content
stringlengths
7
928k
avg_line_length
float64
3.5
33.8k
max_line_length
int64
6
139k
alphanum_fraction
float64
0.08
0.96
licenses
sequence
repository_name
stringlengths
7
104
path
stringlengths
4
230
size
int64
7
928k
lang
stringclasses
1 value
# coding: utf-8 import re import six from huaweicloudsdkcore.utils.http_utils import sanitize_for_serialization class ShowSecurityGroupRequest: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'security_group_id': 'str' } attribute_map = { 'security_group_id': 'security_group_id' } def __init__(self, security_group_id=None): """ShowSecurityGroupRequest - a model defined in huaweicloud sdk""" self._security_group_id = None self.discriminator = None self.security_group_id = security_group_id @property def security_group_id(self): """Gets the security_group_id of this ShowSecurityGroupRequest. 安全组资源ID :return: The security_group_id of this ShowSecurityGroupRequest. :rtype: str """ return self._security_group_id @security_group_id.setter def security_group_id(self, security_group_id): """Sets the security_group_id of this ShowSecurityGroupRequest. 安全组资源ID :param security_group_id: The security_group_id of this ShowSecurityGroupRequest. :type: str """ self._security_group_id = security_group_id def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" import simplejson as json if six.PY2: import sys reload(sys) sys.setdefaultencoding("utf-8") return json.dumps(sanitize_for_serialization(self), ensure_ascii=False) def __repr__(self): """For `print`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ShowSecurityGroupRequest): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
27.657895
89
0.574691
[ "Apache-2.0" ]
huaweicloud/huaweicloud-sdk-python-v3
huaweicloud-sdk-vpc/huaweicloudsdkvpc/v3/model/show_security_group_request.py
3,173
Python
from lark import Lark, Transformer, v_args from lark.visitors import Interpreter, visit_children_decor p = Lark.open("rules.lark", parser="lalr", rel_to=__file__) code = """ // Firrst win in my book b = 4; a = b*2; print a+1 x = 7; p = [1, 2, 3, 4] print p """ tree = p.parse(code) @v_args(inline=True) class MyEval(Transformer): from operator import add, mul, neg, sub from operator import truediv as div number = float def __init__(self, ns): self.ns = ns def var(self, name): return self.ns[name] # def num_list(self, value): # print(value) def eval_expr(tree, ns): return MyEval(ns).transform(tree) @v_args(inline=True) class MyInterp(Interpreter): def __init__(self): self.namespace = {} def assign(self, var, expr): self.namespace[var] = eval_expr(expr, self.namespace) def print_statement(self, expr): # print(expr) res = eval_expr(expr, self.namespace) print(res) print(tree.pretty()) # MyInterp().visit(tree)
18.553571
61
0.638114
[ "Apache-2.0" ]
RLToolsWorkshop/dubdub
tests/cmdexpr/ruler.py
1,039
Python
# coding: utf-8 # ----------------------------------------------------------------------------------- # <copyright company="Aspose" file="error_details.py"> # Copyright (c) 2020 Aspose.Words for Cloud # </copyright> # <summary> # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # </summary> # ----------------------------------------------------------------------------------- import pprint import re # noqa: F401 import six import json class ErrorDetails(object): """The error details. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'error_date_time': 'datetime', 'request_id': 'str' } attribute_map = { 'error_date_time': 'ErrorDateTime', 'request_id': 'RequestId' } def __init__(self, error_date_time=None, request_id=None): # noqa: E501 """ErrorDetails - a model defined in Swagger""" # noqa: E501 self._error_date_time = None self._request_id = None self.discriminator = None if error_date_time is not None: self.error_date_time = error_date_time if request_id is not None: self.request_id = request_id @property def error_date_time(self): """Gets the error_date_time of this ErrorDetails. # noqa: E501 Error datetime. # noqa: E501 :return: The error_date_time of this ErrorDetails. # noqa: E501 :rtype: datetime """ return self._error_date_time @error_date_time.setter def error_date_time(self, error_date_time): """Sets the error_date_time of this ErrorDetails. Error datetime. # noqa: E501 :param error_date_time: The error_date_time of this ErrorDetails. # noqa: E501 :type: datetime """ self._error_date_time = error_date_time @property def request_id(self): """Gets the request_id of this ErrorDetails. # noqa: E501 The request id. # noqa: E501 :return: The request_id of this ErrorDetails. # noqa: E501 :rtype: str """ return self._request_id @request_id.setter def request_id(self, request_id): """Sets the request_id of this ErrorDetails. The request id. # noqa: E501 :param request_id: The request_id of this ErrorDetails. # noqa: E501 :type: str """ self._request_id = request_id def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_json(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[self.attribute_map[attr]] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[self.attribute_map[attr]] = value.to_dict() elif isinstance(value, dict): result[self.attribute_map[attr]] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[self.attribute_map[attr]] = value return json.dumps(result) def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ErrorDetails): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
33.772727
87
0.580585
[ "MIT" ]
rizwanniazigroupdocs/aspose-words-cloud-python
asposewordscloud/models/error_details.py
5,944
Python
import datetime from flask_restplus import Namespace, Resource from flask_login import login_required, current_user from flask import request from ..util import query_util, coco_util, profile from config import Config from database import ( ImageModel, CategoryModel, AnnotationModel, SessionEvent ) api = Namespace('annotator', description='Annotator related operations') @api.route('/data') class AnnotatorData(Resource): @profile @login_required def post(self): """ Called when saving data from the annotator client """ data = request.get_json(force=True) image = data.get('image') dataset = data.get('dataset') image_id = image.get('id') image_model = ImageModel.objects(id=image_id).first() if image_model is None: return {'success': False, 'message': 'Image does not exist'}, 400 # Check if current user can access dataset db_dataset = current_user.datasets.filter(id=image_model.dataset_id).first() if dataset is None: return {'success': False, 'message': 'Could not find associated dataset'} db_dataset.update(annotate_url=dataset.get('annotate_url', '')) categories = CategoryModel.objects.all() annotations = AnnotationModel.objects(image_id=image_id) current_user.update(preferences=data.get('user', {})) annotated = False # Iterate every category passed in the data for category in data.get('categories', []): category_id = category.get('id') # Find corresponding category object in the database db_category = categories.filter(id=category_id).first() if db_category is None: continue category_update = {'color': category.get('color')} if current_user.can_edit(db_category): category_update['keypoint_edges'] = category.get('keypoint_edges', []) category_update['keypoint_labels'] = category.get('keypoint_labels', []) db_category.update(**category_update) # Iterate every annotation from the data annotations for annotation in category.get('annotations', []): # Find corresponding annotation object in database annotation_id = annotation.get('id') db_annotation = annotations.filter(id=annotation_id).first() if db_annotation is None: continue # Paperjs objects are complex, so they will not always be passed. Therefor we update # the annotation twice, checking if the paperjs exists. # Update annotation in database sessions = [] total_time = 0 for session in annotation.get('sessions', []): date = datetime.datetime.fromtimestamp(int(session.get('start')) / 1e3) model = SessionEvent( user=current_user.username, created_at=date, milliseconds=session.get('milliseconds'), tools_used=session.get('tools') ) total_time += session.get('milliseconds') sessions.append(model) db_annotation.update( add_to_set__events=sessions, inc__milliseconds=total_time, set__isbbox=annotation.get('isbbox', False), set__keypoints=annotation.get('keypoints', []), set__metadata=annotation.get('metadata'), set__color=annotation.get('color') ) paperjs_object = annotation.get('compoundPath', []) # Update paperjs if it exists if len(paperjs_object) == 2: width = db_annotation.width height = db_annotation.height # Generate coco formatted segmentation data segmentation, area, bbox = coco_util.\ paperjs_to_coco(width, height, paperjs_object) db_annotation.update( set__segmentation=segmentation, set__area=area, set__isbbox=annotation.get('isbbox', False), set__bbox=bbox, set__paper_object=paperjs_object, ) if area > 0: annotated = True image_model.update( set__metadata=image.get('metadata', {}), set__annotated=annotated, set__category_ids=image.get('category_ids', []), set__regenerate_thumbnail=True, set__num_annotations=annotations\ .filter(deleted=False, area__gt=0).count() ) return {"success": True} @api.route('/data/<int:image_id>') class AnnotatorId(Resource): @profile @login_required def get(self, image_id): """ Called when loading from the annotator client """ image = ImageModel.objects(id=image_id)\ .exclude('events').first() if image is None: return {'success': False, 'message': 'Could not load image'}, 400 dataset = current_user.datasets.filter(id=image.dataset_id).first() if dataset is None: return {'success': False, 'message': 'Could not find associated dataset'}, 400 categories = CategoryModel.objects(deleted=False)\ .in_bulk(dataset.categories).items() # Get next and previous image images = ImageModel.objects(dataset_id=dataset.id, deleted=False) pre = images.filter(file_name__lt=image.file_name).order_by('-file_name').first() nex = images.filter(file_name__gt=image.file_name).order_by('file_name').first() preferences = {} if not Config.LOGIN_DISABLED: preferences = current_user.preferences # Generate data about the image to return to client data = { 'image': query_util.fix_ids(image), 'categories': [], 'dataset': query_util.fix_ids(dataset), 'preferences': preferences, 'permissions': { 'dataset': dataset.permissions(current_user), 'image': image.permissions(current_user) } } data['image']['previous'] = pre.id if pre else None data['image']['next'] = nex.id if nex else None for category in categories: category = query_util.fix_ids(category[1]) category_id = category.get('id') annotations = AnnotationModel.objects(image_id=image_id, category_id=category_id, deleted=False)\ .exclude('events').all() category['show'] = True category['visualize'] = False category['annotations'] = [] if annotations is None else query_util.fix_ids(annotations) data.get('categories').append(category) return data
36.338384
109
0.577623
[ "MIT" ]
Cheol-H-Jeong/Deep-POC-2019
coco-annotator/backend/webserver/api/annotator.py
7,195
Python
# coding: utf-8 # Copyright (c) 2016, 2022, Oracle and/or its affiliates. All rights reserved. # This software is dual-licensed to you under the Universal Permissive License (UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl or Apache License 2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose either license. from .update_connection_details import UpdateConnectionDetails from oci.util import formatted_flat_dict, NONE_SENTINEL, value_allowed_none_or_none_sentinel # noqa: F401 from oci.decorators import init_model_state_from_kwargs @init_model_state_from_kwargs class UpdateConnectionFromAmazonS3(UpdateConnectionDetails): """ The details to update an Amazon s3 connection. """ def __init__(self, **kwargs): """ Initializes a new UpdateConnectionFromAmazonS3 object with values from keyword arguments. The default value of the :py:attr:`~oci.data_integration.models.UpdateConnectionFromAmazonS3.model_type` attribute of this class is ``AMAZON_S3_CONNECTION`` and it should not be changed. The following keyword arguments are supported (corresponding to the getters/setters of this class): :param model_type: The value to assign to the model_type property of this UpdateConnectionFromAmazonS3. Allowed values for this property are: "ORACLE_ADWC_CONNECTION", "ORACLE_ATP_CONNECTION", "ORACLE_OBJECT_STORAGE_CONNECTION", "ORACLEDB_CONNECTION", "MYSQL_CONNECTION", "GENERIC_JDBC_CONNECTION", "BICC_CONNECTION", "AMAZON_S3_CONNECTION", "BIP_CONNECTION" :type model_type: str :param key: The value to assign to the key property of this UpdateConnectionFromAmazonS3. :type key: str :param model_version: The value to assign to the model_version property of this UpdateConnectionFromAmazonS3. :type model_version: str :param parent_ref: The value to assign to the parent_ref property of this UpdateConnectionFromAmazonS3. :type parent_ref: oci.data_integration.models.ParentReference :param name: The value to assign to the name property of this UpdateConnectionFromAmazonS3. :type name: str :param description: The value to assign to the description property of this UpdateConnectionFromAmazonS3. :type description: str :param object_status: The value to assign to the object_status property of this UpdateConnectionFromAmazonS3. :type object_status: int :param object_version: The value to assign to the object_version property of this UpdateConnectionFromAmazonS3. :type object_version: int :param identifier: The value to assign to the identifier property of this UpdateConnectionFromAmazonS3. :type identifier: str :param connection_properties: The value to assign to the connection_properties property of this UpdateConnectionFromAmazonS3. :type connection_properties: list[oci.data_integration.models.ConnectionProperty] :param registry_metadata: The value to assign to the registry_metadata property of this UpdateConnectionFromAmazonS3. :type registry_metadata: oci.data_integration.models.RegistryMetadata :param access_key: The value to assign to the access_key property of this UpdateConnectionFromAmazonS3. :type access_key: oci.data_integration.models.SensitiveAttribute :param secret_key: The value to assign to the secret_key property of this UpdateConnectionFromAmazonS3. :type secret_key: oci.data_integration.models.SensitiveAttribute """ self.swagger_types = { 'model_type': 'str', 'key': 'str', 'model_version': 'str', 'parent_ref': 'ParentReference', 'name': 'str', 'description': 'str', 'object_status': 'int', 'object_version': 'int', 'identifier': 'str', 'connection_properties': 'list[ConnectionProperty]', 'registry_metadata': 'RegistryMetadata', 'access_key': 'SensitiveAttribute', 'secret_key': 'SensitiveAttribute' } self.attribute_map = { 'model_type': 'modelType', 'key': 'key', 'model_version': 'modelVersion', 'parent_ref': 'parentRef', 'name': 'name', 'description': 'description', 'object_status': 'objectStatus', 'object_version': 'objectVersion', 'identifier': 'identifier', 'connection_properties': 'connectionProperties', 'registry_metadata': 'registryMetadata', 'access_key': 'accessKey', 'secret_key': 'secretKey' } self._model_type = None self._key = None self._model_version = None self._parent_ref = None self._name = None self._description = None self._object_status = None self._object_version = None self._identifier = None self._connection_properties = None self._registry_metadata = None self._access_key = None self._secret_key = None self._model_type = 'AMAZON_S3_CONNECTION' @property def access_key(self): """ Gets the access_key of this UpdateConnectionFromAmazonS3. :return: The access_key of this UpdateConnectionFromAmazonS3. :rtype: oci.data_integration.models.SensitiveAttribute """ return self._access_key @access_key.setter def access_key(self, access_key): """ Sets the access_key of this UpdateConnectionFromAmazonS3. :param access_key: The access_key of this UpdateConnectionFromAmazonS3. :type: oci.data_integration.models.SensitiveAttribute """ self._access_key = access_key @property def secret_key(self): """ Gets the secret_key of this UpdateConnectionFromAmazonS3. :return: The secret_key of this UpdateConnectionFromAmazonS3. :rtype: oci.data_integration.models.SensitiveAttribute """ return self._secret_key @secret_key.setter def secret_key(self, secret_key): """ Sets the secret_key of this UpdateConnectionFromAmazonS3. :param secret_key: The secret_key of this UpdateConnectionFromAmazonS3. :type: oci.data_integration.models.SensitiveAttribute """ self._secret_key = secret_key def __repr__(self): return formatted_flat_dict(self) def __eq__(self, other): if other is None: return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not self == other
39.551724
266
0.671898
[ "Apache-2.0", "BSD-3-Clause" ]
pabs3/oci-python-sdk
src/oci/data_integration/models/update_connection_from_amazon_s3.py
6,882
Python
import logging import threading import time import traceback import warnings from ..machine.machine import TlMachine LOG = logging.getLogger(__name__) class Invoker: def __init__(self, data_controller): self.data_controller = data_controller self.exception = None threading.excepthook = self._threading_excepthook def _threading_excepthook(self, args): self.exception = args def invoke(self, vmid, run_async=True): LOG.info(f"Invoking {vmid} (new thread? {run_async})") m = TlMachine(vmid, self) if run_async: thread = threading.Thread(target=m.run) LOG.info(f"New thread: {thread}") thread.start() else: m.run()
24.766667
62
0.650067
[ "Apache-2.0" ]
condense9/hark-lang
src/hark_lang/executors/thread.py
743
Python
#!/usr/bin/env python """ <Program Name> test_root_versioning_integration.py <Author> Evan Cordell. <Started> July 21, 2016. <Copyright> See LICENSE for licensing information. <Purpose> Test root versioning for efficient root key rotation. """ from __future__ import print_function from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals import os import logging import tempfile import shutil import sys # 'unittest2' required for testing under Python < 2.7. if sys.version_info >= (2, 7): import unittest else: import unittest2 as unittest import tuf import tuf.log import tuf.formats import tuf.exceptions import tuf.roledb import tuf.keydb import tuf.repository_tool as repo_tool import securesystemslib logger = logging.getLogger('tuf.test_root_versioning') repo_tool.disable_console_log_messages() class TestRepository(unittest.TestCase): @classmethod def setUpClass(cls): cls.temporary_directory = tempfile.mkdtemp(dir=os.getcwd()) @classmethod def tearDownClass(cls): shutil.rmtree(cls.temporary_directory) def tearDown(self): tuf.roledb.clear_roledb() tuf.keydb.clear_keydb() def test_init(self): # Test normal case. repository = repo_tool.Repository('repository_directory/', 'metadata_directory/', 'targets_directory/') self.assertTrue(isinstance(repository.root, repo_tool.Root)) self.assertTrue(isinstance(repository.snapshot, repo_tool.Snapshot)) self.assertTrue(isinstance(repository.timestamp, repo_tool.Timestamp)) self.assertTrue(isinstance(repository.targets, repo_tool.Targets)) # Test improperly formatted arguments. self.assertRaises(securesystemslib.exceptions.FormatError, repo_tool.Repository, 3, 'metadata_directory/', 'targets_directory') self.assertRaises(securesystemslib.exceptions.FormatError, repo_tool.Repository, 'repository_directory', 3, 'targets_directory') self.assertRaises(securesystemslib.exceptions.FormatError, repo_tool.Repository, 'repository_directory', 'metadata_directory', 3) def test_root_role_versioning(self): # Test root role versioning # # 1. Import public and private keys. # 2. Add verification keys. # 3. Load signing keys. # 4. Add target files. # 5. Perform delegation. # 6. writeall() # # Copy the target files from 'tuf/tests/repository_data' so that writeall() # has target fileinfo to include in metadata. temporary_directory = tempfile.mkdtemp(dir=self.temporary_directory) targets_directory = os.path.join(temporary_directory, 'repository', repo_tool.TARGETS_DIRECTORY_NAME) original_targets_directory = os.path.join('repository_data', 'repository', 'targets') shutil.copytree(original_targets_directory, targets_directory) # In this case, create_new_repository() creates the 'repository/' # sub-directory in 'temporary_directory' if it does not exist. repository_directory = os.path.join(temporary_directory, 'repository') metadata_directory = os.path.join(repository_directory, repo_tool.METADATA_STAGED_DIRECTORY_NAME) repository = repo_tool.create_new_repository(repository_directory) # (1) Load the public and private keys of the top-level roles, and one # delegated role. keystore_directory = os.path.join('repository_data', 'keystore') # Load the public keys. root_pubkey_path = os.path.join(keystore_directory, 'root_key.pub') targets_pubkey_path = os.path.join(keystore_directory, 'targets_key.pub') snapshot_pubkey_path = os.path.join(keystore_directory, 'snapshot_key.pub') timestamp_pubkey_path = os.path.join(keystore_directory, 'timestamp_key.pub') role1_pubkey_path = os.path.join(keystore_directory, 'delegation_key.pub') root_pubkey = repo_tool.import_rsa_publickey_from_file(root_pubkey_path) targets_pubkey = repo_tool.import_ed25519_publickey_from_file(targets_pubkey_path) snapshot_pubkey = \ repo_tool.import_ed25519_publickey_from_file(snapshot_pubkey_path) timestamp_pubkey = \ repo_tool.import_ed25519_publickey_from_file(timestamp_pubkey_path) role1_pubkey = repo_tool.import_ed25519_publickey_from_file(role1_pubkey_path) # Load the private keys. root_privkey_path = os.path.join(keystore_directory, 'root_key') targets_privkey_path = os.path.join(keystore_directory, 'targets_key') snapshot_privkey_path = os.path.join(keystore_directory, 'snapshot_key') timestamp_privkey_path = os.path.join(keystore_directory, 'timestamp_key') role1_privkey_path = os.path.join(keystore_directory, 'delegation_key') root_privkey = \ repo_tool.import_rsa_privatekey_from_file(root_privkey_path, 'password') targets_privkey = \ repo_tool.import_ed25519_privatekey_from_file(targets_privkey_path, 'password') snapshot_privkey = \ repo_tool.import_ed25519_privatekey_from_file(snapshot_privkey_path, 'password') timestamp_privkey = \ repo_tool.import_ed25519_privatekey_from_file(timestamp_privkey_path, 'password') role1_privkey = \ repo_tool.import_ed25519_privatekey_from_file(role1_privkey_path, 'password') # (2) Add top-level verification keys. repository.root.add_verification_key(root_pubkey) repository.targets.add_verification_key(targets_pubkey) repository.snapshot.add_verification_key(snapshot_pubkey) repository.timestamp.add_verification_key(timestamp_pubkey) # (3) Load top-level signing keys. repository.root.load_signing_key(root_privkey) repository.targets.load_signing_key(targets_privkey) repository.snapshot.load_signing_key(snapshot_privkey) repository.timestamp.load_signing_key(timestamp_privkey) # (4) Add target files. target1 = os.path.join(targets_directory, 'file1.txt') target2 = os.path.join(targets_directory, 'file2.txt') target3 = os.path.join(targets_directory, 'file3.txt') repository.targets.add_target(target1) repository.targets.add_target(target2) # (5) Perform delegation. repository.targets.delegate('role1', [role1_pubkey], [target3]) repository.targets('role1').load_signing_key(role1_privkey) # (6) Write repository. repository.targets.compressions = ['gz'] repository.writeall() self.assertTrue(os.path.exists(os.path.join(metadata_directory, 'root.json'))) self.assertTrue(os.path.exists(os.path.join(metadata_directory, '1.root.json'))) # Verify that the expected metadata is written. root_filepath = os.path.join(metadata_directory, 'root.json') root_1_filepath = os.path.join(metadata_directory, '1.root.json') root_2_filepath = os.path.join(metadata_directory, '2.root.json') old_root_signable = securesystemslib.util.load_json_file(root_filepath) root_1_signable = securesystemslib.util.load_json_file(root_1_filepath) # Make a change to the root keys repository.root.add_verification_key(targets_pubkey) repository.root.load_signing_key(targets_privkey) repository.root.threshold = 2 repository.writeall() new_root_signable = securesystemslib.util.load_json_file(root_filepath) root_2_signable = securesystemslib.util.load_json_file(root_2_filepath) for role_signable in [old_root_signable, new_root_signable, root_1_signable, root_2_signable]: # Raise 'securesystemslib.exceptions.FormatError' if 'role_signable' is an # invalid signable. tuf.formats.check_signable_object_format(role_signable) # Verify contents of versioned roots self.assertEqual(old_root_signable, root_1_signable) self.assertEqual(new_root_signable, root_2_signable) self.assertEqual(root_1_signable['signed']['version'], 1) self.assertEqual(root_2_signable['signed']['version'], 2) repository.root.remove_verification_key(root_pubkey) repository.root.unload_signing_key(root_privkey) repository.root.threshold = 2 # Errors, not enough signing keys to satisfy old threshold self.assertRaises(tuf.exceptions.UnsignedMetadataError, repository.writeall) # No error, write() ignore's root's threshold and allows it to be written # to disk partially signed. repository.write('root') if __name__ == '__main__': unittest.main()
37.349138
98
0.734795
[ "MIT" ]
ninox-iot/tuf
tests/test_root_versioning_integration.py
8,665
Python
from datetime import datetime from django.db import models # Create your models here. class JD(models.Model): appkey = models.CharField(max_length=100,verbose_name='appkey') secret = models.CharField(max_length=100,verbose_name='secret') add_time = models.DateTimeField(default=datetime.now,verbose_name='添加时间') def __str__(self): return self.appkey class Meta: verbose_name = '配置' verbose_name_plural = verbose_name """ 1-好券商品, 2-超级大卖场, 10-9.9专区, 22-热销爆品, 24-数码家电, 25-超市, 26-母婴玩具, 27-家具日用, 28-美妆穿搭, 29-医药保健, 30-图书文具, 31-今日必推, 32-王牌好货 """ class Category(models.Model): CHOOSE = ( ('1','导航'), ('2','九宫格'), ) pid = models.CharField(max_length=10,verbose_name='分类id') name = models.CharField(max_length=20,verbose_name='分类名') sort = models.IntegerField(verbose_name='排序',default=0) type = models.CharField(max_length=10,choices=CHOOSE,verbose_name='显示',default='1') add_time = models.DateTimeField(default=datetime.now,verbose_name='添加时间') def __str__(self): return self.name class Meta: verbose_name = '类别' verbose_name_plural = verbose_name class Banner(models.Model): title = models.CharField(max_length=100,verbose_name='活动名称') url = models.TextField(verbose_name='跳转地址') img = models.URLField(verbose_name='图片地址',default='') start_time = models.DateField(default=datetime.now,verbose_name='活动开始时间') end_time = models.DateField(default=datetime.now,verbose_name='活动结束时间') add_time = models.DateTimeField(default=datetime.now, verbose_name='添加时间') def __str__(self): return self.title class Meta: verbose_name = '活动' verbose_name_plural = verbose_name
24.9
87
0.690189
[ "MIT" ]
fengjinqi/linjuanbang
apps/jd_app/models.py
1,953
Python
from mle_scheduler.cluster.slurm.helpers_launch_slurm import slurm_generate_startup_file job_arguments = { "num_logical_cores": 5, "partition": "standard", "job_name": "test_job", "num_gpus": 1, "gpu_type": "RTX2080", "env_name": "test_env", "use_conda_venv": True, "script": "python run.py", "memory_per_cpu": 2000, "time_per_job": "10:05:02", "modules_to_load": "nvidia/cuda/10.0", } job_script = """#!/bin/bash #SBATCH --job-name=test_job #SBATCH --output=log.txt #SBATCH --error=err.err #SBATCH --partition=standard #SBATCH --cpus-per-task=5 #SBATCH --gres=gpu:RTX2080:1 #SBATCH --mem-per-cpu=2000 #SBATCH --time=10:05:02 echo "------------------------------------------------------------------------" source ~/miniconda3/etc/profile.d/conda.sh echo "------------------------------------------------------------------------" . ~/.bashrc && conda activate test_env echo "Successfully activated virtual environment - Ready to start job" module load nvidia/cuda/10.0 echo "------------------------------------------------------------------------" echo "Job started on" `date` echo "------------------------------------------------------------------------" python run.py echo "------------------------------------------------------------------------" echo "Job ended on" `date` echo "------------------------------------------------------------------------" conda deactivate """ def test_job_slurm(): startup_script = slurm_generate_startup_file(job_arguments).format(**job_arguments) assert job_script == startup_script return
32.44898
88
0.510063
[ "MIT" ]
boazbk/mle-scheduler
tests/test_job_slurm.py
1,590
Python
""" This file imports `__all__` from the solvers directory, thus populating the solver registry. """ from pysperf.solvers import * from .config import solvers __all__ = ['solvers']
20.333333
92
0.748634
[ "BSD-2-Clause" ]
ZedongPeng/pysperf
pysperf/solver_library.py
183
Python
font = CurrentFont() one = font['A'] two = font['A.2'] steps = 4 if one.isCompatible(two): for x in range(steps): n = "A.interp" + str(x+1) g = font.newGlyph(n) f = (x+1)/(steps+1) print f g.interpolate(f, one, two)
18.714286
34
0.515267
[ "MIT" ]
benkiel/python_workshops
2018_3_Cooper_Type/RoboFont/simple_interpolation.py
262
Python
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) class Volk(CMakePackage): """VOLK is the Vector-Optimized Library of Kernels. It is a library that contains kernels of hand-written SIMD code for different mathematical operations. Since each SIMD architecture can be very different and no compiler has yet come along to handle vectorization properly or highly efficiently, VOLK approaches the problem differently. For each architecture or platform that a developer wishes to vectorize for, a new proto-kernel is added to VOLK. At runtime, VOLK will select the correct proto-kernel. In this way, the users of VOLK call a kernel for performing the operation that is platform/architecture agnostic. This allows us to write portable SIMD code.""" homepage = "https://github.com/gnuradio/volk" url = "https://github.com/gnuradio/volk/archive/v2.3.0.tar.gz" maintainers = ['aweits'] version('2.3.0', sha256='f42c928f561b128acfe4adb21227e4a62a3f6ab8103592fc3233765ff326d5fc') depends_on('[email protected]:', type=('build', 'run')) depends_on('[email protected]:', type=('build', 'run'))
41.967742
95
0.734051
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
Bambi/spack
var/spack/repos/builtin/packages/volk/package.py
1,301
Python
# -*- coding: utf-8 -*- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """This module is deprecated. Please use `airflow.providers.amazon.aws.operators.emr_add_steps`.""" import warnings # pylint: disable=unused-import from airflow.providers.amazon.aws.operators.emr_add_steps import EmrAddStepsOperator # noqa warnings.warn( "This module is deprecated. Please use `airflow.providers.amazon.aws.operators.emr_add_steps`.", DeprecationWarning, stacklevel=2 )
40.333333
100
0.771074
[ "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0", "BSD-3-Clause" ]
AdrianMirandaTailor/RaWorkflowOrchestrator
airflow/contrib/operators/emr_add_steps_operator.py
1,210
Python
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors, # The HuggingFace Inc. team, and The XTREME Benchmark Authors. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Fine-tuning models for NER and POS tagging.""" from __future__ import absolute_import, division, print_function import argparse import glob import logging import os import random from dataclasses import dataclass, field from typing import Optional import json import numpy as np import scipy import torch from seqeval.metrics import precision_score, recall_score, f1_score from tensorboardX import SummaryWriter from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from torch.utils.data import RandomSampler, SequentialSampler from torch.utils.data.distributed import DistributedSampler from tqdm import tqdm, trange from utils_tag import convert_examples_to_features from utils_tag import get_labels from utils_tag import read_examples_from_file # import lang2vec.lang2vec as l2v from scipy.spatial import distance from transformers import ( AdamW, get_linear_schedule_with_warmup, WEIGHTS_NAME, AutoConfig, AutoModelForTokenClassification, AutoTokenizer, HfArgumentParser, MultiLingAdapterArguments, AdapterConfig, AdapterType, ) #from xlm import XLMForTokenClassification DEFAULT_LANGUAGES = { 'mr': 'hi', 'bn': 'hi', 'ta': 'ta', 'fo': 'fo', 'no': 'da', 'da': 'da', 'be': 'be', 'uk': 'uk', 'bg': 'bg' } logger = logging.getLogger(__name__) def set_seed(args): random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) logger.info(f'Seed = {args.seed}') if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed) def train(args, train_dataset, model, tokenizer, labels, pad_token_label_id, lang_adapter_names, task_name, lang2id=None): """Train the model.""" if args.local_rank in [-1, 0]: tb_writer = SummaryWriter() args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu) print(f'Local Rank = {args.local_rank}') print(len(train_dataset)) train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset) train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size) if args.max_steps > 0: t_total = args.max_steps args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1 else: t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs # Prepare optimizer and schedule (linear warmup and decay) no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ {"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], "weight_decay": args.weight_decay}, {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0} ] optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) logging.info([n for (n, p) in model.named_parameters() if p.requires_grad]) scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total) if args.fp16: try: from apex import amp except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) # multi-gpu training (should be after apex fp16 initialization) if args.n_gpu > 1: model = torch.nn.DataParallel(model) # Distributed training (should be after apex fp16 initialization) if args.local_rank != -1: model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True) # Train! logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_dataset)) logger.info(" Num Epochs = %d", args.num_train_epochs) logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size) logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d", args.train_batch_size * args.gradient_accumulation_steps * ( torch.distributed.get_world_size() if args.local_rank != -1 else 1)) logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) logger.info(" Total optimization steps = %d", t_total) best_score = 0.0 best_checkpoint = None patience = 0 global_step = 0 tr_loss, logging_loss = 0.0, 0.0 model.zero_grad() train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]) set_seed(args) # Add here for reproductibility (even between python 2 and 3) cur_epoch = 0 for _ in train_iterator: epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0]) cur_epoch += 1 for step, batch in enumerate(epoch_iterator): batch = tuple(t.to(args.device) for t in batch if t is not None) inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if args.model_type != "distilbert": # XLM and RoBERTa don"t use segment_ids inputs["token_type_ids"] = batch[2] if args.model_type in ["bert", "xlnet"] else None if args.model_type == "xlm": inputs["langs"] = batch[4] outputs = model(**inputs) loss = outputs[0] if args.n_gpu > 1: # mean() to average on multi-gpu parallel training loss = loss.mean() if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() tr_loss += loss.item() if (step + 1) % args.gradient_accumulation_steps == 0: if args.fp16: torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) else: torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) scheduler.step() # Update learning rate schedule optimizer.step() model.zero_grad() global_step += 1 if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0: # Log metrics if args.local_rank == -1 and args.evaluate_during_training: # Only evaluate on single GPU otherwise metrics may not average well results, _ = evaluate(args, model, tokenizer, labels, pad_token_label_id, mode="dev", lang=args.train_langs, lang2id=lang2id, lang_adapter_names=lang_adapter_names, task_name=task_name) for key, value in results.items(): tb_writer.add_scalar("eval_{}".format(key), value, global_step) tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step) tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step) logging_loss = tr_loss if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0: if args.save_only_best_checkpoint: result, _ = evaluate(args, model, tokenizer, labels, pad_token_label_id, mode="dev", prefix=global_step, lang=args.train_langs, lang2id=lang2id, lang_adapter_names=lang_adapter_names, task_name=task_name) if result["f1"] > best_score: logger.info("result['f1']={} > best_score={}".format(result["f1"], best_score)) best_score = result["f1"] # Save the best model checkpoint output_dir = os.path.join(args.output_dir, "checkpoint-best") best_checkpoint = output_dir if not os.path.exists(output_dir): os.makedirs(output_dir) # Take care of distributed/parallel training model_to_save = model.module if hasattr(model, "module") else model if args.do_save_adapters: model_to_save.save_all_adapters(output_dir) if args.do_save_adapter_fusions: model_to_save.save_all_adapter_fusions(output_dir) if args.do_save_full_model: model_to_save.save_pretrained(output_dir) torch.save(args, os.path.join(output_dir, "training_args.bin")) logger.info("Saving the best model checkpoint to %s", output_dir) logger.info("Reset patience to 0") patience = 0 else: patience += 1 logger.info("Hit patience={}".format(patience)) if args.eval_patience > 0 and patience > args.eval_patience: logger.info("early stop! patience={}".format(patience)) epoch_iterator.close() train_iterator.close() if args.local_rank in [-1, 0]: tb_writer.close() return global_step, tr_loss / global_step else: # Save model checkpoint output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step)) if not os.path.exists(output_dir): os.makedirs(output_dir) # Take care of distributed/parallel training model_to_save = model.module if hasattr(model, "module") else model if args.do_save_adapters: model_to_save.save_all_adapters(output_dir) if args.do_save_adapter_fusions: model_to_save.save_all_adapter_fusions(output_dir) if args.do_save_full_model: model_to_save.save_pretrained(output_dir) torch.save(args, os.path.join(output_dir, "training_args.bin")) logger.info("Saving model checkpoint to %s", output_dir) if args.max_steps > 0 and global_step > args.max_steps: epoch_iterator.close() break if args.max_steps > 0 and global_step > args.max_steps: train_iterator.close() break if args.local_rank in [-1, 0]: tb_writer.close() return global_step, tr_loss / global_step def calc_weight_multi(args, model, batch, lang_adapter_names, task_name, adapter_weights, step=10, lang=None): inputs = {"input_ids": batch[0], "attention_mask": batch[1], "return_sequence_out": True, "labels": batch[3]} # logger.info(f'Language Adapters are {lang_adapter_names}') adapter_weights = [torch.FloatTensor([0.5 for _ in range(len(lang_adapter_names))]).to(args.device) for _ in range(13)] if args.lang_to_vec: logger.info(lang) logger.info(lang_adapter_names) adapter_weights = calc_l2v_weights(lang, lang_adapter_names, args.en_weight) logger.info(adapter_weights) for step_no in range(step): for w in adapter_weights: w.requires_grad = True if args.lang_to_vec and step_no == 0: normed_adapter_weights = adapter_weights else: normed_adapter_weights = [torch.nn.functional.softmax(w) for w in adapter_weights] # logger.info(f'Initial Adapter Weights = {normed_adapter_weights}') model.set_active_adapters([lang_adapter_names, [task_name]]) inputs["adapter_names"] = [lang_adapter_names, [task_name]] inputs["adapter_weights"] = normed_adapter_weights outputs = model(**inputs) loss, logits, orig_sequence_output = outputs[:3] kept_logits = outputs[-1] entropy = torch.nn.functional.softmax(kept_logits, dim=1)*torch.nn.functional.log_softmax(kept_logits, dim=1) entropy = -entropy.sum() / kept_logits.size(0) grads = torch.autograd.grad(entropy, adapter_weights) #print(adapter_weights) #print(grads) #print(grads) for i, w in enumerate(adapter_weights): adapter_weights[i] = adapter_weights[i].data - 10*grads[i].data normed_adapter_weights = [torch.nn.functional.softmax(w) for w in adapter_weights] #print(normed_adapter_weights) # logger.info(f'Final Adapter Weights = {normed_adapter_weights}') return normed_adapter_weights def jaccard_sim(vec1, vec2): intersection = 0 union = 0 for i in range(len(vec1)): if vec1[i] == '--' or vec2[i] == '--': continue if vec1[i] == 1 or vec2[i] == 1: union += 1 if vec1[i] == 1 and vec2[i] == 1: intersection += 1 return intersection/union def get_sim(lang1, lang2): features = l2v.get_features(f'{DEFAULT_LANGUAGES[lang1]} {lang2}', 'learned') similarity = 1 - distance.cosine(features[DEFAULT_LANGUAGES[lang1]], features[lang2]) return similarity def get_syntax_sim(lang1, lang2): features = l2v.get_features(f'{lang1} {lang2}', "syntax_wals|syntax_sswl|syntax_ethnologue") similarity = jaccard_sim(features[lang1], features[lang2]) return similarity def calc_l2v_weights(args, lang, lang_adapter_names): adapter_weight = [] for adapter_lang in lang_adapter_names: if args.en_weight is not None and adapter_lang == 'en': continue if args.lang_to_vec == 'learned': adapter_weight.append(get_sim(lang, adapter_lang)) elif args.lang_to_vec == 'syntax': adapter_weight.append(get_syntax_sim(lang, adapter_lang)) else: logger.info('INVALID FEATURE TYPE') exit() logger.info(adapter_weight) adapter_weight = torch.FloatTensor(adapter_weight) adapter_weight = torch.nn.functional.softmax(adapter_weight/args.temperature).tolist() if args.en_weight is not None: adapter_weight = [(1 - args.en_weight)*aw for aw in adapter_weight] en_index = lang_adapter_names.index('en') adapter_weight.insert(en_index, args.en_weight) return adapter_weight def scaled_input(emb, batch_size=16, num_batch=1, baseline=None, start_i=None, end_i=None): # shape of emb: (num_head, seq_len, seq_len) if baseline is None: baseline = torch.zeros_like(emb) num_points = batch_size * num_batch scale = 1.0 / num_points if start_i is None: step = (emb.unsqueeze(0) - baseline.unsqueeze(0)) * scale res = torch.cat([torch.add(baseline.unsqueeze(0), step*i) for i in range(num_points)], dim=0) return res, step[0] else: step = (emb - baseline) * scale start_emb = torch.add(baseline, step*start_i) end_emb = torch.add(baseline, step*end_i) step_new = (end_emb.unsqueeze(0) - start_emb.unsqueeze(0)) * scale res = torch.cat([torch.add(start_emb.unsqueeze(0), step_new*i) for i in range(num_points)], dim=0) return res, step_new[0] #Changed the default of calc_weight_step to 0 def evaluate(args, model, tokenizer, labels, pad_token_label_id, mode, prefix="", lang="en", lang2id=None, print_result=True, adapter_weight=None, lang_adapter_names=None, task_name=None, calc_weight_step=0): eval_dataset = load_and_cache_examples(args, tokenizer, labels, pad_token_label_id, mode=mode, lang=lang, lang2id=lang2id) args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) # Note that DistributedSampler samples randomly if args.get_attr: eval_sampler = RandomSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset) else: eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset) eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size) # multi-gpu evaluate if args.n_gpu > 1: model = torch.nn.DataParallel(model) # Eval! logger.info("***** Running evaluation %s in %s *****" % (prefix, lang)) logger.info(" Num examples = %d", len(eval_dataset)) logger.info(" Batch size = %d", args.eval_batch_size) eval_loss = 0.0 nb_eval_steps = 0 preds = None out_label_ids = None model.eval() counter = 0 head_importances = None all_head_importances = None for batch in tqdm(eval_dataloader, desc="Evaluating"): counter += 1 logger.info(f'Batch number = {counter}') batch = tuple(t.to(args.device) for t in batch) if calc_weight_step > 0: adapter_weight = calc_weight_multi(args, model, batch, lang_adapter_names, task_name, adapter_weight, calc_weight_step, lang=lang) if args.get_attr: inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3], "adapter_weights": adapter_weight} if args.model_type != "distilbert": # XLM and RoBERTa don"t use segment_ids inputs["token_type_ids"] = batch[2] if args.model_type in ["bert", "xlnet"] else None if args.model_type == 'xlm': inputs["langs"] = batch[4] inputs["output_attentions"] = True outputs = model(**inputs) tmp_eval_loss, logits, attentions, kept_labels, kl_logits = outputs attr_all = [] res_attr = [] input_len = int(inputs["attention_mask"][0].sum()) example_head_importances = None #Remove the batch_size dim since batch_size=1 logits = logits[0] for tar_layer in range(12): att = attentions[tar_layer][0] pred_labels = torch.argmax(logits, dim=-1) scale_att, step = scaled_input(att.data) scale_att.requires_grad_(True) attr_all = None prob_all = None for j_batch in range(1): one_batch_att = scale_att[j_batch*16:(j_batch+1)*16] _, grad = model(input_ids=inputs['input_ids'], token_type_ids=inputs['token_type_ids'], attention_mask=inputs['attention_mask'], labels=inputs['labels'], tar_layer=tar_layer, tmp_score=one_batch_att, pred_labels=pred_labels) grad = grad.sum(dim=0) attr_all = grad if attr_all is None else torch.add(attr_all, grad) # prob_all = tar_prob if prob_all is None else torch.cat([prob_all, tar_prob]) attr_all = attr_all[:,0:input_len,0:input_len] * step[:,0:input_len,0:input_len] if example_head_importances is None: example_head_importances = torch.amax(attr_all, dim=(1,2)).unsqueeze(0) else: tmp = torch.amax(attr_all, dim=(1,2)) tmp = tmp.unsqueeze(0) example_head_importances = torch.cat((example_head_importances, tmp), dim=0) # att = att[:,0:input_len,0:input_len] res_attr.append(attr_all.data) # logger.info(f'Example Head Importances = {example_head_importances}') all_head_importances = example_head_importances.unsqueeze(0) if all_head_importances is None else torch.cat((all_head_importances, example_head_importances.unsqueeze(0)), dim=0) head_importances = example_head_importances if head_importances is None else torch.add(head_importances, example_head_importances) if counter == 100: break continue with torch.no_grad(): inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3], "adapter_weights": adapter_weight} # logger.info(f'Labels = {batch[3]}') if args.model_type != "distilbert": # XLM and RoBERTa don"t use segment_ids inputs["token_type_ids"] = batch[2] if args.model_type in ["bert", "xlnet"] else None if args.model_type == 'xlm': inputs["langs"] = batch[4] outputs = model(**inputs) tmp_eval_loss, logits = outputs[:2] if args.n_gpu > 1: # mean() to average on multi-gpu parallel evaluating tmp_eval_loss = tmp_eval_loss.mean() eval_loss += tmp_eval_loss.item() nb_eval_steps += 1 if preds is None: preds = logits.detach().cpu().numpy() out_label_ids = inputs["labels"].detach().cpu().numpy() else: preds = np.append(preds, logits.detach().cpu().numpy(), axis=0) out_label_ids = np.append(out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0) if args.get_attr: head_importances = head_importances/counter logger.info(f'Head Importances = {head_importances}') torch.save(head_importances, os.path.join(args.output_dir,f'{mode}_{lang}_s{args.seed}_importances_100.pt')) torch.save(all_head_importances, os.path.join(args.output_dir,f'{mode}_{lang}_s{args.seed}_all_importances_100.pt')) return None, None if nb_eval_steps == 0: results = {k: 0 for k in ["loss", "precision", "recall", "f1"]} else: eval_loss = eval_loss / nb_eval_steps preds = np.argmax(preds, axis=2) label_map = {i: label for i, label in enumerate(labels)} out_label_list = [[] for _ in range(out_label_ids.shape[0])] preds_list = [[] for _ in range(out_label_ids.shape[0])] for i in range(out_label_ids.shape[0]): for j in range(out_label_ids.shape[1]): if out_label_ids[i, j] != pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]]) preds_list[i].append(label_map[preds[i][j]]) results = { "loss": eval_loss, "precision": precision_score(out_label_list, preds_list), "recall": recall_score(out_label_list, preds_list), "f1": f1_score(out_label_list, preds_list) } if print_result: logger.info("***** Evaluation result %s in %s *****" % (prefix, lang)) for key in sorted(results.keys()): logger.info(" %s = %s", key, str(results[key])) return results, preds_list def load_and_cache_examples(args, tokenizer, labels, pad_token_label_id, mode, lang, lang2id=None, few_shot=-1): # Make sure only the first process in distributed training process # the dataset, and the others will use the cache if args.local_rank not in [-1, 0] and not evaluate: torch.distributed.barrier() # Load data features from cache or dataset file bpe_dropout = args.bpe_dropout if mode != 'train': bpe_dropout = 0 if bpe_dropout > 0: cached_features_file = os.path.join(args.data_dir, "cached_{}_{}_{}_{}_drop{}".format(mode, lang, list(filter(None, args.model_name_or_path.split("/"))).pop(), str(args.max_seq_length), bpe_dropout)) else: cached_features_file = os.path.join(args.data_dir, "cached_{}_{}_{}_{}".format(mode, lang, list(filter(None, args.model_name_or_path.split("/"))).pop(), str(args.max_seq_length))) if os.path.exists(cached_features_file) and not args.overwrite_cache: logger.info("Loading features from cached file %s", cached_features_file) features = torch.load(cached_features_file) else: langs = lang.split(',') logger.info("all languages = {}".format(lang)) features = [] for lg in langs: data_file = os.path.join(args.data_dir, lg, "{}.{}".format(mode, args.model_name_or_path)) logger.info("Creating features from dataset file at {} in language {}".format(data_file, lg)) examples = read_examples_from_file(data_file, lg, lang2id) print(examples) features_lg = convert_examples_to_features(examples, labels, args.max_seq_length, tokenizer, cls_token_at_end=bool(args.model_type in ["xlnet"]), cls_token=tokenizer.cls_token, cls_token_segment_id=2 if args.model_type in ["xlnet"] else 0, sep_token=tokenizer.sep_token, sep_token_extra=bool(args.model_type in ["roberta", "xlmr"]), pad_on_left=bool(args.model_type in ["xlnet"]), pad_token=tokenizer.convert_tokens_to_ids([tokenizer.pad_token])[0], pad_token_segment_id=4 if args.model_type in ["xlnet"] else 0, pad_token_label_id=pad_token_label_id, lang=lg, bpe_dropout=bpe_dropout, ) features.extend(features_lg) if args.local_rank in [-1, 0]: logger.info("Saving features into cached file {}, len(features)={}".format(cached_features_file, len(features))) torch.save(features, cached_features_file) # Make sure only the first process in distributed training process # the dataset, and the others will use the cache if args.local_rank == 0 and not evaluate: torch.distributed.barrier() if few_shot > 0 and mode == 'train': logger.info("Original no. of examples = {}".format(len(features))) features = features[: few_shot] logger.info('Using few-shot learning on {} examples'.format(len(features))) # Convert to Tensors and build dataset all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long) all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long) all_label_ids = torch.tensor([f.label_ids for f in features], dtype=torch.long) if args.model_type == 'xlm' and features[0].langs is not None: all_langs = torch.tensor([f.langs for f in features], dtype=torch.long) logger.info('all_langs[0] = {}'.format(all_langs[0])) dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids, all_langs) else: dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids) return dataset @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """ model_name_or_path: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) model_type: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) labels: str = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) data_dir: str = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) output_dir: str = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) max_seq_length: Optional[int] = field( default=128, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) do_train: Optional[bool] = field(default=False ) do_eval: Optional[bool] = field(default=False ) do_predict: Optional[bool] = field(default=False ) do_adapter_predict: Optional[bool] = field(default=False ) do_predict_dev: Optional[bool] = field(default=False ) do_predict_train: Optional[bool] = field(default=False ) init_checkpoint: Optional[str] = field(default=None ) evaluate_during_training: Optional[bool] = field(default=False ) do_lower_case: Optional[bool] = field(default=False ) few_shot: Optional[int] = field(default=-1 ) per_gpu_train_batch_size: Optional[int] = field(default=8) per_gpu_eval_batch_size: Optional[int] = field(default=8) gradient_accumulation_steps: Optional[int] = field(default=1) learning_rate: Optional[float] = field(default=5e-5) weight_decay: Optional[float] = field(default=0.0) adam_epsilon: Optional[float] = field(default=1e-8) max_grad_norm: Optional[float] = field(default=1.0) num_train_epochs: Optional[float] = field(default=3.0) max_steps: Optional[int] = field(default=-1) save_steps: Optional[int] = field(default=-1) warmup_steps: Optional[int] = field(default=0) logging_steps: Optional[int] = field(default=50) save_only_best_checkpoint: Optional[bool] = field(default=False) eval_all_checkpoints: Optional[bool] = field(default=False) no_cuda: Optional[bool] = field(default=False) overwrite_output_dir: Optional[bool] = field(default=False) overwrite_cache: Optional[bool] = field(default=False) seed: Optional[int] = field(default=42) fp16: Optional[bool] = field(default=False) fp16_opt_level: Optional[str] = field(default="O1") local_rank: Optional[int] = field(default=-1) server_ip: Optional[str] = field(default="") server_port: Optional[str] = field(default="") predict_langs: Optional[str] = field(default="en") train_langs: Optional[str] = field(default="en") log_file: Optional[str] = field(default=None) eval_patience: Optional[int] = field(default=-1) bpe_dropout: Optional[float] = field(default=0) do_save_adapter_fusions: Optional[bool] = field(default=False) task_name: Optional[str] = field(default="ner") predict_task_adapter: Optional[str] = field(default=None) predict_lang_adapter: Optional[str] = field(default=None) test_adapter: Optional[bool] = field(default=False) adapter_weight: Optional[str] = field(default=None) lang_to_vec: Optional[str] = field(default=None) calc_weight_step: Optional[int] = field(default=0) predict_save_prefix: Optional[str] = field(default=None) en_weight: Optional[float] = field(default=None) temperature: Optional[float] = field(default=1.0) get_attr: Optional[bool] = field(default=False) topk: Optional[int] = field(default=1) task: Optional[str] = field(default='udpos') def setup_adapter(args, adapter_args, model, train_adapter=True, load_adapter=None, load_lang_adapter=None): task_name = args.task_name or "ner" # check if adapter already exists, otherwise add it if task_name not in model.config.adapters.adapter_list(AdapterType.text_task): logging.info("Trying to decide if add adapter") # resolve the adapter config adapter_config = AdapterConfig.load( adapter_args.adapter_config, non_linearity=adapter_args.adapter_non_linearity, reduction_factor=adapter_args.adapter_reduction_factor, ) # load a pre-trained from Hub if specified if adapter_args.load_adapter or load_adapter: logging.info("loading task adapter") model.load_adapter( adapter_args.load_adapter if load_adapter is None else load_adapter, AdapterType.text_task, config=adapter_config, load_as=task_name, ) # otherwise, add a fresh adapter else: logging.info("Adding task adapter") model.add_adapter(task_name, AdapterType.text_task, config=adapter_config) # optionally load a pre-trained language adapter if adapter_args.load_lang_adapter or load_lang_adapter: if load_lang_adapter is None: # load a set of language adapters logging.info("loading lang adpater {}".format(adapter_args.load_lang_adapter)) # resolve the language adapter config lang_adapter_config = AdapterConfig.load( adapter_args.lang_adapter_config, non_linearity=adapter_args.lang_adapter_non_linearity, reduction_factor=adapter_args.lang_adapter_reduction_factor, ) # load the language adapter from Hub # if adapter_args.language == 'topk': # assert len(args.predict_langs.split(',')) == 1 # filename = f'scripts/{args.task}/en/{args.predict_langs}.json' # logger.info(f'Loading Adapter Languages from {filename}') # languages = [] # with open(filename) as f: # for i,line in enumerate(f): # if i == args.topk: # break # line = json.loads(line) # languages.append(line['adapter'].strip()) # adapter_names = [f'{lang}/wiki@ukp' for lang in languages] # else: # languages = adapter_args.language.split(",") # adapter_names = adapter_args.load_lang_adapter.split(",") # logger.info(f'Adapter Languages : {languages}, Length : {len(languages)}') # logger.info(f'Adapter Names {adapter_names}, Length : {len(adapter_names)}') # assert len(languages) == len(adapter_names) # lang_adapter_names = [] # for language, adapter_name in zip(languages, adapter_names): # logger.info(f'Language = {language}') # logger.info(f'Adapter Name = {adapter_name}') # lang_adapter_name = model.load_adapter( # adapter_name, # AdapterType.text_lang, # config=lang_adapter_config, # load_as=language, # ) # lang_adapter_names.append(lang_adapter_name) else: logging.info("loading lang adpater {}".format(load_lang_adapter)) # resolve the language adapter config lang_adapter_config = AdapterConfig.load( adapter_args.lang_adapter_config, non_linearity=adapter_args.lang_adapter_non_linearity, reduction_factor=adapter_args.lang_adapter_reduction_factor, ) # load the language adapter from Hub # lang_adapter_name = model.load_adapter( # load_lang_adapter, # AdapterType.text_lang, # config=lang_adapter_config, # load_as="lang", # ) # lang_adapter_names = [lang_adapter_name] else: lang_adapter_name = None lang_adapter_names = [] # Freeze all model weights except of those of this adapter model.train_adapter([task_name]) # Set the adapters to be used in every forward pass if lang_adapter_name: model.set_active_adapters([lang_adapter_names, [task_name]]) else: model.set_active_adapters([task_name]) return model, lang_adapter_names, task_name def load_model(args, num_labels): logger.info('Loading pretrained model and tokenizer') config = AutoConfig.from_pretrained( args.config_name if args.config_name else args.model_name_or_path, num_labels=num_labels, cache_dir=args.cache_dir, ) args.model_type = config.model_type tokenizer = AutoTokenizer.from_pretrained( args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case, cache_dir=args.cache_dir, use_fast=False, ) if args.init_checkpoint: logger.info("loading from init_checkpoint={}".format(args.init_checkpoint)) model = AutoModelForTokenClassification.from_pretrained( args.init_checkpoint, config=config, cache_dir=args.cache_dir, ) else: logger.info("loading from existing model {}".format(args.model_name_or_path)) model = AutoModelForTokenClassification.from_pretrained( args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config, cache_dir=args.cache_dir, ) lang2id = config.lang2id if args.model_type == "xlm" else None logger.info("Using lang2id = {}".format(lang2id)) return model, tokenizer, lang2id def predict_and_save(args, adapter_args, model, tokenizer, labels, lang2id, pad_token_label_id, lang_adapter_names, task_name, split): output_test_results_file = os.path.join(args.output_dir, f"{split}_results.txt") with open(output_test_results_file, "a") as result_writer: for lang in args.predict_langs.split(','): #Check if language data exists if not os.path.exists(os.path.join(args.data_dir, lang, '{}.