content
stringlengths
7
928k
avg_line_length
float64
3.5
33.8k
max_line_length
int64
6
139k
alphanum_fraction
float64
0.08
0.96
licenses
sequence
repository_name
stringlengths
7
104
path
stringlengths
4
230
size
int64
7
928k
lang
stringclasses
1 value
# Copyright 2020 The StackStorm Authors. # Copyright 2019 Extreme Networks, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import import os import six import mock from jinja2.exceptions import UndefinedError from st2common import log as logging from st2common.content.loader import MetaLoader from st2common.models.db.rule import RuleDB from st2common.models.db.trigger import TriggerDB from st2common.models.db.trigger import TriggerInstanceDB from st2common.models.system.common import ResourceReference from st2common.persistence.reactor import Rule, TriggerInstance, Trigger from st2reactor.rules.enforcer import RuleEnforcer from st2reactor.rules.matcher import RulesMatcher __all__ = [ 'RuleTester' ] LOG = logging.getLogger(__name__) class RuleTester(object): def __init__(self, rule_file_path=None, rule_ref=None, trigger_instance_file_path=None, trigger_instance_id=None): """ :param rule_file_path: Path to the file containing rule definition. :type rule_file_path: ``str`` :param trigger_instance_file_path: Path to the file containg trigger instance definition. :type trigger_instance_file_path: ``str`` """ self._rule_file_path = rule_file_path self._rule_ref = rule_ref self._trigger_instance_file_path = trigger_instance_file_path self._trigger_instance_id = trigger_instance_id self._meta_loader = MetaLoader() def evaluate(self): """ Evaluate trigger instance against the rule. :return: ``True`` if the rule matches, ``False`` otherwise. :rtype: ``boolean`` """ rule_db = self._get_rule_db() trigger_instance_db, trigger_db = self._get_trigger_instance_db() # The trigger check needs to be performed here as that is not performed # by RulesMatcher. if rule_db.trigger != trigger_db.ref: LOG.info('rule.trigger "%s" and trigger.ref "%s" do not match.', rule_db.trigger, trigger_db.ref) return False # Check if rule matches criteria. matcher = RulesMatcher(trigger_instance=trigger_instance_db, trigger=trigger_db, rules=[rule_db], extra_info=True) matching_rules = matcher.get_matching_rules() # Rule does not match so early exit. if len(matching_rules) < 1: return False # Check if rule can be enforced enforcer = RuleEnforcer(trigger_instance=trigger_instance_db, rule=rule_db) runner_type_db = mock.Mock() runner_type_db.runner_parameters = {} action_db = mock.Mock() action_db.parameters = {} params = rule_db.action.parameters # pylint: disable=no-member context, additional_contexts = enforcer.get_action_execution_context(action_db=action_db, trace_context=None) # Note: We only return partially resolved parameters. # To be able to return all parameters we would need access to corresponding ActionDB, # RunnerTypeDB and ConfigDB object, but this would add a dependency on the database and the # tool is meant to be used standalone. try: params = enforcer.get_resolved_parameters(action_db=action_db, runnertype_db=runner_type_db, params=params, context=context, additional_contexts=additional_contexts) LOG.info('Action parameters resolved to:') for param in six.iteritems(params): LOG.info('\t%s: %s', param[0], param[1]) return True except (UndefinedError, ValueError) as e: LOG.error('Failed to resolve parameters\n\tOriginal error : %s', six.text_type(e)) return False except: LOG.exception('Failed to resolve parameters.') return False def _get_rule_db(self): if self._rule_file_path: return self._get_rule_db_from_file( file_path=os.path.realpath(self._rule_file_path)) elif self._rule_ref: return Rule.get_by_ref(self._rule_ref) raise ValueError('One of _rule_file_path or _rule_ref should be specified.') def _get_trigger_instance_db(self): if self._trigger_instance_file_path: return self._get_trigger_instance_db_from_file( file_path=os.path.realpath(self._trigger_instance_file_path)) elif self._trigger_instance_id: trigger_instance_db = TriggerInstance.get_by_id(self._trigger_instance_id) trigger_db = Trigger.get_by_ref(trigger_instance_db.trigger) return trigger_instance_db, trigger_db raise ValueError('One of _trigger_instance_file_path or' '_trigger_instance_id should be specified.') def _get_rule_db_from_file(self, file_path): data = self._meta_loader.load(file_path=file_path) pack = data.get('pack', 'unknown') name = data.get('name', 'unknown') trigger = data['trigger']['type'] criteria = data.get('criteria', None) action = data.get('action', {}) rule_db = RuleDB(pack=pack, name=name, trigger=trigger, criteria=criteria, action=action, enabled=True) rule_db.id = 'rule_tester_rule' return rule_db def _get_trigger_instance_db_from_file(self, file_path): data = self._meta_loader.load(file_path=file_path) instance = TriggerInstanceDB(**data) instance.id = 'rule_tester_instance' trigger_ref = ResourceReference.from_string_reference(instance['trigger']) trigger_db = TriggerDB(pack=trigger_ref.pack, name=trigger_ref.name, type=trigger_ref.ref) return instance, trigger_db
41.125
99
0.658663
[ "Apache-2.0" ]
Horizon-95/st2
st2reactor/st2reactor/rules/tester.py
6,580
Python
""" Support for the Dyson 360 eye vacuum cleaner robot. For more details about this platform, please refer to the documentation https://home-assistant.io/components/vacuum.dyson/ """ import logging from homeassistant.components.vacuum import ( SUPPORT_BATTERY, SUPPORT_FAN_SPEED, SUPPORT_PAUSE, SUPPORT_RETURN_HOME, SUPPORT_STATUS, SUPPORT_STOP, SUPPORT_TURN_OFF, SUPPORT_TURN_ON, VacuumDevice) from homeassistant.helpers.icon import icon_for_battery_level from . import DYSON_DEVICES _LOGGER = logging.getLogger(__name__) ATTR_CLEAN_ID = 'clean_id' ATTR_FULL_CLEAN_TYPE = 'full_clean_type' ATTR_POSITION = 'position' DEPENDENCIES = ['dyson'] DYSON_360_EYE_DEVICES = "dyson_360_eye_devices" SUPPORT_DYSON = SUPPORT_TURN_ON | SUPPORT_TURN_OFF | SUPPORT_PAUSE | \ SUPPORT_RETURN_HOME | SUPPORT_FAN_SPEED | SUPPORT_STATUS | \ SUPPORT_BATTERY | SUPPORT_STOP def setup_platform(hass, config, add_entities, discovery_info=None): """Set up the Dyson 360 Eye robot vacuum platform.""" from libpurecoollink.dyson_360_eye import Dyson360Eye _LOGGER.debug("Creating new Dyson 360 Eye robot vacuum") if DYSON_360_EYE_DEVICES not in hass.data: hass.data[DYSON_360_EYE_DEVICES] = [] # Get Dyson Devices from parent component for device in [d for d in hass.data[DYSON_DEVICES] if isinstance(d, Dyson360Eye)]: dyson_entity = Dyson360EyeDevice(device) hass.data[DYSON_360_EYE_DEVICES].append(dyson_entity) add_entities(hass.data[DYSON_360_EYE_DEVICES]) return True class Dyson360EyeDevice(VacuumDevice): """Dyson 360 Eye robot vacuum device.""" def __init__(self, device): """Dyson 360 Eye robot vacuum device.""" _LOGGER.debug("Creating device %s", device.name) self._device = device async def async_added_to_hass(self): """Call when entity is added to hass.""" self.hass.async_add_job( self._device.add_message_listener, self.on_message) def on_message(self, message): """Handle a new messages that was received from the vacuum.""" _LOGGER.debug("Message received for %s device: %s", self.name, message) self.schedule_update_ha_state() @property def should_poll(self) -> bool: """Return True if entity has to be polled for state. False if entity pushes its state to HA. """ return False @property def name(self): """Return the name of the device.""" return self._device.name @property def status(self): """Return the status of the vacuum cleaner.""" from libpurecoollink.const import Dyson360EyeMode dyson_labels = { Dyson360EyeMode.INACTIVE_CHARGING: "Stopped - Charging", Dyson360EyeMode.INACTIVE_CHARGED: "Stopped - Charged", Dyson360EyeMode.FULL_CLEAN_PAUSED: "Paused", Dyson360EyeMode.FULL_CLEAN_RUNNING: "Cleaning", Dyson360EyeMode.FULL_CLEAN_ABORTED: "Returning home", Dyson360EyeMode.FULL_CLEAN_INITIATED: "Start cleaning", Dyson360EyeMode.FAULT_USER_RECOVERABLE: "Error - device blocked", Dyson360EyeMode.FAULT_REPLACE_ON_DOCK: "Error - Replace device on dock", Dyson360EyeMode.FULL_CLEAN_FINISHED: "Finished", Dyson360EyeMode.FULL_CLEAN_NEEDS_CHARGE: "Need charging" } return dyson_labels.get( self._device.state.state, self._device.state.state) @property def battery_level(self): """Return the battery level of the vacuum cleaner.""" return self._device.state.battery_level @property def fan_speed(self): """Return the fan speed of the vacuum cleaner.""" from libpurecoollink.const import PowerMode speed_labels = { PowerMode.MAX: "Max", PowerMode.QUIET: "Quiet" } return speed_labels[self._device.state.power_mode] @property def fan_speed_list(self): """Get the list of available fan speed steps of the vacuum cleaner.""" return ["Quiet", "Max"] @property def device_state_attributes(self): """Return the specific state attributes of this vacuum cleaner.""" return { ATTR_POSITION: str(self._device.state.position) } @property def is_on(self) -> bool: """Return True if entity is on.""" from libpurecoollink.const import Dyson360EyeMode return self._device.state.state in [ Dyson360EyeMode.FULL_CLEAN_INITIATED, Dyson360EyeMode.FULL_CLEAN_ABORTED, Dyson360EyeMode.FULL_CLEAN_RUNNING ] @property def available(self) -> bool: """Return True if entity is available.""" return True @property def supported_features(self): """Flag vacuum cleaner robot features that are supported.""" return SUPPORT_DYSON @property def battery_icon(self): """Return the battery icon for the vacuum cleaner.""" from libpurecoollink.const import Dyson360EyeMode charging = self._device.state.state in [ Dyson360EyeMode.INACTIVE_CHARGING] return icon_for_battery_level( battery_level=self.battery_level, charging=charging) def turn_on(self, **kwargs): """Turn the vacuum on.""" from libpurecoollink.const import Dyson360EyeMode _LOGGER.debug("Turn on device %s", self.name) if self._device.state.state in [Dyson360EyeMode.FULL_CLEAN_PAUSED]: self._device.resume() else: self._device.start() def turn_off(self, **kwargs): """Turn the vacuum off and return to home.""" _LOGGER.debug("Turn off device %s", self.name) self._device.pause() def stop(self, **kwargs): """Stop the vacuum cleaner.""" _LOGGER.debug("Stop device %s", self.name) self._device.pause() def set_fan_speed(self, fan_speed, **kwargs): """Set fan speed.""" from libpurecoollink.const import PowerMode _LOGGER.debug("Set fan speed %s on device %s", fan_speed, self.name) power_modes = { "Quiet": PowerMode.QUIET, "Max": PowerMode.MAX } self._device.set_power_mode(power_modes[fan_speed]) def start_pause(self, **kwargs): """Start, pause or resume the cleaning task.""" from libpurecoollink.const import Dyson360EyeMode if self._device.state.state in [Dyson360EyeMode.FULL_CLEAN_PAUSED]: _LOGGER.debug("Resume device %s", self.name) self._device.resume() elif self._device.state.state in [Dyson360EyeMode.INACTIVE_CHARGED, Dyson360EyeMode.INACTIVE_CHARGING]: _LOGGER.debug("Start device %s", self.name) self._device.start() else: _LOGGER.debug("Pause device %s", self.name) self._device.pause() def return_to_base(self, **kwargs): """Set the vacuum cleaner to return to the dock.""" _LOGGER.debug("Return to base device %s", self.name) self._device.abort()
34.655502
79
0.654701
[ "Apache-2.0" ]
FlorianLudwig/home-assistant
homeassistant/components/dyson/vacuum.py
7,243
Python
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Unit tests for PyMVPA misc.plot""" from mvpa2.testing import * skip_if_no_external("pylab") import pylab as pl from matplotlib.figure import Figure from mvpa2.misc.plot.base import plot_dataset_chunks import numpy as np from glob import glob from mock import patch from os.path import join as pjoin data2d = np.random.randn(2, 4, 4) data3d = np.random.randn(3, 4, 4) data2d_3d = np.random.randn(2, 4, 4, 4) data2d_4d = np.random.randn(2, 4, 4, 4, 2) data2d_5d = np.random.randn(2, 4, 4, 4, 2, 3) from mvpa2.testing.datasets import datasets @sweepargs(dsp=list(datasets.items())) def test_plot_dataset_chunks(dsp): dsname, ds = dsp if ds.targets.dtype.kind == "f": return # smoke test for now if "chunks" not in ds.sa: return # nothing to plot in this one print(dsname) plot_dataset_chunks(ds[:, :2]) # could only plot two pl.close(pl.gcf()) if ds.nfeatures > 2: assert_raises(ValueError, plot_dataset_chunks, ds)
29
78
0.612619
[ "MIT" ]
mortonne/PyMVPA
mvpa2/tests/test_misc_plot.py
1,363
Python
# coding: utf-8 # Copyright (c) Max-Planck-Institut für Eisenforschung GmbH - Computational Materials Design (CM) Department # Distributed under the terms of "New BSD License", see the LICENSE file. from collections import OrderedDict import numpy as np import warnings import scipy.constants import re __author__ = "Sudarsan Surendralal" __copyright__ = ( "Copyright 2021, Max-Planck-Institut für Eisenforschung GmbH - " "Computational Materials Design (CM) Department" ) __version__ = "1.0" __maintainer__ = "Sudarsan Surendralal" __email__ = "[email protected]" __status__ = "production" __date__ = "Sep 1, 2017" KBAR_TO_EVA = ( scipy.constants.physical_constants["joule-electron volt relationship"][0] / 1e22 ) class Outcar(object): """ This module is used to parse VASP OUTCAR files. Attributes: parse_dict (dict): A dictionary with all the useful quantities parsed from an OUTCAR file after from_file() is executed """ def __init__(self): self.parse_dict = dict() def from_file(self, filename="OUTCAR"): """ Parse and store relevant quantities from the OUTCAR file into parse_dict. Args: filename (str): Filename of the OUTCAR file to parse """ with open(filename, "r") as f: lines = f.readlines() energies = self.get_total_energies(filename=filename, lines=lines) energies_int = self.get_energy_without_entropy(filename=filename, lines=lines) energies_zero = self.get_energy_sigma_0(filename=filename, lines=lines) scf_energies = self.get_all_total_energies(filename=filename, lines=lines) n_atoms = self.get_number_of_atoms(filename=filename, lines=lines) forces = self.get_forces(filename=filename, lines=lines, n_atoms=n_atoms) positions = self.get_positions(filename=filename, lines=lines, n_atoms=n_atoms) cells = self.get_cells(filename=filename, lines=lines) steps = self.get_steps(filename=filename, lines=lines) temperatures = self.get_temperatures(filename=filename, lines=lines) time = self.get_time(filename=filename, lines=lines) fermi_level = self.get_fermi_level(filename=filename, lines=lines) scf_moments = self.get_dipole_moments(filename=filename, lines=lines) kin_energy_error = self.get_kinetic_energy_error(filename=filename, lines=lines) stresses = self.get_stresses(filename=filename, si_unit=False, lines=lines) n_elect = self.get_nelect(filename=filename, lines=lines) e_fermi_list, vbm_list, cbm_list = self.get_band_properties(filename=filename, lines=lines) elastic_constants = self.get_elastic_constants(filename=filename, lines=lines) try: irreducible_kpoints = self.get_irreducible_kpoints( filename=filename, lines=lines ) except ValueError: print("irreducible kpoints not parsed !") irreducible_kpoints = None magnetization, final_magmom_lst = self.get_magnetization( filename=filename, lines=lines ) broyden_mixing = self.get_broyden_mixing_mesh(filename=filename, lines=lines) self.parse_dict["energies"] = energies self.parse_dict["energies_int"] = energies_int self.parse_dict["energies_zero"] = energies_zero self.parse_dict["scf_energies"] = scf_energies self.parse_dict["forces"] = forces self.parse_dict["positions"] = positions self.parse_dict["cells"] = cells self.parse_dict["steps"] = steps self.parse_dict["temperatures"] = temperatures self.parse_dict["time"] = time self.parse_dict["fermi_level"] = fermi_level self.parse_dict["scf_dipole_moments"] = scf_moments self.parse_dict["kin_energy_error"] = kin_energy_error self.parse_dict["stresses"] = stresses self.parse_dict["irreducible_kpoints"] = irreducible_kpoints self.parse_dict["magnetization"] = magnetization self.parse_dict["final_magmoms"] = final_magmom_lst self.parse_dict["broyden_mixing"] = broyden_mixing self.parse_dict["n_elect"] = n_elect self.parse_dict["e_fermi_list"] = e_fermi_list self.parse_dict["vbm_list"] = vbm_list self.parse_dict["cbm_list"] = cbm_list self.parse_dict["elastic_constants"] = elastic_constants try: self.parse_dict["pressures"] = ( np.average(stresses[:, 0:3], axis=1) * KBAR_TO_EVA ) except IndexError: self.parse_dict["pressures"] = np.zeros(len(steps)) def to_hdf(self, hdf, group_name="outcar"): """ Store output in an HDF5 file Args: hdf (pyiron_base.generic.hdfio.FileHDFio): HDF5 group or file group_name (str): Name of the HDF5 group """ with hdf.open(group_name) as hdf5_output: for key in self.parse_dict.keys(): hdf5_output[key] = self.parse_dict[key] def to_hdf_minimal(self, hdf, group_name="outcar"): """ Store minimal output in an HDF5 file (output unique to OUTCAR) Args: hdf (pyiron_base.generic.hdfio.FileHDFio): HDF5 group or file group_name (str): Name of the HDF5 group """ unique_quantities = [ "kin_energy_error", "broyden_mixing", "stresses", "irreducible_kpoints", ] with hdf.open(group_name) as hdf5_output: for key in self.parse_dict.keys(): if key in unique_quantities: hdf5_output[key] = self.parse_dict[key] def from_hdf(self, hdf, group_name="outcar"): """ Load output from an HDF5 file Args: hdf (pyiron_base.generic.hdfio.FileHDFio): HDF5 group or file group_name (str): Name of the HDF5 group """ with hdf.open(group_name) as hdf5_output: for key in hdf5_output.list_nodes(): self.parse_dict[key] = hdf5_output[key] def get_positions_and_forces(self, filename="OUTCAR", lines=None, n_atoms=None): """ Gets the forces and positions for every ionic step from the OUTCAR file Args: filename (str): Filename of the OUTCAR file to parse lines (list/None): lines read from the file n_atoms (int/None): number of ions in OUTCAR Returns: [positions, forces] (sequence) numpy.ndarray: A Nx3xM array of positions in $\AA$ numpy.ndarray: A Nx3xM array of forces in $eV / \AA$ where N is the number of atoms and M is the number of time steps """ if n_atoms is None: n_atoms = self.get_number_of_atoms(filename=filename, lines=lines) trigger_indices, lines = _get_trigger( lines=lines, filename=filename, trigger="TOTAL-FORCE (eV/Angst)" ) return self._get_positions_and_forces_parser( lines=lines, trigger_indices=trigger_indices, n_atoms=n_atoms, pos_flag=True, force_flag=True, ) def get_positions(self, filename="OUTCAR", lines=None, n_atoms=None): """ Gets the positions for every ionic step from the OUTCAR file Args: filename (str): Filename of the OUTCAR file to parse lines (list/None): lines read from the file n_atoms (int/None): number of ions in OUTCAR Returns: numpy.ndarray: A Nx3xM array of positions in $\AA$ where N is the number of atoms and M is the number of time steps """ if n_atoms is None: n_atoms = self.get_number_of_atoms(filename=filename, lines=lines) trigger_indices, lines = _get_trigger( lines=lines, filename=filename, trigger="TOTAL-FORCE (eV/Angst)" ) return self._get_positions_and_forces_parser( lines=lines, trigger_indices=trigger_indices, n_atoms=n_atoms, pos_flag=True, force_flag=False, ) def get_forces(self, filename="OUTCAR", lines=None, n_atoms=None): """ Gets the forces for every ionic step from the OUTCAR file Args: filename (str): Filename of the OUTCAR file to parse lines (list/None): lines read from the file n_atoms (int/None): number of ions in OUTCAR Returns: numpy.ndarray: A Nx3xM array of forces in $eV / \AA$ where N is the number of atoms and M is the number of time steps """ if n_atoms is None: n_atoms = self.get_number_of_atoms(filename=filename, lines=lines) trigger_indices, lines = _get_trigger( lines=lines, filename=filename, trigger="TOTAL-FORCE (eV/Angst)" ) return self._get_positions_and_forces_parser( lines=lines, trigger_indices=trigger_indices, n_atoms=n_atoms, pos_flag=False, force_flag=True, ) def get_cells(self, filename="OUTCAR", lines=None): """ Gets the cell size and shape for every ionic step from the OUTCAR file Args: filename (str): Filename of the OUTCAR file to parse lines (list/None): lines read from the file Returns: numpy.ndarray: A 3x3xM array of the cell shape in $\AA$ where M is the number of time steps """ trigger_indices, lines = _get_trigger( lines=lines, filename=filename, trigger="VOLUME and BASIS-vectors are now :" ) return self._get_cells_praser(lines=lines, trigger_indices=trigger_indices) @staticmethod def get_stresses(filename="OUTCAR", lines=None, si_unit=True): """ Args: filename (str): Input filename lines (list/None): lines read from the file si_unit (bool): True SI units are used Returns: numpy.ndarray: An array of stress values """ trigger_indices, lines = _get_trigger( lines=lines, filename=filename, trigger="FORCE on cell =-STRESS in cart. coord. units (eV):", ) pullay_stress_lst = [] for j in trigger_indices: try: if si_unit: pullay_stress_lst.append( [float(l) for l in lines[j + 13].split()[1:7]] ) else: pullay_stress_lst.append( [float(l) for l in lines[j + 14].split()[2:8]] ) except ValueError: if si_unit: pullay_stress_lst.append([float("NaN")] * 6) else: pullay_stress_lst.append([float("NaN")] * 6) return np.array(pullay_stress_lst) @staticmethod def get_irreducible_kpoints( filename="OUTCAR", reciprocal=True, weight=True, planewaves=True, lines=None ): """ Function to extract the irreducible kpoints from the OUTCAR file Args: filename (str): Filename of the OUTCAR file to parse reciprocal (bool): Get either the reciprocal or the cartesian coordinates weight (bool): Get the weight assigned to the irreducible kpoints planewaves (bool): Get the planewaves assigned to the irreducible kpoints lines (list/None): lines read from the file Returns: numpy.ndarray: An array of k-points """ kpoint_lst = [] weight_lst = [] planewaves_lst = [] trigger_number_str = "Subroutine IBZKPT returns following result:" trigger_plane_waves_str = "k-point 1 :" trigger_number = 0 trigger_plane_waves = 0 lines = _get_lines_from_file(filename=filename, lines=lines) for i, line in enumerate(lines): line = line.strip() if trigger_number_str in line: trigger_number = int(i) elif planewaves: if trigger_plane_waves_str in line: trigger_plane_waves = int(i) number_irr_kpoints = int(lines[trigger_number + 3].split()[1]) if reciprocal: trigger_start = trigger_number + 7 else: trigger_start = trigger_number + 10 + number_irr_kpoints for line in lines[trigger_start : trigger_start + number_irr_kpoints]: line = line.strip() line = _clean_line(line) kpoint_lst.append([float(l) for l in line.split()[0:3]]) if weight: weight_lst.append(float(line.split()[3])) if planewaves and trigger_plane_waves != 0: for line in lines[ trigger_plane_waves : trigger_plane_waves + number_irr_kpoints ]: line = line.strip() line = _clean_line(line) planewaves_lst.append(float(line.split()[-1])) if weight and planewaves: return np.array(kpoint_lst), np.array(weight_lst), np.array(planewaves_lst) elif weight: return np.array(kpoint_lst), np.array(weight_lst) elif planewaves: return np.array(kpoint_lst), np.array(planewaves_lst) else: return np.array(kpoint_lst) @staticmethod def get_total_energies(filename="OUTCAR", lines=None): """ Gets the total energy for every ionic step from the OUTCAR file Args: filename (str): Filename of the OUTCAR file to parse lines (list/None): lines read from the file Returns: numpy.ndarray: A 1xM array of the total energies in $eV$ where M is the number of time steps """ def get_total_energies_from_line(line): return float(_clean_line(line.strip()).split()[-2]) trigger_indices, lines = _get_trigger( lines=lines, filename=filename, trigger="FREE ENERGIE OF THE ION-ELECTRON SYSTEM (eV)", ) return np.array( [get_total_energies_from_line(lines[j + 2]) for j in trigger_indices] ) @staticmethod def get_energy_without_entropy(filename="OUTCAR", lines=None): """ Gets the total energy for every ionic step from the OUTCAR file Args: filename (str): Filename of the OUTCAR file to parse lines (list/None): lines read from the file Returns: numpy.ndarray: A 1xM array of the total energies in $eV$ where M is the number of time steps """ def get_energy_without_entropy_from_line(line): return float(_clean_line(line.strip()).split()[3]) trigger_indices, lines = _get_trigger( lines=lines, filename=filename, trigger="FREE ENERGIE OF THE ION-ELECTRON SYSTEM (eV)", ) return np.array( [ get_energy_without_entropy_from_line(lines[j + 4]) for j in trigger_indices ] ) @staticmethod def get_energy_sigma_0(filename="OUTCAR", lines=None): """ Gets the total energy for every ionic step from the OUTCAR file Args: filename (str): Filename of the OUTCAR file to parse lines (list/None): lines read from the file Returns: numpy.ndarray: A 1xM array of the total energies in $eV$ where M is the number of time steps """ def get_energy_sigma_0_from_line(line): return float(_clean_line(line.strip()).split()[-1]) trigger_indices, lines = _get_trigger( lines=lines, filename=filename, trigger="FREE ENERGIE OF THE ION-ELECTRON SYSTEM (eV)", ) return np.array( [get_energy_sigma_0_from_line(lines[j + 4]) for j in trigger_indices] ) @staticmethod def get_all_total_energies(filename="OUTCAR", lines=None): """ Gets the energy at every electronic step Args: filename (str): Filename of the OUTCAR file to parse lines (list/None): lines read from the file Returns: list: A list of energie for every electronic step at every ionic step """ ionic_trigger = "FREE ENERGIE OF THE ION-ELECTRON SYSTEM (eV)" electronic_trigger = "free energy TOTEN =" scf_energies = list() lines = _get_lines_from_file(filename=filename, lines=lines) istep_energies = list() for i, line in enumerate(lines): line = line.strip() if ionic_trigger in line: scf_energies.append(np.array(istep_energies)) istep_energies = list() if electronic_trigger in line: line = _clean_line(line) ene = float(line.split()[-2]) istep_energies.append(ene) return scf_energies @staticmethod def get_magnetization(filename="OUTCAR", lines=None): """ Gets the magnetization Args: filename (str): Filename of the OUTCAR file to parse lines (list/None): lines read from the file Returns: list: A list with the mgnetization values """ ionic_trigger = "FREE ENERGIE OF THE ION-ELECTRON SYSTEM (eV)" electronic_trigger = "eigenvalue-minimisations" nion_trigger = "NIONS =" mag_lst = list() local_spin_trigger = False n_atoms = None mag_dict = dict() mag_dict["x"] = list() mag_dict["y"] = list() mag_dict["z"] = list() lines = _get_lines_from_file(filename=filename, lines=lines) istep_energies = list() final_magmom_lst = list() for i, line in enumerate(lines): line = line.strip() if ionic_trigger in line: mag_lst.append(np.array(istep_energies)) istep_energies = list() if "Atomic Wigner-Seitz radii" in line: local_spin_trigger = True if electronic_trigger in line: try: line = lines[i + 2].split("magnetization")[-1] if line != " \n": spin_str_lst = line.split() spin_str_len = len(spin_str_lst) if spin_str_len == 1: ene = float(line) elif spin_str_len == 3: ene = [ float(spin_str_lst[0]), float(spin_str_lst[1]), float(spin_str_lst[2]), ] else: warnings.warn("Unrecognized spin configuration.") return mag_lst, final_magmom_lst istep_energies.append(ene) except ValueError: warnings.warn("Something went wrong in parsing the magnetization") if n_atoms is None: if nion_trigger in line: n_atoms = int(line.split(nion_trigger)[-1]) if local_spin_trigger: try: for ind_dir, direc in enumerate(["x", "y", "z"]): if "magnetization ({})".format(direc) in line: mag_dict[direc].append( [ float(lines[i + 4 + atom_index].split()[-1]) for atom_index in range(n_atoms) ] ) except ValueError: warnings.warn( "Something went wrong in parsing the magnetic moments" ) if len(mag_dict["x"]) > 0: if len(mag_dict["y"]) == 0: final_mag = np.array(mag_dict["x"]) else: n_ionic_steps = np.array(mag_dict["x"]).shape[0] final_mag = np.abs(np.zeros((n_ionic_steps, n_atoms, 3))) final_mag[:, :, 0] = np.array(mag_dict["x"]) final_mag[:, :, 1] = np.array(mag_dict["y"]) final_mag[:, :, 2] = np.array(mag_dict["z"]) final_magmom_lst = final_mag.tolist() return mag_lst, final_magmom_lst @staticmethod def get_broyden_mixing_mesh(filename="OUTCAR", lines=None): """ Gets the Broyden mixing mesh size Args: filename (str): Filename of the OUTCAR file to parse lines (list/None): lines read from the file Returns: int: Mesh size """ trigger_indices, lines = _get_trigger( lines=lines, filename=filename, trigger="gives a total of " ) if len(trigger_indices) > 0: line_ngx = lines[trigger_indices[0] - 2] else: warnings.warn( "Unable to parse the Broyden mixing mesh. Returning 0 instead" ) return 0 # Exclude all alphabets, and spaces. Then split based on '=' str_list = re.sub( r"[a-zA-Z]", r"", line_ngx.replace(" ", "").replace("\n", "") ).split("=") return np.prod([int(val) for val in str_list[1:]]) @staticmethod def get_temperatures(filename="OUTCAR", lines=None): """ Gets the temperature at each ionic step (applicable for MD) Args: filename (str): Filename of the OUTCAR file to parse lines (list/None): lines read from the file Returns: numpy.ndarray: An array of temperatures in Kelvin """ trigger_indices, lines = _get_trigger( lines=lines, filename=filename, trigger="kin. lattice EKIN_LAT= " ) temperatures = [] if len(trigger_indices) > 0: for j in trigger_indices: line = lines[j].strip() line = _clean_line(line) temperatures.append(float(line.split()[-2])) else: temperatures = np.zeros( len( _get_trigger( lines=lines, trigger="FREE ENERGIE OF THE ION-ELECTRON SYSTEM (eV)", return_lines=False, ) ) ) return np.array(temperatures) @staticmethod def get_steps(filename="OUTCAR", lines=None): """ Args: filename (str): Filename of the OUTCAR file to parse lines (list/None): lines read from the file Returns: numpy.ndarray: Steps during the simulation """ nblock_trigger = "NBLOCK =" trigger = "FREE ENERGIE OF THE ION-ELECTRON SYSTEM (eV)" trigger_indices = list() read_nblock = True n_block = 1 lines = _get_lines_from_file(filename=filename, lines=lines) for i, line in enumerate(lines): line = line.strip() if trigger in line: trigger_indices.append(i) if read_nblock is None: if nblock_trigger in line: line = _clean_line(line) n_block = int(line.split(nblock_trigger)[-1]) return n_block * np.linspace(0, len(trigger_indices)) def get_time(self, filename="OUTCAR", lines=None): """ Time after each simulation step (for MD) Args: filename (str): Filename of the OUTCAR file to parse lines (list/None): lines read from the file Returns: numpy.ndarray: An array of time values in fs """ potim_trigger = "POTIM =" read_potim = True potim = 1.0 lines = _get_lines_from_file(filename=filename, lines=lines) for i, line in enumerate(lines): line = line.strip() if read_potim is None: if potim_trigger in line: line = _clean_line(line) potim = float(line.split(potim_trigger)[0]) return potim * self.get_steps(filename) @staticmethod def get_kinetic_energy_error(filename="OUTCAR", lines=None): """ Get the kinetic energy error Args: filename (str): Filename of the OUTCAR file to parse lines (list/None): lines read from the file Returns: float: The kinetic energy error in eV """ trigger = "kinetic energy error for atom=" e_kin_err = list() n_species_list = list() nion_trigger = "ions per type =" tot_kin_error = 0.0 lines = _get_lines_from_file(filename=filename, lines=lines) for i, line in enumerate(lines): line = line.strip() if trigger in line: e_kin_err.append(float(line.split()[5])) if nion_trigger in line: n_species_list = [ float(val) for val in line.split(nion_trigger)[-1].strip().split() ] if len(n_species_list) > 0 and len(n_species_list) == len(e_kin_err): tot_kin_error = np.sum(np.array(n_species_list) * np.array(e_kin_err)) return tot_kin_error @staticmethod def get_fermi_level(filename="OUTCAR", lines=None): """ Getting the Fermi-level (Kohn_Sham) from the OUTCAR file Args: filename (str): Filename of the OUTCAR file to parse lines (list/None): lines read from the file Returns: float: The Kohn-Sham Fermi level in eV """ trigger = "E-fermi :" trigger_indices, lines = _get_trigger( lines=lines, filename=filename, trigger=trigger ) if len(trigger_indices) != 0: try: return float(lines[trigger_indices[-1]].split(trigger)[-1].split()[0]) except ValueError: return else: return @staticmethod def get_dipole_moments(filename="OUTCAR", lines=None): """ Get the electric dipole moment at every electronic step Args: filename (str): Filename of the OUTCAR file to parse lines (list/None): lines read from the file Returns: list: A list of dipole moments in (eA) for each electronic step """ moment_trigger = "dipolmoment" istep_trigger = "FREE ENERGIE OF THE ION-ELECTRON SYSTEM (eV)" dip_moms = list() lines = _get_lines_from_file(filename=filename, lines=lines) istep_mom = list() for i, line in enumerate(lines): line = line.strip() if istep_trigger in line: dip_moms.append(np.array(istep_mom)) istep_mom = list() if moment_trigger in line: line = _clean_line(line) mom = np.array([float(val) for val in line.split()[1:4]]) istep_mom.append(mom) return dip_moms @staticmethod def get_nelect(filename="OUTCAR", lines=None): """ Returns the number of electrons in the simulation Args: filename (str): OUTCAR filename lines (list/None): lines read from the file Returns: float: The number of electrons in the simulation """ nelect_trigger = "NELECT" lines = _get_lines_from_file(filename=filename, lines=lines) for i, line in enumerate(lines): line = line.strip() if nelect_trigger in line: return float(line.split()[2]) @staticmethod def get_number_of_atoms(filename="OUTCAR", lines=None): """ Returns the number of ions in the simulation Args: filename (str): OUTCAR filename lines (list/None): lines read from the file Returns: int: The number of ions in the simulation """ ions_trigger = "NIONS =" trigger_indices, lines = _get_trigger( lines=lines, filename=filename, trigger=ions_trigger ) if len(trigger_indices) != 0: return int(lines[trigger_indices[0]].split(ions_trigger)[-1]) else: raise ValueError() @staticmethod def get_band_properties(filename="OUTCAR", lines=None): fermi_trigger = "E-fermi" fermi_trigger_indices, lines = _get_trigger( lines=lines, filename=filename, trigger=fermi_trigger ) fermi_level_list = list() vbm_level_dict = OrderedDict() cbm_level_dict = OrderedDict() for ind in fermi_trigger_indices: fermi_level_list.append(float(lines[ind].strip().split()[2])) band_trigger = "band No. band energies occupation" is_spin_polarized = False for n, ind in enumerate(fermi_trigger_indices): if n == len(fermi_trigger_indices) - 1: trigger_indices, lines_new = _get_trigger( lines=lines[ind:-1], filename=filename, trigger=band_trigger ) else: trigger_indices, lines_new = _get_trigger( lines=lines[ind:fermi_trigger_indices[n+1]], filename=filename, trigger=band_trigger ) band_data = list() for ind in trigger_indices: if "spin component" in lines_new[ind-3]: is_spin_polarized = True for line in lines_new[ind+1:]: data = line.strip().split() if len(data) != 3: break band_data.append([float(d) for d in data[1:]]) if is_spin_polarized: band_data_per_spin = [np.array(band_data[0:int(len(band_data)/2)]).tolist(), np.array(band_data[int(len(band_data)/2):]).tolist()] else: band_data_per_spin = [band_data] for spin, band_data in enumerate(band_data_per_spin): if spin in cbm_level_dict.keys(): pass else: cbm_level_dict[spin] = list() if spin in vbm_level_dict.keys(): pass else: vbm_level_dict[spin] = list() if len(band_data) > 0: band_energy, band_occ = [np.array(band_data)[:, i] for i in range(2)] args = np.argsort(band_energy) band_occ = band_occ[args] band_energy = band_energy[args] cbm_bool = np.abs(band_occ) < 1e-6 if any(cbm_bool): cbm_level_dict[spin].append(band_energy[np.abs(band_occ) < 1e-6][0]) else: cbm_level_dict[spin].append(band_energy[-1]) # If spin channel is completely empty, setting vbm=cbm if all(cbm_bool): vbm_level_dict[spin].append(cbm_level_dict[spin][-1]) else: vbm_level_dict[spin].append(band_energy[~cbm_bool][-1]) return np.array(fermi_level_list), np.array([val for val in vbm_level_dict.values()]), np.array([val for val in cbm_level_dict.values()]) @staticmethod def get_elastic_constants(filename="OUTCAR", lines=None): lines = _get_lines_from_file(filename=filename, lines=lines) trigger_indices = _get_trigger(lines=lines, filename=filename, trigger="TOTAL ELASTIC MODULI (kBar)", return_lines=False) if len(trigger_indices) != 1: return None else: start_index = trigger_indices[0] + 3 end_index = start_index + 6 elastic_constants = [] for line in lines[start_index:end_index]: elastic_constants.append(line.split()[1:]) elastic_GPa = np.array(elastic_constants, dtype=float) / 10 return elastic_GPa @staticmethod def _get_positions_and_forces_parser( lines, trigger_indices, n_atoms, pos_flag=True, force_flag=True ): """ Parser to get the forces and or positions for every ionic step from the OUTCAR file Args: lines (list): lines read from the file trigger_indices (list): list of line indices where the trigger was found. n_atoms (int): number of atoms pos_flag (bool): parse position force_flag (bool): parse forces Returns: [positions, forces] (sequence) numpy.ndarray: A Nx3xM array of positions in $\AA$ numpy.ndarray: A Nx3xM array of forces in $eV / \AA$ where N is the number of atoms and M is the number of time steps """ positions = [] forces = [] for j in trigger_indices: pos = [] force = [] for line in lines[j + 2 : j + n_atoms + 2]: line = line.strip() line = _clean_line(line) if pos_flag: pos.append([float(l) for l in line.split()[0:3]]) if force_flag: force.append([float(l) for l in line.split()[3:]]) forces.append(force) positions.append(pos) if pos_flag and force_flag: return np.array(positions), np.array(forces) elif pos_flag: return np.array(positions) elif force_flag: return np.array(forces) @staticmethod def _get_cells_praser(lines, trigger_indices): """ Parser to get the cell size and shape for every ionic step from the OUTCAR file Args: lines (list): lines read from the file trigger_indices (list): list of line indices where the trigger was found. n_atoms (int): number of atoms Returns: numpy.ndarray: A 3x3xM array of the cell shape in $\AA$ where M is the number of time steps """ cells = [] try: for j in trigger_indices: cell = [] for line in lines[j + 5: j + 8]: line = line.strip() line = _clean_line(line) cell.append([float(l) for l in line.split()[0:3]]) cells.append(cell) return np.array(cells) except ValueError: warnings.warn("Unable to parse the cells from the OUTCAR file") return def _clean_line(line): return line.replace("-", " -") def _get_trigger(trigger, filename=None, lines=None, return_lines=True): """ Find the lines where a specific trigger appears. Args: trigger (str): string pattern to search for lines (list/None): list of lines filename (str/None): file to read lines from Returns: list: indicies of the lines where the trigger string was found and list of lines """ lines = _get_lines_from_file(filename=filename, lines=lines) trigger_indicies = [i for i, line in enumerate(lines) if trigger in line.strip()] if return_lines: return trigger_indicies, lines else: return trigger_indicies def _get_lines_from_file(filename, lines=None): """ If lines is None read the lines from the file with the filename filename. Args: filename (str): file to read lines from lines (list/ None): list of lines Returns: list: list of lines """ if lines is None: with open(filename, "r") as f: lines = f.readlines() return lines
37.365779
129
0.56681
[ "BSD-3-Clause" ]
pyiron/pyiron_atomistic
pyiron_atomistics/vasp/outcar.py
36,471
Python
""" All things CloudFormation Init. """ from paco.models.base import Named from paco.models import schemas from zope.interface import implementer from zope.schema.fieldproperty import FieldProperty import troposphere.cloudformation def export_attrs_as_dicts(obj, attrs): out = {} for name in attrs: value = getattr(obj, name, None) if value: out[name] = dict(value) return out @implementer(schemas.ICloudFormationParameters) class CloudFormationParameters(Named, dict): pass @implementer(schemas.ICloudFormationConfigSets) class CloudFormationConfigSets(Named, dict): def export_as_troposphere(self): # plain dict of list values return dict(self) @implementer(schemas.ICloudFormationConfigurations) class CloudFormationConfigurations(Named, dict): def export_as_troposphere(self): out = {} for key, value in self.items(): out[key] = troposphere.cloudformation.InitConfig( **self[key].export_as_troposphere() ) return out @implementer(schemas.ICloudFormationInitVersionedPackageSet) class CloudFormationInitVersionedPackageSet(dict): pass @implementer(schemas.ICloudFormationInitPathOrUrlPackageSet) class CloudFormationInitPathOrUrlPackageSet(dict): pass @implementer(schemas.ICloudFormationInitPackages) class CloudFormationInitPackages(Named): apt = FieldProperty(schemas.ICloudFormationInitPackages['apt']) msi = FieldProperty(schemas.ICloudFormationInitPackages['msi']) python = FieldProperty(schemas.ICloudFormationInitPackages['python']) rpm = FieldProperty(schemas.ICloudFormationInitPackages['rpm']) rubygems = FieldProperty(schemas.ICloudFormationInitPackages['rubygems']) yum = FieldProperty(schemas.ICloudFormationInitPackages['yum']) def __init__(self, name, parent): super().__init__(name, parent) self.apt = CloudFormationInitVersionedPackageSet() self.msi = CloudFormationInitPathOrUrlPackageSet() self.python = CloudFormationInitVersionedPackageSet() self.rpm = CloudFormationInitPathOrUrlPackageSet() self.rubygems = CloudFormationInitVersionedPackageSet() self.yum = CloudFormationInitVersionedPackageSet() def export_as_troposphere(self): return export_attrs_as_dicts( self, ('apt', 'msi', 'python', 'rpm', 'rubygems', 'yum') ) @implementer(schemas.ICloudFormationInitGroup) class CloudFormationInitGroup(Named): gid = FieldProperty(schemas.ICloudFormationInitGroup['gid']) def export_as_troposphere(self): out = {} for name in ('gid'): value = getattr(self, name, None) if value != None: out[name] = value return out @implementer(schemas.ICloudFormationInitGroups) class CloudFormationInitGroups(Named, dict): def export_as_troposphere(self): out = {} for key, value in self.items(): out[key] = self[key].export_as_troposphere() return out @implementer(schemas.ICloudFormationInitUser) class CloudFormationInitUser(Named): groups = FieldProperty(schemas.ICloudFormationInitUser['groups']) uid = FieldProperty(schemas.ICloudFormationInitUser['uid']) home_dir = FieldProperty(schemas.ICloudFormationInitUser['home_dir']) def __init__(self, name, parent): super().__init__(name, parent) self.groups = [] def export_as_troposphere(self): out = {} for name in ('groups', 'uid', 'home_dir'): value = getattr(self, name, None) if name == 'home_dir': name = 'homeDir' if name == 'uid': value = str(value) if value != None: out[name] = value return out @implementer(schemas.ICloudFormationInitUsers) class CloudFormationInitUsers(Named, dict): def export_as_troposphere(self): out = {} for key, value in self.items(): out[key] = self[key].export_as_troposphere() return out @implementer(schemas.ICloudFormationInitSources) class CloudFormationInitSources(Named, dict): def export_as_troposphere(self): out = {} for key, value in self.items(): out[key] = value return out @implementer(schemas.ICloudFormationInitFiles) class CloudFormationInitFiles(Named, dict): def export_as_troposphere(self): out = {} for key, value in self.items(): out[key] = self[key].export_as_troposphere() return out @implementer(schemas.ICloudFormationInitFile) class CloudFormationInitFile(Named): content_cfn_file = FieldProperty(schemas.ICloudFormationInitFile['content_cfn_file']) content_file = FieldProperty(schemas.ICloudFormationInitFile['content_file']) source = FieldProperty(schemas.ICloudFormationInitFile['source']) encoding = FieldProperty(schemas.ICloudFormationInitFile['encoding']) group = FieldProperty(schemas.ICloudFormationInitFile['group']) owner = FieldProperty(schemas.ICloudFormationInitFile['owner']) mode = FieldProperty(schemas.ICloudFormationInitFile['mode']) authentication = FieldProperty(schemas.ICloudFormationInitFile['authentication']) context = FieldProperty(schemas.ICloudFormationInitFile['context']) _content = None @property def content(self): "Return a string or a Troposphere CFN Function object" if self.content_file: return self.content_file elif self.content_cfn_file: return self.content_cfn_file return self._content @content.setter def content(self, value): self._content = value def export_as_troposphere(self): out = {} for name in ('content', 'source', 'encoding', 'group', 'owner', 'mode', 'authentication', 'context'): value = getattr(self, name, None) if value != None: out[name] = value return out @implementer(schemas.ICloudFormationInitCommands) class CloudFormationInitCommands(Named, dict): def export_as_troposphere(self): out = {} for key, command_obj in self.items(): command_dict = {} for name in ('command', 'env', 'cwd', 'test', 'ignore_errors'): value = getattr(command_obj, name) if name == 'ignore_errors': name = 'ignoreErrors' if value != None: command_dict[name] = value out[key] = command_dict return out @implementer(schemas.ICloudFormationInitCommand) class CloudFormationInitCommand(Named): command = FieldProperty(schemas.ICloudFormationInitCommand['command']) env = FieldProperty(schemas.ICloudFormationInitCommand['env']) cwd = FieldProperty(schemas.ICloudFormationInitCommand['cwd']) test = FieldProperty(schemas.ICloudFormationInitCommand['test']) ignore_errors = FieldProperty(schemas.ICloudFormationInitCommand['ignore_errors']) def __init__(self, name, parent): super().__init__(name, parent) self.env = {} @implementer(schemas.ICloudFormationInitService) class CloudFormationInitService(Named, dict): ensure_running = FieldProperty(schemas.ICloudFormationInitService['ensure_running']) enabled = FieldProperty(schemas.ICloudFormationInitService['enabled']) files = FieldProperty(schemas.ICloudFormationInitService['files']) sources = FieldProperty(schemas.ICloudFormationInitService['sources']) packages = FieldProperty(schemas.ICloudFormationInitService['packages']) commands = FieldProperty(schemas.ICloudFormationInitService['commands']) def __init__(self, name, parent): super().__init__(name, parent) self.files = [] self.packages = {} self.commands = [] self.sources = [] @implementer(schemas.ICloudFormationInitServiceCollection) class CloudFormationInitServiceCollection(Named, dict): def export_as_troposphere(self): out = {} for key, service_obj in self.items(): service_dict = {} for name in ('ensure_running', 'enabled', 'files', 'sources', 'packages', 'commands'): value = getattr(service_obj, name) if name == 'ensure_running': name = 'ensureRunning' if value != None: service_dict[name] = value out[key] = service_dict return out @implementer(schemas.ICloudFormationInitServices) class CloudFormationInitServices(Named): sysvinit = FieldProperty(schemas.ICloudFormationInitServices['sysvinit']) windows = FieldProperty(schemas.ICloudFormationInitServices['windows']) def __init__(self, name, parent): super().__init__(name, parent) self.sysvinit = CloudFormationInitServiceCollection('sysvinit', self) self.windows = CloudFormationInitServiceCollection('windows', self) def export_as_troposphere(self): out = {} if self.sysvinit: out['sysvinit'] = self.sysvinit.export_as_troposphere() if self.windows: out['windows'] = self.windows.export_as_troposphere() return out @implementer(schemas.ICloudFormationConfiguration) class CloudFormationConfiguration(Named): packages = FieldProperty(schemas.ICloudFormationConfiguration['packages']) groups = FieldProperty(schemas.ICloudFormationConfiguration['groups']) users = FieldProperty(schemas.ICloudFormationConfiguration['users']) sources = FieldProperty(schemas.ICloudFormationConfiguration['sources']) files = FieldProperty(schemas.ICloudFormationConfiguration['files']) commands = FieldProperty(schemas.ICloudFormationConfiguration['commands']) services = FieldProperty(schemas.ICloudFormationConfiguration['services']) def __init__(self, name, parent): super().__init__(name, parent) self.packages = CloudFormationInitPackages('packages', self) self.files = CloudFormationInitFiles('files', self) self.commands = CloudFormationInitCommands('commands', self) self.services = CloudFormationInitServices('services', self) self.sources = CloudFormationInitSources('sources', self) self.groups = CloudFormationInitGroups('groups', self) self.users = CloudFormationInitUsers('users', self) def export_as_troposphere(self): out = {} for name in ('packages', 'files', 'commands', 'services', 'sources', 'groups', 'users'): obj = getattr(self, name, None) if obj: out[name] = obj.export_as_troposphere() return out @implementer(schemas.ICloudFormationInit) class CloudFormationInit(Named): config_sets = FieldProperty(schemas.ICloudFormationInit['config_sets']) configurations = FieldProperty(schemas.ICloudFormationInit['configurations']) parameters = FieldProperty(schemas.ICloudFormationInit['parameters']) def __init__(self, name, parent): super().__init__(name, parent) self.parameters = {} def export_as_troposphere(self): init_resource = troposphere.cloudformation.Init( troposphere.cloudformation.InitConfigSets( **self.config_sets.export_as_troposphere() ), **self.configurations.export_as_troposphere() ) return init_resource
37.749175
109
0.687358
[ "MPL-2.0" ]
waterbear-cloud/aim.models
src/paco/models/cfn_init.py
11,438
Python
import numpy as np import os, time import random import tensorflow as tf from lookalike_model.trainer.model_new import Model import argparse random.seed(1234) # adding arguments for tfrecord directory and the checkpoint directory parser = argparse.ArgumentParser() parser.add_argument("--data_dir", type=str, help="input data tfrecords dir location") parser.add_argument("--check_point_dir", type=str, help="Check Point dir location") args, unknown = parser.parse_known_args() if len(unknown) != 0: print("unknown args:%s", unknown) # tfrecord location and the check point directory location tfrecord_location =args.data_dir + "/tf_records_lookalike_data_08july" output = args.check_point_dir def __data_parser(serialized_example): features = tf.parse_single_example(serialized_example, features={'keywords_list': tf.FixedLenSequenceFeature([], tf.int64, allow_missing=True), 'ucdoc': tf.FixedLenFeature([], tf.int64), 'keyword': tf.FixedLenFeature([], tf.int64), 'is_click': tf.FixedLenFeature([], tf.float32), 'sl': tf.FixedLenFeature([], tf.int64), 'lr': tf.FixedLenFeature([], tf.float32) }) keywords_list = tf.cast(features['keywords_list'], tf.int32) ucdoc = tf.cast(features['ucdoc'], tf.int32) keyword = tf.cast(features['keyword'], tf.int32) is_click = tf.cast(features['is_click'], tf.float32) sl = tf.cast(features['sl'], tf.int32) lr = tf.cast(features['lr'], tf.float32) return ucdoc, keyword, keywords_list, is_click,sl,lr names = [] for file in os.listdir(tfrecord_location): if file.startswith("part"): names.append(file) file_paths = [os.path.join(tfrecord_location, name) for name in names] dataset = tf.data.TFRecordDataset(file_paths) shuffle_value = 2000 repeat_value = 10 batch_size = 1000 prefetch_buffer = 2000 dataset = dataset.map(__data_parser) dataset = dataset.repeat(repeat_value).shuffle(shuffle_value).prefetch(buffer_size=prefetch_buffer).batch(batch_size) iterator = dataset.make_one_shot_iterator() tf_ucdoc, tf_keyword, tf_keywords_list, tf_is_click, tf_sl, tf_lr = iterator.get_next() unique_keywords = 811 cate_list = np.array([x for x in range(unique_keywords)]) user_count = 1349500103 item_count, cate_count = unique_keywords, unique_keywords predict_batch_size = 5000 predict_ads_num = 30 total_iterations = int((user_count * epoch)//batch_size) print('total iterations = {}'.format(total_iterations)) max_epochs = 500 model = Model(user_count, item_count, cate_count, cate_list, predict_batch_size, predict_ads_num,tf_ucdoc,tf_keyword,tf_is_click,tf_keywords_list,tf_sl) gpu_options = tf.GPUOptions(allow_growth=True) with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) as sess: sess.run(tf.global_variables_initializer()) sess.run(tf.local_variables_initializer()) start_time = time.time() count_epoch = 0 last_100_loss = [] print('shuffle = {}, epochs = {}, batch_size = {}, predict_batch_size = {}'.format(shuffle_value, epoch, batch_size, predict_batch_size)) for i in range(max_epochs*500): loss, _,sl = sess.run([model.loss, model.train_op, tf_sl]) loss = round(loss, 2) last_100_loss.append(loss) if len(last_100_loss) == 101: del last_100_loss[0] if i%500==0: print('Epoch {} DONE Iteration: {} Cost time: {} Model Loss: {} Average Loss: {}'.format(count_epoch, i, time.time()-start_time, loss, round(sum(last_100_loss)/100, 2))) model.save(sess, output) count_epoch += 1 # print("i: ",i," loss: ",loss) model.save(sess, output)
42.510638
152
0.654905
[ "Apache-2.0" ]
Faezehvaseghi/incubator-bluemarlin
Model/lookalike-model/lookalike_model/trainer/lookalike_trainer_tfrecords.py
3,996
Python
# !/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import print_function, absolute_import import numpy import copy from dcase_util.ui import FancyStringifier, FancyLogger from dcase_util.containers import ContainerMixin from dcase_util.data import DataBuffer def get_keras_data_sequence_class(): # Use getter method to avoid importing Keras when importing dcase_util. This allows user to decide when import # Keras, so that user can set random seeds before Keras import. from keras.utils import Sequence class KerasDataSequence(Sequence, ContainerMixin): def __init__(self, item_list=None, batch_size=64, buffer_size=None, data_processing_chain=None, meta_processing_chain=None, data_processing_chain_callback_on_epoch_end=None, meta_processing_chain_callback_on_epoch_end=None, transformer_callbacks=None, refresh_buffer_on_epoch=False, data_format='channels_last', target_format='single_target_per_sequence', **kwargs): """Constructor Parameters ---------- item_list : list or dict Items in the data sequence. List containing multi-level dictionary with first level key 'data' and 'meta'. Second level should contain parameters for process method in the processing chain. Default value None batch_size : int Batch size (item count). Default value 64 buffer_size : int Internal buffer size (item count). By setting this sufficiently high, data sequence generator can possibly fit all sequence items into internal buffer and can fetch without loading from disk. Set to None, if no internal buffer used. Default value None data_processing_chain : ProcessingChain Data processing chain. Default value None meta_processing_chain : ProcessingChain Meta processing chain. Default value None data_processing_chain_callback_on_epoch_end : list of dict Can be used to call methods with parameters for processing chain at the end of epoch. This can be used to control processing chain's internal status (e.g. roll the data). Default value None meta_processing_chain_callback_on_epoch_end : list of dict Can be used to call methods with parameters for processing chain at the end of epoch. This can be used to control processing chain's internal status (e.g. roll the data). Default value None transformer_callbacks : list of func Transformer callbacks to jointly process data and meta. This can be used for local data modification and data augmentation. Default value None refresh_buffer_on_epoch : bool In case internal data buffer is used, force data and meta refresh at the end of each epoch. Use this if data is modified/augmented differently for each epoch. In case data_processing_chain_callback_on_epoch_end or meta_processing_chain_callback_on_epoch_end is used, this parameter is automatically set to True. Default value False data_format : str Keras like data format, controls where channel should be added. Possible values ['channels_first', 'channels_last'] Default value 'channels_last' target_format : str Meta data interpretation in the relation to the data items. Default value 'single_target_per_segment' """ # Run ContainerMixin init ContainerMixin.__init__(self, **kwargs) self._data_shape = None self._data_axis = None self.item_list = copy.copy(item_list) self.batch_size = batch_size self.buffer_size = buffer_size self.data_refresh_on_epoch = refresh_buffer_on_epoch if data_format is None: data_format = 'channels_last' self.data_format = data_format if self.data_format not in ['channels_first', 'channels_last']: message = '{name}: Unknown data_format [{data_format}].'.format( name=self.__class__.__name__, data_format=self.data_format ) self.logger.exception(message) raise NotImplementedError(message) if target_format is None: target_format = 'single_target_per_sequence' self.target_format = target_format if self.target_format not in ['same', 'single_target_per_sequence']: message = '{name}: Unknown target_format [{target_format}].'.format( name=self.__class__.__name__, target_format=self.target_format ) self.logger.exception(message) raise NotImplementedError(message) if data_processing_chain_callback_on_epoch_end is None: data_processing_chain_callback_on_epoch_end = [] self.data_processing_chain_callback_on_epoch_end = data_processing_chain_callback_on_epoch_end if self.data_processing_chain_callback_on_epoch_end: self.data_refresh_on_epoch = True if meta_processing_chain_callback_on_epoch_end is None: meta_processing_chain_callback_on_epoch_end = [] self.meta_processing_chain_callback_on_epoch_end = meta_processing_chain_callback_on_epoch_end if transformer_callbacks is None: transformer_callbacks = [] self.transformer_callbacks = transformer_callbacks # Processing chains self.data_processing_chain = data_processing_chain self.meta_processing_chain = meta_processing_chain if self.buffer_size is not None: # Initialize data buffer self.data_buffer = DataBuffer( size=self.buffer_size ) else: self.data_buffer = None def __str__(self): ui = FancyStringifier() output = '' output += ui.class_name(self.__class__.__name__) + '\n' output += ui.data( indent=2, field='Batch size', value=self.batch_size ) + '\n' output += ui.data( indent=2, field='Epoch size', value=len(self), unit='batches' ) + '\n' shape = self.data_shape axis = self.data_axis output += ui.data(field='Data item shape', value=shape) + '\n' output += ui.data( indent=4, field='Time', value=shape[axis['time_axis']] ) + '\n' output += ui.data( indent=4, field='Data', value=shape[axis['data_axis']] ) + '\n' if 'sequence_axis' in axis: output += ui.data( indent=4, field='Sequence', value=shape[axis['sequence_axis']] ) + '\n' output += ui.data( indent=4, field='Axis', value=axis ) + '\n' if self.buffer_size is not None: output += ui.line(field='Buffer') + '\n' output += ui.data( indent=4, field='buffer_size', value=self.buffer_size, unit='items' ) + '\n' output += ui.data( indent=4, field='buffer usage', value=self.data_buffer.count, unit='items' ) + '\n' output += ui.data( indent=4, field='buffer usage', value=(self.data_buffer.count / float(self.buffer_size)) * 100, unit='%' ) + '\n' return output def __getitem__(self, index): start_index = index * self.batch_size stop_index = (index + 1) * self.batch_size batch_buffer_data = [] batch_buffer_meta = [] for item_index in range(start_index, stop_index): if item_index < len(self.item_list): item = self.item_list[item_index] # Load item data data, meta = self.process_item(item=item) if self.transformer_callbacks: # Apply transformer callbacks for callback in self.transformer_callbacks: data, meta = callback( data=data, meta=meta ) # Collect data batch_buffer_data.append(data.data) # Collect meta if self.target_format == 'single_target_per_sequence': # Collect single target per sequence for i in range(0, data.shape[data.sequence_axis]): batch_buffer_meta.append(meta.data[:, 0]) elif self.target_format == 'same': # Collect single target per sequence batch_buffer_meta.append( numpy.repeat( a=meta.data, repeats=data.length, axis=1 ) ) if len(data.shape) == 2: # Prepare 2D data, stack along time_axis if data.time_axis == 0: batch_buffer_data = numpy.vstack(batch_buffer_data) elif data.time_axis == 1: batch_buffer_data = numpy.hstack(batch_buffer_data) elif len(data.shape) == 3: # Prepare 3D data, stack along sequence_axis if data.sequence_axis == 0: batch_buffer_data = numpy.vstack(batch_buffer_data) elif data.sequence_axis == 1: batch_buffer_data = numpy.hstack(batch_buffer_data) elif data.sequence_axis == 2: batch_buffer_data = numpy.dstack(batch_buffer_data) # Add channel dimension to the data if self.data_format == 'channels_first': batch_buffer_data = numpy.expand_dims( batch_buffer_data, axis=0 ) elif self.data_format == 'channels_last': batch_buffer_data = numpy.expand_dims( batch_buffer_data, axis=3 ) # Prepare meta if self.target_format == 'single_target_per_sequence': batch_buffer_meta = numpy.vstack(batch_buffer_meta) elif self.target_format == 'same': batch_buffer_meta = numpy.hstack(batch_buffer_meta).T return batch_buffer_data, batch_buffer_meta def __len__(self): num_batches = int(numpy.ceil(len(self.item_list) / float(self.batch_size))) if num_batches > 0: return num_batches else: return 1 @property def data_shape(self): if self._data_shape is None: # Load first item and get data length data = self.process_item( item=self.item_list[0] )[0] self._data_shape = data.shape self._data_axis = { 'time_axis': data.time_axis, 'data_axis': data.data_axis } if hasattr(data,'sequence_axis'): self._data_axis['sequence_axis']= data.sequence_axis return self._data_shape @property def data_axis(self): if self._data_axis is None: # Load first item and get data length data = self.process_item( item=self.item_list[0] )[0] self._data_shape = data.shape self._data_axis = { 'time_axis': data.time_axis, 'data_axis': data.data_axis } if hasattr(data, 'sequence_axis'): self._data_axis['sequence_axis'] = data.sequence_axis return self._data_axis @property def data_size(self): shape = self.data_shape axis = self.data_axis size = { 'time': shape[axis['time_axis']], 'data': shape[axis['data_axis']], } if 'sequence_axis' in axis: size['sequence'] = shape[axis['sequence_axis']] return size def process_item(self, item): if self.data_buffer is not None: # Fetch data and meta through internal buffer if not self.data_buffer.key_exists(key=item): data = self.data_processing_chain.process(**item['data']) meta = self.meta_processing_chain.process(**item['meta']) self.data_buffer.set( key=item, data=data, meta=meta ) else: data, meta = self.data_buffer.get(key=item) else: # Fetch data and meta directly. data = self.data_processing_chain.process(**item['data']) meta = self.meta_processing_chain.process(**item['meta']) return data, meta def on_epoch_end(self): if self.data_processing_chain_callback_on_epoch_end: for callback_parameters in self.data_processing_chain_callback_on_epoch_end: if 'method_name' in callback_parameters: self.data_processing_chain.call_method( method_name=callback_parameters['method_name'], parameters=callback_parameters.get('parameters', {}) ) if self.meta_processing_chain_callback_on_epoch_end: for callback_parameters in self.meta_processing_chain_callback_on_epoch_end: if 'method_name' in callback_parameters: self.data_processing_chain.call_method( method_name=callback_parameters['method_name'], parameters=callback_parameters.get('parameters', {}) ) if self.data_buffer is not None and self.data_refresh_on_epoch: # Force reload of data self.data_buffer.clear() return KerasDataSequence def data_collector(item_list=None, data_processing_chain=None, meta_processing_chain=None, target_format='single_target_per_sequence', channel_dimension='channels_last', verbose=True, print_indent=2 ): """Data collector Collects data and meta into matrices while processing them through processing chains. Parameters ---------- item_list : list or dict Items in the data sequence. List containing multi-level dictionary with first level key 'data' and 'meta'. Second level should contain parameters for process method in the processing chain. Default value None data_processing_chain : ProcessingChain Data processing chain. Default value None meta_processing_chain : ProcessingChain Meta processing chain. Default value None channel_dimension : str Controls where channel dimension should be added. Similar to Keras data format parameter. If None given, no channel dimension is added. Possible values [None, 'channels_first', 'channels_last'] Default value None target_format : str Meta data interpretation in the relation to the data items. Default value 'single_target_per_segment' verbose : bool Print information about the data Default value True print_indent : int Default value 2 Returns ------- numpy.ndarray data numpy.ndarray meta dict data size information """ if item_list: # Collect all data and meta X = [] Y = [] for item in item_list: data = data_processing_chain.process(**item['data']) meta = meta_processing_chain.process(**item['meta']) X.append(data.data) # Collect meta if target_format == 'single_target_per_sequence': # Collect single target per sequence for i in range(0, data.shape[data.sequence_axis]): Y.append(meta.data[:, 0]) elif target_format == 'same': # Collect single target per sequence Y.append( numpy.repeat( a=meta.data, repeats=data.length, axis=1 ).T ) data_size = {} if len(data.shape) == 2: # Stack collected data and meta correct way if data.time_axis == 0: X = numpy.vstack(X) Y = numpy.vstack(Y) else: X = numpy.hstack(X) Y = numpy.hstack(Y) # Get data item size data_size = { 'data': X.shape[data.data_axis], 'time': X.shape[data.time_axis], } elif len(data.shape) == 3: # Stack collected data and meta correct way if data.sequence_axis == 0: X = numpy.vstack(X) Y = numpy.vstack(Y) elif data.sequence_axis == 1: X = numpy.hstack(X) Y = numpy.hstack(Y) elif data.sequence_axis == 2: X = numpy.dstack(X) Y = numpy.dstack(Y) if channel_dimension: # Add channel dimension to the data if channel_dimension == 'channels_first': X = numpy.expand_dims(X, axis=1) elif channel_dimension == 'channels_last': X = numpy.expand_dims(X, axis=3) # Get data item size data_size = { 'data': X.shape[data.data_axis], 'time': X.shape[data.time_axis], 'sequence': X.shape[data.sequence_axis], } if verbose: data_shape = data.shape data_axis = { 'time_axis': data.time_axis, 'data_axis': data.data_axis } if hasattr(data, 'sequence_axis'): data_axis['sequence_axis'] = data.sequence_axis meta_shape = meta.shape meta_axis = { 'time_axis': meta.time_axis, 'data_axis': meta.data_axis } if hasattr(meta, 'sequence_axis'): meta_axis['sequence_axis'] = meta.sequence_axis logger = FancyLogger() # Data information logger.line('Data', indent=print_indent) # Matrix logger.data( field='Matrix shape', value=X.shape, indent=print_indent + 2 ) # Item logger.data( field='Item shape', value=data_shape, indent=print_indent + 2 ) logger.data( field='Time', value=data_shape[data_axis['time_axis']], indent=print_indent + 4 ) logger.data( field='Data', value=data_shape[data_axis['data_axis']], indent=print_indent + 4 ) if 'sequence_axis' in data_axis: logger.data( field='Sequence', value=data_shape[data_axis['sequence_axis']], indent=print_indent + 4 ) # Meta information logger.line('Meta', indent=print_indent) # Matrix logger.data( field='Matrix shape', value=Y.shape, indent=print_indent + 2 ) # Item logger.data( field='Item shape', value=meta_shape, indent=print_indent + 2 ) logger.data( field='Time', value=meta_shape[meta_axis['time_axis']], indent=print_indent + 4 ) logger.data( field='Data', value=meta_shape[meta_axis['data_axis']], indent=print_indent + 4 ) if 'sequence_axis' in meta_axis: logger.data( field='Sequence', value=meta_shape[meta_axis['sequence_axis']], indent=print_indent + 4 ) return X, Y, data_size
34.787167
120
0.519951
[ "MIT" ]
AlexBruBuxo/TFG--ASC-Deep-Learning
venv/Lib/site-packages/dcase_util/keras/data.py
22,229
Python
class Action(): ()
7.666667
15
0.478261
[ "MIT" ]
nickswalker/counterpoint-reinforcement-learning
rl/action.py
23
Python
import dataclasses import os from typing import List import hydra @dataclasses.dataclass class ModelConfig: """Configuration for the model. Note that `block_sizes` must be specified using the `dataclasses.field` function, as you are not allowed to supply default values for mutable fields. Instead, the default value is supplied through a default factory function which creates a new list every time. """ architecture: str = 'lenet' hidden_size: int = 20 block_sizes: List[int] = dataclasses.field(default_factory=lambda: [10, 10, 10]) @dataclasses.dataclass class TrainingConfig: model: ModelConfig = ModelConfig() num_epochs: int = 10 data_path: str = 'data.npy' @hydra.main(config_path=None, config_name='config') def main(config: TrainingConfig): print(f'Got configuration: {config}') # Note here: when loading data, should convert to absolute path data_path = hydra.utils.to_absolute_path(config.data_path) print(f'Loading data from {data_path}') # Note here: saving to relative path is set to output folder result_path = os.path.abspath('result.txt') print(f'Saving results to {result_path}') if __name__ == '__main__': from hydra.core.config_store import ConfigStore cs = ConfigStore() cs.store('config', node=TrainingConfig) main()
28.595745
84
0.72247
[ "MIT" ]
wendazhou/cds-bootcamp
lecture3/bootcamp3/script.py
