content
stringlengths
7
928k
avg_line_length
float64
3.5
33.8k
max_line_length
int64
6
139k
alphanum_fraction
float64
0.08
0.96
licenses
sequence
repository_name
stringlengths
7
104
path
stringlengths
4
230
size
int64
7
928k
lang
stringclasses
1 value
""" Tests for Timestamp parsing, aimed at pandas/_libs/tslibs/parsing.pyx """ from datetime import datetime import re from dateutil.parser import parse import numpy as np import pytest from pandas._libs.tslibs import parsing from pandas._libs.tslibs.parsing import parse_time_string import pandas.util._test_decorators as td import pandas._testing as tm def test_parse_time_string(): (parsed, reso) = parse_time_string("4Q1984") (parsed_lower, reso_lower) = parse_time_string("4q1984") assert reso == reso_lower assert parsed == parsed_lower def test_parse_time_string_invalid_type(): # Raise on invalid input, don't just return it msg = "Argument 'arg' has incorrect type (expected str, got tuple)" with pytest.raises(TypeError, match=re.escape(msg)): parse_time_string((4, 5)) @pytest.mark.parametrize( "dashed,normal", [("1988-Q2", "1988Q2"), ("2Q-1988", "2Q1988")] ) def test_parse_time_quarter_with_dash(dashed, normal): # see gh-9688 (parsed_dash, reso_dash) = parse_time_string(dashed) (parsed, reso) = parse_time_string(normal) assert parsed_dash == parsed assert reso_dash == reso @pytest.mark.parametrize("dashed", ["-2Q1992", "2-Q1992", "4-4Q1992"]) def test_parse_time_quarter_with_dash_error(dashed): msg = f"Unknown datetime string format, unable to parse: {dashed}" with pytest.raises(parsing.DateParseError, match=msg): parse_time_string(dashed) @pytest.mark.parametrize( "date_string,expected", [ ("123.1234", False), ("-50000", False), ("999", False), ("m", False), ("T", False), ("Mon Sep 16, 2013", True), ("2012-01-01", True), ("01/01/2012", True), ("01012012", True), ("0101", True), ("1-1", True), ], ) def test_does_not_convert_mixed_integer(date_string, expected): assert parsing._does_string_look_like_datetime(date_string) is expected @pytest.mark.parametrize( "date_str,kwargs,msg", [ ( "2013Q5", dict(), ( "Incorrect quarterly string is given, " "quarter must be between 1 and 4: 2013Q5" ), ), # see gh-5418 ( "2013Q1", dict(freq="INVLD-L-DEC-SAT"), ( "Unable to retrieve month information " "from given freq: INVLD-L-DEC-SAT" ), ), ], ) def test_parsers_quarterly_with_freq_error(date_str, kwargs, msg): with pytest.raises(parsing.DateParseError, match=msg): parsing.parse_time_string(date_str, **kwargs) @pytest.mark.parametrize( "date_str,freq,expected", [ ("2013Q2", None, datetime(2013, 4, 1)), ("2013Q2", "A-APR", datetime(2012, 8, 1)), ("2013-Q2", "A-DEC", datetime(2013, 4, 1)), ], ) def test_parsers_quarterly_with_freq(date_str, freq, expected): result, _ = parsing.parse_time_string(date_str, freq=freq) assert result == expected @pytest.mark.parametrize( "date_str", ["2Q 2005", "2Q-200A", "2Q-200", "22Q2005", "2Q200.", "6Q-20"] ) def test_parsers_quarter_invalid(date_str): if date_str == "6Q-20": msg = ( "Incorrect quarterly string is given, quarter " f"must be between 1 and 4: {date_str}" ) else: msg = f"Unknown datetime string format, unable to parse: {date_str}" with pytest.raises(ValueError, match=msg): parsing.parse_time_string(date_str) @pytest.mark.parametrize( "date_str,expected", [("201101", datetime(2011, 1, 1, 0, 0)), ("200005", datetime(2000, 5, 1, 0, 0))], ) def test_parsers_month_freq(date_str, expected): result, _ = parsing.parse_time_string(date_str, freq="M") assert result == expected @td.skip_if_not_us_locale @pytest.mark.parametrize( "string,fmt", [ ("20111230", "%Y%m%d"), ("2011-12-30", "%Y-%m-%d"), ("30-12-2011", "%d-%m-%Y"), ("2011-12-30 00:00:00", "%Y-%m-%d %H:%M:%S"), ("2011-12-30T00:00:00", "%Y-%m-%dT%H:%M:%S"), ("2011-12-30 00:00:00.000000", "%Y-%m-%d %H:%M:%S.%f"), ], ) def test_guess_datetime_format_with_parseable_formats(string, fmt): result = parsing._guess_datetime_format(string) assert result == fmt @pytest.mark.parametrize("dayfirst,expected", [(True, "%d/%m/%Y"), (False, "%m/%d/%Y")]) def test_guess_datetime_format_with_dayfirst(dayfirst, expected): ambiguous_string = "01/01/2011" result = parsing._guess_datetime_format(ambiguous_string, dayfirst=dayfirst) assert result == expected @td.skip_if_has_locale @pytest.mark.parametrize( "string,fmt", [ ("30/Dec/2011", "%d/%b/%Y"), ("30/December/2011", "%d/%B/%Y"), ("30/Dec/2011 00:00:00", "%d/%b/%Y %H:%M:%S"), ], ) def test_guess_datetime_format_with_locale_specific_formats(string, fmt): result = parsing._guess_datetime_format(string) assert result == fmt @pytest.mark.parametrize( "invalid_dt", [ "2013", "01/2013", "12:00:00", "1/1/1/1", "this_is_not_a_datetime", "51a", 9, datetime(2011, 1, 1), ], ) def test_guess_datetime_format_invalid_inputs(invalid_dt): # A datetime string must include a year, month and a day for it to be # guessable, in addition to being a string that looks like a datetime. assert parsing._guess_datetime_format(invalid_dt) is None @pytest.mark.parametrize( "string,fmt", [ ("2011-1-1", "%Y-%m-%d"), ("1/1/2011", "%m/%d/%Y"), ("30-1-2011", "%d-%m-%Y"), ("2011-1-1 0:0:0", "%Y-%m-%d %H:%M:%S"), ("2011-1-3T00:00:0", "%Y-%m-%dT%H:%M:%S"), ("2011-1-1 00:00:00", "%Y-%m-%d %H:%M:%S"), ], ) def test_guess_datetime_format_no_padding(string, fmt): # see gh-11142 result = parsing._guess_datetime_format(string) assert result == fmt def test_try_parse_dates(): arr = np.array(["5/1/2000", "6/1/2000", "7/1/2000"], dtype=object) result = parsing.try_parse_dates(arr, dayfirst=True) expected = np.array([parse(d, dayfirst=True) for d in arr]) tm.assert_numpy_array_equal(result, expected) def test_parse_time_string_check_instance_type_raise_exception(): # issue 20684 msg = "Argument 'arg' has incorrect type (expected str, got tuple)" with pytest.raises(TypeError, match=re.escape(msg)): parse_time_string((1, 2, 3)) result = parse_time_string("2019") expected = (datetime(2019, 1, 1), "year") assert result == expected
29.825328
89
0.599122
[ "MIT" ]
OliviaNabbosa89/Disaster_Responses
venv/Lib/site-packages/pandas/tests/tslibs/test_parsing.py
6,830
Python
""" This file is also being used by the GalaxyCloudRunner (gcr) Docker image. """ from getpass import getuser from multiprocessing import cpu_count from socket import gethostname from string import Template SLURM_CONFIG_TEMPLATE = ''' # slurm.conf file generated by configurator.html. # Put this file on all nodes of your cluster. # See the slurm.conf man page for more information. # ControlMachine=$hostname #ControlAddr= #BackupController= #BackupAddr= # AuthType=auth/munge CacheGroups=0 #CheckpointType=checkpoint/none CryptoType=crypto/munge MpiDefault=none #PluginDir= #PlugStackConfig= #PrivateData=jobs ProctrackType=proctrack/pgid #Prolog= #PrologSlurmctld= #PropagatePrioProcess=0 #PropagateResourceLimits= #PropagateResourceLimitsExcept= ReturnToService=1 #SallocDefaultCommand= SlurmctldPidFile=/var/run/slurmctld.pid SlurmctldPort=6817 SlurmdPidFile=/var/run/slurmd.pid SlurmdPort=6818 SlurmdSpoolDir=/tmp/slurmd SlurmUser=$user #SlurmdUser=root #SrunEpilog= #SrunProlog= StateSaveLocation=/tmp SwitchType=switch/none #TaskEpilog= TaskPlugin=task/none #TaskPluginParam= #TaskProlog= InactiveLimit=0 KillWait=30 MinJobAge=300 #OverTimeLimit=0 SlurmctldTimeout=120 SlurmdTimeout=300 #UnkillableStepTimeout=60 #VSizeFactor=0 Waittime=0 FastSchedule=1 SchedulerType=sched/backfill SchedulerPort=7321 SelectType=select/linear #SelectTypeParameters= AccountingStorageType=accounting_storage/none #AccountingStorageUser= AccountingStoreJobComment=YES ClusterName=cluster #DebugFlags= #JobCompHost= #JobCompLoc= #JobCompPass= #JobCompPort= JobCompType=jobcomp/none #JobCompUser= JobAcctGatherFrequency=30 JobAcctGatherType=jobacct_gather/none SlurmctldDebug=3 #SlurmctldLogFile= SlurmdDebug=3 #SlurmdLogFile= NodeName=$hostname CPUs=$cpus State=UNKNOWN PartitionName=debug Nodes=$hostname Default=YES MaxTime=INFINITE State=UP ''' def main(): template_params = {"hostname": gethostname(), "user": getuser(), "cpus": cpu_count()} config_contents = Template(SLURM_CONFIG_TEMPLATE).substitute(template_params) open("/etc/slurm-llnl/slurm.conf", "w").write(config_contents) if __name__ == "__main__": main()
22.453608
81
0.800735
[ "Apache-2.0" ]
Slugger70/pulsar
pulsar/scripts/_configure_slurm.py
2,178
Python
# Licensed under a 3-clause BSD style license - see LICENSE.rst import logging import numpy as np from astropy import units as u from astropy.coordinates import Angle from astropy.io import fits from astropy.table import Table from gammapy.maps import MapAxes, MapAxis from gammapy.utils.array import array_stats_str from gammapy.utils.gauss import MultiGauss2D from gammapy.utils.interpolation import ScaledRegularGridInterpolator from gammapy.utils.scripts import make_path from .table import PSF3D, EnergyDependentTablePSF __all__ = ["EnergyDependentMultiGaussPSF"] log = logging.getLogger(__name__) class EnergyDependentMultiGaussPSF: """Triple Gauss analytical PSF depending on energy and theta. To evaluate the PSF call the ``to_energy_dependent_table_psf`` or ``psf_at_energy_and_theta`` methods. Parameters ---------- energy_axis_true : `MapAxis` True energy axis offset_axis : `MapAxis` Offset axis. sigmas : list of 'numpy.ndarray' Triple Gauss sigma parameters, where every entry is a two dimensional 'numpy.ndarray' containing the sigma value for every given energy and theta. norms : list of 'numpy.ndarray' Triple Gauss norm parameters, where every entry is a two dimensional 'numpy.ndarray' containing the norm value for every given energy and theta. Norm corresponds to the value of the Gaussian at theta = 0. meta : dict Meta data Examples -------- Plot R68 of the PSF vs. theta and energy: .. plot:: :include-source: import matplotlib.pyplot as plt from gammapy.irf import EnergyDependentMultiGaussPSF filename = '$GAMMAPY_DATA/cta-1dc/caldb/data/cta/1dc/bcf/South_z20_50h/irf_file.fits' psf = EnergyDependentMultiGaussPSF.read(filename, hdu='POINT SPREAD FUNCTION') psf.plot_containment(0.68) plt.show() """ tag = "psf_3gauss" def __init__( self, energy_axis_true, offset_axis, sigmas, norms, meta, ): energy_axis_true.assert_name("energy_true") offset_axis.assert_name("offset") self._energy_axis_true = energy_axis_true self._offset_axis = offset_axis sigmas[0][sigmas[0] == 0] = 1 sigmas[1][sigmas[1] == 0] = 1 sigmas[2][sigmas[2] == 0] = 1 self.sigmas = sigmas self.norms = norms self.meta = meta or {} self._interp_norms = self._setup_interpolators(self.norms) self._interp_sigmas = self._setup_interpolators(self.sigmas) @property def energy_thresh_lo(self): """Low energy threshold""" return self.meta["LO_THRES"] * u.TeV @property def energy_thresh_hi(self): """High energy threshold""" return self.meta["HI_THRES"] * u.TeV @property def energy_axis_true(self): return self._energy_axis_true @property def offset_axis(self): return self._offset_axis def _setup_interpolators(self, values_list): interps = [] for values in values_list: interp = ScaledRegularGridInterpolator( points=(self.offset_axis.center, self.energy_axis_true.center), values=values, ) interps.append(interp) return interps @classmethod def read(cls, filename, hdu="PSF_2D_GAUSS"): """Create `EnergyDependentMultiGaussPSF` from FITS file. Parameters ---------- filename : str File name """ with fits.open(str(make_path(filename)), memmap=False) as hdulist: return cls.from_table_hdu(hdulist[hdu]) @classmethod def from_table_hdu(cls, hdu): """Create `EnergyDependentMultiGaussPSF` from HDU list. Parameters ---------- hdu : `~astropy.io.fits.BinTableHDU` HDU """ table = Table.read(hdu) energy_axis_true = MapAxis.from_table( table, column_prefix="ENERG", format="gadf-dl3" ) offset_axis = MapAxis.from_table( table, column_prefix="THETA", format="gadf-dl3" ) # Get sigmas shape = (offset_axis.nbin, energy_axis_true.nbin) sigmas = [] for key in ["SIGMA_1", "SIGMA_2", "SIGMA_3"]: sigma = hdu.data[key].reshape(shape).copy() sigmas.append(sigma) # Get amplitudes norms = [] for key in ["SCALE", "AMPL_2", "AMPL_3"]: norm = hdu.data[key].reshape(shape).copy() norms.append(norm) return cls( energy_axis_true=energy_axis_true, offset_axis=offset_axis, sigmas=sigmas, norms=norms, meta=dict(hdu.header) ) def to_hdulist(self): """ Convert psf table data to FITS hdu list. Returns ------- hdu_list : `~astropy.io.fits.HDUList` PSF in HDU list format. """ # Set up data names = [ "SCALE", "SIGMA_1", "AMPL_2", "SIGMA_2", "AMPL_3", "SIGMA_3", ] units = ["", "deg", "", "deg", "", "deg"] data = [ self.norms[0], self.sigmas[0], self.norms[1], self.sigmas[1], self.norms[2], self.sigmas[2], ] axes = MapAxes([self.energy_axis_true, self.offset_axis]) table = axes.to_table(format="gadf-dl3") for name_, data_, unit_ in zip(names, data, units): table[name_] = [data_] table[name_].unit = unit_ # Create hdu and hdu list hdu = fits.BinTableHDU(table) hdu.header.update(self.meta) return fits.HDUList([fits.PrimaryHDU(), hdu]) def write(self, filename, *args, **kwargs): """Write PSF to FITS file. Calls `~astropy.io.fits.HDUList.writeto`, forwarding all arguments. """ self.to_hdulist().writeto(str(make_path(filename)), *args, **kwargs) def psf_at_energy_and_theta(self, energy, theta): """ Get `~gammapy.modeling.models.MultiGauss2D` model for given energy and theta. No interpolation is used. Parameters ---------- energy : `~astropy.units.u.Quantity` Energy at which a PSF is requested. theta : `~astropy.coordinates.Angle` Offset angle at which a PSF is requested. Returns ------- psf : `~gammapy.utils.gauss.MultiGauss2D` Multigauss PSF object. """ energy = u.Quantity(energy) theta = u.Quantity(theta) sigmas, norms = [], [] pars = {"A_1": 1} for interp_sigma in self._interp_sigmas: sigma = interp_sigma((theta, energy)) sigmas.append(sigma) for name, interp_norm in zip(["scale", "A_2", "A_3"], self._interp_norms): pars[name] = interp_norm((theta, energy)) for idx, sigma in enumerate(sigmas): a = pars[f"A_{idx + 1}"] norm = pars["scale"] * 2 * a * sigma ** 2 norms.append(norm) m = MultiGauss2D(sigmas, norms) m.normalize() return m def containment_radius(self, energy, theta, fraction=0.68): """Compute containment for all energy and theta values""" # This is a false positive from pylint # See https://github.com/PyCQA/pylint/issues/2435 energies = u.Quantity( energy ).flatten() # pylint:disable=assignment-from-no-return thetas = Angle(theta).flatten() radius = np.empty((theta.size, energy.size)) for idx, energy in enumerate(energies): for jdx, theta in enumerate(thetas): try: psf = self.psf_at_energy_and_theta(energy, theta) radius[jdx, idx] = psf.containment_radius(fraction) except ValueError: log.debug( f"Computing containment failed for energy = {energy:.2f}" f" and theta={theta:.2f}" ) log.debug(f"Sigmas: {psf.sigmas} Norms: {psf.norms}") radius[jdx, idx] = np.nan return Angle(radius, "deg") def plot_containment(self, fraction=0.68, ax=None, add_cbar=True, **kwargs): """ Plot containment image with energy and theta axes. Parameters ---------- fraction : float Containment fraction between 0 and 1. add_cbar : bool Add a colorbar """ import matplotlib.pyplot as plt ax = plt.gca() if ax is None else ax energy = self.energy_axis_true.center offset = self.offset_axis.center # Set up and compute data containment = self.containment_radius(energy, offset, fraction) # plotting defaults kwargs.setdefault("cmap", "GnBu") kwargs.setdefault("vmin", np.nanmin(containment.value)) kwargs.setdefault("vmax", np.nanmax(containment.value)) # Plotting x = energy.value y = offset.value caxes = ax.pcolormesh(x, y, containment.value, **kwargs) # Axes labels and ticks, colobar ax.semilogx() ax.set_ylabel(f"Offset ({offset.unit})") ax.set_xlabel(f"Energy ({energy.unit})") ax.set_xlim(x.min(), x.max()) ax.set_ylim(y.min(), y.max()) try: self._plot_safe_energy_range(ax) except KeyError: pass if add_cbar: label = f"Containment radius R{100 * fraction:.0f} ({containment.unit})" ax.figure.colorbar(caxes, ax=ax, label=label) return ax def _plot_safe_energy_range(self, ax): """add safe energy range lines to the plot""" esafe = self.energy_thresh_lo omin = self.offset_axis.center.min() omax = self.offset_axis.center.max() ax.vlines(x=esafe.value, ymin=omin.value, ymax=omax.value) label = f"Safe energy threshold: {esafe:3.2f}" ax.text(x=1.1 * esafe.value, y=0.3, s=label, va="top") def plot_containment_vs_energy( self, fractions=[0.68, 0.95], thetas=Angle([0, 1], "deg"), ax=None, **kwargs ): """Plot containment fraction as a function of energy. """ import matplotlib.pyplot as plt ax = plt.gca() if ax is None else ax energy = self.energy_axis_true.center for theta in thetas: for fraction in fractions: radius = self.containment_radius(energy, theta, fraction).squeeze() kwargs.setdefault("label", f"{theta.deg} deg, {100 * fraction:.1f}%") ax.plot(energy.value, radius.value, **kwargs) ax.semilogx() ax.legend(loc="best") ax.set_xlabel("Energy (TeV)") ax.set_ylabel("Containment radius (deg)") def peek(self, figsize=(15, 5)): """Quick-look summary plots.""" import matplotlib.pyplot as plt fig, axes = plt.subplots(nrows=1, ncols=3, figsize=figsize) self.plot_containment(fraction=0.68, ax=axes[0]) self.plot_containment(fraction=0.95, ax=axes[1]) self.plot_containment_vs_energy(ax=axes[2]) # TODO: implement this plot # psf = self.psf_at_energy_and_theta(energy='1 TeV', theta='1 deg') # psf.plot_components(ax=axes[2]) plt.tight_layout() def info( self, fractions=[0.68, 0.95], energies=u.Quantity([1.0, 10.0], "TeV"), thetas=u.Quantity([0.0], "deg"), ): """ Print PSF summary info. The containment radius for given fraction, energies and thetas is computed and printed on the command line. Parameters ---------- fractions : list Containment fraction to compute containment radius for. energies : `~astropy.units.u.Quantity` Energies to compute containment radius for. thetas : `~astropy.units.u.Quantity` Thetas to compute containment radius for. Returns ------- ss : string Formatted string containing the summary info. """ ss = "\nSummary PSF info\n" ss += "----------------\n" ss += array_stats_str(self.offset_axis.center.to("deg"), "Theta") ss += array_stats_str(self.energy_axis_true.edges[1:], "Energy hi") ss += array_stats_str(self.energy_axis_true.edges[:-1], "Energy lo") ss += f"Safe energy threshold lo: {self.energy_thresh_lo:6.3f}\n" ss += f"Safe energy threshold hi: {self.energy_thresh_hi:6.3f}\n" for fraction in fractions: containment = self.containment_radius(energies, thetas, fraction) for i, energy in enumerate(energies): for j, theta in enumerate(thetas): radius = containment[j, i] ss += ( "{:2.0f}% containment radius at theta = {} and " "E = {:4.1f}: {:5.8f}\n" "".format(100 * fraction, theta, energy, radius) ) return ss def to_energy_dependent_table_psf(self, theta=None, rad=None, exposure=None): """Convert triple Gaussian PSF ot table PSF. Parameters ---------- theta : `~astropy.coordinates.Angle` Offset in the field of view. Default theta = 0 deg rad : `~astropy.coordinates.Angle` Offset from PSF center used for evaluating the PSF on a grid. Default offset = [0, 0.005, ..., 1.495, 1.5] deg. exposure : `~astropy.units.u.Quantity` Energy dependent exposure. Should be in units equivalent to 'cm^2 s'. Default exposure = 1. Returns ------- tabe_psf : `~gammapy.irf.EnergyDependentTablePSF` Instance of `EnergyDependentTablePSF`. """ # Convert energies to log center energies = self.energy_axis_true.center # Defaults and input handling if theta is None: theta = Angle(0, "deg") else: theta = Angle(theta) if rad is None: rad = Angle(np.arange(0, 1.5, 0.005), "deg") rad_axis = MapAxis.from_nodes(rad, name="rad") psf_value = u.Quantity(np.zeros((energies.size, rad.size)), "deg^-2") for idx, energy in enumerate(energies): psf_gauss = self.psf_at_energy_and_theta(energy, theta) psf_value[idx] = u.Quantity(psf_gauss(rad), "deg^-2") return EnergyDependentTablePSF( energy_axis_true=self.energy_axis_true, rad_axis=rad_axis, exposure=exposure, data=psf_value, ) def to_psf3d(self, rad=None): """Create a PSF3D from an analytical PSF. Parameters ---------- rad : `~astropy.units.u.Quantity` or `~astropy.coordinates.Angle` the array of position errors (rad) on which the PSF3D will be defined Returns ------- psf3d : `~gammapy.irf.PSF3D` the PSF3D. It will be defined on the same energy and offset values than the input psf. """ offsets = self.offset_axis.center energy = self.energy_axis_true.center if rad is None: rad = np.linspace(0, 0.66, 67) * u.deg rad_axis = MapAxis.from_edges(rad, name="rad") shape = (self.energy_axis_true.nbin, self.offset_axis.nbin, rad_axis.nbin) psf_value = np.zeros(shape) * u.Unit("sr-1") for idx, offset in enumerate(offsets): table_psf = self.to_energy_dependent_table_psf(offset) psf_value[:, idx, :] = table_psf.evaluate(energy, rad_axis.center) return PSF3D( energy_axis_true=self.energy_axis_true, rad_axis=rad_axis, offset_axis=self.offset_axis, data=psf_value, meta=self.meta.copy() )
32.542169
106
0.578304
[ "BSD-3-Clause" ]
mdebony/gammapy
gammapy/irf/psf/gauss.py
16,206
Python
from typing import List import torch from torch import Tensor from hw_asr.base.base_metric import BaseMetric from hw_asr.base.base_text_encoder import BaseTextEncoder from hw_asr.metric.utils import calc_cer class ArgmaxCERMetric(BaseMetric): def __init__(self, text_encoder: BaseTextEncoder, *args, **kwargs): super().__init__(*args, **kwargs) self.text_encoder = text_encoder def __call__(self, log_probs: Tensor, text: List[str], *args, **kwargs): cers = [] predictions = torch.argmax(log_probs.cpu(), dim=-1) for log_prob_vec, target_text, log_prob_length in zip(predictions, text, kwargs['log_probs_length']): if hasattr(self.text_encoder, "ctc_decode"): pred_text = self.text_encoder.ctc_decode(log_prob_vec[:log_prob_length.item()]) else: pred_text = self.text_encoder.decode(log_prob_vec) cers.append(calc_cer(target_text, pred_text)) return sum(cers) / len(cers) class BeamSearchCERMetric(BaseMetric): def __init__(self, text_encoder: BaseTextEncoder, *args, **kwargs): super().__init__(*args, **kwargs) self.text_encoder = text_encoder def __call__(self, log_probs: Tensor, text: List[str], *args, **kwargs): cers = [] if hasattr(self.text_encoder, "ctc_beam_search"): predictions = log_probs.cpu() else: predictions = torch.argmax(log_probs.cpu(), dim=-1) for log_prob_length, log_prob_vec, target_text in zip(kwargs['log_probs_length'], predictions, text): if hasattr(self.text_encoder, "ctc_beam_search"): pred_text = self.text_encoder.ctc_beam_search(log_prob_vec[:log_prob_length.item(), :].unsqueeze(0)) elif hasattr(self.text_encoder, "ctc_decode"): pred_text = self.text_encoder.ctc_decode(log_prob_vec) else: pred_text = self.text_encoder.decode(log_prob_vec) cers.append(calc_cer(target_text, pred_text)) return sum(cers) / len(cers)
41.44
116
0.668436
[ "MIT" ]
ArseniyBolotin/asr_project
hw_asr/metric/cer_metric.py
2,072
Python
# We need to make our string alternating, i. e. si≠si+1. When we reverse substring sl…sr, # we change no more than two pairs sl−1,sl and sr,sr+1. Moreover, one pair should be a # consecutive pair 00 and other — 11. So, we can find lower bound to our answer as maximum # between number of pairs of 00 and number of pairs of 11. And we can always reach this # lower bound, by pairing 00 with 11 or with left/right border of s. for _ in range(int(input())): n = int(input()) s = input() z, o = 0, 0 # will store total number of pairs zeros, ones = 0, 0 # will store no of pairs in one streak for el in s: if el == '1': ones += 1 # streak of zeros are broken by one so no of pairs of zeros are added to z z += max(zeros-1, 0) zeros = 0 if el == '0': zeros += 1 # streak of ones are broken by one so no of pairs of ones are added to o o += max(ones-1, 0) ones = 0 # we count pairs only when it the streak is broken. So to count the final unbroken streak o += max(ones-1, 0) z += max(zeros-1, 0) print(max(o, z))
36.40625
93
0.593133
[ "MIT" ]
Abhinav-22/CompetitiveCode
Codeforces_problems/Reverse Binary Strings/solution.py
1,173
Python
import numpy as np import cv2 import matplotlib.pylab as plt from keras.preprocessing.image import load_img from keras.models import model_from_json from models import ( create_cam_model, preprocess_image, get_cam_img ) # Define CAM conv layer name CAM_CONV_LAYER = 'cam_conv_layer' def read_model(model_path, weigths_path): """Load your pretrained model """ model = model_from_json(open(model_path).read()) model.load_weights(weigths_path) return model def train_cam_model(X_train, Y_train, X_test, Y_test, batch_size, nb_epoch): """Train CAM model based on your pretrained model # Arguments model: your pretrained model, CAM model is trained based on this model. """ # Use your allready trained model pretrained_model_path = '' pretrained_weights_path = '' # Your pretrained model name pretrained_model_name = 'VGG16' # Label class num num_classes = 10 # CAM input spacial size gap_spacial_size = 14 # The layer before CAM(GAP) layers. # CAM paper suggests to use the last convnet(VGG) or mergenet(Inception, or other architectures) # Change this name based on your model. if pretrained_model_name == 'VGG16': in_layer_name = 'block5_conv3' elif pretrained_model_name == 'InceptionV3': in_layer_name = 'batchnormalization_921' elif pretrained_model_name == 'ResNet50': in_layer_name = 'merge_13' else: in_layer_name = '' # Load your allready trained model, transfer it to CAM model pretrained_model = read_model(pretrained_model_path, pretrained_weights_path) # Create CAM model based on trained model model = create_cam_model(pretrained_model, gap_spacial_size, num_classes, in_layer_name, CAM_CONV_LAYER) # Train your CAM model model.compile(loss='categorical_crossentropy', optimizer='adadelta', metrics=['accuracy']) model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch, shuffle=True, verbose=1, validation_data=(X_test, Y_test)) # Save model model.save_weights('') return model def cam_model(): """ Return your trained CAM model """ return def plot_cam_map(img_path, img_size, batch_size, label_plot): """Plot class activation map. """ # CAM input spacial size gap_spacial_size = 14 # Use your trained CAM model model = cam_model() # Load and format data im_ori = np.asarray(load_img(img_path, target_size=(img_size, img_size))) test_data = preprocess_image(img_path, img_size, expand_dims=True) # Get class map image im_cam = get_cam_img(model, test_data, label_plot, CAM_CONV_LAYER, ratio=img_size / gap_spacial_size) # Resize if the shape of class map is not equal to original image if im_cam.shape != im_ori[:, :, 0].shape: im_cam = cv2.resize(im_cam, (img_size, img_size), cv2.INTER_LINEAR) # Show the predictions. You can analyze the class map with the predictions. prediction_labels = model.predict(test_data.astype('float32'), batch_size=batch_size, verbose=1) print('Info: Predictions:\n{}'.format(prediction_labels)) # Plot original image and the class map plt.imshow(im_ori) plt.imshow(im_cam, cmap='jet', alpha=0.5, interpolation='bilinear') plt.show()
25.784
97
0.730996
[ "MIT" ]
ijinmao/CAM-Localization
demo.py
3,223
Python
#!/usr/bin/python """Plot LFEs of given order parameter.""" import argparse import sys import matplotlib.pyplot as plt from matplotlib import cm from matplotlib import gridspec from matplotlib.ticker import MaxNLocator import numpy as np import pandas as pd from matplotlibstyles import styles from matplotlibstyles import plotutils def main(): args = parse_args() f = setup_figure() gs = gridspec.GridSpec(1, 1, f) ax = f.add_subplot(gs[0, 0]) if args.post_lfes == None: args.post_lfes = ['' for i in range(len(args.systems))] plot_figure(f, ax, vars(args)) setup_axis(ax, args.tag) #set_labels(ax) save_figure(f, args.plot_filebase) def setup_figure(): styles.set_default_style() figsize = (plotutils.cm_to_inches(10), plotutils.cm_to_inches(7)) return plt.figure(figsize=figsize, dpi=300, constrained_layout=True) def plot_figure(f, ax, args): systems = args['systems'] varis = args['varis'] input_dir = args['input_dir'] tag = args['tag'] post_lfes = args['post_lfes'] stacking_enes = args['stacking_enes'] if stacking_enes is not None: stacking_enes = [abs(e) for e in stacking_enes] cmap = plotutils.create_truncated_colormap( 0.2, 0.8, name='plasma') #mappable = plotutils.create_linear_mappable( # cmap, abs(stacking_enes[0]), abs(stacking_enes[-1])) #colors = [mappable.to_rgba(abs(e)) for e in stacking_enes] increment = stacking_enes[1] - stacking_enes[0] cmap, norm, colors = plotutils.create_segmented_colormap(cmap, stacking_enes, increment) else: cmap = cm.get_cmap('tab10') colors = [cmap(i) for i in range(len(systems))] for i in range(len(systems)): system = systems[i] vari = varis[i] post_lfe = post_lfes[i] if post_lfe != '': post_lfe = '-' + post_lfe inp_filebase = f'{input_dir}/{system}-{vari}_lfes{post_lfe}-{tag}' lfes = pd.read_csv(f'{inp_filebase}.aves', sep=' ', index_col=0) lfe_stds = pd.read_csv(f'{inp_filebase}.stds', sep=' ', index_col=0) temp = lfes.columns[0] lfes = lfes[temp] lfes = lfes - lfes[0] lfe_stds = lfe_stds[temp] label = f'{system}-{vari}' ax.errorbar(lfes.index, lfes, yerr=lfe_stds, marker='o', label=label, color=colors[i]) if stacking_enes is not None: label = r'$-U_\text{stack} / \SI{1000}{\kb\kelvin}$' tick_labels = [f'${e/1000:.1f}$' for e in stacking_enes] plotutils.plot_segmented_colorbar( f, ax, cmap, norm, label, tick_labels, 'horizontal') def setup_axis(ax, ylabel=None, xlabel=None, ylim_top=None, xlim_right=None): ax.xaxis.set_major_locator(MaxNLocator(integer=True)) ax.set_ylabel(ylabel) ax.set_xlabel(xlabel) ax.set_ylim(top=ylim_top) ax.set_xlim(right=xlim_right) def set_labels(ax): plt.legend() def save_figure(f, plot_filebase): #f.savefig(plot_filebase + '.pgf', transparent=True) f.savefig(plot_filebase + '.pdf', transparent=True) f.savefig(plot_filebase + '.png', transparent=True) def parse_args(): parser = argparse.ArgumentParser( description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument( 'input_dir', type=str, help='Input directory') parser.add_argument( 'plot_filebase', type=str, help='Plots directory') parser.add_argument( 'tag', type=str, help='OP tag') parser.add_argument( '--systems', nargs='+', type=str, help='Systems') parser.add_argument( '--varis', nargs='+', type=str, help='Simulation variants') parser.add_argument( '--post_lfes', nargs='+', type=str, help='Filename additions after lfes, if any') parser.add_argument( '--stacking_enes', nargs='+', type=float, help='Stacking energies (for colormap)') return parser.parse_args() if __name__ == '__main__': main()
28.414966
96
0.625808
[ "MIT" ]
acumb/LatticeDNAOrigami
scripts/plotting/plot_lfes.py
4,177
Python
#!/usr/bin/env python # -*- coding: utf-8 -*- __author__ = 'Fabian Affolter <fabian()affolter-engineering.ch>' __copyright__ = 'Copyright 2014 Fabian Affolter' __license__ = """Eclipse Public License - v 1.0 (http://www.eclipse.org/legal/epl-v10.html)""" HAVE_DBUS=True try: import dbus except ImportError: HAVE_DBUS=False def plugin(srv, item): """Send a message through dbus to the user's desktop.""" srv.logging.debug("*** MODULE=%s: service=%s, target=%s", __file__, item.service, item.target) if not HAVE_DBUS: srv.logging.error("Cannot send DBUS message; `dbus' module not installed") return False text = item.message summary = item.addrs[0] app_name = item.get('title', srv.SCRIPTNAME) replaces_id = 0 service = 'org.freedesktop.Notifications' path = '/' + service.replace('.', '/') interface = service app_icon = '/usr/share/icons/gnome/32x32/places/network-server.png' expire_timeout = 1000 actions = [] hints = [] try: srv.logging.debug("Sending message to %s..." % (item.target)) session_bus = dbus.SessionBus() obj = session_bus.get_object(service, path) interface = dbus.Interface(obj, interface) interface.Notify(app_name, replaces_id, app_icon, summary, text, actions, hints, expire_timeout) srv.logging.debug("Successfully sent message") except Exception, e: srv.logging.error("Error sending message to %s: %s" % (item.target, str(e))) return False return True
32.625
98
0.649425
[ "EPL-1.0" ]
daq-tools/mqttwarn
services/dbus.py
1,566
Python
# encoding: utf-8 import datetime import logging from ckan.common import config from six import text_type from sqlalchemy import Table, select, join, func, and_ import ckan.plugins as p import ckan.model as model log = logging.getLogger(__name__) cache_enabled = p.toolkit.asbool( config.get('ckanext.stats.cache_enabled', False) ) if cache_enabled: log.warn( 'ckanext.stats does not support caching in current implementations' ) DATE_FORMAT = '%Y-%m-%d' def table(name): return Table(name, model.meta.metadata, autoload=True) def datetime2date(datetime_): return datetime.date(datetime_.year, datetime_.month, datetime_.day) class Stats(object): @classmethod def largest_groups(cls, limit=10): member = table('member') package = table('package') j = join(member, package, member.c.table_id == package.c.id) s = select( [member.c.group_id, func.count(member.c.table_id)] ).select_from(j).group_by(member.c.group_id).where( and_( member.c.group_id != None, member.c.table_name == 'package', package.c.private == False, package.c.state == 'active' ) ).order_by(func.count(member.c.table_id).desc()).limit(limit) res_ids = model.Session.execute(s).fetchall() res_groups = [ (model.Session.query(model.Group).get(text_type(group_id)), val) for group_id, val in res_ids ] return res_groups @classmethod def top_tags(cls, limit=10, returned_tag_info='object'): # by package assert returned_tag_info in ('name', 'id', 'object') tag = table('tag') package_tag = table('package_tag') package = table('package') if returned_tag_info == 'name': from_obj = [package_tag.join(tag)] tag_column = tag.c.name else: from_obj = None tag_column = package_tag.c.tag_id j = join( package_tag, package, package_tag.c.package_id == package.c.id ) s = select([tag_column, func.count(package_tag.c.package_id)], from_obj=from_obj).select_from(j).where( and_( package_tag.c.state == 'active', package.c.private == False, package.c.state == 'active' ) ) s = s.group_by(tag_column).order_by( func.count(package_tag.c.package_id).desc() ).limit(limit) res_col = model.Session.execute(s).fetchall() if returned_tag_info in ('id', 'name'): return res_col elif returned_tag_info == 'object': res_tags = [ (model.Session.query(model.Tag).get(text_type(tag_id)), val) for tag_id, val in res_col ] return res_tags @classmethod def top_package_creators(cls, limit=10): userid_count = model.Session.query( model.Package.creator_user_id, func.count(model.Package.creator_user_id) ).filter(model.Package.state == 'active' ).filter(model.Package.private == False).group_by( model.Package.creator_user_id ).order_by(func.count(model.Package.creator_user_id).desc() ).limit(limit).all() user_count = [ (model.Session.query(model.User).get(text_type(user_id)), count) for user_id, count in userid_count if user_id ] return user_count
32.839286
76
0.576672
[ "BSD-3-Clause" ]
4yjo/ckan
ckanext/stats/stats.py
3,678
Python
import time import numpy as np import os.path as osp import datetime from collections import OrderedDict import torch import torch.nn as nn from torch.utils.tensorboard import SummaryWriter import nni from dassl.data import DataManager from dassl.optim import build_optimizer, build_lr_scheduler from dassl.utils import ( MetricMeter, AverageMeter, tolist_if_not, count_num_param, load_checkpoint, save_checkpoint, resume_from_checkpoint, load_pretrained_weights ) from dassl.modeling import build_head, build_backbone from dassl.evaluation import build_evaluator class SimpleNet(nn.Module): """A simple neural network composed of a CNN backbone and optionally a head such as mlp for classification. """ def __init__(self, cfg, model_cfg, num_classes, **kwargs): super().__init__() self.backbone = build_backbone( model_cfg.BACKBONE.NAME, verbose=cfg.VERBOSE, pretrained=model_cfg.BACKBONE.PRETRAINED, **kwargs ) fdim = self.backbone.out_features print("------------------------fdim:", fdim) self.head = None if model_cfg.HEAD.NAME and model_cfg.HEAD.HIDDEN_LAYERS: self.head = build_head( model_cfg.HEAD.NAME, verbose=cfg.VERBOSE, in_features=fdim, hidden_layers=model_cfg.HEAD.HIDDEN_LAYERS, activation=model_cfg.HEAD.ACTIVATION, bn=model_cfg.HEAD.BN, dropout=model_cfg.HEAD.DROPOUT, **kwargs ) fdim = self.head.out_features self.classifier = None if num_classes > 0: self.classifier = nn.Linear(fdim, num_classes) self._fdim = fdim @property def fdim(self): return self._fdim def forward(self, x, return_feature=False): f = self.backbone(x) if self.head is not None: f = self.head(f) if self.classifier is None: return f y = self.classifier(f) if return_feature: return y, f return y class TrainerBase: """Base class for iterative trainer.""" def __init__(self): self._models = OrderedDict() self._optims = OrderedDict() self._scheds = OrderedDict() self._writer = None def register_model(self, name='model', model=None, optim=None, sched=None): if self.__dict__.get('_models') is None: raise AttributeError( 'Cannot assign model before super().__init__() call' ) if self.__dict__.get('_optims') is None: raise AttributeError( 'Cannot assign optim before super().__init__() call' ) if self.__dict__.get('_scheds') is None: raise AttributeError( 'Cannot assign sched before super().__init__() call' ) assert name not in self._models, 'Found duplicate model names' self._models[name] = model self._optims[name] = optim self._scheds[name] = sched def get_model_names(self, names=None): names_real = list(self._models.keys()) if names is not None: names = tolist_if_not(names) for name in names: assert name in names_real return names else: return names_real def save_model(self, epoch, directory, is_best=False, model_name=''): names = self.get_model_names() for name in names: model_dict = self._models[name].state_dict() optim_dict = None if self._optims[name] is not None: optim_dict = self._optims[name].state_dict() sched_dict = None if self._scheds[name] is not None: sched_dict = self._scheds[name].state_dict() save_checkpoint( { 'state_dict': model_dict, 'epoch': epoch + 1, 'optimizer': optim_dict, 'scheduler': sched_dict }, osp.join(directory, name), is_best=is_best, model_name=model_name ) def resume_model_if_exist(self, directory): names = self.get_model_names() file_missing = False for name in names: path = osp.join(directory, name) if not osp.exists(path): file_missing = True break if file_missing: print('No checkpoint found, train from scratch') return 0 print( 'Found checkpoint in "{}". Will resume training'.format(directory) ) for name in names: path = osp.join(directory, name) start_epoch = resume_from_checkpoint( path, self._models[name], self._optims[name], self._scheds[name] ) return start_epoch def load_model(self, directory, epoch=None): if not directory: print( 'Note that load_model() is skipped as no pretrained model is given' ) return names = self.get_model_names() # By default, the best model is loaded model_file = 'model-best.pth.tar' if epoch is not None: model_file = 'model.pth.tar-' + str(epoch) for name in names: model_path = osp.join(directory, name, model_file) if not osp.exists(model_path): raise FileNotFoundError( 'Model not found at "{}"'.format(model_path) ) checkpoint = load_checkpoint(model_path) state_dict = checkpoint['state_dict'] epoch = checkpoint['epoch'] print( 'Loading weights to {} ' 'from "{}" (epoch = {})'.format(name, model_path, epoch) ) self._models[name].load_state_dict(state_dict) def set_model_mode(self, mode='train', names=None): names = self.get_model_names(names) for name in names: if mode == 'train': self._models[name].train() else: self._models[name].eval() def update_lr(self, names=None): names = self.get_model_names(names) for name in names: if self._scheds[name] is not None: self._scheds[name].step() def detect_anomaly(self, loss): if not torch.isfinite(loss).all(): raise FloatingPointError('Loss is infinite or NaN!') def init_writer(self, log_dir): if self.__dict__.get('_writer') is None or self._writer is None: print( 'Initializing summary writer for tensorboard ' 'with log_dir={}'.format(log_dir) ) self._writer = SummaryWriter(log_dir=log_dir) def close_writer(self): if self._writer is not None: self._writer.close() def write_scalar(self, tag, scalar_value, global_step=None): if self._writer is None: # Do nothing if writer is not initialized # Note that writer is only used when training is needed pass else: self._writer.add_scalar(tag, scalar_value, global_step) def train(self, start_epoch, max_epoch): """Generic training loops.""" self.start_epoch = start_epoch self.max_epoch = max_epoch self.before_train() for self.epoch in range(self.start_epoch, self.max_epoch): self.before_epoch() self.run_epoch() self.after_epoch() self.after_train() def before_train(self): pass def after_train(self): pass def before_epoch(self): pass def after_epoch(self): pass def run_epoch(self): raise NotImplementedError def test(self): raise NotImplementedError def parse_batch_train(self, batch): raise NotImplementedError def parse_batch_test(self, batch): raise NotImplementedError def forward_backward(self, batch): raise NotImplementedError def model_inference(self, input): raise NotImplementedError def model_zero_grad(self, names=None): names = self.get_model_names(names) for name in names: if self._optims[name] is not None: self._optims[name].zero_grad() def model_backward(self, loss): self.detect_anomaly(loss) if not self.use_amp: loss.backward() else: self.scaler.scale(loss).backward() def model_update(self, names=None): names = self.get_model_names(names) for name in names: if self._optims[name] is not None: if not self.use_amp: self._optims[name].step() else: self.scaler.step(self._optims[name]) def model_backward_and_update(self, loss, names=None): self.model_zero_grad(names) self.model_backward(loss) self.model_update(names) if self.use_amp: self.scaler.update() class SimpleTrainer(TrainerBase): """A simple trainer class implementing generic functions.""" def __init__(self, cfg): super().__init__() self.check_cfg(cfg) if torch.cuda.is_available() and cfg.USE_CUDA: self.device = torch.device('cuda') else: self.device = torch.device('cpu') # use amp to accelerate training self.use_amp = cfg.TRAIN.USE_AMP if self.use_amp: self.scaler = torch.cuda.amp.GradScaler() # Save as attributes some frequently used variables self.start_epoch = self.epoch = 0 self.max_epoch = cfg.OPTIM.MAX_EPOCH self.output_dir = cfg.OUTPUT_DIR self.cfg = cfg self.build_data_loader() self.build_model() self.evaluator = build_evaluator(cfg, lab2cname=self.dm.lab2cname) # zhaoxin modify self.best_val_acc = -np.inf self.best_test_acc = -np.inf self.best_val_test_acc = 0 self.best_val_epoch = 0 self.best_test_epoch = 0 def check_cfg(self, cfg): """Check whether some variables are set correctly for the trainer (optional). For example, a trainer might require a particular sampler for training such as 'RandomDomainSampler', so it is good to do the checking: assert cfg.DATALOADER.SAMPLER_TRAIN == 'RandomDomainSampler' """ pass def build_data_loader(self): """Create essential data-related attributes. What must be done in the re-implementation of this method: 1) initialize data manager 2) assign as attributes the data loaders 3) assign as attribute the number of classes """ self.dm = DataManager(self.cfg) self.train_loader_x = self.dm.train_loader_x self.train_loader_u = self.dm.train_loader_u self.val_loader = self.dm.val_loader self.test_loader = self.dm.test_loader self.num_classes = self.dm.num_classes def build_model(self): """Build and register model. The default builds a classification model along with its optimizer and scheduler. Custom trainers can re-implement this method if necessary. """ cfg = self.cfg print('Building model') self.model = SimpleNet(cfg, cfg.MODEL, self.num_classes) # for name, module in self.model.named_children(): # print(name) if cfg.MODEL.INIT_WEIGHTS: load_pretrained_weights(self.model, cfg.MODEL.INIT_WEIGHTS) self.model.to(self.device) print('# params: {:,}'.format(count_num_param(self.model))) self.optim = build_optimizer(self.model, cfg.OPTIM) self.sched = build_lr_scheduler(self.optim, cfg.OPTIM) self.register_model('model', self.model, self.optim, self.sched) def train(self): super().train(self.start_epoch, self.max_epoch) def before_train(self): # directory = self.cfg.OUTPUT_DIR if self.cfg.RESUME: directory = self.cfg.RESUME self.start_epoch = self.resume_model_if_exist(directory) # Initialize summary writer self.init_writer(self.output_dir) # Remember the starting time (for computing the elapsed time) self.time_start = time.time() def after_train(self): print('Finished training') do_test = not self.cfg.TEST.NO_TEST if do_test and not self.cfg.NNI: if self.cfg.TEST.FINAL_MODEL == 'best_val': print('Deploy the model with the best val performance') self.load_model(self.output_dir) # zhaoxin modify if self.cfg.TEST.PER_CLASS_RESULT: self.best_val_test_acc, per_class_accs = self.test(return_per_class_results=True) perclass_path = osp.join(self.output_dir, 'perclass_result.txt') with open(perclass_path, 'w') as f: for acc in per_class_accs: f.write("{:6f}\n".format(acc)) else: self.best_val_test_acc = self.test() # zhaoxin add if self.cfg.TEST.FINAL_MODEL == 'best_val': print( 'best_val_acc: {}\nbest_val_epoch: {}\nbest_val_test_acc: {}'. format( self.best_val_acc, self.best_val_epoch, self.best_val_test_acc ) ) if self.cfg.TEST.TEST_EVERY_EPOCH: print( 'best_test_acc: {}\nbest_test_epoch: {}'.format( self.best_test_acc, self.best_test_epoch ) ) result_path = osp.join(self.output_dir, 'result.txt') with open(result_path, 'w') as f: f.write("{:6f}\n".format(self.best_val_test_acc)) if self.cfg.NNI: nni.report_final_result(self.best_val_acc) # Show elapsed time elapsed = round(time.time() - self.time_start) elapsed = str(datetime.timedelta(seconds=elapsed)) print('Elapsed: {}'.format(elapsed)) # Close writer self.close_writer() def after_epoch(self): last_epoch = (self.epoch + 1) == self.max_epoch do_test = not self.cfg.TEST.NO_TEST meet_checkpoint_freq = ( self.epoch + 1 ) % self.cfg.TRAIN.CHECKPOINT_FREQ == 0 if self.cfg.TRAIN.CHECKPOINT_FREQ > 0 else False # zhaoxin modify if do_test and self.cfg.TEST.FINAL_MODEL == 'best_val': curr_val_acc = self.test(split='val') # nni: report intermediate result if self.cfg.NNI: nni.report_intermediate_result(curr_val_acc) is_best = curr_val_acc > self.best_val_acc if is_best: self.best_val_acc = curr_val_acc self.best_val_epoch = self.epoch + 1 self.save_model( self.epoch, self.output_dir, model_name='model-best.pth.tar' ) if do_test and self.cfg.TEST.TEST_EVERY_EPOCH: curr_test_acc = self.test(split='test') if curr_test_acc > self.best_test_acc: self.best_test_acc = curr_test_acc self.best_test_epoch = self.epoch + 1 # if self.cfg.TEST.FINAL_MODEL == 'best_val': # if is_best: # self.best_val_test_acc = curr_test_acc if meet_checkpoint_freq or last_epoch: self.save_model(self.epoch, self.output_dir) @torch.no_grad() def test(self, split=None, return_per_class_results=False): """A generic testing pipeline.""" self.set_model_mode('eval') self.evaluator.reset() if split is None: split = self.cfg.TEST.SPLIT if split == 'val' and self.val_loader is not None: data_loader = self.val_loader print('Do evaluation on {} set'.format(split)) else: data_loader = self.test_loader print('Do evaluation on test set') for batch_idx, batch in enumerate(data_loader): input, label = self.parse_batch_test(batch) output = self.model_inference(input) self.evaluator.process(output, label) results = self.evaluator.evaluate() for k, v in results.items(): if k == 'perclass_accuracies': continue tag = '{}/{}'.format(split, k) self.write_scalar(tag, v, self.epoch) if not return_per_class_results: return list(results.values())[0] else: return results['accuracy'], results['perclass_accuracies'] def model_inference(self, input): return self.model(input) def parse_batch_test(self, batch): input = batch['img'] label = batch['label'] input = input.to(self.device) label = label.to(self.device) return input, label def get_current_lr(self, names=None): names = self.get_model_names(names) name = names[0] return self._optims[name].param_groups[0]['lr'] class TrainerXU(SimpleTrainer): """A base trainer using both labeled and unlabeled data. In the context of domain adaptation, labeled and unlabeled data come from source and target domains respectively. When it comes to semi-supervised learning, all data comes from the same domain. """ def run_epoch(self): self.set_model_mode('train') losses = MetricMeter() batch_time = AverageMeter() data_time = AverageMeter() # Decide to iterate over labeled or unlabeled dataset len_train_loader_x = len(self.train_loader_x) len_train_loader_u = len(self.train_loader_u) if self.cfg.TRAIN.COUNT_ITER == 'train_x': self.num_batches = len_train_loader_x elif self.cfg.TRAIN.COUNT_ITER == 'train_u': self.num_batches = len_train_loader_u elif self.cfg.TRAIN.COUNT_ITER == 'smaller_one': self.num_batches = min(len_train_loader_x, len_train_loader_u) else: raise ValueError train_loader_x_iter = iter(self.train_loader_x) train_loader_u_iter = iter(self.train_loader_u) end = time.time() for self.batch_idx in range(self.num_batches): try: batch_x = next(train_loader_x_iter) except StopIteration: train_loader_x_iter = iter(self.train_loader_x) batch_x = next(train_loader_x_iter) try: batch_u = next(train_loader_u_iter) except StopIteration: train_loader_u_iter = iter(self.train_loader_u) batch_u = next(train_loader_u_iter) data_time.update(time.time() - end) loss_summary = self.forward_backward(batch_x, batch_u) batch_time.update(time.time() - end) losses.update(loss_summary) if (self.batch_idx + 1) % self.cfg.TRAIN.PRINT_FREQ == 0: nb_this_epoch = self.num_batches - (self.batch_idx + 1) nb_future_epochs = ( self.max_epoch - (self.epoch + 1) ) * self.num_batches eta_seconds = batch_time.avg * (nb_this_epoch+nb_future_epochs) eta = str(datetime.timedelta(seconds=int(eta_seconds))) print( 'epoch [{0}/{1}][{2}/{3}]\t' 'time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'data {data_time.val:.3f} ({data_time.avg:.3f})\t' 'eta {eta}\t' '{losses}\t' 'lr {lr}'.format( self.epoch + 1, self.max_epoch, self.batch_idx + 1, self.num_batches, batch_time=batch_time, data_time=data_time, eta=eta, losses=losses, lr=self.get_current_lr() ) ) n_iter = self.epoch * self.num_batches + self.batch_idx for name, meter in losses.meters.items(): self.write_scalar('train/' + name, meter.avg, n_iter) self.write_scalar('train/lr', self.get_current_lr(), n_iter) end = time.time() def parse_batch_train(self, batch_x, batch_u): input_x = batch_x['img'] label_x = batch_x['label'] input_u = batch_u['img'] input_x = input_x.to(self.device) label_x = label_x.to(self.device) input_u = input_u.to(self.device) return input_x, label_x, input_u class TrainerX(SimpleTrainer): """A base trainer using labeled data only.""" def run_epoch(self): self.set_model_mode('train') losses = MetricMeter() batch_time = AverageMeter() data_time = AverageMeter() self.num_batches = len(self.train_loader_x) end = time.time() for self.batch_idx, batch in enumerate(self.train_loader_x): data_time.update(time.time() - end) loss_summary = self.forward_backward(batch) batch_time.update(time.time() - end) losses.update(loss_summary) if (self.batch_idx + 1) % self.cfg.TRAIN.PRINT_FREQ == 0: nb_this_epoch = self.num_batches - (self.batch_idx + 1) nb_future_epochs = ( self.max_epoch - (self.epoch + 1) ) * self.num_batches eta_seconds = batch_time.avg * (nb_this_epoch+nb_future_epochs) eta = str(datetime.timedelta(seconds=int(eta_seconds))) print( 'epoch [{0}/{1}][{2}/{3}]\t' 'time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'data {data_time.val:.3f} ({data_time.avg:.3f})\t' 'eta {eta}\t' '{losses}\t' 'lr {lr}'.format( self.epoch + 1, self.max_epoch, self.batch_idx + 1, self.num_batches, batch_time=batch_time, data_time=data_time, eta=eta, losses=losses, lr=self.get_current_lr() ) ) n_iter = self.epoch * self.num_batches + self.batch_idx for name, meter in losses.meters.items(): self.write_scalar('train/' + name, meter.avg, n_iter) self.write_scalar('train/lr', self.get_current_lr(), n_iter) end = time.time() def parse_batch_train(self, batch): input = batch['img'] label = batch['label'] domain = batch['domain'] input = input.to(self.device) label = label.to(self.device) domain = domain.to(self.device) return input, label, domain
33.30226
97
0.57015
[ "MIT" ]
zhaoxin94/Dassl.pytorch
dassl/engine/trainer.py
23,578
Python
import json import os import pickle import requests import shutil import tempfile import uuid from flask import Blueprint, current_app, jsonify, request, send_file name = 'HTTP' prefix = 'http' storage_enabled = True global storage_path plugin = Blueprint(name, __name__) def register(app, plugin_storage_path=None): app.register_blueprint(plugin, url_prefix=f'/{prefix}') app.logger.info(f'{name} plugin registered.') global storage_path storage_path = plugin_storage_path persistence = { "configuration": {}, "execution": {}, } result_zip_file_name = 'results.zip' @plugin.route('/') def index(): return f'This is the Radon CTT Agent HTTP Plugin.', 200 @plugin.route('/configuration/', methods=['POST']) def configuration_create(): config_instance = {} configuration_uuid = str(uuid.uuid4()) config_instance['uuid'] = configuration_uuid params = { 'use_https': { 'required': True, 'default': False, }, 'method': { 'required': True, 'default': 'GET', }, 'hostname': { 'required': True, 'default': None, }, 'port': { 'required': True, 'default': 80, }, 'path': { 'required': True, 'default': "/", }, 'test_body': { 'required': False, 'default': None, }, 'test_header': { 'required': False, 'default': None, }, } for param in params: is_required = params[param]['required'] default_value = params[param]['default'] if param in request.form: value = request.form.get(param, type=str) current_app.logger.info(f'\'{param}\' set to: \'{value}\'.') config_instance[param] = value else: if is_required and default_value is not None: value = default_value current_app.logger.info(f'\'{param}\' set to default value: \'{value}\'.') config_instance[param] = value if is_required and param not in config_instance: current_app.logger.error(f"Required parameter {param} not provided.") return f'Required parameter {param} not provided.', 400 persistence['configuration'][configuration_uuid] = config_instance current_app.logger.info(f"Config: {config_instance}") return jsonify(config_instance), 201 @plugin.route('/execution/', methods=['POST']) def execution(): execution_instance = {} if 'config_uuid' in request.form: config_uuid = request.form['config_uuid'] config_entry = persistence['configuration'][config_uuid] execution_instance['config'] = config_entry # Assign values from config if they are stored in the config, otherwise assign None use_https = bool(config_entry['use_https']) if 'use_https' in config_entry else None method = str(config_entry['method']).upper() if 'method' in config_entry else None hostname = str(config_entry['hostname']) if 'hostname' in config_entry else None port = int(config_entry['port']) if 'port' in config_entry else None path = str(config_entry['path']) if 'path' in config_entry else None test_body = config_entry['test_body'] if 'test_body' in config_entry else None test_header = config_entry['test_header'] if 'test_header' in config_entry else None # Check if required parameters are set if use_https is not None and method and hostname and port and path: protocol = 'http' if use_https: protocol += 's' target_url = f'{protocol}://{hostname}:{port}{path}' # Send request with given parameters response = requests.request(method, target_url, headers=test_header, json=test_body) response_status = response.status_code # Create UUID for execution execution_uuid = str(uuid.uuid4()) execution_instance['uuid'] = execution_uuid execution_instance['target_url'] = target_url execution_instance['status'] = str(response_status) persistence['execution'][execution_uuid] = execution_instance execution_results_dir = os.path.join(storage_path, execution_uuid) os.makedirs(execution_results_dir) execution_json = os.path.join(execution_results_dir, 'execution.json') received_response = os.path.join(execution_results_dir, 'response.bin') with open(execution_json, 'w') as exec_json: exec_json.write(json.dumps(execution_instance)) with open(received_response, 'wb') as response_bin: response_bin.write(pickle.dumps(response)) with tempfile.NamedTemporaryFile() as tf: tmp_zip_file = shutil.make_archive(tf.name, 'zip', execution_results_dir) shutil.copy2(tmp_zip_file, os.path.join(execution_results_dir, result_zip_file_name)) # Test was executed with any possible outcome return jsonify(execution_instance), 200 else: return "Required configuration parameters are missing.", jsonify(config_entry), 400 else: return "No configuration with that ID found.", jsonify(persistence), 404 # Get execution results @plugin.route('/execution/<string:exec_uuid>/', methods=['GET']) def execution_results(exec_uuid): try: execution_uuid = persistence.get('execution').get(exec_uuid).get('uuid') except AttributeError: return "No execution found with that ID.", 404 results_zip_path = os.path.join(storage_path, execution_uuid, result_zip_file_name) if os.path.isfile(results_zip_path): return send_file(results_zip_path) else: return "No results available (yet).", 404
33.661017
101
0.630916
[ "Apache-2.0" ]
radon-h2020/radon-ctt-agent-plugins
http/__init__.py
5,958
Python
from trixi.logger.file.numpyplotfilelogger import NumpyPlotFileLogger from trixi.logger.file.pytorchplotfilelogger import PytorchPlotFileLogger from trixi.logger.file.textfilelogger import TextFileLogger
51
73
0.897059
[ "MIT" ]
comeonfox/trixi
trixi/logger/file/__init__.py
204
Python
""" Copyright 2021 K.M Ahnaf Zamil Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from urllib.parse import parse_qs import typing __all__: typing.Final = ["Request", "ImmutableDict", "_Redirect", "Endpoint"] class _Redirect(object): """Just an object for simulating a redirect""" def __init__(self, url: str) -> None: self.url = url class ImmutableDict(dict): """An immutable dictionary implementation for query arguments and form data""" def __setitem__(self, k, v) -> None: raise ValueError("ImmutableDict object cannot be modified (immutable)") class Request(object): """An object that contains information related to the HTTP request""" def __init__(self, environ): self._environ = environ @property def method(self) -> str: """HTTP method used for the request""" return self._environ["REQUEST_METHOD"] @property def endpoint(self) -> str: """The route/endpoint used for that specific request""" return self._environ["PATH_INFO"] @property def query_args(self) -> ImmutableDict: """Query arguments from the request""" args = self._environ["QUERY_STRING"] if not args: return ImmutableDict({}) args = args.split("&") query_args = {} for _arg in args: name, value = _arg.split("=") query_args[name] = value return ImmutableDict(query_args) @property def form(self) -> typing.Optional[typing.Dict]: """Form data sent via HTTP request""" data = self._environ.get("wsgi.input") # Returns io.BytesIO object if data: form_dict = parse_qs(data.getvalue().decode("utf-8")) final_dict = {} for k, v in form_dict.items(): final_dict[k] = v[0] # Since v is list containing the form data return ImmutableDict(final_dict) def __str__(self): return f'<Request endpoint="{self.endpoint}" method="{self.method}">' class Endpoint(object): def __init__(self, route, func) -> None: self.route = route self.extension = None self._func = func def __call__(self, request: Request): return self._func(request)
36.426966
460
0.677051
[ "MIT" ]
ahnaf-zamil/pogweb
pogweb/models.py
3,242
Python
from mizarlabs.transformers.technical.rsi import BarArrivalRSIStrategy from mizarlabs.transformers.technical.rsi import RSIConfirmation def test_bar_arrival_rsi_strategy_predict(dollar_bar_dataframe): rsi_upper_threshold = 55 rsi_lower_threshold = 45 bar_arrival_upper_threshold = 0 bar_arrival_lower_threshold = -0.2 rsi_timeperiod = 25 bar_arrival_fast_period = 500 bar_arrival_slow_period = 200 max_bar_arrival_mean_diff = 10000000000000 bar_arrival_rsi_strategy = BarArrivalRSIStrategy( rsi_upper_threshold, rsi_lower_threshold, bar_arrival_upper_threshold, bar_arrival_lower_threshold, rsi_timeperiod, bar_arrival_fast_period, bar_arrival_slow_period, max_bar_arrival_mean_diff, ) preds = bar_arrival_rsi_strategy.predict(dollar_bar_dataframe) assert set(preds).issubset(bar_arrival_rsi_strategy.classes_) def test_bar_arrival_rsi_strategy_predict_proba(dollar_bar_dataframe): rsi_upper_threshold = 55 rsi_lower_threshold = 45 bar_arrival_upper_threshold = 0 bar_arrival_lower_threshold = -0.2 rsi_timeperiod = 25 bar_arrival_fast_period = 500 bar_arrival_slow_period = 200 max_bar_arrival_mean_diff = 10000000000000 bar_arrival_rsi_strategy = BarArrivalRSIStrategy( rsi_upper_threshold, rsi_lower_threshold, bar_arrival_upper_threshold, bar_arrival_lower_threshold, rsi_timeperiod, bar_arrival_fast_period, bar_arrival_slow_period, max_bar_arrival_mean_diff, ) preds = bar_arrival_rsi_strategy.predict(dollar_bar_dataframe) pred_proba = bar_arrival_rsi_strategy.predict_proba(dollar_bar_dataframe) pred_to_idx_map = {0: 0, 1: 1} assert all(pred_proba.sum(axis=1) == 1) assert all(pred_proba[i, pred_to_idx_map[p]] == 1 for i, p in enumerate(preds)) def test_rsi_confirmation_predict(dollar_bar_dataframe): rsi_threshold = 45 rsi_timeperiod = 25 rsi_confirmation_period = 2 rsi_moving_average_window = 2 bar_arrival_rsi_strategy = RSIConfirmation( rsi_timeperiod, rsi_threshold, rsi_confirmation_period, rsi_moving_average_window, ) preds = bar_arrival_rsi_strategy.predict(dollar_bar_dataframe) assert set(preds).issubset(bar_arrival_rsi_strategy.classes_) def test_rsi_confirmation_predict_proba(dollar_bar_dataframe): rsi_threshold = 45 rsi_timeperiod = 25 rsi_confirmation_period = 2 rsi_moving_average_window = 2 bar_arrival_rsi_strategy = RSIConfirmation( rsi_timeperiod, rsi_threshold, rsi_confirmation_period, rsi_moving_average_window, ) preds = bar_arrival_rsi_strategy.predict(dollar_bar_dataframe) pred_proba = bar_arrival_rsi_strategy.predict_proba(dollar_bar_dataframe) pred_to_idx_map = {0: 0, 1: 1} assert all(pred_proba.sum(axis=1) == 1) assert all(pred_proba[i, pred_to_idx_map[p]] == 1 for i, p in enumerate(preds))
35.174419
83
0.753719
[ "MIT" ]
MizarAI/mizar-labs
mizarlabs/tests/transformers/test_rsi.py
3,025
Python
# Scrapy settings for amzASINScrapper project # # For simplicity, this file contains only settings considered important or # commonly used. You can find more settings consulting the documentation: # # https://docs.scrapy.org/en/latest/topics/settings.html # https://docs.scrapy.org/en/latest/topics/downloader-middleware.html # https://docs.scrapy.org/en/latest/topics/spider-middleware.html BOT_NAME = 'amzASINScrapper' SPIDER_MODULES = ['amzASINScrapper.spiders'] NEWSPIDER_MODULE = 'amzASINScrapper.spiders' # Crawl responsibly by identifying yourself (and your website) on the user-agent #USER_AGENT = 'amzASINScrapper (+http://www.yourdomain.com)' # Obey robots.txt rules ROBOTSTXT_OBEY = True # Configure maximum concurrent requests performed by Scrapy (default: 16) #CONCURRENT_REQUESTS = 32 # Configure a delay for requests for the same website (default: 0) # See https://docs.scrapy.org/en/latest/topics/settings.html#download-delay # See also autothrottle settings and docs #DOWNLOAD_DELAY = 3 # The download delay setting will honor only one of: #CONCURRENT_REQUESTS_PER_DOMAIN = 16 #CONCURRENT_REQUESTS_PER_IP = 16 # Disable cookies (enabled by default) #COOKIES_ENABLED = False # Disable Telnet Console (enabled by default) #TELNETCONSOLE_ENABLED = False # Override the default request headers: #DEFAULT_REQUEST_HEADERS = { # 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', # 'Accept-Language': 'en', #} # Enable or disable spider middlewares # See https://docs.scrapy.org/en/latest/topics/spider-middleware.html #SPIDER_MIDDLEWARES = { # 'amzASINScrapper.middlewares.AmzasinscrapperSpiderMiddleware': 543, #} # Enable or disable downloader middlewares # See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html #DOWNLOADER_MIDDLEWARES = { # 'amzASINScrapper.middlewares.AmzasinscrapperDownloaderMiddleware': 543, #} # Enable or disable extensions # See https://docs.scrapy.org/en/latest/topics/extensions.html #EXTENSIONS = { # 'scrapy.extensions.telnet.TelnetConsole': None, #} # Configure item pipelines # See https://docs.scrapy.org/en/latest/topics/item-pipeline.html #ITEM_PIPELINES = { # 'amzASINScrapper.pipelines.AmzasinscrapperPipeline': 300, #} # Enable and configure the AutoThrottle extension (disabled by default) # See https://docs.scrapy.org/en/latest/topics/autothrottle.html #AUTOTHROTTLE_ENABLED = True # The initial download delay #AUTOTHROTTLE_START_DELAY = 5 # The maximum download delay to be set in case of high latencies #AUTOTHROTTLE_MAX_DELAY = 60 # The average number of requests Scrapy should be sending in parallel to # each remote server #AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0 # Enable showing throttling stats for every response received: #AUTOTHROTTLE_DEBUG = False # Enable and configure HTTP caching (disabled by default) # See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings #HTTPCACHE_ENABLED = True #HTTPCACHE_EXPIRATION_SECS = 0 #HTTPCACHE_DIR = 'httpcache' #HTTPCACHE_IGNORE_HTTP_CODES = [] #HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'
35.460674
103
0.78327
[ "MIT" ]
sunil-dhaka/python-webScrappers
amzASINScrapper/amzASINScrapper/settings.py
3,156
Python