{}'.format(split, args.model_name_or_path))): logger.info("Language {}, split {} does not exist".format(lang, split)) continue #Activate the required language adapter adapter_weight = None # if not args.adapter_weight and not args.lang_to_vec: # if (adapter_args.train_adapter or args.test_adapter) and not args.adapter_weight: # if lang in lang_adapter_names: # logger.info(f'Language adapter for {lang} found') # logger.info("Set active language adapter to {}".format(lang)) # model.set_active_adapters([[lang], [task_name]]) # else: # logger.info(f'Language adapter for {lang} not found, using {lang_adapter_names[0]} instead') # logger.info("Set active language adapter to {}".format(lang_adapter_names[0])) # model.set_active_adapters([[lang_adapter_names[0]], [task_name]]) # else: # if args.adapter_weight == 'equal': # adapter_weight = [1/len(lang_adapter_names) for _ in lang_adapter_names] # elif args.adapter_weight == 'equal_en': # assert 'en' in lang_adapter_names, 'English language adapter not included' # adapter_weight = [(1-args.en_weight)/(len(lang_adapter_names)-1) for _ in lang_adapter_names] # en_index = lang_adapter_names.index('en') # adapter_weight[en_index] = args.en_weight # elif args.lang_to_vec: # if args.en_weight is not None: # logger.info(lang_adapter_names) # assert 'en' in lang_adapter_names, 'English language adapter not included' # adapter_weight = calc_l2v_weights(args, lang, lang_adapter_names) # elif args.adapter_weight == 'load': # filename = f'weights/{args.task}/{lang}/weights_s{args.seed}' # logger.info(f'Loading adapter weights from {filename}') # with open(filename) as f: # adapter_weight = json.loads(next(f)) # elif args.adapter_weight != "0" and args.adapter_weight is not None: # adapter_weight = [float(w) for w in args.adapter_weight.split(",")] logger.info('Args Adapter Weight = {}'.format(args.adapter_weight)) logger.info('Adapter Languages = {}'.format(lang_adapter_names)) if adapter_weight is not None: logger.info("Adapter Weights = {}".format(adapter_weight)) logger.info('Sum of Adapter Weights = {}'.format(sum(adapter_weight))) logger.info("Length of Adapter Weights = {}".format(len(adapter_weight))) # model.set_active_adapters([ lang_adapter_names, [task_name]]) #Evaluate result, predictions = evaluate(args, model, tokenizer, labels, pad_token_label_id, mode=split, lang=lang, lang2id=lang2id, adapter_weight=adapter_weight, lang_adapter_names=lang_adapter_names, task_name=task_name, calc_weight_step=args.calc_weight_step) if args.get_attr: continue result_json = {} # Save results if args.predict_save_prefix is not None and args.predict_save_prefix: result_json['language'] = f'{args.predict_save_prefix}_{lang}' else: result_json['language'] = f'{lang}' result_json['seed'] = args.seed result_json['language_adapters'] = lang_adapter_names if args.adapter_weight: result_json['adapter_weights'] = args.adapter_weight for key in sorted(result.keys()): result_json[key] = result[key] result_writer.write(json.dumps(result_json) + '\n') # Save predictions if args.predict_save_prefix is not None and args.predict_save_prefix: output_test_predictions_file = os.path.join(args.output_dir, "{}_{}_{}_s{}_predictions.txt".format(split, args.predict_save_prefix, lang, args.seed)) else: output_test_predictions_file = os.path.join(args.output_dir, "{}_{}_s{}_predictions.txt".format(split, lang, args.seed)) infile = os.path.join(args.data_dir, lang, "{}.{}".format(split, args.model_name_or_path)) idxfile = infile + '.idx' save_predictions(args, predictions, output_test_predictions_file, infile, idxfile) def main(): parser = argparse.ArgumentParser() parser = HfArgumentParser((ModelArguments, MultiLingAdapterArguments)) args, adapter_args = parser.parse_args_into_dataclasses() if os.path.exists(args.output_dir) and os.listdir( args.output_dir) and args.do_train and not args.overwrite_output_dir: raise ValueError( "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format( args.output_dir)) # Setup distant debugging if needed if args.server_ip and args.server_port: import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.wait_for_attach() # Setup CUDA, GPU & distributed training if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = torch.cuda.device_count() else: # Initializes the distributed backend which sychronizes nodes/GPUs torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) torch.distributed.init_process_group(backend="nccl") args.n_gpu = 1 args.device = device # Setup logging logging.basicConfig(handlers = [logging.FileHandler(args.log_file), logging.StreamHandler()], format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt = '%m/%d/%Y %H:%M:%S', level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN) logging.info("Input args: %r" % args) logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16) # Set seed set_seed(args) # Prepare NER/POS task labels = get_labels(args.labels) num_labels = len(labels) # Use cross entropy ignore index as padding label id # so that only real label ids contribute to the loss later pad_token_label_id = CrossEntropyLoss().ignore_index # Load pretrained model and tokenizer # Make sure only the first process in distributed training loads model/vocab if args.local_rank not in [-1, 0]: torch.distributed.barrier() args.do_save_full_model= (not adapter_args.train_adapter) args.do_save_adapters=adapter_args.train_adapter if args.do_save_adapters: logging.info('save adapters') logging.info(adapter_args.train_adapter) if args.do_save_full_model: logging.info('save model') # Make sure only the first process in distributed training loads model/vocab if args.local_rank == 0: torch.distributed.barrier() logger.info("Training/evaluation parameters %s", args) # Training if args.do_train: model, tokenizer, lang2id = load_model(args, num_labels) if adapter_args.train_adapter: model, lang_adapter_names, task_name = setup_adapter(args, adapter_args, model) logger.info("lang adapter names: {}".format(" ".join(lang_adapter_names))) else: lang_adatper_names = [] task_name = None model.to(args.device) train_dataset = load_and_cache_examples(args, tokenizer, labels, pad_token_label_id, mode="train", lang=args.train_langs, lang2id=lang2id, few_shot=args.few_shot) global_step, tr_loss = train(args, train_dataset, model, tokenizer, labels, pad_token_label_id, lang_adapter_names, task_name, lang2id) logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) # Saving best-practices: if you use default names for the model, # you can reload it using from_pretrained() if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0): # Create output directory if needed if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]: os.makedirs(args.output_dir) # Save model, configuration and tokenizer using `save_pretrained()`. # They can then be reloaded using `from_pretrained()` # Take care of distributed/parallel training logger.info("Saving model checkpoint to %s", args.output_dir) model_to_save = model.module if hasattr(model, "module") else model if args.do_save_adapters: logging.info("Save adapter") model_to_save.save_all_adapters(args.output_dir) if args.do_save_adapter_fusions: logging.info("Save adapter fusion") model_to_save.save_all_adapter_fusions(args.output_dir) if args.do_save_full_model: logging.info("Save full model") model_to_save.save_pretrained(args.output_dir) tokenizer.save_pretrained(args.output_dir) # Good practice: save your training arguments together with the model torch.save(args, os.path.join(args.output_dir, "training_args.bin")) # Initialization for evaluation results = {} if args.init_checkpoint: best_checkpoint = args.init_checkpoint elif os.path.exists(os.path.join(args.output_dir, 'checkpoint-best')): best_checkpoint = os.path.join(args.output_dir, 'checkpoint-best') else: best_checkpoint = args.output_dir # Evaluation #This evaluates only if the entire model is saved, something we are not doing if args.do_eval and args.local_rank in [-1, 0]: model, tokenizer, lang2id = load_model(args, num_labels) logger.info('Evaluating the model on dev set of training language(en)') load_adapter = (best_checkpoint + "/" + args.task_name) if args.predict_task_adapter is None else args.predict_task_adapter # load_adapter = 'output/panx/bert-base-multilingual-cased-LR1e-4-epoch100-MaxLen128-TrainLangen_en_s0/checkpoint-best/ner/' logger.info(f'Task Adapter will be loaded from this path {load_adapter}') model.model_name = args.model_name_or_path model, lang_adapter_names, task_name = setup_adapter(args, adapter_args, model, load_adapter=load_adapter) model.to(args.device) result, _ = evaluate(args, model, tokenizer, labels, pad_token_label_id, mode="dev", prefix='debugging', lang=args.train_langs, lang2id=lang2id, lang_adapter_names=lang_adapter_names, task_name=task_name, calc_weight_step=args.calc_weight_step) results.update(result) # for checkpoint in checkpoints: # global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else "" # model = AutoModelForTokenClassification.from_pretrained(checkpoint) # if adapter_args.train_adapter: # load_adapter = checkpoint + "/" + args.task_name # load_lang_adapter = "{}/{}".format(checkpoint, adapter_args.language) # model.model_name = args.model_name_or_path # model, lang_adapter_names, task_name = setup_adapter(args, adapter_args, model, load_adapter=load_adapter) # # model.to(args.device) # result, _ = evaluate(args, model, tokenizer, labels, pad_token_label_id, mode="dev", prefix=global_step, lang=args.train_langs, lang2id=lang2id, lang_adapter_names=lang_adapter_names, task_name=task_name, calc_weight_step=args.calc_weight_step) # if result["f1"] > best_f1: # best_checkpoint = checkpoint # best_f1 = result["f1"] # if global_step: # result = {"{}_{}".format(global_step, k): v for k, v in result.items()} # results.update(result) output_eval_file = os.path.join(args.output_dir, "eval_results.txt") with open(output_eval_file, "w") as writer: for key in sorted(results.keys()): writer.write("{} = {}\n".format(key, str(results[key]))) # writer.write("best checkpoint = {}, best f1 = {}\n".format(best_checkpoint, best_f1)) if args.do_predict and args.local_rank in [-1, 0]: model, tokenizer, lang2id = load_model(args, num_labels) # Prediction logger.info('Evaluating the model on test set of all the languages specified') #Set up the task adapter if adapter_args.train_adapter or args.test_adapter: load_adapter = (best_checkpoint + "/" + args.task_name) if args.predict_task_adapter is None else args.predict_task_adapter # load_adapter = 'output/panx/bert-base-multilingual-cased-LR1e-4-epoch100-MaxLen128-TrainLangen_en_s0/checkpoint-best/ner/' logger.info(f'Task Adapter will be loaded from this path {load_adapter}') load_lang_adapter = args.predict_lang_adapter model.model_name = args.model_name_or_path model, lang_adapter_names, task_name = setup_adapter(args, adapter_args, model, load_adapter=load_adapter, load_lang_adapter=load_lang_adapter) model.to(args.device) predict_and_save(args, adapter_args, model, tokenizer, labels, lang2id, pad_token_label_id, lang_adapter_names, task_name, 'test') if args.do_predict_train and args.local_rank in [-1, 0]: logger.info('Evaluating on the train set of all specified languages') model, tokenizer, lang2id = load_model(args, num_labels) if adapter_args.train_adapter or args.test_adapter: load_adapter = (best_checkpoint + "/" + args.task_name) if args.predict_task_adapter is None else args.predict_task_adapter # load_adapter = 'output/panx/bert-base-multilingual-cased-LR1e-4-epoch100-MaxLen128-TrainLangen_en_s0/checkpoint-best/ner/' logger.info(f'Task Adapter will be loaded from this path {load_adapter}') load_lang_adapter = args.predict_lang_adapter model.model_name = args.model_name_or_path model, lang_adapter_names, task_name = setup_adapter(args, adapter_args, model, load_adapter=load_adapter, load_lang_adapter=load_lang_adapter) model.to(args.device) predict_and_save(args, adapter_args, model, tokenizer, labels, lang2id, pad_token_label_id, lang_adapter_names, task_name, 'train') #Predict dev set if args.do_predict_dev and args.local_rank in [-1, 0]: model, tokenizer, lang2id = load_model(args, num_labels) logger.info('Evaluating on the dev sets of all the specified languages') #Set up task and language adapters if adapter_args.train_adapter or args.test_adapter: load_adapter = (best_checkpoint + "/" + args.task_name) if args.predict_task_adapter is None else args.predict_task_adapter # load_adapter = 'output/panx/bert-base-multilingual-cased-LR1e-4-epoch100-MaxLen128-TrainLangen_en_s0/checkpoint-best/ner/' logger.info(f'Task Adapter will be loaded from this path {load_adapter}') load_lang_adapter = args.predict_lang_adapter model.model_name = args.model_name_or_path model, lang_adapter_names, task_name = setup_adapter(args, adapter_args, model, load_adapter=load_adapter, load_lang_adapter=load_lang_adapter) model.to(args.device) predict_and_save(args, adapter_args, model, tokenizer, labels, lang2id, pad_token_label_id, lang_adapter_names, task_name, 'dev') def save_predictions(args, predictions, output_file, text_file, idx_file, output_word_prediction=False): # Save predictions with open(text_file, "r") as text_reader, open(idx_file, "r") as idx_reader: text = text_reader.readlines() index = idx_reader.readlines() assert len(text) == len(index) # Sanity check on the predictions with open(output_file, "w") as writer: example_id = 0 prev_id = int(index[0]) for line, idx in zip(text, index): if line == "" or line == "\n": example_id += 1 else: cur_id = int(idx) output_line = '\n' if cur_id != prev_id else '' if output_word_prediction: output_line += line.split()[0] + '\t' output_line += predictions[example_id].pop(0) + '\n' writer.write(output_line) prev_id = cur_id if __name__ == "__main__": main()
46.527256
259
0.688153
[ "Apache-2.0" ]
rohanshah13/cloud-emea-copy
third_party/ridayesh_run_tag.py
52,064
Python
# The MIT License (MIT) # # Copyright (c) 2016 Oracle # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# __author__ = "Michael Shanley (Oracle A-Team)" __copyright__ = "Copyright (c) 2016 Oracle and/or its affiliates. All rights reserved." __version__ = "1.0.0.0" # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# from oc_provision_wrappers import commerce_setup_helper import os import time import logging logger = logging.getLogger(__name__) json_key = 'ORACLE_11g_clone' service_name = "Oracle DB clone" def clone_oracle(configData, full_path): if json_key in configData: jsonData = configData[json_key] else: logging.error(json_key + " config data missing from json. will not install") return logging.info("installing " + service_name) INSTALL_OWNER = jsonData['installOwner'] ORACLE_HOME = jsonData['oracleHome'] ORIG_HOST = jsonData['originalHost'] NEW_HOST = jsonData['newHost'] ORACLE_SID = jsonData['oracleSID'] UPDATE_DB_CONSOLE = jsonData['updateDBConsole'] db_script = "/etc/init.d/oracleDatabase" db_console_script = "/etc/init.d/oracleDBconsole" stop_db_cmd = db_script + " stop" stop_db_console_cmd = db_console_script + " stop" start_db_cmd = db_script + " start" start_db_console_cmd = db_console_script + " start" tns_path = ORACLE_HOME + "/network/admin/tnsnames.ora" lsnr_path = ORACLE_HOME + "/network/admin/listener.ora" if not os.path.exists(tns_path): logging.error("tnsnames.ora not found at " + tns_path + " - will not proceed") return False # stop db commerce_setup_helper.exec_cmd(stop_db_cmd) # stop console commerce_setup_helper.exec_cmd(stop_db_console_cmd) tns_replacements = {} lsnr_replacements = {} if (ORIG_HOST and NEW_HOST): tns_replacements[ORIG_HOST] = NEW_HOST lsnr_replacements[ORIG_HOST] = NEW_HOST # update tnsnames if tns_replacements: if not os.path.exists(tns_path): logging.warn("tnsnames.ora not found at " + tns_path + " - cannot modify") else: # backup tnsnames timestr = time.strftime("%Y%m%d-%H%M%S") installCommand = "\"" + "cp " + tns_path + " " + tns_path + "." + timestr + "\"" commerce_setup_helper.exec_as_user(INSTALL_OWNER, installCommand) commerce_setup_helper.substitute_file_fields(tns_path, tns_path, tns_replacements) # update listener if lsnr_replacements: if not os.path.exists(lsnr_path): logging.warn("listener.ora not found at " + lsnr_path + " - cannot modify") else: # backup listener timestr = time.strftime("%Y%m%d-%H%M%S") installCommand = "\"" + "cp " + lsnr_path + " " + lsnr_path + "." + timestr + "\"" commerce_setup_helper.exec_as_user(INSTALL_OWNER, installCommand) commerce_setup_helper.substitute_file_fields(lsnr_path, lsnr_path, tns_replacements) # update db name orig_db_name = ORACLE_HOME + "/" + ORIG_HOST + "_" + ORACLE_SID new_db_name = ORACLE_HOME + "/" + NEW_HOST + "_" + ORACLE_SID if not os.path.exists(orig_db_name): logging.error("db path not found at " + orig_db_name + " - cannot modify") else: mv_cmd = "\"" + "mv " + orig_db_name + " " + new_db_name + "\"" commerce_setup_helper.exec_as_user(INSTALL_OWNER, mv_cmd) # update db console if (UPDATE_DB_CONSOLE == "true") : PORT = jsonData['lsnrPort'] ORACLE_PW = jsonData['adminPW'] orig_db_console = ORACLE_HOME + "/oc4j/j2ee/OC4J_DBConsole_" + ORIG_HOST + "_" + ORACLE_SID new_db_console = ORACLE_HOME + "/oc4j/j2ee/OC4J_DBConsole_" + NEW_HOST + "_" + ORACLE_SID if not os.path.exists(orig_db_console): logging.warn("db console not found at " + orig_db_console + " - cannot modify") else: mv_cmd = "\"" + "mv " + orig_db_console + " " + new_db_console + "\"" commerce_setup_helper.exec_as_user(INSTALL_OWNER, mv_cmd) # db must be running for emca to exec. make sure # start db commerce_setup_helper.exec_cmd(start_db_cmd) emca_params = "-SID " + ORACLE_SID + " -PORT " + PORT + " -SYS_PWD " + ORACLE_PW + " -SYSMAN_PWD " + ORACLE_PW + " -DBSNMP_PWD " + ORACLE_PW drop_repo_cmd = "\"" + ORACLE_HOME + "/bin/emca -deconfig dbcontrol db -repos drop -silent " + emca_params + "\"" create_repo_cmd = "\"" + ORACLE_HOME + "/bin/emca -config dbcontrol db -repos create -silent " + emca_params + "\"" commerce_setup_helper.exec_as_user(INSTALL_OWNER, drop_repo_cmd) commerce_setup_helper.exec_as_user(INSTALL_OWNER, create_repo_cmd) # stop db commerce_setup_helper.exec_cmd(stop_db_cmd) # stop console commerce_setup_helper.exec_cmd(stop_db_console_cmd) # start db commerce_setup_helper.exec_cmd(start_db_cmd) if (UPDATE_DB_CONSOLE == "true") : # start dbconsole commerce_setup_helper.exec_cmd(start_db_console_cmd)
42.946309
153
0.643694
[ "MIT" ]
LaudateCorpus1/atg-commerce-iaas
common-python/oc_provisioning/oc_provision_wrappers/database/v11g/oracle_rdbms_clone.py
6,399
Python
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Define tflite op hints (intrinsic operations). This essentially allows defining a TensorFlow API for tflite operations in Python with hints on how they are represented in TensorFlow Lite. This basically is a form of tflite intrinsic. It wraps a subpart of a TensorFlow execution graph and is useful for LSTMs and other complicated TensorFlow constructions that are difficult to pattern match in TOCO, but are represented by a single accelerated tflite op. Example: def tflite_cool_activation(input): # A cool activation function. custom = tf.contrib.lite.OpHint("cool_activation") input = custom.add_inputs(input) output = tf.sigmoid(input) * input custom.add_outputs(output) return output image = tf.placeholder(tf.float32, (1, 16, 16, 1)) output = tf.identity(tflite_cool_activation(image)) session = tf.Session() graphdef_to_convert = tf.contrib.lite.convert_op_hints_to_stubs(session) tflite_graph = tf.contrib.lite.toco_convert(graphdef_to_convert, [image], [output]) [image], [output]) with open("/tmp/graph.fb", "wb") as fp: fp.write(tflite_graph) How does it work?: OpHint is a helper that you use when defining a vanilla python function. It allows you to wrap arguments with tf.identities with some custom attributes. These attributes allow you to find the original block of ops that was created. For example, if you use cool_activation above you essentially get: a_input = tf.identity() result = tf.multiply(tf.sigmoid(a_input), a_input) output = tf.identity() a_input, output are identities that have parameters representing what argument they are, what the name of the function they should turn into in tf lite as well as a guid that uniquely identifies a particular invocation. Once you have built your whole tensorflow graph, you can run it and train it as usual, but after you have done that, you need to convert the graph into a form that replaces these subgraphs wrapped in identities to stub ops. These ops don't actually exist in the normal TensorFlow runtime, but will be understood by toco later. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections as _collections import itertools as _itertools import uuid as _uuid from tensorflow.contrib import framework as _framework from tensorflow.core.framework import attr_value_pb2 as _attr_value_pb2 from tensorflow.python.framework import ops as _ops from tensorflow.python.ops import array_ops as _array_ops from tensorflow.python.util.all_util import remove_undocumented class OpHint(object): """A class that helps build tflite function invocations. It allows you to take a bunch of TensorFlow ops and annotate the construction such that toco knows how to convert it to tflite. This embeds a pseudo function in a TensorFlow graph. This allows embedding high-level API usage information in a lower level TensorFlow implementation so that an alternative implementation can be substituted later. Essentially, any "input" into this pseudo op is fed into an identity, and attributes are added to that input before being used by the constituent ops that make up the pseudo op. A similar process is done to any output that is to be exported from the current op. TODO(aselle): When TensorFlow functions functionality works for arbitrary constructs, this mechanism can be retired and changed to use python defun's. """ # Attr constants that are used for representation in the GraphDef FUNCTION_NAME_ATTR = "_tflite_function_name" FUNCTION_UUID_ATTR = "_tflite_function_uuid" FUNCTION_INPUT_INDEX_ATTR = "_tflite_function_input_index" FUNCTION_OUTPUT_INDEX_ATTR = "_tflite_function_output_index" def __init__(self, function_name, **kwargs): """Create a OpHint. Args: function_name: Name of the function (the custom op name in tflite) **kwargs: Keyword arguments of any constant attributes for the function. """ self._function_name = function_name self._unique_function_id = _uuid.uuid1().hex # TODO(aselle): Unique enough? self._curr_input_index = 0 self._curr_output_index = 0 self._attrs_to_store_later = kwargs self._stored_attrs = False def _setattr(self, dest_op, name, value): tensor_value = _ops.convert_to_tensor(value) # pylint: disable=protected-access dest_op.op._set_attr(name, _attr_value_pb2.AttrValue( tensor=tensor_value.op.node_def.attr["value"].tensor)) # pylint: enable=protected-access def add_inputs(self, *args): """Add a sequence of inputs to the function invocation. Args: *args: List of inputs to be converted (should be Tf.Tensor). Returns: Wrapped inputs (identity standins that have additional metadata). These are also are also tf.Tensor's. """ def augmented_identity(arg): identity_op = _array_ops.identity(arg) # pylint: disable=protected-access identity_op.op._set_attr( OpHint.FUNCTION_NAME_ATTR, _attr_value_pb2.AttrValue(s=self._function_name)) identity_op.op._set_attr( OpHint.FUNCTION_UUID_ATTR, _attr_value_pb2.AttrValue(s=self._unique_function_id)) identity_op.op._set_attr( OpHint.FUNCTION_INPUT_INDEX_ATTR, _attr_value_pb2.AttrValue(i=self._curr_input_index)) # pylint: enable=protected-access self._curr_input_index += 1 return identity_op return [augmented_identity(arg) for arg in args] def add_outputs(self, *args): """Add a sequence of outputs to the function invocation. Args: *args: List of outputs to be converted (should be tf.Tensor). Returns: Wrapped outputs (identity standins that have additional metadata). These are also tf.Tensor's. """ def augmented_identity(arg): identity_op = _array_ops.identity(arg) # pylint: disable=protected-access identity_op.op._set_attr( OpHint.FUNCTION_NAME_ATTR, _attr_value_pb2.AttrValue(s=self._function_name)) identity_op.op._set_attr( OpHint.FUNCTION_UUID_ATTR, _attr_value_pb2.AttrValue(s=self._unique_function_id)) identity_op.op._set_attr( OpHint.FUNCTION_OUTPUT_INDEX_ATTR, _attr_value_pb2.AttrValue(i=self._curr_output_index)) # pylint: enable=protected-access self._curr_output_index += 1 return identity_op wrapped_outputs = [augmented_identity(arg) for arg in args] if not self._stored_attrs: for key, value in self._attrs_to_store_later.iteritems(): self._setattr(wrapped_outputs[0], "_tflite_attr_" + key, value) self._stored_attrs = True return wrapped_outputs class _LiteFuncCall(object): """Represent a TensorFlow Lite custom function. This is uses to accumulate found hints in the graphdef into a single conceptual unit. Properties: self.inputs: inputs to the op (hash from index # to argument) self.outputs: outputs to the op (hash from index # to argument) self.function_name: the tflite custom op name to use self.uuid: a unique call id for this particular call (i.e. multiple function calls would have the same function_name but different uuids. self.params: A param name to key value for op constant data. I.e. for axis on a reduction, strides on a convolution, etc. """ def __init__(self): self.inputs = {} self.outputs = {} self.function_name = None self.uuid = None self.params = {} def __str__(self): return "tflite function %s call %s\n\tinputs: %r\n\toutputs: %r" % ( self.function_name, self.uuid, self.inputs, self.outputs) def _find_all_hints_in_graph_def(session): """Look at the current default graph and return a list of LiteFuncCall objs. Args: session: A TensorFlow session that contains the graph to convert. Returns: a list of `LifeFuncCall` objects in the form """ func_calls = _collections.defaultdict(_LiteFuncCall) seen_ops = set() for op in session.graph.get_operations(): for operand in _itertools.chain(op.inputs, op.outputs): if operand in seen_ops: continue seen_ops.add(operand) attr = operand.op.node_def.attr uuid = attr[OpHint.FUNCTION_UUID_ATTR].s if OpHint.FUNCTION_UUID_ATTR not in attr: continue call_def = func_calls[uuid] call_def.uuid = uuid if OpHint.FUNCTION_UUID_ATTR in attr: call_def.function_name = attr[OpHint.FUNCTION_NAME_ATTR].s if OpHint.FUNCTION_INPUT_INDEX_ATTR in attr: call_def.inputs[attr[OpHint.FUNCTION_INPUT_INDEX_ATTR].i] = operand if OpHint.FUNCTION_OUTPUT_INDEX_ATTR in attr: call_def.outputs[attr[OpHint.FUNCTION_OUTPUT_INDEX_ATTR].i] = operand for a in attr: if a.startswith("_tflite_attr_"): # TODO(aselle): Remember the attribute tensors so we can put them # in collapse. call_def.params[a.replace("_tflite_attr_,", "")] = attr[a].tensor return func_calls def _tensor_name_base(full_tensor_name): """Removes the device assignment code from a tensor. e.g. _tensor_name_base("foo:3") => "foo" Args: full_tensor_name: A tensor name that is annotated with a device placement (this is what tensor flow introspection gives). Returns: A name without any device assignment. """ return full_tensor_name.name.split(":")[0] def convert_op_hints_to_stubs(session): """Converts a graphdef with LiteOp hints into stub operations. This is used to prepare for toco conversion of complex intrinsic usages. Args: session: A TensorFlow session that contains the graph to convert. Returns: A new graphdef with all ops contained in OpHints being replaced by a single op call with the right parameters. """ hints = _find_all_hints_in_graph_def(session) current_graph_def = session.graph_def for call in hints.values(): input_names = [None] * len(call.inputs) output_names = [None] * len(call.outputs) output_dtypes = [None] * len(call.outputs) output_quantized = False for input_index, tensor in call.inputs.items(): input_names[input_index] = _tensor_name_base(tensor) for output_index, tensor in call.outputs.items(): output_names[output_index] = _tensor_name_base(tensor) output_dtypes[output_index] = tensor.dtype.as_datatype_enum # TODO(aselle): Support quantized flag properly current_graph_def = _framework.fuse_op( current_graph_def, input_names, output_names, output_dtypes, output_quantized, call.uuid, call.function_name) for node in current_graph_def.node: if node.name == call.uuid: for param, tensor in call.params.items(): node.attr[param].tensor.CopyFrom(tensor) return current_graph_def _allowed_symbols = ["OpHint", "convert_op_hints_to_stubs"] remove_undocumented(__name__, _allowed_symbols)
37.993528
80
0.725639
[ "Apache-2.0" ]
188080501/tensorflow
tensorflow/contrib/lite/python/op_hint.py
11,740
Python
#!/usr/bin/python # vim:fileencoding=utf-8 # # Lookup for MX and NS records # import unbound ctx = unbound.ub_ctx() ctx.resolvconf("/etc/resolv.conf") status, result = ctx.resolve("nic.cz", unbound.RR_TYPE_MX, unbound.RR_CLASS_IN) if status == 0 and result.havedata: print "Result:" print " raw data:", result.data for k in result.data.mx_list: print " priority:%d address:%s" % k status, result = ctx.resolve("nic.cz", unbound.RR_TYPE_A, unbound.RR_CLASS_IN) if status == 0 and result.havedata: print "Result:" print " raw data:", result.data for k in result.data.address_list: print " address:%s" % k status, result = ctx.resolve("nic.cz", unbound.RR_TYPE_NS, unbound.RR_CLASS_IN) if status == 0 and result.havedata: print "Result:" print " raw data:", result.data for k in result.data.domain_list: print " host: %s" % k
28.6875
79
0.650327
[ "BSD-3-Clause" ]
1Blackdiamondsc/haven
external/unbound/libunbound/python/doc/examples/example8-1.py
918
Python
#!/usr/bin/python3 import sys import os import shutil import csv import zipfile import pandas as pd import glob infile = sys.argv[1] outfile = sys.argv[2] # remove holding_folder if it exists, and create new folder # use 'rm -r /holding_folder/* in shell script instead?' holding_path = '/media/secure_volume/holding_folder' if os.path.isdir(holding_path): shutil.rmtree(holding_path) os.mkdir(holding_path) def extract(infile): ''' Merges bioindex.tsv with the infile (balanced data), finds the volsplit.zip location for each bio file and extracts the files into secure_volume/holding_folder. ''' bioindex = pd.read_csv('/media/secure_volume/index/bioindex.tsv', sep='\t') balanced_bioindex = pd.read_table(infile) for suffix in balanced_bioindex.filesuffix.unique(): volsplit_file = 'volsplit'+str(suffix)+'.zip' volsplit_df = balanced_bioindex.loc[balanced_bioindex.filesuffix == suffix,:] try: with zipfile.ZipFile('/media/secure_volume/'+volsplit_file, 'r') as myzip: for idx, row in volsplit_df.iterrows(): filename = row['mainid']+'.zip' myzip.extract(filename, '/media/secure_volume/holding_folder') except Exception as e: print('ERROR:',filename,'not found in',volsplit_file,'!', e) def slicer(outfile): idx_file_path = '/media/secure_volume/index/bioindex.tsv' holding_folder_path = '/media/secure_volume/holding_folder/' bio_idx_df = pd.read_table(idx_file_path) bio_idx_df.set_index('mainid', inplace = True) mainid_list = [vol for vol in os.listdir(holding_folder_path) if vol.endswith('.zip')] # remove '.zip' from file names mainid_list_clean = [item[0:-4] for item in mainid_list] #subset bioindex on holding_folder IDs htid_series = bio_idx_df.htid[mainid_list_clean] file_path_list = glob.glob(holding_folder_path+'*.zip') # print('file path list has: ',len(file_path_list)) # print('htid_list has', len(htid_list)) slice_df = pd.DataFrame(htid_series) slice_df['path'] = file_path_list slice_df['c'] = 0 slice_df['d'] = 1001 with open(outfile, 'w') as outf: slice_df.to_csv(outfile, sep='\t', header=False, index=False) print("Wrote", len(slice_df), "rows to", outfile) extract(infile) slicer(outfile)
34.042857
90
0.684012
[ "MIT" ]
afcarl/biographies
code/extract_balanced.py
2,383
Python
#Faça um algoritmo utilizando o comando while que mostra uma #contagem regressiva na tela, iniciando em 10 e terminando #em O. Mostrar uma mensagem “FIM!" após a contagem. i=11 while(i!=0): i-=1 print(i) print("FIM")
28
60
0.71875
[ "MIT" ]
AlexandrePeBrito/CursoUdemyPython
exercicios/Lista3/Q3.py
228
Python
# Columbus - A Smart Navigation System for the Visually-Impaired # Ike Kilinc # This file integrates Columbus' primary start location and destination input # features with its core pathfinding algorithm. This file also facilitates # Columbus' speech recognition and audio functionalities. from speech_to_text import * from node_mapper import * from path_finder import * ##################################################################### ##################################################################### def run(): # Columbus asks what the user would like to do (with help option). directions, popular dests, directions pathMode = startupModeSelection() if pathMode == "specificDestination": # User inputs destination. destination = destinationInput() startLocation = startLocationInput() elif pathMode == "nearestRestroom": # Columbus asks where user is (TEMP). startLocation = startLocationInput() # Columbus finds nearest Restroom and sets as destination destination = None elif pathMode == "nearestPrinter": # Columbus asks where user is (TEMP). startLocation = startLocationInput() # Columbus finds nearest Printer and sets as destination destination = None elif pathMode == "popularDestinations": # Columbus gives user choice options of popular destinations. # Sets user input as the destination. destination = popularLocationsInput(data) startLocation = startLocationInput() elif pathMode == "savedDestinations": # Columbus gives user choice of previously saved destinations and sets # user input as the destination. destination = savedLocationsInput(data) startLocation = startLocationInput() elif pathMode == "findGod": pass # Columbus searches for and determines path to destination. nodesPath = pathFinder(startLocation, destination, pathMode) ##################################################################### ##################################################################### class Segment(object): def __init__(self, startCoords, endCoords, segNumber, isActive, isFloorChange): self.segmentBounds = (startCoords[0], startCoords[1], endCoords[0], endCoords[1]) self.floor = startCoords[2] self.segNumber = segNumber self.isActive = isActive self.isFloorChange = isFloorChange # self.direction = direction def __repr__(self): return str(self.segNumber) def __hash__(self): return hash(self.segNumber) def getSegBounds(self): return self.segmentBounds def getSegNum(self): return self.segNumber def getSegFloor(self): return self.floor def getIsActive(self): return self.isActive def getIsFloorChange(self): return self.isFloorChange def getCenter(self): centerX = (self.segmentBounds[0] + self.segmentBounds[2])/2 centerY = (self.segmentBounds[1] + self.segmentBounds[3])/2 return (centerX, centerY) def getSegmentDirection(self): (x0,y0,x1,y1) = self.segmentBounds if (x1-x0) > 0: return "E" elif (x1-x0) < 0: return "W" elif (y1-y0) > 0: return "S" elif (y1-y0) < 0: return "N" else: return None def createAllSegments(nodesPath): allSegments = [] isFloorChange = False intNodesPath = [] for i in range(len(nodesPath)): node = nodesPath[i] if (isinstance(node, Intersection) or isinstance(node, Elevator) or i==0 or i==(len(nodesPath)-1)): intNodesPath.append(node) for i in range(len(intNodesPath)-1): (node, nextNode) = (intNodesPath[i], intNodesPath[i+1]) if (isinstance(node, Elevator) and isinstance(nextNode, Elevator)): isFloorChange = True segment = Segment(node.getCoords(), nextNode.getCoords(), i, False, isFloorChange) isFloorChange = False allSegments.append(segment) allSegments.append(Segment(intNodesPath[-1].getCoords(), intNodesPath[-1].getCoords(), i, False, False)) return allSegments ##################################################################### ##################################################################### def startupModeSelection(repeat=False): # Used to select mode for operating Columbus. Mode options include: # Finding directions to a specific destination, directions to the nearest # restroom, directions to popular destinations, and directions to previously # saved destinations. if repeat == True: play("voiceCommands/sorryPleaseRepeat.wav") else: play("voiceCommands/modeSelectionInputPrompt.wav") userInput = recognizeSpeech("mode") if userInput == "help": play("voiceCommands/modeSelectionHelp.wav") userInput = recognizeSpeech("mode") if userInput in ["nearestRestroom", "popularDestinations", "savedDestinations", "nearestPrinter", "specificDestination", "findGod", "help"]: return userInput else: return startupModeSelection(True) def destinationInput(repeat=False): if repeat==True: play("voiceCommands/sorryPleaseRepeat.wav") else: # Columbus asks where user would like to go. play("voiceCommands/destinationInputPrompt.wav") # User inputs destination destination = recognizeSpeech("location") if isLegalNode(destination): return destination else: return destinationInput(True) def startLocationInput(repeat=False): if repeat==True: play("voiceCommands/sorryPleaseRepeat.wav") else: # Columbus asks where user is now. play("voiceCommands/startLocationInputPrompt.wav") # User inputs start location. startLocation = recognizeSpeech("location") if isLegalNode(startLocation): return startLocation else: return startLocationInput(True) def popularLocationsInput(data, repeat=False): print("popLocsInput") if repeat==True: play("voiceCommands/sorryPleaseRepeat.wav") else: # Columbus asks where user would like to go. play("voiceCommands/destinationInputPromptWithHelp.wav") userInput = recognizeSpeech("popularDest") if userInput == "help": play("voiceCommands/popularLocationSelectionHelp.wav") userInput = recognizeSpeech("popularDest") if userInput in ["5Prima", "4Sorrells"]: return userInput else: return popularLocationsInput(data, True) def savedLocationsInput(data, repeat=False): if len(data.savedLocations) == 0: play("voiceCommands/noSavedDestinations.wav") else: if repeat==True: play("voiceCommands/sorryPleaseRepeat.wav") else: # Columbus asks where user would like to go. play("voiceCommands/destinationInputPromptWithHelp.wav") userInput = recognizeSpeech("savedDest") if userInput == "help": play("voiceCommands/modeSelectionHelp.wav") userInput = recognizeSpeech("savedDest") if userInput in data.savedLocations: return userInput else: return savedLocationsInput(data, True) def isLegalNode(string): allNodesMap = mapAllNodes() for floor in allNodesMap: for roomStr in allNodesMap[floor]: if string == roomStr: return True return False
32.212766
108
0.628666
[ "MIT" ]
ikekilinc/Columbus
main_algo.py
7,570
Python
# ---------------------------------------------------------------------------- # Copyright (c) 2016-2018, QIIME 2 development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file LICENSE, distributed with this software. # ---------------------------------------------------------------------------- import unittest from q2_emperor.plugin_setup import plugin as emperor_plugin class PluginSetupTests(unittest.TestCase): def test_plugin_setup(self): self.assertEqual(emperor_plugin.name, 'emperor')
31.333333
78
0.556738
[ "BSD-3-Clause" ]
ChrisKeefe/q2-emperor
q2_emperor/tests/test_plugin_setup.py
564
Python
""" Generate configuration files into :ref:`generated_dir<directories>`. """ from fabric.api import task from gusset.output import status from gusset.validation import with_validation from confab.iter import iter_conffiles @task @with_validation def generate(directory=None): """ Generate configuration files. """ for conffiles in iter_conffiles(directory): status("Generating templates for '{environment}' and '{role}'", environment=conffiles.environment, role=conffiles.role) conffiles.generate()
24.565217
71
0.707965
[ "Apache-2.0" ]
locationlabs/confab
confab/generate.py
565
Python
import unittest from cloudmitigator_semantic import version class VersionTestCase(unittest.TestCase): def test_proper_version_parsing(self): proper_version = version.Version("v5.1.2") self.assertEqual(proper_version.major, 5) self.assertEqual(proper_version.minor, 1) self.assertEqual(proper_version.patch, 2) def test_bump_major(self): major_version = version.Version("v1.3.2") major_version.bump_major() self.assertEqual(major_version.major, 2) self.assertEqual(major_version.minor, 0) self.assertEqual(major_version.patch, 0) def test_bump_minor(self): minor_version = version.Version("v1.3.2") minor_version.bump_minor() self.assertEqual(minor_version.major, 1) self.assertEqual(minor_version.minor, 4) self.assertEqual(minor_version.patch, 0) def test_bump_patch(self): patch_version = version.Version("v1.3.2") patch_version.bump_patch() self.assertEqual(patch_version.major, 1) self.assertEqual(patch_version.minor, 3) self.assertEqual(patch_version.patch, 3) def test_pre_release(self): pre_version = version.Version("v1.3.2-alpha") self.assertEqual(pre_version.version, "v1.3.2-alpha") def test_meta_data(self): meta_data = version.Version("v1.3.2-alpha+361nh") self.assertEqual(meta_data.version, "v1.3.2-alpha+361nh") def test_version_changed_true(self): version_changed = version.Version("v1.1.0") version_changed.bump_minor() self.assertTrue(version_changed.version_changed) def test_version_changed_false(self): version_changed = version.Version("v1.1.0") self.assertFalse(version_changed.version_changed) def test_return_original_version(self): original_version = version.Version("v1.1.0") original_version.bump_patch() self.assertEqual(original_version.original_version, "v1.1.0") self.assertEqual(original_version.version, "v1.1.1")
34.847458
69
0.695525
[ "MPL-2.0" ]
reflexivesecurity/semantic
tests/test_version_object.py
2,056
Python
from habit.habit_model import HabitHistory from habit.complete_habit import complete def test_overdue_habit(datasett): """ please note the 'double tt' for datasett. This stands to differentiate the functional test data from the data used for unit tests. habit 1 is the overdue habit since its added first in the func/conftest module. :param datasett: from func/conftest :return: """ session = datasett complete(1, session) result = session.query(HabitHistory.broken_count).\ filter(HabitHistory.habitid == 1).all() assert result == [(1,)] def test_a_habit_due_for_completion(datasett): """ habit 2 is the due habit since its added second in the func/conftest module. :param datasett: from func/conftest :return: """ session = datasett complete(2, session) result = session.query(HabitHistory.streak).\ filter(HabitHistory.habitid == 2).all() assert result == [(1,)]
29.515152
75
0.687885
[ "MIT" ]
takavarasha-desire/habittracker1_1
tests/func/test_complete_habit.py
974
Python
#!/usr/bin/python3 """Alta3 Research - Exploring OpenAPIs with requests""" # documentation for this API is at # https://anapioficeandfire.com/Documentation import requests AOIF = "https://www.anapioficeandfire.com/api" def main(): ## Send HTTPS GET to the API of ICE and Fire gotresp = requests.get(AOIF) ## Decode the response got_dj = gotresp.json() ## print the response print(got_dj) if __name__ == "__main__": main()
20.727273
55
0.686404
[ "MIT" ]
AgentKD6-37/2022-01-04-Python
Day 6/iceAndFire01.py
456
Python
import time from torch.utils.tensorboard import SummaryWriter import numpy as np class LossWriter(SummaryWriter): def __init__(self, log_dir=None, comment=''): if log_dir == None: log_dir = './logs/tensorboard/' + time.strftime('%Y-%m-%d--%H-%M-%S', time.localtime(time.time())) super(LossWriter, self).__init__(log_dir=log_dir, comment=comment) def write_loss(self, loss_name, scalar, n_iter): self.add_scalar('Loss/'+loss_name, scalar, n_iter) if __name__=='__main__': testwriter = LossWriter() for n_iter in range(100): testwriter.write_loss(np.random.random(), n_iter)
29.090909
110
0.676563
[ "MIT" ]
wooseoklee4/AP-BSN
src/util/summary_logging.py
640
Python
from __future__ import unicode_literals from django.db import models from model_utils import Choices from model_utils.models import TimeStampedModel, StatusModel from django.conf import settings class Booking(TimeStampedModel, StatusModel): TRAVEL_CLASSES = Choices('economy', 'first_class') STATUS = Choices(('pending', 'Pending'), ('paid', 'Paid'), ('failed', 'Failed')) date_of_travel = models.DateTimeField() travel_class = models.CharField(choices=TRAVEL_CLASSES, default=TRAVEL_CLASSES.economy, max_length=30) status = models.CharField(choices=STATUS, default=STATUS.pending, max_length=20) user = models.ForeignKey(settings.AUTH_USER_MODEL, null=False, blank=False) payment_reference = models.CharField(max_length=100, blank=True)
48
106
0.778646
[ "MIT" ]
savioabuga/lipame
lipame/lipa/models.py
768
Python
# coding: utf-8 """ OpenAPI Petstore This spec is mainly for testing Petstore server and contains fake endpoints, models. Please do not use this for any other purpose. Special characters: \" \\ # noqa: E501 The version of the OpenAPI document: 1.0.0 Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import re # noqa: F401 import sys # noqa: F401 import six # noqa: F401 import nulltype # noqa: F401 from petstore_api.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, int, none_type, str, validate_get_composed_info, ) class (ModelNormal): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { } validations = { } additional_properties_type = None _nullable = False @cached_property def openapi_types(): """ This must be a class method so a model may have properties that are of type self, this ensures that we don't create a cyclic import Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ return { } @cached_property def discriminator(): return None attribute_map = { } _composed_schemas = {} required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', ]) @convert_js_args_to_python_args def __init__(self, *args, **kwargs): # noqa: E501 """OuterEnumIntegerDefaultValue - a model defined in OpenAPI Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) for var_name, var_value in six.iteritems(kwargs): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value)
38.380117
174
0.590279
[ "Apache-2.0" ]
jetbridge/openapi-generator
samples/openapi3/client/petstore/python-experimental/petstore_api/model/outer_enum_integer_default_value.py
6,563
Python
from math import pi, sqrt from typing import List import numpy as np import pytest from src.kinematics.forward_kinematics import get_tform from src.prechecks.spatial_interpolation import linear_interpolation, circular_interpolation @pytest.mark.parametrize("start,end,ds,expected_points", [ ( [[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 0], [0, 0, 0], [300, 0, 0]], 50, 7 ), ( [[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 0], [0, 0, 0], [50, 0, 0]], 50, 2 ) ] ) def test_linear_interpolation(start, end, ds, expected_points): # Create the start and end point matrices start = get_tform(*start) end = get_tform(*end) # Calculate the interpolated tforms interpolated_tforms = list(linear_interpolation(start, end, ds=ds)) helper_spatial_interpolation_test(interpolated_tforms, start, end, expected_points) # Check that the points are equidistant if expected_points > 2: for i in range(expected_points - 1): ds_actual = np.linalg.norm(interpolated_tforms[i + 1][0:3, 3] - interpolated_tforms[i][0:3, 3]) assert pytest.approx(ds, rel=0.1) == ds_actual @pytest.mark.parametrize("start,end,nvec,cw,ds,expected_points", [ # XY plane half circle (start, intermediate, end) ( [[1, 0, 0], [0, 1, 0], [0, 0, 1], [-1, 0, 0]], [[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 0, 0]], [0, 0, 1], True, pi / 2, 3 ), # XY plane half circle (start, end) ( [[1, 0, 0], [0, 1, 0], [0, 0, 1], [-1, 0, 0]], [[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 0, 0]], [0, 0, 1], True, pi, 2 ), # XY plane half circle (start, end) rounded ( [[1, 0, 0], [0, 1, 0], [0, 0, 1], [-1, 0, 0]], [[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 0, 0]], [0, 0, 1], True, pi / 2 * 1.1, 2 ), # XY plane half circle (start, end) rounded ( [[1, 0, 0], [0, 1, 0], [0, 0, 1], [-1, 0, 0]], [[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 0, 0]], [0, 0, 1], False, pi / 5, 6 ), # XY plane 3/4 circle, five points ( [[1, 0, 0], [0, 1, 0], [0, 0, 1], [-1, 0, 0]], [[1, 0, 0], [0, 1, 0], [0, 0, 1], [0, -1, 0]], [0, 0, 1], True, 6 / 16 * pi, 5 ), # XY plane full circle, five points ( [[1, 0, 0], [0, 1, 0], [0, 0, 1], [-1, 0, 0]], [[1, 0, 0], [0, 1, 0], [0, 0, 1], [-1, 0, 0]], [0, 0, 1], False, 2 / 3 * pi, 4 ), # YZ plane 3/4 circle, five points ( [[1, 0, 0], [0, 1, 0], [0, 0, 1], [0, -1, 0]], [[1, 0, 0], [0, 1, 0], [0, 0, 1], [0, 0, -1]], [1, 0, 0], True, 6 / 16 * pi, 5 ), # XY plane half circle (start, end) rounded ( [[1, 0, 0], [0, 1, 0], [0, 0, 1], [0, -0.5 * sqrt(2), 0.5 * sqrt(2)]], [[1, 0, 0], [0, 1, 0], [0, 0, 1], [0, 0.5 * sqrt(2), -0.5 * sqrt(2)]], [0, 1, 1], False, pi / 5, 6 ) ] ) def test_circular_interpolation(start, end, nvec, cw, ds, expected_points): # Create the start and end point matrices start = get_tform(*start) end = get_tform(*end) # Calculate the interpolated tforms interpolated_tforms = list(circular_interpolation(start, end, [0, 0, 0], nvec, cw, ds=ds)) print(interpolated_tforms) helper_spatial_interpolation_test(interpolated_tforms, start, end, expected_points) # Check that the points all have distance of the radius to the center point r = np.linalg.norm(start[0:3, 3]) for tform in interpolated_tforms: assert pytest.approx(r, rel=0.01) == np.linalg.norm(tform[0:3, 3]) # Check that the points are equidistant if expected_points > 3: ds_straight_line_ref = np.linalg.norm(interpolated_tforms[1][0:3, 3] - interpolated_tforms[0][0:3, 3]) for i in range(1, expected_points - 1): ds_actual = np.linalg.norm(interpolated_tforms[i + 1][0:3, 3] - interpolated_tforms[i][0:3, 3]) assert pytest.approx(ds_straight_line_ref, rel=0.1) == ds_actual def helper_spatial_interpolation_test(interpolated_tforms: List[np.ndarray], start, end, expected_points): # Test that the number of interpolated points is correct assert len(interpolated_tforms) == expected_points # Test that the start and end points are included np.testing.assert_allclose(interpolated_tforms[0], start) np.testing.assert_allclose(interpolated_tforms[-1], end)
47.64
110
0.34047
[ "MIT" ]
pat-bert/gcode
test/test_spatial_interpolation.py
7,146
Python
n = int(input()) c = int(input()) lista = input().split() graph = [[0 for i in range(n)] for j in range(n)] cont = 0 for i in range(n): for j in range(n): graph[i][j] = int(lista[cont]) cont += 1 if i == j: graph[i][j] = 0 listaMemoria = [c] contaminados = [] contaminados.append(c) k = 1 while True: veLinha = listaMemoria[-1] check = 0 for i in range(n): if graph[veLinha][i] == 1: graph[veLinha][i] = 0 graph[i][veLinha] = 0 listaMemoria.append(i) contaminados.append(i) check = 1 k += 1 break if check == 0: if listaMemoria[-1] == c: break else: listaMemoria.pop() print(k)
23.181818
49
0.48366
[ "MIT" ]
Vith-MCB/UFV
UFV---Python/Trabalho Mat. Disc/grafo_4675.py
765
Python
import csv import six import sys import time from datetime import ( datetime, date, timedelta, ) from xml.etree import cElementTree as ElementTree from django.core.management.base import BaseCommand from corehq.apps.users.util import SYSTEM_USER_ID from corehq.form_processor.backends.sql.dbaccessors import CaseAccessorSQL, CaseReindexAccessor from corehq.form_processor.exceptions import CaseNotFound from corehq.form_processor.interfaces.dbaccessors import CaseAccessors from corehq.apps.locations.models import SQLLocation from corehq.apps.hqcase.utils import submit_case_blocks from corehq.form_processor.backends.sql.dbaccessors import iter_all_rows from casexml.apps.case.mock import CaseBlock DOMAIN = "icds-cas" CASE_TYPE = "person" CUT_OFF_AGE_IN_YEARS = 6 date_today = date.today() CUT_OFF_DOB = str(date_today.replace(year=date_today.year - CUT_OFF_AGE_IN_YEARS)) DOB_PROPERTY = "dob" MOTHER_NAME_PROPERTY = "mother_name" MOTHER_INDEX_IDENTIFIER = "mother" CASE_ITERATION_COUNT = 10000 MAX_RESCUE_EXCEPTIONS_ON_UPDATE = 5 CSV_HEADERS = ['Case ID', 'Mother Case ID', 'Mother Name'] class Command(BaseCommand): help = """ Iterate person cases updated in last 100 days (3 months with buffer) in a single partition, Find the ones which are - not deleted - not belonging to test locations, - with age less than 6 years using dob case property, - if there is related mother case, populate mother_name case property with it's name Returns two lists of case ids, the ones updated and the ones that could not be updated """ def __init__(self, *args, **kwargs): super(Command, self).__init__(*args, **kwargs) self.db_alias = None self.log_progress = False self.test_locations = None self.case_accessor = CaseAccessors(DOMAIN) def add_arguments(self, parser): parser.add_argument('db_alias') parser.add_argument( '--log', action='store_true', dest='log_progress', default=False, help="log progress" ) def handle(self, db_alias, log_progress, **options): self.db_alias = db_alias self.log_progress = log_progress self.test_locations = find_test_awc_locations() filename = self._find_case_ids_without_mother_name() if self.log_progress: print('starting update now for cases') self._update_cases(filename) def _find_case_ids_without_mother_name(self): start_date = date.today() - timedelta(days=100) reindex_accessor = CaseReindexAccessor( domain=DOMAIN, case_type=CASE_TYPE, limit_db_aliases=[self.db_alias], start_date=start_date ) filename = 'cases_without_mother_name_part_%s_%s.csv' % (self.db_alias, datetime.utcnow()) cases_with_no_mother_name_filename = 'cases_with_no_mother_name_part_%s_%s.csv' % ( self.db_alias, datetime.utcnow()) with open(filename, 'w') as output: with open(cases_with_no_mother_name_filename, 'w') as no_mother_name_file: cases_iterated = 0 writer = csv.writer(output) writer.writerow(CSV_HEADERS) no_mother_name_writer = csv.writer(no_mother_name_file) no_mother_name_writer.writerow(['Case ID']) if self.log_progress: print('iterating now') for case in iter_all_rows(reindex_accessor): if self.log_progress and cases_iterated % CASE_ITERATION_COUNT == 0: print("cases iterated: %s" % cases_iterated) cases_iterated += 1 if self._case_needs_to_be_updated(case): mother_case_id, mother_name = self._find_mother_case_id_and_name(case) if mother_case_id and mother_name: writer.writerow([case.case_id, mother_case_id, mother_name]) else: no_mother_name_writer.writerow([case.case_id]) return filename def _find_mother_case_id_and_name(self, case): mother_case_ids = [i.referenced_id for i in CaseAccessorSQL.get_indices(DOMAIN, case.case_id) if i.identifier == MOTHER_INDEX_IDENTIFIER] if len(mother_case_ids) == 1: try: mother_case = self.case_accessor.get_case(mother_case_ids[0]) except CaseNotFound: pass else: return mother_case.case_id, mother_case.name return None, None def _case_needs_to_be_updated(self, case): if case.deleted: return False assert case.type == CASE_TYPE if bool(case.owner_id) and case.owner_id in self.test_locations: return False dob = case.get_case_property(DOB_PROPERTY) if dob and dob > CUT_OFF_DOB and not case.get_case_property(MOTHER_NAME_PROPERTY): return True return False def _update_cases(self, filename): exceptions_raised = 0 updates = {} # case id: mother name counter = 0 with open(filename, 'r') as _input: reader = csv.DictReader(_input) with open('cases_without_mother_name_part_%s_updated.csv' % self.db_alias, 'w') as output: writer = csv.writer(output) writer.writerow(['Case ID', 'Mother Name']) for row in reader: updates[row['Case ID']] = row['Mother Name'] counter += 1 if counter > 0 and counter % 100 == 0: case_ids = self._reassured_case_ids_to_update(list(updates.keys())) skip_ids = updates.keys() - case_ids for case_id in skip_ids: updates.pop(case_id) for case_id, mother_name in updates.items(): writer.writerow([case_id, mother_name]) exceptions_raised = self._submit_update_form(updates, exceptions_raised) if self.log_progress: print("cases updated: %s" % counter) updates = {} counter = 0 # update the pending batch for case_id, mother_name in updates.items(): writer.writerow([case_id, mother_name]) exceptions_raised = self._submit_update_form(updates, exceptions_raised) def _submit_update_form(self, updates, exceptions_raised): update_case_blocks = self.create_case_blocks(updates) if not update_case_blocks: return exceptions_raised for attempt in range(MAX_RESCUE_EXCEPTIONS_ON_UPDATE): try: submit_case_blocks(update_case_blocks, DOMAIN, user_id=SYSTEM_USER_ID) except Exception as e: exc = sys.exc_info() exceptions_raised += 1 if self.log_progress: print("rescuing exception %s %s" % (exceptions_raised, str(e))) if exceptions_raised > MAX_RESCUE_EXCEPTIONS_ON_UPDATE: six.reraise(*exc) else: time.sleep(60) # wait for 1 min before trying again else: break return exceptions_raised def create_case_blocks(self, updates): case_blocks = [] for case_id, mother_name in updates.items(): case_block = CaseBlock.deprecated_init(case_id, update={MOTHER_NAME_PROPERTY: mother_name}, user_id=SYSTEM_USER_ID) case_block = ElementTree.tostring(case_block.as_xml()).decode('utf-8') case_blocks.append(case_block) return case_blocks def _reassured_case_ids_to_update(self, case_ids): # reconfirm the cases before updating to avoid removing updates in between # fetching case ids and updating invalid_cases = self.case_accessor.get_cases(case_ids) case_ids_list = set() for invalid_case in invalid_cases: if self._case_needs_to_be_updated(invalid_case): case_ids_list.add(invalid_case.case_id) return case_ids_list def find_test_awc_locations(): test_locations = set() for location in SQLLocation.active_objects.filter(location_type__code='state', domain=DOMAIN): if location.metadata.get('is_test_location') == 'test': test_locations.update( location.get_descendants(include_self=True). filter(location_type__code='awc').values_list('location_id', flat=True) ) return test_locations
41.84507
102
0.62392
[ "BSD-3-Clause" ]
dungeonmaster51/commcare-hq
custom/icds/management/commands/populate_mother_name.py
8,913
Python