1,344
Python
import numpy as np import h5py as py import matplotlib.pyplot as plt import sys hdf5_file = py.File("..\\Build\\TestsWithGL\\t2d_mpm_chm_t_bar_conference_restart.hdf5", "r") frame_id = 0 th_grp = hdf5_file['TimeHistory']['penetration'] pcl_dset = th_grp['frame_%d' % frame_id]['ParticleData'] pcl_num = pcl_dset.attrs['pcl_num'] print(pcl_num) pcl_stress = np.zeros([pcl_num, 4]) p_min_id = 0 p_min = sys.float_info.min p_max_id = 0 p_max = -sys.float_info.max for pcl_id in range(pcl_num): pcl_data = pcl_dset[pcl_id] pcl_stress[pcl_id][0] = pcl_data['s11'] pcl_stress[pcl_id][1] = pcl_data['s22'] pcl_stress[pcl_id][2] = pcl_data['s12'] pcl_stress[pcl_id][3] = pcl_data['p'] #p = pcl_stress[pcl_id][3] p = (pcl_stress[pcl_id][0] + pcl_stress[pcl_id][1] + pcl_stress[pcl_id][2]) / 3.0 if (p < p_min): p_min = p p_min_id = pcl_id if (p > p_max): p_max = p p_max_id = pcl_id print("p min: %f pcl %d\np max: %f pcl %d" % (p_min, p_min_id, p_max, p_max_id)) hdf5_file.close()
29.055556
93
0.664436
[ "MIT" ]
MingAtUWA/SimpleMPM2
PyUtilities/hdf5_stress_range.py
1,046
Python
from flask import render_template from app import app from app.forms import LoginForm # ... @app.route('/login') def login(): form = LoginForm() return render_template('login.html', title='Sign In', form=form)
21.9
68
0.712329
[ "MPL-2.0", "MPL-2.0-no-copyleft-exception" ]
1586-ItSolSchool/Pythonodavy
app/routes.py
219
Python
from datetime import datetime, timedelta import requests from decouple import config from django.contrib.auth.models import User from django.test import TestCase from django.utils import timezone from .models import Socio class ModelTest(TestCase): def setUp(self): Socio( user=User.objects.create_user( username='00000000', password='000000' ), nome='João de Souza', apelido='João', whatsapp='(86) 9 9123-4567', cpf='068.008.773-79', rg='123456789', data_nascimento='2000-01-01', data_inicio=timezone.now(), data_fim=timezone.now() + timedelta(days=40), is_socio=True, stripe_customer_id='cus_00000000',).save() def test_notificar_email(self): socio = Socio.objects.create( user=User.objects.create_user( username='12345678', password='123456', ), nome='Fulano', stripe_customer_id='cus_123456789', ) notificar = socio.notificar(metodo='email', mensagem='teste') self.assertEqual(notificar, 'Enviando email...') def test_datetime(self): current_period_end = datetime( 2022, 6, 30, 23, 59, 59 ) if current_period_end - datetime.now() > timedelta(days=30): if datetime.now().month < 7: if current_period_end.month > 6: current_period_end = datetime( datetime.now().year, 6, 30, 23, 59, 59 ) def test_adicionar_socio_cheers(self): socio: Socio = Socio.objects.get(user__username='00000000') if socio.data_fim - timezone.now().date() > timedelta(days=30) and socio.is_socio: url = 'https://cheersshop.com.br/socio/adicionar' obj = { "nome": socio.nome, "email": socio.email, "telefone": socio.whatsapp, "matricula": socio.matricula, "observacao": "", "cpf": socio.cpf, "data_fim_plano": socio.data_fim, "vendedor": "1874" } response = requests.post(url, data=obj, headers={ 'Authorization': f'Bearer {config("CHEERS_TOKEN")}'}) self.assertEqual(response.status_code, 200) def test_adicionar_coupom_cheers(self): socio: Socio = Socio.objects.get(user__username='00000000') if socio.is_socio: url = 'https://cheersshop.com.br/codigo' obj = { "nome": socio.cpf, "uso": 1, "ativo": True, "desconto_reais": 70 if socio.is_atleta else 65, "maximo_usuario": "1", "quantidade": "1", "usuario": 192061, "vendedor": "1874", } response = requests.post(url, data=obj, headers={ 'Authorization': f'Bearer {config("CHEERS_TOKEN")}'}) self.assertEqual(response.json()['status'], 'Success')
33.041667
90
0.533733
[ "MIT" ]
leonunesbs/aaafuria-rebon-backend
core/tests.py
3,174
Python
# Script to convert json into proprietary .mat files # Licensed under Apache v2 (see LICENSE) import sys import os import glob import json from scipy.io import savemat def main(json_dir, out_dir): """ Script to convert all .json files in json_dir into corresponding .mat files in out_dir .mat files have the same basename as the .json files This script is meant for data files that contain data from OpenSauce / VoiceSauce variables. """ # Find all .json files in json_dir json_files = glob.glob(os.path.join(json_dir, '*.json')) # Iterate through each .mat file for json_file in json_files: with open(json_file) as f: json_dict = json.load(f) # Write json dict to mat # Check that output directory exists, if not create it if not os.path.isdir(out_dir): os.makedirs(out_dir) fn = os.path.join(out_dir, os.path.splitext(os.path.basename(json_file))[0]) + '.mat' savemat(fn, json_dict) print('Wrote data in {} to {}'.format(json_file, fn)) if __name__ == '__main__': main(sys.argv[1], sys.argv[2])
29.815789
93
0.661077
[ "Apache-2.0" ]
CobiELF/opensauce-python
tools/convert_json_to_mat.py
1,133
Python
"""Model module for images.""" from django.db import models from django.contrib.auth.models import User from imager_profile.models import ImagerProfile # Create your models here. class ImageBaseClass(models.Model): """Base class for Photo and Album classes.""" PRIVATE = 'PRVT' SHARED = 'SHRD' PUBLIC = 'PBLC' PUBLISHED = ((PRIVATE, 'private'), (SHARED, 'shared'), (PUBLIC, 'public')) title = models.CharField(max_length=180) description = models.TextField(max_length=500, blank=True, null=True) date_modified = models.DateField(auto_now=True) date_published = models.DateField(blank=True, null=True) published = models.CharField(choices=PUBLISHED, max_length=8) class Meta: """Meta.""" abstract = True class Photo(ImageBaseClass): """Photo model.""" user = models.ForeignKey(User, on_delete=models.CASCADE, related_name='photo') image = models.ImageField(upload_to='images') date_uploaded = models.DateField(editable=False, auto_now_add=True) def __str__(self): """Print function displays username.""" return self.title class Album(ImageBaseClass): """Album model.""" user = models.ForeignKey(User, on_delete=models.CASCADE, related_name='album') cover = models.ImageField(upload_to='images') date_created = models.DateField(editable=False, auto_now_add=True) photos = models.ManyToManyField(Photo, related_name='albums', blank=True) def __str__(self): """Print function displays username.""" return self.title
29.625
77
0.65642
[ "MIT" ]
Loaye/django-imager-group
imagersite/imager_images/models.py
1,659
Python
# -*- coding: utf-8 -*- # PLEASE DO NOT EDIT THIS FILE, IT IS GENERATED AND WILL BE OVERWRITTEN: # https://github.com/ccxt/ccxt/blob/master/CONTRIBUTING.md#how-to-contribute-code from ccxt.async_support.base.exchange import Exchange from ccxt.base.errors import ExchangeError from ccxt.base.errors import AuthenticationError from ccxt.base.errors import PermissionDenied from ccxt.base.errors import AccountSuspended from ccxt.base.errors import ArgumentsRequired from ccxt.base.errors import BadRequest from ccxt.base.errors import BadSymbol from ccxt.base.errors import InsufficientFunds from ccxt.base.errors import InvalidAddress from ccxt.base.errors import InvalidOrder from ccxt.base.errors import OrderNotFound from ccxt.base.errors import RateLimitExceeded from ccxt.base.errors import ExchangeNotAvailable from ccxt.base.errors import OnMaintenance from ccxt.base.decimal_to_precision import ROUND from ccxt.base.decimal_to_precision import TRUNCATE from ccxt.base.decimal_to_precision import DECIMAL_PLACES from ccxt.base.decimal_to_precision import SIGNIFICANT_DIGITS class bitvavo(Exchange): def describe(self): return self.deep_extend(super(bitvavo, self).describe(), { 'id': 'bitvavo', 'name': 'Bitvavo', 'countries': ['NL'], # Netherlands 'rateLimit': 60, # 1000 requests per minute 'version': 'v2', 'certified': True, 'pro': True, 'has': { 'CORS': None, 'spot': True, 'margin': False, 'swap': False, 'future': False, 'option': False, 'addMargin': False, 'cancelAllOrders': True, 'cancelOrder': True, 'createOrder': True, 'createReduceOnlyOrder': False, 'createStopLimitOrder': True, 'createStopMarketOrder': True, 'createStopOrder': True, 'editOrder': True, 'fetchBalance': True, 'fetchBorrowRate': False, 'fetchBorrowRateHistories': False, 'fetchBorrowRateHistory': False, 'fetchBorrowRates': False, 'fetchBorrowRatesPerSymbol': False, 'fetchCurrencies': True, 'fetchDepositAddress': True, 'fetchDeposits': True, 'fetchFundingHistory': False, 'fetchFundingRate': False, 'fetchFundingRateHistory': False, 'fetchFundingRates': False, 'fetchIndexOHLCV': False, 'fetchLeverage': False, 'fetchLeverageTiers': False, 'fetchMarkets': True, 'fetchMarkOHLCV': False, 'fetchMyTrades': True, 'fetchOHLCV': True, 'fetchOpenInterestHistory': False, 'fetchOpenOrders': True, 'fetchOrder': True, 'fetchOrderBook': True, 'fetchOrders': True, 'fetchPosition': False, 'fetchPositions': False, 'fetchPositionsRisk': False, 'fetchPremiumIndexOHLCV': False, 'fetchTicker': True, 'fetchTickers': True, 'fetchTime': True, 'fetchTrades': True, 'fetchTradingFee': False, 'fetchTradingFees': True, 'fetchTransfer': False, 'fetchTransfers': False, 'fetchWithdrawals': True, 'reduceMargin': False, 'setLeverage': False, 'setMarginMode': False, 'setPositionMode': False, 'transfer': False, 'withdraw': True, }, 'timeframes': { '1m': '1m', '5m': '5m', '15m': '15m', '30m': '30m', '1h': '1h', '2h': '2h', '4h': '4h', '6h': '6h', '8h': '8h', '12h': '12h', '1d': '1d', }, 'urls': { 'logo': 'https://user-images.githubusercontent.com/1294454/169202626-bd130fc5-fcf9-41bb-8d97-6093225c73cd.jpg', 'api': { 'public': 'https://api.bitvavo.com', 'private': 'https://api.bitvavo.com', }, 'www': 'https://bitvavo.com/', 'doc': 'https://docs.bitvavo.com/', 'fees': 'https://bitvavo.com/en/fees', 'referral': 'https://bitvavo.com/?a=24F34952F7', }, 'api': { 'public': { 'get': { 'time': 1, 'markets': 1, 'assets': 1, '{market}/book': 1, '{market}/trades': 5, '{market}/candles': 1, 'ticker/price': 1, 'ticker/book': 1, 'ticker/24h': {'cost': 1, 'noMarket': 25}, }, }, 'private': { 'get': { 'account': 1, 'order': 1, 'orders': 5, 'ordersOpen': {'cost': 1, 'noMarket': 25}, 'trades': 5, 'balance': 5, 'deposit': 1, 'depositHistory': 5, 'withdrawalHistory': 5, }, 'post': { 'order': 1, 'withdrawal': 1, }, 'put': { 'order': 1, }, 'delete': { 'order': 1, 'orders': 1, }, }, }, 'fees': { 'trading': { 'tierBased': True, 'percentage': True, 'taker': self.parse_number('0.0025'), 'maker': self.parse_number('0.002'), 'tiers': { 'taker': [ [self.parse_number('0'), self.parse_number('0.0025')], [self.parse_number('100000'), self.parse_number('0.0020')], [self.parse_number('250000'), self.parse_number('0.0016')], [self.parse_number('500000'), self.parse_number('0.0012')], [self.parse_number('1000000'), self.parse_number('0.0010')], [self.parse_number('2500000'), self.parse_number('0.0008')], [self.parse_number('5000000'), self.parse_number('0.0006')], [self.parse_number('10000000'), self.parse_number('0.0005')], [self.parse_number('25000000'), self.parse_number('0.0004')], ], 'maker': [ [self.parse_number('0'), self.parse_number('0.0015')], [self.parse_number('100000'), self.parse_number('0.0010')], [self.parse_number('250000'), self.parse_number('0.0008')], [self.parse_number('500000'), self.parse_number('0.0006')], [self.parse_number('1000000'), self.parse_number('0.0005')], [self.parse_number('2500000'), self.parse_number('0.0004')], [self.parse_number('5000000'), self.parse_number('0.0004')], [self.parse_number('10000000'), self.parse_number('0.0003')], [self.parse_number('25000000'), self.parse_number('0.0003')], ], }, }, }, 'requiredCredentials': { 'apiKey': True, 'secret': True, }, 'exceptions': { 'exact': { '101': ExchangeError, # Unknown error. Operation may or may not have succeeded. '102': BadRequest, # Invalid JSON. '103': RateLimitExceeded, # You have been rate limited. Please observe the Bitvavo-Ratelimit-AllowAt header to see when you can send requests again. Failure to respect self limit will result in an IP ban. The default value is 1000 weighted requests per minute. Please contact support if you wish to increase self limit. '104': RateLimitExceeded, # You have been rate limited by the number of new orders. The default value is 100 new orders per second or 100.000 new orders per day. Please update existing orders instead of cancelling and creating orders. Please contact support if you wish to increase self limit. '105': PermissionDenied, # Your IP or API key has been banned for not respecting the rate limit. The ban expires at ${expiryInMs}. '107': ExchangeNotAvailable, # The matching engine is overloaded. Please wait 500ms and resubmit your order. '108': ExchangeNotAvailable, # The matching engine could not process your order in time. Please consider increasing the access window or resubmit your order. '109': ExchangeNotAvailable, # The matching engine did not respond in time. Operation may or may not have succeeded. '110': BadRequest, # Invalid endpoint. Please check url and HTTP method. '200': BadRequest, # ${param} url parameter is not supported. Please note that parameters are case-sensitive and use body parameters for PUT and POST requests. '201': BadRequest, # ${param} body parameter is not supported. Please note that parameters are case-sensitive and use url parameters for GET and DELETE requests. '202': BadRequest, # ${param} order parameter is not supported. Please note that certain parameters are only allowed for market or limit orders. '203': BadSymbol, # {"errorCode":203,"error":"symbol parameter is required."} '204': BadRequest, # ${param} parameter is not supported. '205': BadRequest, # ${param} parameter is invalid. '206': BadRequest, # Use either ${paramA} or ${paramB}. The usage of both parameters at the same time is not supported. '210': InvalidOrder, # Amount exceeds the maximum allowed amount(1000000000). '211': InvalidOrder, # Price exceeds the maximum allowed amount(100000000000). '212': InvalidOrder, # Amount is below the minimum allowed amount for self asset. '213': InvalidOrder, # Price is below the minimum allowed amount(0.000000000000001). '214': InvalidOrder, # Price is too detailed '215': InvalidOrder, # Price is too detailed. A maximum of 15 digits behind the decimal point are allowed. '216': InsufficientFunds, # {"errorCode":216,"error":"You do not have sufficient balance to complete self operation."} '217': InvalidOrder, # {"errorCode":217,"error":"Minimum order size in quote currency is 5 EUR or 0.001 BTC."} '230': ExchangeError, # The order is rejected by the matching engine. '231': ExchangeError, # The order is rejected by the matching engine. TimeInForce must be GTC when markets are paused. '232': BadRequest, # You must change at least one of amount, amountRemaining, price, timeInForce, selfTradePrevention or postOnly. '233': InvalidOrder, # {"errorCode":233,"error":"Order must be active(status new or partiallyFilled) to allow updating/cancelling."} '234': InvalidOrder, # Market orders cannot be updated. '235': ExchangeError, # You can only have 100 open orders on each book. '236': BadRequest, # You can only update amount or amountRemaining, not both. '240': OrderNotFound, # {"errorCode":240,"error":"No order found. Please be aware that simultaneously updating the same order may return self error."} '300': AuthenticationError, # Authentication is required for self endpoint. '301': AuthenticationError, # {"errorCode":301,"error":"API Key must be of length 64."} '302': AuthenticationError, # Timestamp is invalid. This must be a timestamp in ms. See Bitvavo-Access-Timestamp header or timestamp parameter for websocket. '303': AuthenticationError, # Window must be between 100 and 60000 ms. '304': AuthenticationError, # Request was not received within acceptable window(default 30s, or custom with Bitvavo-Access-Window header) of Bitvavo-Access-Timestamp header(or timestamp parameter for websocket). # '304': AuthenticationError, # Authentication is required for self endpoint. '305': AuthenticationError, # {"errorCode":305,"error":"No active API key found."} '306': AuthenticationError, # No active API key found. Please ensure that you have confirmed the API key by e-mail. '307': PermissionDenied, # This key does not allow access from self IP. '308': AuthenticationError, # {"errorCode":308,"error":"The signature length is invalid(HMAC-SHA256 should return a 64 length hexadecimal string)."} '309': AuthenticationError, # {"errorCode":309,"error":"The signature is invalid."} '310': PermissionDenied, # This key does not allow trading actions. '311': PermissionDenied, # This key does not allow showing account information. '312': PermissionDenied, # This key does not allow withdrawal of funds. '315': BadRequest, # Websocket connections may not be used in a browser. Please use REST requests for self. '317': AccountSuspended, # This account is locked. Please contact support. '400': ExchangeError, # Unknown error. Please contact support with a copy of your request. '401': ExchangeError, # Deposits for self asset are not available at self time. '402': PermissionDenied, # You need to verify your identitiy before you can deposit and withdraw digital assets. '403': PermissionDenied, # You need to verify your phone number before you can deposit and withdraw digital assets. '404': OnMaintenance, # Could not complete self operation, because our node cannot be reached. Possibly under maintenance. '405': ExchangeError, # You cannot withdraw digital assets during a cooldown period. This is the result of newly added bank accounts. '406': BadRequest, # {"errorCode":406,"error":"Your withdrawal is too small."} '407': ExchangeError, # Internal transfer is not possible. '408': InsufficientFunds, # {"errorCode":408,"error":"You do not have sufficient balance to complete self operation."} '409': InvalidAddress, # {"errorCode":409,"error":"This is not a verified bank account."} '410': ExchangeError, # Withdrawals for self asset are not available at self time. '411': BadRequest, # You can not transfer assets to yourself. '412': InvalidAddress, # {"errorCode":412,"error":"eth_address_invalid."} '413': InvalidAddress, # This address violates the whitelist. '414': ExchangeError, # You cannot withdraw assets within 2 minutes of logging in. }, 'broad': { 'start parameter is invalid': BadRequest, # {"errorCode":205,"error":"start parameter is invalid."} 'symbol parameter is invalid': BadSymbol, # {"errorCode":205,"error":"symbol parameter is invalid."} 'amount parameter is invalid': InvalidOrder, # {"errorCode":205,"error":"amount parameter is invalid."} 'orderId parameter is invalid': InvalidOrder, # {"errorCode":205,"error":"orderId parameter is invalid."} }, }, 'options': { 'BITVAVO-ACCESS-WINDOW': 10000, # default 10 sec 'fetchCurrencies': { 'expires': 1000, # 1 second }, }, 'precisionMode': SIGNIFICANT_DIGITS, 'commonCurrencies': { 'MIOTA': 'IOTA', # https://github.com/ccxt/ccxt/issues/7487 }, }) def currency_to_precision(self, code, fee, networkCode=None): return self.decimal_to_precision(fee, 0, self.currencies[code]['precision']) def amount_to_precision(self, symbol, amount): # https://docs.bitfinex.com/docs/introduction#amount-precision # The amount field allows up to 8 decimals. # Anything exceeding self will be rounded to the 8th decimal. return self.decimal_to_precision(amount, TRUNCATE, self.markets[symbol]['precision']['amount'], DECIMAL_PLACES) def price_to_precision(self, symbol, price): price = self.decimal_to_precision(price, ROUND, self.markets[symbol]['precision']['price'], self.precisionMode) # https://docs.bitfinex.com/docs/introduction#price-precision # The precision level of all trading prices is based on significant figures. # All pairs on Bitfinex use up to 5 significant digits and up to 8 decimals(e.g. 1.2345, 123.45, 1234.5, 0.00012345). # Prices submit with a precision larger than 5 will be cut by the API. return self.decimal_to_precision(price, TRUNCATE, 8, DECIMAL_PLACES) async def fetch_time(self, params={}): """ fetches the current integer timestamp in milliseconds from the exchange server :param dict params: extra parameters specific to the bitvavo api endpoint :returns int: the current integer timestamp in milliseconds from the exchange server """ response = await self.publicGetTime(params) # # {"time": 1590379519148} # return self.safe_integer(response, 'time') async def fetch_markets(self, params={}): """ retrieves data on all markets for bitvavo :param dict params: extra parameters specific to the exchange api endpoint :returns [dict]: an array of objects representing market data """ response = await self.publicGetMarkets(params) currencies = await self.fetch_currencies_from_cache(params) currenciesById = self.index_by(currencies, 'symbol') # # [ # { # "market":"ADA-BTC", # "status":"trading", # "trading" "halted" "auction" # "base":"ADA", # "quote":"BTC", # "pricePrecision":5, # "minOrderInBaseAsset":"100", # "minOrderInQuoteAsset":"0.001", # "orderTypes": ["market", "limit"] # } # ] # result = [] for i in range(0, len(response)): market = response[i] id = self.safe_string(market, 'market') baseId = self.safe_string(market, 'base') quoteId = self.safe_string(market, 'quote') base = self.safe_currency_code(baseId) quote = self.safe_currency_code(quoteId) status = self.safe_string(market, 'status') baseCurrency = self.safe_value(currenciesById, baseId) amountPrecision = None if baseCurrency is not None: amountPrecision = self.safe_integer(baseCurrency, 'decimals', 8) result.append({ 'id': id, 'symbol': base + '/' + quote, 'base': base, 'quote': quote, 'settle': None, 'baseId': baseId, 'quoteId': quoteId, 'settleId': None, 'type': 'spot', 'spot': True, 'margin': False, 'swap': False, 'future': False, 'option': False, 'active': (status == 'trading'), 'contract': False, 'linear': None, 'inverse': None, 'contractSize': None, 'expiry': None, 'expiryDatetime': None, 'strike': None, 'optionType': None, 'precision': { 'amount': amountPrecision, 'price': self.safe_integer(market, 'pricePrecision'), }, 'limits': { 'leverage': { 'min': None, 'max': None, }, 'amount': { 'min': self.safe_number(market, 'minOrderInBaseAsset'), 'max': None, }, 'price': { 'min': None, 'max': None, }, 'cost': { 'min': self.safe_number(market, 'minOrderInQuoteAsset'), 'max': None, }, }, 'info': market, }) return result async def fetch_currencies_from_cache(self, params={}): # self method is now redundant # currencies are now fetched before markets options = self.safe_value(self.options, 'fetchCurrencies', {}) timestamp = self.safe_integer(options, 'timestamp') expires = self.safe_integer(options, 'expires', 1000) now = self.milliseconds() if (timestamp is None) or ((now - timestamp) > expires): response = await self.publicGetAssets(params) self.options['fetchCurrencies'] = self.extend(options, { 'response': response, 'timestamp': now, }) return self.safe_value(self.options['fetchCurrencies'], 'response') async def fetch_currencies(self, params={}): """ fetches all available currencies on an exchange :param dict params: extra parameters specific to the bitvavo api endpoint :returns dict: an associative dictionary of currencies """ response = await self.fetch_currencies_from_cache(params) # # [ # { # "symbol":"ADA", # "name":"Cardano", # "decimals":6, # "depositFee":"0", # "depositConfirmations":15, # "depositStatus":"OK", # "OK", "MAINTENANCE", "DELISTED" # "withdrawalFee":"0.2", # "withdrawalMinAmount":"0.2", # "withdrawalStatus":"OK", # "OK", "MAINTENANCE", "DELISTED" # "networks": ["Mainnet"], # "ETH", "NEO", "ONT", "SEPA", "VET" # "message":"", # }, # ] # result = {} for i in range(0, len(response)): currency = response[i] id = self.safe_string(currency, 'symbol') code = self.safe_currency_code(id) depositStatus = self.safe_value(currency, 'depositStatus') deposit = (depositStatus == 'OK') withdrawalStatus = self.safe_value(currency, 'withdrawalStatus') withdrawal = (withdrawalStatus == 'OK') active = deposit and withdrawal name = self.safe_string(currency, 'name') precision = self.safe_integer(currency, 'decimals', 8) result[code] = { 'id': id, 'info': currency, 'code': code, 'name': name, 'active': active, 'deposit': deposit, 'withdraw': withdrawal, 'fee': self.safe_number(currency, 'withdrawalFee'), 'precision': precision, 'limits': { 'amount': { 'min': None, 'max': None, }, 'withdraw': { 'min': self.safe_number(currency, 'withdrawalMinAmount'), 'max': None, }, }, } return result async def fetch_ticker(self, symbol, params={}): """ fetches a price ticker, a statistical calculation with the information calculated over the past 24 hours for a specific market :param str symbol: unified symbol of the market to fetch the ticker for :param dict params: extra parameters specific to the bitvavo api endpoint :returns dict: a `ticker structure <https://docs.ccxt.com/en/latest/manual.html#ticker-structure>` """ await self.load_markets() market = self.market(symbol) request = { 'market': market['id'], } response = await self.publicGetTicker24h(self.extend(request, params)) # # { # "market":"ETH-BTC", # "open":"0.022578", # "high":"0.023019", # "low":"0.022573", # "last":"0.023019", # "volume":"25.16366324", # "volumeQuote":"0.57333305", # "bid":"0.023039", # "bidSize":"0.53500578", # "ask":"0.023041", # "askSize":"0.47859202", # "timestamp":1590381666900 # } # return self.parse_ticker(response, market) def parse_ticker(self, ticker, market=None): # # fetchTicker # # { # "market":"ETH-BTC", # "open":"0.022578", # "high":"0.023019", # "low":"0.022573", # "last":"0.023019", # "volume":"25.16366324", # "volumeQuote":"0.57333305", # "bid":"0.023039", # "bidSize":"0.53500578", # "ask":"0.023041", # "askSize":"0.47859202", # "timestamp":1590381666900 # } # marketId = self.safe_string(ticker, 'market') symbol = self.safe_symbol(marketId, market, '-') timestamp = self.safe_integer(ticker, 'timestamp') last = self.safe_string(ticker, 'last') baseVolume = self.safe_string(ticker, 'volume') quoteVolume = self.safe_string(ticker, 'volumeQuote') open = self.safe_string(ticker, 'open') return self.safe_ticker({ 'symbol': symbol, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'high': self.safe_string(ticker, 'high'), 'low': self.safe_string(ticker, 'low'), 'bid': self.safe_string(ticker, 'bid'), 'bidVolume': self.safe_string(ticker, 'bidSize'), 'ask': self.safe_string(ticker, 'ask'), 'askVolume': self.safe_string(ticker, 'askSize'), 'vwap': None, 'open': open, 'close': last, 'last': last, 'previousClose': None, # previous day close 'change': None, 'percentage': None, 'average': None, 'baseVolume': baseVolume, 'quoteVolume': quoteVolume, 'info': ticker, }, market) async def fetch_tickers(self, symbols=None, params={}): """ fetches price tickers for multiple markets, statistical calculations with the information calculated over the past 24 hours each market :param [str]|None symbols: unified symbols of the markets to fetch the ticker for, all market tickers are returned if not assigned :param dict params: extra parameters specific to the bitvavo api endpoint :returns dict: an array of `ticker structures <https://docs.ccxt.com/en/latest/manual.html#ticker-structure>` """ await self.load_markets() response = await self.publicGetTicker24h(params) # # [ # { # "market":"ADA-BTC", # "open":"0.0000059595", # "high":"0.0000059765", # "low":"0.0000059595", # "last":"0.0000059765", # "volume":"2923.172", # "volumeQuote":"0.01743483", # "bid":"0.0000059515", # "bidSize":"1117.630919", # "ask":"0.0000059585", # "askSize":"809.999739", # "timestamp":1590382266324 # } # ] # return self.parse_tickers(response, symbols) async def fetch_trades(self, symbol, since=None, limit=None, params={}): """ get the list of most recent trades for a particular symbol :param str symbol: unified symbol of the market to fetch trades for :param int|None since: timestamp in ms of the earliest trade to fetch :param int|None limit: the maximum amount of trades to fetch :param dict params: extra parameters specific to the bitvavo api endpoint :returns [dict]: a list of `trade structures <https://docs.ccxt.com/en/latest/manual.html?#public-trades>` """ await self.load_markets() market = self.market(symbol) request = { 'market': market['id'], # 'limit': 500, # default 500, max 1000 # 'start': since, # 'end': self.milliseconds(), # 'tradeIdFrom': '57b1159b-6bf5-4cde-9e2c-6bd6a5678baf', # 'tradeIdTo': '57b1159b-6bf5-4cde-9e2c-6bd6a5678baf', } if limit is not None: request['limit'] = limit if since is not None: request['start'] = since response = await self.publicGetMarketTrades(self.extend(request, params)) # # [ # { # "id":"94154c98-6e8b-4e33-92a8-74e33fc05650", # "timestamp":1590382761859, # "amount":"0.06026079", # "price":"8095.3", # "side":"buy" # } # ] # return self.parse_trades(response, market, since, limit) def parse_trade(self, trade, market=None): # # fetchTrades(public) # # { # "id":"94154c98-6e8b-4e33-92a8-74e33fc05650", # "timestamp":1590382761859, # "amount":"0.06026079", # "price":"8095.3", # "side":"buy" # } # # createOrder, fetchOpenOrders, fetchOrders, editOrder(private) # # { # "id":"b0c86aa5-6ed3-4a2d-ba3a-be9a964220f4", # "timestamp":1590505649245, # "amount":"0.249825", # "price":"183.49", # "taker":true, # "fee":"0.12038925", # "feeCurrency":"EUR", # "settled":true # } # # fetchMyTrades(private) # # { # "id":"b0c86aa5-6ed3-4a2d-ba3a-be9a964220f4", # "orderId":"af76d6ce-9f7c-4006-b715-bb5d430652d0", # "timestamp":1590505649245, # "market":"ETH-EUR", # "side":"sell", # "amount":"0.249825", # "price":"183.49", # "taker":true, # "fee":"0.12038925", # "feeCurrency":"EUR", # "settled":true # } # # watchMyTrades(private) # # { # event: 'fill', # timestamp: 1590964470132, # market: 'ETH-EUR', # orderId: '85d082e1-eda4-4209-9580-248281a29a9a', # fillId: '861d2da5-aa93-475c-8d9a-dce431bd4211', # side: 'sell', # amount: '0.1', # price: '211.46', # taker: True, # fee: '0.056', # feeCurrency: 'EUR' # } # priceString = self.safe_string(trade, 'price') amountString = self.safe_string(trade, 'amount') timestamp = self.safe_integer(trade, 'timestamp') side = self.safe_string(trade, 'side') id = self.safe_string_2(trade, 'id', 'fillId') marketId = self.safe_string(trade, 'market') symbol = self.safe_symbol(marketId, market, '-') taker = self.safe_value(trade, 'taker') takerOrMaker = None if taker is not None: takerOrMaker = 'taker' if taker else 'maker' feeCostString = self.safe_string(trade, 'fee') fee = None if feeCostString is not None: feeCurrencyId = self.safe_string(trade, 'feeCurrency') feeCurrencyCode = self.safe_currency_code(feeCurrencyId) fee = { 'cost': feeCostString, 'currency': feeCurrencyCode, } orderId = self.safe_string(trade, 'orderId') return self.safe_trade({ 'info': trade, 'id': id, 'symbol': symbol, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'order': orderId, 'type': None, 'side': side, 'takerOrMaker': takerOrMaker, 'price': priceString, 'amount': amountString, 'cost': None, 'fee': fee, }, market) async def fetch_trading_fees(self, params={}): """ fetch the trading fees for multiple markets :param dict params: extra parameters specific to the bitvavo api endpoint :returns dict: a dictionary of `fee structures <https://docs.ccxt.com/en/latest/manual.html#fee-structure>` indexed by market symbols """ await self.load_markets() response = await self.privateGetAccount(params) # # { # "fees": { # "taker": "0.0025", # "maker": "0.0015", # "volume": "10000.00" # } # } # fees = self.safe_value(response, 'fees') maker = self.safe_number(fees, 'maker') taker = self.safe_number(fees, 'taker') result = {} for i in range(0, len(self.symbols)): symbol = self.symbols[i] result[symbol] = { 'info': response, 'symbol': symbol, 'maker': maker, 'taker': taker, 'percentage': True, 'tierBased': True, } return result async def fetch_order_book(self, symbol, limit=None, params={}): """ fetches information on open orders with bid(buy) and ask(sell) prices, volumes and other data :param str symbol: unified symbol of the market to fetch the order book for :param int|None limit: the maximum amount of order book entries to return :param dict params: extra parameters specific to the bitvavo api endpoint :returns dict: A dictionary of `order book structures <https://docs.ccxt.com/en/latest/manual.html#order-book-structure>` indexed by market symbols """ await self.load_markets() request = { 'market': self.market_id(symbol), } if limit is not None: request['depth'] = limit response = await self.publicGetMarketBook(self.extend(request, params)) # # { # "market":"BTC-EUR", # "nonce":35883831, # "bids":[ # ["8097.4","0.6229099"], # ["8097.2","0.64151283"], # ["8097.1","0.24966294"], # ], # "asks":[ # ["8097.5","1.36916911"], # ["8098.8","0.33462248"], # ["8099.3","1.12908646"], # ] # } # orderbook = self.parse_order_book(response, symbol) orderbook['nonce'] = self.safe_integer(response, 'nonce') return orderbook def parse_ohlcv(self, ohlcv, market=None): # # [ # 1590383700000, # "8088.5", # "8088.5", # "8088.5", # "8088.5", # "0.04788623" # ] # return [ self.safe_integer(ohlcv, 0), self.safe_number(ohlcv, 1), self.safe_number(ohlcv, 2), self.safe_number(ohlcv, 3), self.safe_number(ohlcv, 4), self.safe_number(ohlcv, 5), ] async def fetch_ohlcv(self, symbol, timeframe='1m', since=None, limit=None, params={}): """ fetches historical candlestick data containing the open, high, low, and close price, and the volume of a market :param str symbol: unified symbol of the market to fetch OHLCV data for :param str timeframe: the length of time each candle represents :param int|None since: timestamp in ms of the earliest candle to fetch :param int|None limit: the maximum amount of candles to fetch :param dict params: extra parameters specific to the bitvavo api endpoint :returns [[int]]: A list of candles ordered as timestamp, open, high, low, close, volume """ await self.load_markets() market = self.market(symbol) request = { 'market': market['id'], 'interval': self.timeframes[timeframe], # 'limit': 1440, # default 1440, max 1440 # 'start': since, # 'end': self.milliseconds(), } if since is not None: # https://github.com/ccxt/ccxt/issues/9227 duration = self.parse_timeframe(timeframe) request['start'] = since if limit is None: limit = 1440 request['end'] = self.sum(since, limit * duration * 1000) if limit is not None: request['limit'] = limit # default 1440, max 1440 response = await self.publicGetMarketCandles(self.extend(request, params)) # # [ # [1590383700000,"8088.5","8088.5","8088.5","8088.5","0.04788623"], # [1590383580000,"8091.3","8091.5","8091.3","8091.5","0.04931221"], # [1590383520000,"8090.3","8092.7","8090.3","8092.5","0.04001286"], # ] # return self.parse_ohlcvs(response, market, timeframe, since, limit) def parse_balance(self, response): result = { 'info': response, 'timestamp': None, 'datetime': None, } for i in range(0, len(response)): balance = response[i] currencyId = self.safe_string(balance, 'symbol') code = self.safe_currency_code(currencyId) account = self.account() account['free'] = self.safe_string(balance, 'available') account['used'] = self.safe_string(balance, 'inOrder') result[code] = account return self.safe_balance(result) async def fetch_balance(self, params={}): """ query for balance and get the amount of funds available for trading or funds locked in orders :param dict params: extra parameters specific to the bitvavo api endpoint :returns dict: a `balance structure <https://docs.ccxt.com/en/latest/manual.html?#balance-structure>` """ await self.load_markets() response = await self.privateGetBalance(params) # # [ # { # "symbol": "BTC", # "available": "1.57593193", # "inOrder": "0.74832374" # } # ] # return self.parse_balance(response) async def fetch_deposit_address(self, code, params={}): """ fetch the deposit address for a currency associated with self account :param str code: unified currency code :param dict params: extra parameters specific to the bitvavo api endpoint :returns dict: an `address structure <https://docs.ccxt.com/en/latest/manual.html#address-structure>` """ await self.load_markets() currency = self.currency(code) request = { 'symbol': currency['id'], } response = await self.privateGetDeposit(self.extend(request, params)) # # { # "address": "0x449889e3234514c45d57f7c5a571feba0c7ad567", # "paymentId": "10002653" # } # address = self.safe_string(response, 'address') tag = self.safe_string(response, 'paymentId') self.check_address(address) return { 'currency': code, 'address': address, 'tag': tag, 'network': None, 'info': response, } async def create_order(self, symbol, type, side, amount, price=None, params={}): """ create a trade order :param str symbol: unified symbol of the market to create an order in :param str type: 'market' or 'limit' :param str side: 'buy' or 'sell' :param float amount: how much of currency you want to trade in units of base currency :param float price: the price at which the order is to be fullfilled, in units of the quote currency, ignored in market orders :param dict params: extra parameters specific to the bitvavo api endpoint :returns dict: an `order structure <https://docs.ccxt.com/en/latest/manual.html#order-structure>` """ await self.load_markets() market = self.market(symbol) request = { 'market': market['id'], 'side': side, 'orderType': type, # 'market', 'limit', 'stopLoss', 'stopLossLimit', 'takeProfit', 'takeProfitLimit' # 'amount': self.amount_to_precision(symbol, amount), # 'price': self.price_to_precision(symbol, price), # 'amountQuote': self.cost_to_precision(symbol, cost), # 'timeInForce': 'GTC', # 'GTC', 'IOC', 'FOK' # 'selfTradePrevention': 'decrementAndCancel', # 'decrementAndCancel', 'cancelOldest', 'cancelNewest', 'cancelBoth' # 'postOnly': False, # 'disableMarketProtection': False, # don't cancel if the next fill price is 10% worse than the best fill price # 'responseRequired': True, # False is faster } isStopLimit = (type == 'stopLossLimit') or (type == 'takeProfitLimit') isStopMarket = (type == 'stopLoss') or (type == 'takeProfit') if type == 'market': cost = None if price is not None: cost = amount * price else: cost = self.safe_number_2(params, 'cost', 'amountQuote') if cost is not None: precision = market['precision']['price'] request['amountQuote'] = self.decimal_to_precision(cost, TRUNCATE, precision, self.precisionMode) else: request['amount'] = self.amount_to_precision(symbol, amount) params = self.omit(params, ['cost', 'amountQuote']) elif type == 'limit': request['price'] = self.price_to_precision(symbol, price) request['amount'] = self.amount_to_precision(symbol, amount) elif isStopMarket or isStopLimit: stopPrice = self.safe_number_2(params, 'stopPrice', 'triggerAmount') if stopPrice is None: if isStopLimit: raise ArgumentsRequired(self.id + ' createOrder() requires a stopPrice parameter for a ' + type + ' order') elif isStopMarket: if price is None: raise ArgumentsRequired(self.id + ' createOrder() requires a price argument or a stopPrice parameter for a ' + type + ' order') else: stopPrice = price if isStopLimit: request['price'] = self.price_to_precision(symbol, price) params = self.omit(params, ['stopPrice', 'triggerAmount']) request['triggerAmount'] = self.price_to_precision(symbol, stopPrice) request['triggerType'] = 'price' request['amount'] = self.amount_to_precision(symbol, amount) response = await self.privatePostOrder(self.extend(request, params)) # # { # "orderId":"af76d6ce-9f7c-4006-b715-bb5d430652d0", # "market":"ETH-EUR", # "created":1590505649241, # "updated":1590505649241, # "status":"filled", # "side":"sell", # "orderType":"market", # "amount":"0.249825", # "amountRemaining":"0", # "onHold":"0", # "onHoldCurrency":"ETH", # "filledAmount":"0.249825", # "filledAmountQuote":"45.84038925", # "feePaid":"0.12038925", # "feeCurrency":"EUR", # "fills":[ # { # "id":"b0c86aa5-6ed3-4a2d-ba3a-be9a964220f4", # "timestamp":1590505649245, # "amount":"0.249825", # "price":"183.49", # "taker":true, # "fee":"0.12038925", # "feeCurrency":"EUR", # "settled":true # } # ], # "selfTradePrevention":"decrementAndCancel", # "visible":false, # "disableMarketProtection":false # } # return self.parse_order(response, market) async def edit_order(self, id, symbol, type, side, amount=None, price=None, params={}): await self.load_markets() market = self.market(symbol) request = {} amountRemaining = self.safe_number(params, 'amountRemaining') params = self.omit(params, 'amountRemaining') if price is not None: request['price'] = self.price_to_precision(symbol, price) if amount is not None: request['amount'] = self.amount_to_precision(symbol, amount) if amountRemaining is not None: request['amountRemaining'] = self.amount_to_precision(symbol, amountRemaining) request = self.extend(request, params) if request: request['orderId'] = id request['market'] = market['id'] response = await self.privatePutOrder(self.extend(request, params)) return self.parse_order(response, market) else: raise ArgumentsRequired(self.id + ' editOrder() requires an amount argument, or a price argument, or non-empty params') async def cancel_order(self, id, symbol=None, params={}): """ cancels an open order :param str id: order id :param str symbol: unified symbol of the market the order was made in :param dict params: extra parameters specific to the bitvavo api endpoint :returns dict: An `order structure <https://docs.ccxt.com/en/latest/manual.html#order-structure>` """ if symbol is None: raise ArgumentsRequired(self.id + ' cancelOrder() requires a symbol argument') await self.load_markets() market = self.market(symbol) request = { 'orderId': id, 'market': market['id'], } response = await self.privateDeleteOrder(self.extend(request, params)) # # { # "orderId": "2e7ce7fc-44e2-4d80-a4a7-d079c4750b61" # } # return self.parse_order(response, market) async def cancel_all_orders(self, symbol=None, params={}): """ cancel all open orders :param str|None symbol: unified market symbol, only orders in the market of self symbol are cancelled when symbol is not None :param dict params: extra parameters specific to the bitvavo api endpoint :returns [dict]: a list of `order structures <https://docs.ccxt.com/en/latest/manual.html#order-structure>` """ await self.load_markets() request = {} market = None if symbol is not None: market = self.market(symbol) request['market'] = market['id'] response = await self.privateDeleteOrders(self.extend(request, params)) # # [ # { # "orderId": "1be6d0df-d5dc-4b53-a250-3376f3b393e6" # } # ] # return self.parse_orders(response, market) async def fetch_order(self, id, symbol=None, params={}): """ fetches information on an order made by the user :param str symbol: unified symbol of the market the order was made in :param dict params: extra parameters specific to the bitvavo api endpoint :returns dict: An `order structure <https://docs.ccxt.com/en/latest/manual.html#order-structure>` """ if symbol is None: raise ArgumentsRequired(self.id + ' fetchOrder() requires a symbol argument') await self.load_markets() market = self.market(symbol) request = { 'orderId': id, 'market': market['id'], } response = await self.privateGetOrder(self.extend(request, params)) # # { # "orderId":"af76d6ce-9f7c-4006-b715-bb5d430652d0", # "market":"ETH-EUR", # "created":1590505649241, # "updated":1590505649241, # "status":"filled", # "side":"sell", # "orderType":"market", # "amount":"0.249825", # "amountRemaining":"0", # "onHold":"0", # "onHoldCurrency":"ETH", # "filledAmount":"0.249825", # "filledAmountQuote":"45.84038925", # "feePaid":"0.12038925", # "feeCurrency":"EUR", # "fills":[ # { # "id":"b0c86aa5-6ed3-4a2d-ba3a-be9a964220f4", # "timestamp":1590505649245, # "amount":"0.249825", # "price":"183.49", # "taker":true, # "fee":"0.12038925", # "feeCurrency":"EUR", # "settled":true # } # ], # "selfTradePrevention":"decrementAndCancel", # "visible":false, # "disableMarketProtection":false # } # return self.parse_order(response, market) async def fetch_orders(self, symbol=None, since=None, limit=None, params={}): if symbol is None: raise ArgumentsRequired(self.id + ' fetchOrders() requires a symbol argument') await self.load_markets() market = self.market(symbol) request = { 'market': market['id'], # 'limit': 500, # 'start': since, # 'end': self.milliseconds(), # 'orderIdFrom': 'af76d6ce-9f7c-4006-b715-bb5d430652d0', # 'orderIdTo': 'af76d6ce-9f7c-4006-b715-bb5d430652d0', } if since is not None: request['start'] = since if limit is not None: request['limit'] = limit # default 500, max 1000 response = await self.privateGetOrders(self.extend(request, params)) # # [ # { # "orderId":"af76d6ce-9f7c-4006-b715-bb5d430652d0", # "market":"ETH-EUR", # "created":1590505649241, # "updated":1590505649241, # "status":"filled", # "side":"sell", # "orderType":"market", # "amount":"0.249825", # "amountRemaining":"0", # "onHold":"0", # "onHoldCurrency":"ETH", # "filledAmount":"0.249825", # "filledAmountQuote":"45.84038925", # "feePaid":"0.12038925", # "feeCurrency":"EUR", # "fills":[ # { # "id":"b0c86aa5-6ed3-4a2d-ba3a-be9a964220f4", # "timestamp":1590505649245, # "amount":"0.249825", # "price":"183.49", # "taker":true, # "fee":"0.12038925", # "feeCurrency":"EUR", # "settled":true # } # ], # "selfTradePrevention":"decrementAndCancel", # "visible":false, # "disableMarketProtection":false # } # ] # return self.parse_orders(response, market, since, limit) async def fetch_open_orders(self, symbol=None, since=None, limit=None, params={}): """ fetch all unfilled currently open orders :param str|None symbol: unified market symbol :param int|None since: the earliest time in ms to fetch open orders for :param int|None limit: the maximum number of open orders structures to retrieve :param dict params: extra parameters specific to the bitvavo api endpoint :returns [dict]: a list of `order structures <https://docs.ccxt.com/en/latest/manual.html#order-structure>` """ await self.load_markets() request = { # 'market': market['id'], # rate limit 25 without a market, 1 with market specified } market = None if symbol is not None: market = self.market(symbol) request['market'] = market['id'] response = await self.privateGetOrdersOpen(self.extend(request, params)) # # [ # { # "orderId":"af76d6ce-9f7c-4006-b715-bb5d430652d0", # "market":"ETH-EUR", # "created":1590505649241, # "updated":1590505649241, # "status":"filled", # "side":"sell", # "orderType":"market", # "amount":"0.249825", # "amountRemaining":"0", # "onHold":"0", # "onHoldCurrency":"ETH", # "filledAmount":"0.249825", # "filledAmountQuote":"45.84038925", # "feePaid":"0.12038925", # "feeCurrency":"EUR", # "fills":[ # { # "id":"b0c86aa5-6ed3-4a2d-ba3a-be9a964220f4", # "timestamp":1590505649245, # "amount":"0.249825", # "price":"183.49", # "taker":true, # "fee":"0.12038925", # "feeCurrency":"EUR", # "settled":true # } # ], # "selfTradePrevention":"decrementAndCancel", # "visible":false, # "disableMarketProtection":false # } # ] # return self.parse_orders(response, market, since, limit) def parse_order_status(self, status): statuses = { 'new': 'open', 'canceled': 'canceled', 'canceledAuction': 'canceled', 'canceledSelfTradePrevention': 'canceled', 'canceledIOC': 'canceled', 'canceledFOK': 'canceled', 'canceledMarketProtection': 'canceled', 'canceledPostOnly': 'canceled', 'filled': 'closed', 'partiallyFilled': 'open', 'expired': 'canceled', 'rejected': 'canceled', 'awaitingTrigger': 'open', # https://github.com/ccxt/ccxt/issues/8489 } return self.safe_string(statuses, status, status) def parse_order(self, order, market=None): # # cancelOrder, cancelAllOrders # # { # "orderId": "2e7ce7fc-44e2-4d80-a4a7-d079c4750b61" # } # # createOrder, fetchOrder, fetchOpenOrders, fetchOrders, editOrder # # { # "orderId":"af76d6ce-9f7c-4006-b715-bb5d430652d0", # "market":"ETH-EUR", # "created":1590505649241, # "updated":1590505649241, # "status":"filled", # "side":"sell", # "orderType":"market", # "amount":"0.249825", # "amountRemaining":"0", # "price": "183.49", # limit orders only # "onHold":"0", # "onHoldCurrency":"ETH", # "filledAmount":"0.249825", # "filledAmountQuote":"45.84038925", # "feePaid":"0.12038925", # "feeCurrency":"EUR", # "fills":[ # { # "id":"b0c86aa5-6ed3-4a2d-ba3a-be9a964220f4", # "timestamp":1590505649245, # "amount":"0.249825", # "price":"183.49", # "taker":true, # "fee":"0.12038925", # "feeCurrency":"EUR", # "settled":true # } # ], # "selfTradePrevention":"decrementAndCancel", # "visible":false, # "disableMarketProtection":false # "timeInForce": "GTC", # "postOnly": True, # } # id = self.safe_string(order, 'orderId') timestamp = self.safe_integer(order, 'created') marketId = self.safe_string(order, 'market') market = self.safe_market(marketId, market, '-') symbol = market['symbol'] status = self.parse_order_status(self.safe_string(order, 'status')) side = self.safe_string(order, 'side') type = self.safe_string(order, 'orderType') price = self.safe_string(order, 'price') amount = self.safe_string(order, 'amount') remaining = self.safe_string(order, 'amountRemaining') filled = self.safe_string(order, 'filledAmount') cost = self.safe_string(order, 'filledAmountQuote') fee = None feeCost = self.safe_number(order, 'feePaid') if feeCost is not None: feeCurrencyId = self.safe_string(order, 'feeCurrency') feeCurrencyCode = self.safe_currency_code(feeCurrencyId) fee = { 'cost': feeCost, 'currency': feeCurrencyCode, } rawTrades = self.safe_value(order, 'fills', []) timeInForce = self.safe_string(order, 'timeInForce') postOnly = self.safe_value(order, 'postOnly') # https://github.com/ccxt/ccxt/issues/8489 stopPrice = self.safe_number(order, 'triggerPrice') return self.safe_order({ 'info': order, 'id': id, 'clientOrderId': None, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'lastTradeTimestamp': None, 'symbol': symbol, 'type': type, 'timeInForce': timeInForce, 'postOnly': postOnly, 'side': side, 'price': price, 'stopPrice': stopPrice, 'amount': amount, 'cost': cost, 'average': None, 'filled': filled, 'remaining': remaining, 'status': status, 'fee': fee, 'trades': rawTrades, }, market) async def fetch_my_trades(self, symbol=None, since=None, limit=None, params={}): """ fetch all trades made by the user :param str|None symbol: unified market symbol :param int|None since: the earliest time in ms to fetch trades for :param int|None limit: the maximum number of trades structures to retrieve :param dict params: extra parameters specific to the bitvavo api endpoint :returns [dict]: a list of `trade structures <https://docs.ccxt.com/en/latest/manual.html#trade-structure>` """ if symbol is None: raise ArgumentsRequired(self.id + ' fetchMyTrades() requires a symbol argument') await self.load_markets() market = self.market(symbol) request = { 'market': market['id'], # 'limit': 500, # 'start': since, # 'end': self.milliseconds(), # 'tradeIdFrom': 'af76d6ce-9f7c-4006-b715-bb5d430652d0', # 'tradeIdTo': 'af76d6ce-9f7c-4006-b715-bb5d430652d0', } if since is not None: request['start'] = since if limit is not None: request['limit'] = limit # default 500, max 1000 response = await self.privateGetTrades(self.extend(request, params)) # # [ # { # "id":"b0c86aa5-6ed3-4a2d-ba3a-be9a964220f4", # "orderId":"af76d6ce-9f7c-4006-b715-bb5d430652d0", # "timestamp":1590505649245, # "market":"ETH-EUR", # "side":"sell", # "amount":"0.249825", # "price":"183.49", # "taker":true, # "fee":"0.12038925", # "feeCurrency":"EUR", # "settled":true # } # ] # return self.parse_trades(response, market, since, limit) async def withdraw(self, code, amount, address, tag=None, params={}): """ make a withdrawal :param str code: unified currency code :param float amount: the amount to withdraw :param str address: the address to withdraw to :param str|None tag: :param dict params: extra parameters specific to the bitvavo api endpoint :returns dict: a `transaction structure <https://docs.ccxt.com/en/latest/manual.html#transaction-structure>` """ tag, params = self.handle_withdraw_tag_and_params(tag, params) self.check_address(address) await self.load_markets() currency = self.currency(code) request = { 'symbol': currency['id'], 'amount': self.currency_to_precision(code, amount), 'address': address, # address or IBAN # 'internal': False, # transfer to another Bitvavo user address, no fees # 'addWithdrawalFee': False, # True = add the fee on top, otherwise the fee is subtracted from the amount } if tag is not None: request['paymentId'] = tag response = await self.privatePostWithdrawal(self.extend(request, params)) # # { # "success": True, # "symbol": "BTC", # "amount": "1.5" # } # return self.parse_transaction(response, currency) async def fetch_withdrawals(self, code=None, since=None, limit=None, params={}): """ fetch all withdrawals made from an account :param str|None code: unified currency code :param int|None since: the earliest time in ms to fetch withdrawals for :param int|None limit: the maximum number of withdrawals structures to retrieve :param dict params: extra parameters specific to the bitvavo api endpoint :returns [dict]: a list of `transaction structures <https://docs.ccxt.com/en/latest/manual.html#transaction-structure>` """ await self.load_markets() request = { # 'symbol': currency['id'], # 'limit': 500, # default 500, max 1000 # 'start': since, # 'end': self.milliseconds(), } currency = None if code is not None: currency = self.currency(code) request['symbol'] = currency['id'] if since is not None: request['start'] = since if limit is not None: request['limit'] = limit # default 500, max 1000 response = await self.privateGetWithdrawalHistory(self.extend(request, params)) # # [ # { # "timestamp":1590531212000, # "symbol":"ETH", # "amount":"0.091", # "fee":"0.009", # "status":"awaiting_bitvavo_inspection", # "address":"0xe42b309f1eE9F0cbf7f54CcF3bc2159eBfA6735b", # "paymentId": "10002653", # "txId": "927b3ea50c5bb52c6854152d305dfa1e27fc01d10464cf10825d96d69d235eb3", # } # ] # return self.parse_transactions(response, currency, since, limit, {'type': 'withdrawal'}) async def fetch_deposits(self, code=None, since=None, limit=None, params={}): """ fetch all deposits made to an account :param str|None code: unified currency code :param int|None since: the earliest time in ms to fetch deposits for :param int|None limit: the maximum number of deposits structures to retrieve :param dict params: extra parameters specific to the bitvavo api endpoint :returns [dict]: a list of `transaction structures <https://docs.ccxt.com/en/latest/manual.html#transaction-structure>` """ await self.load_markets() request = { # 'symbol': currency['id'], # 'limit': 500, # default 500, max 1000 # 'start': since, # 'end': self.milliseconds(), } currency = None if code is not None: currency = self.currency(code) request['symbol'] = currency['id'] if since is not None: request['start'] = since if limit is not None: request['limit'] = limit # default 500, max 1000 response = await self.privateGetDepositHistory(self.extend(request, params)) # # [ # { # "timestamp":1590492401000, # "symbol":"ETH", # "amount":"0.249825", # "fee":"0", # "status":"completed", # "txId":"0x5167b473fd37811f9ef22364c3d54726a859ef9d98934b3a1e11d7baa8d2c2e2" # } # ] # return self.parse_transactions(response, currency, since, limit, {'type': 'deposit'}) def parse_transaction_status(self, status): statuses = { 'awaiting_processing': 'pending', 'awaiting_email_confirmation': 'pending', 'awaiting_bitvavo_inspection': 'pending', 'approved': 'pending', 'sending': 'pending', 'in_mempool': 'pending', 'processed': 'pending', 'completed': 'ok', 'canceled': 'canceled', } return self.safe_string(statuses, status, status) def parse_transaction(self, transaction, currency=None): # # withdraw # # { # "success": True, # "symbol": "BTC", # "amount": "1.5" # } # # fetchWithdrawals # # { # "timestamp": 1542967486256, # "symbol": "BTC", # "amount": "0.99994", # "address": "BitcoinAddress", # "paymentId": "10002653", # "txId": "927b3ea50c5bb52c6854152d305dfa1e27fc01d10464cf10825d96d69d235eb3", # "fee": "0.00006", # "status": "awaiting_processing" # } # # fetchDeposits # # { # "timestamp":1590492401000, # "symbol":"ETH", # "amount":"0.249825", # "fee":"0", # "status":"completed", # "txId":"0x5167b473fd37811f9ef22364c3d54726a859ef9d98934b3a1e11d7baa8d2c2e2" # } # id = None timestamp = self.safe_integer(transaction, 'timestamp') currencyId = self.safe_string(transaction, 'symbol') code = self.safe_currency_code(currencyId, currency) status = self.parse_transaction_status(self.safe_string(transaction, 'status')) amount = self.safe_number(transaction, 'amount') address = self.safe_string(transaction, 'address') txid = self.safe_string(transaction, 'txId') fee = None feeCost = self.safe_number(transaction, 'fee') if feeCost is not None: fee = { 'cost': feeCost, 'currency': code, } type = None if ('success' in transaction) or ('address' in transaction): type = 'withdrawal' else: type = 'deposit' tag = self.safe_string(transaction, 'paymentId') return { 'info': transaction, 'id': id, 'txid': txid, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'addressFrom': None, 'address': address, 'addressTo': address, 'tagFrom': None, 'tag': tag, 'tagTo': tag, 'type': type, 'amount': amount, 'currency': code, 'status': status, 'updated': None, 'fee': fee, } def sign(self, path, api='public', method='GET', params={}, headers=None, body=None): query = self.omit(params, self.extract_params(path)) url = '/' + self.version + '/' + self.implode_params(path, params) getOrDelete = (method == 'GET') or (method == 'DELETE') if getOrDelete: if query: url += '?' + self.urlencode(query) if api == 'private': self.check_required_credentials() payload = '' if not getOrDelete: if query: body = self.json(query) payload = body timestamp = str(self.milliseconds()) auth = timestamp + method + url + payload signature = self.hmac(self.encode(auth), self.encode(self.secret)) accessWindow = self.safe_string(self.options, 'BITVAVO-ACCESS-WINDOW', '10000') headers = { 'BITVAVO-ACCESS-KEY': self.apiKey, 'BITVAVO-ACCESS-SIGNATURE': signature, 'BITVAVO-ACCESS-TIMESTAMP': timestamp, 'BITVAVO-ACCESS-WINDOW': accessWindow, } if not getOrDelete: headers['Content-Type'] = 'application/json' url = self.urls['api'][api] + url return {'url': url, 'method': method, 'body': body, 'headers': headers} def handle_errors(self, httpCode, reason, url, method, headers, body, response, requestHeaders, requestBody): if response is None: return # fallback to default error handler # # {"errorCode":308,"error":"The signature length is invalid(HMAC-SHA256 should return a 64 length hexadecimal string)."} # {"errorCode":203,"error":"symbol parameter is required."} # {"errorCode":205,"error":"symbol parameter is invalid."} # errorCode = self.safe_string(response, 'errorCode') error = self.safe_string(response, 'error') if errorCode is not None: feedback = self.id + ' ' + body self.throw_broadly_matched_exception(self.exceptions['broad'], error, feedback) self.throw_exactly_matched_exception(self.exceptions['exact'], errorCode, feedback) raise ExchangeError(feedback) # unknown message def calculate_rate_limiter_cost(self, api, method, path, params, config={}, context={}): if ('noMarket' in config) and not ('market' in params): return config['noMarket'] return self.safe_value(config, 'cost', 1)
45.082826
340
0.514184
[ "MIT" ]
DoctorSlimm/ccxt
python/ccxt/async_support/bitvavo.py
74,026
Python
# Copyright 2013 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Error Reporting Handler.""" import sys import traceback from apitools.base.py import exceptions as apitools_exceptions from googlecloudsdk.api_lib.error_reporting import util from googlecloudsdk.api_lib.util import apis as core_apis from googlecloudsdk.calliope import backend from googlecloudsdk.command_lib import error_reporting_util from googlecloudsdk.core import config from googlecloudsdk.core import http from googlecloudsdk.core import log from googlecloudsdk.core import metrics from googlecloudsdk.core import properties from googlecloudsdk.core.console import console_attr def _IsInstallationCorruption(err): """Determines if the error may be from installation corruption. Args: err: Exception err. Returns: bool, True if installation error, False otherwise """ return (isinstance(err, backend.CommandLoadFailure) and isinstance(err.root_exception, ImportError)) def _PrintInstallationAction(err, err_string): """Prompts installation error action. Args: err: Exception err. err_string: Exception err string. """ # This usually indicates installation corruption. # We do want to suggest `gcloud components reinstall` here (ex. as opposed # to the similar message in gcloud.py), because there's a good chance it'll # work (rather than a manual reinstall). # Don't suggest `gcloud feedback`, because this is probably an # installation problem. log.error( ('gcloud failed to load ({0}): {1}\n\n' 'This usually indicates corruption in your gcloud installation or ' 'problems with your Python interpreter.\n\n' 'Please verify that the following is the path to a working Python 2.7 ' 'executable:\n' ' {2}\n' 'If it is not, please set the CLOUDSDK_PYTHON environment variable to ' 'point to a working Python 2.7 executable.\n\n' 'If you are still experiencing problems, please run the following ' 'command to reinstall:\n' ' $ gcloud components reinstall\n\n' 'If that command fails, please reinstall the Cloud SDK using the ' 'instructions here:\n' ' https://cloud.google.com/sdk/' ).format(err.command, err_string, sys.executable)) CRASH_SERVICE = 'gcloud' ERROR_SERVICE = 'gcloud-user-error' CRASH_PROJECT = 'cloud-sdk-errors' CRASH_API_KEY = 'AIzaSyA45D7bA0Y1vyLmQ_Gl10G149M8jiwwK-s' def _GetReportingClient(): """Returns a client that uses an API key for Cloud SDK crash reports. Returns: An error reporting client that uses an API key for Cloud SDK crash reports. """ client_class = core_apis.GetClientClass(util.API_NAME, util.API_VERSION) client_instance = client_class(get_credentials=False, http=http.Http()) client_instance.AddGlobalParam('key', CRASH_API_KEY) return client_instance def ReportError(err, is_crash): """Report the anonymous crash information to the Error Reporting service. Args: err: Exception, the error that caused the crash. is_crash: bool, True if this is a crash, False if it is a user error. """ if properties.VALUES.core.disable_usage_reporting.GetBool(): return stacktrace = traceback.format_exc(err) stacktrace = error_reporting_util.RemovePrivateInformationFromTraceback( stacktrace) command = properties.VALUES.metrics.command_name.Get() cid = metrics.GetCIDIfMetricsEnabled() client = _GetReportingClient() reporter = util.ErrorReporting(client) try: method_config = client.projects_events.GetMethodConfig('Report') request = reporter.GenerateReportRequest( error_message=stacktrace, service=CRASH_SERVICE if is_crash else ERROR_SERVICE, version=config.CLOUD_SDK_VERSION, project=CRASH_PROJECT, request_url=command, user=cid) http_request = client.projects_events.PrepareHttpRequest( method_config, request) metrics.CustomBeacon(http_request.url, http_request.http_method, http_request.body, http_request.headers) except apitools_exceptions.Error as e: log.file_only_logger.error( 'Unable to report crash stacktrace:\n{0}'.format( console_attr.EncodeForConsole(e))) def HandleGcloudCrash(err): """Checks if installation error occurred, then proceeds with Error Reporting. Args: err: Exception err. """ err_string = console_attr.EncodeForConsole(err) log.file_only_logger.exception('BEGIN CRASH STACKTRACE') if _IsInstallationCorruption(err): _PrintInstallationAction(err, err_string) else: log.error(u'gcloud crashed ({0}): {1}'.format( getattr(err, 'error_name', type(err).__name__), err_string)) ReportError(err, is_crash=True) log.err.Print('\nIf you would like to report this issue, please run the ' 'following command:') log.err.Print(' gcloud feedback') log.err.Print('\nTo check gcloud for common problems, please run the ' 'following command:') log.err.Print(' gcloud info --run-diagnostics')
37.039735
79
0.734311
[ "Apache-2.0" ]
bopopescu/searchparty
google-cloud-sdk/lib/googlecloudsdk/command_lib/crash_handling.py
5,593
Python
