] Examples -------- If a dtype is not specified, pandas will infer the best dtype from the values. See the description of `dtype` for the types pandas infers for. >>> pd.array([1, 2]) <IntegerArray> [1, 2] Length: 2, dtype: Int64 >>> pd.array([1, 2, np.nan]) <IntegerArray> [1, 2, <NA>] Length: 3, dtype: Int64 >>> pd.array([1.1, 2.2]) <FloatingArray> [1.1, 2.2] Length: 2, dtype: Float64 >>> pd.array(["a", None, "c"]) <StringArray> ['a', <NA>, 'c'] Length: 3, dtype: string >>> pd.array([pd.Period('2000', freq="D"), pd.Period("2000", freq="D")]) <PeriodArray> ['2000-01-01', '2000-01-01'] Length: 2, dtype: period[D] You can use the string alias for `dtype` >>> pd.array(['a', 'b', 'a'], dtype='category') ['a', 'b', 'a'] Categories (2, object): ['a', 'b'] Or specify the actual dtype >>> pd.array(['a', 'b', 'a'], ... dtype=pd.CategoricalDtype(['a', 'b', 'c'], ordered=True)) ['a', 'b', 'a'] Categories (3, object): ['a' < 'b' < 'c'] If pandas does not infer a dedicated extension type a :class:`arrays.PandasArray` is returned. >>> pd.array([1 + 1j, 3 + 2j]) <PandasArray> [(1+1j), (3+2j)] Length: 2, dtype: complex128 As mentioned in the "Notes" section, new extension types may be added in the future (by pandas or 3rd party libraries), causing the return value to no longer be a :class:`arrays.PandasArray`. Specify the `dtype` as a NumPy dtype if you need to ensure there's no future change in behavior. >>> pd.array([1, 2], dtype=np.dtype("int32")) <PandasArray> [1, 2] Length: 2, dtype: int32 `data` must be 1-dimensional. A ValueError is raised when the input has the wrong dimensionality. >>> pd.array(1) Traceback (most recent call last): ... ValueError: Cannot pass scalar '1' to 'pandas.array'. """ from pandas.core.arrays import ( BooleanArray, DatetimeArray, FloatingArray, IntegerArray, IntervalArray, PandasArray, StringArray, TimedeltaArray, period_array, ) if lib.is_scalar(data): msg = f"Cannot pass scalar '{data}' to 'pandas.array'." raise ValueError(msg) if dtype is None and isinstance( data, (ABCSeries, ABCIndexClass, ABCExtensionArray) ): dtype = data.dtype data = extract_array(data, extract_numpy=True) # this returns None for not-found dtypes. if isinstance(dtype, str): dtype = registry.find(dtype) or dtype if is_extension_array_dtype(dtype): cls = cast(ExtensionDtype, dtype).construct_array_type() return cls._from_sequence(data, dtype=dtype, copy=copy) if dtype is None: inferred_dtype = lib.infer_dtype(data, skipna=True) if inferred_dtype == "period": try: return period_array(data, copy=copy) except IncompatibleFrequency: # We may have a mixture of frequencies. # We choose to return an ndarray, rather than raising. pass elif inferred_dtype == "interval": try: return IntervalArray(data, copy=copy) except ValueError: # We may have a mixture of `closed` here. # We choose to return an ndarray, rather than raising. pass elif inferred_dtype.startswith("datetime"): # datetime, datetime64 try: return DatetimeArray._from_sequence(data, copy=copy) except ValueError: # Mixture of timezones, fall back to PandasArray pass elif inferred_dtype.startswith("timedelta"): # timedelta, timedelta64 return TimedeltaArray._from_sequence(data, copy=copy) elif inferred_dtype == "string": return StringArray._from_sequence(data, copy=copy) elif inferred_dtype == "integer": return IntegerArray._from_sequence(data, copy=copy) elif inferred_dtype in ("floating", "mixed-integer-float"): return FloatingArray._from_sequence(data, copy=copy) elif inferred_dtype == "boolean": return BooleanArray._from_sequence(data, copy=copy) # Pandas overrides NumPy for # 1. datetime64[ns] # 2. timedelta64[ns] # so that a DatetimeArray is returned. if is_datetime64_ns_dtype(dtype): return DatetimeArray._from_sequence(data, dtype=dtype, copy=copy) elif is_timedelta64_ns_dtype(dtype): return TimedeltaArray._from_sequence(data, dtype=dtype, copy=copy) result = PandasArray._from_sequence(data, dtype=dtype, copy=copy) return result def extract_array(obj: AnyArrayLike, extract_numpy: bool = False) -> ArrayLike: """ Extract the ndarray or ExtensionArray from a Series or Index. For all other types, `obj` is just returned as is. Parameters ---------- obj : object For Series / Index, the underlying ExtensionArray is unboxed. For Numpy-backed ExtensionArrays, the ndarray is extracted. extract_numpy : bool, default False Whether to extract the ndarray from a PandasArray Returns ------- arr : object Examples -------- >>> extract_array(pd.Series(['a', 'b', 'c'], dtype='category')) ['a', 'b', 'c'] Categories (3, object): ['a', 'b', 'c'] Other objects like lists, arrays, and DataFrames are just passed through. >>> extract_array([1, 2, 3]) [1, 2, 3] For an ndarray-backed Series / Index a PandasArray is returned. >>> extract_array(pd.Series([1, 2, 3])) <PandasArray> [1, 2, 3] Length: 3, dtype: int64 To extract all the way down to the ndarray, pass ``extract_numpy=True``. >>> extract_array(pd.Series([1, 2, 3]), extract_numpy=True) array([1, 2, 3]) """ if isinstance(obj, (ABCIndexClass, ABCSeries)): obj = obj.array if extract_numpy and isinstance(obj, ABCPandasArray): obj = obj.to_numpy() # error: Incompatible return value type (got "Index", expected "ExtensionArray") # error: Incompatible return value type (got "Series", expected "ExtensionArray") return obj # type: ignore[return-value] def sanitize_array( data, index: Optional[Index], dtype: Optional[DtypeObj] = None, copy: bool = False, raise_cast_failure: bool = False, ) -> ArrayLike: """ Sanitize input data to an ndarray or ExtensionArray, copy if specified, coerce to the dtype if specified. """ if isinstance(data, ma.MaskedArray): mask = ma.getmaskarray(data) if mask.any(): data, fill_value = maybe_upcast(data, copy=True) data.soften_mask() # set hardmask False if it was True data[mask] = fill_value else: data = data.copy() # extract ndarray or ExtensionArray, ensure we have no PandasArray data = extract_array(data, extract_numpy=True) # GH#846 if isinstance(data, np.ndarray): if dtype is not None and is_float_dtype(data.dtype) and is_integer_dtype(dtype): # possibility of nan -> garbage try: subarr = _try_cast(data, dtype, copy, True) except ValueError: if copy: subarr = data.copy() else: subarr = np.array(data, copy=False) else: # we will try to copy be-definition here subarr = _try_cast(data, dtype, copy, raise_cast_failure) elif isinstance(data, ABCExtensionArray): # it is already ensured above this is not a PandasArray subarr = data if dtype is not None: subarr = subarr.astype(dtype, copy=copy) elif copy: subarr = subarr.copy() return subarr elif isinstance(data, (list, tuple, abc.Set, abc.ValuesView)) and len(data) > 0: if isinstance(data, set): # Raise only for unordered sets, e.g., not for dict_keys raise TypeError("Set type is unordered") data = list(data) if dtype is not None: subarr = _try_cast(data, dtype, copy, raise_cast_failure) else: subarr = maybe_convert_platform(data) subarr = maybe_cast_to_datetime(subarr, dtype) elif isinstance(data, range): # GH#16804 arr = np.arange(data.start, data.stop, data.step, dtype="int64") subarr = _try_cast(arr, dtype, copy, raise_cast_failure) elif lib.is_scalar(data) and index is not None and dtype is not None: data = maybe_cast_to_datetime(data, dtype) if not lib.is_scalar(data): data = data[0] subarr = construct_1d_arraylike_from_scalar(data, len(index), dtype) else: subarr = _try_cast(data, dtype, copy, raise_cast_failure) # scalar like, GH if getattr(subarr, "ndim", 0) == 0: if isinstance(data, list): # pragma: no cover subarr = np.array(data, dtype=object) elif index is not None: value = data # figure out the dtype from the value (upcast if necessary) if dtype is None: dtype, value = infer_dtype_from_scalar(value, pandas_dtype=True) else: # need to possibly convert the value here value = maybe_cast_to_datetime(value, dtype) subarr = construct_1d_arraylike_from_scalar(value, len(index), dtype) else: return subarr.item() # the result that we want elif subarr.ndim == 1: if index is not None: # a 1-element ndarray if len(subarr) != len(index) and len(subarr) == 1: subarr = construct_1d_arraylike_from_scalar( subarr[0], len(index), subarr.dtype ) elif subarr.ndim > 1: if isinstance(data, np.ndarray): raise ValueError("Data must be 1-dimensional") else: subarr = com.asarray_tuplesafe(data, dtype=dtype) if not (is_extension_array_dtype(subarr.dtype) or is_extension_array_dtype(dtype)): # This is to prevent mixed-type Series getting all casted to # NumPy string type, e.g. NaN --> '-1#IND'. if issubclass(subarr.dtype.type, str): # GH#16605 # If not empty convert the data to dtype # GH#19853: If data is a scalar, subarr has already the result if not lib.is_scalar(data): if not np.all(isna(data)): data = np.array(data, dtype=dtype, copy=False) subarr = np.array(data, dtype=object, copy=copy) is_object_or_str_dtype = is_object_dtype(dtype) or is_string_dtype(dtype) if is_object_dtype(subarr.dtype) and not is_object_or_str_dtype: inferred = lib.infer_dtype(subarr, skipna=False) if inferred in {"interval", "period"}: subarr = array(subarr) return subarr def _try_cast(arr, dtype: Optional[DtypeObj], copy: bool, raise_cast_failure: bool): """ Convert input to numpy ndarray and optionally cast to a given dtype. Parameters ---------- arr : ndarray, scalar, list, tuple, iterator (catchall) Excludes: ExtensionArray, Series, Index. dtype : np.dtype, ExtensionDtype or None copy : bool If False, don't copy the data if not needed. raise_cast_failure : bool If True, and if a dtype is specified, raise errors during casting. Otherwise an object array is returned. """ # perf shortcut as this is the most common case if isinstance(arr, np.ndarray): if maybe_castable(arr) and not copy and dtype is None: return arr if isinstance(dtype, ExtensionDtype) and (dtype.kind != "M" or is_sparse(dtype)): # create an extension array from its dtype # DatetimeTZ case needs to go through maybe_cast_to_datetime but # SparseDtype does not array_type = dtype.construct_array_type()._from_sequence subarr = array_type(arr, dtype=dtype, copy=copy) return subarr try: # GH#15832: Check if we are requesting a numeric dtype and # that we can convert the data to the requested dtype. if is_integer_dtype(dtype): # this will raise if we have e.g. floats maybe_cast_to_integer_array(arr, dtype) subarr = arr else: subarr = maybe_cast_to_datetime(arr, dtype) # Take care in creating object arrays (but iterators are not # supported): if is_object_dtype(dtype) and ( is_list_like(subarr) and not (is_iterator(subarr) or isinstance(subarr, np.ndarray)) ): subarr = construct_1d_object_array_from_listlike(subarr) elif not is_extension_array_dtype(subarr): subarr = construct_1d_ndarray_preserving_na(subarr, dtype, copy=copy) except OutOfBoundsDatetime: # in case of out of bound datetime64 -> always raise raise except (ValueError, TypeError): if dtype is not None and raise_cast_failure: raise else: subarr = np.array(arr, dtype=object, copy=copy) return subarr def is_empty_data(data: Any) -> bool: """ Utility to check if a Series is instantiated with empty data, which does not contain dtype information. Parameters ---------- data : array-like, Iterable, dict, or scalar value Contains data stored in Series. Returns ------- bool """ is_none = data is None is_list_like_without_dtype = is_list_like(data) and not hasattr(data, "dtype") is_simple_empty = is_list_like_without_dtype and not data return is_none or is_simple_empty def create_series_with_explicit_dtype( data: Any = None, index: Optional[Union[ArrayLike, Index]] = None, dtype: Optional[Dtype] = None, name: Optional[str] = None, copy: bool = False, fastpath: bool = False, dtype_if_empty: Dtype = object, ) -> Series: """ Helper to pass an explicit dtype when instantiating an empty Series. This silences a DeprecationWarning described in GitHub-17261. Parameters ---------- data : Mirrored from Series.__init__ index : Mirrored from Series.__init__ dtype : Mirrored from Series.__init__ name : Mirrored from Series.__init__ copy : Mirrored from Series.__init__ fastpath : Mirrored from Series.__init__ dtype_if_empty : str, numpy.dtype, or ExtensionDtype This dtype will be passed explicitly if an empty Series will be instantiated. Returns ------- Series """ from pandas.core.series import Series if is_empty_data(data) and dtype is None: dtype = dtype_if_empty return Series( data=data, index=index, dtype=dtype, name=name, copy=copy, fastpath=fastpath )
33.578867
88
0.626123
[ "BSD-3-Clause" ]
BhavarthShah/pandas
pandas/core/construction.py
21,927
Python
""" DuckDuckGo (Images) @website https://duckduckgo.com/ @provide-api yes (https://duckduckgo.com/api), but images are not supported @using-api no @results JSON (site requires js to get images) @stable no (JSON can change) @parse url, title, img_src @todo avoid extra request """ from json import loads from searx.engines.xpath import extract_text from searx.engines.duckduckgo import ( _fetch_supported_languages, supported_languages_url, get_region_code, language_aliases ) from searx.poolrequests import get from searx.url_utils import urlencode # engine dependent config categories = ['images'] paging = True language_support = True safesearch = True # search-url images_url = 'https://duckduckgo.com/i.js?{query}&s={offset}&p={safesearch}&o=json&vqd={vqd}' site_url = 'https://duckduckgo.com/?{query}&iar=images&iax=1&ia=images' # run query in site to get vqd number needed for requesting images # TODO: find a way to get this number without an extra request (is it a hash of the query?) def get_vqd(query): res = get(site_url.format(query=urlencode({'q': query}))) content = res.text vqd = content[content.find('vqd=\'') + 5:] vqd = vqd[:vqd.find('\'')] return vqd # do search-request def request(query, params): # to avoid running actual external requests when testing if 'is_test' not in params: vqd = get_vqd(query) else: vqd = '12345' offset = (params['pageno'] - 1) * 50 safesearch = params['safesearch'] - 1 region_code = get_region_code(params['language'], lang_list=supported_languages) params['url'] = images_url.format( query=urlencode({'q': query, 'l': region_code}), offset=offset, safesearch=safesearch, vqd=vqd) return params # get response from search-request def response(resp): results = [] content = resp.text try: res_json = loads(content) except: return [] # parse results for result in res_json['results']: title = result['title'] url = result['url'] thumbnail = result['thumbnail'] image = result['image'] # append result results.append({'template': 'images.html', 'title': title, 'content': '', 'thumbnail_src': thumbnail, 'img_src': image, 'url': url}) return results
27.076923
103
0.631088
[ "MIT" ]
AlexRogalskiy/DevArtifacts
master/searx-master/searx/engines/duckduckgo_images.py
2,464
Python
# -*- coding: utf-8 -*- # Copyright (c) 2020, Havenir and contributors # For license information, please see license.txt from __future__ import unicode_literals # import frappe from frappe.model.document import Document class PortOfLoading(Document): pass
23.545455
49
0.776062
[ "MIT" ]
umar567/shipment-repo
shipments/shipments/doctype/port_of_loading/port_of_loading.py
259
Python
import os import sys import argparse import numpy as np from PIL import Image import matplotlib.pyplot as plt import torch import torch.nn as nn import torch.nn.functional as F from torch.optim import Adam from torch.utils.data import Dataset import torchvision.transforms as transforms import pickle def normalize(image): return (image - image.min()) / (image.max() - image.min()) layer_activations = None def filter_explanation(x, model, cnnid, filterid, iteration=100, lr=1): # x: ้œ€่ฆ่ฎญ็ปƒ็š„ๅ›พ็‰‡ # cnnid, filterid: ๆŒ‡ๅฎš็ฌฌๅ‡ ๅฑ‚cnnไธญ็ฌฌๅ‡ ไธชfilter model.eval() def hook(model, input, output): global layer_activations layer_activations = output hook_handle = model.cnn[cnnid].register_forward_hook(hook) # ๅฝ“forwardไบ†็ฌฌcnnidๅฑ‚cnnๅŽ๏ผŒ ่ฆๅ…ˆๅ‘ผๅซhook, ๆ‰ๅฏไปฅ็ปง็ปญforwardไธ‹ไธ€ๅฑ‚cnn # Filter activation: ๆˆ‘ไปฌๅ…ˆ่ง‚ๅฏŸx็ป่ฟ‡่ขซๆŒ‡ๅฎšfilter็š„activation map model(x.cuda()) # ๆญฃๅผๆ‰ง่กŒforward็š„ๆญฅ้ชค filter_activations = layer_activations[:, filterid, :, :].detach().cpu() # ๆ นๆฎfunction argument ๆŒ‡ๅฎš็š„filteridๆŠŠๅพ…ๅฎšfilter็š„activation mapๅ–ๅ‡บๆฅ x = x.cuda() x.requires_grad_() optimizer = Adam([x], lr=lr) # ๅˆฉ็”จๅๅพฎๅˆ†ๅ’Œoptimizer, ้€ๆญฅไฟฎๆ”นinput imageๆฅ่ฎฉfilter activation่ถŠๆฅ่ถŠๅคง for iter in range(iteration): optimizer.zero_grad() model(x) objective = -layer_activations[:, filterid, :, :].sum() # ๆŽข็ฉถimage็š„ๅพฎ้‡ๅ˜ๅŒ–ไผšๆ€Žๆ ทๅฝฑๅ“activation็š„็จ‹ๅบฆ๏ผŒๅŠ ่ดŸๅทไปฃ่กจๅšmaximization objective.backward() optimizer.step() # ไฟฎๆ”นinput imageๆฅๆœ€ๅคงๅŒ–filter activation filter_visualization = x.detach().cpu().squeeze()[0] # ๅฎŒๆˆๅ›พ็‰‡ไฟฎๆ”น๏ผŒๅชๅ‰ฉไธ‹่ฆ็”ปๅ‡บๆฅ๏ผŒๅ› ๆญคๅฏไปฅ็›ดๆŽฅdetachๅนถ่ฝฌๆˆcpu tensor hook_handle.remove() # ไธ€ๆ—ฆmodel register hook, ่ฏฅhookๅฐฑไธ€่‡ดๅญ˜ๅœจใ€‚ๅฆ‚ๆžœไน‹ๅŽ็ปง็ปญregisterๆ›ดๅคšhook # ้‚ฃmodelไธ€ๆฌกforward่ฆๅš็š„ไบ‹ๆƒ…ๅฐฑ่ถŠๆฅ่ถŠๆฅ่ถŠๅคš๏ผŒๅ› ๆญค้œ€่ฆๆŠŠhookๆ‹ฟๆމ return filter_activations, filter_visualization
28.578125
77
0.697649
[ "MIT" ]
Zeng-WH/ML2020
CNN/code/filter_visualiton.py
2,173
Python
from functools import wraps import sys import traceback from ploomber.io import TerminalWriter from ploomber.exceptions import DAGBuildError, DAGRenderError # TODO: there are two types of cli commands: the ones that execute user's # code (ploomber build/task) and the ones that parse a dag/task but do not # execute it. For the former, we want to capture errors and display them with # colors so it's easier for the user to understand what went wrong with their # code. For the latter, the errors are raise by us, hence, we only need to # print the message and exit. Currently, all CLI end points (except ploomber # nb) are decorated with @cli_endpoint but we should change it to # @command_endpoint def cli_endpoint(fn): """ Decorator for command line endpoints that execute dags or tasks. It runs the decorated function, captures exception (if any), sends a colored traceback to standard error and exits with code 1. Notes ----- Functions decorated with this must be called with keyword arguments Call some_endpoint(catch_exception=False) to disable this behavior (e.g. for testing) """ @wraps(fn) def wrapper(catch_exception=True, **kwargs): if catch_exception: try: fn(**kwargs) # these already color output except (DAGBuildError, DAGRenderError): error = traceback.format_exc() color = False except Exception: error = traceback.format_exc() color = True else: error = None if error: if color: tw = TerminalWriter(file=sys.stderr) tw._write_source(error.splitlines()) else: print(error, file=sys.stderr) sys.exit(1) else: fn(**kwargs) return wrapper # FIXME: capture only certain types of exceptions. If it's something we dind't # raise, we'd like to see the full traceback def command_endpoint(fn): """ Decorator for command line endpoints that only parse dags or tasks but do not execute them. If it tails, it prints error message to stderror, then calls with exit code 1. """ @wraps(fn) def wrapper(**kwargs): try: fn(**kwargs) except Exception as e: print(f'Error: {e}', file=sys.stderr) sys.exit(1) return wrapper
32.552632
78
0.630558
[ "Apache-2.0" ]
abhishak3/ploomber
src/ploomber/cli/io.py
2,474
Python
import json import os import shutil import tempfile def copytree(src, dst, symlinks=False, ignore=None): for item in os.listdir(src): s = os.path.join(src, item) d = os.path.join(dst, item) if os.path.isdir(s): shutil.copytree(s, d, symlinks, ignore) else: shutil.copy2(s, d) def call(command, ignore_error=False): ret = os.system(command) if ret != 0 and not ignore_error: raise Exception("Command failed: %s" % command) def clean_gh_pages(): call('git config remote.origin.fetch "+refs/heads/*:refs/remotes/origin/*" 1>/dev/null') call("git fetch origin -q") call("git checkout gh-pages") if os.path.exists("en"): shutil.rmtree("en") def build_and_copy(branch, folder_name, versions_available, themes_dir, validate_links=False): call("git checkout %s" % branch) call("git pull origin %s" % branch) with open('versions.json', 'w') as f: f.write(json.dumps(versions_available)) shutil.rmtree("_themes") copytree(themes_dir, "_themes") call("make html > /dev/null") if validate_links: call("make spelling > /dev/null") call("make linkcheck") call("make latexpdf > /dev/null") tmp_dir = tempfile.mkdtemp() copytree("_build/html/", tmp_dir) shutil.copy2("_build/latex/conan.pdf", tmp_dir) shutil.rmtree("_build") # Go to deploy branch, copy new files and commit call("git stash") call("git stash drop || true") call("git clean -d -f") call("git checkout gh-pages") if not os.path.exists("en"): os.mkdir("en") version_folders = ["en/%s" % folder_name] if branch == "master": version_folders.append("en/latest") for version_folder in version_folders: if os.path.exists(version_folder): shutil.rmtree(version_folder) os.mkdir(version_folder) copytree(tmp_dir, version_folder) call("git add -A .") call("git commit --message 'committed version %s'" % folder_name, ignore_error=True) def should_deploy(): if not os.getenv("TRAVIS_BRANCH", None) == "master": print("Skipping deploy for not master branch") return False if os.getenv("TRAVIS_PULL_REQUEST", "") != "false": print("Deploy skipped, This is a PR in the main repository") return False if not os.getenv("GITHUB_API_KEY"): print("Deploy skipped, missing GITHUB_API_KEY. Is this a PR?") return False return True def deploy(): call('rm -rf .git') call('git init .') call('git add .') call('git checkout -b gh-pages') call('git commit -m "Cleared web"') call('git remote add origin-pages ' 'https://%[email protected]/conan-io/docs.git > /dev/null 2>&1' % os.getenv("GITHUB_API_KEY")) call('git push origin-pages gh-pages --force') if __name__ == "__main__": if should_deploy(): # Copy the _themes to be able to share them between old versions themes_dir = tempfile.mkdtemp() copytree("_themes", themes_dir) clean_gh_pages() versions_dict = {"master": "1.25", "release/1.24.1": "1.24", "release/1.23.0": "1.23", "release/1.22.3": "1.22", "release/1.21.3": "1.21", "release/1.20.5": "1.20", "release/1.19.3": "1.19", "release/1.18.5": "1.18", "release/1.17.2": "1.17", "release/1.16.1": "1.16", "release/1.15.2": "1.15", "release/1.14.5": "1.14", "release/1.13.3": "1.13", "release/1.12.3": "1.12", "release/1.11.2": "1.11", "release/1.10.2": "1.10", "release/1.9.4": "1.9", "release/1.8.4": "1.8", "release/1.7.4": "1.7", "release/1.6.1": "1.6", "release/1.5.2": "1.5", "release/1.4.5": "1.4", "release/1.3.3": "1.3"} for branch, folder_name in versions_dict.items(): print("Building {}...".format(branch)) build_and_copy(branch, folder_name, versions_dict, themes_dir) deploy() else: call("make html > /dev/null") call("make spelling") call("make linkcheck")
31.321918
98
0.535535
[ "MIT" ]
claremacrae/docs
deploy_gh_pages.py
4,573
Python
# -*- coding: utf-8 -*- """็ˆฌ่™ซ้…็ฝฎๆ–‡ไปถ""" import os # MYSQL MYSQL_IP = "localhost" MYSQL_PORT = 3306 MYSQL_DB = "feapder" MYSQL_USER_NAME = "feapder" MYSQL_USER_PASS = "feapder123" # REDIS # IP:PORT REDISDB_IP_PORTS = "localhost:6379" REDISDB_USER_PASS = "" REDISDB_DB = 0 # # ็ˆฌ่™ซ็›ธๅ…ณ # # COLLECTOR COLLECTOR_SLEEP_TIME = 1 # ไปŽไปปๅŠก้˜Ÿๅˆ—ไธญ่Žทๅ–ไปปๅŠกๅˆฐๅ†…ๅญ˜้˜Ÿๅˆ—็š„้—ด้š” COLLECTOR_TASK_COUNT = 100 # ๆฏๆฌก่Žทๅ–ไปปๅŠกๆ•ฐ้‡ # # # SPIDER SPIDER_THREAD_COUNT = 1 # ็ˆฌ่™ซๅนถๅ‘ๆ•ฐ # SPIDER_SLEEP_TIME = 0 # ไธ‹่ฝฝๆ—ถ้—ด้—ด้š”๏ผˆ่งฃๆžๅฎŒไธ€ไธชresponseๅŽไผ‘็œ ๆ—ถ้—ด๏ผ‰ # SPIDER_MAX_RETRY_TIMES = 100 # ๆฏไธช่ฏทๆฑ‚ๆœ€ๅคง้‡่ฏ•ๆฌกๆ•ฐ # # ้‡ๆ–ฐๅฐ่ฏ•ๅคฑ่ดฅ็š„requests ๅฝ“requests้‡่ฏ•ๆฌกๆ•ฐ่ถ…่ฟ‡ๅ…่ฎธ็š„ๆœ€ๅคง้‡่ฏ•ๆฌกๆ•ฐ็ฎ—ๅคฑ่ดฅ # RETRY_FAILED_REQUESTS = False # # request ่ถ…ๆ—ถๆ—ถ้—ด๏ผŒ่ถ…่ฟ‡่ฟ™ไธชๆ—ถ้—ด้‡ๆ–ฐๅš๏ผˆไธๆ˜ฏ็ฝ‘็ปœ่ฏทๆฑ‚็š„่ถ…ๆ—ถๆ—ถ้—ด๏ผ‰ๅ•ไฝ็ง’ # REQUEST_LOST_TIMEOUT = 600 # 10ๅˆ†้’Ÿ # # ไฟๅญ˜ๅคฑ่ดฅ็š„request # SAVE_FAILED_REQUEST = True # # # ไธ‹่ฝฝ็ผ“ๅญ˜ ๅˆฉ็”จredis็ผ“ๅญ˜๏ผŒ็”ฑไบŽๅ†…ๅญ˜ๅฐ๏ผŒๆ‰€ไปฅไป…ไพ›ๆต‹่ฏ•ๆ—ถไฝฟ็”จ # RESPONSE_CACHED_ENABLE = False # ๆ˜ฏๅฆๅฏ็”จไธ‹่ฝฝ็ผ“ๅญ˜ ๆˆๆœฌ้ซ˜็š„ๆ•ฐๆฎๆˆ–ๅฎนๆ˜“ๅ˜้œ€ๆฑ‚็š„ๆ•ฐๆฎ๏ผŒๅปบ่ฎฎ่ฎพ็ฝฎไธบTrue # RESPONSE_CACHED_EXPIRE_TIME = 3600 # ็ผ“ๅญ˜ๆ—ถ้—ด ็ง’ # RESPONSE_CACHED_USED = False # ๆ˜ฏๅฆไฝฟ็”จ็ผ“ๅญ˜ ่กฅ้‡‡ๆ•ฐๆฎๆ—ถๅฏ่ฎพ็ฝฎไธบTrue # # WARNING_FAILED_COUNT = 1000 # ไปปๅŠกๅคฑ่ดฅๆ•ฐ ่ถ…่ฟ‡WARNING_FAILED_COUNTๅˆ™ๆŠฅ่ญฆ # # # ็ˆฌ่™ซๅˆๅง‹ๅŒ–ๅทฅไฝœ # # ็ˆฌ่™ซๅšๅฎŒrequestๅŽๆ˜ฏๅฆ่‡ชๅŠจ็ป“ๆŸๆˆ–่€…็ญ‰ๅพ…ไปปๅŠก # AUTO_STOP_WHEN_SPIDER_DONE = True # # # # ่ฎพ็ฝฎไปฃ็† # PROXY_EXTRACT_API = None # ไปฃ็†ๆๅ–API ๏ผŒ่ฟ”ๅ›ž็š„ไปฃ็†ๅˆ†ๅ‰ฒ็ฌฆไธบ\r\n # PROXY_ENABLE = True # # # ้šๆœบheaders # RANDOM_HEADERS = True # # requests ไฝฟ็”จsession # USE_SESSION = False # # # ๅŽป้‡ # ITEM_FILTER_ENABLE = False # item ๅŽป้‡ # REQUEST_FILTER_ENABLE = False # request ๅŽป้‡ # # # ๆŠฅ่ญฆ # DINGDING_WARNING_URL = "" # ้’‰้’‰ๆœบๅ™จไบบapi # DINGDING_WARNING_PHONE = "" # ๆŠฅ่ญฆไบบ # LINGXI_TOKEN = "" # ็ต็Š€ๆŠฅ่ญฆtoken # # LOG_NAME = os.path.basename(os.getcwd()) # LOG_PATH = "log/%s.log" % LOG_NAME # logๅญ˜ๅ‚จ่ทฏๅพ„ # LOG_LEVEL = "DEBUG" # LOG_IS_WRITE_TO_FILE = False # OTHERS_LOG_LEVAL = "ERROR" # ็ฌฌไธ‰ๆ–นๅบ“็š„log็ญ‰็บง
23.309859
70
0.735347
[ "MIT" ]
AYiXi/feapder
tests/spider/setting.py
2,239
Python
import random class Playlist: """ A list of routines (aka a list of light effect layer lists, or a list of flame sequences) all intended for use in a single context (e.g. when the headset is on). One routine in the playlist is selected at any given time. """ def __init__(self, routines, index = 0, shuffle=False): self.routines = routines self.selected = index self.order = range(len(self.routines)) self.shuffle = shuffle if shuffle: random.shuffle(self.order) self.print_selection() def print_selection(self): print "Playlist selecting index %d:" % self.selected for x in self.routines[self.order[self.selected]]: print " ", repr(x) def selection(self): return self.routines[self.order[self.selected]] def advance(self): """ Switch the selected routine to the next one in the list, either consecutively or randomly depending on whether shuffle is true """ if len(self.routines) > 1: selected = self.selected + 1 if selected >= len(self.routines): if self.shuffle: random.shuffle(self.order) selected = 0 self.selected = selected self.print_selection()
34.025
78
0.588538
[ "Apache-2.0" ]
FlamingLotusGirls/soma
pier14/opc-client/playlist.py
1,361
Python
""" Small script to generate gdal_warp commands for projecting rasters to the Behrmann projection to be able to run the generated bat file you should have gdalwarp in your path or run it from an OSGeo4W Shell """ import os root = r"D:\a\data\BioOracle_scenarios_30s_min250" output = root + r"_equal_area" #os.path.abspath(os.path.join(root, r'..\ascii_equalarea')) nodata = "-9999" def create_bat(): proj = "+proj=cea +lon_0=0 +lat_ts=30 +x_0=0 +y_0=0 +datum=WGS84 +ellps=WGS84 +units=m +no_defs" with open('project_to_behrmann.bat', 'w') as bat: for r, dirs, files in os.walk(root): for f in files: n, ext = os.path.splitext(f) if ext == '.asc': ## output of ascii files from gdalwarp is not supported temptiff = os.path.join(output, n + '.tiff') bat.write('gdalwarp -of GTiff -multi -srcnodata %s -dstnodata %s -t_srs "%s" "%s" "%s"\n' % (nodata, proj, os.path.join(r, f), temptiff)) ## convert output tiff to ascii outdir = r.replace(root, output) if not os.path.exists(outdir): os.makedirs(outdir) bat.write('gdal_translate -of AAIGrid "%s" "%s"\n' % (temptiff, os.path.join(outdir,f))) ## delete temp file bat.write('del "%s"\n'%temptiff) if __name__ == '__main__': create_bat()
43.424242
157
0.586183
[ "Unlicense" ]
samuelbosch/phd
rasters/project_to_behrmann.py
1,433
Python
import json import logging from django.http import JsonResponse logger = logging.getLogger('log') from wxcloudrun.utils.SQL.DBUtils import DBUtils def test1(request): print(request.headers) logger.info(request.headers) rsp = JsonResponse({'code': 0, 'errorMsg': '๐Ÿ˜'}, json_dumps_params={'ensure_ascii': False}) return rsp
19.166667
95
0.727536
[ "MIT" ]
nixiaopan/nipan
wxcloudrun/np_test/views.py
348
Python
import sqlite3 from checktheplug.models.Server import Server """ Operations to manage accessing the server database. """ class ServerDao: """ Sets up the object with the sql connection. """ def __init__(self, settings): self.conn = sqlite3.connect(settings.database) """ Add Server to the database. """ def add(self, new_server): if new_server: try: with self.conn: cur = self.conn.cursor() cur.execute("INSERT INTO servers(host, url) values(?, ?)", (new_server.host, new_server.url)) return(Server(cur.lastrowid, new_server.host, new_server.url), None) except sqlite3.IntegrityError as er: return (None, "There was a db issue: " + str(er)) else: return (None, "No server passed in") """ Find all the servers for a particular app. """ def find_by_app_id(self, app_id): try: with self.conn: cur = self.conn.cursor() cur.execute("SELECT id, host, url from servers where app_id = ?", (app_id,)) server_rows = cur.fetchall() return (list(map(lambda x: Server(x[0], x[1], x[2], app_id), server_rows)), None) except Exception as er: return (None, "There was a db issue: " + str(er)) """ Find x number of available servers or all that are available. """ def find_available_servers(self, quantity): try: with self.conn: cur = self.conn.cursor() cur.execute("SELECT id, host, url from servers where app_id = null limit = ?", (quantity,)) server_rows = cur.fetchall() return (list(map(lambda x: Server(x[0], x[1], x[2], None), server_rows)), None) except Exception as er: return (None, "There was a db issue: " + str(er)) """ Retrieve all servers. """ def retrieve_all_servers(self): try: with self.conn: cur = self.conn.cursor() cur.execute("SELECT id, host, url from servers") server_rows = cur.fetchall() return (list(map(lambda x: Server(x[0], x[1], x[2], None), server_rows)), None) except Exception as er: return (None, "There was a db issue: " + str(er)) """ Tie an app to a number of servers. """ def tie_app_to_servers(self, app_id, available_servers): try: with self.conn: cur = self.conn.cursor() server_id_string = ', '.join("?" * available_servers) cur.execute("update servers set app_id = ? where id in ({0})".format(server_id_string), tuple([app_id] + available_servers)) return (None, "ok") except Exception as er: return (None, "There was a db issue: " + str(er))
37.012346
140
0.53936
[ "MIT" ]
maximx1/checktheplug
checktheplug/data/ServerDao.py
2,998
Python
from rest_framework import serializers from apps.challenge.models import Clan class ClanSerializer(serializers.ModelSerializer): class Meta: model = Clan fields = ( 'name', 'leader', 'image', 'score', 'wins', 'losses', 'draws' )
22.666667
73
0.632353
[ "MIT" ]
SharifAIChallenge/AIC21-Backend
apps/challenge/serializers/clan.py
272
Python
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 5/15/20 4:49 PM # @File : grover.py # qubit number=4 # total number=25 import cirq import cirq.google as cg from typing import Optional import sys from math import log2 import numpy as np #thatsNoCode def make_circuit(n: int, input_qubit): c = cirq.Circuit() # circuit begin c.append(cirq.H.on(input_qubit[0])) # number=1 c.append(cirq.H.on(input_qubit[1])) # number=2 c.append(cirq.H.on(input_qubit[1])) # number=7 c.append(cirq.H.on(input_qubit[2])) # number=3 c.append(cirq.H.on(input_qubit[3])) # number=4 c.append(cirq.H.on(input_qubit[0])) # number=18 c.append(cirq.CZ.on(input_qubit[3],input_qubit[0])) # number=19 c.append(cirq.H.on(input_qubit[0])) # number=20 c.append(cirq.CNOT.on(input_qubit[0],input_qubit[2])) # number=22 c.append(cirq.X.on(input_qubit[2])) # number=23 c.append(cirq.CNOT.on(input_qubit[0],input_qubit[2])) # number=24 c.append(cirq.H.on(input_qubit[0])) # number=10 c.append(cirq.CZ.on(input_qubit[3],input_qubit[0])) # number=11 c.append(cirq.H.on(input_qubit[0])) # number=12 c.append(cirq.CNOT.on(input_qubit[2],input_qubit[0])) # number=8 c.append(cirq.H.on(input_qubit[0])) # number=13 c.append(cirq.CZ.on(input_qubit[2],input_qubit[0])) # number=14 c.append(cirq.H.on(input_qubit[0])) # number=15 c.append(cirq.X.on(input_qubit[2])) # number=16 c.append(cirq.X.on(input_qubit[2])) # number=17 # circuit end return c def bitstring(bits): return ''.join(str(int(b)) for b in bits) if __name__ == '__main__': qubit_count = 4 input_qubits = [cirq.GridQubit(i, 0) for i in range(qubit_count)] circuit = make_circuit(qubit_count,input_qubits) circuit = cg.optimized_for_sycamore(circuit, optimizer_type='sqrt_iswap') circuit_sample_count =0 info = cirq.final_state_vector(circuit) qubits = round(log2(len(info))) frequencies = { np.binary_repr(i, qubits): round((info[i]*(info[i].conjugate())).real,3) for i in range(2 ** qubits) } writefile = open("../data/startCirq_Class840.csv","w+") print(format(frequencies),file=writefile) print("results end", file=writefile) print(circuit.__len__(), file=writefile) print(circuit,file=writefile) writefile.close()
32.068493
80
0.668518
[ "BSD-3-Clause" ]
UCLA-SEAL/QDiff
data/cirq_new/cirq_program/startCirq_Class840.py
2,341
Python
from seleniumbase import BaseCase from werkzeug.security import generate_password_hash from qa327_test.conftest import base_url from qa327.models import User, Ticket # Mock a sample user TEST_USER = User( email='[email protected]', name='test_frontend', password=generate_password_hash('test_frontend'), balance=500 ) TEST_USER_SELLER = User( email='[email protected]', name='test_seller', password=generate_password_hash('Password99!'), balance=500 ) # Mock a sample ticket TEST_TICKET = Ticket( name='helloworld', seller=TEST_USER_SELLER, price=20, quantity=20, expires="20220101" ) class GeekBaseCase(BaseCase): ''' Selenium base case with some GeekSeek utilities ''' def assert_flash(self, text): '''asserts that message exists in flashes''' for flash_dom in self.find_elements('.flash'): if flash_dom.text == text: return print(flash_dom.text) raise AssertionError(f'Flash not found for text "{text}"') def login_test_user(self, email=TEST_USER.email, password='test_frontend'): '''login our test user''' self.open(base_url+'/login') self.input('#email', email) self.input('#password', password) self.click('#btn-submit')
26.938776
79
0.669697
[ "Apache-2.0", "MIT" ]
nicoleooi/cmpe327
qa327_test/frontend/geek_base.py
1,320
Python
import pytest from vdirsyncer.storage.dav import _BAD_XML_CHARS from vdirsyncer.storage.dav import _merge_xml from vdirsyncer.storage.dav import _parse_xml def test_xml_utilities(): x = _parse_xml( b"""<?xml version="1.0" encoding="UTF-8" ?> <multistatus xmlns="DAV:"> <response> <propstat> <status>HTTP/1.1 404 Not Found</status> <prop> <getcontenttype/> </prop> </propstat> <propstat> <prop> <resourcetype> <collection/> </resourcetype> </prop> </propstat> </response> </multistatus> """ ) response = x.find("{DAV:}response") props = _merge_xml(response.findall("{DAV:}propstat/{DAV:}prop")) assert props.find("{DAV:}resourcetype/{DAV:}collection") is not None assert props.find("{DAV:}getcontenttype") is not None @pytest.mark.parametrize("char", range(32)) def test_xml_specialchars(char): x = _parse_xml( '<?xml version="1.0" encoding="UTF-8" ?>' "<foo>ye{}s\r\n" "hello</foo>".format(chr(char)).encode("ascii") ) if char in _BAD_XML_CHARS: assert x.text == "yes\nhello"
29.085106
72
0.516459
[ "BSD-3-Clause" ]
Bleala/vdirsyncer
tests/storage/dav/test_main.py
1,367
Python
from __future__ import division import numpy as np from numpy.random import rand import pandas as pd # --- List of available filters FILTERS=[ {'name':'Moving average','param':100,'paramName':'Window Size','paramRange':[0,100000],'increment':1}, {'name':'Low pass 1st order','param':1.0,'paramName':'Cutoff Freq.','paramRange':[0.0001,100000],'increment':0.1}, {'name':'High pass 1st order','param':1.0,'paramName':'Cutoff Freq.','paramRange':[0.0001,100000],'increment':0.1}, ] SAMPLERS=[ {'name':'Replace', 'param':[], 'paramName':'New x'}, {'name':'Insert', 'param':[], 'paramName':'Insert list'}, {'name':'Remove', 'param':[], 'paramName':'Remove list'}, {'name':'Every n', 'param':2 , 'paramName':'n'}, {'name':'Delta x', 'param':0.1, 'paramName':'dx'}, ] def reject_outliers(y, x=None, m = 2., replaceNaN=True): """ Reject outliers: If replaceNaN is true: they are replaced by NaN Otherwise they are removed """ if m==0: # No rejection... pass else: dd = np.abs(y - np.nanmedian(y)) mdev = np.nanmedian(dd) if mdev: ss = dd/mdev b=ss<m if replaceNaN: y=y.copy() y[~b]=np.nan else: y=y[b] if x is not None: x= x[b] if x is None: return y else: return x, y # --------------------------------------------------------------------------------} # --- Resampling # --------------------------------------------------------------------------------{ def multiInterp(x, xp, fp, extrap='bounded'): j = np.searchsorted(xp, x) - 1 dd = np.zeros(len(x)) bOK = np.logical_and(j>=0, j< len(xp)-1) bLower =j<0 bUpper =j>=len(xp)-1 jOK = j[bOK] #import pdb; pdb.set_trace() dd[bOK] = (x[bOK] - xp[jOK]) / (xp[jOK + 1] - xp[jOK]) jBef=j jAft=j+1 # # Use first and last values for anything beyond xp jAft[bUpper] = len(xp)-1 jBef[bUpper] = len(xp)-1 jAft[bLower] = 0 jBef[bLower] = 0 if extrap=='bounded': pass # OK elif extrap=='nan': dd[~bOK] = np.nan else: raise NotImplementedError() return (1 - dd) * fp[:,jBef] + fp[:,jAft] * dd def resample_interp(x_old, x_new, y_old=None, df_old=None): #x_new=np.sort(x_new) if df_old is not None: # --- Method 1 (pandas) #df_new = df_old.copy() #df_new = df_new.set_index(x_old) #df_new = df_new.reindex(df_new.index | x_new) #df_new = df_new.interpolate().loc[x_new] #df_new = df_new.reset_index() # --- Method 2 interp storing dx data_new=multiInterp(x_new, x_old, df_old.values.T) df_new = pd.DataFrame(data=data_new.T, columns=df_old.columns.values) return x_new, df_new if y_old is not None: return x_new, np.interp(x_new, x_old, y_old) def applySamplerDF(df_old, x_col, sampDict): x_old=df_old[x_col].values x_new, df_new =applySampler(x_old, y_old=None, sampDict=sampDict, df_old=df_old) df_new[x_col]=x_new return df_new def applySampler(x_old, y_old, sampDict, df_old=None): param = np.asarray(sampDict['param']).ravel() if sampDict['name']=='Replace': if len(param)==0: raise Exception('Error: At least one value is required to resample the x values with') x_new = param return resample_interp(x_old, x_new, y_old, df_old) elif sampDict['name']=='Insert': if len(param)==0: raise Exception('Error: provide a list of values to insert') x_new = np.sort(np.concatenate((x_old.ravel(),param))) return resample_interp(x_old, x_new, y_old, df_old) elif sampDict['name']=='Remove': I=[] if len(param)==0: raise Exception('Error: provide a list of values to remove') for d in param: Ifound= np.where(np.abs(x_old-d)<1e-3)[0] if len(Ifound)>0: I+=list(Ifound.ravel()) x_new=np.delete(x_old,I) return resample_interp(x_old, x_new, y_old, df_old) elif sampDict['name']=='Delta x': if len(param)==0: raise Exception('Error: provide value for dx') dx = param[0] x_new = np.arange(x_old[0], x_old[-1]+dx/2, dx) return resample_interp(x_old, x_new, y_old, df_old) elif sampDict['name']=='Every n': if len(param)==0: raise Exception('Error: provide value for n') n = int(param[0]) if n==0: raise Exception('Error: |n| should be at least 1') x_new=x_old[::n] if df_old is not None: return x_new, (df_old.copy()).iloc[::n,:] if y_old is not None: return x_new, y_old[::n] else: raise NotImplementedError('{}'.format(sampDict)) pass # --------------------------------------------------------------------------------} # --- Filters # --------------------------------------------------------------------------------{ # def moving_average(x, w): # #t_new = np.arange(0,Tmax,dt) # #nt = len(t_new) # #nw=400 # #u_new = moving_average(np.floor(np.linspace(0,3,nt+nw-1))*3+3.5, nw) # return np.convolve(x, np.ones(w), 'valid') / w # def moving_average(x,N,mode='same'): # y=np.convolve(x, np.ones((N,))/N, mode=mode) # return y def moving_average(a, n=3) : """ perform moving average, return a vector of same length as input NOTE: also in kalman.filters """ a = a.ravel() a = np.concatenate(([a[0]]*(n-1),a)) # repeating first values ret = np.cumsum(a, dtype = float) ret[n:] = ret[n:] - ret[:-n] ret=ret[n - 1:] / n return ret def lowpass1(y, dt, fc=3) : """ 1st order low pass filter """ tau=1/(2*np.pi*fc) alpha=dt/(tau+dt) y_filt=np.zeros(y.shape) y_filt[0]=y[0] for i in np.arange(1,len(y)): y_filt[i]=alpha*y[i] + (1-alpha)*y_filt[i-1] return y_filt def highpass1(y, dt, fc=3) : """ 1st order high pass filter """ tau=1/(2*np.pi*fc) alpha=tau/(tau+dt) y_filt=np.zeros(y.shape) y_filt[0]=0 for i in np.arange(1,len(y)): y_filt[i]=alpha*y_filt[i-1] + alpha*(y[i]-y[i-1]) m0=np.mean(y) m1=np.mean(y_filt) y_filt+=m0-m1 return y_filt def applyFilter(x, y,filtDict): if filtDict['name']=='Moving average': return moving_average(y, n=np.round(filtDict['param']).astype(int)) elif filtDict['name']=='Low pass 1st order': dt = x[1]-x[0] return lowpass1(y, dt=dt, fc=filtDict['param']) elif filtDict['name']=='High pass 1st order': dt = x[1]-x[0] return highpass1(y, dt=dt, fc=filtDict['param']) else: raise NotImplementedError('{}'.format(filtDict)) # --------------------------------------------------------------------------------} # --- # --------------------------------------------------------------------------------{ def zero_crossings(y,x=None,direction=None): """ Find zero-crossing points in a discrete vector, using linear interpolation. direction: 'up' or 'down', to select only up-crossings or down-crossings returns: x values xzc such that y(yzc)==0 indexes izc, such that the zero is between y[izc] (excluded) and y[izc+1] (included) if direction is not provided, also returns: sign, equal to 1 for up crossing """ if x is None: x=np.arange(len(y)) if np.any((x[1:] - x[0:-1]) <= 0.0): raise Exception('x values need to be in ascending order') # Indices before zero-crossing iBef = np.where(y[1:]*y[0:-1] < 0.0)[0] # Find the zero crossing by linear interpolation xzc = x[iBef] - y[iBef] * (x[iBef+1] - x[iBef]) / (y[iBef+1] - y[iBef]) # Selecting points that are exactly 0 and where neighbor change sign iZero = np.where(y == 0.0)[0] iZero = iZero[np.where((iZero > 0) & (iZero < x.size-1))] iZero = iZero[np.where(y[iZero-1]*y[iZero+1] < 0.0)] # Concatenate xzc = np.concatenate((xzc, x[iZero])) iBef = np.concatenate((iBef, iZero)) # Sort iSort = np.argsort(xzc) xzc, iBef = xzc[iSort], iBef[iSort] # Return up-crossing, down crossing or both sign = np.sign(y[iBef+1]-y[iBef]) if direction == 'up': I= np.where(sign==1)[0] return xzc[I],iBef[I] elif direction == 'down': I= np.where(sign==-1)[0] return xzc[I],iBef[I] elif direction is not None: raise Exception('Direction should be either `up` or `down`') return xzc, iBef, sign # --------------------------------------------------------------------------------} # --- # --------------------------------------------------------------------------------{ def correlation(x, nMax=80, dt=1, method='manual'): """ Compute auto correlation of a signal """ nvec = np.arange(0,nMax) sigma2 = np.var(x) R = np.zeros(nMax) R[0] =1 for i,nDelay in enumerate(nvec[1:]): R[i+1] = np.mean( x[0:-nDelay] * x[nDelay:] ) / sigma2 tau = nvec*dt return R, tau def correlated_signal(coeff, n=1000): """ Create a correlated random signal of length `n` based on the correlation coefficient `coeff` value[t] = coeff * value[t-1] + (1-coeff) * random """ if coeff<0 or coeff>1: raise Exception('Correlation coefficient should be between 0 and 1') x = np.zeros(n) rvec = rand(n) x[0] = rvec[0] for m in np.arange(1,n): x[m] = coeff*x[m-1] + (1-coeff)*rvec[m] x-=np.mean(x) return x if __name__=='__main__': import numpy as np import matplotlib.pyplot as plt # Input dt = 1 n = 10000 coeff = 0.95 # 1:full corr, 00-corr nMax = 180 # Create a correlated time series tvec = np.arange(0,n)*dt ts = correlated_signal(coeff, n) # --- Compute correlation coefficient R, tau = correlation(x, nMax=nMax) fig,axes = plt.subplots(2, 1, sharey=False, figsize=(6.4,4.8)) # (6.4,4.8) fig.subplots_adjust(left=0.12, right=0.95, top=0.95, bottom=0.11, hspace=0.20, wspace=0.20) ax=axes[0] # Plot time series ax.plot(tvec,ts) ax.set_xlabel('t [s]') ax.set_ylabel('u [m/s]') ax.tick_params(direction='in') # Plot correlation ax=axes[1] ax.plot(tau, R ,'b-o', label='computed') ax.plot(tau, coeff**(tau/dt) , 'r--' ,label='coeff^{tau/dt}') # analytical coeff^n trend ax.set_xlabel(r'$\tau$ [s]') ax.set_ylabel(r'$R(\tau)$ [-]') ax.legend() plt.show()
31.002882
119
0.533278
[ "MIT" ]
cdrtm/pyDatView
pydatview/tools/signal.py
10,758
Python
# -*- coding: utf-8 -*- # Generated by Django 1.11 on 2017-04-15 06:13 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion import django.utils.timezone import jsonfield.fields class Migration(migrations.Migration): initial = True dependencies = [ ('pinax_teams', '0002_add_simple_models'), migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Item', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('data', jsonfield.fields.JSONField()), ], ), migrations.CreateModel( name='ItemResponse', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_at', models.DateTimeField(default=django.utils.timezone.now)), ('answer', models.TextField()), ('item', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='oxlos.Item')), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='Project', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=250)), ('description', models.TextField()), ('description_html', models.TextField(blank=True, editable=False)), ('team', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='pinax_teams.SimpleTeam')), ], ), migrations.CreateModel( name='Task', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=250)), ('description', models.TextField()), ('description_html', models.TextField(blank=True, editable=False)), ('instructions', models.TextField()), ('instructions_html', models.TextField(blank=True, editable=False)), ('question_template', models.TextField()), ('project', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='tasks', to='oxlos.Project')), ], ), migrations.AddField( model_name='item', name='task', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='oxlos.Task'), ), ]
41.941176
134
0.596073
[ "MIT" ]
jtauber/oxlos2
oxlos/migrations/0001_initial.py
2,852
Python
from setuptools import find_packages, setup setup( name="hacker_news", version="dev", author="Elementl", author_email="[email protected]", classifiers=[ "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Operating System :: OS Independent", ], packages=find_packages(exclude=["test"]), package_data={"hacker_news": ["hacker_news_dbt/*"]}, install_requires=[ "aiobotocore==1.3.3", "dagster", "dagster-aws", "dagster-dbt", "dagster-pandas", "dagster-pyspark", "dagster-slack", "dagster-postgres", "dagstermill", "dbt>=0.19.0", "mock", # DataFrames were not written to Snowflake, causing errors "pandas<1.4.0", "pyarrow>=4.0.0", "pyspark", "requests", "fsspec", "s3fs", "scipy", "sklearn", "snowflake-sqlalchemy", "matplotlib", ], extras_require={"tests": ["mypy", "pylint", "pytest"]}, )
26.5
66
0.539982
[ "Apache-2.0" ]
kbd/dagster
examples/hacker_news/setup.py
1,113
Python
# -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making ่“้ฒธๆ™บไบ‘PaaSๅนณๅฐ็คพๅŒบ็‰ˆ (BlueKing PaaS Community Edition) available. Copyright (C) 2017-2021 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from requests_mock import ANY from backend.components.cluster_manager import ClusterManagerClient class TestClusterManagerClient: def test_get_nodes(self, cluster_id, request_user, requests_mock): expected_data = [{"innerIP": "127.0.0.1"}] requests_mock.get(ANY, json={"code": 0, "data": expected_data}) client = ClusterManagerClient(request_user.token.access_token) data = client.get_nodes(cluster_id) assert data == expected_data
46.769231
115
0.763158
[ "Apache-2.0" ]
jamesgetx/bk-bcs
bcs-ui/backend/tests/components/test_cm.py
1,234
Python
import os import sys import json import datetime import numpy as np import skimage.draw from bs4 import BeautifulSoup as bs import cv2 import imgaug from utils import * # Root directory of the project ROOT_DIR = os.path.abspath("../../") # Inference result directory RESULTS_DIR = os.path.abspath("./inference/") # Import Mask RCNN sys.path.append(ROOT_DIR) # To find local version of the library from configs import Config # from mrcnn import model as modellib, utils # from mrcnn import visualize import matplotlib # Agg backend runs without a display matplotlib.use('Agg') import matplotlib.pyplot as plt DEFAULT_LOGS_DIR = os.path.join(ROOT_DIR, "logs") DEFAULT_DATASET_YEAR = '2012' COCO_WEIGHTS_PATH = os.path.join(ROOT_DIR, "mask_rcnn_coco.h5") # VOC DATASET MASK MAP FUNCTION # Following codes are mapping each mask color(SegmentationClass) to ground truth index. # - reference: https://d2l.ai/chapter_computer-vision/semantic-segmentation-and-dataset.html VOC_COLORMAP = [[0, 0, 0], [128, 0, 0], [0, 128, 0], [128, 128, 0], [0, 0, 128], [128, 0, 128], [0, 128, 128], [128, 128, 128], [64, 0, 0], [192, 0, 0], [64, 128, 0], [192, 128, 0], [64, 0, 128], [192, 0, 128], [64, 128, 128], [192, 128, 128], [0, 64, 0], [128, 64, 0], [0, 192, 0], [128, 192, 0], [0, 64, 128]] VOC_CLASSES = ['background', 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'potted plant', 'sheep', 'sofa', 'train', 'tv/monitor'] def build_colormap2label(): """Build a RGB color to label mapping for segmentation.""" colormap2label = np.zeros(256 ** 3) for i, colormap in enumerate(VOC_COLORMAP): colormap2label[(colormap[0]*256 + colormap[1])*256 + colormap[2]] = i return colormap2label def voc_label_indices(colormap, colormap2label): """Map a RGB color to a label.""" colormap = colormap.astype('int32') idx = ((colormap[:, :, 0] * 256 + colormap[:, :, 1]) * 256 + colormap[:, :, 2]) return colormap2label[idx] # VOC DATASET MASK MAP FUNCTION class VocConfig(Config): NAME = "voc" IMAGE_PER_GPU = 2 NUM_CLASSES = 1 + 20 # VOC 2012 have 20 classes. "1" is for background. class InferenceConfig(VocConfig): # Set batch size to 1 since we'll be running inference on # one image at a time. Batch size = GPU_COUNT * IMAGES_PER_GPU GPU_COUNT = 1 IMAGES_PER_GPU = 1 DETECTION_MIN_CONFIDENCE = 0 class VocDataset(Dataset): def load_voc(self, dataset_dir, trainval, year='2012'): """Load a voc_year of the VOC dataset. dataset_dir: The root directory of the VOC dataset, example: '/mnt/disk1/VOCdevkit' trainval: 'train' or 'val' for Training or Validation year: '2007' or '2012' for VOC dataset """ voc_year = 'VOC' + year Segmentation = os.path.join(dataset_dir, voc_year, 'ImageSets', 'Segmentation') JPEGImages = os.path.join(dataset_dir, voc_year, 'JPEGImages') Annotations = os.path.join(dataset_dir, voc_year, 'Annotations') SegmentationClass = os.path.join(dataset_dir, voc_year, 'SegmentationClass') SegmentationObject = os.path.join(dataset_dir, voc_year, 'SegmentationObject') # load classes of VOC, BG is initialed in parent class. for idx, class_name in enumerate(VOC_CLASSES[1:]): self.add_class("voc", idx + 1, class_name) assert trainval in ['train', 'val'] # read segmentation annotation file annotation_file = os.path.join(Segmentation, trainval + '.txt') image_ids = [] with open(annotation_file) as f: image_id_list = [line.strip() for line in f] image_ids += image_id_list for image_id in image_ids: image_file_name = '{}.jpg'.format(image_id) mask_file_name = '{}.png'.format(image_id) xml_file_name = '{}.xml'.format(image_id) image_path = os.path.join(JPEGImages, image_file_name) # Parse Annotations XML File with open(os.path.join(Annotations, xml_file_name)) as f: soup = bs(f, 'lxml') objects = soup.find_all('object') image_contains_class_flag = False for obj in objects: class_name = obj.find('name').text if class_name in VOC_CLASSES: image_contains_class_flag = True continue if image_contains_class_flag: class_mask_path = os.path.join(SegmentationClass, mask_file_name) object_mask_path = os.path.join(SegmentationObject, mask_file_name) self.add_image("voc", image_id=image_file_name, path=image_path, class_mask_path=class_mask_path, object_mask_path=object_mask_path) def load_raw_mask(self, image_id, class_or_object): '''load two kinds of mask of VOC dataset. image_id: id of mask class_or_object: 'class_mask' or 'object_mask' for SegmentationClass or SegmentationObject Returns: image: numpy of mask image. ''' assert class_or_object in ['class_mask', 'object_mask'] image = skimage.io.imread(self.image_info[image_id][class_or_object+'_path']) if image.ndim != 3: image = skimage.color.gray2rgb(image) # If has an alpha channel, remove it for consistency if image.shape[-1] == 4: image = image[..., :3] return image def load_class_label(self, image_id): '''Mapping SegmentationClass image's color to indice of ground truth image_id: id of mask Return: class_label: [height, width] matrix contains values form 0 to 20 ''' raw_mask = self.load_raw_mask(image_id, 'class_mask') class_label = voc_label_indices(raw_mask, build_colormap2label()) return class_label def load_mask(self, image_id): '''Mapping annotation images to real Masks(MRCNN needed) image_id: id of mask Returns: masks: A bool array of shape [height, width, instance count] with one mask per instance. class_ids: a 1D array of class IDs of the instance masks. ''' class_label = self.load_class_label(image_id) instance_mask = self.load_raw_mask(image_id, 'object_mask') max_indice = int(np.max(class_label)) instance_label = [] instance_class = [] for i in range(1, max_indice+1): if not np.any(class_label==i): continue gt_indice = i object_filter = class_label == i object_filter = object_filter.astype(np.uint8) object_filter = np.dstack((object_filter,object_filter,object_filter)) filtered = np.multiply(object_filter, instance_mask) gray = cv2.cvtColor(filtered, cv2.COLOR_RGB2GRAY) max_gray = np.max(gray) for sub_index in range(1, max_gray+1): if not np.any(gray==sub_index): continue instance_filter = gray == sub_index instance_label += [instance_filter] instance_class += [gt_indice] masks = np.asarray(instance_label).transpose((1,2,0)) classes_ids = np.asarray(instance_class) return masks, classes_ids ############################################################ # Inference ############################################################ def inference(model, dataset, limit): """Run detection on images in the given directory.""" # Create directory if not os.path.exists(RESULTS_DIR): os.makedirs(RESULTS_DIR) time_dir = "{:%Y%m%dT%H%M%S}".format(datetime.datetime.now()) time_dir = os.path.join(RESULTS_DIR, time_dir) os.makedirs(time_dir) # Load over images for image_id in dataset.image_ids[:limit]: # Load image and run detection image = dataset.load_image(image_id) # Detect objects r = model.detect([image], verbose=0)[0] # Encode image to RLE. Returns a string of multiple lines source_id = dataset.image_info[image_id]["id"] # Save image with masks if len(r['class_ids']) > 0: print('[*] {}th image has {} instance(s).'.format(image_id, len(r['class_ids']))) visualize.display_instances( image, r['rois'], r['masks'], r['class_ids'], dataset.class_names, r['scores'], show_bbox=True, show_mask=True, title="Predictions") plt.savefig("{}/{}".format(time_dir, dataset.image_info[image_id]["id"])) plt.close() else: plt.imshow(image) plt.savefig("{}/noinstance_{}".format(time_dir, dataset.image_info[image_id]["id"])) print('[*] {}th image have no instance.'.format(image_id)) plt.close() if __name__ == '__main__': import argparse # Parse command line arguments parser = argparse.ArgumentParser( description='Train Mask R-CNN on PASCAL VOC.') parser.add_argument("--command", metavar="<command>", default='train', help="'train' or 'inference' on PASCAL VOC") parser.add_argument('--dataset', default="/data/lktime-seg-tp/dataset/PASCALVOC/VOCdevkit/", help='Directory of the PASCAL VOC dataset') parser.add_argument('--year', default='2012', help='Year of the PASCAL VOC dataset (2007 or 2012) (default=2012)') parser.add_argument('--model', default="/path/to/weights.h5", help="Path to weights .h5 file or 'voc'") parser.add_argument('--logs', default='./logs', metavar="/path/to/logs/", help='Logs and checkpoints directory (default=logs/)') parser.add_argument('--limit', required=False, default=10, metavar="<image count>", help='Images to use for evaluation (default=10)') # TODO ''' parser.add_argument('--download', required=False, default=False, metavar="<True|False>", help='Automatically download and unzip PASCAL VOC files (default=False)', type=bool) ''' args = parser.parse_args() print("Command: ", args.command) print("Model: ", args.model) print("Dataset: ", args.dataset) print("Year: ", args.year) print("Logs: ", args.logs) #print("Auto Download: ", args.download) # Configurations if args.command == "train": config = VocConfig() else: config = InferenceConfig() config.display() # Create model # if args.command == "train": # model = modellib.MaskRCNN(mode="training", config=config, # model_dir=args.logs) # else: # model = modellib.MaskRCNN(mode="inference", config=config, # model_dir=args.logs) # Select weights file to load # if args.model.lower() == "coco": # model_path = COCO_WEIGHTS_PATH # elif args.model.lower() == "last": # # Find last trained weights # model_path = model.find_last() # elif args.model.lower() == "imagenet": # # Start from ImageNet trained weights # model_path = model.get_imagenet_weights() # else: # model_path = args.model # Load weights # if args.model.lower() == "coco": # # Exclude the last layers because they require a matching # # number of classes # model.load_weights(model_path, by_name=True, exclude=[ # "mrcnn_class_logits", "mrcnn_bbox_fc", # "mrcnn_bbox", "mrcnn_mask"]) # else: # print("Loading weights ", model_path) # model.load_weights(model_path, by_name=True) # Train or evaluate if args.command == "train": # Training dataset. Use the training set and 35K from the # validation set, as as in the Mask RCNN paper. dataset_train = VocDataset() dataset_train.load_voc(args.dataset, "train", year=args.year) dataset_train.prepare() # Validation dataset dataset_val = VocDataset() dataset_val.load_voc(args.dataset, "val", year=args.year) dataset_val.prepare() # Image Augmentation # Right/Left flip 50% of the time augmentation = imgaug.augmenters.Fliplr(0.5) # *** This training schedule is an example. Update to your needs *** # # Training - Stage 1 # print("Training network heads") # model.train(dataset_train, dataset_val, # learning_rate=config.LEARNING_RATE, # epochs=40, # layers='heads', # augmentation=augmentation) # # Training - Stage 2 # # Finetune layers from ResNet stage 4 and up # print("Fine tune Resnet stage 4 and up") # model.train(dataset_train, dataset_val, # learning_rate=config.LEARNING_RATE, # epochs=120, # layers='4+', # augmentation=augmentation) # # Training - Stage 3 # # Fine tune all layers # print("Fine tune all layers") # model.train(dataset_train, dataset_val, # learning_rate=config.LEARNING_RATE / 10, # epochs=160, # layers='all', # augmentation=augmentation) # elif args.command == "inference": # #print("evaluate have not been implemented") # # Validation dataset # dataset_val = VocDataset() # voc = dataset_val.load_voc(args.dataset, "val", year=args.year) # dataset_val.prepare() # print("Running voc inference on {} images.".format(args.limit)) # inference(model, dataset_val, int(args.limit)) # else: # print("'{}' is not recognized. " # "Use 'train' or 'inference'".format(args.command))
39.112601
98
0.582699
[ "Apache-2.0" ]
yhpengtu/CenterIMask
tools/convet_voc2coco/voc2coco.py
14,589
Python
from tint.ssl.context import PFSContextFactory from tint.log import Logger from tint.protocols.tintp import ConnectionPool from tint.protocols.tintp import TintProtocolFactory from tint.friends import FriendsList class Peer(object): def __init__(self, keyStore, storage, resolver): self.keyStore = keyStore self.storage = storage self.contextFactory = PFSContextFactory(self.keyStore) self.pool = ConnectionPool(resolver, self.contextFactory, self.keyStore, self.storage) self.protocolFactory = TintProtocolFactory(self.pool) self.friends = FriendsList(self.storage, self.keyStore, resolver) self.log = Logger(system=self) def getKeyId(self): """ Get the keyId used by this peer (this peer's identifier). This is stored in the key store. """ return self.keyStore.getKeyId() def getPublicKey(self): """ Get the keyId used by this peer (this peer's identifier). This is stored in the key store. """ return self.keyStore.getPublicKey() def set(self, hostKeyId, storagePath, storageValue): """ Set a value on a host. @param hostKeyId: The key id for the destination host to set the given key. This could be the local host, in which case the hostKey will be the same as this C{Peer}'s keyStore keyId. @param storagePath: The path to the key to set. For instance, this could be something like /chat/<somekey>/inbox. @param storageValue: The value to set. """ if hostKeyId == self.getKeyId(): return self.storage.set(hostKeyId, storagePath, storageValue) return self.pool.send(hostKeyId, 'set', storagePath, storageValue) def get(self, hostKeyId, storagePath): """ Get a value from a host. @param hostKeyId: The key id for the destination host to get the given key. This could be the local host, in which case the hostKey will be the same as this C{Peer}'s keyStore keyId. @param storagePath: The path to the key to get. For instance, this could be something like /chat/<somekey>/inbox. """ if hostKeyId == self.getKeyId(): self.log.debug("getting storagePath %s on self" % storagePath) return self.storage.get(hostKeyId, storagePath) self.log.debug("getting storagePath %s on %s" % (storagePath, hostKeyId)) return self.pool.send(hostKeyId, 'get', storagePath) def push(self, hostKeyId, storagePath, storageValue): """ Given key, create a new key at <key>/<id> with the given value, where <id> is an auto-incrementing integer value starting at 0. """ if hostKeyId == self.getKeyId(): return self.storage.push(hostKeyId, storagePath, storageValue) return self.pool.send(hostKeyId, 'push', storagePath, storageValue) def ls(self, hostKeyId, storagePath, offset, length): """ Given key, get all children keys (with the given offset and length). Length cannot be more than 1000. """ if hostKeyId == self.getKeyId(): return self.storage.ls(hostKeyId, storagePath, offset, length) return self.pool.send(hostKeyId, 'ls', storagePath, offset, length)
39
94
0.651163
[ "MIT" ]
8468/tint
tint/peer.py
3,354
Python