"""Class to manage the entities for a single platform.""" import asyncio from homeassistant.const import DEVICE_DEFAULT_NAME from homeassistant.core import callback, valid_entity_id, split_entity_id from homeassistant.exceptions import HomeAssistantError, PlatformNotReady from homeassistant.util.async_ import ( run_callback_threadsafe, run_coroutine_threadsafe) from .event import async_track_time_interval, async_call_later SLOW_SETUP_WARNING = 10 SLOW_SETUP_MAX_WAIT = 60 PLATFORM_NOT_READY_RETRIES = 10 class EntityPlatform: """Manage the entities for a single platform.""" def __init__(self, *, hass, logger, domain, platform_name, platform, scan_interval, entity_namespace, async_entities_added_callback): """Initialize the entity platform. hass: HomeAssistant logger: Logger domain: str platform_name: str scan_interval: timedelta entity_namespace: str async_entities_added_callback: @callback method """ self.hass = hass self.logger = logger self.domain = domain self.platform_name = platform_name self.platform = platform self.scan_interval = scan_interval self.entity_namespace = entity_namespace self.async_entities_added_callback = async_entities_added_callback self.config_entry = None self.entities = {} self._tasks = [] # Method to cancel the state change listener self._async_unsub_polling = None # Method to cancel the retry of setup self._async_cancel_retry_setup = None self._process_updates = asyncio.Lock() # Platform is None for the EntityComponent "catch-all" EntityPlatform # which powers entity_component.add_entities if platform is None: self.parallel_updates = None self.parallel_updates_semaphore = None return self.parallel_updates = getattr(platform, 'PARALLEL_UPDATES', None) # semaphore will be created on demand self.parallel_updates_semaphore = None def _get_parallel_updates_semaphore(self): """Get or create a semaphore for parallel updates.""" if self.parallel_updates_semaphore is None: self.parallel_updates_semaphore = asyncio.Semaphore( self.parallel_updates if self.parallel_updates else 1, loop=self.hass.loop ) return self.parallel_updates_semaphore async def async_setup(self, platform_config, discovery_info=None): """Set up the platform from a config file.""" platform = self.platform hass = self.hass @callback def async_create_setup_task(): """Get task to set up platform.""" if getattr(platform, 'async_setup_platform', None): return platform.async_setup_platform( hass, platform_config, self._async_schedule_add_entities, discovery_info ) # This should not be replaced with hass.async_add_job because # we don't want to track this task in case it blocks startup. return hass.loop.run_in_executor( None, platform.setup_platform, hass, platform_config, self._schedule_add_entities, discovery_info ) await self._async_setup_platform(async_create_setup_task) async def async_setup_entry(self, config_entry): """Set up the platform from a config entry.""" # Store it so that we can save config entry ID in entity registry self.config_entry = config_entry platform = self.platform @callback def async_create_setup_task(): """Get task to set up platform.""" return platform.async_setup_entry( self.hass, config_entry, self._async_schedule_add_entities) return await self._async_setup_platform(async_create_setup_task) async def _async_setup_platform(self, async_create_setup_task, tries=0): """Set up a platform via config file or config entry. async_create_setup_task creates a coroutine that sets up platform. """ logger = self.logger hass = self.hass full_name = '{}.{}'.format(self.domain, self.platform_name) logger.info("Setting up %s", full_name) warn_task = hass.loop.call_later( SLOW_SETUP_WARNING, logger.warning, "Setup of platform %s is taking over %s seconds.", self.platform_name, SLOW_SETUP_WARNING) try: task = async_create_setup_task() await asyncio.wait_for( asyncio.shield(task), SLOW_SETUP_MAX_WAIT) # Block till all entities are done if self._tasks: pending = [task for task in self._tasks if not task.done()] self._tasks.clear() if pending: await asyncio.wait( pending) hass.config.components.add(full_name) return True except PlatformNotReady: tries += 1 wait_time = min(tries, 6) * 30 logger.warning( 'Platform %s not ready yet. Retrying in %d seconds.', self.platform_name, wait_time) async def setup_again(now): """Run setup again.""" self._async_cancel_retry_setup = None await self._async_setup_platform( async_create_setup_task, tries) self._async_cancel_retry_setup = \ async_call_later(hass, wait_time, setup_again) return False except asyncio.TimeoutError: logger.error( "Setup of platform %s is taking longer than %s seconds." " Startup will proceed without waiting any longer.", self.platform_name, SLOW_SETUP_MAX_WAIT) return False except Exception: # pylint: disable=broad-except logger.exception( "Error while setting up platform %s", self.platform_name) return False finally: warn_task.cancel() def _schedule_add_entities(self, new_entities, update_before_add=False): """Schedule adding entities for a single platform, synchronously.""" run_callback_threadsafe( self.hass.loop, self._async_schedule_add_entities, list(new_entities), update_before_add ).result() @callback def _async_schedule_add_entities(self, new_entities, update_before_add=False): """Schedule adding entities for a single platform async.""" self._tasks.append(self.hass.async_add_job( self.async_add_entities( new_entities, update_before_add=update_before_add) )) def add_entities(self, new_entities, update_before_add=False): """Add entities for a single platform.""" # That avoid deadlocks if update_before_add: self.logger.warning( "Call 'add_entities' with update_before_add=True " "only inside tests or you can run into a deadlock!") run_coroutine_threadsafe( self.async_add_entities(list(new_entities), update_before_add), self.hass.loop).result() async def async_add_entities(self, new_entities, update_before_add=False): """Add entities for a single platform async. This method must be run in the event loop. """ # handle empty list from component/platform if not new_entities: return hass = self.hass device_registry = await \ hass.helpers.device_registry.async_get_registry() entity_registry = await \ hass.helpers.entity_registry.async_get_registry() tasks = [ self._async_add_entity(entity, update_before_add, entity_registry, device_registry) for entity in new_entities] # No entities for processing if not tasks: return await asyncio.wait(tasks) self.async_entities_added_callback() if self._async_unsub_polling is not None or \ not any(entity.should_poll for entity in self.entities.values()): return self._async_unsub_polling = async_track_time_interval( self.hass, self._update_entity_states, self.scan_interval ) async def _async_add_entity(self, entity, update_before_add, entity_registry, device_registry): """Add an entity to the platform.""" if entity is None: raise ValueError('Entity cannot be None') entity.hass = self.hass entity.platform = self # Async entity # PARALLEL_UPDATE == None: entity.parallel_updates = None # PARALLEL_UPDATE == 0: entity.parallel_updates = None # PARALLEL_UPDATE > 0: entity.parallel_updates = Semaphore(p) # Sync entity # PARALLEL_UPDATE == None: entity.parallel_updates = Semaphore(1) # PARALLEL_UPDATE == 0: entity.parallel_updates = None # PARALLEL_UPDATE > 0: entity.parallel_updates = Semaphore(p) if hasattr(entity, 'async_update') and not self.parallel_updates: entity.parallel_updates = None elif (not hasattr(entity, 'async_update') and self.parallel_updates == 0): entity.parallel_updates = None else: entity.parallel_updates = self._get_parallel_updates_semaphore() # Update properties before we generate the entity_id if update_before_add: try: await entity.async_device_update(warning=False) except Exception: # pylint: disable=broad-except self.logger.exception( "%s: Error on device update!", self.platform_name) return suggested_object_id = None # Get entity_id from unique ID registration if entity.unique_id is not None: if entity.entity_id is not None: suggested_object_id = split_entity_id(entity.entity_id)[1] else: suggested_object_id = entity.name if self.entity_namespace is not None: suggested_object_id = '{} {}'.format( self.entity_namespace, suggested_object_id) if self.config_entry is not None: config_entry_id = self.config_entry.entry_id else: config_entry_id = None device_info = entity.device_info device_id = None if config_entry_id is not None and device_info is not None: processed_dev_info = { 'config_entry_id': config_entry_id } for key in ( 'connections', 'identifiers', 'manufacturer', 'model', 'name', 'sw_version', 'via_hub', ): if key in device_info: processed_dev_info[key] = device_info[key] device = device_registry.async_get_or_create( **processed_dev_info) if device: device_id = device.id entry = entity_registry.async_get_or_create( self.domain, self.platform_name, entity.unique_id, suggested_object_id=suggested_object_id, config_entry_id=config_entry_id, device_id=device_id, known_object_ids=self.entities.keys()) if entry.disabled: self.logger.info( "Not adding entity %s because it's disabled", entry.name or entity.name or '"{} {}"'.format(self.platform_name, entity.unique_id)) return entity.entity_id = entry.entity_id entity.registry_name = entry.name entity.async_on_remove(entry.add_update_listener(entity)) # We won't generate an entity ID if the platform has already set one # We will however make sure that platform cannot pick a registered ID elif (entity.entity_id is not None and entity_registry.async_is_registered(entity.entity_id)): # If entity already registered, convert entity id to suggestion suggested_object_id = split_entity_id(entity.entity_id)[1] entity.entity_id = None # Generate entity ID if entity.entity_id is None: suggested_object_id = \ suggested_object_id or entity.name or DEVICE_DEFAULT_NAME if self.entity_namespace is not None: suggested_object_id = '{} {}'.format(self.entity_namespace, suggested_object_id) entity.entity_id = entity_registry.async_generate_entity_id( self.domain, suggested_object_id, self.entities.keys()) # Make sure it is valid in case an entity set the value themselves if not valid_entity_id(entity.entity_id): raise HomeAssistantError( 'Invalid entity id: {}'.format(entity.entity_id)) if (entity.entity_id in self.entities or entity.entity_id in self.hass.states.async_entity_ids( self.domain)): msg = 'Entity id already exists: {}'.format(entity.entity_id) if entity.unique_id is not None: msg += '. Platform {} does not generate unique IDs'.format( self.platform_name) raise HomeAssistantError(msg) entity_id = entity.entity_id self.entities[entity_id] = entity entity.async_on_remove(lambda: self.entities.pop(entity_id)) await entity.async_added_to_hass() await entity.async_update_ha_state() async def async_reset(self): """Remove all entities and reset data. This method must be run in the event loop. """ if self._async_cancel_retry_setup is not None: self._async_cancel_retry_setup() self._async_cancel_retry_setup = None if not self.entities: return tasks = [self.async_remove_entity(entity_id) for entity_id in self.entities] await asyncio.wait(tasks) if self._async_unsub_polling is not None: self._async_unsub_polling() self._async_unsub_polling = None async def async_remove_entity(self, entity_id): """Remove entity id from platform.""" await self.entities[entity_id].async_remove() # Clean up polling job if no longer needed if (self._async_unsub_polling is not None and not any(entity.should_poll for entity in self.entities.values())): self._async_unsub_polling() self._async_unsub_polling = None async def _update_entity_states(self, now): """Update the states of all the polling entities. To protect from flooding the executor, we will update async entities in parallel and other entities sequential. This method must be run in the event loop. """ if self._process_updates.locked(): self.logger.warning( "Updating %s %s took longer than the scheduled update " "interval %s", self.platform_name, self.domain, self.scan_interval) return async with self._process_updates: tasks = [] for entity in self.entities.values(): if not entity.should_poll: continue tasks.append(entity.async_update_ha_state(True)) if tasks: await asyncio.wait(tasks)
38.491726
78
0.605577
[ "Apache-2.0" ]
crazyfish1111/home-assistant
homeassistant/helpers/entity_platform.py
16,282
Python
from __future__ import annotations import typing if typing.TYPE_CHECKING: from typing import Optional, Union, Any, Dict from pypbbot.driver import AffairDriver from pypbbot.typing import Event from pypbbot.utils import Clips from pypbbot.protocol import GroupMessageEvent, PrivateMessageEvent from enum import Enum import asyncio from pypbbot.logging import logger from pypbbot.utils import sendBackClipsTo __all__ = ['HandlerPriority', 'BaseAffair', 'ChatAffair'] class HandlerPriority(Enum): SYSTEM = 0 # SHOULD NOT USED BY PLUGINS VERY_HIGH = 1 HIGH = 2 NORMAL = 3 LOW = 4 VERY_LOW = 5 def __lt__(self, other: object) -> bool: if not isinstance(other, HandlerPriority): return NotImplemented return self.value < other.value class BaseAffair: def __init__(self, driver: AffairDriver, event: Event) -> None: logger.debug( 'A new affair has been created for event [{}]'.format(type(event))) self.event: Optional[Event] = event self.driver: AffairDriver = driver self.states: Dict[str, Any] = {} self.finished: bool = False return class ChatAffair(BaseAffair): def __init__(self, driver: AffairDriver, event: Union[GroupMessageEvent, PrivateMessageEvent], sender_id: int) -> None: self.event: Union[GroupMessageEvent, PrivateMessageEvent] = event self.driver: AffairDriver = driver self.receiver_id: int = event.self_id self.sender_id: int = sender_id self.raw_message: str = event.raw_message return async def send(self, clips: Union[Clips, str, int, float]) -> Any: return await sendBackClipsTo(self.event, clips) def sendAndWait(self, clips: Union[Clips, str, int, float]) -> Any: return asyncio.run(self.send(clips))
31.87931
123
0.685776
[ "MIT" ]
PHIKN1GHT/pypbbot_archived
pypbbot/affairs/builtin.py
1,849
Python
# The most basic of settings to get the app to run as an example, should *never* be used in a # production environment. import os import dj_database_url DATABASES = {} db_url = os.environ.get('DATABASE_URL', '') if db_url: DATABASES['default'] = dj_database_url.parse(db_url, conn_max_age=600, ssl_require=True) else: DATABASES['default'] = { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': 'dr.sqlite3', } INSTALLED_APPS = ( 'django.contrib.auth', 'django.contrib.sites', 'django.contrib.sessions', 'django.contrib.contenttypes', 'django.contrib.admin', 'django.contrib.messages', 'keybase_proofs', 'test_app', ) DEBUG = True ALLOWED_HOSTS = ['*'] SECRET_KEY = '_' SITE_ID = 1 ROOT_URLCONF = 'test_app.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'OPTIONS': { 'context_processors': [ 'django.contrib.auth.context_processors.auth', 'django.template.context_processors.debug', 'django.template.context_processors.i18n', 'django.template.context_processors.media', 'django.template.context_processors.static', 'django.template.context_processors.tz', 'django.contrib.messages.context_processors.messages', ], 'loaders': [ 'django.template.loaders.app_directories.Loader', ], }, }, ] MIDDLEWARE = ( 'django.middleware.common.CommonMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', ) EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend' # Must match the `domain` set in the config. KEYBASE_PROOFS_DOMAIN = '<your-domain.com>'
27.885714
93
0.653176
[ "BSD-3-Clause" ]
AngelKey/Angelkey.proofintegration
test_app/settings.py
1,952
Python
# Copyright (c) 2019-2020, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import cupy as cp from cuml.dask.common.base import BaseEstimator from cuml.dask.common.base import DelayedPredictionMixin from cuml.dask.common.base import DelayedTransformMixin from cuml.dask.common.base import mnmg_import from cuml.dask.common.input_utils import concatenate from cuml.dask.common.input_utils import DistributedDataHandler from cuml.dask.common.comms import CommsContext from cuml.dask.common.comms import worker_state from cuml.dask.common.utils import raise_exception_from_futures from dask.distributed import wait from cuml.common.memory_utils import with_cupy_rmm class KMeans(BaseEstimator, DelayedPredictionMixin, DelayedTransformMixin): """ Multi-Node Multi-GPU implementation of KMeans. This version minimizes data transfer by sharing only the centroids between workers in each iteration. Predictions are done embarrassingly parallel, using cuML's single-GPU version. For more information on this implementation, refer to the documentation for single-GPU K-Means. Parameters ---------- handle : cuml.Handle If it is None, a new one is created just for this class. n_clusters : int (default = 8) The number of centroids or clusters you want. max_iter : int (default = 300) The more iterations of EM, the more accurate, but slower. tol : float (default = 1e-4) Stopping criterion when centroid means do not change much. verbose : int or boolean (default = False) Logging level for printing diagnostic information random_state : int (default = 1) If you want results to be the same when you restart Python, select a state. init : {'scalable-kmeans++', 'k-means||' , 'random' or an ndarray} (default = 'scalable-k-means++') 'scalable-k-means++' or 'k-means||': Uses fast and stable scalable kmeans++ intialization. 'random': Choose 'n_cluster' observations (rows) at random from data for the initial centroids. If an ndarray is passed, it should be of shape (n_clusters, n_features) and gives the initial centers. oversampling_factor : int (default = 2) The amount of points to sample in scalable k-means++ initialization for potential centroids. Increasing this value can lead to better initial centroids at the cost of memory. The total number of centroids sampled in scalable k-means++ is oversampling_factor * n_clusters * 8. max_samples_per_batch : int (default = 32768) The number of data samples to use for batches of the pairwise distance computation. This computation is done throughout both fit predict. The default should suit most cases. The total number of elements in the batched pairwise distance computation is max_samples_per_batch * n_clusters. It might become necessary to lower this number when n_clusters becomes prohibitively large. Attributes ---------- cluster_centers_ : cuDF DataFrame or CuPy ndarray The coordinates of the final clusters. This represents of "mean" of each data cluster. """ def __init__(self, client=None, verbose=False, **kwargs): super(KMeans, self).__init__(client=client, verbose=verbose, **kwargs) @staticmethod @mnmg_import def _func_fit(sessionId, objs, datatype, **kwargs): from cuml.cluster.kmeans_mg import KMeansMG as cumlKMeans handle = worker_state(sessionId)["handle"] inp_data = concatenate(objs) return cumlKMeans(handle=handle, output_type=datatype, **kwargs).fit(inp_data) @staticmethod def _score(model, data): ret = model.score(data) return ret @with_cupy_rmm def fit(self, X): """ Fit a multi-node multi-GPU KMeans model Parameters ---------- X : Dask cuDF DataFrame or CuPy backed Dask Array Training data to cluster. """ data = DistributedDataHandler.create(X, client=self.client) self.datatype = data.datatype comms = CommsContext(comms_p2p=False) comms.init(workers=data.workers) kmeans_fit = [self.client.submit(KMeans._func_fit, comms.sessionId, wf[1], self.datatype, **self.kwargs, workers=[wf[0]], pure=False) for idx, wf in enumerate(data.worker_to_parts.items())] wait(kmeans_fit) raise_exception_from_futures(kmeans_fit) comms.destroy() self.local_model = kmeans_fit[0].result() self.cluster_centers_ = self.local_model.cluster_centers_ return self def fit_predict(self, X, delayed=True): """ Compute cluster centers and predict cluster index for each sample. Parameters ---------- X : Dask cuDF DataFrame or CuPy backed Dask Array Data to predict Returns ------- result: Dask cuDF DataFrame or CuPy backed Dask Array Distributed object containing predictions """ return self.fit(X).predict(X, delayed=delayed) def predict(self, X, delayed=True): """ Predict labels for the input Parameters ---------- X : Dask cuDF DataFrame or CuPy backed Dask Array Data to predict delayed : bool (default = True) Whether to do a lazy prediction (and return Delayed objects) or an eagerly executed one. Returns ------- result: Dask cuDF DataFrame or CuPy backed Dask Array Distributed object containing predictions """ return self._predict(X, delayed=delayed) def fit_transform(self, X, delayed=True): """ Calls fit followed by transform using a distributed KMeans model Parameters ---------- X : Dask cuDF DataFrame or CuPy backed Dask Array Data to predict delayed : bool (default = True) Whether to execute as a delayed task or eager. Returns ------- result: Dask cuDF DataFrame or CuPy backed Dask Array Distributed object containing the transformed data """ return self.fit(X).transform(X, delayed=delayed) def transform(self, X, delayed=True): """ Transforms the input into the learned centroid space Parameters ---------- X : Dask cuDF DataFrame or CuPy backed Dask Array Data to predict delayed : bool (default = True) Whether to execute as a delayed task or eager. Returns ------- result: Dask cuDF DataFrame or CuPy backed Dask Array Distributed object containing the transformed data """ return self._transform(X, n_dims=2, delayed=delayed) @with_cupy_rmm def score(self, X): """ Computes the inertia score for the trained KMeans centroids. Parameters ---------- X : dask_cudf.Dataframe Dataframe to compute score Returns ------- Inertial score """ scores = self._run_parallel_func(KMeans._score, X, n_dims=1, delayed=False, output_futures=True) return -1 * cp.sum(cp.asarray( self.client.compute(scores, sync=True))*-1.0) def get_param_names(self): return list(self.kwargs.keys())
33.582677
78
0.617468
[ "Apache-2.0" ]
Chetank99/cuml
python/cuml/dask/cluster/kmeans.py
8,530
Python
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for the key functions in pruning library.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.model_pruning.python import pruning from tensorflow.python.framework import constant_op from tensorflow.python.ops import math_ops from tensorflow.python.ops import partitioned_variables from tensorflow.python.ops import random_ops from tensorflow.python.ops import state_ops from tensorflow.python.ops import variable_scope from tensorflow.python.ops import variables from tensorflow.python.platform import test from tensorflow.python.training import training_util class PruningHParamsTest(test.TestCase): PARAM_LIST = [ "name=test", "threshold_decay=0.9", "pruning_frequency=10", "sparsity_function_end_step=100", "target_sparsity=0.9", "weight_sparsity_map=[conv1:0.8,conv2/kernel:0.8]" ] TEST_HPARAMS = ",".join(PARAM_LIST) def setUp(self): super(PruningHParamsTest, self).setUp() # Add global step variable to the graph self.global_step = training_util.get_or_create_global_step() # Add sparsity self.sparsity = variables.VariableV1(0.5, name="sparsity") # Parse hparams self.pruning_hparams = pruning.get_pruning_hparams().parse( self.TEST_HPARAMS) def testInit(self): p = pruning.Pruning(self.pruning_hparams) self.assertEqual(p._spec.name, "test") self.assertAlmostEqual(p._spec.threshold_decay, 0.9) self.assertEqual(p._spec.pruning_frequency, 10) self.assertEqual(p._spec.sparsity_function_end_step, 100) self.assertAlmostEqual(p._spec.target_sparsity, 0.9) self.assertEqual(p._weight_sparsity_map["conv1"], 0.8) self.assertEqual(p._weight_sparsity_map["conv2/kernel"], 0.8) def testInitWithExternalSparsity(self): with self.cached_session(): p = pruning.Pruning(spec=self.pruning_hparams, sparsity=self.sparsity) variables.global_variables_initializer().run() sparsity = p._sparsity.eval() self.assertAlmostEqual(sparsity, 0.5) def testInitWithVariableReuse(self): with self.cached_session(): p = pruning.Pruning(spec=self.pruning_hparams, sparsity=self.sparsity) p_copy = pruning.Pruning( spec=self.pruning_hparams, sparsity=self.sparsity) variables.global_variables_initializer().run() sparsity = p._sparsity.eval() self.assertAlmostEqual(sparsity, 0.5) self.assertEqual(p._sparsity.eval(), p_copy._sparsity.eval()) class PruningTest(test.TestCase): def setUp(self): super(PruningTest, self).setUp() self.global_step = training_util.get_or_create_global_step() def testCreateMask2D(self): width = 10 height = 20 with self.cached_session(): weights = variables.VariableV1( random_ops.random_normal([width, height], stddev=1), name="weights") masked_weights = pruning.apply_mask(weights, variable_scope.get_variable_scope()) variables.global_variables_initializer().run() weights_val = weights.eval() masked_weights_val = masked_weights.eval() self.assertAllEqual(weights_val, masked_weights_val) def testUpdateSingleMask(self): with self.cached_session() as session: weights = variables.VariableV1( math_ops.linspace(1.0, 100.0, 100), name="weights") masked_weights = pruning.apply_mask(weights) sparsity = variables.VariableV1(0.95, name="sparsity") p = pruning.Pruning(sparsity=sparsity) p._spec.threshold_decay = 0.0 mask_update_op = p.mask_update_op() variables.global_variables_initializer().run() masked_weights_val = masked_weights.eval() self.assertAllEqual(np.count_nonzero(masked_weights_val), 100) session.run(mask_update_op) masked_weights_val = masked_weights.eval() self.assertAllEqual(np.count_nonzero(masked_weights_val), 5) def _blockMasking(self, hparams, weights, expected_mask): threshold = variables.VariableV1(0.0, name="threshold") sparsity = variables.VariableV1(0.5, name="sparsity") test_spec = ",".join(hparams) pruning_hparams = pruning.get_pruning_hparams().parse(test_spec) # Set up pruning p = pruning.Pruning(pruning_hparams, sparsity=sparsity) with self.cached_session(): variables.global_variables_initializer().run() _, new_mask = p._maybe_update_block_mask(weights, threshold) # Check if the mask is the same size as the weights self.assertAllEqual(new_mask.get_shape(), weights.get_shape()) mask_val = new_mask.eval() self.assertAllEqual(mask_val, expected_mask) def testBlockMasking(self): param_list = ["block_height=2", "block_width=2", "threshold_decay=0"] weights_avg = constant_op.constant( [[0.1, 0.1, 0.2, 0.2], [0.1, 0.1, 0.2, 0.2], [0.3, 0.3, 0.4, 0.4], [0.3, 0.3, 0.4, 0.4]]) weights_max = constant_op.constant( [[0.1, 0.0, 0.2, 0.0], [0.0, -0.1, 0.0, -0.2], [0.3, 0.0, 0.4, 0.0], [0.0, -0.3, 0.0, -0.4]]) expected_mask = [[0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0], [1., 1., 1., 1.], [1., 1., 1., 1.]] self._blockMasking(param_list + ["block_pooling_function=MAX"], weights_max, expected_mask) self._blockMasking(param_list + ["block_pooling_function=AVG"], weights_avg, expected_mask) def testBlockMaskingWithHigherDimensions(self): param_list = ["block_height=2", "block_width=2", "threshold_decay=0"] # Weights as in testBlockMasking, but with one extra dimension. weights_avg = constant_op.constant( [[[0.1, 0.1, 0.2, 0.2], [0.1, 0.1, 0.2, 0.2], [0.3, 0.3, 0.4, 0.4], [0.3, 0.3, 0.4, 0.4]]]) weights_max = constant_op.constant( [[[0.1, 0.0, 0.2, 0.0], [0.0, -0.1, 0.0, -0.2], [0.3, 0.0, 0.4, 0.0], [0.0, -0.3, 0.0, -0.4]]]) expected_mask = [[[0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0], [1., 1., 1., 1.], [1., 1., 1., 1.]]] self._blockMasking(param_list + ["block_pooling_function=MAX"], weights_max, expected_mask) self._blockMasking(param_list + ["block_pooling_function=AVG"], weights_avg, expected_mask) def testPartitionedVariableMasking(self): partitioner = partitioned_variables.variable_axis_size_partitioner(40) with self.cached_session() as session: with variable_scope.variable_scope("", partitioner=partitioner): sparsity = variables.VariableV1(0.5, name="Sparsity") weights = variable_scope.get_variable( "weights", initializer=math_ops.linspace(1.0, 100.0, 100)) masked_weights = pruning.apply_mask( weights, scope=variable_scope.get_variable_scope()) p = pruning.Pruning(sparsity=sparsity) p._spec.threshold_decay = 0.0 mask_update_op = p.mask_update_op() variables.global_variables_initializer().run() masked_weights_val = masked_weights.eval() session.run(mask_update_op) masked_weights_val = masked_weights.eval() self.assertAllEqual(np.count_nonzero(masked_weights_val), 50) def testConditionalMaskUpdate(self): param_list = [ "pruning_frequency=2", "begin_pruning_step=1", "end_pruning_step=6", "nbins=100" ] test_spec = ",".join(param_list) pruning_hparams = pruning.get_pruning_hparams().parse(test_spec) weights = variables.VariableV1( math_ops.linspace(1.0, 100.0, 100), name="weights") masked_weights = pruning.apply_mask(weights) sparsity = variables.VariableV1(0.00, name="sparsity") # Set up pruning p = pruning.Pruning(pruning_hparams, sparsity=sparsity) p._spec.threshold_decay = 0.0 mask_update_op = p.conditional_mask_update_op() sparsity_val = math_ops.linspace(0.0, 0.9, 10) increment_global_step = state_ops.assign_add(self.global_step, 1) non_zero_count = [] with self.cached_session() as session: variables.global_variables_initializer().run() for i in range(10): session.run(state_ops.assign(sparsity, sparsity_val[i])) session.run(mask_update_op) session.run(increment_global_step) non_zero_count.append(np.count_nonzero(masked_weights.eval())) # Weights pruned at steps 0,2,4,and,6 expected_non_zero_count = [100, 100, 80, 80, 60, 60, 40, 40, 40, 40] self.assertAllEqual(expected_non_zero_count, non_zero_count) def testWeightSpecificSparsity(self): param_list = [ "begin_pruning_step=1", "pruning_frequency=1", "end_pruning_step=100", "target_sparsity=0.5", "weight_sparsity_map=[layer1:0.6,layer2/weights:0.75,.*kernel:0.6]", "threshold_decay=0.0" ] test_spec = ",".join(param_list) pruning_hparams = pruning.get_pruning_hparams().parse(test_spec) with variable_scope.variable_scope("layer1"): w1 = variables.VariableV1( math_ops.linspace(1.0, 100.0, 100), name="weights") _ = pruning.apply_mask(w1) with variable_scope.variable_scope("layer2"): w2 = variables.VariableV1( math_ops.linspace(1.0, 100.0, 100), name="weights") _ = pruning.apply_mask(w2) with variable_scope.variable_scope("layer3"): w3 = variables.VariableV1( math_ops.linspace(1.0, 100.0, 100), name="kernel") _ = pruning.apply_mask(w3) p = pruning.Pruning(pruning_hparams) mask_update_op = p.conditional_mask_update_op() increment_global_step = state_ops.assign_add(self.global_step, 1) with self.cached_session() as session: variables.global_variables_initializer().run() for _ in range(110): session.run(mask_update_op) session.run(increment_global_step) self.assertAllClose( session.run(pruning.get_weight_sparsity()), [0.6, 0.75, 0.6]) if __name__ == "__main__": test.main()
41.84252
80
0.684136
[ "Apache-2.0" ]
1244783394/tensorflow
tensorflow/contrib/model_pruning/python/pruning_test.py
10,628
Python
"""Adapted from: @longcw faster_rcnn_pytorch: https://github.com/longcw/faster_rcnn_pytorch @rbgirshick py-faster-rcnn https://github.com/rbgirshick/py-faster-rcnn Licensed under The MIT License [see LICENSE for details] """ from __future__ import print_function import torch import torch.nn as nn import torch.backends.cudnn as cudnn from torch.autograd import Variable from data import VOC_ROOT, VOCAnnotationTransform, VOCDetection, BaseTransform from data import VOC_CLASSES as labelmap import torch.utils.data as data from ssd import build_ssd import sys import os import time import argparse import numpy as np import pickle import cv2 if sys.version_info[0] == 2: import xml.etree.cElementTree as ET else: import xml.etree.ElementTree as ET def str2bool(v): return v.lower() in ("yes", "true", "t", "1") parser = argparse.ArgumentParser( description='Single Shot MultiBox Detector Evaluation') parser.add_argument('--trained_model', default='weights/ssd300_mAP_77.43_v2.pth', type=str, help='Trained state_dict file path to open') parser.add_argument('--save_folder', default='eval/', type=str, help='File path to save results') parser.add_argument('--confidence_threshold', default=0.5, type=float, help='Detection confidence threshold') parser.add_argument('--top_k', default=5, type=int, help='Further restrict the number of predictions to parse') parser.add_argument('--cuda', default=False, type=str2bool, help='Use cuda to train model') parser.add_argument('--voc_root', default=VOC_ROOT, help='Location of VOC root directory') parser.add_argument('--cleanup', default=True, type=str2bool, help='Cleanup and remove results files following eval') args = parser.parse_args() if not os.path.exists(args.save_folder): os.mkdir(args.save_folder) if torch.cuda.is_available(): if args.cuda: torch.set_default_tensor_type('torch.cuda.FloatTensor') if not args.cuda: print("WARNING: It looks like you have a CUDA device, but aren't using \ CUDA. Run with --cuda for optimal eval speed.") torch.set_default_tensor_type('torch.FloatTensor') else: torch.set_default_tensor_type('torch.FloatTensor') annopath = os.path.join(args.voc_root, 'VOC2007', 'Annotations', '%s.xml') imgpath = os.path.join(args.voc_root, 'VOC2007', 'JPEGImages', '%s.jpg') if sys.platform.startswith("linux"): imgsetpath = os.path.join(args.voc_root, 'VOC2007', 'ImageSets', 'Main', '{:s}.txt') # Linux 系统下 if sys.platform.startswith("win"): imgsetpath = os.path.join(args.voc_root, 'VOC2007', 'ImageSets', 'Main', '{}.txt') # Linux 系统下 YEAR = '2007' devkit_path = args.voc_root + 'VOC' + YEAR dataset_mean = (104, 117, 123) set_type = 'test' class Timer(object): """A simple timer.""" def __init__(self): self.total_time = 0. self.calls = 0 self.start_time = 0. self.diff = 0. self.average_time = 0. def tic(self): # using time.time instead of time.clock because time time.clock # does not normalize for multithreading self.start_time = time.time() def toc(self, average=True): self.diff = time.time() - self.start_time self.total_time += self.diff self.calls += 1 self.average_time = self.total_time / self.calls if average: return self.average_time else: return self.diff def parse_rec(filename): """ Parse a PASCAL VOC xml file """ tree = ET.parse(filename) objects = [] for obj in tree.findall('object'): obj_struct = {} obj_struct['name'] = obj.find('name').text obj_struct['pose'] = obj.find('pose').text obj_struct['truncated'] = int(obj.find('truncated').text) obj_struct['difficult'] = int(obj.find('difficult').text) bbox = obj.find('bndbox') obj_struct['bbox'] = [int(bbox.find('xmin').text) - 1, int(bbox.find('ymin').text) - 1, int(bbox.find('xmax').text) - 1, int(bbox.find('ymax').text) - 1] objects.append(obj_struct) return objects def get_output_dir(name, phase): """Return the directory where experimental artifacts are placed. If the directory does not exist, it is created. A canonical path is built using the name from an imdb and a network (if not None). """ filedir = os.path.join(name, phase) if not os.path.exists(filedir): os.makedirs(filedir) return filedir def get_voc_results_file_template(image_set, cls): # VOCdevkit/VOC2007/results/det_test_aeroplane.txt filename = 'det_' + image_set + '_%s.txt' % (cls) filedir = os.path.join(devkit_path, 'results') if not os.path.exists(filedir): os.makedirs(filedir) path = os.path.join(filedir, filename) return path def write_voc_results_file(all_boxes, dataset): for cls_ind, cls in enumerate(labelmap): print('Writing {:s} VOC results file'.format(cls)) filename = get_voc_results_file_template(set_type, cls) with open(filename, 'wt') as f: for im_ind, index in enumerate(dataset.ids): dets = all_boxes[cls_ind+1][im_ind] if dets == []: continue # the VOCdevkit expects 1-based indices for k in range(dets.shape[0]): f.write('{:s} {:.3f} {:.1f} {:.1f} {:.1f} {:.1f}\n'. format(index[1], dets[k, -1], dets[k, 0] + 1, dets[k, 1] + 1, dets[k, 2] + 1, dets[k, 3] + 1)) def do_python_eval(output_dir='output', use_07=True): cachedir = os.path.join(devkit_path, 'annotations_cache') aps = [] # The PASCAL VOC metric changed in 2010 use_07_metric = use_07 print('VOC07 metric? ' + ('Yes' if use_07_metric else 'No')) if not os.path.isdir(output_dir): os.mkdir(output_dir) for i, cls in enumerate(labelmap): filename = get_voc_results_file_template(set_type, cls) rec, prec, ap = voc_eval( filename, annopath, imgsetpath.format(set_type), cls, cachedir, ovthresh=0.5, use_07_metric=use_07_metric) aps += [ap] print('AP for {} = {:.4f}'.format(cls, ap)) with open(os.path.join(output_dir, cls + '_pr.pkl'), 'wb') as f: pickle.dump({'rec': rec, 'prec': prec, 'ap': ap}, f) print('Mean AP = {:.4f}'.format(np.mean(aps))) print('~~~~~~~~') print('Results:') for ap in aps: print('{:.3f}'.format(ap)) print('{:.3f}'.format(np.mean(aps))) print('~~~~~~~~') print('') print('--------------------------------------------------------------') print('Results computed with the **unofficial** Python eval code.') print('Results should be very close to the official MATLAB eval code.') print('--------------------------------------------------------------') def voc_ap(rec, prec, use_07_metric=True): """ ap = voc_ap(rec, prec, [use_07_metric]) Compute VOC AP given precision and recall. If use_07_metric is true, uses the VOC 07 11 point method (default:True). """ if use_07_metric: # 11 point metric ap = 0. for t in np.arange(0., 1.1, 0.1): if np.sum(rec >= t) == 0: p = 0 else: p = np.max(prec[rec >= t]) ap = ap + p / 11. else: # correct AP calculation # first append sentinel values at the end mrec = np.concatenate(([0.], rec, [1.])) mpre = np.concatenate(([0.], prec, [0.])) # compute the precision envelope for i in range(mpre.size - 1, 0, -1): mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i]) # to calculate area under PR curve, look for points # where X axis (recall) changes value i = np.where(mrec[1:] != mrec[:-1])[0] # and sum (\Delta recall) * prec ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) return ap def voc_eval(detpath, annopath, imagesetfile, classname, cachedir, ovthresh=0.5, use_07_metric=True): """rec, prec, ap = voc_eval(detpath, annopath, imagesetfile, classname, [ovthresh], [use_07_metric]) Top level function that does the PASCAL VOC evaluation. detpath: Path to detections detpath.format(classname) should produce the detection results file. annopath: Path to annotations annopath.format(imagename) should be the xml annotations file. imagesetfile: Text file containing the list of images, one image per line. classname: Category name (duh) cachedir: Directory for caching the annotations [ovthresh]: Overlap threshold (default = 0.5) [use_07_metric]: Whether to use VOC07's 11 point AP computation (default True) """ # assumes detections are in detpath.format(classname) # assumes annotations are in annopath.format(imagename) # assumes imagesetfile is a text file with each line an image name # cachedir caches the annotations in a pickle file # first load gt if not os.path.isdir(cachedir): os.mkdir(cachedir) cachefile = os.path.join(cachedir, 'annots.pkl') # read list of images with open(imagesetfile, 'r') as f: lines = f.readlines() imagenames = [x.strip() for x in lines] if not os.path.isfile(cachefile): # load annots recs = {} for i, imagename in enumerate(imagenames): recs[imagename] = parse_rec(annopath % (imagename)) if i % 100 == 0: print('Reading annotation for {:d}/{:d}'.format( i + 1, len(imagenames))) # save print('Saving cached annotations to {:s}'.format(cachefile)) with open(cachefile, 'wb') as f: pickle.dump(recs, f) else: # load with open(cachefile, 'rb') as f: recs = pickle.load(f) # extract gt objects for this class class_recs = {} npos = 0 for imagename in imagenames: R = [obj for obj in recs[imagename] if obj['name'] == classname] bbox = np.array([x['bbox'] for x in R]) difficult = np.array([x['difficult'] for x in R]).astype(np.bool) det = [False] * len(R) npos = npos + sum(~difficult) class_recs[imagename] = {'bbox': bbox, 'difficult': difficult, 'det': det} # read dets detfile = detpath.format(classname) with open(detfile, 'r') as f: lines = f.readlines() if any(lines) == 1: splitlines = [x.strip().split(' ') for x in lines] image_ids = [x[0] for x in splitlines] confidence = np.array([float(x[1]) for x in splitlines]) BB = np.array([[float(z) for z in x[2:]] for x in splitlines]) # sort by confidence sorted_ind = np.argsort(-confidence) sorted_scores = np.sort(-confidence) BB = BB[sorted_ind, :] image_ids = [image_ids[x] for x in sorted_ind] # go down dets and mark TPs and FPs nd = len(image_ids) tp = np.zeros(nd) fp = np.zeros(nd) for d in range(nd): R = class_recs[image_ids[d]] bb = BB[d, :].astype(float) ovmax = -np.inf BBGT = R['bbox'].astype(float) if BBGT.size > 0: # compute overlaps # intersection ixmin = np.maximum(BBGT[:, 0], bb[0]) iymin = np.maximum(BBGT[:, 1], bb[1]) ixmax = np.minimum(BBGT[:, 2], bb[2]) iymax = np.minimum(BBGT[:, 3], bb[3]) iw = np.maximum(ixmax - ixmin, 0.) ih = np.maximum(iymax - iymin, 0.) inters = iw * ih uni = ((bb[2] - bb[0]) * (bb[3] - bb[1]) + (BBGT[:, 2] - BBGT[:, 0]) * (BBGT[:, 3] - BBGT[:, 1]) - inters) overlaps = inters / uni ovmax = np.max(overlaps) jmax = np.argmax(overlaps) if ovmax > ovthresh: if not R['difficult'][jmax]: if not R['det'][jmax]: tp[d] = 1. R['det'][jmax] = 1 else: fp[d] = 1. else: fp[d] = 1. # compute precision recall fp = np.cumsum(fp) tp = np.cumsum(tp) rec = tp / float(npos) # avoid divide by zero in case the first detection matches a difficult # ground truth prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps) ap = voc_ap(rec, prec, use_07_metric) else: rec = -1. prec = -1. ap = -1. return rec, prec, ap def test_net(save_folder, net, cuda, dataset, transform, top_k, im_size=300, thresh=0.05): num_images = len(dataset) # all detections are collected into: # all_boxes[cls][image] = N x 5 array of detections in # (x1, y1, x2, y2, score) all_boxes = [[[] for _ in range(num_images)] for _ in range(len(labelmap)+1)] # timers _t = {'im_detect': Timer(), 'misc': Timer()} output_dir = get_output_dir('ssd300_120000', set_type) det_file = os.path.join(output_dir, 'detections.pkl') for i in range(num_images): im, gt, h, w = dataset.pull_item(i) x = Variable(im.unsqueeze(0)) if args.cuda: x = x.cuda() _t['im_detect'].tic() detections = net(x).data detect_time = _t['im_detect'].toc(average=False) # skip j = 0, because it's the background class for j in range(1, detections.size(1)): dets = detections[0, j, :] mask = dets[:, 0].gt(0.).expand(5, dets.size(0)).t() dets = torch.masked_select(dets, mask).view(-1, 5) if dets.size(0) == 0: continue boxes = dets[:, 1:] boxes[:, 0] *= w boxes[:, 2] *= w boxes[:, 1] *= h boxes[:, 3] *= h scores = dets[:, 0].cpu().numpy() cls_dets = np.hstack((boxes.cpu().numpy(), scores[:, np.newaxis])).astype(np.float32, copy=False) all_boxes[j][i] = cls_dets print('im_detect: {:d}/{:d} {:.3f}s'.format(i + 1, num_images, detect_time)) with open(det_file, 'wb') as f: pickle.dump(all_boxes, f, pickle.HIGHEST_PROTOCOL) print('Evaluating detections') evaluate_detections(all_boxes, output_dir, dataset) def evaluate_detections(box_list, output_dir, dataset): write_voc_results_file(box_list, dataset) do_python_eval(output_dir) if __name__ == '__main__': # load net num_classes = len(labelmap) + 1 # +1 for background net = build_ssd('test', 300, num_classes) # initialize SSD #net.load_state_dict(torch.load(args.trained_model)) net.load_state_dict(torch.load(args.trained_model, map_location='cpu')) # running on a CPU-only machine net.eval() print('Finished loading model!') # load data dataset = VOCDetection(args.voc_root, [('2007', set_type)], BaseTransform(300, dataset_mean), VOCAnnotationTransform()) if args.cuda: net = net.cuda() cudnn.benchmark = True # evaluation test_net(args.save_folder, net, args.cuda, dataset, BaseTransform(net.size, dataset_mean), args.top_k, 300, thresh=args.confidence_threshold)
36.43018
109
0.563277
[ "MIT" ]
FLyingLSJ/ssd.pytorch
eval.py
16,187
Python
# Webhooks for external integrations. from functools import partial from typing import Any, Callable, Dict, Optional from django.http import HttpRequest, HttpResponse from zerver.decorator import api_key_only_webhook_view from zerver.lib.request import REQ, has_request_variables from zerver.lib.response import json_success from zerver.lib.webhooks.common import UnexpectedWebhookEventType, \ check_send_webhook_message, get_http_headers_from_filename, \ validate_extract_webhook_http_header from zerver.models import UserProfile TICKET_STARTED_TEMPLATE = """ {customer_name} submitted new ticket [#{number}: {title}]({app_url}): ``` quote {summary} ``` """.strip() TICKET_ASSIGNED_TEMPLATE = "[#{number}: {title}]({app_url}) ({state}) assigned to {assignee_info}." AGENT_REPLIED_TEMPLATE = """ {actor} {action} [ticket #{number}]({app_ticket_url}): ``` quote {plain_text_body} ``` """.strip() def ticket_started_body(payload: Dict[str, Any]) -> str: return TICKET_STARTED_TEMPLATE.format(**payload) def ticket_assigned_body(payload: Dict[str, Any]) -> Optional[str]: state = payload['state'] kwargs = { 'state': 'open' if state == 'opened' else state, 'number': payload['number'], 'title': payload['title'], 'app_url': payload['app_url'] } assignee = payload['assignee'] assigned_group = payload['assigned_group'] if assignee or assigned_group: if assignee and assigned_group: kwargs['assignee_info'] = '{assignee} from {assigned_group}'.format(**payload) elif assignee: kwargs['assignee_info'] = '{assignee}'.format(**payload) elif assigned_group: kwargs['assignee_info'] = '{assigned_group}'.format(**payload) return TICKET_ASSIGNED_TEMPLATE.format(**kwargs) else: return None def replied_body(payload: Dict[str, Any], actor: str, action: str) -> str: actor_url = "http://api.groovehq.com/v1/{}/".format(actor + 's') actor = payload['links']['author']['href'].split(actor_url)[1] number = payload['links']['ticket']['href'].split("http://api.groovehq.com/v1/tickets/")[1] body = AGENT_REPLIED_TEMPLATE.format( actor=actor, action=action, number=number, app_ticket_url=payload['app_ticket_url'], plain_text_body=payload['plain_text_body'] ) return body def get_event_handler(event: str) -> Callable[..., str]: # The main reason for this function existence is because of mypy handler = EVENTS_FUNCTION_MAPPER.get(event) # type: Any if handler is None: raise UnexpectedWebhookEventType("Groove", event) return handler @api_key_only_webhook_view('Groove') @has_request_variables def api_groove_webhook(request: HttpRequest, user_profile: UserProfile, payload: Dict[str, Any]=REQ(argument_type='body')) -> HttpResponse: event = validate_extract_webhook_http_header(request, 'X_GROOVE_EVENT', 'Groove') assert event is not None handler = get_event_handler(event) body = handler(payload) topic = 'notifications' if body is not None: check_send_webhook_message(request, user_profile, topic, body) return json_success() EVENTS_FUNCTION_MAPPER = { 'ticket_started': ticket_started_body, 'ticket_assigned': ticket_assigned_body, 'agent_replied': partial(replied_body, actor='agent', action='replied to'), 'customer_replied': partial(replied_body, actor='customer', action='replied to'), 'note_added': partial(replied_body, actor='agent', action='left a note on') } fixture_to_headers = get_http_headers_from_filename("HTTP_X_GROOVE_EVENT")
34.308411
99
0.701989
[ "Apache-2.0" ]
D-MaaS/zulip
zerver/webhooks/groove/view.py
3,671
Python
import unittest import bibdeskparser from bibdeskparser.bparser import BibTexParser from tempfile import TemporaryFile class TestbibdeskparserParserMethods(unittest.TestCase): input_file_path = 'tests/data/book.bib' input_bom_file_path = 'tests/data/book_bom.bib' entries_expected = [ { 'ENTRYTYPE': 'book', 'year': '1987', 'edition': '2', 'publisher': 'Wiley Edition', 'ID': 'Bird1987', 'volume': '1', 'title': 'Dynamics of Polymeric Liquid', 'author': 'Bird, R.B. and Armstrong, R.C. and Hassager, O.', } ] def test_parse_immediately(self): with open(self.input_file_path) as bibtex_file: bibtex_str = bibtex_file.read() bibtex_database = BibTexParser(bibtex_str) self.assertEqual(bibtex_database.entries, self.entries_expected) def test_parse_str(self): parser = BibTexParser() with open(self.input_file_path) as bibtex_file: bibtex_str = bibtex_file.read() bibtex_database = parser.parse(bibtex_str) self.assertEqual(bibtex_database.entries, self.entries_expected) def test_parse_bom_str(self): parser = BibTexParser() with open(self.input_bom_file_path) as bibtex_file: bibtex_str = bibtex_file.read() bibtex_database = parser.parse(bibtex_str) self.assertEqual(bibtex_database.entries, self.entries_expected) def test_parse_bom_bytes(self): parser = BibTexParser() with open(self.input_bom_file_path, 'rb') as bibtex_file: bibtex_str = bibtex_file.read() bibtex_database = parser.parse(bibtex_str) self.assertEqual(bibtex_database.entries, self.entries_expected) def test_parse_file(self): parser = BibTexParser() with open(self.input_file_path) as bibtex_file: bibtex_database = parser.parse_file(bibtex_file) self.assertEqual(bibtex_database.entries, self.entries_expected) def test_parse_str_module(self): with open(self.input_file_path) as bibtex_file: bibtex_str = bibtex_file.read() bibtex_database = bibdeskparser.loads(bibtex_str) self.assertEqual(bibtex_database.entries, self.entries_expected) def test_parse_file_module(self): with open(self.input_file_path) as bibtex_file: bibtex_database = bibdeskparser.load(bibtex_file) self.assertEqual(bibtex_database.entries, self.entries_expected) class TestBibtexpardserWriteMethods(unittest.TestCase): input_file_path = 'tests/data/book.bib' expected = """@book{Bird1987, author = {Bird, R.B. and Armstrong, R.C. and Hassager, O.}, edition = {2}, publisher = {Wiley Edition}, title = {Dynamics of Polymeric Liquid}, volume = {1}, year = {1987} } """ def test_write_str(self): with open(self.input_file_path) as bibtex_file: bibtex_database = bibdeskparser.load(bibtex_file) result = bibdeskparser.dumps(bibtex_database) self.assertEqual(result, self.expected) def test_write_file(self): with open(self.input_file_path) as bibtex_file: bibtex_database = bibdeskparser.load(bibtex_file) with TemporaryFile(mode='w+') as bibtex_out_file: bibdeskparser.dump(bibtex_database, bibtex_out_file) bibtex_out_file.seek(0) bibtex_out_str = bibtex_out_file.read() self.assertEqual(bibtex_out_str, self.expected) class TestbibdeskparserFieldNames(unittest.TestCase): input_file_path = 'tests/data/fieldname.bib' entries_expected = [ {'ENTRYTYPE': 'book', 'ID': 'Bird1987', 'dc.date': '2004-01'} ] def test_parse_immediately(self): with open(self.input_file_path) as bibtex_file: bibtex_str = bibtex_file.read() bibtex_database = BibTexParser(bibtex_str) self.assertEqual(bibtex_database.entries, self.entries_expected) if __name__ == '__main__': unittest.main()
35.587719
72
0.676608
[ "BSD-3-Clause" ]
goerz/bibdeskparser
tests/test_bibtexparser.py
4,057
Python
import pandas as pd import tweepy from textblob import TextBlob from wordcloud import WordCloud import plotly.graph_objs as go import os import re import pystan import numpy as np import streamlit as st import matplotlib.pyplot as plt import yfinance as yf from fbprophet import Prophet from fbprophet.plot import plot_plotly from GoogleNews import GoogleNews from ta.volatility import BollingerBands from ta.trend import MACD from ta.momentum import RSIIndicator import datetime as datetime import base64 import pandas as pd import plotly.express as px import datetime import requests from bs4 import BeautifulSoup from datetime import date from plotly import graph_objs st.set_page_config( layout="wide", initial_sidebar_state="auto", page_title= "Finance-Forcasting-Dashboard", page_icon= "Images/growth.png", ) col1, col2, col3 = st.beta_columns([1,2,1]) col1.write("") col2.image("Images/LL.png", width = 500) col3.write("") st.set_option('deprecation.showPyplotGlobalUse', False) main_bg = "Images/BACK.png" main_bg_ext = "Images/BACK.png" st.markdown( f""" <style> .reportview-container {{ background: url(data:image/{main_bg_ext};base64,{base64.b64encode(open(main_bg, "rb").read()).decode()}) }} </style> """, unsafe_allow_html=True ) ###############################Funtions############################ # load data from yahoo finance def load_data(ticker): start = "2020-01-01" today = date.today().strftime("%Y-%m-%d") data = yf.download(ticker, start, today) data.reset_index(inplace=True) return data # Plot raw data def plot_raw_data(): fig = graph_objs.Figure() fig.add_trace(graph_objs.Scatter(x=data['Date'], y=data['Open'], name="stock_open")) fig.add_trace(graph_objs.Scatter(x=data['Date'], y=data['Close'], name="stock_close")) fig.layout.update(title_text='Time Series data with Rangeslider', xaxis_rangeslider_visible=True) st.plotly_chart(fig) def get_forecast(data): model = Prophet() model.fit(data) future = model.make_future_dataframe(periods=7) forecast = model.predict(future) return model, forecast @st.cache def read_data(): url = "https://raw.githubusercontent.com/emrecanaltinsoy/forex_data/main/forex_usd_data.csv" data = pd.read_csv(url) cols = data.columns return data, cols[1:] @st.cache def get_range(data, date_range): start_index = data.index[data["date(y-m-d)"] == str(date_range[0])].tolist()[0] end_index = data.index[data["date(y-m-d)"] == str(date_range[1])].tolist()[0] data = data.iloc[start_index : end_index + 1] cols = data.columns dates = data["date(y-m-d)"] return data, dates @st.cache def scrape_currency(): today = datetime.date.today() base_url = "https://www.x-rates.com/historical/?from=USD&amount=1&date" year = today.year month = today.month if today.month > 9 else f"0{today.month}" day = today.day if today.day > 9 else f"0{today.day}" URL = f"{base_url}={year}-{month}-{day}" page = requests.get(URL) soup = BeautifulSoup(page.content, "html.parser") table = soup.find_all("tr")[12:] currencies = [table[i].text.split("\n")[1:3][0] for i in range(len(table))] currencies.insert(0, "date(y-m-d)") currencies.insert(1, "American Dollar") rates = [table[i].text.split("\n")[1:3][1] for i in range(len(table))] rates.insert(0, f"{year}-{month}-{day}") rates.insert(1, "1") curr_data = {currencies[i]: rates[i] for i in range(len(rates))} curr_data = pd.DataFrame(curr_data, index=[0]) cols = curr_data.columns return curr_data, cols[1:] @st.cache def train_model(data, currency, period): df_train = data[["date(y-m-d)", currency]] df_train = df_train.iloc[-365*2 :] df_train = df_train.rename(columns={"date(y-m-d)": "ds", currency: "y"}) m = Prophet() m.fit(df_train) future = m.make_future_dataframe(periods=period) forecast = m.predict(future) return forecast, m df_all, columns = read_data() ################################################################################ st.sidebar.image("Images/Menu.png", width = 330) menu = ["Home","STOCKS Live Forcasting", "Crypto-Live Forcasting","View Historical Currency Charts", "Check Live Currency Exchange rates", "Forecast Currency Live Prices"] choice = st.sidebar.selectbox("Menu", menu) if choice == "Home": st.write("") st.write(""" <p style=" font-size: 15px; font-weight:normal; font-family:verdana"> Finance Dashboard is a special web service that allows you to view Cryptocurrencies,Stocks,and Live Currency Values by many useful methods (technical indicators, graphical patterns, sentimental analysis, and more). Trading and crypto investing requires constant analysis and monitoring. Traders need to track all their trades in order to improve results and find errors. If you don't use additional instruments, then trading will be unsystematic, and the results will be uncertain. Such a service will be useful and even extremely necessary for those who trade and invest in cryptocurrencies and Stocks. Competent selection of cryptocurrencies is at least half of investment success. Finance Dashboard has a simple interface and is great for quick analysis of the Stock market. </p> """, unsafe_allow_html=True) st.write("") st.write("") st.write("") st.write("") st.write("") st.write(""" <p style=" color:#E75480; font-size: 30px; font-weight:bold"> How does it work? </p> """, unsafe_allow_html=True) st.write("") st.image("Images/How.png", width = 1300) st.sidebar.write(" ") st.sidebar.write(" ") st.sidebar.image("Images/info.png", width = 300) elif choice == "STOCKS Live Forcasting": st.title('Stocks Weekly Forecast') st.subheader('Enter the stock ticker:') ticker = st.text_input('example: GOOG') ticket = ticker.upper() if len(ticker)>0: data_load_state = st.text('Loading data...') data = load_data(ticker) if data.empty: data_load_state.text(f'No ticker named {ticker}') ticker = '' else: data_load_state.text('Loading data... done!') st.subheader(f'Company: {yf.Ticker(ticker).info["longName"]}') st.write(data.head()) plot_raw_data() # prepare data for forecasting df_train = data[['Date','Close']] df_train = df_train.rename(columns={"Date": "ds", "Close": "y"}) # train and forecast model, forecast = get_forecast(df_train) st.subheader('Forecast') # plot forecast st.write(f'Forecast plot for the next week') fig = plot_plotly(model, forecast) st.plotly_chart(fig) elif choice == "View Historical Currency Charts": st.write("This app can be used to view historical **currency** charts!") date_range = st.date_input( "Choose date range", value=( datetime.date(2011, 1, 1), datetime.date(2011, 1, 1) + datetime.timedelta(df_all.shape[0] - 1), ), min_value=datetime.date(2011, 1, 1), max_value=datetime.date(2011, 1, 1) + datetime.timedelta(df_all.shape[0] - 1), ) df, dates = get_range(df_all, date_range) selected_curr = st.multiselect("Select currencies", columns) ok = st.button("View") if ok: if selected_curr: # st.write(df[selected_curr]) for curr in selected_curr: fig = px.line( x=dates, y=df[curr], ) fig.update_layout( xaxis_title="Date", yaxis_title=curr, ) st.write(fig) elif choice == "Check Live Currency Exchange rates": st.write("This app can be used to check current **currency** data!") daily_df, columns = scrape_currency() base_curr = st.selectbox("Select the base currency", columns) selected_curr = st.multiselect("Select currencies", columns) if selected_curr: base = daily_df[base_curr].astype(float) selected = daily_df[selected_curr].astype(float) converted = selected / float(base) st.write(converted) elif choice == "Forecast Currency Live Prices": currency = st.selectbox("Select the currency for prediction", columns) n_weeks = st.slider("Weeks of prediction", 4, 20, 8, 1) ok = st.button("Predict") if ok: train_state = st.text("Training the model...") pred, model = train_model(df_all, currency, period=n_weeks * 7) train_state.text("Model training completed!!") st.subheader("Forecast data") fig1 = plot_plotly(model, pred) st.plotly_chart(fig1) elif choice == "Crypto-Live Forcasting": st.sidebar.header("Please select cryptocurrency") option = st.sidebar.selectbox("Ticker Symbol",("BTC-USD", "ETH-USD", "XRP-USD", "DOGE-USD", "ADA-USD", "BNB-USD", "LTC-USD",)) today = datetime.date.today() before = today - datetime.timedelta(days=1400) start_date = st.sidebar.date_input('Start date', before) end_date = st.sidebar.date_input('End date', today) if start_date < end_date: st.sidebar.success("Start date: `%s`\n\nEnd date: `%s` " % (start_date, end_date)) else: st.sidebar.error("Error: End date must fall after start date.") @st.cache(allow_output_mutation = True) def get_data(option, start_date, end_date): df = yf.download(option,start= start_date,end = end_date, progress=False) return df # Getting API_KEYS api_key = os.environ.get("Key") api_secret = os.environ.get("Secret") # Function for getting tweets # Create authentication @st.cache(allow_output_mutation = True) def get_tweets(key, secret, search_term): authentication = tweepy.OAuthHandler(api_key, api_secret) api = tweepy.API(authentication) term = search_term+"-filter:retweets" # Create a cursor object tweets = tweepy.Cursor(api.search, q = term, lang = "en", since = today, tweet_mode = "extended").items(100) # Store the tweets tweets_text = [tweet.full_text for tweet in tweets] df = pd.DataFrame(tweets_text, columns = ["Tweets"]) return df # Clean text @st.cache(allow_output_mutation = True) def Clean(twt): twt = re.sub("#cryptocurrency", "cryptocurrency", twt) twt = re.sub("#Cryptocurrency", "Cryptocurrency", twt) twt = re.sub("#[A-Za-z0-9]+", "", twt) twt = re.sub("RT[\s]+", "", twt) twt = re.sub("\\n", "", twt) twt = re.sub("https?