import inspect import textwrap import pytest from _pytest.compat import MODULE_NOT_FOUND_ERROR from _pytest.doctest import _get_checker from _pytest.doctest import _is_mocked from _pytest.doctest import _patch_unwrap_mock_aware from _pytest.doctest import DoctestItem from _pytest.doctest import DoctestModule from _pytest.doctest import DoctestTextfile class TestDoctests: def test_collect_testtextfile(self, testdir): w = testdir.maketxtfile(whatever="") checkfile = testdir.maketxtfile( test_something=""" alskdjalsdk >>> i = 5 >>> i-1 4 """ ) for x in (testdir.tmpdir, checkfile): # print "checking that %s returns custom items" % (x,) items, reprec = testdir.inline_genitems(x) assert len(items) == 1 assert isinstance(items[0], DoctestItem) assert isinstance(items[0].parent, DoctestTextfile) # Empty file has no items. items, reprec = testdir.inline_genitems(w) assert len(items) == 0 def test_collect_module_empty(self, testdir): path = testdir.makepyfile(whatever="#") for p in (path, testdir.tmpdir): items, reprec = testdir.inline_genitems(p, "--doctest-modules") assert len(items) == 0 def test_collect_module_single_modulelevel_doctest(self, testdir): path = testdir.makepyfile(whatever='""">>> pass"""') for p in (path, testdir.tmpdir): items, reprec = testdir.inline_genitems(p, "--doctest-modules") assert len(items) == 1 assert isinstance(items[0], DoctestItem) assert isinstance(items[0].parent, DoctestModule) def test_collect_module_two_doctest_one_modulelevel(self, testdir): path = testdir.makepyfile( whatever=""" '>>> x = None' def my_func(): ">>> magic = 42 " """ ) for p in (path, testdir.tmpdir): items, reprec = testdir.inline_genitems(p, "--doctest-modules") assert len(items) == 2 assert isinstance(items[0], DoctestItem) assert isinstance(items[1], DoctestItem) assert isinstance(items[0].parent, DoctestModule) assert items[0].parent is items[1].parent def test_collect_module_two_doctest_no_modulelevel(self, testdir): path = testdir.makepyfile( whatever=""" '# Empty' def my_func(): ">>> magic = 42 " def unuseful(): ''' # This is a function # >>> # it doesn't have any doctest ''' def another(): ''' # This is another function >>> import os # this one does have a doctest ''' """ ) for p in (path, testdir.tmpdir): items, reprec = testdir.inline_genitems(p, "--doctest-modules") assert len(items) == 2 assert isinstance(items[0], DoctestItem) assert isinstance(items[1], DoctestItem) assert isinstance(items[0].parent, DoctestModule) assert items[0].parent is items[1].parent def test_simple_doctestfile(self, testdir): p = testdir.maketxtfile( test_doc=""" >>> x = 1 >>> x == 1 False """ ) reprec = testdir.inline_run(p) reprec.assertoutcome(failed=1) def test_new_pattern(self, testdir): p = testdir.maketxtfile( xdoc=""" >>> x = 1 >>> x == 1 False """ ) reprec = testdir.inline_run(p, "--doctest-glob=x*.txt") reprec.assertoutcome(failed=1) def test_multiple_patterns(self, testdir): """Test support for multiple --doctest-glob arguments (#1255). """ testdir.maketxtfile( xdoc=""" >>> 1 1 """ ) testdir.makefile( ".foo", test=""" >>> 1 1 """, ) testdir.maketxtfile( test_normal=""" >>> 1 1 """ ) expected = {"xdoc.txt", "test.foo", "test_normal.txt"} assert {x.basename for x in testdir.tmpdir.listdir()} == expected args = ["--doctest-glob=xdoc*.txt", "--doctest-glob=*.foo"] result = testdir.runpytest(*args) result.stdout.fnmatch_lines(["*test.foo *", "*xdoc.txt *", "*2 passed*"]) result = testdir.runpytest() result.stdout.fnmatch_lines(["*test_normal.txt *", "*1 passed*"]) @pytest.mark.parametrize( " test_string, encoding", [("foo", "ascii"), ("öäü", "latin1"), ("öäü", "utf-8")], ) def test_encoding(self, testdir, test_string, encoding): """Test support for doctest_encoding ini option. """ testdir.makeini( """ [pytest] doctest_encoding={} """.format( encoding ) ) doctest = """ >>> "{}" {} """.format( test_string, repr(test_string) ) testdir._makefile(".txt", [doctest], {}, encoding=encoding) result = testdir.runpytest() result.stdout.fnmatch_lines(["*1 passed*"]) def test_doctest_unexpected_exception(self, testdir): testdir.maketxtfile( """ >>> i = 0 >>> 0 / i 2 """ ) result = testdir.runpytest("--doctest-modules") result.stdout.fnmatch_lines( [ "*unexpected_exception*", "*>>> i = 0*", "*>>> 0 / i*", "*UNEXPECTED*ZeroDivision*", ] ) def test_doctest_skip(self, testdir): testdir.maketxtfile( """ >>> 1 1 >>> import pytest >>> pytest.skip("") """ ) result = testdir.runpytest("--doctest-modules") result.stdout.fnmatch_lines(["*1 skipped*"]) def test_docstring_partial_context_around_error(self, testdir): """Test that we show some context before the actual line of a failing doctest. """ testdir.makepyfile( ''' def foo(): """ text-line-1 text-line-2 text-line-3 text-line-4 text-line-5 text-line-6 text-line-7 text-line-8 text-line-9 text-line-10 text-line-11 >>> 1 + 1 3 text-line-after """ ''' ) result = testdir.runpytest("--doctest-modules") result.stdout.fnmatch_lines( [ "*docstring_partial_context_around_error*", "005*text-line-3", "006*text-line-4", "013*text-line-11", "014*>>> 1 + 1", "Expected:", " 3", "Got:", " 2", ] ) # lines below should be trimmed out result.stdout.no_fnmatch_line("*text-line-2*") result.stdout.no_fnmatch_line("*text-line-after*") def test_docstring_full_context_around_error(self, testdir): """Test that we show the whole context before the actual line of a failing doctest, provided that the context is up to 10 lines long. """ testdir.makepyfile( ''' def foo(): """ text-line-1 text-line-2 >>> 1 + 1 3 """ ''' ) result = testdir.runpytest("--doctest-modules") result.stdout.fnmatch_lines( [ "*docstring_full_context_around_error*", "003*text-line-1", "004*text-line-2", "006*>>> 1 + 1", "Expected:", " 3", "Got:", " 2", ] ) def test_doctest_linedata_missing(self, testdir): testdir.tmpdir.join("hello.py").write( textwrap.dedent( """\ class Fun(object): @property def test(self): ''' >>> a = 1 >>> 1/0 ''' """ ) ) result = testdir.runpytest("--doctest-modules") result.stdout.fnmatch_lines( [ "*hello*", "*EXAMPLE LOCATION UNKNOWN, not showing all tests of that example*", "*1/0*", "*UNEXPECTED*ZeroDivision*", "*1 failed*", ] ) def test_doctest_unex_importerror_only_txt(self, testdir): testdir.maketxtfile( """ >>> import asdalsdkjaslkdjasd >>> """ ) result = testdir.runpytest() # doctest is never executed because of error during hello.py collection result.stdout.fnmatch_lines( [ "*>>> import asdals*", "*UNEXPECTED*{e}*".format(e=MODULE_NOT_FOUND_ERROR), "{e}: No module named *asdal*".format(e=MODULE_NOT_FOUND_ERROR), ] ) def test_doctest_unex_importerror_with_module(self, testdir): testdir.tmpdir.join("hello.py").write( textwrap.dedent( """\ import asdalsdkjaslkdjasd """ ) ) testdir.maketxtfile( """ >>> import hello >>> """ ) result = testdir.runpytest("--doctest-modules") # doctest is never executed because of error during hello.py collection result.stdout.fnmatch_lines( [ "*ERROR collecting hello.py*", "*{e}: No module named *asdals*".format(e=MODULE_NOT_FOUND_ERROR), "*Interrupted: 1 error during collection*", ] ) def test_doctestmodule(self, testdir): p = testdir.makepyfile( """ ''' >>> x = 1 >>> x == 1 False ''' """ ) reprec = testdir.inline_run(p, "--doctest-modules") reprec.assertoutcome(failed=1) def test_doctestmodule_external_and_issue116(self, testdir): p = testdir.mkpydir("hello") p.join("__init__.py").write( textwrap.dedent( """\ def somefunc(): ''' >>> i = 0 >>> i + 1 2 ''' """ ) ) result = testdir.runpytest(p, "--doctest-modules") result.stdout.fnmatch_lines( [ "003 *>>> i = 0", "004 *>>> i + 1", "*Expected:", "* 2", "*Got:", "* 1", "*:4: DocTestFailure", ] ) def test_txtfile_failing(self, testdir): p = testdir.maketxtfile( """ >>> i = 0 >>> i + 1 2 """ ) result = testdir.runpytest(p, "-s") result.stdout.fnmatch_lines( [ "001 >>> i = 0", "002 >>> i + 1", "Expected:", " 2", "Got:", " 1", "*test_txtfile_failing.txt:2: DocTestFailure", ] ) def test_txtfile_with_fixtures(self, testdir): p = testdir.maketxtfile( """ >>> dir = getfixture('tmpdir') >>> type(dir).__name__ 'LocalPath' """ ) reprec = testdir.inline_run(p) reprec.assertoutcome(passed=1) def test_txtfile_with_usefixtures_in_ini(self, testdir): testdir.makeini( """ [pytest] usefixtures = myfixture """ ) testdir.makeconftest( """ import pytest @pytest.fixture def myfixture(monkeypatch): monkeypatch.setenv("HELLO", "WORLD") """ ) p = testdir.maketxtfile( """ >>> import os >>> os.environ["HELLO"] 'WORLD' """ ) reprec = testdir.inline_run(p) reprec.assertoutcome(passed=1) def test_doctestmodule_with_fixtures(self, testdir): p = testdir.makepyfile( """ ''' >>> dir = getfixture('tmpdir') >>> type(dir).__name__ 'LocalPath' ''' """ ) reprec = testdir.inline_run(p, "--doctest-modules") reprec.assertoutcome(passed=1) def test_doctestmodule_three_tests(self, testdir): p = testdir.makepyfile( """ ''' >>> dir = getfixture('tmpdir') >>> type(dir).__name__ 'LocalPath' ''' def my_func(): ''' >>> magic = 42 >>> magic - 42 0 ''' def unuseful(): pass def another(): ''' >>> import os >>> os is os True ''' """ ) reprec = testdir.inline_run(p, "--doctest-modules") reprec.assertoutcome(passed=3) def test_doctestmodule_two_tests_one_fail(self, testdir): p = testdir.makepyfile( """ class MyClass(object): def bad_meth(self): ''' >>> magic = 42 >>> magic 0 ''' def nice_meth(self): ''' >>> magic = 42 >>> magic - 42 0 ''' """ ) reprec = testdir.inline_run(p, "--doctest-modules") reprec.assertoutcome(failed=1, passed=1) def test_ignored_whitespace(self, testdir): testdir.makeini( """ [pytest] doctest_optionflags = ELLIPSIS NORMALIZE_WHITESPACE """ ) p = testdir.makepyfile( """ class MyClass(object): ''' >>> a = "foo " >>> print(a) foo ''' pass """ ) reprec = testdir.inline_run(p, "--doctest-modules") reprec.assertoutcome(passed=1) def test_non_ignored_whitespace(self, testdir): testdir.makeini( """ [pytest] doctest_optionflags = ELLIPSIS """ ) p = testdir.makepyfile( """ class MyClass(object): ''' >>> a = "foo " >>> print(a) foo ''' pass """ ) reprec = testdir.inline_run(p, "--doctest-modules") reprec.assertoutcome(failed=1, passed=0) def test_ignored_whitespace_glob(self, testdir): testdir.makeini( """ [pytest] doctest_optionflags = ELLIPSIS NORMALIZE_WHITESPACE """ ) p = testdir.maketxtfile( xdoc=""" >>> a = "foo " >>> print(a) foo """ ) reprec = testdir.inline_run(p, "--doctest-glob=x*.txt") reprec.assertoutcome(passed=1) def test_non_ignored_whitespace_glob(self, testdir): testdir.makeini( """ [pytest] doctest_optionflags = ELLIPSIS """ ) p = testdir.maketxtfile( xdoc=""" >>> a = "foo " >>> print(a) foo """ ) reprec = testdir.inline_run(p, "--doctest-glob=x*.txt") reprec.assertoutcome(failed=1, passed=0) def test_contains_unicode(self, testdir): """Fix internal error with docstrings containing non-ascii characters. """ testdir.makepyfile( '''\ def foo(): """ >>> name = 'с' # not letter 'c' but instead Cyrillic 's'. 'anything' """ ''' ) result = testdir.runpytest("--doctest-modules") result.stdout.fnmatch_lines(["Got nothing", "* 1 failed in*"]) def test_ignore_import_errors_on_doctest(self, testdir): p = testdir.makepyfile( """ import asdf def add_one(x): ''' >>> add_one(1) 2 ''' return x + 1 """ ) reprec = testdir.inline_run( p, "--doctest-modules", "--doctest-ignore-import-errors" ) reprec.assertoutcome(skipped=1, failed=1, passed=0) def test_junit_report_for_doctest(self, testdir): """ #713: Fix --junit-xml option when used with --doctest-modules. """ p = testdir.makepyfile( """ def foo(): ''' >>> 1 + 1 3 ''' pass """ ) reprec = testdir.inline_run(p, "--doctest-modules", "--junit-xml=junit.xml") reprec.assertoutcome(failed=1) def test_unicode_doctest(self, testdir): """ Test case for issue 2434: DecodeError on Python 2 when doctest contains non-ascii characters. """ p = testdir.maketxtfile( test_unicode_doctest=""" .. doctest:: >>> print( ... "Hi\\n\\nByé") Hi ... Byé >>> 1/0 # Byé 1 """ ) result = testdir.runpytest(p) result.stdout.fnmatch_lines( ["*UNEXPECTED EXCEPTION: ZeroDivisionError*", "*1 failed*"] ) def test_unicode_doctest_module(self, testdir): """ Test case for issue 2434: DecodeError on Python 2 when doctest docstring contains non-ascii characters. """ p = testdir.makepyfile( test_unicode_doctest_module=""" def fix_bad_unicode(text): ''' >>> print(fix_bad_unicode('único')) único ''' return "único" """ ) result = testdir.runpytest(p, "--doctest-modules") result.stdout.fnmatch_lines(["* 1 passed *"]) def test_print_unicode_value(self, testdir): """ Test case for issue 3583: Printing Unicode in doctest under Python 2.7 doesn't work """ p = testdir.maketxtfile( test_print_unicode_value=r""" Here is a doctest:: >>> print('\xE5\xE9\xEE\xF8\xFC') åéîøü """ ) result = testdir.runpytest(p) result.stdout.fnmatch_lines(["* 1 passed *"]) def test_reportinfo(self, testdir): """ Test case to make sure that DoctestItem.reportinfo() returns lineno. """ p = testdir.makepyfile( test_reportinfo=""" def foo(x): ''' >>> foo('a') 'b' ''' return 'c' """ ) items, reprec = testdir.inline_genitems(p, "--doctest-modules") reportinfo = items[0].reportinfo() assert reportinfo[1] == 1 def test_valid_setup_py(self, testdir): """ Test to make sure that pytest ignores valid setup.py files when ran with --doctest-modules """ p = testdir.makepyfile( setup=""" from setuptools import setup, find_packages setup(name='sample', version='0.0', description='description', packages=find_packages() ) """ ) result = testdir.runpytest(p, "--doctest-modules") result.stdout.fnmatch_lines(["*collected 0 items*"]) def test_invalid_setup_py(self, testdir): """ Test to make sure that pytest reads setup.py files that are not used for python packages when ran with --doctest-modules """ p = testdir.makepyfile( setup=""" def test_foo(): return 'bar' """ ) result = testdir.runpytest(p, "--doctest-modules") result.stdout.fnmatch_lines(["*collected 1 item*"]) class TestLiterals: @pytest.mark.parametrize("config_mode", ["ini", "comment"]) def test_allow_unicode(self, testdir, config_mode): """Test that doctests which output unicode work in all python versions tested by pytest when the ALLOW_UNICODE option is used (either in the ini file or by an inline comment). """ if config_mode == "ini": testdir.makeini( """ [pytest] doctest_optionflags = ALLOW_UNICODE """ ) comment = "" else: comment = "#doctest: +ALLOW_UNICODE" testdir.maketxtfile( test_doc=""" >>> b'12'.decode('ascii') {comment} '12' """.format( comment=comment ) ) testdir.makepyfile( foo=""" def foo(): ''' >>> b'12'.decode('ascii') {comment} '12' ''' """.format( comment=comment ) ) reprec = testdir.inline_run("--doctest-modules") reprec.assertoutcome(passed=2) @pytest.mark.parametrize("config_mode", ["ini", "comment"]) def test_allow_bytes(self, testdir, config_mode): """Test that doctests which output bytes work in all python versions tested by pytest when the ALLOW_BYTES option is used (either in the ini file or by an inline comment)(#1287). """ if config_mode == "ini": testdir.makeini( """ [pytest] doctest_optionflags = ALLOW_BYTES """ ) comment = "" else: comment = "#doctest: +ALLOW_BYTES" testdir.maketxtfile( test_doc=""" >>> b'foo' {comment} 'foo' """.format( comment=comment ) ) testdir.makepyfile( foo=""" def foo(): ''' >>> b'foo' {comment} 'foo' ''' """.format( comment=comment ) ) reprec = testdir.inline_run("--doctest-modules") reprec.assertoutcome(passed=2) def test_unicode_string(self, testdir): """Test that doctests which output unicode fail in Python 2 when the ALLOW_UNICODE option is not used. The same test should pass in Python 3. """ testdir.maketxtfile( test_doc=""" >>> b'12'.decode('ascii') '12' """ ) reprec = testdir.inline_run() reprec.assertoutcome(passed=1) def test_bytes_literal(self, testdir): """Test that doctests which output bytes fail in Python 3 when the ALLOW_BYTES option is not used. (#1287). """ testdir.maketxtfile( test_doc=""" >>> b'foo' 'foo' """ ) reprec = testdir.inline_run() reprec.assertoutcome(failed=1) def test_number_re(self) -> None: _number_re = _get_checker()._number_re # type: ignore for s in [ "1.", "+1.", "-1.", ".1", "+.1", "-.1", "0.1", "+0.1", "-0.1", "1e5", "+1e5", "1e+5", "+1e+5", "1e-5", "+1e-5", "-1e-5", "1.2e3", "-1.2e-3", ]: print(s) m = _number_re.match(s) assert m is not None assert float(m.group()) == pytest.approx(float(s)) for s in ["1", "abc"]: print(s) assert _number_re.match(s) is None @pytest.mark.parametrize("config_mode", ["ini", "comment"]) def test_number_precision(self, testdir, config_mode): """Test the NUMBER option.""" if config_mode == "ini": testdir.makeini( """ [pytest] doctest_optionflags = NUMBER """ ) comment = "" else: comment = "#doctest: +NUMBER" testdir.maketxtfile( test_doc=""" Scalars: >>> import math >>> math.pi {comment} 3.141592653589793 >>> math.pi {comment} 3.1416 >>> math.pi {comment} 3.14 >>> -math.pi {comment} -3.14 >>> math.pi {comment} 3. >>> 3. {comment} 3.0 >>> 3. {comment} 3. >>> 3. {comment} 3.01 >>> 3. {comment} 2.99 >>> .299 {comment} .3 >>> .301 {comment} .3 >>> 951. {comment} 1e3 >>> 1049. {comment} 1e3 >>> -1049. {comment} -1e3 >>> 1e3 {comment} 1e3 >>> 1e3 {comment} 1000. Lists: >>> [3.1415, 0.097, 13.1, 7, 8.22222e5, 0.598e-2] {comment} [3.14, 0.1, 13., 7, 8.22e5, 6.0e-3] >>> [[0.333, 0.667], [0.999, 1.333]] {comment} [[0.33, 0.667], [0.999, 1.333]] >>> [[[0.101]]] {comment} [[[0.1]]] Doesn't barf on non-numbers: >>> 'abc' {comment} 'abc' >>> None {comment} """.format( comment=comment ) ) reprec = testdir.inline_run() reprec.assertoutcome(passed=1) @pytest.mark.parametrize( "expression,output", [ # ints shouldn't match floats: ("3.0", "3"), ("3e0", "3"), ("1e3", "1000"), ("3", "3.0"), # Rounding: ("3.1", "3.0"), ("3.1", "3.2"), ("3.1", "4.0"), ("8.22e5", "810000.0"), # Only the actual output is rounded up, not the expected output: ("3.0", "2.98"), ("1e3", "999"), # The current implementation doesn't understand that numbers inside # strings shouldn't be treated as numbers: pytest.param("'3.1416'", "'3.14'", marks=pytest.mark.xfail), ], ) def test_number_non_matches(self, testdir, expression, output): testdir.maketxtfile( test_doc=""" >>> {expression} #doctest: +NUMBER {output} """.format( expression=expression, output=output ) ) reprec = testdir.inline_run() reprec.assertoutcome(passed=0, failed=1) def test_number_and_allow_unicode(self, testdir): testdir.maketxtfile( test_doc=""" >>> from collections import namedtuple >>> T = namedtuple('T', 'a b c') >>> T(a=0.2330000001, b=u'str', c=b'bytes') # doctest: +ALLOW_UNICODE, +ALLOW_BYTES, +NUMBER T(a=0.233, b=u'str', c='bytes') """ ) reprec = testdir.inline_run() reprec.assertoutcome(passed=1) class TestDoctestSkips: """ If all examples in a doctest are skipped due to the SKIP option, then the tests should be SKIPPED rather than PASSED. (#957) """ @pytest.fixture(params=["text", "module"]) def makedoctest(self, testdir, request): def makeit(doctest): mode = request.param if mode == "text": testdir.maketxtfile(doctest) else: assert mode == "module" testdir.makepyfile('"""\n%s"""' % doctest) return makeit def test_one_skipped(self, testdir, makedoctest): makedoctest( """ >>> 1 + 1 # doctest: +SKIP 2 >>> 2 + 2 4 """ ) reprec = testdir.inline_run("--doctest-modules") reprec.assertoutcome(passed=1) def test_one_skipped_failed(self, testdir, makedoctest): makedoctest( """ >>> 1 + 1 # doctest: +SKIP 2 >>> 2 + 2 200 """ ) reprec = testdir.inline_run("--doctest-modules") reprec.assertoutcome(failed=1) def test_all_skipped(self, testdir, makedoctest): makedoctest( """ >>> 1 + 1 # doctest: +SKIP 2 >>> 2 + 2 # doctest: +SKIP 200 """ ) reprec = testdir.inline_run("--doctest-modules") reprec.assertoutcome(skipped=1) def test_vacuous_all_skipped(self, testdir, makedoctest): makedoctest("") reprec = testdir.inline_run("--doctest-modules") reprec.assertoutcome(passed=0, skipped=0) def test_continue_on_failure(self, testdir): testdir.maketxtfile( test_something=""" >>> i = 5 >>> def foo(): ... raise ValueError('error1') >>> foo() >>> i >>> i + 2 7 >>> i + 1 """ ) result = testdir.runpytest("--doctest-modules", "--doctest-continue-on-failure") result.assert_outcomes(passed=0, failed=1) # The lines that contains the failure are 4, 5, and 8. The first one # is a stack trace and the other two are mismatches. result.stdout.fnmatch_lines( ["*4: UnexpectedException*", "*5: DocTestFailure*", "*8: DocTestFailure*"] ) class TestDoctestAutoUseFixtures: SCOPES = ["module", "session", "class", "function"] def test_doctest_module_session_fixture(self, testdir): """Test that session fixtures are initialized for doctest modules (#768) """ # session fixture which changes some global data, which will # be accessed by doctests in a module testdir.makeconftest( """ import pytest import sys @pytest.yield_fixture(autouse=True, scope='session') def myfixture(): assert not hasattr(sys, 'pytest_session_data') sys.pytest_session_data = 1 yield del sys.pytest_session_data """ ) testdir.makepyfile( foo=""" import sys def foo(): ''' >>> assert sys.pytest_session_data == 1 ''' def bar(): ''' >>> assert sys.pytest_session_data == 1 ''' """ ) result = testdir.runpytest("--doctest-modules") result.stdout.fnmatch_lines(["*2 passed*"]) @pytest.mark.parametrize("scope", SCOPES) @pytest.mark.parametrize("enable_doctest", [True, False]) def test_fixture_scopes(self, testdir, scope, enable_doctest): """Test that auto-use fixtures work properly with doctest modules. See #1057 and #1100. """ testdir.makeconftest( """ import pytest @pytest.fixture(autouse=True, scope="{scope}") def auto(request): return 99 """.format( scope=scope ) ) testdir.makepyfile( test_1=''' def test_foo(): """ >>> getfixture('auto') + 1 100 """ def test_bar(): assert 1 ''' ) params = ("--doctest-modules",) if enable_doctest else () passes = 3 if enable_doctest else 2 result = testdir.runpytest(*params) result.stdout.fnmatch_lines(["*=== %d passed in *" % passes]) @pytest.mark.parametrize("scope", SCOPES) @pytest.mark.parametrize("autouse", [True, False]) @pytest.mark.parametrize("use_fixture_in_doctest", [True, False]) def test_fixture_module_doctest_scopes( self, testdir, scope, autouse, use_fixture_in_doctest ): """Test that auto-use fixtures work properly with doctest files. See #1057 and #1100. """ testdir.makeconftest( """ import pytest @pytest.fixture(autouse={autouse}, scope="{scope}") def auto(request): return 99 """.format( scope=scope, autouse=autouse ) ) if use_fixture_in_doctest: testdir.maketxtfile( test_doc=""" >>> getfixture('auto') 99 """ ) else: testdir.maketxtfile( test_doc=""" >>> 1 + 1 2 """ ) result = testdir.runpytest("--doctest-modules") result.stdout.no_fnmatch_line("*FAILURES*") result.stdout.fnmatch_lines(["*=== 1 passed in *"]) @pytest.mark.parametrize("scope", SCOPES) def test_auto_use_request_attributes(self, testdir, scope): """Check that all attributes of a request in an autouse fixture behave as expected when requested for a doctest item. """ testdir.makeconftest( """ import pytest @pytest.fixture(autouse=True, scope="{scope}") def auto(request): if "{scope}" == 'module': assert request.module is None if "{scope}" == 'class': assert request.cls is None if "{scope}" == 'function': assert request.function is None return 99 """.format( scope=scope ) ) testdir.maketxtfile( test_doc=""" >>> 1 + 1 2 """ ) result = testdir.runpytest("--doctest-modules") str(result.stdout.no_fnmatch_line("*FAILURES*")) result.stdout.fnmatch_lines(["*=== 1 passed in *"]) class TestDoctestNamespaceFixture: SCOPES = ["module", "session", "class", "function"] @pytest.mark.parametrize("scope", SCOPES) def test_namespace_doctestfile(self, testdir, scope): """ Check that inserting something into the namespace works in a simple text file doctest """ testdir.makeconftest( """ import pytest import contextlib @pytest.fixture(autouse=True, scope="{scope}") def add_contextlib(doctest_namespace): doctest_namespace['cl'] = contextlib """.format( scope=scope ) ) p = testdir.maketxtfile( """ >>> print(cl.__name__) contextlib """ ) reprec = testdir.inline_run(p) reprec.assertoutcome(passed=1) @pytest.mark.parametrize("scope", SCOPES) def test_namespace_pyfile(self, testdir, scope): """ Check that inserting something into the namespace works in a simple Python file docstring doctest """ testdir.makeconftest( """ import pytest import contextlib @pytest.fixture(autouse=True, scope="{scope}") def add_contextlib(doctest_namespace): doctest_namespace['cl'] = contextlib """.format( scope=scope ) ) p = testdir.makepyfile( """ def foo(): ''' >>> print(cl.__name__) contextlib ''' """ ) reprec = testdir.inline_run(p, "--doctest-modules") reprec.assertoutcome(passed=1) class TestDoctestReportingOption: def _run_doctest_report(self, testdir, format): testdir.makepyfile( """ def foo(): ''' >>> foo() a b 0 1 4 1 2 4 2 3 6 ''' print(' a b\\n' '0 1 4\\n' '1 2 5\\n' '2 3 6') """ ) return testdir.runpytest("--doctest-modules", "--doctest-report", format) @pytest.mark.parametrize("format", ["udiff", "UDIFF", "uDiFf"]) def test_doctest_report_udiff(self, testdir, format): result = self._run_doctest_report(testdir, format) result.stdout.fnmatch_lines( [" 0 1 4", " -1 2 4", " +1 2 5", " 2 3 6"] ) def test_doctest_report_cdiff(self, testdir): result = self._run_doctest_report(testdir, "cdiff") result.stdout.fnmatch_lines( [ " a b", " 0 1 4", " ! 1 2 4", " 2 3 6", " --- 1,4 ----", " a b", " 0 1 4", " ! 1 2 5", " 2 3 6", ] ) def test_doctest_report_ndiff(self, testdir): result = self._run_doctest_report(testdir, "ndiff") result.stdout.fnmatch_lines( [ " a b", " 0 1 4", " - 1 2 4", " ? ^", " + 1 2 5", " ? ^", " 2 3 6", ] ) @pytest.mark.parametrize("format", ["none", "only_first_failure"]) def test_doctest_report_none_or_only_first_failure(self, testdir, format): result = self._run_doctest_report(testdir, format) result.stdout.fnmatch_lines( [ "Expected:", " a b", " 0 1 4", " 1 2 4", " 2 3 6", "Got:", " a b", " 0 1 4", " 1 2 5", " 2 3 6", ] ) def test_doctest_report_invalid(self, testdir): result = self._run_doctest_report(testdir, "obviously_invalid_format") result.stderr.fnmatch_lines( [ "*error: argument --doctest-report: invalid choice: 'obviously_invalid_format' (choose from*" ] ) @pytest.mark.parametrize("mock_module", ["mock", "unittest.mock"]) def test_doctest_mock_objects_dont_recurse_missbehaved(mock_module, testdir): pytest.importorskip(mock_module) testdir.makepyfile( """ from {mock_module} import call class Example(object): ''' >>> 1 + 1 2 ''' """.format( mock_module=mock_module ) ) result = testdir.runpytest("--doctest-modules") result.stdout.fnmatch_lines(["* 1 passed *"]) class Broken: def __getattr__(self, _): raise KeyError("This should be an AttributeError") @pytest.mark.parametrize( # pragma: no branch (lambdas are not called) "stop", [None, _is_mocked, lambda f: None, lambda f: False, lambda f: True] ) def test_warning_on_unwrap_of_broken_object(stop): bad_instance = Broken() assert inspect.unwrap.__module__ == "inspect" with _patch_unwrap_mock_aware(): assert inspect.unwrap.__module__ != "inspect" with pytest.warns( pytest.PytestWarning, match="^Got KeyError.* when unwrapping" ): with pytest.raises(KeyError): inspect.unwrap(bad_instance, stop=stop) assert inspect.unwrap.__module__ == "inspect"
29.477516
109
0.46041
[ "MIT" ]
NNRepos/pytest
testing/test_doctest.py
41,317
Python
from statistics import mean with open("input.txt") as f: values = [int(i) for i in f.readline().split(",")] m_values = int(mean(values)) print(min( sum(sum(range(1, abs(pos - i) + 1)) for pos in values) for i in range(m_values - 1, m_values + 1) ))
22
58
0.625
[ "MIT" ]
Ashwin-op/Advent_of_Code
2021/Day 7 - The Treachery of Whales/2.py
264
Python
symbols = [ '1288.HK', '3988.HK', '0883.HK', '0939.HK', '2628.HK', '3968.HK', '0941.HK', '0688.HK', '0386.HK', '1088.HK', '0728.HK', '0762.HK', '1398.HK', '0857.HK', '2318.HK', '0700.HK', 'GAZPq.L', 'LKOHyq.L', 'NKELyq.L', 'NVTKq.L', 'RELIq.L', 'ROSNq.L', 'SNGSyq.L', 'TATNxq.L', 'BSBR.N', 'BBD.N', 'ABV.N', 'CIG.N', 'SID.N', 'GGB.N', 'HDB.N', 'IBN.N', 'ITUB.N', 'MBT.N', 'PBR.N', 'TNE.N', 'VALE.N', 'VIP.N', 'BIDU.OQ', 'INFY.OQ'] #lineProcessor = CSVReutersAdaptative('BRIC_1min.csv') textFormat = MessageFormat("{0}") dateFormat = SimpleDateFormat('dd-MMM-yyyy') timeFormat = SimpleDateFormat('HH:mm:ss.SSS') doubleFormat = DecimalFormat('#.##') lineProcessor = CSVSourceLineProcessor([textFormat,dateFormat,timeFormat,None,None,doubleFormat,doubleFormat,doubleFormat,doubleFormat,doubleFormat,doubleFormat,doubleFormat,doubleFormat],[None,None,None,None,None,OPEN(PRICE),HIGH(PRICE),LOW(PRICE),CLOSE(PRICE),VOLUME(PRICE),Field.EXTENDED(PRICE,"Ave. Price"),Field.EXTENDED(PRICE,"VWAP"),Field.EXTENDED(PRICE,"No. Trades")],0,[1,2]) source = SecondOrderSource('BRIC40_1min.csv', symbols, lineProcessor) print "Ready" class MyObserver(PricesListener): def update(self, ss, when): strLine = Long.toString(when.getTimeInMillis()).encode('utf-8') strLine = strLine + when.toString().encode('utf-8') for s in symbols: if s in ss: strLine = strLine + ',' \ + str(market.getLastPrice(0,s+'-OPEN')) + ','\ + str(market.getLastPrice(0,s+'-HIGH')) + ','\ + str(market.getLastPrice(0,s+'-LOW')) + ','\ + str(market.getLastPrice(0,s+'-CLOSE')) + ','\ + str(market.getLastPrice(0,s+'-VOLUME')) + ','\ else: strLine = strLine + ',-,-,-,-,-' print strLine market = RandomAccessMarket(0.0, 5000) lineProcessor.addMarketListener(market) lineProcessor.addPricesListener(MyObserver()) print "Go!" strLine = 'milliseconds' for s in symbols: strLine = strLine + ',' + s + '-OPEN' strLine = strLine + ',' + s + '-HIGH' strLine = strLine + ',' + s + '-LOW' strLine = strLine + ',' + s + '-CLOSE' strLine = strLine + ',' + s + '-Volume' print strLine source.run()
44.882353
430
0.596767
[ "MIT" ]
K0414/metaos
src/attic/attic-python/test/test-secondorder.py
2,289
Python
"""Example reStructuredText from Sphinx-Needs project. From http://sphinxcontrib-needs.readthedocs.io/en/latest/ but will not work in isolation - cut down just to trigger RST304. **Some text** Wohooo, we have created :need:`req_001`, which is linked by :need_incoming:`req_001`. """ print("sphinx-needs defines its own reStructuredText roles.")
23.333333
61
0.76
[ "MIT" ]
Smirenost/flake8-rst-docstrings
tests/RST304/sphinx-roles.py
350
Python
import requests from bs4 import BeautifulSoup """ Bu modül burçlar ile ilgilenen arkadaşlarımın işine yarayacaktır. Çok basit bir kullanımı mevcuttur. Bir sorunuz olursa seve seve yardım etmek isterim profilimdeki linklerden bana ulaşabilirsiniz. """ def makeAPIRequest(path: str, type: str) -> str: type = type if (type == "gunluk") or (type == "haftalik") else "gunluk" r = requests.get( f"https://www.mynet.com/kadin/burclar-astroloji/{path}-burcu-{type}-yorumu.html") soup = BeautifulSoup(r.content, "html.parser") data = soup.find_all("div", {"class": "detail-content-inner"}) burc = (data[0].contents)[len(data[0].contents) - 5] burcYorum = burc.text return burcYorum burcList = ["yengec", "koc", "boga", "ikizler", "aslan", "basak", "terazi", "akrep", "yay", "oglak", "kova", "balik"] burcStr = ",".join(burcList) class burclar: def burc(name: str, type="gunluk") -> str: if name not in burcList: raise Exception(f"Geçerli bir burç giriniz. ({burcStr})") return makeAPIRequest(name, type) def yengec(type="gunluk") -> str: return makeAPIRequest("yengec", type) def koc(type="gunluk") -> str: return makeAPIRequest("koc", type) def boga(type="gunluk") -> str: return makeAPIRequest("boga", type) def ikizler(type="gunluk") -> str: return makeAPIRequest("ikizler", type) def aslan(type="gunluk") -> str: return makeAPIRequest("aslan", type) def basak(type="gunluk") -> str: return makeAPIRequest("basak", type) def terazi(type="gunluk") -> str: return makeAPIRequest("terazi", type) def akrep(type="gunluk") -> str: return makeAPIRequest("akrep", type) def yay(type="gunluk") -> str: return makeAPIRequest("yay", type) def oglak(type="gunluk") -> str: return makeAPIRequest("oglak", type) def kova(type="gunluk") -> str: return makeAPIRequest("kova", type) def balik(type="gunluk") -> str: return makeAPIRequest("balik", type) """Haftalik ve Günlük yorumların bitiş kısımı""" def makeAPIRequestOz(path: str, type: str) -> str: type = type if (type == "ozellikleri") else "ozellikleri" y = requests.get( f"https://www.mynet.com/kadin/burclar-astroloji/{path}-burcu-ozellikleri.html") soupOz = BeautifulSoup(y.content, "html.parser") dataOz = soupOz.find_all("div", {"class": "medyanet-content"}) burcOz = (dataOz[0].contents)[len(dataOz[0].contents) - 12] burcYorumOz = burcOz.text return burcYorumOz class burclarOz: def burcOz(name: str, type="ozellikleri") -> str: if name not in burcList: raise Exception(f"Geçerli bir burç giriniz. ({burcStr})") return makeAPIRequestOz(name, type) def yengec(type="ozellikleri") -> str: return makeAPIRequestOz("yengec", type) def koc(type="ozellikleri") -> str: return makeAPIRequestOz("koc", type) def boga(type="ozellikleri") -> str: return makeAPIRequestOz("boga", type) def ikizler(type="ozellikleri") -> str: return makeAPIRequestOz("ikizler", type) def aslan(type="ozellikleri") -> str: return makeAPIRequestOz("aslan", type) def basak(type="ozellikleri") -> str: return makeAPIRequestOz("basak", type) def terazi(type="ozellikleri") -> str: return makeAPIRequestOz("terazi", type) def akrep(type="ozellikleri") -> str: return makeAPIRequestOz("akrep", type) def yay(type="ozellikleri") -> str: return makeAPIRequestOz("yay", type) def oglak(type="ozellikleri") -> str: return makeAPIRequestOz("oglak", type) def kova(type="ozellikleri") -> str: return makeAPIRequestOz("kova", type) def balik(type="ozellikleri") -> str: return makeAPIRequestOz("balik", type) """Burçların özelliklerinin çekildiği kısım"""
31.71875
96
0.619704
[ "MIT" ]
The-Special/Burc-api
burclar/__init__.py
4,090
Python
# -*- coding: utf-8 -*- from guillotina import configure from guillotina.catalog.utils import get_index_fields from guillotina.component import get_utilities_for from guillotina.content import IResourceFactory from guillotina.utils import get_dotted_name from packaging import version import aioelasticsearch ES_CLIENT_VERSION = version.parse(aioelasticsearch.__version__) ELASTIC6 = ES_CLIENT_VERSION.minor == 5 def default_refresh(): return False app_settings = { "elasticsearch": { "bulk_size": 50, "refresh": "guillotina_elasticsearch.default_refresh", "index_name_prefix": "guillotina-", "connection_settings": {"hosts": [], "timeout": 2}, "index": {}, "security_query_builder": "guillotina_elasticsearch.queries.build_security_query", # noqa }, "load_utilities": { "catalog": { "provides": "guillotina_elasticsearch.interfaces.IElasticSearchUtility", # noqa "factory": "guillotina_elasticsearch.utility.ElasticSearchUtility", "settings": {}, } }, "commands": { "es-migrate": "guillotina_elasticsearch.commands.migrate.MigrateCommand", # noqa "es-reindex": "guillotina_elasticsearch.commands.reindex.ReindexCommand", # noqa "es-vacuum": "guillotina_elasticsearch.commands.vacuum.VacuumCommand", "es-fields": "guillotina_elasticsearch.commands.fields.FieldsCommand", }, } def includeme(root): configure.scan("guillotina_elasticsearch.utility") configure.scan("guillotina_elasticsearch.manager") configure.scan("guillotina_elasticsearch.parser") # add store true to guillotina indexes for name, utility in get_utilities_for(IResourceFactory): if not get_dotted_name(utility._callable).startswith("guillotina."): continue for field_name, catalog_info in get_index_fields(name).items(): if field_name in ( "id", "path", "uuid", "type_name", "tid", "creators", "contributors", "access_roles", "access_users", "parent_uuid", "title", "creation_date", "modification_date", "tags", ): catalog_info["store"] = True
33.291667
98
0.629537
[ "BSD-2-Clause" ]
vjove/guillotina_elasticsearch
guillotina_elasticsearch/__init__.py
2,397
Python
import nltk import numpy as np #nltk.download('punkt') #downloading a package with a pretrained tokenizer from nltk.stem.porter import PorterStemmer stemmer = PorterStemmer() def tokenize(sentence): #splitting a string into meaningful units return nltk.word_tokenize(sentence) def stem(word): #Generating the root form of the words return stemmer.stem(word.lower()) def bag_of_words(tokenized_sentence, all_words): tokenized_sentence = [stem(w) for w in tokenized_sentence] bag = np.zeros(len(all_words), dtype = np.float32) for idx, w in enumerate(all_words): if w in tokenized_sentence: bag[idx] = 1.0 return bag
26.615385
80
0.703757
[ "MIT" ]
Serkanbezek/Chatbot-NLP-PyTorch
nltk_utils.py
692
Python
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team and authors from University of Illinois at Chicago. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import logging import argparse import random import json from tqdm import tqdm, trange import numpy as np import torch from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler from pytorch_pretrained_bert.tokenization import BertTokenizer import squad_data_utils as data_utils import modelconfig logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt = '%m/%d/%Y %H:%M:%S', level = logging.INFO) logger = logging.getLogger(__name__) def gen(args): tokenizer = BertTokenizer.from_pretrained(modelconfig.MODEL_ARCHIVE_MAP[args.bert_model] ) train_examples = data_utils.read_squad_examples(os.path.join(args.input_dir, "train.json"), is_training=True) train_features = data_utils.convert_examples_to_features( train_examples, tokenizer, args.max_seq_length, args.doc_stride, args.max_query_length, is_training=True) logger.info("***** Running training *****") logger.info(" Num orig examples = %d", len(train_examples)) logger.info(" Num split examples = %d", len(train_features)) input_ids_np = np.array([f.input_ids for f in train_features], dtype=np.int16) segment_ids_np = np.array([f.segment_ids for f in train_features], dtype=np.int16) input_mask_np = np.array([f.input_mask for f in train_features], dtype=np.int16) start_positions_np = np.array([f.start_position for f in train_features], dtype=np.int16) end_positions_np = np.array([f.end_position for f in train_features], dtype=np.int16) np.savez_compressed(os.path.join(args.output_dir, "data.npz"), input_ids=input_ids_np, segment_ids = segment_ids_np, input_mask = input_mask_np, start_positions = start_positions_np, end_positions = end_positions_np) #>>>>> validation valid_examples=data_utils.read_squad_examples(os.path.join(args.input_dir,"dev.json"), is_training=True) valid_features = data_utils.convert_examples_to_features( valid_examples, tokenizer, args.max_seq_length, args.doc_stride, args.max_query_length, is_training=True) logger.info(" Num orig examples = %d", len(valid_examples)) logger.info(" Num split examples = %d", len(valid_features)) valid_input_ids_np = np.array([f.input_ids for f in valid_features], dtype=np.int16) valid_segment_ids_np = np.array([f.segment_ids for f in valid_features], dtype=np.int16) valid_input_mask_np = np.array([f.input_mask for f in valid_features], dtype=np.int16) valid_start_positions_np = np.array([f.start_position for f in valid_features], dtype=np.int16) valid_end_positions_np = np.array([f.end_position for f in valid_features], dtype=np.int16) np.savez_compressed(os.path.join(args.output_dir, "dev.npz"), input_ids=valid_input_ids_np, segment_ids = valid_segment_ids_np, input_mask = valid_input_mask_np, start_positions = valid_start_positions_np, end_positions = valid_end_positions_np) #<<<<< end of validation declaration def main(): parser = argparse.ArgumentParser() parser.add_argument("--bert-model", default='bert-base', type=str) parser.add_argument("--input_dir", default=None, type=str, required=True, help="The input data dir. Should contain the .tsv files (or other data files) for the task.") parser.add_argument("--output_dir", default=None, type=str, required=True, help="The output directory where the model predictions and checkpoints will be written.") ## Other parameters parser.add_argument("--max_seq_length", default=320, type=int, help="The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, and sequences shorter \n" "than this will be padded.") parser.add_argument('--seed', type=int, default=0, help="random seed for initialization") parser.add_argument('--doc_stride', type=int, default=128) parser.add_argument('--max_query_length', type=int, default=30) parser.add_argument('--max_answer_length', type=int, default=30) args = parser.parse_args() random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) os.makedirs(args.output_dir, exist_ok=True) gen(args) if __name__=="__main__": main()
42.100719
134
0.641319
[ "Apache-2.0" ]
AndrewSchoeller/BERT-for-RRC-ABSA
pytorch-pretrained-bert/src/gen_pt_squad.py
5,852
Python
from logging import getLogger import gokart import luigi import swifter # noqa from dajare_detector.utils.base_task import DajareTask from dajare_detector.preprocessing.make_kana_pattern import MakeKanaPattern from dajare_detector.preprocessing.make_splited_pattern import MakeSplitedPattern from dajare_detector.preprocessing.decide_kana_pattern import DecideKanaPattern from dajare_detector.preprocessing.normalize_kana_pattern import NormalizeKanaPattern logger = getLogger(__name__) class MakeDecideKanaFeature(DajareTask): """カタカナの繰り返しが発生したか""" target = gokart.TaskInstanceParameter() split_window_size = luigi.IntParameter() def requires(self): kana_task = NormalizeKanaPattern(target=MakeKanaPattern( target=self.target)) split_task = MakeSplitedPattern( target=kana_task, split_window_size=self.split_window_size) return DecideKanaPattern(split_pattern_target=split_task, kana_pattern_target=kana_task, split_window_size=self.split_window_size) def run(self): df = self.load_data_frame().reset_index(drop=True) df[f'decide_kana_{self.split_window_size}'] = df[ 'decide_kana_flag_list'].swifter.apply(lambda x: 1 if any(x) else 0) self.dump(df[['_id', f'decide_kana_{self.split_window_size}']])
39.75
85
0.715584
[ "MIT" ]
vaaaaanquish/dajare-detector
dajare_detector/featurize/make_decide_kana_feature.py
1,461
Python
#!/usr/bin/python3 # System imports import argparse import sys import serial # Data processing imports import numpy as np import matplotlib.pyplot as plt import matplotlib.mlab as mlab import seaborn as sns def checkparams(pwm_freq, pwm_duty, num_samples): check_ok = True if pwm_freq < 20 or pwm_freq > 100: print("Allowed PWM freq is between in [20, 100] kHz interval.") check_ok = False if pwm_duty < 5 or pwm_duty > 80: print("Allowed PWM duty is between in [5, 80] percent interval.") check_ok = False if num_samples < 1 or num_samples > 20000: print("Allowed samples num is between in [1, 8192] interval.") check_ok = False if check_ok == False: sys.exit(1); def main(baudrate, pwm_freq, pwm_duty, num_samples, delays_file): ser = serial.Serial( port='/dev/ttyUSB0', baudrate=baudrate, parity=serial.PARITY_NONE, stopbits=serial.STOPBITS_ONE, bytesize=serial.EIGHTBITS, rtscts=0 ) if not ser.is_open: print("Error opening serial port device.") sys.exit(1) checkparams(pwm_freq, pwm_duty, num_samples) print("Params OK!") delays = np.empty(num_samples) ser.write(str.encode('{},{},{}\r\n'.format( pwm_freq, pwm_duty, num_samples))) timer_frequency = int(ser.readline().strip()) # MHz ser.write(str.encode('\n')); # start measurement for i in range(num_samples): delays[i] = int(ser.readline().strip()) ser.close() delays *= (1e-6 / timer_frequency); delays = np.delete(delays, 0); delays = np.delete(delays, 0); print("min: {}, avg: {}, max = {}".format( np.min(delays), np.mean(delays), np.max(delays))); print("std: ", np.std(delays)) LOG_FILE = open(delays_file, 'w') np.save(delays_file, delays); # mean = np.mean(delays); # maxi = np.max(delays); # mini = np.min(delays); # # sns.distplot(delays, norm_hist=True); # # plt.show(); # # # delays *= 1e6; # plt.plot(delays) # plt.ylabel('Vrijeme kašnjenja (${\mu}s$)') # plt.xlabel('Uzorci (padajući brid odziva)') # plt.show() # plt.figure(0) # n, bins, patches = plt.hist(delays, 50, normed=True, # histtype='step'); # y = mlab.normpdf(bins, # np.mean(delays), # np.std(delays)) # plt.show() # plt.figure(1) # plt.plot(bins, y) # plt.xlabel('Vrijeme kašnjenja (${\mu}s$)') # plt.ylabel('Funkcija gustoće vjerojatnosti') # plt.show(); if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--baudrate', type=int, default=115200) parser.add_argument('--pwm_freq', type=int, default=20) parser.add_argument('--pwm_duty', type=int, default=50) parser.add_argument('--num_samples', type=int, default=20000) parser.add_argument('--delays_file', type=str, default='novo.npy') ARGS, other = parser.parse_known_args() main(ARGS.baudrate, ARGS.pwm_freq, ARGS.pwm_duty, ARGS.num_samples, ARGS.delays_file);
25.504065
73
0.613006
[ "MIT" ]
dumpram/stm32_real_time_test
scripts/test.py
3,141
Python
# -*- coding: utf-8 -*- # 留言板 # 1、新建目录下一定要有__init__.py文件,否则不能被其它文件引用、不能沿路径读写文件。from ... 。 # 2、urls.py中,设置第一级路由名ask。 在.../mysite/mysite/urls.py中 url(r'^ask/', include('account.ask.urls')), # 3、admin.py中,设置数据库显示。在.../mysite/account/admin.py中 @admin.register(Technologyask) ... # 4、templates中,增加模板文件目录/ask import datetime import os import json from django.shortcuts import render from django.http.response import HttpResponseRedirect,HttpResponse from . models import Guestbook,Reply from django.contrib.auth.decorators import login_required #使用注意在settings.py中设置 LOGIN_URL = '/login/' from django.contrib.auth.models import User from myAPI.pageAPI import djangoPage from django.contrib import messages PAGE_NUM = 20 #每页显示数 # http://localhost:9000/guestbook/reply/ #@login_required def reply(request): if request.method != 'POST': return render(request, 'guestbook/reply.html', context=locals()) title = request.POST['title'] content = request.POST['content'] Guestbook.objects.filter(title=title).update(state=1)#更改回答状态 if request.user.username == 'admin': #admin回复 Reply.objects.filter(title=title).update(content=content ) Reply.objects.filter(title=title).update(username = 'admin' ) Reply.objects.filter(title=title).update(date = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") ) return HttpResponseRedirect('/guestbook/showreply/') @login_required def gettitle(request): title = request.GET.get('title','') if title == '': return HttpResponse('no') return render(request, 'guestbook/reply.html', context=locals()) # http://localhost:9000/guestbook/create/ @login_required def create(request): if request.method != 'POST': return render(request, 'guestbook/create.html', context=locals()) title = request.POST['title'] content = request.POST['content'] istitle = Guestbook.objects.filter(title = title) if istitle: messages.info(request, '告警:标题 '+ title + '已经被使用!') return HttpResponseRedirect('/guestbook/show/') if content: guestbooks = Guestbook(username=request.user,title=title,content=content) guestbooks.save() guestbookname = Guestbook.objects.get(title=title).username replys = Reply(guestbookname=guestbookname,title=title) replys.save() else: messages.info(request,'告警:留言内容为空!') return HttpResponseRedirect('/guestbook/show/') # http://localhost:9000/guestbook/show/ @login_required def show(request, page): if request.user.is_superuser: guestbooks = Guestbook.objects.filter().order_by('-date','-id') guestbooks, pageList, paginator, page = djangoPage(guestbooks,page,PAGE_NUM) #调用分页函数 replys = Reply.objects.filter(guestbookname=request.user.username).order_by('-date', '-id') offset = PAGE_NUM * (page - 1) return render(request, 'guestbook/showall.html', context=locals()) guestbooks = Guestbook.objects.filter(username=request.user.username).order_by('-date', '-id') guestbooks, pageList, paginator, page = djangoPage(guestbooks,page,PAGE_NUM) #调用分页函数 replys = Reply.objects.filter(guestbookname=request.user.username).order_by('-date', '-id') offset = PAGE_NUM * (page - 1) return render(request, 'guestbook/show.html', context=locals()) # http://localhost:9000/guestbook/showreply/ @login_required def showreply(request, page): title = request.GET.get('title','') if title != '': replys = Reply.objects.filter(title=title) else: replys = Reply.objects.filter(username=request.user).order_by('-date', '-id') replys, pageList, paginator, page = djangoPage(replys,page,PAGE_NUM) #调用分页函数 offset = PAGE_NUM * (page - 1) return render(request, 'guestbook/showreply.html', context=locals())
43.088889
114
0.690304
[ "Apache-2.0" ]
wcl6005/testgit
mysite/guestbook/guestbook.py
4,146
Python
"""This module contains the HelpCommandHandler class.""" from telegram import Update from telegram.ext import CommandHandler, CallbackContext import utils.helper as helper class HelpCommandHandler(CommandHandler): """Handler for /help command""" def __init__(self): CommandHandler.__init__(self, "help", callback) def callback(update: Update, _: CallbackContext): """Print the help text for a /start or /help command""" update.message.reply_text(helper.create_help_text())
27.944444
59
0.747515
[ "MIT" ]
walkerjens/telegram.ongabot
ongabot/handler/helpcommand.py
503
Python
#!/usr/bin/python # Copyright 2019 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Print the list of available maps according to the game.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import app from pysc2 import run_configs def main(unused_argv): with run_configs.get().start(want_rgb=False) as controller: available_maps = controller.available_maps() print("\n") print("Local map paths:") for m in sorted(available_maps.local_map_paths): print(" ", m) print() print("Battle.net maps:") for m in sorted(available_maps.battlenet_map_names): print(" ", m) if __name__ == "__main__": app.run(main)
31
74
0.730921
[ "Apache-2.0" ]
rainwangphy/pysc2
pysc2/bin/battle_net_maps.py
1,271
Python
#!/usr/bin/env python3 import fnmatch import os import re import ntpath import sys import argparse excluded_files = [] def check_config_style(filepath): bad_count_file = 0 def pushClosing(t): closingStack.append(closing.expr) closing << Literal( closingFor[t[0]] ) def popClosing(): closing << closingStack.pop() with open(filepath, 'r', encoding='utf-8', errors='ignore') as file: content = file.read() # Store all brackets we find in this file, so we can validate everything on the end brackets_list = [] # To check if we are in a comment block isInCommentBlock = False checkIfInComment = False # Used in case we are in a line comment (//) ignoreTillEndOfLine = False # Used in case we are in a comment block (/* */). This is true if we detect a * inside a comment block. # If the next character is a /, it means we end our comment block. checkIfNextIsClosingBlock = False # We ignore everything inside a string isInString = False # Used to store the starting type of a string, so we can match that to the end of a string inStringType = ''; lastIsCurlyBrace = False checkForSemiColumn = False # Extra information so we know what line we find errors at lineNumber = 1 indexOfCharacter = 0 # Parse all characters in the content of this file to search for potential errors for c in content: if (lastIsCurlyBrace): lastIsCurlyBrace = False if c == '\n': # Keeping track of our line numbers lineNumber += 1 # so we can print accurate line number information when we detect a possible error if (isInString): # while we are in a string, we can ignore everything else, except the end of the string if (c == inStringType): isInString = False # if we are not in a comment block, we will check if we are at the start of one or count the () {} and [] elif (isInCommentBlock == False): # This means we have encountered a /, so we are now checking if this is an inline comment or a comment block if (checkIfInComment): checkIfInComment = False if c == '*': # if the next character after / is a *, we are at the start of a comment block isInCommentBlock = True elif (c == '/'): # Otherwise, will check if we are in an line comment ignoreTillEndOfLine = True # and an line comment is a / followed by another / (//) We won't care about anything that comes after it if (isInCommentBlock == False): if (ignoreTillEndOfLine): # we are in a line comment, just continue going through the characters until we find an end of line if (c == '\n'): ignoreTillEndOfLine = False else: # validate brackets if (c == '"' or c == "'"): isInString = True inStringType = c elif (c == '/'): checkIfInComment = True elif (c == '('): brackets_list.append('(') elif (c == ')'): if (len(brackets_list) > 0 and brackets_list[-1] in ['{', '[']): print("ERROR: Possible missing round bracket ')' detected at {0} Line number: {1}".format(filepath,lineNumber)) bad_count_file += 1 brackets_list.append(')') elif (c == '['): brackets_list.append('[') elif (c == ']'): if (len(brackets_list) > 0 and brackets_list[-1] in ['{', '(']): print("ERROR: Possible missing square bracket ']' detected at {0} Line number: {1}".format(filepath,lineNumber)) bad_count_file += 1 brackets_list.append(']') elif (c == '{'): brackets_list.append('{') elif (c == '}'): lastIsCurlyBrace = True if (len(brackets_list) > 0 and brackets_list[-1] in ['(', '[']): print("ERROR: Possible missing curly brace '}}' detected at {0} Line number: {1}".format(filepath,lineNumber)) bad_count_file += 1 brackets_list.append('}') else: # Look for the end of our comment block if (c == '*'): checkIfNextIsClosingBlock = True; elif (checkIfNextIsClosingBlock): if (c == '/'): isInCommentBlock = False elif (c != '*'): checkIfNextIsClosingBlock = False indexOfCharacter += 1 if brackets_list.count('[') != brackets_list.count(']'): print("ERROR: A possible missing square bracket [ or ] in file {0} [ = {1} ] = {2}".format(filepath,brackets_list.count('['),brackets_list.count(']'))) bad_count_file += 1 if brackets_list.count('(') != brackets_list.count(')'): print("ERROR: A possible missing round bracket ( or ) in file {0} ( = {1} ) = {2}".format(filepath,brackets_list.count('('),brackets_list.count(')'))) bad_count_file += 1 if brackets_list.count('{') != brackets_list.count('}'): print("ERROR: A possible missing curly brace {{ or }} in file {0} {{ = {1} }} = {2}".format(filepath,brackets_list.count('{'),brackets_list.count('}'))) bad_count_file += 1 return bad_count_file def main(): print("Validating Config Style") for test in excluded_files: print("Excluded File: ",test) sqf_list = [] bad_count = 0 parser = argparse.ArgumentParser() parser.add_argument('-m','--module', help='only search specified module addon folder', required=False, default="") args = parser.parse_args() # Allow running from root directory as well as from inside the tools directory rootDir = "Swamp Aux/" for root, dirnames, filenames in os.walk(rootDir + '/' + args.module): for filename in fnmatch.filter(filenames, '*.cpp'): sqf_list.append(os.path.join(root, filename)) for filename in fnmatch.filter(filenames, '*.hpp'): sqf_list.append(os.path.join(root, filename)) for filename in sqf_list: if (filename not in excluded_files): bad_count = bad_count + check_config_style(filename) print("------\nChecked {0} files\nErrors detected: {1}".format(len(sqf_list), bad_count)) if (bad_count == 0): print("Config validation PASSED") else: print("Config validation FAILED") return bad_count if __name__ == "__main__": sys.exit(main())
45.651899
164
0.539859
[ "MIT" ]
jdoxley/Swamp-Aux
tools/config_style_checker.py
7,213
Python
#!/usr/bin/env python # -*- coding: utf-8 -*- import django.dispatch # Signal to inform application about ready .mo files, so server will know # when to restart itself. post_compilemessages = django.dispatch.Signal()
24.333333
73
0.739726
[ "MIT" ]
VorskiImagineering/django-C3PO
django_c3po/signals.py
219
Python
# Copyright 2019 BlueCat Networks. All rights reserved. import ipaddress from flask import request, g, abort, jsonify from bluecat.api_exception import PortalException, APIException from bluecat import route, util from main_app import app # application config # Define global variable to hold handle to API object api = None # # GET, PUT or POST # @route(app, '/lumeta/getnetworklist', methods=['GET', 'PUT', 'POST']) @util.rest_workflow_permission_required('lumeta_workflow_page') @util.rest_exception_catcher def get_networks_get_networks_page(): # are we authenticated? g.user.logger.info('SUCCESS') configurations = None configurations_json = [] if g.user: configurations = g.user.get_api().get_configurations() for c in configurations: print (c) configuration_json = {"id": c.get_id(), "name": c.get_name()} configurations_json.append(configuration_json) return jsonify(configurations_json) @route(app, '/lumeta/getiplist', methods=['GET', 'PUT', 'POST']) @util.rest_workflow_permission_required('lumeta_workflow_page') @util.rest_exception_catcher def getiplist_getiplist_page(): # are we authenticated? g.user.logger.info('SUCCESS') networks = [] # Return object that contains all the networks (and eventually all ip addresses) # list of all properties objects ip_addresses = [] # If name is given, use get_configuration(name) if g.user: configurations = g.user.get_api().get_configurations() for c in configurations: print(c) configuration_json = {"id": c.get_id(), "name": c.get_name()} # FIXME - need code to get network list from configuration id. Is there a call to get children_of_types # (['IP4Block', 'IP4Network', 'IP6Block', 'IP6Network' # use get_by_object_types(*, ['IP4Block', 'IP4Network', 'IP6Block', 'IP6Network']) - returns flat list # We might want to request IP4Network, IP6Network # FIXME - extract below code in a function and call it for IP4Block and IP6Block try: for nw in c.get_children_of_type('IP4Block'): print(nw) # get all blocks and networks for block for n in g.user.get_api().get_by_object_types(nw.get_property('CIDR'), ['IP4Network', 'IP4Block', 'IP6Network', 'IP6Block']): if '6' in n.get_type(): networks.append({'network_id': n.get_id(), 'display_text': n.get_properties()['prefix']}) ip_addresses.extend(calculate_block_stats(n, c.get_id(), c.get_name())) else: networks.append({'network_id': n.get_id(), 'display_text': n.get_properties()['CIDR']}) ip_addresses.extend(calculate_block_stats(n, c.get_id(), c.get_name())) except Exception as e: app.loggererror('get_subnets: ' + e.message) return jsonify(ip_addresses) def calculate_network_stats(bam_network, config_id, config_name): if bam_network.get_type() == 'IP4Network': network_address = bam_network.get_property('CIDR') network = ipaddress.ip_network(network_address) else: network_address = bam_network.get_property('prefix') network = ipaddress.ip_network(network_address) ip_addresses = [] ip_data = {} if bam_network.get_type() == 'IP4Network': # run below for IP4Address, IP6Address - properties will be populated as well for n in bam_network.get_children_of_type('IP4Address'): # Sometimes below list contains all ip addresses and sometimes only one for gateway address # Look through n.get_properties() and add them to ip_data ip_data = {} ip_data.update({'ip_address': n.get_address()}) ip_data.update({'properties': n.get_properties()}) ip_data.update({'config_id': config_id}) ip_data.update({'config_name': config_name}) ip_data.update({'id': n.get_id()}) ip_addresses.append(ip_data) next_address = bam_network.get_next_available_ip4_address() else: for n in bam_network.get_children_of_type('IP6Address'): ip_data = {} ip_data.update({'ip_address': n.get_address()}) ip_data.update({'properties': n.get_properties()}) ip_data.update({'config_id': config_id}) ip_data.update({'config_name': config_name}) ip_data.update({'id': n.get_id()}) ip_addresses.append(ip_data) #return network_data return ip_addresses def calculate_block_stats(bam_block, config_id, config_name): if bam_block.get_type() == 'IP6Block': block_address = bam_block.get_property('prefix') block = ipaddress.ip_network(block_address) else: block_address = bam_block.get_property('CIDR') # block = ipaddress.ip_network(block_address, config_id, config_name) block = ipaddress.ip_network(block_address) block_data = {} block_data_list = [] if bam_block.get_type() == 'IP4Block': for network in bam_block.get_ip4_networks(): return_data = calculate_network_stats(network, config_id, config_name) # This constructs adding network as key with all values that were returned from calculate network stats block_data_list.extend(return_data) for found_block in bam_block.get_ip4_blocks(): return_data = calculate_block_stats(found_block, config_id, config_name) block_data_list.extend(return_data) next_address = bam_block.get_next_available_ip4_address() if next_address != '': block_data.update({'next_available_address': next_address}) try: next_available = bam_block.get_next_available_ip4_network(256, auto_create=False) block_data.update({'next_available_network': next_available}) except APIException as e: # Nothing to do here since we aren't adding anything to the object next_available = '' elif bam_block.get_type() == 'IP6Block': for network in bam_block.get_ip6_networks(): return_data = calculate_network_stats(network, config_id, config_name) for found_block in bam_block.get_ip6_blocks(): return_data = calculate_block_stats(found_block, config_id, config_name) else: next_available = '' return block_data_list # to tag address, add_ip4 - get back IP4Address object. Call object.link_entity(entity id of the tag) # # GET, PUT or POST @route(app, '/lumeta/addiplist', methods=['GET', 'PUT', 'POST']) # @util.rest_workflow_permission_required('addiplist_page') @util.rest_workflow_permission_required('lumeta_workflow_page') @util.rest_exception_catcher def addiplist_addiplist_page(): # are we authenticated? g.user.logger.info('SUCCESS') rdata_arr = request.get_json() stats = {} global api for rdata in rdata_arr: config_name = rdata["config_name"] add_network = rdata["add_network_block"] device_list = rdata["deviceList"] added_ips = 0 dup_ips = 0 # Get API object up front and use it going forward. That way, auth key doesn't expire on us # when we are midway in processing api = g.user.get_api() print(add_network) print(device_list) config = api.get_configuration(config_name) for device in device_list: print(device["ip"]) (added_ip, dup_ip, ip) = add_device(device, config, add_network) added_ips += added_ip dup_ips += dup_ip # Add tag if ip was added if added_ip == 1: add_tag(ip) stats.update({config_name: {"added_ips": added_ips, "dup_ips": dup_ips}}) return jsonify(stats) def add_device(device, config, add_network): # Algorithm to add ip to BAM # check if block exists for this ip address. try: ip = device["ip"] mac = '' mac = device["mac"] family = device["family"] blk_data = None dup_ip = 0 added_ip = 0 ip_obj = None if family == '4': blk_data = config.get_ip_range_by_ip('IP4Block', ip) else: blk_data = config.get_ip_range_by_ip('IP6Block', ip) # if block exists, check for network network_data = None if family == '4': network_data = config.get_ip_range_by_ip('IP4Network', ip) else: network_data = config.get_ip_range_by_ip('IP6Network', ip) # If Block and Network exists, add ip address # currently, assigning ip address is throwing API exception:Server raised fault: "Duplicate of another item" # Need to see how we can catch it if blk_data is not None and network_data is not None: # Add ip address ip_obj = assign_ip(network_data, ip, mac, family) added_ip += 1 # If no block exists and add_network is set to true, create Block with /32, create Network with /32 and then # create ip with /32 except PortalException as e: # No block address containing input ip address exists. Check the flag and create one if add_network: try: # Add Block, then network and finally add ip # Below line is returning BAMException - IPv4 Blocks cannot be in size of /31 and /32 # So, at this point, if there is no container, do not add ip address # config.add_ip4_block_by_cidr(ip) if blk_data is None: # add /30 for addressblock block_network = ipaddress.ip_network(ip + '/30', strict=False) config.add_ip4_block_by_cidr(block_network.exploded) blk_data = config.get_ip_range_by_ip('IP4Block', ip) if blk_data is not None: # create network in block blk_data.add_ip4_network(ip + '/32') # create ip under above created network network_data = config.get_ip_range_by_ip('IP4Network', ip) if network_data is not None: # Add ip address ip_obj = assign_ip(network_data, ip, mac, family) added_ip += 1 except APIException as ex: if "Duplicate" in ex.get_message(): dup_ip += 1 # else: # Seeing intermittent error while adding address block, so had to stop logging error # app.loggererror('add_ip: ' + ex.message) except APIException as ex: # when ip address already exists, it returns BAMException with message 'Server raised fault: "Duplicate of another item"' # "Duplicate" in ex.get_message() if "Duplicate" in ex.get_message(): dup_ip += 1 else: # TODO - how to log info message and not error? app.loggererror('add_ip: ' + ex.get_message()) return (added_ip, dup_ip, ip_obj) def assign_ip(network_data, ip, mac, family): if mac is not '': if family == '4': ip = network_data.assign_ip4_address(ip, mac, '', 'MAKE_DHCP_RESERVED') else: ip = network_data.assign_ip6_address(ip, mac, '', 'MAKE_DHCP_RESERVED') else: if family == '4': ip = network_data.assign_ip4_address(ip, '', '', 'MAKE_STATIC') else: ip = network_data.assign_ip6_address(ip, '', '', 'MAKE_STATIC') return ip def add_tag(ip): tag_group = None tag = None try: tag_group = api.get_tag_group_by_name("Lumeta") # If tag group exists, chances are that tag exists as well, but just in case if it doesn't tag = tag_group.get_tag_by_name("Discovered Device") except PortalException as e: if tag_group is None: # Tag group does not exist, create one tag_group = api.add_tag_group("Lumeta") if tag is None: # Get tag group object. above API to add tag group is only returning object id instead of entire object # Calling add_tag on it is throwing exception 'int' object has no attribute 'add_tag' tag_group = api.get_tag_group_by_name("Lumeta") # Create Tag under Lumeta tag = tag_group.add_tag("Discovered Device") try: # assign tag to ip ip.link_entity(tag) except APIException as ex: print(ex.get_message())
41.13141
129
0.623003
[ "Apache-2.0" ]
npatellumeta/gateway-workflows
Community/AssetManagement/lumeta_workflow_page.py
12,833
Python
import dmc2gym from domains.wrappers import ConcatObs def mdp(): return dmc2gym.make(domain_name="cartpole", task_name="swingup", keys_to_exclude=[], frame_skip=5, track_prev_action=False) def p(): return dmc2gym.make(domain_name="cartpole", task_name="swingup", keys_to_exclude=['velocity'], frame_skip=5, track_prev_action=False) def va(): return dmc2gym.make(domain_name="cartpole", task_name="swingup", keys_to_exclude=['position'], frame_skip=5, track_prev_action=True) def p_concat5(): return ConcatObs(p(), 5) def va_concat10(): return ConcatObs(va(), 10)
26.909091
137
0.741554
[ "MIT" ]
zhihanyang2022/CleanRL
offpcc/domains/dmc_cartpole_su.py
592
Python
import logging from .Container import Container class MqttBrokerContainer(Container): def __init__(self, name, vols, network, image_store, command=None): super().__init__(name, 'mqtt-broker', vols, network, image_store, command) def get_startup_finished_log_entry(self): return "mosquitto version [0-9\\.]+ running" def deploy(self): if not self.set_deployed(): return logging.info('Creating and running MQTT broker docker container...') self.client.containers.run( self.image_store.get_image(self.get_engine()), detach=True, name=self.name, network=self.network.name, ports={'1883/tcp': 1883}, entrypoint=self.command) logging.info('Added container \'%s\'', self.name)
32.76
82
0.634921
[ "Apache-2.0" ]
rustammendel/nifi-minifi-cpp
docker/test/integration/minifi/core/MqttBrokerContainer.py
819
Python
# Generated by Django 2.2.1 on 2019-07-10 04:55 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('investment_bot', '0005_amount_restrictions'), ] operations = [ migrations.CreateModel( name='Section_Deduction', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('year', models.CharField(max_length=10)), ('employee_code', models.CharField(max_length=100)), ('section_id', models.CharField(max_length=100)), ('subsection_id', models.CharField(max_length=100)), ('amount', models.IntegerField()), ], ), ]
31.48
114
0.584498
[ "MIT" ]
dreamvrutik/Investment-Chatbot
Chatbot_investment/chatbot/investment_bot/migrations/0006_section_deduction.py
787
Python
#################### # ES-DOC CIM Questionnaire # Copyright (c) 2017 ES-DOC. All rights reserved. # # University of Colorado, Boulder # http://cires.colorado.edu/ # # This project is distributed according to the terms of the MIT license [http://www.opensource.org/licenses/MIT]. #################### from django.conf import settings from django.conf.urls import patterns, url, include from django.views.generic.base import RedirectView from rest_framework.urlpatterns import format_suffix_patterns from Q.questionnaire.views import * from Q.questionnaire.views.api import * from Q.questionnaire.views.services import * from Q.questionnaire.views.views_feed import QFeed, q_publication api_urls = patterns('', # just some testing (obviously)... url(r'^projects_test/(?P<pk>[0-9]+)/$', QProjectTestDetail.as_view(), name="project-test-detail"), # just some lite serializations for populating the project page... url(r'^customizations_lite/$', QCustomizationLiteList.as_view(), name="customization_lite-list"), url(r'^realizations_lite/$', QRealizationLiteList.as_view(), name="realization_lite-list"), url(r'^projects_lite/$', QProjectLiteList.as_view(), name="project_lite-list"), url(r'^projects_lite/(?P<pk>[0-9]+)/$', QProjectLiteDetail.as_view(), name="project_lite-detail"), # getting project info... url(r'^projects/$', QProjectList.as_view(), name="project-list"), url(r'^projects/(?P<pk>[0-9]+)/$', QProjectDetail.as_view(), name="project-detail"), # getting ontology info... url(r'^ontologies/$', QOntologyList.as_view(), name="ontology-list"), # getting customization info... url(r'^customizations/$', QModelCustomizationList.as_view(), name="customization-list"), url(r'^customizations/(?P<pk>[0-9]+)/$', QModelCustomizationDetail.as_view(), name="customization-detail"), url(r'^customizations/cache/$', get_cached_customizations, name="customization-cache"), # getting realization info... url(r'^realizations/$', QModelRealizationList.as_view(), name="realization-list"), url(r'^realizations/(?P<pk>[0-9]+)/$', QModelRealizationDetail.as_view(), name="realization-detail"), url(r'^realizations/cache/$', get_cached_realizations, name="realization-cache"), ) if settings.DEBUG: # only expose pre-defined api urls in debug mode... api_urls += patterns('', url(r'^$', api_root)) # automatically add support for different serialization formats (JSON is default)... api_urls = format_suffix_patterns(api_urls) services_urls = patterns('', # testing (obviously)... url(r'^test/$', q_services_test), # getting pending messages... url(r'^messages/$', get_django_messages), # routing http calls through a proxy... url(r'^proxy/$', q_proxy, name="proxy"), # logging data from the client... url(r'^log/$', q_log, name="log"), # the WORLD-FAMOUS load-on-demand paradigm... url(r'^load_section/(?P<section_type>[^/]+)/$', q_load_section, name="load_section"), # joining a project... url(r'^(?P<project_name>[^/]+)/project_join_request/$', q_project_join_request, name="project_join_request"), # managing a project... url(r'^(?P<project_name>[^/]+)/project_add_member/$', q_project_add_member, name="project_add_member"), # deleting a customization... url(r'^customization_delete/$', q_customization_delete, name="customization_delete"), # adding a relationship... url(r'^realization_add_relationship_value/$', q_realization_add_relationship_value, name="realization_add_relationsip_value"), # removing a relationship... url(r'^realization_remove_relationship_value/$', q_realization_remove_relationship_value, name="realization_remove_relationsip_value"), # publishing a realization... url(r'^realization_publish/$', q_realization_publish, name="realization_publish"), ) urlpatterns = patterns('', # RESTful API... url(r'^api/', include(api_urls)), # webservices (AJAX POST only) outside of RESTful API... url(r'^services/', include(services_urls)), # testing (obviously)... url(r'^test/$', q_test, name="test"), # help... url(r'^help/$', RedirectView.as_view(url=settings.Q_HELP_URL, permanent=True), name="help"), # customizations... url(r'^(?P<project_name>[^/]+)/customize/(?P<ontology_key>[^/]+)/(?P<document_type>[^/]+)/$', q_customize_new, name="customize_new"), url(r'^(?P<project_name>[^/]+)/customize/(?P<ontology_key>[^/]+)/(?P<document_type>[^/]+)/(?P<customization_name>[^/]+)/$', q_customize_existing, name="customize_existing"), # realizations... url(r'^(?P<project_name>[^/]+)/edit/(?P<ontology_key>[^/]+)/(?P<document_type>[^/]+)/$', q_edit_new, name="edit_new"), url(r'^(?P<project_name>[^/]+)/edit/(?P<ontology_key>[^/]+)/(?P<document_type>[^/]+)/(?P<realization_pk>[^/]+)/$', q_edit_existing, name="edit_existing"), url(r'^(?P<project_name>[^/]+)/view/(?P<ontology_key>[^/]+)/(?P<document_type>[^/]+)/$', q_view_new, name="view_new"), url(r'^(?P<project_name>[^/]+)/view/(?P<ontology_key>[^/]+)/(?P<document_type>[^/]+)/(?P<realization_pk>[^/]+)/$', q_view_existing, name="view_existing"), url(r'^(?P<project_name>[^/]+)/get/(?P<ontology_key>[^/]+)/(?P<document_type>[^/]+)/$', q_get_existing, name="get_existing"), # publications (ATOM feed)... url(r'^feed/$', QFeed(), name="feed"), url(r'^feed/(?P<project_name>[^/]+)/$', QFeed(), name="feed_project"), url(r'^feed/(?P<project_name>[^/]+)/(?P<ontology_key>[^/]+)/$', QFeed(), name="feed_project_ontology"), url(r'^feed/(?P<project_name>[^/]+)/(?P<ontology_key>[^/]+)/(?P<document_type>[^/]+)/$', QFeed(), name="feed_project_ontology_proxy"), url(r'^feed/(?P<project_name>[^/]+)/(?P<ontology_key>[^/]+)/(?P<document_type>[^/]+)/(?P<publication_name>[^/]+)/$', q_publication, name="publication_latest"), url(r'^feed/(?P<project_name>[^/]+)/(?P<ontology_key>[^/]+)/(?P<document_type>[^/]+)/(?P<publication_name>[^/]+)/(?P<publication_version>[^/]+)/$', q_publication, name="publication_version"), # projects... url(r'^(?P<project_name>[^/]+)/$', q_project, name="project"), url(r'^(?P<project_name>[^/]+)/customize/$', q_project_customize, name="project_customize"), url(r'^(?P<project_name>[^/]+)/manage/$', q_project_manage, name="project_manage"), # index... url(r'^$', 'questionnaire.views.q_index', name="index"), )
46.941606
195
0.664438
[ "MIT" ]
ES-DOC/esdoc-questionnaire
Q/questionnaire/q_urls.py
6,431
Python