"""Test cases around the demo fan platform.""" import pytest from homeassistant.setup import async_setup_component from homeassistant.components import fan from homeassistant.const import STATE_OFF, STATE_ON from tests.components.fan import common FAN_ENTITY_ID = 'fan.living_room_fan' def get_entity(hass): """Get the fan entity.""" return hass.states.get(FAN_ENTITY_ID) @pytest.fixture(autouse=True) def setup_comp(hass): """Initialize components.""" hass.loop.run_until_complete(async_setup_component(hass, fan.DOMAIN, { 'fan': { 'platform': 'demo', } })) async def test_turn_on(hass): """Test turning on the device.""" assert STATE_OFF == get_entity(hass).state await common.async_turn_on(hass, FAN_ENTITY_ID) assert STATE_OFF != get_entity(hass).state await common.async_turn_on(hass, FAN_ENTITY_ID, fan.SPEED_HIGH) assert STATE_ON == get_entity(hass).state assert fan.SPEED_HIGH == \ get_entity(hass).attributes[fan.ATTR_SPEED] async def test_turn_off(hass): """Test turning off the device.""" assert STATE_OFF == get_entity(hass).state await common.async_turn_on(hass, FAN_ENTITY_ID) assert STATE_OFF != get_entity(hass).state await common.async_turn_off(hass, FAN_ENTITY_ID) assert STATE_OFF == get_entity(hass).state async def test_turn_off_without_entity_id(hass): """Test turning off all fans.""" assert STATE_OFF == get_entity(hass).state await common.async_turn_on(hass, FAN_ENTITY_ID) assert STATE_OFF != get_entity(hass).state await common.async_turn_off(hass) assert STATE_OFF == get_entity(hass).state async def test_set_direction(hass): """Test setting the direction of the device.""" assert STATE_OFF == get_entity(hass).state await common.async_set_direction(hass, FAN_ENTITY_ID, fan.DIRECTION_REVERSE) assert fan.DIRECTION_REVERSE == \ get_entity(hass).attributes.get('direction') async def test_set_speed(hass): """Test setting the speed of the device.""" assert STATE_OFF == get_entity(hass).state await common.async_set_speed(hass, FAN_ENTITY_ID, fan.SPEED_LOW) assert fan.SPEED_LOW == \ get_entity(hass).attributes.get('speed') async def test_oscillate(hass): """Test oscillating the fan.""" assert not get_entity(hass).attributes.get('oscillating') await common.async_oscillate(hass, FAN_ENTITY_ID, True) assert get_entity(hass).attributes.get('oscillating') await common.async_oscillate(hass, FAN_ENTITY_ID, False) assert not get_entity(hass).attributes.get('oscillating') async def test_is_on(hass): """Test is on service call.""" assert not fan.is_on(hass, FAN_ENTITY_ID) await common.async_turn_on(hass, FAN_ENTITY_ID) assert fan.is_on(hass, FAN_ENTITY_ID)
29.050505
74
0.714882
[ "Apache-2.0" ]
ActuallyRuben/home-assistant
tests/components/demo/test_fan.py
2,876
Python
from brownie import AdvancedCollectible, network import pytest from scripts.advanced_collectible.deploy_and_create import deploy_and_create, get_contract from scripts.utils.helpful_scripts import LOCAL_BLOCKCHAIN_ENVIRONMENTS, get_account def test_can_create_advanced_collectible(): if network.show_active() not in LOCAL_BLOCKCHAIN_ENVIRONMENTS: pytest.skip("Only for local testing") advanced_collectible, creation_transaction = deploy_and_create() # getting the requestId value from the requestedCollectible event requestId = creation_transaction.events["requestedCollectible"]["requestId"] randomNumber = 777 get_contract("vrf_coordinator").callBackWithRandomness( requestId, randomNumber, advanced_collectible.address, {"from": get_account()}) assert advanced_collectible.tokenCounter() == 1 assert advanced_collectible.tokenIdToBreed(0) == randomNumber % 3
48
90
0.804825
[ "MIT" ]
Sam44323/nft-mix-opensea
tests/unit/test_advanced_collectible.py
912
Python
# Digital OCEAN FLASK SERVER RECEIVES IMAGE from flask import Flask, request, jsonify import classify import base64 import json import firebase import env # Instantiate Flask app = Flask(__name__) # health check @app.route("/status") def health_check(): return "Running!" # Performing image Recognition on Image, sent as bytes via POST payload @app.route("/detect", methods=["POST"]) def detect(): imgBytes = request.data imgdata = base64.b64decode(imgBytes) with open("temp.png", "wb") as f: f.write(imgdata) print("successfully receieved image") # Pass image bytes to classifier result = classify.analyse("temp.png") # Return results as neat JSON object, using result = jsonify(result) print(result.json) response_data = result.json print(response_data) db = firebase.Firebase() db.authenticate() db.push(response_data) print("Updated Firebase.") return result if __name__ == "__main__": app.run(host="0.0.0.0", port=80, debug=True)
20.196078
71
0.691262
[ "MIT" ]
flamanta/river-trash-detection
app.py
1,030
Python
#!/usr/bin/env python3 import os.path import tensorflow as tf import helper import warnings from distutils.version import LooseVersion import project_tests as tests # Check TensorFlow Version assert LooseVersion(tf.__version__) >= LooseVersion('1.0'), 'Please use TensorFlow version 1.0 or newer. You are using {}'.format(tf.__version__) print('TensorFlow Version: {}'.format(tf.__version__)) # Check for a GPU if not tf.test.gpu_device_name(): warnings.warn('No GPU found. Please use a GPU to train your neural network.') else: print('Default GPU Device: {}'.format(tf.test.gpu_device_name())) def load_vgg(sess, vgg_path): """ Load Pretrained VGG Model into TensorFlow. :param sess: TensorFlow Session :param vgg_path: Path to vgg folder, containing "variables/" and "saved_model.pb" :return: Tuple of Tensors from VGG model (image_input, keep_prob, layer3_out, layer4_out, layer7_out) """ # TODO: Implement function # Use tf.saved_model.loader.load to load the model and weights vgg_tag = 'vgg16' tf.saved_model.loader.load(sess, [vgg_tag], vgg_path) vgg_input_tensor_name = 'image_input:0' vgg_keep_prob_tensor_name = 'keep_prob:0' vgg_layer3_out_tensor_name = 'layer3_out:0' vgg_layer4_out_tensor_name = 'layer4_out:0' vgg_layer7_out_tensor_name = 'layer7_out:0' graph = tf.get_default_graph() input_img = graph.get_tensor_by_name(vgg_input_tensor_name) prob = graph.get_tensor_by_name(vgg_keep_prob_tensor_name) layer3_o = graph.get_tensor_by_name(vgg_layer3_out_tensor_name) layer4_o = graph.get_tensor_by_name(vgg_layer4_out_tensor_name) layer7_o = graph.get_tensor_by_name(vgg_layer7_out_tensor_name) return input_img, prob, layer3_o, layer4_o, layer7_o tests.test_load_vgg(load_vgg, tf) def layers(vgg_layer3_out, vgg_layer4_out, vgg_layer7_out, num_classes): """ Create the layers for a fully convolutional network. Build skip-layers using the vgg layers. :param vgg_layer3_out: TF Tensor for VGG Layer 3 output :param vgg_layer4_out: TF Tensor for VGG Layer 4 output :param vgg_layer7_out: TF Tensor for VGG Layer 7 output :param num_classes: Number of classes to classify :return: The Tensor for the last layer of output """ # TODO: Implement function # 1x1 convolution layer with road / not-road features only conv_1by1_l7 = tf.layers.conv2d(vgg_layer7_out, num_classes, 1, padding='SAME', kernel_regularizer=tf.contrib.layers.l2_regularizer(1e-3)) # upscaling size/ add features output = tf.layers.conv2d_transpose(conv_1by1_l7, 512, 4, strides=(2,2), padding='SAME', kernel_regularizer=tf.contrib.layers.l2_regularizer(1e-3)) # skip connections / add to upscaled output output = tf.add(output, vgg_layer4_out) # upscaling size/ reduce features output = tf.layers.conv2d_transpose(output, 256, 4, strides=(2,2), padding='SAME', kernel_regularizer=tf.contrib.layers.l2_regularizer(1e-3)) # skip connections / add to upscaled output output = tf.add(output, vgg_layer3_out) # upscaling size/ reduce features to road OR not-road output = tf.layers.conv2d_transpose(output, num_classes, 16, strides=(8,8), padding='SAME', kernel_regularizer=tf.contrib.layers.l2_regularizer(1e-3), name='nn_final_output') return output tests.test_layers(layers) def optimize(nn_last_layer, correct_label, learning_rate, num_classes): """ Build the TensorFLow loss and optimizer operations. :param nn_last_layer: TF Tensor of the last layer in the neural network :param correct_label: TF Placeholder for the correct label image :param learning_rate: TF Placeholder for the learning rate :param num_classes: Number of classes to classify :return: Tuple of (logits, train_op, cross_entropy_loss) """ # TODO: Implement function logits = tf.reshape(nn_last_layer, (-1, num_classes)) # add loss function cross_entropy_loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=correct_label)) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate) # training_op training_operation = optimizer.minimize(cross_entropy_loss) return logits, training_operation, cross_entropy_loss tests.test_optimize(optimize) def train_nn(sess, epochs, batch_size, get_batches_fn, train_op, cross_entropy_loss, input_image, correct_label, keep_prob, learning_rate): """ Train neural network and print out the loss during training. :param sess: TF Session :param epochs: Number of epochs :param batch_size: Batch size :param get_batches_fn: Function to get batches of training data. Call using get_batches_fn(batch_size) :param train_op: TF Operation to train the neural network :param cross_entropy_loss: TF Tensor for the amount of loss :param input_image: TF Placeholder for input images :param correct_label: TF Placeholder for label images :param keep_prob: TF Placeholder for dropout keep probability :param learning_rate: TF Placeholder for learning rate """ # TODO: Implement function # initialize global variables sess.run(tf.global_variables_initializer()) # going through the batches of images i.e. epoch for epoch in range(epochs): for (input_img, gt_img) in get_batches_fn(batch_size): _, loss = sess.run([train_op, cross_entropy_loss], feed_dict={input_image: input_img, correct_label: gt_img, keep_prob: 0.7, learning_rate: 5e-04}) print("Loss of {} at epoch {}/{}".format(loss, epoch, epochs)) tests.test_train_nn(train_nn) def run(): num_classes = 2 image_shape = (160, 576) # KITTI dataset uses 160x576 images data_dir = './data' runs_dir = './runs' tests.test_for_kitti_dataset(data_dir) # Download pretrained vgg model helper.maybe_download_pretrained_vgg(data_dir) # OPTIONAL: Train and Inference on the cityscapes dataset instead of the Kitti dataset. # You'll need a GPU with at least 10 teraFLOPS to train on. # https://www.cityscapes-dataset.com/ epochs = 20 batch_size = 5 with tf.Session() as sess: # Path to vgg model vgg_path = os.path.join(data_dir, 'vgg') # Create function to get batches get_batches_fn = helper.gen_batch_function(os.path.join(data_dir, 'data_road/training'), image_shape) # OPTIONAL: Augment Images for better results # https://datascience.stackexchange.com/questions/5224/how-to-prepare-augment-images-for-neural-network correct_label = tf.placeholder(tf.int32) learning_rate = tf.placeholder(tf.float32) # TODO: Build NN using load_vgg, layers, and optimize function input_img, keep_prob, layer3_o, layer4_o, layer7_o = load_vgg(sess, vgg_path) layer_output = layers(layer3_o, layer4_o, layer7_o, num_classes) logits, train_op, cross_entropy_loss = optimize(layer_output, correct_label, learning_rate, num_classes) # TODO: Train NN using the train_nn function train_nn(sess, epochs, batch_size, get_batches_fn, train_op, cross_entropy_loss, input_img, correct_label, keep_prob, learning_rate) # TODO: Save inference data using helper.save_inference_samples helper.save_inference_samples(runs_dir, data_dir, sess, image_shape, logits, keep_prob, input_img) # OPTIONAL: Apply the trained model to a video if __name__ == '__main__': run()
41.891892
146
0.711613
[ "MIT" ]
papaispicolo/CarNDT3-SemanticSegmentation
main.py
7,750
Python
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """CIFAR10 small image classification dataset. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import numpy as np from tensorflow.python.keras._impl.keras import backend as K from tensorflow.python.keras._impl.keras.datasets.cifar import load_batch from tensorflow.python.keras._impl.keras.utils.data_utils import get_file def load_data(): """Loads CIFAR10 dataset. Returns: Tuple of Numpy arrays: `(x_train, y_train), (x_test, y_test)`. """ dirname = 'cifar-10-batches-py' origin = 'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz' path = get_file(dirname, origin=origin, untar=True) num_train_samples = 50000 x_train = np.empty((num_train_samples, 3, 32, 32), dtype='uint8') y_train = np.empty((num_train_samples,), dtype='uint8') for i in range(1, 6): fpath = os.path.join(path, 'data_batch_' + str(i)) (x_train[(i - 1) * 10000:i * 10000, :, :, :], y_train[(i - 1) * 10000:i * 10000]) = load_batch(fpath) fpath = os.path.join(path, 'test_batch') x_test, y_test = load_batch(fpath) y_train = np.reshape(y_train, (len(y_train), 1)) y_test = np.reshape(y_test, (len(y_test), 1)) if K.image_data_format() == 'channels_last': x_train = x_train.transpose(0, 2, 3, 1) x_test = x_test.transpose(0, 2, 3, 1) return (x_train, y_train), (x_test, y_test)
34.262295
80
0.691388
[ "Apache-2.0" ]
252125889/tensorflow
tensorflow/python/keras/_impl/keras/datasets/cifar10.py
2,090
Python
""" Django settings for scannerKH project. Generated by 'django-admin startproject' using Django 3.0.5. For more information on this file, see https://docs.djangoproject.com/en/3.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.0/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '74lbuyy!_ihecg*uh8i9^j!wq3gc_)vv$55!h&0yon03f2%c$$' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'scanner.apps.ScannerConfig', 'user.apps.UserConfig', 'grosshaendler.apps.GrosshaendlerConfig', 'artikel.apps.ArtikelConfig', 'bestellung.apps.BestellungConfig', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'scannerKH.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'scannerKH.wsgi.application' # Database # https://docs.djangoproject.com/en/3.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/3.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] AUTH_USER_MODEL = 'user.User' # Internationalization # https://docs.djangoproject.com/en/3.0/topics/i18n/ LANGUAGE_CODE = 'de' TIME_ZONE = 'CEST' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.0/howto/static-files/ STATIC_URL = '/static/'
25.651163
91
0.699003
[ "MIT" ]
JanGut/scannerKH
scannerKH/scannerKH/settings.py
3,309
Python
from .draw_graph import draw_graph
17.5
34
0.857143
[ "Apache-2.0" ]
IntelLabs/causality-lab
plot_utils/__init__.py
35
Python
# -*- coding: utf-8 -*- import scrapy import re import json from locations.hourstudy import inputoutput class AldiUKSpider(scrapy.Spider): name = "aldiuk" allowed_domains = ['www.aldi.co.uk'] start_urls = ( 'https://www.aldi.co.uk/sitemap/store', ) def parse(self, response): response.selector.remove_namespaces() city_urls = response.xpath('//url/loc/text()').extract() for path in city_urls: yield scrapy.Request( path.strip(), callback=self.parse_store, ) else: pass def parse_store(self, response): json_data = response.xpath('//script[@type="text/javascript"]/text()').extract_first().replace('\n','').replace('\t','').split('.push(')[1].rstrip(')') data = json.loads(json_data) geojson_data = response.xpath('//script[@class="js-store-finder-initial-state"][@type="application/json"]/text()').extract_first() geodata = json.loads(geojson_data) # properties = { # 'name': data['seoData']['name'], # 'ref': data['seoData']['name'], # 'addr_full': data['seoData']['address']['streetAddress'], # 'city': data['seoData']['address']['addressLocality'], # 'postcode': data['seoData']['address']['postalCode'], # 'country': data['seoData']['address']['addressCountry'], # 'website': response.request.url, # 'opening_hours': str(data['seoData']['openingHours']).replace('[','').replace(']','').replace("'",''), # 'lat': float(geodata['store']['latlng']['lat']), # 'lon': float(geodata['store']['latlng']['lng']), # } raw = str(data['seoData']['openingHours']) formatted = str(data['seoData']['openingHours']).replace('[','').replace(']','').replace("'",'') yield inputoutput(raw,formatted)
39.125
159
0.571353
[ "MIT" ]
bealbrown/allhours
locations/spiders/aldi_uk.py
1,878
Python
""" Django settings for api_drf project. Generated by 'django-admin startproject' using Django 2.1.7. For more information on this file, see https://docs.djangoproject.com/en/2.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.1/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '2p$!i%#w$3e9(l3v4#%_#fi2_fae2l7ksdsd+1*vrc6_#8_@_*' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'rest_framework', 'mainService' ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'api_drf.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'api_drf.wsgi.application' # Database # https://docs.djangoproject.com/en/2.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.1/howto/static-files/ STATIC_URL = '/static/' REST_FRAMEWORK = { # When you enable API versioning, the request.version attribute will contain a string # that corresponds to the version requested in the incoming client request. 'DEFAULT_VERSIONING_CLASS': 'rest_framework.versioning.URLPathVersioning', }
26.570313
91
0.701558
[ "MIT" ]
kaparis/spa101
api_drf/api_drf/settings.py
3,401
Python
# See LICENSE for licensing information. # # Copyright (c) 2016-2019 Regents of the University of California and The Board # of Regents for the Oklahoma Agricultural and Mechanical College # (acting for and on behalf of Oklahoma State University) # All rights reserved. # import debug from tech import drc, parameter, spice from abc import ABC, abstractmethod from .stimuli import * from .charutils import * class spice_measurement(ABC): """Base class for spice stimulus measurements.""" def __init__(self, measure_name, measure_scale=None, has_port=True): #Names must be unique for correct spice simulation, but not enforced here. self.name = measure_name self.measure_scale = measure_scale self.has_port = has_port #Needed for error checking #Some meta values used externally. variables are added here for consistency accross the objects self.meta_str = None self.meta_add_delay = False @abstractmethod def get_measure_function(self): return None @abstractmethod def get_measure_values(self): return None def write_measure(self, stim_obj, input_tuple): measure_func = self.get_measure_function() if measure_func == None: debug.error("Did not set measure function",1) measure_vals = self.get_measure_values(*input_tuple) measure_func(stim_obj, *measure_vals) def retrieve_measure(self, port=None): self.port_error_check(port) if port != None: value = parse_spice_list("timing", "{0}{1}".format(self.name.lower(), port)) else: value = parse_spice_list("timing", "{0}".format(self.name.lower())) if type(value)!=float or self.measure_scale == None: return value else: return value*self.measure_scale def port_error_check(self, port): if self.has_port and port == None: debug.error("Cannot retrieve measurement, port input was expected.",1) elif not self.has_port and port != None: debug.error("Unexpected port input received during measure retrieval.",1) class delay_measure(spice_measurement): """Generates a spice measurement for the delay of 50%-to-50% points of two signals.""" def __init__(self, measure_name, trig_name, targ_name, trig_dir_str, targ_dir_str,\ trig_vdd=0.5, targ_vdd=0.5, measure_scale=None, has_port=True): spice_measurement.__init__(self, measure_name, measure_scale, has_port) self.set_meas_constants(trig_name, targ_name, trig_dir_str, targ_dir_str, trig_vdd, targ_vdd) def get_measure_function(self): return stimuli.gen_meas_delay def set_meas_constants(self, trig_name, targ_name, trig_dir_str, targ_dir_str, trig_vdd, targ_vdd): """Set the constants for this measurement: signal names, directions, and trigger scales""" self.trig_dir_str = trig_dir_str self.targ_dir_str = targ_dir_str self.trig_val_of_vdd = trig_vdd self.targ_val_of_vdd = targ_vdd self.trig_name_no_port = trig_name self.targ_name_no_port = targ_name #Time delays and ports are variant and needed as inputs when writing the measurement def get_measure_values(self, trig_td, targ_td, vdd_voltage, port=None): """Constructs inputs to stimulus measurement function. Variant values are inputs here.""" self.port_error_check(port) trig_val = self.trig_val_of_vdd * vdd_voltage targ_val = self.targ_val_of_vdd * vdd_voltage if port != None: #For dictionary indexing reasons, the name is formatted differently than the signals meas_name = "{}{}".format(self.name, port) trig_name = self.trig_name_no_port.format(port) targ_name = self.targ_name_no_port.format(port) else: meas_name = self.name trig_name = self.trig_name_no_port targ_name = self.targ_name_no_port return (meas_name,trig_name,targ_name,trig_val,targ_val,self.trig_dir_str,self.targ_dir_str,trig_td,targ_td) class slew_measure(delay_measure): def __init__(self, measure_name, signal_name, slew_dir_str, measure_scale=None, has_port=True): spice_measurement.__init__(self, measure_name, measure_scale, has_port) self.set_meas_constants(signal_name, slew_dir_str) def set_meas_constants(self, signal_name, slew_dir_str): """Set the values needed to generate a Spice measurement statement based on the name of the measurement.""" self.trig_dir_str = slew_dir_str self.targ_dir_str = slew_dir_str if slew_dir_str == "RISE": self.trig_val_of_vdd = 0.1 self.targ_val_of_vdd = 0.9 elif slew_dir_str == "FALL": self.trig_val_of_vdd = 0.9 self.targ_val_of_vdd = 0.1 else: debug.error("Unrecognised slew measurement direction={}".format(slew_dir_str),1) self.trig_name_no_port = signal_name self.targ_name_no_port = signal_name #Time delays and ports are variant and needed as inputs when writing the measurement class power_measure(spice_measurement): """Generates a spice measurement for the average power between two time points.""" def __init__(self, measure_name, power_type="", measure_scale=None, has_port=True): spice_measurement.__init__(self, measure_name, measure_scale, has_port) self.set_meas_constants(power_type) def get_measure_function(self): return stimuli.gen_meas_power def set_meas_constants(self, power_type): """Sets values useful for power simulations. This value is only meta related to the lib file (rise/fall)""" #Not needed for power simulation self.power_type = power_type #Expected to be "RISE"/"FALL" def get_measure_values(self, t_initial, t_final, port=None): """Constructs inputs to stimulus measurement function. Variant values are inputs here.""" self.port_error_check(port) if port != None: meas_name = "{}{}".format(self.name, port) else: meas_name = self.name return (meas_name,t_initial,t_final) class voltage_when_measure(spice_measurement): """Generates a spice measurement to measure the voltage of a signal based on the voltage of another.""" def __init__(self, measure_name, trig_name, targ_name, trig_dir_str, trig_vdd, measure_scale=None, has_port=True): spice_measurement.__init__(self, measure_name, measure_scale, has_port) self.set_meas_constants(trig_name, targ_name, trig_dir_str, trig_vdd) def get_measure_function(self): return stimuli.gen_meas_find_voltage def set_meas_constants(self, trig_name, targ_name, trig_dir_str, trig_vdd): """Sets values useful for power simulations. This value is only meta related to the lib file (rise/fall)""" self.trig_dir_str = trig_dir_str self.trig_val_of_vdd = trig_vdd self.trig_name_no_port = trig_name self.targ_name_no_port = targ_name def get_measure_values(self, trig_td, vdd_voltage, port=None): """Constructs inputs to stimulus measurement function. Variant values are inputs here.""" self.port_error_check(port) if port != None: #For dictionary indexing reasons, the name is formatted differently than the signals meas_name = "{}{}".format(self.name, port) trig_name = self.trig_name_no_port.format(port) targ_name = self.targ_name_no_port.format(port) else: meas_name = self.name trig_name = self.trig_name_no_port targ_name = self.targ_name_no_port trig_voltage = self.trig_val_of_vdd*vdd_voltage return (meas_name,trig_name,targ_name,trig_voltage,self.trig_dir_str,trig_td) class voltage_at_measure(spice_measurement): """Generates a spice measurement to measure the voltage at a specific time. The time is considered variant with different periods.""" def __init__(self, measure_name, targ_name, measure_scale=None, has_port=True): spice_measurement.__init__(self, measure_name, measure_scale, has_port) self.set_meas_constants(targ_name) def get_measure_function(self): return stimuli.gen_meas_find_voltage_at_time def set_meas_constants(self, targ_name): """Sets values useful for power simulations. This value is only meta related to the lib file (rise/fall)""" self.targ_name_no_port = targ_name def get_measure_values(self, time_at, port=None): """Constructs inputs to stimulus measurement function. Variant values are inputs here.""" self.port_error_check(port) if port != None: #For dictionary indexing reasons, the name is formatted differently than the signals meas_name = "{}{}".format(self.name, port) targ_name = self.targ_name_no_port.format(port) else: meas_name = self.name targ_name = self.targ_name_no_port return (meas_name,targ_name,time_at)
45.356436
118
0.697337
[ "BSD-3-Clause" ]
ckdur/OpenRAM
compiler/characterizer/measurements.py
9,162
Python
from setuptools import find_packages, setup NAME = "popmon" MAJOR = 0 REVISION = 3 PATCH = 8 DEV = False # NOTE: also update version at: README.rst with open("requirements.txt") as f: REQUIREMENTS = f.read().splitlines() # read the contents of abstract file with open("README.rst", encoding="utf-8") as f: long_description = f.read() VERSION = "{major}.{revision}.{patch}".format( major=MAJOR, revision=REVISION, patch=PATCH ) FULL_VERSION = VERSION if DEV: FULL_VERSION += ".dev" with open("requirements-test.txt") as f: REQUIREMENTS += f.read().splitlines() def write_version_py(filename: str = "popmon/version.py") -> None: """Write package version to version.py. This will ensure that the version in version.py is in sync with us. :param filename: The version.py to write too. :type filename: str """ # Do not modify the indentation of version_str! version_str = """\"\"\"THIS FILE IS AUTO-GENERATED BY SETUP.PY.\"\"\" name = \"{name!s}\" version = \"{version!s}\" full_version = \"{full_version!s}\" release = {is_release!s} """ with open(filename, "w") as version_file: version_file.write( version_str.format( name=NAME.lower(), version=VERSION, full_version=FULL_VERSION, is_release=not DEV, ) ) def setup_package() -> None: """The main setup method. It is responsible for setting up and installing the package. """ write_version_py() setup( name=NAME, version=VERSION, url="https://github.com/ing-bank/popmon", license="MIT", author="ING Wholesale Banking Advanced Analytics", description="Monitor the stability of a pandas or spark dataset", keywords="pandas spark data-science data-analysis monitoring statistics python jupyter ipython", long_description=long_description, long_description_content_type="text/x-rst", python_requires=">=3.6", packages=find_packages(), install_requires=REQUIREMENTS, classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], # files to be shipped with the installation, under: popmon/popmon/ # after installation, these can be found with the functions in resources.py package_data=dict( popmon=[ "visualization/templates/*.html", "visualization/templates/assets/css/*.css", "visualization/templates/assets/js/*.js", "test_data/*.csv.gz", "test_data/*.json*", "notebooks/popmon*tutorial*.ipynb", ] ), entry_points={ "console_scripts": ["popmon_run = popmon.pipeline.amazing_pipeline:run"] }, ) if __name__ == "__main__": setup_package()
29.633663
104
0.610758
[ "MIT" ]
stephanecollot/popmon
setup.py
2,993
Python
import platform import subprocess import sys from optparse import OptionParser from util import fileLogger from util import logger def parse_start_arguments(): parser = OptionParser() parser.add_option("--unityPath", dest="UnityPath", default=True, help="Path to Unity application") parser.add_option("--projectPath", dest="ProjectPath", default=True, help="Path to Unity Project") parser.add_option("--logPath", dest="LogPath", default=True, help="Path to Unity Log File") parser.add_option("-e", "--executionMessage", dest="ExecutionMethod", default=True, help="Execution method after unit started completly") parser.add_option("-t", "--target", dest="Target", help="Build Target of the Build") parser.add_option("--noTimer", dest="NoTimer", action='store_true', help="no timestamp should be displayed") (options, args) = parser.parse_args() return options def detect_os(): operation_system = platform.system() LOGGER.info("Detected " + operation_system + " as Operation System") return operation_system options = parse_start_arguments() LOGGER = logger.Logger(options.NoTimer) os = detect_os() def start_unity_build_command(): LOGGER.info("Start Unity Build") try: build_command = options.UnityPath + " -projectPath " + options.ProjectPath + \ " -logfile " + options.LogPath + \ " -buildTarget " + options.Target + \ " -quit " \ "-batchmode " \ "-nographics " \ "-executeMethod " + options.ExecutionMethod if os != "Windows": process = subprocess.Popen(build_command, shell=True, stdout=subprocess.PIPE) process.wait() else: subprocess.call(build_command) except subprocess.CalledProcessError as e: sys.exit(e.returncode) def cleanup_unity_process(): try: LOGGER.info("Cleaning up Unity process") if os == "Windows": subprocess.call(r'TASKKILL /F /IM Unity.exe', stderr=subprocess.PIPE) except subprocess.CalledProcessError as error: LOGGER.warn("Couldn't kill unity " + str(error)) def cleanup_old_logfile(): try: open(options.LogPath, 'w').close() LOGGER.info("old log cleared") except FileNotFoundError: LOGGER.info("No old log file was found") try: LOGGER.log("DEBUG", "Starting with arguments: " + str(options)) LOGGER.info("Cleaning old logfile") cleanup_old_logfile() LOGGER.info("Read logfile tailing") logfile = fileLogger.ContinuousFileLogger(options.LogPath, options.NoTimer) logfile.start() LOGGER.info("Start unity") start_unity_build_command() LOGGER.info("Cleanup Processes") cleanup_unity_process() LOGGER.info("Cleanup logger") logfile.stop() except Exception as e: LOGGER.error("Failed to start a thread" + str(e))
34.267442
141
0.657279
[ "MIT" ]
christian-stockinger/UnityBuilder
UnityBuilder.py
2,947
Python
# -*- coding: utf-8 -*- """Access to FAIRsharing via its API. .. seealso:: https://beta.fairsharing.org/API_doc """ from typing import Any, Iterable, Mapping, MutableMapping, Optional import pystow import requests import yaml from tqdm import tqdm __all__ = [ "ensure_fairsharing", "load_fairsharing", "FairsharingClient", ] PATH = pystow.join("bio", "fairsharing", name="fairsharing.yaml") def load_fairsharing(force_download: bool = False, use_tqdm: bool = True, **kwargs): """Get the FAIRsharing registry.""" path = ensure_fairsharing(force_download=force_download, use_tqdm=use_tqdm, **kwargs) with path.open() as file: return yaml.safe_load(file) def ensure_fairsharing(force_download: bool = False, use_tqdm: bool = True, **kwargs): """Get the FAIRsharing registry.""" if PATH.exists() and not force_download: return PATH client = FairsharingClient(**kwargs) # As of 2021-12-13, there are a bit less than 4k records that take about 3 minutes to download rv = { row["prefix"]: row for row in tqdm( client.iter_records(), unit_scale=True, unit="record", desc="Downloading FAIRsharing", disable=not use_tqdm, ) } with PATH.open("w") as file: yaml.safe_dump(rv, file, allow_unicode=True, sort_keys=True) return PATH # These fields are the same in each record REDUNDANT_FIELDS = { "fairsharing-licence", } class FairsharingClient: """A client for programmatic access to the FAIRsharing private API.""" def __init__( self, login: Optional[str] = None, password: Optional[str] = None, base_url: Optional[str] = None, ): """Instantiate the client and get an appropriate JWT token. :param login: FAIRsharing username :param password: Corresponding FAIRsharing password :param base_url: The base URL """ self.base_url = base_url or "https://api.fairsharing.org" self.signin_url = f"{self.base_url}/users/sign_in" self.records_url = f"{self.base_url}/fairsharing_records" self.username = pystow.get_config( "fairsharing", "login", passthrough=login, raise_on_missing=True ) self.password = pystow.get_config( "fairsharing", "password", passthrough=password, raise_on_missing=True ) self.jwt = self.get_jwt() self.session = requests.Session() self.session.headers.update( { "Accept": "application/json", "Content-Type": "application/json", "Authorization": f"Bearer {self.jwt}", } ) def get_jwt(self) -> str: """Get the JWT.""" payload = { "user": { "login": self.username, "password": self.password, }, } res = requests.post(self.signin_url, json=payload).json() return res["jwt"] def iter_records(self) -> Iterable[Mapping[str, Any]]: """Iterate over all FAIRsharing records.""" yield from self._iter_records_helper(self.records_url) def _preprocess_record( self, record: MutableMapping[str, Any] ) -> Optional[MutableMapping[str, Any]]: if "type" in record: del record["type"] record = {"id": record["id"], **record["attributes"]} doi = record.get("doi") if doi is None: # Records without a DOI can't be resolved url = record["url"] if not url.startswith("https://fairsharing.org/fairsharing_records/"): tqdm.write(f"{record['id']} has no DOI: {record['url']}") return None elif doi.startswith("10.25504/"): record["prefix"] = record.pop("doi")[len("10.25504/") :] else: tqdm.write(f"DOI has unexpected prefix: {record['doi']}") record["description"] = _removeprefix( record.get("description"), "This FAIRsharing record describes: " ) record["name"] = _removeprefix(record.get("name"), "FAIRsharing record for: ") for key in REDUNDANT_FIELDS: if key in record: del record[key] return record def _iter_records_helper(self, url: str) -> Iterable[Mapping[str, Any]]: res = self.session.get(url).json() for record in res["data"]: yv = self._preprocess_record(record) if yv: yield yv next_url = res["links"].get("next") if next_url: yield from self._iter_records_helper(next_url) def _removeprefix(s: Optional[str], prefix) -> Optional[str]: if s is None: return None if s.startswith(prefix): return s[len(prefix) :] return s if __name__ == "__main__": ensure_fairsharing(force_download=True)
31.414013
98
0.59854
[ "MIT" ]
cthoyt/fairsharing-client
src/fairsharing_client/api.py
4,932
Python
# # Copyright 2022 DMetaSoul # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ This module computes evaluation metrics for MSMARCO dataset on the ranking task. Command line: python msmarco_eval_ranking.py <path_to_reference_file> <path_to_candidate_file> Creation Date : 06/12/2018 Last Modified : 1/21/2019 Authors : Daniel Campos <[email protected]>, Rutger van Haasteren <[email protected]> """ import sys import json from collections import Counter MaxMRRRank = 10 def load_reference_from_stream(f): qids_to_relevant_passageids = {} for line in f: try: sample = json.loads(line.strip()) qid = sample["question_id"] if qid in qids_to_relevant_passageids: pass else: qids_to_relevant_passageids[qid] = [] for answer_paragraph in sample["answer_paragraphs"]: qids_to_relevant_passageids[qid].append(answer_paragraph["paragraph_id"]) except: raise IOError('\"%s\" is not valid format' % line) return qids_to_relevant_passageids def load_reference(path_to_reference): """Load Reference reference relevant passages Args:path_to_reference (str): path to a file to load. Returns:qids_to_relevant_passageids (dict): dictionary mapping from query_id (int) to relevant passages (list of ints). """ with open(path_to_reference, 'r') as f: qids_to_relevant_passageids = load_reference_from_stream(f) return qids_to_relevant_passageids def load_candidate_from_stream(f): qid_to_ranked_candidate_passages = {} try: preds = json.load(f) for qid in preds.keys(): tmp = [0] * 50 qid_to_ranked_candidate_passages[qid] = tmp for rank, pid in enumerate(preds[qid][:50]): qid_to_ranked_candidate_passages[qid][rank] = pid except: raise IOError('Submitted file is not valid format') return qid_to_ranked_candidate_passages def load_candidate(path_to_candidate): """Load candidate data from a file. Args:path_to_candidate (str): path to file to load. Returns:qid_to_ranked_candidate_passages (dict): dictionary mapping from query_id (int) to a list of 1000 passage ids(int) ranked by relevance and importance """ with open(path_to_candidate, 'r') as f: qid_to_ranked_candidate_passages = load_candidate_from_stream(f) return qid_to_ranked_candidate_passages def quality_checks_qids(qids_to_relevant_passageids, qids_to_ranked_candidate_passages): """Perform quality checks on the dictionaries Args: p_qids_to_relevant_passageids (dict): dictionary of query-passage mapping Dict as read in with load_reference or load_reference_from_stream p_qids_to_ranked_candidate_passages (dict): dictionary of query-passage candidates Returns: bool,str: Boolean whether allowed, message to be shown in case of a problem """ message = '' allowed = True # Create sets of the QIDs for the submitted and reference queries candidate_set = set(qids_to_ranked_candidate_passages.keys()) ref_set = set(qids_to_relevant_passageids.keys()) # Check that we do not have multiple passages per query for qid in qids_to_ranked_candidate_passages: # Remove all zeros from the candidates duplicate_pids = set( [item for item, count in Counter(qids_to_ranked_candidate_passages[qid]).items() if count > 1]) if len(duplicate_pids - set([0])) > 0: message = "Cannot rank a passage multiple times for a single query. QID={qid}, PID={pid}".format( qid=qid, pid=list(duplicate_pids)[0]) allowed = False return allowed, message def compute_metrics(qids_to_relevant_passageids, qids_to_ranked_candidate_passages): """Compute MRR metric Args: p_qids_to_relevant_passageids (dict): dictionary of query-passage mapping Dict as read in with load_reference or load_reference_from_stream p_qids_to_ranked_candidate_passages (dict): dictionary of query-passage candidates Returns: dict: dictionary of metrics {'MRR': <MRR Score>} """ all_scores = {} MRR = 0 qids_with_relevant_passages = 0 ranking = [] recall_q_top1 = set() recall_q_top50 = set() recall_q_all = set() for qid in qids_to_ranked_candidate_passages: if qid in qids_to_relevant_passageids: ranking.append(0) target_pid = qids_to_relevant_passageids[qid] candidate_pid = qids_to_ranked_candidate_passages[qid] for i in range(0, MaxMRRRank): if candidate_pid[i] in target_pid: MRR += 1.0 / (i + 1) ranking.pop() ranking.append(i + 1) break for i, pid in enumerate(candidate_pid): if pid in target_pid: recall_q_all.add(qid) if i < 50: recall_q_top50.add(qid) if i == 0: recall_q_top1.add(qid) break if len(ranking) == 0: raise IOError("No matching QIDs found. Are you sure you are scoring the evaluation set?") MRR = MRR / len(qids_to_relevant_passageids) recall_top1 = len(recall_q_top1) * 1.0 / len(qids_to_relevant_passageids) recall_top50 = len(recall_q_top50) * 1.0 / len(qids_to_relevant_passageids) recall_all = len(recall_q_all) * 1.0 / len(qids_to_relevant_passageids) all_scores['MRR@10'] = MRR all_scores["recall@1"] = recall_top1 all_scores["recall@50"] = recall_top50 # all_scores["recall@all"] = recall_all all_scores['QueriesRanked'] = len(qids_to_ranked_candidate_passages) return all_scores def compute_metrics_from_files(path_to_reference, path_to_candidate, perform_checks=True): qids_to_relevant_passageids = load_reference(path_to_reference) qids_to_ranked_candidate_passages = load_candidate(path_to_candidate) if perform_checks: allowed, message = quality_checks_qids(qids_to_relevant_passageids, qids_to_ranked_candidate_passages) if message != '': print(message) return compute_metrics(qids_to_relevant_passageids, qids_to_ranked_candidate_passages) def main(): """Command line: python result_eval.py <path_to_reference_file> <path_to_candidate_file> """ if len(sys.argv) == 3: path_to_reference = sys.argv[1] path_to_candidate = sys.argv[2] else: print('Usage: result_eval.py <reference ranking> <candidate ranking>') exit() metrics = compute_metrics_from_files(path_to_reference, path_to_candidate) result = dict() for metric in sorted(metrics): result[metric] = metrics[metric] result_json = json.dumps(result) print(result_json) if __name__ == '__main__': main()
37.715736
161
0.689367
[ "Apache-2.0" ]
meta-soul/MetaSpore
demo/search/src/eval/evaluation.py
7,430
Python
""" Copyright [2021] [DenyS] Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import typing __all__: typing.Sequence[str] = ("Info",) T = typing.TypeVar("T") class Info(typing.Generic[T]): """Annotation for filtering global variables. Parameters: ----------- value: :class:`TypeVar` A parameter that stores the value of a certain variable. Features: --------- * `__repr__`: repr(Info()) Development Information. * `__str__`: str(Info()) | Info() Will output the value that stores value. """ def __init__(self, value: T) -> None: self.value = value def __repr__(self) -> str: return f"Info(value={self.value})" def __str__(self) -> str: return str(self.value)
24.470588
72
0.669872
[ "Apache-2.0" ]
Animatea/DiscordProgressbar
multibar/core/variants/lib_info.py
1,248
Python
from django.conf.urls import patterns, include, url from django.contrib import admin admin.autodiscover() urlpatterns = [ # Examples: # url(r'^$', 'simpleproject.views.home', name='home'), # url(r'^blog/', include('blog.urls')), url(r'^admin/', include(admin.site.urls)), url(r'^simpleapp/', include('simpleapp.urls')), ]
26.461538
58
0.65407
[ "BSD-2-Clause" ]
Shailendre/simpleproject
simpleproject/simpleproject/urls.py
344
Python
# -*- coding: utf-8 -*- """ Demonstrates basic use of LegendItem """ import initExample ## Add path to library (just for examples; you do not need this) import pyqtgraph as pg from pyqtgraph.Qt import QtCore, QtGui import numpy as np win = pg.plot() win.setWindowTitle('pyqtgraph example: BarGraphItem') # # option1: only for .plot(), following c1,c2 for example----------------------- # win.addLegend(frame=False, colCount=2) # bar graph x = np.arange(10) y = np.sin(x+2) * 3 bg1 = pg.BarGraphItem(x=x, height=y, width=0.3, brush='b', pen='w', name='bar') win.addItem(bg1) # curve c1 = win.plot([np.random.randint(0,8) for i in range(10)], pen='r', symbol='t', symbolPen='r', symbolBrush='g', name='curve1') c2 = win.plot([2,1,4,3,1,3,2,4,3,2], pen='g', fillLevel=0, fillBrush=(255,255,255,30), name='curve2') # scatter plot s1 = pg.ScatterPlotItem(size=10, pen=pg.mkPen(None), brush=pg.mkBrush(255, 255, 255, 120), name='scatter') spots = [{'pos': [i, np.random.randint(-3, 3)], 'data': 1} for i in range(10)] s1.addPoints(spots) win.addItem(s1) # # option2: generic method------------------------------------------------ legend = pg.LegendItem((80,60), offset=(70,20)) legend.setParentItem(win.graphicsItem()) legend.addItem(bg1, 'bar') legend.addItem(c1, 'curve1') legend.addItem(c2, 'curve2') legend.addItem(s1, 'scatter') if __name__ == '__main__': pg.exec()
31.318182
126
0.646589
[ "MIT" ]
3DAlgoLab/pyqtgraph
examples/Legend.py
1,378
Python
class TimedData(object): """ Struttura dati per eventi accompagnati da un informazione temporale discreta (timestamp o intervallo) """ def __init__(self, data, time, timestamp=True): """ I parametri di input sono - "data": il dato che si vuole memorizzare (di qualsiasi natura) - "time": l'informazione temporale associata al dato (numero intero) - "timestamp": flag booleana. Se vero, il campo "time" e' un timestamp; altrimenti, e' un intervallo di tempo """ # Controllo dell'input: parametro "time" try: time = int(time) except: raise TypeError('"time" parameter is invalid. It must be an integer number') # Creo la struttura dati self.data = data self.time = time self.timestamp = True if timestamp else False def __eq__(self, other): c1 = self.data == other.data c2 = self.time == other.time c3 = self.timestamp == other.timestamp return c1 and c2 and c3 def __str__(self): return '(data=%s, time=%s, timestamp=%s)' % (self.data, self.time, self.timestamp) def get_data(self): """ Ritorna il campo "data" """ return self.data def get_time(self): """ Ritorna il campo "time" """ return self.time class TimedArray(object): """ Array di oggetti TimedData """ def __init__(self, timestamp=True, empty=True): """ La flag "timestamp" serve per specificare se la lista contiene dati con un timestamp (True) oppure un intervallo temporale (False) associato: la flag "empty" permette invece di creare, se settata a False, un TimedArray contenente al suo interno un nodo di partenza (d = 0, t = 0) """ self._list = [] self.timestamp = (timestamp is True) if not empty: # Creo il nodo di partenza self.append(TimedData(0, 0, self.timestamp)) def __str__(self): x = '' first = True for i in self._list: if first: x += str(i) first = False else: x += ', ' + str(i) return '(timestamp=%s, [%s]' % (self.timestamp, x) def get_list(self): """ Ritorna l'elenco di oggetti "TimedData", memorizzati come lista """ return self._list def get_data_list(self): """ Ritorna gli attributi "data" di ogni elemento del vettore, sottoforma di lista """ return map(lambda x: x.get_data(), self._list) def get_time_list(self): """ Ritorna gli attributi "time" di ogni elemento del vettore, sottoforma di lista """ return map(lambda x: x.get_time(), self._list) def has_time_intervals(self): """ Ritorna True se gli elementi del vettore hanno associato un intervallo temporale """ return self.timestamp is False def append(self, item): """ Aggiungo un elemento alla lista """ # Controllo dei parametri di input: "item" if not isinstance(item, TimedData): raise TypeError('cannot add a non-"TimedData" object to a "TimedArray" list') if item.timestamp != self.timestamp: raise ValueError( '"item" parameter is invalid: its "timestamp" attribute must be equal to %s' % self.timestamp) # Accodo l'elemento alla lista self._list.append(item) def remove(self, item): """ Questa funzione rimuove "item" (se presente) dall'array """ # Controllo dei parametri di input: "item" if not isinstance(item, TimedData): raise TypeError('the item to remove must be a "TimedData" object') # Elimino l'oggetto, se presente if item in self._list: self._list.remove(item) def remove_all(self, items): """ Questa funzione permette di rimuovere un elenco di oggetti "TimedData" """ # Controllo dei parametri di input: "items" if not isinstance(items, (list, tuple)): raise TypeError('"items" parameter must be an array') # Elimino un oggetto per volta try: for x in items: self.remove(x) except TypeError: raise TypeError('the items list must contain only "TimedData" objects') def filter(self, f): """ Questa funzione applica la funzione f per filtrare il contenuto del vettore """ res = TimedArray(self.timestamp, empty=True) res._list = filter( f, self._list ) return res def filter_data_range(self, start, end): """ La funzione filtra il vettore per range di valori "Data" """ return self.filter( lambda x: start <= x.get_data() <= end ) def filter_time_range(self, start, end): """ La funzione filtra il vettore per range di valori "Data" """ return self.filter( lambda x: start <= x.get_time() <= end ) def search(self, to_search): """ Funzione di ricerca all'interno del contenuto del vettore. Se "timestamp" e' True, la chiave per la ricerca e' il timestamp: altrimenti, la chiave diventa il contenuto a cui e' associato l'intervallo temporale. """ if self.timestamp: # La chiave di ricerca e' "time", un numero intero res = self.search_by_time(to_search) else: # La chiave di ricerca e' "data", un dato di qualsiasi tipo res = self.search_by_data(to_search) # Risultati di ricerca return res def search_by_data(self, to_search): """ Funzione di ricerca per campo "data", all'interno del vettore """ research = (lambda x: x.data == to_search) return filter(research, self._list) def search_by_datas(self, search_params): """ Funzione di ricerca per campo "data", all'interno del vettore: il parametro di ricerca e' un vettore """ # Controllo dei parametri di input: "searchParams" if not isinstance(search_params, (list, tuple)): raise TypeError('"searchParams" parameter is invalid. It must be an array') # Effettuo tante ricerche quanti sono i parametri specificati result = [] for x in search_params: # Ricerca per data, parametro "x" tmp = self.search_by_data(x) # Accodo quanto ottenuto al risultato di ricerca globale for t in tmp: result.append(t) # Risultati della ricerca multipla return result def search_by_time(self, to_search): """ Funzione di ricerca per campo "time", all'interno del vettore Il parametro "toSearch" deve essere un numero intero """ if not isinstance(to_search, (int, long)): raise TypeError('the research parameter must be an integer number (timestamp)') research = (lambda x: x.time == to_search) return filter(research, self._list) def search_by_times(self, search_params): """ Funzione di ricerca per campo "time", all'interno del vettore: il parametro di ricerca e' un vettore """ # Controllo dei parametri di input: "searchParams" if not isinstance(search_params, (list, tuple)): raise TypeError('"searchParams" parameter is invalid. It must be an array') # Effettuo tante ricerche quanti sono i parametri specificati result = [] for x in search_params: # Ricerca per data, parametro "x" tmp = self.search_by_time(x) # Accodo quanto ottenuto al risultato di ricerca globale for t in tmp: result.append(t) # Risultati della ricerca multipla return result def contains(self, to_search): """ La funzione mi dice se la ricerca nel vettore, sulla base della chiave di ricerca "toSearch" specificata, produce risultati """ return len(self.search(to_search)) > 0 def update(self, to_search, new_value): """ Questa funzione aggiorna il contenuto degli elementi del vettore che soddisfano il criterio di ricerca specificato - "toSearch" e' la chiave di ricerca - "newValue" e' il valore aggiornato da inserire """ # Effettuo una ricerca items = self.search(to_search) # Definisco il criterio di aggiornamento if self.timestamp: # La chiave di ricerca e' "time": aggiorno "data" # update_function = (lambda x: x.data = newValue) def update_function(x): x.data = new_value else: # La chiave di ricerca e' "data": aggiorno "time" # update_function = (lambda x: x.time = newValue) def update_function(x): x.time = new_value # Aggiorno gli elementi map(update_function, items) def insert_or_update(self, time_to_search, data_value): if self.contains(time_to_search): self.update(time_to_search, data_value) else: self.append( TimedData(data_value, time_to_search, self.timestamp) )
35.541045
111
0.586247
[ "MIT" ]
gavalle94/P2P-Sim
timed_structures.py
9,525
Python
""" This problem was asked by Amazon. Given a matrix of 1s and 0s, return the number of "islands" in the matrix. A 1 represents land and 0 represents water, so an island is a group of 1s that are neighboring whose perimeter is surrounded by water. For example, this matrix has 4 islands. 1 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 0 1 """ moves = [ # row, col (0, 1), # west (0, -1), # east (1, 0), # south (-1, 0), # north (1,1), # south-west (1, -1), # south-east (-1, 1), # north-west (-1, -1) # north-east ] def mark_island(row, col, land_map, marker): if row < 0 or col<0 or row>=len(land_map) or col >= len(land_map[0]): return land_map if land_map[row][col]== 0: return land_map if land_map[row][col]== marker: return land_map if land_map[row][col] == 1: land_map[row][col] = marker for r,c in moves: land_map = mark_island(row+r, col+c, land_map, marker) return land_map def find_num_of_islands(land_map): islands_found = 0 for i in range(len(land_map)): for j in range(len(land_map[0])): if land_map[i][j] == 1: islands_found+= 1 land_map = mark_island(i, j, land_map, marker='i') # print(*land_map, sep='\n') return islands_found if __name__ == '__main__': land_map = [ [1, 0, 0, 0, 0], [0, 0, 1, 1, 0], [0, 1, 1, 0, 0], [0, 0, 0, 0, 0], [1, 1, 0, 0, 1], [1, 1, 0, 0, 1], ] print(find_num_of_islands(land_map)) # 4 land_map = [ [1, 0, 0, 0, 0], [0, 0, 1, 1, 0], [0, 1, 1, 0, 0], [0, 0, 0, 0, 0], [1, 1, 0, 0, 1], [1, 1, 0, 0, 1], [1, 0, 0, 0, 0], [0, 0, 1, 1, 0], [0, 1, 1, 0, 0], [0, 0, 0, 0, 0], [1, 1, 0, 0, 1], [1, 1, 0, 0, 1], ] print(find_num_of_islands(land_map)) # 7
21.107527
74
0.496689
[ "MIT" ]
RafayAK/CodingPrep
DailyCodingProblem/84_Amazon_Find_Islands_From_Matrix.py
1,963
Python
# The following comments couldn't be translated into the new config version: # untracked PSet maxEvents = {untracked int32 input = 2} #include "Configuration/ReleaseValidation/data/Services.cff" # include "Configuration/StandardSequences/data/FakeConditions.cff" # untracked PSet options = { # include "FWCore/Framework/test/cmsExceptionsFatalOption.cff" # untracked bool makeTriggerResults = true # } import FWCore.ParameterSet.Config as cms process = cms.Process("TEST") # # ecal trig prim producer # # ecal tpg params # es_module = EcalTrigPrimESProducer { # untracked string DatabaseFile = "TPG.txt" # #untracked string DatabaseFile = "TPG_RCT_internal.txt" # } # process.load("FWCore.MessageService.MessageLogger_cfi") # standard RCT configuration, including input scales process.load("L1TriggerConfig.RCTConfigProducers.L1RCTConfig_cff") # using standard scales process.load("L1TriggerConfig.L1ScalesProducers.L1CaloScalesConfig_cff") #include "L1TriggerConfig/L1ScalesProducers/data/L1CaloInputScalesConfig.cff" process.load("L1Trigger.RegionalCaloTrigger.L1RCTTestAnalyzer_cfi") process.load("L1Trigger.RegionalCaloTrigger.rctDigis_cfi") process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(64) ) process.TFileService = cms.Service("TFileService", fileName = cms.string('rct.root') ) process.source = cms.Source("EmptySource") process.rctInput = cms.EDProducer("RctInputTextToDigi", inputFile = cms.FileInPath('L1Trigger/TextToDigi/test/data/rctTestInputFileElec.txt') ) process.input = cms.Path(process.rctInput) process.p4 = cms.Path(process.rctDigis*process.L1RCTTestAnalyzer) process.schedule = cms.Schedule(process.input,process.p4) process.L1RCTTestAnalyzer.ecalDigisLabel = 'rctInput' process.L1RCTTestAnalyzer.hcalDigisLabel = 'rctInput' process.rctDigis.ecalDigisLabel = 'rctInput' process.rctDigis.hcalDigisLabel = 'rctInput'
32.965517
89
0.789749
[ "Apache-2.0" ]
4quarks/cmssw
L1Trigger/RegionalCaloTrigger/test/rctInputTest_cfg.py
1,912
Python
from twisted.internet import defer from signing.processor import expose class SayHiImplementation(object): """ Responds with 'hello, %s' % arg """ @expose def say_hi(self, identifier): d = defer.Deferred() d.callback('hello, %s' % identifier) return d
22.846154
44
0.632997
[ "Apache-2.0" ]
nkrowlan/signing-server
signing/processorimpl/sayhiimplementation.py
297
Python
from django.urls import path from . import views from django.urls import path, include urlpatterns = [ path('',views.savedata,name="savedata"), ]
18.875
44
0.728477
[ "MIT" ]
MindMantraSIH/paathshaala
suggestions/urls.py
151
Python
# -*- coding: utf-8 -*- from collections import namedtuple from subprocess import check_output import click from .utils import cd try: from subprocess import call as run except ImportError: from subprocess import run class VueJs(object): """ Provide subprocess call to `npm` and `vue-cli` """ @staticmethod def node_check(): """ Node and npm version checker """ node_ver = check_output('node -v'.split()).decode('utf-8').rsplit('.')[0] npm_ver = check_output('npm -v'.split()).decode('utf-8').rsplit('.')[0] return all([node_ver > 'v5', npm_ver >= '4']) @staticmethod def vue_cli_check(): """ vue-cli version checker """ try: return check_output('vue -V'.split()).decode('utf-8').rsplit('.')[0] except OSError: return False @staticmethod def install_cli(): run('npm install -g vue-cli'.split()) @staticmethod def project_setup(project): run('vue init webpack {project}'.format(project=project).split()) @staticmethod def install_dependencies(project): with cd(project): run('npm install'.split()) @staticmethod def dev(): run('npm run dev'.split()) @staticmethod def build(): run('npm run build'.split()) class VueJsBuilder(object): @staticmethod def startproject(project): nt = namedtuple('Result', ['status', 'message', 'color']) if VueJs.vue_cli_check(): VueJs.project_setup(project) VueJs.install_dependencies(project) return nt(True, 'Application and dependencies installed\n', 'green') else: return nt(False, 'Please install vue-cli via `vuecli` command', 'red') @click.group() def cli(): """ Click entry point: vue-cli commands group By convention all new cli has a cli function with a pass statement """ pass @cli.command() def vuecheck(): """ Check if node > 5 and npm > 3 are installed """ if VueJs.node_check(): click.echo(click.style('Found node and npm', fg='green')) else: click.echo(click.style('Missing node and npm installation', fg='red')) @cli.command() def installvuecli(): """ Install vue-cli """ if VueJs.vue_cli_check(): click.echo(click.style('Found valid vue-cli', fg='green')) else: VueJs.install_cli() click.echo(click.style('Installed vue-cli globally', fg='green')) @cli.command() @click.argument('project') def startvueapp(project): """ Init vue project via vue-cli """ result = VueJsBuilder.startproject(project) click.echo(click.style(result.message, fg=result.color)) @cli.command() def vuedev(): """ Run frontend dev server via npm """ VueJs.dev() @cli.command() def vuebuild(): """ Build Vue.js project via npm """ VueJs.build()
22.792308
82
0.600405
[ "MIT" ]
Timtech4u/python-vuejs
python_vuejs/vuejs.py
2,963
Python