"""Count Encoder""" import numpy as np import pandas as pd import category_encoders.utils as util from copy import copy from sklearn.base import BaseEstimator, TransformerMixin __author__ = 'joshua t. dunn' class CountEncoder(BaseEstimator, TransformerMixin): def __init__(self, verbose=0, cols=None, drop_invariant=False, return_df=True, handle_unknown=None, handle_missing='count', min_group_size=None, combine_min_nan_groups=True, min_group_name=None, normalize=False): """Count encoding for categorical features. For a given categorical feature, replace the names of the groups with the group counts. Parameters ---------- verbose: int integer indicating verbosity of output. 0 for none. cols: list a list of columns to encode, if None, all string and categorical columns will be encoded. drop_invariant: bool boolean for whether or not to drop columns with 0 variance. return_df: bool boolean for whether to return a pandas DataFrame from transform (otherwise it will be a numpy array). handle_missing: str how to handle missing values at fit time. Options are 'error', 'return_nan', and 'count'. Default 'count', which treat NaNs as a countable category at fit time. handle_unknown: str, int or dict of. how to handle unknown labels at transform time. Options are 'error' 'return_nan' and an int. Defaults to None which uses NaN behaviour specified at fit time. Passing an int will fill with this int value. normalize: bool or dict of. whether to normalize the counts to the range (0, 1). See Pandas `value_counts` for more details. min_group_size: int, float or dict of. the minimal count threshold of a group needed to ensure it is not combined into a "leftovers" group. If float in the range (0, 1), `min_group_size` is calculated as int(X.shape[0] * min_group_size). Note: This value may change type based on the `normalize` variable. If True this will become a float. If False, it will be an int. min_group_name: None, str or dict of. Set the name of the combined minimum groups when the defaults become too long. Default None. In this case the category names will be joined alphabetically with a `_` delimiter. Note: The default name can be long ae may keep changing, for example, in cross-validation. combine_min_nan_groups: bool or dict of. whether to combine the leftovers group with NaN group. Default True. Can also be forced to combine with 'force' meaning small groups are effectively counted as NaNs. Force can only used when 'handle_missing' is 'count' or 'error'. Example ------- >>> import pandas as pd >>> from sklearn.datasets import load_boston >>> from category_encoders import CountEncoder >>> bunch = load_boston() >>> y = bunch.target >>> X = pd.DataFrame(bunch.data, columns=bunch.feature_names) >>> enc = CountEncoder(cols=['CHAS', 'RAD']).fit(X, y) >>> numeric_dataset = enc.transform(X) >>> print(numeric_dataset.info()) <class 'pandas.core.frame.DataFrame'> RangeIndex: 506 entries, 0 to 505 Data columns (total 13 columns): CRIM 506 non-null float64 ZN 506 non-null float64 INDUS 506 non-null float64 CHAS 506 non-null int64 NOX 506 non-null float64 RM 506 non-null float64 AGE 506 non-null float64 DIS 506 non-null float64 RAD 506 non-null int64 TAX 506 non-null float64 PTRATIO 506 non-null float64 B 506 non-null float64 LSTAT 506 non-null float64 dtypes: float64(11), int64(2) memory usage: 51.5 KB None References ---------- """ self.return_df = return_df self.drop_invariant = drop_invariant self.drop_cols = [] self.verbose = verbose self.cols = cols self._dim = None self.mapping = None self.handle_unknown = handle_unknown self.handle_missing = handle_missing self.normalize = normalize self.min_group_size = min_group_size self.min_group_name = min_group_name self.combine_min_nan_groups = combine_min_nan_groups self._min_group_categories = {} self._normalize = {} self._min_group_name = {} self._combine_min_nan_groups = {} self._min_group_size = {} self._handle_unknown = {} self._handle_missing = {} def fit(self, X, y=None, **kwargs): """Fit encoder according to X. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] Target values. Returns ------- self : encoder Returns self. """ # first check the type X = util.convert_input(X) self._dim = X.shape[1] # if columns aren't passed, just use every string column if self.cols is None: self.cols = util.get_obj_cols(X) else: self.cols = util.convert_cols_to_list(self.cols) self._check_set_create_dict_attrs() self._fit_count_encode(X, y) if self.drop_invariant: self.drop_cols = [] X_temp = self.transform(X) generated_cols = util.get_generated_cols(X, X_temp, self.cols) self.drop_cols = [ x for x in generated_cols if X_temp[x].var() <= 10e-5 ] return self def transform(self, X, y=None): """Perform the transformation to new categorical data. Parameters ---------- X : array-like, shape = [n_samples, n_features] y : array-like, shape = [n_samples] Returns ------- p : array, shape = [n_samples, n_numeric + N] Transformed values with encoding applied. """ if self._dim is None: raise ValueError( 'Must train encoder before it can be used to transform data.' ) # first check the type X = util.convert_input(X) # then make sure that it is the right size if X.shape[1] != self._dim: raise ValueError( 'Unexpected input dimension %d, expected %d' % (X.shape[1], self._dim,) ) if not self.cols: return X X, _ = self._transform_count_encode(X, y) if self.drop_invariant: for col in self.drop_cols: X.drop(col, 1, inplace=True) if self.return_df: return X else: return X.values def _fit_count_encode(self, X_in, y): """Perform the count encoding.""" X = X_in.copy(deep=True) if self.cols is None: self.cols = X.columns.values self.mapping = {} for col in self.cols: if X[col].isna().any(): if self._handle_missing[col] == 'error': raise ValueError( 'Missing data found in column %s at fit time.' % (col,) ) elif self._handle_missing[col] not in ['count', 'return_nan', 'error']: raise ValueError( '%s key in `handle_missing` should be one of: ' ' `value`, `return_nan` and `error`.' % (col,) ) self.mapping[col] = X[col].value_counts( normalize=self._normalize[col], dropna=False ) if self._handle_missing[col] == 'return_nan': self.mapping[col][np.NaN] = np.NaN if any([val is not None for val in self._min_group_size.values()]): self.combine_min_categories(X) def _transform_count_encode(self, X_in, y): """Perform the transform count encoding.""" X = X_in.copy(deep=True) for col in self.cols: if self._min_group_size is not None: if col in self._min_group_categories.keys(): X[col] = ( X[col].map(self._min_group_categories[col]) .fillna(X[col]) ) X[col] = X[col].map(self.mapping[col]) if isinstance(self._handle_unknown[col], np.integer): X[col] = X[col].fillna(self._handle_unknown[col]) elif ( self._handle_unknown[col] == 'error' and X[col].isna().any() ): raise ValueError( 'Missing data found in column %s at transform time.' % (col,) ) return X, self.mapping def combine_min_categories(self, X): """Combine small categories into a single category.""" for col, mapper in self.mapping.items(): if self._normalize[col] and isinstance(self._min_group_size[col], int): self._min_group_size[col] = self._min_group_size[col] / X.shape[0] elif not self._normalize and isinstance(self._min_group_size[col], float): self._min_group_size[col] = self._min_group_size[col] * X.shape[0] if self._combine_min_nan_groups[col] is True: min_groups_idx = mapper < self._min_group_size[col] elif self._combine_min_nan_groups[col] == 'force': min_groups_idx = ( (mapper < self._min_group_size[col]) | (mapper.index.isna()) ) else: min_groups_idx = ( (mapper < self._min_group_size[col]) & (~mapper.index.isna()) ) min_groups_sum = mapper.loc[min_groups_idx].sum() if min_groups_sum > 0 and (min_groups_idx).sum() > 1: if isinstance(self._min_group_name[col], str): min_group_mapper_name = self._min_group_name else: min_group_mapper_name = '_'.join([ str(idx) for idx in mapper.loc[min_groups_idx].index.astype(str).sort_values() ]) self._min_group_categories[col] = { cat: min_group_mapper_name for cat in mapper.loc[min_groups_idx].index.tolist() } if not min_groups_idx.all(): mapper = mapper.loc[~min_groups_idx] if mapper.index.is_categorical(): mapper.index = mapper.index.add_categories( min_group_mapper_name ) mapper[min_group_mapper_name] = min_groups_sum self.mapping[col] = mapper def _check_set_create_dict_attrs(self): """Check attributes that can be dicts and format for all self.cols.""" dict_attrs = { 'normalize': False, 'min_group_name': None, 'combine_min_nan_groups': True, 'min_group_size': None, 'handle_unknown': 'value', 'handle_missing': 'value', } for attr_name, attr_default in dict_attrs.items(): attr = copy(getattr(self, attr_name)) if isinstance(attr, dict): for col in self.cols: if col not in attr: attr[col] = attr_default setattr(self, '_' + attr_name, attr) else: attr_dict = {} for col in self.cols: attr_dict[col] = attr setattr(self, '_' + attr_name, attr_dict) for col in self.cols: if ( self._handle_missing[col] == 'return_nan' and self._combine_min_nan_groups[col] == 'force' ): raise ValueError( "Cannot have `handle_missing` == 'return_nan' and " "'combine_min_nan_groups' == 'force' for columns `%s`." % (col,) )
36.139665
93
0.541738
[ "BSD-3-Clause" ]
JoshuaC3/categorical-encoding
category_encoders/count.py
12,938
Python
#The term schedule that gets displayed. Can do multiple terms in the case of displaying #summer and fall at the same time. ie termNames ['2201','2208'] termNames=['2218'] majorTemplate='in/majorPage.html.mako' #Add new majors here. #Name: short name for the major #classFile: the csv file containing all the classes in this majors curriculum #asof: the date that the major curriculum was aquired majors=[ {'name': 'SNRE', 'classFile': 'majorClassLists/SNREList.csv', 'asof': 'Oct 10,2015'}, {'name': 'WEC', 'classFile': 'majorClassLists/WECList.csv', 'asof': 'Oct 10,2015'} ] #Add new semesters here. #Name: The term code, see below. #prettyName: the more comprehendable name. eg. Fall 2015 #termSchedule: the filename for the downloaded csv file for the schedule. All should be semesterData/YYYYXX.csv # #The new API started being the sole source in spring 2020. With that term codes are: # CYYM, where C = 2, YY = the last 2 digits of the year, and M is 8 or 1 for fall or spring # #TODO: New codes for Summer. Its special since it has several mini-terms. terms=[ {'name' :'2218', 'prettyName':'Fall 2021', 'termSchedule': 'semesterData/fall2021.csv'}, {'name' :'2211', 'prettyName':'Spring 2021', 'termSchedule': 'semesterData/spring2021.csv'}, {'name' :'2208', 'prettyName':'Fall 2020', 'termSchedule': 'semesterData/fall2020.csv'}, {'name' :'2201', 'prettyName':'Spring 2020', 'termSchedule': 'semesterData/spring2020.csv'}, {'name' :'201908', 'prettyName':'Fall 2019', 'termSchedule': 'semesterData/201908.csv'}, {'name' :'201906', 'prettyName':'Summer 2019', 'termSchedule': 'semesterData/201906.csv'}, {'name' :'201901', 'prettyName':'Spring 2019', 'termSchedule': 'semesterData/201901.csv'}, {'name' :'201808', 'prettyName':'Fall 2018', 'termSchedule': 'semesterData/201808.csv'}, {'name' :'201806', 'prettyName':'Summer 2018', 'termSchedule': 'semesterData/201806.csv'}, {'name' :'201801', 'prettyName':'Spring 2018', 'termSchedule': 'semesterData/201801.csv'}, {'name' :'201708', 'prettyName':'Fall 2017', 'termSchedule': 'semesterData/201708.csv'}, {'name' :'201706', 'prettyName':'Summer 2017', 'termSchedule': 'semesterData/201706.csv'}, {'name' :'201701', 'prettyName':'Spring 2017', 'termSchedule': 'semesterData/201701.csv'}, {'name' :'201608', 'prettyName':'Fall 2016', 'termSchedule': 'semesterData/201608.csv'}, {'name' :'201606', 'prettyName':'Summer 2016', 'termSchedule': 'semesterData/201606.csv'}, {'name' :'201601', 'prettyName':'Spring 2016', 'termSchedule': 'semesterData/201601.csv'}, {'name' :'201508', 'prettyName':'Fall 2015', 'termSchedule': 'semesterData/201508.csv'}, {'name' :'201506', 'prettyName':'Summer 2015', 'termSchedule': 'semesterData/201506.csv'}, {'name' :'201501', 'prettyName':'Spring 2015', 'termSchedule': 'semesterData/201501.csv'}, {'name' :'201408', 'prettyName':'Fall 2014', 'termSchedule': 'semesterData/201408.csv'}, {'name' :'201406', 'prettyName':'Summer 2014', 'termSchedule': 'semesterData/201406.csv'}, {'name' :'201401', 'prettyName':'Spring 2014', 'termSchedule': 'semesterData/201401.csv'}, {'name' :'201308', 'prettyName':'Fall 2013', 'termSchedule': 'semesterData/201308.csv'}, {'name' :'201301', 'prettyName':'Spring 2013', 'termSchedule': 'semesterData/201301.csv'}, {'name' :'201208', 'prettyName':'Fall 2012', 'termSchedule': 'semesterData/201208.csv'}, {'name' :'201201', 'prettyName':'Spring 2012', 'termSchedule': 'semesterData/201201.csv'}, {'name' :'201108', 'prettyName':'Fall 2011', 'termSchedule': 'semesterData/201108.csv'}, {'name' :'201101', 'prettyName':'Spring 2011', 'termSchedule': 'semesterData/201101.csv'}, {'name' :'201008', 'prettyName':'Fall 2010', 'termSchedule': 'semesterData/201008.csv'} ] #To deal with 100's of special topic classes that may or may not be on the curriculum (and if not, still deserve #to be considered), show *all* special topcis classes from a few relevant departments relevantDepts=['BOT','ZOO','FAS','WIS','FOR','GEO','ENV'] #Exclude any classes with these titles. Designed for research credits which I don't need to have on the site classTitleExclusions=['SUPERVISED RESEARCH','MASTERS RESEARCH','DOCTORAL RESEARCH','ADVANCED RESEARCH', 'SUPERVISED TEACHING','INDIVIDUAL WORK','INDIVIDUAL STUDIES','SPECIAL TOPICS'] #Every dept has 'Special Topic' codes that are not necessarily in the curriculum. #Since they all share the same course codes with things thare *are* in the curriclum, #all special topics are included. #This list is to go and find them and mark them "special topics" to indicate the class might #need prior approval. #Theres probably a better way to account for these. maybe scrape the grad catalog website specialTopicClasses=['ZOO6927', 'WIS6934', 'SWS6932', 'ALS5932', 'AOM6932', 'AEC6932', 'STA6934', 'ANS6932', 'ENY6932', 'NEM6932', 'AEB6933', 'ABE6933', 'PHC6937', 'LAS6938', 'GEO6938', 'HOS6932', 'MCB6937', 'PBC6937', 'FAS6932', 'AGR6932', 'BOT6935', 'ANG6930', 'ENV6935', 'ENV6932', 'FOR6934', 'MAT6932', 'LAW6930', 'SYA7933', 'GEB6930', 'AFS6905', 'VME6934' ]
57.097087
112
0.60857
[ "MIT" ]
sdtaylor/scheduleCrossRef
config.py
5,881
Python
# --------------------------------------------------------------------- # Syslog server # --------------------------------------------------------------------- # Copyright (C) 2007-2020 The NOC Project # See LICENSE for details # --------------------------------------------------------------------- # Python modules import logging import time from typing import Tuple # NOC modules from noc.config import config from noc.core.perf import metrics from noc.core.ioloop.udpserver import UDPServer from noc.core.comp import smart_text logger = logging.getLogger(__name__) class SyslogServer(UDPServer): def __init__(self, service): super().__init__() self.service = service def enable_reuseport(self): return config.syslogcollector.enable_reuseport def enable_freebind(self): return config.syslogcollector.enable_freebind def on_read(self, data: bytes, address: Tuple[str, int]): metrics["syslog_msg_in"] += 1 cfg = self.service.lookup_config(address[0]) if not cfg: return # Invalid event source # Convert data to valid UTF8 data = smart_text(data, errors="ignore") # Parse priority priority = 0 if data.startswith("<"): idx = data.find(">") if idx == -1: return try: priority = int(data[1:idx]) except ValueError: pass data = data[idx + 1 :].strip() # Get timestamp ts = int(time.time()) # self.service.register_message(cfg, ts, data, facility=priority >> 3, severity=priority & 7)
30.072727
99
0.538089
[ "BSD-3-Clause" ]
nocproject/noc
services/syslogcollector/syslogserver.py
1,654
Python
import logging import os import subprocess logger = logging.getLogger(__name__) class Combiner(object): def __init__(self, options): self.options = options def combine(self, page_file_names): output_file_name = self.options.output_file_name[0] logger.info("combine %d pages into %s", len(page_file_names), output_file_name) combine_args = ['pdfunite'] combine_args += page_file_names combine_args += [os.path.basename(output_file_name)] logger.debug("call: %s", " ".join(combine_args)) returncode = subprocess.call(combine_args) if returncode != 0: logger.error("combine failed: %s", " ".join(combine_args)) if not os.path.exists(output_file_name): logger.error("output file '%s' does not exist", output_file_name) return returncode
29.689655
87
0.663182
[ "Apache-2.0" ]
wuan/scan_pdf
src/scan_pdf/combine.py
861
Python
import logging import unittest import numpy as np import pandas as pd import scipy.stats as stats import diffxpy.api as de class _TestPairwiseNull: noise_model: str def _prepate_data( self, n_cells: int, n_genes: int, n_groups: int ): if self.noise_model == "nb": from batchglm.api.models.glm_nb import Simulator rand_fn_loc = lambda shape: np.random.uniform(0.1, 1, shape) rand_fn_scale = lambda shape: np.random.uniform(0.5, 1, shape) elif self.noise_model == "norm" or self.noise_model is None: from batchglm.api.models.glm_norm import Simulator rand_fn_loc = lambda shape: np.random.uniform(500, 1000, shape) rand_fn_scale = lambda shape: np.random.uniform(1, 2, shape) else: raise ValueError("noise model %s not recognized" % self.noise_model) sim = Simulator(num_observations=n_cells, num_features=n_genes) sim.generate_sample_description(num_batches=0, num_conditions=0) sim.generate_params( rand_fn_loc=rand_fn_loc, rand_fn_scale=rand_fn_scale ) sim.generate_data() random_sample_description = pd.DataFrame({ "condition": np.random.randint(n_groups, size=sim.nobs) }) return sim, random_sample_description def _test_null_distribution_basic( self, test: str, lazy: bool, quick_scale: bool = False, n_cells: int = 3000, n_genes: int = 200, n_groups: int = 3 ): """ Test if de.wald() generates a uniform p-value distribution if it is given data simulated based on the null model. Returns the p-value of the two-side Kolmgorov-Smirnov test for equality of the observed p-value distriubution and a uniform distribution. :param n_cells: Number of cells to simulate (number of observations per test). :param n_genes: Number of genes to simulate (number of tests). """ sim, sample_description = self._prepate_data( n_cells=n_cells, n_genes=n_genes, n_groups=n_groups ) test = de.test.pairwise( data=sim.input_data, sample_description=sample_description, grouping="condition", test=test, lazy=lazy, quick_scale=quick_scale, noise_model=self.noise_model ) _ = test.summary() # Compare p-value distribution under null model against uniform distribution. if lazy: pval_h0 = stats.kstest(test.pval_pairs(groups0=0, groups1=1).flatten(), 'uniform').pvalue else: pval_h0 = stats.kstest(test.pval[0, 1, :].flatten(), 'uniform').pvalue logging.getLogger("diffxpy").info('KS-test pvalue for null model match of wald(): %f' % pval_h0) assert pval_h0 > 0.05, "KS-Test failed: pval_h0=%f is <= 0.05!" % np.round(pval_h0, 5) return True class TestPairwiseNullStandard(unittest.TestCase, _TestPairwiseNull): def test_null_distribution_ttest(self): logging.getLogger("tensorflow").setLevel(logging.ERROR) logging.getLogger("batchglm").setLevel(logging.WARNING) logging.getLogger("diffxpy").setLevel(logging.WARNING) np.random.seed(1) self.noise_model = None self._test_null_distribution_basic(test="t-test", lazy=False) def test_null_distribution_rank(self): logging.getLogger("tensorflow").setLevel(logging.ERROR) logging.getLogger("batchglm").setLevel(logging.WARNING) logging.getLogger("diffxpy").setLevel(logging.WARNING) np.random.seed(1) self.noise_model = None self._test_null_distribution_basic(test="rank", lazy=False) class TestPairwiseNullNb(unittest.TestCase, _TestPairwiseNull): def test_null_distribution_ztest(self): logging.getLogger("tensorflow").setLevel(logging.ERROR) logging.getLogger("batchglm").setLevel(logging.WARNING) logging.getLogger("diffxpy").setLevel(logging.WARNING) np.random.seed(1) self.noise_model = "nb" self._test_null_distribution_basic(test="z-test", lazy=False, quick_scale=False) self._test_null_distribution_basic(test="z-test", lazy=False, quick_scale=True) def test_null_distribution_ztest_lazy(self): logging.getLogger("tensorflow").setLevel(logging.ERROR) logging.getLogger("batchglm").setLevel(logging.WARNING) logging.getLogger("diffxpy").setLevel(logging.WARNING) np.random.seed(1) self.noise_model = "nb" self._test_null_distribution_basic(test="z-test", lazy=True, quick_scale=False) self._test_null_distribution_basic(test="z-test", lazy=True, quick_scale=True) def test_null_distribution_wald(self): logging.getLogger("tensorflow").setLevel(logging.ERROR) logging.getLogger("batchglm").setLevel(logging.WARNING) logging.getLogger("diffxpy").setLevel(logging.WARNING) np.random.seed(1) self.noise_model = "nb" self._test_null_distribution_basic(test="wald", lazy=False, quick_scale=False) self._test_null_distribution_basic(test="wald", lazy=False, quick_scale=True) def test_null_distribution_lrt(self): logging.getLogger("tensorflow").setLevel(logging.ERROR) logging.getLogger("batchglm").setLevel(logging.WARNING) logging.getLogger("diffxpy").setLevel(logging.WARNING) np.random.seed(1) self.noise_model = "nb" self._test_null_distribution_basic(test="lrt", lazy=False, quick_scale=False) if __name__ == '__main__': unittest.main()
37.649351
104
0.657641
[ "BSD-3-Clause" ]
gokceneraslan/diffxpy
diffxpy/unit_test/test_pairwise.py
5,798
Python
__all__ = ['CompilerSanitizer'] from enum import Enum, unique @unique class CompilerSanitizer(Enum): NONE = 'none' ADDRESS = 'address' THREAD = 'thread' UNDEFINED = 'undefined' MEMORY = 'memory'
16.769231
31
0.66055
[ "MIT" ]
benoit-dubreuil/template-cpp20-agnostic-build-ci-cd
conf/script/src/build_system/compiler/build_option/sanitizer.py
218
Python
"""pythonic_orcfighter This is one of the different GameUnits that are used in the desing patterns examples. :copyright: 2020, Jean Tardelli :license: The MIT license (MIT). See LICENSE file for further details. """ from pythonic_abstractgameunit import AbstractGameUnit class OrcFighter(AbstractGameUnit): """Create a OrcFighter instance""" def info(self): """Print info about this unit, overrides superclass method.""" print("Grrr, I am the Orc Figher!")
30.3125
85
0.736082
[ "MIT" ]
jeantardelli/wargameRepo
wargame/designpatterns/pythonic_orcfighter.py
485
Python
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('documents', '0004_uuidfield'), ('meetings', '0009_auto_20170106_1414'), ] operations = [ migrations.AddField( model_name='meeting', name='documents_zip', field=models.ForeignKey(to='documents.Document', related_name='zip_for_meeting', null=True, on_delete=django.db.models.deletion.SET_NULL), ), ]
26.5
150
0.656947
[ "Apache-2.0" ]
ecs-org/ecs
ecs/meetings/migrations/0010_meeting_documents_zip.py
583
Python
import collections import functools import itertools import operator from contextlib import suppress from typing import Any, Dict, List import numpy as np import toolz from cached_property import cached_property import ibis.common.exceptions as com import ibis.expr.datatypes as dt import ibis.expr.rules as rlz import ibis.expr.schema as sch import ibis.expr.types as ir from ibis import util from ibis.expr.schema import HasSchema, Schema from ibis.expr.signature import Annotable from ibis.expr.signature import Argument as Arg def _safe_repr(x, memo=None): return x._repr(memo=memo) if isinstance(x, (ir.Expr, Node)) else repr(x) # TODO: move to analysis def distinct_roots(*expressions): roots = toolz.concat(expr.op().root_tables() for expr in expressions) return list(toolz.unique(roots)) class Node(Annotable): __slots__ = '_expr_cached', '_hash' def __repr__(self): return self._repr() def _repr(self, memo=None): if memo is None: from ibis.expr.format import FormatMemo memo = FormatMemo() opname = type(self).__name__ pprint_args = [] def _pp(x): return _safe_repr(x, memo=memo) for x in self.args: if isinstance(x, (tuple, list)): pp = repr(list(map(_pp, x))) else: pp = _pp(x) pprint_args.append(pp) return '{}({})'.format(opname, ', '.join(pprint_args)) def __getstate__(self) -> Dict[str, Any]: """The attributes _expr_cached and _hash are used as caches; they can be excluded from serialization without affecting correctness. Excluding _expr_cached and _hash from serialization will allow the serialized bytes to be the same for equivalent Node objets. Returns ------- Dict[str, Any] A dictionary storing the objects attributes. """ excluded_slots = {'_expr_cached', '_hash'} return { slot: getattr(self, slot) for slot in self.__slots__ if slot not in excluded_slots } def __setstate__(self, state: Dict[str, Any]) -> None: """ Parameters ---------- state: Dict[str, Any] A dictionary storing the objects attributes. """ for slot in state: setattr(self, slot, state[slot]) @property def inputs(self): return tuple(self.args) def blocks(self): # The contents of this node at referentially distinct and may not be # analyzed deeper return False def flat_args(self): for arg in self.args: if not isinstance(arg, str) and isinstance( arg, collections.abc.Iterable ): for x in arg: yield x else: yield arg def __hash__(self): if not hasattr(self, '_hash'): self._hash = hash( (type(self),) + tuple( element.op() if isinstance(element, ir.Expr) else element for element in self.flat_args() ) ) return self._hash def __eq__(self, other): return self.equals(other) def equals(self, other, cache=None): if cache is None: cache = {} key = self, other try: return cache[key] except KeyError: cache[key] = result = self is other or ( type(self) == type(other) and all_equal(self.args, other.args, cache=cache) ) return result def compatible_with(self, other): return self.equals(other) def is_ancestor(self, other): if isinstance(other, ir.Expr): other = other.op() return self.equals(other) def to_expr(self): if not hasattr(self, '_expr_cached'): self._expr_cached = self._make_expr() return self._expr_cached def _make_expr(self): klass = self.output_type() return klass(self) def output_type(self): """ This function must resolve the output type of the expression and return the node wrapped in the appropriate ValueExpr type. """ raise NotImplementedError class ValueOp(Node): def root_tables(self): exprs = [arg for arg in self.args if isinstance(arg, ir.Expr)] return distinct_roots(*exprs) def resolve_name(self): raise com.ExpressionError(f'Expression is not named: {type(self)}') def has_resolved_name(self): return False def all_equal(left, right, cache=None): """Check whether two objects `left` and `right` are equal. Parameters ---------- left : Union[object, Expr, Node] right : Union[object, Expr, Node] cache : Optional[Dict[Tuple[Node, Node], bool]] A dictionary indicating whether two Nodes are equal """ if cache is None: cache = {} if util.is_iterable(left): # check that left and right are equal length iterables and that all # of their elements are equal return ( util.is_iterable(right) and len(left) == len(right) and all( itertools.starmap( functools.partial(all_equal, cache=cache), zip(left, right) ) ) ) if hasattr(left, 'equals'): return left.equals(right, cache=cache) return left == right _table_names = ('unbound_table_{:d}'.format(i) for i in itertools.count()) def genname(): return next(_table_names) class TableNode(Node): def get_type(self, name): return self.schema[name] def output_type(self): return ir.TableExpr def aggregate(self, this, metrics, by=None, having=None): return Aggregation(this, metrics, by=by, having=having) def sort_by(self, expr, sort_exprs): return Selection(expr, [], sort_keys=sort_exprs) def is_ancestor(self, other): import ibis.expr.lineage as lin if isinstance(other, ir.Expr): other = other.op() if self.equals(other): return True fn = lambda e: (lin.proceed, e.op()) # noqa: E731 expr = self.to_expr() for child in lin.traverse(fn, expr): if child.equals(other): return True return False class TableColumn(ValueOp): """Selects a column from a TableExpr""" name = Arg((str, int)) table = Arg(ir.TableExpr) def __init__(self, name, table): schema = table.schema() if isinstance(name, int): name = schema.name_at_position(name) super().__init__(name, table) def _validate(self): if self.name not in self.table.schema(): raise com.IbisTypeError( "'{}' is not a field in {}".format( self.name, self.table.columns ) ) def parent(self): return self.table def resolve_name(self): return self.name def has_resolved_name(self): return True def root_tables(self): return self.table.op().root_tables() def _make_expr(self): dtype = self.table._get_type(self.name) klass = dtype.column_type() return klass(self, name=self.name) class RowID(ValueOp): """The row number (an autonumeric) of the returned result.""" def output_type(self): return dt.int64.column_type() def resolve_name(self): return 'rowid' def has_resolved_name(self): return True def find_all_base_tables(expr, memo=None): if memo is None: memo = {} node = expr.op() if isinstance(expr, ir.TableExpr) and node.blocks(): if expr not in memo: memo[node] = expr return memo for arg in expr.op().flat_args(): if isinstance(arg, ir.Expr): find_all_base_tables(arg, memo) return memo class PhysicalTable(TableNode, HasSchema): def blocks(self): return True class UnboundTable(PhysicalTable): schema = Arg(sch.Schema) name = Arg(str, default=genname) class DatabaseTable(PhysicalTable): name = Arg(str) schema = Arg(sch.Schema) source = Arg(rlz.client) def change_name(self, new_name): return type(self)(new_name, self.args[1], self.source) class SQLQueryResult(TableNode, HasSchema): """A table sourced from the result set of a select query""" query = Arg(rlz.noop) schema = Arg(sch.Schema) source = Arg(rlz.client) def blocks(self): return True class TableArrayView(ValueOp): """ (Temporary?) Helper operation class for SQL translation (fully formed table subqueries to be viewed as arrays) """ table = Arg(ir.TableExpr) name = Arg(str) def __init__(self, table): schema = table.schema() if len(schema) > 1: raise com.ExpressionError('Table can only have a single column') name = schema.names[0] return super().__init__(table, name) def _make_expr(self): ctype = self.table._get_type(self.name) klass = ctype.column_type() return klass(self, name=self.name) class UnaryOp(ValueOp): arg = Arg(rlz.any) class BinaryOp(ValueOp): """A binary operation""" left = Arg(rlz.any) right = Arg(rlz.any) class Cast(ValueOp): arg = Arg(rlz.any) to = Arg(dt.dtype) # see #396 for the issue preventing this # def resolve_name(self): # return self.args[0].get_name() def output_type(self): return rlz.shape_like(self.arg, dtype=self.to) class TypeOf(UnaryOp): output_type = rlz.shape_like('arg', dt.string) class Negate(UnaryOp): arg = Arg(rlz.one_of((rlz.numeric(), rlz.interval()))) output_type = rlz.typeof('arg') class IsNull(UnaryOp): """Returns true if values are null Returns ------- isnull : boolean with dimension of caller """ output_type = rlz.shape_like('arg', dt.boolean) class NotNull(UnaryOp): """Returns true if values are not null Returns ------- notnull : boolean with dimension of caller """ output_type = rlz.shape_like('arg', dt.boolean) class ZeroIfNull(UnaryOp): output_type = rlz.typeof('arg') class IfNull(ValueOp): """Equivalent to (but perhaps implemented differently): case().when(expr.notnull(), expr) .else_(null_substitute_expr) """ arg = Arg(rlz.any) ifnull_expr = Arg(rlz.any) output_type = rlz.shape_like('args') class NullIf(ValueOp): """Set values to NULL if they equal the null_if_expr""" arg = Arg(rlz.any) null_if_expr = Arg(rlz.any) output_type = rlz.shape_like('args') class NullIfZero(ValueOp): """ Set values to NULL if they equal to zero. Commonly used in cases where divide-by-zero would produce an overflow or infinity. Equivalent to (value == 0).ifelse(ibis.NA, value) Returns ------- maybe_nulled : type of caller """ arg = Arg(rlz.numeric) output_type = rlz.typeof('arg') class IsNan(ValueOp): arg = Arg(rlz.floating) output_type = rlz.shape_like('arg', dt.boolean) class IsInf(ValueOp): arg = Arg(rlz.floating) output_type = rlz.shape_like('arg', dt.boolean) class CoalesceLike(ValueOp): # According to Impala documentation: # Return type: same as the initial argument value, except that integer # values are promoted to BIGINT and floating-point values are promoted to # DOUBLE; use CAST() when inserting into a smaller numeric column arg = Arg(rlz.list_of(rlz.any)) def output_type(self): first = self.arg[0] if isinstance(first, (ir.IntegerValue, ir.FloatingValue)): dtype = first.type().largest else: dtype = first.type() # self.arg is a list of value expressions return rlz.shape_like(self.arg, dtype) class Coalesce(CoalesceLike): pass class Greatest(CoalesceLike): pass class Least(CoalesceLike): pass class Abs(UnaryOp): """Absolute value""" output_type = rlz.typeof('arg') class Ceil(UnaryOp): """ Round up to the nearest integer value greater than or equal to this value Returns ------- ceiled : type depending on input Decimal values: yield decimal Other numeric values: yield integer (int32) """ arg = Arg(rlz.numeric) def output_type(self): if isinstance(self.arg.type(), dt.Decimal): return self.arg._factory return rlz.shape_like(self.arg, dt.int64) class Floor(UnaryOp): """ Round down to the nearest integer value less than or equal to this value Returns ------- floored : type depending on input Decimal values: yield decimal Other numeric values: yield integer (int32) """ arg = Arg(rlz.numeric) def output_type(self): if isinstance(self.arg.type(), dt.Decimal): return self.arg._factory return rlz.shape_like(self.arg, dt.int64) class Round(ValueOp): arg = Arg(rlz.numeric) digits = Arg(rlz.numeric, default=None) def output_type(self): if isinstance(self.arg, ir.DecimalValue): return self.arg._factory elif self.digits is None: return rlz.shape_like(self.arg, dt.int64) else: return rlz.shape_like(self.arg, dt.double) class Clip(ValueOp): arg = Arg(rlz.strict_numeric) lower = Arg(rlz.strict_numeric, default=None) upper = Arg(rlz.strict_numeric, default=None) output_type = rlz.typeof('arg') class BaseConvert(ValueOp): arg = Arg(rlz.one_of([rlz.integer, rlz.string])) from_base = Arg(rlz.integer) to_base = Arg(rlz.integer) def output_type(self): return rlz.shape_like(tuple(self.flat_args()), dt.string) class MathUnaryOp(UnaryOp): arg = Arg(rlz.numeric) def output_type(self): arg = self.arg if isinstance(self.arg, ir.DecimalValue): dtype = arg.type() else: dtype = dt.double return rlz.shape_like(arg, dtype) class ExpandingTypeMathUnaryOp(MathUnaryOp): def output_type(self): if not isinstance(self.arg, ir.DecimalValue): return super().output_type() arg = self.arg return rlz.shape_like(arg, arg.type().largest) class Exp(ExpandingTypeMathUnaryOp): pass class Sign(UnaryOp): arg = Arg(rlz.numeric) output_type = rlz.typeof('arg') class Sqrt(MathUnaryOp): pass class Logarithm(MathUnaryOp): arg = Arg(rlz.strict_numeric) class Log(Logarithm): arg = Arg(rlz.strict_numeric) base = Arg(rlz.strict_numeric, default=None) class Ln(Logarithm): """Natural logarithm""" class Log2(Logarithm): """Logarithm base 2""" class Log10(Logarithm): """Logarithm base 10""" class Degrees(ExpandingTypeMathUnaryOp): """Converts radians to degrees""" arg = Arg(rlz.numeric) class Radians(MathUnaryOp): """Converts degrees to radians""" arg = Arg(rlz.numeric) # TRIGONOMETRIC OPERATIONS class TrigonometricUnary(MathUnaryOp): """Trigonometric base unary""" arg = Arg(rlz.numeric) class TrigonometricBinary(BinaryOp): """Trigonometric base binary""" left = Arg(rlz.numeric) right = Arg(rlz.numeric) output_type = rlz.shape_like('args', dt.float64) class Acos(TrigonometricUnary): """Returns the arc cosine of x""" class Asin(TrigonometricUnary): """Returns the arc sine of x""" class Atan(TrigonometricUnary): """Returns the arc tangent of x""" class Atan2(TrigonometricBinary): """Returns the arc tangent of x and y""" class Cos(TrigonometricUnary): """Returns the cosine of x""" class Cot(TrigonometricUnary): """Returns the cotangent of x""" class Sin(TrigonometricUnary): """Returns the sine of x""" class Tan(TrigonometricUnary): """Returns the tangent of x""" class StringUnaryOp(UnaryOp): arg = Arg(rlz.string) output_type = rlz.shape_like('arg', dt.string) class Uppercase(StringUnaryOp): """Convert string to all uppercase""" class Lowercase(StringUnaryOp): """Convert string to all lowercase""" class Reverse(StringUnaryOp): """Reverse string""" class Strip(StringUnaryOp): """Remove whitespace from left and right sides of string""" class LStrip(StringUnaryOp): """Remove whitespace from left side of string""" class RStrip(StringUnaryOp): """Remove whitespace from right side of string""" class Capitalize(StringUnaryOp): """Return a capitalized version of input string""" class Substring(ValueOp): arg = Arg(rlz.string) start = Arg(rlz.integer) length = Arg(rlz.integer, default=None) output_type = rlz.shape_like('arg', dt.string) class StrRight(ValueOp): arg = Arg(rlz.string) nchars = Arg(rlz.integer) output_type = rlz.shape_like('arg', dt.string) class Repeat(ValueOp): arg = Arg(rlz.string) times = Arg(rlz.integer) output_type = rlz.shape_like('arg', dt.string) class StringFind(ValueOp): arg = Arg(rlz.string) substr = Arg(rlz.string) start = Arg(rlz.integer, default=None) end = Arg(rlz.integer, default=None) output_type = rlz.shape_like('arg', dt.int64) class Translate(ValueOp): arg = Arg(rlz.string) from_str = Arg(rlz.string) to_str = Arg(rlz.string) output_type = rlz.shape_like('arg', dt.string) class LPad(ValueOp): arg = Arg(rlz.string) length = Arg(rlz.integer) pad = Arg(rlz.string, default=None) output_type = rlz.shape_like('arg', dt.string) class RPad(ValueOp): arg = Arg(rlz.string) length = Arg(rlz.integer) pad = Arg(rlz.string, default=None) output_type = rlz.shape_like('arg', dt.string) class FindInSet(ValueOp): needle = Arg(rlz.string) values = Arg(rlz.list_of(rlz.string, min_length=1)) output_type = rlz.shape_like('needle', dt.int64) class StringJoin(ValueOp): sep = Arg(rlz.string) arg = Arg(rlz.list_of(rlz.string, min_length=1)) def output_type(self): return rlz.shape_like(tuple(self.flat_args()), dt.string) class StartsWith(ValueOp): arg = Arg(rlz.string) start = Arg(rlz.string) output_type = rlz.shape_like("arg", dt.boolean) class EndsWith(ValueOp): arg = Arg(rlz.string) end = Arg(rlz.string) output_type = rlz.shape_like("arg", dt.boolean) class BooleanValueOp: pass class FuzzySearch(ValueOp, BooleanValueOp): arg = Arg(rlz.string) pattern = Arg(rlz.string) output_type = rlz.shape_like('arg', dt.boolean) class StringSQLLike(FuzzySearch): arg = Arg(rlz.string) pattern = Arg(rlz.string) escape = Arg(str, default=None) class StringSQLILike(StringSQLLike): """SQL ilike operation""" class RegexSearch(FuzzySearch): pass class RegexExtract(ValueOp): arg = Arg(rlz.string) pattern = Arg(rlz.string) index = Arg(rlz.integer) output_type = rlz.shape_like('arg', dt.string) class RegexReplace(ValueOp): arg = Arg(rlz.string) pattern = Arg(rlz.string) replacement = Arg(rlz.string) output_type = rlz.shape_like('arg', dt.string) class StringReplace(ValueOp): arg = Arg(rlz.string) pattern = Arg(rlz.string) replacement = Arg(rlz.string) output_type = rlz.shape_like('arg', dt.string) class StringSplit(ValueOp): arg = Arg(rlz.string) delimiter = Arg(rlz.string) output_type = rlz.shape_like('arg', dt.Array(dt.string)) class StringConcat(ValueOp): arg = Arg(rlz.list_of(rlz.string)) output_type = rlz.shape_like('arg', dt.string) class ParseURL(ValueOp): arg = Arg(rlz.string) extract = Arg( rlz.isin( { 'PROTOCOL', 'HOST', 'PATH', 'REF', 'AUTHORITY', 'FILE', 'USERINFO', 'QUERY', } ) ) key = Arg(rlz.string, default=None) output_type = rlz.shape_like('arg', dt.string) class StringLength(UnaryOp): """ Compute length of strings Returns ------- length : int32 """ output_type = rlz.shape_like('arg', dt.int32) class StringAscii(UnaryOp): output_type = rlz.shape_like('arg', dt.int32) # ---------------------------------------------------------------------- class Reduction(ValueOp): _reduction = True class Count(Reduction): arg = Arg((ir.ColumnExpr, ir.TableExpr)) where = Arg(rlz.boolean, default=None) def output_type(self): return functools.partial(ir.IntegerScalar, dtype=dt.int64) class Arbitrary(Reduction): arg = Arg(rlz.column(rlz.any)) how = Arg(rlz.isin({'first', 'last', 'heavy'}), default=None) where = Arg(rlz.boolean, default=None) output_type = rlz.scalar_like('arg') class BitAnd(Reduction): """Aggregate bitwise AND operation. All elements in an integer column are ANDed together. This can be used to determine which bit flags are set on all elements. Resources: * `BigQuery BIT_AND <https://cloud.google.com/bigquery/docs/reference/standard-sql/aggregate_functions#bit_and>`_ * `MySQL BIT_AND <https://dev.mysql.com/doc/refman/5.7/en/aggregate-functions.html#function_bit-and>`_ """ arg = Arg(rlz.column(rlz.integer)) where = Arg(rlz.boolean, default=None) output_type = rlz.scalar_like('arg') class BitOr(Reduction): """Aggregate bitwise OR operation. All elements in an integer column are ORed together. This can be used to determine which bit flags are set on any element. Resources: * `BigQuery BIT_OR <https://cloud.google.com/bigquery/docs/reference/standard-sql/aggregate_functions#bit_or>`_ * `MySQL BIT_OR <https://dev.mysql.com/doc/refman/5.7/en/aggregate-functions.html#function_bit-or>`_ """ arg = Arg(rlz.column(rlz.integer)) where = Arg(rlz.boolean, default=None) output_type = rlz.scalar_like('arg') class BitXor(Reduction): """Aggregate bitwise XOR operation. All elements in an integer column are XORed together. This can be used as a parity checksum of element values. Resources: * `BigQuery BIT_XOR <https://cloud.google.com/bigquery/docs/reference/standard-sql/aggregate_functions#bit_xor>`_ * `MySQL BIT_XOR <https://dev.mysql.com/doc/refman/5.7/en/aggregate-functions.html#function_bit-xor>`_ """ arg = Arg(rlz.column(rlz.integer)) where = Arg(rlz.boolean, default=None) output_type = rlz.scalar_like('arg') class Sum(Reduction): arg = Arg(rlz.column(rlz.numeric)) where = Arg(rlz.boolean, default=None) def output_type(self): if isinstance(self.arg, ir.BooleanValue): dtype = dt.int64 else: dtype = self.arg.type().largest return dtype.scalar_type() class Mean(Reduction): arg = Arg(rlz.column(rlz.numeric)) where = Arg(rlz.boolean, default=None) def output_type(self): if isinstance(self.arg, ir.DecimalValue): dtype = self.arg.type() else: dtype = dt.float64 return dtype.scalar_type() class Quantile(Reduction): arg = Arg(rlz.any) quantile = Arg(rlz.strict_numeric) interpolation = Arg( rlz.isin({'linear', 'lower', 'higher', 'midpoint', 'nearest'}), default='linear', ) def output_type(self): return dt.float64.scalar_type() class MultiQuantile(Quantile): arg = Arg(rlz.any) quantile = Arg(rlz.value(dt.Array(dt.float64))) interpolation = Arg( rlz.isin({'linear', 'lower', 'higher', 'midpoint', 'nearest'}), default='linear', ) def output_type(self): return dt.Array(dt.float64).scalar_type() class VarianceBase(Reduction): arg = Arg(rlz.column(rlz.numeric)) how = Arg(rlz.isin({'sample', 'pop'}), default=None) where = Arg(rlz.boolean, default=None) def output_type(self): if isinstance(self.arg, ir.DecimalValue): dtype = self.arg.type().largest else: dtype = dt.float64 return dtype.scalar_type() class StandardDev(VarianceBase): pass class Variance(VarianceBase): pass class Correlation(Reduction): """Coefficient of correlation of a set of number pairs.""" left = Arg(rlz.column(rlz.numeric)) right = Arg(rlz.column(rlz.numeric)) how = Arg(rlz.isin({'sample', 'pop'}), default=None) where = Arg(rlz.boolean, default=None) def output_type(self): return dt.float64.scalar_type() class Covariance(Reduction): """Covariance of a set of number pairs.""" left = Arg(rlz.column(rlz.numeric)) right = Arg(rlz.column(rlz.numeric)) how = Arg(rlz.isin({'sample', 'pop'}), default=None) where = Arg(rlz.boolean, default=None) def output_type(self): return dt.float64.scalar_type() class Max(Reduction): arg = Arg(rlz.column(rlz.any)) where = Arg(rlz.boolean, default=None) output_type = rlz.scalar_like('arg') class Min(Reduction): arg = Arg(rlz.column(rlz.any)) where = Arg(rlz.boolean, default=None) output_type = rlz.scalar_like('arg') class HLLCardinality(Reduction): """Approximate number of unique values using HyperLogLog algorithm. Impala offers the NDV built-in function for this. """ arg = Arg(rlz.column(rlz.any)) where = Arg(rlz.boolean, default=None) def output_type(self): # Impala 2.0 and higher returns a DOUBLE # return ir.DoubleScalar return functools.partial(ir.IntegerScalar, dtype=dt.int64) class GroupConcat(Reduction): arg = Arg(rlz.column(rlz.any)) sep = Arg(rlz.string, default=',') where = Arg(rlz.boolean, default=None) def output_type(self): return dt.string.scalar_type() class CMSMedian(Reduction): """ Compute the approximate median of a set of comparable values using the Count-Min-Sketch algorithm. Exposed in Impala using APPX_MEDIAN. """ arg = Arg(rlz.column(rlz.any)) where = Arg(rlz.boolean, default=None) output_type = rlz.scalar_like('arg') # ---------------------------------------------------------------------- # Analytic functions class AnalyticOp(ValueOp): pass class WindowOp(ValueOp): expr = Arg(rlz.noop) window = Arg(rlz.noop) output_type = rlz.array_like('expr') display_argnames = False def __init__(self, expr, window): from ibis.expr.analysis import is_analytic from ibis.expr.window import propagate_down_window if not is_analytic(expr): raise com.IbisInputError( 'Expression does not contain a valid window operation' ) table = ir.find_base_table(expr) if table is not None: window = window.bind(table) if window.max_lookback is not None: error_msg = ( "'max lookback' windows must be ordered " "by a timestamp column" ) if len(window._order_by) != 1: raise com.IbisInputError(error_msg) order_var = window._order_by[0].op().args[0] if not isinstance(order_var.type(), dt.Timestamp): raise com.IbisInputError(error_msg) expr = propagate_down_window(expr, window) super().__init__(expr, window) def over(self, window): new_window = self.window.combine(window) return WindowOp(self.expr, new_window) @property def inputs(self): return self.expr.op().inputs[0], self.window def root_tables(self): return distinct_roots( self.expr, *self.window._order_by, *self.window._group_by ) class ShiftBase(AnalyticOp): arg = Arg(rlz.column(rlz.any)) offset = Arg(rlz.one_of((rlz.integer, rlz.interval)), default=None) default = Arg(rlz.any, default=None) output_type = rlz.typeof('arg') class Lag(ShiftBase): pass class Lead(ShiftBase): pass class RankBase(AnalyticOp): def output_type(self): return dt.int64.column_type() class MinRank(RankBase): """ Compute position of first element within each equal-value group in sorted order. Examples -------- values ranks 1 0 1 0 2 2 2 2 2 2 3 5 Returns ------- ranks : Int64Column, starting from 0 """ # Equivalent to SQL RANK() arg = Arg(rlz.column(rlz.any)) class DenseRank(RankBase): """ Compute position of first element within each equal-value group in sorted order, ignoring duplicate values. Examples -------- values ranks 1 0 1 0 2 1 2 1 2 1 3 2 Returns ------- ranks : Int64Column, starting from 0 """ # Equivalent to SQL DENSE_RANK() arg = Arg(rlz.column(rlz.any)) class RowNumber(RankBase): """ Compute row number starting from 0 after sorting by column expression Examples -------- >>> import ibis >>> t = ibis.table([('values', dt.int64)]) >>> w = ibis.window(order_by=t.values) >>> row_num = ibis.row_number().over(w) >>> result = t[t.values, row_num.name('row_num')] Returns ------- row_number : Int64Column, starting from 0 """ # Equivalent to SQL ROW_NUMBER() class CumulativeOp(AnalyticOp): pass class CumulativeSum(CumulativeOp): """Cumulative sum. Requires an order window.""" arg = Arg(rlz.column(rlz.numeric)) def output_type(self): if isinstance(self.arg, ir.BooleanValue): dtype = dt.int64 else: dtype = self.arg.type().largest return dtype.column_type() class CumulativeMean(CumulativeOp): """Cumulative mean. Requires an order window.""" arg = Arg(rlz.column(rlz.numeric)) def output_type(self): if isinstance(self.arg, ir.DecimalValue): dtype = self.arg.type().largest else: dtype = dt.float64 return dtype.column_type() class CumulativeMax(CumulativeOp): """Cumulative max. Requires an order window.""" arg = Arg(rlz.column(rlz.any)) output_type = rlz.array_like('arg') class CumulativeMin(CumulativeOp): """Cumulative min. Requires an order window.""" arg = Arg(rlz.column(rlz.any)) output_type = rlz.array_like('arg') class PercentRank(AnalyticOp): arg = Arg(rlz.column(rlz.any)) output_type = rlz.shape_like('arg', dt.double) class NTile(AnalyticOp): arg = Arg(rlz.column(rlz.any)) buckets = Arg(rlz.integer) output_type = rlz.shape_like('arg', dt.int64) class FirstValue(AnalyticOp): arg = Arg(rlz.column(rlz.any)) output_type = rlz.typeof('arg') class LastValue(AnalyticOp): arg = Arg(rlz.column(rlz.any)) output_type = rlz.typeof('arg') class NthValue(AnalyticOp): arg = Arg(rlz.column(rlz.any)) nth = Arg(rlz.integer) output_type = rlz.typeof('arg') # ---------------------------------------------------------------------- # Distinct stuff class Distinct(TableNode, HasSchema): """ Distinct is a table-level unique-ing operation. In SQL, you might have: SELECT DISTINCT foo FROM table SELECT DISTINCT foo, bar FROM table """ table = Arg(ir.TableExpr) def _validate(self): # check whether schema has overlapping columns or not assert self.schema @cached_property def schema(self): return self.table.schema() def blocks(self): return True class DistinctColumn(ValueOp): """ COUNT(DISTINCT ...) is really just syntactic suger, but we provide a distinct().count() nicety for users nonetheless. For all intents and purposes, like Distinct, but can be distinguished later for evaluation if the result should be array-like versus table-like. Also for calling count() """ arg = Arg(rlz.noop) output_type = rlz.typeof('arg') def count(self): """Only valid if the distinct contains a single column""" return CountDistinct(self.arg) class CountDistinct(Reduction): arg = Arg(rlz.column(rlz.any)) where = Arg(rlz.boolean, default=None) def output_type(self): return dt.int64.scalar_type() # --------------------------------------------------------------------- # Boolean reductions and semi/anti join support class Any(ValueOp): # Depending on the kind of input boolean array, the result might either be # array-like (an existence-type predicate) or scalar (a reduction) arg = Arg(rlz.column(rlz.boolean)) @property def _reduction(self): roots = self.arg.op().root_tables() return len(roots) < 2 def output_type(self): if self._reduction: return dt.boolean.scalar_type() else: return dt.boolean.column_type() def negate(self): return NotAny(self.arg) class All(ValueOp): arg = Arg(rlz.column(rlz.boolean)) output_type = rlz.scalar_like('arg') _reduction = True def negate(self): return NotAll(self.arg) class NotAny(Any): def negate(self): return Any(self.arg) class NotAll(All): def negate(self): return All(self.arg) class CumulativeAny(CumulativeOp): arg = Arg(rlz.column(rlz.boolean)) output_type = rlz.typeof('arg') class CumulativeAll(CumulativeOp): arg = Arg(rlz.column(rlz.boolean)) output_type = rlz.typeof('arg') # --------------------------------------------------------------------- class TypedCaseBuilder: __slots__ = () def type(self): types = [result.type() for result in self.results] return dt.highest_precedence(types) def else_(self, result_expr): """ Specify Returns ------- builder : CaseBuilder """ kwargs = { slot: getattr(self, slot) for slot in self.__slots__ if slot != 'default' } result_expr = ir.as_value_expr(result_expr) kwargs['default'] = result_expr # Maintain immutability return type(self)(**kwargs) def end(self): default = self.default if default is None: default = ir.null().cast(self.type()) args = [ getattr(self, slot) for slot in self.__slots__ if slot != 'default' ] args.append(default) op = self.__class__.case_op(*args) return op.to_expr() class SimpleCase(ValueOp): base = Arg(rlz.any) cases = Arg(rlz.list_of(rlz.any)) results = Arg(rlz.list_of(rlz.any)) default = Arg(rlz.any) def _validate(self): assert len(self.cases) == len(self.results) def root_tables(self): return distinct_roots( *itertools.chain( [self.base], self.cases, self.results, [] if self.default is None else [self.default], ) ) def output_type(self): exprs = self.results + [self.default] return rlz.shape_like(self.base, dtype=exprs.type()) class SimpleCaseBuilder(TypedCaseBuilder): __slots__ = 'base', 'cases', 'results', 'default' case_op = SimpleCase def __init__(self, base, cases=None, results=None, default=None): self.base = base self.cases = list(cases if cases is not None else []) self.results = list(results if results is not None else []) self.default = default def when(self, case_expr, result_expr): """ Add a new case-result pair. Parameters ---------- case : Expr Expression to equality-compare with base expression. Must be comparable with the base. result : Expr Value when the case predicate evaluates to true. Returns ------- builder : CaseBuilder """ case_expr = ir.as_value_expr(case_expr) result_expr = ir.as_value_expr(result_expr) if not rlz.comparable(self.base, case_expr): raise TypeError( 'Base expression and passed case are not ' 'comparable' ) cases = list(self.cases) cases.append(case_expr) results = list(self.results) results.append(result_expr) # Maintain immutability return type(self)(self.base, cases, results, self.default) class SearchedCase(ValueOp): cases = Arg(rlz.list_of(rlz.boolean)) results = Arg(rlz.list_of(rlz.any)) default = Arg(rlz.any) def _validate(self): assert len(self.cases) == len(self.results) def root_tables(self): cases, results, default = self.args return distinct_roots( *itertools.chain( cases.values, results.values, [] if default is None else [default], ) ) def output_type(self): exprs = self.results + [self.default] dtype = rlz.highest_precedence_dtype(exprs) return rlz.shape_like(self.cases, dtype) class SearchedCaseBuilder(TypedCaseBuilder): __slots__ = 'cases', 'results', 'default' case_op = SearchedCase def __init__(self, cases=None, results=None, default=None): self.cases = list(cases if cases is not None else []) self.results = list(results if results is not None else []) self.default = default def when(self, case_expr, result_expr): """ Add a new case-result pair. Parameters ---------- case : Expr Expression to equality-compare with base expression. Must be comparable with the base. result : Expr Value when the case predicate evaluates to true. Returns ------- builder : CaseBuilder """ case_expr = ir.as_value_expr(case_expr) result_expr = ir.as_value_expr(result_expr) if not isinstance(case_expr, ir.BooleanValue): raise TypeError(case_expr) cases = list(self.cases) cases.append(case_expr) results = list(self.results) results.append(result_expr) # Maintain immutability return type(self)(cases, results, self.default) class Where(ValueOp): """ Ternary case expression, equivalent to bool_expr.case() .when(True, true_expr) .else_(false_or_null_expr) """ bool_expr = Arg(rlz.boolean) true_expr = Arg(rlz.any) false_null_expr = Arg(rlz.any) def output_type(self): return rlz.shape_like(self.bool_expr, self.true_expr.type()) def _validate_join_tables(left, right): if not isinstance(left, ir.TableExpr): raise TypeError( 'Can only join table expressions, got {} for ' 'left table'.format(type(left).__name__) ) if not isinstance(right, ir.TableExpr): raise TypeError( 'Can only join table expressions, got {} for ' 'right table'.format(type(right).__name__) ) def _make_distinct_join_predicates(left, right, predicates): # see GH #667 # If left and right table have a common parent expression (e.g. they # have different filters), must add a self-reference and make the # appropriate substitution in the join predicates if left.equals(right): right = right.view() predicates = _clean_join_predicates(left, right, predicates) return left, right, predicates def _clean_join_predicates(left, right, predicates): import ibis.expr.analysis as L result = [] if not isinstance(predicates, (list, tuple)): predicates = [predicates] for pred in predicates: if isinstance(pred, tuple): if len(pred) != 2: raise com.ExpressionError('Join key tuple must be ' 'length 2') lk, rk = pred lk = left._ensure_expr(lk) rk = right._ensure_expr(rk) pred = lk == rk elif isinstance(pred, str): pred = left[pred] == right[pred] elif not isinstance(pred, ir.Expr): raise NotImplementedError if not isinstance(pred, ir.BooleanColumn): raise com.ExpressionError('Join predicate must be comparison') preds = L.flatten_predicate(pred) result.extend(preds) _validate_join_predicates(left, right, result) return result def _validate_join_predicates(left, right, predicates): from ibis.expr.analysis import fully_originate_from # Validate join predicates. Each predicate must be valid jointly when # considering the roots of each input table for predicate in predicates: if not fully_originate_from(predicate, [left, right]): raise com.RelationError( 'The expression {!r} does not fully ' 'originate from dependencies of the table ' 'expression.'.format(predicate) ) class Join(TableNode): left = Arg(rlz.noop) right = Arg(rlz.noop) predicates = Arg(rlz.noop) def __init__(self, left, right, predicates): _validate_join_tables(left, right) left, right, predicates = _make_distinct_join_predicates( left, right, predicates ) super().__init__(left, right, predicates) def _get_schema(self): # For joins retaining both table schemas, merge them together here left = self.left right = self.right if not left._is_materialized(): left = left.materialize() if not right._is_materialized(): right = right.materialize() sleft = left.schema() sright = right.schema() overlap = set(sleft.names) & set(sright.names) if overlap: raise com.RelationError( 'Joined tables have overlapping names: %s' % str(list(overlap)) ) return sleft.append(sright) def has_schema(self): return False def root_tables(self): if util.all_of([self.left.op(), self.right.op()], (Join, Selection)): # Unraveling is not possible return [self.left.op(), self.right.op()] else: return distinct_roots(self.left, self.right) class InnerJoin(Join): pass class LeftJoin(Join): pass class RightJoin(Join): pass class OuterJoin(Join): pass class AnyInnerJoin(Join): pass class AnyLeftJoin(Join): pass class LeftSemiJoin(Join): def _get_schema(self): return self.left.schema() class LeftAntiJoin(Join): def _get_schema(self): return self.left.schema() class MaterializedJoin(TableNode, HasSchema): join = Arg(ir.TableExpr) def _validate(self): assert isinstance(self.join.op(), Join) # check whether the underlying schema has overlapping columns or not assert self.schema @cached_property def schema(self): return self.join.op()._get_schema() def root_tables(self): return self.join.op().root_tables() def blocks(self): return True class CrossJoin(InnerJoin): """ Some databases have a CROSS JOIN operator, that may be preferential to use over an INNER JOIN with no predicates. """ def __init__(self, *args, **kwargs): if 'prefixes' in kwargs: raise NotImplementedError if len(args) < 2: raise com.IbisInputError('Must pass at least 2 tables') left = args[0] right = args[1] for t in args[2:]: right = right.cross_join(t) InnerJoin.__init__(self, left, right, []) class AsOfJoin(Join): left = Arg(rlz.noop) right = Arg(rlz.noop) predicates = Arg(rlz.noop) by = Arg(rlz.noop, default=None) tolerance = Arg(rlz.interval(), default=None) def __init__(self, left, right, predicates, by, tolerance): super().__init__(left, right, predicates) self.by = _clean_join_predicates(self.left, self.right, by) self.tolerance = tolerance self._validate_args(['by', 'tolerance']) def _validate_args(self, args: List[str]): for arg in args: argument = self.signature[arg] value = argument.validate(getattr(self, arg)) setattr(self, arg, value) class SetOp(TableNode, HasSchema): left = Arg(rlz.noop) right = Arg(rlz.noop) def _validate(self): if not self.left.schema().equals(self.right.schema()): raise com.RelationError( 'Table schemas must be equal for set operations' ) @cached_property def schema(self): return self.left.schema() def blocks(self): return True class Union(SetOp): distinct = Arg(rlz.validator(bool), default=False) class Intersection(SetOp): pass class Difference(SetOp): pass class Limit(TableNode): table = Arg(ir.TableExpr) n = Arg(rlz.validator(int)) offset = Arg(rlz.validator(int)) def blocks(self): return True @property def schema(self): return self.table.schema() def has_schema(self): return self.table.op().has_schema() def root_tables(self): return [self] # -------------------------------------------------------------------- # Sorting def to_sort_key(table, key): if isinstance(key, DeferredSortKey): key = key.resolve(table) if isinstance(key, ir.SortExpr): return key if isinstance(key, (tuple, list)): key, sort_order = key else: sort_order = True if not isinstance(key, ir.Expr): key = table._ensure_expr(key) if isinstance(key, (ir.SortExpr, DeferredSortKey)): return to_sort_key(table, key) if isinstance(sort_order, str): if sort_order.lower() in ('desc', 'descending'): sort_order = False elif not isinstance(sort_order, bool): sort_order = bool(sort_order) return SortKey(key, ascending=sort_order).to_expr() class SortKey(Node): expr = Arg(rlz.column(rlz.any)) ascending = Arg(rlz.validator(bool), default=True) def __repr__(self): # Temporary rows = [ 'Sort key:', ' ascending: {0!s}'.format(self.ascending), util.indent(_safe_repr(self.expr), 2), ] return '\n'.join(rows) def output_type(self): return ir.SortExpr def root_tables(self): return self.expr.op().root_tables() def equals(self, other, cache=None): # TODO: might generalize this equals based on fields # requires a proxy class with equals for non expr values return ( isinstance(other, SortKey) and self.expr.equals(other.expr, cache=cache) and self.ascending == other.ascending ) def resolve_name(self): return self.expr.get_name() class DeferredSortKey: def __init__(self, what, ascending=True): self.what = what self.ascending = ascending def resolve(self, parent): what = parent._ensure_expr(self.what) return SortKey(what, ascending=self.ascending).to_expr() class SelfReference(TableNode, HasSchema): table = Arg(ir.TableExpr) @cached_property def schema(self): return self.table.schema() def root_tables(self): # The dependencies of this operation are not walked, which makes the # table expression holding this relationally distinct from other # expressions, so things like self-joins are possible return [self] def blocks(self): return True class Selection(TableNode, HasSchema): table = Arg(ir.TableExpr) selections = Arg(rlz.noop, default=None) predicates = Arg(rlz.noop, default=None) sort_keys = Arg(rlz.noop, default=None) def __init__( self, table, selections=None, predicates=None, sort_keys=None ): import ibis.expr.analysis as L # Argument cleaning selections = util.promote_list( selections if selections is not None else [] ) projections = [] for selection in selections: if isinstance(selection, str): projection = table[selection] else: projection = selection projections.append(projection) sort_keys = [ to_sort_key(table, k) for k in util.promote_list( sort_keys if sort_keys is not None else [] ) ] predicates = list( toolz.concat( map( L.flatten_predicate, predicates if predicates is not None else [], ) ) ) super().