def pattern_sixteen(steps): ''' Pattern sixteen 9 9 8 9 8 7 9 8 7 6 9 8 7 6 5 9 8 7 6 5 4 9 8 7 6 5 4 3 9 8 7 6 5 4 3 2 9 8 7 6 5 4 3 2 1 ''' get_range = [str(i) for i in range(1, steps + 1)][::-1] # Getting range of number in string and reverse it for gr in range(1, len(get_range) + 1): join = ' '.join(get_range[:gr]) # Slicing values print(join) if __name__ == '__main__': try: pattern_sixteen(9) except NameError: print('Integer was expected')
21.857143
112
0.48366
[ "MIT" ]
chandthash/nppy
Project Pattern/pattern_16.py
612
Python
from __future__ import absolute_import, division, print_function from tensorflow.python.keras.layers import Input, Dense from tensorflow.python.keras.layers.normalization import BatchNormalization from tensorflow.python.keras.models import Model # 第一種架構: 深度前饋網路(deep feedforward network) # 也叫做前饋神經網路(feedforward neural network)或多層感知機(multilayer perceptron, MLP) def get_dfn(output_size, img_height, img_width, show=True): model_input = Input(shape=(img_height * img_width,), name='Main_input') x = Dense(256, activation='selu', name='Dense_selu_1')(model_input) x = BatchNormalization(name='BN_1')(x) x = Dense(256, activation='tanh', name='Dense_tanh_1')(x) x = BatchNormalization(name='BN_2')(x) x = Dense(256, activation='tanh', name='Dense_tanh_2')(x) dfn_output = Dense(output_size, activation='linear', name='Output_Dense_linear')(x) dfn = Model(inputs=model_input, outputs=dfn_output, name='DFN') if show: print('DFN summary:') dfn.summary() print() return dfn def get_dfn_relu(output_size, img_height, img_width, show=True): model_input = Input(shape=(img_height * img_width,), name='Main_input') x = BatchNormalization(name='BN_1')(model_input) x = Dense(256, activation='relu', name='Dense_relu_1')(x) # x = BatchNormalization()(x) x = Dense(256, activation='relu', name='Dense_relu_2')(x) # x = BatchNormalization()(x) x = Dense(256, activation='relu', name='Dense_relu_3')(x) dfn_output = Dense(output_size, activation='linear', name='Output_Dense_linear')(x) dfn = Model(inputs=model_input, outputs=dfn_output, name='DFN_relu') if show: print('DFN_relu summary:') dfn.summary() print() return dfn def get_dfn_selu(output_size, img_height, img_width, show=True): model_input = Input(shape=(img_height * img_width,), name='Main_input') x = BatchNormalization()(model_input) x = Dense(256, activation='selu', name='Dense_selu_1')(x) # x = BatchNormalization()(x) x = Dense(256, activation='selu', name='Dense_selu_2')(x) # x = BatchNormalization()(x) x = Dense(256, activation='selu', name='Dense_selu_3')(x) dfn_output = Dense(output_size, activation='linear', name='Output_Dense_linear')(x) dfn = Model(inputs=model_input, outputs=dfn_output, name='DFN_selu') if show: print('DFN_selu summary:') dfn.summary() print() return dfn
36.085714
75
0.672605
[ "MIT" ]
swcjack6931677/ERINN
erinn/python/models/DFN.py
2,578
Python
from rest_framework import serializers, generics from snippets.models import Snippet, LANGUAGE_CHOICES, STYLE_CHOICES from users.models import UserProfile # class SnippetSerializer(serializers.Serializer): # id = serializers.IntegerField(read_only=True) # title = serializers.CharField(required=False, allow_blank=True, max_length=100) # code = serializers.CharField(style={'base_template': 'textarea.html'}) # linenos = serializers.BooleanField(required=False) # language = serializers.ChoiceField(choices=LANGUAGE_CHOICES, default='python') # style = serializers.ChoiceField(choices=STYLE_CHOICES, default='friendly') # # def create(self, validated_data): # """ # 给定验证过的数据创建并返回一个新的 Snippet 实例。 # """ # return Snippet.objects.create(**validated_data) # # def update(self, instance, validated_data): # """ # 根据已验证的数据更新并返回已存在的 Snippet 实例。 # """ # instance.title = validated_data.get('title', instance.title) # instance.code = validated_data.get('code', instance.code) # instance.linenos = validated_data.get('linenos', instance.linenos) # instance.language = validated_data.get('language', instance.language) # instance.style = validated_data.get('style', instance.style) # instance.save() # return instance class SnippetSerializer(serializers.ModelSerializer): owner = serializers.ReadOnlyField(source='owner.username') class Meta: model = Snippet fields = ('id', 'title', 'code', 'linenos', 'language', 'style', 'owner') class UserSerializer(serializers.ModelSerializer): snippets = serializers.PrimaryKeyRelatedField(many=True, queryset=Snippet.objects.all()) class Meta: model = UserProfile fields = ('id', 'username', 'first_name', 'last_name', 'snippets', 'password')
41.577778
92
0.691074
[ "Apache-2.0" ]
minicloudsky/MxShop
apps/snippets/serializers.py
1,951
Python
"""Support for sending data to StatsD.""" import logging import statsd import voluptuous as vol from homeassistant.const import CONF_HOST, CONF_PORT, CONF_PREFIX, EVENT_STATE_CHANGED from homeassistant.helpers import state as state_helper import homeassistant.helpers.config_validation as cv _LOGGER = logging.getLogger(__name__) CONF_ATTR = "log_attributes" CONF_RATE = "rate" CONF_VALUE_MAP = "value_mapping" DEFAULT_HOST = "localhost" DEFAULT_PORT = 8125 DEFAULT_PREFIX = "hass" DEFAULT_RATE = 1 DOMAIN = "statsd" CONFIG_SCHEMA = vol.Schema( { DOMAIN: vol.Schema( { vol.Required(CONF_HOST, default=DEFAULT_HOST): cv.string, vol.Optional(CONF_ATTR, default=False): cv.boolean, vol.Optional(CONF_PORT, default=DEFAULT_PORT): cv.port, vol.Optional(CONF_PREFIX, default=DEFAULT_PREFIX): cv.string, vol.Optional(CONF_RATE, default=DEFAULT_RATE): vol.All( vol.Coerce(int), vol.Range(min=1) ), vol.Optional(CONF_VALUE_MAP): dict, } ) }, extra=vol.ALLOW_EXTRA, ) def setup(hass, config): """Set up the StatsD component.""" conf = config[DOMAIN] host = conf.get(CONF_HOST) port = conf.get(CONF_PORT) sample_rate = conf.get(CONF_RATE) prefix = conf.get(CONF_PREFIX) value_mapping = conf.get(CONF_VALUE_MAP) show_attribute_flag = conf.get(CONF_ATTR) statsd_client = statsd.StatsClient(host=host, port=port, prefix=prefix) def statsd_event_listener(event): """Listen for new messages on the bus and sends them to StatsD.""" state = event.data.get("new_state") if state is None: return try: if value_mapping and state.state in value_mapping: _state = float(value_mapping[state.state]) else: _state = state_helper.state_as_number(state) except ValueError: # Set the state to none and continue for any numeric attributes. _state = None states = dict(state.attributes) _LOGGER.debug("Sending %s", state.entity_id) if show_attribute_flag is True: if isinstance(_state, (float, int)): statsd_client.gauge("%s.state" % state.entity_id, _state, sample_rate) # Send attribute values for key, value in states.items(): if isinstance(value, (float, int)): stat = "%s.%s" % (state.entity_id, key.replace(" ", "_")) statsd_client.gauge(stat, value, sample_rate) else: if isinstance(_state, (float, int)): statsd_client.gauge(state.entity_id, _state, sample_rate) # Increment the count statsd_client.incr(state.entity_id, rate=sample_rate) hass.bus.listen(EVENT_STATE_CHANGED, statsd_event_listener) return True
31.126316
86
0.630369
[ "Apache-2.0" ]
0x00-0xFF/home-assistant
homeassistant/components/statsd/__init__.py
2,957
Python
import os from pathlib import Path DB_NAME = "chatapp.db" PROJECT_PATH = Path(__file__).parents[1] DB_PATH = os.path.join(PROJECT_PATH, "resource", DB_NAME) PORT_MIN = 1024 PORT_MAX = 65535 DEBUG = os.getenv("CHAT_APP_DEBUG", False) if DEBUG: TIMEOUT = 30 else: TIMEOUT = 0.5
16.941176
57
0.71875
[ "MIT" ]
xckomorebi/ChatApp
ChatApp/settings.py
288
Python
import base64 from datetime import timedelta import logging import time import uuid import warnings import httpx from ably.types.capability import Capability from ably.types.tokendetails import TokenDetails from ably.types.tokenrequest import TokenRequest from ably.util.exceptions import AblyException, IncompatibleClientIdException __all__ = ["Auth"] log = logging.getLogger(__name__) class Auth: class Method: BASIC = "BASIC" TOKEN = "TOKEN" def __init__(self, ably, options): self.__ably = ably self.__auth_options = options if options.token_details: self.__client_id = options.token_details.client_id else: self.__client_id = options.client_id self.__client_id_validated = False self.__basic_credentials = None self.__auth_params = None self.__token_details = None self.__time_offset = None must_use_token_auth = options.use_token_auth is True must_not_use_token_auth = options.use_token_auth is False can_use_basic_auth = options.key_secret is not None if not must_use_token_auth and can_use_basic_auth: # We have the key, no need to authenticate the client # default to using basic auth log.debug("anonymous, using basic auth") self.__auth_mechanism = Auth.Method.BASIC basic_key = "%s:%s" % (options.key_name, options.key_secret) basic_key = base64.b64encode(basic_key.encode('utf-8')) self.__basic_credentials = basic_key.decode('ascii') return elif must_not_use_token_auth and not can_use_basic_auth: raise ValueError('If use_token_auth is False you must provide a key') # Using token auth self.__auth_mechanism = Auth.Method.TOKEN if options.token_details: self.__token_details = options.token_details elif options.auth_token: self.__token_details = TokenDetails(token=options.auth_token) else: self.__token_details = None if options.auth_callback: log.debug("using token auth with auth_callback") elif options.auth_url: log.debug("using token auth with auth_url") elif options.key_secret: log.debug("using token auth with client-side signing") elif options.auth_token: log.debug("using token auth with supplied token only") elif options.token_details: log.debug("using token auth with supplied token_details") else: raise ValueError("Can't authenticate via token, must provide " "auth_callback, auth_url, key, token or a TokenDetail") async def __authorize_when_necessary(self, token_params=None, auth_options=None, force=False): self.__auth_mechanism = Auth.Method.TOKEN if token_params is None: token_params = dict(self.auth_options.default_token_params) else: self.auth_options.default_token_params = dict(token_params) self.auth_options.default_token_params.pop('timestamp', None) if auth_options is not None: self.auth_options.replace(auth_options) auth_options = dict(self.auth_options.auth_options) if self.client_id is not None: token_params['client_id'] = self.client_id token_details = self.__token_details if not force and not self.token_details_has_expired(): log.debug("using cached token; expires = %d", token_details.expires) return token_details self.__token_details = await self.request_token(token_params, **auth_options) self._configure_client_id(self.__token_details.client_id) return self.__token_details def token_details_has_expired(self): token_details = self.__token_details if token_details is None: return True expires = token_details.expires if expires is None: return False timestamp = self._timestamp() if self.__time_offset: timestamp += self.__time_offset return expires < timestamp + token_details.TOKEN_EXPIRY_BUFFER async def authorize(self, token_params=None, auth_options=None): return await self.__authorize_when_necessary(token_params, auth_options, force=True) async def authorise(self, *args, **kwargs): warnings.warn( "authorise is deprecated and will be removed in v2.0, please use authorize", DeprecationWarning) return await self.authorize(*args, **kwargs) async def request_token(self, token_params=None, # auth_options key_name=None, key_secret=None, auth_callback=None, auth_url=None, auth_method=None, auth_headers=None, auth_params=None, query_time=None): token_params = token_params or {} token_params = dict(self.auth_options.default_token_params, **token_params) key_name = key_name or self.auth_options.key_name key_secret = key_secret or self.auth_options.key_secret log.debug("Auth callback: %s" % auth_callback) log.debug("Auth options: %s" % self.auth_options) if query_time is None: query_time = self.auth_options.query_time query_time = bool(query_time) auth_callback = auth_callback or self.auth_options.auth_callback auth_url = auth_url or self.auth_options.auth_url auth_params = auth_params or self.auth_options.auth_params or {} auth_method = (auth_method or self.auth_options.auth_method).upper() auth_headers = auth_headers or self.auth_options.auth_headers or {} log.debug("Token Params: %s" % token_params) if auth_callback: log.debug("using token auth with authCallback") token_request = await auth_callback(token_params) elif auth_url: log.debug("using token auth with authUrl") token_request = await self.token_request_from_auth_url( auth_method, auth_url, token_params, auth_headers, auth_params) else: token_request = await self.create_token_request( token_params, key_name=key_name, key_secret=key_secret, query_time=query_time) if isinstance(token_request, TokenDetails): return token_request elif isinstance(token_request, dict) and 'issued' in token_request: return TokenDetails.from_dict(token_request) elif isinstance(token_request, dict): token_request = TokenRequest.from_json(token_request) elif isinstance(token_request, str): return TokenDetails(token=token_request) token_path = "/keys/%s/requestToken" % token_request.key_name response = await self.ably.http.post( token_path, headers=auth_headers, body=token_request.to_dict(), skip_auth=True ) AblyException.raise_for_response(response) response_dict = response.to_native() log.debug("Token: %s" % str(response_dict.get("token"))) return TokenDetails.from_dict(response_dict) async def create_token_request(self, token_params=None, key_name=None, key_secret=None, query_time=None): token_params = token_params or {} token_request = {} key_name = key_name or self.auth_options.key_name key_secret = key_secret or self.auth_options.key_secret if not key_name or not key_secret: log.debug('key_name or key_secret blank') raise AblyException("No key specified: no means to generate a token", 401, 40101) token_request['key_name'] = key_name if token_params.get('timestamp'): token_request['timestamp'] = token_params['timestamp'] else: if query_time is None: query_time = self.auth_options.query_time if query_time: if self.__time_offset is None: server_time = await self.ably.time() local_time = self._timestamp() self.__time_offset = server_time - local_time token_request['timestamp'] = server_time else: local_time = self._timestamp() token_request['timestamp'] = local_time + self.__time_offset else: token_request['timestamp'] = self._timestamp() token_request['timestamp'] = int(token_request['timestamp']) ttl = token_params.get('ttl') if ttl is not None: if isinstance(ttl, timedelta): ttl = ttl.total_seconds() * 1000 token_request['ttl'] = int(ttl) capability = token_params.get('capability') if capability is not None: token_request['capability'] = str(Capability(capability)) token_request["client_id"] = ( token_params.get('client_id') or self.client_id) # Note: There is no expectation that the client # specifies the nonce; this is done by the library # However, this can be overridden by the client # simply for testing purposes token_request["nonce"] = token_params.get('nonce') or self._random_nonce() token_request = TokenRequest(**token_request) if token_params.get('mac') is None: # Note: There is no expectation that the client # specifies the mac; this is done by the library # However, this can be overridden by the client # simply for testing purposes. token_request.sign_request(key_secret.encode('utf8')) else: token_request.mac = token_params['mac'] return token_request @property def ably(self): return self.__ably @property def auth_mechanism(self): return self.__auth_mechanism @property def auth_options(self): return self.__auth_options @property def auth_params(self): return self.__auth_params @property def basic_credentials(self): return self.__basic_credentials @property def token_credentials(self): if self.__token_details: token = self.__token_details.token token_key = base64.b64encode(token.encode('utf-8')) return token_key.decode('ascii') @property def token_details(self): return self.__token_details @property def client_id(self): return self.__client_id @property def time_offset(self): return self.__time_offset def _configure_client_id(self, new_client_id): # If new client ID from Ably is a wildcard, but preconfigured clientId is set, # then keep the existing clientId if self.client_id != '*' and new_client_id == '*': self.__client_id_validated = True return # If client_id is defined and not a wildcard, prevent it changing, this is not supported if self.client_id is not None and self.client_id != '*' and new_client_id != self.client_id: raise IncompatibleClientIdException( "Client ID is immutable once configured for a client. " "Client ID cannot be changed to '{}'".format(new_client_id), 400, 40012) self.__client_id_validated = True self.__client_id = new_client_id def can_assume_client_id(self, assumed_client_id): if self.__client_id_validated: return self.client_id == '*' or self.client_id == assumed_client_id elif self.client_id is None or self.client_id == '*': return True # client ID is unknown else: return self.client_id == assumed_client_id async def _get_auth_headers(self): if self.__auth_mechanism == Auth.Method.BASIC: # RSA7e2 if self.client_id: return { 'Authorization': 'Basic %s' % self.basic_credentials, 'X-Ably-ClientId': base64.b64encode(self.client_id.encode('utf-8')) } return { 'Authorization': 'Basic %s' % self.basic_credentials, } else: await self.__authorize_when_necessary() return { 'Authorization': 'Bearer %s' % self.token_credentials, } def _timestamp(self): """Returns the local time in milliseconds since the unix epoch""" return int(time.time() * 1000) def _random_nonce(self): return uuid.uuid4().hex[:16] async def token_request_from_auth_url(self, method, url, token_params, headers, auth_params): body = None params = None if method == 'GET': body = {} params = dict(auth_params, **token_params) elif method == 'POST': params = {} body = dict(auth_params, **token_params) from ably.http.http import Response async with httpx.AsyncClient(http2=True) as client: resp = await client.request(method=method, url=url, headers=headers, params=params, data=body) response = Response(resp) AblyException.raise_for_response(response) try: token_request = response.to_native() except ValueError: token_request = response.text return token_request
38.025
106
0.633867
[ "Apache-2.0" ]
ably/ably-python
ably/rest/auth.py
13,689
Python
from urllib.parse import urlparse from django.conf import settings from django.core.exceptions import ImproperlyConfigured, PermissionDenied from django.shortcuts import resolve_url from gate.views import redirect_to_gate from gate import REDIRECT_FIELD_NAME class GateLockMixin: gate_url = None permission_denied_message = '' raise_exception = False redirect_field_name = REDIRECT_FIELD_NAME def get_gate_url(self): """ Override this method to override the gate_url attribute. """ gate_url = self.gate_url or settings.GATE_URL if not gate_url: raise ImproperlyConfigured( '{0} is missing the gate_url attribute. Define {0}.gate_url, settings.GATE_URL, or override ' '{0}.get_gate_url().'.format(self.__class__.__name__) ) return str(gate_url) def get_permission_denied_message(self): """ Override this method to override the permission_denied_message attribute. """ return self.permission_denied_message def get_redirect_field_name(self): """ Override this method to override the redirect_field_name attribute. """ return self.redirect_field_name def handle_no_permission(self): if self.raise_exception: raise PermissionDenied(self.get_permission_denied_message()) path = self.request.build_absolute_uri() resolved_gate_url = resolve_url(self.get_gate_url()) # If the gate url is the same scheme and net location then use the # path as the "next" url. gate_scheme, gate_netloc = urlparse(resolved_gate_url)[:2] current_scheme, current_netloc = urlparse(path)[:2] if ( (not gate_scheme or gate_scheme == current_scheme) and (not gate_netloc or gate_netloc == current_netloc) ): path = self.request.get_full_path() return redirect_to_gate( path, resolved_gate_url, self.get_redirect_field_name(), ) def lock_test_func(self, key): raise NotImplementedError( '{} is missing the implementation of the test_func() method.'.format(self.__class__.__name__) ) def get_lock_test_func(self): """ Override this method to use a different test_func method. """ return self.lock_test_func def dispatch(self, request, *args, **kwargs): key = request.session.get('gate_key', None) key_test_result = self.get_lock_test_func()(key) if not key_test_result: return self.handle_no_permission() return super().dispatch(request, *args, **kwargs)
34.468354
109
0.658465
[ "MIT" ]
n-serrette/wedding-website
gate/mixin.py
2,723
Python
import random import string from discord import TextChannel from discord.ext import commands from discord.ext.tasks import loop from discord_components import Button, ButtonStyle from config import settings from util.Match import Match class Matchmaking(commands.Cog): def __init__(self, bot): self.bot = bot self.match_create_channel: TextChannel = None self.ongoing_matches_channel: TextChannel = None self.match_results_channel: TextChannel = None self.match_create_message_id = None self.queue = [] self.active_matches = {} # Match ID -> Match instance @commands.Cog.listener() async def on_ready(self): self.match_create_channel = self.bot.get_channel(settings.MATCH_CREATE_CHANNEL) self.ongoing_matches_channel = self.bot.get_channel(settings.ONGOING_MATCHES_CHANNEL) self.match_results_channel = self.bot.get_channel(settings.MATCH_RESULTS_CHANNEL) # Clear the match create channel await self.match_create_channel.purge() button = [Button(style=ButtonStyle.green, label='Enter Queue', emoji='✅', custom_id=settings.MATCHMAKING_JOIN_QUEUE_CUSTOM_ID)] # create the queue message self.match_create_message_id = await self.match_create_channel.send("enter queue msg", components=button) # Start the attempt create match loop self.attempt_create_match.start() def handle_enter_queue(self, user_id): if user_id in self.queue: print(f"tried adding {user_id} to queue but they are already in it") return self.queue.append(user_id) print(f"{user_id} has joined the queue") async def handle_match_win(self, match, custom_id): winner_id = None if custom_id: winner_id = custom_id.replace(settings.MATCHMAKING_ONGOING_CUSTOM_ID, '') if winner_id: msg = await self.match_results_channel.send(content=f"User {winner_id} won match {match.id}!") del self.active_matches[match.id] match_msg = self.bot.get_message(self.ongoing_matches_channel, match.message_id) await self.bot.delete_message(match_msg) @loop(seconds=settings.MATCHMAKING_CREATE_MATCH_FREQUENCY) async def attempt_create_match(self): print(f"[Matchmaking] attempting to create a match with {len(self.queue)} members") if len(self.queue) <= 1: print("tried creating match with less than 2 members") return #split queues later on based on rank/elo matched_players = random.sample(self.queue, 2) u1 = matched_players[0] u2 = matched_players[1] await self.create_match(u1, u2) def generate_match_id(self): avail_chars = string.ascii_uppercase + string.digits id_list = [] for _ in range(6): id_list.append(random.choice(avail_chars)) generated_id = ''.join(id_list) if generated_id not in self.active_matches: return generated_id return self.generate_match_id() def get_match(self, msg_id): for match in self.active_matches.values(): if msg_id == match.message_id: return match return None async def create_match(self, u1, u2): match_id = self.generate_match_id() buttons = [ Button(style=ButtonStyle.grey, label=f"{u1} won", emoji='✅', custom_id=f"{settings.MATCHMAKING_ONGOING_CUSTOM_ID}{u1}"), Button(style=ButtonStyle.grey, label=f"{u2} won", emoji='✅', custom_id=f"{settings.MATCHMAKING_ONGOING_CUSTOM_ID}{u2}") ] msg = await self.ongoing_matches_channel.send(content=f"Match between {u1}, {u2}", components=buttons) self.active_matches[match_id] = Match(match_id, msg.id, [u1, u2]) # remove them from the queue self.queue.remove(u1) self.queue.remove(u2) def setup(bot): bot.add_cog(Matchmaking(bot))
33.475
135
0.668658
[ "MIT" ]
DevvyDont/CraneDuels
cogs/Matchmaking.py
4,023
Python
import PySimpleGUI as sg layout = [ [sg.Text('text')], [sg.Input('input', key= 'input1')], [sg.Input('input', key='input2')], [sg.Button('button', key='button1')] ] window = sg.Window('list values - list or dict', layout) while True: event, values = window.Read() if event == 'button1': print(values['input1']) print(values['input2']) # prints button key because that's current events' key print(event) elif event is None: break window.Close()
18
58
0.627572
[ "MIT" ]
CrazyJ36/python
pysimplegui/values_from_some_elements.py
486
Python
from MonetDBtesting.sqltest import SQLTestCase try: from MonetDBtesting import process except ImportError: import process with process.server(args=[], mapiport='0', stdin=process.PIPE, stdout=process.PIPE, stderr=process.PIPE) as s: with SQLTestCase() as tc: tc.connect(username="monetdb", password="monetdb", port=str(s.dbport)) tc.execute("select * from t1;").assertSucceeded().assertDataResultMatch([(1,)]) tc.execute("create view v1 as select * from t1;").assertSucceeded() tc.execute("create view v2 as select * from t1;").assertSucceeded() tc.execute("drop view v2;").assertSucceeded() tc.execute("insert into v1 (a) values ( 2 );").assertFailed(err_message='INSERT INTO: cannot insert into view \'v1\'') tc.execute("update v1 set a = 3 where a = 2;").assertFailed(err_message='UPDATE: cannot update view \'v1\'') tc.execute("delete from v1 where a = 3;").assertFailed(err_message='DELETE FROM: cannot delete from view \'v1\'') s.communicate() with process.server(args=["--readonly"], mapiport='0', stdin=process.PIPE, stdout=process.PIPE, stderr=process.PIPE) as s: with SQLTestCase() as tc: tc.connect(username="monetdb", password="monetdb", port=str(s.dbport)) tc.execute("select * from t1;").assertSucceeded().assertDataResultMatch([(1,)]) tc.execute("create view v2 as select * from t1;").assertFailed(err_message='Schema statements cannot be executed on a readonly database.') tc.execute("drop view v1;").assertFailed(err_message='Schema statements cannot be executed on a readonly database.') tc.execute("select * from v1;").assertSucceeded() tc.execute("insert into v1 (a) values ( 1 );").assertFailed(err_message='INSERT INTO: cannot insert into view \'v1\'') tc.execute("update v1 set a = 2 where a = 1;").assertFailed(err_message='UPDATE: cannot update view \'v1\'') tc.execute("delete from v1 where a = 1;").assertFailed(err_message='DELETE FROM: cannot delete from view \'v1\'') s.communicate()
55.75
146
0.637668
[ "MPL-2.0", "MPL-2.0-no-copyleft-exception" ]
MonetDB/MonetDB
sql/test/mserver5-sql-readonly/Tests/mserver5-sql-readonly-view.py
2,230
Python
import os.path from data.base_dataset import BaseDataset, get_transform from data.image_folder import make_dataset from PIL import Image import random import h5py import numpy as np from skimage.transform import resize as skResize from util.util import normalize, adaptive_instance_normalization class UnalignedDataset(BaseDataset): """ This dataset class can load unaligned/unpaired datasets. It requires two directories to host training images from domain A '/path/to/data/trainA' and from domain B '/path/to/data/trainB' respectively. You can train the model with the dataset flag '--dataroot /path/to/data'. Similarly, you need to prepare two directories: '/path/to/data/testA' and '/path/to/data/testB' during test time. """ def __init__(self, opt): """Initialize this dataset class. Parameters: opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions """ BaseDataset.__init__(self, opt) self.dir_A = os.path.join(opt.dataroot, opt.phase + 'A') # create a path '/path/to/data/trainA' self.dir_B = os.path.join(opt.dataroot_B, opt.phase + 'B') # create a path '/path/to/data/trainB' self.A_paths = sorted(make_dataset(self.dir_A, opt.max_dataset_size)) # load images from '/path/to/data/trainA' self.B_paths = sorted(make_dataset(self.dir_B, opt.max_dataset_size)) # load images from '/path/to/data/trainB' self.A_size = len(self.A_paths) # get the size of dataset A self.B_size = len(self.B_paths) # get the size of dataset B btoA = self.opt.direction == 'BtoA' input_nc = self.opt.output_nc if btoA else self.opt.input_nc # get the number of channels of input image output_nc = self.opt.input_nc if btoA else self.opt.output_nc # get the number of channels of output image self.transform_A = get_transform(self.opt, grayscale=(input_nc == 1)) self.transform_B = get_transform(self.opt, grayscale=(output_nc == 1)) def __getitem__(self, index): """Return a data point and its metadata information. Parameters: index (int) -- a random integer for data indexing Returns a dictionary that contains A, B, A_paths and B_paths A (tensor) -- an image in the input domain B (tensor) -- its corresponding image in the target domain A_paths (str) -- image paths B_paths (str) -- image paths """ A_path = self.A_paths[index % self.A_size] # make sure index is within then range if self.opt.serial_batches: # make sure index is within then range index_B = index % self.B_size else: # randomize the index for domain B to avoid fixed pairs. index_B = random.randint(0, self.B_size - 1) B_path = self.B_paths[index_B] A_img = np.array(Image.open(A_path).convert('RGB')) A_img = self.stack(A_img) #Added a new loader for loading hsi images. Uncomment the following line for normal images. try: B_img = self.hsi_loader(B_path) except KeyError: print(B_path) B = normalize(B_img, max_=4096) A = normalize(A_img, max_=1) A = adaptive_instance_normalization(A, B) del A_img, B_img return {'A': A, 'B': B, 'A_paths': A_path, 'B_paths': B_path} def __len__(self): """Return the total number of images in the dataset. As we have two datasets with potentially different number of images, we take a maximum of """ return max(self.A_size, self.B_size) def stack(self, img, resize=True): _R = img[:,:,0] _G = img[:,:,1] _B = img[:,:,2] R_img = np.stack((_R,)*10, axis=2) G_img = np.stack((_G,)*10, axis=2) B_img = np.stack((_B,)*11, axis=2) hsi_img = np.concatenate((B_img, G_img, R_img), axis=2) hsi_img = self.resize(hsi_img) hsi_img = np.einsum('abc->cab', hsi_img) return hsi_img def resize(self, img): img = skResize(img, (self.opt.crop_size, self.opt.crop_size)) return img def hsi_loader(self, path): with h5py.File(path, 'r') as f: d = np.array(f['data']) hs_data = np.einsum('abc -> cab',self.resize(d)) #print('Inside hsi loader, {0}'.format(np.shape(hs_data))) return hs_data
41.290909
122
0.625055
[ "BSD-3-Clause" ]
sinhaharsh/pytorch-CycleGAN-and-pix2pix
data/unaligned_dataset.py
4,542
Python
## # The MIT License (MIT) # # Copyright (c) 2016 Stefan Wendler # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. ## import os import subprocess class AbstractBrowser: _binary = None def __init__(self, url, user_data_dir): self.user_data_dir = os.path.join(user_data_dir, self._binary) self.url = url if not os.path.exists(self.user_data_dir): os.makedirs(self.user_data_dir) @staticmethod def _available(binary): extensions = os.environ.get("PATHEXT", "").split(os.pathsep) for directory in os.environ.get("PATH", "").split(os.pathsep): base = os.path.join(directory, binary) options = [base] + [(base + ext) for ext in extensions] for filename in options: if os.path.exists(filename): return True return False def _start(self, args): print("running: " + self._binary) try: subprocess.check_output([self._binary] + args) except subprocess.CalledProcessError as e: print(e.output) return e.returncode except Exception as e: print(e) return -1 return 0 def start(self): return -1 @staticmethod def available(): return False class Chrome(AbstractBrowser): _binary = "google-chrome" @staticmethod def available(): return AbstractBrowser._available(Chrome._binary) def start(self): args = ["--app=%s" % self.url] args += ["--user-data-dir=%s" % self.user_data_dir] return self._start(args) class Chromium(Chrome): _binary = "xchromium" @staticmethod def available(): return AbstractBrowser._available(Chromium._binary) class Firefox(AbstractBrowser): _binary = "firefox" @staticmethod def available(): return AbstractBrowser._available(Firefox._binary) def start(self): args = ["--profile", self.user_data_dir] args += ["--no-remote"] args += [self.url] return self._start(args) class Browser: def __init__(self, url, user_data_dir=None): self.client = None for cls in [Chrome, Chromium, Firefox]: if cls.available(): self.client = cls(url, user_data_dir) break if self.client is None: raise Exception("No suitable client found!") def start(self): return self.client.start()
26.074074
79
0.646591
[ "MIT" ]
wendlers/edubot-snap
src/edubot/client.py
3,520
Python
from project.hardware.hardware import Hardware class HeavyHardware(Hardware): TYPE = "Heavy" def __init__(self, name, capacity, memory): super().__init__(name, self.TYPE, capacity * 2, int(memory * 0.75))
24.888889
75
0.691964
[ "MIT" ]
geodimitrov/Python-OOP-SoftUni
Exam-Prep/Exam_16-Aug-20/project/hardware/heavy_hardware.py
224
Python
import logging, ast, os from bisect import bisect_left, bisect import louie as dispatcher from twisted.internet import reactor from rdflib import Literal from light9 import showconfig from light9.namespaces import L9, RDF, RDFS from rdfdb.patch import Patch log = logging.getLogger() # todo: move to config, consolidate with ascoltami, musicPad, etc introPad = 4 postPad = 4 class Curve(object): """curve does not know its name. see Curveset""" def __init__(self, uri, pointsStorage='graph'): self.uri = uri self.pointsStorage = pointsStorage self.points = [] # x-sorted list of (x,y) self._muted = False def __repr__(self): return "<%s %s (%s points)>" % (self.__class__.__name__, self.uri, len(self.points)) def muted(): doc = "Whether to currently send levels (boolean, obviously)" def fget(self): return self._muted def fset(self, val): self._muted = val dispatcher.send('mute changed', sender=self) return locals() muted = property(**muted()) def toggleMute(self): self.muted = not self.muted def load(self, filename): self.points[:] = [] for line in open(filename): x, y = line.split() self.points.append((float(x), ast.literal_eval(y))) self.points.sort() dispatcher.send("points changed", sender=self) def set_from_string(self, pts): self.points[:] = [] vals = pts.split() pairs = list(zip(vals[0::2], vals[1::2])) for x, y in pairs: self.points.append((float(x), ast.literal_eval(y))) self.points.sort() dispatcher.send("points changed", sender=self) def points_as_string(self): def outVal(x): if isinstance(x, str): # markers return x return "%.4g" % x return ' '.join( "%s %s" % (outVal(p[0]), outVal(p[1])) for p in self.points) def save(self, filename): # this is just around for markers, now if filename.endswith('-music') or filename.endswith('_music'): print("not saving music track") return f = open(filename, 'w') for p in self.points: f.write("%s %r\n" % p) f.close() def eval(self, t, allow_muting=True): if self.muted and allow_muting: return 0 if not self.points: raise ValueError("curve has no points") i = bisect_left(self.points, (t, None)) - 1 if i == -1: return self.points[0][1] if self.points[i][0] > t: return self.points[i][1] if i >= len(self.points) - 1: return self.points[i][1] p1, p2 = self.points[i], self.points[i + 1] frac = (t - p1[0]) / (p2[0] - p1[0]) y = p1[1] + (p2[1] - p1[1]) * frac return y __call__ = eval def insert_pt(self, new_pt): """returns index of new point""" i = bisect(self.points, (new_pt[0], None)) self.points.insert(i, new_pt) # missing a check that this isn't the same X as the neighbor point dispatcher.send("points changed", sender=self) return i def live_input_point(self, new_pt, clear_ahead_secs=.01): x, y = new_pt exist = self.points_between(x, x + clear_ahead_secs) for pt in exist: self.remove_point(pt) self.insert_pt(new_pt) dispatcher.send("points changed", sender=self) # now simplify to the left def set_points(self, updates): for i, pt in updates: self.points[i] = pt # this should be on, but live_input_point made it fail a # lot. need a new solution. #self.checkOverlap() dispatcher.send("points changed", sender=self) def checkOverlap(self): x = None for p in self.points: if p[0] <= x: raise ValueError("overlapping points") x = p[0] def pop_point(self, i): p = self.points.pop(i) dispatcher.send("points changed", sender=self) return p def remove_point(self, pt): self.points.remove(pt) dispatcher.send("points changed", sender=self) def indices_between(self, x1, x2, beyond=0): leftidx = max(0, bisect(self.points, (x1, None)) - beyond) rightidx = min(len(self.points), bisect(self.points, (x2, None)) + beyond) return list(range(leftidx, rightidx)) def points_between(self, x1, x2): """returns (x,y) points""" return [self.points[i] for i in self.indices_between(x1, x2)] def point_before(self, x): """(x,y) of the point left of x, or None""" leftidx = self.index_before(x) if leftidx is None: return None return self.points[leftidx] def index_before(self, x): leftidx = bisect(self.points, (x, None)) - 1 if leftidx < 0: return None return leftidx class CurveResource(object): """ holds a Curve, deals with graphs """ def __init__(self, graph, uri): # probably newCurve and loadCurve should be the constructors instead. self.graph, self.uri = graph, uri def curvePointsContext(self): return self.uri def newCurve(self, ctx, label): """ Save type/label for a new :Curve resource. Pass the ctx where the main curve data (not the points) will go. """ if hasattr(self, 'curve'): raise ValueError('CurveResource already has a curve %r' % self.curve) self.graph.patch( Patch(addQuads=[ (self.uri, RDF.type, L9['Curve'], ctx), (self.uri, RDFS.label, label, ctx), ])) self.curve = Curve(self.uri) self.curve.points.extend([(0, 0)]) self.saveCurve() self.watchCurvePointChanges() def loadCurve(self): if hasattr(self, 'curve'): raise ValueError('CurveResource already has a curve %r' % self.curve) pointsFile = self.graph.value(self.uri, L9['pointsFile']) self.curve = Curve(self.uri, pointsStorage='file' if pointsFile else 'graph') if hasattr(self.graph, 'addHandler'): self.graph.addHandler(self.pointsFromGraph) else: # given a currentState graph self.pointsFromGraph() def pointsFromGraph(self): pts = self.graph.value(self.uri, L9['points']) if pts is not None: self.curve.set_from_string(pts) else: diskPts = self.graph.value(self.uri, L9['pointsFile']) if diskPts is not None: self.curve.load(os.path.join(showconfig.curvesDir(), diskPts)) else: log.warn("curve %s has no points", self.uri) self.watchCurvePointChanges() def saveCurve(self): self.pendingSave = None for p in self.getSavePatches(): self.graph.patch(p) def getSavePatches(self): if self.curve.pointsStorage == 'file': log.warn("not saving file curves anymore- skipping %s" % self.uri) #cur.save("%s-%s" % (basename,name)) return [] elif self.curve.pointsStorage == 'graph': return [ self.graph.getObjectPatch(self.curvePointsContext(), subject=self.uri, predicate=L9['points'], newObject=Literal( self.curve.points_as_string())) ] else: raise NotImplementedError(self.curve.pointsStorage) def watchCurvePointChanges(self): """start watching and saving changes to the graph""" dispatcher.connect(self.onChange, 'points changed', sender=self.curve) def onChange(self): # Don't write a patch for the edited curve points until they've been # stable for this long. This can be very short, since it's just to # stop a 100-point edit from sending many updates. If it's too long, # you won't see output lights change while you drag a point. Todo: # this is just the wrong timing algorithm- it should be a max rate, # not a max-hold-still-time. HOLD_POINTS_GRAPH_COMMIT_SECS = .1 if getattr(self, 'pendingSave', None): self.pendingSave.cancel() self.pendingSave = reactor.callLater(HOLD_POINTS_GRAPH_COMMIT_SECS, self.saveCurve) class Markers(Curve): """Marker is like a point but the y value is a string""" def eval(self): raise NotImplementedError() def slope(p1, p2): if p2[0] == p1[0]: return 0 return (p2[1] - p1[1]) / (p2[0] - p1[0]) class Curveset(object): def __init__(self, graph, session): self.graph, self.session = graph, session self.currentSong = None self.curveResources = {} # uri : CurveResource self.markers = Markers(uri=None, pointsStorage='file') graph.addHandler(self.loadCurvesForSong) def curveFromUri(self, uri): return self.curveResources[uri].curve def loadCurvesForSong(self): """ current curves will track song's curves. This fires 'add_curve' dispatcher events to announce the new curves. """ log.info('loadCurvesForSong') dispatcher.send("clear_curves") self.curveResources.clear() self.markers = Markers(uri=None, pointsStorage='file') self.currentSong = self.graph.value(self.session, L9['currentSong']) if self.currentSong is None: return for uri in sorted(self.graph.objects(self.currentSong, L9['curve'])): try: cr = self.curveResources[uri] = CurveResource(self.graph, uri) cr.loadCurve() curvename = self.graph.label(uri) if not curvename: raise ValueError("curve %r has no label" % uri) dispatcher.send("add_curve", sender=self, uri=uri, label=curvename, curve=cr.curve) except Exception as e: log.error("loading %s failed: %s", uri, e) basename = os.path.join( showconfig.curvesDir(), showconfig.songFilenameFromURI(self.currentSong)) try: self.markers.load("%s.markers" % basename) except IOError: print("no marker file found") def save(self): """writes a file for each curve with a name like basename-curvename, or saves them to the rdf graph""" basename = os.path.join( showconfig.curvesDir(), showconfig.songFilenameFromURI(self.currentSong)) patches = [] for cr in list(self.curveResources.values()): patches.extend(cr.getSavePatches()) self.markers.save("%s.markers" % basename) # this will cause reloads that will rebuild our curve list for p in patches: self.graph.patch(p) def sorter(self, name): return self.curves[name].uri def curveUrisInOrder(self): return sorted(self.curveResources.keys()) def currentCurves(self): # deprecated for uri, cr in sorted(self.curveResources.items()): with self.graph.currentState(tripleFilter=(uri, RDFS['label'], None)) as g: yield uri, g.label(uri), cr.curve def globalsdict(self): raise NotImplementedError('subterm used to get a dict of name:curve') def get_time_range(self): return 0, dispatcher.send("get max time")[0][1] def new_curve(self, name): if isinstance(name, Literal): name = str(name) uri = self.graph.sequentialUri(self.currentSong + '/curve-') cr = self.curveResources[uri] = CurveResource(self.graph, uri) cr.newCurve(ctx=self.currentSong, label=Literal(name)) s, e = self.get_time_range() cr.curve.points.extend([(s, 0), (e, 0)]) ctx = self.currentSong self.graph.patch( Patch(addQuads=[ (self.currentSong, L9['curve'], uri, ctx), ])) cr.saveCurve()
33.025974
78
0.562407
[ "MIT" ]
drewp/light9
light9/curvecalc/curve.py
12,715
Python
import paddle import paddle.nn as nn class ContrastiveLoss(nn.Layer): """ Compute contrastive loss """ def __init__(self, margin=0, max_violation=False): super(ContrastiveLoss, self).__init__() self.margin = margin self.max_violation = max_violation def forward(self, scores): # compute image-sentence score matrix diag_idx = [[i, i] for i in range(len(scores))] diagonal = paddle.gather_nd(scores, paddle.to_tensor(diag_idx)).unsqueeze(1) d1 = diagonal.expand_as(scores) d2 = paddle.transpose(d1, (1,0)).expand_as(scores) # compare every diagonal score to scores in its column # caption retrieval cost_s = (self.margin + scores - d1).clip(min=0) # compare every diagonal score to scores in its row # image retrieval cost_im = (self.margin + scores - d2).clip(min=0) # clear diagonals mask = paddle.eye(scores.shape[0]) < .5 cost_s = cost_s * mask cost_im = cost_im * mask # keep the maximum violating negative for each query if self.max_violation: cost_s = cost_s.max(1) cost_im = cost_im.max(0) return cost_s.sum() + cost_im.sum()
32.921053
84
0.620304
[ "Apache-2.0" ]
njustkmg/PaddleMM
paddlemm/models/retrieval/layers/contrastive.py
1,251
Python
# coding=utf-8 import json import falcon from ..db import db class LogTheError(object): def on_post(self, req, resp): os = str(req.body['os']).lower() account_addr = str(req.body['account_addr']).lower() error_str = str(req.body['error_str']).lower() log_type = 'error' _ = db.logs.insert_one({ 'os': os, 'account_addr': account_addr, 'error_str': error_str, 'log_type': log_type }) message = { 'success': True, 'message': 'Error reported successfully.' } resp.status = falcon.HTTP_200 resp.body = json.dumps(message)
22.7
60
0.543319
[ "MIT" ]
baymax19/Sentinel
master-node-docker/sentinel/logs/errors.py
681
Python
# Enter your code for "Degree Distribution" here. import csv degrees = [] students = [] for l in csv.DictReader(open("degrees.csv")): degrees.append(l) for l in csv.DictReader(open("students.csv")): students.append(l) students = sorted(students, key=lambda x: float(x["score"])) students.reverse() print(students)
18.222222
60
0.698171
[ "BSD-2-Clause" ]
monkee52/NCSSChallenge
Degree Distribution.py
328
Python
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities __all__ = ['TagArgs', 'Tag'] @pulumi.input_type class TagArgs: def __init__(__self__, *, key: pulumi.Input[str], resource_arn: pulumi.Input[str], value: pulumi.Input[str]): """ The set of arguments for constructing a Tag resource. :param pulumi.Input[str] key: Tag name. :param pulumi.Input[str] resource_arn: Amazon Resource Name (ARN) of the ECS resource to tag. :param pulumi.Input[str] value: Tag value. """ pulumi.set(__self__, "key", key) pulumi.set(__self__, "resource_arn", resource_arn) pulumi.set(__self__, "value", value) @property @pulumi.getter def key(self) -> pulumi.Input[str]: """ Tag name. """ return pulumi.get(self, "key") @key.setter def key(self, value: pulumi.Input[str]): pulumi.set(self, "key", value) @property @pulumi.getter(name="resourceArn") def resource_arn(self) -> pulumi.Input[str]: """ Amazon Resource Name (ARN) of the ECS resource to tag. """ return pulumi.get(self, "resource_arn") @resource_arn.setter def resource_arn(self, value: pulumi.Input[str]): pulumi.set(self, "resource_arn", value) @property @pulumi.getter def value(self) -> pulumi.Input[str]: """ Tag value. """ return pulumi.get(self, "value") @value.setter def value(self, value: pulumi.Input[str]): pulumi.set(self, "value", value) @pulumi.input_type class _TagState: def __init__(__self__, *, key: Optional[pulumi.Input[str]] = None, resource_arn: Optional[pulumi.Input[str]] = None, value: Optional[pulumi.Input[str]] = None): """ Input properties used for looking up and filtering Tag resources. :param pulumi.Input[str] key: Tag name. :param pulumi.Input[str] resource_arn: Amazon Resource Name (ARN) of the ECS resource to tag. :param pulumi.Input[str] value: Tag value. """ if key is not None: pulumi.set(__self__, "key", key) if resource_arn is not None: pulumi.set(__self__, "resource_arn", resource_arn) if value is not None: pulumi.set(__self__, "value", value) @property @pulumi.getter def key(self) -> Optional[pulumi.Input[str]]: """ Tag name. """ return pulumi.get(self, "key") @key.setter def key(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "key", value) @property @pulumi.getter(name="resourceArn") def resource_arn(self) -> Optional[pulumi.Input[str]]: """ Amazon Resource Name (ARN) of the ECS resource to tag. """ return pulumi.get(self, "resource_arn") @resource_arn.setter def resource_arn(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "resource_arn", value) @property @pulumi.getter def value(self) -> Optional[pulumi.Input[str]]: """ Tag value. """ return pulumi.get(self, "value") @value.setter def value(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "value", value) class Tag(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, key: Optional[pulumi.Input[str]] = None, resource_arn: Optional[pulumi.Input[str]] = None, value: Optional[pulumi.Input[str]] = None, __props__=None): """ ## Import `aws_ecs_tag` can be imported by using the ECS resource identifier and key, separated by a comma (`,`), e.g. ```sh $ pulumi import aws:ecs/tag:Tag example arn:aws:ecs:us-east-1:123456789012:cluster/example,Name ``` :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] key: Tag name. :param pulumi.Input[str] resource_arn: Amazon Resource Name (ARN) of the ECS resource to tag. :param pulumi.Input[str] value: Tag value. """ ... @overload def __init__(__self__, resource_name: str, args: TagArgs, opts: Optional[pulumi.ResourceOptions] = None): """ ## Import `aws_ecs_tag` can be imported by using the ECS resource identifier and key, separated by a comma (`,`), e.g. ```sh $ pulumi import aws:ecs/tag:Tag example arn:aws:ecs:us-east-1:123456789012:cluster/example,Name ``` :param str resource_name: The name of the resource. :param TagArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(TagArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, key: Optional[pulumi.Input[str]] = None, resource_arn: Optional[pulumi.Input[str]] = None, value: Optional[pulumi.Input[str]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = TagArgs.__new__(TagArgs) if key is None and not opts.urn: raise TypeError("Missing required property 'key'") __props__.__dict__["key"] = key if resource_arn is None and not opts.urn: raise TypeError("Missing required property 'resource_arn'") __props__.__dict__["resource_arn"] = resource_arn if value is None and not opts.urn: raise TypeError("Missing required property 'value'") __props__.__dict__["value"] = value super(Tag, __self__).__init__( 'aws:ecs/tag:Tag', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None, key: Optional[pulumi.Input[str]] = None, resource_arn: Optional[pulumi.Input[str]] = None, value: Optional[pulumi.Input[str]] = None) -> 'Tag': """ Get an existing Tag resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] key: Tag name. :param pulumi.Input[str] resource_arn: Amazon Resource Name (ARN) of the ECS resource to tag. :param pulumi.Input[str] value: Tag value. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = _TagState.__new__(_TagState) __props__.__dict__["key"] = key __props__.__dict__["resource_arn"] = resource_arn __props__.__dict__["value"] = value return Tag(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter def key(self) -> pulumi.Output[str]: """ Tag name. """ return pulumi.get(self, "key") @property @pulumi.getter(name="resourceArn") def resource_arn(self) -> pulumi.Output[str]: """ Amazon Resource Name (ARN) of the ECS resource to tag. """ return pulumi.get(self, "resource_arn") @property @pulumi.getter def value(self) -> pulumi.Output[str]: """ Tag value. """ return pulumi.get(self, "value")
35.509728
134
0.60103
[ "ECL-2.0", "Apache-2.0" ]
pulumi/pulumi-aws
sdk/python/pulumi_aws/ecs/tag.py
9,126
Python
# Copyright 2017 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. from __future__ import print_function import io import os import platform import sys import time import unittest import common sys.path.append(os.path.join(os.path.dirname(__file__), os.pardir, os.pardir, os.pardir, 'tools', 'variations')) import fieldtrial_util test_blacklist = [ # These tests set their own field trials and should be ignored. 'quic.Quic.testCheckPageWithQuicProxy', 'quic.Quic.testCheckPageWithQuicProxyTransaction', 'smoke.Smoke.testCheckPageWithHoldback', ] def GetExperimentArgs(): """Returns a list of arguments with all tested field trials. This function is a simple wrapper around the variation team's fieldtrail_util script that generates command line arguments to test Chromium field trials. Returns: an array of command line arguments to pass to chrome """ config_path = os.path.join(os.path.dirname(__file__), os.pardir, os.pardir, os.pardir, 'testing', 'variations', 'fieldtrial_testing_config.json') my_platform = '' if common.ParseFlags().android: my_platform = 'android' elif platform.system().lower() == 'linux': my_platform = 'linux' elif platform.system().lower() == 'windows': my_platform = 'windows' elif platform.system().lower() == 'darwin': my_platform = 'mac' else: raise Exception('unknown platform!') return fieldtrial_util.GenerateArgs(config_path, my_platform) def GenerateTestSuites(): """A generator function that yields non-blacklisted tests to run. This function yields test suites each with a single test case whose id is not blacklisted in the array at the top of this file. Yields: non-blacklisted test suites to run """ loader = unittest.TestLoader() for test_suite in loader.discover(os.path.dirname(__file__), pattern='*.py'): for test_case in test_suite: for test_method in test_case: if test_method.id() not in test_blacklist: ts = unittest.TestSuite() ts.addTest(test_method) yield (ts, test_method.id()) def ParseFlagsWithExtraBrowserArgs(extra_args): """Generates a function to override common.ParseFlags. The returned function will honor everything in the original ParseFlags(), but adds on additional browser_args. Args: extra_args: The extra browser agruments to add. Returns: A function to override common.ParseFlags with additional browser_args. """ original_flags = common.ParseFlags() def AddExtraBrowserArgs(): original_flags.browser_args = ((original_flags.browser_args if original_flags.browser_args else '') + ' ' + extra_args) return original_flags return AddExtraBrowserArgs def main(): """Runs all non-blacklisted tests against Chromium field trials. This script run all chrome proxy integration tests that haven't been blacklisted against the field trial testing configuration used by Chromium perf bots. """ flags = common.ParseFlags() experiment_args = ' '.join(GetExperimentArgs()) common.ParseFlags = ParseFlagsWithExtraBrowserArgs(experiment_args) # Each test is wrapped in its own test suite so results can be evaluated # individually. for test_suite, test_id in GenerateTestSuites(): buf = io.BytesIO() sys.stdout.write('%s... ' % test_id) sys.stdout.flush() testRunner = unittest.runner.TextTestRunner(stream=buf, verbosity=2, buffer=(not flags.disable_buffer)) result = testRunner.run(test_suite) if result.wasSuccessful(): print('ok') else: print('failed') print(buf.getvalue()) print('To repeat this test, run: ') print("%s %s %s --test_filter=%s --browser_args='%s'" % ( sys.executable, os.path.join(os.path.dirname(__file__), 'run_all_tests.py'), ' '.join( sys.argv[1:]), '.'.join(test_id.split('.')[1:]), experiment_args)) if flags.failfast: return if __name__ == '__main__': main()
33.545455
80
0.716433
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
jnpatel2811/chromium
tools/chrome_proxy/webdriver/variations_combinations.py
4,059
Python
# Link for the problem : https://leetcode.com/problems/next-permutation/ class Solution(object): def nextPermutation(self, nums): found = False i = len(nums)-2 while i >=0: if nums[i] < nums[i+1]: found =True break i-=1 if not found: nums.sort() else: m = self.findMaxIndex(i+1,nums,nums[i]) nums[i],nums[m] = nums[m],nums[i] nums[i+1:] = nums[i+1:][::-1] return nums def findMaxIndex(self,index,a,curr): ans = -1 index = 0 for i in range(index,len(a)): if a[i]>curr: if ans == -1: ans = curr index = i else: ans = min(ans,a[i]) index = i return index ob1 = Solution()
23.371429
72
0.462103
[ "MIT" ]
5l1v3r1/CompetitiveProgrammingQuestionBank
DSA 450 GFG/next_permutation.py
818
Python
# # blood_graph.py # # vanilla_core execution visualizer. # # input: vanilla_operation_trace.csv # vanilla_stats.csv (for timing) # output: blood graph file (blood_abstrat/detailed.png) # blood graph key (key_abstract/detailed.png) # # @author Tommy, Borna # # How to use: # python blood_graph.py --trace {vanilla_operation_trace.csv} # --stats {vanilla_stats.csv} # --abstract {optional} # --generate-key {optional} # --cycle {start_cycle@end_cycle} # # ex) python blood_graph.py --trace vanilla_operation_trace.csv # --stats vanilla_stats.csv # --abstract --generate-key # --cycle 10000@20000 # # # {stats} used for extracting the timing window for blood graph # {abstract} used for abstract simplifed bloodgraph # {generate-key} also generates a color key for the blood graph # {cycle} used for user-specified custom timing window # # # Note: You can use the "Digital Color Meter" in MacOS in order to compare # the values from the color key to the values in the bloodgraph, if you are # having trouble distinguishing a color. import sys import csv import argparse import warnings import os.path from PIL import Image, ImageDraw, ImageFont from itertools import chain from . import common class BloodGraph: # for generating the key _KEY_WIDTH = 512 _KEY_HEIGHT = 512 # List of types of stalls incurred by the core _STALLS_LIST = ["stall_depend_dram_load", "stall_depend_group_load", "stall_depend_global_load", "stall_depend_idiv", "stall_depend_fdiv", "stall_depend_local_load", "stall_depend_imul", "stall_amo_aq", "stall_amo_rl", "stall_bypass", "stall_lr_aq", "stall_fence", "stall_remote_req", "stall_remote_credit", "stall_fdiv_busy", "stall_idiv_busy", "stall_fcsr", "stall_remote_ld", "stall_ifetch_wait", "stall_remote_flw_wb", "stall_remote_ld_wb", "bubble_branch_miss", "bubble_jalr_miss", "bubble_icache_miss"] # List of types of integer instructions executed by the core _INSTRS_LIST = [ "local_ld", "local_st", "remote_ld_dram", "remote_ld_global", "remote_ld_group", "remote_st_dram", "remote_st_global", "remote_st_group", "local_flw", "local_fsw", "remote_flw_dram", "remote_flw_global", "remote_flw_group", "remote_fsw_dram", "remote_fsw_global", "remote_fsw_group", # icache_miss is no longer treated as an instruction # but treated the same as stall_ifetch_wait # "icache_miss", "lr", "lr_aq", "amoswap", "amoor", "amoadd", "beq", "bne", "blt", "bge", "bltu", "bgeu", "jal", "jalr", "beq_miss", "bne_miss", "blt_miss", "bge_miss", "bltu_miss", "bgeu_miss", "jalr_miss", "sll", "slli", "srl", "srli", "sra", "srai", "add", "addi", "sub", "lui", "auipc", "xor", "xori", "or", "ori", "and", "andi", "slt", "slti", "sltu", "sltiu", "div", "divu", "rem", "remu", "mul", "fence", "csrrw", "csrrs", "csrrc", "csrrwi", "csrrsi", "csrrci", "barsend", "barrecv", "unknown"] # List of types of floating point instructions executed by the core _FP_INSTRS_LIST = ["fadd", "fsub", "fmul", "fsgnj", "fsgnjn", "fsgnjx", "fmin", "fmax", "fcvt_s_w", "fcvt_s_wu", "fmv_w_x", "fmadd", "fmsub", "fnmsub", "fnmadd", "feq", "flt", "fle", "fcvt_w_s", "fcvt_wu_s", "fclass", "fmv_x_w", "fdiv", "fsqrt"] # Coloring scheme for different types of operations # For detailed mode # i_cache miss is treated the same is stall_ifetch_wait _DETAILED_STALL_BUBBLE_COLOR = { "stall_depend_dram_load" : (0xff, 0x00, 0x00), ## red "stall_depend_group_load" : (0x00, 0xff, 0x00), ## green "stall_depend_global_load" : (0x00, 0x55, 0x00), ## dark green "stall_depend_local_load" : (0x00, 0xff, 0xff), ## cyan "stall_depend_idiv" : (0xff, 0xf0, 0xa0), ## light orange "stall_depend_fdiv" : (0xff, 0xf0, 0xa0), ## light orange "stall_depend_imul" : (0xff, 0xf0, 0xa0), ## light orange "stall_fdiv_busy" : (0x00, 0xaa, 0xff), ## dark cyan "stall_idiv_busy" : (0x00, 0xaa, 0xff), ## dark cyan "stall_amo_aq" : (0x8b, 0x45, 0x13), ## brown "stall_amo_rl" : (0x8b, 0x45, 0x13), ## brown "stall_bypass" : (0xff, 0x00, 0xff), ## pink "stall_lr_aq" : (0x40, 0x40, 0x40), ## dark gray "stall_fence" : (0x00, 0x00, 0x80), ## navy blue "stall_remote_req" : (0xff, 0xff, 0x00), ## yellow "stall_barrier" : (0x00, 0x11, 0xff), ## blue "stall_remote_credit" : (0x80, 0x00, 0x00), ## maroon "stall_fcsr" : (0x00, 0x55, 0xff), ## dark blue "stall_remote_ld" : (0xaa, 0x00, 0x00), ## dark red "stall_remote_flw_wb" : (0xff, 0xff, 0x80), ## light yellow "stall_remote_ld_wb" : (0xff, 0xff, 0x40), ## light-ish yellow "bubble_branch_miss" : (0x80, 0x00, 0x80), ## purple "bubble_jalr_miss" : (0xff, 0xa5, 0x00), ## orange "icache_miss" : (0x00, 0x00, 0xff), ## blue "bubble_icache_miss" : (0x00, 0x00, 0xff), ## blue "stall_ifetch_wait" : (0x00, 0x00, 0xff), ## blue } _DETAILED_UNIFIED_INSTR_COLOR = (0xff, 0xff, 0xff) ## white _DETAILED_UNIFIED_FP_INSTR_COLOR = (0xff, 0xaa, 0xff) ## light pink # Coloring scheme for different types of operations # For abstract mode # i_cache miss is treated the same is stall_ifetch_wait _ABSTRACT_STALL_BUBBLE_COLOR = { "stall_depend_dram_load" : (0xff, 0x00, 0x00), ## red "stall_depend_group_load" : (0x00, 0xff, 0x00), ## green "stall_depend_global_load" : (0x00, 0xff, 0x00), ## green "stall_depend_local_load" : (0x00, 0xff, 0xff), ## cyan "stall_depend_idiv" : (0xff, 0xff, 0xff), ## white "stall_depend_fdiv" : (0xff, 0xff, 0xff), ## white "stall_depend_imul" : (0xff, 0xff, 0xff), ## white "stall_fdiv_busy" : (0xff, 0xff, 0xff), ## white "stall_idiv_busy" : (0xff, 0xff, 0xff), ## white "stall_amo_aq" : (0x00, 0x00, 0x00), ## black "stall_amo_rl" : (0x00, 0x00, 0x00), ## black "stall_bypass" : (0x00, 0x00, 0x00), ## black "stall_lr_aq" : (0x40, 0x40, 0x40), ## dark gray "stall_fence" : (0x00, 0x00, 0x00), ## black "stall_remote_req" : (0x00, 0x00, 0x00), ## black "stall_barrier" : (0x00, 0x11, 0xff), ## blue "stall_remote_credit" : (0x00, 0x00, 0x00), ## black "stall_fcsr" : (0x00, 0x00, 0x00), ## black "stall_remote_ld" : (0x00, 0x00, 0x00), ## black "stall_remote_flw_wb" : (0x00, 0x00, 0x00), ## black "stall_remote_ld_wb" : (0x00, 0x00, 0x00), ## black "bubble_branch_miss" : (0x00, 0x00, 0x00), ## black "bubble_jalr_miss" : (0x00, 0x00, 0x00), ## black "icache_miss" : (0x00, 0x00, 0xff), ## blue "bubble_icache_miss" : (0x00, 0x00, 0xff), ## blue "stall_ifetch_wait" : (0x00, 0x00, 0xff), ## blue } _ABSTRACT_UNIFIED_INSTR_COLOR = (0xff, 0xff, 0xff) ## white _ABSTRACT_UNIFIED_FP_INSTR_COLOR = (0xff, 0xff, 0xff) ## white # default constructor def __init__(self, trace_file, stats_file, cycle, abstract): self.abstract = abstract # Determine coloring rules based on mode {abstract / detailed} if (self.abstract): self.stall_bubble_color = self._ABSTRACT_STALL_BUBBLE_COLOR self.unified_instr_color = self._ABSTRACT_UNIFIED_INSTR_COLOR self.unified_fp_instr_color = self._ABSTRACT_UNIFIED_INSTR_COLOR else: self.stall_bubble_color = self._DETAILED_STALL_BUBBLE_COLOR self.unified_instr_color = self._DETAILED_UNIFIED_INSTR_COLOR self.unified_fp_instr_color = self._DETAILED_UNIFIED_INSTR_COLOR # Parse vanilla operation trace file to generate traces self.traces = self.__parse_traces(trace_file) # Parse vanilla stats file to generate timing stats self.stats = self.__parse_stats(stats_file) # get tile group diemsnions self.__get_tile_group_dim(self.traces) # get the timing window (start and end cycle) for blood graph self.start_cycle, self.end_cycle = self.__get_timing_window(self.traces, self.stats, cycle) # parses vanilla_operation_trace.csv to generate operation traces def __parse_traces(self, trace_file): traces = [] with open(trace_file) as f: csv_reader = csv.DictReader(f, delimiter=",") for row in csv_reader: trace = {} trace["x"] = int(row["x"]) trace["y"] = int(row["y"]) trace["operation"] = row["operation"] trace["cycle"] = int(row["cycle"]) traces.append(trace) return traces # Parses vanilla_stats.csv to generate timing stats # to gather start and end cycle of entire graph def __parse_stats(self, stats_file): stats = [] if(stats_file): if (os.path.isfile(stats_file)): with open(stats_file) as f: csv_reader = csv.DictReader(f, delimiter=",") for row in csv_reader: stat = {} stat["global_ctr"] = int(row["global_ctr"]) stat["time"] = int(row["time"]) stats.append(stat) else: warnings.warn("Stats file not found, overriding blood graph's start/end cycle with traces.") return stats # look through the input file to get the tile group dimension (x,y) def __get_tile_group_dim(self, traces): xs = [t["x"] for t in traces] ys = [t["y"] for t in traces] self.xmin = min(xs) self.xmax = max(xs) self.ymin = min(ys) self.ymax = max(ys) self.xdim = self.xmax-self.xmin+1 self.ydim = self.ymax-self.ymin+1 return # Determine the timing window (start and end) cycle of graph # The timing window will be calculated using: # Custom input: if custom start cycle is given by using the --cycle argument # Vanilla stats file: otherwise if vanilla stats file is given as input # Traces: otherwise the entire course of simulation def __get_timing_window(self, traces, stats, cycle): custom_start, custom_end = cycle.split('@') if (custom_start): start = int(custom_start) elif (stats): start = stats[0]["global_ctr"] else: start = traces[0]["cycle"] if (custom_end): end = int(custom_end) elif (stats): end = stats[-1]["global_ctr"] else: end = traces[-1]["cycle"] return start, end # main public method def generate(self): # init image self.__init_image() # create image for trace in self.traces: self.__mark_trace(trace) #self.img.show() mode = "abstract" if self.abstract else "detailed" self.img.save(("blood_" + mode + ".png")) return # public method to generate key for bloodgraph # called if --generate-key argument is true def generate_key(self, key_image_fname = "key"): img = Image.new("RGB", (self._KEY_WIDTH, self._KEY_HEIGHT), "black") draw = ImageDraw.Draw(img) font = ImageFont.load_default() # the current row position of our key yt = 0 # for each color in stalls... for (operation,color) in chain([(stall_bubble, self.stall_bubble_color[stall_bubble]) for stall_bubble in self._STALLS_LIST], [("unified_instr" ,self.unified_instr_color), ("unified_fp_instr" ,self.unified_fp_instr_color)]): # get the font size (font_height,font_width) = font.getsize(operation) # draw a rectangle with color fill yb = yt + font_width # [0, yt, 64, yb] is [top left x, top left y, bottom right x, bottom left y] draw.rectangle([0, yt, 64, yb], color) # write the label for this color in white # (68, yt) = (top left x, top left y) # (255, 255, 255) = white draw.text((68, yt), operation, (255,255,255)) # create the new row's y-coord yt += font_width # save the key mode = "abstract" if self.abstract else "detailed" img.save("{}.png".format(key_image_fname + "_" + mode)) return # initialize image def __init_image(self): self.img_width = 2048 # default self.img_height = (((self.end_cycle-self.start_cycle)+self.img_width)//self.img_width)*(2+(self.xdim*self.ydim)) self.img = Image.new("RGB", (self.img_width, self.img_height), "black") self.pixel = self.img.load() return # mark the trace on output image def __mark_trace(self, trace): # ignore trace outside the cycle range if trace["cycle"] < self.start_cycle or trace["cycle"] >= self.end_cycle: return # determine pixel location cycle = (trace["cycle"] - self.start_cycle) col = cycle % self.img_width floor = cycle // self.img_width tg_x = trace["x"] - self.xmin tg_y = trace["y"] - self.ymin row = floor*(2+(self.xdim*self.ydim)) + (tg_x+(tg_y*self.xdim)) # determine color if trace["operation"] in self.stall_bubble_color.keys(): self.pixel[col,row] = self.stall_bubble_color[trace["operation"]] elif trace["operation"] in self._INSTRS_LIST: self.pixel[col,row] = self.unified_instr_color elif trace["operation"] in self._FP_INSTRS_LIST: self.pixel[col,row] = self.unified_fp_instr_color else: raise Exception('Invalid operation in vanilla operation trace log {}'.format(trace["operation"])) return # Parse input arguments and options def add_args(parser): parser.add_argument("--no-blood-graph", default=False, action='store_true', help="Skip blood graph generation") def main(args): bg = BloodGraph(args.trace, args.stats, args.cycle, args.abstract) if not args.no_blood_graph: bg.generate() if args.generate_key: bg.generate_key() # main() if __name__ == "__main__": parser = argparse.ArgumentParser( description="Argument parser for blood_graph.py") common.add_args(parser) add_args(parser) args = parser.parse_args() main(args)
41.784232
133
0.445482
[ "SHL-0.51" ]
XQc0214/bsg_manycore
software/py/vanilla_parser/blood_graph.py
20,140
Python
from conans import ConanFile, CMake, tools import os class TestPackageConan(ConanFile): settings = "os", "compiler", "build_type", "arch" generators = "cmake" def build(self): cmake = CMake(self) cmake.configure() cmake.build() def test(self): bin_path = os.path.join("bin", "test_package") self.run(bin_path, run_environment=True)
23.058824
54
0.632653
[ "MIT" ]
0x8000-0000/conan-center-index
recipes/freetype/all/test_package/conanfile.py
392
Python
colors = {"clean": "\033[m", "red": "\033[31m", "green": "\033[32m", "yellow": "\033[33m", "blue": "\033[34m", "purple": "\033[35m", "cian": "\033[36m"} n1 = float(input("Enter how many money do you have in your wallet(in Real): R$")) print("You have {}R${:.2f}{} reals and you can buy {}US${:.2f}{} dollars" "\nBuy {}EUR${:.2f}{} and buy {}GBP${:.2f}{}" .format(colors["green"], n1, colors["clean"], colors["blue"], n1/5.59, colors["clean"], colors["red"], n1/6.69, colors["clean"], colors["yellow"], n1/7.79, colors["clean"]))
42.866667
81
0.479005
[ "MIT" ]
MiguelChichorro/PythonExercises
World 1/First attempts/ex010 - Real to Dollar.py
643
Python