import numpy as np from PIL import Image, ImageDraw from scipy import interpolate, ndimage, stats, signal, integrate, misc from astropy.io import ascii, fits from astropy.wcs import WCS from astropy.coordinates import SkyCoord import astropy.units as u import astropy.constants as c import corner as triangle # formerly dfm/triangle # from astropy.modeling import models, fitting from astropy.modeling.models import custom_model from astropy.modeling.fitting import LevMarLSQFitter # , SimplexLSQFitter import matplotlib.pyplot as plt import matplotlib as mpl import emcee #import ipdb; import pdb # # # # # # # # # # # # # # # # # # # # # # # make iPython print immediately import sys oldsysstdout = sys.stdout class flushfile(): def __init__(self, f): self.f = f def __getattr__(self, name): return object.__getattribute__(self.f, name) def write(self, x): self.f.write(x) self.f.flush() def flush(self): self.f.flush() # sys.stdout = flushfile(sys.stdout) # sys.stdout = oldsysstdout def rot_matrix(theta): ''' rot_matrix(theta) 2D rotation matrix for theta in radians returns numpy matrix ''' c, s = np.cos(theta), np.sin(theta) return np.matrix([[c, -s], [s, c]]) def rectangle(c, w, h, angle=0, center=True): ''' create rotated rectangle for input into PIL ImageDraw.polygon to make a rectangle polygon mask Rectagle is created and rotated with center at zero, and then translated to center position accepters centers Default : center tl, tr, bl, br ''' cx, cy = c # define initial polygon irrespective of center x = -w / 2., +w / 2., +w / 2., -w / 2. y = +h / 2., +h / 2., -h / 2., -h / 2. # correct center if starting from corner if center is not True: if center[0] == 'b': # y = tuple([i + h/2. for i in y]) cy = cy + h / 2. else: # y = tuple([i - h/2. for i in y]) cy = cy - h / 2. if center[1] == 'l': # x = tuple([i + w/2 for i in x]) cx = cx + w / 2. else: # x = tuple([i - w/2 for i in x]) cx = cx - w / 2. R = rot_matrix(angle * np.pi / 180.) c = [] for i in range(4): xr, yr = np.dot(R, np.asarray([x[i], y[i]])).A.ravel() # coord switch to match ordering of FITs dimensions c.append((cx + xr, cy + yr)) # print (cx,cy) return c def comp(arr): ''' returns the compressed version of the input array if it is a numpy MaskedArray ''' try: return arr.compressed() except: return arr def mavg(arr, n=2, mode='valid'): ''' returns the moving average of an array. returned array is shorter by (n-1) ''' if len(arr) > 400: return signal.fftconvolve(arr, [1. / float(n)] * n, mode=mode) else: return signal.convolve(arr, [1. / float(n)] * n, mode=mode) def mgeo(arr, n=2): ''' Returns array of lenth len(arr) - (n-1) # # written by me # # slower for short loops # # faster for n ~ len(arr) and large arr a = [] for i in xrange(len(arr)-(n-1)): a.append(stats.gmean(arr[i:n+i])) # # Original method# # # # written by me ... ~10x faster for short arrays b = np.array([np.roll(np.pad(arr,(0,n),mode='constant',constant_values=1),i) for i in xrange(n)]) return np.product(b,axis=0)[n-1:-n]**(1./float(n)) ''' a = [] for i in range(len(arr) - (n - 1)): a.append(stats.gmean(arr[i:n + i])) return np.asarray(a) def avg(arr, n=2): ''' NOT a general averaging function return bin centers (lin and log) ''' diff = np.diff(arr) # 2nd derivative of linear bin is 0 if np.allclose(diff, diff[::-1]): return mavg(arr, n=n) else: return np.power(10., mavg(np.log10(arr), n=n)) # return mgeo(arr, n=n) # equivalent methods, only easier def shift_bins(arr,phase=0,nonneg=False): # assume original bins are nonneg if phase != 0: diff = np.diff(arr) if np.allclose(diff,diff[::-1]): diff = diff[0] arr = arr + phase*diff #pre = arr[0] + phase*diff return arr else: arr = np.log10(arr) diff = np.diff(arr)[0] arr = arr + phase * diff return np.power(10.,arr) else: return arr def llspace(xmin, xmax, n=None, log=False, dx=None, dex=None): ''' llspace(xmin, xmax, n = None, log = False, dx = None, dex = None) get values evenly spaced in linear or log spaced n [10] -- Optional -- number of steps log [false] : switch for log spacing dx : spacing for linear bins dex : spacing for log bins (in base 10) dx and dex override n ''' xmin, xmax = float(xmin), float(xmax) nisNone = n is None dxisNone = dx is None dexisNone = dex is None if nisNone & dxisNone & dexisNone: print('Error: Defaulting to 10 linears steps') n = 10. nisNone = False # either user specifies log or gives dex and not dx log = log or (dxisNone and (not dexisNone)) if log: if xmin == 0: print("log(0) is -inf. xmin must be > 0 for log spacing") xmin, xmax = np.log10(xmin), np.log10(xmax) # print nisNone, dxisNone, dexisNone, log # for debugging logic if not nisNone: # this will make dex or dx if they are not specified if log and dexisNone: # if want log but dex not given dex = (xmax - xmin) / n # print dex elif (not log) and dxisNone: # else if want lin but dx not given dx = (xmax - xmin) / n # takes floor #print dx if log: #return np.power(10, np.linspace(xmin, xmax , (xmax - xmin)/dex + 1)) return np.power(10, np.arange(xmin, xmax + dex, dex)) else: #return np.linspace(xmin, xmax, (xmax-xmin)/dx + 1) return np.arange(xmin, xmax + dx, dx) def nametoradec(name): ''' Get names formatted as hhmmss.ss+ddmmss to Decimal Degree only works for dec > 0 (splits on +, not -) Will fix this eventually... ''' if 'string' not in str(type(name)): rightascen = [] declinatio = [] for n in name: ra, de = n.split('+') ra = ra[0:2] + ':' + ra[2:4] + ':' + ra[4:6] + '.' + ra[6:8] de = de[0:2] + ':' + de[2:4] + ':' + de[4:6] coord = SkyCoord(ra, de, frame='icrs', unit=('hourangle', 'degree')) rightascen.append(coord.ra.value) declinatio.append(coord.dec.value) return np.array(rightascen), np.array(declinatio) else: ra, de = name.split('+') ra = ra[0:2] + ':' + ra[2:4] + ':' + ra[4:6] + '.' + ra[6:8] de = de[0:2] + ':' + de[2:4] + ':' + de[4:6] coord = SkyCoord(ra, de, frame='icrs', unit=('hourangle', 'degree')) return np.array(coord.ra.value), np.array(coord.dec.value) def get_ext(extmap, errmap, extwcs, ra, de): ''' Get the extinction (errors) for a particular position or list of positions More generally get the value (error) for a particular position given a wcs and world coordinates ''' try: xp, yp = extwcs.all_world2pix( np.array([ra]).flatten(), np.array([de]).flatten(), 0) except: xp, yp = WCS(extwcs).all_world2pix( np.array([ra]).flatten(), np.array([de]).flatten(), 0) ext = [] err = [] for i in range(len(np.array(xp))): try: ext.append(extmap[yp[int(round(i))], xp[int(round(i))]]) if errmap is not None: err.append(errmap[yp[int(round(i))], xp[int(round(i))]]) except IndexError: ext.append(np.nan) if errmap is not None: err.append(np.nan) if errmap is not None: return np.array(ext), np.array(err) else: return np.array(ext), None def pdf(values, bins): ''' ** Normalized differential area function. ** (statistical) probability denisty function normalized so that the integral is 1 and. The integral over a range is the probability of the value is within that range. Returns array of size len(bins)-1 Plot versus bins[:-1] ''' if hasattr(bins,'__getitem__'): range=(np.nanmin(bins),np.nanmax(bins)) else: range = None h, x = np.histogram(values, bins=bins, range=range, density=False) # From the definition of Pr(x) = dF(x)/dx this # is the correct form. It returns the correct # probabilities when tested pdf = h / (np.sum(h, dtype=float) * np.diff(x)) return pdf, avg(x) def pdf2(values, bins): ''' The ~ PDF normalized so that the integral is equal to the total amount of a quantity. The integral over a range is the total amount within that range. Returns array of size len(bins)-1 Plot versus bins[:-1] ''' if hasattr(bins,'__getitem__'): range=(np.nanmin(bins),np.nanmax(bins)) else: range = None pdf, x = np.histogram(values, bins=bins, range=range, density=False) pdf = pdf.astype(float) / np.diff(x) return pdf, avg(x) def edf(data, pdf=False): y = np.arange(len(data), dtype=float) x = np.sort(data).astype(float) return y, x def cdf(values, bins): ''' (statistical) cumulative distribution function Integral on [-inf, b] is the fraction below b. CDF is invariant to binning. This assumes you are using the entire range in the binning. Returns array of size len(bins) Plot versus bins[:-1] ''' if hasattr(bins,'__getitem__'): range = (np.nanmin(bins),np.nanmax(bins)) else: range = None h, bins = np.histogram(values, bins=bins, range=range, density=False) # returns int c = np.cumsum(h / np.sum(h, dtype=float)) # cumulative fraction below bin_k # append 0 to beginning because P( X < min(x)) = 0 return np.append(0, c), bins def cdf2(values, bins): ''' # # Exclusively for area_function which needs to be unnormalized (statistical) cumulative distribution function Value at b is total amount below b. CDF is invariante to binning Plot versus bins[:-1] Not normalized to 1 ''' if hasattr(bins,'__getitem__'): range=(np.nanmin(bins),np.nanmax(bins)) else: range = None h, bins = np.histogram(values, bins=bins, range=range, density=False) c = np.cumsum(h).astype(float) return np.append(0., c), bins def area_function(extmap, bins): ''' Complimentary CDF for cdf2 (not normalized to 1) Value at b is total amount above b. ''' c, bins = cdf2(extmap, bins) return c.max() - c, bins def diff_area_function(extmap, bins,scale=1): ''' See pdf2 ''' s, bins = area_function(extmap, bins) dsdx = -np.diff(s) / np.diff(bins) return dsdx*scale, avg(bins) def log_diff_area_function(extmap, bins): ''' See pdf2 ''' s, bins = diff_area_function(extmap, bins) g=s>0 dlnsdlnx = np.diff(np.log(s[g])) / np.diff(np.log(bins[g])) return dlnsdlnx, avg(bins[g]) def mass_function(values, bins, scale=1, aktomassd=183): ''' M(>Ak), mass weighted complimentary cdf ''' if hasattr(bins,'__getitem__'): range=(np.nanmin(bins),np.nanmax(bins)) else: range = None h, bins = np.histogram(values, bins=bins, range=range, density=False, weights=values*aktomassd*scale) c = np.cumsum(h).astype(float) return c.max() - c, bins def hist(values, bins, err=False, density=False, **kwargs): ''' really just a wrapper for numpy.histogram ''' if hasattr(bins,'__getitem__'): range=(np.nanmin(bins),np.nanmax(bins)) else: range = None hist, x = np.histogram(values, bins=bins, range=range, density=density, **kwargs) if (err is None) or (err is False): return hist.astype(np.float), avg(x) else: return hist.astype(np.float), avg(x), np.sqrt(hist) def bootstrap(X, X_err=None, n=None, smooth=False): ''' (smooth) bootstrap bootstrap(X,Xerr,n,smooth=True) X : array to be resampled X_err [optional]: errors to perturb data for smooth bootstrap only provide is doing smooth bootstrapping n : number of samples. Default - len(X) smooth: optionally use smooth bootstrapping. will be set to False if no X_err is provided ''' if X_err is None: smooth = False if n is None: # default n n = len(X) resample_i = np.random.randint(0,len(X),size=(n,)) X_resample = np.asarray(X)[resample_i] if smooth: X_resample = np.random.normal(X_resample, \ np.asarray(X_err)[resample_i]) return X_resample def num_above(values, level): return np.sum((values >= level) & np.isfinite(values), dtype=np.float) def num_below(values, level): return np.sum((values < level) & np.isfinite(values), dtype=np.float) def alpha_ML(data, xmin,xmax): ''' uses maximum likelihood to estimation to determine power-law and error From Clauset et al. 2010 ''' data = data[np.isfinite(data)] data = data[(data >= xmin) & (data <= xmax)] alpha = 1 + len(data) * (np.sum(np.log(data / xmin))**(-1)) error = (alpha -1 )/np.sqrt(len(data)) #loglike = np.sum((-1+alpha)*np.log(xmin)-alpha*np.log(data)+np.log(-1+alpha)) N = len(data) loglike = N*np.log(alpha-1) - N*np.log(xmin) - alpha * np.sum(np.log(data/xmin)) return alpha , error, loglike, xmin, xmax def sigconf1d(n): cdf = (1/2.)*(1+special.erf(n/np.sqrt(2))) return (1-cdf)*100,100* cdf,100*special.erf(n/np.sqrt(2)) def surfd(X, Xmap, bins, Xerr = None, Xmaperr = None, boot=False, scale=1., return_err=False, smooth=False): ''' call: surfd(X, map, bins, xerr = None, merr = None, scale = 1.) calculates H(X)/H(M) = Nx pdf(x) dx / Nm pdf(m) dm ; dm = dx so it is independent of whether dx or dlog(x) ''' # get dn/dx if boot: n = np.histogram(bootstrap(X,Xerr,smooth=True), bins = bins, range=(bins.min(),bins.max()))[0] s = np.histogram(bootstrap(Xmap,Xmaperr,smooth=True), bins = bins, range=(bins.min(),bins.max()))[0] * scale else: n = np.histogram(X, bins = bins, range=(bins.min(),bins.max()))[0] s = np.histogram(Xmap, bins = bins, range=(bins.min(),bins.max()))[0] * scale if not return_err: return n / s else: return n / s, n / s * np.sqrt(1. / n - scale / s) def alpha(y, x, err=None, return_kappa=False, cov=False): ''' this returns -1*alpha, and optionally kappa and errors ''' a1 = set(np.nonzero(np.multiply(x, y))[0]) a2 = set(np.where(np.isfinite(np.add(x, y, err)))[0]) a = np.asarray(list(a1 & a2)) y = np.log(y[a]) x = np.log(x[a]) if err is None: p, covar = np.polyfit(x, y, 1, cov=True) m, b = p me, be = np.sqrt(np.sum(covar * [[1, 0], [0, 1]], axis=1)) me, be else: err = err[a] err = err / y p, covar = np.polyfit(x, y, 1, w=1. / err**2, cov=True) m, b = p me, be = np.sqrt(np.sum(covar * [[1, 0], [0, 1]], axis=1)) me, be if return_kappa: if cov: return m, np.exp(b), me, be else: return m, np.exp(b) else: if cov: return m, me else: return m def Heaviside(x): return 0.5 * (np.sign(x) + 1.) def schmidt_law(Ak, theta): ''' schmidt_law(Ak,(beta,kappa)) beta is the power law index (same as alpha) ''' if len(theta) == 2: beta, kappa = theta return kappa * (Ak ** beta) elif len(theta) == 3: beta, kappa, Ak0 = theta sfr = Heaviside(Ak - Ak0) * kappa * (Ak ** beta) sfr[Ak < Ak0] = 0#np.nan # kappa * (Ak0 ** beta) return sfr def lmfit_powerlaw(x, y, yerr=None, xmin=-np.inf, xmax=np.inf, init=None, maxiter=1000000): @custom_model def model(x, beta=init[0], kappa=init[1]): return np.log(kappa * (np.exp(x) ** beta)) keep = np.isfinite(1. / y) & (x >= xmin) & (x <= xmax) if yerr is not None: keep = keep & np.isfinite(1. / yerr) m_init = model() fit = LevMarLSQFitter() #weights = (yerr / y)[keep]**(-2.) m = fit(m_init, np.log(x[keep]), np.log(y[keep]), maxiter=maxiter) return m, fit def fit_lmfit_schmidt(x, y, yerr, init=None): m, _ = lmfit_powerlaw(x,y,yerr,init=init) return m.parameters def emcee_schmidt(x, y, yerr, pos=None, pose=None, nwalkers=None, nsteps=None, burnin=200,verbose=True): ''' emcee_schmidt provides a convenient wrapper for fitting the schimdt law to binned x,log(y) data. Generally, it fits a normalization and a slope ''' def model(x, theta): ''' theta = (beta, kappa) ''' return np.log(schmidt_law(x, theta)) def lnlike(theta, x, y, yerr): mod = model(x, theta) inv_sigma2 = 1 / yerr**2 # Poisson statistics -- not using this #mu = (yerr)**2 # often called lambda = poisson variance for bin x_i #resid = np.abs(y - mod) # where w calculate the poisson probability #return np.sum(resid * np.log(mu) - mu) - np.sum(np.log(misc.factorial(resid))) ####################################################### ########## CHI^2 log-likelihood ####################### return -0.5 * (np.sum((y - mod)**2 * inv_sigma2))# - 0.5 * 3 * np.log(np.sum(k)) def lnprior(theta): # different priors for different version of # the schmidt law if len(theta) == 3: beta, kappa, Ak0 = theta c3 = 0. < Ak0 <= 5. c4 = True else: beta, kappa = theta c3 = True c4 = True c1 = 0 <= beta <= 6# Never run's into this region c2 = 0 <= kappa # Never run's into this region if c1 and c2 and c3 and c4: return 0.0 return -np.inf def lnprob(theta, x, y, yerr): ## update likelihood lp = lnprior(theta) if not np.isfinite(lp): return -np.inf return lp + lnlike(theta, x, y, yerr) ndim, nwalkers = len(pos), nwalkers pos = [np.array(pos) + np.array(pose) * 0.5 * (0.5 - np.random.rand(ndim)) for i in range(nwalkers)] sampler = emcee.EnsembleSampler( nwalkers, ndim, lnprob, args=(x, y, yerr)) sampler.run_mcmc(pos, nsteps) # Get input values # x, y, yerr = sampler.args samples = sampler.chain[:, burnin:, :].reshape((-1, sampler.ndim)) # # Print out final values # # theta_mcmc = np.percentile(samples, [16, 50, 84], axis=0).T if verbose: print(sampler.acor) if verbose: for i, item in enumerate(theta_mcmc): j = ['beta', 'kappa', 'A_{K,0}', 'A_{K,f}'] inserts = (j[i], item[1], item[2] - item[1], item[1] - item[0]) print('%s = %0.2f (+%0.2f,-%0.2f)' % inserts) return sampler, np.median(samples, axis=0), np.std(samples, axis=0) def fit(bins, samp, samperr, maps, mapserr, scale=1., sampler=None, log=False, pos=None, pose=None, nwalkers=100, nsteps=1e4, boot=1000, burnin=200, threshold=False, threshold2=False,verbose=True): ''' # # # A Schmidt Law fitting Function using EMCEE by D.F.M. fit(bins, samp, samperr, maps, mapserr, scale=1., pos=None, pose=None, nwalkers=100, nsteps=1e4) bins: bin edges for binning data (I know it's bad to bin) samp : values for your sample samperr : errors on values for you sample maps: map of values from which you drew your sample mapserr: error on maps... pos : initial location of ball of walkers pose : initial spread of walkers ''' #print 'Hi!. It\'s hammer time...' # x values are bin midpoints x = avg(bins) # assume if log=True, then bins are already log # x = bins[:-1] # y = np.asarray([surfd(samp,maps,bins,boot=True,scale=scale) for i in xrange(boot)]) # yerr = np.nanstd(y,axis=0) #if log: # samp = np.log10(samp) # maps = np.log10(maps) # bins = np.log10(bins) # because bins doesn't get used again after surfd y, yerr = surfd(samp, maps, bins, scale=scale, return_err=True) ###########################################+ ###### ADDED FOR SHIFTING EXPERIMENT ######+ ###########################################+ bins2 = shift_bins(bins,0.5) bin x2 = avg(bins2) y2, yerr2 = surfd(samp, maps, bins2, scale=scale, return_err=True) concatx = np.concatenate((x,x2)) concaty = np.concatenate((y,y2)) concatyerr = np.concatenate((yerr,yerr2)) srt = np.argsort(concatx) x = concatx[srt] y = concaty[srt] yerr = concatyerr[srt] nonzero = np.isfinite(1. / y) & np.isfinite(yerr) & np.isfinite(1./yerr) y = y[nonzero] yerr = yerr[nonzero] x = x[nonzero] # initialize walker positions and walker bundle size init = alpha(y, x, return_kappa=True, cov=True) if pos is None: pos = init[:2] if pose is None: if np.isnan(init[2] + init[3]): pose = (1, 1) else: pose = (init[2], init[3]) if threshold | threshold2: pos = pos + (0.4,) pose = pose + (0.2,) if threshold2: pos = pos + (8.,) pose = pose + (.5,) #print pos #print pose pos = np.asarray(pos) pose = .1*pos#np.asarray(pose) # This function only fits sources, it doesn't plot, so don't pass # and emcee sampler type. it will spit it back out # # # # # # # RUN EMCEE # # # # # # # # pdb.set_trace() if sampler is None: if verbose: print('Sampler autocorrelation times . . .') sampler, theta, theta_std = emcee_schmidt(x, np.log(y), yerr/y, pos=pos, pose=pose, nwalkers=nwalkers, nsteps=nsteps, burnin=burnin,verbose=verbose) else: print('Next time don\'t give me a ' + str(type(sampler)) + '.') # try: return sampler, x, y, yerr, theta, theta_std except: return sampler, x, y, yerr def schmidt_results_plots(sampler, model, x, y, yerr, burnin=200, akmap=None, bins=None, scale=None, triangle_plot=True): ''' model: should pass schmidt_law() ''' try: mpl.style.use('john') except: None # Get input values # x, y, yerr = sampler.args if hasattr(sampler,'__getitem__'): chain = sampler dim = chain.shape[-1] else: chain = sampler.chain dim = sampler.dim samples = chain[:, burnin:, :].reshape((-1, dim)) # # Print out final values # # theta_mcmc = np.percentile(samples, [16, 50, 84], axis=0).T # Get percentiles for each parameter n_params = len(theta_mcmc[:,1]) #print n_params for i, item in enumerate(theta_mcmc): j = ['beta', 'kappa', 'A_{K,0}','A_{K,f}'] inserts = (j[i], item[1], item[2] - item[1], item[1] - item[0]) print('%s = %0.2f (+%0.2f,-%0.2f)' % inserts) # Plot corner plot if triangle_plot: if n_params == 3: labels = ['beta', 'kappa', 'A_{K,0}'] elif n_params == 4: labels = ['beta', 'kappa', 'A_{K,0}', 'A_{K,f}'] else: labels = ['beta', 'kappa'] #print labels _ = triangle.corner(samples, labels=labels, truths=theta_mcmc[:, 1], quantiles=[.16, .84], verbose=False) # generate schmidt laws from parameter samples xln = np.logspace(np.log10(x.min()*.5),np.log10(x.max()*2.),100) smlaw_samps = np.asarray([schmidt_law(xln, samp) for samp in samples]) # get percentile bands percent = lambda x: np.nanpercentile(smlaw_samps, x, interpolation='linear', axis=0) # Plot fits fig = plt.figure() # Plot data with errorbars plt.plot(xln, percent(50), 'k') # 3 sigma band # yperr = np.abs(np.exp(np.log(y)+yerr/y) - y) # ynerr = np.abs(np.exp(np.log(y)-yerr/y) - y) plt.errorbar(x, y, yerr, fmt='rs', alpha=0.7, mec='none') plt.legend(['Median', 'Data'], loc='upper left', fontsize=12) # draw 1,2,3 sigma bands plt.fill_between(xln, percent(1), percent(99), color='0.9') # 1 sigma band plt.fill_between(xln, percent(2), percent(98), color='0.75') # 2 sigma band plt.fill_between(xln, percent(16), percent(84), color='0.5') # 3 sigma band plt.loglog(nonposy='clip') return plt.gca() def flatchain(chain): return chain.reshape((-1,chain.shape[-1])) def norm_chain(chain, axis=0): std = np.std(flatchain(chain), axis=axis) med = np.median(flatchain(chain), axis=axis) return (chain-med)/std def plot_walkers(sampler,limits = None, bad = None): ''' sampler : emcee Sampler class ''' if hasattr(sampler,'__getitem__'): chain = sampler ndim = chain.shape[-1] else: chain = sampler.chain ndim = sampler.ndim fig = plt.figure(figsize=(8 * ndim, 4 * ndim)) if hasattr(limits,'__getitem__'): limits += [None] * (3-len(limits)) slices = slice(limits[0],limits[1],limits[2]) else: slices = slice(None,limits,None) for w,walk in enumerate(chain[:,slices,:]): if bad is None: color = 'k' elif bad[w]: color = 'r' else: color = 'k' for p, param in enumerate(walk.T): ax = plt.subplot(ndim, 1, p + 1) ax.plot(param, color, alpha=.75, lw=0.75) # ax.set_ylim(param.min()*0.5,param.max()*1.5) # ax.semilogy() plt.tight_layout() return fig def tester(): print('hi ya\'ll')
30.970484
116
0.564692
[ "MIT" ]
johnarban/arban
schmidt_funcs.py
26,232
Python
"""A word2vec implementation using Tensorflow and estimators.""" import os from collections import defaultdict import logging import tensorflow as tf # from tensorflow.python import debug as tf_debug # pylint: disable=E0611 import word2vec.utils.datasets as datasets_utils import word2vec.models.word2vec as w2v_model from word2vec.evaluation.men import MEN logger = logging.getLogger(__name__) __all__ = ('Word2Vec') class Word2Vec(): """Tensorflow implementation of Word2vec.""" def __init__(self): """Initialize vocab dictionaries.""" self._words = [] self._counts = [] self._total_count = 0 @property def vocab_size(self): """Return the number of items in vocabulary. Since we use len(word_freq_dict) as the default index for UKN in the index_table, we have to add 1 to the length """ return len(self._words) + 1 def build_vocab(self, data_filepath, vocab_filepath, min_count): """Create vocabulary-related data.""" logger.info('Building vocabulary from file {}'.format(data_filepath)) logger.info('Loading word counts...') if self.vocab_size > 1: logger.warning('This instance of W2V\'s vocabulary does not seem ' 'to be empty. Erasing previously stored vocab...') self._words, self._counts, self._total_count = [], [], 0 word_count_dict = defaultdict(int) with open(data_filepath, 'r') as data_stream: for line in data_stream: for word in line.strip().split(): word_count_dict[word] += 1 logger.info('Saving word frequencies to file: {}' .format(vocab_filepath)) with open(vocab_filepath, 'w') as vocab_stream: # words need to be sorted in decreasing frequency to be able # to rely on the default tf.nn.log_uniform_candidate_sampler # later on in the tf.nn.nce_loss for word, count in sorted(word_count_dict.items(), key=lambda x: x[1], reverse=True): print('{}\t{}'.format(word, count), file=vocab_stream) if count >= min_count: self._words.append(word) self._counts.append(count) self._total_count += count def load_vocab(self, vocab_filepath, min_count): """Load a previously saved vocabulary file.""" logger.info('Loading word counts from file {}'.format(vocab_filepath)) self._words, self._counts, self._total_count = [], [], 0 with open(vocab_filepath, 'r', encoding='UTF-8') as vocab_stream: for line in vocab_stream: word_count = line.strip().split('\t', 1) word, count = word_count[0], int(word_count[1]) if count >= min_count: self._words.append(word) self._counts.append(count) self._total_count += count logger.info('Done loading word counts') # pylint: disable=R0914,W0613 def train(self, train_mode, training_data_filepath, model_dirpath, batch_size, embedding_size, num_neg_samples, learning_rate, window_size, num_epochs, sampling_rate, p_num_threads, t_num_threads, shuffling_buffer_size, save_summary_steps, save_checkpoints_steps, keep_checkpoint_max, log_step_count_steps, debug, debug_port, xla): """Train Word2Vec.""" if self.vocab_size == 1: raise Exception('You need to build or load a vocabulary before ' 'training word2vec') if train_mode not in ('cbow', 'skipgram'): raise Exception('Unsupported train_mode \'{}\''.format(train_mode)) sess_config = tf.compat.v1.ConfigProto(log_device_placement=True) sess_config.intra_op_parallelism_threads = t_num_threads sess_config.inter_op_parallelism_threads = t_num_threads # if xla: # sess_config.graph_options.optimizer_options.global_jit_level = \ # tf.OptimizerOptions.ON_1 # JIT compilation on GPU run_config = tf.estimator.RunConfig( session_config=sess_config, save_summary_steps=save_summary_steps, save_checkpoints_steps=save_checkpoints_steps, keep_checkpoint_max=keep_checkpoint_max, log_step_count_steps=log_step_count_steps) estimator = tf.estimator.Estimator( model_fn=w2v_model.model, model_dir=model_dirpath, config=run_config, params={ 'mode': train_mode, 'vocab_size': self.vocab_size, 'batch_size': batch_size, 'embedding_size': embedding_size, 'num_neg_samples': num_neg_samples, 'learning_rate': learning_rate, 'words': self._words, 'p_num_threads': p_num_threads, 'xla': xla, 'men': MEN(os.path.join( os.path.dirname(os.path.dirname(__file__)), 'resources', 'MEN_dataset_natural_form_full')) }) # waiting for v2 fix in tf.summary.FileWriter: tf.compat.v1.disable_eager_execution() if debug: raise Exception('Unsupported parameter: waiting for the TF team ' 'to release v2 equivalents for TensorBoardDebugHook') # hooks = [tf.estimator.ProfilerHook( # save_steps=save_summary_steps, show_dataflow=True, # show_memory=True, output_dir=model_dirpath), # tf_debug.TensorBoardDebugHook('localhost:{}' # .format(debug_port))] # else: hooks = [tf.estimator.ProfilerHook( save_steps=save_summary_steps, show_dataflow=True, show_memory=True, output_dir=model_dirpath)] estimator.train( input_fn=lambda: datasets_utils.get_w2v_train_dataset( training_data_filepath, train_mode, self._words, self._counts, self._total_count, window_size, sampling_rate, batch_size, num_epochs, p_num_threads, shuffling_buffer_size), hooks=hooks)
44.950704
81
0.608491
[ "MIT" ]
akb89/word2vec
word2vec/estimators/word2vec.py
6,383
Python
from .gui import *
18
18
0.722222
[ "MIT" ]
jakebrehm/ezpz
lemons/__init__.py
18
Python
class Persona: def __init__(self): self.edad = 18 self.nombre = "juan" print "Se ha creado a", self.nombre, "de", self.edad def hablar(self,palabras ="No se que decir"): print self.nombre,': ', palabras juan = Persona() juan.hablar() juan.hablar("Hola estoy hablando")
24.846154
61
0.591331
[ "MIT" ]
gcardosov/PythonAprendeOrg
EjemploMetodos.py
323
Python
import argparse import collections import fnmatch import os.path import pprint import re import sys ####################### ### OSimStatsHelper ### ####################### class OSimStatsHelper: """Takes a list of stats and returns a stat containing their summation by each sample.""" @staticmethod def sumStats(stats): totalStat = { 'abs' : { 'units' : stats[0]['abs']['units'] }, 'category' : stats[0]['category'], 'container' : "Total", 'name' : stats[0]['name'], 'fullName' : ".".join((stats[0]['category'], "Total", stats[0]['name'])) } totalStat['abs']['values'] = OSimStatsHelper.sumStatsToValues(stats, 'abs') #print "Summing %s" % (totalStat['name']) if 'delta' in stats[0]: totalStat['delta'] = { 'units' : stats[0]['delta']['units'] } totalStat['delta']['values'] = OSimStatsHelper.sumStatsToValues(stats, 'delta') return totalStat @staticmethod def sumStatsToValues(stats, type): totals = [] for stat in stats: values = stat[type]['values'] for i in range(0, len(values)): if i + 1 > len(totals): totals.append(values[i]) else: totals[i] += values[i] return totals @staticmethod def splitStatsFullName(fullName): return statNamePartsRe.match(fullName).groups(); #lineRe = re.compile("(.* .*) - (.*) : (\d+)[ ,]([^:]*)") #lineRe = re.compile("(.* .*) - (.*) : (?P<abs>[\d\.-]+)(?: (?:\D+))?(?P<delta>[\d\.-]+)?") lineRe = re.compile("(.* .*) - (.*) : (?P<abs>[^,]+)(?:, )?(?P<delta>[^,]+)?") statsReportStartRe = re.compile(" - \*\*\* STATS REPORT AT") statNamePartsRe = re.compile("^(.*?)\.(.*)\.(.*?)$"); valueRe = re.compile("([^ %/]+)(.*)") ####################### ### OSimStatsCorpus ### ####################### class OSimStatsCorpus: _data = {} _samplesCount = 0 @property def data(self): return self._data def __init__(self): self.clear() def __len__(self): return self._samplesCount @staticmethod def parseValue(rawValue, valueRe): valueMatch = valueRe.match(rawValue) return float(valueMatch.group(1)), valueMatch.group(2) def getStat(self, statFullName): """ Get a statistic given its full name. FIXME: Does not allow one to interrogate a given set yet. """ if self._data == None: return None (category, container, name) = OSimStatsHelper.splitStatsFullName(statFullName); for set in self._data.items(): if category in set and container in set[category] and name in set[category][container]: return set[category][container][name] else: return None def getStats(self, setGlob = "*", selectGlob = "*"): """ Returns a dictionary of stats where fullName => stat. If glob is specified then this is used to match stats using their full name If no stats are found then an empty dictionary is returned. """ if selectGlob == None: selectGlob = "*" if setGlob == None: setGlob = "*" matchingStats = collections.OrderedDict() for setName, set in self._data.items(): if fnmatch.fnmatch(setName, setGlob): for category, containers in set.items(): for container, stats in containers.items(): for statName, stat in stats.items(): if fnmatch.fnmatch(stat['fullName'], selectGlob): matchingStats[stat['fullName']] = stat return matchingStats def clear(self): """Clear out any existing dataset.""" self._data = {} self._samplesCount = 0 def load(self, path): """Load OpenSimulator stats log data from the given path and merge into any existing data.""" # Set structure # category : { # container : { # stat : { # 'abs' : { 'values' : [], 'units' : "" }, # 'delta' : { 'values' : [], 'units' : "" } # 'name' : string # 'fullName' : string # 'category' : string # 'container' : string # } # delta may not be present with open(path) as f: setName = os.path.splitext(os.path.basename(path))[0] print "Loading set %s" % (setName) if not setName in self._data: self._data[setName] = {} set = self.data[setName] for line in f: match = lineRe.match(line) if match != None: statFullName = match.group(2) #(category, container, name) = statFullName.split(".") (category, container, name) = OSimStatsHelper.splitStatsFullName(statFullName); rawValue = match.group("abs") #print match.lastindex #print rawValue value = OSimStatsCorpus.parseValue(rawValue, valueRe) if not category in set: set[category] = collections.OrderedDict() if not container in set[category]: set[category][container] = collections.OrderedDict() if not name in set[category][container]: entry = { 'abs' : { 'values' : [], 'units' : value[1] }, 'category' : category, 'container' : container, 'fullName' : statFullName, 'name' : name } set[category][container][name] = entry stat = set[category][container][name] stat['abs']['values'].append(value[0]) # Handle delta value if present if match.group("delta"): rawValue = match.group("delta") value = OSimStatsCorpus.parseValue(rawValue, valueRe) if not 'delta' in stat: stat['delta'] = { 'values' : [], 'units' : value[1] } stat['delta']['values'].append(value[0]) else: match = statsReportStartRe.search(line) if (match != None): self._samplesCount += 1 else: print "Ignoring [%s]" % (line)
38.068627
109
0.425573
[ "BSD-3-Clause-Clear" ]
ConnectionMaster/opensimulator-tools
analysis/opensimulator-stats-analyzer/src/osta/osta.py
7,766
Python
import os import sys import errno import random import pickle import numpy as np import torch import torchvision import torch.nn.functional as F from torch.utils.data.dataset import Dataset from torch.utils.data import Dataset, DataLoader from torch.utils.data.sampler import BatchSampler from torchvision.datasets import DatasetFolder from torchvision import transforms from torch import nn from torch import optim import matplotlib.pyplot as plt #============================================================================== # Network definition #============================================================================== class SE_HIPP_3D_Net(nn.Module): def __init__(self): super(SE_HIPP_3D_Net, self).__init__() self.conv1 = nn.Conv2d(28, 32, kernel_size=4, stride=1, padding=1) self.bn1 = nn.BatchNorm2d(32) self.relu = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(32, 64, kernel_size=2, stride=1, padding=0) self.bn2 = nn.BatchNorm2d(64) self.fc1 = nn.Linear(64*7*7, 120) self.dropout = nn.Dropout(0.5) self.fc2 = nn.Linear(120, 2) def forward(self, x): x = self.conv1(x) x = F.max_pool2d(x, kernel_size=3, stride=2, padding=0) x = self.bn1(x) x = self.relu(x) x = self.conv2(x) x = F.max_pool2d(x, kernel_size=2, stride=2, padding=1) x = self.bn2(x) x = self.relu(x) # print("size", x.size()) x = x.view(-1, self.num_flat_features(x)) x = self.dropout(x) # print("size", x.size()) x = F.relu(self.fc1(x)) x = self.fc2(x) return x def num_flat_features(self, x): size = x.size()[1:] num_features = 1 for s in size: num_features *= s return num_features
27.626866
79
0.562939
[ "MIT" ]
kaderghal/ADNI_Data_processing
src/pytorch-template/old/models/baseline_3D_single.py
1,851
Python
import oneflow as flow import oneflow as flow_exp from oneflow import Tensor def nms(boxes: Tensor, scores: Tensor, iou_threshold: float) -> Tensor: scores_inds = flow_exp.argsort(scores, dim=0, descending=True) boxes = flow._C.gather(boxes, scores_inds, axis=0) _nms_op = ( flow_exp.builtin_op("nms") .Input("in") .Output("out") .Attr("iou_threshold", iou_threshold) .Attr("keep_n", -1) .Build() ) keep = _nms_op(boxes)[0] index = flow_exp.squeeze(flow_exp.argwhere(keep), dim=[1]) return flow._C.gather(scores_inds, index, axis=0)
30.55
71
0.648118
[ "Apache-2.0" ]
BakerMara/models
ops/nms.py
611
Python
#!/usr/bin/python """Cartesian execution of options for experiments""" import itertools from pprint import pprint import os # GROUPS = [ # ('train', {'type': 'option', # 'order': 0, # 'values': ['train5k']}), # ('lang', {'type': 'option', # 'order': 1, # 'values': 'hungarian,basque,french,korean,polish,swedish'.split(',')}), # ('infuse', {'type': 'option', # 'order': 2, # 'values': ['true', 'false']}), # ('maxmsr', {'type': 'option', # 'order': 3, # 'values': '1'.split(',')}) # ] # GROUPS = [ ('train', {'type': 'option', 'order': 0, 'values': ['train', 'train5k']}), ('lang', {'type': 'option', 'order': 1, 'values': 'hungarian,basque,french,korean,polish,swedish'.split(',')}), ('infuse', {'type': 'option', 'order': 2, 'values': ['true', 'false']}), ('maxmsr', {'type': 'option', 'order': 3, 'values': '1,2,4,8'.split(',')}) ] # GROUPS = [ # ('gram', {'type': 'file', # 'use': 'agg', # 'order': 0, # 'values': ['unigram', 'bigram', 'trigram', 'nextunigram', 'nextbigram', 'nexttrigram']}), # # ('prev', {'type': 'file', # # 'use': 'optional', # # 'value': 'prev'}), # ('pop', {'type': 'option', # 'use': 'optional', # 'value': '-pop'}) # ] # BASE = """nohup ./chukuparser md -f $conf -td corpus/train4k.hebtb.gold.lattices -tl corpus/train4k.hebtb.pred.lattices -in corpus/dev.hebtb.gold.conll.pred.lattices -ing corpus/dev.hebtb.gold.conll.gold.lattices -om devo.$exp.b32.hebtb.mapping -it 1 -b 32 -p Funcs_Main_POS_Both_Prop -wb -bconc $flags > runstatus.$exp.b32""" MALEARN = """nohup ./yap malearn -lattice spmrl/train.$lang.gold.conll.tobeparsed.tagged.lattices -raw spmrl/train.$lang.gold.conll.tobeparsed.raw -out $lang.json > malearn.$exp.out""" MATRAIN = """nohup ./yap ma -dict $lang.json -raw spmrl/$train.$lang.gold.conll.tobeparsed.raw -out $train.$lang.$maxmsr.analyzed.lattices -maxmsrperpos $maxmsr > matrain.$exp.out""" MADEV = """nohup ./yap ma -dict $lang.json -raw spmrl/dev.$lang.gold.conll.tobeparsed.raw -out dev.$lang.$maxmsr.analyzed.lattices -maxmsrperpos $maxmsr > madev.$exp.out""" MD = """nohup ./yap md -f conf/standalone.md.yaml -td spmrl/$train.$lang.gold.conll.tobeparsed.tagged.lattices -tl $train.$lang.$maxmsr.analyzed.lattices -in dev.$lang.$maxmsr.analyzed.lattices -ing spmrl/dev.$lang.gold.conll.tobeparsed.tagged.lattices -om devo.$train_$lang_$maxmsr_$infuse.mapping -infusedev=$infuse -it 1 -b 32 -p Funcs_Main_POS_Both_Prop -bconc -pop > runstatus.$exp.out""" cmds = [MALEARN, MATRAIN, MADEV, MD] REPLACE_STR = '$exp' CONF_FILE = 'standalone.md.%s.yaml' BASE_FILE = 'standalone.base.md.yaml' # first transform optional to empty, existing for (name, conf) in GROUPS: if conf.get('use', None) == 'optional': conf['values'] = [None, conf['value']] conf_values = map(lambda (name, conf): conf['values'], GROUPS) executions = list(itertools.product(*conf_values)) def gen_agg_file(values, out_name): with open(out_name, 'w') as outf: for value in values: with open(value) as inf: outf.write(inf.read()) for execution in executions: print 'At execution %s' % str(execution) files = [BASE_FILE] exp_strings = [] command_line_options = [] options = {} # for i, param in enumerate(execution): # conf_name, conf = GROUPS[i] # # print "\tAt conf %s" % conf_name # # pprint(conf) # # print "\tparam is %s" % str(param) # if conf['type'] == 'option' and param: # print "\t\tadd %s=%s to command line" % (conf_name, str(param)) # options[conf_name] = param # # print "\t\tadd %s to command line" % str(conf['value']) # # command_line_options.append(conf['value']) # if conf.get('use', None) == 'optional': # exp_strings.append(conf_name if param else 'no%s' % conf_name) # else: # exp_strings.append(param) # if conf['type'] == 'file': # if conf['use'] == 'agg': # files += conf['values'][:conf['values'].index(param)+1] # if conf['use'] == 'optional' and param: # files.append(param) for cmd in cmds: execcmd = cmd[:] for name, value in zip(map(lambda (k,v):k, GROUPS), execution): execcmd = execcmd.replace('$'+name, value) execcmd = execcmd.replace('$exp', '_'.join(execution)) print execcmd os.system(execcmd) # exp_string = '_'.join(exp_strings) # outname = CONF_FILE % exp_string # print command_line_options # gen_agg_file(files, outname) # new_command = BASE.replace('$conf', outname).replace('$exp', exp_string, 2).replace('$flags', ' '.join(command_line_options)) # print 'Executing %s' % new_command # os.system(new_command)
43.237288
393
0.571541
[ "Apache-2.0" ]
CoNLL-UD-2017/OpenU-NLP-Lab
scripts/cartesian_experiments.py
5,102
Python
# Copyright (c) 2020 The Regents of the University of Michigan # All rights reserved. # This software is licensed under the BSD 3-Clause License. import garnett import hoomd import hoomd.hpmc # Vertices of a cube cube_verts = [[-1, -1, -1], [-1, -1, 1], [-1, 1, 1], [-1, 1, -1], [1, -1, -1], [1, -1, 1], [1, 1, 1], [1, 1, -1]] with hoomd.context.SimulationContext(): box = hoomd.data.boxdim(L=10, dimensions=3) snapshot = hoomd.data.make_snapshot(N=4, box=box) snapshot.particles.position[:] = [ [2, 0, 0], [4, 0, 0], [0, 4, 0], [0, 0, 4], ] system = hoomd.init.read_snapshot(snapshot) mc = hoomd.hpmc.integrate.convex_polyhedron(seed=452784, d=0.2, a=0.4) mc.shape_param.set('A', vertices=cube_verts) gsd_dump = hoomd.dump.gsd('cube.gsd', period=10, group=hoomd.group.all()) gsd_dump.dump_state(mc) gsd_dump.dump_shape(mc) hoomd.run(1000) # Restore a snapshot from saved data with garnett.read('cube.gsd') as traj: snapshot2 = system.take_snapshot() traj[-1].to_hoomd_snapshot(snapshot2) with hoomd.context.SimulationContext(): # Create a HOOMD snapshot from a garnett Trajectory frame with garnett.read('cube.gsd') as traj: snapshot = traj[-1].to_hoomd_snapshot() system = hoomd.init.read_snapshot(snapshot) mc = hoomd.hpmc.integrate.convex_polyhedron(seed=452784, d=0.2, a=0.4) mc.shape_param.set('A', vertices=cube_verts) gsd_dump = hoomd.dump.gsd('cube.gsd', period=10, group=hoomd.group.all()) gsd_dump.dump_state(mc) gsd_dump.dump_shape(mc) hoomd.run(1000)
34.020833
77
0.644825
[ "BSD-3-Clause" ]
glotzerlab/garne
examples/example-hpmc.py
1,633
Python
#!/usr/bin/env python # _*_ coding:utf-8 _*_ import json import xmind import logging from xmind2testcase2021.zentao import xmind_to_zentao_csv_file from xmind2testcase2021.testlink import xmind_to_testlink_xml_file from xmind2testcase2021.utils import xmind_testcase_to_json_file from xmind2testcase2021.utils import xmind_testsuite_to_json_file from xmind2testcase2021.utils import get_xmind_testcase_list from xmind2testcase2021.utils import get_xmind_testsuite_list logging.basicConfig(level=logging.INFO) def main(): xmind_file = 'docs/xmind_testcase_template_v1.1.xmind' print('Start to convert XMind file: %s' % xmind_file) # 1、testcases import file # (1) zentao zentao_csv_file = xmind_to_zentao_csv_file(xmind_file) print('Convert XMind file to zentao csv file successfully: %s' % zentao_csv_file) # (2) testlink testlink_xml_file = xmind_to_testlink_xml_file(xmind_file) print('Convert XMind file to testlink xml file successfully: %s' % testlink_xml_file) # 2、 testcases json file # (1) testsuite testsuite_json_file = xmind_testsuite_to_json_file(xmind_file) print('Convert XMind file to testsuite json file successfully: %s' % testsuite_json_file) # (2) testcase testcase_json_file = xmind_testcase_to_json_file(xmind_file) print('Convert XMind file to testcase json file successfully: %s' % testcase_json_file) # 3、test dict/json data # (1) testsuite testsuites = get_xmind_testsuite_list(xmind_file) print('Convert XMind to testsuits dict data:\n%s' % json.dumps(testsuites, indent=2, separators=(',', ': '), ensure_ascii=False)) # (2) testcase testcases = get_xmind_testcase_list(xmind_file) print('Convert Xmind to testcases dict data:\n%s' % json.dumps(testcases, indent=4, separators=(',', ': '), ensure_ascii=False)) # (3) xmind file workbook = xmind.load(xmind_file) print('Convert XMind to Json data:\n%s' % json.dumps(workbook.getData(), indent=2, separators=(',', ': '), ensure_ascii=False)) print('Finished conversion, Congratulations!') if __name__ == '__main__': main()
39.740741
95
0.741379
[ "MIT" ]
lovpuss/xmind2testcase2021
samples.py
2,152
Python
# =============================================================================== # Copyright 2015 Jake Ross # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # =============================================================================== import os import shutil from datetime import datetime from traits.api import Bool from uncertainties import ufloat from pychron.core.helpers.datetime_tools import ISO_FORMAT_STR from pychron.core.helpers.filetools import glob_list_directory, add_extension, \ list_directory from pychron.dvc import dvc_dump, dvc_load, repository_path, list_frozen_productions from pychron.dvc.meta_object import IrradiationGeometry, Chronology, Production, cached, Gains, LoadGeometry, \ MetaObjectException from pychron.git_archive.repo_manager import GitRepoManager from pychron.paths import paths, r_mkdir from pychron.pychron_constants import INTERFERENCE_KEYS, RATIO_KEYS, DEFAULT_MONITOR_NAME, DATE_FORMAT, NULL_STR # ============= enthought library imports ======================= def irradiation_geometry(name): p = os.path.join(paths.meta_root, 'irradiation_holders', add_extension(name)) return IrradiationGeometry(p) def irradiation_geometry_holes(name): geom = irradiation_geometry(name) return geom.holes def irradiation_chronology(name, allow_null=False): p = os.path.join(paths.meta_root, name, 'chronology.txt') return Chronology(p, allow_null=allow_null) def dump_chronology(path, doses): if doses is None: doses = [] with open(path, 'w') as wfile: for p, s, e in doses: if not isinstance(s, str): s = s.strftime(ISO_FORMAT_STR) if not isinstance(s, str): s = s.strftime(ISO_FORMAT_STR) if not isinstance(p, str): p = '{:0.3f}'.format(p) line = '{},{},{}\n'.format(p, s, e) wfile.write(line) def gain_path(name): root = os.path.join(paths.meta_root, 'spectrometers') if not os.path.isdir(root): os.mkdir(root) p = os.path.join(root, add_extension('{}.gain'.format(name), '.json')) return p def get_frozen_productions(repo): prods = {} for name, path in list_frozen_productions(repo): prods[name] = Production(path) return prods def get_frozen_flux(repo, irradiation): path = repository_path(repo, '{}.json'.format(irradiation)) fd = {} if path: fd = dvc_load(path) for fi in fd.values(): fi['j'] = ufloat(*fi['j'], tag='J') return fd class MetaRepo(GitRepoManager): clear_cache = Bool def get_monitor_info(self, irrad, level): age, decay = NULL_STR, NULL_STR positions = self._get_level_positions(irrad, level) # assume all positions have same monitor_age/decay constant. Not strictly true. Potential some ambiquity but # will not be resolved now 8/26/18. if positions: position = positions[0] opt = position.get('options') if opt: age = position.get('monitor_age', NULL_STR) decayd = position.get('decay_constants') if decayd: decay = decayd.get('lambda_k_total', NULL_STR) return str(age), str(decay) def add_unstaged(self, *args, **kw): super(MetaRepo, self).add_unstaged(self.path, **kw) def save_gains(self, ms, gains_dict): p = gain_path(ms) dvc_dump(gains_dict, p) if self.add_paths(p): self.commit('Updated gains') def update_script(self, rootname, name, path_or_blob): self._update_text(os.path.join('scripts', rootname.lower()), name, path_or_blob) def update_experiment_queue(self, rootname, name, path_or_blob): self._update_text(os.path.join('experiments', rootname.lower()), name, path_or_blob) def update_level_production(self, irrad, name, prname, note=None): prname = prname.replace(' ', '_') pathname = add_extension(prname, '.json') src = os.path.join(paths.meta_root, irrad, 'productions', pathname) if os.path.isfile(src): self.update_productions(irrad, name, prname, note=note) else: self.warning_dialog('Invalid production name'.format(prname)) def update_level_monitor(self, irradiation, level, monitor_name, monitor_material, monitor_age, lambda_k): path = self.get_level_path(irradiation, level) obj = dvc_load(path) positions = self._get_level_positions(irradiation, level) options = {'monitor_name': monitor_name, 'monitor_material': monitor_material, 'monitor_age': monitor_age} decay_constants = {'lambda_k_total': lambda_k, 'lambda_k_total_error': 0} for p in positions: p['options'] = options p['decay_constants'] = decay_constants obj['positions'] = positions dvc_dump(obj, path) def add_production_to_irradiation(self, irrad, name, params, add=True, commit=False): self.debug('adding production {} to irradiation={}'.format(name, irrad)) p = os.path.join(paths.meta_root, irrad, 'productions', add_extension(name, '.json')) prod = Production(p, new=not os.path.isfile(p)) prod.update(params) prod.dump() if add: self.add(p, commit=commit) def add_production(self, irrad, name, obj, commit=False, add=True): p = self.get_production(irrad, name, force=True) p.attrs = attrs = INTERFERENCE_KEYS + RATIO_KEYS kef = lambda x: '{}_err'.format(x) if obj: def values(): return ((k, getattr(obj, k), kef(k), getattr(obj, kef(k))) for k in attrs) else: def values(): return ((k, 0, kef(k), 0) for k in attrs) for k, v, ke, e in values(): setattr(p, k, v) setattr(p, ke, e) p.dump() if add: self.add(p.path, commit=commit) def update_production(self, prod, irradiation=None): ip = self.get_production(prod.name) self.debug('saving production {}'.format(prod.name)) params = prod.get_params() for k, v in params.items(): self.debug('setting {}={}'.format(k, v)) setattr(ip, k, v) ip.note = prod.note self.add(ip.path, commit=False) self.commit('updated production {}'.format(prod.name)) def update_productions(self, irrad, level, production, note=None, add=True): p = os.path.join(paths.meta_root, irrad, 'productions.json') obj = dvc_load(p) obj['note'] = str(note) or '' if level in obj: if obj[level] != production: self.debug('setting production to irrad={}, level={}, prod={}'.format(irrad, level, production)) obj[level] = production dvc_dump(obj, p) if add: self.add(p, commit=False) else: obj[level] = production dvc_dump(obj, p) if add: self.add(p, commit=False) def set_identifier(self, irradiation, level, pos, identifier): p = self.get_level_path(irradiation, level) jd = dvc_load(p) positions = self._get_level_positions(irradiation, level) d = next((p for p in positions if p['position'] == pos), None) if d: d['identifier'] = identifier jd['positions'] = positions dvc_dump(jd, p) self.add(p, commit=False) def get_level_path(self, irrad, level): return os.path.join(paths.meta_root, irrad, '{}.json'.format(level)) def add_level(self, irrad, level, add=True): p = self.get_level_path(irrad, level) lv = dict(z=0, positions=[]) dvc_dump(lv, p) if add: self.add(p, commit=False) def add_chronology(self, irrad, doses, add=True): p = os.path.join(paths.meta_root, irrad, 'chronology.txt') dump_chronology(p, doses) if add: self.add(p, commit=False) def add_irradiation(self, name): p = os.path.join(paths.meta_root, name) if not os.path.isdir(p): os.mkdir(p) def add_position(self, irradiation, level, pos, add=True): p = self.get_level_path(irradiation, level) jd = dvc_load(p) if isinstance(jd, list): positions = jd z = 0 else: positions = jd.get('positions', []) z = jd.get('z', 0) pd = next((p for p in positions if p['position'] == pos), None) if pd is None: positions.append({'position': pos, 'decay_constants': {}}) dvc_dump({'z': z, 'positions': positions}, p) if add: self.add(p, commit=False) def add_irradiation_geometry_file(self, path): try: holder = IrradiationGeometry(path) if not holder.holes: raise BaseException except BaseException: self.warning_dialog('Invalid Irradiation Geometry file. Failed to import') return self.smart_pull() root = os.path.join(paths.meta_root, 'irradiation_holders') if not os.path.isdir(root): os.mkdir(root) name = os.path.basename(path) dest = os.path.join(root, name) shutil.copyfile(path, dest) self.add(dest, commit=False) self.commit('added irradiation geometry file {}'.format(name)) self.push() self.information_dialog('Irradiation Geometry "{}" added'.format(name)) # p = os.path.join(root, add_extension(name)) # def add_irradiation_holder(self, name, blob, commit=False, overwrite=False, add=True): # root = os.path.join(paths.meta_root, 'irradiation_holders') # if not os.path.isdir(root): # os.mkdir(root) # p = os.path.join(root, add_extension(name)) # # if not os.path.isfile(p) or overwrite: # with open(p, 'w') as wfile: # holes = list(iter_geom(blob)) # n = len(holes) # wfile.write('{},0.0175\n'.format(n)) # for idx, (x, y, r) in holes: # wfile.write('{:0.4f},{:0.4f},{:0.4f}\n'.format(x, y, r)) # if add: # self.add(p, commit=commit) def get_load_holders(self): p = os.path.join(paths.meta_root, 'load_holders') return list_directory(p, extension='.txt', remove_extension=True) def add_load_holder(self, name, path_or_txt, commit=False, add=True): p = os.path.join(paths.meta_root, 'load_holders', name) if os.path.isfile(path_or_txt): shutil.copyfile(path_or_txt, p) else: with open(p, 'w') as wfile: wfile.write(path_or_txt) if add: self.add(p, commit=commit) def update_level_z(self, irradiation, level, z): p = self.get_level_path(irradiation, level) obj = dvc_load(p) try: add = obj['z'] != z obj['z'] = z except TypeError: obj = {'z': z, 'positions': obj} add = True dvc_dump(obj, p) if add: self.add(p, commit=False) def remove_irradiation_position(self, irradiation, level, hole): p = self.get_level_path(irradiation, level) jd = dvc_load(p) if jd: if isinstance(jd, list): positions = jd z = 0 else: positions = jd['positions'] z = jd['z'] npositions = [ji for ji in positions if not ji['position'] == hole] obj = {'z': z, 'positions': npositions} dvc_dump(obj, p) self.add(p, commit=False) def new_flux_positions(self, irradiation, level, positions, add=True): p = self.get_level_path(irradiation, level) obj = {'positions': positions, 'z': 0} dvc_dump(obj, p) if add: self.add(p, commit=False) def update_fluxes(self, irradiation, level, j, e, add=True): p = self.get_level_path(irradiation, level) jd = dvc_load(p) if isinstance(jd, list): positions = jd else: positions = jd.get('positions') if positions: for ip in positions: ip['j'] = j ip['j_err'] = e dvc_dump(jd, p) if add: self.add(p, commit=False) def update_flux(self, irradiation, level, pos, identifier, j, e, mj, me, decay=None, position_jerr=None, analyses=None, options=None, add=True): if options is None: options = {} if decay is None: decay = {} if analyses is None: analyses = [] p = self.get_level_path(irradiation, level) jd = dvc_load(p) if isinstance(jd, list): positions = jd z = 0 else: positions = jd.get('positions', []) z = jd.get('z', 0) npos = {'position': pos, 'j': j, 'j_err': e, 'mean_j': mj, 'mean_j_err': me, 'position_jerr': position_jerr, 'decay_constants': decay, 'identifier': identifier, 'options': options, 'analyses': [{'uuid': ai.uuid, 'record_id': ai.record_id, 'is_omitted': ai.is_omitted()} for ai in analyses]} if positions: added = any((ji['position'] == pos for ji in positions)) npositions = [ji if ji['position'] != pos else npos for ji in positions] if not added: npositions.append(npos) else: npositions = [npos] obj = {'z': z, 'positions': npositions} dvc_dump(obj, p) if add: self.add(p, commit=False) def update_chronology(self, name, doses): p = os.path.join(paths.meta_root, name, 'chronology.txt') dump_chronology(p, doses) self.add(p, commit=False) def get_irradiation_holder_names(self): return glob_list_directory(os.path.join(paths.meta_root, 'irradiation_holders'), extension='.txt', remove_extension=True) def get_cocktail_irradiation(self): """ example cocktail.json { "chronology": "2016-06-01 17:00:00", "j": 4e-4, "j_err": 4e-9 } :return: """ p = os.path.join(paths.meta_root, 'cocktail.json') ret = dvc_load(p) nret = {} if ret: lines = ['1.0, {}, {}'.format(ret['chronology'], ret['chronology'])] c = Chronology.from_lines(lines) nret['chronology'] = c nret['flux'] = ufloat(ret['j'], ret['j_err']) return nret def get_default_productions(self): p = os.path.join(paths.meta_root, 'reactors.json') if not os.path.isfile(p): with open(p, 'w') as wfile: from pychron.file_defaults import REACTORS_DEFAULT wfile.write(REACTORS_DEFAULT) return dvc_load(p) def get_flux_positions(self, irradiation, level): positions = self._get_level_positions(irradiation, level) return positions def get_flux(self, irradiation, level, position): positions = self.get_flux_positions(irradiation, level) return self.get_flux_from_positions(position, positions) def get_flux_from_positions(self, position, positions): j, je, pe, lambda_k = 0, 0, 0, None monitor_name, monitor_material, monitor_age = DEFAULT_MONITOR_NAME, 'sanidine', ufloat(28.201, 0) if positions: pos = next((p for p in positions if p['position'] == position), None) if pos: j, je, pe = pos.get('j', 0), pos.get('j_err', 0), pos.get('position_jerr', 0) dc = pos.get('decay_constants') if dc: # this was a temporary fix and likely can be removed if isinstance(dc, float): v, e = dc, 0 else: v, e = dc.get('lambda_k_total', 0), dc.get('lambda_k_total_error', 0) lambda_k = ufloat(v, e) mon = pos.get('monitor') if mon: monitor_name = mon.get('name', DEFAULT_MONITOR_NAME) sa = mon.get('age', 28.201) se = mon.get('error', 0) monitor_age = ufloat(sa, se, tag='monitor_age') monitor_material = mon.get('material', 'sanidine') fd = {'j': ufloat(j, je, tag='J'), 'position_jerr': pe, 'lambda_k': lambda_k, 'monitor_name': monitor_name, 'monitor_material': monitor_material, 'monitor_age': monitor_age} return fd def get_gains(self, name): g = self.get_gain_obj(name) return g.gains def save_sensitivities(self, sens): ps = [] for k, v in sens.items(): root = os.path.join(paths.meta_root, 'spectrometers') p = os.path.join(root, add_extension('{}.sens'.format(k), '.json')) dvc_dump(v, p) ps.append(p) if self.add_paths(ps): self.commit('Updated sensitivity') def get_sensitivities(self): specs = {} root = os.path.join(paths.meta_root, 'spectrometers') for p in list_directory(root): if p.endswith('.sens.json'): name = p.split('.')[0] p = os.path.join(root, p) obj = dvc_load(p) for r in obj: if r['create_date']: r['create_date'] = datetime.strptime(r['create_date'], DATE_FORMAT) specs[name] = obj return specs def get_sensitivity(self, name): sens = self.get_sensitivities() spec = sens.get(name) v = 1 if spec: # get most recent sensitivity record = spec[-1] v = record.get('sensitivity', 1) return v @cached('clear_cache') def get_gain_obj(self, name, **kw): p = gain_path(name) return Gains(p) # @cached('clear_cache') def get_production(self, irrad, level, allow_null=False, **kw): path = os.path.join(paths.meta_root, irrad, 'productions.json') obj = dvc_load(path) pname = obj.get(level, '') p = os.path.join(paths.meta_root, irrad, 'productions', add_extension(pname, ext='.json')) ip = Production(p, allow_null=allow_null) # print 'new production id={}, name={}, irrad={}, level={}'.format(id(ip), pname, irrad, level) return pname, ip # @cached('clear_cache') def get_chronology(self, name, allow_null=False, **kw): chron = None try: chron = irradiation_chronology(name, allow_null=allow_null) if self.application: chron.use_irradiation_endtime = self.application.get_boolean_preference( 'pychron.arar.constants.use_irradiation_endtime', False) except MetaObjectException: if name != 'NoIrradiation': self.warning('Could not locate the irradiation chronology "{}"'.format(name)) return chron @cached('clear_cache') def get_irradiation_holder_holes(self, name, **kw): return irradiation_geometry_holes(name) @cached('clear_cache') def get_load_holder_holes(self, name, **kw): p = os.path.join(paths.meta_root, 'load_holders', add_extension(name)) holder = LoadGeometry(p) return holder.holes @property def sensitivity_path(self): return os.path.join(paths.meta_root, 'sensitivity.json') # private def _get_level_positions(self, irrad, level): p = self.get_level_path(irrad, level) obj = dvc_load(p) if isinstance(obj, list): positions = obj else: positions = obj.get('positions', []) return positions def _update_text(self, tag, name, path_or_blob): if not name: self.debug('cannot update text with no name. tag={} name={}'.format(tag, name)) return root = os.path.join(paths.meta_root, tag) if not os.path.isdir(root): r_mkdir(root) p = os.path.join(root, name) if os.path.isfile(path_or_blob): shutil.copyfile(path_or_blob, p) else: with open(p, 'w') as wfile: wfile.write(path_or_blob) self.add(p, commit=False) # ============= EOF =============================================
34.158228
116
0.564712
[ "Apache-2.0" ]
UManPychron/pychron
pychron/dvc/meta_repo.py
21,588
Python
#!/usr/bin/python import glob,re,sys,math,pyfits import numpy as np import utils if len(sys.argv) < 2: print '\nconvert basti SSP models to ez_gal fits format' print 'Run in directory with SED models for one metallicity' print 'Usage: convert_basti.py ez_gal.ascii\n' sys.exit(2) fileout = sys.argv[1] # try to extract meta data out of fileout sfh = ''; tau = ''; met = ''; imf = '' # split on _ but get rid of the extension parts = '.'.join(fileout.split('.')[:-1]).split('_') # look for sfh for (check,val) in zip(['ssp','exp'], ['SSP','Exponential']): if parts.count(check): sfh = val sfh_index = parts.index(check) break # tau? if sfh: tau = parts[sfh_index+1] if sfh == 'exp' else '' # metallicity if parts.count('z'): met = parts[parts.index('z') + 1] # imf for (check,val) in zip(['krou','salp','chab'], ['Kroupa', 'Salpeter', 'Chabrier']): if parts.count(check): imf = val break if parts.count('n'): n = parts[parts.index('n') + 1] ae = False if parts.count('ae'): ae = True # does the file with masses exist? has_masses = False mass_file = glob.glob('MLR*.txt') if len(mass_file): # read it in! print 'Loading masses from %s' % mass_file[0] data = utils.rascii(mass_file[0], silent=True) masses = data[:,10:14].sum(axis=1) has_masses = True files = glob.glob('SPEC*agb*') nages = len(files) ages = [] for (i,file) in enumerate(files): ls = [] this = [] # extract the age from the filename and convert to years m = re.search('t60*(\d+)$', file) ages.append(int(m.group(1))*1e6) # read in this file fp = open(file, 'r') for line in fp: parts = line.strip().split() ls.append(float(parts[0].strip())) this.append(float(parts[1].strip())) if i == 0: # if this is the first file, generate the data table nls = len(ls) seds = np.empty((nls,nages)) # convert to ergs/s/angstrom seds[:,i] = np.array(this)/4.3607e-33/1e10 # convert to numpy ages = np.array(ages) ls = np.array(ls)*10.0 # make sure we are sorted in age sinds = ages.argsort() ages = ages[sinds] seds = seds[:,sinds] # speed of light c = utils.convert_length(utils.c, incoming='m', outgoing='a') # convert from angstroms to hertz vs = c/ls # convert from ergs/s/A to ergs/s/Hz seds *= ls.reshape((ls.size,1))**2.0/c # and now from ergs/s/Hz to ergs/s/Hz/cm^2.0 seds /= (4.0*math.pi*utils.convert_length(10, incoming='pc', outgoing='cm')**2.0) # sort in frequency space sinds = vs.argsort() # generate fits frame with sed in it primary_hdu = pyfits.PrimaryHDU(seds[sinds,:]) primary_hdu.header.update('units', 'ergs/s/cm^2/Hz') primary_hdu.header.update('has_seds', True) primary_hdu.header.update('nfilters', 0) primary_hdu.header.update('nzfs', 0) # store meta data if sfh and met and imf: primary_hdu.header.update('has_meta', True) primary_hdu.header.update('model', 'BaSTI', comment='meta data') primary_hdu.header.update('met', met, comment='meta data') primary_hdu.header.update('imf', imf, comment='meta data') primary_hdu.header.update('sfh', sfh, comment='meta data') if sfh == 'Exponential': primary_hdu.header.update('tau', tau, comment='meta data') primary_hdu.header.update('n', n, comment='meta data') primary_hdu.header.update('ae', ae, comment='meta data') # store the list of frequencies in a table vs_hdu = pyfits.new_table(pyfits.ColDefs([pyfits.Column(name='vs', array=vs[sinds], format='D', unit='hertz')])) vs_hdu.header.update('units', 'hertz') # and the list of ages cols = [pyfits.Column(name='ages', array=ages, format='D', unit='years')] # and masses if has_masses: cols.append(pyfits.Column(name='masses', array=masses, format='D', unit='m_sun')) ages_hdu = pyfits.new_table(pyfits.ColDefs(cols)) if has_masses: ages_hdu.header.update('has_mass', True) # make the fits file in memory hdulist = pyfits.HDUList([primary_hdu,vs_hdu,ages_hdu]) # and write it out hdulist.writeto(fileout, clobber=True)
30.545455
112
0.657738
[ "MIT" ]
dpgettings/ezgal
ezgal/scripts/convert_basti.py
4,032
Python
import path4gmns as pg from time import time def test_download_sample_data_sets(): pg.download_sample_data_sets() def test_find_shortest_path(): load_demand = False network = pg.read_network(load_demand) print('\nshortest path (node id) from node 1 to node 2, ' +network.find_shortest_path(1, 2)) print('\nshortest path (link id) from node 1 to node 2, ' +network.find_shortest_path(1, 2, seq_type='link')) # retrieve the shortest path under a specific mode (which must be defined # in settings.yaml) print('\nshortest path (node id) from node 1 to node 2, ' +network.find_shortest_path(1, 2, mode='w')) print('\nshortest path (link id) from node 1 to node 2, ' +network.find_shortest_path(1, 2, mode='w', seq_type='link')) def test_find_shortest_path_for_agents(): network = pg.read_network() st = time() # find agent paths under a specific mode defined in settings.yaml, # say, w (i.e., walk) # network.find_path_for_agents('w') or network.find_path_for_agents('walk') network.find_path_for_agents() print('\nprocessing time of finding shortest paths for all agents: ' f'{time()-st:.2f} s') agent_id = 300 print('\norigin node id of agent is ' f'{network.get_agent_orig_node_id(agent_id)}') print('destination node id of agent is ' f'{network.get_agent_dest_node_id(agent_id)}') print('shortest path (node id) of agent, ' f'{network.get_agent_node_path(agent_id)}') print('shortest path (link id) of agent, ' f'{network.get_agent_link_path(agent_id)}') agent_id = 1000 print('\norigin node id of agent is ' f'{network.get_agent_orig_node_id(agent_id)}') print('destination node id of agent is ' f'{network.get_agent_dest_node_id(agent_id)}') print('shortest path (node id) of agent, ' f'{network.get_agent_node_path(agent_id)}') print('shortest path (link id) of agent, ' f'{network.get_agent_link_path(agent_id)}') # output unique agent paths to a csv file # if you do not want to include geometry info in the output file, # you can do pg.output_agent_paths(network, False) pg.output_agent_paths(network) def test_column_generation_py(): network = pg.read_network() print('\nstart column generation\n') st = time() iter_num = 20 column_update_num = 20 # pg.perform_network_assignment(assignment_mode=1, assignment_num, # column_update_num, network) # has been deprecated starting from v0.7.2, and will be removed later. pg.perform_column_generation(iter_num, column_update_num, network) print(f'processing time of column generation: {time()-st:.2f} s' f' for {iter_num} assignment iterations and ' f'{column_update_num} iterations in column generation') # if you do not want to include geometry info in the output file, # use pg.output_columns(network, False) pg.output_columns(network) pg.output_link_performance(network) def test_column_generation_dtalite(): """ validation using DTALite """ print('start column generation using DTALite') st = time() mode = 1 iter_num = 20 column_update_num = 20 pg.perform_network_assignment_DTALite(mode, iter_num, column_update_num) print(f'processing time of column generation: {time()-st:.2f} s' f' for {iter_num} assignment iterations and ' f'{column_update_num} iterations in column generation') print('\npath finding results can be found in agent.csv') def test_loading_columns(): network = pg.read_network() print('\nstart loading columns\n') st = time() pg.load_columns(network) print(f'processing time of loading columns: {time()-st:.2f} s') print('\nstart column generation\n') st = time() iter_num = 0 column_update_num = 10 # pg.perform_network_assignment(assignment_mode=1, assignment_num, # column_update_num, network) # has been deprecated starting from v0.7.2, and will be removed in later. pg.perform_column_generation(iter_num, column_update_num, network) print(f'processing time of column generation: {time()-st:.2f} s' f' for {iter_num} assignment iterations and ' f'{column_update_num} iterations in column generation') pg.output_columns(network) pg.output_link_performance(network) def test_accessibility(): load_demand = False network = pg.read_network(load_demand) print('\nstart accessibility evaluation\n') st = time() # multimodal accessibility evaluation pg.evaluate_accessibility(network) # accessibility evalutation for a target mode # pg.evaluate_accessibility(network, multimodal=False, mode='p') print('complete accessibility evaluation.\n') print(f'processing time of accessibility evaluation: {time()-st:.2f} s') # get accessible nodes and links starting from node 1 with a 5-minitue # time window for the default mode auto (i.e., 'p') network.get_accessible_nodes(1, 5) network.get_accessible_links(1, 5) # get accessible nodes and links starting from node 1 with a 15-minitue # time window for mode walk (i.e., 'w') network.get_accessible_nodes(1, 15, 'w') network.get_accessible_links(1, 15, 'w') def demo_mode(mode): print(f'the selected mode is {mode}\n') if mode == 0: # option 0: download the sample data set from GitHub test_download_sample_data_sets() elif mode == 1: # option 1: find shortest path between O and D on Chicago network test_find_shortest_path() elif mode == 2: # option 2: find shortest paths for all agents on Chicago network test_find_shortest_path_for_agents() elif mode == 3: # option 3: perform column generation using Python engine # on Chicago network test_column_generation_py() elif mode == 4: # option 4: perform column generation using DTALite on Chicago network test_column_generation_dtalite() elif mode == 5: # option 5: load columns generated from option 3 or 4 # on Chicago network test_loading_columns() else: # option 6: evaluate multimodal accessibility on Chicago network test_accessibility() if __name__=="__main__": demo_mode(6)
34.529412
79
0.678179
[ "Apache-2.0" ]
FangTang999/Path4GMNS
tests/demo.py
6,457
Python
"""Define family of algorithms and make them interchangeable The algorithms vary independetly from the clients using it. This class implements to IngestorInterface and dynamically invoke a suitable algorithm (strategy.algorithm()), through parse() abstract method. i.e. it is independent of how an algorithm is implemented. That means, the behavior can be changed without breaking the classes that use it, and the classes can switch between behaviors by changing the specific implementation used without requiring any significant code changes. """ from typing import List from .IngestorInterface import IngestorInterface from .QuoteModel import QuoteModel from .CSVImporter import CSVImporter from .PDFImporter import PDFImporter from .DocxImporter import DocxImporter from .TXTImporter import TXTImporter class Ingestor(IngestorInterface): """Define family of algorithms & dynamically invoke the one of interest""" importer_classes = [CSVImporter, PDFImporter, DocxImporter, TXTImporter] @classmethod def parse(cls, path: str) -> List[QuoteModel]: for importer in cls.importer_classes: if importer.can_ingest(path): return importer.parse(path)
34.472222
79
0.759871
[ "MIT" ]
1ayham1/Data_Science-DynamicMemes_-generator
QuoteEngine/Ingestor.py
1,241
Python
from infoblox_netmri.utils.utils import locate, to_snake from infoblox_netmri.api.exceptions.netmri_exceptions import NotImplementedException class Broker(object): """ Base class for broker instances, provides methods for API requests. And return responces wrapped with specific class :param client: InfobloxNetMRI client """ controller = None def __init__(self, client): self.client = client def api_request(self, method_name, params): """ Make api request and return single wrapped object :param method_name: name of API methods :param params: dict-wrapped params for specific API call """ data = self.client.api_request(method_name, params) if isinstance(data, dict) and len(data) > 1: for x in data.keys(): data[x] = self._get_return_object_type(data.get(x)) return data class_name = to_snake(self.__class__.__name__.replace("Broker", "")) if class_name in data: result_name = class_name else: result_name = method_name.split('/')[-1] if result_name not in data: return data return self._get_return_object_type(data.get(result_name)) # See NETMRI-31545 def api_mixed_request(self, method_name, params): """ Make api request and download a file and return JSON response or request status dictionary :param method_name: name of API methods :param params: dict-wrapped params for specific API call """ data = self.client.api_request(method_name, params, downloadable=True) class_name = to_snake(self.__class__.__name__.replace("Broker", "")) if class_name in data: result_name = class_name else: result_name = method_name.split('/')[-1] if result_name not in data: return data return self._get_return_object_type(data.get(result_name)) def api_list_request(self, method_name, params): """ Make api request and return list of wrapped objects :param method_name: name of API methods :param params: dict-wrapped params for specific API call """ data = self.client.api_request(method_name, params) if not data: return None try: return [self._get_return_object_type(x) for x in data[self.controller]] except KeyError: print("Sorry, this method will be implemented in the\ future versions of NetMRI") raise NotImplementedException(self.controller, method_name) def _get_method_fullname(self, method): """ Returns full API method name using controller name **Input** :param method: method name :return: full API path """ return "{}/{}".format(self.controller, method) def _get_return_object_type(self, data): """ Returns wrapped response which inherits from RemoteModel class :param data: API responce data :return: RemoteModel child class """ if not data or type(data) != dict: return data class_name = data.get("_class") obj_class = locate(self._get_remote_class_name(class_name)) return obj_class(data, self.client) def _get_remote_class_name(self, name): """ Generate full path to specific RemoteModel instance :param name: name of model :return: full path for model """ return "infoblox_netmri.api.remote.models.{pckg}_remote.{name}Remote".format( pckg=to_snake(name), name=name )
34.172727
85
0.623304
[ "Apache-2.0" ]
IngmarVG-IB/infoblox-netmri
infoblox_netmri/api/broker/broker.py
3,759
Python