__init__( table=table, selections=projections, predicates=predicates, sort_keys=sort_keys, ) def _validate(self): from ibis.expr.analysis import FilterValidator # Need to validate that the column expressions are compatible with the # input table; this means they must either be scalar expressions or # array expressions originating from the same root table expression dependent_exprs = self.selections + self.sort_keys self.table._assert_valid(dependent_exprs) # Validate predicates validator = FilterValidator([self.table]) validator.validate_all(self.predicates) # Validate no overlapping columns in schema assert self.schema @cached_property def schema(self): # Resolve schema and initialize if not self.selections: return self.table.schema() types = [] names = [] for projection in self.selections: if isinstance(projection, ir.DestructColumn): # If this is a destruct, then we destructure # the result and assign to multiple columns struct_type = projection.type() for name in struct_type.names: names.append(name) types.append(struct_type[name]) elif isinstance(projection, ir.ValueExpr): names.append(projection.get_name()) types.append(projection.type()) elif isinstance(projection, ir.TableExpr): schema = projection.schema() names.extend(schema.names) types.extend(schema.types) return Schema(names, types) def blocks(self): return bool(self.selections) def substitute_table(self, table_expr): return Selection(table_expr, self.selections) def root_tables(self): return [self] def can_add_filters(self, wrapped_expr, predicates): pass @staticmethod def empty_or_equal(lefts, rights): return not lefts or not rights or all_equal(lefts, rights) def compatible_with(self, other): # self and other are equivalent except for predicates, selections, or # sort keys any of which is allowed to be empty. If both are not empty # then they must be equal if self.equals(other): return True if not isinstance(other, type(self)): return False return self.table.equals(other.table) and ( self.empty_or_equal(self.predicates, other.predicates) and self.empty_or_equal(self.selections, other.selections) and self.empty_or_equal(self.sort_keys, other.sort_keys) ) # Operator combination / fusion logic def aggregate(self, this, metrics, by=None, having=None): if len(self.selections) > 0: return Aggregation(this, metrics, by=by, having=having) else: helper = AggregateSelection(this, metrics, by, having) return helper.get_result() def sort_by(self, expr, sort_exprs): sort_exprs = util.promote_list(sort_exprs) if not self.blocks(): resolved_keys = _maybe_convert_sort_keys(self.table, sort_exprs) if resolved_keys and self.table._is_valid(resolved_keys): return Selection( self.table, self.selections, predicates=self.predicates, sort_keys=self.sort_keys + resolved_keys, ) return Selection(expr, [], sort_keys=sort_exprs) class AggregateSelection: # sort keys cannot be discarded because of order-dependent # aggregate functions like GROUP_CONCAT def __init__(self, parent, metrics, by, having): self.parent = parent self.op = parent.op() self.metrics = metrics self.by = by self.having = having def get_result(self): if self.op.blocks(): return self._plain_subquery() else: return self._attempt_pushdown() def _plain_subquery(self): return Aggregation( self.parent, self.metrics, by=self.by, having=self.having ) def _attempt_pushdown(self): metrics_valid, lowered_metrics = self._pushdown_exprs(self.metrics) by_valid, lowered_by = self._pushdown_exprs(self.by) having_valid, lowered_having = self._pushdown_exprs( self.having or None ) if metrics_valid and by_valid and having_valid: return Aggregation( self.op.table, lowered_metrics, by=lowered_by, having=lowered_having, predicates=self.op.predicates, sort_keys=self.op.sort_keys, ) else: return self._plain_subquery() def _pushdown_exprs(self, exprs): import ibis.expr.analysis as L if exprs is None: return True, [] resolved = self.op.table._resolve(exprs) subbed_exprs = [] valid = False if resolved: for x in util.promote_list(resolved): subbed = L.sub_for(x, [(self.parent, self.op.table)]) subbed_exprs.append(subbed) valid = self.op.table._is_valid(subbed_exprs) else: valid = False return valid, subbed_exprs def _maybe_convert_sort_keys(table, exprs): try: return [to_sort_key(table, k) for k in util.promote_list(exprs)] except com.IbisError: return None class Aggregation(TableNode, HasSchema): """ metrics : per-group scalar aggregates by : group expressions having : post-aggregation predicate TODO: not putting this in the aggregate operation yet where : pre-aggregation predicate """ table = Arg(ir.TableExpr) metrics = Arg(rlz.noop) by = Arg(rlz.noop) having = Arg(rlz.noop, default=None) predicates = Arg(rlz.noop, default=None) sort_keys = Arg(rlz.noop, default=None) def __init__( self, table, metrics, by=None, having=None, predicates=None, sort_keys=None, ): # For tables, like joins, that are not materialized metrics = self._rewrite_exprs(table, metrics) by = [] if by is None else by by = table._resolve(by) having = [] if having is None else having predicates = [] if predicates is None else predicates # order by only makes sense with group by in an aggregation sort_keys = [] if not by or sort_keys is None else sort_keys sort_keys = [ to_sort_key(table, k) for k in util.promote_list(sort_keys) ] by = self._rewrite_exprs(table, by) having = self._rewrite_exprs(table, having) predicates = self._rewrite_exprs(table, predicates) sort_keys = self._rewrite_exprs(table, sort_keys) super().__init__( table=table, metrics=metrics, by=by, having=having, predicates=predicates, sort_keys=sort_keys, ) def _validate(self): from ibis.expr.analysis import FilterValidator, is_reduction # All aggregates are valid for expr in self.metrics: if not isinstance(expr, ir.ScalarExpr) or not is_reduction(expr): raise TypeError( 'Passed a non-aggregate expression: %s' % _safe_repr(expr) ) for expr in self.having: if not isinstance(expr, ir.BooleanScalar): raise com.ExpressionError( 'Having clause must be boolean ' 'expression, was: {0!s}'.format(_safe_repr(expr)) ) # All non-scalar refs originate from the input table all_exprs = self.metrics + self.by + self.having + self.sort_keys self.table._assert_valid(all_exprs) # Validate predicates validator = FilterValidator([self.table]) validator.validate_all(self.predicates) # Validate schema has no overlapping columns assert self.schema def _rewrite_exprs(self, table, what): what = util.promote_list(what) all_exprs = [] for expr in what: if isinstance(expr, ir.ExprList): all_exprs.extend(expr.exprs()) else: bound_expr = ir.bind_expr(table, expr) all_exprs.append(bound_expr) return all_exprs # TODO - #2832 # this optimization becomes O(n^2) when it calls into # _lift_TableColumn in analysis.py, which itself is O(n) and is # called on each input to the aggregation - thus creating the # aggregation expression can be extremely slow on wide tables # that contain a Selection. # return [ # substitute_parents(x, past_projection=False) for x in all_exprs # ] def blocks(self): return True def substitute_table(self, table_expr): return Aggregation( table_expr, self.metrics, by=self.by, having=self.having ) @cached_property def schema(self): names = [] types = [] for e in self.by + self.metrics: if isinstance(e, ir.DestructValue): # If this is a destruct, then we destructure # the result and assign to multiple columns struct_type = e.type() for name in struct_type.names: names.append(name) types.append(struct_type[name]) else: names.append(e.get_name()) types.append(e.type()) return Schema(names, types) def sort_by(self, expr, sort_exprs): sort_exprs = util.promote_list(sort_exprs) resolved_keys = _maybe_convert_sort_keys(self.table, sort_exprs) if resolved_keys and self.table._is_valid(resolved_keys): return Aggregation( self.table, self.metrics, by=self.by, having=self.having, predicates=self.predicates, sort_keys=self.sort_keys + resolved_keys, ) return Selection(expr, [], sort_keys=sort_exprs) class NumericBinaryOp(BinaryOp): left = Arg(rlz.numeric) right = Arg(rlz.numeric) class Add(NumericBinaryOp): output_type = rlz.numeric_like('args', operator.add) class Multiply(NumericBinaryOp): output_type = rlz.numeric_like('args', operator.mul) class Power(NumericBinaryOp): def output_type(self): if util.all_of(self.args, ir.IntegerValue): return rlz.shape_like(self.args, dt.float64) else: return rlz.shape_like(self.args) class Subtract(NumericBinaryOp): output_type = rlz.numeric_like('args', operator.sub) class Divide(NumericBinaryOp): output_type = rlz.shape_like('args', dt.float64) class FloorDivide(Divide): output_type = rlz.shape_like('args', dt.int64) class LogicalBinaryOp(BinaryOp): left = Arg(rlz.boolean) right = Arg(rlz.boolean) output_type = rlz.shape_like('args', dt.boolean) class Not(UnaryOp): arg = Arg(rlz.boolean) output_type = rlz.shape_like('arg', dt.boolean) class Modulus(NumericBinaryOp): output_type = rlz.numeric_like('args', operator.mod) class And(LogicalBinaryOp): pass class Or(LogicalBinaryOp): pass class Xor(LogicalBinaryOp): pass class Comparison(BinaryOp, BooleanValueOp): left = Arg(rlz.any) right = Arg(rlz.any) def __init__(self, left, right): """ Casting rules for type promotions (for resolving the output type) may depend in some cases on the target backend. TODO: how will overflows be handled? Can we provide anything useful in Ibis to help the user avoid them? :param left: :param right: """ super().__init__(*self._maybe_cast_args(left, right)) def _maybe_cast_args(self, left, right): # it might not be necessary? with suppress(com.IbisTypeError): return left, rlz.cast(right, left) with suppress(com.IbisTypeError): return rlz.cast(left, right), right return left, right def output_type(self): if not rlz.comparable(self.left, self.right): raise TypeError( 'Arguments with datatype {} and {} are ' 'not comparable'.format(self.left.type(), self.right.type()) ) return rlz.shape_like(self.args, dt.boolean) class Equals(Comparison): pass class NotEquals(Comparison): pass class GreaterEqual(Comparison): pass class Greater(Comparison): pass class LessEqual(Comparison): pass class Less(Comparison): pass class IdenticalTo(Comparison): pass class Between(ValueOp, BooleanValueOp): arg = Arg(rlz.any) lower_bound = Arg(rlz.any) upper_bound = Arg(rlz.any) def output_type(self): arg, lower, upper = self.args if not (rlz.comparable(arg, lower) and rlz.comparable(arg, upper)): raise TypeError('Arguments are not comparable') return rlz.shape_like(self.args, dt.boolean) class BetweenTime(Between): arg = Arg(rlz.one_of([rlz.timestamp, rlz.time])) lower_bound = Arg(rlz.one_of([rlz.time, rlz.string])) upper_bound = Arg(rlz.one_of([rlz.time, rlz.string])) class Contains(ValueOp, BooleanValueOp): value = Arg(rlz.any) options = Arg( rlz.one_of( [ rlz.list_of(rlz.any), rlz.set_, rlz.column(rlz.any), rlz.array_of(rlz.any), ] ) ) def __init__(self, value, options): # it can be a single expression, like a column if not isinstance(options, ir.Expr): if util.any_of(options, ir.Expr): # or a list of expressions options = ir.sequence(options) else: # or a set of scalar values options = frozenset(options) super().__init__(value, options) def output_type(self): all_args = [self.value] if isinstance(self.options, ir.ListExpr): all_args += self.options else: all_args += [self.options] return rlz.shape_like(all_args, dt.boolean) class NotContains(Contains): pass class ReplaceValues(ValueOp): """ Apply a multi-value replacement on a particular column. As an example from SQL, given DAYOFWEEK(timestamp_col), replace 1 through 5 to "WEEKDAY" and 6 and 7 to "WEEKEND" """ pass class SummaryFilter(ValueOp): expr = Arg(rlz.noop) def output_type(self): return dt.boolean.column_type() class TopK(ValueOp): arg = Arg(rlz.noop) k = Arg(int) by = Arg(rlz.noop) def __init__(self, arg, k, by=None): if by is None: by = arg.count() if not isinstance(arg, ir.ColumnExpr): raise TypeError(arg) if not isinstance(k, int) or k < 0: raise ValueError('k must be positive integer, was: {0}'.format(k)) super().__init__(arg, k, by) def output_type(self): return ir.TopKExpr def blocks(self): return True class Constant(ValueOp): pass class TimestampNow(Constant): def output_type(self): return dt.timestamp.scalar_type() class RandomScalar(Constant): def output_type(self): return dt.float64.scalar_type() class E(Constant): def output_type(self): return functools.partial(ir.FloatingScalar, dtype=dt.float64) class Pi(Constant): """ The constant pi """ def output_type(self): return functools.partial(ir.FloatingScalar, dtype=dt.float64) class TemporalUnaryOp(UnaryOp): arg = Arg(rlz.temporal) class TimestampUnaryOp(UnaryOp): arg = Arg(rlz.timestamp) _date_units = { 'Y': 'Y', 'y': 'Y', 'year': 'Y', 'YEAR': 'Y', 'YYYY': 'Y', 'SYYYY': 'Y', 'YYY': 'Y', 'YY': 'Y', 'Q': 'Q', 'q': 'Q', 'quarter': 'Q', 'QUARTER': 'Q', 'M': 'M', 'month': 'M', 'MONTH': 'M', 'w': 'W', 'W': 'W', 'week': 'W', 'WEEK': 'W', 'd': 'D', 'D': 'D', 'J': 'D', 'day': 'D', 'DAY': 'D', } _time_units = { 'h': 'h', 'H': 'h', 'HH24': 'h', 'hour': 'h', 'HOUR': 'h', 'm': 'm', 'MI': 'm', 'minute': 'm', 'MINUTE': 'm', 's': 's', 'second': 's', 'SECOND': 's', 'ms': 'ms', 'millisecond': 'ms', 'MILLISECOND': 'ms', 'us': 'us', 'microsecond': 'ms', 'MICROSECOND': 'ms', 'ns': 'ns', 'nanosecond': 'ns', 'NANOSECOND': 'ns', } _timestamp_units = toolz.merge(_date_units, _time_units) class TimestampTruncate(ValueOp): arg = Arg(rlz.timestamp) unit = Arg(rlz.isin(_timestamp_units)) output_type = rlz.shape_like('arg', dt.timestamp) class DateTruncate(ValueOp): arg = Arg(rlz.date) unit = Arg(rlz.isin(_date_units)) output_type = rlz.shape_like('arg', dt.date) class TimeTruncate(ValueOp): arg = Arg(rlz.time) unit = Arg(rlz.isin(_time_units)) output_type = rlz.shape_like('arg', dt.time) class Strftime(ValueOp): arg = Arg(rlz.temporal) format_str = Arg(rlz.string) output_type = rlz.shape_like('arg', dt.string) class StringToTimestamp(ValueOp): arg = Arg(rlz.string) format_str = Arg(rlz.string) timezone = Arg(rlz.string, default=None) output_type = rlz.shape_like('arg', dt.Timestamp(timezone='UTC')) class ExtractTemporalField(TemporalUnaryOp): output_type = rlz.shape_like('arg', dt.int32) ExtractTimestampField = ExtractTemporalField class ExtractDateField(ExtractTemporalField): arg = Arg(rlz.one_of([rlz.date, rlz.timestamp])) class ExtractTimeField(ExtractTemporalField): arg = Arg(rlz.one_of([rlz.time, rlz.timestamp])) class ExtractYear(ExtractDateField): pass class ExtractMonth(ExtractDateField): pass class ExtractDay(ExtractDateField): pass class ExtractDayOfYear(ExtractDateField): pass class ExtractQuarter(ExtractDateField): pass class ExtractEpochSeconds(ExtractDateField): pass class ExtractWeekOfYear(ExtractDateField): pass class ExtractHour(ExtractTimeField): pass class ExtractMinute(ExtractTimeField): pass class ExtractSecond(ExtractTimeField): pass class ExtractMillisecond(ExtractTimeField): pass class DayOfWeekIndex(UnaryOp): arg = Arg(rlz.one_of([rlz.date, rlz.timestamp])) output_type = rlz.shape_like('arg', dt.int16) class DayOfWeekName(UnaryOp): arg = Arg(rlz.one_of([rlz.date, rlz.timestamp])) output_type = rlz.shape_like('arg', dt.string) class DayOfWeekNode(Node): arg = Arg(rlz.one_of([rlz.date, rlz.timestamp])) def output_type(self): return ir.DayOfWeek class Time(UnaryOp): output_type = rlz.shape_like('arg', dt.time) class Date(UnaryOp): output_type = rlz.shape_like('arg', dt.date) class TimestampFromUNIX(ValueOp): arg = Arg(rlz.any) # Only pandas-based backends support 'ns' unit = Arg(rlz.isin({'s', 'ms', 'us', 'ns'})) output_type = rlz.shape_like('arg', dt.timestamp) class DecimalUnaryOp(UnaryOp): arg = Arg(rlz.decimal) class DecimalPrecision(DecimalUnaryOp): output_type = rlz.shape_like('arg', dt.int32) class DecimalScale(UnaryOp): output_type = rlz.shape_like('arg', dt.int32) class Hash(ValueOp): arg = Arg(rlz.any) how = Arg(rlz.isin({'fnv', 'farm_fingerprint'})) output_type = rlz.shape_like('arg', dt.int64) class HashBytes(ValueOp): arg = Arg(rlz.one_of({rlz.value(dt.string), rlz.value(dt.binary)})) how = Arg(rlz.isin({'md5', 'sha1', 'sha256', 'sha512'})) output_type = rlz.shape_like('arg', dt.binary) class DateAdd(BinaryOp): left = Arg(rlz.date) right = Arg(rlz.interval(units={'Y', 'Q', 'M', 'W', 'D'})) output_type = rlz.shape_like('left') class DateSub(BinaryOp): left = Arg(rlz.date) right = Arg(rlz.interval(units={'Y', 'Q', 'M', 'W', 'D'})) output_type = rlz.shape_like('left') class DateDiff(BinaryOp): left = Arg(rlz.date) right = Arg(rlz.date) output_type = rlz.shape_like('left', dt.Interval('D')) class TimeAdd(BinaryOp): left = Arg(rlz.time) right = Arg(rlz.interval(units={'h', 'm', 's', 'ms', 'us', 'ns'})) output_type = rlz.shape_like('left') class TimeSub(BinaryOp): left = Arg(rlz.time) right = Arg(rlz.interval(units={'h', 'm', 's', 'ms', 'us', 'ns'})) output_type = rlz.shape_like('left') class TimeDiff(BinaryOp): left = Arg(rlz.time) right = Arg(rlz.time) output_type = rlz.shape_like('left', dt.Interval('s')) class TimestampAdd(BinaryOp): left = Arg(rlz.timestamp) right = Arg( rlz.interval( units={'Y', 'Q', 'M', 'W', 'D', 'h', 'm', 's', 'ms', 'us', 'ns'} ) ) output_type = rlz.shape_like('left') class TimestampSub(BinaryOp): left = Arg(rlz.timestamp) right = Arg( rlz.interval( units={'Y', 'Q', 'M', 'W', 'D', 'h', 'm', 's', 'ms', 'us', 'ns'} ) ) output_type = rlz.shape_like('left') class TimestampDiff(BinaryOp): left = Arg(rlz.timestamp) right = Arg(rlz.timestamp) output_type = rlz.shape_like('left', dt.Interval('s')) class IntervalBinaryOp(BinaryOp): def output_type(self): args = [ arg.cast(arg.type().value_type) if isinstance(arg.type(), dt.Interval) else arg for arg in self.args ] expr = rlz.numeric_like(args, self.__class__.op)(self) left_dtype = self.left.type() dtype_type = type(left_dtype) additional_args = { attr: getattr(left_dtype, attr) for attr in dtype_type.__slots__ if attr not in {'unit', 'value_type'} } dtype = dtype_type(left_dtype.unit, expr.type(), **additional_args) return rlz.shape_like(self.args, dtype=dtype) class IntervalAdd(IntervalBinaryOp): left = Arg(rlz.interval) right = Arg(rlz.interval) op = operator.add class IntervalSubtract(IntervalBinaryOp): left = Arg(rlz.interval) right = Arg(rlz.interval) op = operator.sub class IntervalMultiply(IntervalBinaryOp): left = Arg(rlz.interval) right = Arg(rlz.numeric) op = operator.mul class IntervalFloorDivide(IntervalBinaryOp): left = Arg(rlz.interval) right = Arg(rlz.numeric) op = operator.floordiv class IntervalFromInteger(ValueOp): arg = Arg(rlz.integer) unit = Arg( rlz.isin({'Y', 'Q', 'M', 'W', 'D', 'h', 'm', 's', 'ms', 'us', 'ns'}) ) @property def resolution(self): return dt.Interval(self.unit).resolution def output_type(self): dtype = dt.Interval(self.unit, self.arg.type()) return rlz.shape_like(self.arg, dtype=dtype) class ArrayColumn(ValueOp): cols = Arg(rlz.list_of(rlz.column(rlz.any), min_length=1)) def _validate(self): if len({col.type() for col in self.cols}) > 1: raise com.IbisTypeError( f'The types of all input columns must match exactly in a ' f'{type(self).__name__} operation.' ) def output_type(self): first_dtype = self.cols[0].type() return dt.Array(first_dtype).column_type() class ArrayLength(UnaryOp): arg = Arg(rlz.array) output_type = rlz.shape_like('arg', dt.int64) class ArraySlice(ValueOp): arg = Arg(rlz.array) start = Arg(rlz.integer) stop = Arg(rlz.integer, default=None) output_type = rlz.typeof('arg') class ArrayIndex(ValueOp): arg = Arg(rlz.array) index = Arg(rlz.integer) def output_type(self): value_dtype = self.arg.type().value_type return rlz.shape_like(self.arg, value_dtype) class ArrayConcat(ValueOp): left = Arg(rlz.array) right = Arg(rlz.array) output_type = rlz.shape_like('left') def _validate(self): left_dtype, right_dtype = self.left.type(), self.right.type() if left_dtype != right_dtype: raise com.IbisTypeError( 'Array types must match exactly in a {} operation. ' 'Left type {} != Right type {}'.format( type(self).__name__, left_dtype, right_dtype ) ) class ArrayRepeat(ValueOp): arg = Arg(rlz.array) times = Arg(rlz.integer) output_type = rlz.typeof('arg') class ArrayCollect(Reduction): arg = Arg(rlz.column(rlz.any)) def output_type(self): dtype = dt.Array(self.arg.type()) return dtype.scalar_type() class MapLength(ValueOp): arg = Arg(rlz.mapping) output_type = rlz.shape_like('arg', dt.int64) class MapValueForKey(ValueOp): arg = Arg(rlz.mapping) key = Arg(rlz.one_of([rlz.string, rlz.integer])) def output_type(self): return rlz.shape_like(tuple(self.args), self.arg.type().value_type) class MapValueOrDefaultForKey(ValueOp): arg = Arg(rlz.mapping) key = Arg(rlz.one_of([rlz.string, rlz.integer])) default = Arg(rlz.any) def output_type(self): arg = self.arg default = self.default map_type = arg.type() value_type = map_type.value_type default_type = default.type() if default is not None and not dt.same_kind(default_type, value_type): raise com.IbisTypeError( "Default value\n{}\nof type {} cannot be cast to map's value " "type {}".format(default, default_type, value_type) ) result_type = dt.highest_precedence((default_type, value_type)) return rlz.shape_like(tuple(self.args), result_type) class MapKeys(ValueOp): arg = Arg(rlz.mapping) def output_type(self): arg = self.arg return rlz.shape_like(arg, dt.Array(arg.type().key_type)) class MapValues(ValueOp): arg = Arg(rlz.mapping) def output_type(self): arg = self.arg return rlz.shape_like(arg, dt.Array(arg.type().value_type)) class MapConcat(ValueOp): left = Arg(rlz.mapping) right = Arg(rlz.mapping) output_type = rlz.typeof('left') class StructField(ValueOp): arg = Arg(rlz.struct) field = Arg(str) def output_type(self): struct_dtype = self.arg.type() value_dtype = struct_dtype[self.field] return rlz.shape_like(self.arg, value_dtype) class Literal(ValueOp): value = Arg(rlz.noop) dtype = Arg(dt.dtype) def __repr__(self): return '{}({})'.format( type(self).__name__, ', '.join(map(repr, self.args)) ) def equals(self, other, cache=None): # Check types if not ( isinstance(other, Literal) and isinstance(other.value, type(self.value)) and self.dtype == other.dtype ): return False # Check values if isinstance(self.value, np.ndarray): return np.array_equal(self.value, other.value) else: return self.value == other.value def output_type(self): return self.dtype.scalar_type() def root_tables(self): return [] def __hash__(self) -> int: """Return the hash of a literal value. We override this method to make sure that we can handle things that aren't eminently hashable like an ``array<array<int64>>``. """ return hash(self.dtype._literal_value_hash_key(self.value)) class NullLiteral(Literal): """Typeless NULL literal""" value = Arg(type(None), default=None) dtype = Arg(dt.Null, default=dt.null) class ScalarParameter(ValueOp): _counter = itertools.count() dtype = Arg(dt.dtype) counter = Arg(int, default=lambda: next(ScalarParameter._counter)) def resolve_name(self): return 'param_{:d}'.format(self.counter) def __repr__(self): return '{}(type={})'.format(type(self).__name__, self.dtype) def __hash__(self): return hash((self.dtype, self.counter)) def output_type(self): return self.dtype.scalar_type() def equals(self, other, cache=None): return ( isinstance(other, ScalarParameter) and self.counter == other.counter and self.dtype.equals(other.dtype, cache=cache) ) @property def inputs(self): return () def root_tables(self): return [] class ExpressionList(Node): """Data structure for a list of arbitrary expressions""" exprs = Arg(rlz.noop) def __init__(self, values): super().__init__(list(map(rlz.any, values))) @property def inputs(self): return (tuple(self.exprs),) def root_tables(self): return distinct_roots(self.exprs) def output_type(self): return ir.ExprList class ValueList(ValueOp): """Data structure for a list of value expressions""" values = Arg(rlz.noop) display_argnames = False # disable showing argnames in repr def __init__(self, values): super().__init__(tuple(map(rlz.any, values))) def output_type(self): dtype = rlz.highest_precedence_dtype(self.values) return functools.partial(ir.ListExpr, dtype=dtype) def root_tables(self): return distinct_roots(*self.values) # ---------------------------------------------------------------------- # GeoSpatial operations class GeoSpatialBinOp(BinaryOp): """Geo Spatial base binary""" left = Arg(rlz.geospatial) right = Arg(rlz.geospatial) class GeoSpatialUnOp(UnaryOp): """Geo Spatial base unary""" arg = Arg(rlz.geospatial) class GeoDistance(GeoSpatialBinOp): """Returns minimum distance between two geo spatial data""" output_type = rlz.shape_like('args', dt.float64) class GeoContains(GeoSpatialBinOp): """Check if the first geo spatial data contains the second one""" output_type = rlz.shape_like('args', dt.boolean) class GeoContainsProperly(GeoSpatialBinOp): """Check if the first geo spatial data contains the second one, and no boundary points are shared.""" output_type = rlz.shape_like('args', dt.boolean) class GeoCovers(GeoSpatialBinOp): """Returns True if no point in Geometry B is outside Geometry A""" output_type = rlz.shape_like('args', dt.boolean) class GeoCoveredBy(GeoSpatialBinOp): """Returns True if no point in Geometry/Geography A is outside Geometry/Geography B""" output_type = rlz.shape_like('args', dt.boolean) class GeoCrosses(GeoSpatialBinOp): """Returns True if the supplied geometries have some, but not all, interior points in common.""" output_type = rlz.shape_like('args', dt.boolean) class GeoDisjoint(GeoSpatialBinOp): """Returns True if the Geometries do not โ€œspatially intersectโ€ - if they do not share any space together.""" output_type = rlz.shape_like('args', dt.boolean) class GeoEquals(GeoSpatialBinOp): """Returns True if the given geometries represent the same geometry.""" output_type = rlz.shape_like('args', dt.boolean) class GeoGeometryN(GeoSpatialUnOp): """Returns the Nth Geometry of a Multi geometry.""" n = Arg(rlz.integer) output_type = rlz.shape_like('args', dt.geometry) class GeoGeometryType(GeoSpatialUnOp): """Returns the type of the geometry.""" output_type = rlz.shape_like('args', dt.string) class GeoIntersects(GeoSpatialBinOp): """Returns True if the Geometries/Geography โ€œspatially intersect in 2Dโ€ - (share any portion of space) and False if they donโ€™t (they are Disjoint). """ output_type = rlz.shape_like('args', dt.boolean) class GeoIsValid(GeoSpatialUnOp): """Returns true if the geometry is well-formed.""" output_type = rlz.shape_like('args', dt.boolean) class GeoLineLocatePoint(GeoSpatialBinOp): """ Locate the distance a point falls along the length of a line. Returns a float between zero and one representing the location of the closest point on the linestring to the given point, as a fraction of the total 2d line length. """ left = Arg(rlz.linestring) right = Arg(rlz.point) output_type = rlz.shape_like('args', dt.halffloat) class GeoLineMerge(GeoSpatialUnOp): """ Merge a MultiLineString into a LineString. Returns a (set of) LineString(s) formed by sewing together the constituent line work of a multilinestring. If a geometry other than a linestring or multilinestring is given, this will return an empty geometry collection. """ output_type = rlz.shape_like('args', dt.geometry) class GeoLineSubstring(GeoSpatialUnOp): """ Clip a substring from a LineString. Returns a linestring that is a substring of the input one, starting and ending at the given fractions of the total 2d length. The second and third arguments are floating point values between zero and one. This only works with linestrings. """ arg = Arg(rlz.linestring) start = Arg(rlz.floating) end = Arg(rlz.floating) output_type = rlz.shape_like('args', dt.linestring) class GeoOrderingEquals(GeoSpatialBinOp): """ Check if two geometries are equal and have the same point ordering. Returns true if the two geometries are equal and the coordinates are in the same order. """ output_type = rlz.shape_like('args', dt.boolean) class GeoOverlaps(GeoSpatialBinOp): """Returns True if the Geometries share space, are of the same dimension, but are not completely contained by each other.""" output_type = rlz.shape_like('args', dt.boolean) class GeoTouches(GeoSpatialBinOp): """Returns True if the geometries have at least one point in common, but their interiors do not intersect.""" output_type = rlz.shape_like('args', dt.boolean) class GeoUnaryUnion(Reduction): """Returns the pointwise union of the geometries in the column.""" arg = Arg(rlz.column(rlz.geospatial)) def output_type(self): return dt.geometry.scalar_type() class GeoUnion(GeoSpatialBinOp): """Returns the pointwise union of the two geometries.""" output_type = rlz.shape_like('args', dt.geometry) class GeoArea(GeoSpatialUnOp): """Area of the geo spatial data""" output_type = rlz.shape_like('args', dt.float64) class GeoPerimeter(GeoSpatialUnOp): """Perimeter of the geo spatial data""" output_type = rlz.shape_like('args', dt.float64) class GeoLength(GeoSpatialUnOp): """Length of geo spatial data""" output_type = rlz.shape_like('args', dt.float64) class GeoMaxDistance(GeoSpatialBinOp): """Returns the 2-dimensional maximum distance between two geometries in projected units. If g1 and g2 is the same geometry the function will return the distance between the two vertices most far from each other in that geometry """ output_type = rlz.shape_like('args', dt.float64) class GeoX(GeoSpatialUnOp): """Return the X coordinate of the point, or NULL if not available. Input must be a point """ output_type = rlz.shape_like('args', dt.float64) class GeoY(GeoSpatialUnOp): """Return the Y coordinate of the point, or NULL if not available. Input must be a point """ output_type = rlz.shape_like('args', dt.float64) class GeoXMin(GeoSpatialUnOp): """Returns Y minima of a bounding box 2d or 3d or a geometry""" output_type = rlz.shape_like('args', dt.float64) class GeoXMax(GeoSpatialUnOp): """Returns X maxima of a bounding box 2d or 3d or a geometry""" output_type = rlz.shape_like('args', dt.float64) class GeoYMin(GeoSpatialUnOp): """Returns Y minima of a bounding box 2d or 3d or a geometry""" output_type = rlz.shape_like('args', dt.float64) class GeoYMax(GeoSpatialUnOp): """Returns Y maxima of a bounding box 2d or 3d or a geometry""" output_type = rlz.shape_like('args', dt.float64) class GeoStartPoint(GeoSpatialUnOp): """Returns the first point of a LINESTRING geometry as a POINT or NULL if the input parameter is not a LINESTRING """ output_type = rlz.shape_like('arg', dt.point) class GeoEndPoint(GeoSpatialUnOp): """Returns the last point of a LINESTRING geometry as a POINT or NULL if the input parameter is not a LINESTRING """ output_type = rlz.shape_like('arg', dt.point) class GeoPoint(GeoSpatialBinOp): """ Return a point constructed on the fly from the provided coordinate values. Constant coordinates result in construction of a POINT literal. """ left = Arg(rlz.numeric) right = Arg(rlz.numeric) output_type = rlz.shape_like('args', dt.point) class GeoPointN(GeoSpatialUnOp): """Return the Nth point in a single linestring in the geometry. Negative values are counted backwards from the end of the LineString, so that -1 is the last point. Returns NULL if there is no linestring in the geometry """ n = Arg(rlz.integer) output_type = rlz.shape_like('args', dt.point) class GeoNPoints(GeoSpatialUnOp): """Return the number of points in a geometry. Works for all geometries""" output_type = rlz.shape_like('args', dt.int64) class GeoNRings(GeoSpatialUnOp): """If the geometry is a polygon or multi-polygon returns the number of rings. It counts the outer rings as well """ output_type = rlz.shape_like('args', dt.int64) class GeoSRID(GeoSpatialUnOp): """Returns the spatial reference identifier for the ST_Geometry.""" output_type = rlz.shape_like('args', dt.int64) class GeoSetSRID(GeoSpatialUnOp): """Set the spatial reference identifier for the ST_Geometry.""" srid = Arg(rlz.integer) output_type = rlz.shape_like('args', dt.geometry) class GeoBuffer(GeoSpatialUnOp): """Returns a geometry that represents all points whose distance from this Geometry is less than or equal to distance. Calculations are in the Spatial Reference System of this Geometry. """ radius = Arg(rlz.floating) output_type = rlz.shape_like('args', dt.geometry) class GeoCentroid(GeoSpatialUnOp): """Returns the geometric center of a geometry.""" output_type = rlz.shape_like('arg', dt.point) class GeoDFullyWithin(GeoSpatialBinOp): """Returns True if the geometries are fully within the specified distance of one another. """ distance = Arg(rlz.floating) output_type = rlz.shape_like('args', dt.boolean) class GeoDWithin(GeoSpatialBinOp): """Returns True if the geometries are within the specified distance of one another. """ distance = Arg(rlz.floating) output_type = rlz.shape_like('args', dt.boolean) class GeoEnvelope(GeoSpatialUnOp): """Returns a geometry representing the boundingbox of the supplied geometry. """ output_type = rlz.shape_like('arg', dt.polygon) class GeoAzimuth(GeoSpatialBinOp): """Returns the angle in radians from the horizontal of the vector defined by pointA and pointB. Angle is computed clockwise from down-to-up: on the clock: 12=0; 3=PI/2; 6=PI; 9=3PI/2. """ left = Arg(rlz.point) right = Arg(rlz.point) output_type = rlz.shape_like('args', dt.float64) class GeoWithin(GeoSpatialBinOp): """Returns True if the geometry A is completely inside geometry B""" output_type = rlz.shape_like('args', dt.boolean) class GeoIntersection(GeoSpatialBinOp): """Returns a geometry that represents the point set intersection of the Geometries. """ output_type = rlz.shape_like('args', dt.geometry) class GeoDifference(GeoSpatialBinOp): """Returns a geometry that represents that part of geometry A that does not intersect with geometry B """ output_type = rlz.shape_like('args', dt.geometry) class GeoSimplify(GeoSpatialUnOp): """Returns a simplified version of the given geometry.""" tolerance = Arg(rlz.floating) preserve_collapsed = Arg(rlz.boolean) output_type = rlz.shape_like('arg', dt.geometry) class GeoTransform(GeoSpatialUnOp): """Returns a transformed version of the given geometry into a new SRID.""" srid = Arg(rlz.integer) output_type = rlz.shape_like('arg', dt.geometry) class GeoAsBinary(GeoSpatialUnOp): """Return the Well-Known Binary (WKB) representation of the geometry/geography without SRID meta data. """ output_type = rlz.shape_like('arg', dt.binary) class GeoAsEWKB(GeoSpatialUnOp): """Return the Well-Known Binary (WKB) representation of the geometry/geography with SRID meta data. """ output_type = rlz.shape_like('arg', dt.binary) class GeoAsEWKT(GeoSpatialUnOp): """Return the Well-Known Text (WKT) representation of the geometry/geography with SRID meta data. """ output_type = rlz.shape_like('arg', dt.string) class GeoAsText(GeoSpatialUnOp): """Return the Well-Known Text (WKT) representation of the geometry/geography without SRID metadata. """ output_type = rlz.shape_like('arg', dt.string) class ElementWiseVectorizedUDF(ValueOp): """Node for element wise UDF.""" func = Arg(callable) func_args = Arg(tuple) input_type = Arg(rlz.shape_like('func_args')) _output_type = Arg(rlz.noop) def __init__(self, func, args, input_type, output_type): self.func = func self.func_args = args self.input_type = input_type self._output_type = output_type @property def inputs(self): return self.func_args def output_type(self): return self._output_type.column_type() def root_tables(self): return distinct_roots(*self.func_args) class ReductionVectorizedUDF(Reduction): """Node for reduction UDF.""" func = Arg(callable) func_args = Arg(tuple) input_type = Arg(rlz.shape_like('func_args')) _output_type = Arg(rlz.noop) def __init__(self, func, args, input_type, output_type): self.func = func self.func_args = args self.input_type = input_type self._output_type = output_type @property def inputs(self): return self.func_args def output_type(self): return self._output_type.scalar_type() def root_tables(self): return distinct_roots(*self.func_args) class AnalyticVectorizedUDF(AnalyticOp): """Node for analytics UDF.""" func = Arg(callable) func_args = Arg(tuple) input_type = Arg(rlz.shape_like('func_args')) _output_type = Arg(rlz.noop) def __init__(self, func, args, input_type, output_type): self.func = func self.func_args = args self.input_type = input_type self._output_type = output_type @property def inputs(self): return self.func_args def output_type(self): return self._output_type.column_type() def root_tables(self): return distinct_roots(*self.func_args) class ExistsSubquery(Node): """Helper class""" foreign_table = Arg(rlz.noop) predicates = Arg(rlz.noop) def output_type(self): return ir.ExistsExpr class NotExistsSubquery(Node): foreign_table = Arg(rlz.noop) predicates = Arg(rlz.noop) def output_type(self): return ir.ExistsExpr
24.984392
99
0.624954
[ "Apache-2.0" ]
odidev/ibis
ibis/expr/operations.py
92,852
Python
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from .. import _utilities, _tables from . import outputs from ._enums import * from ._inputs import * __all__ = ['Schedule'] class Schedule(pulumi.CustomResource): def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, daily_recurrence: Optional[pulumi.Input[pulumi.InputType['DayDetailsArgs']]] = None, hourly_recurrence: Optional[pulumi.Input[pulumi.InputType['HourDetailsArgs']]] = None, lab_name: Optional[pulumi.Input[str]] = None, location: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, notification_settings: Optional[pulumi.Input[pulumi.InputType['NotificationSettingsArgs']]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, status: Optional[pulumi.Input[Union[str, 'EnableStatus']]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, target_resource_id: Optional[pulumi.Input[str]] = None, task_type: Optional[pulumi.Input[str]] = None, time_zone_id: Optional[pulumi.Input[str]] = None, weekly_recurrence: Optional[pulumi.Input[pulumi.InputType['WeekDetailsArgs']]] = None, __props__=None, __name__=None, __opts__=None): """ A schedule. API Version: 2018-09-15. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[pulumi.InputType['DayDetailsArgs']] daily_recurrence: If the schedule will occur once each day of the week, specify the daily recurrence. :param pulumi.Input[pulumi.InputType['HourDetailsArgs']] hourly_recurrence: If the schedule will occur multiple times a day, specify the hourly recurrence. :param pulumi.Input[str] lab_name: The name of the lab. :param pulumi.Input[str] location: The location of the resource. :param pulumi.Input[str] name: The name of the schedule. :param pulumi.Input[pulumi.InputType['NotificationSettingsArgs']] notification_settings: Notification settings. :param pulumi.Input[str] resource_group_name: The name of the resource group. :param pulumi.Input[Union[str, 'EnableStatus']] status: The status of the schedule (i.e. Enabled, Disabled) :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: The tags of the resource. :param pulumi.Input[str] target_resource_id: The resource ID to which the schedule belongs :param pulumi.Input[str] task_type: The task type of the schedule (e.g. LabVmsShutdownTask, LabVmAutoStart). :param pulumi.Input[str] time_zone_id: The time zone ID (e.g. Pacific Standard time). :param pulumi.Input[pulumi.InputType['WeekDetailsArgs']] weekly_recurrence: If the schedule will occur only some days of the week, specify the weekly recurrence. """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() __props__['daily_recurrence'] = daily_recurrence __props__['hourly_recurrence'] = hourly_recurrence if lab_name is None and not opts.urn: raise TypeError("Missing required property 'lab_name'") __props__['lab_name'] = lab_name __props__['location'] = location __props__['name'] = name __props__['notification_settings'] = notification_settings if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__['resource_group_name'] = resource_group_name __props__['status'] = status __props__['tags'] = tags __props__['target_resource_id'] = target_resource_id __props__['task_type'] = task_type __props__['time_zone_id'] = time_zone_id __props__['weekly_recurrence'] = weekly_recurrence __props__['created_date'] = None __props__['provisioning_state'] = None __props__['type'] = None __props__['unique_identifier'] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:devtestlab/latest:Schedule"), pulumi.Alias(type_="azure-nextgen:devtestlab/v20150521preview:Schedule"), pulumi.Alias(type_="azure-nextgen:devtestlab/v20160515:Schedule"), pulumi.Alias(type_="azure-nextgen:devtestlab/v20180915:Schedule")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(Schedule, __self__).__init__( 'azure-nextgen:devtestlab:Schedule', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'Schedule': """ Get an existing Schedule resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() return Schedule(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="createdDate") def created_date(self) -> pulumi.Output[str]: """ The creation date of the schedule. """ return pulumi.get(self, "created_date") @property @pulumi.getter(name="dailyRecurrence") def daily_recurrence(self) -> pulumi.Output[Optional['outputs.DayDetailsResponse']]: """ If the schedule will occur once each day of the week, specify the daily recurrence. """ return pulumi.get(self, "daily_recurrence") @property @pulumi.getter(name="hourlyRecurrence") def hourly_recurrence(self) -> pulumi.Output[Optional['outputs.HourDetailsResponse']]: """ If the schedule will occur multiple times a day, specify the hourly recurrence. """ return pulumi.get(self, "hourly_recurrence") @property @pulumi.getter def location(self) -> pulumi.Output[Optional[str]]: """ The location of the resource. """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ The name of the resource. """ return pulumi.get(self, "name") @property @pulumi.getter(name="notificationSettings") def notification_settings(self) -> pulumi.Output[Optional['outputs.NotificationSettingsResponse']]: """ Notification settings. """ return pulumi.get(self, "notification_settings") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> pulumi.Output[str]: """ The provisioning status of the resource. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter def status(self) -> pulumi.Output[Optional[str]]: """ The status of the schedule (i.e. Enabled, Disabled) """ return pulumi.get(self, "status") @property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Mapping[str, str]]]: """ The tags of the resource. """ return pulumi.get(self, "tags") @property @pulumi.getter(name="targetResourceId") def target_resource_id(self) -> pulumi.Output[Optional[str]]: """ The resource ID to which the schedule belongs """ return pulumi.get(self, "target_resource_id") @property @pulumi.getter(name="taskType") def task_type(self) -> pulumi.Output[Optional[str]]: """ The task type of the schedule (e.g. LabVmsShutdownTask, LabVmAutoStart). """ return pulumi.get(self, "task_type") @property @pulumi.getter(name="timeZoneId") def time_zone_id(self) -> pulumi.Output[Optional[str]]: """ The time zone ID (e.g. Pacific Standard time). """ return pulumi.get(self, "time_zone_id") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ The type of the resource. """ return pulumi.get(self, "type") @property @pulumi.getter(name="uniqueIdentifier") def unique_identifier(self) -> pulumi.Output[str]: """ The unique immutable identifier of a resource (Guid). """ return pulumi.get(self, "unique_identifier") @property @pulumi.getter(name="weeklyRecurrence") def weekly_recurrence(self) -> pulumi.Output[Optional['outputs.WeekDetailsResponse']]: """ If the schedule will occur only some days of the week, specify the weekly recurrence. """ return pulumi.get(self, "weekly_recurrence") def translate_output_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return _tables.SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
42.712551
325
0.645308
[ "Apache-2.0" ]
pulumi/pulumi-azure-nextgen
sdk/python/pulumi_azure_nextgen/devtestlab/schedule.py
10,550
Python
data = "cqjxjnds" import string import re lc = string.ascii_lowercase next = dict(zip(lc[:-1], lc[1:])) three_seq = ["".join(z) for z in zip(lc[:-2], lc[1:-1], lc[2:])] def check(pw): if "i" in pw or "o" in pw or "l" in pw: return False three_match = False for seq in three_seq: if seq in pw: three_match = True if not three_match: return False doubles = set(re.findall(r'(.)\1', pw)) if len(doubles) < 2: return False return True def inc(pw): pw = list(pw) i = -1 while pw[i] == 'z': pw[i] = 'a' i -= 1 pw[i] = next[pw[i]] return "".join(pw) # TEST print(check("hijklmmn")) print(check("abbceffg")) print(check("abbcegjk")) print(check("abcdffaa")) print(check("ghjaabcc")) # PART 1 pw = data while not check(pw): pw = inc(pw) print(pw) # PART 2 pw = inc(pw) while not check(pw): pw = inc(pw) print(pw)
17.865385
64
0.557589
[ "MIT" ]
lamperi/aoc
2015/11/solve.py
929
Python
# Qiwi module advanced usage example v1.00 # 17/05/2021 # https://t.me/ssleg ยฉ 2021 import logging import qiwi_module # ะฝะฐัั‚ั€ะพะนะบะฐ ะปะพะณั„ะปะฐะนะปะฐ test,log, ั‚ัƒะดะฐ ะฑัƒะดัƒั‚ ะทะฐะฟะธัั‹ะฒะฐั‚ัŒัั ะฒัะต ะพัˆะธะฑะบะธ ะธ ะฟั€ะตะดัƒะฟั€ะตะถะดะตะฝะธั. lfile = logging.FileHandler('test.log', 'a', 'utf-8') lfile.setFormatter(logging.Formatter('%(levelname)s %(module)-13s [%(asctime)s] %(message)s')) # noinspection PyArgumentList logging.basicConfig(level=logging.INFO, handlers=[lfile]) # ะฟั€ะพัั‚ะพะน ะฒะฐั€ะธะฐะฝั‚ ะธัะฟะพะปัŒะทะพะฒะฐะฝะธั ัะผะพั‚ั€ะธั‚ะต ะฒ ั„ะฐะนะปะต sample.py # ะตัะปะธ ัƒ ะฒะฐั ะฝะฐัั‚ั€ะพะตะฝ ัะฒะพะน ะฒะฝะตัˆะฝะธะน ะฒะธะด ั„ะพั€ะผั‹ ะฟะปะฐั‚ะตะถะฐ, ะฝะตะพะฑั…ะพะดะธะผะพ ะฟะตั€ะตะดะฐั‚ัŒ ะบะพะด ั‚ะตะผั‹ ะผะพะดัƒะปัŽ. # ัั‚ะพ ะดะตะปะฐะตั‚ัั ะพะดะธะฝ ั€ะฐะท, ะฟั€ะธ ะตะณะพ ะธะฝะธั†ะธะฐะปะธะทะฐั†ะธะธ. # ัะฐะผ ะบะพะด ะธ ะฝะฐัั‚ั€ะพะนะบะธ ั„ะพั€ะผั‹ ะฝะฐั…ะพะดัั‚ัั ะฝะฐ ัั‚ั€ะฐะฝะธั†ะต https://qiwi.com/p2p-admin/transfers/link theme_code = 'Ivanov-XX-vvv-k_' # ะฟะตั€ะตะด ะปัŽะฑั‹ะผ ะธัะฟะพะปัŒะทะพะฒะฐะฝะธะตะผ ะฝะตะพะฑั…ะพะดะธะผะฐ ะพะดะฝะพะบั€ะฐั‚ะฝะฐั ะธะฝะธั†ะธะฐะปะธะทะฐั†ะธั ะผะพะดัƒะปั. qiwi_module.init(theme_code) # ัะพะทะดะฐะฝะธะต ัั‡ะตั‚ะฐ ะฝะฐ 1 ั€ัƒะฑะปัŒ. ะŸั€ะธ ัƒัะฟะตั…ะต ะฟะพะปัƒั‡ะฐะตั‚ะต url ั ั„ะพั€ะผะพะน ะพะฟะปะฐั‚ั‹ ะดะปั ะบะปะธะตะฝั‚ะฐ. # ะฟั€ะธ ะฝะตัƒัะฟะตั…ะต ะฒะพะทะฒั€ะฐั‰ะฐะตั‚ัั False ั ะฟะพะดั€ะพะฑะฝะพะน ะทะฐะฟะธััŒัŽ ะฒ ะปะพะณ. # ะธะดะตะฝั‚ะธั„ะธะบะฐั‚ะพั€ั‹ ัั‡ะตั‚ะพะฒ ะฟั€ะธะดัƒะผั‹ะฒะฐะตั‚ะต ะธ ัะพั…ั€ะฐะฝัะตั‚ะต ะฒั‹ ัะฐะผะธ, ะพะฝะธ ะดะพะปะถะฝั‹ ะฑั‹ั‚ัŒ ัƒะฝะธะบะฐะปัŒะฝั‹ะผะธ ะฒัะตะณะดะฐ. bill_id = 'bill_2021_00000002' # ะฟะพ ัƒะผะพะปั‡ะฐะฝะธัŽ ัั‡ะตั‚ ะดะตะนัั‚ะฒะธั‚ะตะปะตะฝ 15 ะผะธะฝัƒั‚, ะฝะพ ะฒั‹ ะผะพะถะตั‚ะต ะฟะพัั‚ะฐะฒะธั‚ัŒ ัะฒะพะต ะฒั€ะตะผั, ะฝะฐะฟั€ะธะผะตั€ ััƒั‚ะบะธ ะธ 1 ะผะธะฝัƒั‚ัƒ. valid_hours = 24 valid_minutes = 1 # ะตัั‚ัŒ ั‚ะฐะบ ะถะต ะฟะพะปะต ะดะปั ะบะพะผะผะตะฝั‚ะฐั€ะธั, ะตะณะพ ะฒะธะดะธั‚ ะบะปะธะตะฝั‚ ะฒ ั„ะพั€ะผะต ะพะฟะปะฐั‚ั‹. ะฝะฐะฟั€ะธะผะตั€, ั‚ัƒะดะฐ ะผะพะถะฝะพ ะทะฐะฟะธัะฐั‚ัŒ ะดะตั‚ะฐะปะธ ะทะฐะบะฐะทะฐ comment = 'ะ’ะธะฝั‚ ั ะปะตะฒะพะน ั€ะตะทัŒะฑะพะน ะดะปั ะกะธะดะพั€ะพะฒะฐ.' invoice_url = qiwi_module.create_bill(1.00, bill_id, comment, valid_hours, valid_minutes) print(invoice_url) # ะฟั€ะพะฒะตั€ะบะฐ ัั‚ะฐั‚ัƒัะฐ ะพะฟะปะฐั‚ั‹. # ะฒะพะทะฒั€ะฐั‰ะฐะตั‚ ะพะดะฝะพ ะธะท ั‡ะตั‚ั‹ั€ะตั… ะฒะพะทะผะพะถะฝั‹ั… ะทะฝะฐั‡ะตะฝะธะน, ะตัะปะธ ัƒัะฟะตัˆะฝะพ ะธะปะธ False ะธ ะทะฐะฟะธััŒ ะฒ ะปะพะณ. # 'WAITING' - cั‡ะตั‚ ะฒั‹ัั‚ะฐะฒะปะตะฝ, ะพะถะธะดะฐะตั‚ ะพะฟะปะฐั‚ั‹. # 'PAID' - cั‡ะตั‚ ะพะฟะปะฐั‡ะตะฝ. # 'REJECTED' - ัั‡ะตั‚ ะพั‚ะผะตะฝะตะฝ ั ะฒะฐัˆะตะน ัั‚ะพั€ะพะฝั‹. # 'EXPIRED' - ัั‡ะตั‚ ะฝะต ะพะฟะปะฐั‡ะตะฝ ะธ ะธัั‚ะตะบ ัั€ะพะบ ะตะณะพ ะดะตะนัั‚ะฒะธั. # ะผะพะถะฝะพ ะฒั‹ะทั‹ะฒะฐั‚ัŒ ะตะถะตัะตะบัƒะฝะดะฝะพ ะธะปะธ ั€ะตะถะต. pay_status = qiwi_module.bill_status(bill_id) print(pay_status) # ะพั‚ะผะตะฝะฐ ัั‡ะตั‚ะฐ, ะตัะปะธ ะฒะฐะผ ัั‚ะพ ะฝะตะพะฑั…ะพะดะธะผะพ. # ะฒะพะทะฒั€ะฐัˆะฐะตั‚ 'REJECTED' ะตัะปะธ ัƒัะฟะตัˆะฝะพ, ะธะฝะฐั‡ะต False ะธ ะทะฐะฟะธััŒ ะฒ ะปะพะณ. bill_status = qiwi_module.cancel_bill(bill_id) print(bill_status)
38.581818
112
0.780396
[ "MIT" ]
ssleg/qiwi_module
adv_sample.py
3,101
Python
def estimate_pi_parallel(N, lview, N_per_trial=1E6): result = lview.map(estimate_pi, [N_per_trial for i in range(N)]) while not result.ready(): print(result.progress) time.sleep(0.5) return np.mean(list(result)) estimate_pi_parallel(100, lview)
30.444444
68
0.693431
[ "BSD-3-Clause" ]
Peshal1067/PythonLectures
solutions/example2.py
274
Python
# -*- coding: utf-8 -*- # PLEASE DO NOT EDIT THIS FILE, IT IS GENERATED AND WILL BE OVERWRITTEN: # https://github.com/ccxt/ccxt/blob/master/CONTRIBUTING.md#how-to-contribute-code from ccxt.base.exchange import Exchange # ----------------------------------------------------------------------------- try: basestring # Python 3 except NameError: basestring = str # Python 2 import hashlib from ccxt.base.errors import ExchangeError from ccxt.base.errors import AuthenticationError from ccxt.base.errors import PermissionDenied from ccxt.base.errors import AccountSuspended from ccxt.base.errors import ArgumentsRequired from ccxt.base.errors import BadRequest from ccxt.base.errors import BadSymbol from ccxt.base.errors import InsufficientFunds from ccxt.base.errors import InvalidAddress from ccxt.base.errors import InvalidOrder from ccxt.base.errors import OrderNotFound from ccxt.base.errors import CancelPending from ccxt.base.errors import NotSupported from ccxt.base.errors import DDoSProtection from ccxt.base.errors import RateLimitExceeded from ccxt.base.errors import ExchangeNotAvailable from ccxt.base.errors import OnMaintenance from ccxt.base.errors import InvalidNonce from ccxt.base.errors import RequestTimeout from ccxt.base.decimal_to_precision import TRUNCATE from ccxt.base.decimal_to_precision import TICK_SIZE class okex(Exchange): def describe(self): return self.deep_extend(super(okex, self).describe(), { 'id': 'okex', 'name': 'OKEX', 'countries': ['CN', 'US'], 'version': 'v3', 'rateLimit': 1000, # up to 3000 requests per 5 minutes โ‰ˆ 600 requests per minute โ‰ˆ 10 requests per second โ‰ˆ 100 ms 'pro': True, 'has': { 'cancelOrder': True, 'CORS': False, 'createOrder': True, 'fetchBalance': True, 'fetchClosedOrders': True, 'fetchCurrencies': False, # see below 'fetchDepositAddress': True, 'fetchDeposits': True, 'fetchLedger': True, 'fetchMarkets': True, 'fetchMyTrades': True, 'fetchOHLCV': True, 'fetchOpenOrders': True, 'fetchOrder': True, 'fetchOrderBook': True, 'fetchOrders': False, 'fetchOrderTrades': True, 'fetchTime': True, 'fetchTicker': True, 'fetchTickers': True, 'fetchTrades': True, 'fetchTransactions': False, 'fetchWithdrawals': True, 'futures': True, 'withdraw': True, }, 'timeframes': { '1m': '60', '3m': '180', '5m': '300', '15m': '900', '30m': '1800', '1h': '3600', '2h': '7200', '4h': '14400', '6h': '21600', '12h': '43200', '1d': '86400', '1w': '604800', '1M': '2678400', '3M': '8035200', '6M': '16070400', '1y': '31536000', }, 'hostname': 'okex.com', 'urls': { 'logo': 'https://user-images.githubusercontent.com/1294454/32552768-0d6dd3c6-c4a6-11e7-90f8-c043b64756a7.jpg', 'api': { 'rest': 'https://www.{hostname}', }, 'www': 'https://www.okex.com', 'doc': 'https://www.okex.com/docs/en/', 'fees': 'https://www.okex.com/pages/products/fees.html', 'referral': 'https://www.okex.com/join/1888677', 'test': { 'rest': 'https://testnet.okex.com', }, }, 'api': { 'general': { 'get': [ 'time', ], }, 'account': { 'get': [ 'wallet', 'sub-account', 'asset-valuation', 'wallet/{currency}', 'withdrawal/history', 'withdrawal/history/{currency}', 'ledger', 'deposit/address', 'deposit/history', 'deposit/history/{currency}', 'currencies', 'withdrawal/fee', ], 'post': [ 'transfer', 'withdrawal', ], }, 'spot': { 'get': [ 'accounts', 'accounts/{currency}', 'accounts/{currency}/ledger', 'orders', 'orders_pending', 'orders/{order_id}', 'orders/{client_oid}', 'trade_fee', 'fills', 'algo', # public 'instruments', 'instruments/{instrument_id}/book', 'instruments/ticker', 'instruments/{instrument_id}/ticker', 'instruments/{instrument_id}/trades', 'instruments/{instrument_id}/candles', 'instruments/{instrument_id}/history/candles', ], 'post': [ 'order_algo', 'orders', 'batch_orders', 'cancel_orders/{order_id}', 'cancel_orders/{client_oid}', 'cancel_batch_algos', 'cancel_batch_orders', ], }, 'margin': { 'get': [ 'accounts', 'accounts/{instrument_id}', 'accounts/{instrument_id}/ledger', 'accounts/availability', 'accounts/{instrument_id}/availability', 'accounts/borrowed', 'accounts/{instrument_id}/borrowed', 'orders', 'accounts/{instrument_id}/leverage', 'orders/{order_id}', 'orders/{client_oid}', 'orders_pending', 'fills', # public 'instruments/{instrument_id}/mark_price', ], 'post': [ 'accounts/borrow', 'accounts/repayment', 'orders', 'batch_orders', 'cancel_orders', 'cancel_orders/{order_id}', 'cancel_orders/{client_oid}', 'cancel_batch_orders', 'accounts/{instrument_id}/leverage', ], }, 'futures': { 'get': [ 'position', '{instrument_id}/position', 'accounts', 'accounts/{underlying}', 'accounts/{underlying}/leverage', 'accounts/{underlying}/ledger', 'order_algo/{instrument_id}', 'orders/{instrument_id}', 'orders/{instrument_id}/{order_id}', 'orders/{instrument_id}/{client_oid}', 'fills', 'trade_fee', 'accounts/{instrument_id}/holds', 'order_algo/{instrument_id}', # public 'instruments', 'instruments/{instrument_id}/book', 'instruments/ticker', 'instruments/{instrument_id}/ticker', 'instruments/{instrument_id}/trades', 'instruments/{instrument_id}/candles', 'instruments/{instrument_id}/history/candles', 'instruments/{instrument_id}/index', 'rate', 'instruments/{instrument_id}/estimated_price', 'instruments/{instrument_id}/open_interest', 'instruments/{instrument_id}/price_limit', 'instruments/{instrument_id}/mark_price', 'instruments/{instrument_id}/liquidation', ], 'post': [ 'accounts/{underlying}/leverage', 'order', 'orders', 'cancel_order/{instrument_id}/{order_id}', 'cancel_order/{instrument_id}/{client_oid}', 'cancel_batch_orders/{instrument_id}', 'accounts/margin_mode', 'close_position', 'cancel_all', 'order_algo', 'cancel_algos', ], }, 'swap': { 'get': [ 'position', '{instrument_id}/position', 'accounts', '{instrument_id}/accounts', 'accounts/{instrument_id}/settings', 'accounts/{instrument_id}/ledger', 'orders/{instrument_id}', 'orders/{instrument_id}/{order_id}', 'orders/{instrument_id}/{client_oid}', 'fills', 'accounts/{instrument_id}/holds', 'trade_fee', 'order_algo/{instrument_id}', # public 'instruments', 'instruments/{instrument_id}/depth', 'instruments/ticker', 'instruments/{instrument_id}/ticker', 'instruments/{instrument_id}/trades', 'instruments/{instrument_id}/candles', 'instruments/{instrument_id}/history/candles', 'instruments/{instrument_id}/index', 'rate', 'instruments/{instrument_id}/open_interest', 'instruments/{instrument_id}/price_limit', 'instruments/{instrument_id}/liquidation', 'instruments/{instrument_id}/funding_time', 'instruments/{instrument_id}/mark_price', 'instruments/{instrument_id}/historical_funding_rate', ], 'post': [ 'accounts/{instrument_id}/leverage', 'order', 'orders', 'cancel_order/{instrument_id}/{order_id}', 'cancel_order/{instrument_id}/{client_oid}', 'cancel_batch_orders/{instrument_id}', 'order_algo', 'cancel_algos', 'close_position', 'cancel_all', 'order_algo', 'cancel_algos', ], }, 'option': { 'get': [ 'accounts', 'position', '{underlying}/position', 'accounts/{underlying}', 'orders/{underlying}', 'fills/{underlying}', 'accounts/{underlying}/ledger', 'trade_fee', 'orders/{underlying}/{order_id}', 'orders/{underlying}/{client_oid}', # public 'underlying', 'instruments/{underlying}', 'instruments/{underlying}/summary', 'instruments/{underlying}/summary/{instrument_id}', 'instruments/{instrument_id}/book', 'instruments/{instrument_id}/trades', 'instruments/{instrument_id}/ticker', 'instruments/{instrument_id}/candles', ], 'post': [ 'order', 'orders', 'cancel_order/{underlying}/{order_id}', 'cancel_order/{underlying}/{client_oid}', 'cancel_batch_orders/{underlying}', 'amend_order/{underlying}', 'amend_batch_orders/{underlying}', ], }, 'index': { 'get': [ '{instrument_id}/constituents', ], }, }, 'fees': { 'trading': { 'taker': 0.0015, 'maker': 0.0010, }, 'spot': { 'taker': 0.0015, 'maker': 0.0010, }, 'futures': { 'taker': 0.0005, 'maker': 0.0002, }, 'swap': { 'taker': 0.00075, 'maker': 0.00020, }, }, 'requiredCredentials': { 'apiKey': True, 'secret': True, 'password': True, }, 'exceptions': { # http error codes # 400 Bad Request โ€” Invalid request format # 401 Unauthorized โ€” Invalid API Key # 403 Forbidden โ€” You do not have access to the requested resource # 404 Not Found # 429 Client Error: Too Many Requests for url # 500 Internal Server Error โ€” We had a problem with our server 'exact': { '1': ExchangeError, # {"code": 1, "message": "System error"} # undocumented 'failure to get a peer from the ring-balancer': ExchangeNotAvailable, # {"message": "failure to get a peer from the ring-balancer"} 'Server is busy, please try again.': ExchangeNotAvailable, # {"message": "Server is busy, please try again."} 'An unexpected error occurred': ExchangeError, # {"message": "An unexpected error occurred"} 'System error': ExchangeError, # {"error_message":"System error","message":"System error"} '4010': PermissionDenied, # {"code": 4010, "message": "For the security of your funds, withdrawals are not permitted within 24 hours after changing fund password / mobile number / Google Authenticator settings "} # common # '0': ExchangeError, # 200 successful,when the order placement / cancellation / operation is successful '4001': ExchangeError, # no data received in 30s '4002': ExchangeError, # Buffer full. cannot write data # -------------------------------------------------------- '30001': AuthenticationError, # {"code": 30001, "message": 'request header "OK_ACCESS_KEY" cannot be blank'} '30002': AuthenticationError, # {"code": 30002, "message": 'request header "OK_ACCESS_SIGN" cannot be blank'} '30003': AuthenticationError, # {"code": 30003, "message": 'request header "OK_ACCESS_TIMESTAMP" cannot be blank'} '30004': AuthenticationError, # {"code": 30004, "message": 'request header "OK_ACCESS_PASSPHRASE" cannot be blank'} '30005': InvalidNonce, # {"code": 30005, "message": "invalid OK_ACCESS_TIMESTAMP"} '30006': AuthenticationError, # {"code": 30006, "message": "invalid OK_ACCESS_KEY"} '30007': BadRequest, # {"code": 30007, "message": 'invalid Content_Type, please use "application/json" format'} '30008': RequestTimeout, # {"code": 30008, "message": "timestamp request expired"} '30009': ExchangeError, # {"code": 30009, "message": "system error"} '30010': AuthenticationError, # {"code": 30010, "message": "API validation failed"} '30011': PermissionDenied, # {"code": 30011, "message": "invalid IP"} '30012': AuthenticationError, # {"code": 30012, "message": "invalid authorization"} '30013': AuthenticationError, # {"code": 30013, "message": "invalid sign"} '30014': DDoSProtection, # {"code": 30014, "message": "request too frequent"} '30015': AuthenticationError, # {"code": 30015, "message": 'request header "OK_ACCESS_PASSPHRASE" incorrect'} '30016': ExchangeError, # {"code": 30015, "message": "you are using v1 apiKey, please use v1 endpoint. If you would like to use v3 endpoint, please subscribe to v3 apiKey"} '30017': ExchangeError, # {"code": 30017, "message": "apikey's broker id does not match"} '30018': ExchangeError, # {"code": 30018, "message": "apikey's domain does not match"} '30019': ExchangeNotAvailable, # {"code": 30019, "message": "Api is offline or unavailable"} '30020': BadRequest, # {"code": 30020, "message": "body cannot be blank"} '30021': BadRequest, # {"code": 30021, "message": "Json data format error"}, {"code": 30021, "message": "json data format error"} '30022': PermissionDenied, # {"code": 30022, "message": "Api has been frozen"} '30023': BadRequest, # {"code": 30023, "message": "{0} parameter cannot be blank"} '30024': BadSymbol, # {"code":30024,"message":"\"instrument_id\" is an invalid parameter"} '30025': BadRequest, # {"code": 30025, "message": "{0} parameter category error"} '30026': DDoSProtection, # {"code": 30026, "message": "requested too frequent"} '30027': AuthenticationError, # {"code": 30027, "message": "login failure"} '30028': PermissionDenied, # {"code": 30028, "message": "unauthorized execution"} '30029': AccountSuspended, # {"code": 30029, "message": "account suspended"} '30030': ExchangeNotAvailable, # {"code": 30030, "message": "endpoint request failed. Please try again"} '30031': BadRequest, # {"code": 30031, "message": "token does not exist"} '30032': BadSymbol, # {"code": 30032, "message": "pair does not exist"} '30033': BadRequest, # {"code": 30033, "message": "exchange domain does not exist"} '30034': ExchangeError, # {"code": 30034, "message": "exchange ID does not exist"} '30035': ExchangeError, # {"code": 30035, "message": "trading is not supported in self website"} '30036': ExchangeError, # {"code": 30036, "message": "no relevant data"} '30037': ExchangeNotAvailable, # {"code": 30037, "message": "endpoint is offline or unavailable"} # '30038': AuthenticationError, # {"code": 30038, "message": "user does not exist"} '30038': OnMaintenance, # {"client_oid":"","code":"30038","error_code":"30038","error_message":"Matching engine is being upgraded. Please try in about 1 minute.","message":"Matching engine is being upgraded. Please try in about 1 minute.","order_id":"-1","result":false} '30044': RequestTimeout, # {"code":30044, "message":"Endpoint request timeout"} # futures '32001': AccountSuspended, # {"code": 32001, "message": "futures account suspended"} '32002': PermissionDenied, # {"code": 32002, "message": "futures account does not exist"} '32003': CancelPending, # {"code": 32003, "message": "canceling, please wait"} '32004': ExchangeError, # {"code": 32004, "message": "you have no unfilled orders"} '32005': InvalidOrder, # {"code": 32005, "message": "max order quantity"} '32006': InvalidOrder, # {"code": 32006, "message": "the order price or trigger price exceeds USD 1 million"} '32007': InvalidOrder, # {"code": 32007, "message": "leverage level must be the same for orders on the same side of the contract"} '32008': InvalidOrder, # {"code": 32008, "message": "Max. positions to open(cross margin)"} '32009': InvalidOrder, # {"code": 32009, "message": "Max. positions to open(fixed margin)"} '32010': ExchangeError, # {"code": 32010, "message": "leverage cannot be changed with open positions"} '32011': ExchangeError, # {"code": 32011, "message": "futures status error"} '32012': ExchangeError, # {"code": 32012, "message": "futures order update error"} '32013': ExchangeError, # {"code": 32013, "message": "token type is blank"} '32014': ExchangeError, # {"code": 32014, "message": "your number of contracts closing is larger than the number of contracts available"} '32015': ExchangeError, # {"code": 32015, "message": "margin ratio is lower than 100% before opening positions"} '32016': ExchangeError, # {"code": 32016, "message": "margin ratio is lower than 100% after opening position"} '32017': ExchangeError, # {"code": 32017, "message": "no BBO"} '32018': ExchangeError, # {"code": 32018, "message": "the order quantity is less than 1, please try again"} '32019': ExchangeError, # {"code": 32019, "message": "the order price deviates from the price of the previous minute by more than 3%"} '32020': ExchangeError, # {"code": 32020, "message": "the price is not in the range of the price limit"} '32021': ExchangeError, # {"code": 32021, "message": "leverage error"} '32022': ExchangeError, # {"code": 32022, "message": "self function is not supported in your country or region according to the regulations"} '32023': ExchangeError, # {"code": 32023, "message": "self account has outstanding loan"} '32024': ExchangeError, # {"code": 32024, "message": "order cannot be placed during delivery"} '32025': ExchangeError, # {"code": 32025, "message": "order cannot be placed during settlement"} '32026': ExchangeError, # {"code": 32026, "message": "your account is restricted from opening positions"} '32027': ExchangeError, # {"code": 32027, "message": "cancelled over 20 orders"} '32028': ExchangeError, # {"code": 32028, "message": "account is suspended and liquidated"} '32029': ExchangeError, # {"code": 32029, "message": "order info does not exist"} '32030': InvalidOrder, # The order cannot be cancelled '32031': ArgumentsRequired, # client_oid or order_id is required. '32038': AuthenticationError, # User does not exist '32040': ExchangeError, # User have open contract orders or position '32044': ExchangeError, # {"code": 32044, "message": "The margin ratio after submitting self order is lower than the minimum requirement({0}) for your tier."