\://\S+", '', twt) twt = re.sub("<br />", "", twt) twt = re.sub("\d","", twt) twt = re.sub("it\'s", "it is", twt) twt = re.sub("can\'t", "cannot", twt) twt = re.sub("<(?:a\b[^>]*>|/a>)", "", twt) return twt # Subjectivity and Polarity @st.cache(allow_output_mutation = True) def subjectivity(text): return TextBlob(text).sentiment.subjectivity @st.cache(allow_output_mutation = True) def polarity(text): return TextBlob(text).sentiment.polarity # Create a function to get sentiment text @st.cache(allow_output_mutation = True) def sentiment(score): if score < 0: return "Negative" elif score == 0: return "Neutral" else: return "Positive" if option == "BTC-USD": df = get_data(option, start_date, end_date) st.write(""" <p style=" color:#FFCC00; font-size: 30px; font-weight:bold"> Raw Data </p> """, unsafe_allow_html=True) st.write(" ") st.write(df) st.write(""" <p style=" color:#FFCC00; font-size: 30px; font-weight:bold"> Close Price </p> """, unsafe_allow_html=True) st.write(" ") st.line_chart(df["Close"]) st.write(" ") # MACD st.write(" ") macd = MACD(df["Close"]).macd() st.write(""" <p style=" color:#FFCC00; font-size: 30px; font-weight:bold"> Moving Average Convergence Divergence </p> """, unsafe_allow_html=True) st.write(" ") st.area_chart(macd) # Bollinger Bands bb_bands = BollingerBands(df["Close"]) bb = df bb["bb_h"] = bb_bands.bollinger_hband() bb["bb_l"] = bb_bands.bollinger_lband() bb = bb[["Close","bb_h","bb_l"]] st.write(""" <p style=" color:#FFCC00; font-size: 30px; font-weight:bold"> Bollinger Bands </p> """, unsafe_allow_html=True) st.line_chart(bb) st.write(" ") # Resistence Strength Indicator rsi = RSIIndicator(df["Close"]).rsi() st.write(""" <p style=" color:#FFCC00; font-size: 30px; font-weight:bold"> Resistence Strength Indicator </p> """, unsafe_allow_html=True) st.write(" ") st.line_chart(rsi) st.write(" ") st.write(""" <p style=" color:#FFCC00; font-size: 30px; font-weight:bold"> BTC-USD Forecast using Facebook Prophet </p> """, unsafe_allow_html=True) st.write(" ") data = df.reset_index() period = st.slider("Days of prediction:", 1, 365) # Predict forecast with Prophet. df_train = data[["Date","Close"]] df_train = df_train.rename(columns={"Date": "ds", "Close": "y"}) m = Prophet() m.fit(df_train) future = m.make_future_dataframe(periods=period) forecast = m.predict(future) #Plot st.write(f'Forecast plot for {period} days') fig1 = plot_plotly(m, forecast) st.plotly_chart(fig1) st.write(" ") st.write(""" <p style=" color:#FFCC00; font-size: 30px; font-weight:bold"> Latest News </p> """, unsafe_allow_html=True) st.write(" ") news = GoogleNews() news = GoogleNews("en", "d") news.search("Bitcoin") news.get_page(1) result = news.result() st.write("1. " + result[1]["title"]) st.info("1. " + result[1]["link"]) st.write("2. " + result[2]["title"]) st.info("2. " + result[2]["link"]) st.write("3. " + result[3]["title"]) st.info("3. " + result[3]["link"]) st.write("4. " + result[4]["title"]) st.info("4. " + result[4]["link"]) st.write("5. " + result[5]["title"]) st.info("5. " + result[5]["link"]) elif option == "ETH-USD": df = get_data(option, start_date, end_date) st.write(""" <p style=" color:#FFCC00; font-size: 30px; font-weight:bold"> Raw Data </p> """, unsafe_allow_html=True) st.write(" ") st.write(df) st.write(" ") st.write(""" <p style=" color:#FFCC00; font-size: 30px; font-weight:bold"> Close Price </p> """, unsafe_allow_html=True) st.write(" ") st.line_chart(df["Close"]) st.write(" ") # MACD st.write(" ") macd = MACD(df["Close"]).macd() st.write(""" <p style=" color:#FFCC00; font-size: 30px; font-weight:bold"> Moving Average Convergence Divergence </p> """, unsafe_allow_html=True) st.write(" ") st.area_chart(macd) # Bollinger Bands bb_bands = BollingerBands(df["Close"]) bb = df bb["bb_h"] = bb_bands.bollinger_hband() bb["bb_l"] = bb_bands.bollinger_lband() bb = bb[["Close","bb_h","bb_l"]] st.write(""" <p style=" color:#FFCC00; font-size: 30px; font-weight:bold"> Bollinger Bands </p> """, unsafe_allow_html=True) st.line_chart(bb) st.write(" ") # Resistence Strength Indicator rsi = RSIIndicator(df["Close"]).rsi() st.write(""" <p style=" color:#FFCC00; font-size: 30px; font-weight:bold"> Resistence Strength Indicator </p> """, unsafe_allow_html=True) st.write(" ") st.line_chart(rsi) st.write(" ") st.write(""" <p style=" color:#FFCC00; font-size: 30px; font-weight:bold"> ETH-USD Forecast using Facebook Prophet </p> """, unsafe_allow_html=True) st.write(" ") data = df.reset_index() period = st.slider("Days of prediction:", 1, 365) # Predict forecast with Prophet. df_train = data[["Date","Close"]] df_train = df_train.rename(columns={"Date": "ds", "Close": "y"}) m = Prophet() m.fit(df_train) future = m.make_future_dataframe(periods=period) forecast = m.predict(future) st.write(f'Forecast plot for {period} days') fig1 = plot_plotly(m, forecast) st.plotly_chart(fig1) st.write(" ") st.write(""" <p style=" color:#FFCC00; font-size: 30px; font-weight:bold"> Latest News </p> """, unsafe_allow_html=True) st.write(" ") news = GoogleNews() news = GoogleNews("en", "d") news.search("Etherium") news.get_page(1) result = news.result() st.write("1. " + result[1]["title"]) st.info("1. " + result[1]["link"]) st.write("2. " + result[2]["title"]) st.info("2. " + result[2]["link"]) st.write("3. " + result[3]["title"]) st.info("3. " + result[3]["link"]) st.write("4. " + result[4]["title"]) st.info("4. " + result[4]["link"]) st.write("5. " + result[5]["title"]) st.info("5. " + result[5]["link"]) elif option == "DOGE-USD": df = get_data(option, start_date, end_date) st.write(""" <p style=" color:#FFCC00; font-size: 30px; font-weight:bold"> Raw Data </p> """, unsafe_allow_html=True) st.write(" ") st.write(df) st.write(" ") st.write(""" <p style=" color:#FFCC00; font-size: 30px; font-weight:bold"> Close Price </p> """, unsafe_allow_html=True) st.write(" ") st.line_chart(df["Close"]) st.write(" ") # MACD st.write(" ") macd = MACD(df["Close"]).macd() st.write(""" <p style=" color:#FFCC00; font-size: 30px; font-weight:bold"> Moving Average Convergence Divergence </p> """, unsafe_allow_html=True) st.write(" ") st.area_chart(macd) # Bollinger Bands bb_bands = BollingerBands(df["Close"]) bb = df bb["bb_h"] = bb_bands.bollinger_hband() bb["bb_l"] = bb_bands.bollinger_lband() bb = bb[["Close","bb_h","bb_l"]] st.write(""" <p style=" color:#FFCC00; font-size: 30px; font-weight:bold"> Bollinger Bands </p> """, unsafe_allow_html=True) st.line_chart(bb) st.write(" ") # Resistence Strength Indicator rsi = RSIIndicator(df["Close"]).rsi() st.write(""" <p style=" color:#FFCC00; font-size: 30px; font-weight:bold"> Resistence Strength Indicator </p> """, unsafe_allow_html=True) st.write(" ") st.line_chart(rsi) st.write(" ") st.write(""" <p style=" color:#FFCC00; font-size: 30px; font-weight:bold"> DOGE-USD Forecast using Facebook Prophet </p> """, unsafe_allow_html=True) st.write(" ") data = df.reset_index() period = st.slider("Days of prediction:", 1, 365) # Predict forecast with Prophet. df_train = data[["Date","Close"]] df_train = df_train.rename(columns={"Date": "ds", "Close": "y"}) m = Prophet() m.fit(df_train) future = m.make_future_dataframe(periods=period) forecast = m.predict(future) st.write(f'Forecast plot for {period} days') fig1 = plot_plotly(m, forecast) st.plotly_chart(fig1) st.write(" ") st.write(""" <p style=" color:#FFCC00; font-size: 30px; font-weight:bold"> Latest News </p> """, unsafe_allow_html=True) st.write(" ") news = GoogleNews() news = GoogleNews("en", "d") news.search("Dogecoin") news.get_page(1) result = news.result() st.write("1. " + result[1]["title"]) st.info("1. " + result[1]["link"]) st.write("2. " + result[2]["title"]) st.info("2. " + result[2]["link"]) st.write("3. " + result[3]["title"]) st.info("3. " + result[3]["link"]) st.write("4. " + result[4]["title"]) st.info("4. " + result[4]["link"]) st.write("5. " + result[5]["title"]) st.info("5. " + result[5]["link"]) st.write(" ") elif option == "XRP-USD": df = get_data(option, start_date, end_date) st.write(""" <p style=" color:#FFCC00; font-size: 30px; font-weight:bold"> Raw Data </p> """, unsafe_allow_html=True) st.write(" ") st.write(df) st.write(" ") st.write(""" <p style=" color:#FFCC00; font-size: 30px; font-weight:bold"> Close Price </p> """, unsafe_allow_html=True) st.write(" ") st.line_chart(df["Close"]) st.write(" ") # MACD st.write(" ") macd = MACD(df["Close"]).macd() st.write(""" <p style=" color:#FFCC00; font-size: 30px; font-weight:bold"> Moving Average Convergence Divergence </p> """, unsafe_allow_html=True) st.write(" ") st.area_chart(macd) # Bollinger Bands bb_bands = BollingerBands(df["Close"]) bb = df bb["bb_h"] = bb_bands.bollinger_hband() bb["bb_l"] = bb_bands.bollinger_lband() bb = bb[["Close","bb_h","bb_l"]] st.write(""" <p style=" color:#FFCC00; font-size: 30px; font-weight:bold"> Bollinger Bands </p> """, unsafe_allow_html=True) st.line_chart(bb) st.write(" ") # Resistence Strength Indicator rsi = RSIIndicator(df["Close"]).rsi() st.write(""" <p style=" color:#FFCC00; font-size: 30px; font-weight:bold"> Resistence Strength Indicator </p> """, unsafe_allow_html=True) st.write(" ") st.line_chart(rsi) st.write(" ") st.write(""" <p style=" color:#FFCC00; font-size: 30px; font-weight:bold"> DOGE-USD Forecast using Facebook Prophet </p> """, unsafe_allow_html=True) st.write(" ") data = df.reset_index() period = st.slider("Days of prediction:", 1, 365) # Predict forecast with Prophet. df_train = data[["Date","Close"]] df_train = df_train.rename(columns={"Date": "ds", "Close": "y"}) m = Prophet() m.fit(df_train) future = m.make_future_dataframe(periods=period) forecast = m.predict(future) st.write(f'Forecast plot for {period} days') fig1 = plot_plotly(m, forecast) st.plotly_chart(fig1) st.write(" ") st.write(""" <p style=" color:#FFCC00; font-size: 30px; font-weight:bold"> Latest News </p> """, unsafe_allow_html=True) st.write(" ") news = GoogleNews() news = GoogleNews("en", "d") news.search("XRP") news.get_page(1) result = news.result() st.write("1. " + result[1]["title"]) st.info("1. " + result[1]["link"]) st.write("2. " + result[2]["title"]) st.info("2. " + result[2]["link"]) st.write("3. " + result[3]["title"]) st.info("3. " + result[3]["link"]) st.write("4. " + result[4]["title"]) st.info("4. " + result[4]["link"]) st.write("5. " + result[5]["title"]) st.info("5. " + result[5]["link"]) elif option == "ADA-USD": df = get_data(option, start_date, end_date) st.write(""" <p style=" color:#FFCC00; font-size: 30px; font-weight:bold"> Raw Data </p> """, unsafe_allow_html=True) st.write(" ") st.write(df) st.write(" ") st.write(""" <p style=" color:#FFCC00; font-size: 30px; font-weight:bold"> Close Price </p> """, unsafe_allow_html=True) st.write(" ") st.line_chart(df["Close"]) st.write(" ") # MACD st.write(" ") macd = MACD(df["Close"]).macd() st.write(""" <p style=" color:#FFCC00; font-size: 30px; font-weight:bold"> Moving Average Convergence Divergence </p> """, unsafe_allow_html=True) st.write(" ") st.area_chart(macd) # Bollinger Bands bb_bands = BollingerBands(df["Close"]) bb = df bb["bb_h"] = bb_bands.bollinger_hband() bb["bb_l"] = bb_bands.bollinger_lband() bb = bb[["Close","bb_h","bb_l"]] st.write(""" <p style=" color:#FFCC00; font-size: 30px; font-weight:bold"> Bollinger Bands </p> """, unsafe_allow_html=True) st.line_chart(bb) st.write(" ") # Resistence Strength Indicator rsi = RSIIndicator(df["Close"]).rsi() st.write(""" <p style=" color:#FFCC00; font-size: 30px; font-weight:bold"> Resistence Strength Indicator </p> """, unsafe_allow_html=True) st.write(" ") st.line_chart(rsi) st.write(" ") st.write(""" <p style=" color:#FFCC00; font-size: 30px; font-weight:bold"> ADA-USD Forecast using Facebook Prophet </p> """, unsafe_allow_html=True) st.write(" ") data = df.reset_index() period = st.slider("Days of prediction:", 1, 365) # Predict forecast with Prophet. df_train = data[["Date","Close"]] df_train = df_train.rename(columns={"Date": "ds", "Close": "y"}) m = Prophet() m.fit(df_train) future = m.make_future_dataframe(periods=period) forecast = m.predict(future) st.write(f'Forecast plot for {period} days') fig1 = plot_plotly(m, forecast) st.plotly_chart(fig1) st.write(" ") st.write(""" <p style=" color:#FFCC00; font-size: 30px; font-weight:bold"> Latest News </p> """, unsafe_allow_html=True) st.write(" ") news = GoogleNews() news = GoogleNews("en", "d") news.search("cryptocurrency") news.get_page(1) result = news.result() st.write("1. " + result[1]["title"]) st.info("1. " + result[1]["link"]) st.write("2. " + result[2]["title"]) st.info("2. " + result[2]["link"]) st.write("3. " + result[3]["title"]) st.info("3. " + result[3]["link"]) st.write("4. " + result[4]["title"]) st.info("4. " + result[4]["link"]) st.write("5. " + result[5]["title"]) st.info("5. " + result[5]["link"]) elif option == "BNB-USD": df = get_data(option, start_date, end_date) st.write(""" <p style=" color:#FFCC00; font-size: 30px; font-weight:bold"> Raw Data </p> """, unsafe_allow_html=True) st.write(" ") st.write(df) st.write(" ") st.write(""" <p style=" color:#FFCC00; font-size: 30px; font-weight:bold"> Close Price </p> """, unsafe_allow_html=True) st.write(" ") st.line_chart(df["Close"]) st.write(" ") # MACD st.write(" ") macd = MACD(df["Close"]).macd() st.write(""" <p style=" color:#FFCC00; font-size: 30px; font-weight:bold"> Moving Average Convergence Divergence </p> """, unsafe_allow_html=True) st.write(" ") st.area_chart(macd) # Bollinger Bands bb_bands = BollingerBands(df["Close"]) bb = df bb["bb_h"] = bb_bands.bollinger_hband() bb["bb_l"] = bb_bands.bollinger_lband() bb = bb[["Close","bb_h","bb_l"]] st.write(""" <p style=" color:#FFCC00; font-size: 30px; font-weight:bold"> Bollinger Bands </p> """, unsafe_allow_html=True) st.line_chart(bb) st.write(" ") # Resistence Strength Indicator rsi = RSIIndicator(df["Close"]).rsi() st.write(""" <p style=" color:#FFCC00; font-size: 30px; font-weight:bold"> Resistence Strength Indicator </p> """, unsafe_allow_html=True) st.write(" ") st.line_chart(rsi) st.write(" ") st.write(""" <p style=" color:#FFCC00; font-size: 30px; font-weight:bold"> BNB-USD Forecast using Facebook Prophet </p> """, unsafe_allow_html=True) st.write(" ") data = df.reset_index() period = st.slider("Days of prediction:", 1, 365) # Predict forecast with Prophet. df_train = data[["Date","Close"]] df_train = df_train.rename(columns={"Date": "ds", "Close": "y"}) m = Prophet() m.fit(df_train) future = m.make_future_dataframe(periods=period) forecast = m.predict(future) st.write(f'Forecast plot for {period} days') fig1 = plot_plotly(m, forecast) st.plotly_chart(fig1) st.write(" ") st.write(""" <p style=" color:#FFCC00; font-size: 30px; font-weight:bold"> Latest News </p> """, unsafe_allow_html=True) st.write(" ") news = GoogleNews() news = GoogleNews("en", "d") news.search("BNB") news.get_page(1) result = news.result() st.write("1. " + result[1]["title"]) st.info("1. " + result[1]["link"]) st.write("2. " + result[2]["title"]) st.info("2. " + result[2]["link"]) st.write("3. " + result[3]["title"]) st.info("3. " + result[3]["link"]) st.write("4. " + result[4]["title"]) st.info("4. " + result[4]["link"]) st.write("5. " + result[5]["title"]) st.info("5. " + result[5]["link"]) elif option == "LTC-USD": df = get_data(option, start_date, end_date) st.write(""" <p style=" color:#FFCC00; font-size: 30px; font-weight:bold"> Raw Data </p> """, unsafe_allow_html=True) st.write(" ") st.write(df) st.write(" ") st.write(""" <p style=" color:#FFCC00; font-size: 30px; font-weight:bold"> Close Price </p> """, unsafe_allow_html=True) st.write(" ") st.line_chart(df["Close"]) st.write(" ") # MACD st.write(" ") macd = MACD(df["Close"]).macd() st.write(""" <p style=" color:#FFCC00; font-size: 30px; font-weight:bold"> Moving Average Convergence Divergence </p> """, unsafe_allow_html=True) st.write(" ") st.area_chart(macd) # Bollinger Bands bb_bands = BollingerBands(df["Close"]) bb = df bb["bb_h"] = bb_bands.bollinger_hband() bb["bb_l"] = bb_bands.bollinger_lband() bb = bb[["Close","bb_h","bb_l"]] st.write(""" <p style=" color:#FFCC00; font-size: 30px; font-weight:bold"> Bollinger Bands </p> """, unsafe_allow_html=True) st.line_chart(bb) st.write(" ") # Resistence Strength Indicator rsi = RSIIndicator(df["Close"]).rsi() st.write(""" <p style=" color:#FFCC00; font-size: 30px; font-weight:bold"> Resistence Strength Indicator </p> """, unsafe_allow_html=True) st.write(" ") st.line_chart(rsi) st.write(" ") st.write(""" <p style=" color:#FFCC00; font-size: 30px; font-weight:bold"> LTC-USD Forecast using Facebook Prophet </p> """, unsafe_allow_html=True) st.write(" ") data = df.reset_index() period = st.slider("Days of prediction:", 1, 365) # Predict forecast with Prophet. df_train = data[["Date","Close"]] df_train = df_train.rename(columns={"Date": "ds", "Close": "y"}) m = Prophet() m.fit(df_train) future = m.make_future_dataframe(periods=period) forecast = m.predict(future) st.write(f'Forecast plot for {period} days') fig1 = plot_plotly(m, forecast) st.plotly_chart(fig1) st.write(" ") st.write(""" <p style=" color:#FFCC00; font-size: 30px; font-weight:bold"> Latest News </p> """, unsafe_allow_html=True) st.write(" ") news = GoogleNews() news = GoogleNews("en", "d") news.search("Litecoin") news.get_page(1) result = news.result() st.write("1. " + result[1]["title"]) st.info("1. " + result[1]["link"]) st.write("2. " + result[2]["title"]) st.info("2. " + result[2]["link"]) st.write("3. " + result[3]["title"]) st.info("3. " + result[3]["link"]) st.write("4. " + result[4]["title"]) st.info("4. " + result[4]["link"]) st.write("5. " + result[5]["title"]) st.info("5. " + result[5]["link"]) # Sentiment Analysis st.write(" ") st.write(""" <p style=" color:#FFCC00; font-size: 30px; font-weight:bold"> How generally users feel about cryptocurrency? </p> """, unsafe_allow_html=True) st.write(" ") df = get_tweets(api_key, api_secret, "#cryptocurrency") df["Tweets"] = df["Tweets"].apply(Clean) df["Subjectivity"] = df["Tweets"].apply(subjectivity) df["Polarity"] = df["Tweets"].apply(polarity) #WordCloud words = " ".join([twts for twts in df["Tweets"]]) cloud = WordCloud(random_state = 21, max_font_size = 100).generate(words) plt.imshow(cloud, interpolation = "bilinear") plt.axis("off") st.pyplot() st.write(" ") st.write(""" <p style=" color:#FFCC00; font-size: 30px; font-weight:bold"> Sentiment Bar Plot </p> """, unsafe_allow_html=True) st.write(" ") # Get Sentiment tweets df["Sentiment"] = df["Polarity"].apply(sentiment) df["Sentiment"].value_counts().plot(kind = "bar", figsize = (10,5)) plt.title("Sentiment Analysis Bar Plot") plt.xlabel("Sentiment") plt.ylabel("Number of Tweets") st.pyplot()
27.208048
870
0.6082
[ "Apache-2.0" ]
krishnaaxo/Finance-Forcasting-Dashboard
app.py
31,779
Python
import setuptools with open("README.md", "r") as fh: long_description = fh.read() setuptools.setup( name="faust_pydantic_validate", version="0.0.1", author="Alexey Kuzyashin", author_email="[email protected]", description="A small decorator for post data view validation", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/Kuzyashin/faust-pydantic-validate", packages=['faust_pydantic_validate'], classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], python_requires='>=3.6', install_requires=[ "pydantic", "faust", ], )
28.703704
66
0.651613
[ "MIT" ]
Kuzyashin/faust-pydantic-validate
setup.py
775
Python
"""adding cluster control options on every level Revision ID: a987c6ce888d Revises: 00c5cc87408d Create Date: 2018-08-01 18:34:00.415937 """ import logging from alembic import op import sqlalchemy as sa revision = 'a987c6ce888d' down_revision = '8079a1cb5874' branch_labels = None depends_on = None logger = logging.getLogger('alembic.' + revision) CLUSTER_CONF_OPTIONS = ['cluster_enabled', 'cluster_tfidf_enabled', 'cluster_same_category', 'cluster_same_feed', 'cluster_wake_up'] def upgrade(): op.drop_column('category', 'cluster_on_title') for table in 'user', 'feed', 'category': logger.info('adding cluster control options on %s', table) for option in CLUSTER_CONF_OPTIONS: op.add_column(table, sa.Column(option, sa.Boolean(), default=None, nullable=True)) op.add_column(table, sa.Column('cluster_conf', sa.PickleType(), default={}, nullable=True)) logger.info('setting default options to true for users') op.execute('UPDATE "user" SET %s;' % ', '.join(["%s=true" % opt for opt in CLUSTER_CONF_OPTIONS])) for option in CLUSTER_CONF_OPTIONS: op.alter_column('user', option, nullable=False) def downgrade(): for table in 'user', 'feed', 'category': for option in CLUSTER_CONF_OPTIONS: op.drop_column(table, option) op.add_column('category', sa.Column('cluster_on_title', sa.BOOLEAN(), autoincrement=False, nullable=True))
35.111111
78
0.643038
[ "MIT" ]
hanakhry/Crime_Admin
python-news_aggregator/migrations/versions/20180830_cluster_control.py
1,580
Python
import os import time import re from flask import url_for from . util import set_original_response, set_modified_response, live_server_setup import logging from changedetectionio.notification import default_notification_body, default_notification_title # Hard to just add more live server URLs when one test is already running (I think) # So we add our test here (was in a different file) def test_check_notification(client, live_server): live_server_setup(live_server) set_original_response() # Give the endpoint time to spin up time.sleep(3) # Re 360 - new install should have defaults set res = client.get(url_for("settings_page")) assert default_notification_body.encode() in res.data assert default_notification_title.encode() in res.data # When test mode is in BASE_URL env mode, we should see this already configured env_base_url = os.getenv('BASE_URL', '').strip() if len(env_base_url): logging.debug(">>> BASE_URL enabled, looking for %s", env_base_url) res = client.get(url_for("settings_page")) assert bytes(env_base_url.encode('utf-8')) in res.data else: logging.debug(">>> SKIPPING BASE_URL check") # re #242 - when you edited an existing new entry, it would not correctly show the notification settings # Add our URL to the import page test_url = url_for('test_endpoint', _external=True) res = client.post( url_for("api_watch_add"), data={"url": test_url, "tag": ''}, follow_redirects=True ) assert b"Watch added" in res.data # Give the thread time to pick up the first version time.sleep(3) # Goto the edit page, add our ignore text # Add our URL to the import page url = url_for('test_notification_endpoint', _external=True) notification_url = url.replace('http', 'json') print (">>>> Notification URL: "+notification_url) res = client.post( url_for("edit_page", uuid="first"), data={"notification_urls": notification_url, "notification_title": "New ChangeDetection.io Notification - {watch_url}", "notification_body": "BASE URL: {base_url}\n" "Watch URL: {watch_url}\n" "Watch UUID: {watch_uuid}\n" "Watch title: {watch_title}\n" "Watch tag: {watch_tag}\n" "Preview: {preview_url}\n" "Diff URL: {diff_url}\n" "Snapshot: {current_snapshot}\n" "Diff: {diff}\n" "Diff Full: {diff_full}\n" ":-)", "notification_format": "Text", "url": test_url, "tag": "my tag", "title": "my title", "headers": "", "fetch_backend": "html_requests", "trigger_check": "y"}, follow_redirects=True ) assert b"Updated watch." in res.data assert b"Test notification queued" in res.data # Hit the edit page, be sure that we saved it res = client.get( url_for("edit_page", uuid="first")) assert bytes(notification_url.encode('utf-8')) in res.data # Re #242 - wasnt saving? assert bytes("New ChangeDetection.io Notification".encode('utf-8')) in res.data # Because we hit 'send test notification on save' time.sleep(3) notification_submission = None # Verify what was sent as a notification, this file should exist with open("test-datastore/notification.txt", "r") as f: notification_submission = f.read() # Did we see the URL that had a change, in the notification? assert test_url in notification_submission os.unlink("test-datastore/notification.txt") set_modified_response() # Trigger a check client.get(url_for("api_watch_checknow"), follow_redirects=True) # Give the thread time to pick it up time.sleep(3) # Did the front end see it? res = client.get( url_for("index")) assert bytes("just now".encode('utf-8')) in res.data notification_submission=None # Verify what was sent as a notification with open("test-datastore/notification.txt", "r") as f: notification_submission = f.read() # Did we see the URL that had a change, in the notification? assert test_url in notification_submission # Diff was correctly executed assert "Diff Full: Some initial text" in notification_submission assert "Diff: (changed) Which is across multiple lines" in notification_submission assert "(-> into) which has this one new line" in notification_submission if env_base_url: # Re #65 - did we see our BASE_URl ? logging.debug (">>> BASE_URL checking in notification: %s", env_base_url) assert env_base_url in notification_submission else: logging.debug(">>> Skipping BASE_URL check") ## Now configure something clever, we go into custom config (non-default) mode, this is returned by the endpoint with open("test-datastore/endpoint-content.txt", "w") as f: f.write(";jasdhflkjadshf kjhsdfkjl ahslkjf haslkjd hfaklsj hf\njl;asdhfkasj stuff we will detect\n") res = client.post( url_for("settings_page"), data={"notification_title": "New ChangeDetection.io Notification - {watch_url}", "notification_urls": "json://foobar.com", #Re #143 should not see that it sent without [test checkbox] "minutes_between_check": 180, "fetch_backend": "html_requests", }, follow_redirects=True ) assert b"Settings updated." in res.data # Re #143 - should not see this if we didnt hit the test box assert b"Test notification queued" not in res.data # Trigger a check client.get(url_for("api_watch_checknow"), follow_redirects=True) # Give the thread time to pick it up time.sleep(3) # Did the front end see it? res = client.get( url_for("index")) assert bytes("just now".encode('utf-8')) in res.data with open("test-datastore/notification.txt", "r") as f: notification_submission = f.read() print ("Notification submission was:", notification_submission) # Re #342 - check for accidental python byte encoding of non-utf8/string assert "b'" not in notification_submission assert re.search('Watch UUID: [0-9a-f]{8}(-[0-9a-f]{4}){3}-[0-9a-f]{12}', notification_submission, re.IGNORECASE) assert "Watch title: my title" in notification_submission assert "Watch tag: my tag" in notification_submission assert "diff/" in notification_submission assert "preview/" in notification_submission assert ":-)" in notification_submission assert "New ChangeDetection.io Notification - {}".format(test_url) in notification_submission # This should insert the {current_snapshot} assert "stuff we will detect" in notification_submission # Prove that "content constantly being marked as Changed with no Updating causes notification" is not a thing # https://github.com/dgtlmoon/changedetection.io/discussions/192 os.unlink("test-datastore/notification.txt") # Trigger a check client.get(url_for("api_watch_checknow"), follow_redirects=True) time.sleep(3) client.get(url_for("api_watch_checknow"), follow_redirects=True) time.sleep(3) client.get(url_for("api_watch_checknow"), follow_redirects=True) time.sleep(3) assert os.path.exists("test-datastore/notification.txt") == False # Now adding a wrong token should give us an error res = client.post( url_for("settings_page"), data={"notification_title": "New ChangeDetection.io Notification - {watch_url}", "notification_body": "Rubbish: {rubbish}\n", "notification_format": "Text", "notification_urls": "json://foobar.com", "minutes_between_check": 180, "fetch_backend": "html_requests" }, follow_redirects=True ) assert bytes("is not a valid token".encode('utf-8')) in res.data # Re #360 some validation res = client.post( url_for("edit_page", uuid="first"), data={"notification_urls": notification_url, "notification_title": "", "notification_body": "", "notification_format": "Text", "url": test_url, "tag": "my tag", "title": "my title", "headers": "", "fetch_backend": "html_requests", "trigger_check": "y"}, follow_redirects=True ) assert b"Notification Body and Title is required when a Notification URL is used" in res.data
38.991266
121
0.634786
[ "Apache-2.0" ]
Pritam-Patra/changedetection.io
changedetectionio/tests/test_notification.py
8,929
Python
import json import pickle from TwitterAPI import TwitterAPI with open("api_key.json") as json_data: all_keys = json.load(json_data) consumer_key = all_keys["consumer_key"] consumer_secret = all_keys["consumer_secret"] access_token_key = all_keys["access_token_key"] access_token_secret = all_keys["access_token_secret"] api = TwitterAPI(consumer_key, consumer_secret, access_token_key, access_token_secret) master_ID = "116568685" count = 25 def who_follows(ID): page_cursor = get_pickle() r = api.request("followers/ids", {"user_id":ID, "cursor":page_cursor, "count":count}) print(r.status_code) parse_response = r.json() users_inf = parse_response["ids"] IDS = [] for x in users_inf: IDS.append(x) page_cursor += -1 print(page_cursor) make_pickle(page_cursor) print(IDS) return IDS def make_pickle(obj): with open("objs.pkl", "wb") as f: pickle.dump(obj, f) def get_pickle(): with open("objs.pkl", "rb") as f: obj = pickle.load(f) print(obj) return obj
25.093023
89
0.677479
[ "MIT" ]
hallowf/MotivationalBinary
search_to_follow.py
1,079
Python
"""Connection pooling for psycopg2 This module implements thread-safe (and not) connection pools. """ # psycopg/pool.py - pooling code for psycopg # # Copyright (C) 2003-2010 Federico Di Gregorio <[email protected]> # # psycopg2 is free software: you can redistribute it and/or modify it # under the terms of the GNU Lesser General Public License as published # by the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # In addition, as a special exception, the copyright holders give # permission to link this program with the OpenSSL library (or with # modified versions of OpenSSL that use the same license as OpenSSL), # and distribute linked combinations including the two. # # You must obey the GNU Lesser General Public License in all respects for # all of the code used other than OpenSSL. # # psycopg2 is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or # FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public # License for more details. import psycopg2 import psycopg2.extensions as _ext class PoolError(psycopg2.Error): pass class AbstractConnectionPool(object): """Generic key-based pooling code.""" def __init__(self, minconn, maxconn, *args, **kwargs): """Initialize the connection pool. New 'minconn' connections are created immediately calling 'connfunc' with given parameters. The connection pool will support a maximum of about 'maxconn' connections. """ self.minconn = int(minconn) self.maxconn = int(maxconn) self.closed = False self._args = args self._kwargs = kwargs self._pool = [] self._used = {} self._rused = {} # id(conn) -> key map self._keys = 0 for i in range(self.minconn): self._connect() def _connect(self, key=None): """Create a new connection and assign it to 'key' if not None.""" conn = psycopg2.connect(*self._args, **self._kwargs) if key is not None: self._used[key] = conn self._rused[id(conn)] = key else: self._pool.append(conn) return conn def _getkey(self): """Return a new unique key.""" self._keys += 1 return self._keys def _getconn(self, key=None): """Get a free connection and assign it to 'key' if not None.""" if self.closed: raise PoolError("connection pool is closed") if key is None: key = self._getkey() if key in self._used: return self._used[key] if self._pool: self._used[key] = conn = self._pool.pop() self._rused[id(conn)] = key return conn else: if len(self._used) == self.maxconn: raise PoolError("connection pool exhausted") return self._connect(key) def _putconn(self, conn, key=None, close=False): """Put away a connection.""" if self.closed: raise PoolError("connection pool is closed") if key is None: key = self._rused.get(id(conn)) if not key: raise PoolError("trying to put unkeyed connection") if len(self._pool) < self.minconn and not close: # Return the connection into a consistent state before putting # it back into the pool if not conn.closed: status = conn.get_transaction_status() if status == _ext.TRANSACTION_STATUS_UNKNOWN: # server connection lost conn.close() elif status != _ext.TRANSACTION_STATUS_IDLE: # connection in error or in transaction conn.rollback() self._pool.append(conn) else: # regular idle connection self._pool.append(conn) # If the connection is closed, we just discard it. else: conn.close() # here we check for the presence of key because it can happen that a # thread tries to put back a connection after a call to close if not self.closed or key in self._used: del self._used[key] del self._rused[id(conn)] def _closeall(self): """Close all connections. Note that this can lead to some code fail badly when trying to use an already closed connection. If you call .closeall() make sure your code can deal with it. """ if self.closed: raise PoolError("connection pool is closed") for conn in self._pool + list(self._used.values()): try: conn.close() except: pass self.closed = True class SimpleConnectionPool(AbstractConnectionPool): """A connection pool that can't be shared across different threads.""" getconn = AbstractConnectionPool._getconn putconn = AbstractConnectionPool._putconn closeall = AbstractConnectionPool._closeall class ThreadedConnectionPool(AbstractConnectionPool): """A connection pool that works with the threading module.""" def __init__(self, minconn, maxconn, *args, **kwargs): """Initialize the threading lock.""" import threading AbstractConnectionPool.__init__( self, minconn, maxconn, *args, **kwargs) self._lock = threading.Lock() def getconn(self, key=None): """Get a free connection and assign it to 'key' if not None.""" self._lock.acquire() try: return self._getconn(key) finally: self._lock.release() def putconn(self, conn=None, key=None, close=False): """Put away an unused connection.""" self._lock.acquire() try: self._putconn(conn, key, close) finally: self._lock.release() def closeall(self): """Close all connections (even the one currently in use.)""" self._lock.acquire() try: self._closeall() finally: self._lock.release() class PersistentConnectionPool(AbstractConnectionPool): """A pool that assigns persistent connections to different threads. Note that this connection pool generates by itself the required keys using the current thread id. This means that until a thread puts away a connection it will always get the same connection object by successive `!getconn()` calls. This also means that a thread can't use more than one single connection from the pool. """ def __init__(self, minconn, maxconn, *args, **kwargs): """Initialize the threading lock.""" import warnings warnings.warn("deprecated: use ZPsycopgDA.pool implementation", DeprecationWarning) import threading AbstractConnectionPool.__init__( self, minconn, maxconn, *args, **kwargs) self._lock = threading.Lock() # we we'll need the thread module, to determine thread ids, so we # import it here and copy it in an instance variable import _thread as _thread # work around for 2to3 bug - see ticket #348 self.__thread = _thread def getconn(self): """Generate thread id and return a connection.""" key = self.__thread.get_ident() self._lock.acquire() try: return self._getconn(key) finally: self._lock.release() def putconn(self, conn=None, close=False): """Put away an unused connection.""" key = self.__thread.get_ident() self._lock.acquire() try: if not conn: conn = self._used[key] self._putconn(conn, key, close) finally: self._lock.release() def closeall(self): """Close all connections (even the one currently in use.)""" self._lock.acquire() try: self._closeall() finally: self._lock.release()
34.474576
78
0.615044
[ "MIT" ]
ALEXIS2ES/sherom-Serve
lexis/Lib/site-packages/psycopg2/pool.py
8,136
Python
import frappe, re from renovation_service_provider_manager import invoke_mediator @frappe.whitelist(allow_guest=True) def get_service_provider_client_id(provider): k = f"client_id_{re.sub('[^0-9a-zA-Z]+', '_', provider.lower())}" client_id = frappe.cache().get_value(k) if client_id: return client_id client_id = get_client_id_from_mediator(provider) frappe.cache().set_value(k, client_id, expires_in_sec=18000) # 5hr return client_id def get_client_id_from_mediator(provider): try: r = invoke_mediator("/api/method/renovation_mediator.api.get_service_provider_client_id", {"provider": provider}) r.raise_for_status() r = r.json() return r["message"] except: frappe.throw(r.text)
31.434783
117
0.749654
[ "MIT" ]
leam-tech/renovation_service_provider_manager
renovation_service_provider_manager/api/__init__.py
723
Python
# -*- coding: utf-8 -*- # Copyright (c) 2016-2022 by University of Kassel and Fraunhofer Institute for Energy Economics # and Energy System Technology (IEE), Kassel. All rights reserved. from math import pi from numpy import sign, nan, append, zeros, array, sqrt, where from numpy import max as max_ from pandas import Series, DataFrame, concat from pandapower.pypower.idx_gen import GEN_BUS, PMIN, PMAX, QMIN, QMAX, GEN_STATUS from pandapower.pypower.idx_cost import COST, NCOST from pandapower.pypower.idx_bus import BUS_I, BASE_KV import pandapower as pp try: import pandaplan.core.pplog as logging except ImportError: import logging logger = logging.getLogger(__name__) try: from pypower import ppoption, runpf, runopf, rundcpf, rundcopf ppopt = ppoption.ppoption(VERBOSE=0, OUT_ALL=0) pypower_import = True except ImportError: pypower_import = False ppc_elms = ["bus", "branch", "gen"] def _create_costs(net, ppc, gen_lookup, type, idx): if ppc['gencost'][idx, 0] == 1: if not len(ppc['gencost'][idx, COST:]) == 2*ppc['gencost'][idx, NCOST]: logger.error("In gencost line %s, the number n does not fit to the number of values" % idx) raise NotImplementedError pp.create_pwl_cost(net, gen_lookup.element.at[idx], gen_lookup.element_type.at[idx], ppc['gencost'][idx, 4:], type) elif ppc['gencost'][idx, 0] == 2: ncost = ppc['gencost'][idx, NCOST] if ncost == 1: cp2 = 0 cp1 = 0 cp0 = ppc['gencost'][idx, COST] elif ncost == 2: cp2 = 0 cp1 = ppc['gencost'][idx, COST] cp0 = ppc['gencost'][idx, COST + 1] elif ncost == 3: cp2 = ppc['gencost'][idx, COST] cp1 = ppc['gencost'][idx, COST + 1] cp0 = ppc['gencost'][idx, COST + 2] elif ncost > 3: logger.warning("The pandapower poly_cost table only supports up to 2nd order " + "polynomials. The ppc higher order polynomials cannot be converted.") cp2 = ppc['gencost'][idx, COST + ncost - 3] cp1 = ppc['gencost'][idx, COST + ncost - 2] cp0 = ppc['gencost'][idx, COST + ncost - 1] else: raise ValueError("'ncost' must be an positve integer but is " + str(ncost)) pp.create_poly_cost(net, gen_lookup.element.at[idx], gen_lookup.element_type.at[idx], cp1_eur_per_mw=cp1, cp2_eur_per_mw2=cp2, cp0_eur=cp0) else: logger.info("Cost mode of gencost line %s is unknown." % idx) def _gen_bus_info(ppc, idx_gen): bus_name = int(ppc["gen"][idx_gen, GEN_BUS]) # assumption: there is only one bus with this bus_name: idx_bus = int(where(ppc["bus"][:, BUS_I] == bus_name)[0][0]) current_bus_type = int(ppc["bus"][idx_bus, 1]) same_bus_gen_idx = where(ppc["gen"][:, GEN_BUS] == ppc["gen"][idx_gen, GEN_BUS])[0].astype(int) same_bus_in_service_gen_idx = same_bus_gen_idx[where(ppc["gen"][same_bus_gen_idx, GEN_STATUS] > 0)] first_same_bus_in_service_gen_idx = same_bus_in_service_gen_idx[0] if len( same_bus_in_service_gen_idx) else None last_same_bus_in_service_gen_idx = same_bus_in_service_gen_idx[-1] if len( same_bus_in_service_gen_idx) else None return current_bus_type, idx_bus, same_bus_gen_idx, first_same_bus_in_service_gen_idx, \ last_same_bus_in_service_gen_idx def from_ppc(ppc, f_hz=50, validate_conversion=False, **kwargs): """ This function converts pypower case files to pandapower net structure. INPUT: **ppc** : The pypower case file. OPTIONAL: **f_hz** (float, 50) - The frequency of the network. **validate_conversion** (bool, False) - If True, validate_from_ppc is run after conversion. For running the validation, the ppc must already contain the pypower powerflow results or pypower must be importable. ****kwargs** keyword arguments for validate_from_ppc if validate_conversion is True OUTPUT: **net** : pandapower net. EXAMPLE: import pandapower.converter as pc from pypower import case4gs ppc_net = case4gs.case4gs() net = pc.from_ppc(ppc_net, f_hz=60) """ # --- catch common failures if Series(ppc['bus'][:, BASE_KV] <= 0).any(): logger.info('There are false baseKV given in the pypower case file.') # --- general_parameters baseMVA = ppc['baseMVA'] # MVA omega = pi * f_hz # 1/s MAX_VAL = 99999. net = pp.create_empty_network(f_hz=f_hz, sn_mva=baseMVA) # --- bus data -> create buses, sgen, load, shunt for i in range(len(ppc['bus'])): # create buses pp.create_bus(net, name=int(ppc['bus'][i, 0]), vn_kv=ppc['bus'][i, 9], type="b", zone=ppc['bus'][i, 10], in_service=bool(ppc['bus'][i, 1] != 4), max_vm_pu=ppc['bus'][i, 11], min_vm_pu=ppc['bus'][i, 12]) # create sgen, load if ppc['bus'][i, 2] > 0: pp.create_load(net, i, p_mw=ppc['bus'][i, 2], q_mvar=ppc['bus'][i, 3], controllable=False) elif ppc['bus'][i, 2] < 0: pp.create_sgen(net, i, p_mw=-ppc['bus'][i, 2], q_mvar=-ppc['bus'][i, 3], type="", controllable=False) elif ppc['bus'][i, 3] != 0: pp.create_load(net, i, p_mw=ppc['bus'][i, 2], q_mvar=ppc['bus'][i, 3], controllable=False) # create shunt if ppc['bus'][i, 4] != 0 or ppc['bus'][i, 5] != 0: pp.create_shunt(net, i, p_mw=ppc['bus'][i, 4], q_mvar=-ppc['bus'][i, 5]) # unused data of ppc: Vm, Va (partwise: in ext_grid), zone # --- gen data -> create ext_grid, gen, sgen gen_lookup = DataFrame(nan, columns=['element', 'element_type'], index=range(len(ppc['gen'][:, 0]))) # if in ppc is only one gen -> numpy initially uses one dim array -> change to two dim array if len(ppc["gen"].shape) == 1: ppc["gen"] = array(ppc["gen"], ndmin=2) for i in range(len(ppc['gen'][:, 0])): current_bus_type, current_bus_idx, same_bus_gen_idx, first_same_bus_in_service_gen_idx, \ last_same_bus_in_service_gen_idx = _gen_bus_info(ppc, i) # create ext_grid if current_bus_type == 3: if i == first_same_bus_in_service_gen_idx: gen_lookup.element.loc[i] = pp.create_ext_grid( net, bus=current_bus_idx, vm_pu=ppc['gen'][last_same_bus_in_service_gen_idx, 5], va_degree=ppc['bus'][current_bus_idx, 8], in_service=bool(ppc['gen'][i, 7] > 0), max_p_mw=ppc['gen'][i, PMAX], min_p_mw=ppc['gen'][i, PMIN], max_q_mvar=ppc['gen'][i, QMAX], min_q_mvar=ppc['gen'][i, QMIN]) gen_lookup.element_type.loc[i] = 'ext_grid' if ppc['gen'][i, 4] > ppc['gen'][i, 3]: logger.info('min_q_mvar of gen %d must be less than max_q_mvar but is not.' % i) if -ppc['gen'][i, 9] < -ppc['gen'][i, 8]: logger.info('max_p_mw of gen %d must be less than min_p_mw but is not.' % i) else: current_bus_type = 1 # create gen elif current_bus_type == 2: if i == first_same_bus_in_service_gen_idx: gen_lookup.element.loc[i] = pp.create_gen( net, bus=current_bus_idx, vm_pu=ppc['gen'][last_same_bus_in_service_gen_idx, 5], p_mw=ppc['gen'][i, 1], in_service=bool(ppc['gen'][i, 7] > 0), controllable=True, max_p_mw=ppc['gen'][i, PMAX], min_p_mw=ppc['gen'][i, PMIN], max_q_mvar=ppc['gen'][i, QMAX], min_q_mvar=ppc['gen'][i, QMIN]) gen_lookup.element_type.loc[i] = 'gen' if ppc['gen'][i, 1] < 0: logger.info('p_mw of gen %d must be less than zero but is not.' % i) if ppc['gen'][i, 4] > ppc['gen'][i, 3]: logger.info('min_q_mvar of gen %d must be less than max_q_mvar but is not.' % i) if -ppc['gen'][i, 9] < -ppc['gen'][i, 8]: logger.info('max_p_mw of gen %d must be less than min_p_mw but is not.' % i) else: current_bus_type = 1 # create sgen if current_bus_type == 1: gen_lookup.element.loc[i] = pp.create_sgen( net, bus=current_bus_idx, p_mw=ppc['gen'][i, 1], q_mvar=ppc['gen'][i, 2], type="", in_service=bool(ppc['gen'][i, 7] > 0), max_p_mw=ppc['gen'][i, PMAX], min_p_mw=ppc['gen'][i, PMIN], max_q_mvar=ppc['gen'][i, QMAX], min_q_mvar=ppc['gen'][i, QMIN], controllable=True) gen_lookup.element_type.loc[i] = 'sgen' if ppc['gen'][i, 1] < 0: logger.info('p_mw of sgen %d must be less than zero but is not.' % i) if ppc['gen'][i, 4] > ppc['gen'][i, 3]: logger.info('min_q_mvar of gen %d must be less than max_q_mvar but is not.' % i) if -ppc['gen'][i, 9] < -ppc['gen'][i, 8]: logger.info('max_p_mw of gen %d must be less than min_p_mw but is not.' % i) # unused data of ppc: Vg (partwise: in ext_grid and gen), mBase, Pc1, Pc2, Qc1min, Qc1max, # Qc2min, Qc2max, ramp_agc, ramp_10, ramp_30,ramp_q, apf # --- branch data -> create line, trafo for i in range(len(ppc['branch'])): from_bus = pp.get_element_index(net, 'bus', name=int(ppc['branch'][i, 0])) to_bus = pp.get_element_index(net, 'bus', name=int(ppc['branch'][i, 1])) from_vn_kv = ppc['bus'][from_bus, 9] to_vn_kv = ppc['bus'][to_bus, 9] if (from_vn_kv == to_vn_kv) & ((ppc['branch'][i, 8] == 0) | (ppc['branch'][i, 8] == 1)) & \ (ppc['branch'][i, 9] == 0): # create line Zni = ppc['bus'][to_bus, 9]**2/baseMVA # ohm max_i_ka = ppc['branch'][i, 5]/ppc['bus'][to_bus, 9]/sqrt(3) if max_i_ka == 0.0: max_i_ka = MAX_VAL logger.debug("ppc branch rateA is zero -> Using MAX_VAL instead to calculate " + "maximum branch flow") pp.create_line_from_parameters( net, from_bus=from_bus, to_bus=to_bus, length_km=1, r_ohm_per_km=ppc['branch'][i, 2]*Zni, x_ohm_per_km=ppc['branch'][i, 3]*Zni, c_nf_per_km=ppc['branch'][i, 4]/Zni/omega*1e9/2, max_i_ka=max_i_ka, type='ol', max_loading_percent=100, in_service=bool(ppc['branch'][i, 10])) else: # create transformer if from_vn_kv >= to_vn_kv: hv_bus = from_bus vn_hv_kv = from_vn_kv lv_bus = to_bus vn_lv_kv = to_vn_kv tap_side = 'hv' else: hv_bus = to_bus vn_hv_kv = to_vn_kv lv_bus = from_bus vn_lv_kv = from_vn_kv tap_side = 'lv' if from_vn_kv == to_vn_kv: logger.warning('The pypower branch %d (from_bus, to_bus)=(%d, %d) is considered' ' as a transformer because of a ratio != 0 | 1 but it connects ' 'the same voltage level', i, ppc['branch'][i, 0], ppc['branch'][i, 1]) rk = ppc['branch'][i, 2] xk = ppc['branch'][i, 3] zk = (rk ** 2 + xk ** 2) ** 0.5 sn = ppc['branch'][i, 5] if sn == 0.0: sn = MAX_VAL logger.debug("ppc branch rateA is zero -> Using MAX_VAL instead to calculate " + "apparent power") ratio_1 = 0 if ppc['branch'][i, 8] == 0 else (ppc['branch'][i, 8] - 1) * 100 i0_percent = -ppc['branch'][i, 4] * 100 * baseMVA / sn if i0_percent < 0: logger.info('A transformer always behaves inductive consumpting but the ' 'susceptance of pypower branch %d (from_bus, to_bus)=(%d, %d) is ' 'positive.', i, ppc['branch'][i, 0], ppc['branch'][i, 1]) pp.create_transformer_from_parameters( net, hv_bus=hv_bus, lv_bus=lv_bus, sn_mva=sn, vn_hv_kv=vn_hv_kv, vn_lv_kv=vn_lv_kv, vk_percent=sign(xk) * zk * sn * 100 / baseMVA, vkr_percent=rk * sn * 100 / baseMVA, max_loading_percent=100, pfe_kw=0, i0_percent=i0_percent, shift_degree=ppc['branch'][i, 9], tap_step_percent=abs(ratio_1), tap_pos=sign(ratio_1), tap_side=tap_side, tap_neutral=0) # unused data of ppc: rateB, rateC # --- gencost -> create polynomial_cost, piecewise_cost if 'gencost' in ppc: if len(ppc['gencost'].shape) == 1: # reshape gencost if only one gencost is given -> no indexError ppc['gencost'] = ppc['gencost'].reshape((1, -1)) if ppc['gencost'].shape[0] <= gen_lookup.shape[0]: idx_p = range(ppc['gencost'].shape[0]) idx_q = [] elif ppc['gencost'].shape[0] > gen_lookup.shape[0]: idx_p = range(gen_lookup.shape[0]) idx_q = range(gen_lookup.shape[0], ppc['gencost'].shape[0]) if ppc['gencost'].shape[0] >= 2*gen_lookup.shape[0]: idx_p = range(gen_lookup.shape[0]) idx_q = range(gen_lookup.shape[0], 2*gen_lookup.shape[0]) for idx in idx_p: _create_costs(net, ppc, gen_lookup, 'p', idx) for idx in idx_q: _create_costs(net, ppc, gen_lookup, 'q', idx) # areas are unconverted if validate_conversion: logger.setLevel(logging.DEBUG) if not validate_from_ppc(ppc, net, **kwargs): logger.error("Validation failed.") net._options = {} net._options["gen_lookup"] = gen_lookup return net def _validate_diff_res(diff_res, max_diff_values): to_iterate = set(max_diff_values.keys()) & {'gen_q_mvar', 'branch_p_mw', 'branch_q_mvar', 'gen_p_mw', 'bus_va_degree', 'bus_vm_pu'} if not len(to_iterate): logger.warning("There are no keys to validate.") val = True for i in to_iterate: elm = i.split("_")[0] sought = ["p", "q"] if elm != "bus" else ["vm", "va"] col = int(array([0, 1])[[j in i for j in sought]][0]) if elm != "branch" else \ list(array([[0, 2], [1, 3]])[[j in i for j in sought]][0]) val &= bool(max_(abs(diff_res[elm][:, col])) < max_diff_values[i]) return val def validate_from_ppc(ppc_net, net, pf_type="runpp", max_diff_values={ "bus_vm_pu": 1e-6, "bus_va_degree": 1e-5, "branch_p_mw": 1e-6, "branch_q_mvar": 1e-6, "gen_p_mw": 1e-6, "gen_q_mvar": 1e-6}, run=True): """ This function validates the pypower case files to pandapower net structure conversion via a \ comparison of loadflow calculation results. (Hence the opf cost conversion is not validated.) INPUT: **ppc_net** - The pypower case file, which must already contain the pypower powerflow results or pypower must be importable. **net** - The pandapower network. OPTIONAL: **pf_type** ("runpp", string) - Type of validated power flow. Possible are ("runpp", "rundcpp", "runopp", "rundcopp") **max_diff_values** - Dict of maximal allowed difference values. The keys must be 'vm_pu', 'va_degree', 'p_branch_mw', 'q_branch_mvar', 'p_gen_mw' and 'q_gen_mvar' and the values floats. **run** (True, bool or list of two bools) - changing the value to False avoids trying to run (optimal) loadflows. Giving a list of two bools addresses first pypower and second pandapower. OUTPUT: **conversion_success** - conversion_success is returned as False if pypower or pandapower cannot calculate a powerflow or if the maximum difference values (max_diff_values ) cannot be hold. EXAMPLE: import pandapower.converter as pc net = cv.from_ppc(ppc_net, f_hz=50) conversion_success = cv.validate_from_ppc(ppc_net, net) NOTE: The user has to take care that the loadflow results already are included in the provided \ ppc_net or pypower is importable. """ # check in case of optimal powerflow comparison whether cost information exist if "opp" in pf_type: if not (len(net.polynomial_cost) | len(net.piecewise_linear_cost)): if "gencost" in ppc_net: if not len(ppc_net["gencost"]): logger.debug('ppc and pandapower net do not include cost information.') return True else: logger.error('The pandapower net does not include cost information.') return False else: logger.debug('ppc and pandapower net do not include cost information.') return True # guarantee run parameter as list, for pypower and pandapower (optimal) powerflow run run = [run, run] if isinstance(run, bool) else run # --- check pypower powerflow success, if possible if pypower_import and run[0]: try: if pf_type == "runpp": ppc_net = runpf.runpf(ppc_net, ppopt)[0] elif pf_type == "rundcpp": ppc_net = rundcpf.rundcpf(ppc_net, ppopt)[0] elif pf_type == "runopp": ppc_net = runopf.runopf(ppc_net, ppopt) elif pf_type == "rundcopp": ppc_net = rundcopf.rundcopf(ppc_net, ppopt) else: raise ValueError("The pf_type %s is unknown" % pf_type) except: logger.debug("The pypower run did not work.") ppc_success = True if 'success' in ppc_net.keys(): if ppc_net['success'] != 1: ppc_success = False logger.error("The given ppc data indicates an unsuccessful pypower powerflow: " + "'ppc_net['success'] != 1'") if (ppc_net['branch'].shape[1] < 17): ppc_success = False logger.error("The shape of given ppc data indicates missing pypower powerflow results.") # --- try to run a pandapower powerflow if run[1]: if pf_type == "runpp": try: pp.runpp(net, init="dc", calculate_voltage_angles=True, trafo_model="pi") except pp.LoadflowNotConverged: try: pp.runpp(net, calculate_voltage_angles=True, init="flat", trafo_model="pi") except pp.LoadflowNotConverged: try: pp.runpp(net, trafo_model="pi", calculate_voltage_angles=False) if "bus_va_degree" in max_diff_values.keys(): max_diff_values["bus_va_degree"] = 1e2 if max_diff_values[ "bus_va_degree"] < 1e2 else max_diff_values["bus_va_degree"] logger.info("voltage_angles could be calculated.") except pp.LoadflowNotConverged: logger.error('The pandapower powerflow does not converge.') elif pf_type == "rundcpp": try: pp.rundcpp(net, trafo_model="pi") except pp.LoadflowNotConverged: logger.error('The pandapower dc powerflow does not converge.') elif pf_type == "runopp": try: pp.runopp(net, init="flat", calculate_voltage_angles=True) except pp.OPFNotConverged: try: pp.runopp(net, init="pf", calculate_voltage_angles=True) except (pp.OPFNotConverged, pp.LoadflowNotConverged, KeyError): try: pp.runopp(net, init="flat", calculate_voltage_angles=False) logger.info("voltage_angles could be calculated.") if "bus_va_degree" in max_diff_values.keys(): max_diff_values["bus_va_degree"] = 1e2 if max_diff_values[ "bus_va_degree"] < 1e2 else max_diff_values["bus_va_degree"] except pp.OPFNotConverged: try: pp.runopp(net, init="pf", calculate_voltage_angles=False) if "bus_va_degree" in max_diff_values.keys(): max_diff_values["bus_va_degree"] = 1e2 if max_diff_values[ "bus_va_degree"] < 1e2 else max_diff_values["bus_va_degree"] logger.info("voltage_angles could be calculated.") except (pp.OPFNotConverged, pp.LoadflowNotConverged, KeyError): logger.error('The pandapower optimal powerflow does not converge.') elif pf_type == "rundcopp": try: pp.rundcopp(net) except pp.LoadflowNotConverged: logger.error('The pandapower dc optimal powerflow does not converge.') else: raise ValueError("The pf_type %s is unknown" % pf_type) # --- prepare powerflow result comparison by reordering pp results as they are in ppc results if not ppc_success: return False if "opp" in pf_type: if not net.OPF_converged: return elif not net.converged: return False # --- store pypower powerflow results ppc_res = dict.fromkeys(ppc_elms) ppc_res["branch"] = ppc_net['branch'][:, 13:17] ppc_res["bus"] = ppc_net['bus'][:, 7:9] ppc_res["gen"] = ppc_net['gen'][:, 1:3] # --- pandapower bus result table pp_res = dict.fromkeys(ppc_elms) pp_res["bus"] = array(net.res_bus.sort_index()[['vm_pu', 'va_degree']]) # --- pandapower gen result table pp_res["gen"] = zeros([1, 2]) # consideration of parallel generators via storing how much generators have been considered # each node # if in ppc is only one gen -> numpy initially uses one dim array -> change to two dim array if len(ppc_net["gen"].shape) == 1: ppc_net["gen"] = array(ppc_net["gen"], ndmin=2) GENS = DataFrame(ppc_net['gen'][:, [0]].astype(int)) GEN_uniq = GENS.drop_duplicates() already_used_gen = Series(zeros(GEN_uniq.shape[0]).astype(int), index=[int(v) for v in GEN_uniq.values]) change_q_compare = [] for i, j in GENS.iterrows(): current_bus_type, current_bus_idx, same_bus_gen_idx, first_same_bus_in_service_gen_idx, \ last_same_bus_in_service_gen_idx = _gen_bus_info(ppc_net, i) if current_bus_type == 3 and i == first_same_bus_in_service_gen_idx: pp_res["gen"] = append(pp_res["gen"], array(net.res_ext_grid[ net.ext_grid.bus == current_bus_idx][['p_mw', 'q_mvar']]).reshape((1, 2)), 0) elif current_bus_type == 2 and i == first_same_bus_in_service_gen_idx: pp_res["gen"] = append(pp_res["gen"], array(net.res_gen[ net.gen.bus == current_bus_idx][['p_mw', 'q_mvar']]).reshape((1, 2)), 0) else: pp_res["gen"] = append(pp_res["gen"], array(net.res_sgen[ net.sgen.bus == current_bus_idx][['p_mw', 'q_mvar']])[ already_used_gen.at[int(j)]].reshape((1, 2)), 0) already_used_gen.at[int(j)] += 1 change_q_compare += [int(j)] pp_res["gen"] = pp_res["gen"][1:, :] # delete initial zero row # --- pandapower branch result table pp_res["branch"] = zeros([1, 4]) # consideration of parallel branches via storing how often branches were considered # each node-to-node-connection try: init1 = concat([net.line.from_bus, net.line.to_bus], axis=1, sort=True).drop_duplicates() init2 = concat([net.trafo.hv_bus, net.trafo.lv_bus], axis=1, sort=True).drop_duplicates() except TypeError: # legacy pandas < 0.21 init1 = concat([net.line.from_bus, net.line.to_bus], axis=1).drop_duplicates() init2 = concat([net.trafo.hv_bus, net.trafo.lv_bus], axis=1).drop_duplicates() init1['hv_bus'] = nan init1['lv_bus'] = nan init2['from_bus'] = nan init2['to_bus'] = nan try: already_used_branches = concat([init1, init2], axis=0, sort=True) except TypeError: # pandas < 0.21 legacy already_used_branches = concat([init1, init2], axis=0) already_used_branches['number'] = zeros([already_used_branches.shape[0], 1]).astype(int) BRANCHES = DataFrame(ppc_net['branch'][:, [0, 1, 8, 9]]) for i in BRANCHES.index: from_bus = pp.get_element_index(net, 'bus', name=int(ppc_net['branch'][i, 0])) to_bus = pp.get_element_index(net, 'bus', name=int(ppc_net['branch'][i, 1])) from_vn_kv = ppc_net['bus'][from_bus, 9] to_vn_kv = ppc_net['bus'][to_bus, 9] ratio = BRANCHES[2].at[i] angle = BRANCHES[3].at[i] # from line results if (from_vn_kv == to_vn_kv) & ((ratio == 0) | (ratio == 1)) & (angle == 0): pp_res["branch"] = append(pp_res["branch"], array(net.res_line[ (net.line.from_bus == from_bus) & (net.line.to_bus == to_bus)] [['p_from_mw', 'q_from_mvar', 'p_to_mw', 'q_to_mvar']])[ int(already_used_branches.number.loc[ (already_used_branches.from_bus == from_bus) & (already_used_branches.to_bus == to_bus)].values)].reshape(1, 4), 0) already_used_branches.number.loc[(already_used_branches.from_bus == from_bus) & (already_used_branches.to_bus == to_bus)] += 1 # from trafo results else: if from_vn_kv >= to_vn_kv: pp_res["branch"] = append(pp_res["branch"], array(net.res_trafo[ (net.trafo.hv_bus == from_bus) & (net.trafo.lv_bus == to_bus)] [['p_hv_mw', 'q_hv_mvar', 'p_lv_mw', 'q_lv_mvar']])[ int(already_used_branches.number.loc[ (already_used_branches.hv_bus == from_bus) & (already_used_branches.lv_bus == to_bus)].values)].reshape(1, 4), 0) already_used_branches.number.loc[(already_used_branches.hv_bus == from_bus) & (already_used_branches.lv_bus == to_bus)] += 1 else: # switch hv-lv-connection of pypower connection buses pp_res["branch"] = append(pp_res["branch"], array(net.res_trafo[ (net.trafo.hv_bus == to_bus) & (net.trafo.lv_bus == from_bus)] [['p_lv_mw', 'q_lv_mvar', 'p_hv_mw', 'q_hv_mvar']])[ int(already_used_branches.number.loc[ (already_used_branches.hv_bus == to_bus) & (already_used_branches.lv_bus == from_bus)].values)].reshape(1, 4), 0) already_used_branches.number.loc[ (already_used_branches.hv_bus == to_bus) & (already_used_branches.lv_bus == from_bus)] += 1 pp_res["branch"] = pp_res["branch"][1:, :] # delete initial zero row # --- do the powerflow result comparison diff_res = dict.fromkeys(ppc_elms) diff_res["bus"] = ppc_res["bus"] - pp_res["bus"] diff_res["bus"][:, 1] -= diff_res["bus"][0, 1] # remove va_degree offset diff_res["branch"] = ppc_res["branch"] - pp_res["branch"] diff_res["gen"] = ppc_res["gen"] - pp_res["gen"] # comparison of buses with several generator units only as q sum for i in GEN_uniq.loc[GEN_uniq[0].isin(change_q_compare)].index: next_is = GEN_uniq.index[GEN_uniq.index > i] if len(next_is) > 0: next_i = next_is[0] else: next_i = GENS.index[-1] + 1 if (next_i - i) > 1: diff_res["gen"][i:next_i, 1] = sum(diff_res["gen"][i:next_i, 1]) # logger info logger.debug("Maximum voltage magnitude difference between pypower and pandapower: " "%.2e pu" % max_(abs(diff_res["bus"][:, 0]))) logger.debug("Maximum voltage angle difference between pypower and pandapower: " "%.2e degree" % max_(abs(diff_res["bus"][:, 1]))) logger.debug("Maximum branch flow active power difference between pypower and pandapower: " "%.2e MW" % max_(abs(diff_res["branch"][:, [0, 2]]))) logger.debug("Maximum branch flow reactive power difference between pypower and " "pandapower: %.2e MVAr" % max_(abs(diff_res["branch"][:, [1, 3]]))) logger.debug("Maximum active power generation difference between pypower and pandapower: " "%.2e MW" % max_(abs(diff_res["gen"][:, 0]))) logger.debug("Maximum reactive power generation difference between pypower and pandapower: " "%.2e MVAr" % max_(abs(diff_res["gen"][:, 1]))) if _validate_diff_res(diff_res, {"bus_vm_pu": 1e-3, "bus_va_degree": 1e-3, "branch_p_mw": 1e-6, "branch_q_mvar": 1e-6}) and \ (max_(abs(diff_res["gen"])) > 1e-1).any(): logger.debug("The active/reactive power generation difference possibly results " "because of a pypower error. Please validate " "the results via pypower loadflow.") # this occurs e.g. at ppc case9 # give a return if isinstance(max_diff_values, dict): return _validate_diff_res(diff_res, max_diff_values) else: logger.debug("'max_diff_values' must be a dict.")