# Copyright (c) 2010-2012 OpenStack Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. from six.moves.urllib.parse import unquote from swift import gettext_ as _ from swift.account.utils import account_listing_response from swift.common.middleware.acl import parse_acl, format_acl from swift.common.utils import public from swift.common.constraints import check_metadata from swift.common.http import HTTP_NOT_FOUND, HTTP_GONE from swift.proxy.controllers.base import Controller, clear_info_cache, \ set_info_cache from swift.common.middleware import listing_formats from swift.common.swob import HTTPBadRequest, HTTPMethodNotAllowed from swift.common.request_helpers import get_sys_meta_prefix class AccountController(Controller): """WSGI controller for account requests""" server_type = 'Account' def __init__(self, app, account_name, **kwargs): super(AccountController, self).__init__(app) self.account_name = unquote(account_name) if not self.app.allow_account_management: self.allowed_methods.remove('PUT') self.allowed_methods.remove('DELETE') def add_acls_from_sys_metadata(self, resp): if resp.environ['REQUEST_METHOD'] in ('HEAD', 'GET', 'PUT', 'POST'): prefix = get_sys_meta_prefix('account') + 'core-' name = 'access-control' (extname, intname) = ('x-account-' + name, prefix + name) acl_dict = parse_acl(version=2, data=resp.headers.pop(intname)) if acl_dict: # treat empty dict as empty header resp.headers[extname] = format_acl( version=2, acl_dict=acl_dict) def GETorHEAD(self, req): """Handler for HTTP GET/HEAD requests.""" length_limit = self.get_name_length_limit() if len(self.account_name) > length_limit: resp = HTTPBadRequest(request=req) resp.body = b'Account name length of %d longer than %d' % \ (len(self.account_name), length_limit) # Don't cache this. We know the account doesn't exist because # the name is bad; we don't need to cache that because it's # really cheap to recompute. return resp partition = self.app.account_ring.get_part(self.account_name) concurrency = self.app.account_ring.replica_count \ if self.app.get_policy_options(None).concurrent_gets else 1 node_iter = self.app.iter_nodes(self.app.account_ring, partition) params = req.params params['format'] = 'json' req.params = params resp = self.GETorHEAD_base( req, _('Account'), node_iter, partition, req.swift_entity_path.rstrip('/'), concurrency) if resp.status_int == HTTP_NOT_FOUND: if resp.headers.get('X-Account-Status', '').lower() == 'deleted': resp.status = HTTP_GONE elif self.app.account_autocreate: # This is kind of a lie; we pretend like the account is # there, but it's not. We'll create it as soon as something # tries to write to it, but we don't need databases on disk # to tell us that nothing's there. # # We set a header so that certain consumers can tell it's a # fake listing. The important one is the PUT of a container # to an autocreate account; the proxy checks to see if the # account exists before actually performing the PUT and # creates the account if necessary. If we feed it a perfect # lie, it'll just try to create the container without # creating the account, and that'll fail. resp = account_listing_response( self.account_name, req, listing_formats.get_listing_content_type(req)) resp.headers['X-Backend-Fake-Account-Listing'] = 'yes' # Cache this. We just made a request to a storage node and got # up-to-date information for the account. resp.headers['X-Backend-Recheck-Account-Existence'] = str( self.app.recheck_account_existence) set_info_cache(self.app, req.environ, self.account_name, None, resp) if req.environ.get('swift_owner'): self.add_acls_from_sys_metadata(resp) else: for header in self.app.swift_owner_headers: resp.headers.pop(header, None) return resp @public def PUT(self, req): """HTTP PUT request handler.""" if not self.app.allow_account_management: return HTTPMethodNotAllowed( request=req, headers={'Allow': ', '.join(self.allowed_methods)}) error_response = check_metadata(req, 'account') if error_response: return error_response length_limit = self.get_name_length_limit() if len(self.account_name) > length_limit: resp = HTTPBadRequest(request=req) resp.body = b'Account name length of %d longer than %d' % \ (len(self.account_name), length_limit) return resp account_partition, accounts = \ self.app.account_ring.get_nodes(self.account_name) headers = self.generate_request_headers(req, transfer=True) clear_info_cache(self.app, req.environ, self.account_name) resp = self.make_requests( req, self.app.account_ring, account_partition, 'PUT', req.swift_entity_path, [headers] * len(accounts)) self.add_acls_from_sys_metadata(resp) return resp @public def POST(self, req): """HTTP POST request handler.""" length_limit = self.get_name_length_limit() if len(self.account_name) > length_limit: resp = HTTPBadRequest(request=req) resp.body = b'Account name length of %d longer than %d' % \ (len(self.account_name), length_limit) return resp error_response = check_metadata(req, 'account') if error_response: return error_response account_partition, accounts = \ self.app.account_ring.get_nodes(self.account_name) headers = self.generate_request_headers(req, transfer=True) clear_info_cache(self.app, req.environ, self.account_name) resp = self.make_requests( req, self.app.account_ring, account_partition, 'POST', req.swift_entity_path, [headers] * len(accounts)) if resp.status_int == HTTP_NOT_FOUND and self.app.account_autocreate: self.autocreate_account(req, self.account_name) resp = self.make_requests( req, self.app.account_ring, account_partition, 'POST', req.swift_entity_path, [headers] * len(accounts)) self.add_acls_from_sys_metadata(resp) return resp @public def DELETE(self, req): """HTTP DELETE request handler.""" # Extra safety in case someone typos a query string for an # account-level DELETE request that was really meant to be caught by # some middleware. if req.query_string: return HTTPBadRequest(request=req) if not self.app.allow_account_management: return HTTPMethodNotAllowed( request=req, headers={'Allow': ', '.join(self.allowed_methods)}) account_partition, accounts = \ self.app.account_ring.get_nodes(self.account_name) headers = self.generate_request_headers(req) clear_info_cache(self.app, req.environ, self.account_name) resp = self.make_requests( req, self.app.account_ring, account_partition, 'DELETE', req.swift_entity_path, [headers] * len(accounts)) return resp
46.175824
77
0.642789
[ "Apache-2.0" ]
AymericDu/swift
swift/proxy/controllers/account.py
8,404
Python
""" ASGI config for backend project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.2/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'backend.settings') application = get_asgi_application()
23.941176
79
0.7543
[ "MIT" ]
CSXL/csxlabs.org
backend/backend/asgi.py
407
Python
from thriftpy2.thrift import TType class ThriftError(Exception): """ Base Exception defined by `aiothrift` """ class ConnectionClosedError(ThriftError): """Raised if connection to server was closed.""" class PoolClosedError(ThriftError): """Raised when operating on a closed thrift connection pool""" class ThriftAppError(ThriftError): """Application level thrift exceptions.""" thrift_spec = { 1: (TType.STRING, 'message', False), 2: (TType.I32, 'type', False), } UNKNOWN = 0 UNKNOWN_METHOD = 1 INVALID_MESSAGE_TYPE = 2 WRONG_METHOD_NAME = 3 BAD_SEQUENCE_ID = 4 MISSING_RESULT = 5 INTERNAL_ERROR = 6 PROTOCOL_ERROR = 7 def __init__(self, type=UNKNOWN, message=None): super().__init__() self.type = type self.message = message def __str__(self): if self.message: return self.message if self.type == self.UNKNOWN_METHOD: return 'Unknown method' elif self.type == self.INVALID_MESSAGE_TYPE: return 'Invalid message type' elif self.type == self.WRONG_METHOD_NAME: return 'Wrong method name' elif self.type == self.BAD_SEQUENCE_ID: return 'Bad sequence ID' elif self.type == self.MISSING_RESULT: return 'Missing result' else: return 'Default (unknown) TApplicationException'
26.444444
66
0.633053
[ "MIT" ]
achimnol/aiothrift
aiothrift/errors.py
1,428
Python
""" From https://zenodo.org/record/3539363 """ import re def section_text(text): """Splits text into sections. Assumes text is in a radiology report format, e.g.: COMPARISON: Chest radiograph dated XYZ. IMPRESSION: ABC... Given text like this, it will output text from each section, where the section type is determined by the all caps header. Returns a three element tuple: sections - list containing the text of each section section_names - a normalized version of the section name section_idx - list of start indices of the text in the section """ p_section = re.compile( r'\n ([A-Z ()/,-]+):\s', re.DOTALL) sections = list() section_names = list() section_idx = list() idx = 0 s = p_section.search(text, idx) if s: sections.append(text[0:s.start(1)]) section_names.append('preamble') section_idx.append(0) while s: current_section = s.group(1).lower() # get the start of the text for this section idx_start = s.end() # skip past the first newline to avoid some bad parses idx_skip = text[idx_start:].find('\n') if idx_skip == -1: idx_skip = 0 s = p_section.search(text, idx_start + idx_skip) if s is None: idx_end = len(text) else: idx_end = s.start() sections.append(text[idx_start:idx_end]) section_names.append(current_section) section_idx.append(idx_start) else: sections.append(text) section_names.append('full report') section_idx.append(0) section_names = normalize_section_names(section_names) # remove empty sections # this handles when the report starts with a finding-like statement # .. but this statement is not a section, more like a report title # e.g. p10/p10103318/s57408307 # CHEST, PA LATERAL: # # INDICATION: This is the actual section .... # it also helps when there are multiple findings sections # usually one is empty for i in reversed(range(len(section_names))): if section_names[i] in ('impression', 'findings'): if sections[i].strip() == '': sections.pop(i) section_names.pop(i) section_idx.pop(i) if ('impression' not in section_names) & ('findings' not in section_names): # create a new section for the final paragraph if '\n \n' in sections[-1]: sections.append('\n \n'.join(sections[-1].split('\n \n')[1:])) sections[-2] = sections[-2].split('\n \n')[0] section_names.append('last_paragraph') section_idx.append(section_idx[-1] + len(sections[-2])) return sections, section_names, section_idx def normalize_section_names(section_names): # first, lower case all section_names = [s.lower().strip() for s in section_names] frequent_sections = { "preamble": "preamble", # 227885 "impression": "impression", # 187759 "comparison": "comparison", # 154647 "indication": "indication", # 153730 "findings": "findings", # 149842 "examination": "examination", # 94094 "technique": "technique", # 81402 "history": "history", # 45624 "comparisons": "comparison", # 8686 "clinical history": "history", # 7121 "reason for examination": "indication", # 5845 "notification": "notification", # 5749 "reason for exam": "indication", # 4430 "clinical information": "history", # 4024 "exam": "examination", # 3907 "clinical indication": "indication", # 1945 "conclusion": "impression", # 1802 "chest, two views": "findings", # 1735 "recommendation(s)": "recommendations", # 1700 "type of examination": "examination", # 1678 "reference exam": "comparison", # 347 "patient history": "history", # 251 "addendum": "addendum", # 183 "comparison exam": "comparison", # 163 "date": "date", # 108 "comment": "comment", # 88 "findings and impression": "impression", # 87 "wet read": "wet read", # 83 "comparison film": "comparison", # 79 "recommendations": "recommendations", # 72 "findings/impression": "impression", # 47 "pfi": "history", 'recommendation': 'recommendations', 'wetread': 'wet read', 'ndication': 'impression', # 1 'impresson': 'impression', # 2 'imprression': 'impression', # 1 'imoression': 'impression', # 1 'impressoin': 'impression', # 1 'imprssion': 'impression', # 1 'impresion': 'impression', # 1 'imperssion': 'impression', # 1 'mpression': 'impression', # 1 'impession': 'impression', # 3 'findings/ impression': 'impression', # ,1 'finding': 'findings', # ,8 'findins': 'findings', 'findindgs': 'findings', # ,1 'findgings': 'findings', # ,1 'findngs': 'findings', # ,1 'findnings': 'findings', # ,1 'finidngs': 'findings', # ,2 'idication': 'indication', # ,1 'reference findings': 'findings', # ,1 'comparision': 'comparison', # ,2 'comparsion': 'comparison', # ,1 'comparrison': 'comparison', # ,1 'comparisions': 'comparison' # ,1 } p_findings = [ 'chest', 'portable', 'pa and lateral', 'lateral and pa', 'ap and lateral', 'lateral and ap', 'frontal and', 'two views', 'frontal view', 'pa view', 'ap view', 'one view', 'lateral view', 'bone window', 'frontal upright', 'frontal semi-upright', 'ribs', 'pa and lat' ] p_findings = re.compile('({})'.format('|'.join(p_findings))) main_sections = [ 'impression', 'findings', 'history', 'comparison', 'addendum' ] for i, s in enumerate(section_names): if s in frequent_sections: section_names[i] = frequent_sections[s] continue main_flag = False for m in main_sections: if m in s: section_names[i] = m main_flag = True break if main_flag: continue m = p_findings.search(s) if m is not None: section_names[i] = 'findings' # if it looks like it is describing the entire study # it's equivalent to findings # group similar phrasings for impression return section_names def custom_mimic_cxr_rules(): custom_section_names = { 's50913680': 'recommendations', # files/p11/p11851243/s50913680.txt 's59363654': 'examination', # files/p12/p12128253/s59363654.txt 's59279892': 'technique', # files/p13/p13150370/s59279892.txt 's59768032': 'recommendations', # files/p13/p13249077/s59768032.txt 's57936451': 'indication', # files/p14/p14325424/s57936451.txt 's50058765': 'indication', # files/p14/p14731346/s50058765.txt 's53356173': 'examination', # files/p15/p15898350/s53356173.txt 's53202765': 'technique', # files/p16/p16076182/s53202765.txt 's50808053': 'technique', # files/p16/p16631485/s50808053.txt 's51966317': 'indication', # files/p10/p10817099/s51966317.txt 's50743547': 'examination', # files/p11/p11388341/s50743547.txt 's56451190': 'note', # files/p11/p11842879/s56451190.txt 's59067458': 'recommendations', # files/p11/p11984647/s59067458.txt 's59215320': 'examination', # files/p12/p12408912/s59215320.txt 's55124749': 'indication', # files/p12/p12428492/s55124749.txt 's54365831': 'indication', # files/p13/p13876470/s54365831.txt 's59087630': 'recommendations', # files/p14/p14267880/s59087630.txt 's58157373': 'recommendations', # files/p15/p15032392/s58157373.txt 's56482935': 'recommendations', # files/p15/p15388421/s56482935.txt 's58375018': 'recommendations', # files/p15/p15505556/s58375018.txt 's54654948': 'indication', # files/p17/p17090359/s54654948.txt 's55157853': 'examination', # files/p18/p18975498/s55157853.txt 's51491012': 'history', # files/p19/p19314266/s51491012.txt } custom_indices = { 's50525523': [201, 349], # files/p10/p10602608/s50525523.txt 's57564132': [233, 554], # files/p10/p10637168/s57564132.txt 's59982525': [313, 717], # files/p11/p11989982/s59982525.txt 's53488209': [149, 475], # files/p12/p12458657/s53488209.txt 's54875119': [234, 988], # files/p13/p13687044/s54875119.txt 's50196495': [59, 399], # files/p13/p13894879/s50196495.txt 's56579911': [59, 218], # files/p15/p15394326/s56579911.txt 's52648681': [292, 631], # files/p15/p15666238/s52648681.txt 's59889364': [172, 453], # files/p15/p15835529/s59889364.txt 's53514462': [73, 377], # files/p16/p16297706/s53514462.txt 's59505494': [59, 450], # files/p16/p16730991/s59505494.txt 's53182247': [59, 412], # files/p16/p16770442/s53182247.txt 's51410602': [47, 320], # files/p17/p17069955/s51410602.txt 's56412866': [522, 822], # files/p17/p17612000/s56412866.txt 's54986978': [59, 306], # files/p17/p17912487/s54986978.txt 's59003148': [262, 505], # files/p17/p17916384/s59003148.txt 's57150433': [61, 394], # files/p18/p18335791/s57150433.txt 's56760320': [219, 457], # files/p18/p18418794/s56760320.txt 's59562049': [158, 348], # files/p18/p18502016/s59562049.txt 's52674888': [145, 296], # files/p19/p19381919/s52674888.txt 's55258338': [192, 568], # files/p13/p13719117/s55258338.txt 's59330497': [140, 655], # files/p15/p15479218/s59330497.txt 's52119491': [179, 454], # files/p17/p17959278/s52119491.txt # below have no findings at all in the entire report 's58235663': [0, 0], # files/p11/p11573679/s58235663.txt 's50798377': [0, 0], # files/p12/p12632853/s50798377.txt 's54168089': [0, 0], # files/p14/p14463099/s54168089.txt 's53071062': [0, 0], # files/p15/p15774521/s53071062.txt 's56724958': [0, 0], # files/p16/p16175671/s56724958.txt 's54231141': [0, 0], # files/p16/p16312859/s54231141.txt 's53607029': [0, 0], # files/p17/p17603668/s53607029.txt 's52035334': [0, 0], # files/p19/p19349312/s52035334.txt } return custom_section_names, custom_indices
39.59854
79
0.589677
[ "MIT" ]
philip-mueller/lovt
src/data/datasets/mimic_cxr/section_parser.py
10,850
Python
# SVG Path specification parser import re from . import path COMMANDS = set('MmZzLlHhVvCcSsQqTtAa') UPPERCASE = set('MZLHVCSQTA') COMMAND_RE = re.compile("([MmZzLlHhVvCcSsQqTtAa])") FLOAT_RE = re.compile("[-+]?[0-9]*\.?[0-9]+(?:[eE][-+]?[0-9]+)?") def _tokenize_path(pathdef): for x in COMMAND_RE.split(pathdef): if x in COMMANDS: yield x for token in FLOAT_RE.findall(x): yield token def parse_path(pathdef, current_pos=0j): # In the SVG specs, initial movetos are absolute, even if # specified as 'm'. This is the default behavior here as well. # But if you pass in a current_pos variable, the initial moveto # will be relative to that current_pos. This is useful. elements = list(_tokenize_path(pathdef)) # Reverse for easy use of .pop() elements.reverse() segments = path.Path() start_pos = None command = None while elements: if elements[-1] in COMMANDS: # New command. last_command = command # Used by S and T command = elements.pop() absolute = command in UPPERCASE command = command.upper() else: # If this element starts with numbers, it is an implicit command # and we don't change the command. Check that it's allowed: if command is None: raise ValueError("Unallowed implicit command in %s, position %s" % ( pathdef, len(pathdef.split()) - len(elements))) if command == 'M': # Moveto command. x = elements.pop() y = elements.pop() pos = float(x) + float(y) * 1j if absolute: current_pos = pos else: current_pos += pos # when M is called, reset start_pos # This behavior of Z is defined in svg spec: # http://www.w3.org/TR/SVG/paths.html#PathDataClosePathCommand start_pos = current_pos # Implicit moveto commands are treated as lineto commands. # So we set command to lineto here, in case there are # further implicit commands after this moveto. command = 'L' elif command == 'Z': # Close path segments.append(path.Line(current_pos, start_pos)) segments.closed = True current_pos = start_pos start_pos = None command = None # You can't have implicit commands after closing. elif command == 'L': x = elements.pop() y = elements.pop() pos = float(x) + float(y) * 1j if not absolute: pos += current_pos segments.append(path.Line(current_pos, pos)) current_pos = pos elif command == 'H': x = elements.pop() pos = float(x) + current_pos.imag * 1j if not absolute: pos += current_pos.real segments.append(path.Line(current_pos, pos)) current_pos = pos elif command == 'V': y = elements.pop() pos = current_pos.real + float(y) * 1j if not absolute: pos += current_pos.imag * 1j segments.append(path.Line(current_pos, pos)) current_pos = pos elif command == 'C': try: control1 = float(elements.pop()) + float(elements.pop()) * 1j control2 = float(elements.pop()) + float(elements.pop()) * 1j end = float(elements.pop()) + float(elements.pop()) * 1j except ValueError: print elements if not absolute: control1 += current_pos control2 += current_pos end += current_pos segments.append(path.CubicBezier(current_pos, control1, control2, end)) current_pos = end elif command == 'S': # Smooth curve. First control point is the "reflection" of # the second control point in the previous path. if last_command not in 'CS': # If there is no previous command or if the previous command # was not an C, c, S or s, assume the first control point is # coincident with the current point. control1 = current_pos else: # The first control point is assumed to be the reflection of # the second control point on the previous command relative # to the current point. control1 = current_pos + current_pos - segments[-1].control2 control2 = float(elements.pop()) + float(elements.pop()) * 1j end = float(elements.pop()) + float(elements.pop()) * 1j if not absolute: control2 += current_pos end += current_pos segments.append(path.CubicBezier(current_pos, control1, control2, end)) current_pos = end elif command == 'Q': control = float(elements.pop()) + float(elements.pop()) * 1j end = float(elements.pop()) + float(elements.pop()) * 1j if not absolute: control += current_pos end += current_pos segments.append(path.QuadraticBezier(current_pos, control, end)) current_pos = end elif command == 'T': # Smooth curve. Control point is the "reflection" of # the second control point in the previous path. if last_command not in 'QT': # If there is no previous command or if the previous command # was not an Q, q, T or t, assume the first control point is # coincident with the current point. control = current_pos else: # The control point is assumed to be the reflection of # the control point on the previous command relative # to the current point. control = current_pos + current_pos - segments[-1].control end = float(elements.pop()) + float(elements.pop()) * 1j if not absolute: end += current_pos segments.append(path.QuadraticBezier(current_pos, control, end)) current_pos = end elif command == 'A': radius = float(elements.pop()) + float(elements.pop()) * 1j rotation = float(elements.pop()) arc = float(elements.pop()) sweep = float(elements.pop()) end = float(elements.pop()) + float(elements.pop()) * 1j if not absolute: end += current_pos segments.append(path.Arc(current_pos, radius, rotation, arc, sweep, end)) current_pos = end return segments
36.188482
85
0.54702
[ "MIT" ]
judithfan/sketch-rnn
svg/path/parser.py
6,912
Python
from circularImportA import a def f(): print(a) b = 2
8.571429
29
0.633333
[ "MIT" ]
Daniel-Chin/mini-Python
experiments/circularImportB.py
60
Python
from ._visible import VisibleValidator from ._valuesuffix import ValuesuffixValidator from ._valueformat import ValueformatValidator from ._uid import UidValidator from ._textfont import TextfontValidator from ._stream import StreamValidator from ._showlegend import ShowlegendValidator from ._selectedpoints import SelectedpointsValidator from ._orientation import OrientationValidator from ._opacity import OpacityValidator from ._node import NodeValidator from ._name import NameValidator from ._link import LinkValidator from ._legendgroup import LegendgroupValidator from ._idssrc import IdssrcValidator from ._ids import IdsValidator from ._hoverlabel import HoverlabelValidator from ._hoverinfosrc import HoverinfosrcValidator from ._hoverinfo import HoverinfoValidator from ._domain import DomainValidator from ._customdatasrc import CustomdatasrcValidator from ._customdata import CustomdataValidator from ._arrangement import ArrangementValidator
39.875
52
0.879833
[ "MIT" ]
Dexter2772/bitcoin-tracker
myvenv/lib/python3.7/site-packages/plotly/validators/sankey/__init__.py
957
Python
# -*- coding: utf-8 -*- from tests.integration import TestsBase from chsdi.models.bod import Catalog from sqlalchemy.orm import scoped_session, sessionmaker from chsdi.views.catalog import create_digraph from chsdi.lib.filters import filter_by_geodata_staging class TestCatalogService(TestsBase): def test_nodes_connection(self): try: geodata_staging = self.testapp.app.registry.settings['geodata_staging'] session = scoped_session(sessionmaker()) topics = self.testapp.get('/rest/services', status=200) for t in topics.json['topics']: topic = t.get('id') query = session.query(Catalog).filter(Catalog.topic == topic)\ .order_by(Catalog.orderKey) query = filter_by_geodata_staging(query, Catalog.staging, geodata_staging) rows = query.all() if (rows): graph, meta, root_id = create_digraph(rows, 'fr') nodes = graph.nodes() if len(nodes) != len(rows): for row in rows: if row.id not in nodes: raise Exception('%s %s %s is unconnected leaf' % (topic, row.category, row.layerBodId)) finally: if session: session.close() def test_catalog_no_params(self): resp = self.testapp.get('/rest/services/blw/CatalogServer', status=200) self.assertTrue(resp.content_type == 'application/json') self.assertTrue('root' in resp.json['results']) self.assertTrue('children' in resp.json['results']['root']) self.assertTrue('selectedOpen' in resp.json['results']['root']['children'][0]) self.assertTrue('category' in resp.json['results']['root']) def test_catalog_with_callback(self): resp = self.testapp.get('/rest/services/blw/CatalogServer', params={'callback': 'cb_'}, status=200) self.assertEqual(resp.content_type, 'application/javascript') def test_catalog_existing_map_no_catalog(self): self.testapp.get('/rest/services/all/CatalogServer', status=404) def test_catalog_wrong_map(self): self.testapp.get('/rest/services/foo/CatalogServer', status=400) def test_catalog_ordering(self): resp = self.testapp.get('/rest/services/inspire/CatalogServer', params={'lang': 'en'}, status=200) self.assertEqual(resp.content_type, 'application/json') self.assertTrue('AGNES' in resp.json['results']['root']['children'][0]['children'][0]['children'][0]['label']) self.assertTrue('Geoid in CH1903' in resp.json['results']['root']['children'][0]['children'][0]['children'][1]['label']) def test_catalog_languages(self): for lang in ('de', 'fr', 'it', 'rm', 'en'): link = '/rest/services/ech/CatalogServer?lang=' + lang resp = self.testapp.get(link) self.assertEqual(resp.status_int, 200, link) def test_layersconfig_with_callback(self): resp = self.testapp.get('/rest/services/blw/MapServer/layersConfig', params={'callback': 'cb_'}, status=200) self.assertEqual(resp.content_type, 'application/javascript') def test_all_catalogs(self): def existInList(node, l): found = False for entry in l: if entry.id == node.get('id'): found = True break if not found: print node.get('id') return False if 'children' in node: for child in node.get('children'): if not existInList(child, l): return False return True from chsdi.models.bod import Catalog from sqlalchemy.orm import scoped_session, sessionmaker DBSession = scoped_session(sessionmaker()) old_staging = self.testapp.app.registry.settings['geodata_staging'] # We fix staging for next calls to prod self.testapp.app.registry.settings['geodata_staging'] = u'prod' try: topics = self.testapp.get('/rest/services', status=200) for t in topics.json['topics']: topic = t.get('id') # Get catalog catalog = self.testapp.get('/rest/services/' + topic + '/CatalogServer', status=200) # Get flat catalog table entries query = DBSession.query(Catalog).filter(Catalog.topic == topic).filter(Catalog.staging == u'prod') entries = query.all() # Check if every node in the catalog is in view_catalog of db self.assertTrue(existInList(catalog.json['results']['root'], entries)) finally: # reset staging to previous setting self.testapp.app.registry.settings['geodata_staging'] = old_staging DBSession.close() def test_catalogs_with_layersconfig(self): def existInList(node, l): if node.get('category') != 'layer': return True found = False for entry in l: if entry == node.get('layerBodId'): found = True break if not found: print node.get('layerBodId') return False if 'children' in node: for child in node.get('children'): if not existInList(child, l): return False return True from sqlalchemy.orm import scoped_session, sessionmaker DBSession = scoped_session(sessionmaker()) old_staging = self.testapp.app.registry.settings['geodata_staging'] # We fix staging for next calls to prod self.testapp.app.registry.settings['geodata_staging'] = u'prod' try: topics = self.testapp.get('/rest/services', status=200) for t in topics.json['topics']: topic = t.get('id') # Get catalog catalog = self.testapp.get('/rest/services/' + topic + '/CatalogServer', status=200) # Get LayersConfig for this topic layersconf = self.testapp.get('/rest/services/' + topic + '/MapServer/layersConfig', status=200) # Check if all layers of catalog are in LayersConfig self.assertTrue(existInList(catalog.json['results']['root'], layersconf.json), 'For Topic: ' + topic) finally: # reset staging to previous setting self.testapp.app.registry.settings['geodata_staging'] = old_staging DBSession.close()
44.072368
128
0.587252
[ "BSD-3-Clause" ]
fredj/mf-chsdi3
tests/integration/test_catalog.py
6,699
Python
# Licensed to Elasticsearch B.V. under one or more contributor # license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright # ownership. Elasticsearch B.V. licenses this file to you under # the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import typing as t from elastic_transport import ObjectApiResponse from ._base import NamespacedClient from .utils import _rewrite_parameters class TextStructureClient(NamespacedClient): @_rewrite_parameters( body_name="text_files", ) def find_structure( self, *, text_files: t.Union[t.List[t.Any], t.Tuple[t.Any, ...]], charset: t.Optional[str] = None, column_names: t.Optional[str] = None, delimiter: t.Optional[str] = None, explain: t.Optional[bool] = None, format: t.Optional[str] = None, grok_pattern: t.Optional[str] = None, has_header_row: t.Optional[bool] = None, line_merge_size_limit: t.Optional[int] = None, lines_to_sample: t.Optional[int] = None, quote: t.Optional[str] = None, should_trim_fields: t.Optional[bool] = None, timeout: t.Optional[t.Union[int, str]] = None, timestamp_field: t.Optional[str] = None, timestamp_format: t.Optional[str] = None, ) -> ObjectApiResponse[t.Any]: """ Finds the structure of a text file. The text file must contain data that is suitable to be ingested into Elasticsearch. `<https://www.elastic.co/guide/en/elasticsearch/reference/current/find-structure.html>`_ :param text_files: :param charset: The text’s character set. It must be a character set that is supported by the JVM that Elasticsearch uses. For example, UTF-8, UTF-16LE, windows-1252, or EUC-JP. If this parameter is not specified, the structure finder chooses an appropriate character set. :param column_names: If you have set format to delimited, you can specify the column names in a comma-separated list. If this parameter is not specified, the structure finder uses the column names from the header row of the text. If the text does not have a header role, columns are named "column1", "column2", "column3", etc. :param delimiter: If you have set format to delimited, you can specify the character used to delimit the values in each row. Only a single character is supported; the delimiter cannot have multiple characters. By default, the API considers the following possibilities: comma, tab, semi-colon, and pipe (|). In this default scenario, all rows must have the same number of fields for the delimited format to be detected. If you specify a delimiter, up to 10% of the rows can have a different number of columns than the first row. :param explain: If this parameter is set to true, the response includes a field named explanation, which is an array of strings that indicate how the structure finder produced its result. :param format: The high level structure of the text. Valid values are ndjson, xml, delimited, and semi_structured_text. By default, the API chooses the format. In this default scenario, all rows must have the same number of fields for a delimited format to be detected. If the format is set to delimited and the delimiter is not set, however, the API tolerates up to 5% of rows that have a different number of columns than the first row. :param grok_pattern: If you have set format to semi_structured_text, you can specify a Grok pattern that is used to extract fields from every message in the text. The name of the timestamp field in the Grok pattern must match what is specified in the timestamp_field parameter. If that parameter is not specified, the name of the timestamp field in the Grok pattern must match "timestamp". If grok_pattern is not specified, the structure finder creates a Grok pattern. :param has_header_row: If you have set format to delimited, you can use this parameter to indicate whether the column names are in the first row of the text. If this parameter is not specified, the structure finder guesses based on the similarity of the first row of the text to other rows. :param line_merge_size_limit: The maximum number of characters in a message when lines are merged to form messages while analyzing semi-structured text. If you have extremely long messages you may need to increase this, but be aware that this may lead to very long processing times if the way to group lines into messages is misdetected. :param lines_to_sample: The number of lines to include in the structural analysis, starting from the beginning of the text. The minimum is 2; If the value of this parameter is greater than the number of lines in the text, the analysis proceeds (as long as there are at least two lines in the text) for all of the lines. :param quote: If you have set format to delimited, you can specify the character used to quote the values in each row if they contain newlines or the delimiter character. Only a single character is supported. If this parameter is not specified, the default value is a double quote ("). If your delimited text format does not use quoting, a workaround is to set this argument to a character that does not appear anywhere in the sample. :param should_trim_fields: If you have set format to delimited, you can specify whether values between delimiters should have whitespace trimmed from them. If this parameter is not specified and the delimiter is pipe (|), the default value is true. Otherwise, the default value is false. :param timeout: Sets the maximum amount of time that the structure analysis make take. If the analysis is still running when the timeout expires then it will be aborted. :param timestamp_field: Optional parameter to specify the timestamp field in the file :param timestamp_format: The Java time format of the timestamp field in the text. """ if text_files is None: raise ValueError("Empty value passed for parameter 'text_files'") __path = "/_text_structure/find_structure" __query: t.Dict[str, t.Any] = {} if charset is not None: __query["charset"] = charset if column_names is not None: __query["column_names"] = column_names if delimiter is not None: __query["delimiter"] = delimiter if explain is not None: __query["explain"] = explain if format is not None: __query["format"] = format if grok_pattern is not None: __query["grok_pattern"] = grok_pattern if has_header_row is not None: __query["has_header_row"] = has_header_row if line_merge_size_limit is not None: __query["line_merge_size_limit"] = line_merge_size_limit if lines_to_sample is not None: __query["lines_to_sample"] = lines_to_sample if quote is not None: __query["quote"] = quote if should_trim_fields is not None: __query["should_trim_fields"] = should_trim_fields if timeout is not None: __query["timeout"] = timeout if timestamp_field is not None: __query["timestamp_field"] = timestamp_field if timestamp_format is not None: __query["timestamp_format"] = timestamp_format __body = text_files __headers = { "accept": "application/json", "content-type": "application/x-ndjson", } return self.perform_request( # type: ignore[return-value] "POST", __path, params=__query, headers=__headers, body=__body )
55.238994
96
0.669703
[ "Apache-2.0" ]
neubloc/elasticsearch-py
elasticsearch/_sync/client/text_structure.py
8,785
Python
""" Tests for the utils module """ import datetime import operator as op from math import ceil from types import SimpleNamespace import pytest import pytz from mitol.common.utils import ( is_near_now, has_equal_properties, first_or_none, first_matching_item, max_or_none, partition_to_lists, unique, unique_ignore_case, item_at_index_or_none, all_equal, all_unique, has_all_keys, group_into_dict, now_in_utc, filter_dict_by_key_set, chunks, get_error_response_summary, ) from ecommerce.factories import Order, ReceiptFactory from main.utils import ( get_field_names, is_empty_file, serialize_model_object, is_blank, partition_around_index, format_month_day, ) from main.test_utils import format_as_iso8601, MockResponse def test_now_in_utc(): """now_in_utc() should return the current time set to the UTC time zone""" now = now_in_utc() assert is_near_now(now) assert now.tzinfo == pytz.UTC def test_is_near_now(): """ Test is_near_now for now """ now = datetime.datetime.now(tz=pytz.UTC) assert is_near_now(now) is True later = now + datetime.timedelta(0, 6) assert is_near_now(later) is False earlier = now - datetime.timedelta(0, 6) assert is_near_now(earlier) is False def test_first_or_none(): """ Assert that first_or_none returns the first item in an iterable or None """ assert first_or_none([]) is None assert first_or_none(set()) is None assert first_or_none([1, 2, 3]) == 1 assert first_or_none(range(1, 5)) == 1 def test_first_matching_item(): """first_matching_item should return the first item where the predicate function returns true""" assert first_matching_item([1, 2, 3, 4, 5], lambda x: x % 2 == 0) == 2 assert first_matching_item([], lambda x: True) is None assert first_matching_item(["x", "y", "z"], lambda x: False) is None def test_max_or_none(): """ Assert that max_or_none returns the max of some iterable, or None if the iterable has no items """ assert max_or_none(i for i in [5, 4, 3, 2, 1]) == 5 assert max_or_none([1, 3, 5, 4, 2]) == 5 assert max_or_none([]) is None def test_unique(): """ Assert that unique() returns a generator of unique elements from a provided iterable """ assert list(unique([1, 2, 2, 3, 3, 0, 3])) == [1, 2, 3, 0] assert list(unique(("a", "b", "a", "c", "C", None))) == ["a", "b", "c", "C", None] def test_unique_ignore_case(): """ Assert that unique_ignore_case() returns a generator of unique lowercase strings from a provided iterable """ assert list(unique_ignore_case(["ABC", "def", "AbC", "DEf"])) == ["abc", "def"] def test_item_at_index_or_none(): """ Assert that item_at_index_or_none returns an item at a given index, or None if that index doesn't exist """ arr = [1, 2, 3] assert item_at_index_or_none(arr, 1) == 2 assert item_at_index_or_none(arr, 10) is None def test_all_equal(): """ Assert that all_equal returns True if all of the provided args are equal to each other """ assert all_equal(1, 1, 1) is True assert all_equal(1, 2, 1) is False assert all_equal() is True def test_all_unique(): """ Assert that all_unique returns True if all of the items in the iterable argument are unique """ assert all_unique([1, 2, 3, 4]) is True assert all_unique((1, 2, 3, 4)) is True assert all_unique([1, 2, 3, 1]) is False def test_has_all_keys(): """ Assert that has_all_keys returns True if the given dict has all of the specified keys """ d = {"a": 1, "b": 2, "c": 3} assert has_all_keys(d, ["a", "c"]) is True assert has_all_keys(d, ["a", "z"]) is False def test_is_blank(): """ Assert that is_blank returns True if the given value is None or a blank string """ assert is_blank("") is True assert is_blank(None) is True assert is_blank(0) is False assert is_blank(" ") is False assert is_blank(False) is False assert is_blank("value") is False def test_group_into_dict(): """ Assert that group_into_dict takes an iterable of items and returns a dictionary of those items grouped by generated keys """ class Car: # pylint: disable=missing-docstring def __init__(self, make, model): self.make = make self.model = model cars = [ Car(make="Honda", model="Civic"), Car(make="Honda", model="Accord"), Car(make="Ford", model="F150"), Car(make="Ford", model="Focus"), Car(make="Jeep", model="Wrangler"), ] grouped_cars = group_into_dict(cars, key_fn=op.attrgetter("make")) assert set(grouped_cars.keys()) == {"Honda", "Ford", "Jeep"} assert set(grouped_cars["Honda"]) == set(cars[0:2]) assert set(grouped_cars["Ford"]) == set(cars[2:4]) assert grouped_cars["Jeep"] == [cars[4]] nums = [1, 2, 3, 4, 5, 6] grouped_nums = group_into_dict(nums, key_fn=lambda num: (num % 2 == 0)) assert grouped_nums.keys() == {True, False} assert set(grouped_nums[True]) == {2, 4, 6} assert set(grouped_nums[False]) == {1, 3, 5} def test_filter_dict_by_key_set(): """ Test that filter_dict_by_key_set returns a dict with only the given keys """ d = {"a": 1, "b": 2, "c": 3, "d": 4} assert filter_dict_by_key_set(d, {"a", "c"}) == {"a": 1, "c": 3} assert filter_dict_by_key_set(d, {"a", "c", "nonsense"}) == {"a": 1, "c": 3} assert filter_dict_by_key_set(d, {"nonsense"}) == {} def test_partition_to_lists(): """ Assert that partition_to_lists splits an iterable into two lists according to a condition """ nums = [1, 2, 1, 3, 1, 4, 0, None, None] not_ones, ones = partition_to_lists(nums, lambda n: n == 1) assert not_ones == [2, 3, 4, 0, None, None] assert ones == [1, 1, 1] # The default predicate is the standard Python bool() function falsey, truthy = partition_to_lists(nums) assert falsey == [0, None, None] assert truthy == [1, 2, 1, 3, 1, 4] def test_partition_around_index(): """partition_around_index should split a list into two lists around an index""" assert partition_around_index([1, 2, 3, 4], 2) == ([1, 2], [4]) assert partition_around_index([1, 2, 3, 4], 0) == ([], [2, 3, 4]) assert partition_around_index([1, 2, 3, 4], 3) == ([1, 2, 3], []) with pytest.raises(ValueError): partition_around_index([1, 2, 3, 4], 4) @pytest.mark.parametrize( "content,content_type,exp_summary_content,exp_url_in_summary", [ ['{"bad": "response"}', "application/json", '{"bad": "response"}', False], ["plain text", "text/plain", "plain text", False], [ "<div>HTML content</div>", "text/html; charset=utf-8", "(HTML body ignored)", True, ], ], ) def test_get_error_response_summary( content, content_type, exp_summary_content, exp_url_in_summary ): """ get_error_response_summary should provide a summary of an error HTTP response object with the correct bits of information depending on the type of content. """ status_code = 400 url = "http://example.com" mock_response = MockResponse( status_code=status_code, content=content, content_type=content_type, url=url ) summary = get_error_response_summary(mock_response) assert f"Response - code: {status_code}" in summary assert f"content: {exp_summary_content}" in summary assert (f"url: {url}" in summary) is exp_url_in_summary @pytest.mark.django_db def test_jsonfield(settings): """ Test a model with a JSONField is handled correctly """ settings.CYBERSOURCE_SECURITY_KEY = "asdf" receipt = ReceiptFactory.create() assert serialize_model_object(receipt) == { "created_on": format_as_iso8601(receipt.created_on), "data": receipt.data, "id": receipt.id, "updated_on": format_as_iso8601(receipt.updated_on), "order": receipt.order.id, } def test_get_field_names(): """ Assert that get_field_names does not include related fields """ assert set(get_field_names(Order)) == { "user", "status", "total_price_paid", "application", "created_on", "updated_on", "payment_type", } def test_is_empty_file(): """is_empty_file should return True if the given object is None or has a blank name property""" fake_file = None assert is_empty_file(fake_file) is True fake_file = SimpleNamespace(name="") assert is_empty_file(fake_file) is True fake_file = SimpleNamespace(name="path/to/file.txt") assert is_empty_file(fake_file) is False def test_chunks(): """ test for chunks """ input_list = list(range(113)) output_list = [] for nums in chunks(input_list): output_list += nums assert output_list == input_list output_list = [] for nums in chunks(input_list, chunk_size=1): output_list += nums assert output_list == input_list output_list = [] for nums in chunks(input_list, chunk_size=124): output_list += nums assert output_list == input_list def test_chunks_iterable(): """ test that chunks works on non-list iterables too """ count = 113 input_range = range(count) chunk_output = [] for chunk in chunks(input_range, chunk_size=10): chunk_output.append(chunk) assert len(chunk_output) == ceil(113 / 10) range_list = [] for chunk in chunk_output: range_list += chunk assert range_list == list(range(count)) def test_format_month_day(): """ format_month_day should format the month and day from a datetime """ dt = datetime.datetime(year=2020, month=1, day=1, tzinfo=pytz.UTC) assert format_month_day(dt) == "Jan 1" assert format_month_day(dt, month_fmt="%b") == "Jan 1" assert format_month_day(dt, month_fmt="%B") == "January 1" def test_has_equal_properties(): """ Assert that has_equal_properties returns True if an object has equivalent properties to a given dict """ obj = SimpleNamespace(a=1, b=2, c=3) assert has_equal_properties(obj, {}) is True assert has_equal_properties(obj, dict(a=1, b=2)) is True assert has_equal_properties(obj, dict(a=1, b=2, c=3)) is True assert has_equal_properties(obj, dict(a=2)) is False assert has_equal_properties(obj, dict(d=4)) is False
30.435159
113
0.648802
[ "BSD-3-Clause" ]
mitodl/bootcamp-ecommerce
main/utils_test.py
10,561
Python
""" Test admin tools """ from io import BytesIO, TextIOWrapper import csv import six import zipfile import django from django.contrib.auth import get_user_model from django.contrib.contenttypes.models import ContentType from django.test import Client, TestCase import gdpr_assist from .gdpr_assist_tests_app.factories import ( ModelWithPrivacyMetaFactory, FirstSearchModelFactory, SecondSearchModelFactory, ) from .gdpr_assist_tests_app.models import ( FirstSearchModel, SecondSearchModel, ) model_root_url = '/admin/gdpr_assist_tests_app/modelwithprivacymeta/' tool_root_url = '/admin/gdpr_assist/personaldata/' class AdminTestCase(TestCase): def setUp(self): self.client = Client() User = get_user_model() user = User.objects.create_superuser( username='test', email='[email protected]', password='test', ) if django.VERSION <= (1, 9): # Django 1.8 support - no client.force_login self.client.login(username='test', password='test') else: # Django 1.9+ self.client.force_login(user) class TestModelAdmin(AdminTestCase): def test_changelist__anonymise_action_present(self): ModelWithPrivacyMetaFactory.create() response = self.client.get(model_root_url) self.assertContains(response, '<option value="anonymise">') def test_anonymise_action_submit__redirect_to_anonymise_view(self): obj_1 = ModelWithPrivacyMetaFactory.create() obj_2 = ModelWithPrivacyMetaFactory.create() response = self.client.post( model_root_url, { 'action': 'anonymise', '_selected_action': [obj_1.pk, obj_2.pk], }, follow=True, ) test_url = '{root_url}anonymise/?ids={pk1},{pk2}'.format( root_url=model_root_url, pk1=obj_1.pk, pk2=obj_2.pk, ) if django.VERSION <= (1, 9): # Django 1.8 support - redirects include host self.assertEqual(len(response.redirect_chain), 1) self.assertTrue(response.redirect_chain[0][0].endswith( test_url )) self.assertEqual(response.redirect_chain[0][1], 302) else: # Django 1.9+ self.assertEqual( response.redirect_chain, [(test_url, 302)], ) self.assertContains( response, '<p>Are you sure you want to anonymise the following Model With Privacy Metas:</p>', ) self.assertContains( response, '<input type="hidden" name="ids" value="{pk1},{pk2}">'.format( pk1=obj_1.pk, pk2=obj_2.pk, ), ) def test_anonymise_view_submit__redirect_to_anonymise_view(self): obj_1 = ModelWithPrivacyMetaFactory.create(anonymised=False) obj_2 = ModelWithPrivacyMetaFactory.create(anonymised=False) response = self.client.post( model_root_url + 'anonymise/', { 'ids': ','.join([str(obj_1.pk), str(obj_2.pk)]), }, follow=True, ) obj_1.refresh_from_db() obj_2.refresh_from_db() self.assertTrue(obj_1.anonymised) self.assertTrue(obj_2.anonymised) if django.VERSION <= (1, 9): # Django 1.8 support - redirects include host self.assertEqual(len(response.redirect_chain), 1) self.assertTrue(response.redirect_chain[0][0].endswith(model_root_url)) self.assertEqual(response.redirect_chain[0][1], 302) else: # Django 1.9+ self.assertEqual( response.redirect_chain, [(model_root_url, 302)], ) self.assertContains( response, '<li class="success">2 Model With Privacy Metas anonymised</li>', ) class TestAdminTool(AdminTestCase): def test_tool_is_available(self): FirstSearchModelFactory.create() response = self.client.get(tool_root_url) self.assertContains(response, '<h1>Personal Data</h1>') def test_search__returns_correct_results(self): obj_1 = FirstSearchModelFactory.create( email='[email protected]', ) FirstSearchModelFactory.create( email='[email protected]', ) response = self.client.post(tool_root_url, {'term': '[email protected]'}) self.assertContains( response, '<h2>Gdpr_Assist_Tests_App: First Search Model</h2>', ) self.assertContains( response, '<input name="obj_pk" value="{}-{}" class="action-select" type="checkbox">'.format( ContentType.objects.get_for_model(FirstSearchModel).pk, obj_1.pk, ), ) def test_anonymise__records_anonymised(self): obj_1 = FirstSearchModelFactory.create( email='[email protected]', anonymised=False, ) obj_2 = FirstSearchModelFactory.create( email='[email protected]', anonymised=False, ) content_type = ContentType.objects.get_for_model(FirstSearchModel).pk response = self.client.post( tool_root_url, { 'term': '[email protected]', 'action': gdpr_assist.admin.tool.PersonalDataSearchForm.ACTION_ANONYMISE, 'obj_pk': ['{}-{}'.format(content_type, obj_1.pk)], }, follow=True, ) obj_1.refresh_from_db() obj_2.refresh_from_db() self.assertTrue(obj_1.anonymised) self.assertFalse(obj_2.anonymised) if django.VERSION <= (1, 9): # Django 1.8 support - redirects include host self.assertEqual(len(response.redirect_chain), 1) self.assertTrue(response.redirect_chain[0][0].endswith(tool_root_url)) self.assertEqual(response.redirect_chain[0][1], 302) else: # Django 1.9+ self.assertEqual( response.redirect_chain, [(tool_root_url, 302)], ) def test_export_no_matches__reports_error(self): # Request an object we know doesn't exist self.assertEqual(FirstSearchModel.objects.count(), 0) response = self.client.post( tool_root_url, { 'term': '[email protected]', 'action': gdpr_assist.admin.tool.PersonalDataSearchForm.ACTION_EXPORT, 'obj_pk': [ '{}-1'.format( ContentType.objects.get_for_model(FirstSearchModel).pk, ), ], }, ) self.assertEqual(response.status_code, 200) self.assertContains( response, '<li class="error">No objects selected</li>', ) def test_export_matches__records_export(self): # Creating 4 records: # * One matching in FirstSearchModel so we collect multiple models # * One not matching in FirstSearchModel so we exclude ignored records # * Two in SecondSearchModel so we collect multiple records obj_1 = FirstSearchModelFactory.create( chars='test1', email='[email protected]', anonymised=False, ) obj_2 = FirstSearchModelFactory.create( chars='test2', email='[email protected]', anonymised=False, ) obj_3 = SecondSearchModelFactory.create( chars='test3', email='[email protected]', anonymised=False, ) obj_4 = SecondSearchModelFactory.create( chars='test4', email='[email protected]', anonymised=False, ) content_type_1 = ContentType.objects.get_for_model(FirstSearchModel).pk content_type_2 = ContentType.objects.get_for_model(SecondSearchModel).pk response = self.client.post( tool_root_url, { 'term': '[email protected]', 'action': gdpr_assist.admin.tool.PersonalDataSearchForm.ACTION_EXPORT, 'obj_pk': [ '{}-{}'.format(content_type_1, obj_1.pk), '{}-{}'.format(content_type_2, obj_3.pk), '{}-{}'.format(content_type_2, obj_4.pk), ], }, follow=True, ) # Check they didn't get anonymised by mistake obj_1.refresh_from_db() obj_2.refresh_from_db() obj_3.refresh_from_db() obj_4.refresh_from_db() self.assertFalse(obj_1.anonymised) self.assertFalse(obj_2.anonymised) self.assertFalse(obj_3.anonymised) self.assertFalse(obj_4.anonymised) # Download zip into memory and check it's as expected zip_data = BytesIO() zip_data.write(response.content) zip_file = zipfile.ZipFile(zip_data) self.assertEqual( sorted(zip_file.namelist()), [ 'gdpr_assist_tests_app-FirstSearchModel.csv', 'second_search.csv', ], ) if six.PY2: mode = 'rU' else: mode = 'r' with zip_file.open( 'gdpr_assist_tests_app-FirstSearchModel.csv', mode, ) as f: reader = csv.DictReader(TextIOWrapper(f)) self.assertEqual( reader.fieldnames, ['email'], ) rows = list(reader) self.assertEqual(len(rows), 1) self.assertEqual(rows[0]['email'], '[email protected]') with zip_file.open('second_search.csv', mode) as f: reader = csv.DictReader(TextIOWrapper(f)) self.assertEqual( sorted(reader.fieldnames), ['chars', 'email'], ) rows = list(reader) self.assertEqual(len(rows), 2) self.assertEqual(rows[0]['chars'], 'test3') self.assertEqual(rows[0]['email'], '[email protected]') self.assertEqual(rows[1]['chars'], 'test4') self.assertEqual(rows[1]['email'], '[email protected]')
33.171975
96
0.569796
[ "BSD-3-Clause" ]
minervaproject/django-gdpr-assist
tests/test_admin.py
10,416
Python
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """A source and a sink for reading from and writing to text files.""" # pytype: skip-file from __future__ import absolute_import import logging from builtins import object from builtins import range from functools import partial from typing import Optional from past.builtins import long from apache_beam.coders import coders from apache_beam.io import filebasedsink from apache_beam.io import filebasedsource from apache_beam.io import iobase from apache_beam.io.filebasedsource import ReadAllFiles from apache_beam.io.filesystem import CompressionTypes from apache_beam.io.iobase import Read from apache_beam.io.iobase import Write from apache_beam.transforms import PTransform from apache_beam.transforms.display import DisplayDataItem __all__ = [ 'ReadFromText', 'ReadFromTextWithFilename', 'ReadAllFromText', 'WriteToText' ] _LOGGER = logging.getLogger(__name__) class _TextSource(filebasedsource.FileBasedSource): r"""A source for reading text files. Parses a text file as newline-delimited elements. Supports newline delimiters '\n' and '\r\n. This implementation only supports reading text encoded using UTF-8 or ASCII. """ DEFAULT_READ_BUFFER_SIZE = 8192 class ReadBuffer(object): # A buffer that gives the buffered data and next position in the # buffer that should be read. def __init__(self, data, position): self._data = data self._position = position @property def data(self): return self._data @data.setter def data(self, value): assert isinstance(value, bytes) self._data = value @property def position(self): return self._position @position.setter def position(self, value): assert isinstance(value, (int, long)) if value > len(self._data): raise ValueError( 'Cannot set position to %d since it\'s larger than ' 'size of data %d.' % (value, len(self._data))) self._position = value def reset(self): self.data = b'' self.position = 0 def __init__(self, file_pattern, min_bundle_size, compression_type, strip_trailing_newlines, coder, # type: coders.Coder buffer_size=DEFAULT_READ_BUFFER_SIZE, validate=True, skip_header_lines=0, header_processor_fns=(None, None)): """Initialize a _TextSource Args: header_processor_fns (tuple): a tuple of a `header_matcher` function and a `header_processor` function. The `header_matcher` should return `True` for all lines at the start of the file that are part of the file header and `False` otherwise. These header lines will not be yielded when reading records and instead passed into `header_processor` to be handled. If `skip_header_lines` and a `header_matcher` are both provided, the value of `skip_header_lines` lines will be skipped and the header will be processed from there. Raises: ValueError: if skip_lines is negative. Please refer to documentation in class `ReadFromText` for the rest of the arguments. """ super(_TextSource, self).__init__( file_pattern, min_bundle_size, compression_type=compression_type, validate=validate) self._strip_trailing_newlines = strip_trailing_newlines self._compression_type = compression_type self._coder = coder self._buffer_size = buffer_size if skip_header_lines < 0: raise ValueError( 'Cannot skip negative number of header lines: %d' % skip_header_lines) elif skip_header_lines > 10: _LOGGER.warning( 'Skipping %d header lines. Skipping large number of header ' 'lines might significantly slow down processing.') self._skip_header_lines = skip_header_lines self._header_matcher, self._header_processor = header_processor_fns def display_data(self): parent_dd = super(_TextSource, self).display_data() parent_dd['strip_newline'] = DisplayDataItem( self._strip_trailing_newlines, label='Strip Trailing New Lines') parent_dd['buffer_size'] = DisplayDataItem( self._buffer_size, label='Buffer Size') parent_dd['coder'] = DisplayDataItem(self._coder.__class__, label='Coder') return parent_dd def read_records(self, file_name, range_tracker): start_offset = range_tracker.start_position() read_buffer = _TextSource.ReadBuffer(b'', 0) next_record_start_position = -1 def split_points_unclaimed(stop_position): return ( 0 if stop_position <= next_record_start_position else iobase.RangeTracker.SPLIT_POINTS_UNKNOWN) range_tracker.set_split_points_unclaimed_callback(split_points_unclaimed) with self.open_file(file_name) as file_to_read: position_after_processing_header_lines = ( self._process_header(file_to_read, read_buffer)) start_offset = max(start_offset, position_after_processing_header_lines) if start_offset > position_after_processing_header_lines: # Seeking to one position before the start index and ignoring the # current line. If start_position is at beginning if the line, that line # belongs to the current bundle, hence ignoring that is incorrect. # Seeking to one byte before prevents that. file_to_read.seek(start_offset - 1) read_buffer.reset() sep_bounds = self._find_separator_bounds(file_to_read, read_buffer) if not sep_bounds: # Could not find a separator after (start_offset - 1). This means that # none of the records within the file belongs to the current source. return _, sep_end = sep_bounds read_buffer.data = read_buffer.data[sep_end:] next_record_start_position = start_offset - 1 + sep_end else: next_record_start_position = position_after_processing_header_lines while range_tracker.try_claim(next_record_start_position): record, num_bytes_to_next_record = self._read_record(file_to_read, read_buffer) # For compressed text files that use an unsplittable OffsetRangeTracker # with infinity as the end position, above 'try_claim()' invocation # would pass for an empty record at the end of file that is not # followed by a new line character. Since such a record is at the last # position of a file, it should not be a part of the considered range. # We do this check to ignore such records. if len(record) == 0 and num_bytes_to_next_record < 0: # pylint: disable=len-as-condition break # Record separator must be larger than zero bytes. assert num_bytes_to_next_record != 0 if num_bytes_to_next_record > 0: next_record_start_position += num_bytes_to_next_record yield self._coder.decode(record) if num_bytes_to_next_record < 0: break def _process_header(self, file_to_read, read_buffer): # Returns a tuple containing the position in file after processing header # records and a list of decoded header lines that match # 'header_matcher'. header_lines = [] position = self._skip_lines( file_to_read, read_buffer, self._skip_header_lines) if self._skip_header_lines else 0 if self._header_matcher: while True: record, num_bytes_to_next_record = self._read_record(file_to_read, read_buffer) decoded_line = self._coder.decode(record) if not self._header_matcher(decoded_line): # We've read past the header section at this point, so go back a line. file_to_read.seek(position) read_buffer.reset() break header_lines.append(decoded_line) if num_bytes_to_next_record < 0: break position += num_bytes_to_next_record if self._header_processor: self._header_processor(header_lines) return position def _find_separator_bounds(self, file_to_read, read_buffer): # Determines the start and end positions within 'read_buffer.data' of the # next separator starting from position 'read_buffer.position'. # Currently supports following separators. # * '\n' # * '\r\n' # This method may increase the size of buffer but it will not decrease the # size of it. current_pos = read_buffer.position while True: if current_pos >= len(read_buffer.data): # Ensuring that there are enough bytes to determine if there is a '\n' # at current_pos. if not self._try_to_ensure_num_bytes_in_buffer( file_to_read, read_buffer, current_pos + 1): return # Using find() here is more efficient than a linear scan of the byte # array. next_lf = read_buffer.data.find(b'\n', current_pos) if next_lf >= 0: if next_lf > 0 and read_buffer.data[next_lf - 1:next_lf] == b'\r': # Found a '\r\n'. Accepting that as the next separator. return (next_lf - 1, next_lf + 1) else: # Found a '\n'. Accepting that as the next separator. return (next_lf, next_lf + 1) current_pos = len(read_buffer.data) def _try_to_ensure_num_bytes_in_buffer( self, file_to_read, read_buffer, num_bytes): # Tries to ensure that there are at least num_bytes bytes in the buffer. # Returns True if this can be fulfilled, returned False if this cannot be # fulfilled due to reaching EOF. while len(read_buffer.data) < num_bytes: read_data = file_to_read.read(self._buffer_size) if not read_data: return False read_buffer.data += read_data return True def _skip_lines(self, file_to_read, read_buffer, num_lines): """Skip num_lines from file_to_read, return num_lines+1 start position.""" if file_to_read.tell() > 0: file_to_read.seek(0) position = 0 for _ in range(num_lines): _, num_bytes_to_next_record = self._read_record(file_to_read, read_buffer) if num_bytes_to_next_record < 0: # We reached end of file. It is OK to just break here # because subsequent _read_record will return same result. break position += num_bytes_to_next_record return position def _read_record(self, file_to_read, read_buffer): # Returns a tuple containing the current_record and number of bytes to the # next record starting from 'read_buffer.position'. If EOF is # reached, returns a tuple containing the current record and -1. if read_buffer.position > self._buffer_size: # read_buffer is too large. Truncating and adjusting it. read_buffer.data = read_buffer.data[read_buffer.position:] read_buffer.position = 0 record_start_position_in_buffer = read_buffer.position sep_bounds = self._find_separator_bounds(file_to_read, read_buffer) read_buffer.position = sep_bounds[1] if sep_bounds else len( read_buffer.data) if not sep_bounds: # Reached EOF. Bytes up to the EOF is the next record. Returning '-1' for # the starting position of the next record. return (read_buffer.data[record_start_position_in_buffer:], -1) if self._strip_trailing_newlines: # Current record should not contain the separator. return ( read_buffer.data[record_start_position_in_buffer:sep_bounds[0]], sep_bounds[1] - record_start_position_in_buffer) else: # Current record should contain the separator. return ( read_buffer.data[record_start_position_in_buffer:sep_bounds[1]], sep_bounds[1] - record_start_position_in_buffer) class _TextSourceWithFilename(_TextSource): def read_records(self, file_name, range_tracker): records = super(_TextSourceWithFilename, self).read_records(file_name, range_tracker) for record in records: yield (file_name, record) class _TextSink(filebasedsink.FileBasedSink): """A sink to a GCS or local text file or files.""" def __init__(self, file_path_prefix, file_name_suffix='', append_trailing_newlines=True, num_shards=0, shard_name_template=None, coder=coders.ToStringCoder(), # type: coders.Coder compression_type=CompressionTypes.AUTO, header=None): """Initialize a _TextSink. Args: file_path_prefix: The file path to write to. The files written will begin with this prefix, followed by a shard identifier (see num_shards), and end in a common extension, if given by file_name_suffix. In most cases, only this argument is specified and num_shards, shard_name_template, and file_name_suffix use default values. file_name_suffix: Suffix for the files written. append_trailing_newlines: indicate whether this sink should write an additional newline char after writing each element. num_shards: The number of files (shards) used for output. If not set, the service will decide on the optimal number of shards. Constraining the number of shards is likely to reduce the performance of a pipeline. Setting this value is not recommended unless you require a specific number of output files. shard_name_template: A template string containing placeholders for the shard number and shard count. When constructing a filename for a particular shard number, the upper-case letters 'S' and 'N' are replaced with the 0-padded shard number and shard count respectively. This argument can be '' in which case it behaves as if num_shards was set to 1 and only one file will be generated. The default pattern used is '-SSSSS-of-NNNNN' if None is passed as the shard_name_template. coder: Coder used to encode each line. compression_type: Used to handle compressed output files. Typical value is CompressionTypes.AUTO, in which case the final file path's extension (as determined by file_path_prefix, file_name_suffix, num_shards and shard_name_template) will be used to detect the compression. header: String to write at beginning of file as a header. If not None and append_trailing_newlines is set, '\n' will be added. Returns: A _TextSink object usable for writing. """ super(_TextSink, self).__init__( file_path_prefix, file_name_suffix=file_name_suffix, num_shards=num_shards, shard_name_template=shard_name_template, coder=coder, mime_type='text/plain', compression_type=compression_type) self._append_trailing_newlines = append_trailing_newlines self._header = header def open(self, temp_path): file_handle = super(_TextSink, self).open(temp_path) if self._header is not None: file_handle.write(coders.ToStringCoder().encode(self._header)) if self._append_trailing_newlines: file_handle.write(b'\n') return file_handle def display_data(self): dd_parent = super(_TextSink, self).display_data() dd_parent['append_newline'] = DisplayDataItem( self._append_trailing_newlines, label='Append Trailing New Lines') return dd_parent def write_encoded_record(self, file_handle, encoded_value): """Writes a single encoded record.""" file_handle.write(encoded_value) if self._append_trailing_newlines: file_handle.write(b'\n') def _create_text_source( file_pattern=None, min_bundle_size=None, compression_type=None, strip_trailing_newlines=None, coder=None, skip_header_lines=None): return _TextSource( file_pattern=file_pattern, min_bundle_size=min_bundle_size, compression_type=compression_type, strip_trailing_newlines=strip_trailing_newlines, coder=coder, validate=False, skip_header_lines=skip_header_lines) class ReadAllFromText(PTransform): """A ``PTransform`` for reading a ``PCollection`` of text files. Reads a ``PCollection`` of text files or file patterns and and produces a ``PCollection`` of strings. Parses a text file as newline-delimited elements, by default assuming UTF-8 encoding. Supports newline delimiters '\\n' and '\\r\\n'. This implementation only supports reading text encoded using UTF-8 or ASCII. This does not support other encodings such as UTF-16 or UTF-32. """ DEFAULT_DESIRED_BUNDLE_SIZE = 64 * 1024 * 1024 # 64MB def __init__( self, min_bundle_size=0, desired_bundle_size=DEFAULT_DESIRED_BUNDLE_SIZE, compression_type=CompressionTypes.AUTO, strip_trailing_newlines=True, coder=coders.StrUtf8Coder(), # type: coders.Coder skip_header_lines=0, **kwargs): """Initialize the ``ReadAllFromText`` transform. Args: min_bundle_size: Minimum size of bundles that should be generated when splitting this source into bundles. See ``FileBasedSource`` for more details. desired_bundle_size: Desired size of bundles that should be generated when splitting this source into bundles. See ``FileBasedSource`` for more details. compression_type: Used to handle compressed input files. Typical value is ``CompressionTypes.AUTO``, in which case the underlying file_path's extension will be used to detect the compression. strip_trailing_newlines: Indicates whether this source should remove the newline char in each line it reads before decoding that line. validate: flag to verify that the files exist during the pipeline creation time. skip_header_lines: Number of header lines to skip. Same number is skipped from each source file. Must be 0 or higher. Large number of skipped lines might impact performance. coder: Coder used to decode each line. """ super(ReadAllFromText, self).__init__(**kwargs) source_from_file = partial( _create_text_source, min_bundle_size=min_bundle_size, compression_type=compression_type, strip_trailing_newlines=strip_trailing_newlines, coder=coder, skip_header_lines=skip_header_lines) self._desired_bundle_size = desired_bundle_size self._min_bundle_size = min_bundle_size self._compression_type = compression_type self._read_all_files = ReadAllFiles( True, compression_type, desired_bundle_size, min_bundle_size, source_from_file) def expand(self, pvalue): return pvalue | 'ReadAllFiles' >> self._read_all_files class ReadFromText(PTransform): r"""A :class:`~apache_beam.transforms.ptransform.PTransform` for reading text files. Parses a text file as newline-delimited elements, by default assuming ``UTF-8`` encoding. Supports newline delimiters ``\n`` and ``\r\n``. This implementation only supports reading text encoded using ``UTF-8`` or ``ASCII``. This does not support other encodings such as ``UTF-16`` or ``UTF-32``. """ _source_class = _TextSource def __init__( self, file_pattern=None, min_bundle_size=0, compression_type=CompressionTypes.AUTO, strip_trailing_newlines=True, coder=coders.StrUtf8Coder(), # type: coders.Coder validate=True, skip_header_lines=0, **kwargs): """Initialize the :class:`ReadFromText` transform. Args: file_pattern (str): The file path to read from as a local file path or a GCS ``gs://`` path. The path can contain glob characters (``*``, ``?``, and ``[...]`` sets). min_bundle_size (int): Minimum size of bundles that should be generated when splitting this source into bundles. See :class:`~apache_beam.io.filebasedsource.FileBasedSource` for more details. compression_type (str): Used to handle compressed input files. Typical value is :attr:`CompressionTypes.AUTO <apache_beam.io.filesystem.CompressionTypes.AUTO>`, in which case the underlying file_path's extension will be used to detect the compression. strip_trailing_newlines (bool): Indicates whether this source should remove the newline char in each line it reads before decoding that line. validate (bool): flag to verify that the files exist during the pipeline creation time. skip_header_lines (int): Number of header lines to skip. Same number is skipped from each source file. Must be 0 or higher. Large number of skipped lines might impact performance. coder (~apache_beam.coders.coders.Coder): Coder used to decode each line. """ super(ReadFromText, self).__init__(**kwargs) self._source = self._source_class( file_pattern, min_bundle_size, compression_type, strip_trailing_newlines, coder, validate=validate, skip_header_lines=skip_header_lines) def expand(self, pvalue): return pvalue.pipeline | Read(self._source) class ReadFromTextWithFilename(ReadFromText): r"""A :class:`~apache_beam.io.textio.ReadFromText` for reading text files returning the name of the file and the content of the file. This class extend ReadFromText class just setting a different _source_class attribute. """ _source_class = _TextSourceWithFilename class WriteToText(PTransform): """A :class:`~apache_beam.transforms.ptransform.PTransform` for writing to text files.""" def __init__( self, file_path_prefix, # type: str file_name_suffix='', append_trailing_newlines=True, num_shards=0, shard_name_template=None, # type: Optional[str] coder=coders.ToStringCoder(), # type: coders.Coder compression_type=CompressionTypes.AUTO, header=None): r"""Initialize a :class:`WriteToText` transform. Args: file_path_prefix (str): The file path to write to. The files written will begin with this prefix, followed by a shard identifier (see **num_shards**), and end in a common extension, if given by **file_name_suffix**. In most cases, only this argument is specified and **num_shards**, **shard_name_template**, and **file_name_suffix** use default values. file_name_suffix (str): Suffix for the files written. append_trailing_newlines (bool): indicate whether this sink should write an additional newline char after writing each element. num_shards (int): The number of files (shards) used for output. If not set, the service will decide on the optimal number of shards. Constraining the number of shards is likely to reduce the performance of a pipeline. Setting this value is not recommended unless you require a specific number of output files. shard_name_template (str): A template string containing placeholders for the shard number and shard count. Currently only ``''`` and ``'-SSSSS-of-NNNNN'`` are patterns accepted by the service. When constructing a filename for a particular shard number, the upper-case letters ``S`` and ``N`` are replaced with the ``0``-padded shard number and shard count respectively. This argument can be ``''`` in which case it behaves as if num_shards was set to 1 and only one file will be generated. The default pattern used is ``'-SSSSS-of-NNNNN'``. coder (~apache_beam.coders.coders.Coder): Coder used to encode each line. compression_type (str): Used to handle compressed output files. Typical value is :class:`CompressionTypes.AUTO <apache_beam.io.filesystem.CompressionTypes.AUTO>`, in which case the final file path's extension (as determined by **file_path_prefix**, **file_name_suffix**, **num_shards** and **shard_name_template**) will be used to detect the compression. header (str): String to write at beginning of file as a header. If not :data:`None` and **append_trailing_newlines** is set, ``\n`` will be added. """ self._sink = _TextSink( file_path_prefix, file_name_suffix, append_trailing_newlines, num_shards, shard_name_template, coder, compression_type, header) def expand(self, pcoll): return pcoll | Write(self._sink)