} '32045': ExchangeError, # String of commission over 1 million '32046': ExchangeError, # Each user can hold up to 10 trade plans at the same time '32047': ExchangeError, # system error '32048': InvalidOrder, # Order strategy track range error '32049': ExchangeError, # Each user can hold up to 10 track plans at the same time '32050': InvalidOrder, # Order strategy rang error '32051': InvalidOrder, # Order strategy ice depth error '32052': ExchangeError, # String of commission over 100 thousand '32053': ExchangeError, # Each user can hold up to 6 ice plans at the same time '32057': ExchangeError, # The order price is zero. Market-close-all function cannot be executed '32054': ExchangeError, # Trade not allow '32055': InvalidOrder, # cancel order error '32056': ExchangeError, # iceberg per order average should between {0}-{1} contracts '32058': ExchangeError, # Each user can hold up to 6 initiative plans at the same time '32059': InvalidOrder, # Total amount should exceed per order amount '32060': InvalidOrder, # Order strategy type error '32061': InvalidOrder, # Order strategy initiative limit error '32062': InvalidOrder, # Order strategy initiative range error '32063': InvalidOrder, # Order strategy initiative rate error '32064': ExchangeError, # Time Stringerval of orders should set between 5-120s '32065': ExchangeError, # Close amount exceeds the limit of Market-close-all(999 for BTC, and 9999 for the rest tokens) '32066': ExchangeError, # You have open orders. Please cancel all open orders before changing your leverage level. '32067': ExchangeError, # Account equity < required margin in self setting. Please adjust your leverage level again. '32068': ExchangeError, # The margin for self position will fall short of the required margin in self setting. Please adjust your leverage level or increase your margin to proceed. '32069': ExchangeError, # Target leverage level too low. Your account balance is insufficient to cover the margin required. Please adjust the leverage level again. '32070': ExchangeError, # Please check open position or unfilled order '32071': ExchangeError, # Your current liquidation mode does not support self action. '32072': ExchangeError, # The highest available margin for your orderโ€™s tier is {0}. Please edit your margin and place a new order. '32073': ExchangeError, # The action does not apply to the token '32074': ExchangeError, # The number of contracts of your position, open orders, and the current order has exceeded the maximum order limit of self asset. '32075': ExchangeError, # Account risk rate breach '32076': ExchangeError, # Liquidation of the holding position(s) at market price will require cancellation of all pending close orders of the contracts. '32077': ExchangeError, # Your margin for self asset in futures account is insufficient and the position has been taken over for liquidation.(You will not be able to place orders, close positions, transfer funds, or add margin during self period of time. Your account will be restored after the liquidation is complete.) '32078': ExchangeError, # Please cancel all open orders before switching the liquidation mode(Please cancel all open orders before switching the liquidation mode) '32079': ExchangeError, # Your open positions are at high risk.(Please add margin or reduce positions before switching the mode) '32080': ExchangeError, # Funds cannot be transferred out within 30 minutes after futures settlement '32083': ExchangeError, # The number of contracts should be a positive multiple of %%. Please place your order again # token and margin trading '33001': PermissionDenied, # {"code": 33001, "message": "margin account for self pair is not enabled yet"} '33002': AccountSuspended, # {"code": 33002, "message": "margin account for self pair is suspended"} '33003': InsufficientFunds, # {"code": 33003, "message": "no loan balance"} '33004': ExchangeError, # {"code": 33004, "message": "loan amount cannot be smaller than the minimum limit"} '33005': ExchangeError, # {"code": 33005, "message": "repayment amount must exceed 0"} '33006': ExchangeError, # {"code": 33006, "message": "loan order not found"} '33007': ExchangeError, # {"code": 33007, "message": "status not found"} '33008': InsufficientFunds, # {"code": 33008, "message": "loan amount cannot exceed the maximum limit"} '33009': ExchangeError, # {"code": 33009, "message": "user ID is blank"} '33010': ExchangeError, # {"code": 33010, "message": "you cannot cancel an order during session 2 of call auction"} '33011': ExchangeError, # {"code": 33011, "message": "no new market data"} '33012': ExchangeError, # {"code": 33012, "message": "order cancellation failed"} '33013': InvalidOrder, # {"code": 33013, "message": "order placement failed"} '33014': OrderNotFound, # {"code": 33014, "message": "order does not exist"} '33015': InvalidOrder, # {"code": 33015, "message": "exceeded maximum limit"} '33016': ExchangeError, # {"code": 33016, "message": "margin trading is not open for self token"} '33017': InsufficientFunds, # {"code": 33017, "message": "insufficient balance"} '33018': ExchangeError, # {"code": 33018, "message": "self parameter must be smaller than 1"} '33020': ExchangeError, # {"code": 33020, "message": "request not supported"} '33021': BadRequest, # {"code": 33021, "message": "token and the pair do not match"} '33022': InvalidOrder, # {"code": 33022, "message": "pair and the order do not match"} '33023': ExchangeError, # {"code": 33023, "message": "you can only place market orders during call auction"} '33024': InvalidOrder, # {"code": 33024, "message": "trading amount too small"} '33025': InvalidOrder, # {"code": 33025, "message": "base token amount is blank"} '33026': ExchangeError, # {"code": 33026, "message": "transaction completed"} '33027': InvalidOrder, # {"code": 33027, "message": "cancelled order or order cancelling"} '33028': InvalidOrder, # {"code": 33028, "message": "the decimal places of the trading price exceeded the limit"} '33029': InvalidOrder, # {"code": 33029, "message": "the decimal places of the trading size exceeded the limit"} '33034': ExchangeError, # {"code": 33034, "message": "You can only place limit order after Call Auction has started"} '33035': ExchangeError, # This type of order cannot be canceled(This type of order cannot be canceled) '33036': ExchangeError, # Exceeding the limit of entrust order '33037': ExchangeError, # The buy order price should be lower than 130% of the trigger price '33038': ExchangeError, # The sell order price should be higher than 70% of the trigger price '33039': ExchangeError, # The limit of callback rate is 0 < x <= 5% '33040': ExchangeError, # The trigger price of a buy order should be lower than the latest transaction price '33041': ExchangeError, # The trigger price of a sell order should be higher than the latest transaction price '33042': ExchangeError, # The limit of price variance is 0 < x <= 1% '33043': ExchangeError, # The total amount must be larger than 0 '33044': ExchangeError, # The average amount should be 1/1000 * total amount <= x <= total amount '33045': ExchangeError, # The price should not be 0, including trigger price, order price, and price limit '33046': ExchangeError, # Price variance should be 0 < x <= 1% '33047': ExchangeError, # Sweep ratio should be 0 < x <= 100% '33048': ExchangeError, # Per order limit: Total amount/1000 < x <= Total amount '33049': ExchangeError, # Total amount should be X > 0 '33050': ExchangeError, # Time interval should be 5 <= x <= 120s '33051': ExchangeError, # cancel order number not higher limit: plan and track entrust no more than 10, ice and time entrust no more than 6 '33059': BadRequest, # {"code": 33059, "message": "client_oid or order_id is required"} '33060': BadRequest, # {"code": 33060, "message": "Only fill in either parameter client_oid or order_id"} '33061': ExchangeError, # Value of a single market price order cannot exceed 100,000 USD '33062': ExchangeError, # The leverage ratio is too high. The borrowed position has exceeded the maximum position of self leverage ratio. Please readjust the leverage ratio '33063': ExchangeError, # Leverage multiple is too low, there is insufficient margin in the account, please readjust the leverage ratio '33064': ExchangeError, # The setting of the leverage ratio cannot be less than 2, please readjust the leverage ratio '33065': ExchangeError, # Leverage ratio exceeds maximum leverage ratio, please readjust leverage ratio '33085': InvalidOrder, # The value of the position and buying order has reached the position limit, and no further buying is allowed. # account '21009': ExchangeError, # Funds cannot be transferred out within 30 minutes after swap settlement(Funds cannot be transferred out within 30 minutes after swap settlement) '34001': PermissionDenied, # {"code": 34001, "message": "withdrawal suspended"} '34002': InvalidAddress, # {"code": 34002, "message": "please add a withdrawal address"} '34003': ExchangeError, # {"code": 34003, "message": "sorry, self token cannot be withdrawn to xx at the moment"} '34004': ExchangeError, # {"code": 34004, "message": "withdrawal fee is smaller than minimum limit"} '34005': ExchangeError, # {"code": 34005, "message": "withdrawal fee exceeds the maximum limit"} '34006': ExchangeError, # {"code": 34006, "message": "withdrawal amount is lower than the minimum limit"} '34007': ExchangeError, # {"code": 34007, "message": "withdrawal amount exceeds the maximum limit"} '34008': InsufficientFunds, # {"code": 34008, "message": "insufficient balance"} '34009': ExchangeError, # {"code": 34009, "message": "your withdrawal amount exceeds the daily limit"} '34010': ExchangeError, # {"code": 34010, "message": "transfer amount must be larger than 0"} '34011': ExchangeError, # {"code": 34011, "message": "conditions not met"} '34012': ExchangeError, # {"code": 34012, "message": "the minimum withdrawal amount for NEO is 1, and the amount must be an integer"} '34013': ExchangeError, # {"code": 34013, "message": "please transfer"} '34014': ExchangeError, # {"code": 34014, "message": "transfer limited"} '34015': ExchangeError, # {"code": 34015, "message": "subaccount does not exist"} '34016': PermissionDenied, # {"code": 34016, "message": "transfer suspended"} '34017': AccountSuspended, # {"code": 34017, "message": "account suspended"} '34018': AuthenticationError, # {"code": 34018, "message": "incorrect trades password"} '34019': PermissionDenied, # {"code": 34019, "message": "please bind your email before withdrawal"} '34020': PermissionDenied, # {"code": 34020, "message": "please bind your funds password before withdrawal"} '34021': InvalidAddress, # {"code": 34021, "message": "Not verified address"} '34022': ExchangeError, # {"code": 34022, "message": "Withdrawals are not available for sub accounts"} '34023': PermissionDenied, # {"code": 34023, "message": "Please enable futures trading before transferring your funds"} '34026': RateLimitExceeded, # transfer too frequently(transfer too frequently) '34036': ExchangeError, # Parameter is incorrect, please refer to API documentation '34037': ExchangeError, # Get the sub-account balance interface, account type is not supported '34038': ExchangeError, # Since your C2C transaction is unusual, you are restricted from fund transfer. Please contact our customer support to cancel the restriction '34039': ExchangeError, # You are now restricted from transferring out your funds due to abnormal trades on C2C Market. Please transfer your fund on our website or app instead to verify your identity # swap '35001': ExchangeError, # {"code": 35001, "message": "Contract does not exist"} '35002': ExchangeError, # {"code": 35002, "message": "Contract settling"} '35003': ExchangeError, # {"code": 35003, "message": "Contract paused"} '35004': ExchangeError, # {"code": 35004, "message": "Contract pending settlement"} '35005': AuthenticationError, # {"code": 35005, "message": "User does not exist"} '35008': InvalidOrder, # {"code": 35008, "message": "Risk ratio too high"} '35010': InvalidOrder, # {"code": 35010, "message": "Position closing too large"} '35012': InvalidOrder, # {"code": 35012, "message": "Incorrect order size"} '35014': InvalidOrder, # {"code": 35014, "message": "Order price is not within limit"} '35015': InvalidOrder, # {"code": 35015, "message": "Invalid leverage level"} '35017': ExchangeError, # {"code": 35017, "message": "Open orders exist"} '35019': InvalidOrder, # {"code": 35019, "message": "Order size too large"} '35020': InvalidOrder, # {"code": 35020, "message": "Order price too high"} '35021': InvalidOrder, # {"code": 35021, "message": "Order size exceeded current tier limit"} '35022': BadRequest, # {"code": 35022, "message": "Contract status error"} '35024': BadRequest, # {"code": 35024, "message": "Contract not initialized"} '35025': InsufficientFunds, # {"code": 35025, "message": "No account balance"} '35026': BadRequest, # {"code": 35026, "message": "Contract settings not initialized"} '35029': OrderNotFound, # {"code": 35029, "message": "Order does not exist"} '35030': InvalidOrder, # {"code": 35030, "message": "Order size too large"} '35031': InvalidOrder, # {"code": 35031, "message": "Cancel order size too large"} '35032': ExchangeError, # {"code": 35032, "message": "Invalid user status"} '35037': ExchangeError, # No last traded price in cache '35039': ExchangeError, # {"code": 35039, "message": "Open order quantity exceeds limit"} '35040': InvalidOrder, # {"error_message":"Invalid order type","result":"true","error_code":"35040","order_id":"-1"} '35044': ExchangeError, # {"code": 35044, "message": "Invalid order status"} '35046': InsufficientFunds, # {"code": 35046, "message": "Negative account balance"} '35047': InsufficientFunds, # {"code": 35047, "message": "Insufficient account balance"} '35048': ExchangeError, # {"code": 35048, "message": "User contract is frozen and liquidating"} '35049': InvalidOrder, # {"code": 35049, "message": "Invalid order type"} '35050': InvalidOrder, # {"code": 35050, "message": "Position settings are blank"} '35052': InsufficientFunds, # {"code": 35052, "message": "Insufficient cross margin"} '35053': ExchangeError, # {"code": 35053, "message": "Account risk too high"} '35055': InsufficientFunds, # {"code": 35055, "message": "Insufficient account balance"} '35057': ExchangeError, # {"code": 35057, "message": "No last traded price"} '35058': ExchangeError, # {"code": 35058, "message": "No limit"} '35059': BadRequest, # {"code": 35059, "message": "client_oid or order_id is required"} '35060': BadRequest, # {"code": 35060, "message": "Only fill in either parameter client_oid or order_id"} '35061': BadRequest, # {"code": 35061, "message": "Invalid instrument_id"} '35062': InvalidOrder, # {"code": 35062, "message": "Invalid match_price"} '35063': InvalidOrder, # {"code": 35063, "message": "Invalid order_size"} '35064': InvalidOrder, # {"code": 35064, "message": "Invalid client_oid"} '35066': InvalidOrder, # Order interval error '35067': InvalidOrder, # Time-weighted order ratio error '35068': InvalidOrder, # Time-weighted order range error '35069': InvalidOrder, # Time-weighted single transaction limit error '35070': InvalidOrder, # Algo order type error '35071': InvalidOrder, # Order total must be larger than single order limit '35072': InvalidOrder, # Maximum 6 unfulfilled time-weighted orders can be held at the same time '35073': InvalidOrder, # Order price is 0. Market-close-all not available '35074': InvalidOrder, # Iceberg order single transaction average error '35075': InvalidOrder, # Failed to cancel order '35076': InvalidOrder, # LTC 20x leverage. Not allowed to open position '35077': InvalidOrder, # Maximum 6 unfulfilled iceberg orders can be held at the same time '35078': InvalidOrder, # Order amount exceeded 100,000 '35079': InvalidOrder, # Iceberg order price variance error '35080': InvalidOrder, # Callback rate error '35081': InvalidOrder, # Maximum 10 unfulfilled trail orders can be held at the same time '35082': InvalidOrder, # Trail order callback rate error '35083': InvalidOrder, # Each user can only hold a maximum of 10 unfulfilled stop-limit orders at the same time '35084': InvalidOrder, # Order amount exceeded 1 million '35085': InvalidOrder, # Order amount is not in the correct range '35086': InvalidOrder, # Price exceeds 100 thousand '35087': InvalidOrder, # Price exceeds 100 thousand '35088': InvalidOrder, # Average amount error '35089': InvalidOrder, # Price exceeds 100 thousand '35090': ExchangeError, # No stop-limit orders available for cancelation '35091': ExchangeError, # No trail orders available for cancellation '35092': ExchangeError, # No iceberg orders available for cancellation '35093': ExchangeError, # No trail orders available for cancellation '35094': ExchangeError, # Stop-limit order last traded price error '35095': BadRequest, # Instrument_id error '35096': ExchangeError, # Algo order status error '35097': ExchangeError, # Order status and order ID cannot exist at the same time '35098': ExchangeError, # An order status or order ID must exist '35099': ExchangeError, # Algo order ID error '35102': RateLimitExceeded, # {"error_message":"The operation that close all at market price is too frequent","result":"true","error_code":"35102","order_id":"-1"} # option '36001': BadRequest, # Invalid underlying index. '36002': BadRequest, # Instrument does not exist. '36005': ExchangeError, # Instrument status is invalid. '36101': AuthenticationError, # Account does not exist. '36102': PermissionDenied, # Account status is invalid. '36103': PermissionDenied, # Account is suspended due to ongoing liquidation. '36104': PermissionDenied, # Account is not enabled for options trading. '36105': PermissionDenied, # Please enable the account for option contract. '36106': PermissionDenied, # Funds cannot be transferred in or out, as account is suspended. '36107': PermissionDenied, # Funds cannot be transferred out within 30 minutes after option exercising or settlement. '36108': InsufficientFunds, # Funds cannot be transferred in or out, as equity of the account is less than zero. '36109': PermissionDenied, # Funds cannot be transferred in or out during option exercising or settlement. '36201': PermissionDenied, # New order function is blocked. '36202': PermissionDenied, # Account does not have permission to short option. '36203': InvalidOrder, # Invalid format for client_oid. '36204': ExchangeError, # Invalid format for request_id. '36205': BadRequest, # Instrument id does not match underlying index. '36206': BadRequest, # Order_id and client_oid can not be used at the same time. '36207': InvalidOrder, # Either order price or fartouch price must be present. '36208': InvalidOrder, # Either order price or size must be present. '36209': InvalidOrder, # Either order_id or client_oid must be present. '36210': InvalidOrder, # Either order_ids or client_oids must be present. '36211': InvalidOrder, # Exceeding max batch size for order submission. '36212': InvalidOrder, # Exceeding max batch size for oder cancellation. '36213': InvalidOrder, # Exceeding max batch size for order amendment. '36214': ExchangeError, # Instrument does not have valid bid/ask quote. '36216': OrderNotFound, # Order does not exist. '36217': InvalidOrder, # Order submission failed. '36218': InvalidOrder, # Order cancellation failed. '36219': InvalidOrder, # Order amendment failed. '36220': InvalidOrder, # Order is pending cancel. '36221': InvalidOrder, # Order qty is not valid multiple of lot size. '36222': InvalidOrder, # Order price is breaching highest buy limit. '36223': InvalidOrder, # Order price is breaching lowest sell limit. '36224': InvalidOrder, # Exceeding max order size. '36225': InvalidOrder, # Exceeding max open order count for instrument. '36226': InvalidOrder, # Exceeding max open order count for underlying. '36227': InvalidOrder, # Exceeding max open size across all orders for underlying '36228': InvalidOrder, # Exceeding max available qty for instrument. '36229': InvalidOrder, # Exceeding max available qty for underlying. '36230': InvalidOrder, # Exceeding max position limit for underlying. }, 'broad': { }, }, 'precisionMode': TICK_SIZE, 'options': { 'fetchOHLCV': { 'type': 'Candles', # Candles or HistoryCandles }, 'createMarketBuyOrderRequiresPrice': True, 'fetchMarkets': ['spot', 'futures', 'swap', 'option'], 'defaultType': 'spot', # 'account', 'spot', 'margin', 'futures', 'swap', 'option' 'auth': { 'time': 'public', 'currencies': 'private', 'instruments': 'public', 'rate': 'public', '{instrument_id}/constituents': 'public', }, }, 'commonCurrencies': { # OKEX refers to ERC20 version of Aeternity(AEToken) 'AE': 'AET', # https://github.com/ccxt/ccxt/issues/4981 'BOX': 'DefiBox', 'HOT': 'Hydro Protocol', 'HSR': 'HC', 'MAG': 'Maggie', 'SBTC': 'Super Bitcoin', 'YOYO': 'YOYOW', 'WIN': 'WinToken', # https://github.com/ccxt/ccxt/issues/5701 }, }) def fetch_time(self, params={}): response = self.generalGetTime(params) # # { # "iso": "2015-01-07T23:47:25.201Z", # "epoch": 1420674445.201 # } # return self.parse8601(self.safe_string(response, 'iso')) def fetch_markets(self, params={}): types = self.safe_value(self.options, 'fetchMarkets') result = [] for i in range(0, len(types)): markets = self.fetch_markets_by_type(types[i], params) result = self.array_concat(result, markets) return result def parse_markets(self, markets): result = [] for i in range(0, len(markets)): result.append(self.parse_market(markets[i])) return result def parse_market(self, market): # # spot markets # # { # base_currency: "EOS", # instrument_id: "EOS-OKB", # min_size: "0.01", # quote_currency: "OKB", # size_increment: "0.000001", # tick_size: "0.0001" # } # # futures markets # # { # instrument_id: "XRP-USD-200320", # underlying_index: "XRP", # quote_currency: "USD", # tick_size: "0.0001", # contract_val: "10", # listing: "2020-03-06", # delivery: "2020-03-20", # trade_increment: "1", # alias: "self_week", # underlying: "XRP-USD", # base_currency: "XRP", # settlement_currency: "XRP", # is_inverse: "true", # contract_val_currency: "USD", # } # # swap markets # # { # instrument_id: "BSV-USD-SWAP", # underlying_index: "BSV", # quote_currency: "USD", # coin: "BSV", # contract_val: "10", # listing: "2018-12-21T07:53:47.000Z", # delivery: "2020-03-14T08:00:00.000Z", # size_increment: "1", # tick_size: "0.01", # base_currency: "BSV", # underlying: "BSV-USD", # settlement_currency: "BSV", # is_inverse: "true", # contract_val_currency: "USD" # } # # options markets # # { # instrument_id: 'BTC-USD-200327-4000-C', # underlying: 'BTC-USD', # settlement_currency: 'BTC', # contract_val: '0.1000', # option_type: 'C', # strike: '4000', # tick_size: '0.0005', # lot_size: '1.0000', # listing: '2019-12-25T08:30:36.302Z', # delivery: '2020-03-27T08:00:00.000Z', # state: '2', # trading_start_time: '2019-12-25T08:30:36.302Z', # timestamp: '2020-03-13T08:05:09.456Z', # } # id = self.safe_string(market, 'instrument_id') marketType = 'spot' spot = True future = False swap = False option = False baseId = self.safe_string(market, 'base_currency') quoteId = self.safe_string(market, 'quote_currency') contractVal = self.safe_float(market, 'contract_val') if contractVal is not None: if 'option_type' in market: marketType = 'option' spot = False option = True underlying = self.safe_string(market, 'underlying') parts = underlying.split('-') baseId = self.safe_string(parts, 0) quoteId = self.safe_string(parts, 1) else: marketType = 'swap' spot = False swap = True futuresAlias = self.safe_string(market, 'alias') if futuresAlias is not None: swap = False future = True marketType = 'futures' baseId = self.safe_string(market, 'underlying_index') base = self.safe_currency_code(baseId) quote = self.safe_currency_code(quoteId) symbol = (base + '/' + quote) if spot else id lotSize = self.safe_float_2(market, 'lot_size', 'trade_increment') precision = { 'amount': self.safe_float(market, 'size_increment', lotSize), 'price': self.safe_float(market, 'tick_size'), } minAmount = self.safe_float_2(market, 'min_size', 'base_min_size') active = True fees = self.safe_value_2(self.fees, marketType, 'trading', {}) return self.extend(fees, { 'id': id, 'symbol': symbol, 'base': base, 'quote': quote, 'baseId': baseId, 'quoteId': quoteId, 'info': market, 'type': marketType, 'spot': spot, 'futures': future, 'swap': swap, 'option': option, 'active': active, 'precision': precision, 'limits': { 'amount': { 'min': minAmount, 'max': None, }, 'price': { 'min': precision['price'], 'max': None, }, 'cost': { 'min': precision['price'], 'max': None, }, }, }) def fetch_markets_by_type(self, type, params={}): if type == 'option': underlying = self.optionGetUnderlying(params) result = [] for i in range(0, len(underlying)): response = self.optionGetInstrumentsUnderlying({ 'underlying': underlying[i], }) # # options markets # # [ # { # instrument_id: 'BTC-USD-200327-4000-C', # underlying: 'BTC-USD', # settlement_currency: 'BTC', # contract_val: '0.1000', # option_type: 'C', # strike: '4000', # tick_size: '0.0005', # lot_size: '1.0000', # listing: '2019-12-25T08:30:36.302Z', # delivery: '2020-03-27T08:00:00.000Z', # state: '2', # trading_start_time: '2019-12-25T08:30:36.302Z', # timestamp: '2020-03-13T08:05:09.456Z', # }, # ] # result = self.array_concat(result, response) return self.parse_markets(result) elif (type == 'spot') or (type == 'futures') or (type == 'swap'): method = type + 'GetInstruments' response = getattr(self, method)(params) # # spot markets # # [ # { # base_currency: "EOS", # instrument_id: "EOS-OKB", # min_size: "0.01", # quote_currency: "OKB", # size_increment: "0.000001", # tick_size: "0.0001" # } # ] # # futures markets # # [ # { # instrument_id: "XRP-USD-200320", # underlying_index: "XRP", # quote_currency: "USD", # tick_size: "0.0001", # contract_val: "10", # listing: "2020-03-06", # delivery: "2020-03-20", # trade_increment: "1", # alias: "self_week", # underlying: "XRP-USD", # base_currency: "XRP", # settlement_currency: "XRP", # is_inverse: "true", # contract_val_currency: "USD", # } # ] # # swap markets # # [ # { # instrument_id: "BSV-USD-SWAP", # underlying_index: "BSV", # quote_currency: "USD", # coin: "BSV", # contract_val: "10", # listing: "2018-12-21T07:53:47.000Z", # delivery: "2020-03-14T08:00:00.000Z", # size_increment: "1", # tick_size: "0.01", # base_currency: "BSV", # underlying: "BSV-USD", # settlement_currency: "BSV", # is_inverse: "true", # contract_val_currency: "USD" # } # ] # return self.parse_markets(response) else: raise NotSupported(self.id + ' fetchMarketsByType does not support market type ' + type) def fetch_currencies(self, params={}): # has['fetchCurrencies'] is currently set to False # despite that their docs say these endpoints are public: # https://www.okex.com/api/account/v3/withdrawal/fee # https://www.okex.com/api/account/v3/currencies # it will still reply with {"code":30001, "message": "OK-ACCESS-KEY header is required"} # if you attempt to access it without authentication response = self.accountGetCurrencies(params) # # [ # { # name: '', # currency: 'BTC', # can_withdraw: '1', # can_deposit: '1', # min_withdrawal: '0.0100000000000000' # }, # ] # result = {} for i in range(0, len(response)): currency = response[i] id = self.safe_string(currency, 'currency') code = self.safe_currency_code(id) precision = 0.00000001 # default precision, todo: fix "magic constants" name = self.safe_string(currency, 'name') canDeposit = self.safe_integer(currency, 'can_deposit') canWithdraw = self.safe_integer(currency, 'can_withdraw') active = True if (canDeposit and canWithdraw) else False result[code] = { 'id': id, 'code': code, 'info': currency, 'type': None, 'name': name, 'active': active, 'fee': None, # todo: redesign 'precision': precision, 'limits': { 'amount': {'min': None, 'max': None}, 'price': {'min': None, 'max': None}, 'cost': {'min': None, 'max': None}, 'withdraw': { 'min': self.safe_float(currency, 'min_withdrawal'), 'max': None, }, }, } return result def fetch_order_book(self, symbol, limit=None, params={}): self.load_markets() market = self.market(symbol) method = market['type'] + 'GetInstrumentsInstrumentId' method += 'Depth' if (market['type'] == 'swap') else 'Book' request = { 'instrument_id': market['id'], } if limit is not None: request['size'] = limit # max 200 response = getattr(self, method)(self.extend(request, params)) # # { asks: [["0.02685268", "0.242571", "1"], # ["0.02685493", "0.164085", "1"], # ... # ["0.02779", "1.039", "1"], # ["0.027813", "0.0876", "1"] ], # bids: [["0.02684052", "10.371849", "1"], # ["0.02684051", "3.707", "4"], # ... # ["0.02634963", "0.132934", "1"], # ["0.02634962", "0.264838", "2"] ], # timestamp: "2018-12-17T20:24:16.159Z" } # timestamp = self.parse8601(self.safe_string(response, 'timestamp')) return self.parse_order_book(response, timestamp) def parse_ticker(self, ticker, market=None): # # { best_ask: "0.02665472", # best_bid: "0.02665221", # instrument_id: "ETH-BTC", # product_id: "ETH-BTC", # last: "0.02665472", # ask: "0.02665472", # missing in the docs # bid: "0.02665221", # not mentioned in the docs # open_24h: "0.02645482", # high_24h: "0.02714633", # low_24h: "0.02614109", # base_volume_24h: "572298.901923", # timestamp: "2018-12-17T21:20:07.856Z", # quote_volume_24h: "15094.86831261" } # timestamp = self.parse8601(self.safe_string(ticker, 'timestamp')) symbol = None marketId = self.safe_string(ticker, 'instrument_id') if marketId in self.markets_by_id: market = self.markets_by_id[marketId] symbol = market['symbol'] elif marketId is not None: parts = marketId.split('-') numParts = len(parts) if numParts == 2: baseId, quoteId = parts base = self.safe_currency_code(baseId) quote = self.safe_currency_code(quoteId) symbol = base + '/' + quote else: symbol = marketId if (symbol is None) and (market is not None): symbol = market['symbol'] last = self.safe_float(ticker, 'last') open = self.safe_float(ticker, 'open_24h') return { 'symbol': symbol, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'high': self.safe_float(ticker, 'high_24h'), 'low': self.safe_float(ticker, 'low_24h'), 'bid': self.safe_float(ticker, 'best_bid'), 'bidVolume': self.safe_float(ticker, 'best_bid_size'), 'ask': self.safe_float(ticker, 'best_ask'), 'askVolume': self.safe_float(ticker, 'best_ask_size'), 'vwap': None, 'open': open, 'close': last, 'last': last, 'previousClose': None, 'change': None, 'percentage': None, 'average': None, 'baseVolume': self.safe_float(ticker, 'base_volume_24h'), 'quoteVolume': self.safe_float(ticker, 'quote_volume_24h'), 'info': ticker, } def fetch_ticker(self, symbol, params={}): self.load_markets() market = self.market(symbol) method = market['type'] + 'GetInstrumentsInstrumentIdTicker' request = { 'instrument_id': market['id'], } response = getattr(self, method)(self.extend(request, params)) # # { best_ask: "0.02665472", # best_bid: "0.02665221", # instrument_id: "ETH-BTC", # product_id: "ETH-BTC", # last: "0.02665472", # ask: "0.02665472", # bid: "0.02665221", # open_24h: "0.02645482", # high_24h: "0.02714633", # low_24h: "0.02614109", # base_volume_24h: "572298.901923", # timestamp: "2018-12-17T21:20:07.856Z", # quote_volume_24h: "15094.86831261" } # return self.parse_ticker(response) def fetch_tickers_by_type(self, type, symbols=None, params={}): self.load_markets() method = type + 'GetInstrumentsTicker' response = getattr(self, method)(params) result = {} for i in range(0, len(response)): ticker = self.parse_ticker(response[i]) symbol = ticker['symbol'] result[symbol] = ticker return self.filter_by_array(result, 'symbol', symbols) def fetch_tickers(self, symbols=None, params={}): defaultType = self.safe_string_2(self.options, 'fetchTickers', 'defaultType') type = self.safe_string(params, 'type', defaultType) return self.fetch_tickers_by_type(type, symbols, self.omit(params, 'type')) def parse_trade(self, trade, market=None): # # fetchTrades(public) # # spot trades # # { # time: "2018-12-17T23:31:08.268Z", # timestamp: "2018-12-17T23:31:08.268Z", # trade_id: "409687906", # price: "0.02677805", # size: "0.923467", # side: "sell" # } # # futures trades, swap trades # # { # trade_id: "1989230840021013", # side: "buy", # price: "92.42", # qty: "184", # missing in swap markets # size: "5", # missing in futures markets # timestamp: "2018-12-17T23:26:04.613Z" # } # # fetchOrderTrades(private) # # spot trades, margin trades # # { # "created_at":"2019-03-15T02:52:56.000Z", # "exec_type":"T", # whether the order is taker or maker # "fee":"0.00000082", # "instrument_id":"BTC-USDT", # "ledger_id":"3963052721", # "liquidity":"T", # whether the order is taker or maker # "order_id":"2482659399697408", # "price":"3888.6", # "product_id":"BTC-USDT", # "side":"buy", # "size":"0.00055306", # "timestamp":"2019-03-15T02:52:56.000Z" # }, # # futures trades, swap trades # # { # "trade_id":"197429674631450625", # "instrument_id":"EOS-USD-SWAP", # "order_id":"6a-7-54d663a28-0", # "price":"3.633", # "order_qty":"1.0000", # "fee":"-0.000551", # "created_at":"2019-03-21T04:41:58.0Z", # missing in swap trades # "timestamp":"2019-03-25T05:56:31.287Z", # missing in futures trades # "exec_type":"M", # whether the order is taker or maker # "side":"short", # "buy" in futures trades # } # symbol = None marketId = self.safe_string(trade, 'instrument_id') base = None quote = None if marketId in self.markets_by_id: market = self.markets_by_id[marketId] symbol = market['symbol'] base = market['base'] quote = market['quote'] elif marketId is not None: parts = marketId.split('-') numParts = len(parts) if numParts == 2: baseId, quoteId = parts base = self.safe_currency_code(baseId) quote = self.safe_currency_code(quoteId) symbol = base + '/' + quote else: symbol = marketId if (symbol is None) and (market is not None): symbol = market['symbol'] base = market['base'] quote = market['quote'] timestamp = self.parse8601(self.safe_string_2(trade, 'timestamp', 'created_at')) price = self.safe_float(trade, 'price') amount = self.safe_float_2(trade, 'size', 'qty') amount = self.safe_float(trade, 'order_qty', amount) takerOrMaker = self.safe_string_2(trade, 'exec_type', 'liquidity') if takerOrMaker == 'M': takerOrMaker = 'maker' elif takerOrMaker == 'T': takerOrMaker = 'taker' side = self.safe_string(trade, 'side') cost = None if amount is not None: if price is not None: cost = amount * price feeCost = self.safe_float(trade, 'fee') fee = None if feeCost is not None: feeCurrency = base if (side == 'buy') else quote fee = { # fee is either a positive number(invitation rebate) # or a negative number(transaction fee deduction) # therefore we need to invert the fee # more about it https://github.com/ccxt/ccxt/issues/5909 'cost': -feeCost, 'currency': feeCurrency, } orderId = self.safe_string(trade, 'order_id') return { 'info': trade, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'symbol': symbol, 'id': self.safe_string_2(trade, 'trade_id', 'ledger_id'), 'order': orderId, 'type': None, 'takerOrMaker': takerOrMaker, 'side': side, 'price': price, 'amount': amount, 'cost': cost, 'fee': fee, } def fetch_trades(self, symbol, since=None, limit=None, params={}): self.load_markets() market = self.market(symbol) method = market['type'] + 'GetInstrumentsInstrumentIdTrades' if (limit is None) or (limit > 100): limit = 100 # maximum = default = 100 request = { 'instrument_id': market['id'], 'limit': limit, # from: 'id', # to: 'id', } response = getattr(self, method)(self.extend(request, params)) # # spot markets # # [ # { # time: "2018-12-17T23:31:08.268Z", # timestamp: "2018-12-17T23:31:08.268Z", # trade_id: "409687906", # price: "0.02677805", # size: "0.923467", # side: "sell" # } # ] # # futures markets, swap markets # # [ # { # trade_id: "1989230840021013", # side: "buy", # price: "92.42", # qty: "184", # missing in swap markets # size: "5", # missing in futures markets # timestamp: "2018-12-17T23:26:04.613Z" # } # ] # return self.parse_trades(response, market, since, limit) def parse_ohlcv(self, ohlcv, market=None): # # spot markets # # { # close: "0.02684545", # high: "0.02685084", # low: "0.02683312", # open: "0.02683894", # time: "2018-12-17T20:28:00.000Z", # volume: "101.457222" # } # # futures markets # # [ # 1545072720000, # 0.3159, # 0.3161, # 0.3144, # 0.3149, # 22886, # 725179.26172331, # ] # if isinstance(ohlcv, list): numElements = len(ohlcv) volumeIndex = 6 if (numElements > 6) else 5 timestamp = self.safe_value(ohlcv, 0) if isinstance(timestamp, basestring): timestamp = self.parse8601(timestamp) return [ timestamp, # timestamp self.safe_float(ohlcv, 1), # Open self.safe_float(ohlcv, 2), # High self.safe_float(ohlcv, 3), # Low self.safe_float(ohlcv, 4), # Close # self.safe_float(ohlcv, 5), # Quote Volume # self.safe_float(ohlcv, 6), # Base Volume self.safe_float(ohlcv, volumeIndex), # Volume, okex will return base volume in the 7th element for future markets ] else: return [ self.parse8601(self.safe_string(ohlcv, 'time')), self.safe_float(ohlcv, 'open'), # Open self.safe_float(ohlcv, 'high'), # High self.safe_float(ohlcv, 'low'), # Low self.safe_float(ohlcv, 'close'), # Close self.safe_float(ohlcv, 'volume'), # Base Volume ] def fetch_ohlcv(self, symbol, timeframe='1m', since=None, limit=None, params={}): self.load_markets() market = self.market(symbol) duration = self.parse_timeframe(timeframe) request = { 'instrument_id': market['id'], 'granularity': self.timeframes[timeframe], } options = self.safe_value(self.options, 'fetchOHLCV', {}) defaultType = self.safe_string(options, 'type', 'Candles') # Candles or HistoryCandles type = self.safe_string(params, 'type', defaultType) params = self.omit(params, 'type') method = market['type'] + 'GetInstrumentsInstrumentId' + type if type == 'Candles': if since is not None: if limit is not None: request['end'] = self.iso8601(self.sum(since, limit * duration * 1000)) request['start'] = self.iso8601(since) else: if limit is not None: now = self.milliseconds() request['start'] = self.iso8601(now - limit * duration * 1000) request['end'] = self.iso8601(now) elif type == 'HistoryCandles': if market['option']: raise NotSupported(self.id + ' fetchOHLCV does not have ' + type + ' for ' + market['type'] + ' markets') if since is not None: if limit is None: limit = 300 # default request['start'] = self.iso8601(self.sum(since, limit * duration * 1000)) request['end'] = self.iso8601(since) else: if limit is not None: now = self.milliseconds() request['end'] = self.iso8601(now - limit * duration * 1000) request['start'] = self.iso8601(now) response = getattr(self, method)(self.extend(request, params)) # # spot markets # # [ # { # close: "0.02683401", # high: "0.02683401", # low: "0.02683401", # open: "0.02683401", # time: "2018-12-17T23:47:00.000Z", # volume: "0" # }, # { # close: "0.02684545", # high: "0.02685084", # low: "0.02683312", # open: "0.02683894", # time: "2018-12-17T20:28:00.000Z", # volume: "101.457222" # } # ] # # futures # # [ # [ # 1545090660000, # 0.3171, # 0.3174, # 0.3171, # 0.3173, # 1648, # 51930.38579450868 # ], # [ # 1545072720000, # 0.3159, # 0.3161, # 0.3144, # 0.3149, # 22886, # 725179.26172331 # ] # ] # return self.parse_ohlcvs(response, market, timeframe, since, limit) def parse_account_balance(self, response): # # account # # [ # { # balance: 0, # available: 0, # currency: "BTC", # hold: 0 # }, # { # balance: 0, # available: 0, # currency: "ETH", # hold: 0 # } # ] # # spot # # [ # { # frozen: "0", # hold: "0", # id: "2149632", # currency: "BTC", # balance: "0.0000000497717339", # available: "0.0000000497717339", # holds: "0" # }, # { # frozen: "0", # hold: "0", # id: "2149632", # currency: "ICN", # balance: "0.00000000925", # available: "0.00000000925", # holds: "0" # } # ] # result = {'info': response} for i in range(0, len(response)): balance = response[i] currencyId = self.safe_string(balance, 'currency') code = self.safe_currency_code(currencyId) account = self.account() account['total'] = self.safe_float(balance, 'balance') account['used'] = self.safe_float(balance, 'hold') account['free'] = self.safe_float(balance, 'available') result[code] = account return self.parse_balance(result) def parse_margin_balance(self, response): # # [ # { # "currency:BTC": { # "available":"0", # "balance":"0", # "borrowed":"0", # "can_withdraw":"0", # "frozen":"0", # "hold":"0", # "holds":"0", # "lending_fee":"0" # }, # "currency:USDT": { # "available":"100", # "balance":"100", # "borrowed":"0", # "can_withdraw":"100", # "frozen":"0", # "hold":"0", # "holds":"0", # "lending_fee":"0" # }, # "instrument_id":"BTC-USDT", # "liquidation_price":"0", # "product_id":"BTC-USDT", # "risk_rate":"" # }, # ] # result = {'info': response} for i in range(0, len(response)): balance = response[i] marketId = self.safe_string(balance, 'instrument_id') market = self.safe_value(self.markets_by_id, marketId) symbol = None if market is None: baseId, quoteId = marketId.split('-') base = self.safe_currency_code(baseId) quote = self.safe_currency_code(quoteId) symbol = base + '/' + quote else: symbol = market['symbol'] omittedBalance = self.omit(balance, [ 'instrument_id', 'liquidation_price', 'product_id', 'risk_rate', 'margin_ratio', 'maint_margin_ratio', 'tiers', ]) keys = list(omittedBalance.keys()) accounts = {} for k in range(0, len(keys)): key = keys[k] marketBalance = balance[key] if key.find(':') >= 0: parts = key.split(':') currencyId = parts[1] code = self.safe_currency_code(currencyId) account = self.account() account['total'] = self.safe_float(marketBalance, 'balance') account['used'] = self.safe_float(marketBalance, 'hold') account['free'] = self.safe_float(marketBalance, 'available') accounts[code] = account else: raise NotSupported(self.id + ' margin balance response format has changed!') result[symbol] = self.parse_balance(accounts) return result def parse_futures_balance(self, response): # # { # "info":{ # "eos":{ # "auto_margin":"0", # "contracts": [ # { # "available_qty":"40.37069445", # "fixed_balance":"0", # "instrument_id":"EOS-USD-190329", # "margin_for_unfilled":"0", # "margin_frozen":"0", # "realized_pnl":"0", # "unrealized_pnl":"0" # }, # { # "available_qty":"40.37069445", # "fixed_balance":"14.54895721", # "instrument_id":"EOS-USD-190628", # "margin_for_unfilled":"0", # "margin_frozen":"10.64042157", # "realized_pnl":"-3.90853564", # "unrealized_pnl":"-0.259" # }, # ], # "equity":"50.75220665", # "margin_mode":"fixed", # "total_avail_balance":"40.37069445" # }, # } # } # # their root field name is "info", so our info will contain their info result = {'info': response} info = self.safe_value(response, 'info', {}) ids = list(info.keys()) for i in range(0, len(ids)): id = ids[i] code = self.safe_currency_code(id) balance = self.safe_value(info, id, {}) account = self.account() totalAvailBalance = self.safe_float(balance, 'total_avail_balance') if self.safe_string(balance, 'margin_mode') == 'fixed': contracts = self.safe_value(balance, 'contracts', []) free = totalAvailBalance for i in range(0, len(contracts)): contract = contracts[i] fixedBalance = self.safe_float(contract, 'fixed_balance') realizedPnl = self.safe_float(contract, 'realized_pnl') marginFrozen = self.safe_float(contract, 'margin_frozen') marginForUnfilled = self.safe_float(contract, 'margin_for_unfilled') margin = self.sum(fixedBalance, realizedPnl) - marginFrozen - marginForUnfilled free = self.sum(free, margin) account['free'] = free else: realizedPnl = self.safe_float(balance, 'realized_pnl') unrealizedPnl = self.safe_float(balance, 'unrealized_pnl') marginFrozen = self.safe_float(balance, 'margin_frozen') marginForUnfilled = self.safe_float(balance, 'margin_for_unfilled') account['free'] = self.sum(totalAvailBalance, realizedPnl, unrealizedPnl) - marginFrozen - marginForUnfilled # it may be incorrect to use total, free and used for swap accounts account['total'] = self.safe_float(balance, 'equity') result[code] = account return self.parse_balance(result) def parse_swap_balance(self, response): # # { # "info": [ # { # "equity":"3.0139", # "fixed_balance":"0.0000", # "instrument_id":"EOS-USD-SWAP", # "margin":"0.5523", # "margin_frozen":"0.0000", # "margin_mode":"crossed", # "margin_ratio":"1.0913", # "realized_pnl":"-0.0006", # "timestamp":"2019-03-25T03:46:10.336Z", # "total_avail_balance":"3.0000", # "unrealized_pnl":"0.0145" # } # ] # } # # their root field name is "info", so our info will contain their info result = {'info': response} info = self.safe_value(response, 'info', []) for i in range(0, len(info)): balance = info[i] marketId = self.safe_string(balance, 'instrument_id') symbol = marketId if marketId in self.markets_by_id: symbol = self.markets_by_id[marketId]['symbol'] account = self.account() # it may be incorrect to use total, free and used for swap accounts account['total'] = self.safe_float(balance, 'equity') account['free'] = self.safe_float(balance, 'total_avail_balance') result[symbol] = account return self.parse_balance(result) def fetch_balance(self, params={}): defaultType = self.safe_string_2(self.options, 'fetchBalance', 'defaultType') type = self.safe_string(params, 'type', defaultType) if type is None: raise ArgumentsRequired(self.id + " fetchBalance() requires a type parameter(one of 'account', 'spot', 'margin', 'futures', 'swap')") self.load_markets() suffix = 'Wallet' if (type == 'account') else 'Accounts' method = type + 'Get' + suffix query = self.omit(params, 'type') response = getattr(self, method)(query) # # account # # [ # { # balance: 0, # available: 0, # currency: "BTC", # hold: 0 # }, # { # balance: 0, # available: 0, # currency: "ETH", # hold: 0 # } # ] # # spot # # [ # { # frozen: "0", # hold: "0", # id: "2149632", # currency: "BTC", # balance: "0.0000000497717339", # available: "0.0000000497717339", # holds: "0" # }, # { # frozen: "0", # hold: "0", # id: "2149632", # currency: "ICN", # balance: "0.00000000925", # available: "0.00000000925", # holds: "0" # } # ] # # margin # # [ # { # "currency:BTC": { # "available":"0", # "balance":"0", # "borrowed":"0", # "can_withdraw":"0", # "frozen":"0", # "hold":"0", # "holds":"0", # "lending_fee":"0" # }, # "currency:USDT": { # "available":"100", # "balance":"100", # "borrowed":"0", # "can_withdraw":"100", # "frozen":"0", # "hold":"0", # "holds":"0", # "lending_fee":"0" # }, # "instrument_id":"BTC-USDT", # "liquidation_price":"0", # "product_id":"BTC-USDT", # "risk_rate":"" # }, # ] # # futures # # { # "info":{ # "eos":{ # "auto_margin":"0", # "contracts": [ # { # "available_qty":"40.37069445", # "fixed_balance":"0", # "instrument_id":"EOS-USD-190329", # "margin_for_unfilled":"0", # "margin_frozen":"0", # "realized_pnl":"0", # "unrealized_pnl":"0" # }, # { # "available_qty":"40.37069445", # "fixed_balance":"14.54895721", # "instrument_id":"EOS-USD-190628", # "margin_for_unfilled":"0", # "margin_frozen":"10.64042157", # "realized_pnl":"-3.90853564", # "unrealized_pnl":"-0.259" # }, # ], # "equity":"50.75220665", # "margin_mode":"fixed", # "total_avail_balance":"40.37069445" # }, # } # } # # swap # # { # "info": [ # { # "equity":"3.0139", # "fixed_balance":"0.0000", # "instrument_id":"EOS-USD-SWAP", # "margin":"0.5523", # "margin_frozen":"0.0000", # "margin_mode":"crossed", # "margin_ratio":"1.0913", # "realized_pnl":"-0.0006", # "timestamp":"2019-03-25T03:46:10.336Z", # "total_avail_balance":"3.0000", # "unrealized_pnl":"0.0145" # } # ] # } # return self.parse_balance_by_type(type, response) def parse_balance_by_type(self, type, response): if (type == 'account') or (type == 'spot'): return self.parse_account_balance(response) elif type == 'margin': return self.parse_margin_balance(response) elif type == 'futures': return self.parse_futures_balance(response) elif type == 'swap': return self.parse_swap_balance(response) raise NotSupported(self.id + " fetchBalance does not support the '" + type + "' type(the type must be one of 'account', 'spot', 'margin', 'futures', 'swap')") def create_order(self, symbol, type, side, amount, price=None, params={}): self.load_markets() market = self.market(symbol) request = { 'instrument_id': market['id'], # 'client_oid': 'abcdef1234567890', # [a-z0-9]{1,32} # 'order_type': '0', # 0 = Normal limit order, 1 = Post only, 2 = Fill Or Kill, 3 = Immediatel Or Cancel, 4 = Market for futures only } clientOrderId = self.safe_string_2(params, 'client_oid', 'clientOrderId') if clientOrderId is not None: request['client_oid'] = clientOrderId params = self.omit(params, ['client_oid', 'clientOrderId']) method = None if market['futures'] or market['swap']: size = self.number_to_string(amount) if market['futures'] else self.amount_to_precision(symbol, amount) request = self.extend(request, { 'type': type, # 1:open long 2:open short 3:close long 4:close short for futures 'size': size, # 'match_price': '0', # Order at best counter party price?(0:no 1:yes). The default is 0. If it is set as 1, the price parameter will be ignored. When posting orders at best bid price, order_type can only be 0(regular order). }) orderType = self.safe_string(params, 'order_type') # order_type == '4' means a market order isMarketOrder = (type == 'market') or (orderType == '4') if isMarketOrder: request['order_type'] = '4' else: request['price'] = self.price_to_precision(symbol, price) if market['futures']: request['leverage'] = '10' # or '20' method = market['type'] + 'PostOrder' else: marginTrading = self.safe_string(params, 'margin_trading', '1') # 1 = spot, 2 = margin request = self.extend(request, { 'side': side, 'type': type, # limit/market 'margin_trading': marginTrading, # 1 = spot, 2 = margin }) if type == 'limit': request['price'] = self.price_to_precision(symbol, price) request['size'] = self.amount_to_precision(symbol, amount) elif type == 'market': # for market buy it requires the amount of quote currency to spend if side == 'buy': notional = self.safe_float(params, 'notional') createMarketBuyOrderRequiresPrice = self.safe_value(self.options, 'createMarketBuyOrderRequiresPrice', True) if createMarketBuyOrderRequiresPrice: if price is not None: if notional is None: notional = amount * price elif notional is None: raise InvalidOrder(self.id + " createOrder() requires the price argument with market buy orders to calculate total order cost(amount to spend), where cost = amount * price. Supply a price argument to createOrder() call if you want the cost to be calculated for you from price and amount, or, alternatively, add .options['createMarketBuyOrderRequiresPrice'] = False and supply the total cost value in the 'amount' argument or in the 'notional' extra parameter(the exchange-specific behaviour)") else: notional = amount if (notional is None) else notional precision = market['precision']['price'] request['notional'] = self.decimal_to_precision(notional, TRUNCATE, precision, self.precisionMode) else: request['size'] = self.amount_to_precision(symbol, amount) method = 'marginPostOrders' if (marginTrading == '2') else 'spotPostOrders' response = getattr(self, method)(self.extend(request, params)) # # { # "client_oid":"oktspot79", # "error_code":"", # "error_message":"", # "order_id":"2510789768709120", # "result":true # } # order = self.parse_order(response, market) return self.extend(order, { 'type': type, 'side': side, }) def cancel_order(self, id, symbol=None, params={}): if symbol is None: raise ArgumentsRequired(self.id + ' cancelOrder() requires a symbol argument') self.load_markets() market = self.market(symbol) type = None if market['futures'] or market['swap']: type = market['type'] else: defaultType = self.safe_string_2(self.options, 'cancelOrder', 'defaultType', market['type']) type = self.safe_string(params, 'type', defaultType) if type is None: raise ArgumentsRequired(self.id + " cancelOrder() requires a type parameter(one of 'spot', 'margin', 'futures', 'swap').") method = type + 'PostCancelOrder' request = { 'instrument_id': market['id'], } if market['futures'] or market['swap']: method += 'InstrumentId' else: method += 's' clientOrderId = self.safe_string_2(params, 'client_oid', 'clientOrderId') if clientOrderId is not None: method += 'ClientOid' request['client_oid'] = clientOrderId else: method += 'OrderId' request['order_id'] = id query = self.omit(params, ['type', 'client_oid', 'clientOrderId']) response = getattr(self, method)(self.extend(request, query)) result = response if ('result' in response) else self.safe_value(response, market['id'], {}) # # spot, margin # # { # "btc-usdt": [ # { # "result":true, # "client_oid":"a123", # "order_id": "2510832677225473" # } # ] # } # # futures, swap # # { # "result": True, # "client_oid": "oktfuture10", # missing if requested by order_id # "order_id": "2517535534836736", # "instrument_id": "EOS-USD-190628" # } # return self.parse_order(result, market) def parse_order_status(self, status): statuses = { '-2': 'failed', '-1': 'canceled', '0': 'open', '1': 'open', '2': 'closed', '3': 'open', '4': 'canceled', } return self.safe_string(statuses, status, status) def parse_order_side(self, side): sides = { '1': 'buy', # open long '2': 'sell', # open short '3': 'sell', # close long '4': 'buy', # close short } return self.safe_string(sides, side, side) def parse_order(self, order, market=None): # # createOrder # # { # "client_oid":"oktspot79", # "error_code":"", # "error_message":"", # "order_id":"2510789768709120", # "result":true # } # # cancelOrder # # { # "result": True, # "client_oid": "oktfuture10", # missing if requested by order_id # "order_id": "2517535534836736", # # instrument_id is missing for spot/margin orders # # available in futures and swap orders only # "instrument_id": "EOS-USD-190628", # } # # fetchOrder, fetchOrdersByState, fetchOpenOrders, fetchClosedOrders # # # spot and margin orders # # { # "client_oid":"oktspot76", # "created_at":"2019-03-18T07:26:49.000Z", # "filled_notional":"3.9734", # "filled_size":"0.001", # filled_qty in futures and swap orders # "funds":"", # self is most likely the same as notional # "instrument_id":"BTC-USDT", # "notional":"", # "order_id":"2500723297813504", # "order_type":"0", # "price":"4013", # "product_id":"BTC-USDT", # missing in futures and swap orders # "side":"buy", # "size":"0.001", # "status":"filled", # "state": "2", # "timestamp":"2019-03-18T07:26:49.000Z", # "type":"limit" # } # # # futures and swap orders # # { # "instrument_id":"EOS-USD-190628", # "size":"10", # "timestamp":"2019-03-20T10:04:55.000Z", # "filled_qty":"10", # filled_size in spot and margin orders # "fee":"-0.00841043", # "order_id":"2512669605501952", # "price":"3.668", # "price_avg":"3.567", # missing in spot and margin orders # "status":"2", # "state": "2", # "type":"4", # "contract_val":"10", # "leverage":"10", # missing in swap, spot and margin orders # "client_oid":"", # "pnl":"1.09510794", # missing in swap, spo and margin orders # "order_type":"0" # } # id = self.safe_string(order, 'order_id') timestamp = self.parse8601(self.safe_string(order, 'timestamp')) side = self.safe_string(order, 'side') type = self.safe_string(order, 'type') if (side != 'buy') and (side != 'sell'): side = self.parse_order_side(type) symbol = None marketId = self.safe_string(order, 'instrument_id') if marketId in self.markets_by_id: market = self.markets_by_id[marketId] symbol = market['symbol'] else: symbol = marketId if market is not None: if symbol is None: symbol = market['symbol'] amount = self.safe_float(order, 'size') filled = self.safe_float_2(order, 'filled_size', 'filled_qty') remaining = None if amount is not None: if filled is not None: amount = max(amount, filled) remaining = max(0, amount - filled) if type == 'market': remaining = 0 cost = self.safe_float_2(order, 'filled_notional', 'funds') price = self.safe_float(order, 'price') average = self.safe_float(order, 'price_avg') if cost is None: if filled is not None and average is not None: cost = average * filled else: if (average is None) and (filled is not None) and (filled > 0): average = cost / filled status = self.parse_order_status(self.safe_string(order, 'state')) feeCost = self.safe_float(order, 'fee') fee = None if feeCost is not None: feeCurrency = None fee = { 'cost': feeCost, 'currency': feeCurrency, } clientOrderId = self.safe_string(order, 'client_oid') if (clientOrderId is not None) and (len(clientOrderId) < 1): clientOrderId = None # fix empty clientOrderId string stopPrice = self.safe_float(order, 'trigger_price') return { 'info': order, 'id': id, 'clientOrderId': clientOrderId, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'lastTradeTimestamp': None, 'symbol': symbol, 'type': type, 'timeInForce': None, 'postOnly': None, 'side': side, 'price': price, 'stopPrice': stopPrice, 'average': average, 'cost': cost, 'amount': amount, 'filled': filled, 'remaining': remaining, 'status': status, 'fee': fee, 'trades': None, } def fetch_order(self, id, symbol=None, params={}): if symbol is None: raise ArgumentsRequired(self.id + ' fetchOrder() requires a symbol argument') self.load_markets() market = self.market(symbol) defaultType = self.safe_string_2(self.options, 'fetchOrder', 'defaultType', market['type']) type = self.safe_string(params, 'type', defaultType) if type is None: raise ArgumentsRequired(self.id + " fetchOrder() requires a type parameter(one of 'spot', 'margin', 'futures', 'swap').") instrumentId = 'InstrumentId' if (market['futures'] or market['swap']) else '' method = type + 'GetOrders' + instrumentId request = { 'instrument_id': market['id'], # 'client_oid': 'abcdef12345', # optional, [a-z0-9]{1,32} # 'order_id': id, } clientOid = self.safe_string(params, 'client_oid') if clientOid is not None: method += 'ClientOid' request['client_oid'] = clientOid else: method += 'OrderId' request['order_id'] = id query = self.omit(params, 'type') response = getattr(self, method)(self.extend(request, query)) # # spot, margin # # { # "client_oid":"oktspot70", # "created_at":"2019-03-15T02:52:56.000Z", # "filled_notional":"3.8886", # "filled_size":"0.001", # "funds":"", # "instrument_id":"BTC-USDT", # "notional":"", # "order_id":"2482659399697408", # "order_type":"0", # "price":"3927.3", # "product_id":"BTC-USDT", # "side":"buy", # "size":"0.001", # "status":"filled", # "state": "2", # "timestamp":"2019-03-15T02:52:56.000Z", # "type":"limit" # } # # futures, swap # # { # "instrument_id":"EOS-USD-190628", # "size":"10", # "timestamp":"2019-03-20T02:46:38.000Z", # "filled_qty":"10", # "fee":"-0.0080819", # "order_id":"2510946213248000", # "price":"3.712", # "price_avg":"3.712", # "status":"2", # "state": "2", # "type":"2", # "contract_val":"10", # "leverage":"10", # "client_oid":"", # missing in swap orders # "pnl":"0", # missing in swap orders # "order_type":"0" # } # return self.parse_order(response) def fetch_orders_by_state(self, state, symbol=None, since=None, limit=None, params={}): if symbol is None: raise ArgumentsRequired(self.id + ' fetchOrdersByState() requires a symbol argument') self.load_markets() market = self.market(symbol) type = None if market['futures'] or market['swap']: type = market['type'] else: defaultType = self.safe_string_2(self.options, 'fetchOrder', 'defaultType', market['type']) type = self.safe_string(params, 'type', defaultType) if type is None: raise ArgumentsRequired(self.id + " fetchOrdersByState() requires a type parameter(one of 'spot', 'margin', 'futures', 'swap').") request = { 'instrument_id': market['id'], # '-2': failed, # '-1': cancelled, # '0': open , # '1': partially filled, # '2': fully filled, # '3': submitting, # '4': cancelling, # '6': incomplete๏ผˆopen+partially filled), # '7': complete๏ผˆcancelled+fully filled), 'state': state, } method = type + 'GetOrders' if market['futures'] or market['swap']: method += 'InstrumentId' query = self.omit(params, 'type') response = getattr(self, method)(self.extend(request, query)) # # spot, margin # # [ # # in fact, self documented API response does not correspond # # to their actual API response for spot markets # # OKEX v3 API returns a plain array of orders(see below) # [ # { # "client_oid":"oktspot76", # "created_at":"2019-03-18T07:26:49.000Z", # "filled_notional":"3.9734", # "filled_size":"0.001", # "funds":"", # "instrument_id":"BTC-USDT", # "notional":"", # "order_id":"2500723297813504", # "order_type":"0", # "price":"4013", # "product_id":"BTC-USDT", # "side":"buy", # "size":"0.001", # "status":"filled", # "state": "2", # "timestamp":"2019-03-18T07:26:49.000Z", # "type":"limit" # }, # ], # { # "before":"2500723297813504", # "after":"2500650881647616" # } # ] # # futures, swap # # { # "result":true, # missing in swap orders # "order_info": [ # { # "instrument_id":"EOS-USD-190628", # "size":"10", # "timestamp":"2019-03-20T10:04:55.000Z", # "filled_qty":"10", # "fee":"-0.00841043", # "order_id":"2512669605501952", # "price":"3.668", # "price_avg":"3.567", # "status":"2", # "state": "2", # "type":"4", # "contract_val":"10", # "leverage":"10", # missing in swap orders # "client_oid":"", # "pnl":"1.09510794", # missing in swap orders # "order_type":"0" # }, # ] # } # orders = None if market['swap'] or market['futures']: orders = self.safe_value(response, 'order_info', []) else: orders = response responseLength = len(response) if responseLength < 1: return [] # in fact, self documented API response does not correspond # to their actual API response for spot markets # OKEX v3 API returns a plain array of orders if responseLength > 1: before = self.safe_value(response[1], 'before') if before is not None: orders = response[0] return self.parse_orders(orders, market, since, limit) def fetch_open_orders(self, symbol=None, since=None, limit=None, params={}): # '-2': failed, # '-1': cancelled, # '0': open , # '1': partially filled, # '2': fully filled, # '3': submitting, # '4': cancelling, # '6': incomplete๏ผˆopen+partially filled), # '7': complete๏ผˆcancelled+fully filled), return self.fetch_orders_by_state('6', symbol, since, limit, params) def fetch_closed_orders(self, symbol=None, since=None, limit=None, params={}): # '-2': failed, # '-1': cancelled, # '0': open , # '1': partially filled, # '2': fully filled, # '3': submitting, # '4': cancelling, # '6': incomplete๏ผˆopen+partially filled), # '7': complete๏ผˆcancelled+fully filled), return self.fetch_orders_by_state('7', symbol, since, limit, params) def parse_deposit_addresses(self, addresses): result = {} for i in range(0, len(addresses)): address = self.parse_deposit_address(addresses[i]) code = address['currency'] result[code] = address return result def parse_deposit_address(self, depositAddress, currency=None): # # { # address: '0x696abb81974a8793352cbd33aadcf78eda3cfdfa', # currency: 'eth' # tag: 'abcde12345', # will be missing if the token does not require a deposit tag # payment_id: 'abcde12345', # will not be returned if the token does not require a payment_id # # can_deposit: 1, # 0 or 1, documented but missing # # can_withdraw: 1, # 0 or 1, documented but missing # } # address = self.safe_string(depositAddress, 'address') tag = self.safe_string_2(depositAddress, 'tag', 'payment_id') tag = self.safe_string(depositAddress, 'memo', tag) currencyId = self.safe_string(depositAddress, 'currency') code = self.safe_currency_code(currencyId) self.check_address(address) return { 'currency': code, 'address': address, 'tag': tag, 'info': depositAddress, } def fetch_deposit_address(self, code, params={}): self.load_markets() currency = self.currency(code) request = { 'currency': currency['id'], } response = self.accountGetDepositAddress(self.extend(request, params)) # # [ # { # address: '0x696abb81974a8793352cbd33aadcf78eda3cfdfa', # currency: 'eth' # } # ] # addresses = self.parse_deposit_addresses(response) address = self.safe_value(addresses, code) if address is None: raise InvalidAddress(self.id + ' fetchDepositAddress cannot return nonexistent addresses, you should create withdrawal addresses with the exchange website first') return address def withdraw(self, code, amount, address, tag=None, params={}): self.check_address(address) self.load_markets() currency = self.currency(code) if tag: address = address + ':' + tag fee = self.safe_string(params, 'fee') if fee is None: raise ArgumentsRequired(self.id + " withdraw() requires a `fee` string parameter, network transaction fee must be โ‰ฅ 0. Withdrawals to OKCoin or OKEx are fee-free, please set '0'. Withdrawing to external digital asset address requires network transaction fee.") request = { 'currency': currency['id'], 'to_address': address, 'destination': '4', # 2 = OKCoin International, 3 = OKEx 4 = others 'amount': self.number_to_string(amount), 'fee': fee, # String. Network transaction fee โ‰ฅ 0. Withdrawals to OKCoin or OKEx are fee-free, please set as 0. Withdrawal to external digital asset address requires network transaction fee. } if 'password' in params: request['trade_pwd'] = params['password'] elif 'trade_pwd' in params: request['trade_pwd'] = params['trade_pwd'] elif self.password: request['trade_pwd'] = self.password query = self.omit(params, ['fee', 'password', 'trade_pwd']) if not ('trade_pwd' in request): raise ExchangeError(self.id + ' withdraw() requires self.password set on the exchange instance or a password / trade_pwd parameter') response = self.accountPostWithdrawal(self.extend(request, query)) # # { # "amount":"0.1", # "withdrawal_id":"67485", # "currency":"btc", # "result":true # } # return { 'info': response, 'id': self.safe_string(response, 'withdrawal_id'), } def fetch_deposits(self, code=None, since=None, limit=None, params={}): self.load_markets() request = {} method = 'accountGetDepositHistory' currency = None if code is not None: currency = self.currency(code) request['currency'] = currency['id'] method += 'Currency' response = getattr(self, method)(self.extend(request, params)) return self.parse_transactions(response, currency, since, limit, params) def fetch_withdrawals(self, code=None, since=None, limit=None, params={}): self.load_markets() request = {} method = 'accountGetWithdrawalHistory' currency = None if code is not None: currency = self.currency(code) request['currency'] = currency['id'] method += 'Currency' response = getattr(self, method)(self.extend(request, params)) return self.parse_transactions(response, currency, since, limit, params) def parse_transaction_status(self, status): # # deposit statuses # # { # '0': 'waiting for confirmation', # '1': 'confirmation account', # '2': 'recharge success' # } # # withdrawal statues # # { # '-3': 'pending cancel', # '-2': 'cancelled', # '-1': 'failed', # '0': 'pending', # '1': 'sending', # '2': 'sent', # '3': 'email confirmation', # '4': 'manual confirmation', # '5': 'awaiting identity confirmation' # } # statuses = { '-3': 'pending', '-2': 'canceled', '-1': 'failed', '0': 'pending', '1': 'pending', '2': 'ok', '3': 'pending', '4': 'pending', '5': 'pending', } return self.safe_string(statuses, status, status) def parse_transaction(self, transaction, currency=None): # # withdraw # # { # "amount":"0.1", # "withdrawal_id":"67485", # "currency":"btc", # "result":true # } # # fetchWithdrawals # # { # amount: "4.72100000", # withdrawal_id: "1729116", # fee: "0.01000000eth", # txid: "0xf653125bbf090bcfe4b5e8e7b8f586a9d87aa7de94598702758c0802bโ€ฆ", # currency: "ETH", # from: "7147338839", # to: "0x26a3CB49578F07000575405a57888681249c35Fd", # timestamp: "2018-08-17T07:03:42.000Z", # status: "2" # } # # fetchDeposits # # { # "amount": "4.19511659", # "txid": "14c9a8c925647cdb7e5b2937ea9aefe2b29b2c273150ad3f44b3b8a4635ed437", # "currency": "XMR", # "from": "", # "to": "48PjH3ksv1fiXniKvKvyH5UtFs5WhfS2Vf7U3TwzdRJtCc7HJWvCQe56dRahyhQyTAViXZ8Nzk4gQg6o4BJBMUoxNy8y8g7", # "tag": "1234567", # "deposit_id": 11571659, <-- we can use self # "timestamp": "2019-10-01T14:54:19.000Z", # "status": "2" # } # type = None id = None address = None withdrawalId = self.safe_string(transaction, 'withdrawal_id') addressFrom = self.safe_string(transaction, 'from') addressTo = self.safe_string(transaction, 'to') tagTo = self.safe_string(transaction, 'tag') if withdrawalId is not None: type = 'withdrawal' id = withdrawalId address = addressTo else: # the payment_id will appear on new deposits but appears to be removed from the response after 2 months id = self.safe_string_2(transaction, 'payment_id', 'deposit_id') type = 'deposit' address = addressTo currencyId = self.safe_string(transaction, 'currency') code = self.safe_currency_code(currencyId) amount = self.safe_float(transaction, 'amount') status = self.parse_transaction_status(self.safe_string(transaction, 'status')) txid = self.safe_string(transaction, 'txid') timestamp = self.parse8601(self.safe_string(transaction, 'timestamp')) feeCost = None if type == 'deposit': feeCost = 0 else: if currencyId is not None: feeWithCurrencyId = self.safe_string(transaction, 'fee') if feeWithCurrencyId is not None: # https://github.com/ccxt/ccxt/pull/5748 lowercaseCurrencyId = currencyId.lower() feeWithoutCurrencyId = feeWithCurrencyId.replace(lowercaseCurrencyId, '') feeCost = float(feeWithoutCurrencyId) # todo parse tags return { 'info': transaction, 'id': id, 'currency': code, 'amount': amount, 'addressFrom': addressFrom, 'addressTo': addressTo, 'address': address, 'tagFrom': None, 'tagTo': tagTo, 'tag': tagTo, 'status': status, 'type': type, 'updated': None, 'txid': txid, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'fee': { 'currency': code, 'cost': feeCost, }, } def parse_my_trade(self, pair, market=None): # check that trading symbols match in both entries userTrade = self.safe_value(pair, 1) otherTrade = self.safe_value(pair, 0) firstMarketId = self.safe_string(otherTrade, 'instrument_id') secondMarketId = self.safe_string(userTrade, 'instrument_id') if firstMarketId != secondMarketId: raise NotSupported(self.id + ' parseMyTrade() received unrecognized response format, differing instrument_ids in one fill, the exchange API might have changed, paste your verbose output: https://github.com/ccxt/ccxt/wiki/FAQ#what-is-required-to-get-help') marketId = firstMarketId market = self.safe_market(marketId, market) symbol = market['symbol'] quoteId = market['quoteId'] side = None amount = None cost = None receivedCurrencyId = self.safe_string(userTrade, 'currency') feeCurrencyId = None if receivedCurrencyId == quoteId: side = self.safe_string(otherTrade, 'side') amount = self.safe_float(otherTrade, 'size') cost = self.safe_float(userTrade, 'size') feeCurrencyId = self.safe_string(otherTrade, 'currency') else: side = self.safe_string(userTrade, 'side') amount = self.safe_float(userTrade, 'size') cost = self.safe_float(otherTrade, 'size') feeCurrencyId = self.safe_string(userTrade, 'currency') id = self.safe_string(userTrade, 'trade_id') price = self.safe_float(userTrade, 'price') feeCostFirst = self.safe_float(otherTrade, 'fee') feeCostSecond = self.safe_float(userTrade, 'fee') feeCurrencyCodeFirst = self.safe_currency_code(self.safe_string(otherTrade, 'currency')) feeCurrencyCodeSecond = self.safe_currency_code(self.safe_string(userTrade, 'currency')) fee = None fees = None # fee is either a positive number(invitation rebate) # or a negative number(transaction fee deduction) # therefore we need to invert the fee # more about it https://github.com/ccxt/ccxt/issues/5909 if (feeCostFirst is not None) and (feeCostFirst != 0): if (feeCostSecond is not None) and (feeCostSecond != 0): fees = [ { 'cost': -feeCostFirst, 'currency': feeCurrencyCodeFirst, }, { 'cost': -feeCostSecond, 'currency': feeCurrencyCodeSecond, }, ] else: fee = { 'cost': -feeCostFirst, 'currency': feeCurrencyCodeFirst, } elif (feeCostSecond is not None) and (feeCostSecond != 0): fee = { 'cost': -feeCostSecond, 'currency': feeCurrencyCodeSecond, } else: fee = { 'cost': 0, 'currency': self.safe_currency_code(feeCurrencyId), } # # simplified structures to show the underlying semantics # # # market/limit sell # # { # "currency":"USDT", # "fee":"-0.04647925", # โ†--- fee in received quote currency # "price":"129.13", # โ†------ price # "size":"30.98616393", # โ†-- cost # }, # { # "currency":"ETH", # "fee":"0", # "price":"129.13", # "size":"0.23996099", # โ†--- amount # }, # # # market/limit buy # # { # "currency":"ETH", # "fee":"-0.00036049", # โ†--- fee in received base currency # "price":"129.16", # โ†------ price # "size":"0.240322", # โ†----- amount # }, # { # "currency":"USDT", # "fee":"0", # "price":"129.16", # "size":"31.03998952", # โ†-- cost # } # timestamp = self.parse8601(self.safe_string_2(userTrade, 'timestamp', 'created_at')) takerOrMaker = self.safe_string_2(userTrade, 'exec_type', 'liquidity') if takerOrMaker == 'M': takerOrMaker = 'maker' elif takerOrMaker == 'T': takerOrMaker = 'taker' orderId = self.safe_string(userTrade, 'order_id') result = { 'info': pair, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'symbol': symbol, 'id': id, 'order': orderId, 'type': None, 'takerOrMaker': takerOrMaker, 'side': side, 'price': price, 'amount': amount, 'cost': cost, 'fee': fee, } if fees is not None: result['fees'] = fees return result def parse_my_trades(self, trades, market=None, since=None, limit=None, params={}): grouped = self.group_by(trades, 'trade_id') tradeIds = list(grouped.keys()) result = [] for i in range(0, len(tradeIds)): tradeId = tradeIds[i] pair = grouped[tradeId] # make sure it has exactly 2 trades, no more, no less numTradesInPair = len(pair) if numTradesInPair == 2: trade = self.parse_my_trade(pair) result.append(trade) symbol = None if market is not None: symbol = market['symbol'] return self.filter_by_symbol_since_limit(result, symbol, since, limit) def fetch_my_trades(self, symbol=None, since=None, limit=None, params={}): # okex actually returns ledger entries instead of fills here, so each fill in the order # is represented by two trades with opposite buy/sell sides, not one :\ # self aspect renders the 'fills' endpoint unusable for fetchOrderTrades # until either OKEX fixes the API or we workaround self on our side somehow if symbol is None: raise ArgumentsRequired(self.id + ' fetchMyTrades() requires a symbol argument') self.load_markets() market = self.market(symbol) if (limit is not None) and (limit > 100): limit = 100 request = { 'instrument_id': market['id'], # 'order_id': id, # string # 'after': '1', # pagination of data to return records earlier than the requested ledger_id # 'before': '1', # P=pagination of data to return records newer than the requested ledger_id # 'limit': limit, # optional, number of results per request, default = maximum = 100 } defaultType = self.safe_string_2(self.options, 'fetchMyTrades', 'defaultType') type = self.safe_string(params, 'type', defaultType) query = self.omit(params, 'type') method = type + 'GetFills' response = getattr(self, method)(self.extend(request, query)) # # [ # # sell # { # "created_at":"2020-03-29T11:55:25.000Z", # "currency":"USDT", # "exec_type":"T", # "fee":"-0.04647925", # "instrument_id":"ETH-USDT", # "ledger_id":"10562924353", # "liquidity":"T", # "order_id":"4636470489136128", # "price":"129.13", # "product_id":"ETH-USDT", # "side":"buy", # "size":"30.98616393", # "timestamp":"2020-03-29T11:55:25.000Z", # "trade_id":"18551601" # }, # { # "created_at":"2020-03-29T11:55:25.000Z", # "currency":"ETH", # "exec_type":"T", # "fee":"0", # "instrument_id":"ETH-USDT", # "ledger_id":"10562924352", # "liquidity":"T", # "order_id":"4636470489136128", # "price":"129.13", # "product_id":"ETH-USDT", # "side":"sell", # "size":"0.23996099", # "timestamp":"2020-03-29T11:55:25.000Z", # "trade_id":"18551601" # }, # # buy # { # "created_at":"2020-03-29T11:55:16.000Z", # "currency":"ETH", # "exec_type":"T", # "fee":"-0.00036049", # "instrument_id":"ETH-USDT", # "ledger_id":"10562922669", # "liquidity":"T", # "order_id": "4636469894136832", # "price":"129.16", # "product_id":"ETH-USDT", # "side":"buy", # "size":"0.240322", # "timestamp":"2020-03-29T11:55:16.000Z", # "trade_id":"18551600" # }, # { # "created_at":"2020-03-29T11:55:16.000Z", # "currency":"USDT", # "exec_type":"T", # "fee":"0", # "instrument_id":"ETH-USDT", # "ledger_id":"10562922668", # "liquidity":"T", # "order_id":"4636469894136832", # "price":"129.16", # "product_id":"ETH-USDT", # "side":"sell", # "size":"31.03998952", # "timestamp":"2020-03-29T11:55:16.000Z", # "trade_id":"18551600" # } # ] # return self.parse_my_trades(response, market, since, limit, params) def fetch_order_trades(self, id, symbol=None, since=None, limit=None, params={}): request = { # 'instrument_id': market['id'], 'order_id': id, # 'after': '1', # return the page after the specified page number # 'before': '1', # return the page before the specified page number # 'limit': limit, # optional, number of results per request, default = maximum = 100 } return self.fetch_my_trades(symbol, since, limit, self.extend(request, params)) def fetch_position(self, symbol, params={}): self.load_markets() market = self.market(symbol) method = None request = { 'instrument_id': market['id'], # 'order_id': id, # string # 'after': '1', # pagination of data to return records earlier than the requested ledger_id # 'before': '1', # P=pagination of data to return records newer than the requested ledger_id # 'limit': limit, # optional, number of results per request, default = maximum = 100 } type = market['type'] if (type == 'futures') or (type == 'swap'): method = type + 'GetInstrumentIdPosition' elif type == 'option': underlying = self.safe_string(params, 'underlying') if underlying is None: raise ArgumentsRequired(self.id + ' fetchPosition() requires an underlying parameter for ' + type + ' market ' + symbol) method = type + 'GetUnderlyingPosition' else: raise NotSupported(self.id + ' fetchPosition() does not support ' + type + ' market ' + symbol + ', supported market types are futures, swap or option') response = getattr(self, method)(self.extend(request, params)) # # futures # # crossed margin mode # # { # "result": True, # "holding": [ # { # "long_qty": "2", # "long_avail_qty": "2", # "long_avg_cost": "8260", # "long_settlement_price": "8260", # "realised_pnl": "0.00020928", # "short_qty": "2", # "short_avail_qty": "2", # "short_avg_cost": "8259.99", # "short_settlement_price": "8259.99", # "liquidation_price": "113.81", # "instrument_id": "BTC-USD-191227", # "leverage": "10", # "created_at": "2019-09-25T07:58:42.129Z", # "updated_at": "2019-10-08T14:02:51.029Z", # "margin_mode": "crossed", # "short_margin": "0.00242197", # "short_pnl": "6.63E-6", # "short_pnl_ratio": "0.002477997", # "short_unrealised_pnl": "6.63E-6", # "long_margin": "0.00242197", # "long_pnl": "-6.65E-6", # "long_pnl_ratio": "-0.002478", # "long_unrealised_pnl": "-6.65E-6", # "long_settled_pnl": "0", # "short_settled_pnl": "0", # "last": "8257.57" # } # ], # "margin_mode": "crossed" # } # # fixed margin mode # # { # "result": True, # "holding": [ # { # "long_qty": "4", # "long_avail_qty": "4", # "long_margin": "0.00323844", # "long_liqui_price": "7762.09", # "long_pnl_ratio": "0.06052306", # "long_avg_cost": "8234.43", # "long_settlement_price": "8234.43", # "realised_pnl": "-0.00000296", # "short_qty": "2", # "short_avail_qty": "2", # "short_margin": "0.00241105", # "short_liqui_price": "9166.74", # "short_pnl_ratio": "0.03318052", # "short_avg_cost": "8295.13", # "short_settlement_price": "8295.13", # "instrument_id": "BTC-USD-191227", # "long_leverage": "15", # "short_leverage": "10", # "created_at": "2019-09-25T07:58:42.129Z", # "updated_at": "2019-10-08T13:12:09.438Z", # "margin_mode": "fixed", # "short_margin_ratio": "0.10292507", # "short_maint_margin_ratio": "0.005", # "short_pnl": "7.853E-5", # "short_unrealised_pnl": "7.853E-5", # "long_margin_ratio": "0.07103743", # "long_maint_margin_ratio": "0.005", # "long_pnl": "1.9841E-4", # "long_unrealised_pnl": "1.9841E-4", # "long_settled_pnl": "0", # "short_settled_pnl": "0", # "last": "8266.99" # } # ], # "margin_mode": "fixed" # } # # swap # # crossed margin mode # # { # "margin_mode": "crossed", # "timestamp": "2019-09-27T03:49:02.018Z", # "holding": [ # { # "avail_position": "3", # "avg_cost": "59.49", # "instrument_id": "LTC-USD-SWAP", # "last": "55.98", # "leverage": "10.00", # "liquidation_price": "4.37", # "maint_margin_ratio": "0.0100", # "margin": "0.0536", # "position": "3", # "realized_pnl": "0.0000", # "unrealized_pnl": "0", # "settled_pnl": "-0.0330", # "settlement_price": "55.84", # "side": "long", # "timestamp": "2019-09-27T03:49:02.018Z" # }, # ] # } # # fixed margin mode # # { # "margin_mode": "fixed", # "timestamp": "2019-09-27T03:47:37.230Z", # "holding": [ # { # "avail_position": "20", # "avg_cost": "8025.0", # "instrument_id": "BTC-USD-SWAP", # "last": "8113.1", # "leverage": "15.00", # "liquidation_price": "7002.6", # "maint_margin_ratio": "0.0050", # "margin": "0.0454", # "position": "20", # "realized_pnl": "-0.0001", # "unrealized_pnl": "0", # "settled_pnl": "0.0076", # "settlement_price": "8279.2", # "side": "long", # "timestamp": "2019-09-27T03:47:37.230Z" # } # ] # } # # option # # { # "holding":[ # { # "instrument_id":"BTC-USD-190927-12500-C", # "position":"20", # "avg_cost":"3.26", # "avail_position":"20", # "settlement_price":"0.017", # "total_pnl":"50", # "pnl_ratio":"0.3", # "realized_pnl":"40", # "unrealized_pnl":"10", # "pos_margin":"100", # "option_value":"70", # "created_at":"2019-08-30T03:09:20.315Z", # "updated_at":"2019-08-30T03:40:18.318Z" # }, # { # "instrument_id":"BTC-USD-190927-12500-P", # "position":"20", # "avg_cost":"3.26", # "avail_position":"20", # "settlement_price":"0.019", # "total_pnl":"50", # "pnl_ratio":"0.3", # "realized_pnl":"40", # "unrealized_pnl":"10", # "pos_margin":"100", # "option_value":"70", # "created_at":"2019-08-30T03:09:20.315Z", # "updated_at":"2019-08-30T03:40:18.318Z" # } # ] # } # # todo unify parsePosition/parsePositions return response def fetch_positions(self, symbols=None, since=None, limit=None, params={}): self.load_markets() method = None defaultType = self.safe_string_2(self.options, 'fetchPositions', 'defaultType') type = self.safe_string(params, 'type', defaultType) if (type == 'futures') or (type == 'swap'): method = type + 'GetPosition' elif type == 'option': underlying = self.safe_string(params, 'underlying') if underlying is None: raise ArgumentsRequired(self.id + ' fetchPositions() requires an underlying parameter for ' + type + ' markets') method = type + 'GetUnderlyingPosition' else: raise NotSupported(self.id + ' fetchPositions() does not support ' + type + ' markets, supported market types are futures, swap or option') params = self.omit(params, 'type') response = getattr(self, method)(params) # # futures # # ... # # # swap # # ... # # option # # { # "holding":[ # { # "instrument_id":"BTC-USD-190927-12500-C", # "position":"20", # "avg_cost":"3.26", # "avail_position":"20", # "settlement_price":"0.017", # "total_pnl":"50", # "pnl_ratio":"0.3", # "realized_pnl":"40", # "unrealized_pnl":"10", # "pos_margin":"100", # "option_value":"70", # "created_at":"2019-08-30T03:09:20.315Z", # "updated_at":"2019-08-30T03:40:18.318Z" # }, # { # "instrument_id":"BTC-USD-190927-12500-P", # "position":"20", # "avg_cost":"3.26", # "avail_position":"20", # "settlement_price":"0.019", # "total_pnl":"50", # "pnl_ratio":"0.3", # "realized_pnl":"40", # "unrealized_pnl":"10", # "pos_margin":"100", # "option_value":"70", # "created_at":"2019-08-30T03:09:20.315Z", # "updated_at":"2019-08-30T03:40:18.318Z" # } # ] # } # # todo unify parsePosition/parsePositions return response def fetch_ledger(self, code=None, since=None, limit=None, params={}): self.load_markets() defaultType = self.safe_string_2(self.options, 'fetchLedger', 'defaultType') type = self.safe_string(params, 'type', defaultType) query = self.omit(params, 'type') suffix = '' if (type == 'account') else 'Accounts' argument = '' request = { # 'from': 'id', # 'to': 'id', } if limit is not None: request['limit'] = limit currency = None if (type == 'spot') or (type == 'futures'): if code is None: raise ArgumentsRequired(self.id + " fetchLedger() requires a currency code argument for '" + type + "' markets") argument = 'Currency' currency = self.currency(code) request['currency'] = currency['id'] elif (type == 'margin') or (type == 'swap'): if code is None: raise ArgumentsRequired(self.id + " fetchLedger() requires a code argument(a market symbol) for '" + type + "' markets") argument = 'InstrumentId' market = self.market(code) # we intentionally put a market inside here for the margin and swap ledgers currency = self.currency(market['base']) request['instrument_id'] = market['id'] # # if type == 'margin': # # # # 3. Borrow # # 4. Repayment # # 5. Interest # # 7. Buy # # 8. Sell # # 9. From capital account # # 10. From C2C # # 11. From Futures # # 12. From Spot # # 13. From ETT # # 14. To capital account # # 15. To C2C # # 16. To Spot # # 17. To Futures # # 18. To ETT # # 19. Mandatory Repayment # # 20. From Piggybank # # 21. To Piggybank # # 22. From Perpetual # # 23. To Perpetual # # 24. Liquidation Fee # # 54. Clawback # # 59. Airdrop Return. # # # request['type'] = 'number' # All types will be returned if self filed is left blank # } # elif type == 'account': if code is not None: currency = self.currency(code) request['currency'] = currency['id'] # # # # # 1. deposit # # 2. withdrawal # # 13. cancel withdrawal # # 18. into futures account # # 19. out of futures account # # 20. into sub account # # 21. out of sub account # # 28. claim # # 29. into ETT account # # 30. out of ETT account # # 31. into C2C account # # 32. out of C2C account # # 33. into margin account # # 34. out of margin account # # 37. into spot account # # 38. out of spot account # # # request['type'] = 'number' # else: raise NotSupported(self.id + " fetchLedger does not support the '" + type + "' type(the type must be one of 'account', 'spot', 'margin', 'futures', 'swap')") method = type + 'Get' + suffix + argument + 'Ledger' response = getattr(self, method)(self.extend(request, query)) # # transfer funds transfer in/out # trade funds moved as a result of a trade, spot and margin accounts only # rebate fee rebate as per fee schedule, spot and margin accounts only # match open long/open short/close long/close short(futures) or a change in the amount because of trades(swap) # fee fee, futures only # settlement settlement/clawback/settle long/settle short # liquidation force close long/force close short/deliver close long/deliver close short # funding funding fee, swap only # margin a change in the amount after adjusting margin, swap only # # account # # [ # { # "amount":0.00051843, # "balance":0.00100941, # "currency":"BTC", # "fee":0, # "ledger_id":8987285, # "timestamp":"2018-10-12T11:01:14.000Z", # "typename":"Get from activity" # } # ] # # spot # # [ # { # "timestamp":"2019-03-18T07:08:25.000Z", # "ledger_id":"3995334780", # "created_at":"2019-03-18T07:08:25.000Z", # "currency":"BTC", # "amount":"0.0009985", # "balance":"0.0029955", # "type":"trade", # "details":{ # "instrument_id":"BTC-USDT", # "order_id":"2500650881647616", # "product_id":"BTC-USDT" # } # } # ] # # margin # # [ # [ # { # "created_at":"2019-03-20T03:45:05.000Z", # "ledger_id":"78918186", # "timestamp":"2019-03-20T03:45:05.000Z", # "currency":"EOS", # "amount":"0", # ? # "balance":"0.59957711", # "type":"transfer", # "details":{ # "instrument_id":"EOS-USDT", # "order_id":"787057", # "product_id":"EOS-USDT" # } # } # ], # { # "before":"78965766", # "after":"78918186" # } # ] # # futures # # [ # { # "ledger_id":"2508090544914461", # "timestamp":"2019-03-19T14:40:24.000Z", # "amount":"-0.00529521", # "balance":"0", # "currency":"EOS", # "type":"fee", # "details":{ # "order_id":"2506982456445952", # "instrument_id":"EOS-USD-190628" # } # } # ] # # swap # # [ # { # "amount":"0.004742", # "fee":"-0.000551", # "type":"match", # "instrument_id":"EOS-USD-SWAP", # "ledger_id":"197429674941902848", # "timestamp":"2019-03-25T05:56:31.286Z" # }, # ] # responseLength = len(response) if responseLength < 1: return [] isArray = isinstance(response[0], list) isMargin = (type == 'margin') entries = response[0] if (isMargin and isArray) else response if type == 'swap': ledgerEntries = self.parse_ledger(entries) return self.filter_by_symbol_since_limit(ledgerEntries, code, since, limit) return self.parse_ledger(entries, currency, since, limit) def parse_ledger_entry_type(self, type): types = { 'transfer': 'transfer', # # funds transfer in/out 'trade': 'trade', # funds moved as a result of a trade, spot and margin accounts only 'rebate': 'rebate', # fee rebate as per fee schedule, spot and margin accounts only 'match': 'trade', # open long/open short/close long/close short(futures) or a change in the amount because of trades(swap) 'fee': 'fee', # fee, futures only 'settlement': 'trade', # settlement/clawback/settle long/settle short 'liquidation': 'trade', # force close long/force close short/deliver close long/deliver close short 'funding': 'fee', # funding fee, swap only 'margin': 'margin', # a change in the amount after adjusting margin, swap only } return self.safe_string(types, type, type) def parse_ledger_entry(self, item, currency=None): # # # account # # { # "amount":0.00051843, # "balance":0.00100941, # "currency":"BTC", # "fee":0, # "ledger_id":8987285, # "timestamp":"2018-10-12T11:01:14.000Z", # "typename":"Get from activity" # } # # spot # # { # "timestamp":"2019-03-18T07:08:25.000Z", # "ledger_id":"3995334780", # "created_at":"2019-03-18T07:08:25.000Z", # "currency":"BTC", # "amount":"0.0009985", # "balance":"0.0029955", # "type":"trade", # "details":{ # "instrument_id":"BTC-USDT", # "order_id":"2500650881647616", # "product_id":"BTC-USDT" # } # } # # margin # # { # "created_at":"2019-03-20T03:45:05.000Z", # "ledger_id":"78918186", # "timestamp":"2019-03-20T03:45:05.000Z", # "currency":"EOS", # "amount":"0", # ? # "balance":"0.59957711", # "type":"transfer", # "details":{ # "instrument_id":"EOS-USDT", # "order_id":"787057", # "product_id":"EOS-USDT" # } # } # # futures # # { # "ledger_id":"2508090544914461", # "timestamp":"2019-03-19T14:40:24.000Z", # "amount":"-0.00529521", # "balance":"0", # "currency":"EOS", # "type":"fee", # "details":{ # "order_id":"2506982456445952", # "instrument_id":"EOS-USD-190628" # } # } # # swap # # { # "amount":"0.004742", # "fee":"-0.000551", # "type":"match", # "instrument_id":"EOS-USD-SWAP", # "ledger_id":"197429674941902848", # "timestamp":"2019-03-25T05:56:31.286Z" # }, # id = self.safe_string(item, 'ledger_id') account = None details = self.safe_value(item, 'details', {}) referenceId = self.safe_string(details, 'order_id') referenceAccount = None type = self.parse_ledger_entry_type(self.safe_string(item, 'type')) code = self.safe_currency_code(self.safe_string(item, 'currency'), currency) amount = self.safe_float(item, 'amount') timestamp = self.parse8601(self.safe_string(item, 'timestamp')) fee = { 'cost': self.safe_float(item, 'fee'), 'currency': code, } before = None after = self.safe_float(item, 'balance') status = 'ok' marketId = self.safe_string(item, 'instrument_id') symbol = None if marketId in self.markets_by_id: market = self.markets_by_id[marketId] symbol = market['symbol'] return { 'info': item, 'id': id, 'account': account, 'referenceId': referenceId, 'referenceAccount': referenceAccount, 'type': type, 'currency': code, 'symbol': symbol, 'amount': amount, 'before': before, # balance before 'after': after, # balance after 'status': status, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'fee': fee, } def sign(self, path, api='public', method='GET', params={}, headers=None, body=None): isArray = isinstance(params, list) request = '/api/' + api + '/' + self.version + '/' request += path if isArray else self.implode_params(path, params) query = params if isArray else self.omit(params, self.extract_params(path)) url = self.implode_params(self.urls['api']['rest'], {'hostname': self.hostname}) + request type = self.get_path_authentication_type(path) if type == 'public': if query: url += '?' + self.urlencode(query) elif type == 'private': self.check_required_credentials() timestamp = self.iso8601(self.milliseconds()) headers = { 'OK-ACCESS-KEY': self.apiKey, 'OK-ACCESS-PASSPHRASE': self.password, 'OK-ACCESS-TIMESTAMP': timestamp, # 'OK-FROM': '', # 'OK-TO': '', # 'OK-LIMIT': '', } auth = timestamp + method + request if method == 'GET': if query: urlencodedQuery = '?' + self.urlencode(query) url += urlencodedQuery auth += urlencodedQuery else: if isArray or query: body = self.json(query) auth += body headers['Content-Type'] = 'application/json' signature = self.hmac(self.encode(auth), self.encode(self.secret), hashlib.sha256, 'base64') headers['OK-ACCESS-SIGN'] = signature return {'url': url, 'method': method, 'body': body, 'headers': headers} def get_path_authentication_type(self, path): # https://github.com/ccxt/ccxt/issues/6651 # a special case to handle the optionGetUnderlying interefering with # other endpoints containing self keyword if path == 'underlying': return 'public' auth = self.safe_value(self.options, 'auth', {}) key = self.find_broadly_matched_key(auth, path) return self.safe_string(auth, key, 'private') def handle_errors(self, code, reason, url, method, headers, body, response, requestHeaders, requestBody): if not response: return # fallback to default error handler feedback = self.id + ' ' + body if code == 503: # {"message":"name resolution failed"} raise ExchangeNotAvailable(feedback) # # {"error_message":"Order does not exist","result":"true","error_code":"35029","order_id":"-1"} # message = self.safe_string(response, 'message') errorCode = self.safe_string_2(response, 'code', 'error_code') nonEmptyMessage = ((message is not None) and (message != '')) nonZeroErrorCode = (errorCode is not None) and (errorCode != '0') if nonEmptyMessage: self.throw_exactly_matched_exception(self.exceptions['exact'], message, feedback) self.throw_broadly_matched_exception(self.exceptions['broad'], message, feedback) if nonZeroErrorCode: self.throw_exactly_matched_exception(self.exceptions['exact'], errorCode, feedback) if nonZeroErrorCode or nonEmptyMessage: raise ExchangeError(feedback) # unknown message
47.17664
521
0.469924
[ "MIT" ]
TheMagooo/ccxt
python/ccxt/okex.py
164,036
Python
from pipeline import * class SentenceLimiter: """ Limit the text, word boundaries and sentence boundaries of a given document to the number of sentences given """ def run(self, document, number_sentences): """ :param: number_sentences, starts with 0 for the fist sentence """ boundaries = (document.sentences_boundaries[0][0], document.sentences_boundaries[:number_sentences+1][-1][1]) document.text = document.text[boundaries[0]:boundaries[1]] document.sentences_boundaries = self._limitSenteceBoundaries(document.sentences_boundaries, boundaries[1]) document.words_boundaries = self._limitWordBoundaries(document.words_boundaries, boundaries[1]) document.entities = self._limitEntities(document.entities, boundaries[1]) document.triples = self._limitTriples(document.triples, boundaries[1]) return document def _limitSenteceBoundaries(self, sentences_boundaries, maxi): sentences_boundaries_new = [] for sent in sentences_boundaries: if sent[1] <= maxi: sentences_boundaries_new.append(sent) return sentences_boundaries_new def _limitEntities(self, entities, maxi): entities_new = [] for e in entities: if e.boundaries[1] <= maxi: entities_new.append(e) return entities_new def _limitTriples(self, triples, maxi): triples_new = [] for t in triples: if t.sentence_id == 0: triples_new.append(t) return triples_new def _limitWordBoundaries(self, words_boundaries, maxi): words_boundaries_new = [] for word in words_boundaries: if word[1] <= maxi: words_boundaries_new.append(word) return words_boundaries_new class MainEntityLimiter: """ Remove a document's content if the main entity is not aligned """ def run(self, document): if not document.uri in [i.uri for i in document.entities]: document = None return document class EntityTypeFilter: """ Remove all documents that are of a certain type """ def __init__(self, all_triples, entities): """ :param: input TripleReaderTriples object :param: a list of entity that should be filtered """ self.wikidata_triples = all_triples self.entities = entities def run(self, document): # P31: instance of prop_id = 'http://www.wikidata.org/prop/direct/P31' if any([i for i in self.wikidata_triples.get(document.docid) if i[1] == prop_id and i[2] in self.entities]): document = None return document
35.076923
117
0.645468
[ "MIT" ]
hadyelsahar/RE-NLG-Dataset
pipeline/filter.py
2,736
Python
# Copyright 2021 Red Hat, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json from jinja2 import Template from oslo_concurrency import processutils from oslo_log import log as logging from networking_bgp_ovn import constants LOG = logging.getLogger(__name__) ADD_VRF_TEMPLATE = ''' vrf {{ vrf_name }} vni {{ vni }} exit-vrf router bgp {{ bgp_as }} vrf {{ vrf_name }} address-family ipv4 unicast redistribute connected exit-address-family address-family ipv6 unicast redistribute connected exit-address-family address-family l2vpn evpn advertise ipv4 unicast advertise ipv6 unicast exit-address-family ''' DEL_VRF_TEMPLATE = ''' no vrf {{ vrf_name }} no router bgp {{ bgp_as }} vrf {{ vrf_name }} ''' LEAK_VRF_TEMPLATE = ''' router bgp {{ bgp_as }} address-family ipv4 unicast import vrf {{ vrf_name }} exit-address-family address-family ipv6 unicast import vrf {{ vrf_name }} exit-address-family router bgp {{ bgp_as }} vrf {{ vrf_name }} bgp router-id {{ bgp_router_id }} address-family ipv4 unicast redistribute connected exit-address-family address-family ipv6 unicast redistribute connected exit-address-family ''' def _run_vtysh_config(frr_config_file): vtysh_command = "copy {} running-config".format(frr_config_file) full_args = ['/usr/bin/vtysh', '--vty_socket', constants.FRR_SOCKET_PATH, '-c', vtysh_command] try: return processutils.execute(*full_args, run_as_root=True) except Exception as e: print("Unable to execute vtysh with {}. Exception: {}".format( full_args, e)) raise def _run_vtysh_command(command): full_args = ['/usr/bin/vtysh', '--vty_socket', constants.FRR_SOCKET_PATH, '-c', command] try: return processutils.execute(*full_args, run_as_root=True)[0] except Exception as e: print("Unable to execute vtysh with {}. Exception: {}".format( full_args, e)) raise def _get_router_id(bgp_as): output = _run_vtysh_command(command='show ip bgp summary json') return json.loads(output).get('ipv4Unicast', {}).get('routerId') def vrf_leak(vrf, bgp_as, bgp_router_id=None): LOG.info("Add VRF leak for VRF {} on router bgp {}".format(vrf, bgp_as)) if not bgp_router_id: bgp_router_id = _get_router_id(bgp_as) if not bgp_router_id: LOG.error("Unknown router-id, needed for route leaking") return vrf_template = Template(LEAK_VRF_TEMPLATE) vrf_config = vrf_template.render(vrf_name=vrf, bgp_as=bgp_as, bgp_router_id=bgp_router_id) frr_config_file = "frr-config-vrf-leak-{}".format(vrf) with open(frr_config_file, 'w') as vrf_config_file: vrf_config_file.write(vrf_config) _run_vtysh_config(frr_config_file) def vrf_reconfigure(evpn_info, action): LOG.info("FRR reconfiguration (action = {}) for evpn: {}".format( action, evpn_info)) frr_config_file = None if action == "add-vrf": vrf_template = Template(ADD_VRF_TEMPLATE) vrf_config = vrf_template.render( vrf_name="{}{}".format(constants.OVN_EVPN_VRF_PREFIX, evpn_info['vni']), bgp_as=evpn_info['bgp_as'], vni=evpn_info['vni']) frr_config_file = "frr-config-add-vrf-{}".format(evpn_info['vni']) elif action == "del-vrf": vrf_template = Template(DEL_VRF_TEMPLATE) vrf_config = vrf_template.render( vrf_name="{}{}".format(constants.OVN_EVPN_VRF_PREFIX, evpn_info['vni']), bgp_as=evpn_info['bgp_as']) frr_config_file = "frr-config-del-vrf-{}".format(evpn_info['vni']) else: LOG.error("Unknown FRR reconfiguration action: %s", action) return with open(frr_config_file, 'w') as vrf_config_file: vrf_config_file.write(vrf_config) _run_vtysh_config(frr_config_file)
31.165517
77
0.669617
[ "Apache-2.0" ]
luis5tb/networking-bgp-ovn
networking_bgp_ovn/drivers/openstack/utils/frr.py
4,519
Python
# -*- coding: utf-8 -*- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from airflow import DAG from airflow.contrib.operators.jenkins_job_trigger_operator import JenkinsJobTriggerOperator from airflow.operators.python_operator import PythonOperator from airflow.contrib.hooks.jenkins_hook import JenkinsHook from six.moves.urllib.request import Request import jenkins from datetime import datetime from datetime import timedelta datetime_start_date = datetime(2018, 5, 3) default_args = { "owner": "airflow", "start_date": datetime_start_date, "retries": 1, "retry_delay": timedelta(minutes=5), "depends_on_past": False, "concurrency": 8, "max_active_runs": 8 } dag = DAG("test_jenkins", default_args=default_args, schedule_interval=None) #This DAG shouldn't be executed and is only here to provide example of how to use the JenkinsJobTriggerOperator #(it requires a jenkins server to be executed) job_trigger = JenkinsJobTriggerOperator( dag=dag, task_id="trigger_job", job_name="red-beta-build-deploy", parameters={"BRANCH":"origin/master", "USER_ENV":"shameer"}, #parameters="resources/paremeter.json", You can also pass a path to a json file containing your param jenkins_connection_id="jenkins_nqa" #The connection must be configured first ) def grabArtifactFromJenkins(**context): """ Grab an artifact from the previous job The python-jenkins library doesn't expose a method for that But it's totally possible to build manually the request for that """ hook = JenkinsHook("jenkins_nqa") jenkins_server = hook.get_jenkins_server() url = context['task_instance'].xcom_pull(task_ids='trigger_job') #The JenkinsJobTriggerOperator store the job url in the xcom variable corresponding to the task #You can then use it to access things or to get the job number #This url looks like : http://jenkins_url/job/job_name/job_number/ url = url + "artifact/myartifact.xml" #Or any other artifact name self.log.info("url : %s", url) request = Request(url) response = jenkins_server.jenkins_open(request) self.log.info("response: %s", response) return response #We store the artifact content in a xcom variable for later use artifact_grabber = PythonOperator( task_id='artifact_grabber', provide_context=True, python_callable=grabArtifactFromJenkins, dag=dag) artifact_grabber.set_upstream(job_trigger)
37.505882
111
0.754391
[ "Apache-2.0" ]
shameerb/incubator-airflow
dags/jenkins_dag.py
3,188
Python
# coding: utf-8 """ FlashBlade REST API A lightweight client for FlashBlade REST API 2.3, developed by Pure Storage, Inc. (http://www.purestorage.com/). OpenAPI spec version: 2.3 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import re # python 2 and python 3 compatibility library import six from typing import List, Optional from .. import models class LinkAggregationGroupsApi(object): def __init__(self, api_client): self.api_client = api_client def api23_link_aggregation_groups_delete_with_http_info( self, ids=None, # type: List[str] names=None, # type: List[str] async_req=False, # type: bool _return_http_data_only=False, # type: bool _preload_content=True, # type: bool _request_timeout=None, # type: Optional[int] ): # type: (...) -> None """DELETE link-aggregation-groups Remove a link aggregation group to unbind the ports. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.api23_link_aggregation_groups_delete_with_http_info(async_req=True) >>> result = thread.get() :param list[str] ids: A comma-separated list of resource IDs. If after filtering, there is not at least one resource that matches each of the elements of `ids`, then an error is returned. This cannot be provided together with the `name` or `names` query parameters. :param list[str] names: A comma-separated list of resource names. If there is not at least one resource that matches each of the elements of `names`, then an error is returned. :param bool async_req: Request runs in separate thread and method returns multiprocessing.pool.ApplyResult. :param bool _return_http_data_only: Returns only data field. :param bool _preload_content: Response is converted into objects. :param int _request_timeout: Total request timeout in seconds. It can also be a tuple of (connection time, read time) timeouts. :return: None If the method is called asynchronously, returns the request thread. """ if ids is not None: if not isinstance(ids, list): ids = [ids] if names is not None: if not isinstance(names, list): names = [names] params = {k: v for k, v in six.iteritems(locals()) if v is not None} # Convert the filter into a string if params.get('filter'): params['filter'] = str(params['filter']) if params.get('sort'): params['sort'] = [str(_x) for _x in params['sort']] collection_formats = {} path_params = {} query_params = [] if 'ids' in params: query_params.append(('ids', params['ids'])) collection_formats['ids'] = 'csv' if 'names' in params: query_params.append(('names', params['names'])) collection_formats['names'] = 'csv' header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( ['application/json']) # Authentication setting auth_settings = ['AuthorizationHeader'] return self.api_client.call_api( '/api/2.3/link-aggregation-groups', 'DELETE', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, auth_settings=auth_settings, async_req=async_req, _return_http_data_only=_return_http_data_only, _preload_content=_preload_content, _request_timeout=_request_timeout, collection_formats=collection_formats, ) def api23_link_aggregation_groups_get_with_http_info( self, continuation_token=None, # type: str filter=None, # type: str ids=None, # type: List[str] limit=None, # type: int names=None, # type: List[str] offset=None, # type: int sort=None, # type: List[str] async_req=False, # type: bool _return_http_data_only=False, # type: bool _preload_content=True, # type: bool _request_timeout=None, # type: Optional[int] ): # type: (...) -> models.LinkAggregationGroupGetResponse """GET link-aggregation-groups List the status and attributes of the Ethernet ports in the configured link aggregation groups. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.api23_link_aggregation_groups_get_with_http_info(async_req=True) >>> result = thread.get() :param str continuation_token: An opaque token used to iterate over a collection. The token to use on the next request is returned in the `continuation_token` field of the result. :param str filter: Exclude resources that don't match the specified criteria. :param list[str] ids: A comma-separated list of resource IDs. If after filtering, there is not at least one resource that matches each of the elements of `ids`, then an error is returned. This cannot be provided together with the `name` or `names` query parameters. :param int limit: Limit the size of the response to the specified number of resources. A `limit` of `0` can be used to get the number of resources without getting all of the resources. It will be returned in the `total_item_count` field. If a client asks for a page size larger than the maximum number, the request is still valid. In that case the server just returns the maximum number of items, disregarding the client's page size request. :param list[str] names: A comma-separated list of resource names. If there is not at least one resource that matches each of the elements of `names`, then an error is returned. :param int offset: The offset of the first resource to return from a collection. :param list[str] sort: Sort the response by the specified fields (in descending order if '-' is appended to the field name). NOTE: If you provide a sort you will not get a `continuation_token` in the response. :param bool async_req: Request runs in separate thread and method returns multiprocessing.pool.ApplyResult. :param bool _return_http_data_only: Returns only data field. :param bool _preload_content: Response is converted into objects. :param int _request_timeout: Total request timeout in seconds. It can also be a tuple of (connection time, read time) timeouts. :return: LinkAggregationGroupGetResponse If the method is called asynchronously, returns the request thread. """ if ids is not None: if not isinstance(ids, list): ids = [ids] if names is not None: if not isinstance(names, list): names = [names] if sort is not None: if not isinstance(sort, list): sort = [sort] params = {k: v for k, v in six.iteritems(locals()) if v is not None} # Convert the filter into a string if params.get('filter'): params['filter'] = str(params['filter']) if params.get('sort'): params['sort'] = [str(_x) for _x in params['sort']] if 'limit' in params and params['limit'] < 1: raise ValueError("Invalid value for parameter `limit` when calling `api23_link_aggregation_groups_get`, must be a value greater than or equal to `1`") if 'offset' in params and params['offset'] < 0: raise ValueError("Invalid value for parameter `offset` when calling `api23_link_aggregation_groups_get`, must be a value greater than or equal to `0`") collection_formats = {} path_params = {} query_params = [] if 'continuation_token' in params: query_params.append(('continuation_token', params['continuation_token'])) if 'filter' in params: query_params.append(('filter', params['filter'])) if 'ids' in params: query_params.append(('ids', params['ids'])) collection_formats['ids'] = 'csv' if 'limit' in params: query_params.append(('limit', params['limit'])) if 'names' in params: query_params.append(('names', params['names'])) collection_formats['names'] = 'csv' if 'offset' in params: query_params.append(('offset', params['offset'])) if 'sort' in params: query_params.append(('sort', params['sort'])) collection_formats['sort'] = 'csv' header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( ['application/json']) # Authentication setting auth_settings = ['AuthorizationHeader'] return self.api_client.call_api( '/api/2.3/link-aggregation-groups', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='LinkAggregationGroupGetResponse', auth_settings=auth_settings, async_req=async_req, _return_http_data_only=_return_http_data_only, _preload_content=_preload_content, _request_timeout=_request_timeout, collection_formats=collection_formats, ) def api23_link_aggregation_groups_patch_with_http_info( self, link_aggregation_group=None, # type: models.Linkaggregationgroup ids=None, # type: List[str] names=None, # type: List[str] async_req=False, # type: bool _return_http_data_only=False, # type: bool _preload_content=True, # type: bool _request_timeout=None, # type: Optional[int] ): # type: (...) -> models.LinkAggregationGroupResponse """PATCH link-aggregation-groups Modify link aggregation groups by adding and removing Ethernet ports. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.api23_link_aggregation_groups_patch_with_http_info(link_aggregation_group, async_req=True) >>> result = thread.get() :param Linkaggregationgroup link_aggregation_group: (required) :param list[str] ids: A comma-separated list of resource IDs. If after filtering, there is not at least one resource that matches each of the elements of `ids`, then an error is returned. This cannot be provided together with the `name` or `names` query parameters. :param list[str] names: A comma-separated list of resource names. If there is not at least one resource that matches each of the elements of `names`, then an error is returned. :param bool async_req: Request runs in separate thread and method returns multiprocessing.pool.ApplyResult. :param bool _return_http_data_only: Returns only data field. :param bool _preload_content: Response is converted into objects. :param int _request_timeout: Total request timeout in seconds. It can also be a tuple of (connection time, read time) timeouts. :return: LinkAggregationGroupResponse If the method is called asynchronously, returns the request thread. """ if ids is not None: if not isinstance(ids, list): ids = [ids] if names is not None: if not isinstance(names, list): names = [names] params = {k: v for k, v in six.iteritems(locals()) if v is not None} # Convert the filter into a string if params.get('filter'): params['filter'] = str(params['filter']) if params.get('sort'): params['sort'] = [str(_x) for _x in params['sort']] # verify the required parameter 'link_aggregation_group' is set if link_aggregation_group is None: raise TypeError("Missing the required parameter `link_aggregation_group` when calling `api23_link_aggregation_groups_patch`") collection_formats = {} path_params = {} query_params = [] if 'ids' in params: query_params.append(('ids', params['ids'])) collection_formats['ids'] = 'csv' if 'names' in params: query_params.append(('names', params['names'])) collection_formats['names'] = 'csv' header_params = {} form_params = [] local_var_files = {} body_params = None if 'link_aggregation_group' in params: body_params = params['link_aggregation_group'] # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( ['application/json']) # Authentication setting auth_settings = ['AuthorizationHeader'] return self.api_client.call_api( '/api/2.3/link-aggregation-groups', 'PATCH', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='LinkAggregationGroupResponse', auth_settings=auth_settings, async_req=async_req, _return_http_data_only=_return_http_data_only, _preload_content=_preload_content, _request_timeout=_request_timeout, collection_formats=collection_formats, ) def api23_link_aggregation_groups_post_with_http_info( self, link_aggregation_group=None, # type: models.LinkAggregationGroup names=None, # type: List[str] async_req=False, # type: bool _return_http_data_only=False, # type: bool _preload_content=True, # type: bool _request_timeout=None, # type: Optional[int] ): # type: (...) -> models.LinkAggregationGroupResponse """POST link-aggregation-groups Create a link aggregation group of Ethernet ports on the array. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.api23_link_aggregation_groups_post_with_http_info(link_aggregation_group, names, async_req=True) >>> result = thread.get() :param LinkAggregationGroup link_aggregation_group: (required) :param list[str] names: A comma-separated list of resource names. (required) :param bool async_req: Request runs in separate thread and method returns multiprocessing.pool.ApplyResult. :param bool _return_http_data_only: Returns only data field. :param bool _preload_content: Response is converted into objects. :param int _request_timeout: Total request timeout in seconds. It can also be a tuple of (connection time, read time) timeouts. :return: LinkAggregationGroupResponse If the method is called asynchronously, returns the request thread. """ if names is not None: if not isinstance(names, list): names = [names] params = {k: v for k, v in six.iteritems(locals()) if v is not None} # Convert the filter into a string if params.get('filter'): params['filter'] = str(params['filter']) if params.get('sort'): params['sort'] = [str(_x) for _x in params['sort']] # verify the required parameter 'link_aggregation_group' is set if link_aggregation_group is None: raise TypeError("Missing the required parameter `link_aggregation_group` when calling `api23_link_aggregation_groups_post`") # verify the required parameter 'names' is set if names is None: raise TypeError("Missing the required parameter `names` when calling `api23_link_aggregation_groups_post`") collection_formats = {} path_params = {} query_params = [] if 'names' in params: query_params.append(('names', params['names'])) collection_formats['names'] = 'csv' header_params = {} form_params = [] local_var_files = {} body_params = None if 'link_aggregation_group' in params: body_params = params['link_aggregation_group'] # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( ['application/json']) # Authentication setting auth_settings = ['AuthorizationHeader'] return self.api_client.call_api( '/api/2.3/link-aggregation-groups', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='LinkAggregationGroupResponse', auth_settings=auth_settings, async_req=async_req, _return_http_data_only=_return_http_data_only, _preload_content=_preload_content, _request_timeout=_request_timeout, collection_formats=collection_formats, )
44.544365
449
0.638331
[ "BSD-2-Clause" ]
Flav-STOR-WL/py-pure-client
pypureclient/flashblade/FB_2_3/api/link_aggregation_groups_api.py
18,575
Python
# model settings model = dict( type='CenterNet', pretrained='./pretrain/darknet53.pth', backbone=dict( type='DarknetV3', layers=[1, 2, 8, 8, 4], inplanes=[3, 32, 64, 128, 256, 512], planes=[32, 64, 128, 256, 512, 1024], norm_cfg=dict(type='BN'), out_indices=(1, 2, 3, 4), frozen_stages=1, norm_eval=False), neck=dict(type='None'), bbox_head=dict( type='CXTHead', inplanes=(128, 256, 512, 1024), head_conv=128, wh_conv=64, use_deconv=False, norm_after_upsample=False, hm_head_conv_num=2, wh_head_conv_num=2, ct_head_conv_num=1, fovea_hm=False, num_classes=81, use_exp_wh=False, wh_offset_base=16, wh_agnostic=True, wh_heatmap=True, shortcut_cfg=(1, 2, 3), shortcut_attention=(False, False, False), norm_cfg=dict(type='BN'), norm_wh=False, hm_center_ratio=0.27, hm_init_value=None, giou_weight=5., merge_weight=1., hm_weight=1., ct_weight=1.)) cudnn_benchmark = True # training and testing settings train_cfg = dict( vis_every_n_iters=100, debug=False) test_cfg = dict( score_thr=0.01, max_per_img=100) # dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) data = dict( imgs_per_gpu=12, workers_per_gpu=4, train=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_train2017.json', img_prefix=data_root + 'train2017/', pipeline=train_pipeline), val=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', pipeline=test_pipeline), test=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', pipeline=test_pipeline)) # optimizer optimizer = dict(type='SGD', lr=0.003, momentum=0.9, weight_decay=0.0004, paramwise_options=dict(bias_lr_mult=2., bias_decay_mult=0.)) optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2)) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=1.0 / 5, step=[9, 11]) checkpoint_config = dict(save_every_n_steps=200, max_to_keep=1, keep_every_n_epochs=9) bbox_head_hist_config = dict( model_type=['ConvModule', 'DeformConvPack'], sub_modules=['bbox_head'], save_every_n_steps=200) # yapf:disable log_config = dict(interval=20) # yapf:enable # runtime settings total_epochs = 12 dist_params = dict(backend='nccl') log_level = 'INFO' work_dir = 'ttf53_whh_3lr_1x' load_from = None resume_from = None workflow = [('train', 1)]
29.59596
86
0.63959
[ "Apache-2.0" ]
mrsempress/mmdetection
configs/eftnet/R2_ttf53_whh_3lr_1x.py
2,930
Python
## @package onnx #Module caffe2.python.onnx.onnxifi """ ONNXIFI a Caffe2 net """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from caffe2.proto import caffe2_pb2 from caffe2.python import core, workspace import caffe2.python._import_c_extension as C import numpy as np def onnxifi_caffe2_net( pred_net, input_shapes, max_batch_size=1, max_seq_size=1, debug=False, use_onnx=True, merge_fp32_inputs_into_fp16=False, adjust_batch=True, black_list=None, weight_names=None): """ Transform the caffe2_net by collapsing ONNXIFI-runnable nodes into Onnxifi c2 ops """ shape_hints = {} for k, v in input_shapes.items(): shape_hints[k] = v pred_net_str = C.onnxifi(pred_net.SerializeToString(), shape_hints, black_list if black_list else [], weight_names if weight_names is not None else [], max_batch_size, max_seq_size, adjust_batch, debug, merge_fp32_inputs_into_fp16, use_onnx) pred_net_cut = caffe2_pb2.NetDef() pred_net_cut.ParseFromString(pred_net_str) return pred_net_cut
29.877551
85
0.602459
[ "Apache-2.0" ]
JustinBear99/Mask_RCNN
detectron/lib/python3.6/site-packages/caffe2/python/onnx/onnxifi.py
1,464
Python