48.93517
103
0.568509
[ "BSD-3-Clause" ]
BaraaUniKassel/pandapower
pandapower/converter/pypower/from_ppc.py
30,193
Python
from setuptools import setup, find_packages import os setup(name='avenue', version=0.1, description='Element AI car Simulator', url='https://github.com/cyrilibrahim/Avenue', author='ElementAI', author_email='[email protected]', license='', zip_safe=False, install_requires=[ "gdown", # "mlagents==0.5.0", "gym", # "mlagents_frozen", "mlagents @ git+https://[email protected]/rmst/ml-agents-frozen@fd10e3544472b365701da2526a8262e0c8a15784#egg=mlagents", ], extras_require={}, packages=find_packages() )
28.909091
128
0.613208
[ "MIT" ]
ElementAI/avenue
setup.py
636
Python
import warnings import numpy as np import pandas as pd import pandas.util.testing as tm try: from pandas.api.types import union_categoricals except ImportError: try: from pandas.types.concat import union_categoricals except ImportError: pass class Concat: def setup(self): N = 10**5 self.s = pd.Series(list('aabbcd') * N).astype('category') self.a = pd.Categorical(list('aabbcd') * N) self.b = pd.Categorical(list('bbcdjk') * N) def time_concat(self): pd.concat([self.s, self.s]) def time_union(self): union_categoricals([self.a, self.b]) class Constructor: def setup(self): N = 10**5 self.categories = list('abcde') self.cat_idx = pd.Index(self.categories) self.values = np.tile(self.categories, N) self.codes = np.tile(range(len(self.categories)), N) self.datetimes = pd.Series(pd.date_range('1995-01-01 00:00:00', periods=N / 10, freq='s')) self.datetimes_with_nat = self.datetimes.copy() self.datetimes_with_nat.iloc[-1] = pd.NaT self.values_some_nan = list(np.tile(self.categories + [np.nan], N)) self.values_all_nan = [np.nan] * len(self.values) self.values_all_int8 = np.ones(N, 'int8') self.categorical = pd.Categorical(self.values, self.categories) self.series = pd.Series(self.categorical) def time_regular(self): pd.Categorical(self.values, self.categories) def time_fastpath(self): pd.Categorical(self.codes, self.cat_idx, fastpath=True) def time_datetimes(self): pd.Categorical(self.datetimes) def time_datetimes_with_nat(self): pd.Categorical(self.datetimes_with_nat) def time_with_nan(self): pd.Categorical(self.values_some_nan) def time_all_nan(self): pd.Categorical(self.values_all_nan) def time_from_codes_all_int8(self): pd.Categorical.from_codes(self.values_all_int8, self.categories) def time_existing_categorical(self): pd.Categorical(self.categorical) def time_existing_series(self): pd.Categorical(self.series) class ValueCounts: params = [True, False] param_names = ['dropna'] def setup(self, dropna): n = 5 * 10**5 arr = ['s{:04d}'.format(i) for i in np.random.randint(0, n // 10, size=n)] self.ts = pd.Series(arr).astype('category') def time_value_counts(self, dropna): self.ts.value_counts(dropna=dropna) class Repr: def setup(self): self.sel = pd.Series(['s1234']).astype('category') def time_rendering(self): str(self.sel) class SetCategories: def setup(self): n = 5 * 10**5 arr = ['s{:04d}'.format(i) for i in np.random.randint(0, n // 10, size=n)] self.ts = pd.Series(arr).astype('category') def time_set_categories(self): self.ts.cat.set_categories(self.ts.cat.categories[::2]) class RemoveCategories: def setup(self): n = 5 * 10**5 arr = ['s{:04d}'.format(i) for i in np.random.randint(0, n // 10, size=n)] self.ts = pd.Series(arr).astype('category') def time_remove_categories(self): self.ts.cat.remove_categories(self.ts.cat.categories[::2]) class Rank: def setup(self): N = 10**5 ncats = 100 self.s_str = pd.Series(tm.makeCategoricalIndex(N, ncats)).astype(str) self.s_str_cat = self.s_str.astype('category') with warnings.catch_warnings(record=True): self.s_str_cat_ordered = self.s_str.astype('category', ordered=True) self.s_int = pd.Series(np.random.randint(0, ncats, size=N)) self.s_int_cat = self.s_int.astype('category') with warnings.catch_warnings(record=True): self.s_int_cat_ordered = self.s_int.astype('category', ordered=True) def time_rank_string(self): self.s_str.rank() def time_rank_string_cat(self): self.s_str_cat.rank() def time_rank_string_cat_ordered(self): self.s_str_cat_ordered.rank() def time_rank_int(self): self.s_int.rank() def time_rank_int_cat(self): self.s_int_cat.rank() def time_rank_int_cat_ordered(self): self.s_int_cat_ordered.rank() class Isin: params = ['object', 'int64'] param_names = ['dtype'] def setup(self, dtype): np.random.seed(1234) n = 5 * 10**5 sample_size = 100 arr = [i for i in np.random.randint(0, n // 10, size=n)] if dtype == 'object': arr = ['s{:04d}'.format(i) for i in arr] self.sample = np.random.choice(arr, sample_size) self.series = pd.Series(arr).astype('category') def time_isin_categorical(self, dtype): self.series.isin(self.sample) class IsMonotonic: def setup(self): N = 1000 self.c = pd.CategoricalIndex(list('a' * N + 'b' * N + 'c' * N)) self.s = pd.Series(self.c) def time_categorical_index_is_monotonic_increasing(self): self.c.is_monotonic_increasing def time_categorical_index_is_monotonic_decreasing(self): self.c.is_monotonic_decreasing def time_categorical_series_is_monotonic_increasing(self): self.s.is_monotonic_increasing def time_categorical_series_is_monotonic_decreasing(self): self.s.is_monotonic_decreasing class Contains: def setup(self): N = 10**5 self.ci = tm.makeCategoricalIndex(N) self.c = self.ci.values self.key = self.ci.categories[0] def time_categorical_index_contains(self): self.key in self.ci def time_categorical_contains(self): self.key in self.c class CategoricalSlicing: params = ['monotonic_incr', 'monotonic_decr', 'non_monotonic'] param_names = ['index'] def setup(self, index): N = 10**6 categories = ['a', 'b', 'c'] values = [0] * N + [1] * N + [2] * N if index == 'monotonic_incr': self.data = pd.Categorical.from_codes(values, categories=categories) elif index == 'monotonic_decr': self.data = pd.Categorical.from_codes(list(reversed(values)), categories=categories) elif index == 'non_monotonic': self.data = pd.Categorical.from_codes([0, 1, 2] * N, categories=categories) else: raise ValueError('Invalid index param: {}'.format(index)) self.scalar = 10000 self.list = list(range(10000)) self.cat_scalar = 'b' def time_getitem_scalar(self, index): self.data[self.scalar] def time_getitem_slice(self, index): self.data[:self.scalar] def time_getitem_list_like(self, index): self.data[[self.scalar]] def time_getitem_list(self, index): self.data[self.list] def time_getitem_bool_array(self, index): self.data[self.data == self.cat_scalar] class Indexing: def setup(self): N = 10**5 self.index = pd.CategoricalIndex(range(N), range(N)) self.series = pd.Series(range(N), index=self.index).sort_index() self.category = self.index[500] def time_get_loc(self): self.index.get_loc(self.category) def time_shape(self): self.index.shape def time_shallow_copy(self): self.index._shallow_copy() def time_align(self): pd.DataFrame({'a': self.series, 'b': self.series[:500]}) def time_intersection(self): self.index[:750].intersection(self.index[250:]) def time_unique(self): self.index.unique() def time_reindex(self): self.index.reindex(self.index[:500]) def time_reindex_missing(self): self.index.reindex(['a', 'b', 'c', 'd']) def time_sort_values(self): self.index.sort_values(ascending=False) from .pandas_vb_common import setup # noqa: F401
28.316498
77
0.592271
[ "BSD-3-Clause" ]
FerhatYilmaz1986/pandas
asv_bench/benchmarks/categoricals.py
8,410
Python
import astropy.io.fits as fits import argparse, os, re, copy parser = argparse.ArgumentParser() parser.add_argument('--list', default='list.list') parser.add_argument('--rename_by', default='DATA-TYP') parser.add_argument('--reparse', default=0, type=int) args = parser.parse_args() def log(description): print(description) try: lst_f = open(args.list, 'r') except: error("List file list not found: " + args.list) lst = lst_f.read() lst = lst.replace('\r\n', '\n') lst = lst.replace('\r', '\n') lst = lst.split('\n') log("Loading file(s)...") for i in lst: try: #if True: hdulist = fits.open(i) hdulist.verify('fix') log("Loading file: " + i) headers = dict(hdulist[0].header) typ = headers[args.rename_by].strip() if args.reparse == 1: newname = typ + '_' + i.split('_')[-1] else: newname = typ + '_' + i log("Renamed to " + newname) os.rename(i, newname) except: log("Error while reading file " + i)
21.431818
54
0.645811
[ "MIT" ]
hletrd/PyAstrophotography
autorenamer.py
943
Python
import collections Set = set KEY, PREV, NEXT = range(3) class OrderedSet(collections.MutableSet): """ From: http://code.activestate.com/recipes/576694/ """ def __init__(self, iterable=None): self.end = end = [] end += [None, end, end] # sentinel node for doubly linked list self.map = {} # key --> [key, prev, next] if iterable is not None: self |= iterable def __len__(self): return len(self.map) def __contains__(self, key): return key in self.map def add(self, key): if key not in self.map: end = self.end curr = end[PREV] curr[NEXT] = end[PREV] = self.map[key] = [key, curr, end] def discard(self, key): if key in self.map: key, prev, next = self.map.pop(key) prev[NEXT] = next next[PREV] = prev def __iter__(self): end = self.end curr = end[NEXT] while curr is not end: yield curr[KEY] curr = curr[NEXT] def __reversed__(self): end = self.end curr = end[PREV] while curr is not end: yield curr[KEY] curr = curr[PREV] def pop(self, last=True): if not self: raise KeyError('set is empty') key = next(reversed(self)) if last else next(iter(self)) self.discard(key) return key def __repr__(self): if not self: return '%s()' % (self.__class__.__name__,) return '%s(%r)' % (self.__class__.__name__, list(self)) def __eq__(self, other): if isinstance(other, OrderedSet): return len(self) == len(other) and list(self) == list(other) return set(self) == set(other) def __del__(self): self.clear() # remove circular references if __name__=="__main__": a = OrderedSet()
22.828947
74
0.591931
[ "Apache-2.0" ]
gantech/fastv8DriverProgram
fastv8/doc/_extensions/backports.py
1,735
Python
#!/usr/bin/env python3 import RPi.GPIO as GPIO import time import threading import logging import pandas as pd import numpy as np from tzlocal import get_localzone from flask import Flask, render_template, url_for, request logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(threadName)s - %(name)s - %(levelname)s - %(message)s') GPIO.setmode(GPIO.BCM) logger = logging.getLogger(__name__) from rpiweather import temphumid from rpiweather import temppressure from rpiweather import data from rpiweather import outside_weather from rpiweather import dust temppressure.start_recording() temphumid.start_recording() outside_weather.start_recording() dust.start_recording() app = Flask("rpiweather") def format_timestamps(series): local_tz = get_localzone() return list( str(dt.tz_localize("UTC").tz_convert(local_tz)) for dt in series ) @app.route("/") def index(): lookbehind = int(request.args.get('lookbehind', 24)) bigarray = data.get_recent_datapoints(lookbehind) logger.info("Total datapoint count: %d" % len(bigarray)) df = pd.DataFrame(bigarray, columns=['time', 'type', 'value']) df['time'] = pd.to_datetime(df['time']) df = df.set_index('time') agg_interval = "15T" if lookbehind < 168 else "1H" if lookbehind < 5040 else "1D" df2 = df.pivot(columns='type', values='value').resample(agg_interval).mean() temp_df = df2['temperature'].dropna() temp_values = { 'x': format_timestamps(temp_df.index), 'y': list(temp_df), 'name': 'Temperature', 'type': 'line', 'line': { 'color': 'rgb(244, 66, 98)' } } outside_temp_df = df2['outside_temperature'].dropna() ot_values = { 'x': format_timestamps(outside_temp_df.index), 'y': list(outside_temp_df), 'name': 'Temperature Outside', 'type': 'line', 'line': { 'color': 'rgb(244, 66, 98)', 'dash': 'longdash' } } pres_df = df2['pressure'].dropna() pressure_values = { 'x': format_timestamps(pres_df.index), 'y': list(pres_df), 'name': 'Pressure', 'type': 'line', 'yaxis': 'y2', 'line': { 'dash': 'dot', 'color': 'rgb(151,138,155)' } } hum_df = df2['humidity'].dropna() humidity_values = { 'x': format_timestamps(hum_df.index), 'y': list(hum_df), 'name': 'Humidity', 'type': 'scatter', 'fill': 'tozeroy', 'yaxis': 'y3', 'marker': { 'color': 'rgb(66,131,244)' } } dust_df = df2['dust'].dropna() dust_values = { 'x': format_timestamps(dust_df.index), 'y': list(dust_df), 'name': 'Dust level', 'type': 'line', 'yaxis': 'y4', 'line': { 'dash': 'dot', 'color': 'rgb(224, 205, 31)' } } chart_data = [ temp_values, pressure_values, humidity_values, ot_values, dust_values ] #import pdb; pdb.set_trace() lookbehind_options = [(24, "1d"), (24*7, "1w"), (24*7*30, "30d")] return render_template("index.html", weather_data=chart_data, lookbehind_options=lookbehind_options, lookbehind=lookbehind) def make_agg_df(rec): df = pd.DataFrame.from_records(rec, index="time") df.index = pd.to_datetime(df.index, unit="s") return df.resample("T").mean() def magic(): df_tp = make_agg_df(temppressure.get_records()) df_th = make_agg_df(temphumid.get_records()) df_th = df_th.rename(columns={'temp': 'bad_temp'}) total_view = pd.concat([df_tp, df_th], axis=1) return total_view #import IPython # IPython.embed() if False: bigarray = data.get_recent_datapoints() df = pd.DataFrame(bigarray, columns=['time', 'type', 'value']) df['time'] = pd.to_datetime(df['time']) df = df.set_index('time') df2 = df.pivot(columns='type', values='value').resample("5T").mean() temp_values = list(zip( (dt.timestamp() for dt in df2.index), df2['temperature'] )) pressure_values = list(zip( (dt.timestamp() for dt in df2.index), df2['pressure'] )) humidity_values = list(zip( (dt.timestamp() for dt in df2.index), df2['humidity'] ))
27.886792
99
0.58525
[ "MIT" ]
wbkang/rpi-repo
rpiweather/server.py
4,434
Python
# -*- coding:utf-8 -*- # /usr/bin/env python """ Date: 2019/10/30 11:28 Desc: 新浪财经-A股-实时行情数据和历史行情数据(包含前复权和后复权因子) """ import re import demjson import execjs import pandas as pd import requests from tqdm import tqdm from akshare.stock.cons import (zh_sina_a_stock_payload, zh_sina_a_stock_url, zh_sina_a_stock_count_url, zh_sina_a_stock_hist_url, hk_js_decode, zh_sina_a_stock_hfq_url, zh_sina_a_stock_qfq_url, zh_sina_a_stock_amount_url) def _get_zh_a_page_count() -> int: """ 所有股票的总页数 http://vip.stock.finance.sina.com.cn/mkt/#hs_a :return: 需要抓取的股票总页数 :rtype: int """ res = requests.get(zh_sina_a_stock_count_url) page_count = int(re.findall(re.compile(r"\d+"), res.text)[0]) / 80 if isinstance(page_count, int): return page_count else: return int(page_count) + 1 def stock_zh_a_spot() -> pd.DataFrame: """ 从新浪财经-A股获取所有A股的实时行情数据, 重复运行本函数会被新浪暂时封 IP http://vip.stock.finance.sina.com.cn/mkt/#qbgg_hk :return: pandas.DataFrame symbol code name trade pricechange changepercent buy \ 0 sh600000 600000 浦发银行 12.920 -0.030 -0.232 12.920 1 sh600004 600004 白云机场 18.110 -0.370 -2.002 18.110 2 sh600006 600006 东风汽车 4.410 -0.030 -0.676 4.410 3 sh600007 600007 中国国贸 17.240 -0.360 -2.045 17.240 4 sh600008 600008 首创股份 3.320 -0.030 -0.896 3.310 ... ... ... ... ... ... ... 3755 sh600096 600096 云天化 5.270 -0.220 -4.007 5.270 3756 sh600097 600097 开创国际 10.180 -0.120 -1.165 10.180 3757 sh600098 600098 广州发展 6.550 -0.040 -0.607 6.540 3758 sh600099 600099 林海股份 6.540 -0.150 -2.242 6.540 3759 sh600100 600100 同方股份 8.200 -0.100 -1.205 8.200 sell settlement open high low volume amount \ 0 12.930 12.950 12.950 13.100 12.860 46023920 597016896 1 18.120 18.480 18.510 18.510 17.880 24175071 437419344 2 4.420 4.440 4.490 4.490 4.410 4304900 19130233 3 17.280 17.600 17.670 17.670 17.220 684801 11879731 4 3.320 3.350 3.360 3.360 3.300 8284294 27579688 ... ... ... ... ... ... ... 3755 5.280 5.490 5.490 5.500 5.220 16964636 90595172 3756 10.190 10.300 10.220 10.340 10.090 1001676 10231669 3757 6.550 6.590 6.560 6.620 6.500 1996449 13098901 3758 6.580 6.690 6.650 6.680 6.530 1866180 12314997 3759 8.210 8.300 8.300 8.310 8.120 12087236 99281447 ticktime per pb mktcap nmc turnoverratio 0 15:00:00 6.984 0.790 3.792289e+07 3.631006e+07 0.16376 1 15:00:07 32.927 2.365 3.747539e+06 3.747539e+06 1.16826 2 15:00:02 15.926 1.207 8.820000e+05 8.820000e+05 0.21525 3 15:00:02 22.390 2.367 1.736555e+06 1.736555e+06 0.06798 4 15:00:07 22.912 1.730 1.887569e+06 1.600444e+06 0.17185 ... ... ... ... ... ... 3755 15:00:00 56.728 1.566 7.523847e+05 6.963668e+05 1.28386 3756 15:00:00 17.552 1.434 2.452734e+05 2.303459e+05 0.44268 3757 15:00:00 25.476 1.059 1.785659e+06 1.785659e+06 0.07323 3758 15:00:00 540.496 3.023 1.433045e+05 1.433045e+05 0.85167 3759 15:00:07 -6.264 1.465 2.430397e+06 2.430397e+06 0.40782 """ big_df = pd.DataFrame() page_count = _get_zh_a_page_count() zh_sina_stock_payload_copy = zh_sina_a_stock_payload.copy() for page in tqdm(range(1, page_count+1), desc="Please wait for a moment"): zh_sina_stock_payload_copy.update({"page": page}) r = requests.get( zh_sina_a_stock_url, params=zh_sina_stock_payload_copy) data_json = demjson.decode(r.text) big_df = big_df.append(pd.DataFrame(data_json), ignore_index=True) return big_df def stock_zh_a_daily(symbol: str = "sz000613", adjust: str = "qfq") -> pd.DataFrame: """ 新浪财经-A股-个股的历史行情数据, 大量抓取容易封IP :param symbol: sh600000 :type symbol: str :param adjust: 默认为空: 返回不复权的数据; qfq: 返回前复权后的数据; hfq: 返回后复权后的数据; hfq-factor: 返回后复权因子; hfq-factor: 返回前复权因子 :type adjust: str :return: specific data :rtype: pandas.DataFrame """ res = requests.get(zh_sina_a_stock_hist_url.format(symbol)) js_code = execjs.compile(hk_js_decode) dict_list = js_code.call( 'd', res.text.split("=")[1].split(";")[0].replace( '"', "")) # 执行js解密代码 data_df = pd.DataFrame(dict_list) data_df["date"] = data_df["date"].str.split("T", expand=True).iloc[:, 0] data_df.index = pd.to_datetime(data_df["date"]) del data_df["date"] data_df = data_df.astype("float") r = requests.get(zh_sina_a_stock_amount_url.format(symbol, symbol)) amount_data_json = demjson.decode(r.text[r.text.find("["): r.text.rfind("]") + 1]) amount_data_df = pd.DataFrame(amount_data_json) amount_data_df.index = pd.to_datetime(amount_data_df.date) del amount_data_df["date"] temp_df = pd.merge(data_df, amount_data_df, left_index=True, right_index=True, how="left") temp_df.fillna(method="ffill", inplace=True) temp_df = temp_df.astype(float) temp_df["amount"] = temp_df["amount"] * 10000 temp_df["turnover"] = temp_df["volume"] / temp_df["amount"] temp_df.columns = ['open', 'high', 'low', 'close', 'volume', 'outstanding_share', 'turnover'] if adjust == "": return temp_df if adjust == "hfq": res = requests.get(zh_sina_a_stock_hfq_url.format(symbol)) hfq_factor_df = pd.DataFrame( eval(res.text.split("=")[1].split("\n")[0])['data']) hfq_factor_df.columns = ["date", "hfq_factor"] hfq_factor_df.index = pd.to_datetime(hfq_factor_df.date) del hfq_factor_df["date"] temp_df = pd.merge( temp_df, hfq_factor_df, left_index=True, right_index=True, how="left" ) temp_df.fillna(method="ffill", inplace=True) temp_df = temp_df.astype(float) temp_df["open"] = temp_df["open"] * temp_df["hfq_factor"] temp_df["high"] = temp_df["high"] * temp_df["hfq_factor"] temp_df["close"] = temp_df["close"] * temp_df["hfq_factor"] temp_df["low"] = temp_df["low"] * temp_df["hfq_factor"] return temp_df.iloc[:, :-1] if adjust == "qfq": res = requests.get(zh_sina_a_stock_qfq_url.format(symbol)) qfq_factor_df = pd.DataFrame( eval(res.text.split("=")[1].split("\n")[0])['data']) qfq_factor_df.columns = ["date", "qfq_factor"] qfq_factor_df.index = pd.to_datetime(qfq_factor_df.date) del qfq_factor_df["date"] temp_df = pd.merge( temp_df, qfq_factor_df, left_index=True, right_index=True, how="left" ) temp_df.fillna(method="ffill", inplace=True) temp_df = temp_df.astype(float) temp_df["open"] = temp_df["open"] / temp_df["qfq_factor"] temp_df["high"] = temp_df["high"] / temp_df["qfq_factor"] temp_df["close"] = temp_df["close"] / temp_df["qfq_factor"] temp_df["low"] = temp_df["low"] / temp_df["qfq_factor"] return temp_df.iloc[:, :-1] if adjust == "hfq-factor": res = requests.get(zh_sina_a_stock_hfq_url.format(symbol)) hfq_factor_df = pd.DataFrame( eval(res.text.split("=")[1].split("\n")[0])['data']) hfq_factor_df.columns = ["date", "hfq_factor"] hfq_factor_df.index = pd.to_datetime(hfq_factor_df.date) del hfq_factor_df["date"] return hfq_factor_df if adjust == "qfq-factor": res = requests.get(zh_sina_a_stock_qfq_url.format(symbol)) qfq_factor_df = pd.DataFrame( eval(res.text.split("=")[1].split("\n")[0])['data']) qfq_factor_df.columns = ["date", "qfq_factor"] qfq_factor_df.index = pd.to_datetime(qfq_factor_df.date) del qfq_factor_df["date"] return qfq_factor_df if __name__ == "__main__": stock_zh_a_daily_hfq_df = stock_zh_a_daily(symbol="sh600582", adjust="qfq-factor") print(stock_zh_a_daily_hfq_df) stock_zh_a_daily_df = stock_zh_a_daily(symbol="sz000613", adjust="qfq") print(stock_zh_a_daily_df) stock_zh_a_spot_df = stock_zh_a_spot() print(stock_zh_a_spot_df)
44.979695
107
0.586616
[ "MIT" ]
fellowfun/akshare
akshare/stock/zh_stock_a_sina.py
9,239
Python
"""Support for HomematicIP Cloud lights.""" import logging from typing import Any, Dict from homematicip.aio.device import ( AsyncBrandDimmer, AsyncBrandSwitchMeasuring, AsyncBrandSwitchNotificationLight, AsyncDimmer, AsyncFullFlushDimmer, AsyncPluggableDimmer, ) from homematicip.base.enums import RGBColorState from homematicip.base.functionalChannels import NotificationLightChannel from homeassistant.components.light import ( ATTR_BRIGHTNESS, ATTR_COLOR_NAME, ATTR_HS_COLOR, ATTR_TRANSITION, SUPPORT_BRIGHTNESS, SUPPORT_COLOR, Light, ) from homeassistant.config_entries import ConfigEntry from homeassistant.helpers.typing import HomeAssistantType from . import DOMAIN as HMIPC_DOMAIN, HMIPC_HAPID, HomematicipGenericDevice from .hap import HomematicipHAP _LOGGER = logging.getLogger(__name__) ATTR_TODAY_ENERGY_KWH = "today_energy_kwh" ATTR_CURRENT_POWER_W = "current_power_w" async def async_setup_platform( hass, config, async_add_entities, discovery_info=None ) -> None: """Old way of setting up HomematicIP Cloud lights.""" pass async def async_setup_entry( hass: HomeAssistantType, config_entry: ConfigEntry, async_add_entities ) -> None: """Set up the HomematicIP Cloud lights from a config entry.""" hap = hass.data[HMIPC_DOMAIN][config_entry.data[HMIPC_HAPID]] entities = [] for device in hap.home.devices: if isinstance(device, AsyncBrandSwitchMeasuring): entities.append(HomematicipLightMeasuring(hap, device)) elif isinstance(device, AsyncBrandSwitchNotificationLight): entities.append(HomematicipLight(hap, device)) entities.append( HomematicipNotificationLight(hap, device, device.topLightChannelIndex) ) entities.append( HomematicipNotificationLight( hap, device, device.bottomLightChannelIndex ) ) elif isinstance( device, (AsyncDimmer, AsyncPluggableDimmer, AsyncBrandDimmer, AsyncFullFlushDimmer), ): entities.append(HomematicipDimmer(hap, device)) if entities: async_add_entities(entities) class HomematicipLight(HomematicipGenericDevice, Light): """Representation of a HomematicIP Cloud light device.""" def __init__(self, hap: HomematicipHAP, device) -> None: """Initialize the light device.""" super().__init__(hap, device) @property def is_on(self) -> bool: """Return true if device is on.""" return self._device.on async def async_turn_on(self, **kwargs) -> None: """Turn the device on.""" await self._device.turn_on() async def async_turn_off(self, **kwargs) -> None: """Turn the device off.""" await self._device.turn_off() class HomematicipLightMeasuring(HomematicipLight): """Representation of a HomematicIP Cloud measuring light device.""" @property def device_state_attributes(self) -> Dict[str, Any]: """Return the state attributes of the generic device.""" state_attr = super().device_state_attributes current_power_w = self._device.currentPowerConsumption if current_power_w > 0.05: state_attr[ATTR_CURRENT_POWER_W] = round(current_power_w, 2) state_attr[ATTR_TODAY_ENERGY_KWH] = round(self._device.energyCounter, 2) return state_attr class HomematicipDimmer(HomematicipGenericDevice, Light): """Representation of HomematicIP Cloud dimmer light device.""" def __init__(self, hap: HomematicipHAP, device) -> None: """Initialize the dimmer light device.""" super().__init__(hap, device) @property def is_on(self) -> bool: """Return true if device is on.""" return self._device.dimLevel is not None and self._device.dimLevel > 0.0 @property def brightness(self) -> int: """Return the brightness of this light between 0..255.""" return int((self._device.dimLevel or 0.0) * 255) @property def supported_features(self) -> int: """Flag supported features.""" return SUPPORT_BRIGHTNESS async def async_turn_on(self, **kwargs) -> None: """Turn the light on.""" if ATTR_BRIGHTNESS in kwargs: await self._device.set_dim_level(kwargs[ATTR_BRIGHTNESS] / 255.0) else: await self._device.set_dim_level(1) async def async_turn_off(self, **kwargs) -> None: """Turn the light off.""" await self._device.set_dim_level(0) class HomematicipNotificationLight(HomematicipGenericDevice, Light): """Representation of HomematicIP Cloud dimmer light device.""" def __init__(self, hap: HomematicipHAP, device, channel: int) -> None: """Initialize the dimmer light device.""" self.channel = channel if self.channel == 2: super().__init__(hap, device, "Top") else: super().__init__(hap, device, "Bottom") self._color_switcher = { RGBColorState.WHITE: [0.0, 0.0], RGBColorState.RED: [0.0, 100.0], RGBColorState.YELLOW: [60.0, 100.0], RGBColorState.GREEN: [120.0, 100.0], RGBColorState.TURQUOISE: [180.0, 100.0], RGBColorState.BLUE: [240.0, 100.0], RGBColorState.PURPLE: [300.0, 100.0], } @property def _func_channel(self) -> NotificationLightChannel: return self._device.functionalChannels[self.channel] @property def is_on(self) -> bool: """Return true if device is on.""" return ( self._func_channel.dimLevel is not None and self._func_channel.dimLevel > 0.0 ) @property def brightness(self) -> int: """Return the brightness of this light between 0..255.""" return int((self._func_channel.dimLevel or 0.0) * 255) @property def hs_color(self) -> tuple: """Return the hue and saturation color value [float, float].""" simple_rgb_color = self._func_channel.simpleRGBColorState return self._color_switcher.get(simple_rgb_color, [0.0, 0.0]) @property def device_state_attributes(self) -> Dict[str, Any]: """Return the state attributes of the generic device.""" state_attr = super().device_state_attributes if self.is_on: state_attr[ATTR_COLOR_NAME] = self._func_channel.simpleRGBColorState return state_attr @property def name(self) -> str: """Return the name of the generic device.""" return f"{super().name} Notification" @property def supported_features(self) -> int: """Flag supported features.""" return SUPPORT_BRIGHTNESS | SUPPORT_COLOR @property def unique_id(self) -> str: """Return a unique ID.""" return f"{self.__class__.__name__}_{self.post}_{self._device.id}" async def async_turn_on(self, **kwargs) -> None: """Turn the light on.""" # Use hs_color from kwargs, # if not applicable use current hs_color. hs_color = kwargs.get(ATTR_HS_COLOR, self.hs_color) simple_rgb_color = _convert_color(hs_color) # Use brightness from kwargs, # if not applicable use current brightness. brightness = kwargs.get(ATTR_BRIGHTNESS, self.brightness) # If no kwargs, use default value. if not kwargs: brightness = 255 # Minimum brightness is 10, otherwise the led is disabled brightness = max(10, brightness) dim_level = brightness / 255.0 transition = kwargs.get(ATTR_TRANSITION, 0.5) await self._device.set_rgb_dim_level_with_time( channelIndex=self.channel, rgb=simple_rgb_color, dimLevel=dim_level, onTime=0, rampTime=transition, ) async def async_turn_off(self, **kwargs) -> None: """Turn the light off.""" simple_rgb_color = self._func_channel.simpleRGBColorState transition = kwargs.get(ATTR_TRANSITION, 0.5) await self._device.set_rgb_dim_level_with_time( channelIndex=self.channel, rgb=simple_rgb_color, dimLevel=0.0, onTime=0, rampTime=transition, ) def _convert_color(color: tuple) -> RGBColorState: """ Convert the given color to the reduced RGBColorState color. RGBColorStat contains only 8 colors including white and black, so a conversion is required. """ if color is None: return RGBColorState.WHITE hue = int(color[0]) saturation = int(color[1]) if saturation < 5: return RGBColorState.WHITE if 30 < hue <= 90: return RGBColorState.YELLOW if 90 < hue <= 160: return RGBColorState.GREEN if 150 < hue <= 210: return RGBColorState.TURQUOISE if 210 < hue <= 270: return RGBColorState.BLUE if 270 < hue <= 330: return RGBColorState.PURPLE return RGBColorState.RED
32.391459
88
0.652054
[ "Apache-2.0" ]
0x00-0xFF/home-assistant
homeassistant/components/homematicip_cloud/light.py
9,102
Python
# region [Imports] # * Standard Library Imports ----------------------------------------------------------------------------> import os import logging import sqlite3 as sqlite from pprint import pformat # * Gid Imports -----------------------------------------------------------------------------------------> import gidlogger as glog # endregion[Imports] __updated__ = '2020-11-26 17:04:37' # region [AppUserData] # endregion [AppUserData] # region [Logging] log = logging.getLogger('gidsql') glog.import_notification(log, __name__) # endregion[Logging] # region [Constants] # endregion[Constants] class GidSqliteActionBase: def __init__(self, in_db_loc, in_pragmas=None): self.db_loc = in_db_loc self.pragmas = in_pragmas glog.class_init_notification(log, self) @property def exists(self): """ checks if the db exist and logs it Returns ------- bool bool if the file exist or not """ if os.path.isfile(self.db_loc): log.info("database at %s, does EXIST", self.db_loc) return True else: log.info("databse at %s does NOT EXIST", self.db_loc) return False @staticmethod def _handle_error(error, sql_phrase, variables): log.critical("%s - with SQL --> %s and args[%s]", str(error), sql_phrase, pformat(variables)) if 'syntax error' in str(error): raise SyntaxError(error) raise sqlite.Error(error) def _execute_pragmas(self, in_cursor): if self.pragmas is not None and self.pragmas != '': in_cursor.executescript(self.pragmas) log.debug("Executed pragmas '%s' successfully", self.pragmas) def __repr__(self): return f"{self.__class__.__name__} ('{self.db_loc}')" def __str__(self): return self.__class__.__name__ class AioGidSqliteActionBase: def __init__(self, in_db_loc, in_pragmas=None): self.db_loc = in_db_loc self.pragmas = in_pragmas glog.class_init_notification(log, self) @property def exists(self): """ checks if the db exist and logs it Returns ------- bool bool if the file exist or not """ if os.path.isfile(self.db_loc): log.info("database at %s, does EXIST", self.db_loc) return True else: log.info("databse at %s does NOT EXIST", self.db_loc) return False @staticmethod async def _handle_error(error, sql_phrase, variables): log.critical("%s - with SQL --> %s and args[%s]", str(error), sql_phrase, pformat(variables)) if 'syntax error' in str(error): raise SyntaxError(error) raise sqlite.Error(error) async def _execute_pragmas(self, in_connection): if self.pragmas not in [None, '', []]: await in_connection.executescript(self.pragmas) log.debug("Executed pragmas '%s' successfully", self.pragmas) def __repr__(self): return f"{self.__class__.__name__} ('{self.db_loc}')" def __str__(self): return self.__class__.__name__ # region[Main_Exec] if __name__ == '__main__': pass # endregion[Main_Exec]
26.624
106
0.578425
[ "MIT" ]
official-antistasi-community/Antipetros_Discord_Bot
antipetros_discordbot/utility/gidsql/db_action_base.py
3,328
Python
# Copyright (c) 2020, Fabio Muratore, Honda Research Institute Europe GmbH, and # Technical University of Darmstadt. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. Neither the name of Fabio Muratore, Honda Research Institute Europe GmbH, # or Technical University of Darmstadt, nor the names of its contributors may # be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL FABIO MURATORE, HONDA RESEARCH INSTITUTE EUROPE GMBH, # OR TECHNICAL UNIVERSITY OF DARMSTADT BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; # OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER # IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. import functools import numpy as np import operator import random import scipy.signal as signal import torch as to from collections.abc import Iterable from copy import deepcopy from math import ceil from typing import Sequence, Type, Optional, Union, Callable, Tuple import pyrado from pyrado.sampling.data_format import stack_to_format, to_format, cat_to_format, new_tuple from pyrado.sampling.utils import gen_shuffled_batch_idcs, gen_ordered_batch_idcs def _index_to_int(idx, n): # Index conversion idx = operator.index(idx) # Check negative index if idx < 0: idx += n # Check bounds if idx < 0 or idx >= n: raise IndexError return idx class DictIndexProxy: """ Views a slice through a dict of lists or tensors. """ __slots__ = ("__dict__", "_obj", "_index", "_prefix") def __init__(self, obj: dict, index: int, path: Optional[str] = None): super().__init__() self._obj = obj self._index = index if path: self._prefix = path + "." else: self._prefix = "" def _process_key(self, key: str, index: int, error_type: Type[Exception]): return key, index def _get_keyed_value(self, key, error_type: Type[Exception] = RuntimeError): # Obtain keyed value from obj dict value = self._obj.get(key, None) if value is None: # Try pluralized keys value = self._obj.get(key + "s", None) if value is None: raise error_type(f"No entry named {self._prefix}{key}") return value def _index_value(self, key, value, index, error_type: Type[Exception] = RuntimeError): # Obtain indexed element from value if isinstance(value, dict): # Return subdict proxy return DictIndexProxy(value, index, self._prefix + key) elif isinstance(value, tuple): # Return tuple of slices # Since we can't proxy a tuple, we slice eagerly # Use type(value) to support named tuples. (the keys is still index though) return new_tuple( type(value), (self._index_value(f"{key}[{i}]", v, index, error_type) for i, v in enumerate(value)) ) elif isinstance(value, (to.Tensor, np.ndarray)): # Return slice of ndarray / tensor return value[index, ...] elif isinstance(value, list): # Return list item return value[index] else: # Unsupported type raise error_type(f"Entry {self._prefix}{key} has un-gettable type {type(value)}") def _get_indexed_value(self, key, error_type: Type[Exception] = RuntimeError): real_key, index = self._process_key(key, self._index, error_type) # Obtain keyed value list from obj dict value = self._get_keyed_value(real_key, error_type=error_type) return self._index_value(key, value, index, error_type) def _set_indexed_value(self, key, new_value, error_type: Type[Exception] = RuntimeError): real_key, index = self._process_key(key, self._index, error_type) # Obtain keyed value list from obj dict value = self._get_keyed_value(real_key, error_type=error_type) # Set value to data if isinstance(value, (to.Tensor, np.ndarray)): # Set slice of ndarray/tensor value[index, ...] = new_value elif isinstance(value, list): # Set list item value[index] = new_value else: # Don't support setting dict proxies raise error_type(f"Entry {key} has un-settable type {type(value)}") def __getattr__(self, key): if key.startswith("_"): raise AttributeError result = self._get_indexed_value(key, error_type=AttributeError) self.__dict__[key] = result return result def __setattr__(self, key, value): if not key.startswith("_"): try: self._set_indexed_value(key, value, error_type=AttributeError) except AttributeError: pass else: self.__dict__[key] = value return object.__setattr__(self, key, value) def __dir__(self): # List dict items not starting with _ return [k for k in self._obj if not k.startswith("_")] # Define getitem and setitem too, helps when return attr is a keyword def __getitem__(self, key): result = self._get_indexed_value(key, error_type=KeyError) self.__dict__[key] = result return result def __setitem__(self, key, value): self._set_indexed_value(key, value, error_type=KeyError) self.__dict__[key] = value # Serialize only dict and index def __getstate__(self): return {"obj", self._obj, "index", self._index} def __setstate__(self, state): self._obj = state["obj"] self._index = state["index"] class Step(DictIndexProxy): """ A single step in a rollout. This object is a proxy, referring a specific index in the rollout. When querying an attribute from the step, it will try to return the corresponding slice from the rollout. Additionally, one can prefix attributes with `next_` to access the value for the next step, i.e. `next_observations` the observation made at the start of the next step. """ __slots__ = "_rollout" def __init__(self, rollout, index): """ Constructor :param rollout: `StepSequence` object to which this step belongs :param index: index of this step in the rollout """ # Call DictIndexProxy's constructor super(Step, self).__init__(rollout.__dict__, index) self._rollout = rollout def _process_key(self, key: str, index: int, error_type: Type[Exception]): if key.startswith("next_"): if not self._rollout.continuous: raise error_type("Access to next element is not supported for non-continuous rollouts!") key = key[5:] index += 1 if key not in self._rollout.data_names and key + "s" not in self._rollout.data_names and key != "done": raise error_type(f"No such rollout data field: {key}") return key, index # Serialize rollout and index def __getstate__(self): return {"rollout", self._rollout, "index", self._index} def __setstate__(self, state): self._rollout = state["rollout"] self._obj = self._rollout.__dict__ self._index = state["index"] class StepSequence(Sequence[Step]): """ A sequence of steps. During the rollout, the values of different variables are recorded. This class provides efficient storage and access for these values. The constructor accepts a list of step entries for each variable. For every step, the list should contain a Tensor/ndarray of values for that step. The shape of these tensors must be the same for all step entries. The passed tensors are then stacked, so that the first dimension is the step count. Some values, like the observations, can have one more element then there are steps to encode the state after the last step. Additionally, the step entries may be dicts to support keyed storage. A list of dicts is converted to a dict of lists, each of which will be regularly stacked. Apart from the variable-based view, the rollout can also be seen as a sequence of steps. Each Step object is a proxy, it's attributes refer to the respective slice of the corresponding variable. The only required result variable are `rewards`, observations`, and `actions`. All other variables are optional. Common optional ones are `states` and `rollout_info`. .. note:: Storing PyTorch tensors with gradient tracing is NOT supported. The rationale behind this is eager error avoidance. The only reason you would add them is to profit from the optimized slicing, but using that with gradient tracking risks lingering incomplete graphs. """ rewards: Union[np.ndarray, to.Tensor] observations: Union[np.ndarray, to.Tensor] actions: Union[np.ndarray, to.Tensor] # Set of required rollout fields in addition to rewards, observations, actions. Putting this into a class field # instead of using the constructor arguments reduces duplicate code and allows to override it during unit tests. required_fields = {} def __init__( self, *, complete: Optional[bool] = True, rollout_info=None, data_format: Optional[str] = None, done: Optional[np.ndarray] = None, continuous: Optional[bool] = True, rollout_bounds=None, rewards: Sequence, observations: Sequence, actions: Sequence, **data, ): # print (data) """ Constructor :param complete: `False` if the rollout is incomplete, i.e. as part of a mini-batch :param rollout_info: data staying constant through the whole episode :param data_format: 'torch' to use Tensors, 'numpy' to use ndarrays. Will use Tensors if any data argument does, else ndarrays :param done: boolean ndarray, specifying for each step whether it led to termination. The last step of continuous rollouts, i.e. not mini-batches, is done if `complete` is `True`. :param continuous: true if the steps form one continuous sequence. :param rewards: sequence of reward values, determines sequence length :param observations: sequence of observation values, the length must be `len(rewards) + 1` :param actions: sequence of action values, the length must be `len(rewards)` :param data: additional data lists, their length must be `len(rewards)` or `len(rewards) + 1` """ # Obtain rollout length from reward list self.length = len(rewards) if self.length == 0: raise pyrado.ShapeErr(msg="StepSequence cannot be empty!") # Set singular attributes self.rollout_info = rollout_info self.continuous = continuous # Infer if this instance is using numpy arrays or PyTorch tensors if data_format is None: # We ignore rewards here since it's probably scalar for value in data.values(): if isinstance(value, to.Tensor) or (isinstance(value, list) and isinstance(value[0], to.Tensor)): data_format = "torch" break else: # Use numpy by default data_format = "numpy" self._data_format = data_format # Check for missing extra fields missing_fields = StepSequence.required_fields - data.keys() if missing_fields: raise ValueError(f"Missing required data fields: {missing_fields}") # Set mandatory data fields self._data_names = [] self.add_data("rewards", rewards) self.add_data("observations", observations) self.add_data("actions", actions) # Set other data fields and verify their length for name, value in data.items(): self.add_data(name, value) # Set done list if any. The done list is always a numpy array since torch doesn't support boolean tensors. if done is None: done = np.zeros(self.length, dtype=np.bool) if complete and continuous: done[-1] = True else: done = np.asarray(done, dtype=np.bool) assert done.shape[0] == self.length self.done = done # Compute rollout bounds from done list (yes this is not exactly safe...) # The bounds list has one extra entry 0, this simplifies queries greatly. # bounds[i] = start of rollout i; bounds[i+1]=end of rollout i if continuous: if rollout_bounds is None: rollout_bounds = [0] rollout_bounds.extend(np.flatnonzero(done) + 1) if not done[-1]: rollout_bounds.append(self.length) else: # Validate externally passed bounds. for i in range(len(rollout_bounds) - 1): assert rollout_bounds[i] < rollout_bounds[i + 1] assert rollout_bounds[0] == 0 assert rollout_bounds[-1] == self.length self._rollout_bounds = np.array(rollout_bounds) else: self._rollout_bounds = None @property def data_format(self) -> str: """ Get the name of data format ('torch' or 'numpy'). """ return self._data_format @property def data_names(self) -> Sequence[str]: """ Get the list of data attribute names. """ return self._data_names @property def rollout_bounds(self) -> np.ndarray: return self._rollout_bounds @property def rollout_count(self): """ Count the number of sub-rollouts inside this step sequence. """ if not self.continuous: raise pyrado.ValueErr(msg="Sub-rollouts are only supported on continuous data.") return len(self._rollout_bounds) - 1 @property def rollout_lengths(self): """ Lengths of sub-rollouts. """ if not self.continuous: raise pyrado.ValueErr(msg="Sub-rollouts are only supported on continuous data.") bounds = self._rollout_bounds return bounds[1:] - bounds[:-1] def __len__(self): """ Get the step sequence's length. """ return self.length def __getitem__(self, index): if isinstance(index, slice) or isinstance(index, Iterable): # Return a StepSequence object with the subset. Build sliced data dict. sliced_data = {name: self._slice_entry(self.__dict__[name], index) for name in self._data_names} sliced_data = {k: v for k, v in sliced_data.items() if v is not None} # Check if the slice is continuous continuous = isinstance(index, slice) and (index.step is None or index.step == 1) rollout_bounds = None if continuous: # Slice rollout bounds too. start, end, _ = index.indices(self.length) rollout_bounds = [0] for b in self._rollout_bounds: if start < b < end: rollout_bounds.append(b - start) rollout_bounds.append(end - start) return StepSequence( rollout_info=self.rollout_info, data_format=self._data_format, done=self.done[index], continuous=continuous, rollout_bounds=rollout_bounds, **sliced_data, ) # Should be a singular element index. Return step proxy. return Step(self, _index_to_int(index, self.length)) def __map_tensors(self, mapper, elem): if isinstance(elem, dict): # Modify dict in-place for k in elem.keys(): elem[k] = self.__map_tensors(mapper, elem[k]) return elem if isinstance(elem, tuple): # Can't modify in place since it's a tuple return new_tuple(type(elem), (self.__map_tensors(mapper, part) for part in elem)) # Tensor element return mapper(elem) def _validate_data_size(self, name, value): # In torch case: check that we don't mess with gradients if isinstance(value, to.Tensor): assert not value.requires_grad, ( "Do not add gradient-sensitive tensors to SampleCollections. " "This is a fast road to weird retain_graph errors!" ) # Check type of data if isinstance(value, dict): # Validate dict entries for k, v in value.items(): self._validate_data_size(f"{name}.{k}", v) return if isinstance(value, tuple): # Validate dict entries for i, v in enumerate(value): self._validate_data_size(f"{name}[{i}]", v) return if isinstance(value, (np.ndarray, to.Tensor)): # A single array. The first dimension must match vlen = value.shape[0] else: # Should be a sequence assert isinstance(value, Sequence) vlen = len(value) if self.continuous: if not (vlen == self.length or vlen == self.length + 1): raise pyrado.ShapeErr( msg=f"The data list {name} must have {self.length} or {self.length}+1 elements," f"but has {vlen} elements." ) else: # Disallow +1 tensors if not vlen == self.length: raise pyrado.ShapeErr( msg=f"The data list {name} must have {self.length} elements," f"but has {vlen} elements." ) def _slice_entry(self, entry, index: slice): if isinstance(entry, dict): return {k: self._slice_entry(v, index) for k, v in entry.items()} if isinstance(entry, tuple): return new_tuple(type(entry), (self._slice_entry(e, index) for e in entry)) elif isinstance(entry, (to.Tensor, np.ndarray)): return entry[index, ...] elif isinstance(entry, list): return entry[index] else: return None # unsupported def _truncate_after_last(self, entry): if isinstance(entry, dict): return {k: self._truncate_after_last(v) for k, v in entry.items()} if isinstance(entry, tuple): return new_tuple(type(entry), (self._truncate_after_last(v) for v in entry)) elif isinstance(entry, (to.Tensor, np.ndarray)): if entry.shape[0] == self.length + 1: return entry[:-1, ...] elif isinstance(entry, list): if len(entry) == self.length + 1: return entry[:-1] # No truncation return entry def add_data(self, name: str, value=None, item_shape: tuple = None, with_after_last: Optional[bool] = False): """ Add a new data field to the step sequence. :param name: string for the name :param value: the data :param item_shape: shape to store the data in :param with_after_last: `True` if there is one more element than the length (e.g. last observation) """ if name in self._data_names: raise pyrado.KeyErr(msg=f"Trying to add a duplicate data field for {name}!") if value is None: # Compute desired step length ro_length = self.length if with_after_last: ro_length += 1 # Create zero-filled if self._data_format == "torch": value = to.zeros(to.Size([ro_length]) + to.Size(item_shape)) else: value = np.array((ro_length,) + item_shape) else: # Check the data self._validate_data_size(name, value) if not isinstance(value, (np.ndarray, to.Tensor)): # Stack into one array/tensor value = stack_to_format(value, self._data_format) else: # Ensure right array format value = to_format(value, self._data_format) # Store in dict self._data_names.append(name) self.__dict__[name] = value def get_data_values(self, name: str, truncate_last: Optional[bool] = False): """ Return the data tensor stored under the given name. :param name: data name :param truncate_last: True to truncate the length+1 entry if present """ assert name in self._data_names entry = self.__dict__[name] # Truncate if needed if truncate_last: # Check length entry = self._truncate_after_last(entry) return entry def numpy(self, data_type=None): """ Convert data to numpy ndarrays. :param data_type: type to return data in. When None is passed, the data type is left unchanged. """ self.convert("numpy", data_type) def torch(self, data_type=None): """ Convert data to PyTorch Tensors. :param data_type: type to return data in. When None is passed, the data type is left unchanged. """ self.convert("torch", data_type) def convert(self, data_format: str, data_type=None): """ Convert data to specified format. :param data_format: torch to use Tensors, numpy to use ndarrays :param data_type: optional torch/numpy dtype for data. When `None` is passed, the data type is left unchanged. """ if data_format not in {"torch", "numpy"}: raise pyrado.ValueErr(given=data_format, eq_constraint="'torch' or 'numpy'") if self._data_format == data_format: return self._data_format = data_format for dn in self._data_names: self.__dict__[dn] = self.__map_tensors(lambda t: to_format(t, data_format, data_type), self.__dict__[dn]) def get_rollout(self, index): """ Get an indexed sub-rollout. :param index: generic index of sub-rollout, negative values, slices and iterables are allowed :return: selected subset. """ if not self.continuous: raise pyrado.ValueErr(msg="Sub-rollouts are only supported on continuous data.") if isinstance(index, slice): # Analyze slice start, end, step = index.indices(self.rollout_count) if step == 1: # A simple, continuous slice bounds = self._rollout_bounds start_step = bounds[start] end_step = bounds[end] return self[start_step:end_step] # Convert nonstandard slice to range index = range(start, end, step) if isinstance(index, Iterable): # Nontrivial non-continuous slice, need to slice each element and concat them. return StepSequence.concat([self.get_rollout(i) for i in index], self.data_format) # Decode index index = _index_to_int(index, self.rollout_count) bounds = self._rollout_bounds start_step = bounds[index] end_step = bounds[index + 1] return self[start_step:end_step] def iterate_rollouts(self): """ Iterate over all sub-rollouts of a concatenated rollout. """ if not self.continuous: raise pyrado.ValueErr(msg="Sub-rollouts are only supported on continuous data.") bounds = self._rollout_bounds count = len(bounds) - 1 if count == 1: # Optimize for single rollout yield self else: for i in range(count): start_step = bounds[i] end_step = bounds[i + 1] yield self[start_step:end_step] def sample_w_next(self, batch_size: int) -> tuple: """ Sample a random batch of steps from a together with the associated next steps. Similar to `split_shuffled_batches` with `complete_rollouts=False` :param batch_size: number of steps to sample :return: randomly sampled batch of steps """ if not self.length >= 2: raise pyrado.ValueErr(given=self.length, ge_constraint="2") shuffled_idcs = random.sample(range(self.length - 2), batch_size) # - 2 to always have a next step shuffled_next_idcs = [i + 1 for i in shuffled_idcs] steps = deepcopy(self[shuffled_idcs]) next_steps = deepcopy(self[shuffled_next_idcs]) return steps, next_steps def split_ordered_batches(self, batch_size: int = None, num_batches: int = None): """ Batch generation. Split the step collection into ordered mini-batches of size batch_size. :param batch_size: number of steps per batch, i.e. variable number of batches :param num_batches: number of batches to split the rollout in, i.e. variable batch size .. note:: Left out the option to return complete rollouts like for `split_shuffled_batches`. """ if batch_size is None and num_batches is None or batch_size is not None and num_batches is not None: raise pyrado.ValueErr(msg="Either batch_size or num_batches must not be None, but not both or none!") elif batch_size is not None and batch_size < 1: raise pyrado.ValueErr(given=batch_size, ge_constraint="1 (int)") elif num_batches is not None and num_batches < 1: raise pyrado.ValueErr(given=num_batches, ge_constraint="1 (int)") # Switch the splitting mode if num_batches is not None: batch_size = ceil(self.length / num_batches) if batch_size >= self.length: # Yield all at once if there are less steps than the batch size yield self else: # Split by steps for b in gen_ordered_batch_idcs(batch_size, self.length, sorted=True): yield self[b] def split_shuffled_batches(self, batch_size: int, complete_rollouts: Optional[bool] = False): """ Batch generation. Split the step collection into random mini-batches of size batch_size. :param batch_size: number of steps per batch :param complete_rollouts: if `complete_rollouts = True`, the batches will not contain partial rollouts. However, the size of the returned batches cannot be strictly maintained in this case. .. note:: This method is also supposed to be called for recurrent networks, which have a different `evaluate()` method that recognized where the rollouts end within a batch. """ if batch_size >= self.length: # Yield all at once if there are less steps than the batch size yield self elif complete_rollouts and self.continuous: # Our goal here is to randomly shuffle the rollouts, while returning batches of batch_size steps. # The solution here is to take rollouts in a random order and yield a batch each time it exceeds batch_size. rollout_lengths = self.rollout_lengths shuffled_idcs = random.sample(range(len(rollout_lengths)), len(rollout_lengths)) # Now, walk through the rollouts in a random order and split once batch size is full. batch = [] cur_batch_size = 0 for idx in shuffled_idcs: batch.append(idx) cur_batch_size += rollout_lengths[idx] if cur_batch_size >= batch_size: # Got a full batch yield self.get_rollout(batch) batch.clear() cur_batch_size = 0 # Yield eventual final one if batch: yield self.get_rollout(batch) else: # Split by steps for b in gen_shuffled_batch_idcs(batch_size, self.length): yield self[b] def undiscounted_return(self) -> float: """ Compute the undiscounted return. :return: sum of rewards """ if not len(self._rollout_bounds) == 2: raise pyrado.ShapeErr(msg="The StepSequence must be a single continuous rollout.") return self.rewards.sum() def discounted_return(self, gamma: float) -> (to.Tensor, np.ndarray): """ Compute the discounted return. :param gamma: temporal discount factor :return: exponentially weighted sum of rewards """ if not len(self._rollout_bounds) == 2: raise pyrado.ShapeErr(msg="The StepSequence must be a single continuous rollout.") if not 0 <= gamma <= 1: raise pyrado.ValueErr(given=gamma, ge_constraint="0", le_constraint="1") if self.data_format == "torch": return to.dot(self.rewards, (gamma ** to.arange(self.length))) else: return np.dot(self.rewards, (gamma ** np.arange(self.length))) @classmethod def concat( cls, parts: Sequence["StepSequence"], data_format: Optional[str] = None, truncate_last: Optional[bool] = True ): """ Concatenate multiple step sequences into one, truncating the last observation. :param parts: batch of sequences to concatenate :param data_format: torch to use Tensors, numpy to use ndarrays, `None` to choose automatically :param truncate_last: remove the last step from each part, highly recommended to be `True` :return: concatenated sequence of `Steps` """ # Obtain data attribute names data_names = parts[0].data_names # Deduce data format if is None if data_format is None: data_format = parts[0].data_format # Concat data fields data = { name: cat_to_format([ro.get_data_values(name, truncate_last) for ro in parts], data_format) for name in data_names } # Treat done separately since it should stay a ndarray done = np.concatenate([ro.done for ro in parts]) # Check if parts are continuous continuous = all(ro.continuous for ro in parts) rollout_bounds = None if continuous: # Concatenate rollout separator indices for continuous rollouts rollout_bounds = [0] acc_len = 0 for ro in parts: rollout_bounds.extend(ro.rollout_bounds[1:] + acc_len) acc_len += ro.rollout_bounds[-1] return StepSequence( data_format=data_format, done=done, continuous=continuous, rollout_bounds=rollout_bounds, **data ) @classmethod def process_data( cls, rollout: "StepSequence", fcn: Callable, fcn_arg_name: str, fcn_arg_types: Union[type, Tuple[type]] = np.ndarray, include_fields: Sequence[str] = None, exclude_fields: Sequence[str] = None, **process_fcn_kwargs, ): """ Process all data fields of a rollouts using an arbitrary function. Optionally, some fields can be excluded. :param rollout: `StepSequence` holding the data :param fcn: function (of one remaining input) to used manipulate the data fields, e.g. `scipy.filtfilt()` :param fcn_arg_name: sting of the remaining input of `process_fcn()`, e.g. `x` for `scipy.filtfilt()` :param fcn_arg_types: type or tuple thereof which are expected as input to `fcn()` :param include_fields: list of field names to include for processing, pass `None` to not include everything. If specified, only fields from this selection will be considered :param exclude_fields: list of field names to exclude from processing, pass `None` to not exclude anything :param process_fcn_kwargs: keyword arguments forwarded to `process_fcn()` :return: new `StepSequence` instance with processed data """ @functools.wraps(fcn) def recursive_wrapper(inp, **kwargs): """ Wrap the processing function to call it recursivelyy for nested data structures. """ # Add to actual data input to the keyword arguments to make calling the function easier kwargs.update({fcn_arg_name: inp}) if isinstance(inp, fcn_arg_types): # Process the data inp = fcn(**kwargs) elif isinstance(inp, dict): # Recursive call for key, value in inp.items(): if isinstance(value, fcn_arg_types): inp[key] = recursive_wrapper(value, **kwargs) else: inp[key] = value elif isinstance(inp, list): # Recursive call for idx, item in enumerate(inp): if isinstance(item, fcn_arg_types): inp[idx] = recursive_wrapper(item, **kwargs) else: inp[idx] = item return inp # Go through all desired data fields and apply the processing function data_dict = dict() include_fields = include_fields or rollout.data_names exclude_fields = exclude_fields or [] for name in rollout.data_names: # Extract data field data = rollout.get_data_values(name) # Process current data field if included and not explicitly excluded if name in include_fields and name not in exclude_fields: data = recursive_wrapper(data, **process_fcn_kwargs) # Collect the new/old data data_dict[name] = data # Create new object return StepSequence(**data_dict, rollout_info=rollout.rollout_info, continuous=rollout.continuous) def discounted_reverse_cumsum(data, gamma: float): """ Use a linear filter to compute the reverse discounted cumulative sum. .. note:: `scipy.signal.lfilter` assumes an initialization with 0 by default. :param data: input data with samples along the 0 axis (e.g. time series) :param gamma: discount factor :return: cumulative sums for every step """ return signal.lfilter([1], [1, -gamma], data[::-1], axis=0)[::-1] def discounted_value(rollout: StepSequence, gamma: float): """ Compute the discounted state values for one rollout. :param rollout: input data :param gamma: temporal discount factor :return: state values for every time step in the rollout """ rewards = [step.reward for step in rollout] return discounted_reverse_cumsum(rewards, gamma) def discounted_values(rollouts: Sequence[StepSequence], gamma: float, data_format: Optional[str] = "torch"): """ Compute the discounted state values for multiple rollouts. :param rollouts: input data :param gamma: temporal discount factor :param data_format: data format of the given :return: state values for every time step in the rollouts (concatenated sequence across rollouts) """ if data_format == "torch": # The ndarray.copy() is necessary due to (currently) unsupported negative strides return to.cat([to.from_numpy(discounted_value(ro, gamma).copy()).to(to.get_default_dtype()) for ro in rollouts]) elif data_format == "numpy": raise np.array([discounted_value(ro, gamma) for ro in rollouts]) else: raise pyrado.ValueErr(given=data_format, eq_constraint="'torch' or 'numpy'") def gae_returns(rollout: StepSequence, gamma: float = 0.99, lamb: float = 0.95): """ Compute returns using generalized advantage estimation. .. seealso:: [1] J. Schulmann, P. Moritz, S. Levine, M. Jordan, P. Abbeel, 'High-Dimensional Continuous Control Using Generalized Advantage Estimation', ICLR 2016 :param rollout: sequence of steps :param gamma: temporal discount factor :param lamb: discount factor :return: estimated advantage """ def _next_value(step: Step) -> float: """ Helper to return `next_value = 0` for last step """ if step.done: return 0.0 return step.next_value deltas = [step.reward + gamma * _next_value(step) - step.value for step in rollout] cumsum = discounted_reverse_cumsum(deltas, gamma * lamb) return cumsum
40.965142
120
0.625725
[ "MIT" ]
nifunk/GNNMushroomRL
mushroom_rl/core/parallelization_tools/step_sequence.py
37,606
Python
# This file is part of Indico. # Copyright (C) 2002 - 2021 CERN # # Indico is free software; you can redistribute it and/or # modify it under the terms of the MIT License; see the # LICENSE file for more details. from flask_caching import Cache from flask_caching.backends.rediscache import RedisCache from flask_caching.backends.simplecache import SimpleCache from redis import RedisError from indico.core.logger import Logger _logger = Logger.get('cache') class CachedNone: __slots__ = () @classmethod def wrap(cls, value): return cls() if value is None else value @classmethod def unwrap(cls, value, default=None): if value is None: return default elif isinstance(value, cls): return None else: return value class IndicoCacheMixin: def get(self, key, default=None): return CachedNone.unwrap(super().get(key), default) def get_many(self, *keys, default=None): return [CachedNone.unwrap(val, default) for val in super().get_many(*keys)] def get_dict(self, *keys, default=None): return dict(zip(keys, self.get_many(*keys, default=default))) class IndicoRedisCache(IndicoCacheMixin, RedisCache): """ This is similar to the original RedisCache from Flask-Caching, but it allows specifying a default value when retrieving cache data and distinguishing between a cached ``None`` value and a cache miss. """ def dump_object(self, value): # We are not overriding the `load_object` counterpart to this method o # purpose because we need to have access to the wrapped value in `get` # and `get_many`. return super().dump_object(CachedNone.wrap(value)) class IndicoSimpleCache(IndicoCacheMixin, SimpleCache): """ This is similar to the original SimpleCache from Flask-Caching, but it allows specifying a default value when retrieving cache data and distinguishing between a cached ``None`` value and a cache miss. """ def set(self, key, value, timeout=None): return super().set(key, CachedNone.wrap(value), timeout=timeout) def add(self, key, value, timeout=None): return super().add(key, CachedNone.wrap(value), timeout=timeout) def make_indico_simple_cache(app, config, args, kwargs): return IndicoSimpleCache(*args, **kwargs) def make_indico_redis_cache(app, config, args, kwargs): from redis import from_url as redis_from_url key_prefix = config.get('CACHE_KEY_PREFIX') if key_prefix: kwargs['key_prefix'] = key_prefix kwargs['host'] = redis_from_url(config['CACHE_REDIS_URL'], socket_timeout=1) return IndicoRedisCache(*args, **kwargs) class ScopedCache: def __init__(self, cache, scope): self.cache = cache self.scope = scope def _scoped(self, key): return f'{self.scope}/{key}' def get(self, key, default=None): return self.cache.get(self._scoped(key), default=default) def set(self, key, value, timeout=None): self.cache.set(self._scoped(key), value, timeout=timeout) def add(self, key, value, timeout=None): self.cache.add(self._scoped(key), value, timeout=timeout) def delete(self, key): self.cache.delete(self._scoped(key)) def delete_many(self, *keys): keys = [self._scoped(key) for key in keys] self.cache.delete_many(*keys) def clear(self): raise NotImplementedError('Clearing scoped caches is not supported') def get_dict(self, *keys, default=None): return dict(zip(keys, self.get_many(*keys, default=default))) def get_many(self, *keys, default=None): keys = [self._scoped(key) for key in keys] return self.cache.get_many(*keys, default=default) def set_many(self, mapping, timeout=None): mapping = {self._scoped(key): value for key, value in mapping.items()} self.cache.set_many(mapping, timeout=timeout) def __repr__(self): return f'<ScopedCache: {self.scope}>' class IndicoCache(Cache): """ This is basicaly the Cache class from Flask-Caching but it silences all exceptions that happen during a cache operation since cache failures should not take down the whole page. While this cache can in principle support many different backends, we only consider redis and (for unittests) a simple dict-based cache. This allows us to be more specific in catching exceptions since the Redis cache has exactly one base exception. """ def get(self, key, default=None): try: return super().get(key, default) except RedisError: _logger.exception('get(%r) failed', key) return default def set(self, key, value, timeout=None): try: super().set(key, value, timeout=timeout) except RedisError: _logger.exception('set(%r) failed', key) def add(self, key, value, timeout=None): try: super().add(key, value, timeout=timeout) except RedisError: _logger.exception('add(%r) failed', key) def delete(self, key): try: super().delete(key) except RedisError: _logger.exception('delete(%r) failed', key) def delete_many(self, *keys): try: super().delete_many(*keys) except RedisError: _logger.exception('delete_many(%s) failed', ', '.join(map(repr, keys))) def clear(self): try: super().clear() except RedisError: _logger.exception('clear() failed') def get_many(self, *keys, default=None): try: return super().get_many(*keys, default=default) except RedisError: logkeys = ', '.join(map(repr, keys)) _logger.exception('get_many(%s) failed', logkeys) return [default] * len(keys) def set_many(self, mapping, timeout=None): try: super().set_many(mapping, timeout=timeout) except RedisError: _logger.exception('set_many(%r) failed', mapping) def get_dict(self, *keys, default=None): try: return super().get_dict(*keys, default=default) except RedisError: logkeys = ', '.join(map(repr, keys)) _logger.exception('get_dict(%s) failed', logkeys) return dict(zip(keys, [default] * len(keys))) def make_scoped_cache(scope): """Create a new scoped cache. In most cases the global cache should not be used directly but rather with a scope depending on the module a cache is used for. This is especially important when passing user-provided data as the cache key to prevent reading other unrelated cache keys. """ return ScopedCache(cache, scope) cache = IndicoCache()
31.971963