39.605304
97
0.697483
[ "Apache-2.0" ]
AhnLab-OSS/beam
sdks/python/apache_beam/io/textio.py
25,387
Python
import os import click from flask import Flask, render_template from flask_wtf.csrf import CSRFError from telechat.extensions import db, login_manager, csrf, moment from telechat.blueprints.auth import auth_bp from telechat.blueprints.chat import chat_bp from telechat.blueprints.admin import admin_bp from telechat.blueprints.oauth import oauth_bp from telechat.settings import config from telechat.models import User, Message def register_extensions(app: Flask): """注册需要的扩展程序包到 Flask 程序实例 app 中""" db.init_app(app) # 数据库 ORM login_manager.init_app(app) # 登录状态管理 csrf.init_app(app) # CSRF 令牌管理 moment.init_app(app) # 时间格式化管理 def register_blueprints(app: Flask): """注册需要的蓝图程序包到 Flask 程序实例 app 中""" app.register_blueprint(auth_bp) app.register_blueprint(oauth_bp) app.register_blueprint(chat_bp) app.register_blueprint(admin_bp) def register_errors(app: Flask): """注册需要的错误处理程序包到 Flask 程序实例 app 中""" @app.errorhandler(400) # Bad Request 客户端请求的语法错误,服务器无法理解 def bad_request(e): return render_template('error.html', description=e.description, code=e.code), 400 @app.errorhandler(404) # Not Found 服务器无法根据客户端的请求找到资源(网页) def page_not_found(e): return render_template('error.html', description=e.description, code=e.code), 404 @app.errorhandler(500) # Internal Server Error 服务器内部错误,无法完成请求 def internal_server_error(e): return render_template('error.html', description="服务器内部错误,无法完成请求!", code="500"), 500 @app.errorhandler(CSRFError) # CSRF 验证失败 def csrf_error_handle(e): return render_template('error.html', description=e.description, code=e.code), 400 def register_commands(app: Flask): """注册需要的CLI命令程序包到 Flask 程序实例 app 中""" @app.cli.command() @click.option('--drop', is_flag=True, help="创建之前销毁数据库") def initdb(drop: bool): """初始化数据库结构""" if drop: # 确认删除 pass pass @app.cli.command() @click.option('--num', default=300, help="消息数量,默认为300") def forge(num: int): """生成虚拟数据""" pass def create_app(config_name=None): """程序工厂:创建 Flask 程序,加载配置,注册扩展、蓝图等程序包""" # 从环境变量载入配置环境名称 if config_name is None: config_name = os.getenv('FLASK_CONFIG', 'development') # 创建 Flask 程序实例,程序名称为 telechat app = Flask('telechat') # 载入相应的配置 app.config.from_object(config[config_name]) # 注册程序包 register_extensions(app) # 扩展 register_blueprints(app) # 蓝图 register_errors(app) # 错误处理 register_commands(app) # CLI命令 # 返回已配置好的 Flask 程序实例 return app
28.336957
92
0.693901
[ "MIT" ]
Sefank/telechat
telechat/__init__.py
3,161
Python
from django.urls import path from . import views app_name = 'partners' urlpatterns = [ path('registerCampusPartner/', views.registerCampusPartner, name='registerCampusPartner'), path('registerCommunityPartner/', views.registerCommunityPartner, name='registerCommunityPartner'), path('profile/userprofile/', views.userProfile, name='userprofile'), path('profile/userprofileupdate/', views.userProfileUpdate,name='userprofileupdate'), path('profile/orgprofile/', views.orgProfile, name='orgprofile'), path('profile/orgprofileupdate/', views.orgProfileUpdate, name='orgprofileupdate'), ]
47.384615
104
0.761364
[ "MIT" ]
Goutham2591/mav-cpi
partners/urls.py
616
Python
"""Configuration format loaders""" import locale import os from abc import ABC, abstractmethod import yaml from pydantic import create_model def load_configuration(configuration_file_path, parameters_file_path, bundles): """Combines the configuration and parameters and build the configuration object""" mappings = {} for bundle in bundles: if hasattr(bundle, "config_mapping"): mappings.update(bundle.config_mapping) loader = YmlLoader() return loader.build_config(mappings, config_source=configuration_file_path, parameters_source=parameters_file_path) def is_string(value): """Check if the value is actually a string or not""" try: float(value) return False except ValueError: if value.lower() in ["true", "false"]: return False return True class ConfigurationLoader(ABC): """Base configuration loader""" @abstractmethod def load_parameters(self, source): """Convert the source into a dictionary""" @abstractmethod def load_config(self, config_source, parameters_source): """Prase the config file and build a dictionary""" def build_config(self, config_mappings, config_source, parameters_source): """By using the loaded parameters and loaded config, build the final configuration object""" configuration_class = create_model('Configuration', **{k: (v, ...) for k, v in config_mappings.items()}) return configuration_class(**self.load_config(config_source, parameters_source)) class YmlLoader(ConfigurationLoader): """YML Format parser and config loader""" def load_parameters(self, source): """For YML, the source it the file path""" with open(source, encoding=locale.getpreferredencoding(False)) as parameters_source: loaded = yaml.safe_load(parameters_source.read()) if loaded: for key, value in loaded.items(): if isinstance(value, str): loaded[key] = "'" + value + "'" return loaded return {} def load_config(self, config_source, parameters_source): """For YML, the source it the file path""" with open(config_source, encoding=locale.getpreferredencoding(False)) as config_source_file: config_raw = config_source_file.read() parameters = {} # Parameters from file if os.path.isfile(parameters_source): params = self.load_parameters(parameters_source) if params is not None: parameters.update(params) # Overwrite parameters with the environment variables env_params = {} env_params.update(os.environ) for key, value in env_params.items(): if is_string(value): env_params[key] = "'" + value + "'" parameters.update(env_params) # Replace the parameters final_configuration = config_raw.format(**parameters) final_configuration = yaml.safe_load(final_configuration) return final_configuration if final_configuration is not None else {}
38.674699
119
0.65109
[ "Apache-2.0" ]
applauncher-team/applauncher
applauncher/configuration.py
3,210
Python
from sqlalchemy import and_ from sqlalchemy import exc from sqlalchemy import ForeignKey from sqlalchemy import func from sqlalchemy import INT from sqlalchemy import Integer from sqlalchemy import MetaData from sqlalchemy import Sequence from sqlalchemy import sql from sqlalchemy import String from sqlalchemy import testing from sqlalchemy import VARCHAR from sqlalchemy.testing import assert_raises_message from sqlalchemy.testing import engines from sqlalchemy.testing import eq_ from sqlalchemy.testing import fixtures from sqlalchemy.testing import is_ from sqlalchemy.testing.schema import Column from sqlalchemy.testing.schema import Table class InsertExecTest(fixtures.TablesTest): __backend__ = True @classmethod def define_tables(cls, metadata): Table( "users", metadata, Column( "user_id", INT, primary_key=True, test_needs_autoincrement=True ), Column("user_name", VARCHAR(20)), test_needs_acid=True, ) @testing.requires.multivalues_inserts def test_multivalues_insert(self): users = self.tables.users users.insert( values=[ {"user_id": 7, "user_name": "jack"}, {"user_id": 8, "user_name": "ed"}, ] ).execute() rows = users.select().order_by(users.c.user_id).execute().fetchall() eq_(rows[0], (7, "jack")) eq_(rows[1], (8, "ed")) users.insert(values=[(9, "jack"), (10, "ed")]).execute() rows = users.select().order_by(users.c.user_id).execute().fetchall() eq_(rows[2], (9, "jack")) eq_(rows[3], (10, "ed")) def test_insert_heterogeneous_params(self): """test that executemany parameters are asserted to match the parameter set of the first.""" users = self.tables.users assert_raises_message( exc.StatementError, r"\(sqlalchemy.exc.InvalidRequestError\) A value is required for " "bind parameter 'user_name', in " "parameter group 2\n" r"\[SQL: u?INSERT INTO users", users.insert().execute, {"user_id": 7, "user_name": "jack"}, {"user_id": 8, "user_name": "ed"}, {"user_id": 9}, ) # this succeeds however. We aren't yet doing # a length check on all subsequent parameters. users.insert().execute( {"user_id": 7}, {"user_id": 8, "user_name": "ed"}, {"user_id": 9} ) def _test_lastrow_accessor(self, table_, values, assertvalues): """Tests the inserted_primary_key and lastrow_has_id() functions.""" def insert_values(engine, table_, values): """ Inserts a row into a table, returns the full list of values INSERTed including defaults that fired off on the DB side and detects rows that had defaults and post-fetches. """ # verify implicit_returning is working if engine.dialect.implicit_returning: ins = table_.insert() comp = ins.compile(engine, column_keys=list(values)) if not set(values).issuperset( c.key for c in table_.primary_key ): is_(bool(comp.returning), True) result = engine.execute(table_.insert(), **values) ret = values.copy() for col, id_ in zip( table_.primary_key, result.inserted_primary_key ): ret[col.key] = id_ if result.lastrow_has_defaults(): criterion = and_( *[ col == id_ for col, id_ in zip( table_.primary_key, result.inserted_primary_key ) ] ) row = engine.execute(table_.select(criterion)).first() for c in table_.c: ret[c.key] = row[c] return ret if testing.against("firebird", "postgresql", "oracle", "mssql"): assert testing.db.dialect.implicit_returning if testing.db.dialect.implicit_returning: test_engines = [ engines.testing_engine(options={"implicit_returning": False}), engines.testing_engine(options={"implicit_returning": True}), ] else: test_engines = [testing.db] for engine in test_engines: try: table_.create(bind=engine, checkfirst=True) i = insert_values(engine, table_, values) eq_(i, assertvalues) finally: table_.drop(bind=engine) @testing.skip_if("sqlite") def test_lastrow_accessor_one(self): metadata = MetaData() self._test_lastrow_accessor( Table( "t1", metadata, Column( "id", Integer, primary_key=True, test_needs_autoincrement=True, ), Column("foo", String(30), primary_key=True), ), {"foo": "hi"}, {"id": 1, "foo": "hi"}, ) @testing.skip_if("sqlite") def test_lastrow_accessor_two(self): metadata = MetaData() self._test_lastrow_accessor( Table( "t2", metadata, Column( "id", Integer, primary_key=True, test_needs_autoincrement=True, ), Column("foo", String(30), primary_key=True), Column("bar", String(30), server_default="hi"), ), {"foo": "hi"}, {"id": 1, "foo": "hi", "bar": "hi"}, ) def test_lastrow_accessor_three(self): metadata = MetaData() self._test_lastrow_accessor( Table( "t3", metadata, Column("id", String(40), primary_key=True), Column("foo", String(30), primary_key=True), Column("bar", String(30)), ), {"id": "hi", "foo": "thisisfoo", "bar": "thisisbar"}, {"id": "hi", "foo": "thisisfoo", "bar": "thisisbar"}, ) @testing.requires.sequences def test_lastrow_accessor_four(self): metadata = MetaData() self._test_lastrow_accessor( Table( "t4", metadata, Column( "id", Integer, Sequence("t4_id_seq", optional=True), primary_key=True, ), Column("foo", String(30), primary_key=True), Column("bar", String(30), server_default="hi"), ), {"foo": "hi", "id": 1}, {"id": 1, "foo": "hi", "bar": "hi"}, ) def test_lastrow_accessor_five(self): metadata = MetaData() self._test_lastrow_accessor( Table( "t5", metadata, Column("id", String(10), primary_key=True), Column("bar", String(30), server_default="hi"), ), {"id": "id1"}, {"id": "id1", "bar": "hi"}, ) @testing.skip_if("sqlite") def test_lastrow_accessor_six(self): metadata = MetaData() self._test_lastrow_accessor( Table( "t6", metadata, Column( "id", Integer, primary_key=True, test_needs_autoincrement=True, ), Column("bar", Integer, primary_key=True), ), {"bar": 0}, {"id": 1, "bar": 0}, ) # TODO: why not in the sqlite suite? @testing.only_on("sqlite+pysqlite") @testing.provide_metadata def test_lastrowid_zero(self): from sqlalchemy.dialects import sqlite eng = engines.testing_engine() class ExcCtx(sqlite.base.SQLiteExecutionContext): def get_lastrowid(self): return 0 eng.dialect.execution_ctx_cls = ExcCtx t = Table( "t", self.metadata, Column("x", Integer, primary_key=True), Column("y", Integer), ) t.create(eng) r = eng.execute(t.insert().values(y=5)) eq_(r.inserted_primary_key, [0]) @testing.fails_on( "sqlite", "sqlite autoincremnt doesn't work with composite pks" ) @testing.provide_metadata def test_misordered_lastrow(self): metadata = self.metadata related = Table( "related", metadata, Column("id", Integer, primary_key=True), mysql_engine="MyISAM", ) t6 = Table( "t6", metadata, Column( "manual_id", Integer, ForeignKey("related.id"), primary_key=True, ), Column( "auto_id", Integer, primary_key=True, test_needs_autoincrement=True, ), mysql_engine="MyISAM", ) metadata.create_all() r = related.insert().values(id=12).execute() id_ = r.inserted_primary_key[0] eq_(id_, 12) r = t6.insert().values(manual_id=id_).execute() eq_(r.inserted_primary_key, [12, 1]) def test_implicit_id_insert_select_columns(self): users = self.tables.users stmt = users.insert().from_select( (users.c.user_id, users.c.user_name), users.select().where(users.c.user_id == 20), ) testing.db.execute(stmt) def test_implicit_id_insert_select_keys(self): users = self.tables.users stmt = users.insert().from_select( ["user_id", "user_name"], users.select().where(users.c.user_id == 20), ) testing.db.execute(stmt) @testing.requires.empty_inserts @testing.requires.returning def test_no_inserted_pk_on_returning(self): users = self.tables.users result = testing.db.execute( users.insert().returning(users.c.user_id, users.c.user_name) ) assert_raises_message( exc.InvalidRequestError, r"Can't call inserted_primary_key when returning\(\) is used.", getattr, result, "inserted_primary_key", ) class TableInsertTest(fixtures.TablesTest): """test for consistent insert behavior across dialects regarding the inline=True flag, lower-case 't' tables. """ run_create_tables = "each" __backend__ = True @classmethod def define_tables(cls, metadata): Table( "foo", metadata, Column("id", Integer, Sequence("t_id_seq"), primary_key=True), Column("data", String(50)), Column("x", Integer), ) def _fixture(self, types=True): if types: t = sql.table( "foo", sql.column("id", Integer), sql.column("data", String), sql.column("x", Integer), ) else: t = sql.table( "foo", sql.column("id"), sql.column("data"), sql.column("x") ) return t def _test(self, stmt, row, returning=None, inserted_primary_key=False): r = testing.db.execute(stmt) if returning: returned = r.first() eq_(returned, returning) elif inserted_primary_key is not False: eq_(r.inserted_primary_key, inserted_primary_key) eq_(testing.db.execute(self.tables.foo.select()).first(), row) def _test_multi(self, stmt, rows, data): testing.db.execute(stmt, rows) eq_( testing.db.execute( self.tables.foo.select().order_by(self.tables.foo.c.id) ).fetchall(), data, ) @testing.requires.sequences def test_explicit_sequence(self): t = self._fixture() self._test( t.insert().values( id=func.next_value(Sequence("t_id_seq")), data="data", x=5 ), (1, "data", 5), ) def test_uppercase(self): t = self.tables.foo self._test( t.insert().values(id=1, data="data", x=5), (1, "data", 5), inserted_primary_key=[1], ) def test_uppercase_inline(self): t = self.tables.foo self._test( t.insert(inline=True).values(id=1, data="data", x=5), (1, "data", 5), inserted_primary_key=[1], ) @testing.crashes( "mssql+pyodbc", "Pyodbc + SQL Server + Py3K, some decimal handling issue", ) def test_uppercase_inline_implicit(self): t = self.tables.foo self._test( t.insert(inline=True).values(data="data", x=5), (1, "data", 5), inserted_primary_key=[None], ) def test_uppercase_implicit(self): t = self.tables.foo self._test( t.insert().values(data="data", x=5), (1, "data", 5), inserted_primary_key=[1], ) def test_uppercase_direct_params(self): t = self.tables.foo self._test( t.insert().values(id=1, data="data", x=5), (1, "data", 5), inserted_primary_key=[1], ) @testing.requires.returning def test_uppercase_direct_params_returning(self): t = self.tables.foo self._test( t.insert().values(id=1, data="data", x=5).returning(t.c.id, t.c.x), (1, "data", 5), returning=(1, 5), ) @testing.fails_on( "mssql", "lowercase table doesn't support identity insert disable" ) def test_direct_params(self): t = self._fixture() self._test( t.insert().values(id=1, data="data", x=5), (1, "data", 5), inserted_primary_key=[], ) @testing.fails_on( "mssql", "lowercase table doesn't support identity insert disable" ) @testing.requires.returning def test_direct_params_returning(self): t = self._fixture() self._test( t.insert().values(id=1, data="data", x=5).returning(t.c.id, t.c.x), (1, "data", 5), returning=(1, 5), ) @testing.requires.emulated_lastrowid def test_implicit_pk(self): t = self._fixture() self._test( t.insert().values(data="data", x=5), (1, "data", 5), inserted_primary_key=[], ) @testing.requires.emulated_lastrowid def test_implicit_pk_multi_rows(self): t = self._fixture() self._test_multi( t.insert(), [ {"data": "d1", "x": 5}, {"data": "d2", "x": 6}, {"data": "d3", "x": 7}, ], [(1, "d1", 5), (2, "d2", 6), (3, "d3", 7)], ) @testing.requires.emulated_lastrowid def test_implicit_pk_inline(self): t = self._fixture() self._test( t.insert(inline=True).values(data="data", x=5), (1, "data", 5), inserted_primary_key=[], )
30.968504
79
0.515446
[ "MIT" ]
AngelLiang/hacking-sqlalchemy
test/sql/test_insert_exec.py
15,732
Python
import re import connexion import logging import auslib from os import path from flask import request from flask_compress import Compress from auslib.web.admin.views.problem import problem from auslib.web.admin.views.validators import BalrogRequestBodyValidator from raven.contrib.flask import Sentry from specsynthase.specbuilder import SpecBuilder try: from urllib import unquote except ImportError: # pragma: no cover from urllib.parse import unquote log = logging.getLogger(__name__) current_dir = path.dirname(__file__) web_dir = path.dirname(auslib.web.__file__) spec = SpecBuilder().add_spec(path.join(current_dir, 'swagger/api.yaml'))\ .add_spec(path.join(web_dir, 'common/swagger/definitions.yml'))\ .add_spec(path.join(web_dir, 'common/swagger/parameters.yml'))\ .add_spec(path.join(web_dir, 'common/swagger/responses.yml')) validator_map = { 'body': BalrogRequestBodyValidator } connexion_app = connexion.App(__name__, validator_map=validator_map, debug=False) connexion_app.add_api(spec, strict_validation=True) app = connexion_app.app sentry = Sentry() from auslib.dockerflow import create_dockerflow_endpoints create_dockerflow_endpoints(app) # When running under uwsgi, paths will not get decoded before hitting the app. # We need to handle this ourselves in certain fields, and adding converters # for them is the best way to do this. class UnquotingMiddleware(object): def __init__(self, app): self.app = app def __call__(self, environ, start_response): environ["PATH_INFO"] = unquote(environ["PATH_INFO"]) return self.app(environ, start_response) app.wsgi_app = UnquotingMiddleware(app.wsgi_app) @app.errorhandler(500) def ise(error): log.error("Caught ISE 500 error.") log.debug("Request path is: %s", request.path) log.debug("Request environment is: %s", request.environ) log.debug("Request headers are: %s", request.headers) return error # Connexion's error handling sometimes breaks when parameters contain # unicode characters (https://github.com/zalando/connexion/issues/604). # To work around, we catch them and return a 400 (which is what Connexion # would do if it didn't hit this error). @app.errorhandler(UnicodeEncodeError) def unicode(error): return problem(400, "Unicode Error", "Connexion was unable to parse some unicode data correctly.") @app.after_request def add_security_headers(response): response.headers['X-Frame-Options'] = 'DENY' response.headers['X-Content-Type-Options'] = 'nosniff' response.headers["Strict-Transport-Security"] = app.config.get("STRICT_TRANSPORT_SECURITY", "max-age=31536000;") if re.match("^/ui/", request.path): # This enables swagger-ui to dynamically fetch and # load the swagger specification JSON file containing API definition and examples. response.headers['X-Frame-Options'] = 'SAMEORIGIN' else: response.headers["Content-Security-Policy"] = \ app.config.get("CONTENT_SECURITY_POLICY", "default-src 'none'; frame-ancestors 'none'") return response Compress(app)
33.913978
116
0.737793
[ "MPL-2.0" ]
catlee/balrog
auslib/web/admin/base.py
3,154
Python
# -*- coding: utf-8 -*- # FLEDGE_BEGIN # See: http://fledge.readthedocs.io/ # FLEDGE_END """ Test end to end flow with: Notification service with Threshold in-built rule plugin notify-python35 delivery channel plugin """ import os import time import subprocess import http.client import json from threading import Event import urllib.parse import pytest __author__ = "Ashish Jabble" __copyright__ = "Copyright (c) 2019 Dianomic Systems" __license__ = "Apache 2.0" __version__ = "${VERSION}" SERVICE = "notification" SERVICE_NAME = "NotificationServer #1" NOTIFY_PLUGIN = "python35" NOTIFY_INBUILT_RULES = ["Threshold"] def _configure_and_start_service(service_branch, fledge_url, remove_directories): try: subprocess.run(["$FLEDGE_ROOT/tests/system/python/scripts/install_c_service {} {}" .format(service_branch, SERVICE)], shell=True, check=True, stdout=subprocess.DEVNULL) except subprocess.CalledProcessError: assert False, "{} installation failed".format(SERVICE) finally: remove_directories("/tmp/fledge-service-{}".format(SERVICE)) # Start service conn = http.client.HTTPConnection(fledge_url) data = {"name": SERVICE_NAME, "type": "notification", "enabled": "true" } conn.request("POST", '/fledge/service', json.dumps(data)) r = conn.getresponse() assert 200 == r.status r = r.read().decode() jdoc = json.loads(r) assert 2 == len(jdoc) assert SERVICE_NAME == jdoc['name'] def _install_notify_plugin(notify_branch, plugin_name, remove_directories): try: subprocess.run(["$FLEDGE_ROOT/tests/system/python/scripts/install_c_plugin {} notify {}".format( notify_branch, plugin_name)], shell=True, check=True, stdout=subprocess.DEVNULL) except subprocess.CalledProcessError: assert False, "{} installation failed".format(plugin_name) finally: remove_directories("/tmp/fledge-notify-{}".format(plugin_name)) def _get_result(fledge_url, path): conn = http.client.HTTPConnection(fledge_url) conn.request("GET", path) r = conn.getresponse() assert 200 == r.status r = r.read().decode() jdoc = json.loads(r) return jdoc def _verify_service(fledge_url, status): jdoc = _get_result(fledge_url, '/fledge/service') srvc = [s for s in jdoc['services'] if s['name'] == SERVICE_NAME] assert 1 == len(srvc) svc = srvc[0] assert SERVICE.capitalize() == svc['type'] assert status == svc['status'] def _verify_audit_log_entry(fledge_url, path, name, severity='INFORMATION', count=1): jdoc = _get_result(fledge_url, path) assert len(jdoc['audit']) assert count == jdoc['totalCount'] audit_detail = jdoc['audit'][0] assert severity == audit_detail['severity'] assert name == audit_detail['details']['name'] def _add_notification_instance(fledge_url, payload): conn = http.client.HTTPConnection(fledge_url) conn.request("POST", '/fledge/notification', json.dumps(payload)) r = conn.getresponse() assert 200 == r.status r = r.read().decode() jdoc = json.loads(r) assert "Notification {} created successfully".format(payload['name']) == jdoc['result'] def pause_for_x_seconds(x=1): wait_e = Event() wait_e.clear() wait_e.wait(timeout=x) class TestNotificationService: def test_service(self, reset_and_start_fledge, service_branch, fledge_url, wait_time, retries, remove_directories): _configure_and_start_service(service_branch, fledge_url, remove_directories) retry_count = 0 # only 2 services is being up by default i.e core and storage default_registry_count = 2 service_registry = default_registry_count while service_registry != 3 and retry_count < retries: svc = _get_result(fledge_url, '/fledge/service') service_registry = svc['services'] retry_count += 1 pause_for_x_seconds(x=wait_time * 2) if len(service_registry) == default_registry_count: assert False, "Failed to start the {} service".format(SERVICE) _verify_service(fledge_url, status='running') _verify_audit_log_entry(fledge_url, '/fledge/audit?source=NTFST', name=SERVICE_NAME) def test_get_default_notification_plugins(self, fledge_url, remove_directories): remove_directories(os.environ['FLEDGE_ROOT'] + '/plugins/notificationDelivery') remove_directories(os.environ['FLEDGE_ROOT'] + '/plugins/notificationRule') remove_directories(os.environ['FLEDGE_ROOT'] + 'cmake_build/C/plugins/notificationDelivery') remove_directories(os.environ['FLEDGE_ROOT'] + 'cmake_build/C/plugins/notificationRule') jdoc = _get_result(fledge_url, '/fledge/notification/plugin') assert [] == jdoc['delivery'] assert 1 == len(jdoc['rules']) assert NOTIFY_INBUILT_RULES[0] == jdoc['rules'][0]['name'] class TestNotificationCRUD: @pytest.mark.parametrize("data", [ {"name": "Test 1", "description": "Test 1 notification", "rule": NOTIFY_INBUILT_RULES[0], "channel": NOTIFY_PLUGIN, "enabled": "false", "notification_type": "retriggered"}, {"name": "Test2", "description": "Test 2 notification", "rule": NOTIFY_INBUILT_RULES[0], "channel": NOTIFY_PLUGIN, "enabled": "false", "notification_type": "toggled"}, {"name": "Test #3", "description": "Test 3 notification", "rule": NOTIFY_INBUILT_RULES[0], "channel": NOTIFY_PLUGIN, "enabled": "false", "notification_type": "one shot"} ]) def test_create_notification_instances_with_default_rule_and_channel_python35(self, fledge_url, notify_branch, data, remove_directories): if data['name'] == 'Test 1': _install_notify_plugin(notify_branch, NOTIFY_PLUGIN, remove_directories) _add_notification_instance(fledge_url, data) def test_inbuilt_rule_plugin_and_notify_python35_delivery(self, fledge_url): jdoc = _get_result(fledge_url, '/fledge/notification/plugin') assert 1 == len(jdoc['delivery']) assert NOTIFY_PLUGIN == jdoc['delivery'][0]['name'] assert 1 == len(jdoc['rules']) assert NOTIFY_INBUILT_RULES[0] == jdoc['rules'][0]['name'] def test_get_notifications_and_audit_entry(self, fledge_url): jdoc = _get_result(fledge_url, '/fledge/notification') assert 3 == len(jdoc['notifications']) # Test 1, Test2 and Test #3 jdoc = _get_result(fledge_url, '/fledge/audit?source=NTFAD') assert 3 == jdoc['totalCount'] def test_update_notification(self, fledge_url, name="Test 1"): conn = http.client.HTTPConnection(fledge_url) data = {"notification_type": "toggled"} conn.request("PUT", '/fledge/notification/{}'.format(urllib.parse.quote(name)) , json.dumps(data)) r = conn.getresponse() assert 200 == r.status r = r.read().decode() jdoc = json.loads(r) assert "Notification {} updated successfully".format(name) == jdoc["result"] # Verify updated notification info jdoc = _get_result(fledge_url, '/fledge/notification/{}'.format(urllib.parse.quote(name))) assert "toggled" == jdoc['notification']['notificationType'] def test_delete_notification(self, fledge_url, name="Test #3"): conn = http.client.HTTPConnection(fledge_url) conn.request("DELETE", '/fledge/notification/{}'.format(urllib.parse.quote(name))) r = conn.getresponse() assert 200 == r.status r = r.read().decode() jdoc = json.loads(r) assert "Notification {} deleted successfully.".format(name) == jdoc["result"] # Verify only two notifications should exist NOT 3 jdoc = _get_result(fledge_url, '/fledge/notification') notifications = jdoc['notifications'] assert 2 == len(notifications) assert "Test 1" == notifications[0]['name'] assert "Test2" == notifications[1]['name'] jdoc = _get_result(fledge_url, '/fledge/audit?source=NTFDL') assert 1 == jdoc['totalCount'] class TestSentAndReceiveNotification: FOGBENCH_TEMPLATE = "fogbench-template.json" SENSOR_VALUE = 20 SOUTH_PLUGIN_NAME = "coap" ASSET_NAME = "{}".format(SOUTH_PLUGIN_NAME) @pytest.fixture def start_south(self, add_south, remove_data_file, remove_directories, south_branch, fledge_url): """ This fixture clone a south repo and starts south instance add_south: Fixture that starts any south service with given configuration remove_data_file: Fixture that remove data file created during the tests remove_directories: Fixture that remove directories created during the tests """ fogbench_template_path = self.prepare_template_reading_from_fogbench() add_south(self.SOUTH_PLUGIN_NAME, south_branch, fledge_url, service_name=self.SOUTH_PLUGIN_NAME) yield self.start_south # Cleanup code that runs after the test is over remove_data_file(fogbench_template_path) remove_directories("/tmp/fledge-south-{}".format(self.SOUTH_PLUGIN_NAME)) def prepare_template_reading_from_fogbench(self): """ Define the template file for fogbench readings """ fogbench_template_path = os.path.join( os.path.expandvars('${FLEDGE_ROOT}'), 'data/{}'.format(self.FOGBENCH_TEMPLATE)) with open(fogbench_template_path, "w") as f: f.write( '[{"name": "%s", "sensor_values": ' '[{"name": "sensor", "type": "number", "min": %d, "max": %d, "precision": 0}]}]' % ( self.ASSET_NAME, self.SENSOR_VALUE, self.SENSOR_VALUE)) return fogbench_template_path def ingest_readings_from_fogbench(self, fledge_url, wait_time): pause_for_x_seconds(x=wait_time*3) conn = http.client.HTTPConnection(fledge_url) subprocess.run(["cd $FLEDGE_ROOT/extras/python; python3 -m fogbench -t ../../data/{}; cd -" .format(self.FOGBENCH_TEMPLATE)], shell=True, check=True, stdout=subprocess.DEVNULL) pause_for_x_seconds(x=wait_time) conn.request("GET", '/fledge/asset') r = conn.getresponse() assert 200 == r.status r = r.read().decode() val = json.loads(r) assert 1 == len(val) assert self.ASSET_NAME == val[0]["assetCode"] assert 1 == val[0]["count"] conn.request("GET", '/fledge/asset/{}'.format(self.ASSET_NAME)) r = conn.getresponse() assert 200 == r.status r = r.read().decode() val = json.loads(r) assert 1 == len(val) assert {'sensor': self.SENSOR_VALUE} == val[0]["reading"] def configure_rule_with_single_item_eval_type(self, fledge_url, cat_name): conn = http.client.HTTPConnection(fledge_url) data = {"asset": self.ASSET_NAME, "datapoint": "sensor", "evaluation_data": "Single Item", "condition": ">", "trigger_value": str(self.SENSOR_VALUE - 10), } conn.request("PUT", '/fledge/category/rule{}'.format(cat_name), json.dumps(data)) r = conn.getresponse() assert 200 == r.status def enable_notification(self, fledge_url, cat_name, is_enabled=True): _enabled = "true" if is_enabled else "false" data = {"value": _enabled} conn = http.client.HTTPConnection(fledge_url) conn.request("PUT", '/fledge/category/{}/enable'.format(cat_name), json.dumps(data)) r = conn.getresponse() assert 200 == r.status def test_sent_and_receive_notification(self, fledge_url, start_south, wait_time): data = {"name": "Test4", "description": "Test4_Notification", "rule": NOTIFY_INBUILT_RULES[0], "channel": NOTIFY_PLUGIN, "enabled": True, "notification_type": "one shot" } name = data['name'] _add_notification_instance(fledge_url, data) self.configure_rule_with_single_item_eval_type(fledge_url, name) # upload script NotifyPython35::configure() -> lowercase(categoryName) + _script_ + method_name + ".py" cat_name = "delivery{}".format(name) script_path = '$FLEDGE_ROOT/tests/system/python/data/notify35.py' url = 'http://' + fledge_url + '/fledge/category/' + cat_name + '/script/upload' upload_script = 'curl -F "script=@{}" {}'.format(script_path, url) subprocess.run(upload_script, shell=True, check=True, stdout=subprocess.DEVNULL) # enable notification delivery (it was getting disabled, as no script file was available) self.enable_notification(fledge_url, "delivery" + name) self.ingest_readings_from_fogbench(fledge_url, wait_time) time.sleep(wait_time) _verify_audit_log_entry(fledge_url, '/fledge/audit?source=NTFSN', name=name) class TestStartStopNotificationService: def test_shutdown_service_with_schedule_disable(self, fledge_url, disable_schedule, wait_time): disable_schedule(fledge_url, SERVICE_NAME) _verify_service(fledge_url, status='shutdown') pause_for_x_seconds(x=wait_time) # After shutdown there should be 1 entry for NTFSD (shutdown) _verify_audit_log_entry(fledge_url, '/fledge/audit?source=NTFSD', name=SERVICE_NAME, count=1) def test_restart_notification_service(self, fledge_url, enable_schedule, wait_time): enable_schedule(fledge_url, SERVICE_NAME) pause_for_x_seconds(x=wait_time) _verify_service(fledge_url, status='running') # After restart there should be 2 entries for NTFST (start) _verify_audit_log_entry(fledge_url, '/fledge/audit?source=NTFST', name=SERVICE_NAME, count=2)
41.973214
119
0.657307
[ "Apache-2.0" ]
YashTatkondawar/fledge
tests/system/python/e2e/test_e2e_notification_service_with_plugins.py
14,103
Python
# coding: utf-8 # ... import symbolic tools weak_formulation = load('pyccel.symbolic.gelato', 'weak_formulation', True, 2) glt_function = load('pyccel.symbolic.gelato', 'glt_function', True, 3) Grad = load('pyccel.symbolic.gelato', 'Grad', False, 1) Curl = load('pyccel.symbolic.gelato', 'Curl', False, 1) Div = load('pyccel.symbolic.gelato', 'Div', False, 1) Rot = load('pyccel.symbolic.gelato', 'Rot', False, 1) Cross = load('pyccel.symbolic.gelato', 'Cross', False, 2) Dot = load('pyccel.symbolic.gelato', 'Dot', False, 2) # ... # ... Laplace a1 = lambda x,y,v,u: Dot(Grad(u), Grad(v)) ga1 = glt_function(a1, [4, 4], [2, 2]) wa1 = weak_formulation(a1, 2) print(' a1 := ', a1) print(' glt symbol a1 := ', ga1) print('wa1 := ', wa1) print('') # ... # ... a2 = lambda x,y,v,u: Rot(u) * Rot(v) + Div(u) * Div(v) + 0.2 * Dot(u, v) ga2 = glt_function(a2, [4, 4], [2, 2]) wa2 = weak_formulation(a2, 2) print(' a2 := ', a2) print(' glt symbol a2 := ', ga2) print('wa2 := ', wa2) print('') # ... # ... a3 = lambda x,y,v,u: Cross(Curl(u), Curl(v)) + 0.2 * u * v ga3 = glt_function(a3, [4, 4], [2, 2]) wa3 = weak_formulation(a3, 2) print(' a3 := ', a3) print(' glt symbol a3 := ', ga3) print('wa3 := ', wa3) print('') # ...
25.901961
78
0.549584
[ "MIT" ]
toddrme2178/pyccel
src_old/tests/scripts/lambda/pdes/2d/ex10.py
1,321
Python
from py12306.log.base import BaseLog from py12306.helpers.func import * @singleton class OrderLog(BaseLog): # 这里如果不声明,会出现重复打印,目前不知道什么原因 logs = [] thread_logs = {} quick_log = [] MESSAGE_REQUEST_INIT_DC_PAGE_FAIL = '请求初始化订单页面失败' MESSAGE_SUBMIT_ORDER_REQUEST_FAIL = '提交订单失败,错误原因 {} \n' MESSAGE_SUBMIT_ORDER_REQUEST_SUCCESS = '提交订单成功' MESSAGE_CHECK_ORDER_INFO_FAIL = '检查订单失败,错误原因 {} \n' MESSAGE_CHECK_ORDER_INFO_SUCCESS = '检查订单成功' MESSAGE_GET_QUEUE_INFO_SUCCESS = '获取排队信息成功,目前排队人数 {}, 余票还剩余 {} 张' MESSAGE_GET_QUEUE_INFO_NO_SEAT = '接口返回实际为无票,跳过本次排队' MESSAGE_GET_QUEUE_COUNT_SUCCESS = '排队成功,你当前排在第 {} 位, 余票还剩余 {} 张' MESSAGE_GET_QUEUE_LESS_TICKET = '排队失败,目前排队人数已经超过余票张数' MESSAGE_GET_QUEUE_COUNT_FAIL = '排队失败,错误原因 {}' MESSAGE_CONFIRM_SINGLE_FOR_QUEUE_SUCCESS = '# 提交订单成功!#' MESSAGE_CONFIRM_SINGLE_FOR_QUEUE_ERROR = '出票失败,错误原因 {}' MESSAGE_CONFIRM_SINGLE_FOR_QUEUE_FAIL = '提交订单失败,错误原因 {}' MESSAGE_QUERY_ORDER_WAIT_TIME_WAITING = '排队等待中,排队人数 {},预计还需要 {} 秒' MESSAGE_QUERY_ORDER_WAIT_TIME_FAIL = '排队失败,错误原因 {}' MESSAGE_QUERY_ORDER_WAIT_TIME_INFO = '第 {} 次排队,请耐心等待' MESSAGE_ORDER_SUCCESS_NOTIFICATION_TITLE = '车票购买成功!' MESSAGE_ORDER_SUCCESS_NOTIFICATION_CONTENT = '请及时登录12306账号[{}],打开 \'未完成订单\',在30分钟内完成支付!' MESSAGE_ORDER_SUCCESS_NOTIFICATION_INFO = '\t\t车次信息: {} {}[{}] -> {}[{}],乘车日期 {},席位:{},乘车人:{}' MESSAGE_ORDER_SUCCESS_NOTIFICATION_OF_VOICE_CODE_START_SEND = '正在发送语音通知...' MESSAGE_ORDER_SUCCESS_NOTIFICATION_OF_VOICE_CODE_CONTENT = '你的车票 {} 到 {} 购买成功,请登录 12306 进行支付' MESSAGE_ORDER_SUCCESS_NOTIFICATION_OF_EMAIL_CONTENT = '订单号 {},请及时登录12306账号[{}],打开 \'未完成订单\',在30分钟内完成支付!' MESSAGE_JOB_CLOSED = '当前任务已结束' @classmethod def print_passenger_did_deleted(cls, passengers): self = cls() result = [passenger.get('name') + '(' + passenger.get('type_text') + ')' for passenger in passengers] self.add_quick_log('# 删减后的乘客列表 {} #'.format(', '.join(result))) self.flush() return self @classmethod def print_ticket_did_ordered(cls, order_id): self = cls() self.add_quick_log('# 车票购买成功,订单号 {} #'.format(order_id)) self.flush() return self @classmethod def get_order_success_notification_info(cls, query): from py12306.query.job import Job assert isinstance(query, Job) passengers = [passenger.get( 'name') + '(' + passenger.get('type_text') + ')' for passenger in query.passengers] return cls.MESSAGE_ORDER_SUCCESS_NOTIFICATION_INFO.format(query.get_info_of_train_number(), query.get_info_of_left_station(), query.get_info_of_train_left_time(), query.get_info_of_arrive_station(), query.get_info_of_train_arrive_time(), query.get_info_of_left_date(), query.current_seat_name, ','.join(passengers))
45.191781
109
0.614429
[ "Apache-2.0" ]
1182836912/py12306
py12306/log/order_log.py
3,989
Python
from setuptools import setup, find_packages def read_requirements(): with open('requirements.txt') as req: content = req.read() requirements = content.split('\n') return requirements classifiers = [ 'Topic :: Security', 'Development Status :: 4 - Beta', 'Environment :: Console', 'License :: OSI Approved :: Mozilla Public License 2.0 (MPL 2.0)', 'Intended Audience :: End Users/Desktop', 'Operating System :: OS Independent', 'Programming Language :: Python :: 3.7' ] def Longdesc(): with open('README.md') as rm: RM_desc = rm.read() RM_desc = str(RM_desc) with open('ChangeLog.md') as cl: CL_desc = cl.read CL_desc = str(CL_desc) return f"{CL_desc}\n\n{RM_desc}" setup( name='skyhawk', version='0.0.7', description='Skyhawk is a CLI tool that can run on any device with a camera to recognize faces. It built with open-cv & python', long_description=Longdesc(), long_description_content_type="text/markdown", url='https://github.com/devqueue/Skyhawk-cli.git', author='Haziq Sayyed', author_email='[email protected]', license='Mozilla Public License 2.0', classifiers=classifiers, packages=find_packages(), include_package_dat=True, install_requires=read_requirements(), python_requires='>=3.8', entry_points={ 'console_scripts': [ 'skyhawk = skyhawk.cli:cli' ] })
28.803922
132
0.641933
[ "MPL-2.0", "MPL-2.0-no-copyleft-exception" ]
devqueue/Skyhawk-cli
setup.py
1,469
Python
""" DarkWorldsMetricMountianOsteric.py Custom evaluation metric for the 'Observing Dark Worlds' competition. [Description of metric, or reference to documentation.] Update: Made for the training set only so users can check there results from the training c @Author: David Harvey Created: 22 August 2012 """ import numpy as np import math as mt import itertools as it import csv as c import getopt as gt import sys as sys import argparse as ap import string as st import random as rd def calc_delta_r(x_predicted,y_predicted,x_true,y_true): """ Compute the scalar distance between predicted halo centers and the true halo centers. Predictions are matched to the closest halo center. Notes: It takes in the predicted and true positions, and then loops over each possile configuration and finds the most optimal one. Arguments: x_predicted, y_predicted: vector for predicted x- and y-positions (1 to 3 elements) x_true, y_true: vector for known x- and y-positions (1 to 3 elements) Returns: radial_distance: vector containing the scalar distances between the predicted halo centres and the true halo centres (1 to 3 elements) true_halo_idexes: vector containing indexes of the input true halos which matches the predicted halo indexes (1 to 3 elements) measured_halo_indexes: vector containing indexes of the predicted halo position with the reference to the true halo position. e.g if true_halo_indexes=[0,1] and measured_halo_indexes=[1,0] then the first x,y coordinates of the true halo position matches the second input of the predicted x,y coordinates. """ num_halos=len(x_true) #Only works for number of halso > 1 num_configurations=mt.factorial(num_halos) #The number of possible different comb configurations=np.zeros([num_halos,num_configurations],int) #The array of combinations #I will pass back distances = np.zeros([num_configurations],float) #THe array of the distances #for all possible combinations radial_distance=[] #The vector of distances #I will pass back #Pick a combination of true and predicted a=['01','012'] #Input for the permutatiosn, 01 number halos or 012 count=0 #For the index of the distances array true_halo_indexes=[] #The tuples which will show the order of halos picked predicted_halo_indexes=[] distances_perm=np.zeros([num_configurations,num_halos],float) #The distance between eac #true and predicted #halo for every comb true_halo_indexes_perm=[] #log of all the permutations of true halos used predicted_halo_indexes_perm=[] #log of all the predicted permutations for perm in it.permutations(a[num_halos-2],num_halos): which_true_halos=[] which_predicted_halos=[] for j in xrange(num_halos): #loop through all the true halos with the distances_perm[count,j]=np.sqrt((x_true[j]-x_predicted[int(perm[j])])**2\ +(y_true[j]-y_predicted[int(perm[j])])**2) #This array logs the distance between true and #predicted halo for ALL configruations which_true_halos.append(j) #logthe order in which I try each true halo which_predicted_halos.append(int(perm[j])) #log the order in which I true #each predicted halo true_halo_indexes_perm.append(which_true_halos) #this is a tuple of tuples of #all of thifferent config #true halo indexes predicted_halo_indexes_perm.append(which_predicted_halos) distances[count]=sum(distances_perm[count,0::]) #Find what the total distances #are for each configuration count=count+1 config = np.where(distances == min(distances))[0][0] #The configuration used is the one #which has the smallest distance radial_distance.append(distances_perm[config,0::]) #Find the tuple of distances that #correspond to this smallest distance true_halo_indexes=true_halo_indexes_perm[config] #Find the tuple of the index which refers #to the smallest distance predicted_halo_indexes=predicted_halo_indexes_perm[config] return radial_distance,true_halo_indexes,predicted_halo_indexes def calc_theta(x_predicted, y_predicted, x_true, y_true, x_ref, y_ref): """ Calculate the angle the predicted position and the true position, where the zero degree corresponds to the line joing the true halo position and the reference point given. Arguments: x_predicted, y_predicted: vector for predicted x- and y-positions (1 to 3 elements) x_true, y_true: vector for known x- and y-positions (1 to 3 elements) Note that the input of these are matched up so that the first elements of each vector are associated with one another x_ref, y_ref: scalars of the x,y coordinate of reference point Returns: Theta: A vector containing the angles of the predicted halo w.r.t the true halo with the vector joining the reference point and the halo as the zero line. """ num_halos=len(x_predicted) theta=np.zeros([num_halos+1],float) #Set up the array which will pass back the values phi = np.zeros([num_halos],float) psi = np.arctan( (y_true-y_ref)/(x_true-x_ref) ) # Angle at which the halo is at #with respect to the reference poitn phi[x_true != x_ref] = np.arctan((y_predicted[x_true != x_predicted]-\ y_true[x_true != x_predicted])\ /(x_predicted[x_true != x_predicted]-\ x_true[x_true != x_predicted])) # Angle of the estimate #wrt true halo centre #Before finding the angle with the zero line as the line joiing the halo and the reference #point I need to convert the angle produced by Python to an angle between 0 and 2pi phi =convert_to_360(phi, x_predicted-x_true,\ y_predicted-y_true) psi = convert_to_360(psi, x_true-x_ref,\ y_true-y_ref) theta = phi-psi #The angle with the baseline as the line joing the ref and the halo theta[theta< 0.0]=theta[theta< 0.0]+2.0*mt.pi #If the angle of the true pos wrt the ref is #greater than the angle of predicted pos #and the true pos then add 2pi return theta def convert_to_360(angle, x_in, y_in): """ Convert the given angle to the true angle in the range 0:2pi Arguments: angle: x_in, y_in: the x and y coordinates used to determine the quartile the coordinate lies in so to add of pi or 2pi Returns: theta: the angle in the range 0:2pi """ n = len(x_in) for i in xrange(n): if x_in[i] < 0 and y_in[i] > 0: angle[i] = angle[i]+mt.pi elif x_in[i] < 0 and y_in[i] < 0: angle[i] = angle[i]+mt.pi elif x_in[i] > 0 and y_in[i] < 0: angle[i] = angle[i]+2.0*mt.pi elif x_in[i] == 0 and y_in[i] == 0: angle[i] = 0 elif x_in[i] == 0 and y_in[i] > 0: angle[i] = mt.pi/2. elif x_in[i] < 0 and y_in[i] == 0: angle[i] = mt.pi elif x_in[i] == 0 and y_in[i] < 0: angle[i] = 3.*mt.pi/2. return angle def get_ref(x_halo,y_halo,weight): """ Gets the reference point of the system of halos by weighted averaging the x and y coordinates. Arguments: x_halo, y_halo: Vector num_halos referrin to the coordinates of the halos weight: the weight which will be assigned to the position of the halo num_halos: number of halos in the system Returns: x_ref, y_ref: The coordinates of the reference point for the metric """ #Find the weighted average of the x and y coordinates x_ref = np.sum([x_halo*weight])/np.sum([weight]) y_ref = np.sum([y_halo*weight])/np.sum([weight]) return x_ref,y_ref def main_score( nhalo_all, x_true_all, y_true_all, x_ref_all, y_ref_all, sky_prediction): """abstracts the score from the old command-line interface. sky_prediction is a dx2 array of predicted x,y positions -camdp""" r=np.array([],dtype=float) # The array which I will log all the calculated radial distances angle=np.array([],dtype=float) #The array which I will log all the calculated angles #Load in the sky_ids from the true num_halos_total=0 #Keep track of how many halos are iput into the metric for selectskyinsolutions, sky in enumerate(sky_prediction): #Loop through each line in result.csv and analyse each one nhalo=int(nhalo_all[selectskyinsolutions])#How many halos in the #selected sky? x_true=x_true_all[selectskyinsolutions][0:nhalo] y_true=y_true_all[selectskyinsolutions][0:nhalo] x_predicted=np.array([],dtype=float) y_predicted=np.array([],dtype=float) for i in xrange(nhalo): x_predicted=np.append(x_predicted,float(sky[0])) #get the predictd values y_predicted=np.append(y_predicted,float(sky[1])) #The solution file for the test data provides masses #to calculate the centre of mass where as the Training_halo.csv #direct provides x_ref y_ref. So in the case of test data #we need to calculae the ref point from the masses using #Get_ref() x_ref=x_ref_all[selectskyinsolutions] y_ref=y_ref_all[selectskyinsolutions] num_halos_total=num_halos_total+nhalo #Single halo case, this needs to be separately caluclated since #x_ref = x_true if nhalo == 1: #What is the radial distance between the true and predicted position r=np.append(r,np.sqrt( (x_predicted-x_true)**2 \ + (y_predicted-y_true)**2)) #What is the angle between the predicted position and true halo position if (x_predicted-x_true) != 0: psi = np.arctan((y_predicted-y_true)/(x_predicted-x_true)) else: psi=0. theta = convert_to_360([psi], [x_predicted-x_true], [y_predicted-y_true]) angle=np.append(angle,theta) else: #r_index_index, contains the radial distances of the predicted to #true positions. These are found by matching up the true halos to #the predicted halos such that the average of all the radial distances #is optimal. it also contains indexes of the halos used which are used to #show which halo has been mathced to which. r_index_index = calc_delta_r(x_predicted, y_predicted, x_true, \ y_true) r=np.append(r,r_index_index[0][0]) halo_index= r_index_index[1] #The true halos indexes matched with the predicted_index=r_index_index[2] #predicted halo index angle=np.append(angle,calc_theta\ (x_predicted[predicted_index],\ y_predicted[predicted_index],\ x_true[halo_index],\ y_true[halo_index],x_ref,\ y_ref)) # Find the angles of the predicted #position wrt to the halo and # add to the vector angle # Find what the average distance the estimate is from the halo position av_r=sum(r)/len(r) #In order to quanitfy the orientation invariance we will express each angle # as a vector and find the average vecor #R_bar^2=(1/N Sum^Ncos(theta))^2+(1/N Sum^Nsin(theta))**2 N = float(num_halos_total) angle_vec = np.sqrt(( 1.0/N * sum(np.cos(angle)) )**2 + \ ( 1.0/N * sum(np.sin(angle)) )**2) W1=1./1000. #Weight the av_r such that < 1 i a good score > 1 isnt so good. W2=1. metric = W1*av_r + W2*angle_vec #Weighted metric, weights TBD print 'Your average distance in pixels you are away from the true halo is', av_r print 'Your average angular vector is', angle_vec print 'Your score for the training data is', metric return metric def main(user_fname, fname): """ Script to compute the evaluation metric for the Observing Dark Worlds competition. You can run it on your training data to understand how well you have done with the training data. """ r=np.array([],dtype=float) # The array which I will log all the calculated radial distances angle=np.array([],dtype=float) #The array which I will log all the calculated angles #Load in the sky_ids from the true true_sky_id=[] sky_loader = c.reader(open(fname, 'rb')) #Load in the sky_ids from the solution file for row in sky_loader: true_sky_id.append(row[0]) #Load in the true values from the solution file nhalo_all=np.loadtxt(fname,usecols=(1,),delimiter=',',skiprows=1) x_true_all=np.loadtxt(fname,usecols=(4,6,8),delimiter=',',skiprows=1) y_true_all=np.loadtxt(fname,usecols=(5,7,9),delimiter=',',skiprows=1) x_ref_all=np.loadtxt(fname,usecols=(2,),delimiter=',',skiprows=1) y_ref_all=np.loadtxt(fname,usecols=(3,),delimiter=',',skiprows=1) for row in sky_loader: true_sky_id.append(row[1]) num_halos_total=0 #Keep track of how many halos are iput into the metric sky_prediction = c.reader(open(user_fname, 'rb')) #Open the result.csv try: #See if the input file from user has a header on it #with open('JoyceTest/trivialUnitTest_Pred.txt', 'r') as f: with open(user_fname, 'r') as f: header = float((f.readline()).split(',')[1]) #try and make where the #first input would be #a float, if succed its #not a header print 'THE INPUT FILE DOESNT APPEAR TO HAVE A HEADER' except : print 'THE INPUT FILE APPEARS TO HAVE A HEADER, SKIPPING THE FIRST LINE' skip_header = sky_prediction.next() for sky in sky_prediction: #Loop through each line in result.csv and analyse each one sky_id = str(sky[0]) #Get the sky_id of the input does_it_exist=true_sky_id.count(sky_id) #Is the input sky_id #from user a real one? if does_it_exist > 0: #If it does then find the matching solutions to the sky_id selectskyinsolutions=true_sky_id.index(sky_id)-1 else: #Otherwise exit print 'Sky_id does not exist, formatting problem: ',sky_id sys.exit(2) nhalo=int(nhalo_all[selectskyinsolutions])#How many halos in the #selected sky? x_true=x_true_all[selectskyinsolutions][0:nhalo] y_true=y_true_all[selectskyinsolutions][0:nhalo] x_predicted=np.array([],dtype=float) y_predicted=np.array([],dtype=float) for i in xrange(nhalo): x_predicted=np.append(x_predicted,float(sky[2*i+1])) #get the predictd values y_predicted=np.append(y_predicted,float(sky[2*i+2])) #The solution file for the test data provides masses #to calculate the centre of mass where as the Training_halo.csv #direct provides x_ref y_ref. So in the case of test data #we need to calculae the ref point from the masses using #Get_ref() x_ref=x_ref_all[selectskyinsolutions] y_ref=y_ref_all[selectskyinsolutions] num_halos_total=num_halos_total+nhalo #Single halo case, this needs to be separately caluclated since #x_ref = x_true if nhalo == 1: #What is the radial distance between the true and predicted position r=np.append(r,np.sqrt( (x_predicted-x_true)**2 \ + (y_predicted-y_true)**2)) #What is the angle between the predicted position and true halo position if (x_predicted-x_true) != 0: psi = np.arctan((y_predicted-y_true)/(x_predicted-x_true)) else: psi=0. theta = convert_to_360([psi], [x_predicted-x_true], [y_predicted-y_true]) angle=np.append(angle,theta) else: #r_index_index, contains the radial distances of the predicted to #true positions. These are found by matching up the true halos to #the predicted halos such that the average of all the radial distances #is optimal. it also contains indexes of the halos used which are used to #show which halo has been mathced to which. r_index_index = calc_delta_r(x_predicted, y_predicted, x_true, \ y_true) r=np.append(r,r_index_index[0][0]) halo_index= r_index_index[1] #The true halos indexes matched with the predicted_index=r_index_index[2] #predicted halo index angle=np.append(angle,calc_theta\ (x_predicted[predicted_index],\ y_predicted[predicted_index],\ x_true[halo_index],\ y_true[halo_index],x_ref,\ y_ref)) # Find the angles of the predicted #position wrt to the halo and # add to the vector angle # Find what the average distance the estimate is from the halo position av_r=sum(r)/len(r) #In order to quanitfy the orientation invariance we will express each angle # as a vector and find the average vecor #R_bar^2=(1/N Sum^Ncos(theta))^2+(1/N Sum^Nsin(theta))**2 N = float(num_halos_total) angle_vec = np.sqrt(( 1.0/N * sum(np.cos(angle)) )**2 + \ ( 1.0/N * sum(np.sin(angle)) )**2) W1=1./1000. #Weight the av_r such that < 1 i a good score > 1 isnt so good. W2=1. metric = W1*av_r + W2*angle_vec #Weighted metric, weights TBD print 'Your average distance in pixels you are away from the true halo is', av_r print 'Your average angular vector is', angle_vec print 'Your score for the training data is', metric if __name__ == "__main__": #For help just typed 'python DarkWorldsMetric.py -h' parser = ap.ArgumentParser(description='Work out the Metric for your input file') parser.add_argument('inputfile',type=str,nargs=1,help='Input file of halo positions. Needs to be in the format SkyId,halo_x1,haloy1,halox_2,halo_y2,halox3,halo_y3 ') parser.add_argument('reffile',type=str,nargs=1,help='This should point to Training_halos.csv') args = parser.parse_args() user_fname=args.inputfile[0] filename = (args.reffile[0]).count('Training_halos.csv') if filename == 0: fname=args.reffile[0]+str('Training_halos.csv') else: fname=args.reffile[0] main(user_fname, fname)
46.896313
188
0.604284
[ "MIT" ]
19shanu91/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers
Chapter5_LossFunctions/DarkWorldsMetric.py
20,353
Python