#!/usr/bin/env python """TcEx Framework Validate Module.""" # standard library import ast import importlib import json import os import sys import traceback from collections import deque from pathlib import Path from typing import Dict, Union # third-party import colorama as c # from jsonschema import SchemaError, ValidationError, validate from pydantic import ValidationError from stdlib_list import stdlib_list # first-party from tcex.app_config.install_json import InstallJson from tcex.app_config.job_json import JobJson from tcex.app_config.layout_json import LayoutJson from tcex.app_config.tcex_json import TcexJson from tcex.bin.bin_abc import BinABC try: # standard library import sqlite3 except ModuleNotFoundError: # this module is only required for certain CLI commands pass class Validate(BinABC): """Validate syntax, imports, and schemas. * Python and JSON file syntax * Python import modules * install.json schema * layout.json schema """ def __init__(self, ignore_validation: bool) -> None: """Initialize Class properties.""" super().__init__() self.ignore_validation = ignore_validation # class properties self._app_packages = [] self._install_json_schema = None self._layout_json_schema = None self.config = {} self.ij = InstallJson() self.invalid_json_files = [] self.lj = LayoutJson() self.tj = TcexJson() # initialize validation data self.validation_data = self._validation_data @property def _validation_data(self) -> Dict[str, list]: """Return structure for validation data.""" return { 'errors': [], 'fileSyntax': [], 'layouts': [], 'moduleImports': [], 'schema': [], 'feeds': [], } def _check_node_import(self, node: Union[ast.Import, ast.ImportFrom], filename: str) -> None: """.""" if isinstance(node, ast.Import): for n in node.names: m = n.name.split('.')[0] if not self.check_import_stdlib(m): m_status = self.check_imported(m) if not m_status: self.validation_data['errors'].append( f'Module validation failed for {filename} ' f'module "{m}" could not be imported).' ) self.validation_data['moduleImports'].append( {'filename': filename, 'module': m, 'status': m_status} ) elif isinstance(node, ast.ImportFrom): m = node.module.split('.')[0] if not self.check_import_stdlib(m): m_status = self.check_imported(m) if not m_status: self.validation_data['errors'].append( f'Module validation failed for {filename} ' f'module "{m}" could not be imported).' ) self.validation_data['moduleImports'].append( {'filename': filename, 'module': m, 'status': m_status} ) def check_imports(self) -> None: """Check the projects top level directory for missing imports. This method will check only files ending in **.py** and does not handle imports validation for sub-directories. """ for filename in sorted(os.listdir(self.app_path)): if not filename.endswith('.py'): continue fq_path = os.path.join(self.app_path, filename) with open(fq_path, 'rb') as f: # TODO: [low] is there a better way? code_lines = deque([(f.read(), 1)]) while code_lines: code, _ = code_lines.popleft() # pylint: disable=unused-variable try: parsed_code = ast.parse(code) for node in ast.walk(parsed_code): self._check_node_import(node, filename) except SyntaxError: pass @staticmethod def check_import_stdlib(module: str) -> bool: """Check if module is in Python stdlib. Args: module: The name of the module to check. Returns: bool: Returns True if the module is in the stdlib or template. """ if ( module in stdlib_list('3.6') or module in stdlib_list('3.7') or module in stdlib_list('3.8') or module in ['app', 'args', 'base_app_input', 'job_app', 'playbook_app', 'run', 'service_app'] ): return True return False @staticmethod def check_imported(module: str) -> bool: """Check whether the provide module can be imported (package installed). Args: module: The name of the module to check availability. Returns: bool: True if the module can be imported, False otherwise. """ try: del sys.modules[module] except (AttributeError, KeyError): pass # https://docs.python.org/3/library/importlib.html#checking-if-a-module-can-be-imported find_spec = importlib.util.find_spec(module) found = find_spec is not None if found is True: # if dist-packages|site-packages in module_path the import doesn't count try: if 'dist-packages' in find_spec.origin: found = False except TypeError: pass try: if 'site-packages' in find_spec.origin: found = False except TypeError: pass return found def check_install_json(self) -> None: """Check all install.json files for valid schema.""" if 'install.json' in self.invalid_json_files: return status = True try: self.ij.model except ValidationError as ex: self.invalid_json_files.append(self.ij.fqfn.name) status = False for error in json.loads(ex.json()): location = [str(location) for location in error.get('loc')] self.validation_data['errors'].append( '''Schema validation failed for install.json. ''' f'''{error.get('msg')}: {' -> '.join(location)}''' ) except ValueError: # any JSON decode error will be caught during syntax validation return self.validation_data['schema'].append({'filename': self.ij.fqfn.name, 'status': status}) def check_job_json(self) -> None: """Validate feed files for feed job apps.""" if 'install.json' in self.invalid_json_files: # can't proceed if install.json can't be read return # use developer defined app version (deprecated) or package_version from InstallJson model app_version = self.tj.model.package.app_version or self.ij.model.package_version program_name = (f'''{self.tj.model.package.app_name}_{app_version}''').replace('_', ' ') status = True for feed in self.ij.model.feeds: if feed.job_file in self.invalid_json_files: # no need to check if schema if json is invalid continue jj = JobJson(filename=feed.job_file) # validate the job file exists if not jj.fqfn.is_file(): self.validation_data['errors'].append( f'''Schema validation failed for {feed.job_file}. ''' f'''The job.json file could not be found.''' ) continue try: # validate the schema jj.model except ValidationError as ex: status = False for error in json.loads(ex.json()): location = [str(location) for location in error.get('loc')] self.validation_data['errors'].append( f'''Schema validation failed for {feed.job_file}. ''' f'''{error.get('msg')}: {' -> '.join(location)}''' ) # validate program name if status is True and jj.model.program_name != program_name: status = False self.validation_data['errors'].append( f'''Schema validation failed for {feed.job_file}. ''' f'''The job.json programName {jj.model.program_name} != {program_name}.''' ) # validate program version if status is True and jj.model.program_version != self.ij.model.program_version: status = False self.validation_data['errors'].append( f'''Schema validation failed for {feed.job_file}. The job.json program''' f'''Version {jj.model.program_version} != {self.ij.model.program_version}.''' ) self.validation_data['schema'].append({'filename': feed.job_file, 'status': status}) def check_layout_json(self) -> None: """Check all layout.json files for valid schema.""" if not self.lj.has_layout or 'layout.json' in self.invalid_json_files: return status = True try: self.lj.model except ValidationError as ex: self.invalid_json_files.append(self.ij.fqfn.name) status = False for error in json.loads(ex.json()): location = [str(location) for location in error.get('loc')] self.validation_data['errors'].append( f'''Schema validation failed for layout.json. ''' f'''{error.get('msg')}: {' -> '.join(location)}''' ) except ValueError: # any JSON decode error will be caught during syntax validation return self.validation_data['schema'].append({'filename': self.lj.fqfn.name, 'status': status}) if status is True: self.check_layout_params() def check_layout_params(self) -> None: """Check that the layout.json is consistent with install.json. The layout.json files references the params.name from the install.json file. The method will validate that no reference appear for inputs in install.json that don't exist. """ # do not track hidden or serviceConfig inputs as they should not be in layouts.json ij_input_names = list(self.ij.model.filter_params(service_config=False, hidden=False)) ij_output_names = [o.name for o in self.ij.model.playbook.output_variables] # Check for duplicate inputs for name in self.ij.validate.validate_duplicate_input(): self.validation_data['errors'].append( f'Duplicate input name found in install.json ({name})' ) status = False # Check for duplicate sequence numbers for sequence in self.ij.validate.validate_duplicate_sequence(): self.validation_data['errors'].append( f'Duplicate sequence number found in install.json ({sequence})' ) status = False # Check for duplicate outputs variables for output in self.ij.validate.validate_duplicate_output(): self.validation_data['errors'].append( f'Duplicate output variable name found in install.json ({output})' ) status = False if 'sqlite3' in sys.modules: # create temporary inputs tables self.permutations.db_create_table(self.permutations._input_table, ij_input_names) # inputs status = True for i in self.lj.model.inputs: for p in i.parameters: if p.name not in ij_input_names: # update validation data errors self.validation_data['errors'].append( 'Layouts input.parameters[].name validations failed ' f'''("{p.get('name')}" is defined in layout.json, ''' 'but hidden or not found in install.json).' ) status = False else: # any item in list afterwards is a problem ij_input_names.remove(p.name) if 'sqlite3' in sys.modules: if p.display: display_query = ( f'''SELECT * FROM {self.permutations._input_table}''' # nosec f''' WHERE {p.display}''' ) try: self.permutations.db_conn.execute(display_query.replace('"', '')) except sqlite3.Error: self.validation_data['errors'].append( '''Layouts input.parameters[].display validations failed ''' f'''("{p.display}" query is an invalid statement).''' ) status = False # update validation data for module self.validation_data['layouts'].append({'params': 'inputs', 'status': status}) if ij_input_names: input_names = ','.join(ij_input_names) # update validation data errors self.validation_data['errors'].append( f'Layouts input.parameters[].name validations failed ("{input_names}" ' 'values from install.json were not included in layout.json.' ) status = False # outputs status = True for o in self.lj.model.outputs: if o.name not in ij_output_names: # update validation data errors self.validation_data['errors'].append( f'''Layouts output validations failed ({o.name} is defined ''' '''in layout.json, but not found in install.json).''' ) status = False if 'sqlite3' in sys.modules: if o.display: display_query = ( f'''SELECT * FROM {self.permutations._input_table} ''' # nosec f'''WHERE {o.display}''' ) try: self.permutations.db_conn.execute(display_query.replace('"', '')) except sqlite3.Error: self.validation_data['errors'].append( f"""Layouts outputs.display validations failed ("{o.display}" """ f"""query is an invalid statement).""" ) status = False # update validation data for module self.validation_data['layouts'].append({'params': 'outputs', 'status': status}) def check_syntax(self, app_path=None) -> None: """Run syntax on each ".py" and ".json" file. Args: app_path (str, optional): The path of Python files. """ fqpn = Path(app_path or os.getcwd()) for fqfn in sorted(fqpn.iterdir()): error = None status = True if fqfn.name.endswith('.py'): try: with fqfn.open(mode='rb') as fh: ast.parse(fh.read(), filename=fqfn.name) except SyntaxError: status = False # cleanup output e = [] for line in traceback.format_exc().split('\n')[-5:-2]: e.append(line.strip()) error = ' '.join(e) elif fqfn.name.endswith('.json'): try: with fqfn.open() as fh: json.load(fh) except ValueError as e: # update tracker for common files self.invalid_json_files.append(fqfn.name) status = False error = e else: # skip unsupported file types continue if error: # update validation data errors self.validation_data['errors'].append( f'Syntax validation failed for {fqfn.name} ({error}).' ) # store status for this file self.validation_data['fileSyntax'].append({'filename': fqfn.name, 'status': status}) def interactive(self) -> None: """[App Builder] Run in interactive mode.""" while True: line = sys.stdin.readline().strip() if line == 'quit': sys.exit() elif line == 'validate': self.check_syntax() self.check_imports() self.check_install_json() self.check_layout_json() self.check_job_json() self.print_json() # reset validation_data self.validation_data = self._validation_data def print_json(self) -> None: """[App Builder] Print JSON output.""" print(json.dumps({'validation_data': self.validation_data})) # TODO: [low] switch to typer echo? def _print_file_syntax_results(self) -> None: """Print file syntax results.""" if self.validation_data.get('fileSyntax'): print(f'\n{c.Style.BRIGHT}{c.Fore.BLUE}Validated File Syntax:') print(f'''{c.Style.BRIGHT}{'File:'!s:<60}{'Status:'!s:<25}''') for f in self.validation_data.get('fileSyntax'): status_color = self.status_color(f.get('status')) status_value = self.status_value(f.get('status')) print(f"{f.get('filename')!s:<60}{status_color}{status_value!s:<25}") def _print_imports_results(self) -> None: """Print import results.""" if self.validation_data.get('moduleImports'): print(f'\n{c.Style.BRIGHT}{c.Fore.BLUE}Validated Imports:') print(f'''{c.Style.BRIGHT}{'File:'!s:<30}{'Module:'!s:<30}{'Status:'!s:<25}''') for f in self.validation_data.get('moduleImports'): status_color = self.status_color(f.get('status')) status_value = self.status_value(f.get('status')) print( f'''{f.get('filename')!s:<30}{c.Fore.WHITE}''' f'''{f.get('module')!s:<30}{status_color}{status_value!s:<25}''' ) def _print_schema_results(self) -> None: """Print schema results.""" if self.validation_data.get('schema'): print(f'\n{c.Style.BRIGHT}{c.Fore.BLUE}Validated Schema:') print(f'''{c.Style.BRIGHT}{'File:'!s:<60}{'Status:'!s:<25}''') for f in self.validation_data.get('schema'): status_color = self.status_color(f.get('status')) status_value = self.status_value(f.get('status')) print(f'''{f.get('filename')!s:<60}{status_color}{status_value!s:<25}''') def _print_layouts_results(self) -> None: """Print layout results.""" if self.validation_data.get('layouts'): print(f'\n{c.Style.BRIGHT}{c.Fore.BLUE}Validated Layouts:') print(f'''{c.Style.BRIGHT}{'Params:'!s:<60}{'Status:'!s:<25}''') for f in self.validation_data.get('layouts'): status_color = self.status_color(f.get('status')) status_value = self.status_value(f.get('status')) print(f"{f.get('params')!s:<60}{status_color}{status_value!s:<25}") def _print_feed_results(self) -> None: """Print feed results.""" if self.validation_data.get('feeds'): print(f'\n{c.Style.BRIGHT}{c.Fore.BLUE}Validated Feed Jobs:') print(f'''{c.Style.BRIGHT}{'Feeds:'!s:<60}{'Status:'!s:<25}''') for f in self.validation_data.get('feeds'): status_color = self.status_color(f.get('status')) status_value = self.status_value(f.get('status')) print(f"{f.get('name')!s:<60}{status_color}{status_value!s:<25}") def _print_errors(self) -> None: """Print errors results.""" if self.validation_data.get('errors'): print('\n') # separate errors from normal output for error in self.validation_data.get('errors'): # print all errors print(f'* {c.Fore.RED}{error}') # ignore exit code if not self.ignore_validation: self.exit_code = 1 def print_results(self) -> None: """Print results.""" # Validating Syntax self._print_file_syntax_results() # Validating Imports self._print_imports_results() # Validating Schema self._print_schema_results() # Validating Layouts self._print_layouts_results() # Validating Feed Job Definition Files self._print_feed_results() self._print_errors() @staticmethod def status_color(status) -> str: """Return the appropriate status color.""" return c.Fore.GREEN if status else c.Fore.RED @staticmethod def status_value(status) -> str: """Return the appropriate status color.""" return 'passed' if status else 'failed'
39.400362
98
0.542186
[ "Apache-2.0" ]
benjaminPurdy/tcex
tcex/bin/validate.py
21,749
Python
import os from access import Access from user import User log = os.path.dirname(os.path.abspath(__file__)) + "/temp/access.log" class UserDAO(object): __database = None __cursor = None def __init__(self): self.__database = Access() self.__cursor = self.__database.getCursor() self.initDatabase() def initDatabase(self): try: self.__cursor.execute(""" create table user (name text, username text, password text) """) self.__database.commit() except: pass def insert(self, user): if len(self.getUser(user.getUsername())) == 0: users = [(user.getName(), user.getUsername() , user.getPassword()), ] self.__cursor.executemany("INSERT INTO user VALUES (?,?,?)", users) self.__database.commit() def update(self, user): users = [(user.getName(),user.getPassword(), user.getUsername())] self.__cursor.executemany("UPDATE user SET name = ?, password = ? where username = ? ", users) self.__database.commit() def delete(self, username): self.__cursor.execute("DELETE FROM user WHERE username = " + username) self.__database.commit() def list(self): self.__cursor.execute("SELECT * FROM user") print self.__cursor.fetchall() def getUser(self, username): self.__cursor.execute("SELECT * FROM user WHERE username = ?",[(username)] ) return self.__cursor.fetchall() def log(self, user, request): flines = user.toString() + " >>> " + request + "\n" f = open(log, 'a') f.writelines([flines,]) f.close()
36.06383
102
0.59174
[ "MIT" ]
saraivaufc/PySpy
database/userDAO.py
1,695
Python
import disnake, youtube_dl import src.core.embeds as embeds import src.core.functions as funcs from disnake.ext import commands prefix = funcs.get_prefix() class Music(commands.Cog): def __init__(self, bot: commands.Bot): self.bot = bot @commands.group(invoke_without_command=True, description="Connect/Leave VC") @commands.has_guild_permissions(connect=True) async def vc(self, ctx: commands.Context, command: str): await ctx.reply("Command not Found!!") @commands.group( invoke_without_command=True, description="Play, Pause, Resume, Stop Music" ) @commands.has_guild_permissions(connect=True) async def music(self, ctx: commands.Context, command: str): await ctx.reply("Command not Found!!") @vc.command( description="Joins the VC you are currently in", aliases=["connect", "c"] ) @commands.has_guild_permissions(connect=True) async def join(self, ctx: commands.Context): if ctx.author.voice is None: await ctx.reply("You are not Connected to a Voice Channel!!") return if ctx.voice_client is None: voice_channel = ctx.author.voice.channel try: await voice_channel.connect() await ctx.reply("Connected!!") except disnake.HTTPException: await ctx.reply("Can't Connect to this Voice Channel!!") else: await ctx.reply("I am already in a Voice Channel!!") @vc.command(description="Leaves VC", aliases=["disconnect", "dc"]) @commands.has_guild_permissions(connect=True) async def leave(self, ctx: commands.Context): if ctx.voice_client: await ctx.reply("Disconnected!!") await ctx.voice_client.disconnect() else: await ctx.reply("I am not Connected to any Voice Channel!!") @music.command(description="Plays the Music") @commands.has_guild_permissions(connect=True) async def play(self, ctx: commands.Context, *, music_name: str): vc = ctx.voice_client if vc: FFMPEG_OPTIONS = { "before_options": "-reconnect 1 -reconnect_streamed 1 -reconnect_delay_max 5", "options": "-vn", } YDL_OPTIONS = {"formats": "bestaudio"} with youtube_dl.YoutubeDL(YDL_OPTIONS) as ydl: info = {} url = "" if music_name.startswith("https://"): info = ydl.extract_info(music_name, download=False) url = info["formats"][0]["url"] else: info_ = ydl.extract_info(f"ytsearch:{music_name}", download=False) url_ = info_["entries"][0]["webpage_url"] info = ydl.extract_info(url_, download=False) url = info["formats"][0]["url"] if info: await ctx.reply(embed=embeds.music_playing_embed(info)) source = disnake.FFmpegPCMAudio(url, **FFMPEG_OPTIONS) vc.play(source) else: await ctx.reply("I am not Connected to any Voice Channel!!") @music.command(description="Pauses the Music") @commands.has_guild_permissions(connect=True) async def pause(self, ctx: commands.Context): vc = ctx.voice_client if vc: if ctx.voice_client.is_playing(): await ctx.reply("Song Paused!!") await ctx.voice_client.pause() else: await ctx.reply("No Song is Playing!!") else: await ctx.reply("I am not Connected to any Voice Channel!!") @music.command(description="Resumes the Music") @commands.has_guild_permissions(connect=True) async def resume(self, ctx: commands.Context): vc = ctx.voice_client if vc: if ctx.voice_client.is_paused(): await ctx.reply("Song Resumed!!") await ctx.voice_client.resume() else: await ctx.reply("No Song is Paused!!") else: await ctx.reply(" I am not Connected to any Voice Channel!!") @music.command(description="Adjusts the Volume as per given amount") @commands.has_guild_permissions(connect=True) async def volume(self, ctx: commands.Context, volume: int): vc = ctx.voice_client if vc: if not 0 > volume > 100: volume = volume / 100 vc.source = disnake.PCMVolumeTransformer(original=vc.source, volume=1.0) vc.source.volume = volume await ctx.reply(f"Changed volume to {volume * 100}%") else: await ctx.reply("Volume must be between 0 to 100 (Inclusive)") else: await ctx.reply("I am not Connected to any Voice Channel!!") @music.command(description="Stops the Music") @commands.has_guild_permissions(connect=True) async def stop(self, ctx: commands.Context): vc = ctx.voice_client if vc: if ctx.voice_client.is_playing() or ctx.voice_client.is_paused(): await ctx.reply("Song Stopped!!") await ctx.voice_client.stop() else: await ctx.reply("No Song is Playing") else: await ctx.reply("I am not Connected to any Voice Channel!!") def setup(bot: commands.Bot): bot.add_cog(Music(bot))
37.258503
94
0.59266
[ "MIT" ]
Jonak-Adipta-Kalita/JAK-Discord-Bot
src/cogs/commands/music.py
5,477
Python
# -*- coding: utf-8 -*- #Chucky_Bot import LINETCR from LINETCR.lib.curve.ttypes import * from datetime import datetime from bs4 import BeautifulSoup from threading import Thread from googletrans import Translator from gtts import gTTS import time,random,sys,json,codecs,threading,glob,urllib,urllib2,urllib3,re,ast,os,subprocess,requests,tempfile nadya = LINETCR.LINE() #nadya.login(qr=True) nadya.login(token='Eq8HO0fhYMrll5V2r6v3.uFyCY3rEW6udwsHCnFj70W.KD1Mlw3UQ67PLM8N+4pVdjTi1joYo3zu7hlhQV6XWuo=') nadya.loginResult() print "Nadya-Login Success\n\n=====[Sukses Login]=====" reload(sys) sys.setdefaultencoding('utf-8') selfMessage =""" โ•”โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ• โ•‘ โ˜†โ˜ž FRYANT S E L F โ˜œโ˜† โ• โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ• โ• โžฉใ€˜Hiใ€™ โ• โžฉใ€˜Meใ€™ โ• โžฉใ€˜Mymidใ€™ โ• โžฉใ€˜Mid @ใ€™ โ• โžฉใ€˜SearchID: (ID LINE)ใ€™ โ• โžฉใ€˜Checkdate (DD/MM/YY)ใ€™ โ• โžฉใ€˜Kalenderใ€™ โ• โžฉใ€˜Steal contactใ€™ โ• โžฉใ€˜Pp @ใ€™ โ• โžฉใ€˜Cover @ใ€™ โ• โžฉใ€˜Auto likeใ€™ โ• โžฉใ€˜Scbc Textใ€™ โ• โžฉใ€˜Cbc Textใ€™ โ• โžฉใ€˜Gbc Textใ€™ โ• โžฉใ€˜Getbio @ใ€™ โ• โžฉใ€˜Getinfo @ใ€™ โ• โžฉใ€˜Getname @ใ€™ โ• โžฉใ€˜Getprofile @ใ€™ โ• โžฉใ€˜Getcontact @ใ€™ โ• โžฉใ€˜Getvid @ใ€™ โ• โžฉใ€˜Friendlistใ€™ โ• โžฉใ€˜Micadd @ใ€™ โ• โžฉใ€˜Micdel @ใ€™ โ• โžฉใ€˜Miclistใ€™ โ• โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ• โ•‘ เผ„เฝฒเงกโ๏ปฟแถœสฐแต‰+Sepri๏ปฟ๏ปฟโ€ฎเฟเงกย  SelfBot Versi 124V โ•šโ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ• """ botMessage =""" โ•”โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ• โ•‘ โ˜†โ˜ž FRYANT B O T โ˜œโ˜† โ• โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ• โ• โžฉใ€˜Absenใ€™ โ• โžฉใ€˜Responใ€™ โ• โžฉใ€˜Runtimeใ€™ โ• โžฉใ€˜Mycopy @ใ€™ โ• โžฉใ€˜Copycontactใ€™ โ• โžฉใ€˜Mybackupใ€™ โ• โžฉใ€˜Mybio (Text)ใ€™ โ• โžฉใ€˜Myname (Text)ใ€™ โ• โžฉใ€˜@byeใ€™ โ• โžฉใ€˜Bot on/offใ€™ โ• โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ• โ•‘ เผ„เฝฒเงกโ๏ปฟแถœสฐแต‰+Sepri๏ปฟ๏ปฟโ€ฎเฟเงกย  SelfBot Versi 124V โ•šโ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ• """ mediaMessage =""" โ•”โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ• โ•‘ โ˜†โ˜ž FRYANT M E D I A โ˜œโ˜† โ• โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ• โ• โžฉใ€˜Giftใ€™ โ• โžฉใ€˜Gift1 @ s/d Gift10 @ใ€™ โ• โžฉใ€˜Giftbycontactใ€™ โ• โžฉใ€˜Gif goreใ€™ โ• โžฉใ€˜Google: (Text)ใ€™ โ• โžฉใ€˜Playstore NamaAppใ€™ โ• โžฉใ€˜Fancytext: Textใ€™ โ• โžฉใ€˜/musik Judul-Penyanyiใ€™ โ• โžฉใ€˜/lirik Judul-Penyanyiใ€™ โ• โžฉใ€˜/musrik Judul-Penyanyiใ€™ โ• โžฉใ€˜/ig UrsnameInstagramใ€™ โ• โžฉใ€˜Checkig UrsnameInstagramใ€™ โ• โžฉใ€˜/apakah Text (Kerang Ajaib)ใ€™ โ• โžฉใ€˜/kapan Text (Kerang Ajaib)ใ€™ โ• โžฉใ€˜/hari Text (Kerang Ajaib)ใ€™ โ• โžฉใ€˜/berapa Text (Kerang Ajaib)ใ€™ โ• โžฉใ€˜/berapakah Textใ€™ โ• โžฉใ€˜Youtubelink: Judul Videoใ€™ โ• โžฉใ€˜Youtubevideo: Judul Videoใ€™ โ• โžฉใ€˜Youtubesearch: Judul Videoใ€™ โ• โžฉใ€˜Image NamaGambarใ€™ โ• โžฉใ€˜Say-id Textใ€™ โ• โžฉใ€˜Say-en Textใ€™ โ• โžฉใ€˜Say-jp Textใ€™ โ• โžฉใ€˜Image NamaGambarใ€™ โ• โžฉใ€˜Tr-id Text (Translate En Ke IDใ€™ โ• โžฉใ€˜Tr-en Text (Translate ID Ke Enใ€™ โ• โžฉใ€˜Tr-th Text (Translate ID Ke Thใ€™ โ• โžฉใ€˜Id@en Text (Translate ID Ke Enใ€™ โ• โžฉใ€˜Id@th Text (Translate ID Ke THใ€™ โ• โžฉใ€˜En@id Text (Translate En Ke IDใ€™ โ• โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ• โ•‘ เผ„เฝฒเงกโ๏ปฟแถœสฐแต‰+Sepri๏ปฟ๏ปฟโ€ฎเฟเงกย  SelfBot Versi 124V โ•šโ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ• """ groupMessage =""" โ•”โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ• โ•‘ โ˜†โ˜ž FRYANT G R O U P โ˜œโ˜† โ• โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ• โ• โžฉใ€˜Welcomeใ€™ โ• โžฉใ€˜Say welcomeใ€™ โ• โžฉใ€˜Invite creatorใ€™ โ• โžฉใ€˜Setviewใ€™ โ• โžฉใ€˜Viewseenใ€™ โ• โžฉใ€˜Gn: (NamaGroup)ใ€™ โ• โžฉใ€˜Tag allใ€™ โ• โžฉใ€˜Recoverใ€™ โ• โžฉใ€˜Cancelใ€™ โ• โžฉใ€˜Cancelallใ€™ โ• โžฉใ€˜Gcreatorใ€™ โ• โžฉใ€˜Ginfoใ€™ โ• โžฉใ€˜Gurlใ€™ โ• โžฉใ€˜List groupใ€™ โ• โžฉใ€˜Pict group: (NamaGroup)ใ€™ โ• โžฉใ€˜Spam: (Text)ใ€™ โ• โžฉใ€˜Add allใ€™ โ• โžฉใ€˜Kick: (Mid)ใ€™ โ• โžฉใ€˜Invite: (Mid)ใ€™ โ• โžฉใ€˜Inviteใ€™ โ• โžฉใ€˜Memlistใ€™ โ• โžฉใ€˜Getgroup imageใ€™ โ• โžฉใ€˜Urlgroup Imageใ€™ โ• โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ• โ•‘ เผ„เฝฒเงกโ๏ปฟแถœสฐแต‰+Sepri๏ปฟ๏ปฟโ€ฎเฟเงกย  SelfBot Versi 124V โ•šโ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ• """ tjia="u9f09cfcb17d037e2936b751bd9d40ead" setMessage =""" โ•”โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ• โ•‘ โ˜†โ˜ž FRYANT S E T โ˜œโ˜† โ• โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ• โ• โžฉใ€˜Sambutan on/offใ€™ โ• โžฉใ€˜Mimic on/offใ€™ โ• โžฉใ€˜Url on/offใ€™ โ• โžฉใ€˜Alwaysread on/offใ€™ โ• โžฉใ€˜Sider on/offใ€™ โ• โžฉใ€˜Contact on/offใ€™ โ• โžฉใ€˜Sticker onใ€™ โ• โžฉใ€˜Simisimi on/offใ€™ โ• โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ• โ•‘ เผ„เฝฒเงกโ๏ปฟแถœสฐแต‰+Sepri๏ปฟ๏ปฟโ€ฎเฟเงกย  SelfBot Versi 124V โ•šโ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ• """ creatorMessage =""" โ•”โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ• โ•‘ โ˜†โ˜ž FRYANT C R E A T O R โ˜œโ˜† โ• โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ• โ• โžฉใ€˜Crashใ€™ โ• โžฉใ€˜Kickallใ€™ โ• โžฉใ€˜Bc: (Text)ใ€™ โ• โžฉใ€˜Join group: (NamaGroupใ€™ โ• โžฉใ€˜Leave group: (NamaGroupใ€™ โ• โžฉใ€˜Leave all groupใ€™ โ• โžฉใ€˜Tag on/offใ€™ โ• โžฉใ€˜Bot restartใ€™ โ• โžฉใ€˜Turn offใ€™ โ• โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ• โ•‘ เผ„เฝฒเงกโ๏ปฟแถœสฐแต‰+Sepri๏ปฟ๏ปฟโ€ฎเฟเงกย  SelfBot Versi 124V โ•šโ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ• """ adminMessage =""" โ•”โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ• โ•‘ โ˜†โ˜ž A D M I N โ˜œโ˜† โ• โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ• โ• โžฉใ€˜Allprotect on/offใ€™ โ• โžฉใ€˜Banใ€™ โ• โžฉใ€˜Unbanใ€™ โ• โžฉใ€˜Ban @ใ€™ โ• โžฉใ€˜Unban @ใ€™ โ• โžฉใ€˜Ban listใ€™ โ• โžฉใ€˜Clear banใ€™ โ• โžฉใ€˜Killใ€™ โ• โžฉใ€˜Kick @ใ€™ โ• โžฉใ€˜Set member: (Jumblah)ใ€™ โ• โžฉใ€˜Ban group: (NamaGroupใ€™ โ• โžฉใ€˜Del ban: (NamaGroupใ€™ โ• โžฉใ€˜List banใ€™ โ• โžฉใ€˜Kill banใ€™ โ• โžฉใ€˜Glistใ€™ โ• โžฉใ€˜Glistmidใ€™ โ• โžฉใ€˜Details group: (Gid)ใ€™ โ• โžฉใ€˜Cancel invite: (Gid)ใ€™ โ• โžฉใ€˜Invitemeto: (Gid)ใ€™ โ• โžฉใ€˜Acc inviteใ€™ โ• โžฉใ€˜Removechatใ€™ โ• โžฉใ€˜Qr on/offใ€™ โ• โžฉใ€˜Autokick on/offใ€™ โ• โžฉใ€˜Autocancel on/offใ€™ โ• โžฉใ€˜Invitepro on/offใ€™ โ• โžฉใ€˜Join on/offใ€™ โ• โžฉใ€˜Joincancel on/offใ€™ โ• โžฉใ€˜Respon1 on/offใ€™ โ• โžฉใ€˜Respon2 on/offใ€™ โ• โžฉใ€˜Respon3 on/offใ€™ โ• โžฉใ€˜Responkick on/offใ€™ โ• โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ• โ•‘ เผ„เฝฒเงกโ๏ปฟแถœสฐแต‰+Sepri๏ปฟ๏ปฟโ€ฎเฟเงกย  SelfBot Versi 124V โ•šโ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ• """ helpMessage =""" โ•”โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ• โ•‘ โ˜†โ˜ž FRYANT H E L P โ˜œโ˜† โ• โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ• โ• โžฉใ€˜Help selfใ€™ โ• โžฉใ€˜Help botใ€™ โ• โžฉใ€˜Help groupใ€™ โ• โžฉใ€˜Help setใ€™ โ• โžฉใ€˜Help mediaใ€™ โ• โžฉใ€˜Help adminใ€™ โ• โžฉใ€˜Help creatorใ€™ โ• โžฉใ€˜Ownerใ€™ โ• โžฉใ€˜Pap ownerใ€™ โ• โžฉใ€˜Speedใ€™ โ• โžฉใ€˜Speed testใ€™ โ• โžฉใ€˜Statusใ€™ โ• โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ• โ•‘ เผ„เฝฒเงกโ๏ปฟแถœสฐแต‰+Sepri๏ปฟ๏ปฟโ€ฎเฟเงกย  SelfBot Versi 124V โ•šโ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ• """ KAC=[nadya] mid = nadya.getProfile().mid Bots=[mid] Creator=["u51f61ccb745ec3a50359285c35f27bd3"] admin=["u51f61ccb745ec3a50359285c35f27bd3"] contact = nadya.getProfile() backup1 = nadya.getProfile() backup1.displayName = contact.displayName backup1.statusMessage = contact.statusMessage backup1.pictureStatus = contact.pictureStatus responsename = nadya.getProfile().displayName wait = { "LeaveRoom":True, "Bot":True, "AutoJoin":False, "AutoJoinCancel":False, "memberscancel":30, "Members":1, "AutoCancel":False, "AutoKick":False, 'pap':{}, 'invite':{}, 'steal':{}, 'gift':{}, 'copy':{}, 'likeOn':{}, 'detectMention':False, 'detectMention2':False, 'detectMention3':True, 'kickMention':False, 'sticker':False, 'timeline':True, "Timeline":True, "comment":"Bot Auto Like ยฉBy : Nadya\nContact Me : ๐Ÿ‘‰ line.me/ti/p/~sepriche.", "commentOn":True, "commentBlack":{}, "message":"Thx For Add Me (^_^)\nInvite Me To Your Group ใƒ˜(^_^)ใƒ˜", "blacklist":{}, "wblacklist":False, "dblacklist":False, "Qr":False, "Contact":False, "Sambutan":True, "inviteprotect":False, "alwaysRead":False, "Sider":{}, "Simi":{}, "lang":"JP", "BlGroup":{} } settings = { "simiSimi":{} } cctv = { "cyduk":{}, "point":{}, "sidermem":{} } wait2 = { "readPoint":{}, "readMember":{}, "setTime":{}, "ROM":{} } mimic = { "copy":False, "copy2":False, "status":False, "target":{} } setTime = {} setTime = wait2['setTime'] mulai = time.time() def download_page(url): version = (3,0) cur_version = sys.version_info if cur_version >= version: import urllib,request try: headers = {} headers['User-Agent'] = "Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/41.0.2228.0 Safari/537.36" req = urllib,request.Request(url, headers = headers) resp = urllib,request.urlopen(req) respData = str(resp.read()) return respData except Exception as e: print(str(e)) else: import urllib2 try: headers = {} headers['User-Agent'] = "Mozilla/5.0 (X11; Linux i686) AppleWebKit/537.17 (KHTML, like Gecko) Chrome/24.0.1312.27 Safari/537.17" req = urllib2.Request(url, headers = headers) response = urllib2.urlopen(req) page = response.read() return page except: return"Page Not found" def _images_get_next_item(s): start_line = s.find('rg_di') if start_line == -1: end_quote = 0 link = "no_links" return link, end_quote else: start_line = s.find('"class="rg_meta"') start_content = s.find('"ou"',start_line+90) end_content = s.find(',"ow"',start_content-90) content_raw = str(s[start_content+6:end_content-1]) return content_raw, end_content def _images_get_all_items(page): items = [] while True: item, end_content = _images_get_next_item(page) if item == "no_links": break else: items.append(item) time.sleep(0.1) page = page[end_content:] return items def waktu(secs): mins, secs = divmod(secs,60) hours, mins = divmod(mins,60) return '%02d Jam %02d Menit %02d Detik' % (hours, mins, secs) def cms(string, commands): #/XXX, >XXX, ;XXX, ^XXX, %XXX, $XXX... tex = ["+","@","/",">",";","^","%","$","๏ผพ","ใ‚ตใƒ†ใƒฉ:","ใ‚ตใƒ†ใƒฉ:","ใ‚ตใƒ†ใƒฉ๏ผš","ใ‚ตใƒ†ใƒฉ๏ผš"] for texX in tex: for command in commands: if string ==command: return True return False def upload_tempimage(client): ''' Upload a picture of a kitten. We don't ship one, so get creative! ''' config = { 'album': album, 'name': 'bot auto upload', 'title': 'bot auto upload', 'description': 'bot auto upload' } print("Uploading image... ") image = client.upload_from_path(image_path, config=config, anon=False) print("Done") print() return image def sendAudio(self, to_, path): M = Message() M.text = None M.to = to_ M.contentMetadata = None M.contentPreview = None M.contentType = 3 M_id = self._client.sendMessage(0,M).id files = { 'file': open(path, 'rb'), } def sendMessage(to, text, contentMetadata={}, contentType=0): mes = Message() mes.to, mes.from_ = to, profile.mid mes.text = text mes.contentType, mes.contentMetadata = contentType, contentMetadata if to not in messageReq: messageReq[to] = -1 messageReq[to] += 1 def sendImage(self, to_, path): M = Message(to=to_, text=None, contentType = 1) M.contentMetadata = None M.contentPreview = None M2 = self._client.sendMessage(0,M) M_id = M2.id files = { 'file': open(path, 'rb'), } params = { 'name': 'media', 'oid': M_id, 'size': len(open(path, 'rb').read()), 'type': 'image', 'ver': '1.0', } data = { 'params': json.dumps(params) } r = self.post_content('https://obs-sg.line-apps.com/talk/m/upload.nhn', data=data, files=files) if r.status_code != 201: raise Exception('Upload image failure.') return True def sendImageWithURL(self, to_, url): path = '%s/pythonLine-%i.data' % (tempfile.gettempdir(), randint(0, 9)) r = requests.get(url, stream=True) if r.status_code == 200: with open(path, 'w') as f: shutil.copyfileobj(r.raw, f) else: raise Exception('Download image failure.') try: self.sendImage(to_, path) except: try: self.sendImage(to_, path) except Exception as e: raise e def sendAudioWithURL(self, to_, url): path = self.downloadFileWithURL(url) try: self.sendAudio(to_, path) except Exception as e: raise Exception(e) def sendAudioWithUrl(self, to_, url): path = '%s/pythonLine-%1.data' % (tempfile.gettempdir(), randint(0, 9)) r = requests.get(url, stream=True, verify=False) if r.status_code == 200: with open(path, 'w') as f: shutil.copyfileobj(r.raw, f) else: raise Exception('Download audio failure.') try: self.sendAudio(to_, path) except Exception as e: raise e def downloadFileWithURL(self, fileUrl): saveAs = '%s/pythonLine-%i.data' % (tempfile.gettempdir(), randint(0, 9)) r = self.get_content(fileUrl) if r.status_code == 200: with open(saveAs, 'wb') as f: shutil.copyfileobj(r.raw, f) return saveAs else: raise Exception('Download file failure.') def summon(to, nama): aa = "" bb = "" strt = int(14) akh = int(14) nm = nama for mm in nm: akh = akh + 2 aa += """{"S":"""+json.dumps(str(strt))+""","E":"""+json.dumps(str(akh))+""","M":"""+json.dumps(mm)+"},""" strt = strt + 6 akh = akh + 4 bb += "\xe2\x95\xa0 @x \n" aa = (aa[:int(len(aa)-1)]) msg = Message() msg.to = to msg.text = "\xe2\x95\x94\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\n"+bb+"\xe2\x95\x9a\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90" msg.contentMetadata ={'MENTION':'{"MENTIONEES":['+aa+']}','EMTVER':'4'} print "[Command] Tag All" try: nadya.sendMessage(msg) except Exception as error: print error def restart_program(): python = sys.executable os.execl(python, python, * sys.argv) def bot(op): try: if op.type == 0: return if op.type == 5: if wait["autoAdd"] == True: nadya.findAndAddContactsByMid(op.param1) if(wait["message"]in[""," ","\n",None]): pass else: nadya.sendText(op.param1,str(wait["message"])) if op.type == 55: try: group_id = op.param1 user_id=op.param2 subprocess.Popen('echo "'+ user_id+'|'+str(op.createdTime)+'" >> dataSeen/%s.txt' % group_id, shell=True, stdout=subprocess.PIPE, ) except Exception as e: print e if op.type == 55: try: if cctv['cyduk'][op.param1]==True: if op.param1 in cctv['point']: Name = nadya.getContact(op.param2).displayName # Name = summon(op.param2) if Name in cctv['sidermem'][op.param1]: pass else: cctv['sidermem'][op.param1] += "\nโ€ข " + Name if " " in Name: nick = Name.split(' ') if len(nick) == 2: nadya.sendText(op.param1, "Haii " + "โ˜ž " + Name + " โ˜œ" + "\nNgintip Aja Niih. . .\nChat Kek Idiih (-__-) ") time.sleep(0.2) summon(op.param1,[op.param2]) else: nadya.sendText(op.param1, "Haii " + "โ˜ž " + Name + " โ˜œ" + "\nBetah Banget Jadi Penonton. . .\nChat Napa (-__-) ") time.sleep(0.2) summon(op.param1,[op.param2]) else: nadya.sendText(op.param1, "Haii " + "โ˜ž " + Name + " โ˜œ" + "\nNgapain Kak Ngintip Aja???\nSini Gabung Chat... ") time.sleep(0.2) summon(op.param1,[op.param2]) else: pass else: pass except: pass else: pass if op.type == 22: nadya.leaveRoom(op.param1) if op.type == 21: nadya.leaveRoom(op.param1) if op.type == 13: print op.param3 if op.param3 in mid: if op.param2 in Creator: nadya.acceptGroupInvitation(op.param1) if mid in op.param3: if wait["AutoJoinCancel"] == True: G = nadya.getGroup(op.param1) if len(G.members) <= wait["memberscancel"]: nadya.acceptGroupInvitation(op.param1) nadya.sendText(op.param1,"Maaf " + nadya.getContact(op.param2).displayName + "\nMember Kurang Dari 30 Orang\nUntuk Info, Silahkan Chat Owner Kami!") nadya.leaveGroup(op.param1) else: nadya.acceptGroupInvitation(op.param1) nadya.sendText(op.param1,"โ˜†Ketik โ˜žHelpโ˜œ Untuk Bantuanโ˜†\nโ˜†Harap Gunakan Dengan Bijak ^_^ โ˜†") if mid in op.param3: if wait["AutoJoin"] == True: G = nadya.getGroup(op.param1) if len(G.members) <= wait["Members"]: nadya.rejectGroupInvitation(op.param1) else: nadya.acceptGroupInvitation(op.param1) nadya.sendText(op.param1,"โ˜†Ketik โ˜žHelpโ˜œ Untuk Bantuanโ˜†\nโ˜†Harap Gunakan Dengan Bijak ^_^ โ˜†") else: if wait["AutoCancel"] == True: if op.param3 in Bots: pass else: nadya.cancelGroupInvitation(op.param1, [op.param3]) else: if op.param3 in wait["blacklist"]: nadya.cancelGroupInvitation(op.param1, [op.param3]) nadya.sendText(op.param1, "Blacklist Detected") else: pass if op.type == 13: if op.param2 not in Creator: if op.param2 not in admin: if op.param2 not in Bots: if op.param2 in Creator: if op.param2 in admin: if op.param2 in Bots: pass elif wait["inviteprotect"] == True: wait ["blacklist"][op.param2] = True nadya.cancelGroupInvitation(op.param1,[op.param3]) nadya.kickoutFromGroup(op.param1,[op.param2]) if op.param2 not in Creator: if op.param2 not in admin: if op.param2 not in Bots: if op.param2 in Creator: if op.param2 in admin: if op.param2 in Bots: pass if op.type == 19: if wait["AutoKick"] == True: try: if op.param3 in Creator: if op.param3 in admin: if op.param3 in Bots: pass if op.param2 in Creator: if op.param2 in admin: if op.param2 in Bots: pass else: nadya.kickoutFromGroup(op.param1,[op.param2]) if op.param2 in wait["blacklist"]: pass else: nadya.inviteIntoGroup(op.param1,[op.param3]) except: try: if op.param2 not in Creator: if op.param2 not in admin: if op.param2 not in Bots: nadya.kickoutFromGroup(op.param1,[op.param2]) if op.param2 in wait["blacklist"]: pass else: nadya.inviteIntoGroup(op.param1,[op.param3]) except: print ("client Kick regulation or Because it does not exist in the group\ngid=["+op.param1+"]\nmid=["+op.param2+"]") if op.param2 in wait["blacklist"]: pass else: if op.param2 in Creator: if op.param2 in admin: if op.param2 in Bots: pass else: wait["blacklist"][op.param2] = True if op.param2 in wait["blacklist"]: pass else: if op.param2 in Creator: if op.param2 in admin: if op.param2 in Bots: pass else: wait["blacklist"][op.param2] = True else: pass if mid in op.param3: if op.param2 in Creator: if op.param2 in Bots: pass try: nadya.kickoutFromGroup(op.param1,[op.param2]) nadya.kickoutFromGroup(op.param1,[op.param2]) except: try: nadya.kickoutFromGroup(op.param1,[op.param2]) except: print ("client Kick regulation or Because it does not exist in the group\ngid=["+op.param1+"]\nmid=["+op.param2+"]") if op.param2 in wait["blacklist"]: pass else: if op.param2 in Bots: pass if op.param2 in wait["blacklist"]: pass else: if op.param2 in Bots: pass else: wait["blacklist"][op.param2] = True if Creator in op.param3: if admin in op.param3: if op.param2 in Bots: pass try: nadya.kickoutFromGroup(op.param1,[op.param2]) nadya.kickoutFromGroup(op.param1,[op.param2]) except: try: if op.param2 not in Bots: nadya.kickoutFromGroup(op.param1,[op.param2]) if op.param2 in wait["blacklist"]: pass else: nadya.inviteIntoGroup(op.param1,[op.param3]) except: print ("client Kick regulation or Because it does not exist in the group\ngid=["+op.param1+"]\nmid=["+op.param2+"]") if op.param2 in wait["blacklist"]: pass if op.param2 in wait["whitelist"]: pass else: wait["blacklist"][op.param2] = True nadya.inviteIntoGroup(op.param1,[op.param3]) if op.param2 in wait["blacklist"]: pass if op.param2 in wait["whitelist"]: pass else: wait["blacklist"][op.param2] = True if op.type == 11: if wait["Qr"] == True: if op.param2 in Creator: if op.param2 in admin: if op.param2 in Bots: pass else: nadya.kickoutFromGroup(op.param1,[op.param2]) else: pass if op.type == 17: if wait["Sambutan"] == True: if op.param2 in Creator: return ginfo = nadya.getGroup(op.param1) contact = nadya.getContact(op.param2) image = "http://dl.profile.line-cdn.net/" + contact.pictureStatus nadya.sendText(op.param1,"Hallo " + nadya.getContact(op.param2).displayName + "\nWelcome To โ˜ž " + str(ginfo.name) + " โ˜œ" + "\nBudayakan Cek Note\nDan Semoga Betah Disini ^_^") c = Message(to=op.param1, from_=None, text=None, contentType=13) c.contentMetadata={'mid':op.param2} nadya.sendMessage(c) nadya.sendImageWithURL(op.param1,image) d = Message(to=op.param1, from_=None, text=None, contentType=7) d.contentMetadata={ "STKID": "13269548", "STKPKGID": "1329191", "STKVER": "1" } nadya.sendMessage(d) print "MEMBER JOIN TO GROUP" if op.type == 15: if wait["Sambutan"] == True: if op.param2 in Creator: return nadya.sendText(op.param1,"Good Bye " + nadya.getContact(op.param2).displayName + "\nSee You Next Time . . . (pโ€ฒ๏ธตโ€ตใ€‚) ๐Ÿค—") d = Message(to=op.param1, from_=None, text=None, contentType=7) d.contentMetadata={ "STKID": "13269542", "STKPKGID": "1329191", "STKVER": "1" } nadya.sendMessage(d) print "MEMBER HAS LEFT THE GROUP" if op.type == 26: msg = op.message if msg.from_ in mimic["target"] and mimic["status"] == True and mimic["target"][msg.from_] == True: text = msg.text if text is not None: nadya.sendText(msg.to,text) if msg.to in settings["simiSimi"]: if settings["simiSimi"][msg.to] == True: if msg.text is not None: text = msg.text r = requests.get("http://api.ntcorp.us/chatbot/v1/?text=" + text.replace(" ","+") + "&key=beta1.nt") data = r.text data = json.loads(data) if data['status'] == 200: if data['result']['result'] == 100: nadya.sendText(msg.to,data['result']['response'].encode('utf-8')) if 'MENTION' in msg.contentMetadata.keys() != None: if wait["kickMention"] == True: contact = nadya.getContact(msg.from_) cName = contact.displayName balas = ["Aku Bilang Jangan Ngetag Lagi " + cName + "\nAku Kick Kamu! Sorry, Byee!!!"] ret_ = random.choice(balas) name = re.findall(r'@(\w+)', msg.text) mention = ast.literal_eval(msg.contentMetadata['MENTION']) mentionees = mention['MENTIONEES'] for mention in mentionees: if mention['M'] in Bots: nadya.sendText(msg.to,ret_) nadya.kickoutFromGroup(msg.to,[msg.from_]) break if 'MENTION' in msg.contentMetadata.keys() != None: if wait["detectMention"] == True: contact = nadya.getContact(msg.from_) cName = contact.displayName balas = ["Sekali tag, berarti naksir aim๐Ÿ˜…",cName + " Follow ya id smuleku @Fryant_BSS1",cName + " Iya sayank, I love you too muacchhh๐Ÿ˜˜","aih, org ganteng, ditag mulu๐Ÿ™„", cName + " kaka mau nikung aku yah??๐Ÿ™„","kalau mau didesahin\npm aja kak๐Ÿ˜‚ " + cName, "kangen ya sayank??๐Ÿ™„ " + cName, "Follow id smule ku ya ka @Fryant_BSS1 " + cName + "๐Ÿ˜˜๐Ÿ˜˜๐Ÿ˜˜", "Kaka mau nikung aku yah " + cName + "๐Ÿ˜ฐ","orang ganteng " + cName + " pasti ditag mulu ๐Ÿ˜†"] ret_ = random.choice(balas) name = re.findall(r'@(\w+)', msg.text) mention = ast.literal_eval(msg.contentMetadata['MENTION']) mentionees = mention['MENTIONEES'] for mention in mentionees: if mention['M'] in Bots: nadya.sendText(msg.to,ret_) break if 'MENTION' in msg.contentMetadata.keys() != None: if wait["detectMention2"] == True: contact = nadya.getContact(msg.from_) cName = contact.displayName balas = ["kenapa sayank,, kangen yah??","jangan tag kalau ga mau aku hamilin","jangan tag " + cName + " tuan muda lagi meeting"] ret_ = random.choice(balas) name = re.findall(r'@(\w+)', msg.text) mention = ast.literal_eval(msg.contentMetadata['MENTION']) mentionees = mention['MENTIONEES'] for mention in mentionees: if mention['M'] in Bots: nadya.sendText(msg.to,ret_) msg.contentType = 7 msg.text = None msg.contentMetadata = { "STKID": "157", "STKPKGID": "2", "STKVER": "100" } nadya.sendMessage(msg) break if 'MENTION' in msg.contentMetadata.keys() != None: if wait["detectMention3"] == True: contact = nadya.getContact(msg.from_) cName = contact.displayName balas = ["Iya sayank " + cName + ", Syg kangen ya...aku lg kerja buat menata masa depan kita"] balas1 = "Supaya aq dan kamu, bahagia selalu๐Ÿ˜˜๐Ÿ˜˜๐Ÿ˜˜" ret_ = random.choice(balas) image = "http://dl.profile.line-cdn.net/" + contact.pictureStatus name = re.findall(r'@(\w+)', msg.text) mention = ast.literal_eval(msg.contentMetadata['MENTION']) mentionees = mention['MENTIONEES'] for mention in mentionees: if mention['M'] in Bots: nadya.sendText(msg.to,ret_) nadya.sendText(msg.to,balas1) nadya.sendImageWithURL(msg.to,image) msg.contentType = 7 msg.text = None msg.contentMetadata = { "STKID": "11764508", "STKPKGID": "6641", "STKVER": "1" } nadya.sendMessage(msg) break if op.type == 25: msg = op.message if msg.text in ["Bot on"]: wait["Bot"] = True nadya.sendText(msg.to,"Bot Sudah On Kembali.") if op.type == 25: if wait["Bot"] == True: msg = op.message if msg.contentType == 7: if wait["sticker"] == True: msg.contentType = 0 stk_id = msg.contentMetadata['STKID'] stk_ver = msg.contentMetadata['STKVER'] pkg_id = msg.contentMetadata['STKPKGID'] filler = "ใ€Ž Sticker Check ใ€\nSTKID : %s\nSTKPKGID : %s\nSTKVER : %s\nใ€Ž Link ใ€\nline://shop/detail/%s" % (stk_id,pkg_id,stk_ver,pkg_id) nadya.sendText(msg.to, filler) wait["sticker"] = False else: pass if wait["alwaysRead"] == True: if msg.toType == 0: nadya.sendChatChecked(msg.from_,msg.id) else: nadya.sendChatChecked(msg.to,msg.id) if msg.contentType == 16: if wait['likeOn'] == True: url = msg.contentMetadata["postEndUrl"] nadya.like(url[25:58], url[66:], likeType=1005) nadya.comment(url[25:58], url[66:], wait["comment"]) nadya.sendText(msg.to,"Like Success") wait['likeOn'] = False if msg.contentType == 13: if wait["wblacklist"] == True: if msg.contentMetadata["mid"] not in admin: if msg.contentMetadata["mid"] in wait["blacklist"]: nadya.sendText(msg.to,"Sudah") wait["wblacklist"] = False else: wait["blacklist"][msg.contentMetadata["mid"]] = True wait["wblacklist"] = False nadya.sendText(msg.to,"Ditambahkan") else: nadya.sendText(msg.to,"Admin Detected~") elif wait["dblacklist"] == True: if msg.contentMetadata["mid"] in wait["blacklist"]: del wait["blacklist"][msg.contentMetadata["mid"]] nadya.sendText(msg.to,"Terhapus") wait["dblacklist"] = False else: wait["dblacklist"] = False nadya.sendText(msg.to,"Tidak Ada Black List") elif wait["Contact"] == True: msg.contentType = 0 nadya.sendText(msg.to,msg.contentMetadata["mid"]) if 'displayName' in msg.contentMetadata: contact = nadya.getContact(msg.contentMetadata["mid"]) try: cu = nadya.channel.getCover(msg.contentMetadata["mid"]) except: cu = "" nadya.sendText(msg.to,"Nama:\n" + msg.contentMetadata["displayName"] + "\n\nMid:\n" + msg.contentMetadata["mid"] + "\n\nStatus:\n" + contact.statusMessage + "\n\nPhoto Profile:\nhttp://dl.profile.line-cdn.net/" + contact.pictureStatus + "\n\nPhoto Cover:\n" + str(cu)) else: contact = nadya.getContact(msg.contentMetadata["mid"]) try: cu = nadya.channel.getCover(msg.contentMetadata["mid"]) except: cu = "" nadya.sendText(msg.to,"Nama:\n" + msg.contentMetadata["displayName"] + "\n\nMid:\n" + msg.contentMetadata["mid"] + "\n\nStatus:\n" + contact.statusMessage + "\n\nPhoto Profile:\nhttp://dl.profile.line-cdn.net/" + contact.pictureStatus + "\n\nPhoto Cover:\n" + str(cu)) elif msg.text == "Ginfo": if msg.toType == 2: ginfo = nadya.getGroup(msg.to) try: gCreator = ginfo.creator.displayName except: gCreator = "Error" if wait["lang"] == "JP": if ginfo.invitee is None: sinvitee = "0" else: sinvitee = str(len(ginfo.invitee)) if ginfo.preventJoinByTicket == True: u = "close" else: u = "open" nadya.sendText(msg.to,"[Group name]\n" + str(ginfo.name) + "\n\n[Gid]\n" + msg.to + "\n\n[Group creator]\n" + gCreator + "\n\n[Profile status]\nhttp://dl.profile.line.naver.jp/" + ginfo.pictureStatus + "\n\nMembers:" + str(len(ginfo.members)) + "members\nPending:" + sinvitee + "people\nURL:" + u + "it is inside") else: nadya.sendText(msg.to,"[group name]\n" + str(ginfo.name) + "\n[gid]\n" + msg.to + "\n[group creator]\n" + gCreator + "\n[profile status]\nhttp://dl.profile.line.naver.jp/" + ginfo.pictureStatus) else: if wait["lang"] == "JP": nadya.sendText(msg.to,"Can not be used outside the group") else: nadya.sendText(msg.to,"Not for use less than group") elif msg.text is None: return elif msg.text in ["Creator","Owner"]: msg.contentType = 13 msg.contentMetadata = {'mid': tjia} nadya.sendMessage(msg) nadya.sendText(msg.to,"Itu Majikan Kami (^_^)") elif msg.text in ["Group creator","Gcreator","gcreator"]: ginfo = nadya.getGroup(msg.to) gCreator = ginfo.creator.mid msg.contentType = 13 msg.contentMetadata = {'mid': gCreator} nadya.sendMessage(msg) nadya.sendText(msg.to,"Itu Yang Buat Grup Ini") elif msg.contentType == 16: if wait["Timeline"] == True: msg.contentType = 0 msg.text = "post URL\n" + msg.contentMetadata["postEndUrl"] nadya.sendText(msg.to,msg.text) if msg.contentType == 13: if wait["steal"] == True: _name = msg.contentMetadata["displayName"] copy = msg.contentMetadata["mid"] groups = nadya.getGroup(msg.to) pending = groups.invitee targets = [] for s in groups.members: if _name in s.displayName: print "[Target] Stealed" break else: targets.append(copy) if targets == []: pass else: for target in targets: try: nadya.findAndAddContactsByMid(target) contact = nadya.getContact(target) cu = nadya.channel.getCover(target) path = str(cu) image = "http://dl.profile.line-cdn.net/" + contact.pictureStatus nadya.sendText(msg.to,"Nama :\n" + contact.displayName + "\n\nMid :\n" + msg.contentMetadata["mid"] + "\n\nBio :\n" + contact.statusMessage) nadya.sendText(msg.to,"Profile Picture " + contact.displayName) nadya.sendImageWithURL(msg.to,image) nadya.sendText(msg.to,"Cover " + contact.displayName) nadya.sendImageWithURL(msg.to,path) wait["steal"] = False break except: pass if msg.contentType == 13: if wait["gift"] == True: _name = msg.contentMetadata["displayName"] copy = msg.contentMetadata["mid"] groups = nadya.getGroup(msg.to) pending = groups.invitee targets = [] for s in groups.members: if _name in s.displayName: print "[Target] Gift" break else: targets.append(copy) if targets == []: pass else: for target in targets: try: nadya.sendText(msg.to,"Gift Sudah Terkirim!") msg.contentType = 9 msg.contentMetadata= {'PRDTYPE': 'STICKER', 'STKVER': '1', 'MSGTPL': '1', 'STKPKGID': '1296261'} msg.to = target msg.text = None nadya.sendMessage(msg) wait['gift'] = False break except: msg.contentMetadata = {'mid': target} wait["gift"] = False break if msg.contentType == 13: if wait["copy"] == True: _name = msg.contentMetadata["displayName"] copy = msg.contentMetadata["mid"] groups = nadya.getGroup(msg.to) targets = [] for s in groups.members: if _name in s.displayName: print "[Target] Copy" break else: targets.append(copy) if targets == []: nadya.sendText(msg.to, "Not Found...") pass else: for target in targets: try: nadya.CloneContactProfile(target) nadya.sendText(msg.to, "Copied (^_^)") wait['copy'] = False break except: msg.contentMetadata = {'mid': target} wait["copy"] = False break if msg.contentType == 13: if wait['invite'] == True: _name = msg.contentMetadata["displayName"] invite = msg.contentMetadata["mid"] groups = nadya.getGroup(msg.to) pending = groups.invitee targets = [] for s in groups.members: if _name in s.displayName: nadya.sendText(msg.to, _name + " Berada DiGrup Ini") else: targets.append(invite) if targets == []: pass else: for target in targets: try: nadya.findAndAddContactsByMid(target) nadya.inviteIntoGroup(msg.to,[target]) nadya.sendText(msg.to,"Invite " + _name) wait['invite'] = False break except: nadya.sendText(msg.to,"Limit Invite") wait['invite'] = False break elif msg.text in ["Key creator","help creator","Fryant 1"]: nadya.sendText(msg.to,creatorMessage) elif msg.text in ["Key group","help group","Fryant 2"]: nadya.sendText(msg.to,groupMessage) elif msg.text in ["Key","Fryant","Help"]: nadya.sendText(msg.to,helpMessage) elif msg.text in ["Key self","help self","Fryant 3"]: nadya.sendText(msg.to,selfMessage) elif msg.text in ["Key bot","help bot","Fryant 4"]: nadya.sendText(msg.to,botMessage) elif msg.text in ["Key set","help set","Fryant 5"]: nadya.sendText(msg.to,setMessage) elif msg.text in ["Key media","help media","Fryant 6"]: nadya.sendText(msg.to,mediaMessage) elif msg.text in ["Key admin","help admin","Fryant 7"]: nadya.sendText(msg.to,adminMessage) elif msg.text in ["Fryant group"]: gid = nadya.getGroupIdsJoined() h = "" jml = 0 for i in gid: gn = nadya.getGroup(i).name h += "โ™ฆใ€%sใ€‘\n" % (gn) jml += 1 nadya.sendText(msg.to,"=======[List Group]=======\n"+ h +"\nTotal Group: "+str(jml)) elif "Ban group: " in msg.text: grp = msg.text.replace("Ban group: ","") gid = nadya.getGroupIdsJoined() if msg.from_ in admin: for i in gid: h = nadya.getGroup(i).name if h == grp: wait["BlGroup"][i]=True nadya.sendText(msg.to, "Success Ban Group : "+grp) else: pass else: nadya.sendText(msg.to, "Khusus Nadya") elif msg.text in ["List ban","List ban group"]: if msg.from_ in admin: if wait["BlGroup"] == {}: nadya.sendText(msg.to,"Tidak Ada") else: mc = "" for gid in wait["BlGroup"]: mc += "-> " +nadya.getGroup(gid).name + "\n" nadya.sendText(msg.to,"===[Ban Group]===\n"+mc) else: nadya.sendText(msg.to, "Khusus Admin") elif msg.text in ["Del ban: "]: if msg.from_ in admin: ng = msg.text.replace("Del ban: ","") for gid in wait["BlGroup"]: if nadya.getGroup(gid).name == ng: del wait["BlGroup"][gid] nadya.sendText(msg.to, "Success del ban "+ng) else: pass else: nadya.sendText(msg.to, "Khusus Nadya") elif "Join group: " in msg.text: ng = msg.text.replace("Join group: ","") gid = nadya.getGroupIdsJoined() try: if msg.from_ in Creator: for i in gid: h = nadya.getGroup(i).name if h == ng: nadya.inviteIntoGroup(i,[Creator]) nadya.sendText(msg.to,"Success Join To ["+ h +"] Group") else: pass else: nadya.sendText(msg.to,"Khusus Nadya") except Exception as e: nadya.sendText(msg.to, str(e)) elif "Leave group: " in msg.text: ng = msg.text.replace("Leave group: ","") gid = nadya.getGroupIdsJoined() if msg.from_ in Creator: for i in gid: h = nadya.getGroup(i).name if h == ng: nadya.sendText(i,"Bot Di Paksa Keluar Oleh Owner!") nadya.leaveGroup(i) nadya.sendText(msg.to,"Success Left ["+ h +"] group") else: pass else: nadya.sendText(msg.to,"Khusus Nadya") elif "Leave all group" == msg.text: gid = nadya.getGroupIdsJoined() if msg.from_ in Creator: for i in gid: nadya.sendText(i,"Bot Di Paksa Keluar Oleh Owner!") nadya.leaveGroup(i) nadya.sendText(msg.to,"Success Leave All Group") else: nadya.sendText(msg.to,"Khusus Nadya") elif "Pict group: " in msg.text: saya = msg.text.replace('Pict group: ','') gid = nadya.getGroupIdsJoined() for i in gid: h = nadya.getGroup(i).name gna = nadya.getGroup(i) if h == saya: nadya.sendImageWithURL(msg.to,"http://dl.profile.line.naver.jp/"+ gna.pictureStatus) elif msg.text in ["cancelall","Cancelall"]: if msg.toType == 2: X = nadya.getGroup(msg.to) if X.invitee is not None: gInviMids = [contact.mid for contact in X.invitee] nadya.cancelGroupInvitation(msg.to, gInviMids) else: nadya.sendText(msg.to,"Tidak Ada Yang Pending") else: nadya.sendText(msg.to,"Tidak Bisa Digunakan Diluar Group") elif msg.text in ["Ourl","Url on"]: if msg.toType == 2: X = nadya.getGroup(msg.to) X.preventJoinByTicket = False nadya.updateGroup(X) nadya.sendText(msg.to,"Url Sudah Aktif") else: nadya.sendText(msg.to,"Can not be used outside the group") elif msg.text in ["Curl","Url off"]: if msg.toType == 2: X = nadya.getGroup(msg.to) X.preventJoinByTicket = True nadya.updateGroup(X) nadya.sendText(msg.to,"Url Sudah Di Nonaktifkan") else: nadya.sendText(msg.to,"Can not be used outside the group") elif msg.text in ["Join on","Autojoin on"]: if msg.from_ in admin: wait["AutoJoin"] = True wait["AutoJoinCancel"] = False nadya.sendText(msg.to,"Auto Join Sudah Aktif") else: nadya.sendText(msg.to,"Khusus Nadya") elif msg.text in ["Join off","Autojoin off"]: if msg.from_ in admin: wait["AutoJoin"] = False nadya.sendText(msg.to,"Auto Join Sudah Di Nonaktifkan") else: nadya.sendText(msg.to,"Khusus Nadya") elif msg.text in ["Joincancel on","Autojoincancel on"]: if msg.from_ in admin: wait["AutoJoinCancel"] = True wait["AutoJoin"] = False nadya.sendText(msg.to,"Auto Join Cancel Sudah Aktif") else: nadya.sendText(msg.to,"Khusus Nadya") elif msg.text in ["Joincancel off","Autojoincancel off"]: if msg.from_ in admin: wait["AutoJoinCancel"] = False nadya.sendText(msg.to,"Auto Join Cancel Sudah Di Nonaktifkan") else: nadya.sendText(msg.to,"Khusus Nadya") elif msg.text in ["Respon1 on"]: if msg.from_ in admin: wait["detectMention"] = True wait["detectMention2"] = False wait["detectMention3"] = False wait["kickMention"] = False nadya.sendText(msg.to,"Auto Respon1 Sudah Aktif") else: nadya.sendText(msg.to,"Khusus Nadya") elif msg.text in ["Respon1 off"]: if msg.from_ in admin: wait["detectMention"] = False nadya.sendText(msg.to,"Auto Respon1 Sudah Off") else: nadya.sendText(msg.to,"Khusus Nadya") elif msg.text in ["Respon2 on"]: if msg.from_ in admin: wait["detectMention"] = False wait["detectMention2"] = True wait["detectMention3"] = False wait["kickMention"] = False nadya.sendText(msg.to,"Auto Respon2 Sudah Aktif") else: nadya.sendText(msg.to,"Khusus Nadya") elif msg.text in ["Respon2 off"]: if msg.from_ in admin: wait["detectMention2"] = False nadya.sendText(msg.to,"Auto Respon2 Sudah Off") else: nadya.sendText(msg.to,"Khusus Nadya") elif msg.text in ["Respon3 on"]: if msg.from_ in admin: wait["detectMention"] = False wait["detectMention2"] = False wait["detectMention3"] = True wait["kickMention"] = False nadya.sendText(msg.to,"Auto Respon3 Sudah Aktif") else: nadya.sendText(msg.to,"Khusus Nadya") elif msg.text in ["Respon3 off"]: if msg.from_ in admin: wait["detectMention3"] = False nadya.sendText(msg.to,"Auto Respon3 Sudah Off") else: nadya.sendText(msg.to,"Khusus Nadya") elif msg.text in ["Responkick on"]: if msg.from_ in admin: wait["kickMention"] = True wait["detectMention"] = False wait["detectMention2"] = False wait["detectMention3"] = False nadya.sendText(msg.to,"Auto Respon Kick Sudah Aktif") else: nadya.sendText(msg.to,"Khusus Nadya") elif msg.text in ["Responkick off"]: if msg.from_ in admin: wait["kickMention"] = False nadya.sendText(msg.to,"Auto Respon Kick Sudah Off") else: nadya.sendText(msg.to,"Khusus Nadya") elif msg.text in ["Autocancel on"]: if msg.from_ in admin: wait["AutoCancel"] = True nadya.sendText(msg.to,"Auto Cancel Sudah Aktif") print wait["AutoCancel"] else: nadya.sendText(msg.to,"Khusus Nadya") elif msg.text in ["Autocancel off"]: if msg.from_ in admin: wait["AutoCancel"] = False nadya.sendText(msg.to,"Auto Cancel Sudah Di Nonaktifkan") print wait["AutoCancel"] else: nadya.sendText(msg.to,"Khusus Nadya") elif msg.text in ["Invitepro on"]: if msg.from_ in admin: wait["inviteprotect"] = True nadya.sendText(msg.to,"Invite Protect Sudah Aktif") print wait["inviteprotect"] else: nadya.sendText(msg.to,"Khusus Nadya") elif msg.text in ["Invitepro off"]: if msg.from_ in admin: wait["inviteprotect"] = False nadya.sendText(msg.to,"Invite Protect Sudah Di Nonaktifkan") print wait["inviteprotect"] else: nadya.sendText(msg.to,"Khusus Nadya") elif "Qr on" in msg.text: if msg.from_ in admin: wait["Qr"] = True nadya.sendText(msg.to,"QR Protect Sudah Aktif") else: nadya.sendText(msg.to,"Khusus Nadya") elif "Qr off" in msg.text: if msg.from_ in admin: wait["Qr"] = False nadya.sendText(msg.to,"Qr Protect Sudah Di Nonaktifkan") else: nadya.sendText(msg.to,"Khusus Nadya") elif "Autokick on" in msg.text: if msg.from_ in admin: wait["AutoKick"] = True nadya.sendText(msg.to,"Auto Kick Sudah Aktif") else: nadya.sendText(msg.to,"Khusus Nadya") elif "Autokick off" in msg.text: if msg.from_ in admin: wait["AutoKick"] = False nadya.sendText(msg.to,"Auto Kick Sudah Di Nonaktifkan") else: nadya.sendText(msg.to,"Khusus Nadya") elif msg.text in ["Allprotect on"]: if msg.from_ in admin: wait["AutoCancel"] = True wait["inviteprotect"] = True wait["AutoKick"] = True wait["Qr"] = True nadya.sendText(msg.to,"All Protect Sudah Aktif Semua") else: nadya.sendText(msg.to,"Khusus Nadya") elif msg.text in ["Allprotect off"]: if msg.from_ in admin: wait["AutoCancel"] = False wait["inviteprotect"] = False wait["AutoKick"] = False wait["Qr"] = False nadya.sendText(msg.to,"All Protect Sudah Di Nonaktifkan Semua") else: nadya.sendText(msg.to,"Khusus Nadya") elif msg.text in ["K on","Contact on"]: wait["Contact"] = True nadya.sendText(msg.to,"Contact Sudah Aktif") elif msg.text in ["K off","Contact off"]: wait["Contact"] = False nadya.sendText(msg.to,"Contact Sudah Di Nonaktifkan") elif msg.text in ["Alwaysread on"]: wait["alwaysRead"] = True nadya.sendText(msg.to,"Always Read Sudah Aktif") elif msg.text in ["Alwaysread off"]: wait["alwaysRead"] = False nadya.sendText(msg.to,"Always Read Sudah Di Nonaktifkan") elif msg.text in ["Sambutan on"]: if wait["Sambutan"] == True: if wait["lang"] == "JP": nadya.sendText(msg.to,"Sambutan Di Aktifkanใƒพ(*ยดโˆ€๏ฝ€*)๏พ‰") else: wait["Sambutan"] = True if wait["lang"] == "JP": nadya.sendText(msg.to,"Sudah Onใƒฝ(ยดโ–ฝ๏ฝ€)/") elif msg.text in ["Sambutan off"]: if wait["Sambutan"] == False: if wait["lang"] == "JP": nadya.sendText(msg.to,"Sambutan Di Nonaktifkan(ใ€€๏ผพโˆ‡๏ผพ)") else: wait["Sambutan"] = False if wait["lang"] == "JP": nadya.sendText(msg.to,"Sudah Off(pโ€ฒ๏ธตโ€ตใ€‚)") elif "Sider on" in msg.text: try: del cctv['point'][msg.to] del cctv['sidermem'][msg.to] del cctv['cyduk'][msg.to] except: pass cctv['point'][msg.to] = msg.id cctv['sidermem'][msg.to] = "" cctv['cyduk'][msg.to]=True wait["Sider"] = True nadya.sendText(msg.to,"Siap On Cek Sider") elif "Sider off" in msg.text: if msg.to in cctv['point']: cctv['cyduk'][msg.to]=False wait["Sider"] = False nadya.sendText(msg.to, "Cek Sider Off") else: nadya.sendText(msg.to, "Heh Belom Di Set") elif msg.text in ["Status"]: md = "" if wait["Sambutan"] == True: md+="โ• โžฉโœ”๏ธ Sambutan : On\n" else:md+="โ• โžฉโŒ Sambutan : Off\n" if wait["AutoJoin"] == True: md+="โ• โžฉโœ”๏ธ Auto Join : On\n" else: md +="โ• โžฉโŒ Auto Join : Off\n" if wait["AutoJoinCancel"] == True: md+="โ• โžฉโœ”๏ธ Auto Join Cancel : On\n" else: md +="โ• โžฉโŒ Auto Join Cancel : Off\n" if wait["Contact"] == True: md+="โ• โžฉโœ”๏ธ Info Contact : On\n" else: md+="โ• โžฉโŒ Info Contact : Off\n" if wait["AutoCancel"] == True:md+="โ• โžฉโœ”๏ธ Auto Cancel : On\n" else: md+= "โ• โžฉโŒ Auto Cancel : Off\n" if wait["inviteprotect"] == True:md+="โ• โžฉโœ”๏ธ Invite Protect : On\n" else: md+= "โ• โžฉโŒ Invite Protect : Off\n" if wait["Qr"] == True: md+="โ• โžฉโœ”๏ธ Qr Protect : On\n" else:md+="โ• โžฉโŒ Qr Protect : Off\n" if wait["AutoKick"] == True: md+="โ• โžฉโœ”๏ธ Auto Kick : On\n" else:md+="โ• โžฉโŒ Auto Kick : Off\n" if wait["alwaysRead"] == True: md+="โ• โžฉโœ”๏ธ Always Read : On\n" else:md+="โ• โžฉโŒ Always Read: Off\n" if wait["detectMention"] == True: md+="โ• โžฉโœ”๏ธ Auto Respon1 : On\n" else:md+="โ• โžฉโŒ Auto Respon1 : Off\n" if wait["detectMention2"] == True: md+="โ• โžฉโœ”๏ธ Auto Respon2 : On\n" else:md+="โ• โžฉโŒ Auto Respon2 : Off\n" if wait["detectMention3"] == True: md+="โ• โžฉโœ”๏ธ Auto Respon3 : On\n" else:md+="โ• โžฉโŒ Auto Respon3 : Off\n" if wait["kickMention"] == True: md+="โ• โžฉโœ”๏ธ Auto Respon Kick : On\n" else:md+="โ• โžฉโŒ Auto Respon Kick : Off\n" if wait["Sider"] == True: md+="โ• โžฉโœ”๏ธ Auto Sider : On\n" else:md+="โ• โžฉโŒ Auto Sider: Off\n" if wait["Simi"] == True: md+="โ• โžฉโœ”๏ธ Simisimi : On\n" else:md+="โ• โžฉโŒ Simisimi: Off\n" nadya.sendText(msg.to,"โ•”โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•\n""โ•‘ โ˜†โ˜ž F R Y A N T S T A T U S โ˜œโ˜†\n""โ• โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•\n"+md+"โ•šโ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•") elif msg.text in ["Gift","gift"]: msg.contentType = 9 msg.contentMetadata={'PRDID': 'a0768339-c2d3-4189-9653-2909e9bb6f58', 'PRDTYPE': 'THEME', 'MSGTPL': '5'} msg.text = None nadya.sendMessage(msg) elif "Gift1 " in msg.text: msg.contentType = 13 nk0 = msg.text.replace("Gift1 ","") nk1 = nk0.lstrip() nk2 = nk1.replace("@","") nk3 = nk2.rstrip() _name = nk3 gs = nadya.getGroup(msg.to) targets = [] for s in gs.members: if _name in s.displayName: targets.append(s.mid) if targets == []: sendMessage(msg.to,"user does not exist") pass else: for target in targets: try: nadya.sendText(msg.to,_name + " Check Your Gift") msg.contentType = 9 msg.contentMetadata= {'PRDTYPE': 'STICKER', 'STKVER': '1', 'MSGTPL': '1', 'STKPKGID': '1380280'} msg.to = target msg.text = None nadya.sendMessage(msg) except: msg.contentMetadata = {'mid': target} elif "Gift2 " in msg.text: msg.contentType = 13 nk0 = msg.text.replace("Gift2 ","") nk1 = nk0.lstrip() nk2 = nk1.replace("@","") nk3 = nk2.rstrip() _name = nk3 gs = nadya.getGroup(msg.to) targets = [] for s in gs.members: if _name in s.displayName: targets.append(s.mid) if targets == []: sendMessage(msg.to,"user does not exist") pass else: for target in targets: try: nadya.sendText(msg.to,_name + " Check Your Gift") msg.contentType = 9 msg.contentMetadata= {'PRDTYPE': 'STICKER', 'STKVER': '1', 'MSGTPL': '2', 'STKPKGID': '1360738'} msg.to = target msg.text = None nadya.sendMessage(msg) except: msg.contentMetadata = {'mid': target} elif "Gift3 " in msg.text: msg.contentType = 13 nk0 = msg.text.replace("Gift3 ","") nk1 = nk0.lstrip() nk2 = nk1.replace("@","") nk3 = nk2.rstrip() _name = nk3 gs = nadya.getGroup(msg.to) targets = [] for s in gs.members: if _name in s.displayName: targets.append(s.mid) if targets == []: sendMessage(msg.to,"user does not exist") pass else: for target in targets: try: nadya.sendText(msg.to,_name + " Check Your Gift") msg.contentType = 9 msg.contentMetadata= {'PRDTYPE': 'STICKER', 'STKVER': '1', 'MSGTPL': '3', 'STKPKGID': '1395389'} msg.to = target msg.text = None nadya.sendMessage(msg) except: msg.contentMetadata = {'mid': target} elif "Gift4 " in msg.text: msg.contentType = 13 nk0 = msg.text.replace("Gift4 ","") nk1 = nk0.lstrip() nk2 = nk1.replace("@","") nk3 = nk2.rstrip() _name = nk3 gs = nadya.getGroup(msg.to) targets = [] for s in gs.members: if _name in s.displayName: targets.append(s.mid) if targets == []: sendMessage(msg.to,"user does not exist") pass else: for target in targets: try: nadya.sendText(msg.to,_name + " Check Your Gift") msg.contentType = 9 msg.contentMetadata= {'PRDTYPE': 'STICKER', 'STKVER': '1', 'MSGTPL': '4', 'STKPKGID': '1329191'} msg.to = target msg.text = None nadya.sendMessage(msg) except: msg.contentMetadata = {'mid': target} elif "Gift5 " in msg.text: msg.contentType = 13 nk0 = msg.text.replace("Gift5 ","") nk1 = nk0.lstrip() nk2 = nk1.replace("@","") nk3 = nk2.rstrip() _name = nk3 gs = nadya.getGroup(msg.to) targets = [] for s in gs.members: if _name in s.displayName: targets.append(s.mid) if targets == []: sendMessage(msg.to,"user does not exist") pass else: for target in targets: try: nadya.sendText(msg.to,_name + " Check Your Gift") msg.contentType = 9 msg.contentMetadata= {'PRDTYPE': 'STICKER', 'STKVER': '1', 'MSGTPL': '1', 'STKPKGID': '9057'} msg.to = target msg.text = None nadya.sendMessage(msg) except: msg.contentMetadata = {'mid': target} elif "Gift6 " in msg.text: msg.contentType = 13 nk0 = msg.text.replace("Gift6 ","") nk1 = nk0.lstrip() nk2 = nk1.replace("@","") nk3 = nk2.rstrip() _name = nk3 gs = nadya.getGroup(msg.to) targets = [] for s in gs.members: if _name in s.displayName: targets.append(s.mid) if targets == []: sendMessage(msg.to,"user does not exist") pass else: for target in targets: try: nadya.sendText(msg.to,_name + " Check Your Gift") msg.contentType = 9 msg.contentMetadata= {'PRDTYPE': 'STICKER', 'STKVER': '1', 'MSGTPL': '2', 'STKPKGID': '9167'} msg.to = target msg.text = None nadya.sendMessage(msg) except: msg.contentMetadata = {'mid': target} elif "Gift7 " in msg.text: msg.contentType = 13 nk0 = msg.text.replace("Gift7 ","") nk1 = nk0.lstrip() nk2 = nk1.replace("@","") nk3 = nk2.rstrip() _name = nk3 gs = nadya.getGroup(msg.to) targets = [] for s in gs.members: if _name in s.displayName: targets.append(s.mid) if targets == []: sendMessage(msg.to,"user does not exist") pass else: for target in targets: try: nadya.sendText(msg.to,_name + " Check Your Gift") msg.contentType = 9 msg.contentMetadata= {'PRDTYPE': 'STICKER', 'STKVER': '1', 'MSGTPL': '3', 'STKPKGID': '7334'} msg.to = target msg.text = None nadya.sendMessage(msg) except: msg.contentMetadata = {'mid': target} elif "Gift8 " in msg.text: msg.contentType = 13 nk0 = msg.text.replace("Gift8 ","") nk1 = nk0.lstrip() nk2 = nk1.replace("@","") nk3 = nk2.rstrip() _name = nk3 gs = nadya.getGroup(msg.to) targets = [] for s in gs.members: if _name in s.displayName: targets.append(s.mid) if targets == []: sendMessage(msg.to,"user does not exist") pass else: for target in targets: try: nadya.sendText(msg.to,_name + " Check Your Gift") msg.contentType = 9 msg.contentMetadata= {'PRDTYPE': 'STICKER', 'STKVER': '1', 'MSGTPL': '1', 'STKPKGID': '1380280'} msg.to = target msg.text = None nadya.sendMessage(msg) except: msg.contentMetadata = {'mid': target} elif "Gift9 " in msg.text: msg.contentType = 13 nk0 = msg.text.replace("Gift9 ","") nk1 = nk0.lstrip() nk2 = nk1.replace("@","") nk3 = nk2.rstrip() _name = nk3 gs = nadya.getGroup(msg.to) targets = [] for s in gs.members: if _name in s.displayName: targets.append(s.mid) if targets == []: sendMessage(msg.to,"user does not exist") pass else: for target in targets: try: nadya.sendText(msg.to,_name + " Check Your Gift") msg.contentType = 9 msg.contentMetadata= {'PRDTYPE': 'STICKER', 'STKVER': '1', 'MSGTPL': '4', 'STKPKGID': '1405277'} msg.to = target msg.text = None nadya.sendMessage(msg) except: msg.contentMetadata = {'mid': target} elif "Gift10 " in msg.text: msg.contentType = 13 nk0 = msg.text.replace("Gift10 ","") nk1 = nk0.lstrip() nk2 = nk1.replace("@","") nk3 = nk2.rstrip() _name = nk3 gs = nadya.getGroup(msg.to) targets = [] for s in gs.members: if _name in s.displayName: targets.append(s.mid) if targets == []: sendMessage(msg.to,"user does not exist") pass else: for target in targets: try: nadya.sendText(msg.to,_name + " Check Your Gift") msg.contentType = 9 msg.contentMetadata= {'PRDTYPE': 'STICKER', 'STKVER': '1', 'MSGTPL': '1', 'STKPKGID': '1296261'} msg.to = target msg.text = None nadya.sendMessage(msg) except: msg.contentMetadata = {'mid': target} elif msg.text.lower() in ["wkwkwk","wkwk","hahaha","haha"]: msg.contentType = 7 msg.contentMetadata={'STKID': '100', 'STKPKGID': '1', 'STKVER': '100'} msg.text = None nadya.sendMessage(msg) elif msg.text.lower() in ["hehehe","hehe"]: msg.contentType = 7 msg.contentMetadata={'STKID': '10', 'STKPKGID': '1', 'STKVER': '100'} msg.text = None nadya.sendMessage(msg) elif msg.text.lower() in ["galau"]: msg.contentType = 7 msg.contentMetadata={'STKID': '9', 'STKPKGID': '1', 'STKVER': '100'} msg.text = None nadya.sendMessage(msg) elif msg.text.lower() in ["you","kau","kamu"]: msg.contentType = 7 msg.contentMetadata={'STKID': '7', 'STKPKGID': '1', 'STKVER': '100'} msg.text = None nadya.sendMessage(msg) elif msg.text.lower() in ["marah","hadeuh","hadeh"]: msg.contentType = 7 msg.contentMetadata={'STKID': '6', 'STKPKGID': '1', 'STKVER': '100'} msg.text = None nadya.sendMessage(msg) elif msg.text.lower() in ["please","pliss","mohon","tolong"]: msg.contentType = 7 msg.contentMetadata={'STKID': '4', 'STKPKGID': '1', 'STKVER': '100'} msg.text = None nadya.sendMessage(msg) elif msg.text.lower() in ["haa","haaa","kaget"]: msg.contentType = 7 msg.contentMetadata={'STKID': '3', 'STKPKGID': '1', 'STKVER': '100'} msg.text = None nadya.sendMessage(msg) elif msg.text.lower() in ["lucu","ngakak","lol"]: msg.contentType = 7 msg.contentMetadata={'STKID': '110', 'STKPKGID': '1', 'STKVER': '100'} msg.text = None nadya.sendMessage(msg) elif msg.text.lower() in ["hmm","hmmm"]: msg.contentType = 7 msg.contentMetadata={'STKID': '101', 'STKPKGID': '1', 'STKVER': '100'} msg.text = None nadya.sendMessage(msg) elif msg.text.lower() in ["tidur"]: msg.contentType = 7 msg.contentMetadata={'STKID': '1', 'STKPKGID': '1', 'STKVER': '100'} msg.text = None nadya.sendMessage(msg) elif msg.text.lower() in ["gemes"]: msg.contentType = 7 msg.contentMetadata={'STKID': '2', 'STKPKGID': '1', 'STKVER': '100'} msg.text = None nadya.sendMessage(msg) elif msg.text.lower() in ["cantik","imut"]: msg.contentType = 7 msg.contentMetadata={'STKID': '5', 'STKPKGID': '1', 'STKVER': '100'} msg.text = None nadya.sendMessage(msg) elif msg.text.lower() in ["nyanyi","lalala"]: msg.contentType = 7 msg.contentMetadata={'STKID': '11', 'STKPKGID': '1', 'STKVER': '100'} msg.text = None nadya.sendMessage(msg) elif msg.text.lower() in ["gugup"]: msg.contentType = 7 msg.contentMetadata={'STKID': '8', 'STKPKGID': '1', 'STKVER': '100'} msg.text = None nadya.sendMessage(msg) elif msg.text.lower() in ["ok","oke","okay","oce","okee","sip","siph"]: msg.contentType = 7 msg.contentMetadata={'STKID': '13', 'STKPKGID': '1', 'STKVER': '100'} msg.text = None nadya.sendMessage(msg) elif msg.text.lower() in ["mantab","mantap","nice","keren"]: msg.contentType = 7 msg.contentMetadata={'STKID': '14', 'STKPKGID': '1', 'STKVER': '100'} msg.text = None nadya.sendMessage(msg) elif msg.text.lower() in ["ngejek"]: msg.contentType = 7 msg.contentMetadata={'STKID': '15', 'STKPKGID': '1', 'STKVER': '100'} msg.text = None nadya.sendMessage(msg) elif msg.text.lower() in ["nangis","sedih"]: msg.contentType = 7 msg.contentMetadata={'STKID': '16', 'STKPKGID': '1', 'STKVER': '100'} msg.text = None nadya.sendMessage(msg) elif msg.text.lower() in ["woi","kampret"]: msg.contentType = 7 msg.contentMetadata={'STKID': '102', 'STKPKGID': '1', 'STKVER': '100'} msg.text = None nadya.sendMessage(msg) elif msg.text.lower() in ["huft"]: msg.contentType = 7 msg.contentMetadata={'STKID': '104', 'STKPKGID': '1', 'STKVER': '100'} msg.text = None nadya.sendMessage(msg) elif "tag all" == msg.text.lower(): group = nadya.getGroup(msg.to) nama = [contact.mid for contact in group.members] nm1, nm2, nm3, nm4, nm5, jml = [], [], [], [], [], len(nama) if jml <= 100: summon(msg.to, nama) if jml > 100 and jml < 200: for i in range(0, 99): nm1 += [nama[i]] summon(msg.to, nm1) for j in range(100, len(nama)-1): nm2 += [nama[j]] summon(msg.to, nm2) if jml > 200 and jml < 300: for i in range(0, 99): nm1 += [nama[i]] summon(msg.to, nm1) for j in range(100, 199): nm2 += [nama[j]] summon(msg.to, nm2) for k in range(200, len(nama)-1): nm3 += [nama[k]] summon(msg.to, nm3) if jml > 300 and jml < 400: for i in range(0, 99): nm1 += [nama[i]] summon(msg.to, nm1) for j in range(100, 199): nm2 += [nama[j]] summon(msg.to, nm2) for k in range(200, 299): nm3 += [nama[k]] summon(msg.to, nm3) for l in range(300, len(nama)-1): nm4 += [nama[l]] summon(msg.to, nm4) if jml > 400 and jml < 500: for i in range(0, 99): nm1 += [nama[i]] summon(msg.to, nm1) for j in range(100, 199): nm2 += [nama[j]] summon(msg.to, nm2) for k in range(200, 299): nm3 += [nama[k]] summon(msg.to, nm3) for l in range(300, 399): nm4 += [nama[l]] summon(msg.to, nm4) for m in range(400, len(nama)-1): nm5 += [nama[m]] summon(msg.to, nm5) if jml > 500: print "Terlalu Banyak Men 500+" cnt = Message() cnt.text = "Jumlah:\n" + str(jml) + " Members" cnt.to = msg.to nadya.sendMessage(cnt) elif "tagall" == msg.text.lower(): group = nadya.getGroup(msg.to) nama = [contact.mid for contact in group.members] nm1, nm2, nm3, nm4, nm5, jml = [], [], [], [], [], len(nama) if jml <= 100: summon(msg.to, nama) if jml > 100 and jml < 200: for i in range(0, 99): nm1 += [nama[i]] summon(msg.to, nm1) for j in range(100, len(nama)-1): nm2 += [nama[j]] summon(msg.to, nm2) if jml > 200 and jml < 300: for i in range(0, 99): nm1 += [nama[i]] summon(msg.to, nm1) for j in range(100, 199): nm2 += [nama[j]] summon(msg.to, nm2) for k in range(200, len(nama)-1): nm3 += [nama[k]] summon(msg.to, nm3) if jml > 300 and jml < 400: for i in range(0, 99): nm1 += [nama[i]] summon(msg.to, nm1) for j in range(100, 199): nm2 += [nama[j]] summon(msg.to, nm2) for k in range(200, 299): nm3 += [nama[k]] summon(msg.to, nm3) for l in range(300, len(nama)-1): nm4 += [nama[l]] summon(msg.to, nm4) if jml > 400 and jml < 500: for i in range(0, 99): nm1 += [nama[i]] summon(msg.to, nm1) for j in range(100, 199): nm2 += [nama[j]] summon(msg.to, nm2) for k in range(200, 299): nm3 += [nama[k]] summon(msg.to, nm3) for l in range(300, 399): nm4 += [nama[l]] summon(msg.to, nm4) for m in range(400, len(nama)-1): nm5 += [nama[m]] summon(msg.to, nm5) if jml > 500: print "Terlalu Banyak Men 500+" cnt = Message() cnt.text = "Jumlah:\n" + str(jml) + " Members" cnt.to = msg.to nadya.sendMessage(cnt) elif msg.text in ["Setview","Setpoint","Cctv"]: subprocess.Popen("echo '' > dataSeen/"+msg.to+".txt", shell=True, stdout=subprocess.PIPE) nadya.sendText(msg.to, "โ˜†Checkpoint Checkedโ˜†") print "Setview" elif msg.text in ["Viewseen","Check","Ciduk","Cyduk"]: lurkGroup = "" dataResult, timeSeen, contacts, userList, timelist, recheckData = [], [], [], [], [], [] with open('dataSeen/'+msg.to+'.txt','r') as rr: contactArr = rr.readlines() for v in xrange(len(contactArr) -1,0,-1): num = re.sub(r'\n', "", contactArr[v]) contacts.append(num) pass contacts = list(set(contacts)) for z in range(len(contacts)): arg = contacts[z].split('|') userList.append(arg[0]) timelist.append(arg[1]) uL = list(set(userList)) for ll in range(len(uL)): try: getIndexUser = userList.index(uL[ll]) timeSeen.append(time.strftime("%H:%M:%S", time.localtime(int(timelist[getIndexUser]) / 1000))) recheckData.append(userList[getIndexUser]) except IndexError: conName.append('nones') pass contactId = nadya.getContacts(recheckData) for v in range(len(recheckData)): dataResult.append(contactId[v].displayName + ' ('+timeSeen[v]+')') pass if len(dataResult) > 0: tukang = "โ•”โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•\nโ•‘ โ˜†โ˜ž LIST VIEWERS โ˜œโ˜†\nโ• โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•\nโ• โžฉ" grp = '\nโ• โžฉ '.join(str(f) for f in dataResult) total = '\nโ• โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•\nโ• โžฉ Total %i Viewers (%s)' % (len(dataResult), datetime.now().strftime('%H:%M:%S')) + "\nโ•šโ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•" nadya.sendText(msg.to, "%s %s %s" % (tukang, grp, total)) subprocess.Popen("echo '' > dataSeen/"+msg.to+".txt", shell=True, stdout=subprocess.PIPE) nadya.sendText(msg.to, "โ˜†Auto Checkpointโ˜†") else: nadya.sendText(msg.to, "โ˜†Belum Ada Viewersโ˜†") print "Viewseen" elif "Kick " in msg.text: if msg.from_ in admin: if 'MENTION' in msg.contentMetadata.keys()!= None: names = re.findall(r'@(\w+)', msg.text) mention = ast.literal_eval(msg.contentMetadata['MENTION']) mentionees = mention['MENTIONEES'] print mentionees for mention in mentionees: nadya.kickoutFromGroup(msg.to,[mention['M']]) elif "Set member: " in msg.text: if msg.from_ in admin: jml = msg.text.replace("Set member: ","") wait["Members"] = int(jml) nadya.sendText(msg.to, "Jumlah minimal member telah di set : "+jml) elif "Add all" in msg.text: thisgroup = nadya.getGroups([msg.to]) Mids = [contact.mid for contact in thisgroup[0].members] mi_d = Mids[:33] nadya.findAndAddContactsByMids(mi_d) nadya.sendText(msg.to,"Success Add all") elif msg.text in ["Invite"]: wait["invite"] = True nadya.sendText(msg.to,"Send Contact") elif msg.text in ["Auto like"]: wait["likeOn"] = True nadya.sendText(msg.to,"Shere Post Kamu Yang Mau Di Like!") elif msg.text in ["Steal contact"]: wait["steal"] = True nadya.sendText(msg.to,"Send Contact") elif msg.text in ["Giftbycontact"]: wait["gift"] = True nadya.sendText(msg.to,"Send Contact") elif msg.text in ["Copycontact"]: wait["copy"] = True nadya.sendText(msg.to,"Send Contact") elif msg.text in ["Sticker on"]: wait["sticker"] = True nadya.sendText(msg.to,"Sticker ID Detect Already On.") elif msg.text in ["Bot off"]: wait["Bot"] = False nadya.sendText(msg.to,"Bot Sudah Di Nonaktifkan.") elif "Recover" in msg.text: thisgroup = nadya.getGroups([msg.to]) Mids = [contact.mid for contact in thisgroup[0].members] mi_d = Mids[:33] nadya.createGroup("Recover", mi_d) nadya.sendText(msg.to,"Success recover") elif ("Gn: " in msg.text): if msg.toType == 2: X = nadya.getGroup(msg.to) X.name = msg.text.replace("Gn: ","") nadya.updateGroup(X) else: nadya.sendText(msg.to,"It can't be used besides the group.") elif "Kick: " in msg.text: midd = msg.text.replace("Kick: ","") if midd not in admin: nadya.kickoutFromGroup(msg.to,[midd]) else: nadya.sendText(msg.to,"Admin Detected") elif "Invite: " in msg.text: midd = msg.text.replace("Invite: ","") nadya.findAndAddContactsByMid(midd) nadya.inviteIntoGroup(msg.to,[midd]) elif "Invite creator" in msg.text: midd = "u14f64e139a3817afaabe27d237afb36b" nadya.inviteIntoGroup(msg.to,[midd]) elif msg.text in ["Welcome","welcome","Welkam","welkam","Wc","wc"]: gs = nadya.getGroup(msg.to) nadya.sendText(msg.to,"Selamat Datang Di "+ gs.name) msg.contentType = 7 msg.contentMetadata={'STKID': '247', 'STKPKGID': '3', 'STKVER': '100'} msg.text = None nadya.sendMessage(msg) elif "Bc: " in msg.text: bc = msg.text.replace("Bc: ","") gid = nadya.getGroupIdsJoined() if msg.from_ in Creator: for i in gid: nadya.sendText(i,"=======[BROADCAST]=======\n\n"+bc+"\n\nContact Me : line.me/ti/p/~nad_nad.") nadya.sendText(msg.to,"Success BC BosQ") else: nadya.sendText(msg.to,"Khusus Admin") elif msg.text in ["Cancel"]: gid = nadya.getGroupIdsInvited() for i in gid: nadya.rejectGroupInvitation(i) nadya.sendText(msg.to,"All invitations have been refused") elif msg.text in ["Gurl"]: if msg.toType == 2: x = nadya.getGroup(msg.to) if x.preventJoinByTicket == True: x.preventJoinByTicket = False nadya.updateGroup(x) gurl = nadya.reissueGroupTicket(msg.to) nadya.sendText(msg.to,"line://ti/g/" + gurl) else: if wait["lang"] == "JP": nadya.sendText(msg.to,"Can't be used outside the group") else: nadya.sendText(msg.to,"Not for use less than group") elif msg.text in ["timeline"]: try: url = nadya.activity(limit=5) nadya.sendText(msg.to,url['result']['posts'][0]['postInfo']['postId']) except Exception as E: print E elif msg.text in ["@bye","@Bye"]: nadya.leaveGroup(msg.to) elif msg.text in ["Absen"]: nadya.sendText(msg.to,"Hadir!!") elif msg.text.lower() in ["respon"]: nadya.sendText(msg.to,responsename) elif msg.text in ["Sp","Speed","speed"]: start = time.time() print("Speed") elapsed_time = time.time() - start nadya.sendText(msg.to, "Progress...") nadya.sendText(msg.to, "%sseconds" % (elapsed_time)) elif msg.text in ["Speed test"]: start = time.time() nadya.sendText(msg.to, "Progress...") elapsed_time = time.time() - start nadya.sendText(msg.to, "%sseconds" % (elapsed_time)) elif msg.text in ["Ban"]: if msg.from_ in admin: wait["wblacklist"] = True nadya.sendText(msg.to,"send contact") elif msg.text in ["Unban"]: if msg.from_ in admin: wait["dblacklist"] = True nadya.sendText(msg.to,"send contact") elif "Ban @" in msg.text: if msg.from_ in admin: if msg.toType == 2: print "@Ban by mention" _name = msg.text.replace("Ban @","") _nametarget = _name.rstrip(' ') gs = nadya.getGroup(msg.to) targets = [] for g in gs.members: if _nametarget == g.displayName: targets.append(g.mid) if targets == []: nadya.sendText(msg.to,"Not found") else: for target in targets: if target not in admin: try: wait["blacklist"][target] = True f=codecs.open('st2__b.json','w','utf-8') json.dump(wait["blacklist"], f, sort_keys=True, indent=4,ensure_ascii=False) nadya.sendText(msg.to,"Succes BosQ") except: nadya.sendText(msg.to,"Error") else: nadya.sendText(msg.to,"Admin Detected~") elif msg.text in ["Banlist","Ban list"]: if msg.from_ in admin: if wait["blacklist"] == {}: nadya.sendText(msg.to,"Tidak Ada") else: mc = "" for mi_d in wait["blacklist"]: mc += "->" +nadya.getContact(mi_d).displayName + "\n" nadya.sendText(msg.to,"===[Blacklist User]===\n"+mc) elif "Unban @" in msg.text: if msg.toType == 2: print "@Unban by mention" if msg.from_ in admin: _name = msg.text.replace("Unban @","") _nametarget = _name.rstrip(' ') gs = nadya.getGroup(msg.to) targets = [] for g in gs.members: if _nametarget == g.displayName: targets.append(g.mid) if targets == []: nadya.sendText(msg.to,"Not found") else: for target in targets: try: del wait["blacklist"][target] f=codecs.open('st2__b.json','w','utf-8') json.dump(wait["blacklist"], f, sort_keys=True, indent=4,ensure_ascii=False) nadya.sendText(msg.to,"Succes BosQ") except: nadya.sendText(msg.to,"Succes BosQ") elif msg.text.lower() == 'clear ban': if msg.from_ in admin: wait["blacklist"] = {} nadya.sendText(msg.to,"ใƒฝ( ^ฯ‰^)๏พ‰โ”” โ‰Unbanned All Successโ‰ โ”") elif msg.text in ["Kill ban"]: if msg.from_ in admin: if msg.toType == 2: group = nadya.getGroup(msg.to) gMembMids = [contact.mid for contact in group.members] matched_list = [] for tag in wait["blacklist"]: matched_list+=filter(lambda str: str == tag, gMembMids) if matched_list == []: nadya.sendText(msg.to,"There was no blacklist user") return for jj in matched_list: nadya.kickoutFromGroup(msg.to,[jj]) nadya.sendText(msg.to,"Blacklist emang pantas tuk di usir") else: nadya.sendText(msg.to, "Khusus creator") elif msg.text in ["Kill"]: if msg.toType == 2: if msg.from_ in admin: group = nadya.getGroup(msg.to) gMembMids = [contact.mid for contact in group.members] matched_list = [] for tag in wait["blacklist"]: matched_list+=filter(lambda str: str == tag, gMembMids) if matched_list == []: nadya.sendText(msg.to,"Fuck You") return for jj in matched_list: try: nadya.kickoutFromGroup(msg.to,[jj]) print (msg.to,[jj]) except: pass elif "Kickall" == msg.text: if msg.from_ in Creator: if msg.toType == 2: print "Kick all member" _name = msg.text.replace("Kickall","") gs = nadya.getGroup(msg.to) nadya.sendText(msg.to,"Dadaaah~") targets = [] for g in gs.members: if _name in g.displayName: targets.append(g.mid) if targets == []: nadya.sendText(msg.to,"Not found.") else: for target in targets: if target not in admin: try: nadya.kickoutFromGroup(msg.to,[target]) print (msg.to,[g.mid]) except Exception as e: nadya.sendText(msg.to,str(e)) nadya.inviteIntoGroup(msg.to, targets) elif msg.text in ["Bot restart","Reboot"]: if msg.from_ in Creator: nadya.sendText(msg.to, "Bot Has Been Restarted...") restart_program() print "@Restart" else: nadya.sendText(msg.to, "No Access") elif msg.text in ["Turn off"]: if msg.from_ in Creator: try: import sys sys.exit() except: pass elif 'Crash' in msg.text: if msg.from_ in Creator: msg.contentType = 13 msg.contentMetadata = {'mid': "NADYA,'"} nadya.sendMessage(msg) elif "Mycopy @" in msg.text: print "[COPY] Ok" _name = msg.text.replace("Mycopy @","") _nametarget = _name.rstrip(' ') gs = nadya.getGroup(msg.to) targets = [] for g in gs.members: if _nametarget == g.displayName: targets.append(g.mid) if targets == []: nadya.sendText(msg.to, "Not Found...") else: for target in targets: try: nadya.CloneContactProfile(target) nadya.sendText(msg.to, "Copied (^_^)") except Exception as e: print e elif msg.text in ["Mybackup"]: try: nadya.updateDisplayPicture(backup1.pictureStatus) nadya.updateProfile(backup1) nadya.sendText(msg.to, "Done (^_^)") except Exception as e: nadya.sendText(msg.to, str(e)) elif "/musik " in msg.text: songname = msg.text.replace("/musik ","") params = {"songname": songname} r = requests.get('http://ide.fdlrcn.com/workspace/yumi-apis/joox?' + urllib.urlencode(params)) data = r.text data = json.loads(data) for song in data: abc = song[3].replace('https://','http://') nadya.sendText(msg.to, "Title : " + song[0] + "\nLength : " + song[1] + "\nLink download : " + song[4]) nadya.sendText(msg.to, "Lagu " + song[0] + "\nSedang Di Prosses... Tunggu Sebentar ^_^ ") nadya.sendAudioWithURL(msg.to,abc) nadya.sendText(msg.to, "Selamat Mendengarkan Lagu " + song[0]) elif '/lirik ' in msg.text.lower(): try: songname = msg.text.lower().replace('/lirik ','') params = {'songname': songname} r = requests.get('http://ide.fdlrcn.com/workspace/yumi-apis/joox?' + urllib.urlencode(params)) data = r.text data = json.loads(data) for song in data: hasil = 'Lyric Lagu (' hasil += song[0] hasil += ')\n\n' hasil += song[5] nadya.sendText(msg.to, hasil) except Exception as wak: nadya.sendText(msg.to, str(wak)) elif "/musrik " in msg.text: songname = msg.text.replace("/musrik ","") params = {"songname": songname} r = requests.get('http://ide.fdlrcn.com/workspace/yumi-apis/joox?' + urllib.urlencode(params)) data = r.text data = json.loads(data) for song in data: abc = song[3].replace('https://','http://') hasil = 'Lyric Lagu (' hasil += song[0] hasil += ')\n\n' hasil += song[5] nadya.sendText(msg.to, "Lagu " + song[0] + "\nSedang Di Prosses... Tunggu Sebentar ^_^ ") nadya.sendAudioWithURL(msg.to,abc) nadya.sendText(msg.to, "Title : " + song[0] + "\nLength : " + song[1] + "\nLink download : " + song[4] +"\n\n" + hasil) nadya.sendText(msg.to, "Selamat Mendengarkan Lagu " + song[0]) elif "Fancytext: " in msg.text: txt = msg.text.replace("Fancytext: ", "") nadya.kedapkedip(msg.to,txt) print "[Command] Kedapkedip" elif "cover @" in msg.text: if msg.toType == 2: cover = msg.text.replace("cover @","") _nametarget = cover.rstrip(' ') gs = nadya.getGroup(msg.to) targets = [] for g in gs.members: if _nametarget == g.displayName: targets.append(g.mid) if targets == []: nadya.sendText(msg.to,"Not found") else: for target in targets: try: h = nadya.channel.getHome(target) objId = h["result"]["homeInfo"]["objectId"] nadya.sendImageWithURL(msg.to,"http://dl.profile.line-cdn.net/myhome/c/download.nhn?userid=" + target + "&oid=" + objId) except Exception as error: print error nadya.sendText(msg.to,"Upload image failed.") elif "Cover @" in msg.text: if msg.toType == 2: cover = msg.text.replace("Cover @","") _nametarget = cover.rstrip(' ') gs = nadya.getGroup(msg.to) targets = [] for g in gs.members: if _nametarget == g.displayName: targets.append(g.mid) if targets == []: nadya.sendText(msg.to,"Not found") else: for target in targets: try: h = nadya.channel.getHome(target) objId = h["result"]["homeInfo"]["objectId"] nadya.sendImageWithURL(msg.to,"http://dl.profile.line-cdn.net/myhome/c/download.nhn?userid=" + target + "&oid=" + objId) except Exception as error: print error nadya.sendText(msg.to,"Upload image failed.") elif "Cpp" in msg.text: if msg.from_ in admin: path = "nadya.jpg" nadya.sendText(msg.to,"Update PP :") nadya.sendImage(msg.to,path) nadya.updateProfilePicture(path) elif "pp @" in msg.text: if msg.toType == 2: cover = msg.text.replace("pp @","") _nametarget = cover.rstrip(' ') gs = nadya.getGroup(msg.to) targets = [] for g in gs.members: if _nametarget == g.displayName: targets.append(g.mid) if targets == []: nadya.sendText(msg.to,"Not found") else: for target in targets: try: h = nadya.getContact(target) nadya.sendImageWithURL(msg.to,"http://dl.profile.line-cdn.net/" + h.pictureStatus) except Exception as error: print error nadya.sendText(msg.to,"Upload image failed.") elif "Pp @" in msg.text: if msg.toType == 2: cover = msg.text.replace("Pp @","") _nametarget = cover.rstrip(' ') gs = nadya.getGroup(msg.to) targets = [] for g in gs.members: if _nametarget == g.displayName: targets.append(g.mid) if targets == []: nadya.sendText(msg.to,"Not found") else: for target in targets: try: h = nadya.getContact(target) nadya.sendImageWithURL(msg.to,"http://dl.profile.line-cdn.net/" + h.pictureStatus) except Exception as error: print error nadya.sendText(msg.to,"Upload image failed.") elif msg.text.lower() in ["pap owner","pap creator"]: link = ["http://dl.profile.line-cdn.net/0hNPsZWL9WEX9OIz0lhyFuKHJmHxI5DRc3NkJaETwkRklqGwQoJkNbTGklHRo2G1B7cxFXH2NxSU03"] pilih = random.choice(link) nadya.sendImageWithURL(msg.to,pilih) elif "Spam: " in msg.text: bctxt = msg.text.replace("Spam: ", "") t = 10 while(t): nadya.sendText(msg.to, (bctxt)) t-=1 elif "Scbc " in msg.text: bctxt = msg.text.replace("Scbc ", "") orang = nadya.getAllContactIds() t = 20 for manusia in orang: while(t): nadya.sendText(manusia, (bctxt)) t-=1 elif "Cbc " in msg.text: broadcasttxt = msg.text.replace("Cbc ", "") orang = nadya.getAllContactIds() for manusia in orang: nadya.sendText(manusia, (broadcasttxt)) elif '/ig ' in msg.text.lower(): try: instagram = msg.text.lower().replace("/ig ","") html = requests.get('https://www.instagram.com/' + instagram + '/?') soup = BeautifulSoup(html.text, 'html.parser') data = soup.find_all('meta', attrs={'property':'og:description'}) text = data[0].get('content').split() data1 = soup.find_all('meta', attrs={'property':'og:image'}) text1 = data1[0].get('content').split() tj = text1[0].replace("s150x150/","") user = "Name: " + text[-2] + "\n" user1 = "Username: " + text[-1] + "\n" followers = "Followers: " + text[0] + "\n" following = "Following: " + text[2] + "\n" post = "Post: " + text[4] + "\n" link = "Link: " + "https://www.instagram.com/" + instagram detail = "========INSTAGRAM INFO ========\n" details = "\n========INSTAGRAM INFO ========" nadya.sendText(msg.to, detail + user + user1 + followers + following + post + link + details) nadya.sendImageWithURL(msg.to, tj) except Exception as njer: nadya.sendText(msg.to, str(njer)) elif "Checkig " in msg.text: separate = msg.text.split(" ") user = msg.text.replace(separate[0] + " ","") if user.startswith("@"): user = user.replace("@","") profile = "https://www.instagram.com/" + user with requests.session() as x: x.headers['user-agent'] = 'Mozilla/5.0' end_cursor = '' for count in range(1, 999): print('PAGE: ', count) r = x.get(profile, params={'max_id': end_cursor}) data = re.search(r'window._sharedData = (\{.+?});</script>', r.text).group(1) j = json.loads(data) for node in j['entry_data']['ProfilePage'][0]['user']['media']['nodes']: if node['is_video']: page = 'https://www.instagram.com/p/' + node['code'] r = x.get(page) url = re.search(r'"video_url": "([^"]+)"', r.text).group(1) print(url) nadya.sendVideoWithURL(msg.to,url) else: print (node['display_src']) nadya.sendImageWithURL(msg.to,node['display_src']) end_cursor = re.search(r'"end_cursor": "([^"]+)"', r.text).group(1) elif 'Youtubelink: ' in msg.text: try: textToSearch = (msg.text).replace('Youtube ', "").strip() query = urllib.quote(textToSearch) url = "https://www.youtube.com/results?search_query=" + query response = urllib2.urlopen(url) html = response.read() soup = BeautifulSoup(html, "html.parser") results = soup.find(attrs={'class':'yt-uix-tile-link'}) nadya.sendText(msg.to,'https://www.youtube.com' + results['href']) except: nadya.sendText(msg.to,"Could not find it") elif 'Youtubevideo: ' in msg.text: try: textToSearch = (msg.text).replace('Youtubevideo: ', "").strip() query = urllib.quote(textToSearch) url = "https://www.youtube.com/results?search_query=" + query response = urllib2.urlopen(url) html = response.read() soup = BeautifulSoup(html, "html.parser") results = soup.find(attrs={'class': 'yt-uix-tile-link'}) nadya.sendVideoWithURL(msg.to,'https://www.youtube.com' + results['href']) except: nadya.sendText(msg.to, "Could not find it") elif "Say-id " in msg.text: say = msg.text.replace("Say-id ","") lang = 'id' tts = gTTS(text=say, lang=lang) tts.save("hasil.mp3") nadya.sendAudio(msg.to,"hasil.mp3") elif "Say-en " in msg.text: say = msg.text.replace("Say-en ","") lang = 'en' tts = gTTS(text=say, lang=lang) tts.save("hasil.mp3") nadya.sendAudio(msg.to,"hasil.mp3") elif "Say-jp " in msg.text: say = msg.text.replace("Say-jp ","") lang = 'ja' tts = gTTS(text=say, lang=lang) tts.save("hasil.mp3") nadya.sendAudio(msg.to,"hasil.mp3") elif "Say welcome" in msg.text: gs = nadya.getGroup(msg.to) say = msg.text.replace("Say welcome","Selamat Datang Di "+ gs.name) lang = 'id' tts = gTTS(text=say, lang=lang) tts.save("hasil.mp3") nadya.sendAudio(msg.to,"hasil.mp3") elif msg.text.lower() in ["hi","hai","halo","hallo"]: beb = "Hi Sayang ๐Ÿ˜˜ " +nadya.getContact(msg.from_).displayName + " ๔€ธ‚๔€†‡starry heart๔ฟฟ" nadya.sendText(msg.to,beb) elif "playstore " in msg.text.lower(): tob = msg.text.lower().replace("playstore ","") nadya.sendText(msg.to,"Sedang Mencari...") nadya.sendText(msg.to,"Title : "+tob+"\nSource : Google Play\nLink : https://play.google.com/store/search?q=" + tob) nadya.sendText(msg.to,"Tuh Linknya Kak (^_^)") elif "Mid @" in msg.text: _name = msg.text.replace("Mid @","") _nametarget = _name.rstrip(' ') gs = nadya.getGroup(msg.to) for g in gs.members: if _nametarget == g.displayName: nadya.sendText(msg.to, g.mid) else: pass elif "Mybio " in msg.text: string = msg.text.replace("Mybio ","") if len(string.decode('utf-8')) <= 500: profile = nadya.getProfile() profile.statusMessage = string nadya.updateProfile(profile) nadya.sendText(msg.to,"Done") elif "Myname " in msg.text: if msg.from_ in Creator: string = msg.text.replace("Myname ","") if len(string.decode('utf-8')) <= 5000: profile = nadya.getProfile() profile.displayName = string nadya.updateProfile(profile) nadya.sendText(msg.to,"Done") elif msg.text.lower() in ["mymid","myid"]: middd = "Name : " +nadya.getContact(msg.from_).displayName + "\nMid : " +msg.from_ nadya.sendText(msg.to,middd) elif msg.text.lower() in ["me"]: msg.contentType = 13 msg.contentMetadata = {'mid': msg.from_} nadya.sendMessage(msg) elif "/apakah " in msg.text: apk = msg.text.replace("/apakah ","") rnd = ["Ya","Tidak","Bisa Jadi","Mungkin"] p = random.choice(rnd) lang = 'id' tts = gTTS(text=p, lang=lang) tts.save("hasil.mp3") nadya.sendAudio(msg.to,"hasil.mp3") elif "/hari " in msg.text: apk = msg.text.replace("/hari ","") rnd = ["Senin","Selasa","Rabu","Kamis","Jumat","Sabtu","Minggu"] p = random.choice(rnd) lang = 'id' tts = gTTS(text=p, lang=lang) tts.save("hasil.mp3") nadya.sendAudio(msg.to,"hasil.mp3") elif "/berapa " in msg.text: apk = msg.text.replace("/berapa ","") rnd = ['10%','20%','30%','40%','50%','60%','70%','80%','90%','100%','0%'] p = random.choice(rnd) lang = 'id' tts = gTTS(text=p, lang=lang) tts.save("hasil.mp3") nadya.sendAudio(msg.to,"hasil.mp3") elif "/berapakah " in msg.text: apk = msg.text.replace("/berapakah ","") rnd = ['1','2','3','4','5','6','7','8','9','10','Tidak Ada'] p = random.choice(rnd) lang = 'id' tts = gTTS(text=p, lang=lang) tts.save("hasil.mp3") nadya.sendAudio(msg.to,"hasil.mp3") elif "/kapan " in msg.text: apk = msg.text.replace("/kapan ","") rnd = ["kapan kapan","besok","satu abad lagi","Hari ini","Tahun depan","Minggu depan","Bulan depan","Sebentar lagi","Tidak Akan Pernah"] p = random.choice(rnd) lang = 'id' tts = gTTS(text=p, lang=lang) tts.save("hasil.mp3") nadya.sendAudio(msg.to,"hasil.mp3") elif msg.text in ["Simisimi on","Simisimi:on"]: settings["simiSimi"][msg.to] = True wait["Simi"] = True nadya.sendText(msg.to," Simisimi Di Aktifkan") elif msg.text in ["Simisimi off","Simisimi:off"]: settings["simiSimi"][msg.to] = False wait["Simi"] = False nadya.sendText(msg.to,"Simisimi Di Nonaktifkan") elif "Image " in msg.text: search = msg.text.replace("Image ","") url = 'https://www.google.com/search?espv=2&biw=1366&bih=667&tbm=isch&oq=kuc&aqs=mobile-gws-lite.0.0l5&q=' + search raw_html = (download_page(url)) items = [] items = items + (_images_get_all_items(raw_html)) path = random.choice(items) print path try: nadya.sendImageWithURL(msg.to,path) except: pass elif "Youtubesearch: " in msg.text: query = msg.text.replace("Youtube ","") with requests.session() as s: s.headers['user-agent'] = 'Mozilla/5.0' url = 'http://www.youtube.com/results' params = {'search_query': query} r = s.get(url, params=params) soup = BeautifulSoup(r.content, 'html.parser') hasil = "" for a in soup.select('.yt-lockup-title > a[title]'): if '&list=' not in a['href']: hasil += ''.join((a['title'],'\nUrl : http://www.youtube.com' + a['href'],'\n\n')) nadya.sendText(msg.to,hasil) print '[Command] Youtube Search' elif "Tr-id " in msg.text: isi = msg.text.replace("Tr-id ","") translator = Translator() hasil = translator.translate(isi, dest='id') A = hasil.text A = A.encode('utf-8') nadya.sendText(msg.to, A) elif "Tr-en " in msg.text: isi = msg.text.replace("Tr-en ","") translator = Translator() hasil = translator.translate(isi, dest='en') A = hasil.text A = A.encode('utf-8') nadya.sendText(msg.to, A) elif "Tr-th " in msg.text: isi = msg.text.replace("Tr-th ","") translator = Translator() hasil = translator.translate(isi, dest='th') A = hasil.text A = A.encode('utf-8') nadya.sendText(msg.to, A) elif "Id@en" in msg.text: bahasa_awal = 'id' bahasa_tujuan = 'en' kata = msg.text.replace("Id@en ","") url = 'https://translate.google.com/m?sl=%s&tl=%s&ie=UTF-8&prev=_m&q=%s' % (bahasa_awal, bahasa_tujuan, kata.replace(" ", "+")) agent = {'User-Agent':'Mozilla/5.0'} cari_hasil = 'class="t0">' request = urllib2.Request(url, headers=agent) page = urllib2.urlopen(request).read() result = page[page.find(cari_hasil)+len(cari_hasil):] result = result.split("<")[0] nadya.sendText(msg.to,"----Dari Indonesia----\n" + "" + kata + "\n\n----Ke Inggris----\n" + "" + result) elif "En@id" in msg.text: bahasa_awal = 'en' bahasa_tujuan = 'id' kata = msg.text.replace("En@id ","") url = 'https://translate.google.com/m?sl=%s&tl=%s&ie=UTF-8&prev=_m&q=%s' % (bahasa_awal, bahasa_tujuan, kata.replace(" ", "+")) agent = {'User-Agent':'Mozilla/5.0'} cari_hasil = 'class="t0">' request = urllib2.Request(url, headers=agent) page = urllib2.urlopen(request).read() result = page[page.find(cari_hasil)+len(cari_hasil):] result = result.split("<")[0] nadya.sendText(msg.to,"----Dari Inggris----\n" + "" + kata + "\n\n----Ke Indonesia----\n" + "" + result) elif "Id@th" in msg.text: bahasa_awal = 'id' bahasa_tujuan = 'th' kata = msg.text.replace("Id@en ","") url = 'https://translate.google.com/m?sl=%s&tl=%s&ie=UTF-8&prev=_m&q=%s' % (bahasa_awal, bahasa_tujuan, kata.replace(" ", "+")) agent = {'User-Agent':'Mozilla/5.0'} cari_hasil = 'class="t0">' request = urllib2.Request(url, headers=agent) page = urllib2.urlopen(request).read() result = page[page.find(cari_hasil)+len(cari_hasil):] result = result.split("<")[0] nadya.sendText(msg.to,"----Dari Indonesia----\n" + "" + kata + "\n\n----Ke Thailand----\n" + "" + result) elif "Th@id" in msg.text: bahasa_awal = 'th' bahasa_tujuan = 'id' kata = msg.text.replace("Id@en ","") url = 'https://translate.google.com/m?sl=%s&tl=%s&ie=UTF-8&prev=_m&q=%s' % (bahasa_awal, bahasa_tujuan, kata.replace(" ", "+")) agent = {'User-Agent':'Mozilla/5.0'} cari_hasil = 'class="t0">' request = urllib2.Request(url, headers=agent) page = urllib2.urlopen(request).read() result = page[page.find(cari_hasil)+len(cari_hasil):] result = result.split("<")[0] nadya.sendText(msg.to,"----Dari Thailand----\n" + "" + kata + "\n\n----Ke Indonesia----\n" + "" + result) elif msg.text in ["Friendlist"]: contactlist = nadya.getAllContactIds() kontak = nadya.getContacts(contactlist) num=1 msgs="โ•โ•โ•โ•โ•โ•โ•โ•โ•List Friendโ•โ•โ•โ•โ•โ•โ•โ•โ•" for ids in kontak: msgs+="\n[%i] %s" % (num, ids.displayName) num=(num+1) msgs+="\nโ•โ•โ•โ•โ•โ•โ•โ•โ•List Friendโ•โ•โ•โ•โ•โ•โ•โ•โ•\n\nTotal Friend : %i" % len(kontak) nadya.sendText(msg.to, msgs) elif msg.text in ["Memlist"]: kontak = nadya.getGroup(msg.to) group = kontak.members num=1 msgs="โ•โ•โ•โ•โ•โ•โ•โ•โ•List Memberโ•๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโ•โ•โ•โ•โ•โ•โ•-" for ids in group: msgs+="\n[%i] %s" % (num, ids.displayName) num=(num+1) msgs+="\nโ•โ•โ•โ•โ•โ•โ•โ•โ•List Memberโ•โ•โ•โ•โ•โ•โ•โ•โ•\n\nTotal Members : %i" % len(group) nadya.sendText(msg.to, msgs) elif "Getvid @" in msg.text: print "[Command]dp executing" _name = msg.text.replace("Getvid @","") _nametarget = _name.rstrip(' ') gs = nadya.getGroup(msg.to) targets = [] for g in gs.members: if _nametarget == g.displayName: targets.append(g.mid) if targets == []: nadya.sendText(msg.to,"Contact not found") else: for target in targets: try: contact = nadya.getContact(target) path = "http://dl.profile.line-cdn.net/" + contact.pictureStatus nadya.sendVideoWithURL(msg.to, path) except Exception as e: raise e print "[Command]dp executed" elif "Getgroup image" in msg.text: group = nadya.getGroup(msg.to) path = "http://dl.profile.line-cdn.net/" + group.pictureStatus nadya.sendImageWithURL(msg.to,path) elif "Urlgroup image" in msg.text: group = nadya.getGroup(msg.to) path = "http://dl.profile.line-cdn.net/" + group.pictureStatus nadya.sendText(msg.to,path) elif "Getname" in msg.text: key = eval(msg.contentMetadata["MENTION"]) key1 = key["MENTIONEES"][0]["M"] contact = nadya.getContact(key1) cu = nadya.channel.getCover(key1) try: nadya.sendText(msg.to, "===[DisplayName]===\n" + contact.displayName) except: nadya.sendText(msg.to, "===[DisplayName]===\n" + contact.displayName) elif "Getprofile" in msg.text: key = eval(msg.contentMetadata["MENTION"]) key1 = key["MENTIONEES"][0]["M"] contact = nadya.getContact(key1) cu = nadya.channel.getCover(key1) path = str(cu) image = "http://dl.profile.line-cdn.net/" + contact.pictureStatus try: nadya.sendText(msg.to,"Nama :\n" + contact.displayName + "\n\nBio :\n" + contact.statusMessage) nadya.sendText(msg.to,"Profile Picture " + contact.displayName) nadya.sendImageWithURL(msg.to,image) nadya.sendText(msg.to,"Cover " + contact.displayName) nadya.sendImageWithURL(msg.to,path) except: pass elif "Getcontact" in msg.text: key = eval(msg.contentMetadata["MENTION"]) key1 = key["MENTIONEES"][0]["M"] mmid = nadya.getContact(key1) msg.contentType = 13 msg.contentMetadata = {"mid": key1} nadya.sendMessage(msg) elif "Getinfo" in msg.text: key = eval(msg.contentMetadata["MENTION"]) key1 = key["MENTIONEES"][0]["M"] contact = nadya.getContact(key1) cu = nadya.channel.getCover(key1) try: nadya.sendText(msg.to,"Nama :\n" + contact.displayName + "\n\nMid :\n" + contact.mid + "\n\nBio :\n" + contact.statusMessage + "\n\nProfile Picture :\nhttp://dl.profile.line-cdn.net/" + contact.pictureStatus + "\n\nHeader :\n" + str(cu)) except: nadya.sendText(msg.to,"Nama :\n" + contact.displayName + "\n\nMid :\n" + contact.mid + "\n\nBio :\n" + contact.statusMessage + "\n\nProfile Picture :\n" + str(cu)) elif "Getbio" in msg.text: key = eval(msg.contentMetadata["MENTION"]) key1 = key["MENTIONEES"][0]["M"] contact = nadya.getContact(key1) cu = nadya.channel.getCover(key1) try: nadya.sendText(msg.to, "===[StatusMessage]===\n" + contact.statusMessage) except: nadya.sendText(msg.to, "===[StatusMessage]===\n" + contact.statusMessage) elif msg.text.lower() == 'runtime': eltime = time.time() - mulai van = "Bot Sudah Berjalan Selama :\n"+waktu(eltime) nadya.sendText(msg.to,van) elif "Checkdate " in msg.text: tanggal = msg.text.replace("Checkdate ","") r=requests.get('https://script.google.com/macros/exec?service=AKfycbw7gKzP-WYV2F5mc9RaR7yE3Ve1yN91Tjs91hp_jHSE02dSv9w&nama=ervan&tanggal='+tanggal) data=r.text data=json.loads(data) lahir = data["data"]["lahir"] usia = data["data"]["usia"] ultah = data["data"]["ultah"] zodiak = data["data"]["zodiak"] nadya.sendText(msg.to,"========== I N F O R M A S I ==========\n"+"Date Of Birth : "+lahir+"\nAge : "+usia+"\nUltah : "+ultah+"\nZodiak : "+zodiak+"\n========== I N F O R M A S I ==========") elif msg.text in ["Kalender","Time","Waktu"]: timeNow = datetime.now() timeHours = datetime.strftime(timeNow,"(%H:%M)") day = ["Sunday", "Monday", "Tuesday", "Wednesday", "Thursday","Friday", "Saturday"] hari = ["Minggu", "Senin", "Selasa", "Rabu", "Kamis", "Jumat", "Sabtu"] bulan = ["Januari", "Februari", "Maret", "April", "Mei", "Juni", "Juli", "Agustus", "September", "Oktober", "November", "Desember"] inihari = datetime.today() hr = inihari.strftime('%A') bln = inihari.strftime('%m') for i in range(len(day)): if hr == day[i]: hasil = hari[i] for k in range(0, len(bulan)): if bln == str(k): bln = bulan[k-1] rst = hasil + ", " + inihari.strftime('%d') + " - " + bln + " - " + inihari.strftime('%Y') + "\nJam : [ " + inihari.strftime('%H:%M:%S') + " ]" nadya.sendText(msg.to, rst) elif "SearchID: " in msg.text: userid = msg.text.replace("SearchID: ","") contact = nadya.findContactsByUserid(userid) msg.contentType = 13 msg.contentMetadata = {'mid': contact.mid} nadya.sendMessage(msg) elif "Searchid: " in msg.text: userid = msg.text.replace("Searchid: ","") contact = nadya.findContactsByUserid(userid) msg.contentType = 13 msg.contentMetadata = {'mid': contact.mid} nadya.sendMessage(msg) elif "removechat" in msg.text.lower(): if msg.from_ in admin: try: nadya.removeAllMessages(op.param2) print "[Command] Remove Chat" nadya.sendText(msg.to,"Done") except Exception as error: print error nadya.sendText(msg.to,"Error") elif "Invitemeto: " in msg.text: if msg.from_ in admin: gid = msg.text.replace("Invitemeto: ","") if gid == "": nadya.sendText(msg.to,"Invalid group id") else: try: nadya.findAndAddContactsByMid(msg.from_) nadya.inviteIntoGroup(gid,[msg.from_]) except: nadya.sendText(msg.to,"Mungkin Saya Tidak Di Dalaam Grup Itu") elif msg.text in ["Glist"]: nadya.sendText(msg.to, "Tunggu Sebentar. . .") gid = nadya.getGroupIdsJoined() h = "" for i in gid: h += "โ• โžฉ" + "%s\n" % (nadya.getGroup(i).name +" ~> ["+str(len(nadya.getGroup(i).members))+"]") nadya.sendText(msg.to,"โ•”โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•\nโ•‘ โ˜†โ˜ž LIST GROUPSโ˜œโ˜†\nโ• โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•\n" + h + "โ• โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•" + "\nโ•‘ Total Groups =" +" ["+str(len(gid))+"]\nโ•šโ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•") elif msg.text in ["Glistmid"]: gruplist = nadya.getGroupIdsJoined() kontak = nadya.getGroups(gruplist) num=1 msgs="โ•โ•โ•โ•โ•โ•โ•โ•โ•List GrupMidโ•โ•โ•โ•โ•โ•โ•โ•โ•" for ids in kontak: msgs+="\n[%i] %s" % (num, ids.id) num=(num+1) msgs+="\nโ•โ•โ•โ•โ•โ•โ•โ•โ•List GrupMidโ•โ•โ•โ•โ•โ•โ•โ•โ•\n\nTotal Grup : %i" % len(kontak) nadya.sendText(msg.to, msgs) elif "Google: " in msg.text: a = msg.text.replace("Google: ","") b = urllib.quote(a) nadya.sendText(msg.to,"Sedang Mencari...") nadya.sendText(msg.to, "https://www.google.com/" + b) nadya.sendText(msg.to,"Itu Dia Linknya. . .") elif "Details group: " in msg.text: if msg.from_ in admin: gid = msg.text.replace("Details group: ","") if gid in [""," "]: nadya.sendText(msg.to,"Grup id tidak valid") else: try: groups = nadya.getGroup(gid) if groups.members is not None: members = str(len(groups.members)) else: members = "0" if groups.invitee is not None: pendings = str(len(groups.invitee)) else: pendings = "0" h = "[" + groups.name + "]\n -+GroupID : " + gid + "\n -+Members : " + members + "\n -+MembersPending : " + pendings + "\n -+Creator : " + groups.creator.displayName + "\n -+GroupPicture : http://dl.profile.line.naver.jp/" + groups.pictureStatus nadya.sendText(msg.to,h) except Exception as error: nadya.sendText(msg.to,(error)) elif "Cancel invite: " in msg.text: if msg.from_ in admin: gids = msg.text.replace("Cancel invite: ","") gid = nadya.getGroup(gids) for i in gid: if i is not None: try: nadya.rejectGroupInvitation(i) except: nadya.sendText(msg.to,"Error!") break else: break if gid is not None: nadya.sendText(msg.to,"Berhasil tolak undangan dari grup " + gid.name) else: nadya.sendText(msg.to,"Grup tidak ditemukan") elif msg.text in ["Acc invite"]: if msg.from_ in admin: gid = nadya.getGroupIdsInvited() _list = "" for i in gid: if i is not None: gids = nadya.getGroup(i) _list += gids.name nadya.acceptGroupInvitation(i) else: break if gid is not None: nadya.sendText(msg.to,"Berhasil terima semua undangan dari grup :\n" + _list) else: nadya.sendText(msg.to,"Tidak ada grup yang tertunda saat ini") elif "Gif gore" in msg.text: gif = ("https://media.giphy.com/media/l2JHVsQiOZrNMGzYs/giphy.gif","https://media.giphy.com/media/OgltQ2hbilzJS/200w.gif") gore = random.choice(gif) nadya.sendGifWithURL(msg.to,gore) elif ("Micadd " in msg.text): targets = [] key = eval(msg.contentMetadata["MENTION"]) key["MENTIONEES"][0]["M"] for x in key["MENTIONEES"]: targets.append(x["M"]) for target in targets: try: mimic["target"][target] = True nadya.sendText(msg.to,"Target ditambahkan!") break except: nadya.sendText(msg.to,"Fail !") break elif ("Micdel " in msg.text): targets = [] key = eval(msg.contentMetadata["MENTION"]) key["MENTIONEES"][0]["M"] for x in key["MENTIONEES"]: targets.append(x["M"]) for target in targets: try: del mimic["target"][target] nadya.sendText(msg.to,"Target dihapuskan!") break except: nadya.sendText(msg.to,"Fail !") break elif msg.text in ["Miclist"]: if mimic["target"] == {}: nadya.sendText(msg.to,"Nothing") else: mc = "Target Mimic User:\n" for mi_d in mimic["target"]: mc += "?? "+nadya.getContact(mi_d).displayName + "\n" nadya.sendText(msg.to,mc) elif "Mimic target " in msg.text: if mimic["copy"] == True: siapa = msg.text.replace("Mimic target ","") if siapa.rstrip(' ') == "me": mimic["copy2"] = "me" nadya.sendText(msg.to,"Mimic change to me") elif siapa.rstrip(' ') == "target": mimic["copy2"] = "target" nadya.sendText(msg.to,"Mimic change to target") else: nadya.sendText(msg.to,"I dont know") elif "Mimic " in msg.text: cmd = msg.text.replace("Mimic ","") if cmd == "on": if mimic["status"] == False: mimic["status"] = True nadya.sendText(msg.to,"Reply Message on") else: nadya.sendText(msg.to,"Sudah on") elif cmd == "off": if mimic["status"] == True: mimic["status"] = False nadya.sendText(msg.to,"Reply Message off") else: nadya.sendText(msg.to,"Sudah off") if op.type == 59: print op except Exception as error: print error while True: try: Ops = nadya.fetchOps(nadya.Poll.rev, 5) except EOFError: raise Exception("It might be wrong revision\n" + str(nadya.Poll.rev)) for Op in Ops: if (Op.type != OpType.END_OF_OPERATION): nadya.Poll.rev = max(nadya.Poll.rev, Op.revision) bot(Op)
41.510932
453
0.419462
[ "MIT" ]
sahrukanja/fryant1
Chuckysb.py
148,684
Python
# -*- coding: utf-8 -*- # Copyright (c) 2019, TUSHAR TAJNE and contributors # For license information, please see license.txt from __future__ import unicode_literals import frappe from frappe.model.document import Document from frappe import _ class District(Document): def validate(self): name = str(self.district.capitalize()) self.name = _(name) pass
25.785714
51
0.759003
[ "MIT" ]
tushar7724/SPS
sps/sps/doctype/district/district.py
361
Python
def appendAndDelete(s, t, k): iter=0 s=[] t=[] while s: s.pop(0) iter+=1 for i in t: s.append(i) iter+=1 if iter==k: print("Yes") else: print("No")
13.052632
29
0.362903
[ "MIT" ]
kasyap1234/codingproblems
append and delete.py
248
Python
from django.db import models from django.contrib.auth import get_user_model from django.urls import reverse from django.utils.translation import gettext_lazy as _ from tinymce import HTMLField # Create your models here. User = get_user_model() class PostView(models.Model): user = models.ForeignKey(User, verbose_name=_( "User"), on_delete=models.CASCADE) post = models.ForeignKey('Post', verbose_name=_( "Post"), on_delete=models.CASCADE) def __str__(self): return self.user.username class Author(models.Model): user = models.OneToOneField(User, verbose_name=_( "Author"), on_delete=models.CASCADE) profile_picture = models.ImageField(_("Profile picture")) def __str__(self): return self.user.username class Category(models.Model): title = models.CharField(_("Title"), max_length=50) def __str__(self): return self.title class Comment(models.Model): user = models.ForeignKey( User, verbose_name=_("User"), on_delete=models.CASCADE) timestamp = models.DateTimeField(_("Timestamp"), auto_now_add=True) content = models.TextField(_("Comment text")) post = models.ForeignKey('Post', verbose_name=_( "Post"), related_name='comments', on_delete=models.CASCADE) def __str__(self): return self.user.username class Post(models.Model): title = models.CharField(_("Title"), max_length=50) overview = models.TextField(_("Overview")) timestamp = models.DateTimeField( _("Timestamp"), auto_now=False, auto_now_add=True) content = HTMLField() # comment_count = models.IntegerField(_("Comment count"), default=0) # view_count = models.IntegerField(_("View count"), default=0) author = models.ForeignKey(Author, verbose_name=_( "Author"), on_delete=models.CASCADE) thumbnail = models.ImageField(_("Thumbnail")) categories = models.ManyToManyField(Category, verbose_name=_("Categories")) featured = models.BooleanField(_("Featured"), default=False) previous_post = models.ForeignKey("self", verbose_name=_( "Previous post"), related_name='previous', on_delete=models.SET_NULL, blank=True, null=True) next_post = models.ForeignKey("self", verbose_name=_( "Next post"), related_name='next', on_delete=models.SET_NULL, blank=True, null=True) def __str__(self): return self.title def get_absolute_url(self): return reverse("post-detail", kwargs={"pk": self.pk}) def get_update_url(self): return reverse("post-update", kwargs={"pk": self.pk}) def get_delete_url(self): return reverse("post-delete", kwargs={"pk": self.pk}) @property def get_comments(self): return self.comments.all().order_by('-timestamp') @property def comment_count(self): return Comment.objects.filter(post=self).count() @property def view_count(self): return PostView.objects.filter(post=self).count()
33.11828
80
0.667208
[ "MIT" ]
zulune/Just-Django-Blog
src/posts/models.py
3,080
Python
import unittest import os import numpy as np from dotenv import load_dotenv from nlpaug.util import AudioLoader import nlpaug.augmenter.spectrogram as nas class TestLoudnessSpec(unittest.TestCase): @classmethod def setUpClass(cls): env_config_path = os.path.abspath( os.path.join(os.path.dirname(__file__), "..", "..", "..", ".env") ) load_dotenv(env_config_path) # https://freewavesamples.com/yamaha-v50-rock-beat-120-bpm cls.sample_wav_file = os.path.join( os.environ.get("TEST_DIR"), "res", "audio", "Yamaha-V50-Rock-Beat-120bpm.wav", ) def test_no_change_source(self): data = AudioLoader.load_mel_spectrogram(self.sample_wav_file, n_mels=128) aug = nas.LoudnessAug(stateless=False) aug_data = aug.augment(data) comparison = data == aug_data self.assertFalse(comparison.all()) def test_substitute(self): data = AudioLoader.load_mel_spectrogram(self.sample_wav_file, n_mels=128) aug = nas.LoudnessAug(stateless=False) aug_data = aug.augment(data) comparison = ( data[:, aug.time_start : aug.time_end] == aug_data[:, aug.time_start : aug.time_end] ) self.assertFalse(comparison.all()) comparison = data[:, : aug.time_start] == aug_data[:, : aug.time_start] self.assertTrue(comparison.all()) comparison = data[:, aug.time_end :] == aug_data[:, aug.time_end :] self.assertTrue(comparison.all())
33.382979
81
0.6297
[ "MIT" ]
lucidworks/nlpaug
test/augmenter/spectrogram/test_loudness_spec.py
1,569
Python
""" Create the numpy.core.multiarray namespace for backward compatibility. In v1.16 the multiarray and umath c-extension modules were merged into a single _multiarray_umath extension module. So we replicate the old namespace by importing from the extension module. """ import functools import warnings from . import overrides from . import _multiarray_umath import numpy as np from numpy.core._multiarray_umath import * from numpy.core._multiarray_umath import ( _fastCopyAndTranspose, _flagdict, _insert, _reconstruct, _vec_string, _ARRAY_API, _monotonicity ) __all__ = [ '_ARRAY_API', 'ALLOW_THREADS', 'BUFSIZE', 'CLIP', 'DATETIMEUNITS', 'ITEM_HASOBJECT', 'ITEM_IS_POINTER', 'LIST_PICKLE', 'MAXDIMS', 'MAY_SHARE_BOUNDS', 'MAY_SHARE_EXACT', 'NEEDS_INIT', 'NEEDS_PYAPI', 'RAISE', 'USE_GETITEM', 'USE_SETITEM', 'WRAP', '_fastCopyAndTranspose', '_flagdict', '_insert', '_reconstruct', '_vec_string', '_monotonicity', 'add_docstring', 'arange', 'array', 'bincount', 'broadcast', 'busday_count', 'busday_offset', 'busdaycalendar', 'can_cast', 'compare_chararrays', 'concatenate', 'copyto', 'correlate', 'correlate2', 'count_nonzero', 'c_einsum', 'datetime_as_string', 'datetime_data', 'digitize', 'dot', 'dragon4_positional', 'dragon4_scientific', 'dtype', 'empty', 'empty_like', 'error', 'flagsobj', 'flatiter', 'format_longfloat', 'frombuffer', 'fromfile', 'fromiter', 'fromstring', 'getbuffer', 'inner', 'int_asbuffer', 'interp', 'interp_complex', 'is_busday', 'lexsort', 'matmul', 'may_share_memory', 'min_scalar_type', 'ndarray', 'nditer', 'nested_iters', 'newbuffer', 'normalize_axis_index', 'packbits', 'promote_types', 'putmask', 'ravel_multi_index', 'result_type', 'scalar', 'set_datetimeparse_function', 'set_legacy_print_mode', 'set_numeric_ops', 'set_string_function', 'set_typeDict', 'shares_memory', 'test_interrupt', 'tracemalloc_domain', 'typeinfo', 'unpackbits', 'unravel_index', 'vdot', 'where', 'zeros'] # For backward compatibility, make sure pickle imports these functions from here _reconstruct.__module__ = 'numpy.core.multiarray' scalar.__module__ = 'numpy.core.multiarray' arange.__module__ = 'numpy' array.__module__ = 'numpy' datetime_data.__module__ = 'numpy' empty.__module__ = 'numpy' frombuffer.__module__ = 'numpy' fromfile.__module__ = 'numpy' fromiter.__module__ = 'numpy' frompyfunc.__module__ = 'numpy' fromstring.__module__ = 'numpy' geterrobj.__module__ = 'numpy' may_share_memory.__module__ = 'numpy' nested_iters.__module__ = 'numpy' promote_types.__module__ = 'numpy' set_numeric_ops.__module__ = 'numpy' seterrobj.__module__ = 'numpy' zeros.__module__ = 'numpy' # We can't verify dispatcher signatures because NumPy's C functions don't # support introspection. array_function_from_c_func_and_dispatcher = functools.partial( overrides.array_function_from_dispatcher, module='numpy', docs_from_dispatcher=True, verify=False) @array_function_from_c_func_and_dispatcher(_multiarray_umath.empty_like) def empty_like(prototype, dtype=None, order=None, subok=None): """ empty_like(prototype, dtype=None, order='K', subok=True) Return a new array with the same shape and type as a given array. Parameters ---------- prototype : array_like The shape and data-type of `prototype` define these same attributes of the returned array. dtype : data-type, optional Overrides the data type of the result. .. versionadded:: 1.6.0 order : {'C', 'F', 'A', or 'K'}, optional Overrides the memory layout of the result. 'C' means C-order, 'F' means F-order, 'A' means 'F' if ``prototype`` is Fortran contiguous, 'C' otherwise. 