#!/usr/bin/env python # -*- coding: utf-8 -*- """Submits files or a URL to Cuckoo""" from builtins import input from argparse import ArgumentParser from distutils.util import strtobool from io import BytesIO from time import sleep from glob import glob from zipfile import ZipFile from os.path import basename from cuckooutils import Cuckoo, get_file_hash __version__ = "1.0.0" __license = """Copyright 2016 Sean Whalen Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.""" cuckoo = Cuckoo("https://cuckoo.example.net", "username", "password") parser = ArgumentParser(description=__doc__, version=__version__) parser.add_argument("sample", nargs="+", help="One or more filenames or globs, or a single URL") parser.add_argument("--tags", help="Comma separated tags for selecting an analysis VM", default=None) parser.add_argument("--options", help="Comma separated option=value pairs", default=None) parser.add_argument("--tor", action="store_true", help="Enable Tor during analysis") parser.add_argument("--procmemdump", action="store_true", help="Dump and analyze process memory") args = parser.parse_args() options = {} if args.tor: options['tor'] = 'yes' if args.procmemdump: options['procmemdump'] = 'yes' options = ",".join(list(map(lambda option: "{0}={1}".format(option, options[option]), options.keys()))) if args.options: if len(options) > 0: options += "," options += args.options url = len(args.sample) == 1 and args.sample[0].lower().startswith("http") if url: url = args.sample[0] results = cuckoo.submit_url(url, tags=args.tags, options=options) else: filenames = [] for filename in args.sample: filenames += glob(filename) if len(filenames) == 0: raise ValueError("No matching files found") elif len(filenames) > 1: multi_file = True else: multi_file = False if multi_file: temp_file = BytesIO() temp_filename = "bulk.zip" with ZipFile(temp_file, 'a') as temp_zip: temp_zip.setpassword("infected") for filename in filenames: temp_zip.write(filename) else: temp_filename = basename(filenames[0]) with open(temp_filename, 'rb') as sample_file: temp_file = BytesIO(sample_file.read()) file_hash = get_file_hash(temp_file) existing_tasks = cuckoo.find_tasks(file_hash) if len(existing_tasks) > 0: print("The following analysis reports already exist for this sample:") for task_id in existing_tasks: print("{0}/analysis/{1}".format(cuckoo.root, task_id)) try: resubmit = strtobool(input("Would you like to resubmit it? (/y/N)").lower()) except ValueError: exit() if not resubmit: exit() results = cuckoo.submit_file(temp_filename, temp_file.getvalue(), tags=args.tags, options=options) tasks = {} task_ids = results['task_ids'] for task_id in task_ids: tasks[task_id] = dict(previous_state=None, current_state=None) while (len(tasks)) > 0: for task_id in tasks.keys(): tasks[task_id]['previous_state'] = tasks[task_id]['current_state'] tasks[task_id]['current_state'] = cuckoo.get_task_status(task_id) if tasks[task_id]['current_state'] != tasks[task_id]['previous_state']: print("Task {0} is {1}".format(task_id, tasks[task_id]['current_state'])) if tasks[task_id]['current_state'] == "reported": print("{0}/analysis/{1}".format(cuckoo.root, task_id)) if tasks[task_id]['current_state'] == "reported" or tasks[task_id]['current_state'].startswith("failed"): del tasks[task_id] sleep(1)
35.243902
113
0.655363
[ "Apache-2.0" ]
seanthegeek/cuckoo-modified-utils
submit-to-cuckoo.py
4,335
Python
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2018. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """A module for visualizing device coupling maps""" import math import numpy as np from qiskit.exceptions import QiskitError from .matplotlib import HAS_MATPLOTLIB from .exceptions import VisualizationError class _GraphDist(): """Transform the circles properly for non-square axes. """ def __init__(self, size, ax, x=True): self.size = size self.ax = ax # pylint: disable=invalid-name self.x = x @property def dist_real(self): """Compute distance. """ x0, y0 = self.ax.transAxes.transform( # pylint: disable=invalid-name (0, 0)) x1, y1 = self.ax.transAxes.transform( # pylint: disable=invalid-name (1, 1)) value = x1 - x0 if self.x else y1 - y0 return value @property def dist_abs(self): """Distance abs """ bounds = self.ax.get_xlim() if self.x else self.ax.get_ylim() return bounds[0] - bounds[1] @property def value(self): """Return value. """ return (self.size / self.dist_real) * self.dist_abs def __mul__(self, obj): return self.value * obj def plot_gate_map(backend, figsize=None, plot_directed=False, label_qubits=True, qubit_size=24, line_width=4, font_size=12, qubit_color=None, qubit_labels=None, line_color=None, font_color='w', ax=None): """Plots the gate map of a device. Args: backend (BaseBackend): A backend instance, figsize (tuple): Output figure size (wxh) in inches. plot_directed (bool): Plot directed coupling map. label_qubits (bool): Label the qubits. qubit_size (float): Size of qubit marker. line_width (float): Width of lines. font_size (int): Font size of qubit labels. qubit_color (list): A list of colors for the qubits qubit_labels (list): A list of qubit labels line_color (list): A list of colors for each line from coupling_map. font_color (str): The font color for the qubit labels. ax (Axes): A Matplotlib axes instance. Returns: Figure: A Matplotlib figure instance. Raises: QiskitError: if tried to pass a simulator. ImportError: if matplotlib not installed. Example: .. jupyter-execute:: :hide-code: :hide-output: from qiskit.test.ibmq_mock import mock_get_backend mock_get_backend('FakeVigo') .. jupyter-execute:: from qiskit import QuantumCircuit, execute, IBMQ from qiskit.visualization import plot_gate_map %matplotlib inline provider = IBMQ.load_account() accountProvider = IBMQ.get_provider(hub='ibm-q') backend = accountProvider.get_backend('ibmq_vigo') plot_gate_map(backend) """ if not HAS_MATPLOTLIB: raise ImportError('Must have Matplotlib installed. To install, ' 'run "pip install matplotlib".') from matplotlib import get_backend import matplotlib.pyplot as plt # pylint: disable=import-error import matplotlib.patches as mpatches if backend.configuration().simulator: raise QiskitError('Requires a device backend, not simulator.') input_axes = False if ax: input_axes = True mpl_data = {} mpl_data[1] = [[0, 0]] mpl_data[5] = [[1, 0], [0, 1], [1, 1], [1, 2], [2, 1]] mpl_data[7] = [[0, 0], [0, 1], [0, 2], [1, 1], [2, 0], [2, 1], [2, 2]] mpl_data[20] = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4]] mpl_data[15] = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [1, 7], [1, 6], [1, 5], [1, 4], [1, 3], [1, 2], [1, 1], [1, 0]] mpl_data[16] = [[1, 0], [0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [1, 7], [1, 6], [1, 5], [1, 4], [1, 3], [1, 2], [1, 1]] mpl_data[27] = [[1, 0], [1, 1], [2, 1], [3, 1], [1, 2], [3, 2], [0, 3], [1, 3], [3, 3], [4, 3], [1, 4], [3, 4], [1, 5], [2, 5], [3, 5], [1, 6], [3, 6], [0, 7], [1, 7], [3, 7], [4, 7], [1, 8], [3, 8], [1, 9], [2, 9], [3, 9], [3, 10]] mpl_data[28] = [[0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [1, 2], [1, 6], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [3, 0], [3, 4], [3, 8], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8]] mpl_data[53] = [[0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [1, 2], [1, 6], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [3, 0], [3, 4], [3, 8], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [5, 2], [5, 6], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [7, 0], [7, 4], [7, 8], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [9, 2], [9, 6]] mpl_data[65] = [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [1, 0], [1, 4], [1, 8], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [3, 2], [3, 6], [3, 10], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [5, 0], [5, 4], [5, 8], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [7, 2], [7, 6], [7, 10], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10]] config = backend.configuration() num_qubits = config.n_qubits cmap = config.coupling_map if qubit_labels is None: qubit_labels = list(range(num_qubits)) else: if len(qubit_labels) != num_qubits: raise QiskitError('Length of qubit labels ' 'does not equal number ' 'of qubits.') if num_qubits in mpl_data.keys(): grid_data = mpl_data[num_qubits] else: if not input_axes: fig, ax = plt.subplots(figsize=(5, 5)) # pylint: disable=invalid-name ax.axis('off') return fig x_max = max([d[1] for d in grid_data]) y_max = max([d[0] for d in grid_data]) max_dim = max(x_max, y_max) if figsize is None: if num_qubits == 1 or (x_max / max_dim > 0.33 and y_max / max_dim > 0.33): figsize = (5, 5) else: figsize = (9, 3) if ax is None: fig, ax = plt.subplots(figsize=figsize) # pylint: disable=invalid-name ax.axis('off') # set coloring if qubit_color is None: qubit_color = ['#648fff'] * config.n_qubits if line_color is None: line_color = ['#648fff'] * len(cmap) if cmap else [] # Add lines for couplings if num_qubits != 1: for ind, edge in enumerate(cmap): is_symmetric = False if edge[::-1] in cmap: is_symmetric = True y_start = grid_data[edge[0]][0] x_start = grid_data[edge[0]][1] y_end = grid_data[edge[1]][0] x_end = grid_data[edge[1]][1] if is_symmetric: if y_start == y_end: x_end = (x_end - x_start) / 2 + x_start elif x_start == x_end: y_end = (y_end - y_start) / 2 + y_start else: x_end = (x_end - x_start) / 2 + x_start y_end = (y_end - y_start) / 2 + y_start ax.add_artist(plt.Line2D([x_start, x_end], [-y_start, -y_end], color=line_color[ind], linewidth=line_width, zorder=0)) if plot_directed: dx = x_end - x_start # pylint: disable=invalid-name dy = y_end - y_start # pylint: disable=invalid-name if is_symmetric: x_arrow = x_start + dx * 0.95 y_arrow = -y_start - dy * 0.95 dx_arrow = dx * 0.01 dy_arrow = -dy * 0.01 head_width = 0.15 else: x_arrow = x_start + dx * 0.5 y_arrow = -y_start - dy * 0.5 dx_arrow = dx * 0.2 dy_arrow = -dy * 0.2 head_width = 0.2 ax.add_patch(mpatches.FancyArrow(x_arrow, y_arrow, dx_arrow, dy_arrow, head_width=head_width, length_includes_head=True, edgecolor=None, linewidth=0, facecolor=line_color[ind], zorder=1)) # Add circles for qubits for var, idx in enumerate(grid_data): _idx = [idx[1], -idx[0]] width = _GraphDist(qubit_size, ax, True) height = _GraphDist(qubit_size, ax, False) ax.add_artist(mpatches.Ellipse( _idx, width, height, color=qubit_color[var], zorder=1)) if label_qubits: ax.text(*_idx, s=qubit_labels[var], horizontalalignment='center', verticalalignment='center', color=font_color, size=font_size, weight='bold') ax.set_xlim([-1, x_max + 1]) ax.set_ylim([-(y_max + 1), 1]) if not input_axes: if get_backend() in ['module://ipykernel.pylab.backend_inline', 'nbAgg']: plt.close(fig) return fig return None def plot_circuit_layout(circuit, backend, view='virtual'): """Plot the layout of a circuit transpiled for a given target backend. Args: circuit (QuantumCircuit): Input quantum circuit. backend (BaseBackend): Target backend. view (str): Layout view: either 'virtual' or 'physical'. Returns: Figure: A matplotlib figure showing layout. Raises: QiskitError: Invalid view type given. VisualizationError: Circuit has no layout attribute. Example: .. jupyter-execute:: :hide-code: :hide-output: from qiskit.test.ibmq_mock import mock_get_backend mock_get_backend('FakeVigo') .. jupyter-execute:: import numpy as np from qiskit import QuantumCircuit, IBMQ, transpile from qiskit.visualization import plot_histogram, plot_gate_map, plot_circuit_layout from qiskit.tools.monitor import job_monitor import matplotlib.pyplot as plt %matplotlib inline IBMQ.load_account() ghz = QuantumCircuit(3, 3) ghz.h(0) for idx in range(1,3): ghz.cx(0,idx) ghz.measure(range(3), range(3)) provider = IBMQ.get_provider(hub='ibm-q') backend = provider.get_backend('ibmq_vigo') new_circ_lv3 = transpile(ghz, backend=backend, optimization_level=3) plot_circuit_layout(new_circ_lv3, backend) """ if circuit._layout is None: raise QiskitError('Circuit has no layout. ' 'Perhaps it has not been transpiled.') num_qubits = backend.configuration().n_qubits qubits = [] qubit_labels = [None] * num_qubits if view == 'virtual': for key, val in circuit._layout.get_virtual_bits().items(): if key.register.name != 'ancilla': qubits.append(val) qubit_labels[val] = key.index elif view == 'physical': for key, val in circuit._layout.get_physical_bits().items(): if val.register.name != 'ancilla': qubits.append(key) qubit_labels[key] = key else: raise VisualizationError("Layout view must be 'virtual' or 'physical'.") qcolors = ['#648fff'] * num_qubits for k in qubits: qcolors[k] = 'k' cmap = backend.configuration().coupling_map lcolors = ['#648fff'] * len(cmap) for idx, edge in enumerate(cmap): if edge[0] in qubits and edge[1] in qubits: lcolors[idx] = 'k' fig = plot_gate_map(backend, qubit_color=qcolors, qubit_labels=qubit_labels, line_color=lcolors) return fig def plot_error_map(backend, figsize=(12, 9), show_title=True): """Plots the error map of a given backend. Args: backend (IBMQBackend): Given backend. figsize (tuple): Figure size in inches. show_title (bool): Show the title or not. Returns: Figure: A matplotlib figure showing error map. Raises: VisualizationError: Input is not IBMQ backend. ImportError: If seaborn is not installed Example: .. jupyter-execute:: :hide-code: :hide-output: from qiskit.test.ibmq_mock import mock_get_backend mock_get_backend('FakeVigo') .. jupyter-execute:: from qiskit import QuantumCircuit, execute, IBMQ from qiskit.visualization import plot_error_map %matplotlib inline IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q') backend = provider.get_backend('ibmq_vigo') plot_error_map(backend) """ try: import seaborn as sns except ImportError: raise ImportError('Must have seaborn installed to use plot_error_map. ' 'To install, run "pip install seaborn".') if not HAS_MATPLOTLIB: raise ImportError('Must have Matplotlib installed. To install, ' 'run "pip install matplotlib".') import matplotlib from matplotlib import get_backend import matplotlib.pyplot as plt # pylint: disable=import-error import matplotlib.gridspec as gridspec from matplotlib import ticker color_map = sns.cubehelix_palette(reverse=True, as_cmap=True) props = backend.properties().to_dict() config = backend.configuration().to_dict() num_qubits = config['n_qubits'] # U2 error rates single_gate_errors = [0]*num_qubits for gate in props['gates']: if gate['gate'] == 'u2': _qubit = gate['qubits'][0] single_gate_errors[_qubit] = gate['parameters'][0]['value'] # Convert to percent single_gate_errors = 100 * np.asarray(single_gate_errors) avg_1q_err = np.mean(single_gate_errors) single_norm = matplotlib.colors.Normalize( vmin=min(single_gate_errors), vmax=max(single_gate_errors)) q_colors = [color_map(single_norm(err)) for err in single_gate_errors] cmap = config['coupling_map'] directed = False line_colors = [] if cmap: directed = False if num_qubits < 20: for edge in cmap: if not [edge[1], edge[0]] in cmap: directed = True break cx_errors = [] for line in cmap: for item in props['gates']: if item['qubits'] == line: cx_errors.append(item['parameters'][0]['value']) break else: continue # Convert to percent cx_errors = 100 * np.asarray(cx_errors) avg_cx_err = np.mean(cx_errors) cx_norm = matplotlib.colors.Normalize( vmin=min(cx_errors), vmax=max(cx_errors)) line_colors = [color_map(cx_norm(err)) for err in cx_errors] # Measurement errors read_err = [] for qubit in range(num_qubits): for item in props['qubits'][qubit]: if item['name'] == 'readout_error': read_err.append(item['value']) read_err = 100 * np.asarray(read_err) avg_read_err = np.mean(read_err) max_read_err = np.max(read_err) fig = plt.figure(figsize=figsize) gridspec.GridSpec(nrows=2, ncols=3) grid_spec = gridspec.GridSpec(12, 12, height_ratios=[1] * 11 + [0.5], width_ratios=[2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2]) left_ax = plt.subplot(grid_spec[2:10, :1]) main_ax = plt.subplot(grid_spec[:11, 1:11]) right_ax = plt.subplot(grid_spec[2:10, 11:]) bleft_ax = plt.subplot(grid_spec[-1, :5]) if cmap: bright_ax = plt.subplot(grid_spec[-1, 7:]) plot_gate_map(backend, qubit_color=q_colors, line_color=line_colors, qubit_size=28, line_width=5, plot_directed=directed, ax=main_ax) main_ax.axis('off') main_ax.set_aspect(1) if cmap: single_cb = matplotlib.colorbar.ColorbarBase(bleft_ax, cmap=color_map, norm=single_norm, orientation='horizontal') tick_locator = ticker.MaxNLocator(nbins=5) single_cb.locator = tick_locator single_cb.update_ticks() single_cb.update_ticks() bleft_ax.set_title('H error rate (%) [Avg. = {}]'.format(round(avg_1q_err, 3))) if cmap is None: bleft_ax.axis('off') bleft_ax.set_title('H error rate (%) = {}'.format(round(avg_1q_err, 3))) if cmap: cx_cb = matplotlib.colorbar.ColorbarBase(bright_ax, cmap=color_map, norm=cx_norm, orientation='horizontal') tick_locator = ticker.MaxNLocator(nbins=5) cx_cb.locator = tick_locator cx_cb.update_ticks() bright_ax.set_title('CNOT error rate (%) [Avg. = {}]'.format(round(avg_cx_err, 3))) if num_qubits < 10: num_left = num_qubits num_right = 0 else: num_left = math.ceil(num_qubits / 2) num_right = num_qubits - num_left left_ax.barh(range(num_left), read_err[:num_left], align='center', color='#DDBBBA') left_ax.axvline(avg_read_err, linestyle='--', color='#212121') left_ax.set_yticks(range(num_left)) left_ax.set_xticks([0, round(avg_read_err, 2), round(max_read_err, 2)]) left_ax.set_yticklabels([str(kk) for kk in range(num_left)], fontsize=12) left_ax.invert_yaxis() left_ax.set_title('Readout Error (%)', fontsize=12) for spine in left_ax.spines.values(): spine.set_visible(False) if num_right: right_ax.barh(range(num_left, num_qubits), read_err[num_left:], align='center', color='#DDBBBA') right_ax.axvline(avg_read_err, linestyle='--', color='#212121') right_ax.set_yticks(range(num_left, num_qubits)) right_ax.set_xticks([0, round(avg_read_err, 2), round(max_read_err, 2)]) right_ax.set_yticklabels([str(kk) for kk in range(num_left, num_qubits)], fontsize=12) right_ax.invert_yaxis() right_ax.invert_xaxis() right_ax.yaxis.set_label_position("right") right_ax.yaxis.tick_right() right_ax.set_title('Readout Error (%)', fontsize=12) else: right_ax.axis('off') for spine in right_ax.spines.values(): spine.set_visible(False) if show_title: fig.suptitle('{name} Error Map'.format(name=backend.name()), fontsize=24, y=0.9) if get_backend() in ['module://ipykernel.pylab.backend_inline', 'nbAgg']: plt.close(fig) return fig
35.754622
95
0.512363
[ "Apache-2.0" ]
AzizNgoueya/qiskit-terra
qiskit/visualization/gate_map.py
21,274
Python
#1KiB with open("Makeflow1KiB","w+") as f: f.write("CORES=1\nMEMORY=1000\nDISK=1\n\n") for x in range(100): f.write("out%i.txt:generate\n\t./generate out%i.txt %i\n\n"%(x,x,1024*1)) #10KiB with open("Makeflow10KiB","w+") as f: f.write("CORES=1\nMEMORY=1000\nDISK=1\n\n") for x in range(100): f.write("out%i.txt:generate\n\t./generate out%i.txt %i\n\n"%(x,x,1024*10)) #100KiB with open("Makeflow100KiB","w+") as f: f.write("CORES=1\nMEMORY=1000\nDISK=1\n\n") for x in range(100): f.write("out%i.txt:generate\n\t./generate out%i.txt %i\n\n"%(x,x,1024*100)) #1MiB with open("Makeflow1MiB","w+") as f: f.write("CORES=1\nMEMORY=1000\nDISK=2\n\n") for x in range(100): f.write("out%i.txt:generate\n\t./generate out%i.txt %i\n\n"%(x,x,1024*1024*1)) #10MiB with open("Makeflow10MiB","w+") as f: f.write("CORES=1\nMEMORY=1000\nDISK=20\n\n") for x in range(100): f.write("out%i.txt:generate\n\t./generate out%i.txt %i\n\n"%(x,x,1024*1024*10)) #100MiB with open("Makeflow100MiB","w+") as f: f.write("CORES=1\nMEMORY=1000\nDISK=200\n\n") for x in range(100): f.write("out%i.txt:generate\n\t./generate out%i.txt %i\n\n"%(x,x,1024*1024*100)) #1GiB with open("Makeflow1GiB","w+") as f: f.write("CORES=1\nMEMORY=1000\nDISK=2000\n\n") for x in range(100): f.write("out%i.txt:generate\n\t./generate out%i.txt %i\n\n"%(x,x,1024*1024*1024*1)) #10GiB with open("Makeflow10GiB","w+") as f: f.write("CORES=1\nMEMORY=1000\nDISK=10738\n\n") for x in range(100): f.write("out%i.txt:generate\n\t./generate out%i.txt %i\n\n"%(x,x,1024*1024*1024*10))
34.877551
100
0.600936
[ "MIT" ]
Nekel-Seyew/mpi-paper-tests
generation/generateMakeflows.py
1,709
Python
# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### # <pep8 compliant> from bpy.types import ( Panel, ) from bl_ui.utils import PresetPanel from bl_ui.properties_physics_common import ( point_cache_ui, effector_weights_ui, ) def cloth_panel_enabled(md): return md.point_cache.is_baked is False class CLOTH_PT_presets(PresetPanel, Panel): bl_label = "Cloth Presets" preset_subdir = "cloth" preset_operator = "script.execute_preset" preset_add_operator = "cloth.preset_add" class PhysicButtonsPanel: bl_space_type = 'PROPERTIES' bl_region_type = 'WINDOW' bl_context = "physics" @classmethod def poll(cls, context): ob = context.object return (ob and ob.type == 'MESH') and (context.engine in cls.COMPAT_ENGINES) and (context.cloth) class PHYSICS_PT_cloth(PhysicButtonsPanel, Panel): bl_label = "Cloth" COMPAT_ENGINES = {'BLENDER_RENDER', 'BLENDER_EEVEE', 'BLENDER_WORKBENCH'} def draw_header_preset(self, _context): CLOTH_PT_presets.draw_panel_header(self.layout) def draw(self, context): layout = self.layout layout.use_property_split = True md = context.cloth cloth = md.settings layout.active = cloth_panel_enabled(md) flow = layout.grid_flow(row_major=False, columns=0, even_columns=True, even_rows=False, align=True) col = flow.column() col.prop(cloth, "quality", text="Quality Steps") col = flow.column() col.prop(cloth, "time_scale", text="Speed Multiplier") class PHYSICS_PT_cloth_physical_properties(PhysicButtonsPanel, Panel): bl_label = "Physical Properties" bl_parent_id = 'PHYSICS_PT_cloth' COMPAT_ENGINES = {'BLENDER_RENDER', 'BLENDER_EEVEE', 'BLENDER_WORKBENCH'} def draw(self, context): layout = self.layout layout.use_property_split = True md = context.cloth cloth = md.settings layout.active = cloth_panel_enabled(md) flow = layout.grid_flow(row_major=False, columns=0, even_columns=True, even_rows=False, align=True) col = flow.column() col.prop(cloth, "mass", text="Vertex Mass") col = flow.column() col.prop(cloth, "air_damping", text="Air Viscosity") col = flow.column() col.prop(cloth, "bending_model") class PHYSICS_PT_cloth_stiffness(PhysicButtonsPanel, Panel): bl_label = "Stiffness" bl_parent_id = 'PHYSICS_PT_cloth_physical_properties' COMPAT_ENGINES = {'BLENDER_RENDER', 'BLENDER_EEVEE', 'BLENDER_WORKBENCH'} def draw(self, context): layout = self.layout layout.use_property_split = True md = context.cloth cloth = md.settings layout.active = cloth_panel_enabled(md) flow = layout.grid_flow(row_major=False, columns=0, even_columns=True, even_rows=False, align=True) col = flow.column() if cloth.bending_model == 'ANGULAR': col.prop(cloth, "tension_stiffness", text="Tension") col = flow.column() col.prop(cloth, "compression_stiffness", text="Compression") else: col.prop(cloth, "tension_stiffness", text="Structural") col = flow.column() col.prop(cloth, "shear_stiffness", text="Shear") col = flow.column() col.prop(cloth, "bending_stiffness", text="Bending") class PHYSICS_PT_cloth_damping(PhysicButtonsPanel, Panel): bl_label = "Damping" bl_parent_id = 'PHYSICS_PT_cloth_physical_properties' COMPAT_ENGINES = {'BLENDER_RENDER', 'BLENDER_EEVEE', 'BLENDER_WORKBENCH'} def draw(self, context): layout = self.layout layout.use_property_split = True md = context.cloth cloth = md.settings layout.active = cloth_panel_enabled(md) flow = layout.grid_flow(row_major=False, columns=0, even_columns=True, even_rows=False, align=True) col = flow.column() if cloth.bending_model == 'ANGULAR': col.prop(cloth, "tension_damping", text="Tension") col = flow.column() col.prop(cloth, "compression_damping", text="Compression") else: col.prop(cloth, "tension_damping", text="Structural") col = flow.column() col.prop(cloth, "shear_damping", text="Shear") col = flow.column() col.prop(cloth, "bending_damping", text="Bending") class PHYSICS_PT_cloth_internal_springs(PhysicButtonsPanel, Panel): bl_label = "Internal Springs" bl_parent_id = 'PHYSICS_PT_cloth_physical_properties' COMPAT_ENGINES = {'BLENDER_RENDER', 'BLENDER_EEVEE', 'BLENDER_WORKBENCH'} def draw_header(self, context): cloth = context.cloth.settings self.layout.active = cloth_panel_enabled(context.cloth) self.layout.prop(cloth, "use_internal_springs", text="") def draw(self, context): layout = self.layout layout.use_property_split = True cloth = context.cloth.settings md = context.cloth ob = context.object layout.active = cloth.use_internal_springs and cloth_panel_enabled(md) flow = layout.grid_flow(row_major=False, columns=0, even_columns=True, even_rows=False, align=True) col = flow.column() col.prop(cloth, "internal_spring_max_length", text="Max Spring Creation Length") col = flow.column() col.prop(cloth, "internal_spring_max_diversion", text="Max Creation Diversion") col = flow.column() col.prop(cloth, "internal_spring_normal_check", text="Check Surface Normals") col = flow.column() col.prop(cloth, "internal_tension_stiffness", text="Tension") col = flow.column() col.prop(cloth, "internal_compression_stiffness", text="Compression") col = flow.column() col.prop_search(cloth, "vertex_group_intern", ob, "vertex_groups", text="Vertex Group") col = flow.column() col.prop(cloth, "internal_tension_stiffness_max", text="Max Tension") col = flow.column() col.prop(cloth, "internal_compression_stiffness_max", text="Max Compression") class PHYSICS_PT_cloth_pressure(PhysicButtonsPanel, Panel): bl_label = "Pressure" bl_parent_id = 'PHYSICS_PT_cloth_physical_properties' COMPAT_ENGINES = {'BLENDER_RENDER', 'BLENDER_EEVEE', 'BLENDER_WORKBENCH'} def draw_header(self, context): cloth = context.cloth.settings self.layout.active = cloth_panel_enabled(context.cloth) self.layout.prop(cloth, "use_pressure", text="") def draw(self, context): layout = self.layout layout.use_property_split = True cloth = context.cloth.settings md = context.cloth ob = context.object layout.active = cloth.use_pressure and cloth_panel_enabled(md) flow = layout.grid_flow(row_major=False, columns=0, even_columns=True, even_rows=False, align=True) col = flow.column() col.prop(cloth, "uniform_pressure_force") col = flow.column() col.prop(cloth, "use_pressure_volume", text="Custom Volume") col = flow.column() col.active = cloth.use_pressure_volume col.prop(cloth, "target_volume") col = flow.column() col.prop(cloth, "pressure_factor") col = flow.column() col.prop(cloth, "fluid_density") col = flow.column() col.prop_search(cloth, "vertex_group_pressure", ob, "vertex_groups", text="Vertex Group") class PHYSICS_PT_cloth_cache(PhysicButtonsPanel, Panel): bl_label = "Cache" bl_parent_id = 'PHYSICS_PT_cloth' bl_options = {'DEFAULT_CLOSED'} COMPAT_ENGINES = {'BLENDER_RENDER', 'BLENDER_EEVEE', 'BLENDER_WORKBENCH'} def draw(self, context): md = context.cloth point_cache_ui(self, md.point_cache, cloth_panel_enabled(md), 'CLOTH') class PHYSICS_PT_cloth_shape(PhysicButtonsPanel, Panel): bl_label = "Shape" bl_parent_id = 'PHYSICS_PT_cloth' bl_options = {'DEFAULT_CLOSED'} COMPAT_ENGINES = {'BLENDER_RENDER', 'BLENDER_EEVEE', 'BLENDER_WORKBENCH'} def draw(self, context): layout = self.layout layout.use_property_split = True md = context.cloth ob = context.object cloth = md.settings layout.active = cloth_panel_enabled(md) flow = layout.grid_flow(row_major=False, columns=0, even_columns=True, even_rows=False, align=True) col = flow.column(align=True) col.prop_search(cloth, "vertex_group_mass", ob, "vertex_groups", text="Pin Group") sub = col.column(align=True) sub.active = cloth.vertex_group_mass != "" sub.prop(cloth, "pin_stiffness", text="Stiffness") col.separator() col = flow.column(align=True) col.prop(cloth, "use_sewing_springs", text="Sewing") sub = col.column(align=True) sub.active = cloth.use_sewing_springs sub.prop(cloth, "sewing_force_max", text="Max Sewing Force") col.separator() col = flow.column() col.prop(cloth, "shrink_min", text="Shrinking Factor") col = flow.column() col.prop(cloth, "use_dynamic_mesh", text="Dynamic Mesh") key = ob.data.shape_keys if key: col = flow.column() col.active = not cloth.use_dynamic_mesh col.prop_search(cloth, "rest_shape_key", key, "key_blocks", text="Rest Shape Key") class PHYSICS_PT_cloth_collision(PhysicButtonsPanel, Panel): bl_label = "Collisions" bl_parent_id = 'PHYSICS_PT_cloth' bl_options = {'DEFAULT_CLOSED'} COMPAT_ENGINES = {'BLENDER_RENDER', 'BLENDER_EEVEE', 'BLENDER_WORKBENCH'} def draw(self, context): layout = self.layout layout.use_property_split = True cloth = context.cloth.collision_settings md = context.cloth layout.active = (cloth.use_collision or cloth.use_self_collision) and cloth_panel_enabled(md) flow = layout.grid_flow(row_major=False, columns=0, even_columns=True, even_rows=False, align=True) col = flow.column() col.prop(cloth, "collision_quality", text="Quality") class PHYSICS_PT_cloth_object_collision(PhysicButtonsPanel, Panel): bl_label = "Object Collisions" bl_parent_id = 'PHYSICS_PT_cloth_collision' COMPAT_ENGINES = {'BLENDER_RENDER', 'BLENDER_EEVEE', 'BLENDER_WORKBENCH'} def draw_header(self, context): cloth = context.cloth.collision_settings self.layout.active = cloth_panel_enabled(context.cloth) self.layout.prop(cloth, "use_collision", text="") def draw(self, context): layout = self.layout layout.use_property_split = True cloth = context.cloth.collision_settings md = context.cloth layout.active = cloth.use_collision and cloth_panel_enabled(md) flow = layout.grid_flow(row_major=False, columns=0, even_columns=True, even_rows=False, align=True) col = flow.column() col.prop(cloth, "distance_min", slider=True, text="Distance") col = flow.column() col.prop(cloth, "impulse_clamp") col = flow.column() col.prop(cloth, "collection") class PHYSICS_PT_cloth_self_collision(PhysicButtonsPanel, Panel): bl_label = "Self Collisions" bl_parent_id = 'PHYSICS_PT_cloth_collision' COMPAT_ENGINES = {'BLENDER_RENDER', 'BLENDER_EEVEE', 'BLENDER_WORKBENCH'} def draw_header(self, context): cloth = context.cloth.collision_settings self.layout.active = cloth_panel_enabled(context.cloth) self.layout.prop(cloth, "use_self_collision", text="") def draw(self, context): layout = self.layout layout.use_property_split = True cloth = context.cloth.collision_settings md = context.cloth ob = context.object layout.active = cloth.use_self_collision and cloth_panel_enabled(md) flow = layout.grid_flow(row_major=False, columns=0, even_columns=True, even_rows=False, align=True) col = flow.column() col.prop(cloth, "self_friction", text="Friction") col = flow.column() col.prop(cloth, "self_distance_min", slider=True, text="Distance") col = flow.column() col.prop(cloth, "self_impulse_clamp") col = flow.column() col.prop_search(cloth, "vertex_group_self_collisions", ob, "vertex_groups", text="Vertex Group") class PHYSICS_PT_cloth_property_weights(PhysicButtonsPanel, Panel): bl_label = "Property Weights" bl_parent_id = 'PHYSICS_PT_cloth' bl_options = {'DEFAULT_CLOSED'} COMPAT_ENGINES = {'BLENDER_RENDER', 'BLENDER_EEVEE', 'BLENDER_WORKBENCH'} def draw(self, context): layout = self.layout layout.use_property_split = True md = context.cloth ob = context.object cloth = context.cloth.settings layout.active = cloth_panel_enabled(md) flow = layout.grid_flow(row_major=True, columns=0, even_columns=True, even_rows=False, align=True) col = flow.column() col.prop_search( cloth, "vertex_group_structural_stiffness", ob, "vertex_groups", text="Structural Group", ) col.prop(cloth, "tension_stiffness_max", text="Max Tension") col.prop(cloth, "compression_stiffness_max", text="Max Compression") col.separator() col = flow.column() col.prop_search( cloth, "vertex_group_shear_stiffness", ob, "vertex_groups", text="Shear Group", ) col.prop(cloth, "shear_stiffness_max", text="Max Shearing") col.separator() col = flow.column() col.prop_search( cloth, "vertex_group_bending", ob, "vertex_groups", text="Bending Group" ) col.prop(cloth, "bending_stiffness_max", text="Max Bending") col.separator() col = flow.column() col.prop_search( cloth, "vertex_group_shrink", ob, "vertex_groups", text="Shrinking Group" ) col.prop(cloth, "shrink_max", text="Max Shrinking") class PHYSICS_PT_cloth_field_weights(PhysicButtonsPanel, Panel): bl_label = "Field Weights" bl_parent_id = 'PHYSICS_PT_cloth' bl_options = {'DEFAULT_CLOSED'} COMPAT_ENGINES = {'BLENDER_RENDER', 'BLENDER_EEVEE', 'BLENDER_WORKBENCH'} def draw(self, context): cloth = context.cloth.settings effector_weights_ui(self, cloth.effector_weights, 'CLOTH') classes = ( CLOTH_PT_presets, PHYSICS_PT_cloth, PHYSICS_PT_cloth_physical_properties, PHYSICS_PT_cloth_stiffness, PHYSICS_PT_cloth_damping, PHYSICS_PT_cloth_internal_springs, PHYSICS_PT_cloth_pressure, PHYSICS_PT_cloth_cache, PHYSICS_PT_cloth_shape, PHYSICS_PT_cloth_collision, PHYSICS_PT_cloth_object_collision, PHYSICS_PT_cloth_self_collision, PHYSICS_PT_cloth_property_weights, PHYSICS_PT_cloth_field_weights, ) if __name__ == "__main__": # only for live edit. from bpy.utils import register_class for cls in classes: register_class(cls)
32.709278
107
0.67026
[ "MIT" ]
calculusrobotics/RNNs-for-Bayesian-State-Estimation
Blender 2.91/2.91/scripts/startup/bl_ui/properties_physics_cloth.py
15,864
Python
from django.template import Library from django.utils import timezone import datetime register = Library() @register.filter def utcoffset(value): # Yeap, it's strange, but tags are so ugly.. So I defined not use value, but get current timezone from utils tz = timezone.get_current_timezone() utc_offset = datetime.datetime.now(tz).utcoffset() minutes = (utc_offset.days * 24 * 60) + (utc_offset.seconds / 60) if minutes == 0: return '' return '(UTC%+03i:%02i)' % divmod(minutes, 60)
28.833333
112
0.695568
[ "MIT" ]
0MazaHacka0/drapo
src/web/drapo/templatetags/timezones.py
519
Python
# # Autogenerated by Thrift Compiler (0.10.0) # # DO NOT EDIT UNLESS YOU ARE SURE THAT YOU KNOW WHAT YOU ARE DOING # # options string: py:tornado # from thrift.Thrift import TType, TMessageType, TFrozenDict, TException, TApplicationException from thrift.protocol.TProtocol import TProtocolException import sys from thrift.transport import TTransport
25.214286
93
0.798867
[ "Apache-2.0" ]
BSlience/fastweb
examples/service/fastweb_thrift_async/HelloService/ttypes.py
353
Python
""" Tests for pagination template tags and filters. """ from mock import Mock from django import template from tests import case class PaginateTest(case.DBTestCase): """Tests for paginate template tag.""" def test_paginate(self): """Places Pager object in context with size/num from request.""" from moztrap.model.tags.models import Tag tpl = template.Template( "{% load pagination %}{% paginate queryset as pager %}" "{% for obj in pager.objects %}{{ obj }} {% endfor %}") request = Mock() request.GET = {"pagesize": 3, "pagenumber": 2} for i in range(1, 7): self.F.TagFactory.create(name=str(i)) qs = Tag.objects.all() output = tpl.render( template.Context({"request": request, "queryset": qs})) self.assertEqual(output, "4 5 6 ") class FilterTest(case.TestCase): """Tests for template filters.""" def test_pagenumber_url(self): """``pagenumber_url`` filter updates pagenumber in URL.""" from moztrap.view.lists.templatetags.pagination import pagenumber_url request = Mock() request.get_full_path.return_value = ( "http://localhost/?pagenumber=2&pagesize=10") self.assertEqual( pagenumber_url(request, 1), "http://localhost/?pagenumber=1&pagesize=10") def test_pagesize_url(self): """``pagesize_url`` updates pagesize in URL (and jumps to page 1).""" from moztrap.view.lists.templatetags.pagination import pagesize_url request = Mock() request.get_full_path.return_value = ( "http://localhost/?pagenumber=2&pagesize=10") self.assertEqual( pagesize_url(request, 20), "http://localhost/?pagenumber=1&pagesize=20") def test_pagenumber(self): """``pagenumber`` gets the pagenumber from the request.""" from moztrap.view.lists.templatetags.pagination import pagenumber request = Mock() request.GET = {"pagenumber": 2, "pagesize": 10} self.assertEqual(pagenumber(request), 2) def test_pagesize(self): """``pagenumber`` gets the pagenumber from the request.""" from moztrap.view.lists.templatetags.pagination import pagesize request = Mock() request.GET = {"pagenumber": 2, "pagesize": 10} self.assertEqual(pagesize(request), 10)
32.756757
77
0.625413
[ "BSD-2-Clause" ]
UCL/moztrap
tests/view/lists/templatetags/test_pagination.py
2,424
Python
import _plotly_utils.basevalidators class NameValidator(_plotly_utils.basevalidators.StringValidator): def __init__(self, plotly_name='name', parent_name='streamtube', **kwargs): super(NameValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop('edit_type', 'style'), role=kwargs.pop('role', 'info'), **kwargs )
31.214286
79
0.647597
[ "MIT" ]
180Studios/LoginApp
venv/lib/python3.7/site-packages/plotly/validators/streamtube/_name.py
437
Python
import copy import numpy as np from math import cos, sin, pi, atan2 import warnings import matplotlib.patches as mpatches from matplotlib.path import Path from matplotlib.lines import Line2D from matplotlib.transforms import Affine2D, Bbox, IdentityTransform from matplotlib.text import Annotation def rotated_polygon(xy, ox, oy, angle): # angle in degree theta = angle / 180. * pi st = sin(theta) ct = cos(theta) xy = np.asarray(xy, dtype="d") x, y = xy[:, 0], xy[:, 1] x1 = x - ox y1 = y - oy x2 = ct * x1 + -st * y1 y2 = st * x1 + ct * y1 xp = x2 + ox yp = y2 + oy return np.hstack((xp.reshape((-1, 1)), yp.reshape((-1, 1)))) # sss3 = [s1[0] for s1 in sss2 if isinstance(s1[0], parser_ds9.Shape)] _point_type_dict = dict(circle="o", box="s", diamond="D", x="x", cross="+", arrow="^", boxcircle="*") _ds9_to_mpl_colormap = dict(green="lime", ) def properties_func_default(shape, saved_attrs): attr_list = copy.copy(shape.attr[0]) attr_dict = copy.copy(shape.attr[1]) attr_list.extend(saved_attrs[0]) attr_dict.update(saved_attrs[1]) color = attr_dict.get("color", None) color = _ds9_to_mpl_colormap.get(color, color) if shape.name == "text": kwargs = dict(color=color, rotation=attr_dict.get("textangle", 0), ) font = attr_dict.get("font") if font: a = font.split() if len(a) >= 3: fontsize = float(a[1]) kwargs["fontsize"] = fontsize elif shape.name == "point": point_attrs = attr_dict.get("point", "boxcircle").split() if len(point_attrs) == 1: point_type = point_attrs[0] point_size = 11 elif len(point_attrs) > 1: point_type = point_attrs[0] point_size = int(point_attrs[1]) marker = _point_type_dict.get(point_type, "o") kwargs = dict(markeredgecolor=color, markerfacecolor="none", marker=marker, markeredgewidth=int(attr_dict.get("width", 1)), markersize=point_size ) elif shape.name in ["line", "vector"]: fontsize = 10 # default font size font = attr_dict.get("font") if font: a = font.split() if len(a) >= 3: fontsize = float(a[1]) kwargs = dict(color=color, linewidth=int(attr_dict.get("width", 1)), mutation_scale=fontsize, ) if int(attr_dict.get("dash", "0")): kwargs["linestyle"] = "dashed" else: kwargs = dict(edgecolor=color, linewidth=int(attr_dict.get("width", 1)), facecolor="none" ) if "background" in attr_list: kwargs["linestyle"] = "dashed" if int(attr_dict.get("dash", "0")): kwargs["linestyle"] = "dashed" if shape.exclude: kwargs["hatch"] = "/" return kwargs def _get_text(txt, x, y, dx, dy, ha="center", va="center", **kwargs): if "color" in kwargs: textcolor = kwargs["color"] del kwargs["color"] elif "markeredgecolor" in kwargs: textcolor = kwargs["markeredgecolor"] else: import matplotlib as mpl textcolor = mpl.rcParams['text.color'] ann = Annotation(txt, (x, y), xytext=(dx, dy), xycoords='data', textcoords="offset points", color=textcolor, ha=ha, va=va, **kwargs) ann.set_transform(IdentityTransform()) return ann def as_mpl_artists(shape_list, properties_func=None, text_offset=5.0, origin=1): """ Converts a region list to a list of patches and a list of artists. Optional Keywords: [ text_offset ] - If there is text associated with the regions, add some vertical offset (in pixels) to the text so that it doesn't overlap with the regions. Often, the regions files implicitly assume the lower-left corner of the image as a coordinate (1,1). However, the python convetion is that the array index starts from 0. By default (origin = 1), coordinates of the returned mpl artists have coordinate shifted by (1, 1). If you do not want this shift, set origin=0. """ patch_list = [] artist_list = [] if properties_func is None: properties_func = properties_func_default # properties for continued(? multiline?) regions saved_attrs = None for shape in shape_list: patches = [] if saved_attrs is None: _attrs = [], {} else: _attrs = copy.copy(saved_attrs[0]), copy.copy(saved_attrs[1]) kwargs = properties_func(shape, _attrs) if shape.name == "composite": saved_attrs = shape.attr continue if saved_attrs is None and shape.continued: saved_attrs = shape.attr # elif (shape.name in shape.attr[1]): # if (shape.attr[1][shape.name] != "ignore"): # saved_attrs = shape.attr if not shape.continued: saved_attrs = None # text associated with the shape txt = shape.attr[1].get("text") if shape.name == "polygon": xy = np.array(shape.coord_list) xy.shape = -1, 2 # -1 for change origin to 0,0 patches = [mpatches.Polygon(xy - origin, closed=True, **kwargs)] elif shape.name == "rotbox" or shape.name == "box": xc, yc, w, h, rot = shape.coord_list # -1 for change origin to 0,0 xc, yc = xc - origin, yc - origin _box = np.array([[-w / 2., -h / 2.], [-w / 2., h / 2.], [w / 2., h / 2.], [w / 2., -h / 2.]]) box = _box + [xc, yc] rotbox = rotated_polygon(box, xc, yc, rot) patches = [mpatches.Polygon(rotbox, closed=True, **kwargs)] elif shape.name == "ellipse": xc, yc = shape.coord_list[:2] # -1 for change origin to 0,0 xc, yc = xc - origin, yc - origin angle = shape.coord_list[-1] maj_list, min_list = shape.coord_list[2:-1:2], shape.coord_list[3:-1:2] patches = [mpatches.Ellipse((xc, yc), 2 * maj, 2 * min, angle=angle, **kwargs) for maj, min in zip(maj_list, min_list)] elif shape.name == "annulus": xc, yc = shape.coord_list[:2] # -1 for change origin to 0,0 xc, yc = xc - origin, yc - origin r_list = shape.coord_list[2:] patches = [mpatches.Ellipse((xc, yc), 2 * r, 2 * r, **kwargs) for r in r_list] elif shape.name == "circle": xc, yc, major = shape.coord_list # -1 for change origin to 0,0 xc, yc = xc - origin, yc - origin patches = [mpatches.Ellipse((xc, yc), 2 * major, 2 * major, angle=0, **kwargs)] elif shape.name == "panda": xc, yc, a1, a2, an, r1, r2, rn = shape.coord_list # -1 for change origin to 0,0 xc, yc = xc - origin, yc - origin patches = [mpatches.Arc((xc, yc), rr * 2, rr * 2, angle=0, theta1=a1, theta2=a2, **kwargs) for rr in np.linspace(r1, r2, rn + 1)] for aa in np.linspace(a1, a2, an + 1): xx = np.array([r1, r2]) * np.cos(aa / 180. * np.pi) + xc yy = np.array([r1, r2]) * np.sin(aa / 180. * np.pi) + yc p = Path(np.transpose([xx, yy])) patches.append(mpatches.PathPatch(p, **kwargs)) elif shape.name == "pie": xc, yc, r1, r2, a1, a2 = shape.coord_list # -1 for change origin to 0,0 xc, yc = xc - origin, yc - origin patches = [mpatches.Arc((xc, yc), rr * 2, rr * 2, angle=0, theta1=a1, theta2=a2, **kwargs) for rr in [r1, r2]] for aa in [a1, a2]: xx = np.array([r1, r2]) * np.cos(aa / 180. * np.pi) + xc yy = np.array([r1, r2]) * np.sin(aa / 180. * np.pi) + yc p = Path(np.transpose([xx, yy])) patches.append(mpatches.PathPatch(p, **kwargs)) elif shape.name == "epanda": xc, yc, a1, a2, an, r11, r12, r21, r22, rn, angle = shape.coord_list # -1 for change origin to 0,0 xc, yc = xc - origin, yc - origin # mpl takes angle a1, a2 as angle as in circle before # transformation to ellipse. x1, y1 = cos(a1 / 180. * pi), sin(a1 / 180. * pi) * r11 / r12 x2, y2 = cos(a2 / 180. * pi), sin(a2 / 180. * pi) * r11 / r12 a1, a2 = atan2(y1, x1) / pi * 180., atan2(y2, x2) / pi * 180. patches = [mpatches.Arc((xc, yc), rr1 * 2, rr2 * 2, angle=angle, theta1=a1, theta2=a2, **kwargs) for rr1, rr2 in zip(np.linspace(r11, r21, rn + 1), np.linspace(r12, r22, rn + 1))] for aa in np.linspace(a1, a2, an + 1): xx = np.array([r11, r21]) * np.cos(aa / 180. * np.pi) yy = np.array([r11, r21]) * np.sin(aa / 180. * np.pi) p = Path(np.transpose([xx, yy])) tr = Affine2D().scale(1, r12 / r11).rotate_deg(angle).translate(xc, yc) p2 = tr.transform_path(p) patches.append(mpatches.PathPatch(p2, **kwargs)) elif shape.name == "text": xc, yc = shape.coord_list[:2] # -1 for change origin to 0,0 xc, yc = xc - origin, yc - origin if txt: _t = _get_text(txt, xc, yc, 0, 0, **kwargs) artist_list.append(_t) elif shape.name == "point": xc, yc = shape.coord_list[:2] # -1 for change origin to 0,0 xc, yc = xc - origin, yc - origin artist_list.append(Line2D([xc], [yc], **kwargs)) if txt: textshape = copy.copy(shape) textshape.name = "text" textkwargs = properties_func(textshape, _attrs) _t = _get_text(txt, xc, yc, 0, text_offset, va="bottom", **textkwargs) artist_list.append(_t) elif shape.name in ["line", "vector"]: if shape.name == "line": x1, y1, x2, y2 = shape.coord_list[:4] # -1 for change origin to 0,0 x1, y1, x2, y2 = x1 - origin, y1 - origin, x2 - origin, y2 - origin a1, a2 = shape.attr[1].get("line", "0 0").strip().split()[:2] arrowstyle = "-" if int(a1): arrowstyle = "<" + arrowstyle if int(a2): arrowstyle = arrowstyle + ">" else: # shape.name == "vector" x1, y1, l, a = shape.coord_list[:4] # -1 for change origin to 0,0 x1, y1 = x1 - origin, y1 - origin x2, y2 = x1 + l * np.cos(a / 180. * np.pi), y1 + l * np.sin(a / 180. * np.pi) v1 = int(shape.attr[1].get("vector", "0").strip()) if v1: arrowstyle = "->" else: arrowstyle = "-" patches = [mpatches.FancyArrowPatch(posA=(x1, y1), posB=(x2, y2), arrowstyle=arrowstyle, arrow_transmuter=None, connectionstyle="arc3", patchA=None, patchB=None, shrinkA=0, shrinkB=0, connector=None, **kwargs)] else: warnings.warn("'as_mpl_artists' does not know how to convert {0} " "to mpl artist".format(shape.name)) patch_list.extend(patches) if txt and patches: # the text associated with a shape uses different # matplotlib keywords than the shape itself for, e.g., # color textshape = copy.copy(shape) textshape.name = "text" textkwargs = properties_func(textshape, _attrs) # calculate the text position _bb = [p.get_window_extent() for p in patches] # this is to work around backward-incompatible change made # in matplotlib 1.2. This change is later reverted so only # some versions are affected. With affected version of # matplotlib, get_window_extent method calls get_transform # method which sets the _transformSet to True, which is # not desired. for p in patches: p._transformSet = False _bbox = Bbox.union(_bb) x0, y0, x1, y1 = _bbox.extents xc = .5 * (x0 + x1) _t = _get_text(txt, xc, y1, 0, text_offset, va="bottom", **textkwargs) artist_list.append(_t) return patch_list, artist_list
36.069409
93
0.480721
[ "MIT" ]
keflavich/pyregion
pyregion/mpl_helper.py
14,031
Python
# SPDX-FileCopyrightText: 2021 Arthur Breitman # SPDX-License-Identifier: LicenseRef-MIT-Arthur-Breitman import math from collections import defaultdict from pycfmm.data import AutoRepr infinity = 10 ** 100 class Tick(AutoRepr): """ An initialized tick, marking the beginning or end of a position """ def __init__(self, i_prev, i_next, feeGrowthOutside): """ :type i_prev: int :type i_next: int """ self.i_prev = i_prev self.i_next = i_next self.Delta_L = 0 self.feeGrowthOutside = feeGrowthOutside self.n_positions = 0 class Position(AutoRepr): """ A LP's position """ def __init__(self, L=0): self.L = L self.feeGrowthInsideLast = XY() class XY(AutoRepr): """ A pair of balances in asset X and Y """ def __init__(self, x=0, y=0): self.x, self.y = x, y def __add__(self, other): x = self.x + other.x y = self.y + other.y return XY(x, y) def __sub__(self, other): x = self.x - other.x y = self.y - other.y return XY(x, y) def __neg__(self): return XY(-self.x, -self.y) def __mul__(self, other): return XY(other * self.x, other * self.y) def __eq__(self, other): return isinstance(other, XY) and self.x == other.x and self.y == other.y class Contract(AutoRepr): """ A contract in the fashion of Uniswap v3 """ @staticmethod def tick(srp): """ Computes the closest tick index below a certain price, given its square root :param srp: square root of a price :return: the closest tick below a certain price """ if srp == infinity: return infinity else: return math.floor(math.log(srp) / math.log(math.sqrt(1.0001))) @staticmethod def srp(tick): """ Computes the square root of the price corresponding to a given tick :param tick: the index of a tick :return: the corresponding square root price """ if tick == infinity: return infinity return math.pow(math.sqrt(1.0001), tick) def __init__(self, X, Y, fee=0.3 / 100): self.balance = XY(X, Y) self.srP = math.sqrt(Y / X) self.i_a = self.tick(self.srP) self.L = math.floor(math.sqrt(X * Y)) self.fee = fee self.i_l = -infinity self.ticks = {-infinity: Tick(-infinity, infinity, XY()), infinity: Tick(-infinity, infinity, XY())} self.positions = defaultdict(Position) self.feeGrowth = XY() def initialize_tick(self, i, i_l): """ Initialize a new tick at index i, provide the index of an initialized tick lower than i to find it easily in the linked list. Assumes that i is *not* already initialized. :param i: :param i_l: """ assert (i not in self.ticks) assert (i_l < i) i_next = self.ticks[i_l].i_next if i_next > i: self.ticks[i_l].i_next = i # find an instance where i_a = i and we set XY(0, 0) and that's wrong self.ticks[i] = Tick(i_l, i_next, self.feeGrowth if self.i_a >= i else XY()) self.ticks[i_next].i_prev = i else: self.initialize_tick(i, i_next) def collect_fees(self, user, i_l, i_u): key = (user, i_l, i_u) position = self.positions[key] f_a = self.feeGrowth - self.ticks[i_u].feeGrowthOutside if self.i_a >= i_u else self.ticks[i_u].feeGrowthOutside f_b = self.ticks[i_l].feeGrowthOutside if self.i_a >= i_l else self.feeGrowth - self.ticks[i_l].feeGrowthOutside feeGrowthInside = self.feeGrowth - f_a - f_b fees = (feeGrowthInside - position.feeGrowthInsideLast) * position.L position.feeGrowthInsideLast = feeGrowthInside return fees def set_position(self, user, i_l, i_l_l, i_u, i_u_l, Delta_L): assert (i_l_l <= i_l) if i_l not in self.ticks: self.initialize_tick(i_l, i_l_l) assert (i_u_l <= i_u) if i_u not in self.ticks: self.initialize_tick(i_u, i_u_l) position_key = (user, i_l, i_u) fees = self.collect_fees(user, i_l, i_u) self.positions[position_key].L += Delta_L assert (self.positions[position_key].L >= 0) # todo, garbage collect if we are unwinding the position completely? Delta = XY() # Add or remove liquidity above the current tick if self.i_a < i_l: Delta.x = Delta_L * (1 / self.srp(i_l) - 1 / self.srp(i_u)) Delta.y = 0 # Add or remove liquidity around the current tick elif i_l <= self.i_a < i_u: # update interval we are in if need be if i_l > self.i_l: self.i_l = i_l Delta.x = Delta_L * (1 / self.srP - 1 / self.srp(i_u)) Delta.y = Delta_L * (self.srP - self.srp(i_l)) self.L += Delta_L else: # i_a >= i_u Delta.x = 0 Delta.y = Delta_L * (self.srp(i_u) - self.srp(i_l)) Delta -= fees # make a note of how much liquidity is gained or lost when # entering this interval self.ticks[i_l].Delta_L += Delta_L self.ticks[i_u].Delta_L -= Delta_L self.balance += Delta return -Delta def X_to_Y(self, dX, fee=None): # dX must be positive assert (dX >= 0) if fee is None: fee = self.fee # If there is no liquidity, stop the trade at this point if self.L == 0: self.i_a = self.tick( self.srP) # we may need to update i_a if we went through several ticks to reach this point return XY() # Assume the trade will fit in a tick, what would the fees be like? fees = XY(dX * fee, 0) srp_new = 1.0 / (1.0 / self.srP + (dX - fees.x) / self.L) i_l = self.i_l tick_new = self.tick(srp_new) if tick_new >= i_l: # we didn't pushed past the interval dY = - (dX - fees.x) * self.srP * srp_new self.srP = srp_new self.i_a = tick_new user = XY(-dX, -dY) self.balance -= user # Update fee growth with the fees we just collected self.feeGrowth += fees * (1.0 / self.L) return user else: # compute what we got up til i_u and how much it cost # well, what delta_X would have taken me there? self.i_l = self.ticks[self.i_l].i_prev srP_l = self.srp(i_l) dY = self.L * (srP_l - self.srP) dX_ = - dY / (self.srP * srP_l) tmp = dX_ / (1.0 - fee) dX_, fees = tmp, XY(tmp - dX_, 0) # update fee growth self.feeGrowth += fees * (1.0 / self.L) # remove the liquidity we used to have self.L -= self.ticks[i_l].Delta_L # flip feeGrowth self.ticks[i_l].feeGrowthOutside = self.feeGrowth - self.ticks[i_l].feeGrowthOutside self.srP = self.srp(i_l) - 1e-16 # todo can we do better than this crutch? user = XY(-dX_, -dY) self.balance -= user return user + self.X_to_Y(dX - dX_, fee) def Y_to_X(self, dY, fee=None): # dY must be positive assert (dY >= 0) if fee is None: fee = self.fee # If there is no liquidity, stop the trade at this point if self.L == 0: self.i_a = self.tick( self.srP) # we may need to update i_a if we went through several ticks to reach this point return XY() # Assume the trade will fit in a tick, what would the fees be like? fees = XY(0, dY * fee) srp_new = self.srP + (dY - fees.y) / self.L i_u = self.ticks[self.i_l].i_next tick_new = self.tick(srp_new) if tick_new < i_u: # we did not push past the interval dX = - (dY - fees.y) / (self.srP * srp_new) self.srP = srp_new self.i_a = tick_new user = XY(-dX, -dY) self.balance -= user # Update fee growth with the fees we just collected self.feeGrowth += fees * (1.0 / self.L) return user else: self.i_l = i_u srP_u = self.srp(i_u) dY_ = self.L * (srP_u - self.srP) dX = - dY_ / (self.srP * srP_u) tmp = dY_ / (1.0 - fee) dY_, fees = tmp, XY(0, tmp - dY_) # update fee growth self.feeGrowth += fees * (1.0 / self.L) self.L += self.ticks[i_u].Delta_L self.ticks[i_u].feeGrowthOutside = self.feeGrowth - self.ticks[i_u].feeGrowthOutside self.srP = srP_u user = XY(-dX, -dY_) self.balance -= user return user + self.Y_to_X(dY - dY_, fee)
34.007547
120
0.552818
[ "MIT", "Unlicense" ]
serokell/segmented-cfmm
python/scfmm/__init__.py
9,012
Python
#!/usr/bin/env python # Copyright 2014-2018 The PySCF Developers. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import unittest from functools import reduce import numpy, scipy from pyscf import lib from pyscf import gto from pyscf import scf from pyscf import mcscf from pyscf import fci b = 1.4 mol = gto.Mole() mol.build( verbose = 7, output = '/dev/null', atom = [ ['N',( 0.000000, 0.000000, -b/2)], ['N',( 0.000000, 0.000000, b/2)], ], basis = {'N': 'ccpvdz', }, symmetry = 1 ) mfr = scf.RHF(mol) mfr.scf() mcr = mcscf.CASSCF(mfr, 4, 4) mcr.conv_tol_grad = 1e-6 mcr.mc1step()[0] mfu = scf.UHF(mol) mfu.scf() mcu = mcscf.UCASSCF(mfu, 4, 4) mcu.conv_tol_grad = 1e-6 mcu.mc1step()[0] mol_prg = gto.M( verbose = 0, atom = [ ['N',( 0.000000, 0.000000, -(b+0.1)/2)], ['N',( 0.000000, 0.000000, (b+0.1)/2)], ], basis = 'ccpvdz', symmetry=1) mfr_prg = scf.RHF(mol_prg).set (max_cycle=1).run() mcr_prg = mcscf.CASSCF(mfr_prg, 4, 4).set (max_cycle_macro=1).run() mfu_prg = scf.UHF(mol_prg).set (max_cycle=1).run() mcu_prg = mcscf.UCASSCF(mfu_prg, 4, 4).set (max_cycle_macro=1).run() mol_prb = mol.copy () mol_prb.basis = {'N': 'aug-cc-pvdz' } mol_prb.build () mfr_prb = scf.RHF(mol_prb).set (max_cycle=1).run() mcr_prb = mcscf.CASSCF(mfr_prb, 4, 4).set (max_cycle_macro=1).run() def tearDownModule(): global mol, mfr, mcr, mfu, mcu mol.stdout.close() del mol, mfr, mcr, mfu, mcu class KnownValues(unittest.TestCase): def test_spin_square(self): ss = mcscf.addons.spin_square(mcr)[0] self.assertAlmostEqual(ss, 0, 7) def test_ucasscf_spin_square(self): ss = mcscf.addons.spin_square(mcu)[0] self.assertAlmostEqual(ss, 0, 7) def test_rcas_natorb(self): mo1, ci1, mocc1 = mcscf.addons.cas_natorb(mcr) self.assertAlmostEqual(numpy.linalg.norm(mo1) , 9.9260608594977491, 6) self.assertAlmostEqual(numpy.linalg.norm(mocc1), 5.1687145190800079, 6) #TODO: def test_ucas_natorb(self): #TODO: mo2, ci2, mocc2 = mcscf.addons.cas_natorb(mcu) #TODO: self.assertAlmostEqual(numpy.linalg.norm(mo2) , 11.4470460817871*numpy.sqrt(2), 7) #TODO: self.assertAlmostEqual(numpy.linalg.norm(mocc2), 2.59144951056707/numpy.sqrt(2), 7) def test_get_fock(self): f1 = mcscf.addons.get_fock(mcr) self.assertTrue(numpy.allclose(f1, f1.T)) self.assertAlmostEqual(numpy.linalg.norm(f1), 25.482177562349467, 6) #TODO: f1 = mcscf.addons.get_fock(mcu) #TODO: self.assertTrue(numpy.allclose(f1[0], f1[0].T)) #TODO: self.assertTrue(numpy.allclose(f1[1], f1[1].T)) #TODO: self.assertAlmostEqual(numpy.linalg.norm(f1), 23.597476504476919*numpy.sqrt(2), 6) def test_canonicalize1(self): numpy.random.seed(1) f1 = numpy.random.random(mcr.mo_coeff.shape) u1 = numpy.linalg.svd(f1)[0] mo1 = numpy.dot(mcr.mo_coeff, u1) mo1 = lib.tag_array(mo1, orbsym=mcr.mo_coeff.orbsym) mo, ci, mo_e = mcr.canonicalize(mo1) e1 = numpy.einsum('ji,jk,ki', mo, f1, mo) self.assertAlmostEqual(e1, 44.2658681077, 7) self.assertAlmostEqual(lib.fp(mo_e), 5.1364166175063097, 7) mo, ci, mo_e = mcr.canonicalize(mo1, eris=mcr.ao2mo(mcr.mo_coeff)) e1 = numpy.einsum('ji,jk,ki', mo, f1, mo) self.assertAlmostEqual(e1, 44.2658681077, 7) self.assertAlmostEqual(lib.fp(mo_e), 4.1206025804989173, 7) mcr1 = copy.copy(mcr) mcr1.frozen = 2 mo, ci, mo_e = mcr1.canonicalize(mo1) self.assertAlmostEqual(lib.fp(mo_e), 6.6030999409178577, 7) mcr1.frozen = [0,1] mo, ci, mo_e = mcr1.canonicalize(mo1) self.assertAlmostEqual(lib.fp(mo_e), 6.6030999409178577, 7) mcr1.frozen = [1,12] mo, ci, mo_e = mcr1.canonicalize(mo1) self.assertAlmostEqual(lib.fp(mo_e), 5.2182584355788162, 7) def test_canonicalize(self): mo, ci, mo_e = mcr.canonicalize() self.assertAlmostEqual(numpy.linalg.norm(mo), 9.9260608594977242, 7) mo, ci, mo_e = mcr.canonicalize(eris=mcr.ao2mo(mcr.mo_coeff)) self.assertAlmostEqual(numpy.linalg.norm(mo), 9.9260608594977242, 7) def test_make_rdm12(self): dmr = mcscf.addons.make_rdm1(mcr) dm1, dm2 = mcscf.addons.make_rdm12(mcr) self.assertTrue(numpy.allclose(dmr, dm1)) self.assertAlmostEqual(numpy.linalg.norm(dm1), 3.8205551262007567, 6) self.assertAlmostEqual(numpy.linalg.norm(dm2), 14.987267883423314, 5) def test_make_rdm1s(self): dm1 = mcscf.addons.make_rdm1s(mcr) self.assertAlmostEqual(numpy.linalg.norm(dm1), 2.7015404376335805, 5) dm1 = mcscf.addons.make_rdm1s(mcu) self.assertAlmostEqual(numpy.linalg.norm(dm1), 2.7015404376335805, 5) def test_sort_mo(self): mo1 = numpy.arange(mfr.mo_energy.size).reshape(1,-1) ref = [[0, 1, 2, 3, 7, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]] mo2 = mcscf.addons.sort_mo(mcr, mo1, [5,6,7,9]) self.assertTrue(numpy.allclose(mo2, ref)) mo2 = mcscf.addons.sort_mo(mcu, (mo1,mo1), [5,6,7,9]) self.assertTrue(numpy.allclose(mo2, (ref,ref))) mo2 = mcscf.addons.sort_mo(mcu, (mo1,mo1), [[5,6,7,9],[5,6,8,9]]) ref1 = [[0, 1, 2, 3, 6, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]] self.assertTrue(numpy.allclose(mo2, (ref,ref1))) def test_sort_mo_by_irrep(self): mc1 = mcscf.CASSCF(mfr, 8, 4) mo0 = mcscf.sort_mo_by_irrep(mc1, mfr.mo_coeff, {'E1ux':2, 'E1uy':2, 'E1gx':2, 'E1gy':2}) mo1 = mcscf.sort_mo_by_irrep(mc1, mfr.mo_coeff, {2:2, 3:2, 6:2, 7:2}, {2:0, 3:0, 6:0, 7:0}) mo2 = mcscf.sort_mo_by_irrep(mc1, mfr.mo_coeff, (0,0,2,2,0,0,2,2)) mo3 = mcscf.sort_mo_by_irrep(mc1, mfr.mo_coeff, {'E1ux':2, 'E1uy':2, 2:2, 3:2}) self.assertTrue(numpy.allclose(mo0, mo1)) self.assertTrue(numpy.allclose(mo0, mo2)) self.assertTrue(numpy.allclose(mo0, mo3)) def test_sort_mo_by_irrep1(self): mol = gto.M(atom='N 0 0 -.45; N 0 0 .45', basis='ccpvdz', symmetry=True, verbose=0) mf = scf.RHF(mol).run() mc1 = mcscf.CASSCF(mf, 6, 6) caslst = mcscf.addons.caslst_by_irrep(mc1, mf.mo_coeff, {'A1g': 1, 'A1u': 1, 'E1uy': 1, 'E1ux': 1, 'E1gy': 1, 'E1gx': 1}, {'A1g': 2, 'A1u': 2}) self.assertEqual(list(caslst), [4,5,7,8,9,10]) caslst = mcscf.addons.caslst_by_irrep(mc1, mf.mo_coeff, {'E1uy': 1, 'E1ux': 1, 'E1gy': 1, 'E1gx': 1}, {'A1g': 2, 'A1u': 2}) self.assertEqual(list(caslst), [4,5,7,8,9,10]) caslst = mcscf.addons.caslst_by_irrep(mc1, mf.mo_coeff, {'E1uy': 1, 'E1ux': 1, 'E1gy': 1, 'E1gx': 1}, {'A1u': 2}) self.assertEqual(list(caslst), [4,5,7,8,9,10]) caslst = mcscf.addons.caslst_by_irrep(mc1, mf.mo_coeff, {'A1g': 1, 'A1u': 1}, {'E1uy': 1, 'E1ux': 1}) self.assertEqual(list(caslst), [3,6,8,9,12,13]) self.assertRaises(ValueError, mcscf.addons.caslst_by_irrep, mc1, mf.mo_coeff, {'A1g': 1, 'A1u': 1}, {'E1uy': 3, 'E1ux': 3}) self.assertRaises(ValueError, mcscf.addons.caslst_by_irrep, mc1, mf.mo_coeff, {'A1g': 3, 'A1u': 4}, {'E1uy': 1, 'E1ux': 1}) self.assertRaises(ValueError, mcscf.addons.caslst_by_irrep, mc1, mf.mo_coeff, {'E2ux': 2, 'E2uy': 2}, {'E1uy': 1, 'E1ux': 1}) def test_state_average(self): mc = mcscf.CASSCF(mfr, 4, 4) mc.fcisolver = fci.solver(mol, singlet=False) mc.state_average_((.64,.36)) e = mc.kernel() e = mc.e_states self.assertAlmostEqual(mc.e_tot, -108.83342083775061, 7) self.assertAlmostEqual(mc.e_average, -108.83342083775061, 7) self.assertAlmostEqual(e[0]*.64+e[1]*.36, -108.83342083775061, 7) dm1 = mc.analyze() self.assertAlmostEqual(lib.fp(dm1[0]), 0.52396929381500434, 4) self.assertRaises(TypeError, mc.state_average_, (.64,.36)) def test_state_average_fci_dmrg(self): fcisolver1 = fci.direct_spin1_symm.FCISolver(mol) class FCI_as_DMRG(fci.direct_spin1_symm.FCISolver): def __getattribute__(self, attr): """Prevent 'private' attribute access""" if attr in ('make_rdm1s', 'spin_square', 'contract_2e', 'absorb_h1e'): raise AttributeError else: return object.__getattribute__(self, attr) def kernel(self, *args, **kwargs): return fcisolver1.kernel(*args, **kwargs) def approx_kernel(self, *args, **kwargs): return fcisolver1.kernel(*args, **kwargs) @property def orbsym(self): return fcisolver1.orbsym @orbsym.setter def orbsym(self, x): fcisolver1.orbsym = x spin_square = None large_ci = None transform_ci_for_orbital_rotation = None mc = mcscf.CASSCF(mfr, 4, 4) mc.fcisolver = FCI_as_DMRG(mol) mc.fcisolver.nroots = fcisolver1.nroots = 2 mc.state_average_((.64,.36)) mc.kernel() e = mc.e_states self.assertAlmostEqual(e[0]*.64+e[1]*.36, -108.83342083775061, 7) dm1 = mc.analyze() self.assertAlmostEqual(lib.fp(dm1[0]), 0.52396929381500434*2, 4) def test_state_average_mix(self): solver1 = fci.FCI(mol) solver1.spin = 0 solver1.nroots = 2 solver2 = fci.FCI(mol, singlet=False) solver2.spin = 2 mc = mcscf.CASSCF(mfr, 4, 4) mc = mcscf.addons.state_average_mix_(mc, [solver1, solver2], (0.25,0.25,0.5)) mc.kernel() e = mc.e_states self.assertAlmostEqual(mc.e_tot, -108.80340952016508, 7) self.assertAlmostEqual(mc.e_average, -108.80340952016508, 7) self.assertAlmostEqual(numpy.dot(e,[.25,.25,.5]), -108.80340952016508, 7) dm1 = mc.analyze() self.assertAlmostEqual(lib.fp(dm1[0]), 0.52172669549357464, 4) self.assertAlmostEqual(lib.fp(dm1[1]), 0.53366776017869022, 4) self.assertAlmostEqual(lib.fp(dm1[0]+dm1[1]), 1.0553944556722636, 4) mc.cas_natorb() def test_state_average_mix_fci_dmrg(self): fcisolver1 = fci.direct_spin0_symm.FCISolver(mol) class FCI_as_DMRG(fci.direct_spin0_symm.FCISolver): def __getattribute__(self, attr): """Prevent 'private' attribute access""" if attr in ('make_rdm1s', 'spin_square', 'contract_2e', 'absorb_h1e'): raise AttributeError else: return object.__getattribute__(self, attr) def kernel(self, *args, **kwargs): return fcisolver1.kernel(*args, **kwargs) def approx_kernel(self, *args, **kwargs): return fcisolver1.kernel(*args, **kwargs) @property def orbsym(self): return fcisolver1.orbsym @orbsym.setter def orbsym(self, x): fcisolver1.orbsym = x spin_square = None large_ci = None transform_ci_for_orbital_rotation = None solver1 = FCI_as_DMRG(mol) solver1.spin = fcisolver1.spin = 0 solver1.nroots = fcisolver1.nroots = 2 solver2 = fci.FCI(mol, singlet=False) solver2.spin = 2 mc = mcscf.CASSCF(mfr, 4, 4) mc = mcscf.addons.state_average_mix_(mc, [solver1, solver2], (0.25,0.25,0.5)) mc.kernel() e = mc.e_states self.assertAlmostEqual(numpy.dot(e, [.25,.25,.5]), -108.80340952016508, 7) dm1 = mc.analyze() self.assertAlmostEqual(lib.fp(dm1[0]), 1.0553944556722636, 4) self.assertEqual(dm1[1], None) mc.cas_natorb() def test_state_specific(self): mc = mcscf.CASSCF(mfr, 4, 4) mc.fcisolver = fci.solver(mol, singlet=False) mc.state_specific_(state=1) e = mc.kernel()[0] self.assertAlmostEqual(e, -108.70065770892457, 7) dm1 = mc.analyze() self.assertAlmostEqual(lib.fp(dm1[0]), 0.54605283139098515, 4) mc = mcscf.CASSCF(mfr, 4, 4) mc.state_specific_(state=0) e = mc.kernel()[0] self.assertAlmostEqual(mc.e_tot, mcr.e_tot, 7) dm1 = mc.analyze() dmref = mcr.analyze() self.assertAlmostEqual(float(abs(dm1[0]-dmref[0]).max()), 0, 4) def test_project_init_guess_geom (self): mfr_mo_norm = numpy.einsum ('ip,ip->p', mfr.mo_coeff.conj (), mfr_prg.get_ovlp ().dot (mfr.mo_coeff)) mfr_mo_norm = mfr.mo_coeff / numpy.sqrt (mfr_mo_norm)[None,:] mo1 = mcscf.addons.project_init_guess (mcr_prg, mfr.mo_coeff) s1 = reduce(numpy.dot, (mo1.T, mfr_prg.get_ovlp(), mo1)) self.assertEqual(numpy.count_nonzero(numpy.linalg.eigh(s1)[0]>1e-10), s1.shape[0]) self.assertAlmostEqual(numpy.linalg.norm(s1), 5.2915026221291841, 9) def test_project_init_guess_basis (self): mo1 = mcscf.addons.project_init_guess (mcr_prb, mfr.mo_coeff, prev_mol=mfr.mol) s1 = reduce(numpy.dot, (mo1.T, mfr_prb.get_ovlp(), mo1)) self.assertEqual(numpy.count_nonzero(numpy.linalg.eigh(s1)[0]>1e-10), s1.shape[0]) self.assertAlmostEqual(numpy.linalg.norm(s1), 6.782329983125268, 9) def test_project_init_guess_uhf (self): mo1_u = mcscf.addons.project_init_guess (mcu_prg, mfu.mo_coeff) for mo1 in mo1_u: s1 = reduce(numpy.dot, (mo1.T, mfu_prg.get_ovlp(), mo1)) self.assertEqual(numpy.count_nonzero(numpy.linalg.eigh(s1)[0]>1e-10), s1.shape[0]) self.assertAlmostEqual(numpy.linalg.norm(s1), 5.2915026221291841, 9) def test_project_init_guess_activefirst (self): with lib.temporary_env (mcr_prg, ncas=6, ncore=3): mo1 = mcscf.addons.project_init_guess (mcr_prg, mfr.mo_coeff, priority='active') s1 = reduce(numpy.dot, (mo1.T, mfr_prg.get_ovlp(), mo1)) self.assertEqual(numpy.count_nonzero(numpy.linalg.eigh(s1)[0]>1e-10), s1.shape[0]) self.assertAlmostEqual(numpy.linalg.norm(s1), 5.2915026221291841, 9) mfr_mo_norm = numpy.einsum ('ip,ip->p', mfr.mo_coeff.conj (), mfr_prg.get_ovlp ().dot (mfr.mo_coeff)) mfr_mo_norm = mfr.mo_coeff / numpy.sqrt (mfr_mo_norm)[None,:] s2 = [reduce (numpy.dot, (mfr_prg.get_ovlp (), mo1[:,i], mfr_mo_norm[:,i])) for i in (1,3)] # core, active (same irrep) self.assertAlmostEqual (s2[1], 1.0, 9) self.assertFalse (s2[0] > s2[1]) def test_project_init_guess_corefirst (self): with lib.temporary_env (mcr_prg, ncas=6, ncore=3): mo1 = mcscf.addons.project_init_guess (mcr_prg, mfr.mo_coeff, priority='core') s1 = reduce(numpy.dot, (mo1.T, mfr_prg.get_ovlp(), mo1)) self.assertEqual(numpy.count_nonzero(numpy.linalg.eigh(s1)[0]>1e-10), s1.shape[0]) self.assertAlmostEqual(numpy.linalg.norm(s1), 5.2915026221291841, 9) mfr_mo_norm = numpy.einsum ('ip,ip->p', mfr.mo_coeff.conj (), mfr_prg.get_ovlp ().dot (mfr.mo_coeff)) mfr_mo_norm = mfr.mo_coeff / numpy.sqrt (mfr_mo_norm)[None,:] s1 = [reduce (numpy.dot, (mfr_prg.get_ovlp (), mo1[:,i], mfr_mo_norm[:,i])) for i in (1,3)] # core, active (same irrep) self.assertAlmostEqual (s1[0], 1.0, 9) self.assertTrue (s1[0] > s1[1]) def test_project_init_guess_gramschmidt (self): gram_schmidt_idx = numpy.arange (27, dtype=numpy.integer)[:,None].tolist () mo1 = mcscf.addons.project_init_guess (mcr_prg, mfr.mo_coeff, priority=gram_schmidt_idx) s1 = reduce(numpy.dot, (mo1.T, mfr_prg.get_ovlp(), mo1)) self.assertEqual(numpy.count_nonzero(numpy.linalg.eigh(s1)[0]>1e-10), s1.shape[0]) self.assertAlmostEqual(numpy.linalg.norm(s1), 5.2915026221291841, 9) mf2moi = reduce (numpy.dot, (mfr_prg.mo_coeff.conj ().T, mfr_prg.get_ovlp (), mfr.mo_coeff)) Q, R = scipy.linalg.qr (mf2moi) # Arbitrary sign, so abs below mo2 = numpy.dot (mfr_prg.mo_coeff, Q) s2 = numpy.abs (reduce (numpy.dot, (mo1.conj ().T, mfr_prg.get_ovlp (), mo2))) self.assertAlmostEqual(numpy.linalg.norm(s2), 5.2915026221291841, 9) def test_project_init_guess_prioritylists (self): pr = [[[27],[5,3],[6,12]],[[5],[17],[13,10,8,6]]] mo1_u = mcscf.addons.project_init_guess (mcu_prg, mfu.mo_coeff, priority=pr) s0 = mfu_prg.get_ovlp () for ix, mo1 in enumerate (mo1_u): s1 = reduce(numpy.dot, (mo1.T, s0, mo1)) self.assertEqual(numpy.count_nonzero(numpy.linalg.eigh(s1)[0]>1e-10), s1.shape[0]) self.assertAlmostEqual(numpy.linalg.norm(s1), 5.2915026221291841, 9) mfu_mo = mfu.mo_coeff[ix] mfu_mo_norm = numpy.einsum ('ip,ip->p', mfu_mo.conj (), s0.dot (mfu_mo)) mfu_mo_norm = mfu.mo_coeff[ix] / numpy.sqrt (mfu_mo_norm)[None,:] p = pr[ix][0][0] s2 = reduce (numpy.dot, (mfu_prg.get_ovlp (), mo1[:,p], mfu_mo_norm[:,p])) self.assertAlmostEqual (s2, 1.0, 9) def test_project_init_guess_usehfcore (self): mo1 = mcscf.addons.project_init_guess (mcr_prg, mfr.mo_coeff, use_hf_core=True) s1 = reduce(numpy.dot, (mo1.T, mfr_prg.get_ovlp(), mo1)) self.assertEqual(numpy.count_nonzero(numpy.linalg.eigh(s1)[0]>1e-10), s1.shape[0]) self.assertAlmostEqual(numpy.linalg.norm(s1), 5.2915026221291841, 9) s2 = reduce (numpy.dot, (mo1[:,:5].T, mfr_prg.get_ovlp (), mfr_prg.mo_coeff[:,:5])) self.assertEqual(numpy.count_nonzero(numpy.linalg.eigh(s2)[0]>1e-10), s2.shape[0]) self.assertAlmostEqual (numpy.linalg.norm (s2), 2.23606797749979, 9) def test_state_average_bad_init_guess(self): mc = mcscf.CASCI(mfr, 4, 4) mc.run() mc.state_average_([.8, .2]) mscan = mc.as_scanner() e = mscan(mol) self.assertAlmostEqual(e, -108.84390277715984, 9) if __name__ == "__main__": print("Full Tests for mcscf.addons") unittest.main()
44.20595
100
0.604255
[ "Apache-2.0" ]
JFurness1/pyscf
pyscf/mcscf/test/test_addons.py
19,318
Python