#!/usr/bin/env python3 # methodological_experiment.py import sys, os, csv import numpy as np import pandas as pd import versatiletrainer2 import metaselector import matplotlib.pyplot as plt from scipy import stats def first_experiment(): sourcefolder = '../data/' metadatapath = '../metadata/mastermetadata.csv' vocabpath = '../modeloutput/experimentalvocab.txt' tags4positive = {'fantasy_loc', 'fantasy_oclc'} tags4negative = {'sf_loc', 'sf_oclc'} sizecap = 200 metadata, masterdata, classvector, classdictionary, orderedIDs, authormatches, vocablist = versatiletrainer2.get_simple_data(sourcefolder, metadatapath, vocabpath, tags4positive, tags4negative, sizecap) c_range = [.004, .012, 0.3, 0.8, 2] featurestart = 3000 featureend = 4400 featurestep = 100 modelparams = 'logistic', 10, featurestart, featureend, featurestep, c_range matrix, maxaccuracy, metadata, coefficientuples, features4max, best_regularization_coef = versatiletrainer2.tune_a_model(metadata, masterdata, classvector, classdictionary, orderedIDs, authormatches, vocablist, tags4positive, tags4negative, modelparams, 'first_experiment', '../modeloutput/first_experiment.csv') plt.rcParams["figure.figsize"] = [9.0, 6.0] plt.matshow(matrix, origin = 'lower', cmap = plt.cm.YlOrRd) plt.show() def get_ratio_data(vocabpath, sizecap, ratio, tags4positive, tags4negative, excludebelow = 0, excludeabove = 3000): ''' Loads metadata, selects instances for the positive and negative classes (using a ratio to dilute the positive class with negative instances), creates a lexicon if one doesn't already exist, and creates a pandas dataframe storing texts as rows and words/features as columns. A refactored and simplified version of get_data_for_model(). ''' holdout_authors = True freqs_already_normalized = True verbose = False datecols = ['firstpub'] indexcol = ['docid'] extension = '.tsv' genrecol = 'tags' numfeatures = 8000 sourcefolder = '../data/' metadatapath = '../metadata/mastermetadata.csv' # Get a list of files. allthefiles = os.listdir(sourcefolder) volumeIDsinfolder = list() volumepaths = list() numchars2trim = len(extension) for filename in allthefiles: if filename.endswith(extension): volID = filename[0 : -numchars2trim] # The volume ID is basically the filename minus its extension. volumeIDsinfolder.append(volID) metadata = metaselector.load_metadata(metadatapath, volumeIDsinfolder, excludebelow, excludeabove, indexcol = indexcol, datecols = datecols, genrecol = genrecol) # That function returns a pandas dataframe which is guaranteed to be indexed by indexcol, # and to contain a numeric column 'std_date' as well as a column 'tagset' which contains # sets of genre tags for each row. It has also been filtered so it only contains volumes # in the folder, and none whose date is below excludebelow or above excludeabove. orderedIDs, classdictionary = metaselector.dilute_positive_class(metadata, sizecap, tags4positive, tags4negative, ratio) metadata = metadata.loc[orderedIDs] # Limits the metadata data frame to rows we are actually using # (those selected in select_instances). # We now create an ordered list of id-path tuples. volspresent = [(x, sourcefolder + x + extension) for x in orderedIDs] print(len(volspresent)) print('Building vocabulary.') vocablist = versatiletrainer2.get_vocablist(vocabpath, volspresent, n = numfeatures) numfeatures = len(vocablist) print() print("Number of features: " + str(numfeatures)) # For each volume, we're going to create a list of volumes that should be # excluded from the training set when it is to be predicted. More precisely, # we're going to create a list of their *indexes*, so that we can easily # remove rows from the training matrix. authormatches = [ [] for x in orderedIDs] # Now we proceed to enlarge that list by identifying, for each volume, # a set of indexes that have the same author. Obvs, there will always be at least one. # We exclude a vol from it's own training set. if holdout_authors: for idx1, anid in enumerate(orderedIDs): thisauthor = metadata.loc[anid, 'author'] authormatches[idx1] = list(np.flatnonzero(metadata['author'] == thisauthor)) for alist in authormatches: alist.sort(reverse = True) print() print('Authors matched.') print() # I am reversing the order of indexes so that I can delete them from # back to front, without changing indexes yet to be deleted. # This will become important in the modelingprocess module. masterdata, classvector = versatiletrainer2.get_dataframe(volspresent, classdictionary, vocablist, freqs_already_normalized) return metadata, masterdata, classvector, classdictionary, orderedIDs, authormatches, vocablist def vary_sf_ratio_against_random(): if not os.path.isfile('../measuredivergence/modeldata.tsv'): with open('../measuredivergence/modeldata.tsv', mode = 'w', encoding = 'utf-8') as f: outline = 'name\tsize\tratio\taccuracy\tfeatures\tregularization\n' f.write(outline) size = 80 for iteration in [5, 6, 7]: ceiling = 105 if iteration == 7: ceiling = 5 for pct in range(0, ceiling, 5): ratio = pct / 100 name = 'iter' + str(iteration) + '_size' + str(size) + '_ratio' + str(pct) vocabpath = '../measuredivergence/vocabularies/' + name + '.txt' tags4positive = {'sf_loc', 'sf_oclc'} tags4negative = {'random'} metadata, masterdata, classvector, classdictionary, orderedIDs, authormatches, vocablist = get_ratio_data(vocabpath, size, ratio, tags4positive, tags4negative, excludebelow = 0, excludeabove = 3000) c_range = [.00005, .0003, .001, .004, .012, 0.2, 0.8] featurestart = 1000 featureend = 6000 featurestep = 300 modelparams = 'logistic', 16, featurestart, featureend, featurestep, c_range matrix, maxaccuracy, metadata, coefficientuples, features4max, best_regularization_coef = versatiletrainer2.tune_a_model(metadata, masterdata, classvector, classdictionary, orderedIDs, authormatches, vocablist, tags4positive, tags4negative, modelparams, name, '../measuredivergence/modeloutput/' + name + '.csv', write_fullmodel = False) # It's important not to write fullmodel if you want the csvs # to accurately reflect terrible accuracy on diluted datasets. # write_fullmodel = False forces crossvalidation. with open('../measuredivergence/modeldata.tsv', mode = 'a', encoding = 'utf-8') as f: outline = name + '\t' + str(size) + '\t' + str(ratio) + '\t' + str(maxaccuracy) + '\t' + str(features4max) + '\t' + str(best_regularization_coef) + '\n' f.write(outline) def vary_fantasy_ratio_against_sf(): if not os.path.isfile('../measuredivergence/modeldata.tsv'): with open('../measuredivergence/modeldata.tsv', mode = 'w', encoding = 'utf-8') as f: outline = 'name\tsize\tratio\taccuracy\tfeatures\tregularization\n' f.write(outline) size = 80 for iteration in [8, 9, 10]: ceiling = 105 if iteration == 10: ceiling = 5 for pct in range(0, ceiling, 5): ratio = pct / 100 name = 'iter' + str(iteration) + '_size' + str(size) + '_ratio' + str(pct) vocabpath = '../measuredivergence/vocabularies/' + name + '.txt' tags4positive = {'fantasy_loc', 'fantasy_oclc'} tags4negative = {'sf_loc', 'sf_oclc'} metadata, masterdata, classvector, classdictionary, orderedIDs, authormatches, vocablist = get_ratio_data(vocabpath, size, ratio, tags4positive, tags4negative, excludebelow = 0, excludeabove = 3000) c_range = [.00005, .0003, .001, .004, .012, 0.2, 0.8, 3] featurestart = 2000 featureend = 7500 featurestep = 400 modelparams = 'logistic', 16, featurestart, featureend, featurestep, c_range matrix, maxaccuracy, metadata, coefficientuples, features4max, best_regularization_coef = versatiletrainer2.tune_a_model(metadata, masterdata, classvector, classdictionary, orderedIDs, authormatches, vocablist, tags4positive, tags4negative, modelparams, name, '../measuredivergence/modeloutput/' + name + '.csv', write_fullmodel = False) # write_fullmodel = False forces crossvalidation. with open('../measuredivergence/modeldata.tsv', mode = 'a', encoding = 'utf-8') as f: outline = name + '\t' + str(size) + '\t' + str(ratio) + '\t' + str(maxaccuracy) + '\t' + str(features4max) + '\t' + str(best_regularization_coef) + '\n' f.write(outline) def vary_fantasy_ratio_against_random(): if not os.path.isfile('../measuredivergence/modeldata.tsv'): with open('../measuredivergence/modeldata.tsv', mode = 'w', encoding = 'utf-8') as f: outline = 'name\tsize\tratio\taccuracy\tfeatures\tregularization\n' f.write(outline) size = 80 for iteration in [11, 12, 13]: ceiling = 105 if iteration == 13: ceiling = 5 for pct in range(0, ceiling, 5): ratio = pct / 100 name = 'iter' + str(iteration) + '_size' + str(size) + '_ratio' + str(pct) vocabpath = '../measuredivergence/vocabularies/' + name + '.txt' tags4positive = {'fantasy_loc', 'fantasy_oclc'} tags4negative = {'random'} metadata, masterdata, classvector, classdictionary, orderedIDs, authormatches, vocablist = get_ratio_data(vocabpath, size, ratio, tags4positive, tags4negative, excludebelow = 0, excludeabove = 3000) c_range = [.00005, .0003, .001, .004, .012, 0.2, 0.8, 3] featurestart = 1600 featureend = 6400 featurestep = 400 modelparams = 'logistic', 16, featurestart, featureend, featurestep, c_range matrix, maxaccuracy, metadata, coefficientuples, features4max, best_regularization_coef = versatiletrainer2.tune_a_model(metadata, masterdata, classvector, classdictionary, orderedIDs, authormatches, vocablist, tags4positive, tags4negative, modelparams, name, '../measuredivergence/modeloutput/' + name + '.csv', write_fullmodel = False) # write_fullmodel = False forces crossvalidation. with open('../measuredivergence/modeldata.tsv', mode = 'a', encoding = 'utf-8') as f: outline = name + '\t' + str(size) + '\t' + str(ratio) + '\t' + str(maxaccuracy) + '\t' + str(features4max) + '\t' + str(best_regularization_coef) + '\n' f.write(outline) def accuracy(df, column): totalcount = len(df.realclass) tp = sum((df.realclass > 0.5) & (df[column] > 0.5)) tn = sum((df.realclass <= 0.5) & (df[column] <= 0.5)) fp = sum((df.realclass <= 0.5) & (df[column] > 0.5)) fn = sum((df.realclass > 0.5) & (df[column] <= 0.5)) assert totalcount == (tp + fp + tn + fn) return (tp + tn) / totalcount def accuracy_loss(df): return accuracy(df, 'probability') - accuracy(df, 'alien_model') def kldivergence(p, q): """Kullback-Leibler divergence D(P || Q) for discrete distributions Parameters ---------- p, q : array-like, dtype=float, shape=n Discrete probability distributions. """ p = np.asarray(p, dtype=np.float) q = np.asarray(q, dtype=np.float) return np.sum(np.where(p != 0, p * np.log(p / q), 0)) def averagecorr(r1, r2): z1 = np.arctanh(r1) z2 = np.arctanh(r2) themean = (z1 + z2) / 2 return np.tanh(themean) def get_divergences(gold, testname, itera, size, pct): ''' This function gets several possible measures of divergence between two models. ''' # We start by constructing the paths to the gold # standard model criteria (.pkl) and # model output (.csv) on the examples # originally used to train it. # We're going to try applying the gold standard # criteria to another model's output, and vice- # versa. model1 = '../measuredivergence/modeloutput/' + gold + '.pkl' meta1 = '../measuredivergence/modeloutput/' + gold + '.csv' # Now we construct paths to the test model # criteria (.pkl) and output (.csv). testpath = '../measuredivergence/modeloutput/' + testname model2 = testpath + '.pkl' meta2 = testpath + '.csv' model1on2 = versatiletrainer2.apply_pickled_model(model1, '../data/', '.tsv', meta2) model2on1 = versatiletrainer2.apply_pickled_model(model2, '../data/', '.tsv', meta1) pearson1on2 = stats.pearsonr(model1on2.probability, model1on2.alien_model)[0] pearson2on1 = stats.pearsonr(model2on1.probability, model2on1.alien_model)[0] pearson = averagecorr(pearson1on2, pearson2on1) spearman1on2 = stats.spearmanr(model1on2.probability, model1on2.alien_model)[0] spearman2on1 = stats.spearmanr(model2on1.probability, model2on1.alien_model)[0] spearman = averagecorr(spearman1on2, spearman2on1) loss1on2 = accuracy_loss(model1on2) loss2on1 = accuracy_loss(model2on1) loss = (loss1on2 + loss2on1) / 2 kl1on2 = kldivergence(model1on2.probability, model1on2.alien_model) kl2on1 = kldivergence(model2on1.probability, model2on1.alien_model) kl = (kl1on2 + kl2on1) / 2 return pearson, spearman, loss, kl, spearman1on2, spearman2on1, loss1on2, loss2on1 def measure_sf_divergences(): columns = ['name1', 'name2', 'size', 'acc1', 'acc2', 'ratiodiff', 'pearson', 'spearman', 'spear1on2', 'spear2on1', 'loss', 'loss1on2', 'loss2on1', 'kl'] if not os.path.isfile('../measuredivergence/sf_divergences.tsv'): with open('../measuredivergence/sf_divergences.tsv', mode = 'a', encoding = 'utf-8') as f: scribe = csv.DictWriter(f, delimiter = '\t', fieldnames = columns) scribe.writeheader() goldstandards = ['iter5_size80_ratio0', 'iter6_size80_ratio0', 'iter7_size80_ratio0'] size = 80 modeldata = pd.read_csv('../measuredivergence/modeldata.tsv', sep = '\t', index_col = 'name') for gold in goldstandards: for itera in [5, 6]: for pct in range(0, 105, 5): ratio = pct / 100 testname = 'iter' + str(itera) + '_size' + str(size) + '_ratio' + str(pct) if testname == gold: continue # we don't test a model against itself else: row = dict() row['pearson'], row['spearman'], row['loss'], row['kl'], row['spear1on2'], row['spear2on1'], row['loss1on2'], row['loss2on1'] = get_divergences(gold, testname, itera, size, pct) row['name1'] = gold row['name2'] = testname row['size'] = size row['acc1'] = modeldata.loc[gold, 'accuracy'] row['acc2'] = modeldata.loc[testname, 'accuracy'] row['ratiodiff'] = ratio with open('../measuredivergence/sf_divergences.tsv', mode = 'a', encoding = 'utf-8') as f: scribe = csv.DictWriter(f, delimiter = '\t', fieldnames = columns) scribe.writerow(row) def measure_fsf_divergences(): columns = ['name1', 'name2', 'size', 'acc1', 'acc2', 'ratiodiff', 'pearson', 'spearman', 'spear1on2', 'spear2on1', 'loss', 'loss1on2', 'loss2on1', 'kl'] if not os.path.isfile('../measuredivergence/fsf_divergences.tsv'): with open('../measuredivergence/fsf_divergences.tsv', mode = 'a', encoding = 'utf-8') as f: scribe = csv.DictWriter(f, delimiter = '\t', fieldnames = columns) scribe.writeheader() goldstandards = ['iter8_size80_ratio0', 'iter9_size80_ratio0', 'iter10_size80_ratio0'] size = 80 modeldata = pd.read_csv('../measuredivergence/modeldata.tsv', sep = '\t', index_col = 'name') for gold in goldstandards: for itera in [8, 9]: for pct in range(0, 105, 5): ratio = pct / 100 testname = 'iter' + str(itera) + '_size' + str(size) + '_ratio' + str(pct) if testname == gold: continue # we don't test a model against itself else: row = dict() row['pearson'], row['spearman'], row['loss'], row['kl'], row['spear1on2'], row['spear2on1'], row['loss1on2'], row['loss2on1'] = get_divergences(gold, testname, itera, size, pct) row['name1'] = gold row['name2'] = testname row['size'] = size row['acc1'] = modeldata.loc[gold, 'accuracy'] row['acc2'] = modeldata.loc[testname, 'accuracy'] row['ratiodiff'] = ratio with open('../measuredivergence/fsf_divergences.tsv', mode = 'a', encoding = 'utf-8') as f: scribe = csv.DictWriter(f, delimiter = '\t', fieldnames = columns) scribe.writerow(row) def measure_fantasy_divergences(): columns = ['name1', 'name2', 'size', 'acc1', 'acc2', 'ratiodiff', 'pearson', 'spearman', 'spear1on2', 'spear2on1', 'loss', 'loss1on2', 'loss2on1', 'kl'] if not os.path.isfile('../measuredivergence/fantasy_divergences.tsv'): with open('../measuredivergence/fantasy_divergences.tsv', mode = 'a', encoding = 'utf-8') as f: scribe = csv.DictWriter(f, delimiter = '\t', fieldnames = columns) scribe.writeheader() goldstandards = ['iter11_size80_ratio0', 'iter12_size80_ratio0', 'iter13_size80_ratio0'] size = 80 modeldata = pd.read_csv('../measuredivergence/modeldata.tsv', sep = '\t', index_col = 'name') for gold in goldstandards: for itera in [11, 12]: for pct in range(0, 105, 5): ratio = pct / 100 testname = 'iter' + str(itera) + '_size' + str(size) + '_ratio' + str(pct) if testname == gold: continue # we don't test a model against itself else: row = dict() row['pearson'], row['spearman'], row['loss'], row['kl'], row['spear1on2'], row['spear2on1'], row['loss1on2'], row['loss2on1'] = get_divergences(gold, testname, itera, size, pct) row['name1'] = gold row['name2'] = testname row['size'] = size row['acc1'] = modeldata.loc[gold, 'accuracy'] row['acc2'] = modeldata.loc[testname, 'accuracy'] row['ratiodiff'] = ratio with open('../measuredivergence/fantasy_divergences.tsv', mode = 'a', encoding = 'utf-8') as f: scribe = csv.DictWriter(f, delimiter = '\t', fieldnames = columns) scribe.writerow(row) def new_experiment(): # The first time I ran this, I used partition 2 to build the # mixed data, and partition 1 as a gold standard. Now reversing. outmodelpath = '../measuredivergence/results/newexperimentmodels.csv' columns = ['name', 'size', 'ratio', 'iteration', 'meandate', 'maxaccuracy', 'features', 'regularization'] if not os.path.isfile(outmodelpath): with open(outmodelpath, mode = 'w', encoding = 'utf-8') as f: scribe = csv.DictWriter(f, fieldnames = columns) scribe.writeheader() c_range = [.00001, .0001, .001, .01, 0.1, 1, 10, 100] featurestart = 1500 featureend = 6000 featurestep = 300 modelparams = 'logistic', 10, featurestart, featureend, featurestep, c_range sizecap = 75 for i in range(3, 6): for ratio in [0, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 100]: sourcefolder = '../measuredivergence/mix/' + str(ratio) + '/' metadatapath = '../measuredivergence/partitionmeta/meta' + str(ratio) + '.csv' name = 'mixeddata_' + str(i) + '_' + str(ratio) vocabpath = '../lexica/' + name + '.txt' tags4positive = {'fantasy', 'detective'} tags4negative = {'random'} floor = 1800 ceiling = 1930 metadata, masterdata, classvector, classdictionary, orderedIDs, authormatches, vocablist = versatiletrainer2.get_simple_data(sourcefolder, metadatapath, vocabpath, tags4positive, tags4negative, sizecap, excludebelow = floor, excludeabove = ceiling, force_even_distribution = False, numfeatures = 6000) matrix, maxaccuracy, metadata, coefficientuples, features4max, best_regularization_coef = versatiletrainer2.tune_a_model(metadata, masterdata, classvector, classdictionary, orderedIDs, authormatches, vocablist, tags4positive, tags4negative, modelparams, name, '../measuredivergence/newmodeloutput/' + name + '.csv') meandate = int(round(np.sum(metadata.firstpub) / len(metadata.firstpub))) row = dict() row['name'] = name row['size'] = sizecap row['ratio'] = ratio row['iteration'] = i row['meandate'] = meandate row['maxaccuracy'] = maxaccuracy row['features'] = features4max row['regularization'] = best_regularization_coef with open(outmodelpath, mode = 'a', encoding = 'utf-8') as f: scribe = csv.DictWriter(f, fieldnames = columns) scribe.writerow(row) os.remove(vocabpath) sourcefolder = '../data/' metadatapath = '../measuredivergence/partitionmeta/part2.csv' # note that this is changed if you create mix data with # partition 2 name = 'goldfantasy_' + str(i) vocabpath = '../lexica/' + name + '.txt' tags4positive = {'fantasy'} tags4negative = {'random', 'randomB'} floor = 1800 ceiling = 1930 metadata, masterdata, classvector, classdictionary, orderedIDs, authormatches, vocablist = versatiletrainer2.get_simple_data(sourcefolder, metadatapath, vocabpath, tags4positive, tags4negative, sizecap, excludebelow = floor, excludeabove = ceiling, force_even_distribution = False, numfeatures = 6000) matrix, maxaccuracy, metadata, coefficientuples, features4max, best_regularization_coef = versatiletrainer2.tune_a_model(metadata, masterdata, classvector, classdictionary, orderedIDs, authormatches, vocablist, tags4positive, tags4negative, modelparams, name, '../measuredivergence/newmodeloutput/' + name + '.csv') meandate = int(round(np.sum(metadata.firstpub) / len(metadata.firstpub))) row = dict() row['name'] = name row['size'] = sizecap row['ratio'] = ratio row['iteration'] = i row['meandate'] = meandate row['maxaccuracy'] = maxaccuracy row['features'] = features4max row['regularization'] = best_regularization_coef with open(outmodelpath, mode = 'a', encoding = 'utf-8') as f: scribe = csv.DictWriter(f, fieldnames = columns) scribe.writerow(row) os.remove(vocabpath) sourcefolder = '../data/' metadatapath = '../measuredivergence/partitionmeta/part2.csv' # depending on which partition you used to create mix data; # this will be the other one name = 'golddetective_' + str(i) vocabpath = '../lexica/' + name + '.txt' tags4positive = {'detective'} tags4negative = {'random', 'randomB'} floor = 1800 ceiling = 1930 metadata, masterdata, classvector, classdictionary, orderedIDs, authormatches, vocablist = versatiletrainer2.get_simple_data(sourcefolder, metadatapath, vocabpath, tags4positive, tags4negative, sizecap, excludebelow = floor, excludeabove = ceiling, force_even_distribution = False, numfeatures = 6000) matrix, maxaccuracy, metadata, coefficientuples, features4max, best_regularization_coef = versatiletrainer2.tune_a_model(metadata, masterdata, classvector, classdictionary, orderedIDs, authormatches, vocablist, tags4positive, tags4negative, modelparams, name, '../measuredivergence/newmodeloutput/' + name + '.csv') meandate = int(round(np.sum(metadata.firstpub) / len(metadata.firstpub))) row = dict() row['name'] = name row['size'] = sizecap row['ratio'] = ratio row['iteration'] = i row['meandate'] = meandate row['maxaccuracy'] = maxaccuracy row['features'] = features4max row['regularization'] = best_regularization_coef with open(outmodelpath, mode = 'a', encoding = 'utf-8') as f: scribe = csv.DictWriter(f, fieldnames = columns) scribe.writerow(row) os.remove(vocabpath) def accuracy(df, column): totalcount = len(df.realclass) tp = sum((df.realclass > 0.5) & (df[column] > 0.5)) tn = sum((df.realclass <= 0.5) & (df[column] <= 0.5)) fp = sum((df.realclass <= 0.5) & (df[column] > 0.5)) fn = sum((df.realclass > 0.5) & (df[column] <= 0.5)) assert totalcount == (tp + fp + tn + fn) return (tp + tn) / totalcount def accuracy_loss(df): return accuracy(df, 'probability') - accuracy(df, 'alien_model') def get_divergence(sampleA, sampleB, twodatafolder = '../data/', onedatafolder = '../data/'): ''' This function applies model a to b, and vice versa, and returns a couple of measures of divergence: notably lost accuracy and z-tranformed spearman correlation. ''' # We start by constructing the paths to the sampleA # standard model criteria (.pkl) and # model output (.csv) on the examples # originally used to train it. # We're going to try applying the sampleA standard # criteria to another model's output, and vice- # versa. model1 = '../measuredivergence/newmodeloutput/' + sampleA + '.pkl' meta1 = '../measuredivergence/newmodeloutput/' + sampleA + '.csv' # Now we construct paths to the test model # criteria (.pkl) and output (.csv). model2 = '../measuredivergence/newmodeloutput/' + sampleB + '.pkl' meta2 = '../measuredivergence/newmodeloutput/' + sampleB + '.csv' model1on2 = versatiletrainer2.apply_pickled_model(model1, twodatafolder, '.tsv', meta2) model2on1 = versatiletrainer2.apply_pickled_model(model2, onedatafolder, '.tsv', meta1) spearman1on2 = np.arctanh(stats.spearmanr(model1on2.probability, model1on2.alien_model)[0]) spearman2on1 = np.arctanh(stats.spearmanr(model2on1.probability, model2on1.alien_model)[0]) spearman = (spearman1on2 + spearman2on1) / 2 loss1on2 = accuracy_loss(model1on2) loss2on1 = accuracy_loss(model2on1) loss = (loss1on2 + loss2on1) / 2 alienacc2 = accuracy(model1on2, 'alien_model') alienacc1 = accuracy(model2on1, 'alien_model') acc2 = accuracy(model1on2, 'probability') acc1 = accuracy(model2on1, 'probability') meandate2 = np.mean(model1on2.std_date) meandate1 = np.mean(model2on1.std_date) return spearman, loss, spearman1on2, spearman2on1, loss1on2, loss2on1, acc1, acc2, alienacc1, alienacc2, meandate1, meandate2 def write_a_row(r, outfile, columns): with open(outfile, mode = 'a', encoding = 'utf-8') as f: scribe = csv.DictWriter(f, fieldnames = columns, delimiter = '\t') scribe.writerow(r) def new_divergences(): outcomparisons = '../measuredivergence/results/new_comparisons.tsv' columns = ['testype', 'name1', 'name2', 'ratio', 'spearman', 'spear1on2', 'spear2on1', 'loss', 'loss1on2', 'loss2on1', 'acc1', 'acc2', 'alienacc1', 'alienacc2', 'meandate1', 'meandate2'] if not os.path.isfile(outcomparisons): with open(outcomparisons, mode = 'a', encoding = 'utf-8') as f: scribe = csv.DictWriter(f, delimiter = '\t', fieldnames = columns) scribe.writeheader() # I originally ran this with i and j # iterating through range(3). Now trying # on models generated with the partitions # reversed. for i in range(3, 6): for j in range(3, 6): for ratio in [0, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 100]: r = dict() r['testype'] = 'fantasy2mixed' r['name1'] = 'goldfantasy_' + str(i) r['name2'] = 'mixeddata_' + str(j) + '_' + str(ratio) r['spearman'], r['loss'], r['spear1on2'], r['spear2on1'], r['loss1on2'], r['loss2on1'], r['acc1'], r['acc2'], r['alienacc1'], r['alienacc2'], r['meandate1'], r['meandate2'] = get_divergence(r['name1'], r['name2'], twodatafolder = '../measuredivergence/mix/' + str(ratio) + '/') r['ratio'] = ratio write_a_row(r, outcomparisons, columns) r = dict() r['testype'] = 'detective2mixed' r['name1'] = 'golddetective_' + str(i) r['name2'] = 'mixeddata_' + str(j) + '_' + str(ratio) r['spearman'], r['loss'], r['spear1on2'], r['spear2on1'], r['loss1on2'], r['loss2on1'], r['acc1'], r['acc2'], r['alienacc1'], r['alienacc2'], r['meandate1'], r['meandate2'] = get_divergence(r['name1'], r['name2'], twodatafolder = '../measuredivergence/mix/' + str(ratio) + '/') r['ratio'] = 100 - ratio # note that distance from detective is the complement # of distance from fantasy write_a_row(r, outcomparisons, columns) def new_self_comparisons (): outcomparisons = '../measuredivergence/results/self_comparisons.tsv' columns = ['testype', 'name1', 'name2', 'ratio', 'spearman', 'spear1on2', 'spear2on1', 'loss', 'loss1on2', 'loss2on1', 'acc1', 'acc2', 'alienacc1', 'alienacc2', 'meandate1', 'meandate2'] if not os.path.isfile(outcomparisons): with open(outcomparisons, mode = 'a', encoding = 'utf-8') as f: scribe = csv.DictWriter(f, delimiter = '\t', fieldnames = columns) scribe.writeheader() for i in range(0, 3): for j in range(3, 6): for ratio in [0, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 100]: r = dict() r['testype'] = 'selfmixed' r['name1'] = 'mixeddata_' + str(i) + '_' + str(ratio) r['name2'] = 'mixeddata_' + str(j) + '_' + str(ratio) r['spearman'], r['loss'], r['spear1on2'], r['spear2on1'], r['loss1on2'], r['loss2on1'], r['acc1'], r['acc2'], r['alienacc1'], r['alienacc2'], r['meandate1'], r['meandate2'] = get_divergence(r['name1'], r['name2'], twodatafolder = '../measuredivergence/mix/' + str(ratio) + '/', onedatafolder = '../measuredivergence/altmix/' + str(ratio) + '/') r['ratio'] = ratio write_a_row(r, outcomparisons, columns) new_self_comparisons()
44.895954
360
0.629168
[ "MIT" ]
tedunderwood/fiction
variation/methodological_experiment.py
31,068
Python
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for random_ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from lingvo.core import test_utils from lingvo.core.ops import py_x_ops from six.moves import range import tensorflow as tf FLAGS = tf.flags.FLAGS class RandomOpsTest(test_utils.TestCase): def testRandomPermutationSequenceRepeat(self): with self.session() as sess: out = py_x_ops.random_permutation_sequence(num=20, batch=7, repeat=True) remaining = list(range(20)) for _ in range(10): # Each epoch takes exactly 3 steps. vals = sess.run(out).tolist() + sess.run(out).tolist() + sess.run( out).tolist() self.assertEqual(len(vals), 21) # Contains all the remaining values from previous epoch. for x in remaining: vals.remove(x) # Raises exception if x is not in vals. # Remaining items have no duplicates. self.assertEqual(len(vals), len(set(vals))) remaining = list(set(range(20)) - set(vals)) def testRandomPermutationSequenceNoRepeat(self): with self.session() as sess: out = py_x_ops.random_permutation_sequence(num=20, batch=7, repeat=False) # Each epoch takes exactly 3 steps. vals = sess.run(out).tolist() + sess.run(out).tolist() + sess.run( out).tolist() self.assertEqual(list(range(20)), sorted(vals)) # repeat=False. We should see OutOfRange error. with self.assertRaises(tf.errors.OutOfRangeError): sess.run(out) if __name__ == '__main__': tf.test.main()
34.530303
80
0.678806
[ "Apache-2.0" ]
CelineQiQi/lingvo
lingvo/core/ops/random_ops_test.py
2,279
Python
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) class PyFastjsonschema(PythonPackage): """Fast JSON schema validator for Python.""" homepage = "https://github.com/horejsek/python-fastjsonschema" pypi = "fastjsonschema/fastjsonschema-2.15.1.tar.gz" version('2.15.1', sha256='671f36d225b3493629b5e789428660109528f373cf4b8a22bac6fa2f8191c2d2') depends_on('py-setuptools', type='build')
34.8125
96
0.759425
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
Bambi/spack
var/spack/repos/builtin/packages/py-fastjsonschema/package.py
557
Python
import pytest from datetime import date, datetime from dateutil.relativedelta import relativedelta from django.contrib.auth.models import User from records.models import ( Category, Record, Budget, OUTCOME, INCOME, SAVINGS, tmz) from records.month_control import MonthControl, MonthControlWithBudget @pytest.fixture def current_date(): today = date.today() today_datetime = datetime( day=today.day, month=today.month, year=today.year) return tmz(today_datetime) @pytest.fixture def future_date(current_date): date = current_date+relativedelta(days=1) return date @pytest.fixture def day_of_month(future_date): return future_date.day @pytest.fixture def start_of_recurrence(future_date): """ Date object representing the first day of a record with recurrence """ return future_date @pytest.fixture def end_of_recurrence(future_date): """ Return a date which is used to determine the end month the recurrence should occur """ date = future_date+relativedelta(months=6) return date @pytest.fixture def next_month(current_date): date = current_date+relativedelta(months=1) return date @pytest.fixture def next_month_future(future_date): date = future_date+relativedelta(months=1) return date @pytest.fixture def infinite_future_date(current_date): date = current_date+relativedelta(years=360) return date @pytest.fixture def month_control(user, current_date): """ Return a MonthControl object for the current date. Important: currently any Record fixture should come before month_control """ month_control = MonthControl( user, current_date.month, current_date.year, cache={}) return month_control @pytest.fixture def month_control_with_budget(user, current_date): """ Return a MonthControlWithBudget object for the current date. Important: currently any Record fixture should come before month_control """ month_control = MonthControlWithBudget( user, current_date.month, current_date.year, cache={}) return month_control def _user(username='test_user'): raw_password = "fake" new_user = User.objects.create_user( username=username, email="[email protected]", password=raw_password) setattr(new_user, "raw_password", raw_password) return new_user @pytest.fixture def user(): return _user() @pytest.fixture def another_user(): return _user('another_user') @pytest.fixture def outcome(user): """ Main category of outcome type """ category = Category.objects.create( name="outcome", type_category=OUTCOME, user=user) return category @pytest.fixture def income(user): """ Main category of income type """ category = Category.objects.create( name="income", type_category=INCOME, user=user) return category @pytest.fixture def savings(user): """ Category of Savings """ category = Category.objects.create( name="savings", type_category=SAVINGS, user=user) return category @pytest.fixture def outcome_current(user, outcome, current_date): """ Record of type Outcome set to today (current date) """ record = Record.objects.create( category=outcome, amount=1, start_date=current_date, user=user) return record @pytest.fixture def outcome_future(user, outcome, future_date): """ Record of type Outcome set in the future """ record = Record.objects.create( category=outcome, amount=1, start_date=future_date, user=user) return record @pytest.fixture def outcome_recurrent(user, outcome, start_of_recurrence): """ Record of type Outcome set in the future with a day of the month set to create a recurring record This fixture should not be used with outcome_recurrent_limited and outcome_with_parent since they change the instance of this own record """ record = Record.objects.create( category=outcome, amount=1, start_date=start_of_recurrence, user=user, day_of_month=start_of_recurrence.day) return record @pytest.fixture def outcome_recurrent_limited(user, outcome_recurrent, end_of_recurrence): """ Record of type Outcome set in the future with a recurring day of the month set and limited to a certain time """ outcome_recurrent.end_date = end_of_recurrence outcome_recurrent.save() return outcome_recurrent @pytest.fixture def outcome_with_parent( outcome_future, outcome_recurrent, next_month_future): outcome_future.parent = outcome_recurrent outcome_future.start_date = next_month_future outcome_future.save() return outcome_future @pytest.fixture def savings_current(request, user, savings, current_date): """ Record of type Outcome set in the future """ record = Record.objects.create( category=savings, amount=1, start_date=current_date, user=user) return record @pytest.fixture def budget(user): budget = Budget.objects.create(user=user, amount=1) return budget
24.389423
78
0.723044
[ "Unlicense" ]
curaloucura/money-forecast
moneyforecast/tests/records/fixtures.py
5,073
Python
with open("/cvmfs/cms.cern.ch/phys_generator/gridpacks/slc6_amd64_gcc481/13TeV/madgraph/GMSB_SHLA/GMSB_Lambda350TeV_CTau400cm.slha") as f: SLHA_TABLE = f.read() import FWCore.ParameterSet.Config as cms from Configuration.Generator.Pythia8CommonSettings_cfi import * from Configuration.Generator.MCTunes2017.PythiaCP5Settings_cfi import * from Configuration.Generator.PSweightsPythia.PythiaPSweightsSettings_cfi import * generator = cms.EDFilter("Pythia8GeneratorFilter", comEnergy = cms.double(13000.0), pythiaHepMCVerbosity = cms.untracked.bool(False), pythiaPylistVerbosity = cms.untracked.int32(1), filterEfficiency = cms.untracked.double(1.0), SLHATableForPythia8 = cms.string('%s' % SLHA_TABLE), PythiaParameters = cms.PSet( pythia8CommonSettingsBlock, pythia8CP5SettingsBlock, pythia8PSweightsSettingsBlock, processParameters = cms.vstring( 'ParticleDecays:limitTau0 = off', 'ParticleDecays:tau0Max = 10000000', 'SUSY:all on', ), parameterSets = cms.vstring('pythia8CommonSettings', 'pythia8CP5Settings', 'pythia8PSweightsSettings', 'processParameters') ) ) ProductionFilterSequence = cms.Sequence(generator)
42.911765
138
0.632625
[ "Apache-2.0" ]
zhangzc11/cms-gmsb-sps8-configs
Configuration/GenProduction/python/ThirteenTeV/GMSB_noSLHA/GMSB_L350TeV_Ctau400cm_Pythia8_13TeV_cff.py
1,459
Python
from flask import Flask from flask_sqlalchemy import SQLAlchemy app = Flask(__name__) app.config.from_object('setting') db = SQLAlchemy(app)
17.875
39
0.797203
[ "MIT" ]
vemodalen-x/IRS_imental
Systemcode/imental-Flask/init.py
143
Python
'''Ask two student's grade, inform 3 possible averages. average : > 7 = Approved < 7 & > 5 = Recovery < 5 = Failed ''' g1 = float(input("Inform the student's first grade: ")) g2 = float(input("Inform the student's second grade: ")) average = (g1 + g2)/2 # how to calculate the avarege grade between two values if average >= 7: print(f"Student with avarege \033[35m{average}\033[m: \033[32mAPPROVED\033[m") elif average >= 5 and average < 7: print(f"Student with avarege \033[35m{average}\033[m: \033[33mRECOVERY\033[m") else: print(f"Student with avarege \033[35m{average}\033[m: \033[31mFAILED\033[m")
38.4375
82
0.687805
[ "MIT" ]
engcristian/Python
Python-codes-CeV/40-Average.py
615
Python
from helpers.language import estr ACTION_TEXT = "text" ACTION_TEXT_QUESTION = "text_question" ACTION_LIST_QUESTION = "list_question" ACTION_YES_NO_QUESTION = "yesno_question" ACTION_CHOICES_QUESTION = "choices_question" ID = "id" NO = "no" YES = "yes" TEXT = "text" ON_NO = "on_no" ON_YES = "on_yes" ACTION = "action" CHOICES = "choices" ON_CHOICES = "on_choices" MAX_ANSWERS = "max_answers" STOP_COMMAND = "stop_command" START_NUMBER = "start_number" CONVERSATION = "conversation" ON_INVALID_CHOICE = "on_invalid_choice" class Result: def __init__(self, text, skip=False): self.text = text self.skip = skip class StoppableDict: def __init__(self, data={}, stopped=False): self.data = data self.stopped = stopped def get(self, key): return self.data.get(key) def set(self, key, value): self.data[key] = value def toggle_stop(self, value=None): if value is None: value = not self.stopped self.stopped = value class Level: def __init__(self, questions, index=-1): self.questions = questions self.index = index def incr(self): self.index += 1 def should_reset(self): return len(self.questions) == self.index + 1 def get_next_question(self): self.incr() if len(self.questions) > self.index: return self.questions[self.index] class Levels: def __init__(self, initial=[]): self.levels = initial @property def level(self): last_index = len(self.levels) - 1 return self.levels[last_index] def reset_last(self): if len(self.levels) > 1: return self.levels.pop() def change_level(self, level): self.levels.append(level) def get_next_question(self): question = self.level.get_next_question() if question is not None: return question if self.reset_last() is None: return None return self.get_next_question() class Conversation: def __init__(self, manifest, default_answers={}): self._manifest = manifest[CONVERSATION] self._stop_command = manifest.get(STOP_COMMAND) self._answers = StoppableDict(default_answers) keys = list(default_answers.keys()) if len(keys) == 0: self._current_question = None self._levels = Levels([Level(self._manifest)]) else: qid = keys[len(keys) - 1] result = self._get_question_by_id(self._manifest, qid) self._levels = result["levels"] self._current_question = result["item"] @property def answers(self): return self._answers def _must_stop(self, prev_answer): return estr(prev_answer, self._stop_command) def _get_question_by_id(self, level_list, qid, prev_levels=None): level = Level(level_list) if prev_levels is not None: prev_levels.change_level(level) else: prev_levels = Levels([level]) for item in level_list: prev_levels.level.incr() if type(item) == dict: if item.get(ID) == qid and item.get(ACTION): return {"levels": prev_levels, "item": item} else: for key in item: if key == ON_NO or key == ON_YES: result = self._get_question_by_id(item[key], qid, prev_levels) if result is not None: return result elif key == ON_CHOICES: for choice in item[key]: result = self._get_question_by_id(item[key][choice], qid, prev_levels) if result is not None: return result def get_next_question(self, prev_answer=None): prev_question = self._current_question if self._stop_command and (self._must_stop(prev_answer) or self._answers.stopped): self._answers.toggle_stop(True) return None if prev_question: if prev_question[ACTION] == ACTION_TEXT_QUESTION: self._answers.set(prev_question[ID], prev_answer) elif prev_question[ACTION] == ACTION_YES_NO_QUESTION: yes = estr(prev_answer, prev_question[YES]) no = estr(prev_answer, prev_question[NO]) if not (yes or no): return Result(prev_question[ON_INVALID_CHOICE]) self._answers.set(prev_question[ID], yes) level = prev_question[ON_YES] if yes else prev_question[ON_NO] self._levels.change_level(level) elif prev_question[ACTION] == ACTION_CHOICES_QUESTION: choice_id = prev_question[CHOICES].get(prev_answer) if choice_id is None: return Result(prev_question[ON_INVALID_CHOICE]) self._answers.set(prev_question[ID], choice_id) level = Level(prev_question[ON_CHOICES][choice_id]) self._levels.change_level(level) elif prev_question[ACTION] == ACTION_LIST_QUESTION: if not estr(prev_answer, prev_question[STOP_COMMAND]): answers = self._answers.get(prev_question[ID]) if answers is None: answers = [] self._answers.set(prev_question[ID], []) if prev_answer: self._answers.set(prev_question[ID], [*answers, prev_answer]) answers.append(prev_answer) count = len(answers) max_answers = prev_question[MAX_ANSWERS] if count < max_answers: text = "{}{}".format(self._current_question[TEXT], self._current_question[START_NUMBER] + count) return Result(text) elif prev_question[ACTION] == ACTION_TEXT: self._answers.set(prev_question[ID], True) self._current_question = self._levels.get_next_question() if self._current_question is not None: text = None if self._current_question[ACTION] != ACTION_LIST_QUESTION: text = self._current_question[TEXT] else: text = "{}{}".format(self._current_question[TEXT], self._current_question[START_NUMBER]) self._answers.set(self._current_question[ID], None) return Result(text, self._current_question[ACTION] == ACTION_TEXT) class ConversationsStorage: def __init__(self): self.conversations = {} def add(self, cid, *args, **kwargs): conversation = Conversation(*args, **kwargs) self.conversations[cid] = conversation return conversation def get(self, cid): return self.conversations.get(cid) def set(self, cid, conversation): self.conversations[cid] = conversation def remove(self, cid): return self.conversations.pop(cid, None) def exists(self, cid): conversation = self.get(cid) return bool(conversation)
32.342222
120
0.588292
[ "MIT" ]
R-Mielamud/Telegram_BooksDelivery
src/helpers/conversation.py
7,277
Python
# -*- coding: utf-8 -*- # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # File: import numpy as np import unittest import torch from detectron2.data import MetadataCatalog from detectron2.structures import Instances, RotatedBoxes, BoxMode from detectron2.utils.visualizer import Visualizer class TestVisualizer(unittest.TestCase): def _random_data(self): H, W = 100, 100 N = 10 img = np.random.rand(H, W, 3) * 255 boxxy = np.random.rand(N, 2) * (H // 2) boxes = np.concatenate((boxxy, boxxy + H // 2), axis=1) def _rand_poly(): return np.random.rand(3, 2).flatten() * H polygons = [[_rand_poly() for _ in range(np.random.randint(1, 5))] for _ in range(N)] mask = np.zeros_like(img[:, :, 0], dtype=np.bool) mask[:10, 10:20] = 1 labels = [str(i) for i in range(N)] return img, boxes, labels, polygons, [mask] * N @property def metadata(self): return MetadataCatalog.get("coco_2017_train") def test_draw_dataset_dict(self): img = np.random.rand(512, 512, 3) * 255 dic = {'annotations': [{'bbox': [368.9946492271106, 330.891438763377, 13.148537455410235, 13.644708680142685], 'bbox_mode': BoxMode.XYWH_ABS, 'category_id': 0, 'iscrowd': 1, 'segmentation': {'counts': '_jh52m?2N2N2N2O100O10O001N1O2MceP2', 'size': [512, 512]}}], 'height': 512, 'image_id': 1, 'width': 512} v = Visualizer(img, self.metadata) v.draw_dataset_dict(dic) def test_overlay_instances(self): img, boxes, labels, polygons, masks = self._random_data() v = Visualizer(img, self.metadata) output = v.overlay_instances(masks=polygons, boxes=boxes, labels=labels).get_image() self.assertEqual(output.shape, img.shape) # Test 2x scaling v = Visualizer(img, self.metadata, scale=2.0) output = v.overlay_instances(masks=polygons, boxes=boxes, labels=labels).get_image() self.assertEqual(output.shape[0], img.shape[0] * 2) # Test overlay masks v = Visualizer(img, self.metadata) output = v.overlay_instances(masks=masks, boxes=boxes, labels=labels).get_image() self.assertEqual(output.shape, img.shape) def test_overlay_instances_no_boxes(self): img, boxes, labels, polygons, _ = self._random_data() v = Visualizer(img, self.metadata) v.overlay_instances(masks=polygons, boxes=None, labels=labels).get_image() def test_draw_instance_predictions(self): img, boxes, _, _, masks = self._random_data() num_inst = len(boxes) inst = Instances((img.shape[0], img.shape[1])) inst.pred_classes = torch.randint(0, 80, size=(num_inst,)) inst.scores = torch.rand(num_inst) inst.pred_boxes = torch.from_numpy(boxes) inst.pred_masks = torch.from_numpy(np.asarray(masks)) v = Visualizer(img, self.metadata) v.draw_instance_predictions(inst) def test_draw_empty_mask_predictions(self): img, boxes, _, _, masks = self._random_data() num_inst = len(boxes) inst = Instances((img.shape[0], img.shape[1])) inst.pred_classes = torch.randint(0, 80, size=(num_inst,)) inst.scores = torch.rand(num_inst) inst.pred_boxes = torch.from_numpy(boxes) inst.pred_masks = torch.from_numpy(np.zeros_like(np.asarray(masks))) v = Visualizer(img, self.metadata) v.draw_instance_predictions(inst) def test_correct_output_shape(self): img = np.random.rand(928, 928, 3) * 255 v = Visualizer(img, self.metadata) out = v.output.get_image() self.assertEqual(out.shape, img.shape) def test_overlay_rotated_instances(self): H, W = 100, 150 img = np.random.rand(H, W, 3) * 255 num_boxes = 50 boxes_5d = torch.zeros(num_boxes, 5) boxes_5d[:, 0] = torch.FloatTensor(num_boxes).uniform_(-0.1 * W, 1.1 * W) boxes_5d[:, 1] = torch.FloatTensor(num_boxes).uniform_(-0.1 * H, 1.1 * H) boxes_5d[:, 2] = torch.FloatTensor(num_boxes).uniform_(0, max(W, H)) boxes_5d[:, 3] = torch.FloatTensor(num_boxes).uniform_(0, max(W, H)) boxes_5d[:, 4] = torch.FloatTensor(num_boxes).uniform_(-1800, 1800) rotated_boxes = RotatedBoxes(boxes_5d) labels = [str(i) for i in range(num_boxes)] v = Visualizer(img, self.metadata) output = v.overlay_instances(boxes=rotated_boxes, labels=labels).get_image() self.assertEqual(output.shape, img.shape) def test_draw_no_metadata(self): img, boxes, _, _, masks = self._random_data() num_inst = len(boxes) inst = Instances((img.shape[0], img.shape[1])) inst.pred_classes = torch.randint(0, 80, size=(num_inst,)) inst.scores = torch.rand(num_inst) inst.pred_boxes = torch.from_numpy(boxes) inst.pred_masks = torch.from_numpy(np.asarray(masks)) v = Visualizer(img, MetadataCatalog.get("asdfasdf")) v.draw_instance_predictions(inst)
40.402985
96
0.602143
[ "Apache-2.0" ]
HJ0116/detectron2
tests/test_visualizer.py
5,414
Python
from selenium.webdriver.common.by import By # for maintainability we can seperate web objects by page name class MainPageLocators(object): LOGO = (By.ID, 'nav-logo') ACCOUNT = (By.ID, 'nav-link-accountList') SIGNUP = (By.CSS_SELECTOR, '#nav-signin-tooltip > div > a') LOGIN = (By.CSS_SELECTOR, '#nav-signin-tooltip > a') SEARCH = (By.ID, 'twotabsearchtextbox') SEARCH_LIST = (By.CSS_SELECTOR, 'div[data-component-type="s-search-result"]') class LoginPageLocators(object): EMAIL = (By.ID, 'ap_email') PASSWORD = (By.ID, 'ap_password') SUBMIT = (By.ID, 'signInSubmit-input') ERROR_MESSAGE = (By.ID, 'message_error')
32.95
81
0.6783
[ "MIT" ]
gunesmes/page-object-python-selenium
utils/locators.py
659
Python
# # builder.py - PJSIP test scenarios builder # # Copyright (C) 2008-2009 Teluu Inc. (http://www.teluu.com) # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # import ccdash import os import platform import re import subprocess import sys import time class Operation: """\ The Operation class describes the individual ccdash operation to be performed. """ # Types: UPDATE = "update" # Update operation CONFIGURE = "configure" # Configure operation BUILD = "build" # Build operation TEST = "test" # Unit test operation def __init__(self, type, cmdline, name="", wdir=""): self.type = type self.cmdline = cmdline self.name = name self.wdir = wdir if self.type==self.TEST and not self.name: raise "name required for tests" def encode(self, base_dir): s = [self.type] if self.type == self.TEST: s.append(self.name) if self.type != self.UPDATE: s.append(self.cmdline) s.append("-w") if self.wdir: s.append(base_dir + "/" + self.wdir) else: s.append(base_dir) return s # # Update operation # update_ops = [Operation(Operation.UPDATE, "")] # # The standard library tests (e.g. pjlib-test, pjsip-test, etc.) # std_test_ops= [ Operation(Operation.TEST, "./pjlib-test$SUFFIX", name="pjlib test", wdir="pjlib/bin"), Operation(Operation.TEST, "./pjlib-util-test$SUFFIX", name="pjlib-util test", wdir="pjlib-util/bin"), Operation(Operation.TEST, "./pjnath-test$SUFFIX", name="pjnath test", wdir="pjnath/bin"), Operation(Operation.TEST, "./pjmedia-test$SUFFIX", name="pjmedia test", wdir="pjmedia/bin"), Operation(Operation.TEST, "./pjsip-test$SUFFIX", name="pjsip test", wdir="pjsip/bin") ] # # These are pjsua Python based unit test operations # def build_pjsua_test_ops(pjsua_exe=""): ops = [] if pjsua_exe: exe = " -e ../../pjsip-apps/bin/" + pjsua_exe else: exe = "" cwd = os.getcwd() os.chdir("../pjsua") os.system("python runall.py --list > list") f = open("list", "r") for e in f: e = e.rstrip("\r\n ") (mod,param) = e.split(None,2) name = mod[4:mod.find(".py")] + "_" + \ param[param.find("/")+1:param.find(".py")] ops.append(Operation(Operation.TEST, "python run.py" + exe + " " + \ e, name=name, wdir="tests/pjsua")) f.close() os.remove("list") os.chdir(cwd) return ops # # Get gcc version # def gcc_version(gcc): proc = subprocess.Popen(gcc + " -v", stdout=subprocess.PIPE, stderr=subprocess.STDOUT, shell=True) ver = "" while True: s = proc.stdout.readline() if not s: break if s.find("gcc version") >= 0: ver = s.split(None, 3)[2] break proc.wait() return "gcc-" + ver # # Get Visual Studio version # def vs_get_version(): proc = subprocess.Popen("cl", stdout=subprocess.PIPE, stderr=subprocess.STDOUT) while True: s = proc.stdout.readline() if s=="": break pos = s.find("Version") if pos > 0: proc.wait() s = s[pos+8:] ver = s.split(None, 1)[0] major = ver[0:2] if major=="12": return "vs6" elif major=="13": return "vs2003" elif major=="14": return "vs2005" elif major=="15": return "vs2008" else: return "vs-" + major proc.wait() return "vs-unknown" # # Test config # class BaseConfig: def __init__(self, base_dir, url, site, group, options=None): self.base_dir = base_dir self.url = url self.site = site self.group = group self.options = options # # Base class for test configurator # class TestBuilder: def __init__(self, config, build_config_name="", user_mak="", config_site="", exclude=[], not_exclude=[]): self.config = config # BaseConfig instance self.build_config_name = build_config_name # Optional build suffix self.user_mak = user_mak # To be put in user.mak self.config_site = config_site # To be put in config_s.. self.saved_user_mak = "" # To restore user.mak self.saved_config_site = "" # To restore config_s.. self.exclude = exclude # List of exclude pattern self.not_exclude = not_exclude # List of include pattern self.ccdash_args = [] # ccdash cmd line def stamp(self): return time.strftime("%Y%m%d-%H%M", time.localtime()) def pre_action(self): # Override user.mak name = self.config.base_dir + "/user.mak" if os.access(name, os.F_OK): f = open(name, "r") self.saved_user_mak = f.read() f.close() if True: f = open(name, "w") f.write(self.user_mak) f.close() # Override config_site.h name = self.config.base_dir + "/pjlib/include/pj/config_site.h" if os.access(name, os.F_OK): f = open(name, "r") self.saved_config_site= f.read() f.close() if True: f = open(name, "wt") f.write(self.config_site) f.close() def post_action(self): # Restore user.mak name = self.config.base_dir + "/user.mak" f = open(name, "wt") f.write(self.saved_user_mak) f.close() # Restore config_site.h name = self.config.base_dir + "/pjlib/include/pj/config_site.h" f = open(name, "wt") f.write(self.saved_config_site) f.close() def build_tests(self): # This should be overridden by subclasses pass def execute(self): if len(self.ccdash_args)==0: self.build_tests() self.pre_action() mandatory_op = ["update", "configure", "build"] counter = 0 for a in self.ccdash_args: # Check if this test is in exclusion list fullcmd = " ".join(a) excluded = False included = False for pat in self.exclude: if pat and re.search(pat, fullcmd) != None: excluded = True break if excluded: for pat in self.not_exclude: if pat and re.search(pat, fullcmd) != None: included = True break if excluded and not included: if len(fullcmd)>60: fullcmd = fullcmd[0:60] + ".." print "Skipping '%s'" % (fullcmd) continue b = ["ccdash.py"] b.extend(a) a = b #print a try: rc = ccdash.main(a) except Exception, e: errmsg = str(e) print "**** Error: ccdash got exception %s ****" % errmsg rc = -1 except: print "**** Error: ccdash got unknown exception ****" rc = -1 if rc!=0 and a[1] in mandatory_op: print "Stopping because of error.." break counter = counter + 1 self.post_action() # # GNU test configurator # class GNUTestBuilder(TestBuilder): """\ This class creates list of tests suitable for GNU targets. """ def __init__(self, config, build_config_name="", user_mak="", \ config_site="", cross_compile="", exclude=[], not_exclude=[]): """\ Parameters: config - BaseConfig instance build_config_name - Optional name to be added as suffix to the build name. Sample: "min-size", "O4", "TLS", etc. user_mak - Contents to be put on user.mak config_site - Contents to be put on config_site.h cross_compile - Optional cross-compile prefix. Must include the trailing dash, e.g. "arm-unknown-linux-" exclude - List of regular expression patterns for tests that will be excluded from the run not_exclude - List of regular expression patterns for tests that will be run regardless of whether they match the excluded pattern. """ TestBuilder.__init__(self, config, build_config_name=build_config_name, user_mak=user_mak, config_site=config_site, exclude=exclude, not_exclude=not_exclude) self.cross_compile = cross_compile if self.cross_compile and self.cross_compile[-1] != '-': self.cross_compile.append("-") def build_tests(self): if self.cross_compile: suffix = "-" + self.cross_compile[0:-1] build_name = self.cross_compile + \ gcc_version(self.cross_compile + "gcc") else: proc = subprocess.Popen("sh "+self.config.base_dir+"/config.guess", shell=True, stdout=subprocess.PIPE) plat = proc.stdout.readline().rstrip(" \r\n") build_name = plat + "-"+gcc_version(self.cross_compile + "gcc") suffix = "-" + plat if self.build_config_name: build_name = build_name + "-" + self.build_config_name cmds = [] cmds.extend(update_ops) cmds.append(Operation(Operation.CONFIGURE, "sh ./configure")) if sys.platform=="win32": # Don't build python module on Mingw cmds.append(Operation(Operation.BUILD, "sh -c 'make distclean && make dep && make'")) else: cmds.append(Operation(Operation.BUILD, "sh -c 'make distclean && make dep && make" + \ " && cd pjsip-apps/src/python && " + \ "python setup.py clean build'")) cmds.extend(std_test_ops) cmds.extend(build_pjsua_test_ops()) self.ccdash_args = [] for c in cmds: c.cmdline = c.cmdline.replace("$SUFFIX", suffix) args = c.encode(self.config.base_dir) args.extend(["-U", self.config.url, "-S", self.config.site, "-T", self.stamp(), "-B", build_name, "-G", self.config.group]) args.extend(self.config.options) self.ccdash_args.append(args) # # MSVC test configurator # class MSVCTestBuilder(TestBuilder): """\ This class creates list of tests suitable for Visual Studio builds. You need to set the MSVC environment variables (typically by calling vcvars32.bat) prior to running this class. """ def __init__(self, config, target="Release|Win32", build_config_name="", config_site="", exclude=[], not_exclude=[]): """\ Parameters: config - BaseConfig instance target - Visual Studio build configuration to build. Sample: "Debug|Win32", "Release|Win32". build_config_name - Optional name to be added as suffix to the build name. Sample: "Debug", "Release", "IPv6", etc. config_site - Contents to be put on config_site.h exclude - List of regular expression patterns for tests that will be excluded from the run not_exclude - List of regular expression patterns for tests that will be run regardless of whether they match the excluded pattern. """ TestBuilder.__init__(self, config, build_config_name=build_config_name, config_site=config_site, exclude=exclude, not_exclude=not_exclude) self.target = target.lower() def build_tests(self): (vsbuild,sys) = self.target.split("|",2) build_name = sys + "-" + vs_get_version() + "-" + vsbuild if self.build_config_name: build_name = build_name + "-" + self.build_config_name vccmd = "vcbuild.exe /nologo /nohtmllog /nocolor /rebuild " + \ "pjproject-vs8.sln " + " \"" + self.target + "\"" suffix = "-i386-win32-vc8-" + vsbuild pjsua = "pjsua_vc8" if vsbuild=="debug": pjsua = pjsua + "d" cmds = [] cmds.extend(update_ops) cmds.append(Operation(Operation.CONFIGURE, "CMD /C echo Nothing to do")) cmds.append(Operation(Operation.BUILD, vccmd)) cmds.extend(std_test_ops) cmds.extend(build_pjsua_test_ops(pjsua)) self.ccdash_args = [] for c in cmds: c.cmdline = c.cmdline.replace("$SUFFIX", suffix) args = c.encode(self.config.base_dir) args.extend(["-U", self.config.url, "-S", self.config.site, "-T", self.stamp(), "-B", build_name, "-G", self.config.group]) args.extend(self.config.options) self.ccdash_args.append(args) # # Symbian test configurator # class SymbianTestBuilder(TestBuilder): """\ This class creates list of tests suitable for Symbian builds. You need to set the command line build settings prior to running this class (typically that involves setting the EPOCROOT variable and current device). """ def __init__(self, config, target="gcce urel", build_config_name="", config_site="", exclude=[], not_exclude=[]): """\ Parameters: config - BaseConfig instance target - Symbian target to build. Default is "gcce urel". build_config_name - Optional name to be added as suffix to the build name. Sample: "APS", "VAS", etc. config_site - Contents to be put on config_site.h exclude - List of regular expression patterns for tests that will be excluded from the run not_exclude - List of regular expression patterns for tests that will be run regardless of whether they match the excluded pattern. """ TestBuilder.__init__(self, config, build_config_name=build_config_name, config_site=config_site, exclude=exclude, not_exclude=not_exclude) self.target = target.lower() def build_tests(self): # Check that EPOCROOT is set if not "EPOCROOT" in os.environ: print "Error: EPOCROOT environment variable is not set" sys.exit(1) epocroot = os.environ["EPOCROOT"] # EPOCROOT must have trailing backslash if epocroot[-1] != "\\": epocroot = epocroot + "\\" os.environ["EPOCROOT"] = epocroot sdk1 = epocroot.split("\\")[-2] # Check that correct device is set proc = subprocess.Popen("devices", stdout=subprocess.PIPE, stderr=subprocess.STDOUT, shell=True) sdk2 = "" while True: line = proc.stdout.readline() if line.find("- default") > 0: sdk2 = line.split(":",1)[0] break proc.wait() if sdk1 != sdk2: print "Error: default SDK in device doesn't match EPOCROOT" print "Default device SDK =", sdk2 print "EPOCROOT SDK =", sdk1 sys.exit(1) build_name = sdk2.replace("_", "-") + "-" + \ self.target.replace(" ", "-") if self.build_config_name: build_name = build_name + "-" + self.build_config_name cmdline = "cmd /C \"cd build.symbian && bldmake bldfiles && abld build %s\"" % (self.target) cmds = [] cmds.extend(update_ops) cmds.append(Operation(Operation.CONFIGURE, "CMD /C echo Nothing to do")) cmds.extend([Operation(Operation.BUILD, cmdline)]) self.ccdash_args = [] suffix = "" for c in cmds: c.cmdline = c.cmdline.replace("$SUFFIX", suffix) args = c.encode(self.config.base_dir) args.extend(["-U", self.config.url, "-S", self.config.site, "-T", self.stamp(), "-B", build_name, "-G", self.config.group]) args.extend(self.config.options) self.ccdash_args.append(args)
35.695219
100
0.53686
[ "MIT", "BSD-2-Clause", "BSD-3-Clause" ]
MathJud/qaul.net_legacy
pjproject-2.2.1/tests/cdash/builder.py
17,919
Python
import copy import gym import numpy as np import torch.nn as nn import railrl.misc.hyperparameter as hyp import railrl.torch.pytorch_util as ptu from railrl.data_management.obs_dict_replay_buffer import \ ObsDictReplayBuffer from railrl.launchers.launcher_util import run_experiment # from railrl.samplers.data_collector import MdpPathCollector # from railrl.samplers.data_collector.step_collector import MdpStepCollector from railrl.samplers.data_collector.path_collector import ObsDictPathCollector from railrl.samplers.data_collector.step_collector import ObsDictStepCollector from railrl.visualization.video import VideoSaveFunctionBullet from railrl.misc.buffer_save import BufferSaveFunction from railrl.torch.networks import ( CNN, MlpQfWithObsProcessor, Split, FlattenEach, Concat, Flatten, ) from railrl.torch.sac.policies import ( MakeDeterministic, TanhGaussianPolicyAdapter, ) from railrl.torch.sac.sac import SACTrainer from railrl.torch.torch_rl_algorithm import ( TorchBatchRLAlgorithm, TorchOnlineRLAlgorithm, ) import os.path as osp from experiments.avi.env_wrappers import FlatEnv PARENT_DIR = '/media/avi/data/Work/github/' import sys env_file = osp.join(PARENT_DIR, 'avisingh599/google-research/dql_grasping/') sys.path.insert(1, env_file) from grasping_env import KukaGraspingProceduralEnv def experiment(variant): env_params = dict( block_random=0.3, camera_random=0, simple_observations=False, continuous=True, remove_height_hack=True, render_mode="DIRECT", # render_mode="GUI", num_objects=5, max_num_training_models=900, target=False, test=False, ) expl_env = FlatEnv(KukaGraspingProceduralEnv(**env_params)) eval_env = expl_env img_width, img_height = eval_env.image_shape num_channels = 3 action_dim = int(np.prod(eval_env.action_space.shape)) cnn_params = variant['cnn_params'] cnn_params.update( input_width=img_width, input_height=img_height, input_channels=num_channels, added_fc_input_size=0, output_conv_channels=True, output_size=None, ) qf_cnn = CNN(**cnn_params) qf_obs_processor = nn.Sequential( qf_cnn, Flatten(), ) qf_kwargs = copy.deepcopy(variant['qf_kwargs']) qf_kwargs['obs_processor'] = qf_obs_processor qf_kwargs['output_size'] = 1 qf_kwargs['input_size'] = ( action_dim + qf_cnn.conv_output_flat_size ) qf1 = MlpQfWithObsProcessor(**qf_kwargs) qf2 = MlpQfWithObsProcessor(**qf_kwargs) target_qf_cnn = CNN(**cnn_params) target_qf_obs_processor = nn.Sequential( target_qf_cnn, Flatten(), ) target_qf_kwargs = copy.deepcopy(variant['qf_kwargs']) target_qf_kwargs['obs_processor'] = target_qf_obs_processor target_qf_kwargs['output_size'] = 1 target_qf_kwargs['input_size'] = ( action_dim + target_qf_cnn.conv_output_flat_size ) target_qf1 = MlpQfWithObsProcessor(**target_qf_kwargs) target_qf2 = MlpQfWithObsProcessor(**target_qf_kwargs) action_dim = int(np.prod(eval_env.action_space.shape)) policy_cnn = CNN(**cnn_params) policy_obs_processor = nn.Sequential( policy_cnn, Flatten(), ) policy = TanhGaussianPolicyAdapter( policy_obs_processor, policy_cnn.conv_output_flat_size, action_dim, **variant['policy_kwargs'] ) observation_key = 'image' eval_policy = MakeDeterministic(policy) eval_path_collector = ObsDictPathCollector( eval_env, eval_policy, observation_key=observation_key, **variant['eval_path_collector_kwargs'] ) replay_buffer = ObsDictReplayBuffer( variant['replay_buffer_size'], expl_env, observation_key=observation_key, ) trainer = SACTrainer( env=eval_env, policy=policy, qf1=qf1, qf2=qf2, target_qf1=target_qf1, target_qf2=target_qf2, **variant['trainer_kwargs'] ) if variant['collection_mode'] == 'batch': expl_path_collector = ObsDictPathCollector( expl_env, policy, observation_key=observation_key, **variant['expl_path_collector_kwargs'] ) algorithm = TorchBatchRLAlgorithm( trainer=trainer, exploration_env=expl_env, evaluation_env=eval_env, exploration_data_collector=expl_path_collector, evaluation_data_collector=eval_path_collector, replay_buffer=replay_buffer, **variant['algo_kwargs'] ) elif variant['collection_mode'] == 'online': expl_path_collector = ObsDictStepCollector( expl_env, policy, observation_key=observation_key, **variant['expl_path_collector_kwargs'] ) algorithm = TorchOnlineRLAlgorithm( trainer=trainer, exploration_env=expl_env, evaluation_env=eval_env, exploration_data_collector=expl_path_collector, evaluation_data_collector=eval_path_collector, replay_buffer=replay_buffer, **variant['algo_kwargs'] ) else: raise NotImplementedError video_func = VideoSaveFunctionBullet(variant) algorithm.post_train_funcs.append(video_func) # dump_buffer_func = BufferSaveFunction(variant) # algorithm.post_train_funcs.append(dump_buffer_func) algorithm.to(ptu.device) algorithm.train() if __name__ == "__main__": variant = dict( trainer_kwargs=dict( discount=0.99, # soft_target_tau=5e-3, # target_update_period=1, soft_target_tau=1.0, target_update_period=1000, policy_lr=3E-4, qf_lr=3E-4, reward_scale=1, use_automatic_entropy_tuning=True, ), algo_kwargs=dict( batch_size=256, max_path_length=15, num_epochs=5000, num_eval_steps_per_epoch=45, num_expl_steps_per_train_loop=300, num_trains_per_train_loop=300, min_num_steps_before_training=10*300, # max_path_length=10, # num_epochs=100, # num_eval_steps_per_epoch=100, # num_expl_steps_per_train_loop=100, # num_trains_per_train_loop=100, # min_num_steps_before_training=100, ), cnn_params=dict( kernel_sizes=[3, 3], n_channels=[4, 4], strides=[1, 1], hidden_sizes=[32, 32], paddings=[1, 1], pool_type='max2d', pool_sizes=[2, 2], pool_strides=[2, 2], pool_paddings=[0, 0], ), # replay_buffer_size=int(1E6), qf_kwargs=dict( hidden_sizes=[256, 256], ), policy_kwargs=dict( hidden_sizes=[256, 256], ), dump_video_kwargs=dict( imsize=48, save_video_period=1, ), logger_config=dict( snapshot_gap=10, ), dump_buffer_kwargs=dict( dump_buffer_period=50, ), replay_buffer_size=int(5E5), expl_path_collector_kwargs=dict(), eval_path_collector_kwargs=dict(), shared_qf_conv=False, use_robot_state=False, randomize_env=True, ) import argparse parser = argparse.ArgumentParser() # parser.add_argument("--env", type=str, required=True, # choices=('SawyerReach-v0', 'SawyerGraspOne-v0')) # parser.add_argument("--obs", required=True, type=str, choices=('pixels', 'pixels_debug')) parser.add_argument("--gpu", type=int, default=1) args = parser.parse_args() variant['env'] = 'KukaGraspingProceduralEnv' variant['obs'] = 'pixels' n_seeds = 1 mode = 'local' exp_prefix = 'dev-{}'.format( __file__.replace('/', '-').replace('_', '-').split('.')[0] ) exp_prefix = 'railrl-bullet-{}-{}'.format(variant['env'], variant['obs']) # n_seeds = 5 # mode = 'ec2' # exp_prefix = 'railrl-bullet-sawyer-image-reach' search_space = { 'shared_qf_conv': [ True, # False, ], 'collection_mode': [ # 'batch', 'online', ] } sweeper = hyp.DeterministicHyperparameterSweeper( search_space, default_parameters=variant, ) for exp_id, variant in enumerate(sweeper.iterate_hyperparameters()): for _ in range(n_seeds): run_experiment( experiment, exp_name=exp_prefix, mode=mode, variant=variant, use_gpu=True, gpu_id=args.gpu, unpack_variant=False, )
29.973333
95
0.632006
[ "MIT" ]
Asap7772/rail-rl-franka-eval
experiments/avi/eric_grasp_sac_pixel.py
8,992
Python
from __future__ import print_function import datetime import hashlib import logging from abc import ABCMeta from halo_flask.classes import AbsBaseClass from halo_flask.logs import log_json from halo_flask.const import SYSTEMChoice,LOGChoice from .settingsx import settingsx settings = settingsx() logger = logging.getLogger(__name__) ver = settings.DB_VER uri = settings.DB_URL tbl = False page_size = settings.PAGE_SIZE class AbsDbMixin(AbsBaseClass): __metaclass__ = ABCMeta # intercept db calls halo_context = None def __init__(self, halo_context): self.halo_context = halo_context def __getattribute__(self, name): attr = object.__getattribute__(self, name) if hasattr(attr, '__call__'): def newfunc(*args, **kwargs): now = datetime.datetime.now() result = attr(*args, **kwargs) total = datetime.datetime.now() - now logger.info(LOGChoice.performance_data.value, extra=log_json(self.halo_context, {LOGChoice.type.value: SYSTEMChoice.dbaccess.value, LOGChoice.milliseconds.value: int(total.total_seconds() * 1000), LOGChoice.function.value: str(attr.__name__)})) return result return newfunc else: return attr class AbsModel(AbsBaseClass): pass
28.584906
123
0.611881
[ "MIT" ]
yoramk2/halo_flask
halo_flask/models.py
1,515
Python
av1 = float(input('Nota 1° avaliação')) av2 = float(input('Nota 2° avaliação')) mp = av1 + av2 / 2 tf = int(input('Total geral de faltas: ') pf = float(input('Prova final: ')) final = mp + pf / 2 if tf > 20: print("Reprovado por falta") else elif mp => 7: print("Aprovado") elif 3 <= mp < 7: print("Em recuperação") elif final => 5: print("Aprovado") else: (print("Reprovado"))
19.681818
41
0.558891
[ "MIT" ]
sullyvan15/UVV
4° Período/Programação de Computadores/lista 1/CONCEITOS DE LÓGICA DE PROGRAMAÇÃO/Estrutura de seleção/Exercício 14.py
441
Python