'K' means match the layout of ``prototype`` as closely as possible. .. versionadded:: 1.6.0 subok : bool, optional. If True, then the newly created array will use the sub-class type of 'a', otherwise it will be a base-class array. Defaults to True. Returns ------- out : ndarray Array of uninitialized (arbitrary) data with the same shape and type as `prototype`. See Also -------- ones_like : Return an array of ones with shape and type of input. zeros_like : Return an array of zeros with shape and type of input. full_like : Return a new array with shape of input filled with value. empty : Return a new uninitialized array. Notes ----- This function does *not* initialize the returned array; to do that use `zeros_like` or `ones_like` instead. It may be marginally faster than the functions that do set the array values. Examples -------- >>> a = ([1,2,3], [4,5,6]) # a is array-like >>> np.empty_like(a) array([[-1073741821, -1073741821, 3], #random [ 0, 0, -1073741821]]) >>> a = np.array([[1., 2., 3.],[4.,5.,6.]]) >>> np.empty_like(a) array([[ -2.00000715e+000, 1.48219694e-323, -2.00000572e+000],#random [ 4.38791518e-305, -2.00000715e+000, 4.17269252e-309]]) """ return (prototype,) @array_function_from_c_func_and_dispatcher(_multiarray_umath.concatenate) def concatenate(arrays, axis=None, out=None): """ concatenate((a1, a2, ...), axis=0, out=None) Join a sequence of arrays along an existing axis. Parameters ---------- a1, a2, ... : sequence of array_like The arrays must have the same shape, except in the dimension corresponding to `axis` (the first, by default). axis : int, optional The axis along which the arrays will be joined. If axis is None, arrays are flattened before use. Default is 0. out : ndarray, optional If provided, the destination to place the result. The shape must be correct, matching that of what concatenate would have returned if no out argument were specified. Returns ------- res : ndarray The concatenated array. See Also -------- ma.concatenate : Concatenate function that preserves input masks. array_split : Split an array into multiple sub-arrays of equal or near-equal size. split : Split array into a list of multiple sub-arrays of equal size. hsplit : Split array into multiple sub-arrays horizontally (column wise) vsplit : Split array into multiple sub-arrays vertically (row wise) dsplit : Split array into multiple sub-arrays along the 3rd axis (depth). stack : Stack a sequence of arrays along a new axis. hstack : Stack arrays in sequence horizontally (column wise) vstack : Stack arrays in sequence vertically (row wise) dstack : Stack arrays in sequence depth wise (along third dimension) block : Assemble arrays from blocks. Notes ----- When one or more of the arrays to be concatenated is a MaskedArray, this function will return a MaskedArray object instead of an ndarray, but the input masks are *not* preserved. In cases where a MaskedArray is expected as input, use the ma.concatenate function from the masked array module instead. Examples -------- >>> a = np.array([[1, 2], [3, 4]]) >>> b = np.array([[5, 6]]) >>> np.concatenate((a, b), axis=0) array([[1, 2], [3, 4], [5, 6]]) >>> np.concatenate((a, b.T), axis=1) array([[1, 2, 5], [3, 4, 6]]) >>> np.concatenate((a, b), axis=None) array([1, 2, 3, 4, 5, 6]) This function will not preserve masking of MaskedArray inputs. >>> a = np.ma.arange(3) >>> a[1] = np.ma.masked >>> b = np.arange(2, 5) >>> a masked_array(data=[0, --, 2], mask=[False, True, False], fill_value=999999) >>> b array([2, 3, 4]) >>> np.concatenate([a, b]) masked_array(data=[0, 1, 2, 2, 3, 4], mask=False, fill_value=999999) >>> np.ma.concatenate([a, b]) masked_array(data=[0, --, 2, 2, 3, 4], mask=[False, True, False, False, False, False], fill_value=999999) """ if out is not None: # optimize for the typical case where only arrays is provided arrays = list(arrays) arrays.append(out) return arrays @array_function_from_c_func_and_dispatcher(_multiarray_umath.inner) def inner(a, b): """ inner(a, b) Inner product of two arrays. Ordinary inner product of vectors for 1-D arrays (without complex conjugation), in higher dimensions a sum product over the last axes. Parameters ---------- a, b : array_like If `a` and `b` are nonscalar, their last dimensions must match. Returns ------- out : ndarray `out.shape = a.shape[:-1] + b.shape[:-1]` Raises ------ ValueError If the last dimension of `a` and `b` has different size. See Also -------- tensordot : Sum products over arbitrary axes. dot : Generalised matrix product, using second last dimension of `b`. einsum : Einstein summation convention. Notes ----- For vectors (1-D arrays) it computes the ordinary inner-product:: np.inner(a, b) = sum(a[:]*b[:]) More generally, if `ndim(a) = r > 0` and `ndim(b) = s > 0`:: np.inner(a, b) = np.tensordot(a, b, axes=(-1,-1)) or explicitly:: np.inner(a, b)[i0,...,ir-1,j0,...,js-1] = sum(a[i0,...,ir-1,:]*b[j0,...,js-1,:]) In addition `a` or `b` may be scalars, in which case:: np.inner(a,b) = a*b Examples -------- Ordinary inner product for vectors: >>> a = np.array([1,2,3]) >>> b = np.array([0,1,0]) >>> np.inner(a, b) 2 A multidimensional example: >>> a = np.arange(24).reshape((2,3,4)) >>> b = np.arange(4) >>> np.inner(a, b) array([[ 14, 38, 62], [ 86, 110, 134]]) An example where `b` is a scalar: >>> np.inner(np.eye(2), 7) array([[ 7., 0.], [ 0., 7.]]) """ return (a, b) @array_function_from_c_func_and_dispatcher(_multiarray_umath.where) def where(condition, x=None, y=None): """ where(condition, [x, y]) Return elements chosen from `x` or `y` depending on `condition`. .. note:: When only `condition` is provided, this function is a shorthand for ``np.asarray(condition).nonzero()``. Using `nonzero` directly should be preferred, as it behaves correctly for subclasses. The rest of this documentation covers only the case where all three arguments are provided. Parameters ---------- condition : array_like, bool Where True, yield `x`, otherwise yield `y`. x, y : array_like Values from which to choose. `x`, `y` and `condition` need to be broadcastable to some shape. Returns ------- out : ndarray An array with elements from `x` where `condition` is True, and elements from `y` elsewhere. See Also -------- choose nonzero : The function that is called when x and y are omitted Notes ----- If all the arrays are 1-D, `where` is equivalent to:: [xv if c else yv for c, xv, yv in zip(condition, x, y)] Examples -------- >>> a = np.arange(10) >>> a array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> np.where(a < 5, a, 10*a) array([ 0, 1, 2, 3, 4, 50, 60, 70, 80, 90]) This can be used on multidimensional arrays too: >>> np.where([[True, False], [True, True]], ... [[1, 2], [3, 4]], ... [[9, 8], [7, 6]]) array([[1, 8], [3, 4]]) The shapes of x, y, and the condition are broadcast together: >>> x, y = np.ogrid[:3, :4] >>> np.where(x < y, x, 10 + y) # both x and 10+y are broadcast array([[10, 0, 0, 0], [10, 11, 1, 1], [10, 11, 12, 2]]) >>> a = np.array([[0, 1, 2], ... [0, 2, 4], ... [0, 3, 6]]) >>> np.where(a < 4, a, -1) # -1 is broadcast array([[ 0, 1, 2], [ 0, 2, -1], [ 0, 3, -1]]) """ return (condition, x, y) @array_function_from_c_func_and_dispatcher(_multiarray_umath.lexsort) def lexsort(keys, axis=None): """ lexsort(keys, axis=-1) Perform an indirect stable sort using a sequence of keys. Given multiple sorting keys, which can be interpreted as columns in a spreadsheet, lexsort returns an array of integer indices that describes the sort order by multiple columns. The last key in the sequence is used for the primary sort order, the second-to-last key for the secondary sort order, and so on. The keys argument must be a sequence of objects that can be converted to arrays of the same shape. If a 2D array is provided for the keys argument, it's rows are interpreted as the sorting keys and sorting is according to the last row, second last row etc. Parameters ---------- keys : (k, N) array or tuple containing k (N,)-shaped sequences The `k` different "columns" to be sorted. The last column (or row if `keys` is a 2D array) is the primary sort key. axis : int, optional Axis to be indirectly sorted. By default, sort over the last axis. Returns ------- indices : (N,) ndarray of ints Array of indices that sort the keys along the specified axis. See Also -------- argsort : Indirect sort. ndarray.sort : In-place sort. sort : Return a sorted copy of an array. Examples -------- Sort names: first by surname, then by name. >>> surnames = ('Hertz', 'Galilei', 'Hertz') >>> first_names = ('Heinrich', 'Galileo', 'Gustav') >>> ind = np.lexsort((first_names, surnames)) >>> ind array([1, 2, 0]) >>> [surnames[i] + ", " + first_names[i] for i in ind] ['Galilei, Galileo', 'Hertz, Gustav', 'Hertz, Heinrich'] Sort two columns of numbers: >>> a = [1,5,1,4,3,4,4] # First column >>> b = [9,4,0,4,0,2,1] # Second column >>> ind = np.lexsort((b,a)) # Sort by a, then by b >>> print(ind) [2 0 4 6 5 3 1] >>> [(a[i],b[i]) for i in ind] [(1, 0), (1, 9), (3, 0), (4, 1), (4, 2), (4, 4), (5, 4)] Note that sorting is first according to the elements of ``a``. Secondary sorting is according to the elements of ``b``. A normal ``argsort`` would have yielded: >>> [(a[i],b[i]) for i in np.argsort(a)] [(1, 9), (1, 0), (3, 0), (4, 4), (4, 2), (4, 1), (5, 4)] Structured arrays are sorted lexically by ``argsort``: >>> x = np.array([(1,9), (5,4), (1,0), (4,4), (3,0), (4,2), (4,1)], ... dtype=np.dtype([('x', int), ('y', int)])) >>> np.argsort(x) # or np.argsort(x, order=('x', 'y')) array([2, 0, 4, 6, 5, 3, 1]) """ if isinstance(keys, tuple): return keys else: return (keys,) @array_function_from_c_func_and_dispatcher(_multiarray_umath.can_cast) def can_cast(from_, to, casting=None): """ can_cast(from_, to, casting='safe') Returns True if cast between data types can occur according to the casting rule. If from is a scalar or array scalar, also returns True if the scalar value can be cast without overflow or truncation to an integer. Parameters ---------- from_ : dtype, dtype specifier, scalar, or array Data type, scalar, or array to cast from. to : dtype or dtype specifier Data type to cast to. casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional Controls what kind of data casting may occur. * 'no' means the data types should not be cast at all. * 'equiv' means only byte-order changes are allowed. * 'safe' means only casts which can preserve values are allowed. * 'same_kind' means only safe casts or casts within a kind, like float64 to float32, are allowed. * 'unsafe' means any data conversions may be done. Returns ------- out : bool True if cast can occur according to the casting rule. Notes ----- Starting in NumPy 1.9, can_cast function now returns False in 'safe' casting mode for integer/float dtype and string dtype if the string dtype length is not long enough to store the max integer/float value converted to a string. Previously can_cast in 'safe' mode returned True for integer/float dtype and a string dtype of any length. See also -------- dtype, result_type Examples -------- Basic examples >>> np.can_cast(np.int32, np.int64) True >>> np.can_cast(np.float64, complex) True >>> np.can_cast(complex, float) False >>> np.can_cast('i8', 'f8') True >>> np.can_cast('i8', 'f4') False >>> np.can_cast('i4', 'S4') False Casting scalars >>> np.can_cast(100, 'i1') True >>> np.can_cast(150, 'i1') False >>> np.can_cast(150, 'u1') True >>> np.can_cast(3.5e100, np.float32) False >>> np.can_cast(1000.0, np.float32) True Array scalar checks the value, array does not >>> np.can_cast(np.array(1000.0), np.float32) True >>> np.can_cast(np.array([1000.0]), np.float32) False Using the casting rules >>> np.can_cast('i8', 'i8', 'no') True >>> np.can_cast('<i8', '>i8', 'no') False >>> np.can_cast('<i8', '>i8', 'equiv') True >>> np.can_cast('<i4', '>i8', 'equiv') False >>> np.can_cast('<i4', '>i8', 'safe') True >>> np.can_cast('<i8', '>i4', 'safe') False >>> np.can_cast('<i8', '>i4', 'same_kind') True >>> np.can_cast('<i8', '>u4', 'same_kind') False >>> np.can_cast('<i8', '>u4', 'unsafe') True """ return (from_,) @array_function_from_c_func_and_dispatcher(_multiarray_umath.min_scalar_type) def min_scalar_type(a): """ min_scalar_type(a) For scalar ``a``, returns the data type with the smallest size and smallest scalar kind which can hold its value. For non-scalar array ``a``, returns the vector's dtype unmodified. Floating point values are not demoted to integers, and complex values are not demoted to floats. Parameters ---------- a : scalar or array_like The value whose minimal data type is to be found. Returns ------- out : dtype The minimal data type. Notes ----- .. versionadded:: 1.6.0 See Also -------- result_type, promote_types, dtype, can_cast Examples -------- >>> np.min_scalar_type(10) dtype('uint8') >>> np.min_scalar_type(-260) dtype('int16') >>> np.min_scalar_type(3.1) dtype('float16') >>> np.min_scalar_type(1e50) dtype('float64') >>> np.min_scalar_type(np.arange(4,dtype='f8')) dtype('float64') """ return (a,) @array_function_from_c_func_and_dispatcher(_multiarray_umath.result_type) def result_type(*arrays_and_dtypes): """ result_type(*arrays_and_dtypes) Returns the type that results from applying the NumPy type promotion rules to the arguments. Type promotion in NumPy works similarly to the rules in languages like C++, with some slight differences. When both scalars and arrays are used, the array's type takes precedence and the actual value of the scalar is taken into account. For example, calculating 3*a, where a is an array of 32-bit floats, intuitively should result in a 32-bit float output. If the 3 is a 32-bit integer, the NumPy rules indicate it can't convert losslessly into a 32-bit float, so a 64-bit float should be the result type. By examining the value of the constant, '3', we see that it fits in an 8-bit integer, which can be cast losslessly into the 32-bit float. Parameters ---------- arrays_and_dtypes : list of arrays and dtypes The operands of some operation whose result type is needed. Returns ------- out : dtype The result type. See also -------- dtype, promote_types, min_scalar_type, can_cast Notes ----- .. versionadded:: 1.6.0 The specific algorithm used is as follows. Categories are determined by first checking which of boolean, integer (int/uint), or floating point (float/complex) the maximum kind of all the arrays and the scalars are. If there are only scalars or the maximum category of the scalars is higher than the maximum category of the arrays, the data types are combined with :func:`promote_types` to produce the return value. Otherwise, `min_scalar_type` is called on each array, and the resulting data types are all combined with :func:`promote_types` to produce the return value. The set of int values is not a subset of the uint values for types with the same number of bits, something not reflected in :func:`min_scalar_type`, but handled as a special case in `result_type`. Examples -------- >>> np.result_type(3, np.arange(7, dtype='i1')) dtype('int8') >>> np.result_type('i4', 'c8') dtype('complex128') >>> np.result_type(3.0, -2) dtype('float64') """ return arrays_and_dtypes @array_function_from_c_func_and_dispatcher(_multiarray_umath.dot) def dot(a, b, out=None): """ dot(a, b, out=None) Dot product of two arrays. Specifically, - If both `a` and `b` are 1-D arrays, it is inner product of vectors (without complex conjugation). - If both `a` and `b` are 2-D arrays, it is matrix multiplication, but using :func:`matmul` or ``a @ b`` is preferred. - If either `a` or `b` is 0-D (scalar), it is equivalent to :func:`multiply` and using ``numpy.multiply(a, b)`` or ``a * b`` is preferred. - If `a` is an N-D array and `b` is a 1-D array, it is a sum product over the last axis of `a` and `b`. - If `a` is an N-D array and `b` is an M-D array (where ``M>=2``), it is a sum product over the last axis of `a` and the second-to-last axis of `b`:: dot(a, b)[i,j,k,m] = sum(a[i,j,:] * b[k,:,m]) Parameters ---------- a : array_like First argument. b : array_like Second argument. out : ndarray, optional Output argument. This must have the exact kind that would be returned if it was not used. In particular, it must have the right type, must be C-contiguous, and its dtype must be the dtype that would be returned for `dot(a,b)`. This is a performance feature. Therefore, if these conditions are not met, an exception is raised, instead of attempting to be flexible. Returns ------- output : ndarray Returns the dot product of `a` and `b`. If `a` and `b` are both scalars or both 1-D arrays then a scalar is returned; otherwise an array is returned. If `out` is given, then it is returned. Raises ------ ValueError If the last dimension of `a` is not the same size as the second-to-last dimension of `b`. See Also -------- vdot : Complex-conjugating dot product. tensordot : Sum products over arbitrary axes. einsum : Einstein summation convention. matmul : '@' operator as method with out parameter. Examples -------- >>> np.dot(3, 4) 12 Neither argument is complex-conjugated: >>> np.dot([2j, 3j], [2j, 3j]) (-13+0j) For 2-D arrays it is the matrix product: >>> a = [[1, 0], [0, 1]] >>> b = [[4, 1], [2, 2]] >>> np.dot(a, b) array([[4, 1], [2, 2]]) >>> a = np.arange(3*4*5*6).reshape((3,4,5,6)) >>> b = np.arange(3*4*5*6)[::-1].reshape((5,4,6,3)) >>> np.dot(a, b)[2,3,2,1,2,2] 499128 >>> sum(a[2,3,2,:] * b[1,2,:,2]) 499128 """ return (a, b, out) @array_function_from_c_func_and_dispatcher(_multiarray_umath.vdot) def vdot(a, b): """ vdot(a, b) Return the dot product of two vectors. The vdot(`a`, `b`) function handles complex numbers differently than dot(`a`, `b`). If the first argument is complex the complex conjugate of the first argument is used for the calculation of the dot product. Note that `vdot` handles multidimensional arrays differently than `dot`: it does *not* perform a matrix product, but flattens input arguments to 1-D vectors first. Consequently, it should only be used for vectors. Parameters ---------- a : array_like If `a` is complex the complex conjugate is taken before calculation of the dot product. b : array_like Second argument to the dot product. Returns ------- output : ndarray Dot product of `a` and `b`. Can be an int, float, or complex depending on the types of `a` and `b`. See Also -------- dot : Return the dot product without using the complex conjugate of the first argument. Examples -------- >>> a = np.array([1+2j,3+4j]) >>> b = np.array([5+6j,7+8j]) >>> np.vdot(a, b) (70-8j) >>> np.vdot(b, a) (70+8j) Note that higher-dimensional arrays are flattened! >>> a = np.array([[1, 4], [5, 6]]) >>> b = np.array([[4, 1], [2, 2]]) >>> np.vdot(a, b) 30 >>> np.vdot(b, a) 30 >>> 1*4 + 4*1 + 5*2 + 6*2 30 """ return (a, b) @array_function_from_c_func_and_dispatcher(_multiarray_umath.bincount) def bincount(x, weights=None, minlength=None): """ bincount(x, weights=None, minlength=0) Count number of occurrences of each value in array of non-negative ints. The number of bins (of size 1) is one larger than the largest value in `x`. If `minlength` is specified, there will be at least this number of bins in the output array (though it will be longer if necessary, depending on the contents of `x`). Each bin gives the number of occurrences of its index value in `x`. If `weights` is specified the input array is weighted by it, i.e. if a value ``n`` is found at position ``i``, ``out[n] += weight[i]`` instead of ``out[n] += 1``. Parameters ---------- x : array_like, 1 dimension, nonnegative ints Input array. weights : array_like, optional Weights, array of the same shape as `x`. minlength : int, optional A minimum number of bins for the output array. .. versionadded:: 1.6.0 Returns ------- out : ndarray of ints The result of binning the input array. The length of `out` is equal to ``np.amax(x)+1``. Raises ------ ValueError If the input is not 1-dimensional, or contains elements with negative values, or if `minlength` is negative. TypeError If the type of the input is float or complex. See Also -------- histogram, digitize, unique Examples -------- >>> np.bincount(np.arange(5)) array([1, 1, 1, 1, 1]) >>> np.bincount(np.array([0, 1, 1, 3, 2, 1, 7])) array([1, 3, 1, 1, 0, 0, 0, 1]) >>> x = np.array([0, 1, 1, 3, 2, 1, 7, 23]) >>> np.bincount(x).size == np.amax(x)+1 True The input array needs to be of integer dtype, otherwise a TypeError is raised: >>> np.bincount(np.arange(5, dtype=float)) Traceback (most recent call last): File "<stdin>", line 1, in <module> TypeError: array cannot be safely cast to required type A possible use of ``bincount`` is to perform sums over variable-size chunks of an array, using the ``weights`` keyword. >>> w = np.array([0.3, 0.5, 0.2, 0.7, 1., -0.6]) # weights >>> x = np.array([0, 1, 1, 2, 2, 2]) >>> np.bincount(x, weights=w) array([ 0.3, 0.7, 1.1]) """ return (x, weights) @array_function_from_c_func_and_dispatcher(_multiarray_umath.ravel_multi_index) def ravel_multi_index(multi_index, dims, mode=None, order=None): """ ravel_multi_index(multi_index, dims, mode='raise', order='C') Converts a tuple of index arrays into an array of flat indices, applying boundary modes to the multi-index. Parameters ---------- multi_index : tuple of array_like A tuple of integer arrays, one array for each dimension. dims : tuple of ints The shape of array into which the indices from ``multi_index`` apply. mode : {'raise', 'wrap', 'clip'}, optional Specifies how out-of-bounds indices are handled. Can specify either one mode or a tuple of modes, one mode per index. * 'raise' -- raise an error (default) * 'wrap' -- wrap around * 'clip' -- clip to the range In 'clip' mode, a negative index which would normally wrap will clip to 0 instead. order : {'C', 'F'}, optional Determines whether the multi-index should be viewed as indexing in row-major (C-style) or column-major (Fortran-style) order. Returns ------- raveled_indices : ndarray An array of indices into the flattened version of an array of dimensions ``dims``. See Also -------- unravel_index Notes ----- .. versionadded:: 1.6.0 Examples -------- >>> arr = np.array([[3,6,6],[4,5,1]]) >>> np.ravel_multi_index(arr, (7,6)) array([22, 41, 37]) >>> np.ravel_multi_index(arr, (7,6), order='F') array([31, 41, 13]) >>> np.ravel_multi_index(arr, (4,6), mode='clip') array([22, 23, 19]) >>> np.ravel_multi_index(arr, (4,4), mode=('clip','wrap')) array([12, 13, 13]) >>> np.ravel_multi_index((3,1,4,1), (6,7,8,9)) 1621 """ return multi_index @array_function_from_c_func_and_dispatcher(_multiarray_umath.unravel_index) def unravel_index(indices, shape=None, order=None, dims=None): """ unravel_index(indices, shape, order='C') Converts a flat index or array of flat indices into a tuple of coordinate arrays. Parameters ---------- indices : array_like An integer array whose elements are indices into the flattened version of an array of dimensions ``shape``. Before version 1.6.0, this function accepted just one index value. shape : tuple of ints The shape of the array to use for unraveling ``indices``. .. versionchanged:: 1.16.0 Renamed from ``dims`` to ``shape``. order : {'C', 'F'}, optional Determines whether the indices should be viewed as indexing in row-major (C-style) or column-major (Fortran-style) order. .. versionadded:: 1.6.0 Returns ------- unraveled_coords : tuple of ndarray Each array in the tuple has the same shape as the ``indices`` array. See Also -------- ravel_multi_index Examples -------- >>> np.unravel_index([22, 41, 37], (7,6)) (array([3, 6, 6]), array([4, 5, 1])) >>> np.unravel_index([31, 41, 13], (7,6), order='F') (array([3, 6, 6]), array([4, 5, 1])) >>> np.unravel_index(1621, (6,7,8,9)) (3, 1, 4, 1) """ if dims is not None: warnings.warn("'shape' argument should be used instead of 'dims'", DeprecationWarning, stacklevel=3) return (indices,) @array_function_from_c_func_and_dispatcher(_multiarray_umath.copyto) def copyto(dst, src, casting=None, where=None): """ copyto(dst, src, casting='same_kind', where=True) Copies values from one array to another, broadcasting as necessary. Raises a TypeError if the `casting` rule is violated, and if `where` is provided, it selects which elements to copy. .. versionadded:: 1.7.0 Parameters ---------- dst : ndarray The array into which values are copied. src : array_like The array from which values are copied. casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional Controls what kind of data casting may occur when copying. * 'no' means the data types should not be cast at all. * 'equiv' means only byte-order changes are allowed. * 'safe' means only casts which can preserve values are allowed. * 'same_kind' means only safe casts or casts within a kind, like float64 to float32, are allowed. * 'unsafe' means any data conversions may be done. where : array_like of bool, optional A boolean array which is broadcasted to match the dimensions of `dst`, and selects elements to copy from `src` to `dst` wherever it contains the value True. """ return (dst, src, where) @array_function_from_c_func_and_dispatcher(_multiarray_umath.putmask) def putmask(a, mask, values): """ putmask(a, mask, values) Changes elements of an array based on conditional and input values. Sets ``a.flat[n] = values[n]`` for each n where ``mask.flat[n]==True``. If `values` is not the same size as `a` and `mask` then it will repeat. This gives behavior different from ``a[mask] = values``. Parameters ---------- a : array_like Target array. mask : array_like Boolean mask array. It has to be the same shape as `a`. values : array_like Values to put into `a` where `mask` is True. If `values` is smaller than `a` it will be repeated. See Also -------- place, put, take, copyto Examples -------- >>> x = np.arange(6).reshape(2, 3) >>> np.putmask(x, x>2, x**2) >>> x array([[ 0, 1, 2], [ 9, 16, 25]]) If `values` is smaller than `a` it is repeated: >>> x = np.arange(5) >>> np.putmask(x, x>1, [-33, -44]) >>> x array([ 0, 1, -33, -44, -33]) """ return (a, mask, values) @array_function_from_c_func_and_dispatcher(_multiarray_umath.packbits) def packbits(myarray, axis=None): """ packbits(myarray, axis=None) Packs the elements of a binary-valued array into bits in a uint8 array. The result is padded to full bytes by inserting zero bits at the end. Parameters ---------- myarray : array_like An array of integers or booleans whose elements should be packed to bits. axis : int, optional The dimension over which bit-packing is done. ``None`` implies packing the flattened array. Returns ------- packed : ndarray Array of type uint8 whose elements represent bits corresponding to the logical (0 or nonzero) value of the input elements. The shape of `packed` has the same number of dimensions as the input (unless `axis` is None, in which case the output is 1-D). See Also -------- unpackbits: Unpacks elements of a uint8 array into a binary-valued output array. Examples -------- >>> a = np.array([[[1,0,1], ... [0,1,0]], ... [[1,1,0], ... [0,0,1]]]) >>> b = np.packbits(a, axis=-1) >>> b array([[[160],[64]],[[192],[32]]], dtype=uint8) Note that in binary 160 = 1010 0000, 64 = 0100 0000, 192 = 1100 0000, and 32 = 0010 0000. """ return (myarray,) @array_function_from_c_func_and_dispatcher(_multiarray_umath.unpackbits) def unpackbits(myarray, axis=None): """ unpackbits(myarray, axis=None) Unpacks elements of a uint8 array into a binary-valued output array. Each element of `myarray` represents a bit-field that should be unpacked into a binary-valued output array. The shape of the output array is either 1-D (if `axis` is None) or the same shape as the input array with unpacking done along the axis specified. Parameters ---------- myarray : ndarray, uint8 type Input array. axis : int, optional The dimension over which bit-unpacking is done. ``None`` implies unpacking the flattened array. Returns ------- unpacked : ndarray, uint8 type The elements are binary-valued (0 or 1). See Also -------- packbits : Packs the elements of a binary-valued array into bits in a uint8 array. Examples -------- >>> a = np.array([[2], [7], [23]], dtype=np.uint8) >>> a array([[ 2], [ 7], [23]], dtype=uint8) >>> b = np.unpackbits(a, axis=1) >>> b array([[0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1, 1, 1], [0, 0, 0, 1, 0, 1, 1, 1]], dtype=uint8) """ return (myarray,) @array_function_from_c_func_and_dispatcher(_multiarray_umath.shares_memory) def shares_memory(a, b, max_work=None): """ shares_memory(a, b, max_work=None) Determine if two arrays share memory Parameters ---------- a, b : ndarray Input arrays max_work : int, optional Effort to spend on solving the overlap problem (maximum number of candidate solutions to consider). The following special values are recognized: max_work=MAY_SHARE_EXACT (default) The problem is solved exactly. In this case, the function returns True only if there is an element shared between the arrays. max_work=MAY_SHARE_BOUNDS Only the memory bounds of a and b are checked. Raises ------ numpy.TooHardError Exceeded max_work. Returns ------- out : bool See Also -------- may_share_memory Examples -------- >>> np.may_share_memory(np.array([1,2]), np.array([5,8,9])) False """ return (a, b) @array_function_from_c_func_and_dispatcher(_multiarray_umath.may_share_memory) def may_share_memory(a, b, max_work=None): """ may_share_memory(a, b, max_work=None) Determine if two arrays might share memory A return of True does not necessarily mean that the two arrays share any element. It just means that they *might*. Only the memory bounds of a and b are checked by default. Parameters ---------- a, b : ndarray Input arrays max_work : int, optional Effort to spend on solving the overlap problem. See `shares_memory` for details. Default for ``may_share_memory`` is to do a bounds check. Returns ------- out : bool See Also -------- shares_memory Examples -------- >>> np.may_share_memory(np.array([1,2]), np.array([5,8,9])) False >>> x = np.zeros([3, 4]) >>> np.may_share_memory(x[:,0], x[:,1]) True """ return (a, b) @array_function_from_c_func_and_dispatcher(_multiarray_umath.is_busday) def is_busday(dates, weekmask=None, holidays=None, busdaycal=None, out=None): """ is_busday(dates, weekmask='1111100', holidays=None, busdaycal=None, out=None) Calculates which of the given dates are valid days, and which are not. .. versionadded:: 1.7.0 Parameters ---------- dates : array_like of datetime64[D] The array of dates to process. weekmask : str or array_like of bool, optional A seven-element array indicating which of Monday through Sunday are valid days. May be specified as a length-seven list or array, like [1,1,1,1,1,0,0]; a length-seven string, like '1111100'; or a string like "Mon Tue Wed Thu Fri", made up of 3-character abbreviations for weekdays, optionally separated by white space. Valid abbreviations are: Mon Tue Wed Thu Fri Sat Sun holidays : array_like of datetime64[D], optional An array of dates to consider as invalid dates. They may be specified in any order, and NaT (not-a-time) dates are ignored. This list is saved in a normalized form that is suited for fast calculations of valid days. busdaycal : busdaycalendar, optional A `busdaycalendar` object which specifies the valid days. If this parameter is provided, neither weekmask nor holidays may be provided. out : array of bool, optional If provided, this array is filled with the result. Returns ------- out : array of bool An array with the same shape as ``dates``, containing True for each valid day, and False for each invalid day. See Also -------- busdaycalendar: An object that specifies a custom set of valid days. busday_offset : Applies an offset counted in valid days. busday_count : Counts how many valid days are in a half-open date range. Examples -------- >>> # The weekdays are Friday, Saturday, and Monday ... np.is_busday(['2011-07-01', '2011-07-02', '2011-07-18'], ... holidays=['2011-07-01', '2011-07-04', '2011-07-17']) array([False, False, True], dtype='bool') """ return (dates, weekmask, holidays, out) @array_function_from_c_func_and_dispatcher(_multiarray_umath.busday_offset) def busday_offset(dates, offsets, roll=None, weekmask=None, holidays=None, busdaycal=None, out=None): """ busday_offset(dates, offsets, roll='raise', weekmask='1111100', holidays=None, busdaycal=None, out=None) First adjusts the date to fall on a valid day according to the ``roll`` rule, then applies offsets to the given dates counted in valid days. .. versionadded:: 1.7.0 Parameters ---------- dates : array_like of datetime64[D] The array of dates to process. offsets : array_like of int The array of offsets, which is broadcast with ``dates``. roll : {'raise', 'nat', 'forward', 'following', 'backward', 'preceding', 'modifiedfollowing', 'modifiedpreceding'}, optional How to treat dates that do not fall on a valid day. The default is 'raise'. * 'raise' means to raise an exception for an invalid day. * 'nat' means to return a NaT (not-a-time) for an invalid day. * 'forward' and 'following' mean to take the first valid day later in time. * 'backward' and 'preceding' mean to take the first valid day earlier in time. * 'modifiedfollowing' means to take the first valid day later in time unless it is across a Month boundary, in which case to take the first valid day earlier in time. * 'modifiedpreceding' means to take the first valid day earlier in time unless it is across a Month boundary, in which case to take the first valid day later in time. weekmask : str or array_like of bool, optional A seven-element array indicating which of Monday through Sunday are valid days. May be specified as a length-seven list or array, like [1,1,1,1,1,0,0]; a length-seven string, like '1111100'; or a string like "Mon Tue Wed Thu Fri", made up of 3-character abbreviations for weekdays, optionally separated by white space. Valid abbreviations are: Mon Tue Wed Thu Fri Sat Sun holidays : array_like of datetime64[D], optional An array of dates to consider as invalid dates. They may be specified in any order, and NaT (not-a-time) dates are ignored. This list is saved in a normalized form that is suited for fast calculations of valid days. busdaycal : busdaycalendar, optional A `busdaycalendar` object which specifies the valid days. If this parameter is provided, neither weekmask nor holidays may be provided. out : array of datetime64[D], optional If provided, this array is filled with the result. Returns ------- out : array of datetime64[D] An array with a shape from broadcasting ``dates`` and ``offsets`` together, containing the dates with offsets applied. See Also -------- busdaycalendar: An object that specifies a custom set of valid days. is_busday : Returns a boolean array indicating valid days. busday_count : Counts how many valid days are in a half-open date range. Examples -------- >>> # First business day in October 2011 (not accounting for holidays) ... np.busday_offset('2011-10', 0, roll='forward') numpy.datetime64('2011-10-03','D') >>> # Last business day in February 2012 (not accounting for holidays) ... np.busday_offset('2012-03', -1, roll='forward') numpy.datetime64('2012-02-29','D') >>> # Third Wednesday in January 2011 ... np.busday_offset('2011-01', 2, roll='forward', weekmask='Wed') numpy.datetime64('2011-01-19','D') >>> # 2012 Mother's Day in Canada and the U.S. ... np.busday_offset('2012-05', 1, roll='forward', weekmask='Sun') numpy.datetime64('2012-05-13','D') >>> # First business day on or after a date ... np.busday_offset('2011-03-20', 0, roll='forward') numpy.datetime64('2011-03-21','D') >>> np.busday_offset('2011-03-22', 0, roll='forward') numpy.datetime64('2011-03-22','D') >>> # First business day after a date ... np.busday_offset('2011-03-20', 1, roll='backward') numpy.datetime64('2011-03-21','D') >>> np.busday_offset('2011-03-22', 1, roll='backward') numpy.datetime64('2011-03-23','D') """ return (dates, offsets, weekmask, holidays, out) @array_function_from_c_func_and_dispatcher(_multiarray_umath.busday_count) def busday_count(begindates, enddates, weekmask=None, holidays=None, busdaycal=None, out=None): """ busday_count(begindates, enddates, weekmask='1111100', holidays=[], busdaycal=None, out=None) Counts the number of valid days between `begindates` and `enddates`, not including the day of `enddates`. If ``enddates`` specifies a date value that is earlier than the corresponding ``begindates`` date value, the count will be negative. .. versionadded:: 1.7.0 Parameters ---------- begindates : array_like of datetime64[D] The array of the first dates for counting. enddates : array_like of datetime64[D] The array of the end dates for counting, which are excluded from the count themselves. weekmask : str or array_like of bool, optional A seven-element array indicating which of Monday through Sunday are valid days. May be specified as a length-seven list or array, like [1,1,1,1,1,0,0]; a length-seven string, like '1111100'; or a string like "Mon Tue Wed Thu Fri", made up of 3-character abbreviations for weekdays, optionally separated by white space. Valid abbreviations are: Mon Tue Wed Thu Fri Sat Sun holidays : array_like of datetime64[D], optional An array of dates to consider as invalid dates. They may be specified in any order, and NaT (not-a-time) dates are ignored. This list is saved in a normalized form that is suited for fast calculations of valid days. busdaycal : busdaycalendar, optional A `busdaycalendar` object which specifies the valid days. If this parameter is provided, neither weekmask nor holidays may be provided. out : array of int, optional If provided, this array is filled with the result. Returns ------- out : array of int An array with a shape from broadcasting ``begindates`` and ``enddates`` together, containing the number of valid days between the begin and end dates. See Also -------- busdaycalendar: An object that specifies a custom set of valid days. is_busday : Returns a boolean array indicating valid days. busday_offset : Applies an offset counted in valid days. Examples -------- >>> # Number of weekdays in January 2011 ... np.busday_count('2011-01', '2011-02') 21 >>> # Number of weekdays in 2011 ... np.busday_count('2011', '2012') 260 >>> # Number of Saturdays in 2011 ... np.busday_count('2011', '2012', weekmask='Sat') 53 """ return (begindates, enddates, weekmask, holidays, out) @array_function_from_c_func_and_dispatcher( _multiarray_umath.datetime_as_string) def datetime_as_string(arr, unit=None, timezone=None, casting=None): """ datetime_as_string(arr, unit=None, timezone='naive', casting='same_kind') Convert an array of datetimes into an array of strings. Parameters ---------- arr : array_like of datetime64 The array of UTC timestamps to format. unit : str One of None, 'auto', or a :ref:`datetime unit <arrays.dtypes.dateunits>`. timezone : {'naive', 'UTC', 'local'} or tzinfo Timezone information to use when displaying the datetime. If 'UTC', end with a Z to indicate UTC time. If 'local', convert to the local timezone first, and suffix with a +-#### timezone offset. If a tzinfo object, then do as with 'local', but use the specified timezone. casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'} Casting to allow when changing between datetime units. Returns ------- str_arr : ndarray An array of strings the same shape as `arr`. Examples -------- >>> d = np.arange('2002-10-27T04:30', 4*60, 60, dtype='M8[m]') >>> d array(['2002-10-27T04:30', '2002-10-27T05:30', '2002-10-27T06:30', '2002-10-27T07:30'], dtype='datetime64[m]') Setting the timezone to UTC shows the same information, but with a Z suffix >>> np.datetime_as_string(d, timezone='UTC') array(['2002-10-27T04:30Z', '2002-10-27T05:30Z', '2002-10-27T06:30Z', '2002-10-27T07:30Z'], dtype='<U35') Note that we picked datetimes that cross a DST boundary. Passing in a ``pytz`` timezone object will print the appropriate offset >>> np.datetime_as_string(d, timezone=pytz.timezone('US/Eastern')) array(['2002-10-27T00:30-0400', '2002-10-27T01:30-0400', '2002-10-27T01:30-0500', '2002-10-27T02:30-0500'], dtype='<U39') Passing in a unit will change the precision >>> np.datetime_as_string(d, unit='h') array(['2002-10-27T04', '2002-10-27T05', '2002-10-27T06', '2002-10-27T07'], dtype='<U32') >>> np.datetime_as_string(d, unit='s') array(['2002-10-27T04:30:00', '2002-10-27T05:30:00', '2002-10-27T06:30:00', '2002-10-27T07:30:00'], dtype='<U38') 'casting' can be used to specify whether precision can be changed >>> np.datetime_as_string(d, unit='h', casting='safe') TypeError: Cannot create a datetime string as units 'h' from a NumPy datetime with units 'm' according to the rule 'safe' """ return (arr,)
32.274235
128
0.619571
[ "MIT" ]
180Studios/LoginApp
venv/lib/python3.7/site-packages/numpy/core/multiarray.py
50,606
Python
from os import environ from kombu import Queue, Exchange CELERY_BROKER_URL = environ.get('CELERY_BROKER_URL') CELERY_RESULT_BACKEND = environ.get('CELERY_RESULT_BACKEND') CELERY_TIMEZONE = environ.get('TZ', 'UTC') CELERY_RESULT_PERSISTENT = True CELERY_TASK_TRACK_STARTED = True CELERY_TASK_TIME_LIMIT = 30 * 60 CELERY_ACCEPT_CONTENT = ['json'] CELERY_TASK_SERIALIZER = 'json' CELERY_BROKER_HEARTBEAT_CHECKRATE = 10 CELERY_EVENT_QUEUE_EXPIRES = 10 CELERY_EVENT_QUEUE_TTL = 10 CELERY_TASK_SOFT_TIME_LIMIT = 60 CELERY_BROKER_TRANSPORT_OPTIONS = { 'max_retries': 4, 'interval_start': 0, 'interval_step': 0.5, 'interval_max': 3, } celery_exchange = Exchange('celery', type='direct') # topic, fanout CELERY_TASK_ROUTES = { '*': {'queue': 'celery'}, } CELERY_TASK_QUEUES = ( Queue('celery', exchange=celery_exchange, queue_arguments={'x-queue-mode': 'lazy'}), )
24.694444
88
0.752531
[ "MIT" ]
SilinAlexander/django-chat
web/src/additional_settings/celery_settings.py
889
Python
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import csv import math import json import time import random import logging import functools import traceback from collections import defaultdict from _thread import start_new_thread from multiprocessing import Queue, Process import numpy as np from tqdm import tqdm import paddle import paddle.distributed as dist def set_seed(seed): """Set seed for reproduction. """ seed = seed + dist.get_rank() random.seed(seed) np.random.seed(seed) paddle.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) def set_logger(args): """Write logs to console and log file. """ log_file = os.path.join(args.save_path, 'train.log') logging.basicConfig( format='%(asctime)s %(levelname)-8s %(message)s', level=logging.INFO, datefmt='%Y-%m-%d %H:%M:%S', filename=log_file, filemode='a+') if args.print_on_screen: console = logging.StreamHandler() console.setLevel(logging.INFO) formatter = logging.Formatter( '%(asctime)s %(levelname)-8s %(message)s') console.setFormatter(formatter) logging.getLogger('').addHandler(console) for arg in vars(args): logging.info('{:20}:{}'.format(arg, getattr(args, arg))) def print_log(step, interval, log, timer, time_sum): """Print log to logger. """ logging.info( '[GPU %d] step: %d, loss: %.5f, reg: %.4e, speed: %.2f steps/s, time: %.2f s' % (dist.get_rank(), step, log['loss'] / interval, log['reg'] / interval, interval / time_sum, time_sum)) logging.info('sample: %f, forward: %f, backward: %f, update: %f' % ( timer['sample'], timer['forward'], timer['backward'], timer['update'])) def uniform(low, high, size, dtype=np.float32, seed=0): """Memory efficient uniform implementation. """ rng = np.random.default_rng(seed) out = (high - low) * rng.random(size, dtype=dtype) + low return out def timer_wrapper(name): """Time counter wrapper. """ def decorate(func): """decorate func """ @functools.wraps(func) def wrapper(*args, **kwargs): """wrapper func """ logging.info(f'[{name}] start...') ts = time.time() result = func(*args, **kwargs) te = time.time() costs = te - ts if costs < 1e-4: cost_str = '%f sec' % costs elif costs > 3600: cost_str = '%.4f sec (%.4f hours)' % (costs, costs / 3600.) else: cost_str = '%.4f sec' % costs logging.info(f'[{name}] finished! It takes {cost_str} s') return result return wrapper return decorate def calculate_metrics(scores, corr_idxs, filter_list): """Calculate metrics according to scores. """ logs = [] for i in range(scores.shape[0]): rank = (scores[i] > scores[i][corr_idxs[i]]).astype('float32') if filter_list is not None: mask = paddle.ones(rank.shape, dtype='float32') mask[filter_list[i]] = 0. rank = rank * mask rank = paddle.sum(rank) + 1 logs.append({ 'MRR': 1.0 / rank, 'MR': float(rank), 'HITS@1': 1.0 if rank <= 1 else 0.0, 'HITS@3': 1.0 if rank <= 3 else 0.0, 'HITS@10': 1.0 if rank <= 10 else 0.0, }) return logs def evaluate_wikikg2(model, loader, mode, save_path): from ogb.linkproppred import Evaluator evaluator = Evaluator(name='ogbl-wikikg2') model.eval() with paddle.no_grad(): y_pred_pos = [] y_pred_neg = [] for h, r, t, neg_h, neg_t in tqdm(loader): pos_h = model._get_ent_embedding(h) pos_r = model._get_rel_embedding(r) pos_t = model._get_ent_embedding(t) y_pred_pos.append(model(pos_h, pos_r, pos_t).numpy()) y_neg_head = model.predict(t, r, neg_h, mode='head').numpy() y_neg_tail = model.predict(h, r, neg_t, mode='tail').numpy() y_pred_neg.append(np.concatenate([y_neg_head, y_neg_tail], axis=1)) y_pred_pos = np.concatenate(y_pred_pos, axis=0) y_pred_neg = np.concatenate(y_pred_neg, axis=0) input_dict = {'y_pred_pos': y_pred_pos, 'y_pred_neg': y_pred_neg} result = evaluator.eval(input_dict) logging.info('-- %s results ------------' % mode) logging.info(' ' + ' '.join( ['{}: {}'.format(k, v.mean()) for k, v in result.items()])) def evaluate_wikikg90m(model, loader, mode, save_path): from ogb.lsc import WikiKG90MEvaluator evaluator = WikiKG90MEvaluator() model.eval() with paddle.no_grad(): top_tens = [] corr_idx = [] for h, r, t_idx, cand_t in tqdm(loader): score = model.predict(h, r, cand_t) rank = paddle.argsort(score, axis=1, descending=True) top_tens.append(rank[:, :10].numpy()) corr_idx.append(t_idx.numpy()) t_pred_top10 = np.concatenate(top_tens, axis=0) t_correct_index = np.concatenate(corr_idx, axis=0) input_dict = {} if mode == 'valid': input_dict['h,r->t'] = { 't_pred_top10': t_pred_top10, 't_correct_index': t_correct_index } result = evaluator.eval(input_dict) logging.info('-- %s results -------------' % mode) logging.info(' '.join( ['{}: {}'.format(k, v) for k, v in result.items()])) else: input_dict['h,r->t'] = {'t_pred_top10': t_pred_top10} evaluator.save_test_submission( input_dict=input_dict, dir_path=save_path) @timer_wrapper('evaluation') def evaluate(model, loader, evaluate_mode='test', filter_dict=None, save_path='./tmp/', data_mode='hrt'): """Evaluate given KGE model. """ if data_mode == 'wikikg2': evaluate_wikikg2(model, loader, evaluate_mode, save_path) elif data_mode == 'wikikg90m': evaluate_wikikg90m(model, loader, evaluate_mode, save_path) else: model.eval() with paddle.no_grad(): h_metrics = [] t_metrics = [] output = {'h,r->t': {}, 't,r->h': {}, 'average': {}} for h, r, t in tqdm(loader): t_score = model.predict(h, r, mode='tail') h_score = model.predict(t, r, mode='head') if filter_dict is not None: h_filter_list = [ filter_dict['head'][(ti, ri)] for ti, ri in zip(t.numpy(), r.numpy()) ] t_filter_list = [ filter_dict['tail'][(hi, ri)] for hi, ri in zip(h.numpy(), r.numpy()) ] else: h_filter_list = None t_filter_list = None h_metrics += calculate_metrics(h_score, h, h_filter_list) t_metrics += calculate_metrics(t_score, t, t_filter_list) for metric in h_metrics[0].keys(): output['t,r->h'][metric] = np.mean( [x[metric] for x in h_metrics]) output['h,r->t'][metric] = np.mean( [x[metric] for x in t_metrics]) output['average'][metric] = ( output['t,r->h'][metric] + output['h,r->t'][metric]) / 2 logging.info('-------------- %s result --------------' % evaluate_mode) logging.info('t,r->h |' + ' '.join( ['{}: {}'.format(k, v) for k, v in output['t,r->h'].items()])) logging.info('h,r->t |' + ' '.join( ['{}: {}'.format(k, v) for k, v in output['h,r->t'].items()])) logging.info('average |' + ' '.join( ['{}: {}'.format(k, v) for k, v in output['average'].items()])) logging.info('-----------------------------------------') def gram_schimidt_process(embeds, num_elem, use_scale): """ Orthogonalize embeddings. """ num_embed = embeds.shape[0] assert embeds.shape[1] == num_elem assert embeds.shape[2] == (num_elem + int(use_scale)) if use_scale: scales = embeds[:, :, -1] embeds = embeds[:, :, :num_elem] u = [embeds[:, 0]] uu = [0] * num_elem uu[0] = (u[0] * u[0]).sum(axis=-1) u_d = embeds[:, 1:] ushape = (num_embed, 1, -1) for i in range(1, num_elem): tmp_a = (embeds[:, i:] * u[i - 1].reshape(ushape)).sum(axis=-1) tmp_b = uu[i - 1].reshape((num_embed, -1)) tmp_u = (tmp_a / tmp_b).reshape((num_embed, -1, 1)) u_d = u_d - u[-1].reshape(ushape) * tmp_u u_i = u_d[:, 0] if u_d.shape[1] > 1: u_d = u_d[:, 1:] uu[i] = (u_i * u_i).sum(axis=-1) u.append(u_i) u = np.stack(u, axis=1) u_norm = np.linalg.norm(u, axis=-1, keepdims=True) u = u / u_norm if use_scale: u = np.concatenate([u, scales.reshape((num_embed, -1, 1))], axis=-1) return u
34.989324
87
0.54465
[ "ECL-2.0", "Apache-2.0" ]
LemonNoel/PGL
apps/Graph4KG/utils.py
9,832
Python
# Copyright 2018 Contributors to Hyperledger Sawtooth # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ----------------------------------------------------------------------------- """Test User Addresser""" import logging import pytest from rbac.common import addresser from tests.rbac.common.assertions import TestAssertions LOGGER = logging.getLogger(__name__) @pytest.mark.addressing @pytest.mark.library class TestUserAddresser(TestAssertions): """Test User Addresser""" def test_address(self): """Tests address makes an address that identifies as the correct AddressSpace""" user_id = addresser.user.unique_id() user_address = addresser.user.address(user_id) self.assertIsAddress(user_address) self.assertEqual( addresser.get_address_type(user_address), addresser.AddressSpace.USER ) def test_unique_id(self): """Tests that unique_id generates a unique identifier and is unique""" id1 = addresser.user.unique_id() id2 = addresser.user.unique_id() self.assertIsIdentifier(id1) self.assertIsIdentifier(id2) self.assertNotEqual(id1, id2) def test_get_address_type(self): """Tests that get_address_type returns AddressSpace.USER if it is a user address, and None if it is of another address type""" user_address = addresser.user.address(addresser.user.unique_id()) role_address = addresser.role.address(addresser.role.unique_id()) self.assertEqual( addresser.get_address_type(user_address), addresser.AddressSpace.USER ) self.assertEqual( addresser.user.get_address_type(user_address), addresser.AddressSpace.USER ) self.assertIsNone(addresser.user.get_address_type(role_address)) self.assertEqual( addresser.get_address_type(role_address), addresser.AddressSpace.ROLES_ATTRIBUTES, ) def test_get_addresser(self): """Test that get_addresser returns the addresser class if it is a user address, and None if it is of another address type""" user_address = addresser.user.address(addresser.user.unique_id()) other_address = addresser.role.address(addresser.role.unique_id()) self.assertIsInstance( addresser.get_addresser(user_address), type(addresser.user) ) self.assertIsInstance( addresser.user.get_addresser(user_address), type(addresser.user) ) self.assertIsNone(addresser.user.get_addresser(other_address)) def test_user_parse(self): """Test addresser.user.parse returns a parsed address if it is a user address""" user_id = addresser.user.unique_id() user_address = addresser.user.address(user_id) parsed = addresser.user.parse(user_address) self.assertEqual(parsed.object_type, addresser.ObjectType.USER) self.assertEqual(parsed.related_type, addresser.ObjectType.NONE) self.assertEqual( parsed.relationship_type, addresser.RelationshipType.ATTRIBUTES ) self.assertEqual(parsed.address_type, addresser.AddressSpace.USER) self.assertEqual(parsed.object_id, user_id) self.assertEqual(parsed.related_id, None) def test_addresser_parse(self): """Test addresser.parse returns a parsed address""" user_id = addresser.user.unique_id() user_address = addresser.user.address(user_id) parsed = addresser.parse(user_address) self.assertEqual(parsed.object_type, addresser.ObjectType.USER) self.assertEqual(parsed.related_type, addresser.ObjectType.NONE) self.assertEqual( parsed.relationship_type, addresser.RelationshipType.ATTRIBUTES ) self.assertEqual(parsed.address_type, addresser.AddressSpace.USER) self.assertEqual(parsed.object_id, user_id) self.assertEqual(parsed.related_id, None) def test_parse_other(self): """Test that parse returns None if it is not a user address""" other_address = addresser.role.address(addresser.role.unique_id()) self.assertIsNone(addresser.user.parse(other_address)) def test_addresses_are(self): """Test that addresses_are returns True if all addresses are a user addresses, and False if any addresses are if a different address type""" user_address1 = addresser.user.address(addresser.user.unique_id()) user_address2 = addresser.user.address(addresser.user.unique_id()) other_address = addresser.role.address(addresser.role.unique_id()) self.assertTrue(addresser.user.addresses_are([user_address1])) self.assertTrue(addresser.user.addresses_are([user_address1, user_address2])) self.assertFalse(addresser.user.addresses_are([other_address])) self.assertFalse(addresser.user.addresses_are([user_address1, other_address])) self.assertFalse(addresser.user.addresses_are([other_address, user_address1])) self.assertTrue(addresser.user.addresses_are([])) def test_address_deterministic(self): """Tests address makes an address that identifies as the correct AddressSpace""" user_id1 = addresser.user.unique_id() user_address1 = addresser.user.address(user_id1) user_address2 = addresser.user.address(user_id1) self.assertIsAddress(user_address1) self.assertIsAddress(user_address2) self.assertEqual(user_address1, user_address2) self.assertEqual( addresser.get_address_type(user_address1), addresser.AddressSpace.USER ) def test_address_random(self): """Tests address makes a unique address given different inputs""" user_id1 = addresser.user.unique_id() user_id2 = addresser.user.unique_id() user_address1 = addresser.user.address(user_id1) user_address2 = addresser.user.address(user_id2) self.assertIsAddress(user_address1) self.assertIsAddress(user_address2) self.assertNotEqual(user_address1, user_address2) self.assertEqual( addresser.get_address_type(user_address1), addresser.AddressSpace.USER ) self.assertEqual( addresser.get_address_type(user_address2), addresser.AddressSpace.USER )
44.993421
88
0.702588
[ "Apache-2.0" ]
kthblmfld/sawtooth-next-directory
tests/rbac/common/addresser/user_test.py
6,839
Python
import sys, os import json from requests import get sensorID = sys.argv[1] SupervisorToken = os.environ["SUPERVISOR_TOKEN"] url = "http://supervisor/core/api/states/"+sensorID headers = { "Authorization": "Bearer "+SupervisorToken, "content-type": "application/json", } ha_sensor_data_request = get(url, headers=headers) ha_sensor = json.loads(ha_sensor_data_request.text) # Sensor state output print(ha_sensor["state"])
21.7
51
0.748848
[ "MIT" ]
PecceG2/HASS-SNMP-Sensors-and-Entities-addon
data/get-sensor-data.py
434
Python
# List the type colors for the editor AIR = (0, 0, 0) GRASS = (100, 200, 40) ROCK = (106, 106, 106) LAVA = (252, 144, 3) WATER = (0, 0, 255) PLAYER = (155, 191, 250) PLAYER_END = (40, 30, 100) SPIKE_UP = (204, 24, 24) SPIKE_DOWN = (166, 8, 8) # List all the used types types = ['GRASS', 'ROCK', 'LAVA', 'WATER', 'PLAYER', 'SPIKE_UP', 'SPIKE_DOWN', 'PLAYER_END', 'AIR'] colorTypes = [GRASS, ROCK, LAVA, WATER, PLAYER, SPIKE_UP, SPIKE_DOWN, PLAYER_END, AIR] # Set default type select = 'GRASS' colorSelect = GRASS
27.052632
99
0.640078
[ "MIT" ]
Kronifer/cj8-repo
tools/LevelCreator/ezTypes.py
514
Python
""" Matrix operations for neuroswarms models. Author: Joseph Monaco ([email protected]) Affiliation: Johns Hopkins University Created: 2019-05-12 Updated: 2020-11-16 Related paper: Monaco, J.D., Hwang, G.M., Schultz, K.M. et al. Cognitive swarming in complex environments with attractor dynamics and oscillatory computing. Biol Cybern 114, 269โ€“284 (2020). https://doi.org/10.1007/s00422-020-00823-z This software is provided AS IS under the terms of the Open Source MIT License. See http://www.opensource.org/licenses/mit-license.php """ __all__ = ('tile_index', 'pairwise_tile_index', 'pairwise_distances', 'distances', 'pairwise_phasediffs', 'pairwise_unit_diffs', 'somatic_motion_update', 'reward_motion_update') from numpy import (empty, zeros, newaxis as AX, swapaxes, hypot, sin, inf, broadcast_arrays, broadcast_to) from .utils.types import * DEBUGGING = False def _check_ndim(Mstr, M, ndim): assert M.ndim == ndim, f'{Mstr}.ndim != {ndim}' def _check_shape(Mstr, M, shape, axis=None): if axis is None: assert M.shape == shape, f'{Mstr}.shape != {shape}' else: assert M.shape[axis] == shape, f'{Mstr}.shape[{axis}] != {shape}' def tile_index(A, B): """ Entrywise comparison index of tile index (column) vectors. """ AA, BB = broadcast_arrays(A, B) if DEBUGGING: shape = (max(A.shape[0], B.shape[0]), 1) _check_shape('AA', AA, shape) _check_shape('BB', BB, shape) return (AA, BB) def pairwise_tile_index(A, B): """ Pairwise comparison index of tile index (column) vectors. """ AA, BB = broadcast_arrays(A, B.T) if DEBUGGING: shape = (len(A), len(B)) _check_shape('AA', AA, shape) _check_shape('BB', BB, shape) return (AA, BB) def pairwise_phasediffs(A, B): """ Compute synchronizing phase differences between phase pairs. """ N_A = len(A) N_B = len(B) DD_shape = (N_A, N_B) if DEBUGGING: _check_ndim('A', A, 2) _check_ndim('B', B, 2) _check_shape('A', A, 1, axis=1) _check_shape('B', B, 1, axis=1) return B.T - A def distances(A, B): """ Compute distances between points in entrywise order. """ AA, BB = broadcast_arrays(A, B) shape = AA.shape if DEBUGGING: _check_ndim('AA', AA, 2) _check_ndim('BB', BB, 2) _check_shape('AA', AA, 2, axis=1) _check_shape('BB', BB, 2, axis=1) return hypot(AA[:,0] - BB[:,0], AA[:,1] - BB[:,1])[:,AX] def pairwise_unit_diffs(A, B): """ Compute attracting unit-vector differences between pairs of points. """ DD = pairwise_position_deltas(A, B) D_norm = hypot(DD[...,0], DD[...,1]) nz = D_norm.nonzero() DD[nz] /= D_norm[nz][...,AX] return DD def pairwise_distances(A, B): """ Compute distances between pairs of points. """ DD = pairwise_position_deltas(A, B) return hypot(DD[...,0], DD[...,1]) def pairwise_position_deltas(A, B): """ Compute attracting component deltas between pairs of points. """ N_A = len(A) N_B = len(B) if DEBUGGING: _check_ndim('A', A, 2) _check_ndim('B', B, 2) _check_shape('A', A, 2, axis=1) _check_shape('B', B, 2, axis=1) # Broadcast the first position matrix AA = empty((N_A,N_B,2), DISTANCE_DTYPE) AA[:] = A[:,AX,:] return B[AX,...] - AA def somatic_motion_update(D_up, D_cur, X, V): """ Compute updated positions by averaging pairwise difference vectors for mutually visible pairs with equal bidirectional adjustments within each pair. The updated distance matrix does not need to be symmetric; it represents 'desired' updates based on recurrent learning. :D_up: R(N,N)-matrix of updated distances :D_cur: R(N,N)-matrix of current distances :X: R(N,2)-matrix of current positions :V: {0,1}(N,2)-matrix of current agent visibility :returns: R(N,2)-matrix of updated positions """ N = len(X) D_shape = (N, N) if DEBUGGING: _check_ndim('X', X, 2) _check_shape('X', X, 2, axis=1) _check_shape('D_up', D_up, D_shape) _check_shape('D_cur', D_cur, D_shape) _check_shape('V', V, D_shape) # Broadcast field position matrix and its transpose XX = empty((N,N,2)) XX[:] = X[:,AX,:] XT = swapaxes(XX, 0, 1) # Find visible & valid values (i.e., corresponding to non-zero weights) # # NOTE: The normalizing factor is divided by 2 because the somatic update # represents one half of the change in distance between a pair of units. D_inf = D_up == inf norm = V * ~D_inf N = norm.sum(axis=1) valid = N.nonzero()[0] norm[valid] /= 2*N[valid,AX] # Zero out the inf elements of the updated distance matrix and corresponding # elements in the current distance matrix D_up[D_inf] = D_cur[D_inf] = 0.0 # Construct the agent-agent avoidant unit vectors DX = XX - XT DX_norm = hypot(DX[...,0], DX[...,1]) valid = DX_norm.nonzero() DX[valid] /= DX_norm[valid][:,AX] return (norm[...,AX]*(D_up - D_cur)[...,AX]*DX).sum(axis=1) def reward_motion_update(D_up, D_cur, X, R, V): """ Compute updated positions by averaging reward-based unit vectors for adjustments of the point only. The updated distance matrix represents 'desired' updates based on reward learning. :D_up: R(N,N_R)-matrix of updated distances between points and rewards :D_cur: R(N,N_R)-matrix of current distances between points and rewards :X: R(N,2)-matrix of current point positions :R: R(N_R,2)-matrix of current reward positions :V: {0,1}(N_R,2)-matrix of current agent-reward visibility :returns: R(N,2)-matrix of updated positions """ N = len(X) N_R = len(R) D_shape = (N, N_R) if DEBUGGING: _check_ndim('X', X, 2) _check_ndim('R', R, 2) _check_shape('X', X, 2, axis=1) _check_shape('R', R, 2, axis=1) _check_shape('D_up', D_up, D_shape) _check_shape('D_cur', D_cur, D_shape) _check_shape('V', V, D_shape) # Broadcast field position matrix XX = empty((N,N_R,2)) XX[:] = X[:,AX,:] # Find valid values (i.e., corresponding to non-zero weights) D_inf = D_up == inf norm = V * ~D_inf N = norm.sum(axis=1) valid = N.nonzero()[0] norm[valid] /= N[valid,AX] # Zero out the inf elements of the updated distance matrix and corresponding # elements in the current distance matrix D_up[D_inf] = D_cur[D_inf] = 0.0 # Construct the agent-reward avoidant unit vectors DR = XX - R[AX] DR_norm = hypot(DR[...,0], DR[...,1]) valid = DR_norm.nonzero() DR[valid] /= DR_norm[valid][:,AX] return (norm[...,AX]*(D_up - D_cur)[...,AX]*DR).sum(axis=1)
30.376106
81
0.621267
[ "MIT" ]
jdmonaco/neuroswarms
neuroswarms/matrix.py
6,867
Python
# Copyright 2018-2021 Xanadu Quantum Technologies Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This submodule contains the discrete-variable quantum operations that perform arithmetic operations on their input states. """ # pylint:disable=abstract-method,arguments-differ,protected-access import numpy as np import pennylane as qml from pennylane.operation import Operation class QubitCarry(Operation): r"""QubitCarry(wires) Apply the ``QubitCarry`` operation to four input wires. This operation performs the transformation: .. math:: |a\rangle |b\rangle |c\rangle |d\rangle \rightarrow |a\rangle |b\rangle |b\oplus c\rangle |bc \oplus d\oplus (b\oplus c)a\rangle .. figure:: ../../_static/ops/QubitCarry.svg :align: center :width: 60% :target: javascript:void(0); See `here <https://arxiv.org/abs/quant-ph/0008033v1>`__ for more information. .. note:: The first wire should be used to input a carry bit from previous operations. The final wire holds the carry bit of this operation and the input state on this wire should be :math:`|0\rangle`. **Details:** * Number of wires: 4 * Number of parameters: 0 Args: wires (Sequence[int]): the wires the operation acts on **Example** The ``QubitCarry`` operation maps the state :math:`|0110\rangle` to :math:`|0101\rangle`, where the last qubit denotes the carry value: .. code-block:: input_bitstring = (0, 1, 1, 0) @qml.qnode(dev) def circuit(basis_state): qml.BasisState(basis_state, wires=[0, 1, 2, 3]) qml.QubitCarry(wires=[0, 1, 2, 3]) return qml.probs(wires=[0, 1, 2, 3]) probs = circuit(input_bitstring) probs_indx = np.argwhere(probs == 1).flatten()[0] bitstrings = list(itertools.product(range(2), repeat=4)) output_bitstring = bitstrings[probs_indx] The output bitstring is >>> output_bitstring (0, 1, 0, 1) The action of ``QubitCarry`` is to add wires ``1`` and ``2``. The modulo-two result is output in wire ``2`` with a carry value output in wire ``3``. In this case, :math:`1 \oplus 1 = 0` with a carry, so we have: >>> bc_sum = output_bitstring[2] >>> bc_sum 0 >>> carry = output_bitstring[3] >>> carry 1 """ num_wires = 4 num_params = 0 _mat = np.array( [ [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0], ] ) @classmethod def _matrix(cls, *params): return QubitCarry._mat @staticmethod def decomposition(wires): decomp_ops = [ qml.Toffoli(wires=wires[1:]), qml.CNOT(wires=[wires[1], wires[2]]), qml.Toffoli(wires=[wires[0], wires[2], wires[3]]), ] return decomp_ops class QubitSum(Operation): r"""QubitSum(wires) Apply a ``QubitSum`` operation on three input wires. This operation performs the transformation: .. math:: |a\rangle |b\rangle |c\rangle \rightarrow |a\rangle |b\rangle |a\oplus b\oplus c\rangle .. figure:: ../../_static/ops/QubitSum.svg :align: center :width: 40% :target: javascript:void(0); See `here <https://arxiv.org/abs/quant-ph/0008033v1>`__ for more information. **Details:** * Number of wires: 3 * Number of parameters: 0 Args: wires (Sequence[int]): the wires the operation acts on **Example** The ``QubitSum`` operation maps the state :math:`|010\rangle` to :math:`|011\rangle`, with the final wire holding the modulo-two sum of the first two wires: .. code-block:: input_bitstring = (0, 1, 0) @qml.qnode(dev) def circuit(basis_state): qml.BasisState(basis_state, wires = [0, 1, 2]) qml.QubitSum(wires=[0, 1, 2]) return qml.probs(wires=[0, 1, 2]) probs = circuit(input_bitstring) probs_indx = np.argwhere(probs == 1).flatten()[0] bitstrings = list(itertools.product(range(2), repeat=3)) output_bitstring = bitstrings[probs_indx] The output bitstring is >>> output_bitstring (0, 1, 1) The action of ``QubitSum`` is to add wires ``0``, ``1``, and ``2``. The modulo-two result is output in wire ``2``. In this case, :math:`0 \oplus 1 \oplus 0 = 1`, so we have: >>> abc_sum = output_bitstring[2] >>> abc_sum 1 """ num_wires = 3 num_params = 0 _mat = np.array( [ [1, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 1], ] ) def label(self, decimals=None, base_label=None): return super().label(decimals=decimals, base_label=base_label or "ฮฃ") @classmethod def _matrix(cls, *params): return QubitSum._mat @staticmethod def decomposition(wires): decomp_ops = [ qml.CNOT(wires=[wires[1], wires[2]]), qml.CNOT(wires=[wires[0], wires[2]]), ] return decomp_ops def adjoint(self): return QubitSum(wires=self.wires)
31.342593
136
0.550812
[ "Apache-2.0" ]
Omid-Hassasfar/pennylane
pennylane/ops/qubit/arithmetic_ops.py
6,771
Python
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, TYPE_CHECKING from azure.core.configuration import Configuration from azure.core.pipeline import policies from azure.mgmt.core.policies import ARMHttpLoggingPolicy from .._version import VERSION if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from azure.core.credentials_async import AsyncTokenCredential class SiteRecoveryManagementClientConfiguration(Configuration): """Configuration for SiteRecoveryManagementClient. Note that all parameters used to create this instance are saved as instance attributes. :param credential: Credential needed for the client to connect to Azure. :type credential: ~azure.core.credentials_async.AsyncTokenCredential :param subscription_id: The subscription Id. :type subscription_id: str :param resource_group_name: The name of the resource group where the recovery services vault is present. :type resource_group_name: str :param resource_name: The name of the recovery services vault. :type resource_name: str """ def __init__( self, credential: "AsyncTokenCredential", subscription_id: str, resource_group_name: str, resource_name: str, **kwargs: Any ) -> None: if credential is None: raise ValueError("Parameter 'credential' must not be None.") if subscription_id is None: raise ValueError("Parameter 'subscription_id' must not be None.") if resource_group_name is None: raise ValueError("Parameter 'resource_group_name' must not be None.") if resource_name is None: raise ValueError("Parameter 'resource_name' must not be None.") super(SiteRecoveryManagementClientConfiguration, self).__init__(**kwargs) self.credential = credential self.subscription_id = subscription_id self.resource_group_name = resource_group_name self.resource_name = resource_name self.api_version = "2021-06-01" self.credential_scopes = kwargs.pop('credential_scopes', ['https://management.azure.com/.default']) kwargs.setdefault('sdk_moniker', 'mgmt-recoveryservicessiterecovery/{}'.format(VERSION)) self._configure(**kwargs) def _configure( self, **kwargs: Any ) -> None: self.user_agent_policy = kwargs.get('user_agent_policy') or policies.UserAgentPolicy(**kwargs) self.headers_policy = kwargs.get('headers_policy') or policies.HeadersPolicy(**kwargs) self.proxy_policy = kwargs.get('proxy_policy') or policies.ProxyPolicy(**kwargs) self.logging_policy = kwargs.get('logging_policy') or policies.NetworkTraceLoggingPolicy(**kwargs) self.http_logging_policy = kwargs.get('http_logging_policy') or ARMHttpLoggingPolicy(**kwargs) self.retry_policy = kwargs.get('retry_policy') or policies.AsyncRetryPolicy(**kwargs) self.custom_hook_policy = kwargs.get('custom_hook_policy') or policies.CustomHookPolicy(**kwargs) self.redirect_policy = kwargs.get('redirect_policy') or policies.AsyncRedirectPolicy(**kwargs) self.authentication_policy = kwargs.get('authentication_policy') if self.credential and not self.authentication_policy: self.authentication_policy = policies.AsyncBearerTokenCredentialPolicy(self.credential, *self.credential_scopes, **kwargs)
48.35
134
0.70243
[ "MIT" ]
AFengKK/azure-sdk-for-python
sdk/recoveryservices/azure-mgmt-recoveryservicessiterecovery/azure/mgmt/recoveryservicessiterecovery/aio/_configuration.py
3,868
Python
from talon import Module, Context import appscript mod = Module() ctx = Context() ctx.matches = r""" os: mac """ @mod.action_class class Actions: def run_shortcut(name: str): """Runs a shortcut on macOS""" pass @ctx.action_class("user") class UserActions: def run_shortcut(name: str): appscript.app(id='com.apple.shortcuts.events').shortcuts[name].run_()
17.434783
77
0.653367
[ "MIT" ]
palexjo/pokey_talon
code/platforms/mac/user.py
401
Python
# Definition for binary tree with next pointer. # class TreeLinkNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None # self.next = None class Solution: # @param root, a tree link node # @return nothing def connect(self, root): if root and root.left and root.right: root.left.next = root.right root.right.next = root.next and root.next.left return self.connect(root.left) or self.connect(root.right)
33.625
70
0.585502
[ "MIT" ]
Fenghuapiao/PyLeetcode
LeetcodeAlgorithms/116. Populating Next Right Pointers in Each Node/populating-next-right-pointers-in-each-node.py
538
Python
import datetime from platform import python_version from six import integer_types, string_types, text_type class _NO_VALUE(object): pass # we don't use NOTHING because it might be returned from various APIs NO_VALUE = _NO_VALUE() _SUPPORTED_TYPES = (float, bool, str, datetime.datetime, type(None)) + \ string_types + integer_types + (text_type, bytes) + (type,) if python_version() < '3.0': dict_type = dict else: from collections import abc dict_type = abc.Mapping def diff(a, b, path=None): path = _make_path(path) if isinstance(a, (list, tuple)): return _diff_sequences(a, b, path) if type(a).__name__ == 'SON': a = dict(a) if type(b).__name__ == 'SON': b = dict(b) if isinstance(a, dict_type): return _diff_dicts(a, b, path) if type(a).__name__ == 'ObjectId': a = str(a) if type(b).__name__ == 'ObjectId': b = str(b) if type(a).__name__ == 'Int64': a = int(a) if type(b).__name__ == 'Int64': b = int(b) if not isinstance(a, _SUPPORTED_TYPES): raise NotImplementedError( 'Unsupported diff type: {0}'.format(type(a))) # pragma: no cover if not isinstance(b, _SUPPORTED_TYPES): raise NotImplementedError( 'Unsupported diff type: {0}'.format(type(b))) # pragma: no cover if a != b: return [(path[:], a, b)] return [] def _diff_dicts(a, b, path): if not isinstance(a, type(b)): return [(path[:], type(a), type(b))] returned = [] for key in set(a) | set(b): a_value = a.get(key, NO_VALUE) b_value = b.get(key, NO_VALUE) path.append(key) if a_value is NO_VALUE or b_value is NO_VALUE: returned.append((path[:], a_value, b_value)) else: returned.extend(diff(a_value, b_value, path)) path.pop() return returned def _diff_sequences(a, b, path): if len(a) != len(b): return [(path[:], a, b)] returned = [] for i, a_i in enumerate(a): path.append(i) returned.extend(diff(a_i, b[i], path)) path.pop() return returned def _make_path(path): if path is None: return [] return path
26.86747
77
0.590583
[ "BSD-3-Clause" ]
kdeyev/mongomock
tests/diff.py
2,230
Python