83
0.653464
[ "MIT" ]
errikos/indico
indico/core/cache.py
6,842
Python
import numpy as np # linear algebra np.random.seed(42) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) from sklearn.model_selection import train_test_split from matplotlib import pyplot import time import os, glob import cv2 # parameters format = "%H%M" ts = time.strftime(format) base_name = os.path.splitext(__file__)[0] + "_ts" + ts input_size = 128 from keras.preprocessing.image import ImageDataGenerator from keras.models import Sequential from keras.layers import Conv2D, MaxPooling2D, Dense, Dropout, Input, Flatten, GaussianNoise from keras.layers import GlobalMaxPooling2D, Reshape, UpSampling3D, Activation from keras.layers.normalization import BatchNormalization from keras.layers.merge import Concatenate from keras.models import Model from keras.optimizers import Adam from keras.callbacks import ModelCheckpoint, Callback, EarlyStopping, CSVLogger, ReduceLROnPlateau from keras import backend as K def get_callbacks(save_path, lr=0.001, patience=64): csv_logger = CSVLogger(save_path + '_log.csv', append=True) # check_path = save_path + '_e{epoch:02d}_vl{val_loss:.5f}.hdf5' check_path = save_path save_checkpoint = ModelCheckpoint(filepath=check_path, monitor='val_loss', save_best_only=True) lerning_rate_schedular = ReduceLROnPlateau(patience=8, min_lr=lr * 0.00001) early_stopping = EarlyStopping(monitor='val_loss', patience=16, verbose=1, min_delta=1e-4, mode='min') Callbacks = [csv_logger, save_checkpoint, # lerning_rate_schedular, early_stopping ] return Callbacks def swish(x): return x * K.sigmoid(x) from keras.applications.vgg16 import VGG16 from keras.optimizers import SGD def get_model(num_class): base_model = VGG16(weights='imagenet', include_top=False, input_shape=[input_size,input_size,3], classes=1) x = base_model.get_layer('block5_pool').output x = GlobalMaxPooling2D()(x) x = Dense(512, activation='relu', name='fc2')(x) x = Dropout(0.3)(x) x = Dense(512, activation='relu', name='fc3')(x) x = Dropout(0.3)(x) predictions = Dense(num_class, activation='softmax')(x) model = Model(inputs=base_model.input, outputs=predictions) sgd = SGD(lr=1e-3, decay=1e-6, momentum=0.9, nesterov=True) model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy']) return model def randomHueSaturationValue(image, hue_shift_limit=(-180, 180), sat_shift_limit=(-255, 255), val_shift_limit=(-255, 255), u=0.5): if np.random.random() < u: image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) h, s, v = cv2.split(image) # sikisou, saido, meido hue_shift = np.random.uniform(hue_shift_limit[0], hue_shift_limit[1]) h = cv2.add(h, hue_shift) sat_shift = np.random.uniform(sat_shift_limit[0], sat_shift_limit[1]) s = cv2.add(s, sat_shift) val_shift = np.random.uniform(val_shift_limit[0], val_shift_limit[1]) v = cv2.add(v, val_shift) image = cv2.merge((h, s, v)) image = cv2.cvtColor(image, cv2.COLOR_HSV2BGR) return image def randomShiftScaleRotate(image, shift_limit=(-0.0625, 0.0625), scale_limit=(-0.1, 0.1), rotate_limit=(-45, 45), aspect_limit=(0, 0), borderMode=cv2.BORDER_CONSTANT, u=0.5): if np.random.random() < u: height, width, channel = image.shape angle = np.random.uniform(rotate_limit[0], rotate_limit[1]) # degree scale = np.random.uniform(1 + scale_limit[0], 1 + scale_limit[1]) aspect = np.random.uniform(1 + aspect_limit[0], 1 + aspect_limit[1]) sx = scale * aspect / (aspect ** 0.5) sy = scale / (aspect ** 0.5) dx = round(np.random.uniform(shift_limit[0], shift_limit[1]) * width) dy = round(np.random.uniform(shift_limit[0], shift_limit[1]) * height) cc = np.math.cos(angle / 180 * np.math.pi) * sx ss = np.math.sin(angle / 180 * np.math.pi) * sy rotate_matrix = np.array([[cc, -ss], [ss, cc]]) box0 = np.array([[0, 0], [width, 0], [width, height], [0, height], ]) box1 = box0 - np.array([width / 2, height / 2]) box1 = np.dot(box1, rotate_matrix.T) + np.array([width / 2 + dx, height / 2 + dy]) box0 = box0.astype(np.float32) box1 = box1.astype(np.float32) mat = cv2.getPerspectiveTransform(box0, box1) image = cv2.warpPerspective(image, mat, (width, height), flags=cv2.INTER_LINEAR, borderMode=borderMode, borderValue=( 0, 0, 0,)) return image def randomHorizontalFlip(image, u=0.5): if np.random.random() < u: image = cv2.flip(image, 1) return image def randomVerticalFlip(image, u=0.5): if np.random.random() < u: image = cv2.flip(image, 0) return image def get_random_eraser(p=0.5, s_l=0.02, s_h=0.4, r_1=0.3, r_2=1/0.3, v_l=0, v_h=255, pixel_level=False): def eraser(input_img): img_h, img_w, img_c = input_img.shape p_1 = np.random.rand() if p_1 > p: return input_img while True: s = np.random.uniform(s_l, s_h) * img_h * img_w r = np.random.uniform(r_1, r_2) w = int(np.sqrt(s / r)) h = int(np.sqrt(s * r)) left = np.random.randint(0, img_w) top = np.random.randint(0, img_h) if left + w <= img_w and top + h <= img_h: break if pixel_level: c = np.random.uniform(v_l, v_h, (h, w, img_c)) else: c = np.random.uniform(v_l, v_h) input_img[top:top + h, left:left + w, :] = c return input_img return eraser from multiprocessing import Pool def load_img(args): img_path = args img = cv2.imread(img_path) # print("img shape", img.shape) img = cv2.resize(img, (input_size, input_size)) img = randomHueSaturationValue(img, hue_shift_limit=(-5, 5), sat_shift_limit=(-1, 1), val_shift_limit=(-2, 2), u=0.5) img = randomShiftScaleRotate(img, shift_limit=(-0.2, 0.2), scale_limit=(-0.2, 0.5), rotate_limit=(-30, 30), aspect_limit=(-0.2, 0.2), u=0.5) img = randomHorizontalFlip(img) img = randomVerticalFlip(img) return img def train_generator(x_train, y_train, img_dir, batch_size, shuffle=True): # x_train = x_train.as_matrix() # y_train = y_train.as_matrix() y_train = np.eye(55)[y_train] batch_index = 0 n = x_train.shape[0] # print("n", n) eraser = get_random_eraser(v_h=0.) pool = Pool() while 1: if batch_index == 0: index_array = np.arange(n) if shuffle: index_array = np.random.permutation(n) current_index = (batch_index * batch_size) % n if n >= current_index + batch_size: current_batch_size = batch_size batch_index += 1 else: current_batch_size = n - current_index batch_index = 0 batch_id = index_array[current_index: current_index + current_batch_size] batch_x = pool.map(load_img, [img_dir + '/{}'.format(x_train[id]) for id in batch_id]) for id in range(len(batch_x)): img = batch_x[id] img =eraser(img) # img =eraser(img) # img =eraser(img) # img =eraser(img) # img =eraser(img) batch_x[id] = img batch_x = np.array(batch_x, np.float32) / 255 batch_y = y_train[index_array[current_index: current_index + current_batch_size]] # print("batch shape", batch_x.shape, batch_y.shape) yield (batch_x, batch_y) def get_mixer(p=0.5, s_l=0.02, s_h=0.4, r_1=0.3, r_2=1/0.3): def mixer(img1, img2, mask1, mask2): img_h, img_w, img_c = img1.shape p_1 = np.random.rand() if p_1 > p: return img1, mask1 while True: s = np.random.uniform(s_l, s_h) * img_h * img_w r = np.random.uniform(r_1, r_2) w = int(np.sqrt(s / r)) h = int(np.sqrt(s * r)) left = np.random.randint(0, img_w) top = np.random.randint(0, img_h) if left + w <= img_w and top + h <= img_h: break img1[top:top + h, left:left + w, :] = img2[top:top + h, left:left + w, :] mask1[top:top + h, left:left + w, :] = mask2[top:top + h, left:left + w, :] return img1, mask1 return mixer def mix_generator(X_train, Y_train, img_dir, batch_size, shuffle=True): alpha = 0.2 gen1 = train_generator(X_train, Y_train, img_dir, batch_size, shuffle) gen2 = train_generator(X_train, Y_train, img_dir, batch_size, shuffle) while True: batch1 = next(gen1) batch2 = next(gen2) current_batch_size = batch1[0].shape[0] l = np.random.beta(alpha, alpha, current_batch_size) X_l = l.reshape(current_batch_size, 1, 1, 1) Y_l = l.reshape(current_batch_size, 1) batch_x = batch1[0] * X_l + batch2[0] * (1 - X_l) batch_y = batch1[1] * Y_l + batch2[1] * (1 - Y_l) yield (batch_x, batch_y) def test_generator(x_train, img_dir, batch_size, shuffle=True): # x_train = x_train.as_matrix() # y_train = y_train.as_matrix() batch_index = 0 n = x_train.shape[0] # print("n", n) eraser = get_random_eraser(v_h=0.) while 1: if batch_index == 0: index_array = np.arange(n) if shuffle: index_array = np.random.permutation(n) current_index = (batch_index * batch_size) % n if n >= current_index + batch_size: current_batch_size = batch_size batch_index += 1 else: current_batch_size = n - current_index batch_index = 0 batch_x = [] batch_id = index_array[current_index: current_index + current_batch_size] # print(batch_x_base) for id in batch_id: # print(x_train[0]) # print(x_train[id]) # print(img_dir + '/{}'.format(x_train[id])) img = cv2.imread(img_dir + '/{}'.format(x_train[id])) # print("img shape", img.shape) img = cv2.resize(img, (input_size, input_size)) img = randomHueSaturationValue(img, hue_shift_limit=(-5, 5), sat_shift_limit=(-1, 1), val_shift_limit=(-2, 2), u=0.5) img = randomShiftScaleRotate(img, shift_limit=(-0.2, 0.2), scale_limit=(-0.2, 0.2), rotate_limit=(-30, 30), aspect_limit = (-0.2, 0.2), u=0.5) img = randomHorizontalFlip(img) # img =eraser(img) batch_x.append(img) batch_x = np.array(batch_x, np.float32) / 255 # batch_y = y_train[index_array[current_index: current_index + current_batch_size]] # print("batch shape", batch_x.shape, batch_y.shape) yield batch_x def load_data(train_path="input/train_master.tsv", test_path="input/sample_submit.tsv"): train = pd.read_csv(train_path, delimiter="\t", index_col=False) test = pd.read_csv(test_path, delimiter="\t", index_col=False, header=None) print("train shape", train.shape) print(train.head()) X_train = train['file_name'].as_matrix() y_train = train['category_id'].as_matrix() # y_train = np.eye(55)[y_train] # print(y_train[:5]) # print(y_train.shape) X_test = test.iloc[:,0] return X_train, y_train, X_test from sklearn.model_selection import StratifiedKFold, StratifiedShuffleSplit from sklearn.metrics import log_loss def train(epochs, seed): # parameter batch_size = 128 num_class = 55 save_path = base_name + "_seed" + str(seed) model_path = "_" # Load data X_train, y_train, X_test = load_data() # CV ids_train_split, ids_valid_split = train_test_split(np.arange(X_train.shape[0]), random_state=42, test_size=0.05, stratify=y_train) # data process X_train_cv = X_train[ids_train_split] y_train_cv = y_train[ids_train_split] X_holdout = X_train[ids_valid_split] Y_holdout = y_train[ids_valid_split] # print(X_train_cv.head()) # define file path and get callbacks weight_path = "model/" + save_path + '.hdf5' callbacks = get_callbacks(weight_path, patience=16) gen = mix_generator(X_train_cv, y_train_cv, "input/train", batch_size) gen_val = train_generator(X_holdout, Y_holdout, "input/train", batch_size, shuffle=False) gen_val_pred = test_generator(X_holdout, "input/train", batch_size, shuffle=False) gen_tst_pred = test_generator(X_test, "input/test", batch_size, shuffle=False) model = get_model(num_class) model.fit_generator(generator=gen, steps_per_epoch=np.ceil(X_train_cv.shape[0] / batch_size), epochs=epochs, verbose=1, callbacks=callbacks, validation_data=gen_val, validation_steps=np.ceil(X_holdout.shape[0] / batch_size), ) # Getting the Best Model model.load_weights(filepath=weight_path) # Getting Training Score # score = model.evaluate_generator(generator=gen_trn_eval, # steps=np.ceil(X_train.shape[0]/batch_size)) # print('Train loss:', score[0]) # print('Train accuracy:', score[1]) # Getting Valid Score score = model.evaluate_generator(generator=gen_val, steps=np.ceil(X_holdout.shape[0]/batch_size)) print('Valid loss:', score[0]) print('Valid accuracy:', score[1]) # Getting validation prediction pred_valid = model.predict_generator(generator=gen_val_pred, steps=np.ceil(X_holdout.shape[0]/batch_size)) # Getting Test prediction pred_test = model.predict_generator(generator=gen_tst_pred, steps=np.ceil(X_test.shape[0]/batch_size)) submission = pd.DataFrame({'id': X_test, 'predict': np.argmax(pred_test, axis=1)}) submit_path = "output/submission" + save_path + "_val_loss" + str(score[0]) + "_val_acc" + str(score[1]) + ".tsv" submission.to_csv(submit_path, index=False, header=False, sep='\t') np.save("input/" + base_name + "_valid.npy", pred_valid) np.save("input/" + base_name + "_test.npy", pred_test) def main(): train(epochs=250, seed=0) if __name__ == "__main__": main()
35.669683
117
0.571356
[ "MIT" ]
OsciiArt/Cookpad
train_180131_2.py
15,766
Python
import logging import numpy as np from cvlib.object_detection import populate_class_labels, draw_bbox, detect_common_objects from traffic_monitor.services.detectors.detector_abstract import DetectorAbstract logger = logging.getLogger('detector') class DetectorCVlib(DetectorAbstract): """ Implementation of DetectorAbstract. This implementation is from the OpenCV implementation of object instance detection. https://github.com/arunponnusamy/cvlib Yolov4 cfg and weights are available at: https://github.com/AlexeyAB/darknet Supports models: yolov3-tiny yolov3 Requires that .cfg file and .weights files are in ~/.cvlib/object_detection/yolo/yolov3 """ def __init__(self, monitor_config: dict): DetectorAbstract.__init__(self, monitor_config) self.detector_name: str = monitor_config.get('detector_name') self.detector_model: str = monitor_config.get('detector_model') self.detector_confidence: float = monitor_config.get('detector_confidence') # note that colors in cvlib uses BGR not RGB colors self.bgr_colors = np.float64([monitor_config.get('class_colors').get(o)[::-1] for o in populate_class_labels()]) def set_detector_value(self, kwargs_list: list): """ Only allow changes to confidence or the model """ try: for kwargs in kwargs_list: field = kwargs.get('field') value = kwargs.get('value') if field in ['detector_confidence', 'detector_model']: logger.info(f"{self.detector_name}: setting value: {field}: {value}") self.monitor_config[field] = value except Exception as e: logger.error(f"{self.__class__.__name__}: Error setting value: {e}") def detect(self, frame: np.array) -> (np.array, list): # colors is a list of BGR values in a list ([[#b,#g,#r],[#b,#g,#r], ... ]) try: bbox, labels, conf = detect_common_objects(frame, confidence=self.detector_confidence, model=self.detector_model) frame = draw_bbox(img=frame, bbox=bbox, labels=labels, confidence=conf, write_conf=False, colors=self.bgr_colors) return frame, labels except Exception as e: logger.error(f"{self.__class__.__name__} Exception: {e}") @classmethod def get_trained_objects(cls) -> list: return populate_class_labels()
41.457627
125
0.674571
[ "MIT" ]
mcdomx/monitor
traffic_monitor/services/detectors/detector_cvlib.py
2,446
Python
import os import json import datetime import numpy as np from matplotlib import pyplot as plt class MetaLogger(object): def __init__(self, meta_config, config, task_directory, load_directory=None, load_epoch=None): self.results_directory = os.path.join('meta_results', str(datetime.datetime.now())) self.results = { 'task_directory': task_directory, 'load_directory': load_directory, 'load_epoch': load_epoch, 'train_losses': [], 'train_accuracies': [], 'validation_losses': [], 'validation_accuracies': [], 'baseline_test_loss': 0, 'baseline_test_accuracy': 0, 'sgd_test_loss': 0, 'sgd_test_accuracy': 0, 'adam_test_loss': 0, 'adam_test_accuracy': 0, 'meta_optimizer_test_loss': 0, 'meta_optimizer_test_accuracy': 0, 'config': config, 'meta_config': meta_config } def load(self, file_path): self.results_directory, _ = os.path.split(file_path) with open(file_path, 'r') as file_obj: self.results = json.load(file_obj) def log(self): if not os.path.exists(self.results_directory): os.makedirs(self.results_directory) with open('{}/results.json'.format(self.results_directory), 'w') as file_obj: json.dump(self.results, file_obj, indent=4) def plot(self): plt.figure() plt.title('Loss') plt.xlabel('Meta Epochs') plt.ylabel('Loss') plt.xticks(np.arange(0, len(self.results['train_losses']) * .125, .25)) plt.plot(np.arange(.125, (len(self.results['train_losses']) + 1) * .125, .125), self.results['train_losses'], label='train') plt.plot(np.arange(.125, (len(self.results['validation_losses']) + 1) * .125, .125), self.results['validation_losses'], label='validation') plt.legend() plt.savefig('{}/loss.pdf'.format(self.results_directory)) plt.close() plt.figure() plt.title('Accuracy') plt.xlabel('Meta Epochs') plt.ylabel('Accuracy') plt.xticks(np.arange(0, len(self.results['train_accuracies']) * .125, .25)) plt.plot(np.arange(.125, (len(self.results['train_accuracies']) + 1) * .125, .125), self.results['train_accuracies'], label='train') plt.plot(np.arange(.125, (len(self.results['validation_accuracies']) + 1) * .125, .125), self.results['validation_accuracies'], label='validation') plt.legend() plt.savefig('{}/accuracy.pdf'.format(self.results_directory)) plt.close() plt.figure() plt.title('Test Losses') plt.ylabel('Mean Test Loss') x_labels = ('Baseline', 'SGD', 'Adam', 'Meta Optimizer') x_pos = np.arange(len(x_labels)) performance = [self.results['{}_test_loss'.format('_'.join(label.lower().split(' ')))] for label in x_labels] plt.bar(x_pos, performance, align='center', alpha=0.5) plt.xticks(x_pos, x_labels) plt.savefig('{}/test_loss.pdf'.format(self.results_directory)) plt.close() plt.figure() plt.title('Test Accuracies') plt.ylabel('Mean Test Accuracy') x_labels = ('Baseline', 'SGD', 'Adam', 'Meta Optimizer') x_pos = np.arange(len(x_labels)) performance = [self.results['{}_test_accuracy'.format('_'.join(label.lower().split(' ')))] for label in x_labels] plt.bar(x_pos, performance, align='center', alpha=0.5) plt.xticks(x_pos, x_labels) plt.savefig('{}/test_accuracy.pdf'.format(self.results_directory)) plt.close()
41.897727
155
0.606184
[ "MIT" ]
rlaboulaye/transformer
meta_logger.py
3,687
Python
import torch.nn.functional as F from torch import nn from torchvision.ops import MultiScaleRoIAlign from ..._internally_replaced_utils import load_state_dict_from_url from ...ops import misc as misc_nn_ops from ..mobilenetv3 import mobilenet_v3_large from ..resnet import resnet50 from ._utils import overwrite_eps from .anchor_utils import AnchorGenerator from .backbone_utils import _resnet_fpn_extractor, _validate_trainable_layers, _mobilenet_extractor from .generalized_rcnn import GeneralizedRCNN from .roi_heads import RoIHeads from .rpn import RPNHead, RegionProposalNetwork from .transform import GeneralizedRCNNTransform __all__ = [ "FasterRCNN", "fasterrcnn_resnet50_fpn", "fasterrcnn_mobilenet_v3_large_320_fpn", "fasterrcnn_mobilenet_v3_large_fpn", ] class FasterRCNN(GeneralizedRCNN): """ Implements Faster R-CNN. The input to the model is expected to be a list of tensors, each of shape [C, H, W], one for each image, and should be in 0-1 range. Different images can have different sizes. The behavior of the model changes depending if it is in training or evaluation mode. During training, the model expects both the input tensors, as well as a targets (list of dictionary), containing: - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``. - labels (Int64Tensor[N]): the class label for each ground-truth box The model returns a Dict[Tensor] during training, containing the classification and regression losses for both the RPN and the R-CNN. During inference, the model requires only the input tensors, and returns the post-processed predictions as a List[Dict[Tensor]], one for each input image. The fields of the Dict are as follows: - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``. - labels (Int64Tensor[N]): the predicted labels for each image - scores (Tensor[N]): the scores or each prediction Args: backbone (nn.Module): the network used to compute the features for the model. It should contain a out_channels attribute, which indicates the number of output channels that each feature map has (and it should be the same for all feature maps). The backbone should return a single Tensor or and OrderedDict[Tensor]. num_classes (int): number of output classes of the model (including the background). If box_predictor is specified, num_classes should be None. min_size (int): minimum size of the image to be rescaled before feeding it to the backbone max_size (int): maximum size of the image to be rescaled before feeding it to the backbone image_mean (Tuple[float, float, float]): mean values used for input normalization. They are generally the mean values of the dataset on which the backbone has been trained on image_std (Tuple[float, float, float]): std values used for input normalization. They are generally the std values of the dataset on which the backbone has been trained on rpn_anchor_generator (AnchorGenerator): module that generates the anchors for a set of feature maps. rpn_head (nn.Module): module that computes the objectness and regression deltas from the RPN rpn_pre_nms_top_n_train (int): number of proposals to keep before applying NMS during training rpn_pre_nms_top_n_test (int): number of proposals to keep before applying NMS during testing rpn_post_nms_top_n_train (int): number of proposals to keep after applying NMS during training rpn_post_nms_top_n_test (int): number of proposals to keep after applying NMS during testing rpn_nms_thresh (float): NMS threshold used for postprocessing the RPN proposals rpn_fg_iou_thresh (float): minimum IoU between the anchor and the GT box so that they can be considered as positive during training of the RPN. rpn_bg_iou_thresh (float): maximum IoU between the anchor and the GT box so that they can be considered as negative during training of the RPN. rpn_batch_size_per_image (int): number of anchors that are sampled during training of the RPN for computing the loss rpn_positive_fraction (float): proportion of positive anchors in a mini-batch during training of the RPN rpn_score_thresh (float): during inference, only return proposals with a classification score greater than rpn_score_thresh box_roi_pool (MultiScaleRoIAlign): the module which crops and resizes the feature maps in the locations indicated by the bounding boxes box_head (nn.Module): module that takes the cropped feature maps as input box_predictor (nn.Module): module that takes the output of box_head and returns the classification logits and box regression deltas. box_score_thresh (float): during inference, only return proposals with a classification score greater than box_score_thresh box_nms_thresh (float): NMS threshold for the prediction head. Used during inference box_detections_per_img (int): maximum number of detections per image, for all classes. box_fg_iou_thresh (float): minimum IoU between the proposals and the GT box so that they can be considered as positive during training of the classification head box_bg_iou_thresh (float): maximum IoU between the proposals and the GT box so that they can be considered as negative during training of the classification head box_batch_size_per_image (int): number of proposals that are sampled during training of the classification head box_positive_fraction (float): proportion of positive proposals in a mini-batch during training of the classification head bbox_reg_weights (Tuple[float, float, float, float]): weights for the encoding/decoding of the bounding boxes Example:: >>> import torch >>> import torchvision >>> from torchvision.models.detection import FasterRCNN >>> from torchvision.models.detection.rpn import AnchorGenerator >>> # load a pre-trained model for classification and return >>> # only the features >>> backbone = torchvision.models.mobilenet_v2(pretrained=True).features >>> # FasterRCNN needs to know the number of >>> # output channels in a backbone. For mobilenet_v2, it's 1280 >>> # so we need to add it here >>> backbone.out_channels = 1280 >>> >>> # let's make the RPN generate 5 x 3 anchors per spatial >>> # location, with 5 different sizes and 3 different aspect >>> # ratios. We have a Tuple[Tuple[int]] because each feature >>> # map could potentially have different sizes and >>> # aspect ratios >>> anchor_generator = AnchorGenerator(sizes=((32, 64, 128, 256, 512),), >>> aspect_ratios=((0.5, 1.0, 2.0),)) >>> >>> # let's define what are the feature maps that we will >>> # use to perform the region of interest cropping, as well as >>> # the size of the crop after rescaling. >>> # if your backbone returns a Tensor, featmap_names is expected to >>> # be ['0']. More generally, the backbone should return an >>> # OrderedDict[Tensor], and in featmap_names you can choose which >>> # feature maps to use. >>> roi_pooler = torchvision.ops.MultiScaleRoIAlign(featmap_names=['0'], >>> output_size=7, >>> sampling_ratio=2) >>> >>> # put the pieces together inside a FasterRCNN model >>> model = FasterRCNN(backbone, >>> num_classes=2, >>> rpn_anchor_generator=anchor_generator, >>> box_roi_pool=roi_pooler) >>> model.eval() >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)] >>> predictions = model(x) """ def __init__( self, backbone, num_classes=None, # transform parameters min_size=800, max_size=1333, image_mean=None, image_std=None, # RPN parameters rpn_anchor_generator=None, rpn_head=None, rpn_pre_nms_top_n_train=2000, rpn_pre_nms_top_n_test=1000, rpn_post_nms_top_n_train=2000, rpn_post_nms_top_n_test=1000, rpn_nms_thresh=0.7, rpn_fg_iou_thresh=0.7, rpn_bg_iou_thresh=0.3, rpn_batch_size_per_image=256, rpn_positive_fraction=0.5, rpn_score_thresh=0.0, # Box parameters box_roi_pool=None, box_head=None, box_predictor=None, box_score_thresh=0.05, box_nms_thresh=0.5, box_detections_per_img=100, box_fg_iou_thresh=0.5, box_bg_iou_thresh=0.5, box_batch_size_per_image=512, box_positive_fraction=0.25, bbox_reg_weights=None, ): if not hasattr(backbone, "out_channels"): raise ValueError( "backbone should contain an attribute out_channels " "specifying the number of output channels (assumed to be the " "same for all the levels)" ) assert isinstance(rpn_anchor_generator, (AnchorGenerator, type(None))) assert isinstance(box_roi_pool, (MultiScaleRoIAlign, type(None))) if num_classes is not None: if box_predictor is not None: raise ValueError("num_classes should be None when box_predictor is specified") else: if box_predictor is None: raise ValueError("num_classes should not be None when box_predictor is not specified") out_channels = backbone.out_channels if rpn_anchor_generator is None: anchor_sizes = ((32,), (64,), (128,), (256,), (512,)) aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes) rpn_anchor_generator = AnchorGenerator(anchor_sizes, aspect_ratios) if rpn_head is None: rpn_head = RPNHead(out_channels, rpn_anchor_generator.num_anchors_per_location()[0]) rpn_pre_nms_top_n = dict(training=rpn_pre_nms_top_n_train, testing=rpn_pre_nms_top_n_test) rpn_post_nms_top_n = dict(training=rpn_post_nms_top_n_train, testing=rpn_post_nms_top_n_test) rpn = RegionProposalNetwork( rpn_anchor_generator, rpn_head, rpn_fg_iou_thresh, rpn_bg_iou_thresh, rpn_batch_size_per_image, rpn_positive_fraction, rpn_pre_nms_top_n, rpn_post_nms_top_n, rpn_nms_thresh, score_thresh=rpn_score_thresh, ) if box_roi_pool is None: box_roi_pool = MultiScaleRoIAlign(featmap_names=["0", "1", "2", "3"], output_size=7, sampling_ratio=2) if box_head is None: resolution = box_roi_pool.output_size[0] representation_size = 1024 box_head = TwoMLPHead(out_channels * resolution ** 2, representation_size) if box_predictor is None: representation_size = 1024 box_predictor = FastRCNNPredictor(representation_size, num_classes) roi_heads = RoIHeads( # Box box_roi_pool, box_head, box_predictor, box_fg_iou_thresh, box_bg_iou_thresh, box_batch_size_per_image, box_positive_fraction, bbox_reg_weights, box_score_thresh, box_nms_thresh, box_detections_per_img, ) if image_mean is None: image_mean = [0.485, 0.456, 0.406] if image_std is None: image_std = [0.229, 0.224, 0.225] transform = GeneralizedRCNNTransform(min_size, max_size, image_mean, image_std) super().__init__(backbone, rpn, roi_heads, transform) class TwoMLPHead(nn.Module): """ Standard heads for FPN-based models Args: in_channels (int): number of input channels representation_size (int): size of the intermediate representation """ def __init__(self, in_channels, representation_size): super().__init__() self.fc6 = nn.Linear(in_channels, representation_size) self.fc7 = nn.Linear(representation_size, representation_size) def forward(self, x): x = x.flatten(start_dim=1) x = F.relu(self.fc6(x)) x = F.relu(self.fc7(x)) return x class FastRCNNPredictor(nn.Module): """ Standard classification + bounding box regression layers for Fast R-CNN. Args: in_channels (int): number of input channels num_classes (int): number of output classes (including background) """ def __init__(self, in_channels, num_classes): super().__init__() self.cls_score = nn.Linear(in_channels, num_classes) self.bbox_pred = nn.Linear(in_channels, num_classes * 4) def forward(self, x): if x.dim() == 4: assert list(x.shape[2:]) == [1, 1] x = x.flatten(start_dim=1) scores = self.cls_score(x) bbox_deltas = self.bbox_pred(x) return scores, bbox_deltas model_urls = { "fasterrcnn_resnet50_fpn_coco": "https://download.pytorch.org/models/fasterrcnn_resnet50_fpn_coco-258fb6c6.pth", "fasterrcnn_mobilenet_v3_large_320_fpn_coco": "https://download.pytorch.org/models/fasterrcnn_mobilenet_v3_large_320_fpn-907ea3f9.pth", "fasterrcnn_mobilenet_v3_large_fpn_coco": "https://download.pytorch.org/models/fasterrcnn_mobilenet_v3_large_fpn-fb6a3cc7.pth", } def fasterrcnn_resnet50_fpn( pretrained=False, progress=True, num_classes=91, pretrained_backbone=True, trainable_backbone_layers=None, **kwargs ): """ Constructs a Faster R-CNN model with a ResNet-50-FPN backbone. Reference: `"Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks" <https://arxiv.org/abs/1506.01497>`_. The input to the model is expected to be a list of tensors, each of shape ``[C, H, W]``, one for each image, and should be in ``0-1`` range. Different images can have different sizes. The behavior of the model changes depending if it is in training or evaluation mode. During training, the model expects both the input tensors, as well as a targets (list of dictionary), containing: - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``. - labels (``Int64Tensor[N]``): the class label for each ground-truth box The model returns a ``Dict[Tensor]`` during training, containing the classification and regression losses for both the RPN and the R-CNN. During inference, the model requires only the input tensors, and returns the post-processed predictions as a ``List[Dict[Tensor]]``, one for each input image. The fields of the ``Dict`` are as follows, where ``N`` is the number of detections: - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``. - labels (``Int64Tensor[N]``): the predicted labels for each detection - scores (``Tensor[N]``): the scores of each detection For more details on the output, you may refer to :ref:`instance_seg_output`. Faster R-CNN is exportable to ONNX for a fixed batch size with inputs images of fixed size. Example:: >>> model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True) >>> # For training >>> images, boxes = torch.rand(4, 3, 600, 1200), torch.rand(4, 11, 4) >>> boxes[:, :, 2:4] = boxes[:, :, 0:2] + boxes[:, :, 2:4] >>> labels = torch.randint(1, 91, (4, 11)) >>> images = list(image for image in images) >>> targets = [] >>> for i in range(len(images)): >>> d = {} >>> d['boxes'] = boxes[i] >>> d['labels'] = labels[i] >>> targets.append(d) >>> output = model(images, targets) >>> # For inference >>> model.eval() >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)] >>> predictions = model(x) >>> >>> # optionally, if you want to export the model to ONNX: >>> torch.onnx.export(model, x, "faster_rcnn.onnx", opset_version = 11) Args: pretrained (bool): If True, returns a model pre-trained on COCO train2017 progress (bool): If True, displays a progress bar of the download to stderr num_classes (int): number of output classes of the model (including the background) pretrained_backbone (bool): If True, returns a model with backbone pre-trained on Imagenet trainable_backbone_layers (int): number of trainable (not frozen) resnet layers starting from final block. Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable. If ``None`` is passed (the default) this value is set to 3. """ is_trained = pretrained or pretrained_backbone trainable_backbone_layers = _validate_trainable_layers(is_trained, trainable_backbone_layers, 5, 3) norm_layer = misc_nn_ops.FrozenBatchNorm2d if is_trained else nn.BatchNorm2d if pretrained: # no need to download the backbone if pretrained is set pretrained_backbone = False backbone = resnet50(pretrained=pretrained_backbone, progress=progress, norm_layer=norm_layer) backbone = _resnet_fpn_extractor(backbone, trainable_backbone_layers) model = FasterRCNN(backbone, num_classes, **kwargs) if pretrained: state_dict = load_state_dict_from_url(model_urls["fasterrcnn_resnet50_fpn_coco"], progress=progress) model.load_state_dict(state_dict) overwrite_eps(model, 0.0) return model def _fasterrcnn_mobilenet_v3_large_fpn( weights_name, pretrained=False, progress=True, num_classes=91, pretrained_backbone=True, trainable_backbone_layers=None, **kwargs, ): is_trained = pretrained or pretrained_backbone trainable_backbone_layers = _validate_trainable_layers(is_trained, trainable_backbone_layers, 6, 3) norm_layer = misc_nn_ops.FrozenBatchNorm2d if is_trained else nn.BatchNorm2d if pretrained: pretrained_backbone = False backbone = mobilenet_v3_large(pretrained=pretrained_backbone, progress=progress, norm_layer=norm_layer) backbone = _mobilenet_extractor(backbone, True, trainable_backbone_layers) anchor_sizes = ( ( 32, 64, 128, 256, 512, ), ) * 3 aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes) model = FasterRCNN( backbone, num_classes, rpn_anchor_generator=AnchorGenerator(anchor_sizes, aspect_ratios), **kwargs ) if pretrained: if model_urls.get(weights_name, None) is None: raise ValueError(f"No checkpoint is available for model {weights_name}") state_dict = load_state_dict_from_url(model_urls[weights_name], progress=progress) model.load_state_dict(state_dict) return model def fasterrcnn_mobilenet_v3_large_320_fpn( pretrained=False, progress=True, num_classes=91, pretrained_backbone=True, trainable_backbone_layers=None, **kwargs ): """ Constructs a low resolution Faster R-CNN model with a MobileNetV3-Large FPN backbone tunned for mobile use-cases. It works similarly to Faster R-CNN with ResNet-50 FPN backbone. See :func:`~torchvision.models.detection.fasterrcnn_resnet50_fpn` for more details. Example:: >>> model = torchvision.models.detection.fasterrcnn_mobilenet_v3_large_320_fpn(pretrained=True) >>> model.eval() >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)] >>> predictions = model(x) Args: pretrained (bool): If True, returns a model pre-trained on COCO train2017 progress (bool): If True, displays a progress bar of the download to stderr num_classes (int): number of output classes of the model (including the background) pretrained_backbone (bool): If True, returns a model with backbone pre-trained on Imagenet trainable_backbone_layers (int): number of trainable (not frozen) resnet layers starting from final block. Valid values are between 0 and 6, with 6 meaning all backbone layers are trainable. If ``None`` is passed (the default) this value is set to 3. """ weights_name = "fasterrcnn_mobilenet_v3_large_320_fpn_coco" defaults = { "min_size": 320, "max_size": 640, "rpn_pre_nms_top_n_test": 150, "rpn_post_nms_top_n_test": 150, "rpn_score_thresh": 0.05, } kwargs = {**defaults, **kwargs} return _fasterrcnn_mobilenet_v3_large_fpn( weights_name, pretrained=pretrained, progress=progress, num_classes=num_classes, pretrained_backbone=pretrained_backbone, trainable_backbone_layers=trainable_backbone_layers, **kwargs, ) def fasterrcnn_mobilenet_v3_large_fpn( pretrained=False, progress=True, num_classes=91, pretrained_backbone=True, trainable_backbone_layers=None, **kwargs ): """ Constructs a high resolution Faster R-CNN model with a MobileNetV3-Large FPN backbone. It works similarly to Faster R-CNN with ResNet-50 FPN backbone. See :func:`~torchvision.models.detection.fasterrcnn_resnet50_fpn` for more details. Example:: >>> model = torchvision.models.detection.fasterrcnn_mobilenet_v3_large_fpn(pretrained=True) >>> model.eval() >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)] >>> predictions = model(x) Args: pretrained (bool): If True, returns a model pre-trained on COCO train2017 progress (bool): If True, displays a progress bar of the download to stderr num_classes (int): number of output classes of the model (including the background) pretrained_backbone (bool): If True, returns a model with backbone pre-trained on Imagenet trainable_backbone_layers (int): number of trainable (not frozen) resnet layers starting from final block. Valid values are between 0 and 6, with 6 meaning all backbone layers are trainable. If ``None`` is passed (the default) this value is set to 3. """ weights_name = "fasterrcnn_mobilenet_v3_large_fpn_coco" defaults = { "rpn_score_thresh": 0.05, } kwargs = {**defaults, **kwargs} return _fasterrcnn_mobilenet_v3_large_fpn( weights_name, pretrained=pretrained, progress=progress, num_classes=num_classes, pretrained_backbone=pretrained_backbone, trainable_backbone_layers=trainable_backbone_layers, **kwargs, )
44.154426
139
0.66425
[ "BSD-3-Clause" ]
Bethhhh/vision
torchvision/models/detection/faster_rcnn.py
23,446
Python
# @Author: Pieter Blok # @Date: 2021-03-25 15:33:17 # @Last Modified by: Pieter Blok # @Last Modified time: 2021-03-25 15:36:30 from .uncertainty import *
26.5
42
0.685535
[ "Apache-2.0" ]
bpanahij/maskal
active_learning/heuristics/__init__.py
159
Python
#!/usr/bin/env python """Tests for the export mechanisms of tulip.dumpsmach.""" from __future__ import print_function import logging import networkx as nx from nose.tools import assert_raises from tulip import spec, synth, dumpsmach logging.getLogger('tulip').setLevel('ERROR') logging.getLogger('astutils').setLevel('ERROR') logging.getLogger('omega').setLevel('ERROR') class basic_test(object): def setUp(self): self.triv = spec.GRSpec(env_vars="x", sys_vars="y", env_init="x & y", env_prog="x", sys_init="y", sys_prog="y && x") self.triv_M = synth.synthesize( self.triv, solver='omega') self.dcounter = spec.GRSpec( sys_vars={"y": (0, 5)}, env_init=['y = 0'], sys_prog=["y=0", "y=5"]) self.dcounter_M = synth.synthesize( self.dcounter, solver='omega') self.enumf = spec.GRSpec( sys_vars={'y': ['a', 'b']}, env_init=['y="a"'], sys_safety=['y = "a" -> X(y = "b")', 'y = "b" -> X(y = "a")']) self.enumf_M = synth.synthesize( self.enumf, solver='omega') def tearDown(self): self.dcounter = None self.dcounter_M = None def test_python_case(self): compile(dumpsmach.python_case(self.triv_M), filename="<string>", mode="exec") # print(dumpsmach.python_case(self.dcounter_M)) compile(dumpsmach.python_case(self.dcounter_M), filename="<string>", mode="exec") exec(compile(dumpsmach.python_case(self.enumf_M) +'\nM = TulipStrategy(); M.move()', filename="<string>", mode="exec")) def test_nx(): g = nx.DiGraph() g.inputs = {'a': '...', 'b': '...'} g.outputs = {'c': '...', 'd': '...'} start = 'Sinit' g.add_edge(start, 0, a=0, b=0, c=0, d=0) g.add_edge(0, 1, a=0, b=1, c=0, d=1) g.add_edge(1, 2, a=1, b=0, c=1, d=1) print(dumpsmach.python_case(g, classname='Machine', start='Sinit')) exe_globals = dict() exec(dumpsmach.python_case(g, classname='Machine', start='Sinit'), exe_globals) m = exe_globals['Machine']() # previous line creates the class `Machine` # Sinit -> 0 out = m.move(a=0, b=0) assert out == dict(c=0, d=0) # 0 -> 1 out = m.move(a=0, b=1) assert out == dict(c=0, d=1) # invalid input for index 2 in time sequence with assert_raises(ValueError): m.move(a=1, b=1) # 1 -> 2 out = m.move(a=1, b=0) assert out == dict(c=1, d=1) # dead-end with assert_raises(Exception): m.move(a=1, b=0)
32.46988
83
0.547681
[ "BSD-3-Clause" ]
arw12625/tulip-control
tests/dumpsmach_test.py
2,695
Python
# coding=utf-8 import requests import json def robot(content,userid): api = r'http://openapi.tuling123.com/openapi/api/v2' data = { "perception": { "inputText": { "text": content } }, "userInfo": { "apiKey": "fece0dcdbe4845559492c26d5de40119", "userId": userid } } response = requests.post(api, data=json.dumps(data)) robot_res = json.loads(response.content) return robot_res["results"][0]['values']['text']
26.590909
65
0.499145
[ "MIT" ]
91MrGeng/wechatrobot
tuling.py
585
Python
import argparse import os import sys import numpy as np import soundfile from mir_eval.util import midi_to_hz from onsets_and_frames import * def load_and_process_audio(flac_path, sequence_length, device): random = np.random.RandomState(seed=42) audio, sr = soundfile.read(flac_path, dtype='int16') assert sr == SAMPLE_RATE audio = torch.ShortTensor(audio) if sequence_length is not None: audio_length = len(audio) step_begin = random.randint(audio_length - sequence_length) // HOP_LENGTH n_steps = sequence_length // HOP_LENGTH begin = step_begin * HOP_LENGTH end = begin + sequence_length audio = audio[begin:end].to(device) else: audio = audio.to(device) audio = audio.float().div_(32768.0) return audio def transcribe(model, audio): mel = melspectrogram(audio.reshape(-1, audio.shape[-1])[:, :-1]).transpose(-1, -2) onset_pred, offset_pred, _, frame_pred, velocity_pred = model(mel) predictions = { 'onset': onset_pred.reshape((onset_pred.shape[1], onset_pred.shape[2])), 'offset': offset_pred.reshape((offset_pred.shape[1], offset_pred.shape[2])), 'frame': frame_pred.reshape((frame_pred.shape[1], frame_pred.shape[2])), 'velocity': velocity_pred.reshape((velocity_pred.shape[1], velocity_pred.shape[2])) } return predictions def transcribe_file(model_file, flac_paths, save_path, sequence_length, onset_threshold, frame_threshold, device): model = torch.load(model_file, map_location=device).eval() summary(model) for flac_path in flac_paths: print(f'Processing {flac_path}...', file=sys.stderr) audio = load_and_process_audio(flac_path, sequence_length, device) predictions = transcribe(model, audio) p_est, i_est, v_est = extract_notes(predictions['onset'], predictions['frame'], predictions['velocity'], onset_threshold, frame_threshold) scaling = HOP_LENGTH / SAMPLE_RATE i_est = (i_est * scaling).reshape(-1, 2) p_est = np.array([midi_to_hz(MIN_MIDI + midi) for midi in p_est]) os.makedirs(save_path, exist_ok=True) pred_path = os.path.join(save_path, os.path.basename(flac_path) + '.pred.png') save_pianoroll(pred_path, predictions['onset'], predictions['frame']) midi_path = os.path.join(save_path, os.path.basename(flac_path) + '.pred.mid') save_midi(midi_path, p_est, i_est, v_est) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('model_file', type=str) parser.add_argument('flac_paths', type=str, nargs='+') parser.add_argument('--save-path', type=str, default='.') parser.add_argument('--sequence-length', default=None, type=int) parser.add_argument('--onset-threshold', default=0.5, type=float) parser.add_argument('--frame-threshold', default=0.5, type=float) parser.add_argument('--device', default='cuda' if torch.cuda.is_available() else 'cpu') with torch.no_grad(): transcribe_file(**vars(parser.parse_args()))
34.733333
146
0.680742
[ "MIT" ]
RKelln/onsets-and-frames
transcribe.py
3,126
Python
#!/usr/bin/env python # -*- coding: utf-8 -*- """The setup script. Based on Jeff Knupp's Demo + Cookiecutter""" import io import os from setuptools import setup, find_packages def read(*filenames, **kwargs): encoding = kwargs.get('encoding', 'utf-8') sep = kwargs.get('sep', '\n') buf = [] for filename in filenames: with io.open(filename, encoding=encoding) as f: buf.append(f.read()) return sep.join(buf) NAME = 'tiingo' AUTHOR = "Cameron Yick" EMAIL = '[email protected]' URL = 'https://github.com/hydrosquall/tiingo-python' DESCRIPTION = "REST Client for Tiingo Data Platform API" LONG_DESCRIPTION = read('README.rst', 'HISTORY.rst') requirements = [ 'requests', ] setup_requirements = [ 'pytest-runner', ] test_requirements = [ 'pytest', 'vcrpy', ] # Metadata about the module # Load the package's __version__.py module as a dictionary. # Via https://github.com/kennethreitz/setup.py/blob/master/setup.py here = os.path.abspath(os.path.dirname(__file__)) about = {} with open(os.path.join(here, NAME, '__version__.py')) as f: exec(f.read(), about) setup( name=NAME, version=about['__version__'], description=DESCRIPTION, long_description=LONG_DESCRIPTION, author=AUTHOR, author_email=EMAIL, url=URL, packages=find_packages(include=[NAME]), include_package_data=True, install_requires=requirements, extras_require={'pandas': ['pandas>=0.18']}, license="MIT license", zip_safe=False, keywords=['tiingo', 'finance', 'stocks', 'rest'], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Intended Audience :: Financial and Insurance Industry', 'License :: OSI Approved :: MIT License', 'Natural Language :: English', 'Topic :: Office/Business :: Financial :: Investment', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', ], test_suite='tests', tests_require=test_requirements, setup_requires=setup_requirements, )
27.4
67
0.654197
[ "MIT" ]
GenusGeoff/tiingo-python
setup.py
2,192
Python
# AUTOGENERATED! DO NOT EDIT! File to edit: nbs/models/models.ccpm.ipynb (unless otherwise specified). __all__ = ['CCPM'] # Cell import torch from torch import nn from .layers.embedding import EmbeddingLayer from .layers.common import KMaxPooling from .bases.ctr import CTRModel # Internal Cell def get_activation(activation): if isinstance(activation, str): if activation.lower() == "relu": return nn.ReLU() elif activation.lower() == "sigmoid": return nn.Sigmoid() elif activation.lower() == "tanh": return nn.Tanh() else: return getattr(nn, activation)() else: return activation # Internal Cell class CCPM_ConvLayer(nn.Module): """ Input X: tensor of shape (batch_size, 1, num_fields, embedding_dim) """ def __init__(self, num_fields, channels=[3], kernel_heights=[3], activation="Tanh"): super(CCPM_ConvLayer, self).__init__() if not isinstance(kernel_heights, list): kernel_heights = [kernel_heights] * len(channels) elif len(kernel_heights) != len(channels): raise ValueError("channels={} and kernel_heights={} should have the same length."\ .format(channels, kernel_heights)) module_list = [] self.channels = [1] + channels layers = len(kernel_heights) for i in range(1, len(self.channels)): in_channels = self.channels[i - 1] out_channels = self.channels[i] kernel_height = kernel_heights[i - 1] module_list.append(nn.ZeroPad2d((0, 0, kernel_height - 1, kernel_height - 1))) module_list.append(nn.Conv2d(in_channels, out_channels, kernel_size=(kernel_height, 1))) if i < layers: k = max(3, int((1 - pow(float(i) / layers, layers - i)) * num_fields)) else: k = 3 module_list.append(KMaxPooling(k, dim=2)) module_list.append(get_activation(activation)) self.conv_layer = nn.Sequential(*module_list) def forward(self, X): return self.conv_layer(X) # Cell class CCPM(CTRModel): def __init__(self, feature_map, model_id="CCPM", task="binary_classification", learning_rate=1e-3, embedding_initializer="torch.nn.init.normal_(std=1e-4)", embedding_dim=10, channels=[4, 4, 2], kernel_heights=[6, 5, 3], activation="Tanh", **kwargs): super(CCPM, self).__init__(feature_map, model_id=model_id, **kwargs) self.embedding_layer = EmbeddingLayer(feature_map, embedding_dim) self.conv_layer = CCPM_ConvLayer(feature_map.num_fields, channels=channels, kernel_heights=kernel_heights, activation=activation) conv_out_dim = 3 * embedding_dim * channels[-1] # 3 is k-max-pooling size of the last layer self.fc = nn.Linear(conv_out_dim, 1) self.output_activation = self.get_final_activation(task) self.init_weights(embedding_initializer=embedding_initializer) def forward(self, inputs): feature_emb = self.embedding_layer(inputs) conv_in = torch.unsqueeze(feature_emb, 1) # shape (bs, 1, field, emb) conv_out = self.conv_layer(conv_in) flatten_out = torch.flatten(conv_out, start_dim=1) y_pred = self.fc(flatten_out) if self.output_activation is not None: y_pred = self.output_activation(y_pred) return y_pred
40.382979
102
0.58667
[ "Apache-2.0" ]
RecoHut-Projects/recohut
_docs/py/models/ccpm.py
3,796
Python
# exported from PySB model 'model' from pysb import Model, Monomer, Parameter, Expression, Compartment, Rule, Observable, Initial, MatchOnce, Annotation, ANY, WILD Model() Monomer('Ligand', ['Receptor']) Monomer('ParpU', ['C3A']) Monomer('C8A', ['BidU']) Monomer('SmacM', ['BaxA']) Monomer('BaxM', ['BidM', 'BaxA']) Monomer('Apop', ['C3pro', 'Xiap']) Monomer('Fadd', ['Receptor', 'C8pro']) Monomer('SmacC', ['Xiap']) Monomer('ParpC') Monomer('Xiap', ['SmacC', 'Apop', 'C3A']) Monomer('C9') Monomer('C3ub') Monomer('C8pro', ['Fadd']) Monomer('C3pro', ['Apop']) Monomer('CytoCM', ['BaxA']) Monomer('CytoCC') Monomer('BaxA', ['BaxM', 'BaxA_1', 'BaxA_2', 'SmacM', 'CytoCM']) Monomer('ApafI') Monomer('BidU', ['C8A']) Monomer('BidT') Monomer('C3A', ['Xiap', 'ParpU']) Monomer('ApafA') Monomer('BidM', ['BaxM']) Monomer('Receptor', ['Ligand', 'Fadd']) Parameter('bind_0_Ligand_binder_Receptor_binder_target_2kf', 1.0) Parameter('bind_0_Ligand_binder_Receptor_binder_target_1kr', 1.0) Parameter('bind_0_Receptor_binder_Fadd_binder_target_2kf', 1.0) Parameter('bind_0_Receptor_binder_Fadd_binder_target_1kr', 1.0) Parameter('substrate_binding_0_Fadd_catalyzer_C8pro_substrate_2kf', 1.0) Parameter('substrate_binding_0_Fadd_catalyzer_C8pro_substrate_1kr', 1.0) Parameter('catalytic_step_0_Fadd_catalyzer_C8pro_substrate_C8A_product_1kc', 1.0) Parameter('catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product_2kf', 1.0) Parameter('catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product_1kr', 1.0) Parameter('catalysis_1_C8A_catalyzer_BidU_substrate_BidT_product_1kc', 1.0) Parameter('conversion_0_CytoCC_subunit_d_ApafI_subunit_c_ApafA_complex_2kf', 1.0) Parameter('conversion_0_CytoCC_subunit_d_ApafI_subunit_c_ApafA_complex_1kr', 1.0) Parameter('inhibition_0_SmacC_inhibitor_Xiap_inh_target_2kf', 1.0) Parameter('inhibition_0_SmacC_inhibitor_Xiap_inh_target_1kr', 1.0) Parameter('conversion_0_C9_subunit_d_ApafA_subunit_c_Apop_complex_2kf', 1.0) Parameter('conversion_0_C9_subunit_d_ApafA_subunit_c_Apop_complex_1kr', 1.0) Parameter('catalysis_0_Apop_catalyzer_C3pro_substrate_C3A_product_2kf', 1.0) Parameter('catalysis_0_Apop_catalyzer_C3pro_substrate_C3A_product_1kr', 1.0) Parameter('catalysis_1_Apop_catalyzer_C3pro_substrate_C3A_product_1kc', 1.0) Parameter('inhibition_0_Xiap_inhibitor_Apop_inh_target_2kf', 1.0) Parameter('inhibition_0_Xiap_inhibitor_Apop_inh_target_1kr', 1.0) Parameter('catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product_2kf', 1.0) Parameter('catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product_1kr', 1.0) Parameter('catalysis_1_Xiap_catalyzer_C3A_substrate_C3ub_product_1kc', 1.0) Parameter('catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product_2kf', 1.0) Parameter('catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product_1kr', 1.0) Parameter('catalysis_1_C3A_catalyzer_ParpU_substrate_ParpC_product_1kc', 1.0) Parameter('equilibration_0_BidT_equil_a_BidM_equil_b_1kf', 1.0) Parameter('equilibration_0_BidT_equil_a_BidM_equil_b_1kr', 1.0) Parameter('catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product_2kf', 1.0) Parameter('catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product_1kr', 1.0) Parameter('catalysis_1_BidM_catalyzer_BaxM_substrate_BaxA_product_1kc', 1.0) Parameter('self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate_2kf', 1.0) Parameter('self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate_1kr', 1.0) Parameter('self_catalyze_1_BaxA_self_catalyzer_BaxM_self_substrate_1kc', 1.0) Parameter('pore_formation_0_BaxA_pore_2kf', 1.0) Parameter('pore_formation_0_BaxA_pore_1kr', 1.0) Parameter('pore_formation_1_BaxA_pore_2kf', 1.0) Parameter('pore_formation_1_BaxA_pore_1kr', 1.0) Parameter('pore_formation_2_BaxA_pore_2kf', 1.0) Parameter('pore_formation_2_BaxA_pore_1kr', 1.0) Parameter('transport_0_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_2kf', 1.0) Parameter('transport_0_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_1kr', 1.0) Parameter('transport_1_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_1kc', 1.0) Parameter('transport_0_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_2kf', 1.0) Parameter('transport_0_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_1kr', 1.0) Parameter('transport_1_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_1kc', 1.0) Parameter('Ligand_0', 1000.0) Parameter('ParpU_0', 1000000.0) Parameter('C8A_0', 0.0) Parameter('SmacM_0', 100000.0) Parameter('BaxM_0', 40000.0) Parameter('Apop_0', 0.0) Parameter('Fadd_0', 130000.0) Parameter('SmacC_0', 0.0) Parameter('ParpC_0', 0.0) Parameter('Xiap_0', 28000.0) Parameter('C9_0', 100000.0) Parameter('C3ub_0', 0.0) Parameter('C8pro_0', 130000.0) Parameter('C3pro_0', 21000.0) Parameter('CytoCM_0', 500000.0) Parameter('CytoCC_0', 0.0) Parameter('BaxA_0', 0.0) Parameter('ApafI_0', 100000.0) Parameter('BidU_0', 171000.0) Parameter('BidT_0', 0.0) Parameter('C3A_0', 0.0) Parameter('ApafA_0', 0.0) Parameter('BidM_0', 0.0) Parameter('Receptor_0', 100.0) Observable('Ligand_obs', Ligand()) Observable('ParpU_obs', ParpU()) Observable('C8A_obs', C8A()) Observable('SmacM_obs', SmacM()) Observable('BaxM_obs', BaxM()) Observable('Apop_obs', Apop()) Observable('Fadd_obs', Fadd()) Observable('SmacC_obs', SmacC()) Observable('ParpC_obs', ParpC()) Observable('Xiap_obs', Xiap()) Observable('C9_obs', C9()) Observable('C3ub_obs', C3ub()) Observable('C8pro_obs', C8pro()) Observable('C3pro_obs', C3pro()) Observable('CytoCM_obs', CytoCM()) Observable('CytoCC_obs', CytoCC()) Observable('BaxA_obs', BaxA()) Observable('ApafI_obs', ApafI()) Observable('BidU_obs', BidU()) Observable('BidT_obs', BidT()) Observable('C3A_obs', C3A()) Observable('ApafA_obs', ApafA()) Observable('BidM_obs', BidM()) Observable('Receptor_obs', Receptor()) Rule('bind_0_Ligand_binder_Receptor_binder_target', Ligand(Receptor=None) + Receptor(Ligand=None, Fadd=None) | Ligand(Receptor=1) % Receptor(Ligand=1, Fadd=None), bind_0_Ligand_binder_Receptor_binder_target_2kf, bind_0_Ligand_binder_Receptor_binder_target_1kr) Rule('bind_0_Receptor_binder_Fadd_binder_target', Receptor(Ligand=ANY, Fadd=None) + Fadd(Receptor=None, C8pro=None) | Receptor(Ligand=ANY, Fadd=1) % Fadd(Receptor=1, C8pro=None), bind_0_Receptor_binder_Fadd_binder_target_2kf, bind_0_Receptor_binder_Fadd_binder_target_1kr) Rule('substrate_binding_0_Fadd_catalyzer_C8pro_substrate', Fadd(Receptor=ANY, C8pro=None) + C8pro(Fadd=None) | Fadd(Receptor=ANY, C8pro=1) % C8pro(Fadd=1), substrate_binding_0_Fadd_catalyzer_C8pro_substrate_2kf, substrate_binding_0_Fadd_catalyzer_C8pro_substrate_1kr) Rule('catalytic_step_0_Fadd_catalyzer_C8pro_substrate_C8A_product', Fadd(Receptor=ANY, C8pro=1) % C8pro(Fadd=1) >> Fadd(Receptor=ANY, C8pro=None) + C8A(BidU=None), catalytic_step_0_Fadd_catalyzer_C8pro_substrate_C8A_product_1kc) Rule('catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product', C8A(BidU=None) + BidU(C8A=None) | C8A(BidU=1) % BidU(C8A=1), catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product_2kf, catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product_1kr) Rule('catalysis_1_C8A_catalyzer_BidU_substrate_BidT_product', C8A(BidU=1) % BidU(C8A=1) >> C8A(BidU=None) + BidT(), catalysis_1_C8A_catalyzer_BidU_substrate_BidT_product_1kc) Rule('conversion_0_CytoCC_subunit_d_ApafI_subunit_c_ApafA_complex', ApafI() + CytoCC() | ApafA(), conversion_0_CytoCC_subunit_d_ApafI_subunit_c_ApafA_complex_2kf, conversion_0_CytoCC_subunit_d_ApafI_subunit_c_ApafA_complex_1kr) Rule('inhibition_0_SmacC_inhibitor_Xiap_inh_target', SmacC(Xiap=None) + Xiap(SmacC=None, Apop=None, C3A=None) | SmacC(Xiap=1) % Xiap(SmacC=1, Apop=None, C3A=None), inhibition_0_SmacC_inhibitor_Xiap_inh_target_2kf, inhibition_0_SmacC_inhibitor_Xiap_inh_target_1kr) Rule('conversion_0_C9_subunit_d_ApafA_subunit_c_Apop_complex', ApafA() + C9() | Apop(C3pro=None, Xiap=None), conversion_0_C9_subunit_d_ApafA_subunit_c_Apop_complex_2kf, conversion_0_C9_subunit_d_ApafA_subunit_c_Apop_complex_1kr) Rule('catalysis_0_Apop_catalyzer_C3pro_substrate_C3A_product', Apop(C3pro=None, Xiap=None) + C3pro(Apop=None) | Apop(C3pro=1, Xiap=None) % C3pro(Apop=1), catalysis_0_Apop_catalyzer_C3pro_substrate_C3A_product_2kf, catalysis_0_Apop_catalyzer_C3pro_substrate_C3A_product_1kr) Rule('catalysis_1_Apop_catalyzer_C3pro_substrate_C3A_product', Apop(C3pro=1, Xiap=None) % C3pro(Apop=1) >> Apop(C3pro=None, Xiap=None) + C3A(Xiap=None, ParpU=None), catalysis_1_Apop_catalyzer_C3pro_substrate_C3A_product_1kc) Rule('inhibition_0_Xiap_inhibitor_Apop_inh_target', Xiap(SmacC=None, Apop=None, C3A=None) + Apop(C3pro=None, Xiap=None) | Xiap(SmacC=None, Apop=1, C3A=None) % Apop(C3pro=None, Xiap=1), inhibition_0_Xiap_inhibitor_Apop_inh_target_2kf, inhibition_0_Xiap_inhibitor_Apop_inh_target_1kr) Rule('catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product', Xiap(SmacC=None, Apop=None, C3A=None) + C3A(Xiap=None, ParpU=None) | Xiap(SmacC=None, Apop=None, C3A=1) % C3A(Xiap=1, ParpU=None), catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product_2kf, catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product_1kr) Rule('catalysis_1_Xiap_catalyzer_C3A_substrate_C3ub_product', Xiap(SmacC=None, Apop=None, C3A=1) % C3A(Xiap=1, ParpU=None) >> Xiap(SmacC=None, Apop=None, C3A=None) + C3ub(), catalysis_1_Xiap_catalyzer_C3A_substrate_C3ub_product_1kc) Rule('catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product', C3A(Xiap=None, ParpU=None) + ParpU(C3A=None) | C3A(Xiap=None, ParpU=1) % ParpU(C3A=1), catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product_2kf, catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product_1kr) Rule('catalysis_1_C3A_catalyzer_ParpU_substrate_ParpC_product', C3A(Xiap=None, ParpU=1) % ParpU(C3A=1) >> C3A(Xiap=None, ParpU=None) + ParpC(), catalysis_1_C3A_catalyzer_ParpU_substrate_ParpC_product_1kc) Rule('equilibration_0_BidT_equil_a_BidM_equil_b', BidT() | BidM(BaxM=None), equilibration_0_BidT_equil_a_BidM_equil_b_1kf, equilibration_0_BidT_equil_a_BidM_equil_b_1kr) Rule('catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product', BidM(BaxM=None) + BaxM(BidM=None, BaxA=None) | BidM(BaxM=1) % BaxM(BidM=1, BaxA=None), catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product_2kf, catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product_1kr) Rule('catalysis_1_BidM_catalyzer_BaxM_substrate_BaxA_product', BidM(BaxM=1) % BaxM(BidM=1, BaxA=None) >> BidM(BaxM=None) + BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None), catalysis_1_BidM_catalyzer_BaxM_substrate_BaxA_product_1kc) Rule('self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate', BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) + BaxM(BidM=None, BaxA=None) | BaxA(BaxM=1, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) % BaxM(BidM=None, BaxA=1), self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate_2kf, self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate_1kr) Rule('self_catalyze_1_BaxA_self_catalyzer_BaxM_self_substrate', BaxA(BaxM=1, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) % BaxM(BidM=None, BaxA=1) >> BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) + BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None), self_catalyze_1_BaxA_self_catalyzer_BaxM_self_substrate_1kc) Rule('pore_formation_0_BaxA_pore', BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) + BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) | BaxA(BaxM=None, BaxA_1=None, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=None, SmacM=None, CytoCM=None), pore_formation_0_BaxA_pore_2kf, pore_formation_0_BaxA_pore_1kr) Rule('pore_formation_1_BaxA_pore', BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) + BaxA(BaxM=None, BaxA_1=None, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=None, SmacM=None, CytoCM=None) | BaxA(BaxM=None, BaxA_1=3, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None), pore_formation_1_BaxA_pore_2kf, pore_formation_1_BaxA_pore_1kr) Rule('pore_formation_2_BaxA_pore', BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) + BaxA(BaxM=None, BaxA_1=3, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) | BaxA(BaxM=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=None), pore_formation_2_BaxA_pore_2kf, pore_formation_2_BaxA_pore_1kr) Rule('transport_0_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C', BaxA(BaxM=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=None) + SmacM(BaxA=None) | BaxA(BaxM=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=3, BaxA_2=4, SmacM=5, CytoCM=None) % SmacM(BaxA=5), transport_0_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_2kf, transport_0_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_1kr) Rule('transport_1_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C', BaxA(BaxM=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=3, BaxA_2=4, SmacM=5, CytoCM=None) % SmacM(BaxA=5) >> BaxA(BaxM=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=None) + SmacC(Xiap=None), transport_1_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_1kc) Rule('transport_0_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C', BaxA(BaxM=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=None) + CytoCM(BaxA=None) | BaxA(BaxM=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=5) % CytoCM(BaxA=5), transport_0_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_2kf, transport_0_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_1kr) Rule('transport_1_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C', BaxA(BaxM=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=5) % CytoCM(BaxA=5) >> BaxA(BaxM=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=None) + CytoCC(), transport_1_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_1kc) Initial(Ligand(Receptor=None), Ligand_0) Initial(ParpU(C3A=None), ParpU_0) Initial(C8A(BidU=None), C8A_0) Initial(SmacM(BaxA=None), SmacM_0) Initial(BaxM(BidM=None, BaxA=None), BaxM_0) Initial(Apop(C3pro=None, Xiap=None), Apop_0) Initial(Fadd(Receptor=None, C8pro=None), Fadd_0) Initial(SmacC(Xiap=None), SmacC_0) Initial(ParpC(), ParpC_0) Initial(Xiap(SmacC=None, Apop=None, C3A=None), Xiap_0) Initial(C9(), C9_0) Initial(C3ub(), C3ub_0) Initial(C8pro(Fadd=None), C8pro_0) Initial(C3pro(Apop=None), C3pro_0) Initial(CytoCM(BaxA=None), CytoCM_0) Initial(CytoCC(), CytoCC_0) Initial(BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None), BaxA_0) Initial(ApafI(), ApafI_0) Initial(BidU(C8A=None), BidU_0) Initial(BidT(), BidT_0) Initial(C3A(Xiap=None, ParpU=None), C3A_0) Initial(ApafA(), ApafA_0) Initial(BidM(BaxM=None), BidM_0) Initial(Receptor(Ligand=None, Fadd=None), Receptor_0)
87.857923
710
0.803458
[ "MIT" ]
LoLab-VU/Bayesian_Inference_of_Network_Dynamics
log_mito/model_112.py
16,078
Python