# Copyright (c) 2016-2017, Jani Nikula <[email protected]> # Licensed under the terms of BSD 2-Clause, see LICENSE for details. """ Hawkmoth ======== Sphinx C Domain autodoc directive extension. """ import glob import os import re import stat import subprocess import sys from docutils import nodes, statemachine from docutils.parsers.rst import directives, Directive from docutils.statemachine import ViewList from sphinx.ext.autodoc import AutodocReporter from sphinx.util.nodes import nested_parse_with_titles from sphinx.util.docutils import switch_source_input from hawkmoth.parser import parse with open(os.path.join(os.path.abspath(os.path.dirname(__file__)), 'VERSION')) as version_file: __version__ = version_file.read().strip() class CAutoDocDirective(Directive): """Extract all documentation comments from the specified file""" required_argument = 1 optional_arguments = 1 # Allow passing a variable number of file patterns as arguments final_argument_whitespace = True option_spec = { 'compat': directives.unchanged_required, 'clang': directives.unchanged_required, } has_content = False def __parse(self, viewlist, filename): env = self.state.document.settings.env compat = self.options.get('compat', env.config.cautodoc_compat) clang = self.options.get('clang', env.config.cautodoc_clang) comments = parse(filename, compat=compat, clang=clang) for (comment, meta) in comments: lineoffset = meta['line'] - 1 lines = statemachine.string2lines(comment, 8, convert_whitespace=True) for line in lines: viewlist.append(line, filename, lineoffset) lineoffset += 1 def run(self): env = self.state.document.settings.env result = ViewList() for pattern in self.arguments[0].split(): filenames = glob.glob(env.config.cautodoc_root + '/' + pattern) if len(filenames) == 0: fmt = 'Pattern "{pat}" does not match any files.' env.app.warn(fmt.format(pat=pattern), location=(env.docname, self.lineno)) continue for filename in filenames: mode = os.stat(filename).st_mode if stat.S_ISDIR(mode): fmt = 'Path "{name}" matching pattern "{pat}" is a directory.' env.app.warn(fmt.format(name=filename, pat=pattern), location=(env.docname, self.lineno)) continue # Tell Sphinx about the dependency and parse the file env.note_dependency(os.path.abspath(filename)) self.__parse(result, filename) # Parse the extracted reST with switch_source_input(self.state, result): node = nodes.section() nested_parse_with_titles(self.state, result, node) return node.children def setup(app): app.require_sphinx('1.8') app.add_config_value('cautodoc_root', app.confdir, 'env') app.add_config_value('cautodoc_compat', None, 'env') app.add_config_value('cautodoc_clang', None, 'env') app.add_directive_to_domain('c', 'autodoc', CAutoDocDirective) return dict(version = __version__, parallel_read_safe = True, parallel_write_safe = True)
34.316832
82
0.634737
[ "BSD-2-Clause" ]
mv0/hawkmoth
hawkmoth/__init__.py
3,466
Python
# # Copyright (c) 2021 Airbyte, Inc., all rights reserved. # from .source import SourceOrb __all__ = ["SourceOrb"]
13.111111
56
0.694915
[ "MIT" ]
52-entertainment/airbyte
airbyte-integrations/connectors/source-orb/source_orb/__init__.py
118
Python
# Copyright 2017 gRPC authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Autogenerated by tools/codegen/core/gen_stats_data.py import massage_qps_stats_helpers def massage_qps_stats(scenario_result): for stats in scenario_result["serverStats"] + scenario_result["clientStats"]: if "coreStats" not in stats: return core_stats = stats["coreStats"] del stats["coreStats"] stats["core_client_calls_created"] = massage_qps_stats_helpers.counter( core_stats, "client_calls_created") stats["core_server_calls_created"] = massage_qps_stats_helpers.counter( core_stats, "server_calls_created") stats["core_cqs_created"] = massage_qps_stats_helpers.counter( core_stats, "cqs_created") stats[ "core_client_channels_created"] = massage_qps_stats_helpers.counter( core_stats, "client_channels_created") stats[ "core_client_subchannels_created"] = massage_qps_stats_helpers.counter( core_stats, "client_subchannels_created") stats[ "core_server_channels_created"] = massage_qps_stats_helpers.counter( core_stats, "server_channels_created") stats["core_syscall_poll"] = massage_qps_stats_helpers.counter( core_stats, "syscall_poll") stats["core_syscall_wait"] = massage_qps_stats_helpers.counter( core_stats, "syscall_wait") stats["core_pollset_kick"] = massage_qps_stats_helpers.counter( core_stats, "pollset_kick") stats[ "core_pollset_kicked_without_poller"] = massage_qps_stats_helpers.counter( core_stats, "pollset_kicked_without_poller") stats["core_pollset_kicked_again"] = massage_qps_stats_helpers.counter( core_stats, "pollset_kicked_again") stats[ "core_pollset_kick_wakeup_fd"] = massage_qps_stats_helpers.counter( core_stats, "pollset_kick_wakeup_fd") stats[ "core_pollset_kick_wakeup_cv"] = massage_qps_stats_helpers.counter( core_stats, "pollset_kick_wakeup_cv") stats[ "core_pollset_kick_own_thread"] = massage_qps_stats_helpers.counter( core_stats, "pollset_kick_own_thread") stats[ "core_histogram_slow_lookups"] = massage_qps_stats_helpers.counter( core_stats, "histogram_slow_lookups") stats["core_syscall_write"] = massage_qps_stats_helpers.counter( core_stats, "syscall_write") stats["core_syscall_read"] = massage_qps_stats_helpers.counter( core_stats, "syscall_read") stats[ "core_tcp_backup_pollers_created"] = massage_qps_stats_helpers.counter( core_stats, "tcp_backup_pollers_created") stats[ "core_tcp_backup_poller_polls"] = massage_qps_stats_helpers.counter( core_stats, "tcp_backup_poller_polls") stats["core_http2_op_batches"] = massage_qps_stats_helpers.counter( core_stats, "http2_op_batches") stats["core_http2_op_cancel"] = massage_qps_stats_helpers.counter( core_stats, "http2_op_cancel") stats[ "core_http2_op_send_initial_metadata"] = massage_qps_stats_helpers.counter( core_stats, "http2_op_send_initial_metadata") stats["core_http2_op_send_message"] = massage_qps_stats_helpers.counter( core_stats, "http2_op_send_message") stats[ "core_http2_op_send_trailing_metadata"] = massage_qps_stats_helpers.counter( core_stats, "http2_op_send_trailing_metadata") stats[ "core_http2_op_recv_initial_metadata"] = massage_qps_stats_helpers.counter( core_stats, "http2_op_recv_initial_metadata") stats["core_http2_op_recv_message"] = massage_qps_stats_helpers.counter( core_stats, "http2_op_recv_message") stats[ "core_http2_op_recv_trailing_metadata"] = massage_qps_stats_helpers.counter( core_stats, "http2_op_recv_trailing_metadata") stats["core_http2_settings_writes"] = massage_qps_stats_helpers.counter( core_stats, "http2_settings_writes") stats["core_http2_pings_sent"] = massage_qps_stats_helpers.counter( core_stats, "http2_pings_sent") stats["core_http2_writes_begun"] = massage_qps_stats_helpers.counter( core_stats, "http2_writes_begun") stats[ "core_http2_writes_offloaded"] = massage_qps_stats_helpers.counter( core_stats, "http2_writes_offloaded") stats[ "core_http2_writes_continued"] = massage_qps_stats_helpers.counter( core_stats, "http2_writes_continued") stats["core_http2_partial_writes"] = massage_qps_stats_helpers.counter( core_stats, "http2_partial_writes") stats[ "core_http2_initiate_write_due_to_initial_write"] = massage_qps_stats_helpers.counter( core_stats, "http2_initiate_write_due_to_initial_write") stats[ "core_http2_initiate_write_due_to_start_new_stream"] = massage_qps_stats_helpers.counter( core_stats, "http2_initiate_write_due_to_start_new_stream") stats[ "core_http2_initiate_write_due_to_send_message"] = massage_qps_stats_helpers.counter( core_stats, "http2_initiate_write_due_to_send_message") stats[ "core_http2_initiate_write_due_to_send_initial_metadata"] = massage_qps_stats_helpers.counter( core_stats, "http2_initiate_write_due_to_send_initial_metadata") stats[ "core_http2_initiate_write_due_to_send_trailing_metadata"] = massage_qps_stats_helpers.counter( core_stats, "http2_initiate_write_due_to_send_trailing_metadata") stats[ "core_http2_initiate_write_due_to_retry_send_ping"] = massage_qps_stats_helpers.counter( core_stats, "http2_initiate_write_due_to_retry_send_ping") stats[ "core_http2_initiate_write_due_to_continue_pings"] = massage_qps_stats_helpers.counter( core_stats, "http2_initiate_write_due_to_continue_pings") stats[ "core_http2_initiate_write_due_to_goaway_sent"] = massage_qps_stats_helpers.counter( core_stats, "http2_initiate_write_due_to_goaway_sent") stats[ "core_http2_initiate_write_due_to_rst_stream"] = massage_qps_stats_helpers.counter( core_stats, "http2_initiate_write_due_to_rst_stream") stats[ "core_http2_initiate_write_due_to_close_from_api"] = massage_qps_stats_helpers.counter( core_stats, "http2_initiate_write_due_to_close_from_api") stats[ "core_http2_initiate_write_due_to_stream_flow_control"] = massage_qps_stats_helpers.counter( core_stats, "http2_initiate_write_due_to_stream_flow_control") stats[ "core_http2_initiate_write_due_to_transport_flow_control"] = massage_qps_stats_helpers.counter( core_stats, "http2_initiate_write_due_to_transport_flow_control") stats[ "core_http2_initiate_write_due_to_send_settings"] = massage_qps_stats_helpers.counter( core_stats, "http2_initiate_write_due_to_send_settings") stats[ "core_http2_initiate_write_due_to_bdp_estimator_ping"] = massage_qps_stats_helpers.counter( core_stats, "http2_initiate_write_due_to_bdp_estimator_ping") stats[ "core_http2_initiate_write_due_to_flow_control_unstalled_by_setting"] = massage_qps_stats_helpers.counter( core_stats, "http2_initiate_write_due_to_flow_control_unstalled_by_setting") stats[ "core_http2_initiate_write_due_to_flow_control_unstalled_by_update"] = massage_qps_stats_helpers.counter( core_stats, "http2_initiate_write_due_to_flow_control_unstalled_by_update") stats[ "core_http2_initiate_write_due_to_application_ping"] = massage_qps_stats_helpers.counter( core_stats, "http2_initiate_write_due_to_application_ping") stats[ "core_http2_initiate_write_due_to_keepalive_ping"] = massage_qps_stats_helpers.counter( core_stats, "http2_initiate_write_due_to_keepalive_ping") stats[ "core_http2_initiate_write_due_to_transport_flow_control_unstalled"] = massage_qps_stats_helpers.counter( core_stats, "http2_initiate_write_due_to_transport_flow_control_unstalled") stats[ "core_http2_initiate_write_due_to_ping_response"] = massage_qps_stats_helpers.counter( core_stats, "http2_initiate_write_due_to_ping_response") stats[ "core_http2_initiate_write_due_to_force_rst_stream"] = massage_qps_stats_helpers.counter( core_stats, "http2_initiate_write_due_to_force_rst_stream") stats[ "core_http2_spurious_writes_begun"] = massage_qps_stats_helpers.counter( core_stats, "http2_spurious_writes_begun") stats["core_hpack_recv_indexed"] = massage_qps_stats_helpers.counter( core_stats, "hpack_recv_indexed") stats[ "core_hpack_recv_lithdr_incidx"] = massage_qps_stats_helpers.counter( core_stats, "hpack_recv_lithdr_incidx") stats[ "core_hpack_recv_lithdr_incidx_v"] = massage_qps_stats_helpers.counter( core_stats, "hpack_recv_lithdr_incidx_v") stats[ "core_hpack_recv_lithdr_notidx"] = massage_qps_stats_helpers.counter( core_stats, "hpack_recv_lithdr_notidx") stats[ "core_hpack_recv_lithdr_notidx_v"] = massage_qps_stats_helpers.counter( core_stats, "hpack_recv_lithdr_notidx_v") stats[ "core_hpack_recv_lithdr_nvridx"] = massage_qps_stats_helpers.counter( core_stats, "hpack_recv_lithdr_nvridx") stats[ "core_hpack_recv_lithdr_nvridx_v"] = massage_qps_stats_helpers.counter( core_stats, "hpack_recv_lithdr_nvridx_v") stats[ "core_hpack_recv_uncompressed"] = massage_qps_stats_helpers.counter( core_stats, "hpack_recv_uncompressed") stats["core_hpack_recv_huffman"] = massage_qps_stats_helpers.counter( core_stats, "hpack_recv_huffman") stats["core_hpack_recv_binary"] = massage_qps_stats_helpers.counter( core_stats, "hpack_recv_binary") stats[ "core_hpack_recv_binary_base64"] = massage_qps_stats_helpers.counter( core_stats, "hpack_recv_binary_base64") stats["core_hpack_send_indexed"] = massage_qps_stats_helpers.counter( core_stats, "hpack_send_indexed") stats[ "core_hpack_send_lithdr_incidx"] = massage_qps_stats_helpers.counter( core_stats, "hpack_send_lithdr_incidx") stats[ "core_hpack_send_lithdr_incidx_v"] = massage_qps_stats_helpers.counter( core_stats, "hpack_send_lithdr_incidx_v") stats[ "core_hpack_send_lithdr_notidx"] = massage_qps_stats_helpers.counter( core_stats, "hpack_send_lithdr_notidx") stats[ "core_hpack_send_lithdr_notidx_v"] = massage_qps_stats_helpers.counter( core_stats, "hpack_send_lithdr_notidx_v") stats[ "core_hpack_send_lithdr_nvridx"] = massage_qps_stats_helpers.counter( core_stats, "hpack_send_lithdr_nvridx") stats[ "core_hpack_send_lithdr_nvridx_v"] = massage_qps_stats_helpers.counter( core_stats, "hpack_send_lithdr_nvridx_v") stats[ "core_hpack_send_uncompressed"] = massage_qps_stats_helpers.counter( core_stats, "hpack_send_uncompressed") stats["core_hpack_send_huffman"] = massage_qps_stats_helpers.counter( core_stats, "hpack_send_huffman") stats["core_hpack_send_binary"] = massage_qps_stats_helpers.counter( core_stats, "hpack_send_binary") stats[ "core_hpack_send_binary_base64"] = massage_qps_stats_helpers.counter( core_stats, "hpack_send_binary_base64") stats[ "core_combiner_locks_initiated"] = massage_qps_stats_helpers.counter( core_stats, "combiner_locks_initiated") stats[ "core_combiner_locks_scheduled_items"] = massage_qps_stats_helpers.counter( core_stats, "combiner_locks_scheduled_items") stats[ "core_combiner_locks_scheduled_final_items"] = massage_qps_stats_helpers.counter( core_stats, "combiner_locks_scheduled_final_items") stats[ "core_combiner_locks_offloaded"] = massage_qps_stats_helpers.counter( core_stats, "combiner_locks_offloaded") stats[ "core_call_combiner_locks_initiated"] = massage_qps_stats_helpers.counter( core_stats, "call_combiner_locks_initiated") stats[ "core_call_combiner_locks_scheduled_items"] = massage_qps_stats_helpers.counter( core_stats, "call_combiner_locks_scheduled_items") stats[ "core_call_combiner_set_notify_on_cancel"] = massage_qps_stats_helpers.counter( core_stats, "call_combiner_set_notify_on_cancel") stats[ "core_call_combiner_cancelled"] = massage_qps_stats_helpers.counter( core_stats, "call_combiner_cancelled") stats[ "core_executor_scheduled_short_items"] = massage_qps_stats_helpers.counter( core_stats, "executor_scheduled_short_items") stats[ "core_executor_scheduled_long_items"] = massage_qps_stats_helpers.counter( core_stats, "executor_scheduled_long_items") stats[ "core_executor_scheduled_to_self"] = massage_qps_stats_helpers.counter( core_stats, "executor_scheduled_to_self") stats[ "core_executor_wakeup_initiated"] = massage_qps_stats_helpers.counter( core_stats, "executor_wakeup_initiated") stats[ "core_executor_queue_drained"] = massage_qps_stats_helpers.counter( core_stats, "executor_queue_drained") stats["core_executor_push_retries"] = massage_qps_stats_helpers.counter( core_stats, "executor_push_retries") stats[ "core_server_requested_calls"] = massage_qps_stats_helpers.counter( core_stats, "server_requested_calls") stats[ "core_server_slowpath_requests_queued"] = massage_qps_stats_helpers.counter( core_stats, "server_slowpath_requests_queued") stats[ "core_cq_ev_queue_trylock_failures"] = massage_qps_stats_helpers.counter( core_stats, "cq_ev_queue_trylock_failures") stats[ "core_cq_ev_queue_trylock_successes"] = massage_qps_stats_helpers.counter( core_stats, "cq_ev_queue_trylock_successes") stats[ "core_cq_ev_queue_transient_pop_failures"] = massage_qps_stats_helpers.counter( core_stats, "cq_ev_queue_transient_pop_failures") h = massage_qps_stats_helpers.histogram(core_stats, "call_initial_size") stats["core_call_initial_size"] = ",".join("%f" % x for x in h.buckets) stats["core_call_initial_size_bkts"] = ",".join( "%f" % x for x in h.boundaries) stats[ "core_call_initial_size_50p"] = massage_qps_stats_helpers.percentile( h.buckets, 50, h.boundaries) stats[ "core_call_initial_size_95p"] = massage_qps_stats_helpers.percentile( h.buckets, 95, h.boundaries) stats[ "core_call_initial_size_99p"] = massage_qps_stats_helpers.percentile( h.buckets, 99, h.boundaries) h = massage_qps_stats_helpers.histogram(core_stats, "poll_events_returned") stats["core_poll_events_returned"] = ",".join( "%f" % x for x in h.buckets) stats["core_poll_events_returned_bkts"] = ",".join( "%f" % x for x in h.boundaries) stats[ "core_poll_events_returned_50p"] = massage_qps_stats_helpers.percentile( h.buckets, 50, h.boundaries) stats[ "core_poll_events_returned_95p"] = massage_qps_stats_helpers.percentile( h.buckets, 95, h.boundaries) stats[ "core_poll_events_returned_99p"] = massage_qps_stats_helpers.percentile( h.buckets, 99, h.boundaries) h = massage_qps_stats_helpers.histogram(core_stats, "tcp_write_size") stats["core_tcp_write_size"] = ",".join("%f" % x for x in h.buckets) stats["core_tcp_write_size_bkts"] = ",".join( "%f" % x for x in h.boundaries) stats["core_tcp_write_size_50p"] = massage_qps_stats_helpers.percentile( h.buckets, 50, h.boundaries) stats["core_tcp_write_size_95p"] = massage_qps_stats_helpers.percentile( h.buckets, 95, h.boundaries) stats["core_tcp_write_size_99p"] = massage_qps_stats_helpers.percentile( h.buckets, 99, h.boundaries) h = massage_qps_stats_helpers.histogram(core_stats, "tcp_write_iov_size") stats["core_tcp_write_iov_size"] = ",".join("%f" % x for x in h.buckets) stats["core_tcp_write_iov_size_bkts"] = ",".join( "%f" % x for x in h.boundaries) stats[ "core_tcp_write_iov_size_50p"] = massage_qps_stats_helpers.percentile( h.buckets, 50, h.boundaries) stats[ "core_tcp_write_iov_size_95p"] = massage_qps_stats_helpers.percentile( h.buckets, 95, h.boundaries) stats[ "core_tcp_write_iov_size_99p"] = massage_qps_stats_helpers.percentile( h.buckets, 99, h.boundaries) h = massage_qps_stats_helpers.histogram(core_stats, "tcp_read_size") stats["core_tcp_read_size"] = ",".join("%f" % x for x in h.buckets) stats["core_tcp_read_size_bkts"] = ",".join( "%f" % x for x in h.boundaries) stats["core_tcp_read_size_50p"] = massage_qps_stats_helpers.percentile( h.buckets, 50, h.boundaries) stats["core_tcp_read_size_95p"] = massage_qps_stats_helpers.percentile( h.buckets, 95, h.boundaries) stats["core_tcp_read_size_99p"] = massage_qps_stats_helpers.percentile( h.buckets, 99, h.boundaries) h = massage_qps_stats_helpers.histogram(core_stats, "tcp_read_offer") stats["core_tcp_read_offer"] = ",".join("%f" % x for x in h.buckets) stats["core_tcp_read_offer_bkts"] = ",".join( "%f" % x for x in h.boundaries) stats["core_tcp_read_offer_50p"] = massage_qps_stats_helpers.percentile( h.buckets, 50, h.boundaries) stats["core_tcp_read_offer_95p"] = massage_qps_stats_helpers.percentile( h.buckets, 95, h.boundaries) stats["core_tcp_read_offer_99p"] = massage_qps_stats_helpers.percentile( h.buckets, 99, h.boundaries) h = massage_qps_stats_helpers.histogram(core_stats, "tcp_read_offer_iov_size") stats["core_tcp_read_offer_iov_size"] = ",".join( "%f" % x for x in h.buckets) stats["core_tcp_read_offer_iov_size_bkts"] = ",".join( "%f" % x for x in h.boundaries) stats[ "core_tcp_read_offer_iov_size_50p"] = massage_qps_stats_helpers.percentile( h.buckets, 50, h.boundaries) stats[ "core_tcp_read_offer_iov_size_95p"] = massage_qps_stats_helpers.percentile( h.buckets, 95, h.boundaries) stats[ "core_tcp_read_offer_iov_size_99p"] = massage_qps_stats_helpers.percentile( h.buckets, 99, h.boundaries) h = massage_qps_stats_helpers.histogram(core_stats, "http2_send_message_size") stats["core_http2_send_message_size"] = ",".join( "%f" % x for x in h.buckets) stats["core_http2_send_message_size_bkts"] = ",".join( "%f" % x for x in h.boundaries) stats[ "core_http2_send_message_size_50p"] = massage_qps_stats_helpers.percentile( h.buckets, 50, h.boundaries) stats[ "core_http2_send_message_size_95p"] = massage_qps_stats_helpers.percentile( h.buckets, 95, h.boundaries) stats[ "core_http2_send_message_size_99p"] = massage_qps_stats_helpers.percentile( h.buckets, 99, h.boundaries) h = massage_qps_stats_helpers.histogram( core_stats, "http2_send_initial_metadata_per_write") stats["core_http2_send_initial_metadata_per_write"] = ",".join( "%f" % x for x in h.buckets) stats["core_http2_send_initial_metadata_per_write_bkts"] = ",".join( "%f" % x for x in h.boundaries) stats[ "core_http2_send_initial_metadata_per_write_50p"] = massage_qps_stats_helpers.percentile( h.buckets, 50, h.boundaries) stats[ "core_http2_send_initial_metadata_per_write_95p"] = massage_qps_stats_helpers.percentile( h.buckets, 95, h.boundaries) stats[ "core_http2_send_initial_metadata_per_write_99p"] = massage_qps_stats_helpers.percentile( h.buckets, 99, h.boundaries) h = massage_qps_stats_helpers.histogram(core_stats, "http2_send_message_per_write") stats["core_http2_send_message_per_write"] = ",".join( "%f" % x for x in h.buckets) stats["core_http2_send_message_per_write_bkts"] = ",".join( "%f" % x for x in h.boundaries) stats[ "core_http2_send_message_per_write_50p"] = massage_qps_stats_helpers.percentile( h.buckets, 50, h.boundaries) stats[ "core_http2_send_message_per_write_95p"] = massage_qps_stats_helpers.percentile( h.buckets, 95, h.boundaries) stats[ "core_http2_send_message_per_write_99p"] = massage_qps_stats_helpers.percentile( h.buckets, 99, h.boundaries) h = massage_qps_stats_helpers.histogram( core_stats, "http2_send_trailing_metadata_per_write") stats["core_http2_send_trailing_metadata_per_write"] = ",".join( "%f" % x for x in h.buckets) stats["core_http2_send_trailing_metadata_per_write_bkts"] = ",".join( "%f" % x for x in h.boundaries) stats[ "core_http2_send_trailing_metadata_per_write_50p"] = massage_qps_stats_helpers.percentile( h.buckets, 50, h.boundaries) stats[ "core_http2_send_trailing_metadata_per_write_95p"] = massage_qps_stats_helpers.percentile( h.buckets, 95, h.boundaries) stats[ "core_http2_send_trailing_metadata_per_write_99p"] = massage_qps_stats_helpers.percentile( h.buckets, 99, h.boundaries) h = massage_qps_stats_helpers.histogram(core_stats, "http2_send_flowctl_per_write") stats["core_http2_send_flowctl_per_write"] = ",".join( "%f" % x for x in h.buckets) stats["core_http2_send_flowctl_per_write_bkts"] = ",".join( "%f" % x for x in h.boundaries) stats[ "core_http2_send_flowctl_per_write_50p"] = massage_qps_stats_helpers.percentile( h.buckets, 50, h.boundaries) stats[ "core_http2_send_flowctl_per_write_95p"] = massage_qps_stats_helpers.percentile( h.buckets, 95, h.boundaries) stats[ "core_http2_send_flowctl_per_write_99p"] = massage_qps_stats_helpers.percentile( h.buckets, 99, h.boundaries) h = massage_qps_stats_helpers.histogram(core_stats, "server_cqs_checked") stats["core_server_cqs_checked"] = ",".join("%f" % x for x in h.buckets) stats["core_server_cqs_checked_bkts"] = ",".join( "%f" % x for x in h.boundaries) stats[ "core_server_cqs_checked_50p"] = massage_qps_stats_helpers.percentile( h.buckets, 50, h.boundaries) stats[ "core_server_cqs_checked_95p"] = massage_qps_stats_helpers.percentile( h.buckets, 95, h.boundaries) stats[ "core_server_cqs_checked_99p"] = massage_qps_stats_helpers.percentile( h.buckets, 99, h.boundaries)
54.76383
118
0.661875
[ "Apache-2.0" ]
4con/grpc-win-xp
tools/run_tests/performance/massage_qps_stats.py
25,739
Python
from tocenv.components.position import Position class DirectionType: # Clock-wise numbering Up = 0 Down = 2 Left = 1 Right = 3 class Direction(object): def __init__(self): pass class Direction(object): def __init__(self, direction_type): self.direction = direction_type def turn_right(self) -> Direction: self.direction = (self.direction + 1) % 4 return self def turn_left(self) -> Direction: self.direction = ((self.direction + 4) - 1) % 4 return self def half_rotate(self) -> Direction: self.direction = (self.direction + 2) % 4 return self @property def value(self): return self.direction def _to_position(self) -> Position: if self.direction == DirectionType.Up: return Position(x=0, y=1) elif self.direction == DirectionType.Down: return Position(x=0, y=-1) elif self.direction == DirectionType.Left: return Position(x=-1, y=0) elif self.direction == DirectionType.Right: return Position(x=1, y=0) def _to_string(self) -> str: if self.direction == DirectionType.Up: return 'Up' elif self.direction == DirectionType.Down: return 'Down' elif self.direction == DirectionType.Left: return 'Left' elif self.direction == DirectionType.Right: return 'Right' def get_type(self): return self.direction def __str__(self): return 'Direction({0})'.format(self._to_string())
23.514706
57
0.595372
[ "Apache-2.0" ]
KevinJeon/The-Tragedy-of-the-commons
tocenv/components/direction.py
1,599
Python
from http import cookies from io import StringIO import pytest def log_entry(entry): return StringIO(entry) @pytest.fixture def cookie_zip_code(): cookie = cookies.SimpleCookie() cookie.load(rawdata='zip=98101') return cookie @pytest.fixture def cookie_empty(): cookie = cookies.SimpleCookie() cookie.load(rawdata='') return cookie @pytest.fixture def cloudfront_entry(): return log_entry('''2014-05-23 01:13:11 FRA2 182 192.0.2.10 GET d111111abcdef8.cloudfront.net /view/my/file.html 200 www.displaymyfiles.com Mozilla/4.0%20(compatible;%20MSIE%205.0b1;%20Mac_PowerPC) - zip=98101 RefreshHit MRVMF7KydIvxMWfJIglgwHQwZsbG2IhRJ07sn9AkKUFSHS9EXAMPLE== d111111abcdef8.cloudfront.net http - 0.001 - - - RefreshHit HTTP/1.1''') # noqa: E501 @pytest.fixture def cloudfront_entry_broken_cookie(): return log_entry('''2014-05-23 01:13:11 FRA2 182 192.0.2.10 GET d111111abcdef8.cloudfront.net /view/my/file.html 200 www.displaymyfiles.com Mozilla/4.0%20(compatible;%20MSIE%205.0b1;%20Mac_PowerPC) - zip 98101 RefreshHit MRVMF7KydIvxMWfJIglgwHQwZsbG2IhRJ07sn9AkKUFSHS9EXAMPLE== d111111abcdef8.cloudfront.net http - 0.001 - - - RefreshHit HTTP/1.1''') # noqa: E501 @pytest.fixture def cloudfront_entry2(): return log_entry('''2014-05-23 01:13:12 LAX1 2390282 192.0.2.202 GET d111111abcdef8.cloudfront.net /soundtrack/happy.mp3 304 www.unknownsingers.com Mozilla/4.0%20(compatible;%20MSIE%207.0;%20Windows%20NT%205.1) a=b&c=d zip=98101 Hit xGN7KWpVEmB9Dp7ctcVFQC4E-nrcOcEKS3QyAez--06dV7TEXAMPLE== d111111abcdef8.cloudfront.net http - 0.002 - - - Hit HTTP/1.1''') # noqa: E501 @pytest.fixture def loadbalancer_http_entry(): return log_entry('''http 2018-07-02T22:23:00.186641Z app/my-loadbalancer/50dc6c495c0c9188 192.168.131.39:2817 10.0.0.1:80 0.000 0.001 0.000 200 200 34 366 "GET http://www.example.com:80/?a=b&c=d&zip=98101 HTTP/1.1" "curl/7.46.0" - - arn:aws:elasticloadbalancing:us-east-2:123456789012:targetgroup/my-targets/73e2d6bc24d8a067 "Root=1-58337262-36d228ad5d99923122bbe354" "-" "-" 0 2018-07-02T22:22:48.364000Z "forward" "-" "-"''') # noqa: E501 @pytest.fixture def loadbalancer_https_entry(): return log_entry('''https 2018-07-02T22:23:00.186641Z app/my-loadbalancer/50dc6c495c0c9188 192.168.131.39:2817 10.0.0.1:80 0.086 0.048 0.037 200 200 0 57 "GET https://www.example.com:443/ HTTP/1.1" "curl/7.46.0" ECDHE-RSA-AES128-GCM-SHA256 TLSv1.2 arn:aws:elasticloadbalancing:us-east-2:123456789012:targetgroup/my-targets/73e2d6bc24d8a067 "Root=1-58337281-1d84f3d73c47ec4e58577259" "www.example.com" "arn:aws:acm:us-east-2:123456789012:certificate/12345678-1234-1234-1234-123456789012" 1 2018-07-02T22:22:48.364000Z "authenticate,forward" "-" "-"''') # noqa: E501 @pytest.fixture def loadbalancer_http2_entry(): return log_entry('''h2 2018-07-02T22:23:00.186641Z app/my-loadbalancer/50dc6c495c0c9188 10.0.1.252:48160 10.0.0.66:9000 0.000 0.002 0.000 200 200 5 257 "GET https://10.0.2.105:773/ HTTP/2.0" "curl/7.46.0" ECDHE-RSA-AES128-GCM-SHA256 TLSv1.2 arn:aws:elasticloadbalancing:us-east-2:123456789012:targetgroup/my-targets/73e2d6bc24d8a067 "Root=1-58337327-72bd00b0343d75b906739c42" "-" "-" 1 2018-07-02T22:22:48.364000Z "redirect" "https://example.com:80/" "-"''') # noqa: E501 @pytest.fixture def loadbalancer_websockets_entry(): return log_entry('''ws 2018-07-02T22:23:00.186641Z app/my-loadbalancer/50dc6c495c0c9188 10.0.0.140:40914 10.0.1.192:8010 0.001 0.003 0.000 101 101 218 587 "GET http://10.0.0.30:80/ HTTP/1.1" "-" - - arn:aws:elasticloadbalancing:us-east-2:123456789012:targetgroup/my-targets/73e2d6bc24d8a067 "Root=1-58337364-23a8c76965a2ef7629b185e3" "-" "-" 1 2018-07-02T22:22:48.364000Z "forward" "-" "-"''') # noqa: E501 @pytest.fixture def loadbalancer_secured_websockets_entry(): return log_entry('''wss 2018-07-02T22:23:00.186641Z app/my-loadbalancer/50dc6c495c0c9188 10.0.0.140:44244 10.0.0.171:8010 0.000 0.001 0.000 101 101 218 786 "GET https://10.0.0.30:443/ HTTP/1.1" "-" ECDHE-RSA-AES128-GCM-SHA256 TLSv1.2 arn:aws:elasticloadbalancing:us-west-2:123456789012:targetgroup/my-targets/73e2d6bc24d8a067 "Root=1-58337364-23a8c76965a2ef7629b185e3" "-" "-" 1 2018-07-02T22:22:48.364000Z "forward" "-" "-"''') # noqa: E501 @pytest.fixture def loadbalancer_lambda_entry(): return log_entry('''http 2018-11-30T22:23:00.186641Z app/my-loadbalancer/50dc6c495c0c9188 192.168.131.39:2817 - 0.000 0.001 0.000 200 200 34 366 "GET http://www.example.com:80/ HTTP/1.1" "curl/7.46.0" - - arn:aws:elasticloadbalancing:us-east-2:123456789012:targetgroup/my-targets/73e2d6bc24d8a067 "Root=1-58337364-23a8c76965a2ef7629b185e3" "-" "-" 0 2018-11-30T22:22:48.364000Z "forward" "-" "-"''') # noqa: E501 @pytest.fixture def loadbalancer_lambda_failed_entry(): return log_entry('''http 2018-11-30T22:23:00.186641Z app/my-loadbalancer/50dc6c495c0c9188 192.168.131.39:2817 - 0.000 0.001 0.000 502 - 34 366 "GET http://www.example.com:80/ HTTP/1.1" "curl/7.46.0" - - arn:aws:elasticloadbalancing:us-east-2:123456789012:targetgroup/my-targets/73e2d6bc24d8a067 "Root=1-58337364-23a8c76965a2ef7629b185e3" "-" "-" 0 2018-11-30T22:22:48.364000Z "forward" "-" "LambdaInvalidResponse"''') # noqa: E501 @pytest.fixture def loadbalancer_cloudfront_forward(): return log_entry('''http 2018-11-30T22:23:00.186641Z app/my-loadbalancer/50dc6c495c0c9188 192.168.131.39:2817 - 0.000 0.001 0.000 502 - 34 366 "GET http://www.example.com:80/ HTTP/1.1" "curl/7.46.0" - - arn:aws:elasticloadbalancing:us-east-2:123456789012:targetgroup/my-targets/73e2d6bc24d8a067 "Root=1-58337364-23a8c76965a2ef7629b185e3" "-" "-" 0 2018-11-30T22:22:48.364000Z "waf,forward" "-" "-"''') # noqa: E501 @pytest.fixture def loadbalancer_cloudfront_forward_refused(): return log_entry('''http 2018-11-30T22:23:00.186641Z app/my-loadbalancer/50dc6c495c0c9188 192.168.131.39:2817 - 0.000 0.001 0.000 502 - 34 366 "GET http://www.example.com:80/ HTTP/1.1" "curl/7.46.0" - - arn:aws:elasticloadbalancing:us-east-2:123456789012:targetgroup/my-targets/73e2d6bc24d8a067 "Root=1-58337364-23a8c76965a2ef7629b185e3" "api.example.com" "session-reused" 0 2018-11-30T22:22:48.364000Z "waf,forward" "-" "-"''') # noqa: E501 @pytest.fixture def loadbalancer_cloudfront_forward_h2(): return log_entry('''h2 2018-11-30T22:23:00.186641Z app/my-loadbalancer/50dc6c495c0c9188 192.168.131.39:2817 - 0.000 0.001 0.000 502 - 34 366 "GET http://www.example.com:80/ HTTP/1.1" "curl/7.46.0" - - arn:aws:elasticloadbalancing:us-east-2:123456789012:targetgroup/my-targets/73e2d6bc24d8a067 "Root=1-58337364-23a8c76965a2ef7629b185e3" "api.example.com" "-" 0 2018-11-30T22:22:48.364000Z "waf,forward" "-" "-"''') # noqa: E501
75.943182
569
0.748466
[ "Apache-2.0" ]
gabriel4649/aws-log-parser
test/conftest.py
6,683
Python
#!/home/observer/miniconda2/bin/python import numpy as N import sys, os import logging as L import subprocess as S from collections import namedtuple from sigpyproc.Readers import FilReader as F sys.path.append("/home/vgupta/Codes/Fake_FRBs/") from Furby_reader import Furby_reader class FileNotFound(Exception): pass class Observation(): def __init__(self, utc, cfg_file = "/home/vgupta/resources/observations.cfg"): self.utc = utc self.cfg_file = cfg_file self.read_conf() self.get_results_dir() self.get_archives_dir() self.is_failed = self.if_failed() self.read_info() self.processed_offline() self.annotation = self.read_annotation() def __str__(self): return self.utc def __repr__(self): return self.utc def read_annotation(self): afile = os.path.join(self.results_dir, "obs.txt") if not os.path.exists(afile): return None with open(afile, 'r') as f: return f.read() def read_conf(self): if not os.path.exists(self.cfg_file): raise Exception("Cannot find observation configuration file - {0}".format(self.cfg_file)) #raise FileNotFound("Cannot find observation configuration file - {0}".format(self.cfg_file)) conf_tmp = {} with open(self.cfg_file) as c: lines = c.readlines() for line in lines: if (line.startswith("#") or line == "" or line == "\n"): continue key = line.strip().split()[0].strip() val = line.strip().split()[1].strip() val = self.check_type(val) conf_tmp[key] = val tmp = namedtuple("CONF", conf_tmp.keys()) self.conf = tmp(*conf_tmp.values()) def get_results_dir(self): path1 = os.path.join(self.conf.results_dir, self.utc) path2 = os.path.join(self.conf.old_results_dir, self.utc) if os.path.isdir(path1): self.results_dir = self.conf.results_dir elif os.path.isdir(path2): self.results_dir = self.conf.old_results_dir else: raise IOError("Directory for UTC: {0} does not exist in any of the new or old results. Neither {1} nor {2} exists".format(self.utc, path1, path2)) def get_archives_dir(self): path1 = os.path.join(self.conf.archives_dir, self.utc) path2 = os.path.join(self.conf.old_archives_dir, self.utc) if os.path.isdir(path1): self.archives_dir = self.conf.archives_dir elif os.path.isdir(path2): self.archives_dir = self.conf.old_archives_dir else: raise IOError("Directory for UTC: {0} does not exist in any of the new or old archives".format(self.utc)) def processed_offline(self): self.offline_cand_file = os.path.join(self.archives_dir, self.utc, self.conf.offline_output_dir, self.conf.offline_output_file) self.processed_offline = os.path.exists(self.offline_cand_file) and not self.is_failed def read_header(self): if self.is_failed: self.header = None return self.header_file = os.path.join(self.results_dir, self.utc, "FB", self.conf.header_file) if not os.path.exists(self.header_file): raise Exception("Header file({0}) does not exist".format(self.header_file)) with open(self.header_file) as h: lines = h.readlines() hdr_tmp = {} for line in lines: key = line.split()[0].strip() val = line.split()[1].strip() cval = self.check_type(val) if key.startswith("FURBY"): cval = str(val) hdr_tmp[key] = cval keys = hdr_tmp.keys() values = hdr_tmp.values() tmp = namedtuple("HEADER", keys) self.header = tmp(*values) self.tres = self.header.TSAMP * 1e-6 return self.header def read_info(self): self.obs_info_file = os.path.join(self.results_dir, self.utc, "obs.info") if not os.path.exists(self.obs_info_file): raise Exception("obs.info file({0}) does not exist".format(self.obs_info_file)) with open(self.obs_info_file) as h: lines = h.readlines() hdr_tmp = {} for line in lines: if line.startswith("#") or line == "" or line == "\n": continue key = line.split()[0].strip() val = line.split()[1].strip() val = self.check_type(val) hdr_tmp[key] = val if key=="INT" and self.is_failed: val = 0 keys = hdr_tmp.keys() values = hdr_tmp.values() tmp = namedtuple("INFO", keys) self.info = tmp(*values) #Getting Tobs----------------- filterbank_name = self.utc + ".fil" filterbank_file = os.path.join(self.archives_dir, self.utc, "FB/BEAM_001/", filterbank_name) if os.path.exists(filterbank_file): filt_header = F(filterbank_file).header self.tobs = filt_header.tobs if self.info.INT > self.tobs: self.tobs = self.info.INT else: self.tobs = self.info.INT #----------------------------- return self.info def check_type(self, val): try: ans=int(val) return ans except ValueError: try: ans=float(val) return ans except ValueError: if val.lower()=="false": return False elif val.lower()=="true": return True else: return val def if_processing(self): processing_file = os.path.join(self.results_dir, self.utc, "obs.processing") return os.path.exists(processing_file) def if_failed(self): obs_failed_file = os.path.join(self.results_dir, self.utc, "obs.failed") return os.path.exists(obs_failed_file) def read_furby_params(self): if self.is_failed: self.inj_furbys = -1 return if (self.info.MB_ENABLED or self.info.CORR_ENABLED): self.inj_furbys = -1 else: self.read_header() try: self.inj_furbys = self.header.INJECTED_FURBYS except AttributeError as e: #log.warn("Could not find INJECTED_FURBYS in the header file for UTC: {0}".format(self.utc)) #log.warn("Assuming no furby injection happened in this observation ({0})".format(self.utc)) self.inj_furbys = 0 else: if self.inj_furbys > 0: self.furby_beams = self.header.FURBY_BEAMS.strip(",") self.furby_ids = self.header.FURBY_IDS.strip(",") self.furby_tstamps = self.header.FURBY_TSTAMPS.strip(",") #log.debug("Found: injected_furbys: {0}, furby_ids: {1}, furby_beams: {2}, furby_tstamps: {3}".format(self.inj_furbys, self.furby_ids, self.furby_beams, self.furby_tstamps)) def split_and_filter_furby_params(self): if self.inj_furbys < 1: raise ValueError("No furbies to split") f_ids = N.array(self.furby_ids.split(",")) f_beams = N.array(self.furby_beams.split(",")) f_tstamps = N.array(self.furby_tstamps.split(",")) f_ids = f_ids[N.where(f_ids!='')] f_beams = f_beams[N.where(f_beams!='')] f_tstamps = f_tstamps[N.where(f_tstamps!='')] test = N.array([len(f_ids), len(f_beams), len(f_tstamps)]) if N.any(test-self.inj_furbys): raise ValueError("Incorrect number of furby params, observation should have failed") self.furbies = [] self.dropped_furbies = [] for i in range(self.inj_furbys): furby = Furby(f_ids[i], db = os.path.join(self.archives_dir, self.utc, "Furbys")) furby.i_beam = int(f_beams[i]) furby.i_tstamp = float(f_tstamps[i]) furby.calc_times() if (self.check_if_dropped(furby)): self.dropped_furbies.append(furby) else: self.furbies.append(furby) def check_if_dropped(self, furby): if not hasattr(furby, 'header'): furby.read_fheader() if not hasattr(furby, 'length'): furby.calc_times() if furby.i_tstamp < furby.length/2: return True if (furby.i_tstamp - furby.length/2) > self.tobs: return True all_furby_tstamps = N.array([float(i.i_tstamp) for i in self.furbies]) diff = furby.i_tstamp - all_furby_tstamps if N.any((diff < (furby.length + 512*self.tres)) & (diff > 0)): return True return False #----------------------------------------------------------------------------------------# class Furby(Furby_reader): def __init__(self, ID, db = "/home/dada/furby_database"): self.ID = ID self.name = "furby_"+ID self.DB = db self.file = os.path.join(self.DB, self.name) self.i_beam = None self.i_tstamp = None self.i_snr = None def __repr__(self): return str(self.ID) def read_fheader(self): #self.header = self.read_header(self.file) self.read_header(self.file) def calc_times(self): log = L.getLogger("furby_manager") if not hasattr(self, 'header'): self.read_fheader() chw = (self.header.FTOP - self.header.FBOTTOM) / self.header.NCHAN f_chtop = self.header.FTOP - chw/2 f_chmid = f_chtop - (self.header.NCHAN/2 * chw) f_chbottom = self.header.FBOTTOM + chw/2 delay_to_top = 4.14881 * 1e6 * self.header.DM * ( f_chtop**(-2) - f_chmid**(-2) ) *1e-3 #in s delay_to_bottom = 4.14881 * 1e6 * self.header.DM * ( f_chbottom**(-2) - f_chmid**(-2) ) *1e-3 #in s self.s_time = self.i_tstamp + delay_to_top self.e_time = self.i_tstamp + delay_to_bottom self.c_time = self.i_tstamp self.length = self.header.NSAMPS * self.header.TSAMP * 1e-6 #---------------------------------------------------------------------------------------# def list_UTCs_from(start_utc): #Note to someone editing this in future: Keep in mind that other scripts depend upon that fact that this function returns the list of UTCs in correctly sorted order. Do not change that, even if that costs speed. Or make sure that the scripts using this can be edited accordingly. start = Observation(start_utc) cmd = "ls -1d "+start.results_dir+"/202* | grep -A 999999 "+start_utc+" | awk -F/ '{print $5}'" utcs = S.Popen(cmd, shell=True, stdout=S.PIPE).communicate()[0].strip().split("\n") #VG: 02/05/2020 -- disabling the section below -- It doesn't work, and I don't have a quick fix either. ''' if start.results_dir == start.conf.old_results_dir: #Also append utcs from the new results directory cmd = "ls -1d "+conf.results_dir+"/20* | grep -A 999999 "+start_utc+" | awk -F/ '{print $5}'" utcs.extend(S.Popen(cmd, shell=True, stdout=S.PIPE).communicate()[0].strip().split("\n")) ''' if len(utcs) == 0: raise Exception("Given start UTC ({}) not found in {}".format(start_utc, start.results_dir)) return utcs def list_UTCs_until(utc): check = Observation(utc) start_utc = get_first_UTC() UTCs_from_start = list_UTCs_from(start_utc) #Assume that list_UTCs_from() returns UTCs sorted in correct order, which it should. end_utc = utc index = N.where(UTCs_from_start == end_utc)[0] UTCs_until = UTCs_from_start[:index+1] return UTCs_until def list_UTCs_after(utc): inclusive_utcs = list_UTCS_from(utc) return inclusive_utcs[1:] def get_latest_UTC(): cmd = "ls -1d -rt "+conf.results_dir+"/20* | tail -1 | awk -F/ '{print $5}'" utc = S.Popen(cmd, shell=True, stdout=S.PIPE).communcate()[0].strip() return utc def get_first_UTC(): ''' Returns the first UTC recorded by Molonglo after the disk crash in October 2017 ''' return "2017-10-31-08:49:32"
34.079268
281
0.643049
[ "MIT" ]
vg2691994/mock_frb_injection_results
helpers.py
11,178
Python
# -*- coding: utf-8 -*- import scrapy class scrapyshkmbab39Spider(scrapy.Spider): name = "scrapyshkmbab39" allowed_domains = ["ganjoor.net"] if 1 == 1: start_urls = ["https://ganjoor.net/hojviri/kashfol-mahjoob/kmbab39/sh"] else: start_urls = ["https://ganjoor.net/hojviri/kashfol-mahjoob/kmbab39/sh" + "1"] order = 1 def parse(self, response): index = 0 sh = dict() sh["type"] = "fasl" sh["text"] = dict() for i, poem in enumerate(response.css("div.poem>article>*")): if index == 0: if 0 == 1: sh["title"] = "فصل" + " شماره " + str(self.order) + " - " + ''.join(poem.css("div.m1>p::text").extract()).strip() elif 0 == 2: sh["title"] = "فصل" + " شماره " + str(self.order) + " - " + ''.join(poem.css("div.m2>p::text").extract()).strip() elif 0 == 3: sh["title"] = "فصل" + " شماره " + str(self.order) + " - " + ''.join(response.css("div.poem>article>h2>a::text").extract()).strip() + ': ' + ''.join(poem.css("div.m1>p::text").extract()).strip() elif 0 == 4: sh["title"] = "فصل" + " شماره " + str(self.order) + " - " + ''.join(response.css("div.poem>article>h2>a::text").extract()).strip() + ': ' + ''.join(poem.css("div.m2>p::text").extract()).strip() else: sh["title"] = ''.join(response.css("div.poem>article>h2>a::text").extract_first()).strip() if poem.css("p::text").extract_first() is None or 'rel="bookmark"' in poem.css('*').extract_first() or 'class="spacer"' in poem.css('*').extract_first() or '<div style=' in poem.css('*').extract_first(): continue if len(poem.css("div.m1>p")) == 1: if poem.css("div.b"): if '٭٭٭' not in poem.css("div.m1>p::text").extract_first() and ''.join(poem.css("div.m1>p::text").extract()).strip() != '': sh["text"][index] = dict([ ("m1", ''.join(poem.css("div.m1>p::text").extract()).strip()), ("m2", ''.join(poem.css("div.m2>p::text").extract()).strip()), ]) else: if '٭٭٭' not in poem.css("p:first-child::text").extract_first() and ''.join(poem.css("p:first-child::text").extract()).strip() != '': sh["text"][index] = dict([ ("t1", ''.join(poem.css("p:first-child::text").extract()).strip()), ("t2", ''.join(poem.css("p:last-child::text").extract()).strip()), ]) else: if poem.css("div.b2"): if '٭٭٭' not in poem.css("p:first-child::text").extract_first() and ''.join(poem.css("p:first-child::text").extract()).strip() != '': sh["text"][index] = dict([ ("t1", ''.join(poem.css("p:first-child::text").extract()).strip()), ("t2", ''.join(poem.css("p:last-child::text").extract()).strip()), ]) else: if '٭٭٭' not in poem.css('p::text').extract_first() and ''.join(poem.css('p::text').extract()).strip() != '': sh['text'][index] = dict([ ('p', ''.join(poem.css('p::text').extract()).strip()) ]) index = index + 1 sh["order"] = self.order self.order = self.order + 1 yield sh # next_page = response.css("div.navigation>div.navleft>a::attr(href)").extract_first() if self.order < (1 + 1): next_page = response.urljoin("https://ganjoor.net/hojviri/kashfol-mahjoob/kmbab39/sh" + str(self.order)) yield scrapy.Request(next_page, callback=self.parse)
59.5
215
0.466514
[ "MIT" ]
amirmasoud/ganjoor-crawler
ganjoor/spiders/hojviri/kashfol-mahjoob/scrapyshkmbab39.py
3,971
Python
import psycopg2 import psycopg2.extras class DBHandler: """ Handles I/O concerning the database to hide its implementation from client services. """ def __init__(self, postgres_username=None, postgres_password=None, db_username='dbpedia_app', db_password='dummy_password'): # ordinarily you would get these from some secret store # e.g. heroku has a specific url that you parse to get both # or os.environ storage (like those used for API keys and the like) user_name = db_username password = db_password # check to see if the db exists locally, create it if necessary if postgres_password is not None and postgres_username is not None: try: connection = psycopg2.connect("dbname='postgres' user='%s' " "host='localhost' password='%s'" % (postgres_username, postgres_password)) connection.autocommit = True cursor = connection.cursor() # queries the postgres catalog to see if 'dbpedia' exists # if not, creates it cursor.execute("SELECT COUNT(*) = 0 FROM pg_catalog.pg_database WHERE datname = 'dbpedia'") not_exists_row = cursor.fetchone() not_exists = not_exists_row[0] if not_exists: cursor.execute("CREATE USER %s PASSWORD '%s'" % (user_name, password)) cursor.execute('CREATE DATABASE dbpedia OWNER %s' % (user_name,)) connection.close() except: # Presume if credentials are passed the user wants to perform this check/DB construction # fail via error propagation raise try: self.connection = psycopg2.connect("dbname='dbpedia' user='%s' host='localhost' password='%s'" % (user_name, password)) except: raise AssertionError('Failed to connect to dbpedia database. Has the local dbpedia been created?') def __del__(self): self.connection.close() def commit(self): self.connection.commit() def schema_exists(self): """ Checks the estimated number of tuples in the subjects table to determine if data exists :return: """ with self.connection.cursor() as cursor: cursor.execute('select reltuples FROM pg_class where relname = %s', ('subjects',)) result = cursor.fetchone()[0] return result > 0 def build_table_schema(self, schema_name, schema_file_path): """ Loads the dbpedia schema used for supporting downstream analysis. If the schema already exists, it is dropped (deleted) and recreated. :param schema_name: :param schema_file_path: :return: """ # do not call with user input given the manual query construction here with self.connection.cursor() as cursor: cursor.execute('DROP SCHEMA IF EXISTS %s CASCADE' % schema_name) schema_file = open(schema_file_path, 'rU').read() cursor.execute(schema_file) def build_indices(self): """ Builds the following indices: Index on name for subjects Index on predicate for predicate_object Index on subject_id for predicate object :return: """ with self.connection.cursor() as cursor: cursor.execute('DROP INDEX IF EXISTS dbpedia.pv_subject_id_idx') cursor.execute('DROP INDEX IF EXISTS dbpedia.subject_idx') cursor.execute('DROP INDEX IF EXISTS dbpedia.pv_predicate_idx') cursor.execute('create index subject_idx on dbpedia.subjects (name)') cursor.execute('create index pv_subject_id_idx on dbpedia.predicate_object (subject_id)') cursor.execute('create index pv_predicate_idx on dbpedia.predicate_object (predicate);') def insert_spo_tuple(self, spo_tuple): """ Handles the insertion of spo tuples into the db. Workflow: Attempt to find the subject table entry corresponding to your subject. If found, use that ID for inserting your po values. Otherwise, insert your subject into the subject table and use that ID instead. The resulting id, predicate, object tuple is then inserted into the predicate_object table. :param spo_tuple: :return: """ (subject, predicate, db_object) = spo_tuple with self.connection.cursor(cursor_factory=psycopg2.extras.RealDictCursor) as cursor: cursor.execute('select subject_id from dbpedia.subjects ' 'where name = %s', (subject,)) results = cursor.fetchone() if results is None or len(results) == 0: cursor.execute('INSERT INTO dbpedia.subjects (name) VALUES (%s) ' 'returning subject_id', (subject,)) results = cursor.fetchone() id = results['subject_id'] # now we have the correct id in either case, insert the values into the db cursor.execute('INSERT INTO dbpedia.predicate_object (subject_id, predicate, object) ' 'VALUES (%s, %s, %s)', (id, predicate, db_object)) def get_person_metadata(self, person_name, use_exact_match=False): """ Returns all metadata associated with the provided person_name. However, does not actually check to see if the identifier corresponds to a person or not; the class of the identifier will be included in the returned metadata though. DBPedia People only contains people predicate types as well. Use_exact_match toggles between two behaviors: if True, then uses the exact identifier provided to query against the subject table (WHERE = identifier). If False, uses the LIKE operator to attempt to find similar IDs that are not exactly the same. Results will still be a superset of the use_exact_match = True case. :param person_name: :param use_exact_match: :return: """ # wikipedia replaces all spaces with under scores # upper case to make case sensitive person_name = person_name.replace(' ', '_').upper() with self.connection.cursor() as cursor: # get id associated with this person # get all similar IDs if not use_exact_match: cursor.execute('SELECT subject_id, name FROM dbpedia.subjects WHERE upper(name) ' 'LIKE %s', ('%%' + person_name + '%%',)) else: cursor.execute('SELECT subject_id, name FROM dbpedia.subjects WHERE upper(name) = %s', (person_name,)) results = cursor.fetchall() # no person matches the input name # return empty list if results is None: return [] subject_id_list = [x[0] for x in results] # get all metadata associated with the subject_ids cursor.execute('select dbpedia.subjects.name, predicate, object ' 'FROM dbpedia.predicate_object ' 'INNER JOIN dbpedia.subjects on (dbpedia.subjects.subject_id = dbpedia.predicate_object.subject_id) ' 'WHERE dbpedia.predicate_object.subject_id = ANY(%s)', (subject_id_list,)) # this should never be none # Sort results by name and return return sorted(cursor.fetchall(), key=lambda x: x[0]) def get_tuples_by_predicate(self, predicate_of_interest): """ Extracts SPO tuples based on the predicate value passed to the function. This query will be slow since you are querying such a large fraction of the po table at once (unless your predicate does not exist). Predicates: Name Type Gender Description Birthdate GivenName Surname BirthPlace DeathDate DeathPlace :param predicate_of_interest: :return: """ with self.connection.cursor() as cursor: cursor.execute('select dbpedia.subjects.name, ' 'predicate, ' 'object ' 'FROM dbpedia.predicate_object ' 'INNER JOIN dbpedia.subjects on (dbpedia.subjects.subject_id = dbpedia.predicate_object.subject_id) ' 'WHERE upper(dbpedia.predicate_object.predicate) = upper(%s)', (predicate_of_interest,)) results = cursor.fetchall() if results is None: return [] else: return results
36.549407
128
0.583324
[ "MIT" ]
jdwinkler/dbpedia_service
database_query_handler.py
9,247
Python
# Copyright Contributors to the Amundsen project. # SPDX-License-Identifier: Apache-2.0 import unittest from unittest.mock import ANY from databuilder.models.graph_serializable import ( RELATION_END_KEY, RELATION_END_LABEL, RELATION_REVERSE_TYPE, RELATION_START_KEY, RELATION_START_LABEL, RELATION_TYPE, ) from databuilder.models.user import User from databuilder.serializers import neo4_serializer, neptune_serializer from databuilder.serializers.neptune_serializer import ( NEPTUNE_CREATION_TYPE_JOB, NEPTUNE_CREATION_TYPE_RELATIONSHIP_PROPERTY_NAME_BULK_LOADER_FORMAT, NEPTUNE_HEADER_ID, NEPTUNE_HEADER_LABEL, NEPTUNE_LAST_EXTRACTED_AT_RELATIONSHIP_PROPERTY_NAME_BULK_LOADER_FORMAT, NEPTUNE_RELATIONSHIP_HEADER_FROM, NEPTUNE_RELATIONSHIP_HEADER_TO, ) class TestUser(unittest.TestCase): def setUp(self) -> None: super(TestUser, self).setUp() self.user = User(first_name='test_first', last_name='test_last', name='test_first test_last', email='[email protected]', github_username='github_test', team_name='test_team', employee_type='FTE', manager_email='[email protected]', slack_id='slack', is_active=True, updated_at=1, role_name='swe') def test_get_user_model_key(self) -> None: user_email = User.get_user_model_key(email=self.user.email) self.assertEqual(user_email, '[email protected]') def test_create_nodes(self) -> None: nodes = self.user.create_nodes() self.assertEqual(len(nodes), 1) def test_create_node_additional_attr(self) -> None: test_user = User(first_name='test_first', last_name='test_last', name='test_first test_last', email='[email protected]', github_username='github_test', team_name='test_team', employee_type='FTE', manager_email='[email protected]', slack_id='slack', is_active=True, updated_at=1, role_name='swe', enable_notify=True) nodes = test_user.create_nodes() serialized_node = neo4_serializer.serialize_node(nodes[0]) self.assertEqual(serialized_node['email'], '[email protected]') self.assertEqual(serialized_node['role_name'], 'swe') self.assertTrue(serialized_node['enable_notify:UNQUOTED']) def test_create_node_additional_attr_neptune(self) -> None: test_user = User(first_name='test_first', last_name='test_last', name='test_first test_last', email='[email protected]', github_username='github_test', team_name='test_team', employee_type='FTE', manager_email='[email protected]', slack_id='slack', is_active=True, updated_at=1, role_name='swe', enable_notify=True) nodes = test_user.create_nodes() serialized_node = neptune_serializer.convert_node(nodes[0]) self.assertEqual(serialized_node['email:String(single)'], '[email protected]') self.assertEqual(serialized_node['role_name:String(single)'], 'swe') self.assertTrue(serialized_node['enable_notify:Bool(single)']) def test_create_relation(self) -> None: relations = self.user.create_relation() self.assertEqual(len(relations), 1) start_key = '[email protected]' end_key = '[email protected]' expected_relation = { RELATION_START_KEY: start_key, RELATION_START_LABEL: User.USER_NODE_LABEL, RELATION_END_KEY: end_key, RELATION_END_LABEL: User.USER_NODE_LABEL, RELATION_TYPE: User.USER_MANAGER_RELATION_TYPE, RELATION_REVERSE_TYPE: User.MANAGER_USER_RELATION_TYPE } self.assertTrue(expected_relation, neo4_serializer.serialize_relationship(relations[0])) def test_create_relation_neptune(self) -> None: relations = self.user.create_relation() serialized = neptune_serializer.convert_relationship(relations[0]) start_key = '{email}'.format(email='[email protected]') end_key = '{email}'.format(email='[email protected]') expected = [ { NEPTUNE_HEADER_ID: "{from_vertex_id}_{to_vertex_id}_{label}".format( from_vertex_id=start_key, to_vertex_id=end_key, label=User.USER_MANAGER_RELATION_TYPE ), NEPTUNE_RELATIONSHIP_HEADER_FROM: start_key, NEPTUNE_RELATIONSHIP_HEADER_TO: end_key, NEPTUNE_HEADER_LABEL: User.USER_MANAGER_RELATION_TYPE, NEPTUNE_LAST_EXTRACTED_AT_RELATIONSHIP_PROPERTY_NAME_BULK_LOADER_FORMAT: ANY, NEPTUNE_CREATION_TYPE_RELATIONSHIP_PROPERTY_NAME_BULK_LOADER_FORMAT: NEPTUNE_CREATION_TYPE_JOB }, { NEPTUNE_HEADER_ID: "{from_vertex_id}_{to_vertex_id}_{label}".format( from_vertex_id=end_key, to_vertex_id=start_key, label=User.MANAGER_USER_RELATION_TYPE ), NEPTUNE_RELATIONSHIP_HEADER_FROM: end_key, NEPTUNE_RELATIONSHIP_HEADER_TO: start_key, NEPTUNE_HEADER_LABEL: User.MANAGER_USER_RELATION_TYPE, NEPTUNE_LAST_EXTRACTED_AT_RELATIONSHIP_PROPERTY_NAME_BULK_LOADER_FORMAT: ANY, NEPTUNE_CREATION_TYPE_RELATIONSHIP_PROPERTY_NAME_BULK_LOADER_FORMAT: NEPTUNE_CREATION_TYPE_JOB } ] self.assertListEqual(serialized, expected) def test_not_including_empty_attribute(self) -> None: test_user = User(email='[email protected]', foo='bar') self.assertDictEqual(neo4_serializer.serialize_node(test_user.create_next_node()), {'KEY': '[email protected]', 'LABEL': 'User', 'email': '[email protected]', 'is_active:UNQUOTED': True, 'first_name': '', 'last_name': '', 'full_name': '', 'github_username': '', 'team_name': '', 'employee_type': '', 'slack_id': '', 'role_name': '', 'updated_at:UNQUOTED': 0, 'foo': 'bar'}) test_user2 = User(email='[email protected]', foo='bar', is_active=False, do_not_update_empty_attribute=True) self.assertDictEqual(neo4_serializer.serialize_node(test_user2.create_next_node()), {'KEY': '[email protected]', 'LABEL': 'User', 'email': '[email protected]', 'foo': 'bar'})
46.038217
118
0.596292
[ "Apache-2.0" ]
JacobSMoller/amundsendatabuilder
tests/unit/models/test_user.py
7,228
Python
from django.contrib import admin from .models import * from django.contrib.auth.models import User class ImageAdmin(admin.ModelAdmin): fields = ( 'image','name','caption','profile','post_date', 'user', ) readonly_fields = ('profile', 'post_date', 'user',) #registering the models # admin.site.register(Image, ImageAdmin) admin.site.register(Profile) admin.site.register(Image) admin.site.register(Like) admin.site.register(Comment)
29.2
70
0.755708
[ "MIT" ]
MachariaMark/fakeinsta
insta/admin.py
438
Python
"""Registry for the TF Encrypted Converter.""" import array import logging import os from typing import Any, List from collections import OrderedDict import yaml import numpy as np import tensorflow as tf from ..layers import Conv2D, Relu, Sigmoid, Dense, AveragePooling2D, MaxPooling2D from ..protocol.pond import PondPrivateTensor, PondMaskedTensor def registry(): """Map reserved names and scopes to their conversion functions.""" reg = { 'Placeholder': _placeholder, 'Const': _constant, 'Conv2D': _conv2d, 'Relu': _relu, 'Sigmoid': _sigmoid, 'MatMul': _matmul, 'Shape': _shape, 'StridedSlice': _strided_slice, 'Add': _add, 'Sub': _sub, 'Transpose': _transpose, 'Reshape': _reshape, 'Pack': _pack, 'Rsqrt': _rsqrt, 'Mul': _mul, 'ExpandDims': _expand_dims, 'AvgPool': _avgpool, 'Squeeze': _squeeze, 'ConcatV2': _concat, 'BiasAdd': _bias_add, 'MaxPool': _maxpool, 'Pad': _pad, 'BatchToSpaceND': _batch_to_space_nd, 'SpaceToBatchND': _space_to_batch_nd, 'ArgMax': _argmax, 'required_space_to_batch_paddings': _required_space_to_batch_paddings, 'flatten': _flatten, 'conv2d': _keras_conv2d, 'Slice': _slice, 'Neg': _negative, 'Split': _split, 'Identity': _identity, "GatherV2": _gather, "dense": _keras_dense, } return reg convert_dir = os.path.dirname(os.path.abspath(__file__)) specops_path = os.path.join(convert_dir, "specops.yaml") with open(specops_path, "r") as stream: loaded_yaml = yaml.load(stream, Loader=yaml.SafeLoader) sorted_yaml = sorted(loaded_yaml.items(), key=lambda kv: kv[0]) REGISTERED_SPECOPS = OrderedDict(sorted_yaml) # pylint: disable=unused-argument # pylint: disable=missing-docstring def _placeholder(converter, node: Any, inputs: List[str]) -> Any: return tf.placeholder(node.attr["dtype"].type, shape=node.attr["shape"].shape) def _constant(converter, node: Any, inputs: List[str]) -> Any: # need to able to access the underlying weights return the node return node def _identity(converter, node: Any, inputs: List[str]) -> Any: # need to able to access the underlying weights return the node return converter.outputs[inputs[0]] def _matmul(converter, node: Any, inputs: List[str]) -> Any: a = converter.outputs[inputs[0]] b = converter.outputs[inputs[1]] tensor = b.attr["value"].tensor b_shape = [i.size for i in tensor.tensor_shape.dim] transpose_a = node.attr["transpose_a"].b transpose_b = node.attr["transpose_b"].b layer = Dense(a.shape.as_list(), b_shape[1], transpose_input=transpose_a, transpose_weight=transpose_b) dtype = tensor.dtype if dtype == tf.float32: nums = array.array('f', tensor.tensor_content) elif dtype == tf.float64: nums = array.array('d', tensor.tensor_content) else: raise TypeError("Unsupported dtype for weights") def inputter_fn(): return tf.constant(np.array(nums).reshape(b_shape)) w = converter.protocol.define_private_input(converter.model_provider, inputter_fn) layer.initialize(initial_weights=w) return layer.forward(a) def _conv2d(converter, node, inputs): x_in = converter.outputs[inputs[0]] kernel = converter.outputs[inputs[1]] if isinstance(kernel, tf.NodeDef): shape = [i.size for i in kernel.attr["value"].tensor.tensor_shape.dim] w = _nodef_to_private_pond(converter, kernel) else: shape = kernel.shape.as_list() w = kernel fmt = node.attr["data_format"].s.decode('ascii') layer = Conv2D(x_in.shape.as_list(), shape, strides=int(max(node.attr["strides"].list.i)), padding=node.attr["padding"].s.decode('ascii'), channels_first=fmt == "NCHW") layer.initialize(initial_weights=w) out = layer.forward(x_in) return out def _keras_conv2d(converter, interiors, inputs): x_in = converter.outputs[inputs[0]] conv_op = interiors["Conv2D"] kernel = interiors["kernel"] k = _nodef_to_private_pond(converter, kernel) try: bias = interiors["bias"] b = _nodef_to_private_pond(converter, bias) for ax in [0, -1, -1]: b = b.expand_dims(axis=ax) except KeyError: b = None input_shape = x_in.shape.as_list() shape = [i.size for i in kernel.attr["value"].tensor.tensor_shape.dim] fmt = conv_op.attr["data_format"].s.decode('ascii') strides = int(max(conv_op.attr["strides"].list.i)) padding = conv_op.attr["padding"].s.decode('ascii') layer = Conv2D( input_shape, shape, strides=strides, padding=padding, channels_first=fmt == "NCHW" ) layer.initialize(initial_weights=k, initial_bias=b) out = layer.forward(x_in) return out def _keras_dense(converter, interiors, inputs): x_in = converter.outputs[inputs[0]] kernel = interiors["kernel"] k = _nodef_to_private_pond(converter, kernel) try: bias = interiors["bias"] b = _nodef_to_private_pond(converter, bias) except KeyError: b = None input_shape = x_in.shape.as_list() shape = [i.size for i in kernel.attr["value"].tensor.tensor_shape.dim] layer = Dense(input_shape, out_features=shape[1]) layer.initialize(initial_weights=k, initial_bias=b) out = layer.forward(x_in) return out def _relu(converter, node: Any, inputs: List[str]) -> Any: x_in = converter.outputs[inputs[0]] return Relu(x_in.shape.as_list()).forward(x_in) def _sigmoid(converter, node: Any, inputs: List[str]) -> Any: x_in = converter.outputs[inputs[0]] return Sigmoid(x_in.shape.as_list()).forward(x_in) def _strided_slice(converter, node: Any, inputs: List[str]) -> Any: x_in = converter.outputs[inputs[0]] if isinstance(x_in, tf.NodeDef): input_out = _nodef_to_private_pond(converter, x_in) else: input_out = x_in begin = converter.outputs[inputs[1]] end = converter.outputs[inputs[2]] strides = converter.outputs[inputs[3]] begin_mask = node.attr["begin_mask"].i end_mask = node.attr["end_mask"].i ellipsis_mask = node.attr["ellipsis_mask"].i new_axis_mask = node.attr["new_axis_mask"].i shrink_axis_mask = node.attr["shrink_axis_mask"].i begin = tf.constant(begin.attr["value"].tensor) end = tf.constant(end.attr["value"].tensor) strides = tf.constant(strides.attr["value"].tensor) return converter.protocol.strided_slice(input_out, begin, end, strides=strides, begin_mask=begin_mask, end_mask=end_mask, ellipsis_mask=ellipsis_mask, new_axis_mask=new_axis_mask, shrink_axis_mask=shrink_axis_mask) def _pack(converter, node: Any, inputs: List[str]) -> Any: final_inputs = [] for x_in in inputs: input_c = converter.outputs[x_in] if isinstance(input_c, tf.NodeDef): final_inputs.append(_nodef_to_private_pond(converter, input_c)) else: final_inputs.append(input_c) return converter.protocol.stack(final_inputs, axis=node.attr["axis"].i) def _bias_add(converter, node: Any, inputs: List[str]) -> Any: a = converter.outputs[inputs[0]] b = converter.outputs[inputs[1]] if isinstance(a, tf.NodeDef): a_out = _nodef_to_private_pond(converter, a) else: a_out = a if isinstance(b, tf.NodeDef): b_out = _nodef_to_private_pond(converter, b) else: b_out = b return converter.protocol.add(a_out, b_out) def _maxpool(converter, node: Any, inputs: List[str]) -> Any: x_in = converter.outputs[inputs[0]] ksize = node.attr["ksize"].list.i s = node.attr["strides"].list.i padding = node.attr["padding"].s.decode('ascii') pool_size = [ksize[1], ksize[2]] strides = [s[1], s[2]] shape = [int(i) for i in x_in.shape] channels_first = node.attr["data_format"].s.decode('ascii') == "NCHW" pooler = MaxPooling2D(shape, pool_size, strides, padding, channels_first) out = pooler.forward(x_in) return out def _shape(converter, node: Any, inputs: List[str]) -> Any: x_in = converter.outputs[inputs[0]] return x_in.shape def _reshape(converter, node: Any, inputs: List[str]) -> Any: x_in = converter.outputs[inputs[0]] shape = converter.outputs[inputs[1]] tensor = shape.attr["value"].tensor dtype = shape.attr["dtype"].type if dtype == tf.int32: nums = array.array('i', tensor.tensor_content) elif dtype == tf.int64: nums = array.array('l', tensor.tensor_content) else: raise TypeError("Unsupported dtype for reshape shape") return converter.protocol.reshape(x_in, list(nums)) def _transpose(converter, node: Any, inputs: List[str]) -> Any: x_in = converter.outputs[inputs[0]] perm = converter.outputs[inputs[1]] tensor = perm.attr["value"].tensor shape = [i.size for i in tensor.tensor_shape.dim] dtype = perm.attr["dtype"].type if dtype == tf.int32: nums = array.array('i', tensor.tensor_content) elif dtype == tf.int64: nums = array.array('l', tensor.tensor_content) else: raise TypeError("Unsupported dtype for transpose perm") return converter.protocol.transpose(x_in, np.array(nums).reshape(shape)) def _expand_dims(converter, node: Any, inputs: List[str]) -> Any: x_in = converter.outputs[inputs[0]] if isinstance(x_in, tf.NodeDef): input_out = _nodef_to_private_pond(converter, x_in) else: input_out = x_in input_axis = converter.outputs[inputs[1]] axis_attr = input_axis.attr["value"].tensor.int_val axis_val = array.array('i', axis_attr)[0] return converter.protocol.expand_dims(input_out, axis_val) def _negative(converter, node: Any, inputs: List[str]) -> Any: x_in = converter.outputs[inputs[0]] if isinstance(x_in, tf.NodeDef): input_out = _nodef_to_private_pond(converter, x_in) else: input_out = x_in return converter.protocol.negative(input_out) def _gather(converter, node: Any, inputs: List[str]) -> Any: x_in = converter.outputs[inputs[0]] indices = converter.outputs[inputs[1]] axis = converter.outputs[inputs[2]] if isinstance(x_in, tf.NodeDef): input_out = _nodef_to_private_pond(converter, x_in) else: input_out = x_in indices_out = list(_nodef_to_numpy_array(indices)) axis_val = axis.attr["value"].tensor.int_val[0] return converter.protocol.gather(input_out, indices_out, axis_val) def _squeeze(converter, node: Any, inputs: List[str]) -> Any: x_in = converter.outputs[inputs[0]] axis = node.attr["squeeze_dims"].list.i return converter.protocol.squeeze(x_in, list(axis)) def _split(converter, node: Any, inputs: List[str]) -> Any: axis = converter.outputs[inputs[0]] x_in = converter.outputs[inputs[1]] if isinstance(x_in, tf.NodeDef): input_out = _nodef_to_private_pond(converter, x_in) else: input_out = x_in num_split = node.attr["num_split"].i axis_val = axis.attr["value"].tensor.int_val[0] return converter.protocol.split(input_out, num_split, axis_val)[0] def _pad(converter, node: Any, inputs: List[str]) -> Any: x_in = converter.outputs[inputs[0]] p = (converter.outputs[inputs[1]]) paddings_t = p.attr["value"].tensor paddings_arr = list(array.array('I', paddings_t.tensor_content)) paddings_lst = [paddings_arr[i:i + 2] for i in range(0, len(paddings_arr), 2)] return converter.protocol.pad(x_in, paddings_lst) def _rsqrt(converter, node: Any, inputs: List[str]) -> Any: x_in = converter.outputs[inputs[0]] if isinstance(x_in, tf.NodeDef): tensor = x_in.attr["value"].tensor shape = [i.size for i in tensor.tensor_shape.dim] dtype = x_in.attr["dtype"].type if dtype == tf.float32: nums = array.array('f', tensor.tensor_content) elif dtype == tf.float64: nums = array.array('d', tensor.tensor_content) else: raise TypeError("Unsupported dtype for rsqrt") def inputter_fn(): return tf.constant(1 / np.sqrt(np.array(nums).reshape(shape))) else: # XXX this is a little weird but the input into rsqrt is public and # being used only for batchnorm at the moment decoded = converter.protocol._decode(x_in.value_on_0, True) # pylint: disable=protected-access def inputter_fn(): return tf.rsqrt(decoded) x = converter.protocol.define_public_input( converter.model_provider, inputter_fn) return x def _add(converter, node: Any, inputs: List[str]) -> Any: a = converter.outputs[inputs[0]] b = converter.outputs[inputs[1]] if isinstance(a, tf.NodeDef): a_out = _nodef_to_public_pond(converter, a) else: a_out = a if isinstance(b, tf.NodeDef): b_out = _nodef_to_public_pond(converter, b) else: b_out = b return converter.protocol.add(a_out, b_out) def _sub(converter, node: Any, inputs: List[str]) -> Any: a = converter.outputs[inputs[0]] b = converter.outputs[inputs[1]] if isinstance(a, tf.NodeDef): a_out = _nodef_to_public_pond(converter, a) else: a_out = a if isinstance(b, tf.NodeDef): b_out = _nodef_to_public_pond(converter, b) else: b_out = b return converter.protocol.sub(a_out, b_out) def _mul(converter, node: Any, inputs: List[str]) -> Any: a = converter.outputs[inputs[0]] b = converter.outputs[inputs[1]] if isinstance(a, tf.NodeDef): a_out = _nodef_to_public_pond(converter, a) else: a_out = a if isinstance(b, tf.NodeDef): b_out = _nodef_to_public_pond(converter, b) else: b_out = b return converter.protocol.mul(a_out, b_out) def _avgpool(converter, node: Any, inputs: List[str]) -> Any: x_in = converter.outputs[inputs[0]] ksize = node.attr["ksize"].list.i s = node.attr["strides"].list.i padding = node.attr["padding"].s.decode('ascii') pool_size = [ksize[1], ksize[2]] strides = [s[1], s[2]] shape = [int(i) for i in x_in.shape] channels_first = node.attr["data_format"].s.decode('ascii') == "NCHW" avg = AveragePooling2D(shape, pool_size, strides, padding, channels_first) out = avg.forward(x_in) return out def _concat(converter, node: Any, inputs: List[str]) -> Any: input0 = converter.outputs[inputs[0]] input1 = converter.outputs[inputs[1]] axis = converter.outputs[inputs[2]] axis_int = axis.attr["value"].tensor.int_val[0] return converter.protocol.concat([input0, input1], axis_int) def _batch_to_space_nd(converter, node, inputs): x_in = converter.outputs[inputs[0]] block_shape = converter.outputs[inputs[1]].attr["value"].tensor crops = converter.outputs[inputs[2]].attr["value"].tensor return converter.protocol.batch_to_space_nd(x_in, block_shape, crops) def _space_to_batch_nd(converter, node, inputs): x_in = converter.outputs[inputs[0]] block_shape = converter.outputs[inputs[1]].attr["value"].tensor paddings = converter.outputs[inputs[2]].attr["value"].tensor return converter.protocol.space_to_batch_nd(x_in, block_shape, paddings) def _flatten(converter, node, inputs): x_in = converter.outputs[inputs[0]] shape = x_in.shape.as_list() non_batch = 1 for dim in shape[1:]: non_batch *= dim return converter.protocol.reshape(x_in, [-1, non_batch]) def _required_space_to_batch_paddings(converter, node, inputs: List[str]): inputs_node = [converter.outputs[inputs[i]] for i in range(len(inputs))] inputs_int32 = [] for x_in in inputs_node: pvt_check = isinstance(x_in, PondPrivateTensor) msk_check = isinstance(x_in, PondMaskedTensor) if pvt_check or msk_check: logging.warning(("Revealing private input: " "required_space_to_batch_paddings assumes public " "input.")) inputs_int32.append(tf.cast(x_in.reveal().decode(), tf.int32)) elif isinstance(x_in, tf.NodeDef): inputs_int32.append(_nodef_to_numpy_array(x_in)) else: raise TypeError("Unexpected input of type {}.".format(type(x_in))) if len(inputs_int32) == 2: input_shape, block_shape = inputs_int32 def inputter_pad(): pads, _ = tf.required_space_to_batch_paddings(input_shape, block_shape) return tf.cast(pads, tf.float64) def inputter_crop(): _, crops = tf.required_space_to_batch_paddings(input_shape, block_shape) return tf.cast(crops, tf.float64) else: base_paddings, input_shape, block_shape = inputs_int32 def inputter_pad(): pads, _ = tf.required_space_to_batch_paddings( input_shape, block_shape, base_paddings=base_paddings, ) return tf.cast(pads, tf.float64) def inputter_crop(): _, crops = tf.required_space_to_batch_paddings( input_shape, block_shape, base_paddings=base_paddings, ) return tf.cast(crops, tf.float64) pad_private = converter.protocol.define_public_input( converter.model_provider, inputter_pad) crop_private = converter.protocol.define_public_input( converter.model_provider, inputter_crop) return (pad_private, crop_private) def _argmax(converter, node, inputs): x_in = converter.outputs[inputs[0]] axis = converter.outputs[inputs[1]].attr["value"].tensor.int_val[0] return converter.protocol.argmax(x_in, axis=axis) def _slice(converter, node, inputs): x_in = converter.outputs[inputs[0]] begin = _nodef_to_numpy_array(converter.outputs[inputs[1]]) size = _nodef_to_numpy_array(converter.outputs[inputs[2]]) if isinstance(x_in, tf.NodeDef): input_out = _nodef_to_private_pond(converter, x_in) else: input_out = x_in # Slice is a special case of strided_slice. Slice takes size (the number of # elements we want to slice) as an input. However strided_slice takes end # (integer until which the slicing takes place) as input. # We can infere the end parameter with : end[i] = begin[i] + size[i]. # If size is negative, the stepping go towards smaller indices. # In this case we can infer the end parameter with: end[i] = input_shape[i] - size[i] + 1 end = np.zeros(len(begin)) input_shape = x_in.shape.as_list() # if size is negative take the input dimension for i in range(len(end)): # pylint: disable=consider-using-enumerate if size[i] < 0: end[i] = input_shape[i] - size[i] + 1 else: end[i] = begin[i] + size[i] return converter.protocol.strided_slice(input_out, begin, end) # pylint: enable=unused-argument # pylint: enable=missing-docstring def _nodef_to_public_pond(converter, x): """Map a NodeDef x to a PublicPondTensor.""" dtype = x.attr["dtype"].type x_shape = [i.size for i in x.attr["value"].tensor.tensor_shape.dim] if not x_shape: if dtype == tf.float32: nums = x.attr["value"].tensor.float_val elif dtype == tf.float64: nums = x.attr["value"].tensor.float_val elif dtype == tf.int32: nums = x.attr["value"].tensor.int_val else: raise TypeError("Unsupported dtype") def inputter_fn(): return tf.constant(np.array(nums).reshape(1, 1)) else: if dtype == tf.float32: nums = array.array('f', x.attr["value"].tensor.tensor_content) elif dtype == tf.float64: nums = array.array('d', x.attr["value"].tensor.tensor_content) elif dtype == tf.int32: nums = array.array('i', x.attr["value"].tensor.tensor_content) else: raise TypeError("Unsupported dtype") def inputter_fn(): return tf.constant(np.array(nums).reshape(x_shape)) x_public = converter.protocol.define_public_input( converter.model_provider, inputter_fn) return x_public def _nodef_to_private_pond(converter, x): """Map a NodeDef x to a PrivatePondTensor.""" dtype = x.attr["dtype"].type warn_msg = "Unexpected dtype {} found at node {}" err_msg = "Unsupported dtype {} found at node {}" x_shape = [i.size for i in x.attr["value"].tensor.tensor_shape.dim] if not x_shape: if dtype == tf.float32: nums = x.attr["value"].tensor.float_val elif dtype == tf.float64: nums = x.attr["value"].tensor.float_val elif dtype == tf.int32: logging.warning(warn_msg, dtype, x.name) nums = x.attr["value"].tensor.int_val else: raise TypeError(err_msg.format(dtype, x.name)) def inputter_fn(): return tf.constant(np.array(nums).reshape(1, 1)) else: if dtype == tf.float32: nums = array.array('f', x.attr["value"].tensor.tensor_content) elif dtype == tf.float64: nums = array.array('d', x.attr["value"].tensor.tensor_content) elif dtype == tf.int32: logging.warning(warn_msg, dtype, x.name) nums = array.array('i', x.attr["value"].tensor.tensor_content) else: raise TypeError(err_msg.format(dtype, x.name)) def inputter_fn(): return tf.constant(np.array(nums).reshape(x_shape)) x_private = converter.protocol.define_private_input( converter.model_provider, inputter_fn) return x_private def _nodef_to_numpy_array(x): """Map a NodeDef x to a np.array.""" dtype = x.attr["dtype"].type x_shape = [i.size for i in x.attr["value"].tensor.tensor_shape.dim] if dtype == tf.float32: nums = array.array('f', x.attr["value"].tensor.tensor_content) elif dtype == tf.float64: nums = array.array('d', x.attr["value"].tensor.tensor_content) elif dtype == tf.int32: nums = array.array('i', x.attr["value"].tensor.tensor_content) else: raise TypeError("Unsupported dtype") return np.array(nums).reshape(x_shape)