""" .. module:: Katna.image_filters.text_detector :platform: OS X :synopsis: This module is implementation of text detector filter """ import os import cv2 import numpy as np import time import requests import random from imutils.object_detection import non_max_suppression from Katna.image_filters.filter import Filter import Katna.config as config class TextDetector(Filter): """TextDetector Class: Class for implementation of text detector filter, inherit from Filter class """ def __init__(self, weight=1.0): """Constructor for this class does following tasks, if not already downloaded\ , it first downloads text detector dnn weights file from public URL\ ands save it at USER_HOME/.katna directory, or /tmp/.katna directory.\ After this initializer code initializes internal parameter: \ min_confidence (for text detection) """ super().__init__(weight) self.min_confidence = config.TextDetector.min_confidence self.merge_threshold = config.TextDetector.merge_threshold self.layerNames = config.TextDetector.layerNames self.frozen_weights = config.TextDetector.frozen_weights self.cache_subdir = config.TextDetector.cache_subdir try: self.network_folder_path = os.path.join(os.path.expanduser("~"), ".katna") if not os.access(self.network_folder_path, os.W_OK): self.network_folder_path = os.path.join("/tmp", ".katna") self.datadir = os.path.join(self.network_folder_path, self.cache_subdir) if not os.path.exists(self.datadir): os.makedirs(self.datadir) self.network_file_path = os.path.join(self.datadir, self.frozen_weights) if not os.path.exists(self.network_file_path): self.download_data() self.net = cv2.dnn.readNet(self.network_file_path) except Exception: raise FileNotFoundError( self.frozen_weights + " seems to be missing.\ Download the file and specify the full path\ while initializing TextDetector class" ) def download_data(self): """Public function for downloading the network weight from the URL link, to be used for text detection functionality. Troubleshooting tip: If you get FileNotFound error during text detector initialization, initialize the text detector and call this function directly to download the model file from public URL link. """ # create response object link = config.TextDetector.model_download_link r = requests.get(link, stream=True) # download started print("Downloading model file...") # if not os.path.isfile(self.network_file_path) or not os.path.exists(self.network_file_path): with open(os.path.join(self.datadir, self.frozen_weights), "wb") as f: for chunk in r.iter_content(chunk_size=1024 * 1024): if chunk: f.write(chunk) print("Model file downloaded.") def __decode_predictions(self, scores, geometry): """Internal Function for getting bounding box and confidence values from text detector dnn network output (scores, geometry) function takes the number of rows and columns from the scores volume, then initializes set of bounding box rectangles and corresponding confidence scores """ (numRows, numCols) = scores.shape[2:4] rects = [] confidences = [] # loop over the number of rows for y in range(0, numRows): # extract the scores (probabilities), followed by the # geometrical data used to derive potential bounding box # coordinates that surround text scoresData = scores[0, 0, y] xData0 = geometry[0, 0, y] xData1 = geometry[0, 1, y] xData2 = geometry[0, 2, y] xData3 = geometry[0, 3, y] anglesData = geometry[0, 4, y] # loop over the number of columns for x in range(0, numCols): # if our score does not have sufficient probability, # ignore it if scoresData[x] < self.min_confidence: continue # compute the offset factor as our resulting feature # maps will be 4x smaller than the input image (offsetX, offsetY) = (x * 4.0, y * 4.0) # extract the rotation angle for the prediction and # then compute the sin and cosine angle = anglesData[x] cos = np.cos(angle) sin = np.sin(angle) # use the geometry volume to derive the width and height # of the bounding box h = xData0[x] + xData2[x] w = xData1[x] + xData3[x] # compute both the starting and ending (x, y)-coordinates # for the text prediction bounding box endX = int(offsetX + (cos * xData1[x]) + (sin * xData2[x])) endY = int(offsetY - (sin * xData1[x]) + (cos * xData2[x])) startX = int(endX - w) startY = int(endY - h) # add the bounding box coordinates and probability score # to our respective lists rects.append((startX, startY, endX, endY)) confidences.append(scoresData[x]) # return a tuple of the bounding boxes and associated confidences return (rects, confidences) def __merge_boxes(self, rects): """main function to detect text boxes from image :param rects: list of :type rects: numpy array :param rectsUsed: image file in numpy array/opencv format :type rectsUsed: numpy array :return: output image with the list of text boxes :rtype: file, list """ def grouper(iterable, interval=2): prev = None group = [] for item in iterable: if not prev or abs(item[1] - prev[1]) <= interval: group.append(item) else: yield group group = [item] prev = item if group: yield group rects_used = [] heights = list() for bbox in rects: heights.append(bbox[3] - bbox[1]) heights = sorted(heights) # Sort heights median_height = heights[len(heights) // 2] / 2 # Find half of the median height bboxes_list = sorted( rects, key=lambda k: k[1] ) # Sort the bounding boxes based on y1 coordinate ( y of the left-top coordinate ) combined_bboxes = grouper( bboxes_list, median_height ) # Group the bounding boxes for group in combined_bboxes: x_min = min(group, key=lambda k: k[0])[0] # Find min of x1 x_max = max(group, key=lambda k: k[2])[2] # Find max of x2 y_min = min(group, key=lambda k: k[1])[1] # Find min of y1 y_max = max(group, key=lambda k: k[3])[3] # Find max of y2 rects_used.append([x_min, y_min, x_max, y_max]) return rects_used def __detect_text(self): """Internal function to detect text bounding boxes from input image. Returns list of bounding boxes of each detected text field in input image. :param image: image file in numpy array/opencv format :type image: numpy array :param output_image: image file in numpy array/opencv format :type output_image: numpy array :return: output image with the list of text boxes :rtype: file, list """ (H, W) = self.image.shape[:2] rW = W / 320 rH = H / 320 image = cv2.resize(self.image, (320, 320)) (H, W) = image.shape[:2] # construct a blob from the image and then perform a forward pass of # the model to obtain the two output layer sets blob = cv2.dnn.blobFromImage( self.image, 1.0, (W, H), (123.68, 116.78, 103.94), swapRB=True, crop=False ) self.net.setInput(blob) (scores, geometry) = self.net.forward(self.layerNames) rects, confidences = self.__decode_predictions(scores, geometry) # apply non-maxima suppression to suppress weak, overlapping bounding # boxes boxes = non_max_suppression(np.array(rects), probs=confidences) text_rects = [] # loop over the bounding boxes for (startX, startY, endX, endY) in boxes: # scale the bounding box coordinates based on the respective # ratios startX = int(startX * rW) startY = int(startY * rH) endX = int(endX * rW) endY = int(endY * rH) cv2.rectangle(self.image, (startX, startY), (endX, endY), (0, 0, 255), 3) text_rects.append([startX, startY, endX, endY]) text_rects = sorted(text_rects, key=lambda item: item[0]) final_rects = text_rects if len(text_rects) > 0: final_rects = self.__merge_boxes(text_rects) return final_rects def set_image(self, image): """Public set_image function, This will detect all text boxes in input image and will saves them as internal list of text_rect to be used in get_filter_result :param image: input image from which needs to be cropped :type image: numpy array(opencv) """ if image is None: return None self.image = image self.text_rects = self.__detect_text() def get_filter_result(self, crop): """Main public function of TextDetector filter class, this filter Returns false if crop contains no text, additionally checks for overlap between input crop rectangle and the detected text bounding box, returns True if No overlap (Filter will not discard input crop) otherwise returns False (signal for discarding input crop). :param crop: input crop rectangle to test :type crop: crop_rect :return: True if No overlap (Filter will not discard input crop) otherwise returns False :rtype: bool """ # rect: xs,ys,xe,ye # crop: x,y,w,h if self.text_rects is None or len(self.text_rects) == 0: return True for rect in self.text_rects: if not ( (rect[2]) <= (crop.x + crop.w) and (rect[0]) >= (crop.x) and (rect[1]) >= (crop.y) and (rect[3]) <= (crop.y + crop.h) ): return False else: return True return True
40.058608
117
0.59263
[ "MIT" ]
jibinmathew69/katna
Katna/image_filters/text_detector.py
10,936
Python
from distutils.core import setup extra_requires = { 'celery': ["celery[redis]"], 'flower': ["flower"] } setup(name="terra", packages=["terra"], description="Terra", extra_requires=extra_requires, install_requires=[ "pyyaml", "jstyleson", # I use signal and task from celery, no matter what "celery", "filelock" ] )
19.55
59
0.578005
[ "MIT" ]
VisionSystemsInc/terra
setup.py
391
Python
from lightning_conceptnet.uri import concept_uri from wordfreq import simple_tokenize from wordfreq.preprocess import preprocess_text STOPWORDS = [ 'the', 'a', 'an' ] DROP_FIRST = ['to'] def english_filter(tokens): """ Given a list of tokens, remove a small list of English stopwords. """ non_stopwords = [token for token in tokens if token not in STOPWORDS] while non_stopwords and non_stopwords[0] in DROP_FIRST: non_stopwords = non_stopwords[1:] if non_stopwords: return non_stopwords else: return tokens def standardized_concept_uri(lang, text, *more): """ Make the appropriate URI for a concept in a particular language, including removing English stopwords, normalizing the text in a way appropriate to that language (using the text normalization from wordfreq), and joining its tokens with underscores in a concept URI. This text normalization can smooth over some writing differences: for example, it removes vowel points from Arabic words, and it transliterates Serbian written in the Cyrillic alphabet to the Latin alphabet so that it can match other words written in Latin letters. 'more' contains information to distinguish word senses, such as a part of speech or a WordNet domain. The items in 'more' get lowercased and joined with underscores, but skip many of the other steps -- for example, they won't have stopwords removed. >>> standardized_concept_uri('en', 'this is a test') '/c/en/this_is_test' >>> standardized_concept_uri('en', 'this is a test', 'n', 'example phrase') '/c/en/this_is_test/n/example_phrase' >>> standardized_concept_uri('sh', 'симетрија') '/c/sh/simetrija' """ lang = lang.lower() if lang == 'en': token_filter = english_filter else: token_filter = None text = preprocess_text(text.replace('_', ' '), lang) tokens = simple_tokenize(text) if token_filter is not None: tokens = token_filter(tokens) norm_text = '_'.join(tokens) more_text = [] for item in more: if item is not None: tokens = simple_tokenize(item.replace('_', ' ')) if token_filter is not None: tokens = token_filter(tokens) more_text.append('_'.join(tokens)) return concept_uri(lang, norm_text, *more_text)
34.042857
79
0.684431
[ "Apache-2.0" ]
ldtoolkit/lightning-conceptnet
lightning_conceptnet/nodes.py
2,392
Python
# Copyright 2014 DreamHost, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. # # DreamHost Neutron Extensions # @author: Murali Raju, New Dream Network, LLC (DreamHost) # @author: Rosario Disomma, New Dream Network, LLC (DreamHost) import logging from openstack_dashboard.api import nova from openstack_dashboard.api import neutron from openstack_dashboard.api.neutron import neutronclient from neutronclient.common.exceptions import PortNotFoundClient from akanda.horizon.common import ( NEW_PROTOCOL_CHOICES_DICT, POLICY_CHOICES_DICT) LOG = logging.getLogger(__name__) def get_protocol(value): return NEW_PROTOCOL_CHOICES_DICT[value] class Port(object): def __init__(self, alias_name, protocol, port, id=None): self.alias_name = alias_name self.protocol = protocol self.port = port self.id = id def display_protocol(self): return get_protocol(self.protocol) class AddressGroup(object): def __init__(self, name, id=None): self.name = name self.id = id class Network(object): def __init__(self, alias_name, cidr, id=None): self.alias_name = alias_name self.cidr = cidr self.id = id class FilterRule(object): def __init__(self, source, source_public_port, destination, destination_public_port, protocol, policy, request, id=None): self.policy = policy self.source = source self.source_public_port = source_public_port self.destination = destination self.destination_public_port = destination_public_port self.protocol = protocol self.request = request self.id = id def display_policy(self): return POLICY_CHOICES_DICT[self.policy] def display_source_group(self): if self.source: return self.source['name'] return '' def display_destination_group(self): if self.destination: return self.destination['name'] return '' def display_source_port(self): return "%s %s" % (get_protocol(self.protocol), self.source_public_port) def display_destination_port(self): return "%s %s" % (get_protocol(self.protocol), self.destination_public_port) class PortForwardingRule(object): def __init__(self, rule_name, public_port, protocol, private_port, port, request, id=None): self.rule_name = rule_name self.public_port = public_port self.protocol = protocol self.private_port = private_port self.port = port self.request = request self.id = id def display_public_port(self): return "%s %s" % (get_protocol(self.protocol), self.public_port) def display_private_port(self): return "%s %s" % (get_protocol(self.protocol), self.private_port) def display_instance(self): try: instance = nova.server_get(self.request, self.port['device_id']) return instance.name except: return '--' def _mk_url(*args): path = '/'.join(args).lstrip('/') if not path.startswith('/'): path = '/' + path return path def _list(request, path): return neutronclient(request).get(_mk_url(path)) def _get(request, path, obj_id): return neutronclient(request).get(_mk_url(path, obj_id)) def _create(request, path, body): return neutronclient(request).post(_mk_url(path), body=body) def _put(request, path, obj_id, body): return neutronclient(request).put(_mk_url(path, obj_id), body=body) def _delete(request, path, obj_id): return neutronclient(request).delete(_mk_url(path, obj_id)) def portalias_list(request): r = _list(request, 'dhportalias') return [Port(item['name'], item['protocol'], item['port'], item['id']) for item in r.get('portaliases', {})] def portalias_get(request, obj_id): r = _get(request, 'dhportalias', obj_id) return r.get('portalias', {}) def portalias_create(request, body): portalias = {'portalias': { 'name': body['alias_name'], 'protocol': body['protocol'], 'port': body['port'], }} LOG.debug("portalias_create(): body = %s" % body) return _create(request, 'dhportalias', portalias) def portalias_update(request, body): obj_id = body.pop('id', '') portalias = {'portalias': { 'name': body['alias_name'], 'protocol': body['protocol'], 'port': body['port'], }} LOG.debug("portalias_update(): body = %s" % body) return _put(request, 'dhportalias', obj_id, portalias) def portalias_delete(request, obj_id): return _delete(request, 'dhportalias', obj_id) def addressgroup_list(request): r = _list(request, 'dhaddressgroup') return [AddressGroup(item['name'], item['id']) for item in r.get('addressgroups', {})] def addressgroup_get(request, obj_id): r = _get(request, 'dhaddressgroup', obj_id) return r.get('addressgroup', {}) def addressgroup_create(request, body): addressgroup = {'addressgroup': { 'name': body['name'], }} LOG.debug("addressgroup_create(): body = %s" % body) return _create(request, 'dhaddressgroup', addressgroup) def addressgroup_update(request, body): obj_id = body.pop('id', '') addressgroup = {'addressgroup': { 'name': body['name'], }} LOG.debug("addressgroup_update(): body = %s" % body) return _put(request, 'dhaddressgroup', obj_id, addressgroup) def addressgroup_delete(request, obj_id): return _delete(request, 'dhaddressgroup', obj_id) def networkalias_list(request): r = _list(request, 'dhaddressentry') return [Network(item['name'], item['cidr'], item['id']) for item in r.get('addressentries', {})] def networkalias_get(request, obj_id): r = _get(request, 'dhaddressentry', obj_id) return r.get('addressentry', {}) def networkalias_create(request, body): networkalias = {'addressentry': { 'name': body['name'], 'cidr': body['cidr'], 'group_id': body['group'] }} LOG.debug("networkalias_create(): body = %s" % body) return _create(request, 'dhaddressentry', networkalias) def networkalias_update(request, body): obj_id = body.pop('id', '') networkalias = {'addressentry': { 'name': body['name'], 'cidr': body['cidr'], }} LOG.debug("networkalias_update(): body = %s" % body) return _put(request, 'dhaddressentry', obj_id, networkalias) def networkalias_delete(request, obj_id): return _delete(request, 'dhaddressentry', obj_id) def filterrule_list(request): r = _list(request, 'dhfilterrule') return [FilterRule(item.get('source'), item['source_port'], item.get('destination'), item['destination_port'], item['protocol'], item['action'], request, item['id']) for item in r.get('filterrules', {})] def filterrule_get(request, obj_id): r = _get(request, 'dhfilterrule', obj_id) return r.get('filterrule', {}) def filterrule_create(request, body): filterrule = {'filterrule': { 'source_id': body['source_id'], 'destination_id': body['destination_id'], 'source_port': body['source_public_port'], 'destination_port': body['destination_public_port'], 'protocol': body['source_protocol'], 'action': body['policy'], }} LOG.debug("filterrule_create(): body = %s" % body) return _create(request, 'dhfilterrule', filterrule) def filterrule_update(request, body): obj_id = body.pop('id', '') filterrule = {'filterrule': { 'source_id': body['source_id'], 'destination_id': body['destination_id'], 'source_port': body['source_public_port'], 'destination_port': body['destination_public_port'], 'protocol': body['source_protocol'], 'action': body['policy'], }} LOG.debug("filterrule_update(): body = %s" % body) return _put(request, 'dhfilterrule', obj_id, filterrule) def filterrule_delete(request, obj_id): return _delete(request, 'dhfilterrule', obj_id) def portforward_list(request): r = _list(request, 'dhportforward') return [PortForwardingRule(item['name'], item['public_port'], item['protocol'], item['private_port'], item['port'], request, item['id']) for item in r.get('portforwards', {})] def portforward_get(request, obj_id): r = _get(request, 'dhportforward', obj_id) return r.get('portforward', {}) def portforward_create(request, body): port_list = neutron.port_list(request, device_id=body['instance']) try: port = port_list[0] except IndexError: raise PortNotFoundClient portforward = {'portforward': { 'name': body['rule_name'], 'protocol': body['public_protocol'], 'public_port': body['public_port'], 'private_port': body['private_port'], 'port_id': port.id }} LOG.debug("portforward_create(): body = %s" % body) return _create(request, 'dhportforward', portforward) def portforward_update(request, body): obj_id = body.pop('id', '') port_list = neutron.port_list(request, device_id=body['instance']) try: port = port_list[0] except IndexError: raise PortNotFoundClient portforward = {'portforward': { 'name': body['rule_name'], 'instance_id': body['instance'], 'protocol': body['public_protocol'], 'public_port': body['public_port'], 'private_port': body['private_port'], 'port_id': port.id }} LOG.debug("portforward_update(): body = %s" % body) return _put(request, 'dhportforward', obj_id, portforward) def portforward_delete(request, obj_id): return _delete(request, 'dhportforward', obj_id)
29.790368
77
0.641308
[ "Apache-2.0" ]
dreamhost/akanda-horizon
akanda/horizon/api/neutron_extensions_client.py
10,516
Python
"""Django models utilities.""" #Django from django.db import models class CRideModel(models.Model): """ CrideModel acts as an abastract base class from which every other model in the project will inherit. This class provides every table with de following attributes: + created (Datetime): store the datetime the object was created + modified (Datetime): store the last datetime the object was modified """ created = models.DateTimeField( 'created at', auto_now_add=True, # set the date auto when the model is created help_text='Date time on which the object was created.' ) modified = models.DateTimeField( 'modified at', auto_now=True, # set the date when the model is called help_text='Date time on which the object was last modified.' ) class Meta: """Meta options.""" abstract = True # Set class config when it is called get_latest_by = 'created' ordering = ['-created', '-modified']
29.771429
78
0.649712
[ "MIT" ]
Jonulo/dejango-adv
cride/utils/models.py
1,042
Python
#!/usr/bin/env python3 # Copyright 2019, Alex Wiens <[email protected]>, Achim Lösch <[email protected]> # SPDX-License-Identifier: BSD-2-Clause import os import os.path import subprocess import test as schedtest import plot def hostname(): return subprocess.getoutput("hostname") if __name__ == "__main__": cwd = os.getcwd() testname = os.path.basename(cwd) host = os.environ if "SCHED_HOST" in os.environ else hostname() for testtype in ["sim","exp"]: test = schedtest.SchedTest.loadTest(testtype, testname=testname, resultdir=cwd, host=host) if test != None and test.loadTestLog(): test.generate_report() else: print("log for",testtype,"not found")
23.448276
92
0.726471
[ "BSD-2-Clause" ]
aw32/sched
scripts/report_gen.py
681
Python
# Copyright 2012-2017 The Meson development team # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy, os, re from collections import OrderedDict import itertools, pathlib import hashlib import pickle from functools import lru_cache from . import environment from . import dependencies from . import mlog from .mesonlib import ( File, MesonException, listify, extract_as_list, OrderedSet, typeslistify, stringlistify, classify_unity_sources, get_filenames_templates_dict, substitute_values, for_windows, for_darwin, for_cygwin, for_android, has_path_sep ) from .compilers import is_object, clink_langs, sort_clink, lang_suffixes, get_macos_dylib_install_name from .interpreterbase import FeatureNew pch_kwargs = set(['c_pch', 'cpp_pch']) lang_arg_kwargs = set([ 'c_args', 'cpp_args', 'd_args', 'd_import_dirs', 'd_unittest', 'd_module_versions', 'd_debug', 'fortran_args', 'java_args', 'objc_args', 'objcpp_args', 'rust_args', 'vala_args', 'cs_args', ]) vala_kwargs = set(['vala_header', 'vala_gir', 'vala_vapi']) rust_kwargs = set(['rust_crate_type']) cs_kwargs = set(['resources', 'cs_args']) buildtarget_kwargs = set([ 'build_by_default', 'build_rpath', 'dependencies', 'extra_files', 'gui_app', 'link_with', 'link_whole', 'link_args', 'link_depends', 'implicit_include_directories', 'include_directories', 'install', 'install_rpath', 'install_dir', 'install_mode', 'name_prefix', 'name_suffix', 'native', 'objects', 'override_options', 'sources', 'gnu_symbol_visibility', ]) known_build_target_kwargs = ( buildtarget_kwargs | lang_arg_kwargs | pch_kwargs | vala_kwargs | rust_kwargs | cs_kwargs) known_exe_kwargs = known_build_target_kwargs | {'implib', 'export_dynamic', 'pie'} known_shlib_kwargs = known_build_target_kwargs | {'version', 'soversion', 'vs_module_defs', 'darwin_versions'} known_shmod_kwargs = known_build_target_kwargs known_stlib_kwargs = known_build_target_kwargs | {'pic'} known_jar_kwargs = known_exe_kwargs | {'main_class'} @lru_cache(maxsize=None) def get_target_macos_dylib_install_name(ld): return get_macos_dylib_install_name(ld.prefix, ld.name, ld.suffix, ld.soversion) class InvalidArguments(MesonException): pass class Build: """A class that holds the status of one build including all dependencies and so on. """ def __init__(self, environment): self.project_name = 'name of master project' self.project_version = None self.environment = environment self.projects = {} self.targets = OrderedDict() # Coredata holds the state. This is just here for convenience. self.compilers = environment.coredata.compilers self.cross_compilers = environment.coredata.cross_compilers self.global_args = {} self.projects_args = {} self.global_link_args = {} self.projects_link_args = {} self.cross_global_args = {} self.cross_projects_args = {} self.cross_global_link_args = {} self.cross_projects_link_args = {} self.tests = [] self.benchmarks = [] self.headers = [] self.man = [] self.data = [] self.static_linker = None self.static_cross_linker = None self.subprojects = {} self.subproject_dir = '' self.install_scripts = [] self.postconf_scripts = [] self.dist_scripts = [] self.install_dirs = [] self.dep_manifest_name = None self.dep_manifest = {} self.cross_stdlibs = {} self.test_setups = {} self.test_setup_default_name = None self.find_overrides = {} self.searched_programs = set() # The list of all programs that have been searched for. def copy(self): other = Build(self.environment) for k, v in self.__dict__.items(): if k in ['compilers', 'cross_compilers']: # These alias coredata's fields of the same name, and must not # become copies. continue if isinstance(v, (list, dict, set, OrderedDict)): other.__dict__[k] = v.copy() else: other.__dict__[k] = v return other def merge(self, other): for k, v in other.__dict__.items(): self.__dict__[k] = v def ensure_static_linker(self, compiler): if self.static_linker is None and compiler.needs_static_linker(): self.static_linker = self.environment.detect_static_linker(compiler) def ensure_static_cross_linker(self, compiler): if self.static_cross_linker is None and compiler.needs_static_linker(): self.static_cross_linker = self.environment.detect_static_linker(compiler) def get_project(self): return self.projects[''] def get_subproject_dir(self): return self.subproject_dir def get_targets(self): return self.targets def get_tests(self): return self.tests def get_benchmarks(self): return self.benchmarks def get_headers(self): return self.headers def get_man(self): return self.man def get_data(self): return self.data def get_install_subdirs(self): return self.install_dirs def get_global_args(self, compiler, for_cross): d = self.cross_global_args if for_cross else self.global_args return d.get(compiler.get_language(), []) def get_project_args(self, compiler, project, for_cross): d = self.cross_projects_args if for_cross else self.projects_args args = d.get(project) if not args: return [] return args.get(compiler.get_language(), []) def get_global_link_args(self, compiler, for_cross): d = self.cross_global_link_args if for_cross else self.global_link_args return d.get(compiler.get_language(), []) def get_project_link_args(self, compiler, project, for_cross): d = self.cross_projects_link_args if for_cross else self.projects_link_args link_args = d.get(project) if not link_args: return [] return link_args.get(compiler.get_language(), []) class IncludeDirs: def __init__(self, curdir, dirs, is_system, extra_build_dirs=None): self.curdir = curdir self.incdirs = dirs self.is_system = is_system # Interpreter has validated that all given directories # actually exist. if extra_build_dirs is None: self.extra_build_dirs = [] else: self.extra_build_dirs = extra_build_dirs def __repr__(self): r = '<{} {}/{}>' return r.format(self.__class__.__name__, self.curdir, self.incdirs) def get_curdir(self): return self.curdir def get_incdirs(self): return self.incdirs def get_extra_build_dirs(self): return self.extra_build_dirs class ExtractedObjects: ''' Holds a list of sources for which the objects must be extracted ''' def __init__(self, target, srclist=[], genlist=[], objlist=[], recursive=True): self.target = target self.recursive = recursive self.srclist = srclist self.genlist = genlist self.objlist = objlist if self.target.is_unity: self.check_unity_compatible() def __repr__(self): r = '<{0} {1!r}: {2}>' return r.format(self.__class__.__name__, self.target.name, self.srclist) def classify_all_sources(self, sources, generated_sources): # Merge sources and generated sources sources = list(sources) for gensrc in generated_sources: for s in gensrc.get_outputs(): # We cannot know the path where this source will be generated, # but all we need here is the file extension to determine the # compiler. sources.append(s) # Filter out headers and all non-source files sources = [s for s in sources if environment.is_source(s) and not environment.is_header(s)] return classify_unity_sources(self.target.compilers.values(), sources) def check_unity_compatible(self): # Figure out if the extracted object list is compatible with a Unity # build. When we're doing a Unified build, we go through the sources, # and create a single source file from each subset of the sources that # can be compiled with a specific compiler. Then we create one object # from each unified source file. So for each compiler we can either # extra all its sources or none. cmpsrcs = self.classify_all_sources(self.target.sources, self.target.generated) extracted_cmpsrcs = self.classify_all_sources(self.srclist, self.genlist) for comp, srcs in extracted_cmpsrcs.items(): if set(srcs) != set(cmpsrcs[comp]): raise MesonException('Single object files can not be extracted ' 'in Unity builds. You can only extract all ' 'the object files for each compiler at once.') class EnvironmentVariables: def __init__(self): self.envvars = [] def __repr__(self): repr_str = "<{0}: {1}>" return repr_str.format(self.__class__.__name__, self.envvars) def get_value(self, values, kwargs): separator = kwargs.get('separator', os.pathsep) value = '' for var in values: value += separator + var return separator, value.strip(separator) def set(self, env, name, values, kwargs): return self.get_value(values, kwargs)[1] def append(self, env, name, values, kwargs): sep, value = self.get_value(values, kwargs) if name in env: return env[name] + sep + value return value def prepend(self, env, name, values, kwargs): sep, value = self.get_value(values, kwargs) if name in env: return value + sep + env[name] return value def get_env(self, full_env): env = full_env.copy() for method, name, values, kwargs in self.envvars: env[name] = method(full_env, name, values, kwargs) return env class Target: def __init__(self, name, subdir, subproject, build_by_default): if has_path_sep(name): # Fix failing test 53 when this becomes an error. mlog.warning('''Target "%s" has a path separator in its name. This is not supported, it can cause unexpected failures and will become a hard error in the future.''' % name) self.name = name self.subdir = subdir self.subproject = subproject self.build_by_default = build_by_default self.install = False self.build_always_stale = False self.option_overrides = {} if not hasattr(self, 'typename'): raise RuntimeError('Target type is not set for target class "{}". This is a bug'.format(type(self).__name__)) def get_install_dir(self, environment): # Find the installation directory. default_install_dir = self.get_default_install_dir(environment) outdirs = self.get_custom_install_dir() if outdirs[0] is not None and outdirs[0] != default_install_dir and outdirs[0] is not True: # Either the value is set to a non-default value, or is set to # False (which means we want this specific output out of many # outputs to not be installed). custom_install_dir = True else: custom_install_dir = False outdirs[0] = default_install_dir return outdirs, custom_install_dir def get_basename(self): return self.name def get_subdir(self): return self.subdir def get_typename(self): return self.typename @staticmethod def _get_id_hash(target_id): # We don't really need cryptographic security here. # Small-digest hash function with unlikely collision is good enough. h = hashlib.sha256() h.update(target_id.encode(encoding='utf-8', errors='replace')) # This ID should be case-insensitive and should work in Visual Studio, # e.g. it should not start with leading '-'. return h.hexdigest()[:7] @staticmethod def construct_id_from_path(subdir, name, type_suffix): """Construct target ID from subdir, name and type suffix. This helper function is made public mostly for tests.""" # This ID must also be a valid file name on all OSs. # It should also avoid shell metacharacters for obvious # reasons. '@' is not used as often as '_' in source code names. # In case of collisions consider using checksums. # FIXME replace with assert when slash in names is prohibited name_part = name.replace('/', '@').replace('\\', '@') assert not has_path_sep(type_suffix) my_id = name_part + type_suffix if subdir: subdir_part = Target._get_id_hash(subdir) # preserve myid for better debuggability return subdir_part + '@@' + my_id return my_id def get_id(self): return self.construct_id_from_path( self.subdir, self.name, self.type_suffix()) def process_kwargs(self, kwargs): if 'build_by_default' in kwargs: self.build_by_default = kwargs['build_by_default'] if not isinstance(self.build_by_default, bool): raise InvalidArguments('build_by_default must be a boolean value.') elif kwargs.get('install', False): # For backward compatibility, if build_by_default is not explicitly # set, use the value of 'install' if it's enabled. self.build_by_default = True self.option_overrides = self.parse_overrides(kwargs) def parse_overrides(self, kwargs): result = {} overrides = stringlistify(kwargs.get('override_options', [])) for o in overrides: if '=' not in o: raise InvalidArguments('Overrides must be of form "key=value"') k, v = o.split('=', 1) k = k.strip() v = v.strip() result[k] = v return result def is_linkable_target(self): return False class BuildTarget(Target): known_kwargs = known_build_target_kwargs def __init__(self, name, subdir, subproject, is_cross, sources, objects, environment, kwargs): super().__init__(name, subdir, subproject, True) self.is_cross = is_cross unity_opt = environment.coredata.get_builtin_option('unity') self.is_unity = unity_opt == 'on' or (unity_opt == 'subprojects' and subproject != '') self.environment = environment self.sources = [] self.compilers = OrderedDict() self.objects = [] self.external_deps = [] self.include_dirs = [] self.link_targets = [] self.link_whole_targets = [] self.link_depends = [] self.name_prefix_set = False self.name_suffix_set = False self.filename = 'no_name' # The list of all files outputted by this target. Useful in cases such # as Vala which generates .vapi and .h besides the compiled output. self.outputs = [self.filename] self.need_install = False self.pch = {} self.extra_args = {} self.generated = [] self.extra_files = [] self.d_features = {} self.pic = False self.pie = False # Sources can be: # 1. Pre-existing source files in the source tree # 2. Pre-existing sources generated by configure_file in the build tree # 3. Sources files generated by another target or a Generator self.process_sourcelist(sources) # Objects can be: # 1. Pre-existing objects provided by the user with the `objects:` kwarg # 2. Compiled objects created by and extracted from another target self.process_objectlist(objects) self.process_kwargs(kwargs, environment) self.check_unknown_kwargs(kwargs) self.process_compilers() if not any([self.sources, self.generated, self.objects, self.link_whole]): raise InvalidArguments('Build target %s has no sources.' % name) self.process_compilers_late() self.validate_sources() self.validate_cross_install(environment) self.check_module_linking() def __lt__(self, other): return self.get_id() < other.get_id() def __repr__(self): repr_str = "<{0} {1}: {2}>" return repr_str.format(self.__class__.__name__, self.get_id(), self.filename) def validate_cross_install(self, environment): if environment.is_cross_build() and not self.is_cross and self.need_install: raise InvalidArguments('Tried to install a natively built target in a cross build.') def check_unknown_kwargs(self, kwargs): # Override this method in derived classes that have more # keywords. self.check_unknown_kwargs_int(kwargs, self.known_kwargs) def check_unknown_kwargs_int(self, kwargs, known_kwargs): unknowns = [] for k in kwargs: if k not in known_kwargs: unknowns.append(k) if len(unknowns) > 0: mlog.warning('Unknown keyword argument(s) in target %s: %s.' % (self.name, ', '.join(unknowns))) def process_objectlist(self, objects): assert(isinstance(objects, list)) for s in objects: if hasattr(s, 'held_object'): s = s.held_object if isinstance(s, (str, File, ExtractedObjects)): self.objects.append(s) elif isinstance(s, (GeneratedList, CustomTarget)): msg = 'Generated files are not allowed in the \'objects\' kwarg ' + \ 'for target {!r}.\nIt is meant only for '.format(self.name) + \ 'pre-built object files that are shipped with the\nsource ' + \ 'tree. Try adding it in the list of sources.' raise InvalidArguments(msg) else: msg = 'Bad object of type {!r} in target {!r}.'.format(type(s).__name__, self.name) raise InvalidArguments(msg) def process_sourcelist(self, sources): sources = listify(sources) added_sources = {} # If the same source is defined multiple times, use it only once. for s in sources: # Holder unpacking. Ugly. if hasattr(s, 'held_object'): s = s.held_object if isinstance(s, File): if s not in added_sources: self.sources.append(s) added_sources[s] = True elif isinstance(s, (GeneratedList, CustomTarget, CustomTargetIndex)): self.generated.append(s) else: msg = 'Bad source of type {!r} in target {!r}.'.format(type(s).__name__, self.name) raise InvalidArguments(msg) @staticmethod def can_compile_remove_sources(compiler, sources): removed = False for s in sources[:]: if compiler.can_compile(s): sources.remove(s) removed = True return removed def process_compilers_late(self): """Processes additional compilers after kwargs have been evaluated. This can add extra compilers that might be required by keyword arguments, such as link_with or dependencies. It will also try to guess which compiler to use if one hasn't been selected already. """ # Populate list of compilers if self.is_cross: compilers = self.environment.coredata.cross_compilers else: compilers = self.environment.coredata.compilers # If this library is linked against another library we need to consider # the languages of those libraries as well. if self.link_targets or self.link_whole_targets: extra = set() for t in itertools.chain(self.link_targets, self.link_whole_targets): for name, compiler in t.compilers.items(): if name in clink_langs: extra.add((name, compiler)) for name, compiler in sorted(extra, key=lambda p: sort_clink(p[0])): self.compilers[name] = compiler if not self.compilers: # No source files or parent targets, target consists of only object # files of unknown origin. Just add the first clink compiler # that we have and hope that it can link these objects for lang in clink_langs: if lang in compilers: self.compilers[lang] = compilers[lang] break def process_compilers(self): ''' Populate self.compilers, which is the list of compilers that this target will use for compiling all its sources. We also add compilers that were used by extracted objects to simplify dynamic linker determination. ''' if not self.sources and not self.generated and not self.objects: return # Populate list of compilers if self.is_cross: compilers = self.environment.coredata.cross_compilers else: compilers = self.environment.coredata.compilers # Pre-existing sources sources = list(self.sources) # All generated sources for gensrc in self.generated: for s in gensrc.get_outputs(): # Generated objects can't be compiled, so don't use them for # compiler detection. If our target only has generated objects, # we will fall back to using the first c-like compiler we find, # which is what we need. if not is_object(s): sources.append(s) for d in self.external_deps: if hasattr(d, 'held_object'): d = d.held_object for s in d.sources: if isinstance(s, (str, File)): sources.append(s) # Sources that were used to create our extracted objects for o in self.objects: if not isinstance(o, ExtractedObjects): continue for s in o.srclist: # Don't add Vala sources since that will pull in the Vala # compiler even though we will never use it since we are # dealing with compiled C code. if not s.endswith(lang_suffixes['vala']): sources.append(s) if sources: # For each source, try to add one compiler that can compile it. # It's ok if no compilers can do so, because users are expected to # be able to add arbitrary non-source files to the sources list. for s in sources: for lang, compiler in compilers.items(): if compiler.can_compile(s): if lang not in self.compilers: self.compilers[lang] = compiler break # Re-sort according to clink_langs self.compilers = OrderedDict(sorted(self.compilers.items(), key=lambda t: sort_clink(t[0]))) # If all our sources are Vala, our target also needs the C compiler but # it won't get added above. if 'vala' in self.compilers and 'c' not in self.compilers: self.compilers['c'] = compilers['c'] def validate_sources(self): if not self.sources: return for lang in ('cs', 'java'): if lang in self.compilers: check_sources = list(self.sources) compiler = self.compilers[lang] if not self.can_compile_remove_sources(compiler, check_sources): m = 'No {} sources found in target {!r}'.format(lang, self.name) raise InvalidArguments(m) if check_sources: m = '{0} targets can only contain {0} files:\n'.format(lang.capitalize()) m += '\n'.join([repr(c) for c in check_sources]) raise InvalidArguments(m) # CSharp and Java targets can't contain any other file types assert(len(self.compilers) == 1) return def process_link_depends(self, sources, environment): """Process the link_depends keyword argument. This is designed to handle strings, Files, and the output of Custom Targets. Notably it doesn't handle generator() returned objects, since adding them as a link depends would inherently cause them to be generated twice, since the output needs to be passed to the ld_args and link_depends. """ sources = listify(sources) for s in sources: if hasattr(s, 'held_object'): s = s.held_object if isinstance(s, File): self.link_depends.append(s) elif isinstance(s, str): self.link_depends.append( File.from_source_file(environment.source_dir, self.subdir, s)) elif hasattr(s, 'get_outputs'): self.link_depends.extend( [File.from_built_file(s.subdir, p) for p in s.get_outputs()]) else: raise InvalidArguments( 'Link_depends arguments must be strings, Files, ' 'or a Custom Target, or lists thereof.') def get_original_kwargs(self): return self.kwargs def unpack_holder(self, d): d = listify(d) newd = [] for i in d: if isinstance(i, list): i = self.unpack_holder(i) elif hasattr(i, 'held_object'): i = i.held_object for t in ['dependencies', 'link_with', 'include_directories', 'sources']: if hasattr(i, t): setattr(i, t, self.unpack_holder(getattr(i, t))) newd.append(i) return newd def copy_kwargs(self, kwargs): self.kwargs = copy.copy(kwargs) # This sucks quite badly. Arguments # are holders but they can't be pickled # so unpack those known. for k, v in self.kwargs.items(): if isinstance(v, list): self.kwargs[k] = self.unpack_holder(v) if hasattr(v, 'held_object'): self.kwargs[k] = v.held_object for t in ['dependencies', 'link_with', 'include_directories', 'sources']: if t in self.kwargs: self.kwargs[t] = self.unpack_holder(self.kwargs[t]) def extract_objects(self, srclist): obj_src = [] for src in srclist: if not isinstance(src, str): raise MesonException('Object extraction arguments must be strings.') src = File(False, self.subdir, src) # FIXME: It could be a generated source if src not in self.sources: raise MesonException('Tried to extract unknown source %s.' % src) obj_src.append(src) return ExtractedObjects(self, obj_src) def extract_all_objects(self, recursive=True): return ExtractedObjects(self, self.sources, self.generated, self.objects, recursive) def get_all_link_deps(self): return self.get_transitive_link_deps() @lru_cache(maxsize=None) def get_transitive_link_deps(self): result = [] for i in self.link_targets: result += i.get_all_link_deps() return result def get_link_deps_mapping(self, prefix, environment): return self.get_transitive_link_deps_mapping(prefix, environment) @lru_cache(maxsize=None) def get_transitive_link_deps_mapping(self, prefix, environment): result = {} for i in self.link_targets: mapping = i.get_link_deps_mapping(prefix, environment) #we are merging two dictionaries, while keeping the earlier one dominant result_tmp = mapping.copy() result_tmp.update(result) result = result_tmp return result @lru_cache(maxsize=None) def get_link_dep_subdirs(self): result = OrderedSet() for i in self.link_targets: result.add(i.get_subdir()) result.update(i.get_link_dep_subdirs()) return result def get_default_install_dir(self, environment): return environment.get_libdir() def get_custom_install_dir(self): return self.install_dir def get_custom_install_mode(self): return self.install_mode def process_kwargs(self, kwargs, environment): super().process_kwargs(kwargs) self.copy_kwargs(kwargs) kwargs.get('modules', []) self.need_install = kwargs.get('install', self.need_install) llist = extract_as_list(kwargs, 'link_with') for linktarget in llist: # Sorry for this hack. Keyword targets are kept in holders # in kwargs. Unpack here without looking at the exact type. if hasattr(linktarget, "held_object"): linktarget = linktarget.held_object if isinstance(linktarget, dependencies.ExternalLibrary): raise MesonException('''An external library was used in link_with keyword argument, which is reserved for libraries built as part of this project. External libraries must be passed using the dependencies keyword argument instead, because they are conceptually "external dependencies", just like those detected with the dependency() function.''') self.link(linktarget) lwhole = extract_as_list(kwargs, 'link_whole') for linktarget in lwhole: self.link_whole(linktarget) c_pchlist, cpp_pchlist, clist, cpplist, cslist, valalist, objclist, objcpplist, fortranlist, rustlist \ = extract_as_list(kwargs, 'c_pch', 'cpp_pch', 'c_args', 'cpp_args', 'cs_args', 'vala_args', 'objc_args', 'objcpp_args', 'fortran_args', 'rust_args') self.add_pch('c', c_pchlist) self.add_pch('cpp', cpp_pchlist) compiler_args = {'c': clist, 'cpp': cpplist, 'cs': cslist, 'vala': valalist, 'objc': objclist, 'objcpp': objcpplist, 'fortran': fortranlist, 'rust': rustlist } for key, value in compiler_args.items(): self.add_compiler_args(key, value) if not isinstance(self, Executable) or 'export_dynamic' in kwargs: self.vala_header = kwargs.get('vala_header', self.name + '.h') self.vala_vapi = kwargs.get('vala_vapi', self.name + '.vapi') self.vala_gir = kwargs.get('vala_gir', None) dlist = stringlistify(kwargs.get('d_args', [])) self.add_compiler_args('d', dlist) dfeatures = dict() dfeature_unittest = kwargs.get('d_unittest', False) if dfeature_unittest: dfeatures['unittest'] = dfeature_unittest dfeature_versions = kwargs.get('d_module_versions', []) if dfeature_versions: dfeatures['versions'] = dfeature_versions dfeature_debug = kwargs.get('d_debug', []) if dfeature_debug: dfeatures['debug'] = dfeature_debug if 'd_import_dirs' in kwargs: dfeature_import_dirs = extract_as_list(kwargs, 'd_import_dirs', unholder=True) for d in dfeature_import_dirs: if not isinstance(d, IncludeDirs): raise InvalidArguments('Arguments to d_import_dirs must be include_directories.') dfeatures['import_dirs'] = dfeature_import_dirs if dfeatures: self.d_features = dfeatures self.link_args = extract_as_list(kwargs, 'link_args') for i in self.link_args: if not isinstance(i, str): raise InvalidArguments('Link_args arguments must be strings.') for l in self.link_args: if '-Wl,-rpath' in l or l.startswith('-rpath'): mlog.warning('''Please do not define rpath with a linker argument, use install_rpath or build_rpath properties instead. This will become a hard error in a future Meson release.''') self.process_link_depends(kwargs.get('link_depends', []), environment) # Target-specific include dirs must be added BEFORE include dirs from # internal deps (added inside self.add_deps()) to override them. inclist = extract_as_list(kwargs, 'include_directories') self.add_include_dirs(inclist) # Add dependencies (which also have include_directories) deplist = extract_as_list(kwargs, 'dependencies') self.add_deps(deplist) # If an item in this list is False, the output corresponding to # the list index of that item will not be installed self.install_dir = typeslistify(kwargs.get('install_dir', [None]), (str, bool)) self.install_mode = kwargs.get('install_mode', None) main_class = kwargs.get('main_class', '') if not isinstance(main_class, str): raise InvalidArguments('Main class must be a string') self.main_class = main_class if isinstance(self, Executable): self.gui_app = kwargs.get('gui_app', False) if not isinstance(self.gui_app, bool): raise InvalidArguments('Argument gui_app must be boolean.') elif 'gui_app' in kwargs: raise InvalidArguments('Argument gui_app can only be used on executables.') extra_files = extract_as_list(kwargs, 'extra_files') for i in extra_files: assert(isinstance(i, File)) trial = os.path.join(environment.get_source_dir(), i.subdir, i.fname) if not(os.path.isfile(trial)): raise InvalidArguments('Tried to add non-existing extra file %s.' % i) self.extra_files = extra_files self.install_rpath = kwargs.get('install_rpath', '') if not isinstance(self.install_rpath, str): raise InvalidArguments('Install_rpath is not a string.') self.build_rpath = kwargs.get('build_rpath', '') if not isinstance(self.build_rpath, str): raise InvalidArguments('Build_rpath is not a string.') resources = extract_as_list(kwargs, 'resources') for r in resources: if not isinstance(r, str): raise InvalidArguments('Resource argument is not a string.') trial = os.path.join(environment.get_source_dir(), self.subdir, r) if not os.path.isfile(trial): raise InvalidArguments('Tried to add non-existing resource %s.' % r) self.resources = resources if 'name_prefix' in kwargs: name_prefix = kwargs['name_prefix'] if isinstance(name_prefix, list): if name_prefix: raise InvalidArguments('name_prefix array must be empty to signify null.') elif not isinstance(name_prefix, str): raise InvalidArguments('name_prefix must be a string.') self.prefix = name_prefix self.name_prefix_set = True if 'name_suffix' in kwargs: name_suffix = kwargs['name_suffix'] if isinstance(name_suffix, list): if name_suffix: raise InvalidArguments('name_suffix array must be empty to signify null.') else: if not isinstance(name_suffix, str): raise InvalidArguments('name_suffix must be a string.') if name_suffix == '': raise InvalidArguments('name_suffix should not be an empty string. ' 'If you want meson to use the default behaviour ' 'for each platform pass `[]` (empty array)') self.suffix = name_suffix self.name_suffix_set = True if isinstance(self, StaticLibrary): # You can't disable PIC on OS X. The compiler ignores -fno-PIC. # PIC is always on for Windows (all code is position-independent # since library loading is done differently) if for_darwin(self.is_cross, self.environment) or for_windows(self.is_cross, self.environment): self.pic = True else: self.pic = self._extract_pic_pie(kwargs, 'pic') if isinstance(self, Executable): # Executables must be PIE on Android if for_android(self.is_cross, self.environment): self.pie = True else: self.pie = self._extract_pic_pie(kwargs, 'pie') self.implicit_include_directories = kwargs.get('implicit_include_directories', True) if not isinstance(self.implicit_include_directories, bool): raise InvalidArguments('Implicit_include_directories must be a boolean.') self.gnu_symbol_visibility = kwargs.get('gnu_symbol_visibility', '') if not isinstance(self.gnu_symbol_visibility, str): raise InvalidArguments('GNU symbol visibility must be a string.') if self.gnu_symbol_visibility != '': permitted = ['default', 'internal', 'hidden', 'protected', 'inlineshidden'] if self.gnu_symbol_visibility not in permitted: raise InvalidArguments('GNU symbol visibility arg %s not one of: %s', self.symbol_visibility, ', '.join(permitted)) def _extract_pic_pie(self, kwargs, arg): # Check if we have -fPIC, -fpic, -fPIE, or -fpie in cflags all_flags = self.extra_args['c'] + self.extra_args['cpp'] if '-f' + arg.lower() in all_flags or '-f' + arg.upper() in all_flags: mlog.warning("Use the '{}' kwarg instead of passing '{}' manually to {!r}".format(arg, '-f' + arg, self.name)) return True val = kwargs.get(arg, False) if not isinstance(val, bool): raise InvalidArguments('Argument {} to {!r} must be boolean'.format(arg, self.name)) return val def get_filename(self): return self.filename def get_outputs(self): return self.outputs def get_extra_args(self, language): return self.extra_args.get(language, []) def get_dependencies(self, exclude=None, internal=True): transitive_deps = [] if exclude is None: exclude = [] if internal: link_targets = itertools.chain(self.link_targets, self.link_whole_targets) else: # We don't want the 'internal' libraries when generating the # `Libs:` and `Libs.private:` lists in pkg-config files. link_targets = self.link_targets for t in link_targets: if t in transitive_deps or t in exclude: continue transitive_deps.append(t) if isinstance(t, StaticLibrary): transitive_deps += t.get_dependencies(transitive_deps + exclude, internal) return transitive_deps def get_source_subdir(self): return self.subdir def get_sources(self): return self.sources def get_objects(self): return self.objects def get_generated_sources(self): return self.generated def should_install(self): return self.need_install def has_pch(self): return len(self.pch) > 0 def get_pch(self, language): try: return self.pch[language] except KeyError: return[] def get_include_dirs(self): return self.include_dirs def add_deps(self, deps): deps = listify(deps) for dep in deps: if hasattr(dep, 'held_object'): dep = dep.held_object if isinstance(dep, dependencies.InternalDependency): # Those parts that are internal. self.process_sourcelist(dep.sources) self.add_include_dirs(dep.include_directories) for l in dep.libraries: self.link(l) for l in dep.whole_libraries: self.link_whole(l) if dep.compile_args or dep.link_args: # Those parts that are external. extpart = dependencies.InternalDependency('undefined', [], dep.compile_args, dep.link_args, [], [], [], []) self.external_deps.append(extpart) # Deps of deps. self.add_deps(dep.ext_deps) elif isinstance(dep, dependencies.Dependency): self.external_deps.append(dep) self.process_sourcelist(dep.get_sources()) elif isinstance(dep, BuildTarget): raise InvalidArguments('''Tried to use a build target as a dependency. You probably should put it in link_with instead.''') else: # This is a bit of a hack. We do not want Build to know anything # about the interpreter so we can't import it and use isinstance. # This should be reliable enough. if hasattr(dep, 'project_args_frozen') or hasattr(dep, 'global_args_frozen'): raise InvalidArguments('Tried to use subproject object as a dependency.\n' 'You probably wanted to use a dependency declared in it instead.\n' 'Access it by calling get_variable() on the subproject object.') raise InvalidArguments('Argument is of an unacceptable type {!r}.\nMust be ' 'either an external dependency (returned by find_library() or ' 'dependency()) or an internal dependency (returned by ' 'declare_dependency()).'.format(type(dep).__name__)) def get_external_deps(self): return self.external_deps def link(self, target): for t in listify(target, unholder=True): if not isinstance(t, Target): raise InvalidArguments('{!r} is not a target.'.format(t)) if not t.is_linkable_target(): raise InvalidArguments('Link target {!r} is not linkable.'.format(t)) if isinstance(self, SharedLibrary) and isinstance(t, StaticLibrary) and not t.pic: msg = "Can't link non-PIC static library {!r} into shared library {!r}. ".format(t.name, self.name) msg += "Use the 'pic' option to static_library to build with PIC." raise InvalidArguments(msg) if self.is_cross != t.is_cross: raise InvalidArguments('Tried to mix cross built and native libraries in target {!r}'.format(self.name)) self.link_targets.append(t) def link_whole(self, target): for t in listify(target, unholder=True): if not isinstance(t, StaticLibrary): raise InvalidArguments('{!r} is not a static library.'.format(t)) if isinstance(self, SharedLibrary) and not t.pic: msg = "Can't link non-PIC static library {!r} into shared library {!r}. ".format(t.name, self.name) msg += "Use the 'pic' option to static_library to build with PIC." raise InvalidArguments(msg) if self.is_cross != t.is_cross: raise InvalidArguments('Tried to mix cross built and native libraries in target {!r}'.format(self.name)) self.link_whole_targets.append(t) def add_pch(self, language, pchlist): if not pchlist: return elif len(pchlist) == 1: if not environment.is_header(pchlist[0]): raise InvalidArguments('PCH argument %s is not a header.' % pchlist[0]) elif len(pchlist) == 2: if environment.is_header(pchlist[0]): if not environment.is_source(pchlist[1]): raise InvalidArguments('PCH definition must contain one header and at most one source.') elif environment.is_source(pchlist[0]): if not environment.is_header(pchlist[1]): raise InvalidArguments('PCH definition must contain one header and at most one source.') pchlist = [pchlist[1], pchlist[0]] else: raise InvalidArguments('PCH argument %s is of unknown type.' % pchlist[0]) if (os.path.dirname(pchlist[0]) != os.path.dirname(pchlist[1])): raise InvalidArguments('PCH files must be stored in the same folder.') elif len(pchlist) > 2: raise InvalidArguments('PCH definition may have a maximum of 2 files.') for f in pchlist: if not os.path.isfile(os.path.join(self.environment.source_dir, self.subdir, f)): raise MesonException('File %s does not exist.' % f) self.pch[language] = pchlist def add_include_dirs(self, args): ids = [] for a in args: # FIXME same hack, forcibly unpack from holder. if hasattr(a, 'held_object'): a = a.held_object if not isinstance(a, IncludeDirs): raise InvalidArguments('Include directory to be added is not an include directory object.') ids.append(a) self.include_dirs += ids def add_compiler_args(self, language, args): args = listify(args) for a in args: if not isinstance(a, (str, File)): raise InvalidArguments('A non-string passed to compiler args.') if language in self.extra_args: self.extra_args[language] += args else: self.extra_args[language] = args def get_aliases(self): return {} def get_langs_used_by_deps(self): ''' Sometimes you want to link to a C++ library that exports C API, which means the linker must link in the C++ stdlib, and we must use a C++ compiler for linking. The same is also applicable for objc/objc++, etc, so we can keep using clink_langs for the priority order. See: https://github.com/mesonbuild/meson/issues/1653 ''' langs = [] # Check if any of the external libraries were written in this language for dep in self.external_deps: if dep.language is None: continue if dep.language not in langs: langs.append(dep.language) # Check if any of the internal libraries this target links to were # written in this language for link_target in itertools.chain(self.link_targets, self.link_whole_targets): for language in link_target.compilers: if language not in langs: langs.append(language) return langs def get_clink_dynamic_linker_and_stdlibs(self): ''' We use the order of languages in `clink_langs` to determine which linker to use in case the target has sources compiled with multiple compilers. All languages other than those in this list have their own linker. Note that Vala outputs C code, so Vala sources can use any linker that can link compiled C. We don't actually need to add an exception for Vala here because of that. ''' # Populate list of all compilers, not just those being used to compile # sources in this target if self.is_cross: all_compilers = self.environment.coredata.cross_compilers else: all_compilers = self.environment.coredata.compilers # Languages used by dependencies dep_langs = self.get_langs_used_by_deps() # Pick a compiler based on the language priority-order for l in clink_langs: if l in self.compilers or l in dep_langs: try: linker = all_compilers[l] except KeyError: raise MesonException( 'Could not get a dynamic linker for build target {!r}. ' 'Requires a linker for language "{}", but that is not ' 'a project language.'.format(self.name, l)) stdlib_args = [] added_languages = set() for dl in itertools.chain(self.compilers, dep_langs): if dl != linker.language: stdlib_args += all_compilers[dl].language_stdlib_only_link_flags() added_languages.add(dl) return linker, stdlib_args m = 'Could not get a dynamic linker for build target {!r}' raise AssertionError(m.format(self.name)) def get_using_msvc(self): ''' Check if the dynamic linker is MSVC. Used by Executable, StaticLibrary, and SharedLibrary for deciding when to use MSVC-specific file naming and debug filenames. If at least some code is built with MSVC and the final library is linked with MSVC, we can be sure that some debug info will be generated. We only check the dynamic linker here because the static linker is guaranteed to be of the same type. Interesting cases: 1. The Vala compiler outputs C code to be compiled by whatever C compiler we're using, so all objects will still be created by the MSVC compiler. 2. If the target contains only objects, process_compilers guesses and picks the first compiler that smells right. ''' linker, _ = self.get_clink_dynamic_linker_and_stdlibs() # Mixing many languages with MSVC is not supported yet so ignore stdlibs. if linker and linker.get_id() in ['msvc', 'clang-cl', 'llvm', 'dmd']: return True return False def check_module_linking(self): ''' Warn if shared modules are linked with target: (link_with) #2865 ''' for link_target in self.link_targets: if isinstance(link_target, SharedModule): if for_darwin(self.is_cross, self.environment): raise MesonException('''target links against shared modules. This is not permitted on OSX''') else: mlog.warning('''target links against shared modules. This is not recommended as it is not supported on some platforms''') return class Generator: def __init__(self, args, kwargs): if len(args) != 1: raise InvalidArguments('Generator requires exactly one positional argument: the executable') exe = args[0] if hasattr(exe, 'held_object'): exe = exe.held_object if not isinstance(exe, (Executable, dependencies.ExternalProgram)): raise InvalidArguments('First generator argument must be an executable.') self.exe = exe self.depfile = None self.capture = False self.process_kwargs(kwargs) def __repr__(self): repr_str = "<{0}: {1}>" return repr_str.format(self.__class__.__name__, self.exe) def get_exe(self): return self.exe def process_kwargs(self, kwargs): if 'arguments' not in kwargs: raise InvalidArguments('Generator must have "arguments" keyword argument.') args = kwargs['arguments'] if isinstance(args, str): args = [args] if not isinstance(args, list): raise InvalidArguments('"Arguments" keyword argument must be a string or a list of strings.') for a in args: if not isinstance(a, str): raise InvalidArguments('A non-string object in "arguments" keyword argument.') self.arglist = args if 'output' not in kwargs: raise InvalidArguments('Generator must have "output" keyword argument.') outputs = listify(kwargs['output']) for rule in outputs: if not isinstance(rule, str): raise InvalidArguments('"output" may only contain strings.') if '@BASENAME@' not in rule and '@PLAINNAME@' not in rule: raise InvalidArguments('Every element of "output" must contain @BASENAME@ or @PLAINNAME@.') if has_path_sep(rule): raise InvalidArguments('"outputs" must not contain a directory separator.') if len(outputs) > 1: for o in outputs: if '@OUTPUT@' in o: raise InvalidArguments('Tried to use @OUTPUT@ in a rule with more than one output.') self.outputs = outputs if 'depfile' in kwargs: depfile = kwargs['depfile'] if not isinstance(depfile, str): raise InvalidArguments('Depfile must be a string.') if os.path.basename(depfile) != depfile: raise InvalidArguments('Depfile must be a plain filename without a subdirectory.') self.depfile = depfile if 'capture' in kwargs: capture = kwargs['capture'] if not isinstance(capture, bool): raise InvalidArguments('Capture must be boolean.') self.capture = capture def get_base_outnames(self, inname): plainname = os.path.basename(inname) basename = os.path.splitext(plainname)[0] bases = [x.replace('@BASENAME@', basename).replace('@PLAINNAME@', plainname) for x in self.outputs] return bases def get_dep_outname(self, inname): if self.depfile is None: raise InvalidArguments('Tried to get dep name for rule that does not have dependency file defined.') plainname = os.path.basename(inname) basename = os.path.splitext(plainname)[0] return self.depfile.replace('@BASENAME@', basename).replace('@PLAINNAME@', plainname) def get_arglist(self, inname): plainname = os.path.basename(inname) basename = os.path.splitext(plainname)[0] return [x.replace('@BASENAME@', basename).replace('@PLAINNAME@', plainname) for x in self.arglist] def is_parent_path(self, parent, trial): relpath = pathlib.PurePath(trial).relative_to(parent) return relpath.parts[0] != '..' # For subdirs we can only go "down". def process_files(self, name, files, state, preserve_path_from=None, extra_args=[]): output = GeneratedList(self, state.subdir, preserve_path_from, extra_args=extra_args) for f in files: if isinstance(f, str): f = File.from_source_file(state.environment.source_dir, state.subdir, f) elif not isinstance(f, File): raise InvalidArguments('{} arguments must be strings or files not {!r}.'.format(name, f)) if preserve_path_from: abs_f = f.absolute_path(state.environment.source_dir, state.environment.build_dir) if not self.is_parent_path(preserve_path_from, abs_f): raise InvalidArguments('When using preserve_path_from, all input files must be in a subdirectory of the given dir.') output.add_file(f, state) return output class GeneratedList: def __init__(self, generator, subdir, preserve_path_from=None, extra_args=[]): if hasattr(generator, 'held_object'): generator = generator.held_object self.generator = generator self.name = self.generator.exe self.subdir = subdir self.infilelist = [] self.outfilelist = [] self.outmap = {} self.extra_depends = [] self.preserve_path_from = preserve_path_from self.extra_args = extra_args def add_preserved_path_segment(self, infile, outfiles, state): result = [] in_abs = infile.absolute_path(state.environment.source_dir, state.environment.build_dir) assert(os.path.isabs(self.preserve_path_from)) rel = os.path.relpath(in_abs, self.preserve_path_from) path_segment = os.path.dirname(rel) for of in outfiles: result.append(os.path.join(path_segment, of)) return result def add_file(self, newfile, state): self.infilelist.append(newfile) outfiles = self.generator.get_base_outnames(newfile.fname) if self.preserve_path_from: outfiles = self.add_preserved_path_segment(newfile, outfiles, state) self.outfilelist += outfiles self.outmap[newfile] = outfiles def get_inputs(self): return self.infilelist def get_outputs(self): return self.outfilelist def get_outputs_for(self, filename): return self.outmap[filename] def get_generator(self): return self.generator def get_extra_args(self): return self.extra_args class Executable(BuildTarget): known_kwargs = known_exe_kwargs def __init__(self, name, subdir, subproject, is_cross, sources, objects, environment, kwargs): self.typename = 'executable' if 'pie' not in kwargs and 'b_pie' in environment.coredata.base_options: kwargs['pie'] = environment.coredata.base_options['b_pie'].value super().