# Copyright 2011 OpenStack Foundation # Copyright 2013 IBM Corp. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import webob from webob import exc from nova.api.openstack import common from nova.api.openstack import extensions from nova.api.openstack import wsgi from nova import compute from nova import exception from nova.openstack.common import log as logging LOG = logging.getLogger(__name__) ALIAS = "os-pause-server" def authorize(context, action_name): action = 'v3:%s:%s' % (ALIAS, action_name) extensions.extension_authorizer('compute', action)(context) class PauseServerController(wsgi.Controller): def __init__(self, *args, **kwargs): super(PauseServerController, self).__init__(*args, **kwargs) self.compute_api = compute.API() @extensions.expected_errors((404, 409)) @wsgi.action('pause') def _pause(self, req, id, body): """Permit Admins to pause the server.""" ctxt = req.environ['nova.context'] authorize(ctxt, 'pause') server = common.get_instance(self.compute_api, ctxt, id, want_objects=True) try: self.compute_api.pause(ctxt, server) except exception.InstanceIsLocked as e: raise exc.HTTPConflict(explanation=e.format_message()) except exception.InstanceInvalidState as state_error: common.raise_http_conflict_for_instance_invalid_state(state_error, 'pause') except exception.InstanceNotFound as e: raise exc.HTTPNotFound(explanation=e.format_message()) return webob.Response(status_int=202) @extensions.expected_errors((404, 409)) @wsgi.action('unpause') def _unpause(self, req, id, body): """Permit Admins to unpause the server.""" ctxt = req.environ['nova.context'] authorize(ctxt, 'unpause') server = common.get_instance(self.compute_api, ctxt, id, want_objects=True) try: self.compute_api.unpause(ctxt, server) except exception.InstanceIsLocked as e: raise exc.HTTPConflict(explanation=e.format_message()) except exception.InstanceInvalidState as state_error: common.raise_http_conflict_for_instance_invalid_state(state_error, 'unpause') except exception.InstanceNotFound as e: raise exc.HTTPNotFound(explanation=e.format_message()) return webob.Response(status_int=202) class PauseServer(extensions.V3APIExtensionBase): """Enable pause/unpause server actions.""" name = "PauseServer" alias = ALIAS version = 1 def get_controller_extensions(self): controller = PauseServerController() extension = extensions.ControllerExtension(self, 'servers', controller) return [extension] def get_resources(self): return []
36.88172
79
0.680466
[ "Apache-2.0" ]
PFZheng/nova
nova/api/openstack/compute/plugins/v3/pause_server.py
3,430
Python
# coding=utf-8 import websocket import datetime import csv import time import logging import redis import json import copy import pytz from hftcoin.mdagent.ccws.configs import REDIS_HOST from hftcoin.mdagent.ccws.configs import TIMEZONE from hftcoin.mdagent.ccws.configs import ExConfigs from hftcoin.mdagent.ccws.configs import HOME_PATH class Exchange(object): ExchangeId = '' WebSocketConnection = None RedisConnection = None def __init__(self): self.Logger = logging.getLogger(self.ExchangeId) [self.ExConfig, self._WebSocketAddress] = ExConfigs[self.ExchangeId] self.Config = {} def set_market(self, currency, mode): self.Config = self.ExConfig[currency][mode] self.Logger = logging.getLogger('%s.%s.%s' % (self.ExchangeId, currency, mode)) def run_websocketapp(self, **kwargs): self.Logger.info('Begin Connection') url = self._WebSocketAddress + kwargs.pop('url_append', '') on_error = kwargs.pop('on_error', self.on_error) on_close = kwargs.pop('on_close', self.on_close) on_message = kwargs.pop('on_message', self.on_message) self.WebSocketConnection = websocket.WebSocketApp( url, on_error=on_error, on_close=on_close, on_message=on_message, **kwargs, ) while True: try: self.WebSocketConnection.run_forever() except Exception as e: self.Logger.exception(e) def on_message(self, _ws, msg): ts = int(time.time()*1000) rdk = self.Config['RedisCollectKey'] # self.Logger.debug(msg) self.RedisConnection.lpush(rdk, json.dumps([ts, msg])) def on_error(self, _ws, error): self.Logger.exception(error) def on_close(self, _ws): self.Logger.info('Connection closed.') def connect_redis(self): try: self.RedisConnection = redis.StrictRedis(host=REDIS_HOST) self.RedisConnection.ping() except Exception as e: self.Logger.exception(e) def write_data_csv(self): self.connect_redis() [fn, rdk] = [self.Config.get(item) for item in ['FileName', 'RedisOutputKey']] error_count = 100 while True: try: if self.RedisConnection.llen(rdk) > 0: data = json.loads(self.RedisConnection.rpop(rdk).decode('utf8')) # data[1] is timestamp dt = datetime.datetime.fromtimestamp(data[1] / 1000, TIMEZONE) calendar_path = '%4d/%02d/%02d' % (dt.year, dt.month, dt.day) with open('%s/%s/%s' % (HOME_PATH, calendar_path, fn), 'a+') as csvFile: csvwriter = csv.writer(csvFile) csvwriter.writerow(data) else: time.sleep(60) except RuntimeWarning: break except Exception as e: self.Logger.exception(e) error_count -= 1 if error_count < 0: break def collect_data(self): pass def process_data(self): self.connect_redis() getattr(self, self.Config.get('DataHandler', object))() def _check_price_eq(self, p1, p2): # divide by 2 to avoid precision return abs(p1-p2) < self.Config['TickSize']/2 def _binary_search(self, find, list1, low, high): while low <= high: mid = int((low + high) / 2) if self._check_price_eq(list1[mid][0], find): return [mid, 'True'] elif list1[mid][0] > find: high = mid - 1 else: low = mid + 1 return [low, 'False'] def _update_order_book(self, bids, asks, side, price, remaining): if side in ['bid', 'buy']: book = bids cut = int(99*(len(book)-1)/100) else: book = asks cut = int((len(book)-1)/100) if price < book[cut][0]: res = self._binary_search(price, book, 0, cut-1) else: res = self._binary_search(price, book, cut, len(book)-1) if res[1] == 'True': if remaining < self.Config['AmountMin']: del book[res[0]] else: book[res[0]][1] = remaining else: if remaining >= self.Config['AmountMin']: book.insert(res[0], [price, remaining]) def check_data_validation(self, book): length = int(len(book)/2) for i in range(0, length - 2, 2): if book[i] <= book[i + 2]: return False for i in range(length, 2 * length - 2, 2): if book[i] >= book[i + 2]: return False for i in range(1, 2 * length, 2): if book[i] < self.Config['AmountMin']: return False if book[0] > book[length]: return False return True @staticmethod def _cut_order_book(bids, asks, depth): if len(bids) >= depth: book = bids[-depth:] book.reverse() else: book = copy.deepcopy(bids) book.reverse() book += [['None', 'None']] * (depth - len(bids)) if len(asks) >= depth: book += asks[:depth] else: book += asks + [['None', 'None']] * (depth - len(asks)) book = [x[0:2] for x in book] return sum(book, []) @staticmethod def fmt_date(ts): return datetime.datetime.fromtimestamp(ts / 1000, TIMEZONE).strftime('%Y-%m-%d %H:%M:%S.%f %z') @staticmethod def date_from_str(ts): return pytz.utc.localize(datetime.datetime.strptime(ts, '%Y-%m-%dT%H:%M:%S.%fZ'))
32.631285
103
0.546995
[ "MIT" ]
applezjm/testsub
ccws/base.py
5,841
Python
import json import os import re import sys import sysconfig RX_VERSION = re.compile(r"\d\.\d") INSIGHTS = { "_gdbm": "_GDBM_VERSION", "_tkinter": "TCL_VERSION TK_VERSION", "_sqlite3": "sqlite_version version", "_ssl": "OPENSSL_VERSION", "dbm.gnu": "_GDBM_VERSION", "ensurepip": "_PIP_VERSION", "pyexpat": "version_info", "readline": "_READLINE_LIBRARY_VERSION", "tkinter": "TclVersion TkVersion", "zlib": "ZLIB_VERSION ZLIB_RUNTIME_VERSION", } def get_version(text): if text: if isinstance(text, bytes): text = text.decode("utf-8") elif isinstance(text, tuple): text = ".".join(str(x) for x in text) else: text = str(text) if text and RX_VERSION.search(text): return text.splitlines()[0] def pymodule_version_info(key, value, pymodule): version = get_version(value) if version: result = dict(version_field=key, version=version) if hasattr(pymodule, "__file__"): result["path"] = pymodule.__file__ return result def pymodule_info(module_name, pymodule): fields = INSIGHTS.get(module_name) fields = fields.split() if fields else ["__version__", "version", "VERSION"] for f in fields: v = pymodule_version_info(f, getattr(pymodule, f, None), pymodule) if v: return v if hasattr(pymodule, "__file__"): return dict(path=pymodule.__file__) if hasattr(pymodule, "__spec__"): v = getattr(pymodule.__spec__, "origin") if v == "built-in": return dict(version=v) return dict(note=str(dir(pymodule))) def module_report(module_name): try: return pymodule_info(module_name, __import__(module_name)) except Exception as e: note = str(e) if "No module named" in note: return dict(version="*absent*") return dict(version="*absent*", note=note) def get_srcdir(): srcdir = sysconfig.get_config_var("srcdir") if not srcdir or len(srcdir) < 3: srcdir = sysconfig.get_config_var("DESTSHARED") # edge case: py2 reports an odd '.' as srcdir return srcdir def get_simplified_dirs(path): result = [] if path: path = os.path.dirname(path) result.append(path) if path.startswith("/private"): result.append(path[8:]) # whoever compiled didn't use realpath(tmp) elif not path.startswith("/tmp"): # nosec, just simplifying paths result.append(os.path.dirname(result[0])) return result def main(arg): if arg == "sysconfig": marker = "$^" simplified_dirs = get_simplified_dirs(sysconfig.get_config_var("abs_builddir")) if simplified_dirs: print("# '%s' is original abs_builddir:" % marker) print("%s: %s\n" % (marker, simplified_dirs[0])) for k, v in sorted(sysconfig.get_config_vars().items()): for sp in simplified_dirs: v = str(v).replace(sp, marker) print("%s: %s" % (k, v)) return if arg and not arg.startswith("-"): report = dict((k, module_report(k)) for k in arg.split(",")) report = dict(report=report, srcdir=get_srcdir(), prefix=sysconfig.get_config_var("prefix")) print(json.dumps(report, indent=2, sort_keys=True)) if __name__ == "__main__": main(sys.argv[1] if len(sys.argv) > 1 else "")
27.536
102
0.613597
[ "MIT" ]
codrsquad/portable-python
src/portable_python/external/_inspect.py
3,442
Python
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class RRrblup(RPackage): """Ridge Regression and Other Kernels for Genomic Selection. Software for genomic prediction with the RR-BLUP mixed model (Endelman 2011, <doi:10.3835/plantgenome2011.08.0024>). One application is to estimate marker effects by ridge regression; alternatively, BLUPs can be calculated based on an additive relationship matrix or a Gaussian kernel.""" cran = "rrBLUP" version('4.6.1', sha256='e9230e74cc430a83ac5567071cb1c7f00b35c368f7d79bcc1cfde7225446c4db') version('4.6', sha256='28b475a1466fcdc1780caace75cf34155338fda496cebd5799315598a4bc84af') depends_on('[email protected]:', type=('build', 'run'))
36.75
95
0.756236
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
FJ-NaokiMatsumura/spack
var/spack/repos/builtin/packages/r-rrblup/package.py
882
Python
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import unittest import selenium.common.exceptions as Exceptions from selenium.webdriver.common import by import selenium.webdriver.support.ui as Support from selenium.webdriver.support import wait class BaseWebObject(unittest.TestCase): """Base class for all web objects.""" _spinner_locator = (by.By.CSS_SELECTOR, '.modal-body > .spinner') def __init__(self, driver, conf): self.driver = driver self.conf = conf self.explicit_wait = self.conf.selenium.explicit_wait def _is_element_present(self, *locator): try: self._turn_off_implicit_wait() self._get_element(*locator) return True except Exceptions.NoSuchElementException: return False finally: self._turn_on_implicit_wait() def _is_element_visible(self, *locator): try: return self._get_element(*locator).is_displayed() except (Exceptions.NoSuchElementException, Exceptions.ElementNotVisibleException): return False def _is_element_displayed(self, element): try: return element.is_displayed() except Exception: return False def _is_text_visible(self, element, text, strict=True): try: if strict: return element.text == text else: return text in element.text except Exception: return False def _get_element(self, *locator): return self.driver.find_element(*locator) def _get_elements(self, *locator): return self.driver.find_elements(*locator) def _fill_field_element(self, data, field_element): field_element.clear() field_element.send_keys(data) return field_element def _select_dropdown(self, value, element): select = Support.Select(element) select.select_by_visible_text(value) def _select_dropdown_by_value(self, value, element): select = Support.Select(element) select.select_by_value(value) def _turn_off_implicit_wait(self): self.driver.implicitly_wait(0) def _turn_on_implicit_wait(self): self.driver.implicitly_wait(self.conf.selenium.page_timeout) def _wait_until(self, predicate, timeout=None, poll_frequency=0.5): """Wait until the value returned by predicate is not False or the timeout is elapsed. 'predicate' takes the driver as argument. """ if not timeout: timeout = self.explicit_wait wait.WebDriverWait(self.driver, timeout, poll_frequency).until( predicate) def _wait_till_text_present_in_element(self, element, text, timeout=None): """Waiting for a text to appear in a certain element very often is actually waiting for a _different_ element with a different text to appear in place of an old element. So a way to avoid capturing stale element reference should be provided for this use case. Better to wrap getting entity status cell in a lambda to avoid problems with cell being replaced with totally different element by Javascript """ def predicate(_): elt = element() if hasattr(element, '__call__') else element return self._is_text_visible(elt, text) self._wait_until(predicate, timeout) def _wait_till_element_visible(self, element, timeout=None): self._wait_until(lambda x: self._is_element_displayed(element), timeout) def _wait_till_element_disappears(self, element, timeout=None): self._wait_until(lambda x: not self._is_element_displayed(element), timeout) def wait_till_element_disappears(self, element_getter): try: self._turn_off_implicit_wait() self._wait_till_element_disappears(element_getter()) except Exceptions.NoSuchElementException: # NOTE(mpavlase): This is valid state. When request completes # even before Selenium get a chance to get the spinner element, # it will raise the NoSuchElementException exception. pass finally: self._turn_on_implicit_wait() def wait_till_spinner_disappears(self): getter = lambda: self.driver.find_element(*self._spinner_locator) self.wait_till_element_disappears(getter)
37.192593
78
0.671779
[ "Apache-2.0" ]
JerryDog/horizon-f-road
openstack-dashboard/openstack_dashboard/test/integration_tests/basewebobject.py
5,021
Python
import os os.environ["CUDA_VISIBLE_DEVICES"] = "1" # import deepspeed # import mpi4py # import pandas import torch import transformers import wandb #%env WANDB_PROJECT=wine_gpt2_Trainer_42 MODEL_NAME = "gpt2-medium" # wandb.login(anonymous='never', key="222a37baaf0c1b0d1499ec003e5c2fe49f97b107") wandb.init() # wandb.watch(log='all') print(torch.cuda.is_available()) print(f"transformers version: {transformers.__version__}") print(f"PyTorch version: {torch.__version__}") # Tokenizers tokenizer = transformers.AutoTokenizer.from_pretrained(MODEL_NAME) print(len(tokenizer)) tokenizer.add_special_tokens( {"eos_token": "<|startoftext|>", "bos_token": "<|startoftext|>"} ) tokenizer.add_tokens( [ "[prompt]", "[response]", "[category_1]", "[category_2]", "[origin]", "[description]", "<|endoftext|>", ] ) tokenizer.pad_token = tokenizer.eos_token tokenizer.save_pretrained("data/modeling/trainer_42/") print(len(tokenizer)) print("Created tokenizer") class wineDataset(torch.utils.data.Dataset): def __init__(self, encodings): self.encodings = encodings def __len__(self): return len(self.encodings["input_ids"]) def __getitem__(self, idx): item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()} item["labels"] = item["input_ids"] return item with open("data/scraped/name_desc_nlp_ready_train.txt", "r", encoding="utf8") as file: wines_raw_train = file.read().splitlines() with open("data/scraped/name_desc_nlp_ready_test.txt", "r", encoding="utf8") as file: wines_raw_test = file.read().splitlines() print("Loaded dataset") # wines_raw_train, wines_raw_test = train_test_split(wines_raw,test_size=0.2) # wine_encodings_train = tokenizer(wines_raw_train, max_length=200, truncation=True, padding=True) wine_encodings_test = tokenizer( wines_raw_test, max_length=200, truncation=True, padding=True ) print("Encoded dataset") # wine_dataset_train = wineDataset(wine_encodings_train) wine_dataset_test = wineDataset(wine_encodings_test) print("Created PyTorch DataSet") # train_loader = torch.utils.data.DataLoader(wine_dataset_train) model = transformers.AutoModelForCausalLM.from_pretrained(MODEL_NAME) # model.to('cuda') model.resize_token_embeddings(len(tokenizer)) print(f"model parameters: {model.num_parameters():,}") training_args = transformers.TrainingArguments( output_dir="data/modeling/trainer_42/", overwrite_output_dir=True, num_train_epochs=1, per_device_train_batch_size=2, save_steps=100, save_total_limit=2, fp16=True, # deepspeed='data/ds_config.json' ) trainer = transformers.Trainer( model=model, args=training_args, train_dataset=wine_dataset_test, ) trainer.train()
26.433962
98
0.732691
[ "Apache-2.0" ]
cipher982/Wine-o-matic
extra_code/transformers-gpt2-finetune.py
2,802
Python
import time from django.db import connections from django.db.utils import OperationalError from django.core.management.base import BaseCommand class Command(BaseCommand): """Django command to pause execution until database is available """ def handle(self, *args, **options): self.stdout.write('Waiting for database...') db_conn = None while not db_conn: try: db_conn = connections['default'] except OperationalError: self.stdout.write('Database unavailable, waiting 1 second...') time.sleep(1) self.stdout.write(self.style.SUCCESS('Database available'))
35.210526
78
0.654709
[ "MIT" ]
nagarjunand/receipe-app-api
app/core/management/commands/wait_for_db.py
669
Python
from .base import * # noqa pylint: disable=wildcard-import, unused-wildcard-import from .base import env # GENERAL # ------------------------------------------------------------------------------ SECRET_KEY = env("DJANGO_SECRET_KEY") ALLOWED_HOSTS = env.list("DJANGO_ALLOWED_HOSTS", default=["coronacircles.de"]) # DATABASES # ------------------------------------------------------------------------------ DATABASES["default"] = env.db("DATABASE_URL") # noqa F405 DATABASES["default"]["ATOMIC_REQUESTS"] = True # noqa F405 DATABASES["default"]["CONN_MAX_AGE"] = env.int("CONN_MAX_AGE", default=60) # noqa F405 # CACHES # ------------------------------------------------------------------------------ # CACHES = { # 'default': { # 'BACKEND': 'django_redis.cache.RedisCache', # 'LOCATION': env('REDIS_URL'), # 'OPTIONS': { # 'CLIENT_CLASS': 'django_redis.client.DefaultClient', # 'IGNORE_EXCEPTIONS': True, # } # } # } # SECURITY # ------------------------------------------------------------------------------ SECURE_PROXY_SSL_HEADER = ("HTTP_X_FORWARDED_PROTO", "https") SECURE_SSL_REDIRECT = env.bool("DJANGO_SECURE_SSL_REDIRECT", default=True) SESSION_COOKIE_SECURE = True SESSION_COOKIE_HTTPONLY = True CSRF_COOKIE_SECURE = True CSRF_COOKIE_HTTPONLY = True # set this to 60 seconds first and then to 518400 once you prove the former works SECURE_HSTS_SECONDS = env("DJANGO_SECURE_HSTS_SECONDS", default="60") SECURE_HSTS_INCLUDE_SUBDOMAINS = env.bool( "DJANGO_SECURE_HSTS_INCLUDE_SUBDOMAINS", default=True ) SECURE_HSTS_PRELOAD = env.bool("DJANGO_SECURE_HSTS_PRELOAD", default=True) SECURE_CONTENT_TYPE_NOSNIFF = env.bool( "DJANGO_SECURE_CONTENT_TYPE_NOSNIFF", default=True ) SECURE_BROWSER_XSS_FILTER = True X_FRAME_OPTIONS = "DENY" # STORAGES # ------------------------------------------------------------------------------ # INSTALLED_APPS += ["storages"] # noqa F405 # AWS_ACCESS_KEY_ID = env("DJANGO_AWS_ACCESS_KEY_ID") # AWS_SECRET_ACCESS_KEY = env("DJANGO_AWS_SECRET_ACCESS_KEY") # AWS_STORAGE_BUCKET_NAME = env("DJANGO_AWS_STORAGE_BUCKET_NAME") # AWS_AUTO_CREATE_BUCKET = False # AWS_QUERYSTRING_AUTH = False # _AWS_EXPIRY = 60 * 60 * 24 * 7 # AWS_S3_OBJECT_PARAMETERS = { # "CacheControl": f"max-age={_AWS_EXPIRY}, s-maxage={_AWS_EXPIRY}, must-revalidate" # } # STATIC # ------------------------ STATICFILES_STORAGE = "whitenoise.storage.CompressedManifestStaticFilesStorage" # MEDIA # ------------------------------------------------------------------------------ # DEFAULT_FILE_STORAGE = "storages.backends.s3boto3.S3Boto3Storage" # MEDIA_URL = f"https://{AWS_STORAGE_BUCKET_NAME}.s3.amazonaws.com/" # TEMPLATES # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#templates TEMPLATES[0]["OPTIONS"]["loaders"] = [ # noqa F405 ( "django.template.loaders.cached.Loader", [ "django.template.loaders.filesystem.Loader", "django.template.loaders.app_directories.Loader", ], ) ] # EMAIL # ------------------------------------------------------------------------------ DEFAULT_FROM_EMAIL = env( "DJANGO_DEFAULT_FROM_EMAIL", default="CoronaCircles <[email protected]>", ) SERVER_EMAIL = env("DJANGO_SERVER_EMAIL", default=DEFAULT_FROM_EMAIL) EMAIL_SUBJECT_PREFIX = env("DJANGO_EMAIL_SUBJECT_PREFIX", default="[Coronacircles]") EMAIL_HOST = env("DJANGO_EMAIL_HOST", default="localhost") EMAIL_HOST_USER = env("DJANGO_EMAIL_HOST_USER", default="") EMAIL_HOST_PASSWORD = env("DJANGO_EMAIL_HOST_PASSWORD", default="") EMAIL_PORT = env("DJANGO_EMAIL_PORT", default="465") EMAIL_USE_SSL = env.bool("DJANGO_EMAIL_USE_SSL", default=False) EMAIL_USE_TLS = env.bool("DJANGO_EMAIL_USE_TLS", default=False) # ADMIN # ------------------------------------------------------------------------------ # Django Admin URL regex. # ADMIN_URL = env("DJANGO_ADMIN_URL") # no admin in use here # Gunicorn # ------------------------------------------------------------------------------ INSTALLED_APPS += ["gunicorn"] # noqa F405 # LOGGING # ------------------------------------------------------------------------------ # See: https://docs.djangoproject.com/en/dev/ref/settings/#logging # A sample logging configuration. The only tangible logging # performed by this configuration is to send an email to # the site admins bon every HTTP 500 error when DEBUG=False. # See https://docs.djangoproject.com/en/dev/topics/logging for # more details on how to customize your logging configuration. LOGGING = { "version": 1, "disable_existing_loggers": False, "filters": {"require_debug_false": {"()": "django.utils.log.RequireDebugFalse"}}, "formatters": { "verbose": { "format": "%(asctime)s [%(process)d] [%(levelname)s] " "pathname=%(pathname)s lineno=%(lineno)s " "funcname=%(funcName)s %(message)s", "datefmt": "%Y-%m-%d %H:%M:%S", } }, "handlers": { "mail_admins": { "level": "ERROR", "filters": ["require_debug_false"], "class": "django.utils.log.AdminEmailHandler", }, "console": { "level": "DEBUG", "class": "logging.StreamHandler", "formatter": "verbose", }, }, "loggers": { "django.request": { "handlers": ["console", "mail_admins"], "level": "ERROR", "propagate": True, }, "django.security.DisallowedHost": { "level": "ERROR", "handlers": ["console", "mail_admins"], "propagate": True, }, }, }
37.496732
87
0.569984
[ "MIT" ]
CoronaCircle/coronacircles
settings/production.py
5,737
Python
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Setup.py for the Airflow project.""" import io import logging import os import subprocess import sys import unittest from importlib import util from os.path import dirname from textwrap import wrap from typing import Dict, Iterable, List from setuptools import Command, find_packages, setup logger = logging.getLogger(__name__) # Kept manually in sync with airflow.__version__ spec = util.spec_from_file_location("airflow.version", os.path.join('airflow', 'version.py')) # noqa mod = util.module_from_spec(spec) spec.loader.exec_module(mod) # type: ignore version = mod.version # type: ignore PY3 = sys.version_info[0] == 3 PY38 = PY3 and sys.version_info[1] >= 8 my_dir = dirname(__file__) try: with io.open(os.path.join(my_dir, 'README.md'), encoding='utf-8') as f: long_description = f.read() except FileNotFoundError: long_description = '' def airflow_test_suite(): """Test suite for Airflow tests""" test_loader = unittest.TestLoader() test_suite = test_loader.discover(os.path.join(my_dir, 'tests'), pattern='test_*.py') return test_suite class CleanCommand(Command): """ Command to tidy up the project root. Registered as cmdclass in setup() so it can be called with ``python setup.py extra_clean``. """ description = "Tidy up the project root" user_options = [] # type: List[str] def initialize_options(self): """Set default values for options.""" def finalize_options(self): """Set final values for options.""" def run(self): # noqa """Run command to remove temporary files and directories.""" os.chdir(my_dir) os.system('rm -vrf ./build ./dist ./*.pyc ./*.tgz ./*.egg-info') class CompileAssets(Command): """ Compile and build the frontend assets using yarn and webpack. Registered as cmdclass in setup() so it can be called with ``python setup.py compile_assets``. """ description = "Compile and build the frontend assets" user_options = [] # type: List[str] def initialize_options(self): """Set default values for options.""" def finalize_options(self): """Set final values for options.""" def run(self): # noqa """Run a command to compile and build assets.""" subprocess.check_call('./airflow/www/compile_assets.sh') class ListExtras(Command): """ List all available extras Registered as cmdclass in setup() so it can be called with ``python setup.py list_extras``. """ description = "List available extras" user_options = [] # type: List[str] def initialize_options(self): """Set default values for options.""" def finalize_options(self): """Set final values for options.""" def run(self): # noqa """List extras.""" print("\n".join(wrap(", ".join(EXTRAS_REQUIREMENTS.keys()), 100))) def git_version(version_: str) -> str: """ Return a version to identify the state of the underlying git repo. The version will indicate whether the head of the current git-backed working directory is tied to a release tag or not : it will indicate the former with a 'release:{version}' prefix and the latter with a 'dev0' prefix. Following the prefix will be a sha of the current branch head. Finally, a "dirty" suffix is appended to indicate that uncommitted changes are present. :param str version_: Semver version :return: Found Airflow version in Git repo :rtype: str """ try: import git try: repo = git.Repo(os.path.join(*[my_dir, '.git'])) except git.NoSuchPathError: logger.warning('.git directory not found: Cannot compute the git version') return '' except git.InvalidGitRepositoryError: logger.warning('Invalid .git directory not found: Cannot compute the git version') return '' except ImportError: logger.warning('gitpython not found: Cannot compute the git version.') return '' if repo: sha = repo.head.commit.hexsha if repo.is_dirty(): return '.dev0+{sha}.dirty'.format(sha=sha) # commit is clean return '.release:{version}+{sha}'.format(version=version_, sha=sha) else: return 'no_git_version' def write_version(filename: str = os.path.join(*[my_dir, "airflow", "git_version"])): """ Write the Semver version + git hash to file, e.g. ".dev0+2f635dc265e78db6708f59f68e8009abb92c1e65". :param str filename: Destination file to write """ text = "{}".format(git_version(version)) with open(filename, 'w') as file: file.write(text) # 'Start dependencies group' and 'Start dependencies group' are mark for ./scripts/ci/check_order_setup.py # If you change this mark you should also change ./scripts/ci/check_order_setup.py # Start dependencies group amazon = [ 'boto3>=1.12.0,<2.0.0', 'watchtower~=0.7.3', ] apache_beam = [ 'apache-beam[gcp]', ] async_packages = [ 'eventlet>= 0.9.7', 'gevent>=0.13', 'greenlet>=0.4.9', ] atlas = [ 'atlasclient>=0.1.2', ] azure = [ 'azure-batch>=8.0.0', 'azure-cosmos>=3.0.1,<4', 'azure-datalake-store>=0.0.45', 'azure-identity>=1.3.1', 'azure-keyvault>=4.1.0', 'azure-kusto-data>=0.0.43,<0.1', 'azure-mgmt-containerinstance>=1.5.0,<2.0', 'azure-mgmt-datalake-store>=0.5.0', 'azure-mgmt-resource>=2.2.0', 'azure-storage>=0.34.0, <0.37.0', 'azure-storage-blob<12.0', ] cassandra = [ 'cassandra-driver>=3.13.0,<3.21.0', ] celery = [ 'celery~=4.4.2', 'flower>=0.7.3, <1.0', 'tornado>=4.2.0, <6.0', # Dep of flower. Pin to a version that works on Py3.5.2 'vine~=1.3', # https://stackoverflow.com/questions/32757259/celery-no-module-named-five ] cgroups = [ 'cgroupspy>=0.1.4', ] cloudant = [ 'cloudant>=2.0', ] dask = [ 'cloudpickle>=1.4.1, <1.5.0', 'distributed>=2.11.1, <2.20' ] databricks = [ 'requests>=2.20.0, <3', ] datadog = [ 'datadog>=0.14.0', ] doc = [ 'sphinx>=2.1.2', 'sphinx-argparse>=0.1.13', 'sphinx-autoapi==1.0.0', 'sphinx-copybutton', 'sphinx-jinja~=1.1', 'sphinx-rtd-theme>=0.1.6', 'sphinxcontrib-httpdomain>=1.7.0', "sphinxcontrib-redoc>=1.6.0", "sphinxcontrib-spelling==5.2.1" ] docker = [ 'docker~=3.0', ] druid = [ 'pydruid>=0.4.1', ] elasticsearch = [ 'elasticsearch>7, <7.6.0', 'elasticsearch-dbapi==0.1.0', 'elasticsearch-dsl>=5.0.0', ] exasol = [ 'pyexasol>=0.5.1,<1.0.0', ] facebook = [ 'facebook-business>=6.0.2', ] flask_oauth = [ 'Flask-OAuthlib>=0.9.1,<0.9.6', # Flask OAuthLib 0.9.6 requires Flask-Login 0.5.0 - breaks FAB 'oauthlib!=2.0.3,!=2.0.4,!=2.0.5,<3.0.0,>=1.1.2', 'requests-oauthlib==1.1.0', ] google = [ 'PyOpenSSL', 'google-ads>=4.0.0', 'google-api-python-client>=1.6.0,<2.0.0', 'google-auth>=1.0.0,<2.0.0', 'google-auth-httplib2>=0.0.1', 'google-cloud-automl>=0.4.0,<2.0.0', 'google-cloud-bigquery-datatransfer>=0.4.0,<2.0.0', 'google-cloud-bigtable>=1.0.0,<2.0.0', 'google-cloud-container>=0.1.1,<2.0.0', 'google-cloud-datacatalog>=0.5.0, <0.8', # TODO: we should migrate to 1.0 likely and add <2.0.0 then 'google-cloud-dataproc>=1.0.1,<2.0.0', 'google-cloud-dlp>=0.11.0,<2.0.0', 'google-cloud-kms>=1.2.1,<2.0.0', 'google-cloud-language>=1.1.1,<2.0.0', 'google-cloud-logging>=1.14.0,<2.0.0', 'google-cloud-monitoring>=0.34.0,<2.0.0', 'google-cloud-pubsub>=1.0.0,<2.0.0', 'google-cloud-redis>=0.3.0,<2.0.0', 'google-cloud-secret-manager>=0.2.0,<2.0.0', 'google-cloud-spanner>=1.10.0,<2.0.0', 'google-cloud-speech>=0.36.3,<2.0.0', 'google-cloud-storage>=1.16,<2.0.0', 'google-cloud-tasks>=1.2.1,<2.0.0', 'google-cloud-texttospeech>=0.4.0,<2.0.0', 'google-cloud-translate>=1.5.0,<2.0.0', 'google-cloud-videointelligence>=1.7.0,<2.0.0', 'google-cloud-vision>=0.35.2,<2.0.0', 'grpcio-gcp>=0.2.2', 'pandas-gbq', ] grpc = [ 'google-auth>=1.0.0, <2.0.0dev', 'google-auth-httplib2>=0.0.1', 'grpcio>=1.15.0', ] hashicorp = [ 'hvac~=0.10', ] hdfs = [ 'snakebite-py3', ] hive = [ 'hmsclient>=0.1.0', 'pyhive[hive]>=0.6.0', ] jdbc = [ 'jaydebeapi>=1.1.1', ] jenkins = [ 'python-jenkins>=1.0.0', ] jira = [ 'JIRA>1.0.7', ] kerberos = [ 'pykerberos>=1.1.13', 'requests_kerberos>=0.10.0', 'thrift_sasl>=0.2.0', ] kubernetes = [ 'cryptography>=2.0.0', 'kubernetes>=3.0.0', ] kylin = [ 'kylinpy>=2.6' ] ldap = [ 'ldap3>=2.5.1', ] mongo = [ 'dnspython>=1.13.0,<2.0.0', 'pymongo>=3.6.0', ] mssql = [ 'pymssql~=2.1.1', ] mysql = [ 'mysql-connector-python>=8.0.11, <=8.0.18', 'mysqlclient>=1.3.6,<1.4', ] odbc = [ 'pyodbc', ] oracle = [ 'cx_Oracle>=5.1.2', ] pagerduty = [ 'pypd>=1.1.0', ] papermill = [ 'papermill[all]>=1.2.1', 'nteract-scrapbook[all]>=0.3.1', ] password = [ 'bcrypt>=2.0.0', 'flask-bcrypt>=0.7.1', ] pinot = [ 'pinotdb==0.1.1', ] plexus = [ 'arrow>=0.16.0', ] postgres = [ 'psycopg2-binary>=2.7.4', ] presto = [ 'presto-python-client>=0.7.0,<0.8' ] qds = [ 'qds-sdk>=1.10.4', ] rabbitmq = [ 'amqp', ] redis = [ 'redis~=3.2', ] salesforce = [ 'simple-salesforce>=1.0.0', ] samba = [ 'pysmbclient>=0.1.3', ] segment = [ 'analytics-python>=1.2.9', ] sendgrid = [ 'sendgrid>=6.0.0,<7', ] sentry = [ 'blinker>=1.1', 'sentry-sdk>=0.8.0', ] singularity = ['spython>=0.0.56'] slack = [ 'slackclient>=2.0.0,<3.0.0', ] snowflake = [ 'snowflake-connector-python>=1.5.2', 'snowflake-sqlalchemy>=1.1.0', ] spark = [ 'pyspark', ] ssh = [ 'paramiko>=2.6.0', 'pysftp>=0.2.9', 'sshtunnel>=0.1.4,<0.2', ] statsd = [ 'statsd>=3.3.0, <4.0', ] tableau = [ 'tableauserverclient~=0.12', ] vertica = [ 'vertica-python>=0.5.1', ] virtualenv = [ 'virtualenv', ] webhdfs = [ 'hdfs[avro,dataframe,kerberos]>=2.0.4', ] winrm = [ 'pywinrm~=0.4', ] yandexcloud = [ 'yandexcloud>=0.22.0', ] zendesk = [ 'zdesk', ] # End dependencies group all_dbs = (cassandra + cloudant + druid + exasol + hdfs + hive + mongo + mssql + mysql + pinot + postgres + presto + vertica) ############################################################################################################ # IMPORTANT NOTE!!!!!!!!!!!!!!! # IF you are removing dependencies from this list, please make sure that you also increase # DEPENDENCIES_EPOCH_NUMBER in the Dockerfile.ci ############################################################################################################ devel = [ 'beautifulsoup4~=4.7.1', 'blinker', 'bowler', 'click==6.7', 'contextdecorator;python_version<"3.4"', 'coverage', 'docutils', 'flake8>=3.6.0', 'flake8-colors', 'flaky', 'freezegun', 'github3.py', 'gitpython', 'ipdb', 'jira', 'mongomock', 'moto>=1.3.14,<2.0.0', 'parameterized', 'paramiko', 'pipdeptree', 'pre-commit', 'pylint==2.5.3', 'pysftp', 'pytest', 'pytest-cov', 'pytest-instafail', 'pytest-rerunfailures', 'pytest-timeouts', 'pytest-xdist', 'pywinrm', 'qds-sdk>=1.9.6', 'requests_mock', 'setuptools', 'wheel', 'yamllint', ] ############################################################################################################ # IMPORTANT NOTE!!!!!!!!!!!!!!! # IF you are removing dependencies from the above list, please make sure that you also increase # DEPENDENCIES_EPOCH_NUMBER in the Dockerfile.ci ############################################################################################################ if PY3: devel += ['mypy==0.770'] else: devel += ['unittest2'] devel_minreq = cgroups + devel + doc + kubernetes + mysql + password devel_hadoop = devel_minreq + hdfs + hive + kerberos + presto + webhdfs PROVIDERS_REQUIREMENTS: Dict[str, Iterable[str]] = { "amazon": amazon, "apache.cassandra": cassandra, "apache.druid": druid, "apache.hdfs": hdfs, "apache.hive": hive, "apache.kylin": kylin, "apache.livy": [], "apache.pig": [], "apache.pinot": pinot, "apache.spark": spark, "apache.sqoop": [], "celery": celery, "cloudant": cloudant, "cncf.kubernetes": kubernetes, "databricks": databricks, "datadog": datadog, "dingding": [], "discord": [], "docker": docker, "elasticsearch": [], "exasol": exasol, "facebook": facebook, "ftp": [], "google": google, "grpc": grpc, "hashicorp": hashicorp, "http": [], "imap": [], "jdbc": jdbc, "jenkins": jenkins, "jira": jira, "microsoft.azure": azure, "microsoft.mssql": mssql, "microsoft.winrm": winrm, "mongo": mongo, "mysql": mysql, "odbc": odbc, "openfaas": [], "opsgenie": [], "oracle": oracle, "pagerduty": pagerduty, "papermill": papermill, "plexus": plexus, "postgres": postgres, "presto": presto, "qubole": qds, "redis": redis, "salesforce": salesforce, "samba": samba, "segment": segment, "sftp": ssh, "singularity": singularity, "slack": slack, "snowflake": snowflake, "sqlite": [], "ssh": ssh, "vertica": vertica, "yandex": yandexcloud, "zendesk": zendesk, } EXTRAS_REQUIREMENTS: Dict[str, Iterable[str]] = { 'all_dbs': all_dbs, 'amazon': amazon, 'apache.atlas': atlas, 'apache.beam': apache_beam, "apache.cassandra": cassandra, "apache.druid": druid, "apache.hdfs": hdfs, "apache.hive": hive, "apache.kylin": kylin, "apache.pinot": pinot, "apache.webhdfs": webhdfs, 'async': async_packages, 'atlas': atlas, # TODO: remove this in Airflow 2.1 'aws': amazon, # TODO: remove this in Airflow 2.1 'azure': azure, # TODO: remove this in Airflow 2.1 'cassandra': cassandra, # TODO: remove this in Airflow 2.1 'celery': celery, 'cgroups': cgroups, 'cloudant': cloudant, 'cncf.kubernetes': kubernetes, 'dask': dask, 'databricks': databricks, 'datadog': datadog, 'devel': devel_minreq, 'devel_hadoop': devel_hadoop, 'doc': doc, 'docker': docker, 'druid': druid, # TODO: remove this in Airflow 2.1 'elasticsearch': elasticsearch, 'exasol': exasol, 'facebook': facebook, 'gcp': google, # TODO: remove this in Airflow 2.1 'gcp_api': google, # TODO: remove this in Airflow 2.1 'github_enterprise': flask_oauth, 'google': google, 'google_auth': flask_oauth, 'grpc': grpc, 'hashicorp': hashicorp, 'hdfs': hdfs, # TODO: remove this in Airflow 2.1 'hive': hive, # TODO: remove this in Airflow 2.1 'jdbc': jdbc, 'jira': jira, 'kerberos': kerberos, 'kubernetes': kubernetes, # TODO: remove this in Airflow 2.1 'ldap': ldap, "microsoft.azure": azure, "microsoft.mssql": mssql, "microsoft.winrm": winrm, 'mongo': mongo, 'mssql': mssql, # TODO: remove this in Airflow 2.1 'mysql': mysql, 'odbc': odbc, 'oracle': oracle, 'pagerduty': pagerduty, 'papermill': papermill, 'password': password, 'pinot': pinot, # TODO: remove this in Airflow 2.1 'plexus': plexus, 'postgres': postgres, 'presto': presto, 'qds': qds, 'rabbitmq': rabbitmq, 'redis': redis, 'salesforce': salesforce, 'samba': samba, 'segment': segment, 'sendgrid': sendgrid, 'sentry': sentry, 'singularity': singularity, 'slack': slack, 'snowflake': snowflake, 'spark': spark, 'ssh': ssh, 'statsd': statsd, 'tableau': tableau, 'vertica': vertica, 'virtualenv': virtualenv, 'webhdfs': webhdfs, # TODO: remove this in Airflow 2.1 'winrm': winrm, # TODO: remove this in Airflow 2.1 'yandexcloud': yandexcloud, } # Make devel_all contain all providers + extras + unique devel_all = list(set(devel + [req for req_list in EXTRAS_REQUIREMENTS.values() for req in req_list] + [req for req_list in PROVIDERS_REQUIREMENTS.values() for req in req_list])) PACKAGES_EXCLUDED_FOR_ALL = [ ] if PY3: PACKAGES_EXCLUDED_FOR_ALL.extend([ 'snakebite', ]) if PY38: PACKAGES_EXCLUDED_FOR_ALL.extend([ 'pymssql', ]) # Those packages are excluded because they break tests (downgrading mock) and they are # not needed to run our test suite. PACKAGES_EXCLUDED_FOR_CI = [ 'apache-beam', ] def is_package_excluded(package: str, exclusion_list: List[str]): """ Checks if package should be excluded. :param package: package name (beginning of it) :param exclusion_list: list of excluded packages :return: true if package should be excluded """ return any([package.startswith(excluded_package) for excluded_package in exclusion_list]) devel_all = [package for package in devel_all if not is_package_excluded( package=package, exclusion_list=PACKAGES_EXCLUDED_FOR_ALL) ] devel_ci = [package for package in devel_all if not is_package_excluded( package=package, exclusion_list=PACKAGES_EXCLUDED_FOR_CI + PACKAGES_EXCLUDED_FOR_ALL) ] EXTRAS_REQUIREMENTS.update( { 'all': devel_all, 'devel_ci': devel_ci, } ) ##################################################################################################### # IMPORTANT NOTE!!!!!!!!!!!!!!! # IF you are removing dependencies from this list, please make sure that you also increase # DEPENDENCIES_EPOCH_NUMBER in the Dockerfile.ci ##################################################################################################### INSTALL_REQUIREMENTS = [ 'alembic>=1.2, <2.0', 'argcomplete~=1.10', 'attrs~=19.3', 'cached_property~=1.5', 'cattrs~=1.0', 'colorlog==4.0.2', 'connexion[swagger-ui,flask]>=2.6.0,<3', 'croniter>=0.3.17, <0.4', 'cryptography>=0.9.3', 'dill>=0.2.2, <0.4', 'flask>=1.1.0, <2.0', 'flask-appbuilder>2.3.4,~=3.0', 'flask-caching>=1.3.3, <2.0.0', 'flask-login>=0.3, <0.5', 'flask-swagger==0.2.13', 'flask-wtf>=0.14.2, <0.15', 'funcsigs>=1.0.0, <2.0.0', 'graphviz>=0.12', 'gunicorn>=19.5.0, <20.0', 'iso8601>=0.1.12', 'jinja2>=2.10.1, <2.12.0', 'json-merge-patch==0.2', 'jsonschema~=3.0', 'lazy_object_proxy~=1.3', 'lockfile>=0.12.2', 'markdown>=2.5.2, <3.0', 'markupsafe>=1.1.1, <2.0', 'marshmallow-oneofschema>=2.0.1', 'pandas>=0.17.1, <2.0', 'pendulum~=2.0', 'pep562~=1.0;python_version<"3.7"', 'psutil>=4.2.0, <6.0.0', 'pygments>=2.0.1, <3.0', 'python-daemon>=2.1.1', 'python-dateutil>=2.3, <3', 'python-nvd3~=0.15.0', 'python-slugify>=3.0.0,<5.0', 'requests>=2.20.0, <3', 'setproctitle>=1.1.8, <2', 'sqlalchemy~=1.3', 'sqlalchemy_jsonfield~=0.9', 'tabulate>=0.7.5, <0.9', 'tenacity>=4.12.0, <5.2', 'termcolor>=1.1.0', 'thrift>=0.9.2', 'typing;python_version<"3.6"', 'typing-extensions>=3.7.4;python_version<"3.8"', 'tzlocal>=1.4,<2.0.0', 'unicodecsv>=0.14.1', 'werkzeug<1.0.0', ] def do_setup(): """Perform the Airflow package setup.""" write_version() setup( name='apache-airflow', description='Programmatically author, schedule and monitor data pipelines', long_description=long_description, long_description_content_type='text/markdown', license='Apache License 2.0', version=version, packages=find_packages(include=['airflow', 'airflow.*']), package_data={ 'airflow': ['py.typed'], '': ['airflow/alembic.ini', "airflow/git_version", "*.ipynb", "airflow/providers/cncf/kubernetes/example_dags/*.yaml"], 'airflow.api_connexion.openapi': ['*.yaml'], 'airflow.serialization': ["*.json"], }, include_package_data=True, zip_safe=False, entry_points={ "console_scripts": [ "airflow = airflow.__main__:main", ], }, install_requires=INSTALL_REQUIREMENTS, setup_requires=[ 'bowler', 'docutils', 'gitpython', 'setuptools', 'wheel', ], extras_require=EXTRAS_REQUIREMENTS, classifiers=[ 'Development Status :: 5 - Production/Stable', 'Environment :: Console', 'Environment :: Web Environment', 'Intended Audience :: Developers', 'Intended Audience :: System Administrators', 'License :: OSI Approved :: Apache Software License', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Topic :: System :: Monitoring', ], author='Apache Software Foundation', author_email='[email protected]', url='http://airflow.apache.org/', download_url=( 'https://dist.apache.org/repos/dist/release/airflow/' + version), cmdclass={ 'extra_clean': CleanCommand, 'compile_assets': CompileAssets, 'list_extras': ListExtras, }, test_suite='setup.airflow_test_suite', python_requires='~=3.6', ) if __name__ == "__main__": do_setup()
27.471023
108
0.586786
[ "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0", "BSD-3-Clause" ]
312day/airflow
setup.py
22,279
Python
#!/usr/bin/env python # Copyright 2020 The Pigweed Authors # # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. You may obtain a copy of # the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations under # the License. """Watch files for changes and rebuild. pw watch runs Ninja in a build directory when source files change. It works with any Ninja project (GN or CMake). Usage examples: # Find a build directory and build the default target pw watch # Find a build directory and build the stm32f429i target pw watch python.lint stm32f429i # Build pw_run_tests.modules in the out/cmake directory pw watch -C out/cmake pw_run_tests.modules # Build the default target in out/ and pw_apps in out/cmake pw watch -C out -C out/cmake pw_apps # Find a directory and build python.tests, and build pw_apps in out/cmake pw watch python.tests -C out/cmake pw_apps """ import argparse from dataclasses import dataclass import logging import os from pathlib import Path import shlex import subprocess import sys import threading from typing import (Iterable, List, NamedTuple, NoReturn, Optional, Sequence, Tuple) from watchdog.events import FileSystemEventHandler # type: ignore[import] from watchdog.observers import Observer # type: ignore[import] import pw_cli.branding import pw_cli.color import pw_cli.env import pw_cli.plugins from pw_watch.debounce import DebouncedFunction, Debouncer _COLOR = pw_cli.color.colors() _LOG = logging.getLogger(__name__) _ERRNO_INOTIFY_LIMIT_REACHED = 28 # Suppress events under 'fsevents', generated by watchdog on every file # event on MacOS. # TODO(b/182281481): Fix file ignoring, rather than just suppressing logs _FSEVENTS_LOG = logging.getLogger('fsevents') _FSEVENTS_LOG.setLevel(logging.WARNING) _PASS_MESSAGE = """ ██████╗ █████╗ ███████╗███████╗██╗ ██╔══██╗██╔══██╗██╔════╝██╔════╝██║ ██████╔╝███████║███████╗███████╗██║ ██╔═══╝ ██╔══██║╚════██║╚════██║╚═╝ ██║ ██║ ██║███████║███████║██╗ ╚═╝ ╚═╝ ╚═╝╚══════╝╚══════╝╚═╝ """ # Pick a visually-distinct font from "PASS" to ensure that readers can't # possibly mistake the difference between the two states. _FAIL_MESSAGE = """ ▄██████▒░▄▄▄ ██▓ ░██▓ ▓█▓ ░▒████▄ ▓██▒ ░▓██▒ ▒████▒ ░▒█▀ ▀█▄ ▒██▒ ▒██░ ░▓█▒ ░░██▄▄▄▄██ ░██░ ▒██░ ░▒█░ ▓█ ▓██▒░██░░ ████████▒ ▒█░ ▒▒ ▓▒█░░▓ ░ ▒░▓ ░ ░▒ ▒ ▒▒ ░ ▒ ░░ ░ ▒ ░ ░ ░ ░ ▒ ▒ ░ ░ ░ ░ ░ ░ ░ ░ """ # TODO(keir): Figure out a better strategy for exiting. The problem with the # watcher is that doing a "clean exit" is slow. However, by directly exiting, # we remove the possibility of the wrapper script doing anything on exit. def _die(*args) -> NoReturn: _LOG.critical(*args) sys.exit(1) class WatchCharset(NamedTuple): slug_ok: str slug_fail: str _ASCII_CHARSET = WatchCharset(_COLOR.green('OK '), _COLOR.red('FAIL')) _EMOJI_CHARSET = WatchCharset('✔️ ', '💥') @dataclass(frozen=True) class BuildCommand: build_dir: Path targets: Tuple[str, ...] = () def args(self) -> Tuple[str, ...]: return (str(self.build_dir), *self.targets) def __str__(self) -> str: return ' '.join(shlex.quote(arg) for arg in self.args()) def git_ignored(file: Path) -> bool: """Returns true if this file is in a Git repo and ignored by that repo. Returns true for ignored files that were manually added to a repo. """ file = file.resolve() directory = file.parent # Run the Git command from file's parent so that the correct repo is used. while True: try: returncode = subprocess.run( ['git', 'check-ignore', '--quiet', '--no-index', file], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL, cwd=directory).returncode return returncode in (0, 128) except FileNotFoundError: # If the directory no longer exists, try parent directories until # an existing directory is found or all directories have been # checked. This approach makes it possible to check if a deleted # path is ignored in the repo it was originally created in. if directory == directory.parent: return False directory = directory.parent class PigweedBuildWatcher(FileSystemEventHandler, DebouncedFunction): """Process filesystem events and launch builds if necessary.""" def __init__( self, patterns: Sequence[str] = (), ignore_patterns: Sequence[str] = (), build_commands: Sequence[BuildCommand] = (), charset: WatchCharset = _ASCII_CHARSET, restart: bool = True, ): super().__init__() self.patterns = patterns self.ignore_patterns = ignore_patterns self.build_commands = build_commands self.charset: WatchCharset = charset self.restart_on_changes = restart self._current_build: subprocess.Popen self.debouncer = Debouncer(self) # Track state of a build. These need to be members instead of locals # due to the split between dispatch(), run(), and on_complete(). self.matching_path: Optional[Path] = None self.builds_succeeded: List[bool] = [] self.wait_for_keypress_thread = threading.Thread( None, self._wait_for_enter) self.wait_for_keypress_thread.start() def _wait_for_enter(self) -> NoReturn: try: while True: _ = input() self._current_build.kill() self.debouncer.press('Manual build requested...') # Ctrl-C on Unix generates KeyboardInterrupt # Ctrl-Z on Windows generates EOFError except (KeyboardInterrupt, EOFError): _exit_due_to_interrupt() def _path_matches(self, path: Path) -> bool: """Returns true if path matches according to the watcher patterns""" return (not any(path.match(x) for x in self.ignore_patterns) and any(path.match(x) for x in self.patterns)) def dispatch(self, event) -> None: # There isn't any point in triggering builds on new directory creation. # It's the creation or modification of files that indicate something # meaningful enough changed for a build. if event.is_directory: return # Collect paths of interest from the event. paths: List[str] = [] if hasattr(event, 'dest_path'): paths.append(os.fsdecode(event.dest_path)) if event.src_path: paths.append(os.fsdecode(event.src_path)) for raw_path in paths: _LOG.debug('File event: %s', raw_path) # Check whether Git cares about any of these paths. for path in (Path(p).resolve() for p in paths): if not git_ignored(path) and self._path_matches(path): self._handle_matched_event(path) return def _handle_matched_event(self, matching_path: Path) -> None: if self.matching_path is None: self.matching_path = matching_path self.debouncer.press( f'File change detected: {os.path.relpath(matching_path)}') # Implementation of DebouncedFunction.run() # # Note: This will run on the timer thread created by the Debouncer, rather # than on the main thread that's watching file events. This enables the # watcher to continue receiving file change events during a build. def run(self) -> None: """Run all the builds in serial and capture pass/fail for each.""" # Clear the screen and show a banner indicating the build is starting. print('\033c', end='') # TODO(pwbug/38): Not Windows compatible. print(pw_cli.branding.banner()) print( _COLOR.green( ' Watching for changes. Ctrl-C to exit; enter to rebuild')) print() _LOG.info('Change detected: %s', self.matching_path) self.builds_succeeded = [] num_builds = len(self.build_commands) _LOG.info('Starting build with %d directories', num_builds) env = os.environ.copy() # Force colors in Pigweed subcommands run through the watcher. env['PW_USE_COLOR'] = '1' for i, cmd in enumerate(self.build_commands, 1): _LOG.info('[%d/%d] Starting build: %s', i, num_builds, cmd) # Run the build. Put a blank before/after for visual separation. print() self._current_build = subprocess.Popen( ['ninja', '-C', *cmd.args()], env=env) returncode = self._current_build.wait() print() build_ok = (returncode == 0) if build_ok: level = logging.INFO tag = '(OK)' else: level = logging.ERROR tag = '(FAIL)' _LOG.log(level, '[%d/%d] Finished build: %s %s', i, num_builds, cmd, tag) self.builds_succeeded.append(build_ok) # Implementation of DebouncedFunction.cancel() def cancel(self) -> bool: if self.restart_on_changes: self._current_build.kill() return True return False # Implementation of DebouncedFunction.run() def on_complete(self, cancelled: bool = False) -> None: # First, use the standard logging facilities to report build status. if cancelled: _LOG.error('Finished; build was interrupted') elif all(self.builds_succeeded): _LOG.info('Finished; all successful') else: _LOG.info('Finished; some builds failed') # Then, show a more distinct colored banner. if not cancelled: # Write out build summary table so you can tell which builds passed # and which builds failed. print() print(' .------------------------------------') print(' |') for (succeeded, cmd) in zip(self.builds_succeeded, self.build_commands): slug = (self.charset.slug_ok if succeeded else self.charset.slug_fail) print(f' | {slug} {cmd}') print(' |') print(" '------------------------------------") else: # Build was interrupted. print() print(' .------------------------------------') print(' |') print(' | ', self.charset.slug_fail, '- interrupted') print(' |') print(" '------------------------------------") # Show a large color banner so it is obvious what the overall result is. if all(self.builds_succeeded) and not cancelled: print(_COLOR.green(_PASS_MESSAGE)) else: print(_COLOR.red(_FAIL_MESSAGE)) self.matching_path = None # Implementation of DebouncedFunction.on_keyboard_interrupt() def on_keyboard_interrupt(self) -> NoReturn: _exit_due_to_interrupt() _WATCH_PATTERN_DELIMITER = ',' _WATCH_PATTERNS = ( '*.bloaty', '*.c', '*.cc', '*.css', '*.cpp', '*.cmake', 'CMakeLists.txt', '*.gn', '*.gni', '*.go', '*.h', '*.hpp', '*.ld', '*.md', '*.options', '*.proto', '*.py', '*.rst', ) def add_parser_arguments(parser: argparse.ArgumentParser) -> None: """Sets up an argument parser for pw watch.""" parser.add_argument('--patterns', help=(_WATCH_PATTERN_DELIMITER + '-delimited list of globs to ' 'watch to trigger recompile'), default=_WATCH_PATTERN_DELIMITER.join(_WATCH_PATTERNS)) parser.add_argument('--ignore_patterns', dest='ignore_patterns_string', help=(_WATCH_PATTERN_DELIMITER + '-delimited list of globs to ' 'ignore events from')) parser.add_argument('--exclude_list', nargs='+', type=Path, help='directories to ignore during pw watch', default=[]) parser.add_argument('--no-restart', dest='restart', action='store_false', help='do not restart ongoing builds if files change') parser.add_argument( 'default_build_targets', nargs='*', metavar='target', default=[], help=('Automatically locate a build directory and build these ' 'targets. For example, `host docs` searches for a Ninja ' 'build directory (starting with out/) and builds the ' '`host` and `docs` targets. To specify one or more ' 'directories, ust the -C / --build_directory option.')) parser.add_argument( '-C', '--build_directory', dest='build_directories', nargs='+', action='append', default=[], metavar=('directory', 'target'), help=('Specify a build directory and optionally targets to ' 'build. `pw watch -C out tgt` is equivalent to `ninja ' '-C out tgt`')) def _exit(code: int) -> NoReturn: # Note: The "proper" way to exit is via observer.stop(), then # running a join. However it's slower, so just exit immediately. # # Additionally, since there are several threads in the watcher, the usual # sys.exit approach doesn't work. Instead, run the low level exit which # kills all threads. os._exit(code) # pylint: disable=protected-access def _exit_due_to_interrupt() -> NoReturn: # To keep the log lines aligned with each other in the presence of # a '^C' from the keyboard interrupt, add a newline before the log. print() print() _LOG.info('Got Ctrl-C; exiting...') _exit(0) def _exit_due_to_inotify_limit(): # Show information and suggested commands in OSError: inotify limit reached. _LOG.error('Inotify limit reached: run this in your terminal if you ' 'are in Linux to temporarily increase inotify limit. \n') print( _COLOR.green(' sudo sysctl fs.inotify.max_user_watches=' '$NEW_LIMIT$\n')) print(' Change $NEW_LIMIT$ with an integer number, ' 'e.g., 1000 should be enough.') _exit(0) def _exit_due_to_pigweed_not_installed(): # Show information and suggested commands when pigweed environment variable # not found. _LOG.error('Environment variable $PW_ROOT not defined or is defined ' 'outside the current directory.') _LOG.error('Did you forget to activate the Pigweed environment? ' 'Try source ./activate.sh') _LOG.error('Did you forget to install the Pigweed environment? ' 'Try source ./bootstrap.sh') _exit(1) # Go over each directory inside of the current directory. # If it is not on the path of elements in directories_to_exclude, add # (directory, True) to subdirectories_to_watch and later recursively call # Observer() on them. # Otherwise add (directory, False) to subdirectories_to_watch and later call # Observer() with recursion=False. def minimal_watch_directories(to_watch: Path, to_exclude: Iterable[Path]): """Determine which subdirectory to watch recursively""" try: to_watch = Path(to_watch) except TypeError: assert False, "Please watch one directory at a time." # Reformat to_exclude. directories_to_exclude: List[Path] = [ to_watch.joinpath(directory_to_exclude) for directory_to_exclude in to_exclude if to_watch.joinpath(directory_to_exclude).is_dir() ] # Split the relative path of directories_to_exclude (compared to to_watch), # and generate all parent paths needed to be watched without recursion. exclude_dir_parents = {to_watch} for directory_to_exclude in directories_to_exclude: parts = list( Path(directory_to_exclude).relative_to(to_watch).parts)[:-1] dir_tmp = to_watch for part in parts: dir_tmp = Path(dir_tmp, part) exclude_dir_parents.add(dir_tmp) # Go over all layers of directory. Append those that are the parents of # directories_to_exclude to the list with recursion==False, and others # with recursion==True. for directory in exclude_dir_parents: dir_path = Path(directory) yield dir_path, False for item in Path(directory).iterdir(): if (item.is_dir() and item not in exclude_dir_parents and item not in directories_to_exclude): yield item, True def get_common_excludes() -> List[Path]: """Find commonly excluded directories, and return them as a [Path]""" exclude_list: List[Path] = [] typical_ignored_directories: List[str] = [ '.environment', # Legacy bootstrap-created CIPD and Python venv. '.presubmit', # Presubmit-created CIPD and Python venv. '.git', # Pigweed's git repo. '.mypy_cache', # Python static analyzer. '.cargo', # Rust package manager. 'environment', # Bootstrap-created CIPD and Python venv. 'out', # Typical build directory. ] # Preset exclude list for Pigweed's upstream directories. pw_root_dir = Path(os.environ['PW_ROOT']) exclude_list.extend(pw_root_dir / ignored_directory for ignored_directory in typical_ignored_directories) # Preset exclude for common downstream project structures. # # If watch is invoked outside of the Pigweed root, exclude common # directories. pw_project_root_dir = Path(os.environ['PW_PROJECT_ROOT']) if pw_project_root_dir != pw_root_dir: exclude_list.extend( pw_project_root_dir / ignored_directory for ignored_directory in typical_ignored_directories) # Check for and warn about legacy directories. legacy_directories = [ '.cipd', # Legacy CIPD location. '.python3-venv', # Legacy Python venv location. ] found_legacy = False for legacy_directory in legacy_directories: full_legacy_directory = pw_root_dir / legacy_directory if full_legacy_directory.is_dir(): _LOG.warning('Legacy environment directory found: %s', str(full_legacy_directory)) exclude_list.append(full_legacy_directory) found_legacy = True if found_legacy: _LOG.warning('Found legacy environment directory(s); these ' 'should be deleted') return exclude_list def _find_build_dir(default_build_dir: Path = Path('out')) -> Optional[Path]: """Searches for a build directory, returning the first it finds.""" # Give priority to out/, then something under out/. if default_build_dir.joinpath('build.ninja').exists(): return default_build_dir for path in default_build_dir.glob('**/build.ninja'): return path.parent for path in Path.cwd().glob('**/build.ninja'): return path.parent return None def watch(default_build_targets: List[str], build_directories: List[str], patterns: str, ignore_patterns_string: str, exclude_list: List[Path], restart: bool): """Watches files and runs Ninja commands when they change.""" _LOG.info('Starting Pigweed build watcher') # Get pigweed directory information from environment variable PW_ROOT. if os.environ['PW_ROOT'] is None: _exit_due_to_pigweed_not_installed() pw_root = Path(os.environ['PW_ROOT']).resolve() if Path.cwd().resolve() not in [pw_root, *pw_root.parents]: _exit_due_to_pigweed_not_installed() # Preset exclude list for pigweed directory. exclude_list += get_common_excludes() build_commands = [ BuildCommand(Path(build_dir[0]), tuple(build_dir[1:])) for build_dir in build_directories ] # If no build directory was specified, search the tree for a build.ninja. if default_build_targets or not build_directories: build_dir = _find_build_dir() # Make sure we found something; if not, bail. if build_dir is None: _die("No build dirs found. Did you forget to run 'gn gen out'?") build_commands.append( BuildCommand(build_dir, tuple(default_build_targets))) # Verify that the build output directories exist. for i, build_target in enumerate(build_commands, 1): if not build_target.build_dir.is_dir(): _die("Build directory doesn't exist: %s", build_target) else: _LOG.info('Will build [%d/%d]: %s', i, len(build_commands), build_target) _LOG.debug('Patterns: %s', patterns) # Try to make a short display path for the watched directory that has # "$HOME" instead of the full home directory. This is nice for users # who have deeply nested home directories. path_to_log = str(Path().resolve()).replace(str(Path.home()), '$HOME') # Ignore the user-specified patterns. ignore_patterns = (ignore_patterns_string.split(_WATCH_PATTERN_DELIMITER) if ignore_patterns_string else []) env = pw_cli.env.pigweed_environment() if env.PW_EMOJI: charset = _EMOJI_CHARSET else: charset = _ASCII_CHARSET event_handler = PigweedBuildWatcher( patterns=patterns.split(_WATCH_PATTERN_DELIMITER), ignore_patterns=ignore_patterns, build_commands=build_commands, charset=charset, restart=restart, ) try: # It can take awhile to configure the filesystem watcher, so have the # message reflect that with the "...". Run inside the try: to # gracefully handle the user Ctrl-C'ing out during startup. _LOG.info('Attaching filesystem watcher to %s/...', path_to_log) # Observe changes for all files in the root directory. Whether the # directory should be observed recursively or not is determined by the # second element in subdirectories_to_watch. observers = [] for path, rec in minimal_watch_directories(Path.cwd(), exclude_list): observer = Observer() observer.schedule( event_handler, str(path), recursive=rec, ) observer.start() observers.append(observer) event_handler.debouncer.press('Triggering initial build...') for observer in observers: while observer.is_alive(): observer.join(1) # Ctrl-C on Unix generates KeyboardInterrupt # Ctrl-Z on Windows generates EOFError except (KeyboardInterrupt, EOFError): _exit_due_to_interrupt() except OSError as err: if err.args[0] == _ERRNO_INOTIFY_LIMIT_REACHED: _exit_due_to_inotify_limit() else: raise err _LOG.critical('Should never get here') observer.join() def main() -> None: """Watch files for changes and rebuild.""" parser = argparse.ArgumentParser( description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter) add_parser_arguments(parser) watch(**vars(parser.parse_args())) if __name__ == '__main__': main()
36.208459
80
0.617063
[ "Apache-2.0" ]
isabella232/pigweed
pw_watch/py/pw_watch/watch.py
24,653
Python
import os import string import textwrap import unittest import vtk, qt, ctk, slicer from slicer.ScriptedLoadableModule import * import logging # # DMRIInstall # class DMRIInstall(ScriptedLoadableModule): """ """ helpText = textwrap.dedent( """ The SlicerDMRI extension provides diffusion-related tools including: <ul> <li> Diffusion Tensor Estimation</li> <li>Tractography Display</li> <li>Tractography Seeding</li> <li>Fiber Tract Measurement</li> </ul> <br> <br> For more information, please visit: <br> <br> &nbsp;&nbsp; <a href="http://dmri.slicer.org">http://dmri.slicer.org</a> <br> <br> Questions are welcome on the Slicer forum: <br> <br> &nbsp;&nbsp; <a href="https://discourse.slicer.org">https://discourse.slicer.org</a><br><br> """) errorText = textwrap.dedent( """ <h5 style="color:red">The SlicerDMRI extension is currently unavailable.</h5><br> Please try a manual installation via the Extension Manager, and contact the Slicer forum at:<br><br> &nbsp;&nbsp;<a href="https://discourse.slicer.org">https://discourse.slicer.org</a><br><br> With the following information:<br> Slicer version: {builddate}<br> Slicer revision: {revision}<br> Platform: {platform} """).format(builddate=slicer.app.applicationVersion, revision = slicer.app.repositoryRevision, platform = slicer.app.platform) def __init__(self, parent): # Hide this module if SlicerDMRI is already installed model = slicer.app.extensionsManagerModel() if model.isExtensionInstalled("SlicerDMRI"): parent.hidden = True ScriptedLoadableModule.__init__(self, parent) self.parent.categories = ["Diffusion"] self.parent.title = "Install Slicer Diffusion Tools (SlicerDMRI)" self.parent.dependencies = [] self.parent.contributors = ["Isaiah Norton (BWH), Lauren O'Donnell (BWH)"] self.parent.helpText = DMRIInstall.helpText self.parent.helpText += self.getDefaultModuleDocumentationLink() self.parent.acknowledgementText = textwrap.dedent( """ SlicerDMRI supported by NIH NCI ITCR U01CA199459 (Open Source Diffusion MRI Technology For Brain Cancer Research), and made possible by NA-MIC, NAC, BIRN, NCIGT, and the Slicer Community. """) class DMRIInstallWidget(ScriptedLoadableModuleWidget): """Uses ScriptedLoadableModuleWidget base class, available at: https://github.com/Slicer/Slicer/blob/master/Base/Python/slicer/ScriptedLoadableModule.py """ def setup(self): ScriptedLoadableModuleWidget.setup(self) self.textBox = ctk.ctkFittedTextBrowser() self.textBox.setOpenExternalLinks(True) # Open links in default browser self.textBox.setHtml(DMRIInstall.helpText) self.parent.layout().addWidget(self.textBox) # # Apply Button # self.applyButton = qt.QPushButton("Install SlicerDMRI") self.applyButton.toolTip = 'Installs the "SlicerDMRI" extension from the Diffusion category.' self.applyButton.icon = qt.QIcon(":/Icons/ExtensionDefaultIcon.png") self.applyButton.enabled = True self.applyButton.connect('clicked()', self.onApply) self.parent.layout().addWidget(self.applyButton) self.parent.layout().addStretch(1) def onError(self): self.applyButton.enabled = False self.textBox.setHtml(DMRIInstall.errorText) return def onApply(self): emm = slicer.app.extensionsManagerModel() if emm.isExtensionInstalled("SlicerDMRI"): self.textBox.setHtml("<h4>SlicerDMRI is already installed.<h4>") self.applyButton.enabled = False return md = emm.retrieveExtensionMetadataByName("SlicerDMRI") if not md or 'extension_id' not in md: return self.onError() if emm.downloadAndInstallExtension(md['extension_id']): slicer.app.confirmRestart("Restart to complete SlicerDMRI installation?") else: self.onError()
30.539063
97
0.712714
[ "Apache-2.0" ]
forfullstack/slicersources-src
Modules/Scripted/DMRIInstall/DMRIInstall.py
3,909
Python
from django.shortcuts import render,HttpResponse from game.models import Contact from django.contrib import messages # Create your views here. def index(request): context={'variable':"This is sent."} return render(request,'index.html',context) def about(request): return render(request,'about.html') #return HttpResponse("This is about page.") def products(request): return render(request,'products.html') #return HttpResponse("This is products page.") def contact(request): if request.method=="POST": firstname=request.POST.get('firstname') lastname=request.POST.get('lastname') phone=request.POST.get('phone') subject=request.POST.get('subject') contact=Contact(firstname=firstname, lastname=lastname, phone=phone, subject=subject) contact.save() messages.success(request, 'Your message has been successfully sent.') return render(request,'contacts.html') #return HttpResponse("This is contact page.")