29.144399
99
0.677348
[ "Apache-2.0" ]
capeprivacy/tf-encrypted
tf_encrypted/convert/register.py
21,596
Python
from lldbsuite.test.lldbtest import * import os import vscode class VSCodeTestCaseBase(TestBase): NO_DEBUG_INFO_TESTCASE = True def create_debug_adaptor(self): '''Create the Visual Studio Code debug adaptor''' self.assertTrue(os.path.exists(self.lldbVSCodeExec), 'lldb-vscode must exist') log_file_path = self.getBuildArtifact('vscode.txt') self.vscode = vscode.DebugAdaptor( executable=self.lldbVSCodeExec, init_commands=self.setUpCommands(), log_file=log_file_path) def build_and_create_debug_adaptor(self): self.build() self.create_debug_adaptor() def set_source_breakpoints(self, source_path, lines, condition=None, hitCondition=None): '''Sets source breakpoints and returns an array of strings containing the breakpoint IDs ("1", "2") for each breakpoint that was set. ''' response = self.vscode.request_setBreakpoints( source_path, lines, condition=condition, hitCondition=hitCondition) if response is None: return [] breakpoints = response['body']['breakpoints'] breakpoint_ids = [] for breakpoint in breakpoints: breakpoint_ids.append('%i' % (breakpoint['id'])) return breakpoint_ids def set_function_breakpoints(self, functions, condition=None, hitCondition=None): '''Sets breakpoints by function name given an array of function names and returns an array of strings containing the breakpoint IDs ("1", "2") for each breakpoint that was set. ''' response = self.vscode.request_setFunctionBreakpoints( functions, condition=condition, hitCondition=hitCondition) if response is None: return [] breakpoints = response['body']['breakpoints'] breakpoint_ids = [] for breakpoint in breakpoints: breakpoint_ids.append('%i' % (breakpoint['id'])) return breakpoint_ids def verify_breakpoint_hit(self, breakpoint_ids): '''Wait for the process we are debugging to stop, and verify we hit any breakpoint location in the "breakpoint_ids" array. "breakpoint_ids" should be a list of breakpoint ID strings (["1", "2"]). The return value from self.set_source_breakpoints() or self.set_function_breakpoints() can be passed to this function''' stopped_events = self.vscode.wait_for_stopped() for stopped_event in stopped_events: if 'body' in stopped_event: body = stopped_event['body'] if 'reason' not in body: continue if body['reason'] != 'breakpoint': continue if 'description' not in body: continue # Descriptions for breakpoints will be in the form # "breakpoint 1.1", so look for any description that matches # ("breakpoint 1.") in the description field as verification # that one of the breakpoint locations was hit. VSCode doesn't # allow breakpoints to have multiple locations, but LLDB does. # So when looking at the description we just want to make sure # the right breakpoint matches and not worry about the actual # location. description = body['description'] print("description: %s" % (description)) for breakpoint_id in breakpoint_ids: match_desc = 'breakpoint %s.' % (breakpoint_id) if match_desc in description: return self.assertTrue(False, "breakpoint not hit") def verify_exception_breakpoint_hit(self, filter_label): '''Wait for the process we are debugging to stop, and verify the stop reason is 'exception' and that the description matches 'filter_label' ''' stopped_events = self.vscode.wait_for_stopped() for stopped_event in stopped_events: if 'body' in stopped_event: body = stopped_event['body'] if 'reason' not in body: continue if body['reason'] != 'exception': continue if 'description' not in body: continue description = body['description'] if filter_label == description: return True return False def verify_commands(self, flavor, output, commands): self.assertTrue(output and len(output) > 0, "expect console output") lines = output.splitlines() prefix = '(lldb) ' for cmd in commands: found = False for line in lines: if line.startswith(prefix) and cmd in line: found = True break self.assertTrue(found, "verify '%s' found in console output for '%s'" % ( cmd, flavor)) def get_dict_value(self, d, key_path): '''Verify each key in the key_path array is in contained in each dictionary within "d". Assert if any key isn't in the corresponding dictionary. This is handy for grabbing values from VS Code response dictionary like getting response['body']['stackFrames'] ''' value = d for key in key_path: if key in value: value = value[key] else: self.assertTrue(key in value, 'key "%s" from key_path "%s" not in "%s"' % ( key, key_path, d)) return value def get_stackFrames_and_totalFramesCount(self, threadId=None, startFrame=None, levels=None, dump=False): response = self.vscode.request_stackTrace(threadId=threadId, startFrame=startFrame, levels=levels, dump=dump) if response: stackFrames = self.get_dict_value(response, ['body', 'stackFrames']) totalFrames = self.get_dict_value(response, ['body', 'totalFrames']) self.assertTrue(totalFrames > 0, 'verify totalFrames count is provided by extension that supports ' 'async frames loading') return (stackFrames, totalFrames) return (None, 0) def get_stackFrames(self, threadId=None, startFrame=None, levels=None, dump=False): (stackFrames, totalFrames) = self.get_stackFrames_and_totalFramesCount( threadId=threadId, startFrame=startFrame, levels=levels, dump=dump) return stackFrames def get_source_and_line(self, threadId=None, frameIndex=0): stackFrames = self.get_stackFrames(threadId=threadId, startFrame=frameIndex, levels=1) if stackFrames is not None: stackFrame = stackFrames[0] ['source', 'path'] if 'source' in stackFrame: source = stackFrame['source'] if 'path' in source: if 'line' in stackFrame: return (source['path'], stackFrame['line']) return ('', 0) def get_stdout(self, timeout=0.0): return self.vscode.get_output('stdout', timeout=timeout) def get_console(self, timeout=0.0): return self.vscode.get_output('console', timeout=timeout) def get_local_as_int(self, name, threadId=None): value = self.vscode.get_local_variable_value(name, threadId=threadId) if value.startswith('0x'): return int(value, 16) elif value.startswith('0'): return int(value, 8) else: return int(value) def set_local(self, name, value, id=None): '''Set a top level local variable only.''' return self.vscode.request_setVariable(1, name, str(value), id=id) def set_global(self, name, value, id=None): '''Set a top level global variable only.''' return self.vscode.request_setVariable(2, name, str(value), id=id) def stepIn(self, threadId=None, waitForStop=True): self.vscode.request_stepIn(threadId=threadId) if waitForStop: return self.vscode.wait_for_stopped() return None def stepOver(self, threadId=None, waitForStop=True): self.vscode.request_next(threadId=threadId) if waitForStop: return self.vscode.wait_for_stopped() return None def stepOut(self, threadId=None, waitForStop=True): self.vscode.request_stepOut(threadId=threadId) if waitForStop: return self.vscode.wait_for_stopped() return None def continue_to_next_stop(self): self.vscode.request_continue() return self.vscode.wait_for_stopped() def continue_to_breakpoints(self, breakpoint_ids): self.vscode.request_continue() self.verify_breakpoint_hit(breakpoint_ids) def continue_to_exception_breakpoint(self, filter_label): self.vscode.request_continue() self.assertTrue(self.verify_exception_breakpoint_hit(filter_label), 'verify we got "%s"' % (filter_label)) def continue_to_exit(self, exitCode=0): self.vscode.request_continue() stopped_events = self.vscode.wait_for_stopped() self.assertEquals(len(stopped_events), 1, "stopped_events = {}".format(stopped_events)) self.assertEquals(stopped_events[0]['event'], 'exited', 'make sure program ran to completion') self.assertEquals(stopped_events[0]['body']['exitCode'], exitCode, 'exitCode == %i' % (exitCode)) def attach(self, program=None, pid=None, waitFor=None, trace=None, initCommands=None, preRunCommands=None, stopCommands=None, exitCommands=None, attachCommands=None, coreFile=None): '''Build the default Makefile target, create the VSCode debug adaptor, and attach to the process. ''' # Make sure we disconnect and terminate the VSCode debug adaptor even # if we throw an exception during the test case. def cleanup(): self.vscode.request_disconnect(terminateDebuggee=True) self.vscode.terminate() # Execute the cleanup function during test case tear down. self.addTearDownHook(cleanup) # Initialize and launch the program self.vscode.request_initialize() response = self.vscode.request_attach( program=program, pid=pid, waitFor=waitFor, trace=trace, initCommands=initCommands, preRunCommands=preRunCommands, stopCommands=stopCommands, exitCommands=exitCommands, attachCommands=attachCommands, coreFile=coreFile) if not (response and response['success']): self.assertTrue(response['success'], 'attach failed (%s)' % (response['message'])) def launch(self, program=None, args=None, cwd=None, env=None, stopOnEntry=False, disableASLR=True, disableSTDIO=False, shellExpandArguments=False, trace=False, initCommands=None, preRunCommands=None, stopCommands=None, exitCommands=None,sourcePath=None, debuggerRoot=None, launchCommands=None, sourceMap=None): '''Sending launch request to vscode ''' # Make sure we disconnect and terminate the VSCode debug adapter, # if we throw an exception during the test case def cleanup(): self.vscode.request_disconnect(terminateDebuggee=True) self.vscode.terminate() # Execute the cleanup function during test case tear down. self.addTearDownHook(cleanup) # Initialize and launch the program self.vscode.request_initialize() response = self.vscode.request_launch( program, args=args, cwd=cwd, env=env, stopOnEntry=stopOnEntry, disableASLR=disableASLR, disableSTDIO=disableSTDIO, shellExpandArguments=shellExpandArguments, trace=trace, initCommands=initCommands, preRunCommands=preRunCommands, stopCommands=stopCommands, exitCommands=exitCommands, sourcePath=sourcePath, debuggerRoot=debuggerRoot, launchCommands=launchCommands, sourceMap=sourceMap) if not (response and response['success']): self.assertTrue(response['success'], 'launch failed (%s)' % (response['message'])) def build_and_launch(self, program, args=None, cwd=None, env=None, stopOnEntry=False, disableASLR=True, disableSTDIO=False, shellExpandArguments=False, trace=False, initCommands=None, preRunCommands=None, stopCommands=None, exitCommands=None, sourcePath=None, debuggerRoot=None): '''Build the default Makefile target, create the VSCode debug adaptor, and launch the process. ''' self.build_and_create_debug_adaptor() self.assertTrue(os.path.exists(program), 'executable must exist') self.launch(program, args, cwd, env, stopOnEntry, disableASLR, disableSTDIO, shellExpandArguments, trace, initCommands, preRunCommands, stopCommands, exitCommands, sourcePath, debuggerRoot)
44.139319
86
0.58694
[ "Apache-2.0" ]
Diatrus/llvm-project
lldb/packages/Python/lldbsuite/test/tools/lldb-vscode/lldbvscode_testcase.py
14,257
Python
from django.apps import AppConfig class TestConfig(AppConfig): name = "test_app"
14.5
33
0.747126
[ "MIT" ]
eamigo86/django3_asgi
test_app/apps.py
87
Python
"""Fairly basic set of tools for real-time data augmentation on image data. Can easily be extended to include new transformations, new preprocessing methods, etc... """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import re from scipy import linalg import scipy.ndimage as ndi from six.moves import range import os import threading import warnings import multiprocessing.pool from functools import partial from .. import backend as K from ..utils.data_utils import Sequence try: from PIL import ImageEnhance from PIL import Image as pil_image except ImportError: pil_image = None if pil_image is not None: _PIL_INTERPOLATION_METHODS = { 'nearest': pil_image.NEAREST, 'bilinear': pil_image.BILINEAR, 'bicubic': pil_image.BICUBIC, } # These methods were only introduced in version 3.4.0 (2016). if hasattr(pil_image, 'HAMMING'): _PIL_INTERPOLATION_METHODS['hamming'] = pil_image.HAMMING if hasattr(pil_image, 'BOX'): _PIL_INTERPOLATION_METHODS['box'] = pil_image.BOX # This method is new in version 1.1.3 (2013). if hasattr(pil_image, 'LANCZOS'): _PIL_INTERPOLATION_METHODS['lanczos'] = pil_image.LANCZOS def random_rotation(x, rg, row_axis=1, col_axis=2, channel_axis=0, fill_mode='nearest', cval=0.): """Performs a random rotation of a Numpy image tensor. # Arguments x: Input tensor. Must be 3D. rg: Rotation range, in degrees. row_axis: Index of axis for rows in the input tensor. col_axis: Index of axis for columns in the input tensor. channel_axis: Index of axis for channels in the input tensor. fill_mode: Points outside the boundaries of the input are filled according to the given mode (one of `{'constant', 'nearest', 'reflect', 'wrap'}`). cval: Value used for points outside the boundaries of the input if `mode='constant'`. # Returns Rotated Numpy image tensor. """ theta = np.deg2rad(np.random.uniform(-rg, rg)) rotation_matrix = np.array([[np.cos(theta), -np.sin(theta), 0], [np.sin(theta), np.cos(theta), 0], [0, 0, 1]]) h, w = x.shape[row_axis], x.shape[col_axis] transform_matrix = transform_matrix_offset_center(rotation_matrix, h, w) x = apply_transform(x, transform_matrix, channel_axis, fill_mode, cval) return x def random_shift(x, wrg, hrg, row_axis=1, col_axis=2, channel_axis=0, fill_mode='nearest', cval=0.): """Performs a random spatial shift of a Numpy image tensor. # Arguments x: Input tensor. Must be 3D. wrg: Width shift range, as a float fraction of the width. hrg: Height shift range, as a float fraction of the height. row_axis: Index of axis for rows in the input tensor. col_axis: Index of axis for columns in the input tensor. channel_axis: Index of axis for channels in the input tensor. fill_mode: Points outside the boundaries of the input are filled according to the given mode (one of `{'constant', 'nearest', 'reflect', 'wrap'}`). cval: Value used for points outside the boundaries of the input if `mode='constant'`. # Returns Shifted Numpy image tensor. """ h, w = x.shape[row_axis], x.shape[col_axis] tx = np.random.uniform(-hrg, hrg) * h ty = np.random.uniform(-wrg, wrg) * w translation_matrix = np.array([[1, 0, tx], [0, 1, ty], [0, 0, 1]]) transform_matrix = translation_matrix # no need to do offset x = apply_transform(x, transform_matrix, channel_axis, fill_mode, cval) return x def random_shear(x, intensity, row_axis=1, col_axis=2, channel_axis=0, fill_mode='nearest', cval=0.): """Performs a random spatial shear of a Numpy image tensor. # Arguments x: Input tensor. Must be 3D. intensity: Transformation intensity in degrees. row_axis: Index of axis for rows in the input tensor. col_axis: Index of axis for columns in the input tensor. channel_axis: Index of axis for channels in the input tensor. fill_mode: Points outside the boundaries of the input are filled according to the given mode (one of `{'constant', 'nearest', 'reflect', 'wrap'}`). cval: Value used for points outside the boundaries of the input if `mode='constant'`. # Returns Sheared Numpy image tensor. """ shear = np.deg2rad(np.random.uniform(-intensity, intensity)) shear_matrix = np.array([[1, -np.sin(shear), 0], [0, np.cos(shear), 0], [0, 0, 1]]) h, w = x.shape[row_axis], x.shape[col_axis] transform_matrix = transform_matrix_offset_center(shear_matrix, h, w) x = apply_transform(x, transform_matrix, channel_axis, fill_mode, cval) return x def random_zoom(x, zoom_range, row_axis=1, col_axis=2, channel_axis=0, fill_mode='nearest', cval=0.): """Performs a random spatial zoom of a Numpy image tensor. # Arguments x: Input tensor. Must be 3D. zoom_range: Tuple of floats; zoom range for width and height. row_axis: Index of axis for rows in the input tensor. col_axis: Index of axis for columns in the input tensor. channel_axis: Index of axis for channels in the input tensor. fill_mode: Points outside the boundaries of the input are filled according to the given mode (one of `{'constant', 'nearest', 'reflect', 'wrap'}`). cval: Value used for points outside the boundaries of the input if `mode='constant'`. # Returns Zoomed Numpy image tensor. # Raises ValueError: if `zoom_range` isn't a tuple. """ if len(zoom_range) != 2: raise ValueError('`zoom_range` should be a tuple or list of two' ' floats. Received: ', zoom_range) if zoom_range[0] == 1 and zoom_range[1] == 1: zx, zy = 1, 1 else: zx, zy = np.random.uniform(zoom_range[0], zoom_range[1], 2) zoom_matrix = np.array([[zx, 0, 0], [0, zy, 0], [0, 0, 1]]) h, w = x.shape[row_axis], x.shape[col_axis] transform_matrix = transform_matrix_offset_center(zoom_matrix, h, w) x = apply_transform(x, transform_matrix, channel_axis, fill_mode, cval) return x def random_channel_shift(x, intensity, channel_axis=0): """Performs a random channel shift. # Arguments x: Input tensor. Must be 3D. intensity: Transformation intensity. channel_axis: Index of axis for channels in the input tensor. # Returns Numpy image tensor. """ x = np.rollaxis(x, channel_axis, 0) min_x, max_x = np.min(x), np.max(x) channel_images = [ np.clip(x_channel + np.random.uniform(-intensity, intensity), min_x, max_x) for x_channel in x] x = np.stack(channel_images, axis=0) x = np.rollaxis(x, 0, channel_axis + 1) return x def random_brightness(x, brightness_range): """Performs a random brightness shift. # Arguments x: Input tensor. Must be 3D. brightness_range: Tuple of floats; brightness range. channel_axis: Index of axis for channels in the input tensor. # Returns Numpy image tensor. # Raises ValueError if `brightness_range` isn't a tuple. """ if len(brightness_range) != 2: raise ValueError( '`brightness_range should be tuple or list of two floats. ' 'Received: %s' % brightness_range) x = array_to_img(x) x = imgenhancer_Brightness = ImageEnhance.Brightness(x) u = np.random.uniform(brightness_range[0], brightness_range[1]) x = imgenhancer_Brightness.enhance(u) x = img_to_array(x) return x def transform_matrix_offset_center(matrix, x, y): o_x = float(x) / 2 + 0.5 o_y = float(y) / 2 + 0.5 offset_matrix = np.array([[1, 0, o_x], [0, 1, o_y], [0, 0, 1]]) reset_matrix = np.array([[1, 0, -o_x], [0, 1, -o_y], [0, 0, 1]]) transform_matrix = np.dot(np.dot(offset_matrix, matrix), reset_matrix) return transform_matrix def apply_transform(x, transform_matrix, channel_axis=0, fill_mode='nearest', cval=0.): """Applies the image transformation specified by a matrix. # Arguments x: 2D numpy array, single image. transform_matrix: Numpy array specifying the geometric transformation. channel_axis: Index of axis for channels in the input tensor. fill_mode: Points outside the boundaries of the input are filled according to the given mode (one of `{'constant', 'nearest', 'reflect', 'wrap'}`). cval: Value used for points outside the boundaries of the input if `mode='constant'`. # Returns The transformed version of the input. """ x = np.rollaxis(x, channel_axis, 0) final_affine_matrix = transform_matrix[:2, :2] final_offset = transform_matrix[:2, 2] channel_images = [ndi.interpolation.affine_transform( x_channel, final_affine_matrix, final_offset, order=1, mode=fill_mode, cval=cval) for x_channel in x] x = np.stack(channel_images, axis=0) x = np.rollaxis(x, 0, channel_axis + 1) return x def flip_axis(x, axis): x = np.asarray(x).swapaxes(axis, 0) x = x[::-1, ...] x = x.swapaxes(0, axis) return x def array_to_img(x, data_format=None, scale=True): """Converts a 3D Numpy array to a PIL Image instance. # Arguments x: Input Numpy array. data_format: Image data format. either "channels_first" or "channels_last". scale: Whether to rescale image values to be within `[0, 255]`. # Returns A PIL Image instance. # Raises ImportError: if PIL is not available. ValueError: if invalid `x` or `data_format` is passed. """ if pil_image is None: raise ImportError('Could not import PIL.Image. ' 'The use of `array_to_img` requires PIL.') x = np.asarray(x, dtype=K.floatx()) if x.ndim != 3: raise ValueError('Expected image array to have rank 3 (single image). ' 'Got array with shape:', x.shape) if data_format is None: data_format = K.image_data_format() if data_format not in {'channels_first', 'channels_last'}: raise ValueError('Invalid data_format:', data_format) # Original Numpy array x has format (height, width, channel) # or (channel, height, width) # but target PIL image has format (width, height, channel) if data_format == 'channels_first': x = x.transpose(1, 2, 0) if scale: x = x + max(-np.min(x), 0) x_max = np.max(x) if x_max != 0: x /= x_max x *= 255 if x.shape[2] == 3: # RGB return pil_image.fromarray(x.astype('uint8'), 'RGB') elif x.shape[2] == 1: # grayscale return pil_image.fromarray(x[:, :, 0].astype('uint8'), 'L') else: raise ValueError('Unsupported channel number: ', x.shape[2]) def img_to_array(img, data_format=None): """Converts a PIL Image instance to a Numpy array. # Arguments img: PIL Image instance. data_format: Image data format, either "channels_first" or "channels_last". # Returns A 3D Numpy array. # Raises ValueError: if invalid `img` or `data_format` is passed. """ if data_format is None: data_format = K.image_data_format() if data_format not in {'channels_first', 'channels_last'}: raise ValueError('Unknown data_format: ', data_format) # Numpy array x has format (height, width, channel) # or (channel, height, width) # but original PIL image has format (width, height, channel) x = np.asarray(img, dtype=K.floatx()) if len(x.shape) == 3: if data_format == 'channels_first': x = x.transpose(2, 0, 1) elif len(x.shape) == 2: if data_format == 'channels_first': x = x.reshape((1, x.shape[0], x.shape[1])) else: x = x.reshape((x.shape[0], x.shape[1], 1)) else: raise ValueError('Unsupported image shape: ', x.shape) return x def save_img(path, x, data_format=None, file_format=None, scale=True, **kwargs): """Saves an image stored as a Numpy array to a path or file object. # Arguments path: Path or file object. x: Numpy array. data_format: Image data format, either "channels_first" or "channels_last". file_format: Optional file format override. If omitted, the format to use is determined from the filename extension. If a file object was used instead of a filename, this parameter should always be used. scale: Whether to rescale image values to be within `[0, 255]`. **kwargs: Additional keyword arguments passed to `PIL.Image.save()`. """ img = array_to_img(x, data_format=data_format, scale=scale) img.save(path, format=file_format, **kwargs) def load_img(path, grayscale=False, target_size=None, interpolation='nearest'): """Loads an image into PIL format. # Arguments path: Path to image file. grayscale: Boolean, whether to load the image as grayscale. target_size: Either `None` (default to original size) or tuple of ints `(img_height, img_width)`. interpolation: Interpolation method used to resample the image if the target size is different from that of the loaded image. Supported methods are "nearest", "bilinear", and "bicubic". If PIL version 1.1.3 or newer is installed, "lanczos" is also supported. If PIL version 3.4.0 or newer is installed, "box" and "hamming" are also supported. By default, "nearest" is used. # Returns A PIL Image instance. # Raises ImportError: if PIL is not available. ValueError: if interpolation method is not supported. """ if pil_image is None: raise ImportError('Could not import PIL.Image. ' 'The use of `array_to_img` requires PIL.') img = pil_image.open(path) if grayscale: if img.mode != 'L': img = img.convert('L') else: if img.mode != 'RGB': img = img.convert('RGB') if target_size is not None: width_height_tuple = (target_size[1], target_size[0]) if img.size != width_height_tuple: if interpolation not in _PIL_INTERPOLATION_METHODS: raise ValueError( 'Invalid interpolation method {} specified. Supported ' 'methods are {}'.format( interpolation, ", ".join(_PIL_INTERPOLATION_METHODS.keys()))) resample = _PIL_INTERPOLATION_METHODS[interpolation] img = img.resize(width_height_tuple, resample) return img def list_pictures(directory, ext='jpg|jpeg|bmp|png|ppm'): return [os.path.join(root, f) for root, _, files in os.walk(directory) for f in files if re.match(r'([\w]+\.(?:' + ext + '))', f)] class ImageDataGenerator(object): """Generate batches of tensor image data with real-time data augmentation. The data will be looped over (in batches). # Arguments featurewise_center: Boolean. Set input mean to 0 over the dataset, feature-wise. samplewise_center: Boolean. Set each sample mean to 0. featurewise_std_normalization: Boolean. Divide inputs by std of the dataset, feature-wise. samplewise_std_normalization: Boolean. Divide each input by its std. zca_epsilon: epsilon for ZCA whitening. Default is 1e-6. zca_whitening: Boolean. Apply ZCA whitening. rotation_range: Int. Degree range for random rotations. width_shift_range: Float, 1-D array-like or int - float: fraction of total width, if < 1, or pixels if >= 1. - 1-D array-like: random elements from the array. - int: integer number of pixels from interval `(-width_shift_range, +width_shift_range)` - With `width_shift_range=2` possible values are integers `[-1, 0, +1]`, same as with `width_shift_range=[-1, 0, +1]`, while with `width_shift_range=1.0` possible values are floats in the interval [-1.0, +1.0). height_shift_range: Float, 1-D array-like or int - float: fraction of total height, if < 1, or pixels if >= 1. - 1-D array-like: random elements from the array. - int: integer number of pixels from interval `(-height_shift_range, +height_shift_range)` - With `height_shift_range=2` possible values are integers `[-1, 0, +1]`, same as with `height_shift_range=[-1, 0, +1]`, while with `height_shift_range=1.0` possible values are floats in the interval [-1.0, +1.0). shear_range: Float. Shear Intensity (Shear angle in counter-clockwise direction in degrees) zoom_range: Float or [lower, upper]. Range for random zoom. If a float, `[lower, upper] = [1-zoom_range, 1+zoom_range]`. channel_shift_range: Float. Range for random channel shifts. fill_mode: One of {"constant", "nearest", "reflect" or "wrap"}. Default is 'nearest'. Points outside the boundaries of the input are filled according to the given mode: - 'constant': kkkkkkkk|abcd|kkkkkkkk (cval=k) - 'nearest': aaaaaaaa|abcd|dddddddd - 'reflect': abcddcba|abcd|dcbaabcd - 'wrap': abcdabcd|abcd|abcdabcd cval: Float or Int. Value used for points outside the boundaries when `fill_mode = "constant"`. horizontal_flip: Boolean. Randomly flip inputs horizontally. vertical_flip: Boolean. Randomly flip inputs vertically. rescale: rescaling factor. Defaults to None. If None or 0, no rescaling is applied, otherwise we multiply the data by the value provided (before applying any other transformation). preprocessing_function: function that will be implied on each input. The function will run after the image is resized and augmented. The function should take one argument: one image (Numpy tensor with rank 3), and should output a Numpy tensor with the same shape. data_format: Image data format, either "channels_first" or "channels_last". "channels_last" mode means that the images should have shape `(samples, height, width, channels)`, "channels_first" mode means that the images should have shape `(samples, channels, height, width)`. It defaults to the `image_data_format` value found in your Keras config file at `~/.keras/keras.json`. If you never set it, then it will be "channels_last". validation_split: Float. Fraction of images reserved for validation (strictly between 0 and 1). # Examples Example of using `.flow(x, y)`: ```python (x_train, y_train), (x_test, y_test) = cifar10.load_data() y_train = np_utils.to_categorical(y_train, num_classes) y_test = np_utils.to_categorical(y_test, num_classes) datagen = ImageDataGenerator( featurewise_center=True, featurewise_std_normalization=True, rotation_range=20, width_shift_range=0.2, height_shift_range=0.2, horizontal_flip=True) # compute quantities required for featurewise normalization # (std, mean, and principal components if ZCA whitening is applied) datagen.fit(x_train) # fits the model on batches with real-time data augmentation: model.fit_generator(datagen.flow(x_train, y_train, batch_size=32), steps_per_epoch=len(x_train) / 32, epochs=epochs) # here's a more "manual" example for e in range(epochs): print('Epoch', e) batches = 0 for x_batch, y_batch in datagen.flow(x_train, y_train, batch_size=32): model.fit(x_batch, y_batch) batches += 1 if batches >= len(x_train) / 32: # we need to break the loop by hand because # the generator loops indefinitely break ``` Example of using `.flow_from_directory(directory)`: ```python train_datagen = ImageDataGenerator( rescale=1./255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True) test_datagen = ImageDataGenerator(rescale=1./255) train_generator = train_datagen.flow_from_directory( 'data/train', target_size=(150, 150), batch_size=32, class_mode='binary') validation_generator = test_datagen.flow_from_directory( 'data/validation', target_size=(150, 150), batch_size=32, class_mode='binary') model.fit_generator( train_generator, steps_per_epoch=2000, epochs=50, validation_data=validation_generator, validation_steps=800) ``` Example of transforming images and masks together. ```python # we create two instances with the same arguments data_gen_args = dict(featurewise_center=True, featurewise_std_normalization=True, rotation_range=90., width_shift_range=0.1, height_shift_range=0.1, zoom_range=0.2) image_datagen = ImageDataGenerator(**data_gen_args) mask_datagen = ImageDataGenerator(**data_gen_args) # Provide the same seed and keyword arguments to the fit and flow methods seed = 1 image_datagen.fit(images, augment=True, seed=seed) mask_datagen.fit(masks, augment=True, seed=seed) image_generator = image_datagen.flow_from_directory( 'data/images', class_mode=None, seed=seed) mask_generator = mask_datagen.flow_from_directory( 'data/masks', class_mode=None, seed=seed) # combine generators into one which yields image and masks train_generator = zip(image_generator, mask_generator) model.fit_generator( train_generator, steps_per_epoch=2000, epochs=50) ``` """ def __init__(self, featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, zca_epsilon=1e-6, rotation_range=0., width_shift_range=0., height_shift_range=0., brightness_range=None, shear_range=0., zoom_range=0., channel_shift_range=0., fill_mode='nearest', cval=0., horizontal_flip=False, vertical_flip=False, rescale=None, preprocessing_function=None, data_format=None, validation_split=0.0): if data_format is None: data_format = K.image_data_format() self.featurewise_center = featurewise_center self.samplewise_center = samplewise_center self.featurewise_std_normalization = featurewise_std_normalization self.samplewise_std_normalization = samplewise_std_normalization self.zca_whitening = zca_whitening self.zca_epsilon = zca_epsilon self.rotation_range = rotation_range self.width_shift_range = width_shift_range self.height_shift_range = height_shift_range self.brightness_range = brightness_range self.shear_range = shear_range self.zoom_range = zoom_range self.channel_shift_range = channel_shift_range self.fill_mode = fill_mode self.cval = cval self.horizontal_flip = horizontal_flip self.vertical_flip = vertical_flip self.rescale = rescale self.preprocessing_function = preprocessing_function if data_format not in {'channels_last', 'channels_first'}: raise ValueError( '`data_format` should be `"channels_last"` ' '(channel after row and column) or ' '`"channels_first"` (channel before row and column). ' 'Received: %s' % data_format) self.data_format = data_format if data_format == 'channels_first': self.channel_axis = 1 self.row_axis = 2 self.col_axis = 3 if data_format == 'channels_last': self.channel_axis = 3 self.row_axis = 1 self.col_axis = 2 if validation_split and not 0 < validation_split < 1: raise ValueError( '`validation_split` must be strictly between 0 and 1. ' ' Received: %s' % validation_split) self._validation_split = validation_split self.mean = None self.std = None self.principal_components = None if np.isscalar(zoom_range): self.zoom_range = [1 - zoom_range, 1 + zoom_range] elif len(zoom_range) == 2: self.zoom_range = [zoom_range[0], zoom_range[1]] else: raise ValueError('`zoom_range` should be a float or ' 'a tuple or list of two floats. ' 'Received: %s' % zoom_range) if zca_whitening: if not featurewise_center: self.featurewise_center = True warnings.warn('This ImageDataGenerator specifies ' '`zca_whitening`, which overrides ' 'setting of `featurewise_center`.') if featurewise_std_normalization: self.featurewise_std_normalization = False warnings.warn('This ImageDataGenerator specifies ' '`zca_whitening` ' 'which overrides setting of' '`featurewise_std_normalization`.') if featurewise_std_normalization: if not featurewise_center: self.featurewise_center = True warnings.warn('This ImageDataGenerator specifies ' '`featurewise_std_normalization`, ' 'which overrides setting of ' '`featurewise_center`.') if samplewise_std_normalization: if not samplewise_center: self.samplewise_center = True warnings.warn('This ImageDataGenerator specifies ' '`samplewise_std_normalization`, ' 'which overrides setting of ' '`samplewise_center`.') def flow(self, x, y=None, batch_size=32, shuffle=True, sample_weight=None, seed=None, save_to_dir=None, save_prefix='', save_format='png', subset=None): """Takes numpy data & label arrays, and generates batches of augmented data. # Arguments x: Input data. Numpy array of rank 4 or a tuple. If tuple, the first element should contain the images and the second element another numpy array or a list of numpy arrays that gets passed to the output without any modifications. Can be used to feed the model miscellaneous data along with the images. In case of grayscale data, the channels axis of the image array should have value 1, and in case of RGB data, it should have value 3. y: Labels. batch_size: Int (default: 32). shuffle: Boolean (default: True). sample_weight: Sample weights. seed: Int (default: None). save_to_dir: None or str (default: None). This allows you to optionally specify a directory to which to save the augmented pictures being generated (useful for visualizing what you are doing). save_prefix: Str (default: `''`). Prefix to use for filenames of saved pictures (only relevant if `save_to_dir` is set). save_format: one of "png", "jpeg" (only relevant if `save_to_dir` is set). Default: "png". subset: Subset of data (`"training"` or `"validation"`) if `validation_split` is set in `ImageDataGenerator`. # Returns An `Iterator` yielding tuples of `(x, y)` where `x` is a numpy array of image data (in the case of a single image input) or a list of numpy arrays (in the case with additional inputs) and `y` is a numpy array of corresponding labels. If 'sample_weight' is not None, the yielded tuples are of the form `(x, y, sample_weight)`. If `y` is None, only the numpy array `x` is returned. """ return NumpyArrayIterator( x, y, self, batch_size=batch_size, shuffle=shuffle, sample_weight=sample_weight, seed=seed, data_format=self.data_format, save_to_dir=save_to_dir, save_prefix=save_prefix, save_format=save_format, subset=subset) def flow_from_directory(self, directory, target_size=(256, 256), color_mode='rgb', classes=None, class_mode='categorical', batch_size=32, shuffle=True, seed=None, save_to_dir=None, save_prefix='', save_format='png', follow_links=False, subset=None, interpolation='nearest'): """Takes the path to a directory & generates batches of augmented data. # Arguments directory: Path to the target directory. It should contain one subdirectory per class. Any PNG, JPG, BMP, PPM or TIF images inside each of the subdirectories directory tree will be included in the generator. See [this script](https://gist.github.com/fchollet/0830affa1f7f19fd47b06d4cf89ed44d) for more details. target_size: Tuple of integers `(height, width)`, default: `(256, 256)`. The dimensions to which all images found will be resized. color_mode: One of "grayscale", "rbg". Default: "rgb". Whether the images will be converted to have 1 or 3 color channels. classes: Optional list of class subdirectories (e.g. `['dogs', 'cats']`). Default: None. If not provided, the list of classes will be automatically inferred from the subdirectory names/structure under `directory`, where each subdirectory will be treated as a different class (and the order of the classes, which will map to the label indices, will be alphanumeric). The dictionary containing the mapping from class names to class indices can be obtained via the attribute `class_indices`. class_mode: One of "categorical", "binary", "sparse", "input", or None. Default: "categorical". Determines the type of label arrays that are returned: - "categorical" will be 2D one-hot encoded labels, - "binary" will be 1D binary labels, "sparse" will be 1D integer labels, - "input" will be images identical to input images (mainly used to work with autoencoders). - If None, no labels are returned (the generator will only yield batches of image data, which is useful to use with `model.predict_generator()`, `model.evaluate_generator()`, etc.). Please note that in case of class_mode None, the data still needs to reside in a subdirectory of `directory` for it to work correctly. batch_size: Size of the batches of data (default: 32). shuffle: Whether to shuffle the data (default: True) seed: Optional random seed for shuffling and transformations. save_to_dir: None or str (default: None). This allows you to optionally specify a directory to which to save the augmented pictures being generated (useful for visualizing what you are doing). save_prefix: Str. Prefix to use for filenames of saved pictures (only relevant if `save_to_dir` is set). save_format: One of "png", "jpeg" (only relevant if `save_to_dir` is set). Default: "png". follow_links: Whether to follow symlinks inside class subdirectories (default: False). subset: Subset of data (`"training"` or `"validation"`) if `validation_split` is set in `ImageDataGenerator`. interpolation: Interpolation method used to resample the image if the target size is different from that of the loaded image. Supported methods are `"nearest"`, `"bilinear"`, and `"bicubic"`. If PIL version 1.1.3 or newer is installed, `"lanczos"` is also supported. If PIL version 3.4.0 or newer is installed, `"box"` and `"hamming"` are also supported. By default, `"nearest"` is used. # Returns A `DirectoryIterator` yielding tuples of `(x, y)` where `x` is a numpy array containing a batch of images with shape `(batch_size, *target_size, channels)` and `y` is a numpy array of corresponding labels. """ return DirectoryIterator( directory, self, target_size=target_size, color_mode=color_mode, classes=classes, class_mode=class_mode, data_format=self.data_format, batch_size=batch_size, shuffle=shuffle, seed=seed, save_to_dir=save_to_dir, save_prefix=save_prefix, save_format=save_format, follow_links=follow_links, subset=subset, interpolation=interpolation) def standardize(self, x): """Applies the normalization configuration to a batch of inputs. # Arguments x: Batch of inputs to be normalized. # Returns The inputs, normalized. """ if self.preprocessing_function: x = self.preprocessing_function(x) if self.rescale: x *= self.rescale if self.samplewise_center: x -= np.mean(x, keepdims=True) if self.samplewise_std_normalization: x /= (np.std(x, keepdims=True) + K.epsilon()) if self.featurewise_center: if self.mean is not None: x -= self.mean else: warnings.warn('This ImageDataGenerator specifies ' '`featurewise_center`, but it hasn\'t ' 'been fit on any training data. Fit it ' 'first by calling `.fit(numpy_data)`.') if self.featurewise_std_normalization: if self.std is not None: x /= (self.std + K.epsilon()) else: warnings.warn('This ImageDataGenerator specifies ' '`featurewise_std_normalization`, ' 'but it hasn\'t ' 'been fit on any training data. Fit it ' 'first by calling `.fit(numpy_data)`.') if self.zca_whitening: if self.principal_components is not None: flatx = np.reshape(x, (-1, np.prod(x.shape[-3:]))) whitex = np.dot(flatx, self.principal_components) x = np.reshape(whitex, x.shape) else: warnings.warn('This ImageDataGenerator specifies ' '`zca_whitening`, but it hasn\'t ' 'been fit on any training data. Fit it ' 'first by calling `.fit(numpy_data)`.') return x def random_transform(self, x, seed=None): """Randomly augments a single image tensor. # Arguments x: 3D tensor, single image. seed: Random seed. # Returns A randomly transformed version of the input (same shape). """ # x is a single image, so it doesn't have image number at index 0 img_row_axis = self.row_axis - 1 img_col_axis = self.col_axis - 1 img_channel_axis = self.channel_axis - 1 if seed is not None: np.random.seed(seed) # Use composition of homographies # to generate final transform that needs to be applied if self.rotation_range: theta = np.deg2rad(np.random.uniform( -self.rotation_range, self.rotation_range)) else: theta = 0 if self.height_shift_range: try: # 1-D array-like or int tx = np.random.choice(self.height_shift_range) tx *= np.random.choice([-1, 1]) except ValueError: # floating point tx = np.random.uniform(-self.height_shift_range, self.height_shift_range) if np.max(self.height_shift_range) < 1: tx *= x.shape[img_row_axis] else: tx = 0 if self.width_shift_range: try: # 1-D array-like or int ty = np.random.choice(self.width_shift_range) ty *= np.random.choice([-1, 1]) except ValueError: # floating point ty = np.random.uniform(-self.width_shift_range, self.width_shift_range) if np.max(self.width_shift_range) < 1: ty *= x.shape[img_col_axis] else: ty = 0 if self.shear_range: shear = np.deg2rad(np.random.uniform( -self.shear_range, self.shear_range)) else: shear = 0 if self.zoom_range[0] == 1 and self.zoom_range[1] == 1: zx, zy = 1, 1 else: zx, zy = np.random.uniform( self.zoom_range[0], self.zoom_range[1], 2) transform_matrix = None if theta != 0: rotation_matrix = np.array([[np.cos(theta), -np.sin(theta), 0], [np.sin(theta), np.cos(theta), 0], [0, 0, 1]]) transform_matrix = rotation_matrix if tx != 0 or ty != 0: shift_matrix = np.array([[1, 0, tx], [0, 1, ty], [0, 0, 1]]) transform_matrix = shift_matrix if transform_matrix is None else np.dot(transform_matrix, shift_matrix) if shear != 0: shear_matrix = np.array([[1, -np.sin(shear), 0], [0, np.cos(shear), 0], [0, 0, 1]]) transform_matrix = shear_matrix if transform_matrix is None else np.dot(transform_matrix, shear_matrix) if zx != 1 or zy != 1: zoom_matrix = np.array([[zx, 0, 0], [0, zy, 0], [0, 0, 1]]) transform_matrix = zoom_matrix if transform_matrix is None else np.dot(transform_matrix, zoom_matrix) if transform_matrix is not None: h, w = x.shape[img_row_axis], x.shape[img_col_axis] transform_matrix = transform_matrix_offset_center( transform_matrix, h, w) x = apply_transform(x, transform_matrix, img_channel_axis, fill_mode=self.fill_mode, cval=self.cval) if self.channel_shift_range != 0: x = random_channel_shift(x, self.channel_shift_range, img_channel_axis) if self.horizontal_flip: if np.random.random() < 0.5: x = flip_axis(x, img_col_axis) if self.vertical_flip: if np.random.random() < 0.5: x = flip_axis(x, img_row_axis) if self.brightness_range is not None: x = random_brightness(x, self.brightness_range) return x def fit(self, x, augment=False, rounds=1, seed=None): """Computes the internal data stats related to the data-dependent transformations, based on an array of sample data. Only required if `featurewise_center` or `featurewise_std_normalization` or `zca_whitening` are set to True. # Arguments x: Sample data. Should have rank 4. In case of grayscale data, the channels axis should have value 1, and in case of RGB data, it should have value 3. augment: Boolean (default: False). Whether to fit on randomly augmented samples. rounds: Int (default: 1). If using data augmentation (`augment=True`), this is how many augmentation passes over the data to use. seed: Int (default: None). Random seed. """ x = np.asarray(x, dtype=K.floatx()) if x.ndim != 4: raise ValueError('Input to `.fit()` should have rank 4. ' 'Got array with shape: ' + str(x.shape)) if x.shape[self.channel_axis] not in {1, 3, 4}: warnings.warn( 'Expected input to be images (as Numpy array) ' 'following the data format convention "' + self.data_format + '" (channels on axis ' + str(self.channel_axis) + '), i.e. expected ' 'either 1, 3 or 4 channels on axis ' + str(self.channel_axis) + '. ' 'However, it was passed an array with shape ' + str(x.shape) + ' (' + str(x.shape[self.channel_axis]) + ' channels).') if seed is not None: np.random.seed(seed) x = np.copy(x) if augment: ax = np.zeros( tuple([rounds * x.shape[0]] + list(x.shape)[1:]), dtype=K.floatx()) for r in range(rounds): for i in range(x.shape[0]): ax[i + r * x.shape[0]] = self.random_transform(x[i]) x = ax if self.featurewise_center: self.mean = np.mean(x, axis=(0, self.row_axis, self.col_axis)) broadcast_shape = [1, 1, 1] broadcast_shape[self.channel_axis - 1] = x.shape[self.channel_axis] self.mean = np.reshape(self.mean, broadcast_shape) x -= self.mean if self.featurewise_std_normalization: self.std = np.std(x, axis=(0, self.row_axis, self.col_axis)) broadcast_shape = [1, 1, 1] broadcast_shape[self.channel_axis - 1] = x.shape[self.channel_axis] self.std = np.reshape(self.std, broadcast_shape) x /= (self.std + K.epsilon()) if self.zca_whitening: flat_x = np.reshape( x, (x.shape[0], x.shape[1] * x.shape[2] * x.shape[3])) sigma = np.dot(flat_x.T, flat_x) / flat_x.shape[0] u, s, _ = linalg.svd(sigma) s_inv = 1. / np.sqrt(s[np.newaxis] + self.zca_epsilon) self.principal_components = (u * s_inv).dot(u.T) class Iterator(Sequence): """Base class for image data iterators. Every `Iterator` must implement the `_get_batches_of_transformed_samples` method. # Arguments n: Integer, total number of samples in the dataset to loop over. batch_size: Integer, size of a batch. shuffle: Boolean, whether to shuffle the data between epochs. seed: Random seeding for data shuffling. """ def __init__(self, n, batch_size, shuffle, seed): self.n = n self.batch_size = batch_size self.seed = seed self.shuffle = shuffle self.batch_index = 0 self.total_batches_seen = 0 self.lock = threading.Lock() self.index_array = None self.index_generator = self._flow_index() def _set_index_array(self): self.index_array = np.arange(self.n) if self.shuffle: self.index_array = np.random.permutation(self.n) def __getitem__(self, idx): if idx >= len(self): raise ValueError('Asked to retrieve element {idx}, ' 'but the Sequence ' 'has length {length}'.format(idx=idx, length=len(self))) if self.seed is not None: np.random.seed(self.seed + self.total_batches_seen) self.total_batches_seen += 1 if self.index_array is None: self._set_index_array() index_array = self.index_array[self.batch_size * idx: self.batch_size * (idx + 1)] return self._get_batches_of_transformed_samples(index_array) def __len__(self): return (self.n + self.batch_size - 1) // self.batch_size # round up def on_epoch_end(self): self._set_index_array() def reset(self): self.batch_index = 0 def _flow_index(self): # Ensure self.batch_index is 0. self.reset() while 1: if self.seed is not None: np.random.seed(self.seed + self.total_batches_seen) if self.batch_index == 0: self._set_index_array() current_index = (self.batch_index * self.batch_size) % self.n if self.n > current_index + self.batch_size: self.batch_index += 1 else: self.batch_index = 0 self.total_batches_seen += 1 yield self.index_array[current_index: current_index + self.batch_size] def __iter__(self): # Needed if we want to do something like: # for x, y in data_gen.flow(...): return self def __next__(self, *args, **kwargs): return self.next(*args, **kwargs) def _get_batches_of_transformed_samples(self, index_array): """Gets a batch of transformed samples. # Arguments index_array: Array of sample indices to include in batch. # Returns A batch of transformed samples. """ raise NotImplementedError class NumpyArrayIterator(Iterator): """Iterator yielding data from a Numpy array. # Arguments x: Numpy array of input data or tuple. If tuple, the second elements is either another numpy array or a list of numpy arrays, each of which gets passed through as an output without any modifications. y: Numpy array of targets data. image_data_generator: Instance of `ImageDataGenerator` to use for random transformations and normalization. batch_size: Integer, size of a batch. shuffle: Boolean, whether to shuffle the data between epochs. sample_weight: Numpy array of sample weights. seed: Random seed for data shuffling. data_format: String, one of `channels_first`, `channels_last`. save_to_dir: Optional directory where to save the pictures being yielded, in a viewable format. This is useful for visualizing the random transformations being applied, for debugging purposes. save_prefix: String prefix to use for saving sample images (if `save_to_dir` is set). save_format: Format to use for saving sample images (if `save_to_dir` is set). subset: Subset of data (`"training"` or `"validation"`) if validation_split is set in ImageDataGenerator. """ def __init__(self, x, y, image_data_generator, batch_size=32, shuffle=False, sample_weight=None, seed=None, data_format=None, save_to_dir=None, save_prefix='', save_format='png', subset=None): if (type(x) is tuple) or (type(x) is list): if type(x[1]) is not list: x_misc = [np.asarray(x[1])] else: x_misc = [np.asarray(xx) for xx in x[1]] x = x[0] for xx in x_misc: if len(x) != len(xx): raise ValueError( 'All of the arrays in `x` ' 'should have the same length. ' 'Found a pair with: len(x[0]) = %s, len(x[?]) = %s' % (len(x), len(xx))) else: x_misc = [] if y is not None and len(x) != len(y): raise ValueError('`x` (images tensor) and `y` (labels) ' 'should have the same length. ' 'Found: x.shape = %s, y.shape = %s' % (np.asarray(x).shape, np.asarray(y).shape)) if sample_weight is not None and len(x) != len(sample_weight): raise ValueError('`x` (images tensor) and `sample_weight` ' 'should have the same length. ' 'Found: x.shape = %s, sample_weight.shape = %s' % (np.asarray(x).shape, np.asarray(sample_weight).shape)) if subset is not None: if subset not in {'training', 'validation'}: raise ValueError('Invalid subset name:', subset, '; expected "training" or "validation".') split_idx = int(len(x) * image_data_generator._validation_split) if subset == 'validation': x = x[:split_idx] x_misc = [np.asarray(xx[:split_idx]) for xx in x_misc] if y is not None: y = y[:split_idx] else: x = x[split_idx:] x_misc = [np.asarray(xx[split_idx:]) for xx in x_misc] if y is not None: y = y[split_idx:] if data_format is None: data_format = K.image_data_format() self.x = np.asarray(x, dtype=K.floatx()) self.x_misc = x_misc if self.x.ndim != 4: raise ValueError('Input data in `NumpyArrayIterator` ' 'should have rank 4. You passed an array ' 'with shape', self.x.shape) channels_axis = 3 if data_format == 'channels_last' else 1 if self.x.shape[channels_axis] not in {1, 3, 4}: warnings.warn('NumpyArrayIterator is set to use the ' 'data format convention "' + data_format + '" ' '(channels on axis ' + str(channels_axis) + '), i.e. expected either 1, 3 or 4 ' 'channels on axis ' + str(channels_axis) + '. ' 'However, it was passed an array with shape ' + str(self.x.shape) + ' (' + str(self.x.shape[channels_axis]) + ' channels).') if y is not None: self.y = np.asarray(y) else: self.y = None if sample_weight is not None: self.sample_weight = np.asarray(sample_weight) else: self.sample_weight = None self.image_data_generator = image_data_generator self.data_format = data_format self.save_to_dir = save_to_dir self.save_prefix = save_prefix self.save_format = save_format super(NumpyArrayIterator, self).__init__(x.shape[0], batch_size, shuffle, seed) def _get_batches_of_transformed_samples(self, index_array): batch_x = np.zeros(tuple([len(index_array)] + list(self.x.shape)[1:]), dtype=K.floatx()) for i, j in enumerate(index_array): x = self.x[j] x = self.image_data_generator.random_transform( x.astype(K.floatx())) x = self.image_data_generator.standardize(x) batch_x[i] = x if self.save_to_dir: for i, j in enumerate(index_array): img = array_to_img(batch_x[i], self.data_format, scale=True) fname = '{prefix}_{index}_{hash}.{format}'.format( prefix=self.save_prefix, index=j, hash=np.random.randint(1e4), format=self.save_format) img.save(os.path.join(self.save_to_dir, fname)) batch_x_miscs = [xx[index_array] for xx in self.x_misc] output = (batch_x if batch_x_miscs == [] else [batch_x] + batch_x_miscs,) if self.y is None: return output[0] output += (self.y[index_array],) if self.sample_weight is not None: output += (self.sample_weight[index_array],) return output def next(self): """For python 2.x. # Returns The next batch. """ # Keeps under lock only the mechanism which advances # the indexing of each batch. with self.lock: index_array = next(self.index_generator) # The transformation of images is not under thread lock # so it can be done in parallel return self._get_batches_of_transformed_samples(index_array) def _iter_valid_files(directory, white_list_formats, follow_links): """Iterates on files with extension in `white_list_formats` contained in `directory`. # Arguments directory: Absolute path to the directory containing files to be counted white_list_formats: Set of strings containing allowed extensions for the files to be counted. follow_links: Boolean. # Yields Tuple of (root, filename) with extension in `white_list_formats`. """ def _recursive_list(subpath): return sorted(os.walk(subpath, followlinks=follow_links), key=lambda x: x[0]) for root, _, files in _recursive_list(directory): for fname in sorted(files): for extension in white_list_formats: if fname.lower().endswith('.tiff'): warnings.warn('Using \'.tiff\' files with multiple bands ' 'will cause distortion. ' 'Please verify your output.') if fname.lower().endswith('.' + extension): yield root, fname def _count_valid_files_in_directory(directory, white_list_formats, split, follow_links): """Counts files with extension in `white_list_formats` contained in `directory`. # Arguments directory: absolute path to the directory containing files to be counted white_list_formats: set of strings containing allowed extensions for the files to be counted. split: tuple of floats (e.g. `(0.2, 0.6)`) to only take into account a certain fraction of files in each directory. E.g.: `segment=(0.6, 1.0)` would only account for last 40 percent of images in each directory. follow_links: boolean. # Returns the count of files with extension in `white_list_formats` contained in the directory. """ num_files = len(list( _iter_valid_files(directory, white_list_formats, follow_links))) if split: start, stop = int(split[0] * num_files), int(split[1] * num_files) else: start, stop = 0, num_files return stop - start def _list_valid_filenames_in_directory(directory, white_list_formats, split, class_indices, follow_links): """Lists paths of files in `subdir` with extensions in `white_list_formats`. # Arguments directory: absolute path to a directory containing the files to list. The directory name is used as class label and must be a key of `class_indices`. white_list_formats: set of strings containing allowed extensions for the files to be counted. split: tuple of floats (e.g. `(0.2, 0.6)`) to only take into account a certain fraction of files in each directory. E.g.: `segment=(0.6, 1.0)` would only account for last 40 percent of images in each directory. class_indices: dictionary mapping a class name to its index. follow_links: boolean. # Returns classes: a list of class indices filenames: the path of valid files in `directory`, relative from `directory`'s parent (e.g., if `directory` is "dataset/class1", the filenames will be `["class1/file1.jpg", "class1/file2.jpg", ...]`). """ dirname = os.path.basename(directory) if split: num_files = len(list( _iter_valid_files(directory, white_list_formats, follow_links))) start, stop = int(split[0] * num_files), int(split[1] * num_files) valid_files = list( _iter_valid_files( directory, white_list_formats, follow_links))[start: stop] else: valid_files = _iter_valid_files( directory, white_list_formats, follow_links) classes = [] filenames = [] for root, fname in valid_files: classes.append(class_indices[dirname]) absolute_path = os.path.join(root, fname) relative_path = os.path.join( dirname, os.path.relpath(absolute_path, directory)) filenames.append(relative_path) return classes, filenames class DirectoryIterator(Iterator): """Iterator capable of reading images from a directory on disk. # Arguments directory: Path to the directory to read images from. Each subdirectory in this directory will be considered to contain images from one class, or alternatively you could specify class subdirectories via the `classes` argument. image_data_generator: Instance of `ImageDataGenerator` to use for random transformations and normalization. target_size: tuple of integers, dimensions to resize input images to. color_mode: One of `"rgb"`, `"grayscale"`. Color mode to read images. classes: Optional list of strings, names of subdirectories containing images from each class (e.g. `["dogs", "cats"]`). It will be computed automatically if not set. class_mode: Mode for yielding the targets: `"binary"`: binary targets (if there are only two classes), `"categorical"`: categorical targets, `"sparse"`: integer targets, `"input"`: targets are images identical to input images (mainly used to work with autoencoders), `None`: no targets get yielded (only input images are yielded). batch_size: Integer, size of a batch. shuffle: Boolean, whether to shuffle the data between epochs. seed: Random seed for data shuffling. data_format: String, one of `channels_first`, `channels_last`. save_to_dir: Optional directory where to save the pictures being yielded, in a viewable format. This is useful for visualizing the random transformations being applied, for debugging purposes. save_prefix: String prefix to use for saving sample images (if `save_to_dir` is set). save_format: Format to use for saving sample images (if `save_to_dir` is set). subset: Subset of data (`"training"` or `"validation"`) if validation_split is set in ImageDataGenerator. interpolation: Interpolation method used to resample the image if the target size is different from that of the loaded image. Supported methods are "nearest", "bilinear", and "bicubic". If PIL version 1.1.3 or newer is installed, "lanczos" is also supported. If PIL version 3.4.0 or newer is installed, "box" and "hamming" are also supported. By default, "nearest" is used. """ def __init__(self, directory, image_data_generator, target_size=(256, 256), color_mode='rgb', classes=None, class_mode='categorical', batch_size=32, shuffle=True, seed=None, data_format=None, save_to_dir=None, save_prefix='', save_format='png', follow_links=False, subset=None, interpolation='nearest'): if data_format is None: data_format = K.image_data_format() self.directory = directory self.image_data_generator = image_data_generator self.target_size = tuple(target_size) if color_mode not in {'rgb', 'grayscale'}: raise ValueError('Invalid color mode:', color_mode, '; expected "rgb" or "grayscale".') self.color_mode = color_mode self.data_format = data_format if self.color_mode == 'rgb': if self.data_format == 'channels_last': self.image_shape = self.target_size + (3,) else: self.image_shape = (3,) + self.target_size else: if self.data_format == 'channels_last': self.image_shape = self.target_size + (1,) else: self.image_shape = (1,) + self.target_size self.classes = classes if class_mode not in {'categorical', 'binary', 'sparse', 'input', None}: raise ValueError('Invalid class_mode:', class_mode, '; expected one of "categorical", ' '"binary", "sparse", "input"' ' or None.') self.class_mode = class_mode self.save_to_dir = save_to_dir self.save_prefix = save_prefix self.save_format = save_format self.interpolation = interpolation if subset is not None: validation_split = self.image_data_generator._validation_split if subset == 'validation': split = (0, validation_split) elif subset == 'training': split = (validation_split, 1) else: raise ValueError('Invalid subset name: ', subset, '; expected "training" or "validation"') else: split = None self.subset = subset white_list_formats = {'png', 'jpg', 'jpeg', 'bmp', 'ppm', 'tif', 'tiff'} # First, count the number of samples and classes. self.samples = 0 if not classes: classes = [] for subdir in sorted(os.listdir(directory)): if os.path.isdir(os.path.join(directory, subdir)): classes.append(subdir) self.num_classes = len(classes) self.class_indices = dict(zip(classes, range(len(classes)))) pool = multiprocessing.pool.ThreadPool() function_partial = partial(_count_valid_files_in_directory, white_list_formats=white_list_formats, follow_links=follow_links, split=split) self.samples = sum(pool.map(function_partial, (os.path.join(directory, subdir) for subdir in classes))) print('Found %d images belonging to %d classes.' % (self.samples, self.num_classes)) # Second, build an index of the images # in the different class subfolders. results = [] self.filenames = [] self.classes = np.zeros((self.samples,), dtype='int32') i = 0 for dirpath in (os.path.join(directory, subdir) for subdir in classes): results.append( pool.apply_async(_list_valid_filenames_in_directory, (dirpath, white_list_formats, split, self.class_indices, follow_links))) for res in results: classes, filenames = res.get() self.classes[i:i + len(classes)] = classes self.filenames += filenames i += len(classes) pool.close() pool.join() super(DirectoryIterator, self).__init__(self.samples, batch_size, shuffle, seed) def _get_batches_of_transformed_samples(self, index_array): batch_x = np.zeros( (len(index_array),) + self.image_shape, dtype=K.floatx()) grayscale = self.color_mode == 'grayscale' # build batch of image data for i, j in enumerate(index_array): fname = self.filenames[j] img = load_img(os.path.join(self.directory, fname), grayscale=grayscale, target_size=self.target_size, interpolation=self.interpolation) x = img_to_array(img, data_format=self.data_format) x = self.image_data_generator.random_transform(x) x = self.image_data_generator.standardize(x) batch_x[i] = x # optionally save augmented images to disk for debugging purposes if self.save_to_dir: for i, j in enumerate(index_array): img = array_to_img(batch_x[i], self.data_format, scale=True) fname = '{prefix}_{index}_{hash}.{format}'.format( prefix=self.save_prefix, index=j, hash=np.random.randint(1e7), format=self.save_format) img.save(os.path.join(self.save_to_dir, fname)) # build batch of labels if self.class_mode == 'input': batch_y = batch_x.copy() elif self.class_mode == 'sparse': batch_y = self.classes[index_array] elif self.class_mode == 'binary': batch_y = self.classes[index_array].astype(K.floatx()) elif self.class_mode == 'categorical': batch_y = np.zeros( (len(batch_x), self.num_classes), dtype=K.floatx()) for i, label in enumerate(self.classes[index_array]): batch_y[i, label] = 1. else: return batch_x return batch_x, batch_y def next(self): """For python 2.x. # Returns The next batch. """ with self.lock: index_array = next(self.index_generator) # The transformation of images is not under thread lock # so it can be done in parallel return self._get_batches_of_transformed_samples(index_array)