__init__(name, subdir, subproject, is_cross, sources, objects, environment, kwargs) # Unless overridden, executables have no suffix or prefix. Except on # Windows and with C#/Mono executables where the suffix is 'exe' if not hasattr(self, 'prefix'): self.prefix = '' if not hasattr(self, 'suffix'): # Executable for Windows or C#/Mono if (for_windows(is_cross, environment) or for_cygwin(is_cross, environment) or 'cs' in self.compilers): self.suffix = 'exe' elif ('c' in self.compilers and self.compilers['c'].get_id().startswith('arm') or 'cpp' in self.compilers and self.compilers['cpp'].get_id().startswith('arm')): self.suffix = 'axf' elif ('c' in self.compilers and self.compilers['c'].get_id().startswith('ccrx') or 'cpp' in self.compilers and self.compilers['cpp'].get_id().startswith('ccrx')): self.suffix = 'abs' else: self.suffix = '' self.filename = self.name if self.suffix: self.filename += '.' + self.suffix self.outputs = [self.filename] # The import library this target will generate self.import_filename = None # The import library that Visual Studio would generate (and accept) self.vs_import_filename = None # The import library that GCC would generate (and prefer) self.gcc_import_filename = None # Check for export_dynamic self.export_dynamic = False if kwargs.get('export_dynamic'): if not isinstance(kwargs['export_dynamic'], bool): raise InvalidArguments('"export_dynamic" keyword argument must be a boolean') self.export_dynamic = True if kwargs.get('implib'): self.export_dynamic = True if self.export_dynamic and kwargs.get('implib') is False: raise InvalidArguments('"implib" keyword argument must not be false for if "export_dynamic" is true') # If using export_dynamic, set the import library name if self.export_dynamic: implib_basename = self.name + '.exe' if not isinstance(kwargs.get('implib', False), bool): implib_basename = kwargs['implib'] if for_windows(is_cross, environment) or for_cygwin(is_cross, environment): self.vs_import_filename = '{0}.lib'.format(implib_basename) self.gcc_import_filename = 'lib{0}.a'.format(implib_basename) if self.get_using_msvc(): self.import_filename = self.vs_import_filename else: self.import_filename = self.gcc_import_filename # Only linkwithable if using export_dynamic self.is_linkwithable = self.export_dynamic def get_default_install_dir(self, environment): return environment.get_bindir() def description(self): '''Human friendly description of the executable''' return self.name def type_suffix(self): return "@exe" def get_import_filename(self): """ The name of the import library that will be outputted by the compiler Returns None if there is no import library required for this platform """ return self.import_filename def get_import_filenameslist(self): if self.import_filename: return [self.vs_import_filename, self.gcc_import_filename] return [] def is_linkable_target(self): return self.is_linkwithable class StaticLibrary(BuildTarget): known_kwargs = known_stlib_kwargs def __init__(self, name, subdir, subproject, is_cross, sources, objects, environment, kwargs): self.typename = 'static library' if 'pic' not in kwargs and 'b_staticpic' in environment.coredata.base_options: kwargs['pic'] = environment.coredata.base_options['b_staticpic'].value super().__init__(name, subdir, subproject, is_cross, sources, objects, environment, kwargs) if 'cs' in self.compilers: raise InvalidArguments('Static libraries not supported for C#.') if 'rust' in self.compilers: # If no crate type is specified, or it's the generic lib type, use rlib if not hasattr(self, 'rust_crate_type') or self.rust_crate_type == 'lib': mlog.debug('Defaulting Rust static library target crate type to rlib') self.rust_crate_type = 'rlib' # Don't let configuration proceed with a non-static crate type elif self.rust_crate_type not in ['rlib', 'staticlib']: raise InvalidArguments('Crate type "{0}" invalid for static libraries; must be "rlib" or "staticlib"'.format(self.rust_crate_type)) # By default a static library is named libfoo.a even on Windows because # MSVC does not have a consistent convention for what static libraries # are called. The MSVC CRT uses libfoo.lib syntax but nothing else uses # it and GCC only looks for static libraries called foo.lib and # libfoo.a. However, we cannot use foo.lib because that's the same as # the import library. Using libfoo.a is ok because people using MSVC # always pass the library filename while linking anyway. if not hasattr(self, 'prefix'): self.prefix = 'lib' if not hasattr(self, 'suffix'): if 'rust' in self.compilers: if not hasattr(self, 'rust_crate_type') or self.rust_crate_type == 'rlib': # default Rust static library suffix self.suffix = 'rlib' elif self.rust_crate_type == 'staticlib': self.suffix = 'a' else: self.suffix = 'a' self.filename = self.prefix + self.name + '.' + self.suffix self.outputs = [self.filename] def get_link_deps_mapping(self, prefix, environment): return {} def get_default_install_dir(self, environment): return environment.get_static_lib_dir() def type_suffix(self): return "@sta" def process_kwargs(self, kwargs, environment): super().process_kwargs(kwargs, environment) if 'rust_crate_type' in kwargs: rust_crate_type = kwargs['rust_crate_type'] if isinstance(rust_crate_type, str): self.rust_crate_type = rust_crate_type else: raise InvalidArguments('Invalid rust_crate_type "{0}": must be a string.'.format(rust_crate_type)) def is_linkable_target(self): return True class SharedLibrary(BuildTarget): known_kwargs = known_shlib_kwargs def __init__(self, name, subdir, subproject, is_cross, sources, objects, environment, kwargs): self.typename = 'shared library' self.soversion = None self.ltversion = None # Max length 2, first element is compatibility_version, second is current_version self.darwin_versions = [] self.vs_module_defs = None # The import library this target will generate self.import_filename = None # The import library that Visual Studio would generate (and accept) self.vs_import_filename = None # The import library that GCC would generate (and prefer) self.gcc_import_filename = None super().__init__(name, subdir, subproject, is_cross, sources, objects, environment, kwargs) if 'rust' in self.compilers: # If no crate type is specified, or it's the generic lib type, use dylib if not hasattr(self, 'rust_crate_type') or self.rust_crate_type == 'lib': mlog.debug('Defaulting Rust dynamic library target crate type to "dylib"') self.rust_crate_type = 'dylib' # Don't let configuration proceed with a non-dynamic crate type elif self.rust_crate_type not in ['dylib', 'cdylib']: raise InvalidArguments('Crate type "{0}" invalid for dynamic libraries; must be "dylib" or "cdylib"'.format(self.rust_crate_type)) if not hasattr(self, 'prefix'): self.prefix = None if not hasattr(self, 'suffix'): self.suffix = None self.basic_filename_tpl = '{0.prefix}{0.name}.{0.suffix}' self.determine_filenames(is_cross, environment) def get_link_deps_mapping(self, prefix, environment): result = {} mappings = self.get_transitive_link_deps_mapping(prefix, environment) old = get_target_macos_dylib_install_name(self) if old not in mappings: fname = self.get_filename() outdirs, _ = self.get_install_dir(self.environment) new = os.path.join(prefix, outdirs[0], fname) result.update({old: new}) mappings.update(result) return mappings def get_default_install_dir(self, environment): return environment.get_shared_lib_dir() def determine_filenames(self, is_cross, env): """ See https://github.com/mesonbuild/meson/pull/417 for details. First we determine the filename template (self.filename_tpl), then we set the output filename (self.filename). The template is needed while creating aliases (self.get_aliases), which are needed while generating .so shared libraries for Linux. Besides this, there's also the import library name, which is only used on Windows since on that platform the linker uses a separate library called the "import library" during linking instead of the shared library (DLL). The toolchain will output an import library in one of two formats: GCC or Visual Studio. When we're building with Visual Studio, the import library that will be generated by the toolchain is self.vs_import_filename, and with MinGW/GCC, it's self.gcc_import_filename. self.import_filename will always contain the import library name this target will generate. """ prefix = '' suffix = '' self.filename_tpl = self.basic_filename_tpl # NOTE: manual prefix/suffix override is currently only tested for C/C++ # C# and Mono if 'cs' in self.compilers: prefix = '' suffix = 'dll' self.filename_tpl = '{0.prefix}{0.name}.{0.suffix}' # C, C++, Swift, Vala # Only Windows uses a separate import library for linking # For all other targets/platforms import_filename stays None elif for_windows(is_cross, env): suffix = 'dll' self.vs_import_filename = '{0}{1}.lib'.format(self.prefix if self.prefix is not None else '', self.name) self.gcc_import_filename = '{0}{1}.dll.a'.format(self.prefix if self.prefix is not None else 'lib', self.name) if self.get_using_msvc(): # Shared library is of the form foo.dll prefix = '' # Import library is called foo.lib self.import_filename = self.vs_import_filename # Assume GCC-compatible naming else: # Shared library is of the form libfoo.dll prefix = 'lib' # Import library is called libfoo.dll.a self.import_filename = self.gcc_import_filename # Shared library has the soversion if it is defined if self.soversion: self.filename_tpl = '{0.prefix}{0.name}-{0.soversion}.{0.suffix}' else: self.filename_tpl = '{0.prefix}{0.name}.{0.suffix}' elif for_cygwin(is_cross, env): suffix = 'dll' self.gcc_import_filename = '{0}{1}.dll.a'.format(self.prefix if self.prefix is not None else 'lib', self.name) # Shared library is of the form cygfoo.dll # (ld --dll-search-prefix=cyg is the default) prefix = 'cyg' # Import library is called libfoo.dll.a self.import_filename = self.gcc_import_filename if self.soversion: self.filename_tpl = '{0.prefix}{0.name}-{0.soversion}.{0.suffix}' else: self.filename_tpl = '{0.prefix}{0.name}.{0.suffix}' elif for_darwin(is_cross, env): prefix = 'lib' suffix = 'dylib' # On macOS, the filename can only contain the major version if self.soversion: # libfoo.X.dylib self.filename_tpl = '{0.prefix}{0.name}.{0.soversion}.{0.suffix}' else: # libfoo.dylib self.filename_tpl = '{0.prefix}{0.name}.{0.suffix}' elif for_android(is_cross, env): prefix = 'lib' suffix = 'so' # Android doesn't support shared_library versioning self.filename_tpl = '{0.prefix}{0.name}.{0.suffix}' else: prefix = 'lib' suffix = 'so' if self.ltversion: # libfoo.so.X[.Y[.Z]] (.Y and .Z are optional) self.filename_tpl = '{0.prefix}{0.name}.{0.suffix}.{0.ltversion}' elif self.soversion: # libfoo.so.X self.filename_tpl = '{0.prefix}{0.name}.{0.suffix}.{0.soversion}' else: # No versioning, libfoo.so self.filename_tpl = '{0.prefix}{0.name}.{0.suffix}' if self.prefix is None: self.prefix = prefix if self.suffix is None: self.suffix = suffix self.filename = self.filename_tpl.format(self) self.outputs = [self.filename] @staticmethod def _validate_darwin_versions(darwin_versions): try: if isinstance(darwin_versions, int): darwin_versions = str(darwin_versions) if isinstance(darwin_versions, str): darwin_versions = 2 * [darwin_versions] if not isinstance(darwin_versions, list): raise InvalidArguments('Shared library darwin_versions: must be a string, integer,' 'or a list, not {!r}'.format(darwin_versions)) if len(darwin_versions) > 2: raise InvalidArguments('Shared library darwin_versions: list must contain 2 or fewer elements') if len(darwin_versions) == 1: darwin_versions = 2 * darwin_versions for i, v in enumerate(darwin_versions[:]): if isinstance(v, int): v = str(v) if not isinstance(v, str): raise InvalidArguments('Shared library darwin_versions: list elements ' 'must be strings or integers, not {!r}'.format(v)) if not re.fullmatch(r'[0-9]+(\.[0-9]+){0,2}', v): raise InvalidArguments('Shared library darwin_versions: must be X.Y.Z where ' 'X, Y, Z are numbers, and Y and Z are optional') parts = v.split('.') if len(parts) in (1, 2, 3) and int(parts[0]) > 65535: raise InvalidArguments('Shared library darwin_versions: must be X.Y.Z ' 'where X is [0, 65535] and Y, Z are optional') if len(parts) in (2, 3) and int(parts[1]) > 255: raise InvalidArguments('Shared library darwin_versions: must be X.Y.Z ' 'where Y is [0, 255] and Y, Z are optional') if len(parts) == 3 and int(parts[2]) > 255: raise InvalidArguments('Shared library darwin_versions: must be X.Y.Z ' 'where Z is [0, 255] and Y, Z are optional') darwin_versions[i] = v except ValueError: raise InvalidArguments('Shared library darwin_versions: value is invalid') return darwin_versions def process_kwargs(self, kwargs, environment): super().process_kwargs(kwargs, environment) if not for_android(self.is_cross, self.environment): supports_versioning = True else: supports_versioning = False if supports_versioning: # Shared library version if 'version' in kwargs: self.ltversion = kwargs['version'] if not isinstance(self.ltversion, str): raise InvalidArguments('Shared library version needs to be a string, not ' + type(self.ltversion).__name__) if not re.fullmatch(r'[0-9]+(\.[0-9]+){0,2}', self.ltversion): raise InvalidArguments('Invalid Shared library version "{0}". Must be of the form X.Y.Z where all three are numbers. Y and Z are optional.'.format(self.ltversion)) # Try to extract/deduce the soversion if 'soversion' in kwargs: self.soversion = kwargs['soversion'] if isinstance(self.soversion, int): self.soversion = str(self.soversion) if not isinstance(self.soversion, str): raise InvalidArguments('Shared library soversion is not a string or integer.') elif self.ltversion: # library version is defined, get the soversion from that # We replicate what Autotools does here and take the first # number of the version by default. self.soversion = self.ltversion.split('.')[0] # macOS and iOS dylib compatibility_version and current_version if 'darwin_versions' in kwargs: self.darwin_versions = self._validate_darwin_versions(kwargs['darwin_versions']) elif self.soversion: # If unspecified, pick the soversion self.darwin_versions = 2 * [self.soversion] # Visual Studio module-definitions file if 'vs_module_defs' in kwargs: path = kwargs['vs_module_defs'] if hasattr(path, 'held_object'): path = path.held_object if isinstance(path, str): if os.path.isabs(path): self.vs_module_defs = File.from_absolute_file(path) else: self.vs_module_defs = File.from_source_file(environment.source_dir, self.subdir, path) self.link_depends.append(self.vs_module_defs) elif isinstance(path, File): # When passing a generated file. self.vs_module_defs = path self.link_depends.append(path) elif hasattr(path, 'get_filename'): # When passing output of a Custom Target path = File.from_built_file(path.subdir, path.get_filename()) self.vs_module_defs = path self.link_depends.append(path) else: raise InvalidArguments( 'Shared library vs_module_defs must be either a string, ' 'a file object or a Custom Target') if 'rust_crate_type' in kwargs: rust_crate_type = kwargs['rust_crate_type'] if isinstance(rust_crate_type, str): self.rust_crate_type = rust_crate_type else: raise InvalidArguments('Invalid rust_crate_type "{0}": must be a string.'.format(rust_crate_type)) def get_import_filename(self): """ The name of the import library that will be outputted by the compiler Returns None if there is no import library required for this platform """ return self.import_filename def get_import_filenameslist(self): if self.import_filename: return [self.vs_import_filename, self.gcc_import_filename] return [] def get_all_link_deps(self): return [self] + self.get_transitive_link_deps() def get_aliases(self): """ If the versioned library name is libfoo.so.0.100.0, aliases are: * libfoo.so.0 (soversion) -> libfoo.so.0.100.0 * libfoo.so (unversioned; for linking) -> libfoo.so.0 Same for dylib: * libfoo.dylib (unversioned; for linking) -> libfoo.0.dylib """ aliases = {} # Aliases are only useful with .so and .dylib libraries. Also if # there's no self.soversion (no versioning), we don't need aliases. if self.suffix not in ('so', 'dylib') or not self.soversion: return {} # With .so libraries, the minor and micro versions are also in the # filename. If ltversion != soversion we create an soversion alias: # libfoo.so.0 -> libfoo.so.0.100.0 # Where libfoo.so.0.100.0 is the actual library if self.suffix == 'so' and self.ltversion and self.ltversion != self.soversion: alias_tpl = self.filename_tpl.replace('ltversion', 'soversion') ltversion_filename = alias_tpl.format(self) aliases[ltversion_filename] = self.filename # libfoo.so.0/libfoo.0.dylib is the actual library else: ltversion_filename = self.filename # Unversioned alias: # libfoo.so -> libfoo.so.0 # libfoo.dylib -> libfoo.0.dylib aliases[self.basic_filename_tpl.format(self)] = ltversion_filename return aliases def type_suffix(self): return "@sha" def is_linkable_target(self): return True # A shared library that is meant to be used with dlopen rather than linking # into something else. class SharedModule(SharedLibrary): known_kwargs = known_shmod_kwargs def __init__(self, name, subdir, subproject, is_cross, sources, objects, environment, kwargs): if 'version' in kwargs: raise MesonException('Shared modules must not specify the version kwarg.') if 'soversion' in kwargs: raise MesonException('Shared modules must not specify the soversion kwarg.') super().__init__(name, subdir, subproject, is_cross, sources, objects, environment, kwargs) self.typename = 'shared module' def get_default_install_dir(self, environment): return environment.get_shared_module_dir() class CustomTarget(Target): known_kwargs = set([ 'input', 'output', 'command', 'capture', 'install', 'install_dir', 'install_mode', 'build_always', 'build_always_stale', 'depends', 'depend_files', 'depfile', 'build_by_default', 'override_options', 'console', ]) def __init__(self, name, subdir, subproject, kwargs, absolute_paths=False): self.typename = 'custom' super().__init__(name, subdir, subproject, False) self.dependencies = [] self.extra_depends = [] self.depend_files = [] # Files that this target depends on but are not on the command line. self.depfile = None self.process_kwargs(kwargs) self.extra_files = [] # Whether to use absolute paths for all files on the commandline self.absolute_paths = absolute_paths unknowns = [] for k in kwargs: if k not in CustomTarget.known_kwargs: unknowns.append(k) if len(unknowns) > 0: mlog.warning('Unknown keyword arguments in target %s: %s' % (self.name, ', '.join(unknowns))) def get_default_install_dir(self, environment): return None def __lt__(self, other): return self.get_id() < other.get_id() def __repr__(self): repr_str = "<{0} {1}: {2}>" return repr_str.format(self.__class__.__name__, self.get_id(), self.command) def get_id(self): return self.name + self.type_suffix() def get_target_dependencies(self): deps = self.dependencies[:] deps += self.extra_depends for c in self.sources: if hasattr(c, 'held_object'): c = c.held_object if isinstance(c, (BuildTarget, CustomTarget)): deps.append(c) return deps def get_transitive_build_target_deps(self): ''' Recursively fetch the build targets that this custom target depends on, whether through `command:`, `depends:`, or `sources:` The recursion is only performed on custom targets. This is useful for setting PATH on Windows for finding required DLLs. F.ex, if you have a python script that loads a C module that links to other DLLs in your project. ''' bdeps = set() deps = self.get_target_dependencies() for d in deps: if isinstance(d, BuildTarget): bdeps.add(d) elif isinstance(d, CustomTarget): bdeps.update(d.get_transitive_build_target_deps()) return bdeps def flatten_command(self, cmd): cmd = listify(cmd, unholder=True) final_cmd = [] for c in cmd: if isinstance(c, str): final_cmd.append(c) elif isinstance(c, File): self.depend_files.append(c) final_cmd.append(c) elif isinstance(c, dependencies.ExternalProgram): if not c.found(): m = 'Tried to use not-found external program {!r} in "command"' raise InvalidArguments(m.format(c.name)) path = c.get_path() if os.path.isabs(path): # Can only add a dependency on an external program which we # know the absolute path of self.depend_files.append(File.from_absolute_file(path)) final_cmd += c.get_command() elif isinstance(c, (BuildTarget, CustomTarget)): self.dependencies.append(c) final_cmd.append(c) elif isinstance(c, list): final_cmd += self.flatten_command(c) else: raise InvalidArguments('Argument {!r} in "command" is invalid'.format(c)) return final_cmd def process_kwargs(self, kwargs): super().process_kwargs(kwargs) self.sources = extract_as_list(kwargs, 'input', unholder=True) if 'output' not in kwargs: raise InvalidArguments('Missing keyword argument "output".') self.outputs = listify(kwargs['output']) # This will substitute values from the input into output and return it. inputs = get_sources_string_names(self.sources) values = get_filenames_templates_dict(inputs, []) for i in self.outputs: if not(isinstance(i, str)): raise InvalidArguments('Output argument not a string.') if i == '': raise InvalidArguments('Output must not be empty.') if i.strip() == '': raise InvalidArguments('Output must not consist only of whitespace.') if has_path_sep(i): raise InvalidArguments('Output {!r} must not contain a path segment.'.format(i)) if '@INPUT@' in i or '@INPUT0@' in i: m = 'Output cannot contain @INPUT@ or @INPUT0@, did you ' \ 'mean @PLAINNAME@ or @BASENAME@?' raise InvalidArguments(m) # We already check this during substitution, but the error message # will be unclear/confusing, so check it here. if len(inputs) != 1 and ('@PLAINNAME@' in i or '@BASENAME@' in i): m = "Output cannot contain @PLAINNAME@ or @BASENAME@ when " \ "there is more than one input (we can't know which to use)" raise InvalidArguments(m) self.outputs = substitute_values(self.outputs, values) self.capture = kwargs.get('capture', False) if self.capture and len(self.outputs) != 1: raise InvalidArguments('Capturing can only output to a single file.') self.console = kwargs.get('console', False) if not isinstance(self.console, bool): raise InvalidArguments('"console" kwarg only accepts booleans') if self.capture and self.console: raise InvalidArguments("Can't both capture output and output to console") if 'command' not in kwargs: raise InvalidArguments('Missing keyword argument "command".') if 'depfile' in kwargs: depfile = kwargs['depfile'] if not isinstance(depfile, str): raise InvalidArguments('Depfile must be a string.') if os.path.basename(depfile) != depfile: raise InvalidArguments('Depfile must be a plain filename without a subdirectory.') self.depfile = depfile self.command = self.flatten_command(kwargs['command']) if self.capture: for c in self.command: if isinstance(c, str) and '@OUTPUT@' in c: raise InvalidArguments('@OUTPUT@ is not allowed when capturing output.') if 'install' in kwargs: self.install = kwargs['install'] if not isinstance(self.install, bool): raise InvalidArguments('"install" must be boolean.') if self.install: if 'install_dir' not in kwargs: raise InvalidArguments('"install_dir" must be specified ' 'when installing a target') if isinstance(kwargs['install_dir'], list): FeatureNew('multiple install_dir for custom_target', '0.40.0').use(self.subproject) # If an item in this list is False, the output corresponding to # the list index of that item will not be installed self.install_dir = typeslistify(kwargs['install_dir'], (str, bool)) self.install_mode = kwargs.get('install_mode', None) else: self.install = False self.install_dir = [None] self.install_mode = None if 'build_always' in kwargs and 'build_always_stale' in kwargs: raise InvalidArguments('build_always and build_always_stale are mutually exclusive. Combine build_by_default and build_always_stale.') elif 'build_always' in kwargs: mlog.deprecation('build_always is deprecated. Combine build_by_default and build_always_stale instead.') if 'build_by_default' not in kwargs: self.build_by_default = kwargs['build_always'] self.build_always_stale = kwargs['build_always'] elif 'build_always_stale' in kwargs: self.build_always_stale = kwargs['build_always_stale'] if not isinstance(self.build_always_stale, bool): raise InvalidArguments('Argument build_always_stale must be a boolean.') extra_deps, depend_files = extract_as_list(kwargs, 'depends', 'depend_files', pop = False) for ed in extra_deps: while hasattr(ed, 'held_object'): ed = ed.held_object if not isinstance(ed, (CustomTarget, BuildTarget)): raise InvalidArguments('Can only depend on toplevel targets: custom_target or build_target (executable or a library) got: %s(%s)' % (type(ed), ed)) self.extra_depends.append(ed) for i in depend_files: if isinstance(i, (File, str)): self.depend_files.append(i) else: mlog.debug(i) raise InvalidArguments('Unknown type {!r} in depend_files.'.format(type(i).__name__)) def get_dependencies(self): return self.dependencies def should_install(self): return self.install def get_custom_install_dir(self): return self.install_dir def get_custom_install_mode(self): return self.install_mode def get_outputs(self): return self.outputs def get_filename(self): return self.outputs[0] def get_sources(self): return self.sources def get_generated_lists(self): genlists = [] for c in self.sources: if hasattr(c, 'held_object'): c = c.held_object if isinstance(c, GeneratedList): genlists.append(c) return genlists def get_generated_sources(self): return self.get_generated_lists() def get_dep_outname(self, infilenames): if self.depfile is None: raise InvalidArguments('Tried to get depfile name for custom_target that does not have depfile defined.') if len(infilenames): plainname = os.path.basename(infilenames[0]) basename = os.path.splitext(plainname)[0] return self.depfile.replace('@BASENAME@', basename).replace('@PLAINNAME@', plainname) else: if '@BASENAME@' in self.depfile or '@PLAINNAME@' in self.depfile: raise InvalidArguments('Substitution in depfile for custom_target that does not have an input file.') return self.depfile def type_suffix(self): return "@cus" def __getitem__(self, index): return CustomTargetIndex(self, self.outputs[index]) def __setitem__(self, index, value): raise NotImplementedError def __delitem__(self, index): raise NotImplementedError class RunTarget(Target): def __init__(self, name, command, args, dependencies, subdir, subproject): self.typename = 'run' super().__init__(name, subdir, subproject, False) self.command = command self.args = args self.dependencies = dependencies def __lt__(self, other): return self.get_id() < other.get_id() def __repr__(self): repr_str = "<{0} {1}: {2}>" return repr_str.format(self.__class__.__name__, self.get_id(), self.command) def get_dependencies(self): return self.dependencies def get_generated_sources(self): return [] def get_sources(self): return [] def should_install(self): return False def get_filename(self): return self.name def get_outputs(self): if isinstance(self.name, str): return [self.name] elif isinstance(self.name, list): return self.name else: raise RuntimeError('RunTarget: self.name is neither a list nor a string. This is a bug') def type_suffix(self): return "@run" class Jar(BuildTarget): known_kwargs = known_jar_kwargs def __init__(self, name, subdir, subproject, is_cross, sources, objects, environment, kwargs): self.typename = 'jar' super().__init__(name, subdir, subproject, is_cross, sources, objects, environment, kwargs) for s in self.sources: if not s.endswith('.java'): raise InvalidArguments('Jar source %s is not a java file.' % s) for t in self.link_targets: if not isinstance(t, Jar): raise InvalidArguments('Link target %s is not a jar target.' % t) self.filename = self.name + '.jar' self.outputs = [self.filename] self.java_args = kwargs.get('java_args', []) def get_main_class(self): return self.main_class def type_suffix(self): return "@jar" def get_java_args(self): return self.java_args def validate_cross_install(self, environment): # All jar targets are installable. pass def is_linkable_target(self): return True def get_classpath_args(self): cp_paths = [os.path.join(l.get_subdir(), l.get_filename()) for l in self.link_targets] cp_string = os.pathsep.join(cp_paths) if cp_string: return ['-cp', os.pathsep.join(cp_paths)] return [] class CustomTargetIndex: """A special opaque object returned by indexing a CustomTarget. This object exists in meson, but acts as a proxy in the backends, making targets depend on the CustomTarget it's derived from, but only adding one source file to the sources. """ def __init__(self, target, output): self.typename = 'custom' self.target = target self.output = output def __repr__(self): return '<CustomTargetIndex: {!r}[{}]>'.format( self.target, self.target.get_outputs().index(self.output)) def get_outputs(self): return [self.output] def get_subdir(self): return self.target.get_subdir() class ConfigureFile: def __init__(self, subdir, sourcename, targetname, configuration_data): self.subdir = subdir self.sourcename = sourcename self.targetname = targetname self.configuration_data = configuration_data def __repr__(self): repr_str = "<{0}: {1} -> {2}>" src = os.path.join(self.subdir, self.sourcename) dst = os.path.join(self.subdir, self.targetname) return repr_str.format(self.__class__.__name__, src, dst) def get_configuration_data(self): return self.configuration_data def get_subdir(self): return self.subdir def get_source_name(self): return self.sourcename def get_target_name(self): return self.targetname class ConfigurationData: def __init__(self): super().__init__() self.values = {} def __repr__(self): return repr(self.values) def __contains__(self, value): return value in self.values def get(self, name): return self.values[name] # (val, desc) def keys(self): return self.values.keys() # A bit poorly named, but this represents plain data files to copy # during install. class Data: def __init__(self, sources, install_dir, install_mode=None, rename=None): self.sources = sources self.install_dir = install_dir self.install_mode = install_mode self.sources = listify(self.sources) for s in self.sources: assert(isinstance(s, File)) if rename is None: self.rename = [os.path.basename(f.fname) for f in self.sources] else: self.rename = stringlistify(rename) if len(self.rename) != len(self.sources): raise MesonException('Size of rename argument is different from number of sources') class RunScript(dict): def __init__(self, script, args): super().__init__() assert(isinstance(script, list)) assert(isinstance(args, list)) self['exe'] = script self['args'] = args class TestSetup: def __init__(self, *, exe_wrapper=None, gdb=None, timeout_multiplier=None, env=None): self.exe_wrapper = exe_wrapper self.gdb = gdb self.timeout_multiplier = timeout_multiplier self.env = env def get_sources_string_names(sources): ''' For the specified list of @sources which can be strings, Files, or targets, get all the output basenames. ''' names = [] for s in sources: if hasattr(s, 'held_object'): s = s.held_object if isinstance(s, str): names.append(s) elif isinstance(s, (BuildTarget, CustomTarget, CustomTargetIndex, GeneratedList)): names += s.get_outputs() elif isinstance(s, File): names.append(s.fname) else: raise AssertionError('Unknown source type: {!r}'.format(s)) return names def load(build_dir): filename = os.path.join(build_dir, 'meson-private', 'build.dat') load_fail_msg = 'Build data file {!r} is corrupted. Try with a fresh build tree.'.format(filename) nonexisting_fail_msg = 'No such build data file as "{!r}".'.format(filename) try: with open(filename, 'rb') as f: obj = pickle.load(f) except FileNotFoundError: raise MesonException(nonexisting_fail_msg) except pickle.UnpicklingError: raise MesonException(load_fail_msg) if not isinstance(obj, Build): raise MesonException(load_fail_msg) return obj def save(obj, filename): with open(filename, 'wb') as f: pickle.dump(obj, f)
42.758204
183
0.610474
[ "Apache-2.0" ]
jmesmon/meson
mesonbuild/build.py
99,028
Python
""" The MIT License (MIT) Copyright (c) 2015-present Rapptz Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from __future__ import annotations import array import asyncio import collections.abc from typing import ( Any, AsyncIterator, Callable, Dict, ForwardRef, Generic, Iterable, Iterator, List, Literal, Mapping, Optional, Protocol, Sequence, Tuple, Type, TypeVar, Union, overload, TYPE_CHECKING, ) import unicodedata from base64 import b64encode from bisect import bisect_left import datetime import functools from inspect import isawaitable as _isawaitable, signature as _signature from operator import attrgetter import json import re import sys import types import warnings from .errors import InvalidArgument try: import orjson except ModuleNotFoundError: HAS_ORJSON = False else: HAS_ORJSON = True __all__ = ( "oauth_url", "snowflake_time", "time_snowflake", "find", "get", "sleep_until", "utcnow", "remove_markdown", "escape_markdown", "escape_mentions", "as_chunks", "format_dt", ) DISCORD_EPOCH = 1420070400000 class _MissingSentinel: def __eq__(self, other): return False def __bool__(self): return False def __repr__(self): return "..." MISSING: Any = _MissingSentinel() class _cached_property: def __init__(self, function): self.function = function self.__doc__ = getattr(function, "__doc__") def __get__(self, instance, owner): if instance is None: return self value = self.function(instance) setattr(instance, self.function.__name__, value) return value if TYPE_CHECKING: from functools import cached_property as cached_property from typing_extensions import ParamSpec from .permissions import Permissions from .abc import Snowflake from .invite import Invite from .template import Template class _RequestLike(Protocol): headers: Mapping[str, Any] P = ParamSpec("P") else: cached_property = _cached_property T = TypeVar("T") T_co = TypeVar("T_co", covariant=True) _Iter = Union[Iterator[T], AsyncIterator[T]] class CachedSlotProperty(Generic[T, T_co]): def __init__(self, name: str, function: Callable[[T], T_co]) -> None: self.name = name self.function = function self.__doc__ = getattr(function, "__doc__") @overload def __get__(self, instance: None, owner: Type[T]) -> CachedSlotProperty[T, T_co]: ... @overload def __get__(self, instance: T, owner: Type[T]) -> T_co: ... def __get__(self, instance: Optional[T], owner: Type[T]) -> Any: if instance is None: return self try: return getattr(instance, self.name) except AttributeError: value = self.function(instance) setattr(instance, self.name, value) return value class classproperty(Generic[T_co]): def __init__(self, fget: Callable[[Any], T_co]) -> None: self.fget = fget def __get__(self, instance: Optional[Any], owner: Type[Any]) -> T_co: return self.fget(owner) def __set__(self, instance, value) -> None: raise AttributeError("cannot set attribute") def cached_slot_property(name: str) -> Callable[[Callable[[T], T_co]], CachedSlotProperty[T, T_co]]: def decorator(func: Callable[[T], T_co]) -> CachedSlotProperty[T, T_co]: return CachedSlotProperty(name, func) return decorator class SequenceProxy(Generic[T_co], collections.abc.Sequence): """Read-only proxy of a Sequence.""" def __init__(self, proxied: Sequence[T_co]): self.__proxied = proxied def __getitem__(self, idx: int) -> T_co: return self.__proxied[idx] def __len__(self) -> int: return len(self.__proxied) def __contains__(self, item: Any) -> bool: return item in self.__proxied def __iter__(self) -> Iterator[T_co]: return iter(self.__proxied) def __reversed__(self) -> Iterator[T_co]: return reversed(self.__proxied) def index(self, value: Any, *args, **kwargs) -> int: return self.__proxied.index(value, *args, **kwargs) def count(self, value: Any) -> int: return self.__proxied.count(value) @overload def parse_time(timestamp: None) -> None: ... @overload def parse_time(timestamp: str) -> datetime.datetime: ... @overload def parse_time(timestamp: Optional[str]) -> Optional[datetime.datetime]: ... def parse_time(timestamp: Optional[str]) -> Optional[datetime.datetime]: if timestamp: return datetime.datetime.fromisoformat(timestamp) return None def copy_doc(original: Callable) -> Callable[[T], T]: def decorator(overriden: T) -> T: overriden.__doc__ = original.__doc__ overriden.__signature__ = _signature(original) # type: ignore return overriden return decorator def deprecated(instead: Optional[str] = None) -> Callable[[Callable[P, T]], Callable[P, T]]: def actual_decorator(func: Callable[P, T]) -> Callable[P, T]: @functools.wraps(func) def decorated(*args: P.args, **kwargs: P.kwargs) -> T: warnings.simplefilter("always", DeprecationWarning) # turn off filter if instead: fmt = "{0.__name__} is deprecated, use {1} instead." else: fmt = "{0.__name__} is deprecated." warnings.warn(fmt.format(func, instead), stacklevel=3, category=DeprecationWarning) warnings.simplefilter("default", DeprecationWarning) # reset filter return func(*args, **kwargs) return decorated return actual_decorator def oauth_url( client_id: Union[int, str], *, permissions: Permissions = MISSING, guild: Snowflake = MISSING, redirect_uri: str = MISSING, scopes: Iterable[str] = MISSING, disable_guild_select: bool = False, ) -> str: """A helper function that returns the OAuth2 URL for inviting the bot into guilds. Parameters ----------- client_id: Union[:class:`int`, :class:`str`] The client ID for your bot. permissions: :class:`~discord.Permissions` The permissions you're requesting. If not given then you won't be requesting any permissions. guild: :class:`~discord.abc.Snowflake` The guild to pre-select in the authorization screen, if available. redirect_uri: :class:`str` An optional valid redirect URI. scopes: Iterable[:class:`str`] An optional valid list of scopes. Defaults to ``('bot',)``. .. versionadded:: 1.7 disable_guild_select: :class:`bool` Whether to disallow the user from changing the guild dropdown. .. versionadded:: 2.0 Returns -------- :class:`str` The OAuth2 URL for inviting the bot into guilds. """ url = f"https://discord.com/oauth2/authorize?client_id={client_id}" url += "&scope=" + "+".join(scopes or ("bot",)) if permissions is not MISSING: url += f"&permissions={permissions.value}" if guild is not MISSING: url += f"&guild_id={guild.id}" if redirect_uri is not MISSING: from urllib.parse import urlencode url += "&response_type=code&" + urlencode({"redirect_uri": redirect_uri}) if disable_guild_select: url += "&disable_guild_select=true" return url def snowflake_time(id: int) -> datetime.datetime: """ Parameters ----------- id: :class:`int` The snowflake ID. Returns -------- :class:`datetime.datetime` An aware datetime in UTC representing the creation time of the snowflake. """ timestamp = ((id >> 22) + DISCORD_EPOCH) / 1000 return datetime.datetime.fromtimestamp(timestamp, tz=datetime.timezone.utc) def time_snowflake(dt: datetime.datetime, high: bool = False) -> int: """Returns a numeric snowflake pretending to be created at the given date. When using as the lower end of a range, use ``time_snowflake(high=False) - 1`` to be inclusive, ``high=True`` to be exclusive. When using as the higher end of a range, use ``time_snowflake(high=True) + 1`` to be inclusive, ``high=False`` to be exclusive Parameters ----------- dt: :class:`datetime.datetime` A datetime object to convert to a snowflake. If naive, the timezone is assumed to be local time. high: :class:`bool` Whether or not to set the lower 22 bit to high or low. Returns -------- :class:`int` The snowflake representing the time given. """ discord_millis = int(dt.timestamp() * 1000 - DISCORD_EPOCH) return (discord_millis << 22) + (2 ** 22 - 1 if high else 0) def find(predicate: Callable[[T], Any], seq: Iterable[T]) -> Optional[T]: """A helper to return the first element found in the sequence that meets the predicate. For example: :: member = discord.utils.find(lambda m: m.name == 'Mighty', channel.guild.members) would find the first :class:`~discord.Member` whose name is 'Mighty' and return it. If an entry is not found, then ``None`` is returned. This is different from :func:`py:filter` due to the fact it stops the moment it finds a valid entry. Parameters ----------- predicate A function that returns a boolean-like result. seq: :class:`collections.abc.Iterable` The iterable to search through. """ for element in seq: if predicate(element): return element return None def get(iterable: Iterable[T], **attrs: Any) -> Optional[T]: r"""A helper that returns the first element in the iterable that meets all the traits passed in ``attrs``. This is an alternative for :func:`~discord.utils.find`. When multiple attributes are specified, they are checked using logical AND, not logical OR. Meaning they have to meet every attribute passed in and not one of them. To have a nested attribute search (i.e. search by ``x.y``) then pass in ``x__y`` as the keyword argument. If nothing is found that matches the attributes passed, then ``None`` is returned. Examples --------- Basic usage: .. code-block:: python3 member = discord.utils.get(message.guild.members, name='Foo') Multiple attribute matching: .. code-block:: python3 channel = discord.utils.get(guild.voice_channels, name='Foo', bitrate=64000) Nested attribute matching: .. code-block:: python3 channel = discord.utils.get(client.get_all_channels(), guild__name='Cool', name='general') Parameters ----------- iterable An iterable to search through. \*\*attrs Keyword arguments that denote attributes to search with. """ # global -> local _all = all attrget = attrgetter # Special case the single element call if len(attrs) == 1: k, v = attrs.popitem() pred = attrget(k.replace("__", ".")) for elem in iterable: if pred(elem) == v: return elem return None converted = [(attrget(attr.replace("__", ".")), value) for attr, value in attrs.items()] for elem in iterable: if _all(pred(elem) == value for pred, value in converted): return elem return None def _unique(iterable: Iterable[T]) -> List[T]: return [x for x in dict.fromkeys(iterable)] def _get_as_snowflake(data: Any, key: str) -> Optional[int]: try: value = data[key] except KeyError: return None else: return value and int(value) def _get_mime_type_for_image(data: bytes): if data.startswith(b"\x89\x50\x4E\x47\x0D\x0A\x1A\x0A"): return "image/png" elif data[0:3] == b"\xff\xd8\xff" or data[6:10] in (b"JFIF", b"Exif"): return "image/jpeg" elif data.startswith((b"\x47\x49\x46\x38\x37\x61", b"\x47\x49\x46\x38\x39\x61")): return "image/gif" elif data.startswith(b"RIFF") and data[8:12] == b"WEBP": return "image/webp" else: raise InvalidArgument("Unsupported image type given") def _bytes_to_base64_data(data: bytes) -> str: fmt = "data:{mime};base64,{data}" mime = _get_mime_type_for_image(data) b64 = b64encode(data).decode("ascii") return fmt.format(mime=mime, data=b64) if HAS_ORJSON: def _to_json(obj: Any) -> str: # type: ignore return orjson.dumps(obj).decode("utf-8") _from_json = orjson.loads # type: ignore else: def _to_json(obj: Any) -> str: return json.dumps(obj, separators=(",", ":"), ensure_ascii=True) _from_json = json.loads def _parse_ratelimit_header(request: Any, *, use_clock: bool = False) -> float: reset_after: Optional[str] = request.headers.get("X-Ratelimit-Reset-After") if use_clock or not reset_after: utc = datetime.timezone.utc now = datetime.datetime.now(utc) reset = datetime.datetime.fromtimestamp(float(request.headers["X-Ratelimit-Reset"]), utc) return (reset - now).total_seconds() else: return float(reset_after) async def maybe_coroutine(f, *args, **kwargs): value = f(*args, **kwargs) if _isawaitable(value): return await value else: return value async def async_all(gen, *, check=_isawaitable): for elem in gen: if check(elem): elem = await elem if not elem: return False return True async def sane_wait_for(futures, *, timeout): ensured = [asyncio.ensure_future(fut) for fut in futures] done, pending = await asyncio.wait(ensured, timeout=timeout, return_when=asyncio.ALL_COMPLETED) if len(pending) != 0: raise asyncio.TimeoutError() return done def get_slots(cls: Type[Any]) -> Iterator[str]: for mro in reversed(cls.__mro__): try: yield from mro.__slots__ except AttributeError: continue def compute_timedelta(dt: datetime.datetime): if dt.tzinfo is None: dt = dt.astimezone() now = datetime.datetime.now(datetime.timezone.utc) return max((dt - now).total_seconds(), 0) async def sleep_until(when: datetime.datetime, result: Optional[T] = None) -> Optional[T]: """|coro| Sleep until a specified time. If the time supplied is in the past this function will yield instantly. .. versionadded:: 1.3 Parameters ----------- when: :class:`datetime.datetime` The timestamp in which to sleep until. If the datetime is naive then it is assumed to be local time. result: Any If provided is returned to the caller when the coroutine completes. """ delta = compute_timedelta(when) return await asyncio.sleep(delta, result) def utcnow() -> datetime.datetime: """A helper function to return an aware UTC datetime representing the current time. This should be preferred to :meth:`datetime.datetime.utcnow` since it is an aware datetime, compared to the naive datetime in the standard library. .. versionadded:: 2.0 Returns -------- :class:`datetime.datetime` The current aware datetime in UTC. """ return datetime.datetime.now(datetime.timezone.utc) def valid_icon_size(size: int) -> bool: """Icons must be power of 2 within [16, 4096].""" return not size & (size - 1) and 4096 >= size >= 16 class SnowflakeList(array.array): """Internal data storage class to efficiently store a list of snowflakes. This should have the following characteristics: - Low memory usage - O(n) iteration (obviously) - O(n log n) initial creation if data is unsorted - O(log n) search and indexing - O(n) insertion """ __slots__ = () if TYPE_CHECKING: def __init__(self, data: Iterable[int], *, is_sorted: bool = False): ... def __new__(cls, data: Iterable[int], *, is_sorted: bool = False): return array.array.__new__(cls, "Q", data if is_sorted else sorted(data)) # type: ignore def add(self, element: int) -> None: i = bisect_left(self, element) self.insert(i, element) def get(self, element: int) -> Optional[int]: i = bisect_left(self, element) return self[i] if i != len(self) and self[i] == element else None def has(self, element: int) -> bool: i = bisect_left(self, element) return i != len(self) and self[i] == element _IS_ASCII = re.compile(r"^[\x00-\x7f]+$") def _string_width(string: str, *, _IS_ASCII=_IS_ASCII) -> int: """Returns string's width.""" match = _IS_ASCII.match(string) if match: return match.endpos UNICODE_WIDE_CHAR_TYPE = "WFA" func = unicodedata.east_asian_width return sum(2 if func(char) in UNICODE_WIDE_CHAR_TYPE else 1 for char in string) def resolve_invite(invite: Union[Invite, str]) -> str: """ Resolves an invite from a :class:`~discord.Invite`, URL or code. Parameters ----------- invite: Union[:class:`~discord.Invite`, :class:`str`] The invite. Returns -------- :class:`str` The invite code. """ from .invite import Invite # circular import if isinstance(invite, Invite): return invite.code else: rx = r"(?:https?\:\/\/)?discord(?:\.gg|(?:app)?\.com\/invite)\/(.+)" m = re.match(rx, invite) if m: return m.group(1) return invite def resolve_template(code: Union[Template, str]) -> str: """ Resolves a template code from a :class:`~discord.Template`, URL or code. .. versionadded:: 1.4 Parameters ----------- code: Union[:class:`~discord.Template`, :class:`str`] The code. Returns -------- :class:`str` The template code. """ from .template import Template # circular import if isinstance(code, Template): return code.code else: rx = r"(?:https?\:\/\/)?discord(?:\.new|(?:app)?\.com\/template)\/(.+)" m = re.match(rx, code) if m: return m.group(1) return code _MARKDOWN_ESCAPE_SUBREGEX = "|".join(r"\{0}(?=([\s\S]*((?<!\{0})\{0})))".format(c) for c in ("*", "`", "_", "~", "|")) _MARKDOWN_ESCAPE_COMMON = r"^>(?:>>)?\s|\[.+\]\(.+\)" _MARKDOWN_ESCAPE_REGEX = re.compile( fr"(?P<markdown>{_MARKDOWN_ESCAPE_SUBREGEX}|{_MARKDOWN_ESCAPE_COMMON})", re.MULTILINE ) _URL_REGEX = r"(?P<url><[^: >]+:\/[^ >]+>|(?:https?|steam):\/\/[^\s<]+[^<.,:;\"\'\]\s])" _MARKDOWN_STOCK_REGEX = fr"(?P<markdown>[_\\~|\*`]|{_MARKDOWN_ESCAPE_COMMON})" def remove_markdown(text: str, *, ignore_links: bool = True) -> str: """A helper function that removes markdown characters. .. versionadded:: 1.7 .. note:: This function is not markdown aware and may remove meaning from the original text. For example, if the input contains ``10 * 5`` then it will be converted into ``10 5``. Parameters ----------- text: :class:`str` The text to remove markdown from. ignore_links: :class:`bool` Whether to leave links alone when removing markdown. For example, if a URL in the text contains characters such as ``_`` then it will be left alone. Defaults to ``True``. Returns -------- :class:`str` The text with the markdown special characters removed. """ def replacement(match): groupdict = match.groupdict() return groupdict.get("url", "") regex = _MARKDOWN_STOCK_REGEX if ignore_links: regex = f"(?:{_URL_REGEX}|{regex})" return re.sub(regex, replacement, text, 0, re.MULTILINE) def escape_markdown(text: str, *, as_needed: bool = False, ignore_links: bool = True) -> str: r"""A helper function that escapes Discord's markdown. Parameters ----------- text: :class:`str` The text to escape markdown from. as_needed: :class:`bool` Whether to escape the markdown characters as needed. This means that it does not escape extraneous characters if it's not necessary, e.g. ``**hello**`` is escaped into ``\*\*hello**`` instead of ``\*\*hello\*\*``. Note however that this can open you up to some clever syntax abuse. Defaults to ``False``. ignore_links: :class:`bool` Whether to leave links alone when escaping markdown. For example, if a URL in the text contains characters such as ``_`` then it will be left alone. This option is not supported with ``as_needed``. Defaults to ``True``. Returns -------- :class:`str` The text with the markdown special characters escaped with a slash. """ if not as_needed: def replacement(match): groupdict = match.groupdict() is_url = groupdict.get("url") if is_url: return is_url return "\\" + groupdict["markdown"] regex = _MARKDOWN_STOCK_REGEX if ignore_links: regex = f"(?:{_URL_REGEX}|{regex})" return re.sub(regex, replacement, text, 0, re.MULTILINE) else: text = re.sub(r"\\", r"\\\\", text) return _MARKDOWN_ESCAPE_REGEX.sub(r"\\\1", text) def escape_mentions(text: str) -> str: """A helper function that escapes everyone, here, role, and user mentions. .. note:: This does not include channel mentions. .. note:: For more granular control over what mentions should be escaped within messages, refer to the :class:`~discord.AllowedMentions` class. Parameters ----------- text: :class:`str` The text to escape mentions from. Returns -------- :class:`str` The text with the mentions removed. """ return re.sub(r"@(everyone|here|[!&]?[0-9]{17,20})", "@\u200b\\1", text) def _chunk(iterator: Iterator[T], max_size: int) -> Iterator[List[T]]: ret = [] n = 0 for item in iterator: ret.append(item) n += 1 if n == max_size: yield ret ret = [] n = 0 if ret: yield ret async def _achunk(iterator: AsyncIterator[T], max_size: int) -> AsyncIterator[List[T]]: ret = [] n = 0 async for item in iterator: ret.append(item) n += 1 if n == max_size: yield ret ret = [] n = 0 if ret: yield ret @overload def as_chunks(iterator: Iterator[T], max_size: int) -> Iterator[List[T]]: ... @overload def as_chunks(iterator: AsyncIterator[T], max_size: int) -> AsyncIterator[List[T]]: ... def as_chunks(iterator: _Iter[T], max_size: int) -> _Iter[List[T]]: """A helper function that collects an iterator into chunks of a given size. .. versionadded:: 2.0 Parameters ---------- iterator: Union[:class:`collections.abc.Iterator`, :class:`collections.abc.AsyncIterator`] The iterator to chunk, can be sync or async. max_size: :class:`int` The maximum chunk size. .. warning:: The last chunk collected may not be as large as ``max_size``. Returns -------- Union[:class:`Iterator`, :class:`AsyncIterator`] A new iterator which yields chunks of a given size. """ if max_size <= 0: raise ValueError("Chunk sizes must be greater than 0.") if isinstance(iterator, AsyncIterator): return _achunk(iterator, max_size) return _chunk(iterator, max_size) PY_310 = sys.version_info >= (3, 10) def flatten_literal_params(parameters: Iterable[Any]) -> Tuple[Any, ...]: params = [] literal_cls = type(Literal[0]) for p in parameters: if isinstance(p, literal_cls): params.extend(p.__args__) else: params.append(p) return tuple(params) def normalise_optional_params(parameters: Iterable[Any]) -> Tuple[Any, ...]: none_cls = type(None) return tuple(p for p in parameters if p is not none_cls) + (none_cls,) def evaluate_annotation( tp: Any, globals: Dict[str, Any], locals: Dict[str, Any], cache: Dict[str, Any], *, implicit_str: bool = True, ): if isinstance(tp, ForwardRef): tp = tp.__forward_arg__ # ForwardRefs always evaluate their internals implicit_str = True if implicit_str and isinstance(tp, str): if tp in cache: return cache[tp] evaluated = eval(tp, globals, locals) cache[tp] = evaluated return evaluate_annotation(evaluated, globals, locals, cache) if hasattr(tp, "__args__"): implicit_str = True is_literal = False args = tp.__args__ if not hasattr(tp, "__origin__"): if PY_310 and tp.__class__ is types.UnionType: # type: ignore converted = Union[args] # type: ignore return evaluate_annotation(converted, globals, locals, cache) return tp if tp.__origin__ is Union: try: if args.index(type(None)) != len(args) - 1: args = normalise_optional_params(tp.__args__) except ValueError: pass if tp.__origin__ is Literal: if not PY_310: args = flatten_literal_params(tp.__args__) implicit_str = False is_literal = True evaluated_args = tuple( evaluate_annotation(arg, globals, locals, cache, implicit_str=implicit_str) for arg in args ) if is_literal and not all(isinstance(x, (str, int, bool, type(None))) for x in evaluated_args): raise TypeError("Literal arguments must be of type str, int, bool, or NoneType.") if evaluated_args == args: return tp try: return tp.copy_with(evaluated_args) except AttributeError: return tp.__origin__[evaluated_args] return tp def resolve_annotation( annotation: Any, globalns: Dict[str, Any], localns: Optional[Dict[str, Any]], cache: Optional[Dict[str, Any]], ) -> Any: if annotation is None: return type(None) if isinstance(annotation, str): annotation = ForwardRef(annotation) locals = globalns if localns is None else localns if cache is None: cache = {} return evaluate_annotation(annotation, globalns, locals, cache) TimestampStyle = Literal["f", "F", "d", "D", "t", "T", "R"] def format_dt(dt: datetime.datetime, /, style: Optional[TimestampStyle] = None) -> str: """A helper function to format a :class:`datetime.datetime` for presentation within Discord. This allows for a locale-independent way of presenting data using Discord specific Markdown. +-------------+----------------------------+-----------------+ | Style | Example Output | Description | +=============+============================+=================+ | t | 22:57 | Short Time | +-------------+----------------------------+-----------------+ | T | 22:57:58 | Long Time | +-------------+----------------------------+-----------------+ | d | 17/05/2016 | Short Date | +-------------+----------------------------+-----------------+ | D | 17 May 2016 | Long Date | +-------------+----------------------------+-----------------+ | f (default) | 17 May 2016 22:57 | Short Date Time | +-------------+----------------------------+-----------------+ | F | Tuesday, 17 May 2016 22:57 | Long Date Time | +-------------+----------------------------+-----------------+ | R | 5 years ago | Relative Time | +-------------+----------------------------+-----------------+ Note that the exact output depends on the user's locale setting in the client. The example output presented is using the ``en-GB`` locale. .. versionadded:: 2.0 Parameters ----------- dt: :class:`datetime.datetime` The datetime to format. style: :class:`str` The style to format the datetime with. Returns -------- :class:`str` The formatted string. """ if style is None: return f"<t:{int(dt.timestamp())}>" return f"<t:{int(dt.timestamp())}:{style}>"
28.867058
118
0.61085
[ "MIT" ]
Astrea49/enhanced-discord.py
discord/utils.py
29,531
Python
# Implements I/O over asynchronous sockets from time import time from sys import exc_info from traceback import format_exception from asyncore import socket_map from asyncore import loop from pysnmp.carrier.base import AbstractTransportDispatcher from pysnmp.error import PySnmpError class AsyncoreDispatcher(AbstractTransportDispatcher): def __init__(self): self.__sockMap = {} # use own map for MT safety self.timeout = 0.5 AbstractTransportDispatcher.__init__(self) def getSocketMap(self): return self.__sockMap def setSocketMap(self, sockMap=socket_map): self.__sockMap = sockMap def registerTransport(self, tDomain, t): AbstractTransportDispatcher.registerTransport(self, tDomain, t) t.registerSocket(self.__sockMap) def unregisterTransport(self, tDomain): self.getTransport(tDomain).unregisterSocket(self.__sockMap) AbstractTransportDispatcher.unregisterTransport(self, tDomain) def transportsAreWorking(self): for transport in self.__sockMap.values(): if transport.writable(): return 1 return 0 def runDispatcher(self, timeout=0.0): while self.jobsArePending() or self.transportsAreWorking(): try: loop(timeout and timeout or self.timeout, use_poll=True, map=self.__sockMap, count=1) except KeyboardInterrupt: raise except: raise PySnmpError('poll error: %s' % ';'.join(format_exception(*exc_info()))) self.handleTimerTick(time())
37.325581
93
0.685358
[ "Apache-2.0" ]
ArthurKamalov/scalyr-agent-2
scalyr_agent/third_party/pysnmp/carrier/asyncore/dispatch.py
1,605
Python
import tensorflow as tf import os import sklearn.metrics import numpy as np import sys import math import time from . import framework import network class policy_agent(framework.re_model): def __init__(self, train_data_loader, batch_size, max_length=120): framework.re_model.__init__(self, train_data_loader, batch_size, max_length) self.weights = tf.placeholder(tf.float32, shape=(), name="weights_scalar") x = network.embedding.word_position_embedding(self.word, self.word_vec_mat, self.pos1, self.pos2) x_train = network.encoder.cnn(x, keep_prob=0.5) x_test = network.encoder.cnn(x, keep_prob=1.0) self._train_logit = network.selector.instance(x_train, 2, keep_prob=0.5) self._test_logit = network.selector.instance(x_test, 2, keep_prob=1.0) self._loss = network.classifier.softmax_cross_entropy(self._train_logit, self.ins_label, 2, weights=self.weights) def loss(self): return self._loss def train_logit(self): return self._train_logit def test_logit(self): return self._test_logit class rl_re_framework(framework.re_framework): def __init__(self, train_data_loader, test_data_loader, max_length=120, batch_size=160): framework.re_framework.__init__(self, train_data_loader, test_data_loader, max_length, batch_size) def agent_one_step(self, sess, agent_model, batch_data, run_array, weights=1): feed_dict = { agent_model.word: batch_data['word'], agent_model.pos1: batch_data['pos1'], agent_model.pos2: batch_data['pos2'], agent_model.ins_label: batch_data['agent_label'], agent_model.length: batch_data['length'], agent_model.weights: weights } if 'mask' in batch_data and hasattr(agent_model, "mask"): feed_dict.update({agent_model.mask: batch_data['mask']}) result = sess.run(run_array, feed_dict) return result def pretrain_main_model(self, max_epoch): for epoch in range(max_epoch): print('###### Epoch ' + str(epoch) + ' ######') tot_correct = 0 tot_not_na_correct = 0 tot = 0 tot_not_na = 0 i = 0 time_sum = 0 for i, batch_data in enumerate(self.train_data_loader): time_start = time.time() iter_loss, iter_logit, _train_op = self.one_step(self.sess, self.model, batch_data, [self.model.loss(), self.model.train_logit(), self.train_op]) time_end = time.time() t = time_end - time_start time_sum += t iter_output = iter_logit.argmax(-1) iter_label = batch_data['rel'] iter_correct = (iter_output == iter_label).sum() iter_not_na_correct = np.logical_and(iter_output == iter_label, iter_label != 0).sum() tot_correct += iter_correct tot_not_na_correct += iter_not_na_correct tot += iter_label.shape[0] tot_not_na += (iter_label != 0).sum() if tot_not_na > 0: sys.stdout.write("[pretrain main model] epoch %d step %d time %.2f | loss: %f, not NA accuracy: %f, accuracy: %f\r" % (epoch, i, t, iter_loss, float(tot_not_na_correct) / tot_not_na, float(tot_correct) / tot)) sys.stdout.flush() i += 1 print("\nAverage iteration time: %f" % (time_sum / i)) def pretrain_agent_model(self, max_epoch): # Pre-train policy agent for epoch in range(max_epoch): print('###### [Pre-train Policy Agent] Epoch ' + str(epoch) + ' ######') tot_correct = 0 tot_not_na_correct = 0 tot = 0 tot_not_na = 0 time_sum = 0 for i, batch_data in enumerate(self.train_data_loader): time_start = time.time() batch_data['agent_label'] = batch_data['ins_rel'] + 0 batch_data['agent_label'][batch_data['agent_label'] > 0] = 1 iter_loss, iter_logit, _train_op = self.agent_one_step(self.sess, self.agent_model, batch_data, [self.agent_model.loss(), self.agent_model.train_logit(), self.agent_train_op]) time_end = time.time() t = time_end - time_start time_sum += t iter_output = iter_logit.argmax(-1) iter_label = batch_data['ins_rel'] iter_correct = (iter_output == iter_label).sum() iter_not_na_correct = np.logical_and(iter_output == iter_label, iter_label != 0).sum() tot_correct += iter_correct tot_not_na_correct += iter_not_na_correct tot += iter_label.shape[0] tot_not_na += (iter_label != 0).sum() if tot_not_na > 0: sys.stdout.write("[pretrain policy agent] epoch %d step %d time %.2f | loss: %f, not NA accuracy: %f, accuracy: %f\r" % (epoch, i, t, iter_loss, float(tot_not_na_correct) / tot_not_na, float(tot_correct) / tot)) sys.stdout.flush() i += 1 def train(self, model, # The main model agent_model, # The model of policy agent model_name, ckpt_dir='./checkpoint', summary_dir='./summary', test_result_dir='./test_result', learning_rate=0.5, max_epoch=60, pretrain_agent_epoch=1, pretrain_model=None, test_epoch=1, optimizer=tf.train.GradientDescentOptimizer): print("Start training...") # Init self.model = model(self.train_data_loader, self.train_data_loader.batch_size, self.train_data_loader.max_length) model_optimizer = optimizer(learning_rate) grads = model_optimizer.compute_gradients(self.model.loss()) self.train_op = model_optimizer.apply_gradients(grads) # Init policy agent self.agent_model = agent_model(self.train_data_loader, self.train_data_loader.batch_size, self.train_data_loader.max_length) agent_optimizer = optimizer(learning_rate) agent_grads = agent_optimizer.compute_gradients(self.agent_model.loss()) self.agent_train_op = agent_optimizer.apply_gradients(agent_grads) # Session, writer and saver self.sess = tf.Session() summary_writer = tf.summary.FileWriter(summary_dir, self.sess.graph) saver = tf.train.Saver(max_to_keep=None) if pretrain_model is None: self.sess.run(tf.global_variables_initializer()) else: saver.restore(self.sess, pretrain_model) self.pretrain_main_model(max_epoch=5) # Pre-train main model self.pretrain_agent_model(max_epoch=1) # Pre-train policy agent # Train tot_delete = 0 batch_count = 0 instance_count = 0 reward = 0.0 best_metric = 0 best_prec = None best_recall = None not_best_count = 0 # Stop training after several epochs without improvement. for epoch in range(max_epoch): print('###### Epoch ' + str(epoch) + ' ######') tot_correct = 0 tot_not_na_correct = 0 tot = 0 tot_not_na = 0 i = 0 time_sum = 0 batch_stack = [] # Update policy agent for i, batch_data in enumerate(self.train_data_loader): # Make action batch_data['agent_label'] = batch_data['ins_rel'] + 0 batch_data['agent_label'][batch_data['agent_label'] > 0] = 1 batch_stack.append(batch_data) iter_logit = self.agent_one_step(self.sess, self.agent_model, batch_data, [self.agent_model.train_logit()])[0] action_result = iter_logit.argmax(-1) # Calculate reward batch_delete = np.sum(np.logical_and(batch_data['ins_rel'] != 0, action_result == 0)) batch_data['ins_rel'][action_result == 0] = 0 iter_loss = self.one_step(self.sess, self.model, batch_data, [self.model.loss()])[0] reward += iter_loss tot_delete += batch_delete batch_count += 1 # Update parameters of policy agent alpha = 0.1 if batch_count == 100: reward = reward / float(batch_count) average_loss = reward reward = - math.log(1 - math.e ** (-reward)) sys.stdout.write('tot delete : %f | reward : %f | average loss : %f\r' % (tot_delete, reward, average_loss)) sys.stdout.flush() for batch_data in batch_stack: self.agent_one_step(self.sess, self.agent_model, batch_data, [self.agent_train_op], weights=reward * alpha) batch_count = 0 reward = 0 tot_delete = 0 batch_stack = [] i += 1 # Train the main model for i, batch_data in enumerate(self.train_data_loader): batch_data['agent_label'] = batch_data['ins_rel'] + 0 batch_data['agent_label'][batch_data['agent_label'] > 0] = 1 time_start = time.time() # Make actions iter_logit = self.agent_one_step(self.sess, self.agent_model, batch_data, [self.agent_model.train_logit()])[0] action_result = iter_logit.argmax(-1) batch_data['ins_rel'][action_result == 0] = 0 # Real training iter_loss, iter_logit, _train_op = self.agent_one_step(self.sess, self.agent_model, batch_data, [self.agent_model.loss(), self.agent_model.train_logit(), self.agent_train_op]) time_end = time.time() t = time_end - time_start time_sum += t iter_output = iter_logit.argmax(-1) if tot_not_na > 0: sys.stdout.write("epoch %d step %d time %.2f | loss: %f, not NA accuracy: %f, accuracy: %f\r" % (epoch, i, t, iter_loss, float(tot_not_na_correct) / tot_not_na, float(tot_correct) / tot)) sys.stdout.flush() i += 1 print("\nAverage iteration time: %f" % (time_sum / i)) if (epoch + 1) % test_epoch == 0: metric = self.test(model) if metric > best_metric: best_metric = metric best_prec = self.cur_prec best_recall = self.cur_recall print("Best model, storing...") if not os.path.isdir(ckpt_dir): os.mkdir(ckpt_dir) path = saver.save(self.sess, os.path.join(ckpt_dir, model_name)) print("Finish storing") not_best_count = 0 else: not_best_count += 1 if not_best_count >= 20: break print("######") print("Finish training " + model_name) print("Best epoch auc = %f" % (best_metric)) if (not best_prec is None) and (not best_recall is None): if not os.path.isdir(test_result_dir): os.mkdir(test_result_dir) np.save(os.path.join(test_result_dir, model_name + "_x.npy"), best_recall) np.save(os.path.join(test_result_dir, model_name + "_y.npy"), best_prec)
46.525692
231
0.572084
[ "MIT" ]
qingdujun/manual-nre
nrekit/rl.py
11,771
Python
import _plotly_utils.basevalidators class CmaxValidator(_plotly_utils.basevalidators.NumberValidator): def __init__( self, plotly_name='cmax', parent_name='scattergl.marker.line', **kwargs ): super(CmaxValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type='calc', implied_edits={'cauto': False}, role='info', **kwargs )
24.2
66
0.584711
[ "MIT" ]
Elpiro/plotly.py
plotly/validators/scattergl/marker/line/_cmax.py
484
Python