40.8
94
0.697059
[ "MPL-2.0", "MPL-2.0-no-copyleft-exception" ]
whitedevil4888/riddhisiddhi
views.py
1,020
Python
# -*- coding: utf-8 -*- # Part of Odoo. See LICENSE file for full copyright and licensing details. import account_config_settings import account_move import account_partial_reconcile import account_tax import res_company
24.666667
74
0.815315
[ "Apache-2.0" ]
gtfarng/Odoo_migrade
apps/odoo/lib/odoo-10.0.post20170615-py2.7.egg/odoo/addons/account_tax_cash_basis/models/__init__.py
222
Python
# import libraries from pyspark.sql import SparkSession from pyspark import SparkConf from pyspark.sql.types import * from pyspark.sql.functions import col, count, lit, rand, when import pandas as pd from math import ceil ################################################# # spark config ################################################# mtaMaster = "spark://192.168.0.182:7077" conf = SparkConf() conf.setMaster(mtaMaster) conf.set("spark.executor.memory", "24g") conf.set("spark.driver.memory", "26g") conf.set("spark.cores.max", 96) conf.set("spark.driver.cores", 8) conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer") conf.set("spark.kryoserializer.buffer", "256m") conf.set("spark.kryoserializer.buffer.max", "256m") conf.set("spark.default.parallelism", 24) conf.set("spark.eventLog.enabled", "true") conf.set("spark.eventLog.dir", "hdfs://192.168.0.182:9000/eventlog") conf.set("spark.history.fs.logDirectory", "hdfs://192.168.0.182:9000/eventlog") conf.set("spark.driver.maxResultSize", "4g") conf.getAll() ################################################# # create spark session ################################################# spark = SparkSession.builder.appName('ML2_HV_v1_NYT_sim1_and_sim3_to_sim2_round5_human_validation').config(conf=conf).getOrCreate() sc = spark.sparkContext # check things are working print(sc) print(sc.defaultParallelism) print("SPARK CONTEXT IS RUNNING") ################################################# # define major topic codes ################################################# # major topic codes for loop (NO 23 IN THE NYT CORPUS) majortopic_codes = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 100] #majortopic_codes = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 100] ################################################# # read result data from round 3 ################################################# df_results = spark.read.parquet("hdfs://192.168.0.182:9000/input/ML2_HV_v1_NYT_r5_classified.parquet").repartition(50) # verdict to integer for the comparison with majortopic later df_results = df_results.withColumn('verdict', df_results.verdict.cast(IntegerType())) ################################################# # create table to store sample and validation numbers ################################################# columns = ["num_classified", "num_sample", "num_non_sample", "num_correct", "num_incorrect", "precision_in_sample", "num_added_to_training"] df_numbers = pd.DataFrame(index=majortopic_codes, columns=columns) df_numbers = df_numbers.fillna(0) ################################################# # create table of samples from results ################################################# # constants for sample size calculation for 95% confidence with +-0.05 precision confidence interval: z = 1.96 delta = 0.05 z_delta = z*z*0.5*0.5/(delta*delta) print("z_delta :", z_delta) for i in majortopic_codes: df_classified = df_results.where(col('verdict') == i) num_classified = df_classified.count() df_numbers["num_classified"].loc[i] = num_classified print("MTC:", i, "num_classified: ", num_classified) if num_classified > 100: sample_size = ceil(z_delta/(1+1/num_classified*(z_delta-1))) print("sample_size: ", sample_size) if sample_size < 100: sample_size = 100 df_sample = df_classified.sort('doc_id').withColumn('random', rand()).sort('random').limit(sample_size).drop('random') df_sample_num = df_sample.count() print("df_sample: ", df_sample_num) # separate non-sample from sample elements ids_drop = df_sample.select("doc_id") df_non_sample = df_classified.join(ids_drop, "doc_id", "left_anti") df_numbers["num_sample"].loc[i] = df_sample_num df_numbers["num_non_sample"].loc[i] = df_non_sample.count() else: df_numbers["num_sample"].loc[i] = num_classified df_sample = df_classified df_non_sample = None # create table of all samples and add new sample to it if i == 1: df_sample_all = df_sample else: df_sample_all = df_sample_all.union(df_sample) #print("MTC:", i, "df_sample_all: ", df_sample_all.count()) # create table of all non-samples and add new non-sample to it if i == 1: df_non_sample_all = None if df_non_sample != None and df_non_sample_all == None: df_non_sample_all = df_non_sample elif df_non_sample != None and df_non_sample_all != None: df_non_sample_all = df_non_sample_all.union(df_non_sample) #print("MTC:", i, "df_non_sample_all: ", df_non_sample_all.count()) print("MTC:", i) ################################################# # check precision by majortopic codes ################################################# # count correctly classified and precision for each majortopic code and write to table of numbers df_correctly_classified = df_sample_all.where(col('majortopic') == col('verdict')) for i in majortopic_codes: num_correct = df_correctly_classified.where(col('verdict') == i).count() df_numbers["num_correct"].loc[i] = num_correct df_numbers["precision_in_sample"].loc[i] = num_correct/df_numbers["num_sample"].loc[i] # count incorrectly classified for debugging and checking df_incorrectly_classified = df_sample_all.where(col('majortopic') != col('verdict')) for i in majortopic_codes: num_incorrect = df_incorrectly_classified.where(col('verdict') == i).count() df_numbers["num_incorrect"].loc[i] = num_incorrect print(df_numbers) ################################################# # create tables of elements based on precision ################################################# # create tables for sorting elements based on precision results # where precision is equal to or greater than 75% # NOTE: validated wrongly classified elements will NOT be added to the results with the wrong major # topic code, instead they will be added to the unclassified elements as in rounds 1&2 df_replace_all = None # where precision is less than 75% df_non_sample_replace = None df_correct_replace = None df_wrong_replace = None for i in majortopic_codes: print("create tables MTC:", i) if df_numbers["precision_in_sample"].loc[i] >= 0.75: # in this case add all elements from sample and non-sample to the training set with # new major topic code i, EXCEPT for validated negatives, those are added to back into the # test set # first add wrong sample elements to their table df_lemma = df_sample_all.where(col('verdict') == i).where(col('majortopic') != col('verdict')) if df_wrong_replace == None: df_wrong_replace = df_lemma else: df_wrong_replace = df_wrong_replace.union(df_lemma) # get doc_ids for these elements to remove them from the rest of the elements classified as # belonging to major topic i ids_drop = df_lemma.select("doc_id") # get all elements classified as belonging to major topic code i df_lemma = df_results.where(col('verdict') == i) # remove wrongly classified from df_lemma df_lemma = df_lemma.join(ids_drop, "doc_id", "left_anti") # add df_lemma to df_replace_all if df_replace_all == None: df_replace_all = df_lemma else: df_replace_all = df_replace_all.union(df_lemma) # write numbers to df_numbers df_numbers["num_added_to_training"].loc[i] = df_lemma.count() #print("MTC:", i, "df_replace_all: ", df_replace_all.count()) else: # in this case add only correct elements from sample to training set, the rest go back in # the test set # first add non-sample elements to their table, BUT we have to check whether non-sample elements # exist if df_non_sample_all != None: df_lemma = df_non_sample_all.where(col('verdict') == i) if df_non_sample_replace == None: df_non_sample_replace = df_lemma else: df_non_sample_replace = df_non_sample_replace.union(df_lemma) else: df_non_sample_replace = None #print("MTC:", i, "df_non_sample_replace: ", df_non_sample_replace.count()) # second add correct sample elements to their table df_lemma = df_sample_all.where(col('verdict') == i).where(col('majortopic') == col('verdict')) if df_correct_replace == None: df_correct_replace = df_lemma else: df_correct_replace = df_correct_replace.union(df_lemma) df_numbers["num_added_to_training"].loc[i] = df_lemma.count() #print("MTC:", i, "df_correct_replace: ", df_correct_replace.count()) # finally add wrong sample elements to their table df_lemma = df_sample_all.where(col('verdict') == i).where(col('majortopic') != col('verdict')) if df_wrong_replace == None: df_wrong_replace = df_lemma else: df_wrong_replace = df_wrong_replace.union(df_lemma) #print("MTC:", i, "df_wrong_replace: ", df_wrong_replace.count()) # sometimes there will be no major topic code with precision => 75% if df_replace_all == None: df_replace_all = "empty" # sometimes there will be no non-sample elements if df_non_sample_replace == None: df_non_sample_replace = "empty" # the reason for creating these "empty" values, is because they will persist after we clear the # cache, and we can use them later in the workflow control # write all tables to parquet before clearing memory df_correct_replace.write.parquet("hdfs://192.168.0.182:9000/input/df_correct_replace_temp.parquet", mode="overwrite") df_wrong_replace.write.parquet("hdfs://192.168.0.182:9000/input/df_wrong_replace_temp.parquet", mode="overwrite") # sometimes there will be no non-sample elements if df_non_sample_replace != "empty": df_non_sample_replace.write.parquet("hdfs://192.168.0.182:9000/input/df_non_sample_replace_temp.parquet", mode="overwrite") # sometimes there will be no major topic code with precision => 75% if df_replace_all != "empty": df_replace_all.write.parquet("hdfs://192.168.0.182:9000/input/df_replace_all_temp.parquet", mode="overwrite") # write df_numbers to csv df_numbers.to_csv("ML2_HV_v1_NYT_human_validation_numbers_r5.csv", index=True) # empty memory spark.catalog.clearCache() print("cache cleared") ################################################# # prepare df_original to add tables to it ################################################# df_original = spark.read.parquet("hdfs://192.168.0.182:9000/input/ML2_HV_v1_NYT_r5_train_and_remaining_NOTclassified.parquet").repartition(50) # we need to create a new majortopic column, because we are now adding back in elements with # potentially new labels df_original = df_original.withColumnRenamed('majortopic', 'mtc_after_r4') df_original = df_original.withColumn('majortopic', df_original['mtc_after_r4']) # finally, create the new train id column df_original = df_original.withColumn("train_r6", when(df_original["train_r5"] == 1, 1).otherwise(0)) ################################################# # add df_replace_all back to df_original ################################################# if df_replace_all != "empty": print("df_replace_all is NOT empty") df_replace_all = spark.read.parquet("hdfs://192.168.0.182:9000/input/df_replace_all_temp.parquet").repartition(50) # we need to create a new majortopic column, because we are now adding back in elements with # potentially new labels df_replace_all = df_replace_all.withColumnRenamed('majortopic', 'mtc_after_r4') df_replace_all = df_replace_all.withColumn('majortopic', df_replace_all['verdict']) # create the new train id column df_replace_all = df_replace_all.withColumn("train_r6", lit(1)) # drop the extra columns to be able to add it back to df_original df_replace_all = df_replace_all.drop('verdict') # add df_replace_all elements to df_original df_original = df_original.union(df_replace_all) else: print("df_replace_all is empty") ################################################# # add df_non_sample_replace back to df_original ################################################# if df_non_sample_replace != "empty": print("df_non_sample_replace is NOT empty") df_non_sample_replace = spark.read.parquet("hdfs://192.168.0.182:9000/input/df_non_sample_replace_temp.parquet").repartition(50) # we need to create a new majortopic column, because we are now adding back in elements with # potentially new labels df_non_sample_replace = df_non_sample_replace.withColumnRenamed('majortopic', 'mtc_after_r4') df_non_sample_replace = df_non_sample_replace.withColumn('majortopic', df_non_sample_replace['mtc_after_r4']) # create the new train id column df_non_sample_replace = df_non_sample_replace.withColumn("train_r6", lit(0)) # drop the extra columns to be able to add it back to df_original df_non_sample_replace = df_non_sample_replace.drop('verdict') # add df_non_sample_replace elements to df_original df_original = df_original.union(df_non_sample_replace) else: print("df_non_sample_replace is empty") ################################################# # add df_correct_replace back to df_original ################################################# df_correct_replace = spark.read.parquet("hdfs://192.168.0.182:9000/input/df_correct_replace_temp.parquet").repartition(50) # we need to create a new majortopic column, because we are now adding back in elements with # potentially new labels df_correct_replace = df_correct_replace.withColumnRenamed('majortopic', 'mtc_after_r4') df_correct_replace = df_correct_replace.withColumn('majortopic', df_correct_replace['verdict']) # create the new train id column df_correct_replace = df_correct_replace.withColumn("train_r6", lit(1)) # drop the extra columns to be able to add it back to df_original df_correct_replace = df_correct_replace.drop('verdict') # add df_correct_replace elements to df_original df_original = df_original.union(df_correct_replace) ################################################# # add df_wrong_replace back to df_original ################################################# df_wrong_replace = spark.read.parquet("hdfs://192.168.0.182:9000/input/df_wrong_replace_temp.parquet").repartition(50) # we need to create a new majortopic column, because we are now adding back in elements with # potentially new labels df_wrong_replace = df_wrong_replace.withColumnRenamed('majortopic', 'mtc_after_r4') df_wrong_replace = df_wrong_replace.withColumn('majortopic', df_wrong_replace['mtc_after_r4']) # create the new train id column df_wrong_replace = df_wrong_replace.withColumn("train_r6", lit(0)) # drop the extra columns to be able to add it back to df_original df_wrong_replace = df_wrong_replace.drop('verdict') # add df_wrong_replace elements to df_original df_original = df_original.union(df_wrong_replace) ################################################# # final write operations ################################################# df_original.write.parquet("hdfs://192.168.0.182:9000/input/ML2_HV_v1_NYT_round6_start.parquet", mode="overwrite") df_original.groupBy("train_r6").count().show(n=30) # empty memory spark.catalog.clearCache() print("cache cleared") # write to pandas and export to csv for debugging df_original = spark.read.parquet("hdfs://192.168.0.182:9000/input/ML2_HV_v1_NYT_round6_start.parquet").repartition(50) df_original = df_original.drop('text', 'words', 'features', 'raw_features').toPandas() df_original.to_csv("ML2_HV_v1_NYT_round6_starting_table.csv", index=False) sc.stop() spark.stop()
44.221289
142
0.668905
[ "MIT" ]
poltextlab/nyt_hybrid_classification_workflow
spark_cluster/04_2_HV_basic/HV_v1_NYT_sim1_and_sim3_to_sim2/6200_ML2_HV_v1_NYT_sim1_and_sim3_to_sim2_round5_human_validation.py
15,787
Python
"""Extra types understood by apitools. This file will be replaced by a .proto file when we switch to proto2 from protorpc. """ import collections import json import numbers from protorpc import message_types from protorpc import messages from protorpc import protojson from apitools.base.py import encoding from apitools.base.py import exceptions from apitools.base.py import util __all__ = [ 'DateTimeMessage', 'JsonArray', 'JsonObject', 'JsonValue', 'JsonProtoEncoder', 'JsonProtoDecoder', ] # We import from protorpc. # pylint:disable=invalid-name DateTimeMessage = message_types.DateTimeMessage # pylint:enable=invalid-name def _ValidateJsonValue(json_value): entries = [(f, json_value.get_assigned_value(f.name)) for f in json_value.all_fields()] assigned_entries = [(f, value) for f, value in entries if value is not None] if len(assigned_entries) != 1: raise exceptions.InvalidDataError('Malformed JsonValue: %s' % json_value) def _JsonValueToPythonValue(json_value): """Convert the given JsonValue to a json string.""" util.Typecheck(json_value, JsonValue) _ValidateJsonValue(json_value) if json_value.is_null: return None entries = [(f, json_value.get_assigned_value(f.name)) for f in json_value.all_fields()] assigned_entries = [(f, value) for f, value in entries if value is not None] field, value = assigned_entries[0] if not isinstance(field, messages.MessageField): return value elif field.message_type is JsonObject: return _JsonObjectToPythonValue(value) elif field.message_type is JsonArray: return _JsonArrayToPythonValue(value) def _JsonObjectToPythonValue(json_value): util.Typecheck(json_value, JsonObject) return dict([(prop.key, _JsonValueToPythonValue(prop.value)) for prop in json_value.properties]) def _JsonArrayToPythonValue(json_value): util.Typecheck(json_value, JsonArray) return [_JsonValueToPythonValue(e) for e in json_value.entries] _MAXINT64 = 2 << 63 - 1 _MININT64 = -(2 << 63) def _PythonValueToJsonValue(py_value): """Convert the given python value to a JsonValue.""" if py_value is None: return JsonValue(is_null=True) if isinstance(py_value, bool): return JsonValue(boolean_value=py_value) if isinstance(py_value, basestring): return JsonValue(string_value=py_value) if isinstance(py_value, numbers.Number): if isinstance(py_value, (int, long)): if _MININT64 < py_value < _MAXINT64: return JsonValue(integer_value=py_value) return JsonValue(double_value=float(py_value)) if isinstance(py_value, dict): return JsonValue(object_value=_PythonValueToJsonObject(py_value)) if isinstance(py_value, collections.Iterable): return JsonValue(array_value=_PythonValueToJsonArray(py_value)) raise exceptions.InvalidDataError( 'Cannot convert "%s" to JsonValue' % py_value) def _PythonValueToJsonObject(py_value): util.Typecheck(py_value, dict) return JsonObject( properties=[ JsonObject.Property(key=key, value=_PythonValueToJsonValue(value)) for key, value in py_value.iteritems()]) def _PythonValueToJsonArray(py_value): return JsonArray(entries=map(_PythonValueToJsonValue, py_value)) class JsonValue(messages.Message): """Any valid JSON value.""" # Is this JSON object `null`? is_null = messages.BooleanField(1, default=False) # Exactly one of the following is provided if is_null is False; none # should be provided if is_null is True. boolean_value = messages.BooleanField(2) string_value = messages.StringField(3) # We keep two numeric fields to keep int64 round-trips exact. double_value = messages.FloatField(4, variant=messages.Variant.DOUBLE) integer_value = messages.IntegerField(5, variant=messages.Variant.INT64) # Compound types object_value = messages.MessageField('JsonObject', 6) array_value = messages.MessageField('JsonArray', 7) class JsonObject(messages.Message): """A JSON object value. Messages: Property: A property of a JsonObject. Fields: properties: A list of properties of a JsonObject. """ class Property(messages.Message): """A property of a JSON object. Fields: key: Name of the property. value: A JsonValue attribute. """ key = messages.StringField(1) value = messages.MessageField(JsonValue, 2) properties = messages.MessageField(Property, 1, repeated=True) class JsonArray(messages.Message): """A JSON array value.""" entries = messages.MessageField(JsonValue, 1, repeated=True) _JSON_PROTO_TO_PYTHON_MAP = { JsonArray: _JsonArrayToPythonValue, JsonObject: _JsonObjectToPythonValue, JsonValue: _JsonValueToPythonValue, } _JSON_PROTO_TYPES = tuple(_JSON_PROTO_TO_PYTHON_MAP.keys()) def _JsonProtoToPythonValue(json_proto): util.Typecheck(json_proto, _JSON_PROTO_TYPES) return _JSON_PROTO_TO_PYTHON_MAP[type(json_proto)](json_proto) def _PythonValueToJsonProto(py_value): if isinstance(py_value, dict): return _PythonValueToJsonObject(py_value) if (isinstance(py_value, collections.Iterable) and not isinstance(py_value, basestring)): return _PythonValueToJsonArray(py_value) return _PythonValueToJsonValue(py_value) def _JsonProtoToJson(json_proto, unused_encoder=None): return json.dumps(_JsonProtoToPythonValue(json_proto)) def _JsonToJsonProto(json_data, unused_decoder=None): return _PythonValueToJsonProto(json.loads(json_data)) # pylint:disable=invalid-name JsonProtoEncoder = _JsonProtoToJson JsonProtoDecoder = _JsonToJsonProto # pylint:enable=invalid-name encoding.RegisterCustomMessageCodec( encoder=JsonProtoEncoder, decoder=JsonProtoDecoder)(JsonValue) encoding.RegisterCustomMessageCodec( encoder=JsonProtoEncoder, decoder=JsonProtoDecoder)(JsonObject) encoding.RegisterCustomMessageCodec( encoder=JsonProtoEncoder, decoder=JsonProtoDecoder)(JsonArray) def _EncodeDateTimeField(field, value): result = protojson.ProtoJson().encode_field(field, value) return encoding.CodecResult(value=result, complete=True) def _DecodeDateTimeField(unused_field, value): result = protojson.ProtoJson().decode_field( message_types.DateTimeField(1), value) return encoding.CodecResult(value=result, complete=True) encoding.RegisterFieldTypeCodec(_EncodeDateTimeField, _DecodeDateTimeField)( message_types.DateTimeField) def _EncodeInt64Field(field, value): """Handle the special case of int64 as a string.""" capabilities = [ messages.Variant.INT64, messages.Variant.UINT64, ] if field.variant not in capabilities: return encoding.CodecResult(value=value, complete=False) if field.repeated: result = [str(x) for x in value] else: result = str(value) return encoding.CodecResult(value=result, complete=True) def _DecodeInt64Field(unused_field, value): # Don't need to do anything special, they're decoded just fine return encoding.CodecResult(value=value, complete=False) encoding.RegisterFieldTypeCodec(_EncodeInt64Field, _DecodeInt64Field)( messages.IntegerField)
30.577586
78
0.762193
[ "Apache-2.0" ]
Technology-Hatchery/google-cloud-sdk
.install/.backup/lib/apitools/base/py/extra_types.py
7,094
Python
import json import numpy as np from PIL import Image def load_json(f): with open(f, 'r') as fp: return json.load(fp) def save_json(obj, f, ensure_ascii=True, indent=None): with open(f, 'w') as fp: json.dump(obj, fp, ensure_ascii=ensure_ascii, indent=indent) def load_image(f, mode='RGB'): with Image.open(f) as image: return np.array(image.convert(mode))
19.9
68
0.658291
[ "MIT" ]
narumiruna/labelme-utils
labelmeutils/utils/io.py
398
Python
#!/usr/bin/python3 import click import os import tempfile import filecmp import shutil import difflib import sys import git import shell_utils SOURCE_EXTENSIONS = [".cpp", ".c", ".cxx", ".cc", ".h", ".hxx", ".hpp"] class Colors: HEADER = '\033[95m' BLUE = '\033[94m' CYAN = '\033[96m' GREEN = '\033[92m' YELLOW = '\033[93m' RED = '\033[91m' END = '\033[0m' BOLD = '\033[1m' UNDERLINE = '\033[4m' class Symbols: PASS = u'\u2714' FAIL = u'\u2718' # Find all the source files we want to check def find_files_to_check(modified_files, repo_dir): if modified_files: # Check which files have been added or modified by git changed_files = shell_utils.run_shell_command('git diff-index --diff-filter=ACMR --name-only HEAD') changed_files = "{}".format(changed_files.decode('utf-8')).split() sources_to_check = [os.path.join(repo_dir, f) for f in changed_files if f.lower().endswith(tuple(SOURCE_EXTENSIONS))] else: # Recursively walk through the repo and find all the files that meet the extensions criteria sources_to_check = [os.path.join(d, f) for d, dirs, files in os.walk(repo_dir) for f in files if f.lower().endswith(tuple(SOURCE_EXTENSIONS))] return sources_to_check # Given a list of files, run clang-format on them. Optionally fix the files in place if desired def check_files(files, fix_in_place, verbose): num_failed_files = 0 for file in files: # format the file with clang-format and save the output to a temporary file output = shell_utils.run_shell_command("clang-format -style=file -fallback-style=none " + file) formatted_file = tempfile.NamedTemporaryFile() formatted_file.write(output) formatted_file.seek(0) # check if the formatted file is different from the original file_changed = not filecmp.cmp(formatted_file.name, file) # Only need to handle those files that were changed by clang-format. Files that weren't changed are good to go. if file_changed: num_failed_files += 1 print(Colors.RED + Symbols.FAIL + Colors.END + " " + str(file)) if verbose: # get and display the diff between the original and formatted files original_file = open(file, 'r') new_file = open(formatted_file.name, 'r') diff = difflib.unified_diff(original_file.readlines(), new_file.readlines()) print(Colors.CYAN) for line in diff: sys.stdout.write(line) print(Colors.END) if fix_in_place: # if we are fixing in place, just replace the original file with the changed contents print(Colors.YELLOW + "WARNING: Fixing in place. Original file will be changed." + Colors.END) shutil.move(formatted_file.name, file) else: print(Colors.GREEN + Symbols.PASS + Colors.END + " " + str(file)) # clean up try: formatted_file.close() except FileNotFoundError as _: # Do nothing. We must have moved the file above pass return num_failed_files @click.command() @click.option('-f', '--fix-in-place', default=False, is_flag=True, help='Fix the issues found.') @click.option('-m', '--modified-files', default=False, is_flag=True, help='Check modified files (according to git) ' 'only.') @click.option('-v', '--verbose', default=False, is_flag=True, help="Print all the errors found.") def main(fix_in_place, modified_files, verbose): # change directory to the root of the git project repo = git.Repo('.', search_parent_directories=True) os.chdir(repo.working_tree_dir) # Find the source files we want ot check sources_to_check = find_files_to_check(modified_files, repo.working_tree_dir) # Run clang-format and compare the output to the original files num_failed_files = check_files(sources_to_check, fix_in_place, verbose) # Return success or failure if num_failed_files: print( Colors.RED + 3 * Symbols.FAIL + " " + str(num_failed_files) + " files have formatting errors." + Colors.END) if fix_in_place: print("The formatting errors have been automatically fixed.") sys.exit(1) print(Colors.GREEN + 3 * Symbols.PASS + Colors.END + " All files are properly formatted!") sys.exit(0) if __name__ == '__main__': main()
37.02381
120
0.629582
[ "MIT" ]
markcutler/autopilot
tools/run_clang_format.py
4,665
Python
#filling 2nd form and validating ans import time from selenium import webdriver from selenium.webdriver.common.by import By driver=webdriver.Chrome("../chromedriver.exe") driver.get("https://www.seleniumeasy.com/test/basic-first-form-demo.html") num1=2 num2=3 element1=driver.find_element(By.ID,"sum1").send_keys(num1) element2=driver.find_element(By.ID,"sum2").send_keys(num2) button=driver.find_element(By.XPATH,"/html/body/div[2]/div/div[2]/div[2]/div[2]/form/button").click() displayed_sum=driver.find_element(By.ID,"displayvalue").text if (num1+num2) == int(displayed_sum): print("same") else: print("different") time.sleep(5) driver.quit()
23.266667
102
0.7149
[ "MIT" ]
araj29011998/Complete-Selenium-Automation
selenium/filling form/form-2.py
698
Python
from collections import OrderedDict from sympy import Basic, true from devito.tools import as_tuple, is_integer, memoized_meth from devito.types import Dimension __all__ = ['Vector', 'LabeledVector', 'vmin', 'vmax'] class Vector(tuple): """ A representation of an object in Z^n. The elements of a Vector can be integers or generic SymPy expressions. Notes ----- 1) Vector-scalar comparison If a comparison between a vector and a non-vector is attempted, then the non-vector is promoted to a vector; if this is not possible, an exception is raised. This is handy because it turns a vector-scalar comparison into a vector-vector comparison with the scalar broadcasted to all vector entries. For example: :: (3, 4, 5) > 4 => (3, 4, 5) > (4, 4, 4) => False 2) Comparing Vector entries when these are SymPy expressions When we compare two symbolic (SymPy expressions) entries, it might not be possible to determine the truth value of the relation. For example, the truth value of `3*i < 4*j` cannot be determined (unless some information about `i` and `j` is available). In some cases, however, the comparison is feasible; for example, `i + 4 < i` is definitely False. A sufficient condition for two Vectors to be comparable is that their pair-wise indices are affine functions of the same variables, with identical coefficient. If the Vector is instantiated passing the keyword argument ``smart = True``, some manipulation will be attempted to infer the truth value of a non-trivial symbolic relation. This increases the cost of the comparison, while potentially being ineffective, so use it judiciously. By default, ``smart = False``. Raises ------ TypeError If two Vectors cannot be compared, e.g. due to incomparable symbolic entries. """ def __new__(cls, *items, smart=False): if not all(is_integer(i) or isinstance(i, Basic) for i in items): raise TypeError("Illegal Vector element type") obj = super(Vector, cls).__new__(cls, items) obj.smart = smart return obj def _asvector(relax=False): def __asvector(func): def wrapper(self, other): if not isinstance(other, Vector): try: other = Vector(*other) except TypeError: # Not iterable other = Vector(*(as_tuple(other)*len(self))) if relax is False and len(self) != len(other): raise TypeError("Cannot operate with Vectors of different rank") return func(self, other) return wrapper return __asvector def __hash__(self): return super(Vector, self).__hash__() @_asvector() def __add__(self, other): return Vector(*[i + j for i, j in zip(self, other)], smart=self.smart) @_asvector() def __radd__(self, other): return self + other @_asvector() def __sub__(self, other): return Vector(*[i - j for i, j in zip(self, other)], smart=self.smart) @_asvector() def __rsub__(self, other): return self - other @_asvector(relax=True) def __eq__(self, other): return super(Vector, self).__eq__(other) @_asvector(relax=True) def __ne__(self, other): return super(Vector, self).__ne__(other) @_asvector() def __lt__(self, other): # This might raise an exception if the distance between the i-th entry # of `self` and `other` isn't integer, but rather a generic expression # not comparable to 0. However, the implementation is "smart", in the # sense that it will return as soon as the first two comparable entries # (i.e., such that their distance is a non-zero integer) are found for i in self.distance(other): try: val = int(i) if val < 0: return True elif val > 0: return False except TypeError: if self.smart: if (i < 0) == true: return True elif (i <= 0) == true: # If `i` can assume the value 0 in at least one case, then # definitely `i < 0` is generally False, so __lt__ must # return False return False elif (i >= 0) == true: return False raise TypeError("Non-comparable index functions") return False @_asvector() def __gt__(self, other): return other.__lt__(self) @_asvector() def __le__(self, other): if self.__eq__(other): return True # We cannot simply resort to `__lt__` as it might happen that: # * v0 < v1 --> False # * v0 == v1 --> False # But # * v0 <= v1 --> True # # For example, take `v0 = (a + 2)` and `v1 = (2)`; if `a` is attached # the property that definitely `a >= 0`, then surely `v1 <= v0`, even # though it can't be assumed anything about `v1 < 0` and `v1 == v0` for i in self.distance(other): try: val = int(i) if val < 0: return True elif val > 0: return False except TypeError: if self.smart: if (i < 0) == true: return True elif (i <= 0) == true: continue elif (i > 0) == true: return False elif (i >= 0) == true: # See analogous considerations in __lt__ return False raise TypeError("Non-comparable index functions") # Note: unlike `__lt__`, if we end up here, then *it is* <=. For example, # with `v0` and `v1` as above, we would get here return True @_asvector() def __ge__(self, other): return other.__le__(self) def __getitem__(self, key): ret = super(Vector, self).__getitem__(key) return Vector(*ret, smart=self.smart) if isinstance(key, slice) else ret def __repr__(self): return "(%s)" % ','.join(str(i) for i in self) @property def rank(self): return len(self) @property def sum(self): return sum(self) @property def is_constant(self): return all(is_integer(i) for i in self) def distance(self, other): """ Compute the distance from ``self`` to ``other``. The distance is a reflexive, transitive, and anti-symmetric relation, which establishes a total ordering amongst Vectors. The distance is a function [Vector x Vector --> D]. D is a tuple of length equal to the Vector ``rank``. The i-th entry of D, D_i, indicates whether the i-th component of ``self``, self_i, precedes (< 0), equals (== 0), or succeeds (> 0) the i-th component of ``other``, other_i. In particular, the *absolute value* of D_i represents the number of integer points that exist between self_i and sink_i. Examples -------- | 3 | | 1 | | 2 | source = | 2 | , sink = | 4 | , distance => | -2 | | 1 | | 5 | | -4 | There are 2, 2, and 4 points between [3-2], [2-4], and [1-5], respectively. """ return self - other class LabeledVector(Vector): """ A Vector that associates a Dimension to each element. """ def __new__(cls, items=None): try: labels, values = zip(*items) except (ValueError, TypeError): labels, values = (), () if not all(isinstance(i, Dimension) for i in labels): raise ValueError("All labels must be of type Dimension, got [%s]" % ','.join(i.__class__.__name__ for i in labels)) obj = super(LabeledVector, cls).__new__(cls, *values) obj.labels = labels return obj @classmethod def transpose(cls, *vectors): """ Transpose a matrix represented as an iterable of homogeneous LabeledVectors. """ if len(vectors) == 0: return LabeledVector() if not all(isinstance(v, LabeledVector) for v in vectors): raise ValueError("All items must be of type LabeledVector, got [%s]" % ','.join(i.__class__.__name__ for i in vectors)) T = OrderedDict() for v in vectors: for l, i in zip(v.labels, v): T.setdefault(l, []).append(i) return tuple((l, Vector(*i)) for l, i in T.items()) def __repr__(self): return "(%s)" % ','.join('%s:%s' % (l, i) for l, i in zip(self.labels, self)) def __hash__(self): return hash((tuple(self), self.labels)) def __eq__(self, other): if isinstance(other, LabeledVector) and self.labels != other.labels: raise TypeError("Cannot compare due to mismatching `labels`") return super(LabeledVector, self).__eq__(other) def __ne__(self, other): return not self.__eq__(other) def __lt__(self, other): if isinstance(other, LabeledVector) and self.labels != other.labels: raise TypeError("Cannot compare due to mismatching `labels`") return super(LabeledVector, self).__lt__(other) def __gt__(self, other): return other.__lt__(self) def __ge__(self, other): return self.__eq__(other) or self.__gt__(other) def __le__(self, other): return self.__eq__(other) or self.__lt__(other) def __getitem__(self, index): if isinstance(index, (slice, int)): return super(LabeledVector, self).__getitem__(index) elif isinstance(index, Dimension): for d in index._defines: if d in self.labels: i = self.labels.index(d) return super(LabeledVector, self).__getitem__(i) return None else: raise TypeError("Indices must be integers, slices, or Dimensions, not %s" % type(index)) def fromlabel(self, label, v=None): return self[label] if label in self.labels else v def items(self): return zip(self.labels, self) @memoized_meth def distance(self, other): """ Compute the distance from ``self`` to ``other``. Parameters ---------- other : LabeledVector The LabeledVector from which the distance is computed. """ if not isinstance(other, LabeledVector): raise TypeError("Cannot compute distance from obj of type %s", type(other)) if self.labels != other.labels: raise TypeError("Cannot compute distance due to mismatching `labels`") return LabeledVector(list(zip(self.labels, self - other))) # Utility functions def vmin(*vectors): """ Retrieve the minimum out of an iterable of Vectors. Raises ------ TypeError If there are two incomparable Vectors. ValueError If an empty sequence is supplied """ if not all(isinstance(i, Vector) for i in vectors): raise TypeError("Expected an iterable of Vectors") if len(vectors) == 0: raise ValueError("min() arg is an empty sequence") ret = vectors[0] for i in vectors[1:]: if i < ret or i <= ret: ret = i return ret def vmax(*vectors): """ Retrieve the maximum out of an iterable of Vectors. Raises ------ TypeError If there are two incomparable Vectors. ValueError If an empty sequence is supplied """ if not all(isinstance(i, Vector) for i in vectors): raise TypeError("Expected an iterable of Vectors") if len(vectors) == 0: raise ValueError("min() arg is an empty sequence") ret = vectors[0] for i in vectors[1:]: if i > ret or i >= ret: ret = i return ret
34.409471
87
0.567393
[ "MIT" ]
rhodrin/devito
devito/ir/support/vector.py
12,353
Python
#!/usr/bin/env python # -*- coding: utf-8 -*- from threathunter_common.geo.phonelocator import * __author__ = "nebula" def test_phone(): print check_phone_number("+13482345020", None) assert check_phone_number("13482345020", 'CN') assert not check_phone_number("+134823450", None) print get_carrier("13482121123", 'CN') print get_carrier("13815430576", 'CN') print get_carrier("13093705423", 'CN') print get_geo("13482121123", 'CN') print get_geo("13815430576", 'CN') print get_geo("13093705423", 'CN') print 111, get_geo("020 8366 1177", "GB") print 111, get_geo("+442083661177") print phonenumbers.parse("020 8366 1177", "GB") print phonenumbers.parse("+442083661177") assert False
24.225806
53
0.679095
[ "Apache-2.0" ]
threathunterX/python_lib
threathunter_common_python/test/testphone.py
751
Python
""" Output formats. """ from .rst import RST from .console import Console from .json import JSON from .svg import SVG from .png import PNG
14
28
0.735714
[ "MIT" ]
sebMathieu/code_metrics
metrics/outputs/__init__.py
140
Python
#!/usr/bin/env python3 """Pre-commit hook to verify that all extras are documented in README.rst""" import configparser import re from pathlib import Path repo_dir = Path(__file__).parent.parent.parent config = configparser.ConfigParser(strict=False) config.read(repo_dir / "setup.cfg") all_extra = [] extra_to_exclude = {"tests", "mypy", "docs"} all_extras = set(config["options.extras_require"].keys()) - extra_to_exclude readme_path = repo_dir / "README.rst" extra_doc = """ .. list-table:: :header-rows: 1 * - Extra Name - Installation Command - Dependencies """ for extra in sorted(all_extras): extra_doc += f""" * - ``{extra}`` - ``pip install 'astronomer-providers[{extra}]'`` - {extra.replace(".", " ").title()} """ with open(readme_path, "r") as readme_file: readme_contents = readme_file.read() new_readme_text = re.sub( r".. EXTRA_DOC_START([\s\S]*).. EXTRA_DOC_END", f".. EXTRA_DOC_START{extra_doc}\n.. EXTRA_DOC_END", readme_contents, flags=re.MULTILINE, ) if new_readme_text != readme_contents: with open(readme_path, "w") as readme_file: readme_file.write(new_readme_text)
24.265306
76
0.666947
[ "Apache-2.0" ]
astronomer/astronomer-providers
.circleci/scripts/pre_commit_readme_extra.py
1,189
Python
#!/usr/bin/env python from setuptools import setup, find_packages import versioneer setup( name="q2-autopepsirf", version=versioneer.get_version(), cmdclass = versioneer.get_cmdclass(), packages = find_packages(), package_data={}, author="Annabelle Brown", author_email="[email protected]", description="Auto-Run q2-pepsirf and q2-ps-plot", license='Apache-2.0', url="https://github.com/LadnerLab/q2-autopepsirf", entry_points={ 'qiime2.plugins': ['q2-autopepsirf=q2_autopepsirf.plugin_setup:plugin'] }, zip_safe=False, )
28.904762
80
0.672158
[ "Apache-2.0" ]
Annabelle-Brown/q2-autopepsirf
setup.py
607
Python
import pandas as pd from sklearn.feature_extraction.text import CountVectorizer from lda import LDA def learn_topics(texts, topicnum): # Get vocabulary and word counts. Use the top 10,000 most frequent # lowercase unigrams with at least 3 alphabetical, non-numeric characters, # punctuation treated as separators. print("Vectorizing...") CVzer = CountVectorizer(max_features=10000, lowercase=True) doc_vcnts = CVzer.fit_transform(texts) vocabulary = CVzer.get_feature_names() # Learn topics. Refresh conrols print frequency. print("LDA") lda_model = LDA(topicnum, n_iter=4000, refresh=500) doc_topic = lda_model.fit_transform(doc_vcnts) topic_word = lda_model.topic_word_ return doc_topic, topic_word, vocabulary print("Reading data...") env = pd.read_csv('../Data/Environmental Discourse/env_processed.csv', index_col=0) env = env[~env.text_processed.isna()] doc_topic, topic_word, vocabulary = learn_topics(env.text_processed, 100) print(doc_topic[0,:]) for i in range(100): env['topic_{}'.format(i)] = doc_topic[:, i] env.to_csv('../Data/Environmental Discourse/env_lda.csv')
34.514286
84
0.701987
[ "MIT" ]
mikepackard415/Scientific-Environmental-Discourse
Programs/env_lda.py
1,208
Python
import os import glob import psycopg2 import pandas as pd import numpy as np from sql_queries import * def process_song_file(cur, filepath): # open song file df = pd.read_json(filepath, lines = True) # insert song record song_data = df[["song_id", "title", "artist_id", "year", "duration"]].values[0] cur.execute(song_table_insert, song_data) # insert artist record artist_data = df[["artist_id", "artist_name", "artist_location", "artist_latitude", "artist_longitude",]].values[0] cur.execute(artist_table_insert, artist_data) def process_log_file(cur, filepath): # open log file df = pd.read_json(filepath, lines = True) # filter by NextSong action df = df.query("page=='NextSong'") # convert timestamp column to datetime t = pd.to_datetime(df["ts"]/1000, unit = 's') # insert time data records time_data = np.transpose(np.array([df["ts"].values, t.dt.hour.values, t.dt.day.values, t.dt.week.values, \ t.dt.month.values, t.dt.year.values, t.dt.weekday.values])) column_labels = ("timestamp", "hour", "day", "week of year", "month", "year", "weekday") time_df = pd.DataFrame(data = time_data, columns = column_labels) for i, row in time_df.iterrows(): cur.execute(time_table_insert, list(row)) # load user table user_df = df[["userId", "firstName", "lastName", "gender", "level"]] # insert user records for i, row in user_df.iterrows(): cur.execute(user_table_insert, row) # insert songplay records for index, row in df.iterrows(): # get songid and artistid from song and artist tables cur.execute(song_select, (row.song, row.artist, row.length)) results = cur.fetchone() if results: songid, artistid = results else: songid, artistid = None, None # insert songplay record songplay_data = (row.ts, row.userId, row.level, songid, artistid, row.sessionId, \ row.location, row.userAgent) cur.execute(songplay_table_insert, songplay_data) def process_data(cur, conn, filepath, func): # get all files matching extension from directory all_files = [] for root, dirs, files in os.walk(filepath): files = glob.glob(os.path.join(root,'*.json')) for f in files : all_files.append(os.path.abspath(f)) # get total number of files found num_files = len(all_files) print('{} files found in {}'.format(num_files, filepath)) # iterate over files and process for i, datafile in enumerate(all_files, 1): func(cur, datafile) conn.commit() print('{}/{} files processed.'.format(i, num_files)) def main(): conn = psycopg2.connect("host=127.0.0.1 dbname=sparkifydb user=student password=student") cur = conn.cursor() process_data(cur, conn, filepath='data/song_data', func=process_song_file) process_data(cur, conn, filepath='data/log_data', func=process_log_file) conn.close() if __name__ == "__main__": main()
32.40625
119
0.641916
[ "MIT" ]
cdiswine/data-engineering-nanodegree
ETL-data-with-postgres/etl.py
3,111
Python
## ! DO NOT MANUALLY INVOKE THIS setup.py, USE CATKIN INSTEAD from setuptools import setup from catkin_pkg.python_setup import generate_distutils_setup # fetch values from package.xml setup_args = generate_distutils_setup( packages=['soccer_trajectories'], package_dir={'': 'src'}, ) setup(**setup_args)
24.230769
61
0.768254
[ "BSD-3-Clause" ]
sadmanca/soccerbot
soccer_trajectories/setup.py
315
Python
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """preprocess""" import argparse import os import numpy as np from src.dataset import load_and_process def generate_bin(): """Generate bin files.""" parser = argparse.ArgumentParser() parser.add_argument('--data_dir', type=str, default='./data/cora/cora_mr', help='Data dir') parser.add_argument('--train_nodes_num', type=int, default=140, help='Nodes numbers for training') parser.add_argument('--eval_nodes_num', type=int, default=500, help='Nodes numbers for evaluation') parser.add_argument('--test_nodes_num', type=int, default=1000, help='Nodes numbers for test') parser.add_argument('--result_path', type=str, default='./preprocess_Result/', help='Result path') args = parser.parse_args() feature, biases, _, _, _, _, y_test, test_mask = load_and_process(args.data_dir, args.train_nodes_num, args.eval_nodes_num, args.test_nodes_num) feature_path = os.path.join(args.result_path, '00_data') biases_path = os.path.join(args.result_path, '01_data') y_test_path = os.path.join(args.result_path, 'y_test.npy') test_mask_path = os.path.join(args.result_path, 'test_mask.npy') os.makedirs(feature_path) os.makedirs(biases_path) feature.tofile(os.path.join(feature_path, 'feature.bin')) biases.tofile(os.path.join(biases_path, 'biases.bin')) np.save(y_test_path, y_test) np.save(test_mask_path, test_mask) if __name__ == "__main__": generate_bin()
44.461538
103
0.645329
[ "Apache-2.0" ]
233-puchi/mindspore
model_zoo/official/gnn/gat/preprocess.py
2,312
Python
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'birdview.ui' # # Created by: PyQt5 UI code generator 5.15.1 # # WARNING: Any manual changes made to this file will be lost when pyuic5 is # run again. Do not edit this file unless you know what you are doing. from PyQt5 import QtCore, QtGui, QtWidgets class Ui_birdview(object): def setupUi(self, birdview): birdview.setObjectName("birdview") birdview.resize(552, 551) self.verticalLayout = QtWidgets.QVBoxLayout(birdview) self.verticalLayout.setContentsMargins(5, 5, 5, 5) self.verticalLayout.setSpacing(2) self.verticalLayout.setObjectName("verticalLayout") self.horizontalLayout = QtWidgets.QHBoxLayout() self.horizontalLayout.setSpacing(5) self.horizontalLayout.setObjectName("horizontalLayout") self.btnOpenFile = QtWidgets.QPushButton(birdview) self.btnOpenFile.setObjectName("btnOpenFile") self.horizontalLayout.addWidget(self.btnOpenFile) self.lab_file_name = QtWidgets.QLabel(birdview) self.lab_file_name.setAlignment(QtCore.Qt.AlignCenter) self.lab_file_name.setObjectName("lab_file_name") self.horizontalLayout.addWidget(self.lab_file_name) self.horizontalLayout.setStretch(0, 1) self.horizontalLayout.setStretch(1, 4) self.verticalLayout.addLayout(self.horizontalLayout) self.vbox_bd = QtWidgets.QVBoxLayout() self.vbox_bd.setObjectName("vbox_bd") self.verticalLayout.addLayout(self.vbox_bd) self.hbox_btn_slider = QtWidgets.QHBoxLayout() self.hbox_btn_slider.setObjectName("hbox_btn_slider") self.media_grid = QtWidgets.QGridLayout() self.media_grid.setObjectName("media_grid") self.hbox_btn_slider.addLayout(self.media_grid) self.verticalLayout.addLayout(self.hbox_btn_slider) self.verticalLayout.setStretch(0, 1) self.verticalLayout.setStretch(1, 20) self.verticalLayout.setStretch(2, 1) self.retranslateUi(birdview) QtCore.QMetaObject.connectSlotsByName(birdview) def retranslateUi(self, birdview): _translate = QtCore.QCoreApplication.translate birdview.setWindowTitle(_translate("birdview", "BirdView")) self.btnOpenFile.setText(_translate("birdview", "Open xls")) self.lab_file_name.setText(_translate("birdview", "xls_name"))
43.5
75
0.71798
[ "BSD-3-Clause" ]
AndyYangjd/data_fuse_demo
src/visualization_simulator/src/ui/ui_birdview.py
2,436
Python
from django.utils import timezone from maestros.models import Unidades from maestros_generales.models import Empresas __author__ = 'julian' from django.contrib.gis.db import models import datetime class WaspTypeSensor(models.Model): name = models.CharField(max_length=50) units = models.ForeignKey(Unidades) fechaalta = models.DateField(auto_now_add=True,verbose_name=("Fecha Alta"),blank=True,null=True) fechabaja = models.DateField(verbose_name=("Fecha Baja"), blank=True,null=True) class WaspMote(models.Model): DeviceName = models.CharField(max_length=30) Imei = models.BigIntegerField() fechaalta = models.DateField(auto_now_add=True,verbose_name=("Fecha Alta"),blank=True,null=True) fechabaja = models.DateField(verbose_name=("Fecha Baja"), blank=True,null=True) empresa = models.ForeignKey(Empresas,null=True, blank=True,verbose_name=('Empresa'),on_delete=models.PROTECT) class WaspSensor(models.Model): waspmote = models.ForeignKey(WaspMote, on_delete=models.PROTECT) probestype = models.ForeignKey(WaspTypeSensor,on_delete=models.PROTECT) fechaalta = models.DateField(auto_now_add=True,verbose_name=("Fecha Alta"),blank=True,null=True) fechabaja = models.DateField(verbose_name=("Fecha Baja"), blank=True,null=True) empresa = models.ForeignKey(Empresas,null=True, blank=True,verbose_name=('Empresa'),on_delete=models.PROTECT) class WaspData(models.Model): waspsensor = models.ForeignKey(WaspSensor) timestamp_waspmote = models.DateTimeField() status = models.CharField(max_length=1) #loc = models.PointField(srid=4326) alt = models.FloatField() lat = models.FloatField() long = models.FloatField() speed = models.FloatField() course = models.FloatField() voltage = models.IntegerField() notes = models.TextField() #objects = models.GeoManager() valorsensor = models.FloatField() #timestamp_server = models.DateTimeField() timestamp_server = models.DateTimeField(default= lambda: timezone.now() + datetime.timedelta(hours=1), blank=True)
45.568627
121
0.671687
[ "BSD-3-Clause" ]
Infinityloopsistemas/SIVA
rest_waspmote/models.py
2,324
Python
"""Test length measured in half bytes (nibbles). Nibbles were added in v2.1""" import copy import iso8583 import iso8583.specs import pytest # fmt: off @pytest.mark.parametrize( ["data_enc", "len_enc", "len_type", "max_len", "len_count", "result", "result_f2_len"], [ ("ascii", "ascii", 2, 8, "bytes", b"02004000000000000000041234", b"04"), ("ascii", "ascii", 2, 8, "nibbles", b"02004000000000000000081234", b"08"), ("ascii", "b", 2, 8, "bytes", b"02004000000000000000\x00\x041234", b"\x00\x04"), ("ascii", "b", 2, 8, "nibbles", b"02004000000000000000\x00\x081234", b"\x00\x08"), ("b", "ascii", 2, 8, "bytes", b"0200400000000000000002\x12\x34", b"02"), ("b", "ascii", 2, 8, "nibbles", b"0200400000000000000004\x12\x34", b"04"), ("b", "b", 2, 8, "bytes", b"02004000000000000000\x00\x02\x12\x34", b"\x00\x02"), ("b", "b", 2, 8, "nibbles", b"02004000000000000000\x00\x04\x12\x34", b"\x00\x04"), ("ascii", "ascii", 0, 4, "bytes", b"020040000000000000001234", b""), ("ascii", "ascii", 0, 8, "nibbles", b"020040000000000000001234", b""), ("b", "ascii", 0, 2, "bytes", b"02004000000000000000\x12\x34", b""), ("b", "ascii", 0, 4, "nibbles", b"02004000000000000000\x12\x34", b""), ], ) # fmt: on def test_encode_nibbles( data_enc: str, len_enc: str, len_type: int, max_len: int, len_count: str, result: bytes, result_f2_len: bytes, ) -> None: spec = copy.deepcopy(iso8583.specs.default) spec["t"]["data_enc"] = "ascii" spec["p"]["data_enc"] = "ascii" spec["2"]["data_enc"] = data_enc spec["2"]["len_enc"] = len_enc spec["2"]["len_type"] = len_type spec["2"]["max_len"] = max_len spec["2"]["len_count"] = len_count decoded = {"t": "0200", "2": "1234"} s, encoded = iso8583.encode(decoded, spec) assert s == result assert encoded["2"]["len"] == result_f2_len # fmt: off @pytest.mark.parametrize( ["len_enc", "len_type", "max_len", "len_count", "pad", "result", "result_f2_len"], [ ("ascii", 2, 8, "nibbles", "0", b"0200400000000000000003\x01\x23", b"03"), ("b", 2, 8, "nibbles", "0", b"02004000000000000000\x00\x03\x01\x23", b"\x00\x03"), ("ascii", 0, 3, "nibbles", "0", b"02004000000000000000\x01\x23", b""), ("ascii", 2, 8, "nibbles", "F", b"0200400000000000000003\xF1\x23", b"03"), ("b", 2, 8, "nibbles", "F", b"02004000000000000000\x00\x03\xF1\x23", b"\x00\x03"), ("ascii", 0, 3, "nibbles", "F", b"02004000000000000000\xF1\x23", b""), ("ascii", 2, 8, "nibbles", "01", b"0200400000000000000003\x01\x23", b"03"), ("b", 2, 8, "nibbles", "01", b"02004000000000000000\x00\x03\x01\x23", b"\x00\x03"), ("ascii", 0, 3, "nibbles", "01", b"02004000000000000000\x01\x23", b""), ("ascii", 2, 8, "nibbles", "F1", b"0200400000000000000003\xF1\x23", b"03"), ("b", 2, 8, "nibbles", "F1", b"02004000000000000000\x00\x03\xF1\x23", b"\x00\x03"), ("ascii", 0, 3, "nibbles", "F1", b"02004000000000000000\xF1\x23", b""), ], ) # fmt: on def test_encode_nibbles_odd_left_pad( len_enc: str, len_type: int, max_len: int, len_count: str, pad: str, result: bytes, result_f2_len: bytes, ) -> None: spec = copy.deepcopy(iso8583.specs.default) spec["t"]["data_enc"] = "ascii" spec["p"]["data_enc"] = "ascii" spec["2"]["data_enc"] = "b" spec["2"]["len_enc"] = len_enc spec["2"]["len_type"] = len_type spec["2"]["max_len"] = max_len spec["2"]["len_count"] = len_count spec["2"]["left_pad"] = pad decoded = {"t": "0200", "2": "123"} s, encoded = iso8583.encode(decoded, spec) assert s == result assert encoded["2"]["len"] == result_f2_len # fmt: off @pytest.mark.parametrize( ["len_enc", "len_type", "max_len", "len_count", "pad", "result", "result_f2_len"], [ ("ascii", 2, 8, "nibbles", "0", b"0200400000000000000003\x12\x30", b"03"), ("b", 2, 8, "nibbles", "0", b"02004000000000000000\x00\x03\x12\x30", b"\x00\x03"), ("ascii", 0, 3, "nibbles", "0", b"02004000000000000000\x12\x30", b""), ("ascii", 2, 8, "nibbles", "F", b"0200400000000000000003\x12\x3F", b"03"), ("b", 2, 8, "nibbles", "F", b"02004000000000000000\x00\x03\x12\x3F", b"\x00\x03"), ("ascii", 0, 3, "nibbles", "F", b"02004000000000000000\x12\x3F", b""), ("ascii", 2, 8, "nibbles", "01", b"0200400000000000000003\x12\x30", b"03"), ("b", 2, 8, "nibbles", "01", b"02004000000000000000\x00\x03\x12\x30", b"\x00\x03"), ("ascii", 0, 3, "nibbles", "01", b"02004000000000000000\x12\x30", b""), ("ascii", 2, 8, "nibbles", "F1", b"0200400000000000000003\x12\x3F", b"03"), ("b", 2, 8, "nibbles", "F1", b"02004000000000000000\x00\x03\x12\x3F", b"\x00\x03"), ("ascii", 0, 3, "nibbles", "F1", b"02004000000000000000\x12\x3F", b""), ], ) # fmt: on def test_encode_nibbles_odd_right_pad( len_enc: str, len_type: int, max_len: int, len_count: str, pad: str, result: bytes, result_f2_len: bytes, ) -> None: spec = copy.deepcopy(iso8583.specs.default) spec["t"]["data_enc"] = "ascii" spec["p"]["data_enc"] = "ascii" spec["2"]["data_enc"] = "b" spec["2"]["len_enc"] = len_enc spec["2"]["len_type"] = len_type spec["2"]["max_len"] = max_len spec["2"]["len_count"] = len_count spec["2"]["right_pad"] = pad decoded = {"t": "0200", "2": "123"} s, encoded = iso8583.encode(decoded, spec) assert s == result assert encoded["2"]["len"] == result_f2_len def test_encode_nibbles_odd_no_pad() -> None: spec = copy.deepcopy(iso8583.specs.default) spec["t"]["data_enc"] = "ascii" spec["p"]["data_enc"] = "ascii" spec["2"]["data_enc"] = "b" spec["2"]["len_enc"] = "b" spec["2"]["len_type"] = 2 spec["2"]["max_len"] = 8 spec["2"]["len_count"] = "nibbles" decoded = {"t": "0200", "2": "1"} with pytest.raises( iso8583.EncodeError, match="Failed to encode .*: field 2", ): iso8583.encode(decoded, spec=spec) # fmt: off @pytest.mark.parametrize( ["data_enc", "len_enc", "len_type", "max_len", "len_count", "data", "result_f2_len"], [ ("ascii", "ascii", 2, 8, "bytes", b"02004000000000000000041234", b"04"), ("ascii", "ascii", 2, 8, "nibbles", b"02004000000000000000081234", b"08"), ("ascii", "b", 2, 8, "bytes", b"02004000000000000000\x00\x041234", b"\x00\x04"), ("ascii", "b", 2, 8, "nibbles", b"02004000000000000000\x00\x081234", b"\x00\x08"), ("b", "ascii", 2, 8, "bytes", b"0200400000000000000002\x12\x34", b"02"), ("b", "ascii", 2, 8, "nibbles", b"0200400000000000000004\x12\x34", b"04"), ("b", "b", 2, 8, "bytes", b"02004000000000000000\x00\x02\x12\x34", b"\x00\x02"), ("b", "b", 2, 8, "nibbles", b"02004000000000000000\x00\x04\x12\x34", b"\x00\x04"), ("ascii", "ascii", 0, 4, "bytes", b"020040000000000000001234", b""), ("ascii", "ascii", 0, 8, "nibbles", b"020040000000000000001234", b""), ("b", "ascii", 0, 2, "bytes", b"02004000000000000000\x12\x34", b""), ("b", "ascii", 0, 4, "nibbles", b"02004000000000000000\x12\x34", b""), ], ) # fmt: on def test_decode_nibbles( data_enc: str, len_enc: str, len_type: int, max_len: int, len_count: str, data: bytes, result_f2_len: bytes, ) -> None: spec = copy.deepcopy(iso8583.specs.default) spec["t"]["data_enc"] = "ascii" spec["p"]["data_enc"] = "ascii" spec["2"]["data_enc"] = data_enc spec["2"]["len_enc"] = len_enc spec["2"]["len_type"] = len_type spec["2"]["max_len"] = max_len spec["2"]["len_count"] = len_count decoded, encoded = iso8583.decode(data, spec) assert decoded["2"] == "1234" assert encoded["2"]["len"] == result_f2_len # fmt: off @pytest.mark.parametrize( ["len_enc", "len_type", "max_len", "len_count", "pad", "data", "result_f2_len"], [ ("ascii", 2, 8, "nibbles", "0", b"0200400000000000000003\x01\x23", b"03"), ("b", 2, 8, "nibbles", "0", b"02004000000000000000\x00\x03\x01\x23", b"\x00\x03"), ("ascii", 0, 3, "nibbles", "0", b"02004000000000000000\x01\x23", b""), ("ascii", 2, 8, "nibbles", "F", b"0200400000000000000003\xF1\x23", b"03"), ("b", 2, 8, "nibbles", "F", b"02004000000000000000\x00\x03\xF1\x23", b"\x00\x03"), ("ascii", 0, 3, "nibbles", "F", b"02004000000000000000\xF1\x23", b""), ("ascii", 2, 8, "nibbles", "01", b"0200400000000000000003\x01\x23", b"03"), ("b", 2, 8, "nibbles", "01", b"02004000000000000000\x00\x03\x01\x23", b"\x00\x03"), ("ascii", 0, 3, "nibbles", "01", b"02004000000000000000\x01\x23", b""), ("ascii", 2, 8, "nibbles", "F1", b"0200400000000000000003\xF1\x23", b"03"), ("b", 2, 8, "nibbles", "F1", b"02004000000000000000\x00\x03\xF1\x23", b"\x00\x03"), ("ascii", 0, 3, "nibbles", "F1", b"02004000000000000000\xF1\x23", b""), ], ) # fmt: on def test_decode_nibbles_left_pad( len_enc: str, len_type: int, max_len: int, len_count: str, pad: str, data: bytes, result_f2_len: bytes, ) -> None: spec = copy.deepcopy(iso8583.specs.default) spec["t"]["data_enc"] = "ascii" spec["p"]["data_enc"] = "ascii" spec["2"]["data_enc"] = "b" spec["2"]["len_enc"] = len_enc spec["2"]["len_type"] = len_type spec["2"]["max_len"] = max_len spec["2"]["len_count"] = len_count spec["2"]["left_pad"] = pad decoded, encoded = iso8583.decode(data, spec) assert decoded["2"] == "123" assert encoded["2"]["len"] == result_f2_len # fmt: off @pytest.mark.parametrize( ["len_enc", "len_type", "max_len", "len_count", "pad", "data", "result_f2_len"], [ ("ascii", 2, 8, "nibbles", "0", b"0200400000000000000003\x12\x30", b"03"), ("b", 2, 8, "nibbles", "0", b"02004000000000000000\x00\x03\x12\x30", b"\x00\x03"), ("ascii", 0, 3, "nibbles", "0", b"02004000000000000000\x12\x30", b""), ("ascii", 2, 8, "nibbles", "F", b"0200400000000000000003\x12\x3F", b"03"), ("b", 2, 8, "nibbles", "F", b"02004000000000000000\x00\x03\x12\x3F", b"\x00\x03"), ("ascii", 0, 3, "nibbles", "F", b"02004000000000000000\x12\x3F", b""), ("ascii", 2, 8, "nibbles", "01", b"0200400000000000000003\x12\x30", b"03"), ("b", 2, 8, "nibbles", "01", b"02004000000000000000\x00\x03\x12\x30", b"\x00\x03"), ("ascii", 0, 3, "nibbles", "01", b"02004000000000000000\x12\x30", b""), ("ascii", 2, 8, "nibbles", "F1", b"0200400000000000000003\x12\x3F", b"03"), ("b", 2, 8, "nibbles", "F1", b"02004000000000000000\x00\x03\x12\x3F", b"\x00\x03"), ("ascii", 0, 3, "nibbles", "F1", b"02004000000000000000\x12\x3F", b""), ], ) # fmt: on def test_decode_nibbles_right_pad( len_enc: str, len_type: int, max_len: int, len_count: str, pad: str, data: bytes, result_f2_len: bytes, ) -> None: spec = copy.deepcopy(iso8583.specs.default) spec["t"]["data_enc"] = "ascii" spec["p"]["data_enc"] = "ascii" spec["2"]["data_enc"] = "b" spec["2"]["len_enc"] = len_enc spec["2"]["len_type"] = len_type spec["2"]["max_len"] = max_len spec["2"]["len_count"] = len_count spec["2"]["right_pad"] = pad decoded, encoded = iso8583.decode(data, spec) assert decoded["2"] == "123" assert encoded["2"]["len"] == result_f2_len def test_decode_nibbles_odd_no_pad() -> None: spec = copy.deepcopy(iso8583.specs.default) spec["t"]["data_enc"] = "ascii" spec["p"]["data_enc"] = "ascii" spec["2"]["data_enc"] = "b" spec["2"]["len_enc"] = "b" spec["2"]["len_type"] = 2 spec["2"]["max_len"] = 8 spec["2"]["len_count"] = "nibbles" data = b"02004000000000000000\x00\x03\x12\x30" with pytest.raises( iso8583.DecodeError, match="Field data is 4 nibbles, expecting 3: field 2 pos 22", ): iso8583.decode(data, spec=spec) def test_encode_nibbles_variable_over_max() -> None: """Variable field length is over maximum allowed""" spec = copy.deepcopy(iso8583.specs.default) spec["t"]["data_enc"] = "ascii" spec["p"]["data_enc"] = "ascii" spec["2"]["data_enc"] = "ascii" spec["2"]["len_enc"] = "ascii" spec["2"]["len_type"] = 2 spec["2"]["max_len"] = 4 spec["2"]["len_count"] = "nibbles" decoded = {"t": "0200", "2": "1234"} with pytest.raises( iso8583.EncodeError, match="Field data is 8 nibbles, larger than maximum 4: field 2", ): iso8583.encode(decoded, spec=spec) def test_encode_nibbles_fixed_partial() -> None: """Fixed field is provided partially""" spec = copy.deepcopy(iso8583.specs.default) spec["t"]["data_enc"] = "ascii" spec["p"]["data_enc"] = "ascii" spec["2"]["data_enc"] = "ascii" spec["2"]["len_enc"] = "ascii" spec["2"]["len_type"] = 0 spec["2"]["max_len"] = 4 spec["2"]["len_count"] = "nibbles" decoded = {"t": "0200", "2": "1"} with pytest.raises( iso8583.EncodeError, match="Field data is 2 nibbles, expecting 4: field 2", ): iso8583.encode(decoded, spec=spec) def test_encode_nibbles_fixed_missing() -> None: """Fixed field is missing""" spec = copy.deepcopy(iso8583.specs.default) spec["t"]["data_enc"] = "ascii" spec["p"]["data_enc"] = "ascii" spec["2"]["data_enc"] = "ascii" spec["2"]["len_enc"] = "ascii" spec["2"]["len_type"] = 0 spec["2"]["max_len"] = 4 spec["2"]["len_count"] = "nibbles" decoded = {"t": "0200", "2": ""} with pytest.raises( iso8583.EncodeError, match="Field data is 0 nibbles, expecting 4: field 2", ): iso8583.encode(decoded, spec=spec) def test_decode_nibbles_variable_over_max() -> None: """Variable field length is over maximum allowed""" spec = copy.deepcopy(iso8583.specs.default) spec["t"]["data_enc"] = "ascii" spec["p"]["data_enc"] = "ascii" spec["2"]["data_enc"] = "ascii" spec["2"]["len_enc"] = "ascii" spec["2"]["len_type"] = 2 spec["2"]["max_len"] = 4 spec["2"]["len_count"] = "nibbles" s = b"02004000000000000000081234" with pytest.raises( iso8583.DecodeError, match="Field data is 8 nibbles, larger than maximum 4: field 2 pos 20", ): iso8583.decode(s, spec=spec) def test_decode_nibbles_variable_partial() -> None: """Variable field is provided partially""" spec = copy.deepcopy(iso8583.specs.default) spec["t"]["data_enc"] = "ascii" spec["p"]["data_enc"] = "ascii" spec["2"]["data_enc"] = "ascii" spec["2"]["len_enc"] = "ascii" spec["2"]["len_type"] = 2 spec["2"]["max_len"] = 4 spec["2"]["len_count"] = "nibbles" s = b"02004000000000000000041" with pytest.raises( iso8583.DecodeError, match="Field data is 2 nibbles, expecting 4: field 2 pos 22", ): iso8583.decode(s, spec=spec) def test_decode_nibbles_variable_missing() -> None: """Variable field is missing""" spec = copy.deepcopy(iso8583.specs.default) spec["t"]["data_enc"] = "ascii" spec["p"]["data_enc"] = "ascii" spec["2"]["data_enc"] = "ascii" spec["2"]["len_enc"] = "ascii" spec["2"]["len_type"] = 2 spec["2"]["max_len"] = 4 spec["2"]["len_count"] = "nibbles" s = b"0200400000000000000004" with pytest.raises( iso8583.DecodeError, match="Field data is 0 nibbles, expecting 4: field 2 pos 22", ): iso8583.decode(s, spec=spec) def test_decode_nibbles_fixed_partial() -> None: """Fixed field is provided partially""" spec = copy.deepcopy(iso8583.specs.default) spec["t"]["data_enc"] = "ascii" spec["p"]["data_enc"] = "ascii" spec["2"]["data_enc"] = "ascii" spec["2"]["len_enc"] = "ascii" spec["2"]["len_type"] = 0 spec["2"]["max_len"] = 4 spec["2"]["len_count"] = "nibbles" s = b"020040000000000000001" with pytest.raises( iso8583.DecodeError, match="Field data is 2 nibbles, expecting 4: field 2 pos 20", ): iso8583.decode(s, spec=spec) def test_decode_nibbles_fixed_missing() -> None: """Fixed field is missing""" spec = copy.deepcopy(iso8583.specs.default) spec["t"]["data_enc"] = "ascii" spec["p"]["data_enc"] = "ascii" spec["2"]["data_enc"] = "ascii" spec["2"]["len_enc"] = "ascii" spec["2"]["len_type"] = 0 spec["2"]["max_len"] = 4 spec["2"]["len_count"] = "nibbles" s = b"02004000000000000000" with pytest.raises( iso8583.DecodeError, match="Field data is 0 nibbles, expecting 4: field 2 pos 20", ): iso8583.decode(s, spec=spec)
35.397917
98
0.571126
[ "MIT" ]
knovichikhin/pyiso8583
tests/test_nibbles.py
16,991
Python
import argparse import os, sys import os.path as osp import torchvision import numpy as np import torch import torch.nn as nn import torch.optim as optim from torchvision import transforms import network, loss from torch.utils.data import DataLoader import random, pdb, math, copy from tqdm import tqdm from scipy.spatial.distance import cdist import pickle from data_load import mnist, svhn, usps # inverse_transform = None # class InverseTransform(torchvision.transforms.Normalize): # """ # Undoes the normalization and returns the reconstructed images in the input domain. # """ # def __init__(self, mean, std): # mean = torch.as_tensor(mean) # std = torch.as_tensor(std) # std_inv = 1 / (std + 1e-7) # mean_inv = -mean * std_inv # super().__init__(mean=mean_inv, std=std_inv) # def __call__(self, tensor): # t = super().__call__(tensor.clone()) # # return transforms.ToPILImage()(t) # return t def digit_load(args): global inverse_transform train_bs = args.batch_size if args.dset == 's': test_source = svhn.SVHN('./data/svhn/', split='test', download=True, transform=transforms.Compose([ transforms.Resize(32), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ])) # assert inverse_transform == None # inverse_transform = InverseTransform((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) elif args.dset == 'u': test_source = usps.USPS('./data/usps/', train=False, download=True, transform=transforms.Compose([ transforms.RandomCrop(28, padding=4), transforms.RandomRotation(10), transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,)) ])) # assert inverse_transform == None # inverse_transform = InverseTransform((0.5,), (0.5,)) elif args.dset == 'm': test_source = mnist.MNIST('./data/mnist/', train=False, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,)) ])) # assert inverse_transform == None # inverse_transform = InverseTransform((0.5,), (0.5,)) dset_loaders = {} dset_loaders["test"] = DataLoader(test_source, batch_size=train_bs*2, shuffle=False, num_workers=args.worker, drop_last=False) return dset_loaders def cal_acc(loader, netF, netB, netC): k = 0 start_test = True with torch.no_grad(): iter_test = iter(loader) for i in range(len(loader)): data = iter_test.next() input_images = [] inputs = data[0] inputs_clone = inputs.clone() for j in range(inputs_clone.size(0)): x = transforms.Normalize((-1,), (2,))(inputs_clone[j]) input_images.append(transforms.ToPILImage()(x)) labels = data[1] outputs = netC(netB(netF(inputs))) # _, predict = torch.max(outputs.float().cpu(), 1) for j in range(inputs.size(0)): folder = args.output_dir + '/inspect/label-{}'.format(labels[j]) if not osp.exists(folder): os.makedirs(folder) subfolder = folder + '/pred-{}'.format(predict[j]) if not osp.exists(subfolder): os.makedirs(subfolder) input_images[j].save(subfolder + '/{}.jpg'.format(k)) k += 1 # if start_test: all_output = outputs.float().cpu() all_label = labels.float() start_test = False else: all_output = torch.cat((all_output, outputs.float().cpu()), 0) all_label = torch.cat((all_label, labels.float()), 0) _, predict = torch.max(all_output, 1) accuracy = torch.sum(torch.squeeze(predict).float() == all_label).item() / float(all_label.size()[0]) mean_ent = torch.mean(loss.Entropy(nn.Softmax(dim=1)(all_output))).cpu().data.item() return accuracy*100, mean_ent def test(args): dset_loaders = digit_load(args) ## set base network if args.dset == 'u': netF = network.LeNetBase()#.cuda() elif args.dset == 'm': netF = network.LeNetBase()#.cuda() elif args.dset == 's': netF = network.DTNBase()#.cuda() netB = network.feat_bootleneck(type=args.classifier, feature_dim=netF.in_features, bottleneck_dim=args.bottleneck)#.cuda() netC = network.feat_classifier(type=args.layer, class_num = args.class_num, bottleneck_dim=args.bottleneck)#.cuda() args.modelpath = args.output_dir + '/F.pt' netF.load_state_dict(torch.load(args.modelpath)) args.modelpath = args.output_dir + '/B.pt' netB.load_state_dict(torch.load(args.modelpath)) args.modelpath = args.output_dir + '/C.pt' netC.load_state_dict(torch.load(args.modelpath)) netF.eval() netB.eval() netC.eval() acc, _ = cal_acc(dset_loaders['test'], netF, netB, netC) log_str = 'Task: {}, Accuracy = {:.2f}%'.format(args.dset, acc) try: args.out_file.write(log_str + '\n') args.out_file.flush() except: pass print(log_str+'\n') def print_args(args): s = "==========================================\n" for arg, content in args.__dict__.items(): s += "{}:{}\n".format(arg, content) return s if __name__ == "__main__": parser = argparse.ArgumentParser(description='SHOT') parser.add_argument('--gpu_id', type=str, nargs='?', default='0', help="device id to run") parser.add_argument('--s', type=int, default=0, help="source") parser.add_argument('--t', type=int, default=1, help="target") parser.add_argument('--max_epoch', type=int, default=30, help="maximum epoch") parser.add_argument('--batch_size', type=int, default=64, help="batch_size") parser.add_argument('--worker', type=int, default=4, help="number of workers") parser.add_argument('--dset', type=str, default='s', choices=['u', 'm','s']) parser.add_argument('--lr', type=float, default=0.01, help="learning rate") parser.add_argument('--seed', type=int, default=2020, help="random seed") parser.add_argument('--bottleneck', type=int, default=256) parser.add_argument('--layer', type=str, default="wn", choices=["linear", "wn"]) parser.add_argument('--classifier', type=str, default="bn", choices=["ori", "bn"]) parser.add_argument('--output', type=str, default='') parser.add_argument('--issave', type=bool, default=True) args = parser.parse_args() args.class_num = 10 # os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id SEED = args.seed torch.manual_seed(SEED) # torch.cuda.manual_seed(SEED) np.random.seed(SEED) random.seed(SEED) # torch.backends.cudnn.deterministic = True args.output_dir = osp.join(args.output, 'seed' + str(args.seed), args.dset) test(args) # python unsupervised_digit.py --dset m --gpu_id 0 --output ckps_unsupervised_digit # python unsupervised_digit.py --dset m --gpu_id 0 --ent --output ckps_unsupervised_digit_ent # python unsupervised_digit.py --dset m --gpu_id 0 --gent --output ckps_unsupervised_digit_gent # python unsupervised_digit.py --dset m --gpu_id 0 --ent --gent --output ckps_unsupervised_digit_ent_gent # na verdade n sem como saber qual classe vai sair .. ideal é ver tsne? ou mostrar as classificacoes primeiro? # show classification + gradcam (versao mais rapida)
40.820106
126
0.61024
[ "MIT" ]
viniciusarruda/SHOT
experiments/digit/unsupervised_digit_inspect.py
7,716
Python
# -*- coding: utf-8 -*- # Copyright (c) 2018, SIS and contributors # For license information, please see license.txt from __future__ import unicode_literals import frappe from frappe.model.document import Document class Encuesta(Document): pass
22.545455
49
0.774194
[ "MIT" ]
ErickLopez76/encuestaapp
encuestaapp/encuestaapp/doctype/encuesta/encuesta.py
248
Python