41.678078
124
0.573119
[ "MIT" ]
HangJie720/keras
keras/preprocessing/image.py
69,394
Python
import sys import os from win32com.shell import shell import logging import argparse from Tkinter import * import tkMessageBox from config import default_config_url from ui import InstallerUI from installer_api import InstallerAPI def get_logfile_path(): profile = os.getenv('USERPROFILE') company_name = "Peachy" app_name = 'PeachyInstaller' path = os.path.join(profile, 'AppData', 'Local', company_name, app_name) if not os.path.exists(path): os.makedirs(path) return path def setup_logging(args): logging_path = get_logfile_path() peachy_logger = logging.getLogger('peachy') logfile = os.path.join(logging_path, 'peachyinstaller.log') logging_format = '%(levelname)s: %(asctime)s %(module)s - %(message)s' logging_level = getattr(logging, args.loglevel.upper(), "INFO") if not isinstance(logging_level, int): raise ValueError('Invalid log level: %s' % args.loglevel) if True: peachy_logger = logging.getLogger('peachy') peachy_logger.propagate = False logFormatter = logging.Formatter(logging_format) fileHandler = logging.FileHandler(logfile) consoleHandler = logging.StreamHandler() fileHandler.setFormatter(logFormatter) consoleHandler.setFormatter(logFormatter) peachy_logger.addHandler(fileHandler) peachy_logger.addHandler(consoleHandler) peachy_logger.setLevel(logging_level) else: logging.basicConfig(filename=logfile, format=logging_format, level=logging_level) peachy_logger.info("\n----------------------Logging Started------------------------") if __name__ == '__main__': parser = argparse.ArgumentParser("Configure and print with Peachy Printer") parser.add_argument('-l', '--log', dest='loglevel', action='store', required=False, default="INFO", help="Enter the loglevel [DEBUG|INFO|WARNING|ERROR] default: WARNING") parser.add_argument('-t', '--console', dest='console', action='store_true', required=False, help="Logs to console not file") parser.add_argument('-a', '--alternate-config', dest='alt_config', action='store', required=False, default=default_config_url, help="Alternate url for config file") args, unknown = parser.parse_known_args() ASADMIN = 'asadmin' if sys.argv[-1] != ASADMIN: script = os.path.abspath(sys.argv[0]) params = ' '.join([script] + sys.argv[1:] + [ASADMIN]) shell.ShellExecuteEx(lpVerb='runas', lpFile=sys.executable, lpParameters=params) sys.exit(0) setup_logging(args) logger = logging.getLogger('peashy') try: api = InstallerAPI(args.alt_config) result, code, message = api.initialize() logger.info('{} -- {} -- {}'.format(result, code, message)) root = Tk() root.wm_title("Peachy Installer") root.resizable(width=FALSE, height=FALSE) root.geometry('{}x{}'.format(640, 400)) if not result: tkMessageBox.showinfo("Something annoying has occured", message) if code == 10304: import webbrowser webbrowser.open('https://github.com/PeachyPrinter/peachyinstaller/releases', new=0, autoraise=True) sys.exit() i = InstallerUI(api, master=root) i.mainloop() except Exception as ex: logger.error(ex.message) raise
39.206897
183
0.660803
[ "Apache-2.0" ]
PeachyPrinter/peachyinstaller
windows/src/install.py
3,411
Python
import re from streamlink.compat import urlparse, parse_qsl from streamlink.plugin import Plugin, PluginError from streamlink.plugin.api import http, validate from streamlink.plugin.api.utils import parse_query from streamlink.stream import HTTPStream, HLSStream from streamlink.compat import parse_qsl from streamlink.stream.ffmpegmux import MuxedStream API_KEY = "AIzaSyBDBi-4roGzWJN4du9TuDMLd_jVTcVkKz4" API_BASE = "https://www.googleapis.com/youtube/v3" API_SEARCH_URL = API_BASE + "/search" API_VIDEO_INFO = "http://youtube.com/get_video_info" HLS_HEADERS = { "User-Agent": "Mozilla/5.0" } def parse_stream_map(stream_map): if not stream_map: return [] return [parse_query(s) for s in stream_map.split(",")] def parse_fmt_list(formatsmap): formats = {} if not formatsmap: return formats for format in formatsmap.split(","): s = format.split("/") (w, h) = s[1].split("x") formats[int(s[0])] = "{0}p".format(h) return formats _config_schema = validate.Schema( { validate.optional("fmt_list"): validate.all( validate.text, validate.transform(parse_fmt_list) ), validate.optional("url_encoded_fmt_stream_map"): validate.all( validate.text, validate.transform(parse_stream_map), [{ "itag": validate.all( validate.text, validate.transform(int) ), "quality": validate.text, "url": validate.url(scheme="http"), validate.optional("s"): validate.text, validate.optional("stereo3d"): validate.all( validate.text, validate.transform(int), validate.transform(bool) ), }] ), validate.optional("adaptive_fmts"): validate.all( validate.text, validate.transform(parse_stream_map), [{ validate.optional("s"): validate.text, "type": validate.all( validate.text, validate.transform(lambda t: t.split(";")[0].split("/")), [validate.text, validate.text] ), "url": validate.all( validate.url(scheme="http") ) }] ), validate.optional("hlsvp"): validate.text, validate.optional("live_playback"): validate.transform(bool), "status": validate.text } ) _search_schema = validate.Schema( { "items": [{ "id": { "videoId": validate.text } }] }, validate.get("items") ) _channelid_re = re.compile(r'meta itemprop="channelId" content="([^"]+)"') _livechannelid_re = re.compile(r'meta property="og:video:url" content="([^"]+)') _url_re = re.compile(r""" http(s)?://(\w+\.)?youtube.com (?: (?: /(watch.+v=|embed/|v/) (?P<video_id>[0-9A-z_-]{11}) ) | (?: /(user|channel)/(?P<user>[^/?]+) ) | (?: /c/(?P<liveChannel>[^/?]+)/live ) ) """, re.VERBOSE) class YouTube(Plugin): adp_video = { 137: "1080p", 303: "1080p60", # HFR 299: "1080p60", # HFR 264: "1440p", 308: "1440p60", # HFR 266: "2160p", 315: "2160p60", # HFR 138: "2160p", 302: "720p60", # HFR } adp_audio = { 140: 128, 141: 256, 171: 128, 249: 48, 250: 64, 251: 160, } @classmethod def can_handle_url(self, url): return _url_re.match(url) @classmethod def stream_weight(cls, stream): match_3d = re.match(r"(\w+)_3d", stream) match_hfr = re.match(r"(\d+p)(\d+)", stream) if match_3d: weight, group = Plugin.stream_weight(match_3d.group(1)) weight -= 1 group = "youtube_3d" elif match_hfr: weight, group = Plugin.stream_weight(match_hfr.group(1)) weight += 1 group = "high_frame_rate" else: weight, group = Plugin.stream_weight(stream) return weight, group def _find_channel_video(self): res = http.get(self.url) match = _channelid_re.search(res.text) if not match: return return self._get_channel_video(match.group(1)) def _get_channel_video(self, channel_id): query = { "channelId": channel_id, "type": "video", "eventType": "live", "part": "id", "key": API_KEY } res = http.get(API_SEARCH_URL, params=query) videos = http.json(res, schema=_search_schema) for video in videos: video_id = video["id"]["videoId"] return video_id def _find_canonical_stream_info(self): res = http.get(self.url) match = _livechannelid_re.search(res.text) if not match: return return self._get_stream_info(match.group(1)) def _get_stream_info(self, url): match = _url_re.match(url) user = match.group("user") live_channel = match.group("liveChannel") if user: video_id = self._find_channel_video() elif live_channel: return self._find_canonical_stream_info() else: video_id = match.group("video_id") if video_id == "live_stream": query_info = dict(parse_qsl(urlparse(url).query)) if "channel" in query_info: video_id = self._get_channel_video(query_info["channel"]) if not video_id: return params = { "video_id": video_id, "el": "player_embedded" } res = http.get(API_VIDEO_INFO, params=params, headers=HLS_HEADERS) return parse_query(res.text, name="config", schema=_config_schema) def _get_streams(self): info = self._get_stream_info(self.url) if not info: return formats = info.get("fmt_list") streams = {} protected = False for stream_info in info.get("url_encoded_fmt_stream_map", []): if stream_info.get("s"): protected = True continue stream = HTTPStream(self.session, stream_info["url"]) name = formats.get(stream_info["itag"]) or stream_info["quality"] if stream_info.get("stereo3d"): name += "_3d" streams[name] = stream adaptive_streams = {} best_audio_itag = None # Extract audio streams from the DASH format list for stream_info in info.get("adaptive_fmts", []): if stream_info.get("s"): protected = True continue stream_params = dict(parse_qsl(stream_info["url"])) if "itag" not in stream_params: continue itag = int(stream_params["itag"]) # extract any high quality streams only available in adaptive formats adaptive_streams[itag] = stream_info["url"] stream_type, stream_format = stream_info["type"] if stream_type == "audio": stream = HTTPStream(self.session, stream_info["url"]) name = "audio_{0}".format(stream_format) streams[name] = stream # find the best quality audio stream m4a, opus or vorbis if best_audio_itag is None or self.adp_audio[itag] > self.adp_audio[best_audio_itag]: best_audio_itag = itag if best_audio_itag and adaptive_streams and MuxedStream.is_usable(self.session): aurl = adaptive_streams[best_audio_itag] for itag, name in self.adp_video.items(): if itag in adaptive_streams: vurl = adaptive_streams[itag] streams[name] = MuxedStream(self.session, HTTPStream(self.session, vurl), HTTPStream(self.session, aurl)) hls_playlist = info.get("hlsvp") if hls_playlist: try: hls_streams = HLSStream.parse_variant_playlist( self.session, hls_playlist, headers=HLS_HEADERS, namekey="pixels" ) streams.update(hls_streams) except IOError as err: self.logger.warning("Failed to extract HLS streams: {0}", err) if not streams and protected: raise PluginError("This plugin does not support protected videos, " "try youtube-dl instead") return streams __plugin__ = YouTube
30.951557
101
0.541643
[ "BSD-2-Clause" ]
nxkbd/streamlink
src/streamlink/plugins/youtube.py
8,945
Python
# Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Reroot to a subtree, maintaining an input proto index. reroot is similar to get_descendant_or_error. However, this method allows you to call create_proto_index(...) later on, that gives you a reference to the original proto. """ from typing import FrozenSet, Optional, Sequence from struct2tensor import calculate_options from struct2tensor import expression from struct2tensor import expression_add from struct2tensor import path from struct2tensor import prensor import tensorflow as tf def reroot(root: expression.Expression, source_path: path.Path) -> expression.Expression: """Reroot to a new path, maintaining a input proto index. Similar to root.get_descendant_or_error(source_path): however, this method retains the ability to get a map to the original index. Args: root: the original root. source_path: the path to the new root. Returns: the new root. """ new_root = root for step in source_path.field_list: new_root = _RerootExpression(new_root, step) return new_root def create_proto_index_field(root: expression.Expression, new_field_name: path.Step ) -> expression.Expression: return expression_add.add_paths( root, {path.Path([new_field_name]): _InputProtoIndexExpression(root)}) class _RerootRootNodeTensor(prensor.RootNodeTensor): """The reroot root node. This contains a map from a current index to the original index of a proto. """ def __init__(self, size: tf.Tensor, input_proto_index: tf.Tensor): super().__init__(size) self._input_proto_index = input_proto_index @property def input_proto_index(self): return self._input_proto_index def _get_proto_index_parent_index(node: prensor.RootNodeTensor): return tf.range(node.size) def _get_input_proto_index(node: prensor.RootNodeTensor): if isinstance(node, _RerootRootNodeTensor): return node.input_proto_index return _get_proto_index_parent_index(node) class _RerootExpression(expression.Expression): """Reroot to a new path, maintaining a input proto index.""" def __init__(self, original_root: expression.Expression, field_name: path.Step): super().__init__(True, None) self._field_name = field_name self._original_root = original_root self._new_root = original_root.get_child_or_error(field_name) if self._new_root.type is not None: raise ValueError("New root must be a message type: {}".format( str(self._field_name))) # TODO(martinz): Check that the "original root source expression" has a type # in (_RerootExpression, prensor._ProtoRootExpression) # To do this, we need a general technique similar to # expression_add._is_true_source_expression: however, this should also cover # intermediate operations like "project". # Since this check is not present, if it should have fired, there will be # an error when calculate(...) is called. def get_source_expressions(self) -> Sequence[expression.Expression]: return [self._original_root, self._new_root] def calculate( self, sources: Sequence[prensor.NodeTensor], destinations: Sequence[expression.Expression], options: calculate_options.Options, side_info: Optional[prensor.Prensor] = None) -> prensor.NodeTensor: [old_root_value, new_root_value] = sources if isinstance(old_root_value, prensor.RootNodeTensor) and isinstance( new_root_value, prensor.ChildNodeTensor): old_input_proto_index = _get_input_proto_index(old_root_value) # Notice that the "gather" operation is similar to promote. return _RerootRootNodeTensor( tf.size(new_root_value.parent_index, out_type=tf.int64), tf.gather(old_input_proto_index, new_root_value.parent_index)) raise ValueError("Source types incorrect") def calculation_is_identity(self) -> bool: return False def calculation_equal(self, expr: expression.Expression) -> bool: # Although path can vary, it is not used in the calculation, just to return isinstance(expr, _RerootExpression) def _get_child_impl(self, field_name: path.Step) -> Optional[expression.Expression]: return self._new_root.get_child(field_name) def known_field_names(self) -> FrozenSet[path.Step]: return self._new_root.known_field_names() class _InputProtoIndexExpression(expression.Leaf): """A proto index expression.""" def __init__(self, root: expression.Expression): """Constructor for proto index expression. Args: root: an expression that must return a RootNodeTensor. """ super().__init__(is_repeated=False, my_type=tf.int64) self._root = root def get_source_expressions(self) -> Sequence[expression.Expression]: return [self._root] def calculate( self, sources: Sequence[prensor.NodeTensor], destinations: Sequence[expression.Expression], options: calculate_options.Options, side_info: Optional[prensor.Prensor] = None) -> prensor.NodeTensor: [root_node] = sources # The following check ensures not just that we can calculate the value, # but that no "improper" reroots were done. if isinstance(root_node, prensor.RootNodeTensor): return prensor.LeafNodeTensor( _get_proto_index_parent_index(root_node), _get_input_proto_index(root_node), is_repeated=False) raise ValueError( "Illegal operation: expected a true root node: got {}".format( str(root_node))) def calculation_is_identity(self) -> bool: return False def calculation_equal(self, expr: expression.Expression) -> bool: # Although path can vary, it is not used in the calculation, just to return isinstance(expr, _InputProtoIndexExpression)
36.056497
80
0.733469
[ "Apache-2.0" ]
anukaal/struct2tensor
struct2tensor/expression_impl/reroot.py
6,382
Python
class GEDAColor: """ Enumeration of gEDA colors """ BACKGROUND_COLOR = 0 PIN_COLOR = 1 NET_ENDPOINT_COLOR = 2 GRAPHIC_COLOR = 3 NET_COLOR = 4 ATTRIBUTE_COLOR = 5 LOGIC_BUBBLE_COLOR = 6 DOTS_GRID_COLOR = 7 DETACHED_ATTRIBUTE_COLOR = 8 TEXT_COLOR = 9 BUS_COLOR = 10 SELECT_COLOR = 11 BOUNDINGBOX_COLOR = 12 ZOOM_BOX_COLOR = 13 STROKE_COLOR = 14 LOCK_COLOR = 15 class GEDAParameter(object): TYPE = '' def __init__(self, name, datatype=int, default=None): self._name = name self.datatype = datatype self.default = default @property def name(self): if self.TYPE: return "%s_%s" % (self.TYPE, self._name) return self._name class GEDAStyleParameter(GEDAParameter): """ Style parameter """ TYPE = 'style' class GEDAExtraParameter(GEDAParameter): """ Extra parameter """ TYPE = 'extra' class GEDACommand(object): """ Command """ TYPE = None PARAMETERS = () EXTRA_PARAMETERS = () def parameters(self): return self.PARAMETERS + self.EXTRA_PARAMETERS def get_style_keywords(self): style_type = GEDAStyleParameter.TYPE return [p.name for p in self.PARAMETERS if p.name.startswith(style_type)] def update_default_kwargs(self, **kwargs): default_kwargs = {} for parameter in self.parameters(): default_kwargs[parameter.name] = parameter.default default_kwargs.update(kwargs) return default_kwargs def generate_command(self, **kwargs): kwargs = self.update_default_kwargs(**kwargs) command = [self.TYPE] for parameter in self.PARAMETERS: command.append("%%(%s)s" % parameter.name) return [" ".join(command) % kwargs] class GEDALineCommand(GEDACommand): """ Line command """ TYPE = 'L' PARAMETERS = ( GEDAParameter('x1'), GEDAParameter('y1'), GEDAParameter('x2'), GEDAParameter('y2'), GEDAStyleParameter('color', default=GEDAColor.GRAPHIC_COLOR), GEDAStyleParameter('width', default=10), GEDAStyleParameter('capstyle', default=0), GEDAStyleParameter('dashstyle', default=0), GEDAStyleParameter('dashlength', default=-1), GEDAStyleParameter('dashspace', default=-1), ) class GEDABoxCommand(GEDACommand): """ Box command """ TYPE = "B" PARAMETERS = ( GEDAParameter('x'), GEDAParameter('y'), GEDAParameter('width'), GEDAParameter('height'), GEDAStyleParameter('color', default=GEDAColor.GRAPHIC_COLOR), GEDAStyleParameter('width', default=10), GEDAStyleParameter('capstyle', default=0), GEDAStyleParameter('dashstyle', default=0), GEDAStyleParameter('dashlength', default=-1), GEDAStyleParameter('dashspace', default=-1), GEDAStyleParameter('filltype', default=0), GEDAStyleParameter('fillwidth', default=-1), GEDAStyleParameter('angle1', default=-1), GEDAStyleParameter('pitch1', default=-1), GEDAStyleParameter('angle2', default=-1), GEDAStyleParameter('pitch2', default=-1), ) class GEDACircleCommand(GEDACommand): """ Circle command """ TYPE = 'V' PARAMETERS = ( GEDAParameter('x'), GEDAParameter('y'), GEDAParameter('radius'), GEDAStyleParameter('color', default=GEDAColor.GRAPHIC_COLOR), GEDAStyleParameter('width', default=10), GEDAStyleParameter('capstyle', default=0), GEDAStyleParameter('dashstyle', default=0), GEDAStyleParameter('dashlength', default=-1), GEDAStyleParameter('dashspace', default=-1), GEDAStyleParameter('filltype', default=0), GEDAStyleParameter('fillwidth', default=-1), GEDAStyleParameter('angle1', default=-1), GEDAStyleParameter('pitch1', default=-1), GEDAStyleParameter('angle2', default=-1), GEDAStyleParameter('pitch2', default=-1), ) class GEDAArcCommand(GEDACommand): """ Arc command """ TYPE = 'A' PARAMETERS = ( GEDAParameter('x'), GEDAParameter('y'), GEDAParameter('radius'), GEDAParameter('startangle'), GEDAParameter('sweepangle'), GEDAStyleParameter('color', default=GEDAColor.GRAPHIC_COLOR), GEDAStyleParameter('width', default=10), GEDAStyleParameter('capstyle', default=0), GEDAStyleParameter('dashstyle', default=0), GEDAStyleParameter('dashlength', default=-1), GEDAStyleParameter('dashspace', default=-1), ) class GEDATextCommand(GEDACommand): """ Text command """ TYPE = 'T' PARAMETERS = ( GEDAParameter('x'), GEDAParameter('y'), GEDAStyleParameter('color', default=GEDAColor.TEXT_COLOR), # GEDAStyleParameter('size', default=10), GEDAParameter('size'), GEDAParameter('visibility', default=1), GEDAParameter('show_name_value', default=1), GEDAParameter('angle', default=0), GEDAParameter('alignment', default=0), GEDAParameter('num_lines', default=1), ) class GEDASegmentCommand(GEDACommand): """ Segment command """ TYPE = 'N' PARAMETERS = ( GEDAParameter('x1'), GEDAParameter('y1'), GEDAParameter('x2'), GEDAParameter('y2'), GEDAStyleParameter('color', default=GEDAColor.NET_COLOR), ) class GEDAPinCommand(GEDACommand): """ Pin command """ TYPE = 'P' PARAMETERS = ( GEDAParameter('x1'), GEDAParameter('y1'), GEDAParameter('x2'), GEDAParameter('y2'), GEDAStyleParameter('color', default=GEDAColor.PIN_COLOR), # pin type is always 0 GEDAStyleParameter('pintype', default=0), # first point is active/connected pin GEDAParameter('whichend', default=0), ) class GEDAComponentCommand(GEDACommand): """ Component command """ TYPE = 'C' PARAMETERS = ( GEDAParameter('x'), GEDAParameter('y'), # GEDAParameter('selectable', default=0), GEDAParameter('selectable', default=1), GEDAParameter('angle'), GEDAParameter('mirror'), GEDAParameter('basename', datatype=str), ) class GEDAPathCommand(GEDACommand): """ Path command """ TYPE = "H" PARAMETERS = ( GEDAStyleParameter('color', default=GEDAColor.GRAPHIC_COLOR), GEDAStyleParameter('width', default=10), GEDAStyleParameter('capstyle', default=0), GEDAStyleParameter('dashstyle', default=0), GEDAStyleParameter('dashlength', default=-1), GEDAStyleParameter('dashspace', default=-1), GEDAStyleParameter('filltype', default=0), GEDAStyleParameter('fillwidth', default=-1), GEDAStyleParameter('angle1', default=-1), GEDAStyleParameter('pitch1', default=-1), GEDAStyleParameter('angle2', default=-1), GEDAStyleParameter('pitch2', default=-1), GEDAParameter('num_lines'), ) EXTRA_PARAMERTERS = ( GEDAExtraParameter('id'), ) class GEDAVersionCommand(GEDACommand): """ Version command """ TYPE = 'v' PARAMETERS = ( GEDAParameter('version'), GEDAParameter('fileformat_version'), ) class GEDABusCommand(GEDACommand): """ Bus command """ TYPE = 'U' PARAMETERS = ( GEDAParameter('x1'), GEDAParameter('y1'), GEDAParameter('x2'), GEDAParameter('y2'), GEDAStyleParameter('color', default=GEDAColor.BUS_COLOR), GEDAParameter('ripperdir', default=0), ) class GEDAPictureCommand(GEDACommand): """ Picture command """ TYPE = 'G' PARAMETERS = () class GEDAEmbeddedEnvironmentCommand(GEDACommand): """ Embeded command """ TYPE = '[' PARAMETERS = () class GEDAAttributeEnvironmentCommand(GEDACommand): """ Attribute environment command """ TYPE = '{' PARAMETERS = () class GEDACommand(GEDACommand): """ Command """ TYPE = 'U' PARAMETERS = ()
28.921708
69
0.621632
[ "Apache-2.0" ]
lehaianh1986/schematic-file-converter
upconvert/parser/geda_commands.py
8,127
Python
""" Django settings for doiainn project. Generated by 'django-admin startproject' using Django 1.8.4. For more information on this file, see https://docs.djangoproject.com/en/1.8/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.8/ref/settings/ """ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.8/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'fbrywz7o3a1=vf-+4luwn5h)!kt-xzghqtm#^3(epwcwcp^jws' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = ( 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ) MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'django.middleware.security.SecurityMiddleware', ) ROOT_URLCONF = 'doiainn.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'doiainn.wsgi.application' # Database # https://docs.djangoproject.com/en/1.8/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Internationalization # https://docs.djangoproject.com/en/1.8/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.8/howto/static-files/ STATIC_URL = '/static/'
25.640777
71
0.702385
[ "MIT" ]
bbenko/doiainn
code/doiainn/doiainn/settings.py
2,641
Python
import logging import pyrebase from requests.exceptions import HTTPError class Node: def __init__(self, nodeName): self._nodeName = nodeName self._next = None def child(self, nodeName): if self._next == None: self._next = Node(nodeName) else: self._next.next(nodeName) return self def set(self, data): if self._next == None: self._next = Set(data) else: self._next.set(data) return self def get(self): if self._next == None: self._next = Get() else: self._next.get() return self def eval(self, prev): return self._next.eval(prev.child(self._nodeName)) def __str__(self): if self._next == None: return 'child(' + str(self._nodeName) + ')' else: return 'child(' + str(self._nodeName) + ').' + str(self._next) class Set: def __init__(self, data): self._data = data def eval(self, prev): return prev.set(self._data) def __str__(self): return 'set(' + str(self._data) + ')' class Get: def eval(self, prev): return prev.get() def __str__(self): return 'get()' class Remove: def eval(self, prev): return prev.remove() def __str__(self): return 'remove()' class Push: def __init__(self, data): self._data = data def eval(self, prev): return prev.push(self._data) def __str__(self): return 'push(' + str(self._data) + ')' class Update: def __init__(self, data): self._data = data def eval(self, prev): return prev.update(self._data) def __str__(self): return 'update(' + str(self._data) + ')' class FirebaseLiveEvaluator: def __init__(self, config): logging.info('Initializing Firebase connection...') self._firebase = pyrebase.initialize_app(config) self._db = self._firebase.database() self._pathPrefix = config['firebasePathPrefix'] def eval(self, node): # logging.debug(node) if self._pathPrefix: return node.eval(self._db.child(self._pathPrefix)) else: return node.eval(self._db) class FirebaseLoggingEvaluator: def eval(self, node): logging.info(node) class FirebaseExceptionEvaluator: def __init__(self, config): logging.info('Initializing Firebase connection...') self._firebase = pyrebase.initialize_app(config) self._db = self._firebase.database() self._pathPrefix = config['firebasePathPrefix'] self._throw = True def eval(self, node): if self._throw: self._throw = False raise HTTPError("I Broke") logging.debug(node) if self._pathPrefix: return node.eval(self._db.child(self._pathPrefix)) else: return node.eval(self._db)
24.336066
74
0.584035
[ "MIT" ]
txsmith/p1-sensor
src/firebaseops.py
2,969
Python
# -*- coding: utf-8 -*- """ User database models -------------------- """ import enum import logging import uuid from flask import current_app from sqlalchemy_utils import types as column_types from flask_login import current_user # NOQA from app.extensions import db, FeatherModel from app.extensions.auth import security from app.extensions.edm import EDMObjectMixin from app.extensions.api.parameters import _get_is_static_role_property import app.extensions.logging as AuditLog log = logging.getLogger(__name__) class UserEDMMixin(EDMObjectMixin): # fmt: off # Name of the module, used for knowing what to sync i.e user.list, user.data EDM_NAME = 'user' # The EDM attribute for the version, if reported EDM_VERSION_ATTRIBUTE = 'version' # EDM_LOG_ATTRIBUTES = [ 'emailAddress', ] EDM_ATTRIBUTE_MAPPING = { # Ignored 'id' : None, 'lastLogin' : None, 'username' : None, # Attributes 'acceptedUserAgreement' : 'accepted_user_agreement', 'affiliation' : 'affiliation', 'emailAddress' : 'email', 'fullName' : 'full_name', 'receiveEmails' : 'receive_notification_emails', 'sharing' : 'shares_data', 'userURL' : 'website', 'version' : 'version', # Functions 'organizations' : '_process_edm_user_organization', 'profileImageUrl' : '_process_edm_user_profile_url', } # fmt: on @classmethod def ensure_edm_obj(cls, guid): user = User.query.filter(User.guid == guid).first() is_new = user is None if is_new: email = '%s@localhost' % (guid,) password = User.initial_random_password() user = User( guid=guid, email=email, password=password, version=None, is_active=True, in_alpha=True, ) with db.session.begin(): db.session.add(user) db.session.refresh(user) return user, is_new def _process_edm_user_profile_url(self, url): # TODO is this actually needed log.warning('User._process_edm_profile_url() not implemented yet') def _process_edm_user_organization(self, org): # TODO is this actually needed log.warning('User._process_edm_user_organization() not implemented yet') class User(db.Model, FeatherModel, UserEDMMixin): """ User database model. TODO: * Upgrade to HoustonModel after full transition for Users out of EDM is complete """ def __init__(self, *args, **kwargs): if 'password' not in kwargs: raise ValueError('User must have a password') super().__init__(*args, **kwargs) guid = db.Column( db.GUID, default=uuid.uuid4, primary_key=True ) # pylint: disable=invalid-name version = db.Column(db.BigInteger, default=None, nullable=True) email = db.Column( db.String(length=120), index=True, unique=True, default='', nullable=False ) password = db.Column( column_types.PasswordType(max_length=128, schemes=('bcrypt',)), nullable=False ) # can me migrated from EDM field "password" full_name = db.Column( db.String(length=120), default='', nullable=False ) # can be migrated from EDM field "fullName" website = db.Column( db.String(length=120), nullable=True ) # can be migrated from EDM field "userURL" location = db.Column(db.String(length=120), default='', nullable=True) affiliation = db.Column( db.String(length=120), default='', nullable=True ) # can be migrated from BE field "affiliation" forum_id = db.Column(db.String(length=120), default='', nullable=True) locale = db.Column(db.String(length=20), default='EN', nullable=True) accepted_user_agreement = db.Column( db.Boolean, default=False, nullable=False ) # can be migrated from EDM field "acceptedUserAgreement" use_usa_date_format = db.Column(db.Boolean, default=True, nullable=False) show_email_in_profile = db.Column(db.Boolean, default=False, nullable=False) receive_notification_emails = db.Column( db.Boolean, default=True, nullable=False ) # can be migrated from BE field "receiveEmails" receive_newsletter_emails = db.Column(db.Boolean, default=False, nullable=False) shares_data = db.Column( db.Boolean, default=True, nullable=False ) # can be migrated from BE field "sharing" default_identification_catalogue = db.Column( db.GUID, nullable=True ) # this may just be a string, however EDM wants to do ID catalogues profile_fileupload_guid = db.Column( db.GUID, db.ForeignKey('file_upload.guid'), nullable=True ) # 'FileUpload' failed to locate a name (class not yet loaded) # so explicitly import FileUpload here from app.modules.fileuploads.models import FileUpload profile_fileupload = db.relationship(FileUpload) organization_membership_enrollments = db.relationship( 'OrganizationUserMembershipEnrollment', back_populates='user' ) organization_moderator_enrollments = db.relationship( 'OrganizationUserModeratorEnrollment', back_populates='user' ) project_membership_enrollments = db.relationship( 'ProjectUserMembershipEnrollment', back_populates='user' ) user_collaboration_associations = db.relationship( 'CollaborationUserAssociations', back_populates='user' ) asset_groups = db.relationship( 'AssetGroup', back_populates='owner', primaryjoin='User.guid == AssetGroup.owner_guid', order_by='AssetGroup.guid', ) submitted_asset_groups = db.relationship( 'AssetGroup', back_populates='submitter', primaryjoin='User.guid == AssetGroup.submitter_guid', order_by='AssetGroup.guid', ) owned_encounters = db.relationship( 'Encounter', back_populates='owner', primaryjoin='User.guid == Encounter.owner_guid', order_by='Encounter.guid', ) submitted_encounters = db.relationship( 'Encounter', back_populates='submitter', primaryjoin='User.guid == Encounter.submitter_guid', order_by='Encounter.guid', ) owned_organizations = db.relationship( 'Organization', back_populates='owner', primaryjoin='User.guid == Organization.owner_guid', order_by='Organization.guid', ) owned_projects = db.relationship( 'Project', back_populates='owner', primaryjoin='User.guid == Project.owner_guid', order_by='Project.guid', ) # User may have many notifications notifications = db.relationship( 'Notification', back_populates='recipient', primaryjoin='User.guid == Notification.recipient_guid', order_by='Notification.guid', ) # All User specific Notification Preferences will be held in one instance notification_preferences = db.relationship( 'UserNotificationPreferences', back_populates='user', primaryjoin='User.guid == UserNotificationPreferences.user_guid', order_by='UserNotificationPreferences.guid', ) PUBLIC_USER_EMAIL = 'public@localhost' class StaticRoles(enum.Enum): # pylint: disable=missing-docstring,unsubscriptable-object DATA_MANAGER = (0x100000, 'DataManager', 'DataManager', 'is_data_manager') USER_MANAGER = (0x80000, 'UserManager', 'UserManager', 'is_user_manager') CONTRIBUTOR = (0x40000, 'Contributor', 'Contributor', 'is_contributor') RESEARCHER = (0x20000, 'Researcher', 'Researcher', 'is_researcher') EXPORTER = (0x10000, 'Exporter', 'Exporter', 'is_exporter') INTERNAL = (0x08000, 'Internal', 'Internal', 'is_internal') ADMIN = (0x04000, 'Site Administrator', 'Admin', 'is_admin') STAFF = (0x02000, 'Staff Member', 'Staff', 'is_staff') ACTIVE = (0x01000, 'Active Account', 'Active', 'is_active') SETUP = (0x00800, 'Account in Setup', 'Setup', 'in_setup') RESET = (0x00400, 'Account in Password Reset', 'Reset', 'in_reset') ALPHA = (0x00200, 'Enrolled in Alpha', 'Alpha', 'in_alpha') BETA = (0x00100, 'Enrolled in Beta', 'Beta', 'in_beta') @property def mask(self): return self.value[0] @property def title(self): return self.value[1] @property def shorthand(self): return self.value[2] static_roles = db.Column(db.Integer, default=0, nullable=False) is_contributor = _get_is_static_role_property( 'is_contributor', StaticRoles.CONTRIBUTOR ) is_user_manager = _get_is_static_role_property( 'is_user_manager', StaticRoles.USER_MANAGER ) is_data_manager = _get_is_static_role_property( 'is_data_manager', StaticRoles.DATA_MANAGER ) is_researcher = _get_is_static_role_property('is_researcher', StaticRoles.RESEARCHER) is_exporter = _get_is_static_role_property('is_exporter', StaticRoles.EXPORTER) is_internal = _get_is_static_role_property('is_internal', StaticRoles.INTERNAL) is_admin = _get_is_static_role_property('is_admin', StaticRoles.ADMIN) is_staff = _get_is_static_role_property('is_staff', StaticRoles.STAFF) is_active = _get_is_static_role_property('is_active', StaticRoles.ACTIVE) in_beta = _get_is_static_role_property('in_beta', StaticRoles.BETA) in_alpha = _get_is_static_role_property('in_alpha', StaticRoles.ALPHA) in_reset = _get_is_static_role_property('in_reset', StaticRoles.RESET) in_setup = _get_is_static_role_property('in_setup', StaticRoles.SETUP) @property def is_privileged(self): return self.is_staff or self.is_internal def get_state(self): state = [] state += [self.StaticRoles.ACTIVE.shorthand] if self.is_active else [] state += [self.StaticRoles.SETUP.shorthand] if self.in_setup else [] state += [self.StaticRoles.RESET.shorthand] if self.in_reset else [] state += [self.StaticRoles.ALPHA.shorthand] if self.in_alpha else [] state += [self.StaticRoles.BETA.shorthand] if self.in_beta else [] return state def get_roles(self): roles = [] roles += [self.StaticRoles.DATA_MANAGER.shorthand] if self.is_data_manager else [] roles += [self.StaticRoles.USER_MANAGER.shorthand] if self.is_user_manager else [] roles += [self.StaticRoles.INTERNAL.shorthand] if self.is_internal else [] roles += [self.StaticRoles.ADMIN.shorthand] if self.is_admin else [] roles += [self.StaticRoles.STAFF.shorthand] if self.is_staff else [] roles += [self.StaticRoles.CONTRIBUTOR.shorthand] if self.is_contributor else [] roles += [self.StaticRoles.RESEARCHER.shorthand] if self.is_researcher else [] roles += [self.StaticRoles.EXPORTER.shorthand] if self.is_exporter else [] return roles def __repr__(self): state = ', '.join(self.get_state()) roles = ', '.join(self.get_roles()) return ( '<{class_name}(' 'guid={self.guid}, ' 'email="{self.email}", ' 'name="{self.full_name}", ' 'state={state}, ' 'roles={roles}' ')>'.format( class_name=self.__class__.__name__, self=self, state=state, roles=roles ) ) @classmethod def get_admins(cls): # used for first run admin creation users = cls.query.all() # NOQA admin_users = [] for user in users: # TODO: Remove the check below at a later point after default admin create is removed if user.email.endswith('@localhost'): continue if user.is_admin: admin_users.append(user) return admin_users @classmethod def admin_user_initialized(cls): # used for first run admin creation return len(cls.get_admins()) > 0 @classmethod def ensure_user( cls, email, password, is_internal=False, is_admin=False, is_staff=False, is_researcher=False, is_contributor=True, is_user_manager=False, is_exporter=False, is_active=True, in_beta=False, in_alpha=False, update=False, **kwargs, ): """ Create a new user. """ from app.extensions import db user = User.find(email=email) if user is None: user = User( password=password, email=email, is_internal=is_internal, is_admin=is_admin, is_staff=is_staff, is_active=is_active, is_researcher=is_researcher, is_contributor=is_contributor, is_user_manager=is_user_manager, is_exporter=is_exporter, in_beta=in_beta, in_alpha=in_alpha, **kwargs, ) with db.session.begin(): db.session.add(user) log.info('New user created: %r' % (user,)) elif update: user.password = password user.is_internal = is_internal user.is_admin = is_admin user.is_staff = is_staff user.is_researcher = is_researcher user.is_contributor = is_contributor user.is_user_manager = is_user_manager user.is_exporter = is_exporter user.is_active = is_active user.in_beta = in_beta user.in_alpha = in_alpha with db.session.begin(): db.session.merge(user) log.info('Updated user: %r' % (user,)) db.session.refresh(user) return user @classmethod def find(cls, email=None, password=None, edm_login_fallback=True): # Look-up via email if email is None: return None email_candidates = [ email, '%s@localhost' % (email,), ] for email_candidate in email_candidates: user = cls.query.filter(User.email == email_candidate).first() if password is None: # If no password was provided to check, return any user account we find if user is not None: return user else: # Check local Houston password first if user is not None: # We found the user, check their provided password if user.password == password: return user # As a fallback, check all EDMs if the user can login if edm_login_fallback: # We want to check the EDM even if we don't have a local user record if current_app.edm.check_user_login(email_candidate, password): log.info('User authenticated via EDM: %r' % (email_candidate,)) if user is not None: # We authenticated a local user against an EDM (but the local password failed) if user.password != password: # The user passed the login with an EDM, update local password log.warning( "Updating user's local password: %r" % (user,) ) user = user.set_password(password) return user else: log.critical( 'The user authenticated via EDM but has no local user record' ) # Try syncing all users from EDM cls.edm_sync_all() # If the user was just synced, go grab it (recursively) and return user = cls.find(email=email, edm_login_fallback=False) return user # If we have gotten here, one of these things happened: # 1) the user wasn't found # 2) the user's password was provided and was incorrect # 3) the user authenticated against the EDM but has no local user record return None @classmethod def query_search(cls, search=None): from sqlalchemy import or_, and_ from app.modules.auth.models import Code, CodeTypes if search is not None: search = search.strip().split(' ') search = [term.strip() for term in search] search = [term for term in search if len(term) > 0] or_terms = [] for term in search: codes = ( Code.query.filter_by(code_type=CodeTypes.checkin) .filter( Code.accept_code.contains(term), ) .all() ) code_users = set([]) for code in codes: if not code.is_expired: code_users.add(code.user.guid) or_term = or_( cls.guid.in_(code_users), cls.email.contains(term), cls.affiliation.contains(term), cls.forum_id.contains(term), cls.full_name.contains(term), ) or_terms.append(or_term) users = cls.query.filter(and_(*or_terms)) else: users = cls.query return users @property def is_authenticated(self): return True @property def is_anonymous(self): return False @property def is_email_confirmed(self): from app.modules.auth.models import Code, CodeTypes # Get any codes that fit this request code = ( Code.query.filter_by(user=self, code_type=CodeTypes.email) .order_by(Code.created.desc()) .first() ) if code is None: return False return code.is_resolved def get_org_memberships(self): return [ enrollment.organization for enrollment in self.organization_membership_enrollments ] def get_org_moderatorships(self): return [ enrollment.organization for enrollment in self.organization_moderator_enrollments ] def get_projects(self): return [enrollment.project for enrollment in self.project_membership_enrollments] def get_collaborations_as_json(self): from app.modules.collaborations.schemas import DetailedCollaborationSchema json_resp = [] for collab_assoc in self.user_collaboration_associations: json_resp.append( DetailedCollaborationSchema().dump(collab_assoc.collaboration).data ) return json_resp def get_notification_preferences(self): from app.modules.notifications.models import UserNotificationPreferences # User preferences are the system ones plus the ones stored in this class # Return the combination to the REST API preferences = UserNotificationPreferences.get_user_preferences(self) return preferences def unprocessed_asset_groups(self): return [ asset_group.guid for asset_group in self.asset_groups if not asset_group.is_processed() ] def unprocessed_sightings(self): from app.modules.sightings.models import SightingStage return [ sighting.guid for sighting in self.get_sightings() if not sighting.stage == SightingStage.processed ] def get_id(self): return self.guid def has_static_role(self, role): return (self.static_roles & role.mask) != 0 def set_static_role(self, role): if self.has_static_role(role): return self.static_roles |= role.mask def unset_static_role(self, role): if not self.has_static_role(role): return self.static_roles ^= role.mask def check_owner(self, user): return self == user def check_supervisor(self, user): return self.check_owner(user) def get_codes(self, code_type, **kwargs): # This import for Code needs to be local from app.modules.auth.models import Code code = Code.get(self, code_type, **kwargs) return code def get_invite_code(self): # This import for Code needs to be local from app.modules.auth.models import CodeTypes return self.get_codes(CodeTypes.invite, replace=True) def get_email_confirmation_code(self): # This import for Code needs to be local from app.modules.auth.models import CodeTypes return self.get_codes(CodeTypes.email, replace=True) def get_account_recovery_code(self): # This import for Code needs to be local from app.modules.auth.models import CodeTypes return self.get_codes(CodeTypes.recover, replace=True, replace_ttl=None) def set_password(self, password): if password is None: # This function "sets" the password, it's the responsibility of the caller to ensure it's valid raise ValueError('Empty password not allowed') self.password = password with db.session.begin(): db.session.merge(self) db.session.refresh(self) return self def lockout(self): from app.modules.auth.models import OAuth2Client, OAuth2Grant, OAuth2Token, Code # Disable permissions self.is_staff = False self.is_admin = False self.is_active = False self.in_reset = False self.in_setup = False with db.session.begin(): db.session.merge(self) db.session.refresh(self) # Logout of sessions and API keys auth_list = [] auth_list += OAuth2Token.query.filter_by(user_guid=self.guid).all() auth_list += OAuth2Grant.query.filter_by(user_guid=self.guid).all() auth_list += OAuth2Client.query.filter_by(user_guid=self.guid).all() auth_list += Code.query.filter_by(user_guid=self.guid).all() for auth_ in auth_list: auth_.delete() return self def owns_object(self, obj): from app.modules.assets.models import Asset from app.modules.asset_groups.models import AssetGroup from app.modules.encounters.models import Encounter from app.modules.sightings.models import Sighting from app.modules.projects.models import Project from app.modules.individuals.models import Individual from app.modules.notifications.models import Notification ret_val = False if isinstance(obj, User): ret_val = obj == self # AssetGroup, Encounters and Projects all have an owner field, check that elif isinstance(obj, (AssetGroup, Encounter, Project, Notification)): ret_val = obj.owner == self elif isinstance(obj, Asset): # assets are not owned directly by the user but the asset_group they're in is. # TODO: need to understand once assets become part of an encounter, do they still have a asset_group if obj.asset_group is not None: ret_val = obj.asset_group.owner is self elif isinstance(obj, Sighting): # decided (2021-03-12) that "owner" of a Sighting is not applicable therefore always False # permissions must be handled in ways not dependent on ownership ret_val = False elif isinstance(obj, Individual): for encounter in obj.get_encounters(): if encounter.get_owner() is self: ret_val = True break return ret_val def get_my_annotations(self): annotations = [] for encounter in self.owned_encounters: annotations.extend(encounter.annotations) return annotations def get_all_encounters(self): annotations = self.get_my_annotations() # TODO add collaboration annotations return annotations def delete(self): with db.session.begin(): # TODO: Ensure proper cleanup for asset_group in self.asset_groups: asset_group.delete() AuditLog.delete_object(log, self) db.session.delete(self) @classmethod def initial_random_password(cls): return security.generate_random(128) @classmethod def get_public_user(cls): return User.ensure_user( email=User.PUBLIC_USER_EMAIL, password=User.initial_random_password(), full_name='Public User', is_internal=True, ) def get_sightings(self): sightings = [] for encounter in self.owned_encounters: sighting = encounter.get_sighting() if sighting: sightings.append(encounter.get_sighting()) sighting_set = set(sightings) return list(sighting_set) USER_ROLES = [ role.value[-1] for role in User.StaticRoles.__members__.values() if role.value[-1] not in ('in_setup', 'in_reset') ]
34.561497
112
0.609005
[ "Apache-2.0" ]
karenc/houston
app/modules/users/models.py
25,852
Python
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. You may obtain a copy of # the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations under # the License. # ============================================================================== """ Test PcapDataset """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import tensorflow as tf import tensorflow_io.pcap as pcap_io # pylint: disable=wrong-import-position if not (hasattr(tf, "version") and tf.version.VERSION.startswith("2.")): tf.compat.v1.enable_eager_execution() def test_pcap_input(): """test_pcap_input """ print("Testing PcapDataset") pcap_filename = os.path.join( os.path.dirname(os.path.abspath(__file__)), "test_pcap", "http.pcap") file_url = "file://" + pcap_filename url_filenames = [file_url] dataset = pcap_io.PcapDataset(url_filenames, batch=1) packets_total = 0 for v in dataset: (packet_timestamp, packet_data) = v if packets_total == 0: assert packet_timestamp.numpy()[0] == 1084443427.311224 # we know this is the correct value in the test pcap file assert len(packet_data.numpy()[0]) == 62 # we know this is the correct packet data buffer length in the test pcap file packets_total += 1 assert packets_total == 43 # we know this is the correct number of packets in the test pcap file if __name__ == "__main__": test.main()
36.921569
124
0.709506
[ "Apache-2.0" ]
HubBucket-Team/io
tests/test_pcap_eager.py
1,883
Python
import fnmatch import io import logging from uuid import UUID import requests from requests.exceptions import ConnectionError, HTTPError from .cromwell_metadata import CromwellMetadata logger = logging.getLogger(__name__) def requests_error_handler(func): """Re-raise ConnectionError with help message. Continue on HTTP 404 error (server is on but workflow doesn't exist). Otherwise, re-raise from None to hide nested tracebacks. """ def wrapper(*args, **kwargs): try: return func(*args, **kwargs) except HTTPError as err: if err.response.status_code == 404: logger.error("Workflow doesn't seem to exist.") return message = ( '{err}\n\n' 'Cromwell server is on but got an HTTP error other than 404. ' ).format(err=err) raise HTTPError(message) from None except ConnectionError as err: message = ( '{err}\n\n' 'Failed to connect to Cromwell server. ' 'Check if Caper server is running. ' 'Also check if hostname and port are correct. ' 'method={method}, ' 'url={url}'.format( err=err, method=err.request.method, url=err.request.url ) ) raise ConnectionError(message) from None return wrapper def is_valid_uuid(workflow_id, version=4): """To validate Cromwell's UUID (lowercase only). This does not allow uppercase UUIDs. """ if not isinstance(workflow_id, str): return False if not workflow_id.islower(): return False try: UUID(workflow_id, version=version) except ValueError: return False return True def has_wildcard(workflow_id_or_label): """Check if string or any element in list/tuple has a wildcard (? or *). Args: workflow_id_or_label: Workflow ID (str) or label (str). Or array (list, tuple) of them. """ if workflow_id_or_label is None: return False if isinstance(workflow_id_or_label, (list, tuple)): for val in workflow_id_or_label: if has_wildcard(val): return True return False else: return '?' in workflow_id_or_label or '*' in workflow_id_or_label class CromwellRestAPI: QUERY_URL = 'http://{hostname}:{port}' ENDPOINT_BACKEND = '/api/workflows/v1/backends' ENDPOINT_WORKFLOWS = '/api/workflows/v1/query' ENDPOINT_METADATA = '/api/workflows/v1/{wf_id}/metadata' ENDPOINT_LABELS = '/api/workflows/v1/{wf_id}/labels' ENDPOINT_SUBMIT = '/api/workflows/v1' ENDPOINT_ABORT = '/api/workflows/v1/{wf_id}/abort' ENDPOINT_RELEASE_HOLD = '/api/workflows/v1/{wf_id}/releaseHold' DEFAULT_HOSTNAME = 'localhost' DEFAULT_PORT = 8000 def __init__( self, hostname=DEFAULT_HOSTNAME, port=DEFAULT_PORT, user=None, password=None ): self._hostname = hostname self._port = port self._user = user self._password = password self.__init_auth() def submit( self, source, dependencies=None, inputs=None, options=None, labels=None, on_hold=False, ): """Submit a workflow. Returns: JSON Response from POST request submit a workflow """ manifest = {} with open(source) as fp: manifest['workflowSource'] = io.StringIO(fp.read()) if dependencies: with open(dependencies, 'rb') as fp: manifest['workflowDependencies'] = io.BytesIO(fp.read()) if inputs: with open(inputs) as fp: manifest['workflowInputs'] = io.StringIO(fp.read()) else: manifest['workflowInputs'] = io.StringIO('{}') if options: with open(options) as fp: manifest['workflowOptions'] = io.StringIO(fp.read()) if labels: with open(labels) as fp: manifest['labels'] = io.StringIO(fp.read()) if on_hold: manifest['workflowOnHold'] = True r = self.__request_post(CromwellRestAPI.ENDPOINT_SUBMIT, manifest) logger.debug('submit: {r}'.format(r=r)) return r def abort(self, workflow_ids=None, labels=None): """Abort workflows matching workflow IDs or labels Returns: List of JSON responses from POST request for aborting workflows """ valid_workflow_ids = self.find_valid_workflow_ids( workflow_ids=workflow_ids, labels=labels ) if valid_workflow_ids is None: return result = [] for workflow_id in valid_workflow_ids: r = self.__request_post( CromwellRestAPI.ENDPOINT_ABORT.format(wf_id=workflow_id) ) result.append(r) logger.debug('abort: {r}'.format(r=result)) return result def release_hold(self, workflow_ids=None, labels=None): """Release hold of workflows matching workflow IDs or labels Returns: List of JSON responses from POST request for releasing hold of workflows """ valid_workflow_ids = self.find_valid_workflow_ids( workflow_ids=workflow_ids, labels=labels ) if valid_workflow_ids is None: return result = [] for workflow_id in valid_workflow_ids: r = self.__request_post( CromwellRestAPI.ENDPOINT_RELEASE_HOLD.format(wf_id=workflow_id) ) result.append(r) logger.debug('release_hold: {r}'.format(r=result)) return result def get_default_backend(self): """Retrieve default backend name Returns: Default backend name """ return self.get_backends()['defaultBackend'] def get_backends(self): """Retrieve available backend names and default backend name Returns: JSON response with keys "defaultBackend" and "supportedBackends" Example: {"defaultBackend":"Local","supportedBackends": ["Local","aws","gcp","pbs","sge","slurm"]} """ return self.__request_get(CromwellRestAPI.ENDPOINT_BACKEND) def find_valid_workflow_ids( self, workflow_ids=None, labels=None, exclude_subworkflow=True ): """Checks if workflow ID in `workflow_ids` are already valid UUIDs (without wildcards). If so then we don't have to send the server a query to get matching workflow IDs. """ if not labels and workflow_ids and all(is_valid_uuid(i) for i in workflow_ids): return workflow_ids else: workflows = self.find( workflow_ids=workflow_ids, labels=labels, exclude_subworkflow=exclude_subworkflow, ) if not workflows: return return [w['id'] for w in workflows] def get_metadata(self, workflow_ids=None, labels=None, embed_subworkflow=False): """Retrieve metadata for workflows matching workflow IDs or labels Args: workflow_ids: List of workflows IDs to find workflows matched. labels: List of Caper's string labels to find workflows matched. embed_subworkflow: Recursively embed subworkflow's metadata in main workflow's metadata. This flag is to mimic behavior of Cromwell run mode with -m. Metadata JSON generated with Cromwell run mode includes all subworkflows embedded in main workflow's JSON file. """ valid_workflow_ids = self.find_valid_workflow_ids( workflow_ids=workflow_ids, labels=labels ) if valid_workflow_ids is None: return result = [] for workflow_id in valid_workflow_ids: params = {} if embed_subworkflow: params['expandSubWorkflows'] = True m = self.__request_get( CromwellRestAPI.ENDPOINT_METADATA.format(wf_id=workflow_id), params=params, ) if m: cm = CromwellMetadata(m) result.append(cm.metadata) return result def get_labels(self, workflow_id): """Get labels JSON for a specified workflow Returns: Labels JSON for a workflow """ if workflow_id is None or not is_valid_uuid(workflow_id): return r = self.__request_get( CromwellRestAPI.ENDPOINT_LABELS.format(wf_id=workflow_id) ) if r is None: return return r['labels'] def get_label(self, workflow_id, key): """Get a label for a key in a specified workflow Returns: Value for a specified key in labels JSON for a workflow """ labels = self.get_labels(workflow_id) if labels is None: return if key in labels: return labels[key] def update_labels(self, workflow_id, labels): """Update labels for a specified workflow with a list of (key, val) tuples """ if workflow_id is None or labels is None: return r = self.__request_patch( CromwellRestAPI.ENDPOINT_LABELS.format(wf_id=workflow_id), labels ) logger.debug('update_labels: {r}'.format(r=r)) return r def find_with_wildcard( self, workflow_ids=None, labels=None, exclude_subworkflow=True ): """Retrieves all workflows from Cromwell server. And then find matching workflows by ID or labels. Wildcards (? and *) are allowed for both parameters. """ result = [] if not workflow_ids and not labels: return result resp = self.__request_get( CromwellRestAPI.ENDPOINT_WORKFLOWS, params={ 'additionalQueryResultFields': 'labels', 'includeSubworkflows': not exclude_subworkflow, }, ) if resp and resp['results']: for workflow in resp['results']: matched = False if 'id' not in workflow: continue if workflow_ids: for wf_id in workflow_ids: if fnmatch.fnmatchcase(workflow['id'], wf_id): result.append(workflow) matched = True break if matched: continue if labels and 'labels' in workflow: for k, v in labels: v_ = workflow['labels'].get(k) if not v_: continue if isinstance(v_, str) and isinstance(v, str): # matching with wildcards for str values only if fnmatch.fnmatchcase(v_, v): result.append(workflow) break elif v_ == v: result.append(workflow) break logger.debug( 'find_with_wildcard: workflow_ids={workflow_ids}, ' 'labels={labels}, result={result}'.format( workflow_ids=workflow_ids, labels=labels, result=result ) ) return result def find_by_workflow_ids(self, workflow_ids=None, exclude_subworkflow=True): """Finds workflows by exactly matching workflow IDs (UUIDs). Does OR search for a list of workflow IDs. Invalid UUID in `workflows_ids` will be ignored without warning. Wildcards (? and *) are not allowed. Args: workflow_ids: List of workflow ID (UUID) strings. Lower-case only (Cromwell uses lower-case UUIDs). Returns: List of matched workflow JSONs. """ if has_wildcard(workflow_ids): raise ValueError( 'Wildcards are not allowed in workflow_ids. ' 'ids={ids}'.format(ids=workflow_ids) ) result = [] if workflow_ids: # exclude invalid workflow UUIDs. workflow_ids = [wf_id for wf_id in workflow_ids if is_valid_uuid(wf_id)] resp = self.__request_get( CromwellRestAPI.ENDPOINT_WORKFLOWS, params={ 'additionalQueryResultFields': 'labels', 'includeSubworkflows': not exclude_subworkflow, 'id': workflow_ids, }, ) if resp and resp['results']: result.extend(resp['results']) logger.debug( 'find_by_workflow_ids: workflow_ids={workflow_ids}, ' 'result={result}'.format(workflow_ids=workflow_ids, result=result) ) return result def find_by_labels(self, labels=None, exclude_subworkflow=True): """Finds workflows by exactly matching labels (key, value) tuples. Does OR search for a list of label key/value pairs. Wildcards (? and *) are not allowed. Args: labels: List of labels (key/value pairs). Returns: List of matched workflow JSONs. """ if has_wildcard(labels): raise ValueError( 'Wildcards are not allowed in labels. ' 'labels={labels}'.format(labels=labels) ) result = [] if labels: # reformat labels with `:` notation. exclude pairs with empty value. labels = [ '{key}:{val}'.format(key=key, val=val) for key, val in labels if val ] resp = self.__request_get( CromwellRestAPI.ENDPOINT_WORKFLOWS, params={ 'additionalQueryResultFields': 'labels', 'includeSubworkflows': not exclude_subworkflow, 'labelor': labels, }, ) if resp and resp['results']: result.extend(resp['results']) logger.debug( 'find_by_labels: labels={labels}, result={result}'.format( labels=labels, result=result ) ) return result def find(self, workflow_ids=None, labels=None, exclude_subworkflow=True): """Wrapper for the following three find functions. - find_with_wildcard - find_by_workflow_ids - find_by_labels Find workflows by matching workflow IDs or label (key, value) tuples. Does OR search for both parameters. Wildcards (? and *) in both parameters are allowed but Caper will retrieve a list of all workflows, which can lead to HTTP 503 of Cromwell server if there are many subworkflows and not `exclude_subworkflow`. Args: workflow_ids: List of workflow ID (UUID) strings. Lower-case only. labels: List of labels (key/value pairs). exclude_subworkflow: Exclude subworkflows. Returns: List of matched workflow JSONs. """ wildcard_found_in_workflow_ids = has_wildcard(workflow_ids) wildcard_found_in_labels = has_wildcard( [val for key, val in labels] if labels else None ) if wildcard_found_in_workflow_ids or wildcard_found_in_labels: return self.find_with_wildcard( workflow_ids=workflow_ids, labels=labels, exclude_subworkflow=exclude_subworkflow, ) result = [] result_by_labels = self.find_by_labels( labels=labels, exclude_subworkflow=exclude_subworkflow ) result.extend(result_by_labels) workflow_ids_found_by_labels = [workflow['id'] for workflow in result_by_labels] result.extend( [ workflow for workflow in self.find_by_workflow_ids( workflow_ids=workflow_ids, exclude_subworkflow=exclude_subworkflow ) if workflow['id'] not in workflow_ids_found_by_labels ] ) return result def __init_auth(self): """Init auth object """ if self._user is not None and self._password is not None: self._auth = (self._user, self._password) else: self._auth = None @requests_error_handler def __request_get(self, endpoint, params=None): """GET request Returns: JSON response """ url = ( CromwellRestAPI.QUERY_URL.format(hostname=self._hostname, port=self._port) + endpoint ) resp = requests.get( url, auth=self._auth, params=params, headers={'accept': 'application/json'} ) resp.raise_for_status() return resp.json() @requests_error_handler def __request_post(self, endpoint, manifest=None): """POST request Returns: JSON response """ url = ( CromwellRestAPI.QUERY_URL.format(hostname=self._hostname, port=self._port) + endpoint ) resp = requests.post( url, files=manifest, auth=self._auth, headers={'accept': 'application/json'} ) resp.raise_for_status() return resp.json() @requests_error_handler def __request_patch(self, endpoint, data): """POST request Returns: JSON response """ url = ( CromwellRestAPI.QUERY_URL.format(hostname=self._hostname, port=self._port) + endpoint ) resp = requests.patch( url, data=data, auth=self._auth, headers={'accept': 'application/json', 'content-type': 'application/json'}, ) resp.raise_for_status() return resp.json()
33.334532
95
0.563721
[ "MIT" ]
ENCODE-DCC/caper
caper/cromwell_rest_api.py
18,534
Python
import cv2 from PyQt4.QtCore import * from PyQt4.QtGui import * from data import lab_gamut import numpy as np class GUIGamut(QWidget): def __init__(self, gamut_size=110): QWidget.__init__(self) self.gamut_size = gamut_size self.win_size = gamut_size * 2 # divided by 4 self.setFixedSize(self.win_size, self.win_size) self.ab_grid = lab_gamut.abGrid(gamut_size=gamut_size, D=1) self.reset() def set_gamut(self, l_in=50): self.l_in = l_in self.ab_map, self.mask = self.ab_grid.update_gamut(l_in=l_in) self.update() def set_ab(self, color): self.color = color self.lab = lab_gamut.rgb2lab_1d(self.color) x, y = self.ab_grid.ab2xy(self.lab[1], self.lab[2]) self.pos = QPointF(x, y) self.update() def is_valid_point(self, pos): if pos is None: return False else: x = pos.x() y = pos.y() if x >= 0 and y >= 0 and x < self.win_size and y < self.win_size: return self.mask[y, x] else: return False def update_ui(self, pos): self.pos = pos a, b = self.ab_grid.xy2ab(pos.x(), pos.y()) # get color we need L L = self.l_in lab = np.array([L, a, b]) color = lab_gamut.lab2rgb_1d(lab, clip=True, dtype='uint8') self.emit(SIGNAL('update_color'), color) self.update() def paintEvent(self, event): painter = QPainter() painter.begin(self) painter.setRenderHint(QPainter.Antialiasing) painter.fillRect(event.rect(), Qt.white) if self.ab_map is not None: ab_map = cv2.resize(self.ab_map, (self.win_size, self.win_size)) qImg = QImage(ab_map.tostring(), self.win_size, self.win_size, QImage.Format_RGB888) painter.drawImage(0, 0, qImg) painter.setPen(QPen(Qt.gray, 3, Qt.DotLine, cap=Qt.RoundCap, join=Qt.RoundJoin)) painter.drawLine(self.win_size/2, 0, self.win_size/2, self.win_size) painter.drawLine(0, self.win_size/2, self.win_size, self.win_size/2) if self.pos is not None: painter.setPen(QPen(Qt.black, 2, Qt.SolidLine, cap=Qt.RoundCap, join=Qt.RoundJoin)) w = 5 x = self.pos.x() y = self.pos.y() painter.drawLine(x - w, y, x + w, y) painter.drawLine(x, y - w, x, y + w) painter.end() def mousePressEvent(self, event): pos = event.pos() if event.button() == Qt.LeftButton and self.is_valid_point(pos): # click the point self.update_ui(pos) self.mouseClicked = True def mouseMoveEvent(self, event): pos = event.pos() if self.is_valid_point(pos): if self.mouseClicked: self.update_ui(pos) def mouseReleaseEvent(self, event): self.mouseClicked = False def sizeHint(self): return QSize(self.win_size, self.win_size) def reset(self): self.ab_map = None self.mask = None self.color = None self.lab = None self.pos = None self.mouseClicked = False self.update()
32.626263
96
0.581734
[ "BSD-2-Clause" ]
3Demonica/colorization
interactive-deep-colorization/ui/gui_gamut.py
3,230
Python
# coding: utf-8 __author__ = "Jerry He" import dash_bootstrap_components as dbc from dash import dcc, no_update from dash_extensions.enrich import Dash, Output, Input, State, html import flask from flask import jsonify from flask_cors import CORS from dash import dash_table import dash_ace server = flask.Flask(__name__) CORS(server) from dash_extensions.enrich import DashProxy,ServersideOutput, TriggerTransform, MultiplexerTransform, ServersideOutputTransform, NoOutputTransform app = DashProxy(__name__, server=server, transforms=[ ServersideOutputTransform(), # enable use of ServersideOutput objects ], external_stylesheets=[dbc.themes.BOOTSTRAP] ) server = app.server import pandas as pd def row_tf(row): keep = ['title', 'userid'] newrow = {k:row[k] for k in keep} newrow['name'] = newrow['title'].split("-")[0].strip() return newrow def df_transform(df): return pd.DataFrame([row_tf(row) for _,row in df.iterrows()]) app.layout = html.Div( [ dcc.Store(id="querystr"), dcc.Store(id="store"), dcc.Store(id="all-df"), dcc.Interval(interval=1800, id="query_sto"), dbc.Card([ dbc.CardImg(src="assets/brick_header.jpg"), dbc.CardBody([ dbc.Tabs( [ dbc.Tab([ html.Hr(), dash_ace.DashAceEditor( id='query-input', value=r"SELECT * FROM my_music_collection WHERE artist like '%Jr%' LIMIT 8", theme='github', mode='sql', tabSize=2, height="35px", enableBasicAutocompletion=True, enableLiveAutocompletion=True, autocompleter='/autocompleter?prefix=', placeholder='SQL code ...' ), dbc.Button("Query", color="secondary", className="me-1", id='query-button'), html.Hr(), html.Div(id="query-output") ],label="SQL", tab_id="tab-1"), dbc.Tab(label="History", tab_id="tab-2"), ], id="tabs", active_tab="tab-1", ), html.Div(id="tab-content"), ]) ]) ] ) import json app.clientside_callback(""" function(n_intervals, data) { var existing_data; if(data) { existing_data = JSON.parse(data) } var editor = ace.edit("query-input") if(!existing_data || existing_data['querystr'] != editor.getValue().trim()) { return JSON.stringify({ 'querystr':editor.getValue().trim(), 'time':(new Date()).toISOString() }) } } """.strip(), Output("querystr", "data"), Input("query_sto",'n_intervals'), State("querystr", "data")) from sqlalchemy import create_engine engine = create_engine('postgresql://localhost:5432/jerry') # change this to your SQL endpoint/auth import logging import dateutil.parser @app.callback(ServersideOutput("store", "data"), Input('query-button', 'n_clicks'),State("querystr", "data"), memoize=True) def query(n_clicks, query_data): if query_data is None: return no_update qdata = json.loads(query_data) try: dat = pd.read_sql(qdata["querystr"].replace("%", "%%"), con=engine) return dat except: logging.exception("SQL query failed\n") from datetime import datetime @app.callback(Output("query-output", "children"), ServersideOutput("all-df", "data"), Input("store", "data"), State("all-df", "data")) def render_query_res_table(data, all_df): df = df_transform(data) df = df[sorted(df.columns.tolist())] if all_df is None: all_df = [{'df':df, 'time':datetime.now()}] else: all_df.append({'df':df, 'time':datetime.now()}) return [dash_table.DataTable( id='table', columns=[{"name": i, "id": i} for i in df.columns], data=df.to_dict('records'), style_header={ 'backgroundColor': 'grey', 'fontWeight': 'bold' }, )],all_df @app.callback(Output("tab-content", "children"), [Input("tabs", "active_tab"), State("all-df", "data")]) def switch_tab(at, all_df): if at == "tab-1": return [] elif at == "tab-2": return dbc.Accordion( [ dbc.AccordionItem([ dash_table.DataTable( id='table', columns=[{"name": i, "id": i} for i in query_hist['df'].columns], data=query_hist['df'].to_dict('records'), style_header={ 'backgroundColor': 'grey', 'fontWeight': 'bold' }, ) ], title = query_hist['time'].strftime("%H:%M:%S")) for query_hist in all_df ]) return html.P("This shouldn't ever be displayed...") @server.route('/autocompleter', methods=['GET']) def autocompleter(): return jsonify([{"name": "Completed", "value": "Completed", "score": 100, "meta": "test"}]) app.run_server(host="127.0.0.1", debug=True, port=8080)
31.575
147
0.582344
[ "MIT" ]
xiangjerryhe/sql-ui-dash
dash_sql_client_ui.py
5,052
Python
import numpy as np import matplotlib.pyplot as plt import time from copy import copy import os from single_pitch import single_pitch from channel import channel from pseudo_speech import Pseudospeech_Synthetizer_class from encryption import Encryption_class from speech_analyzer import Speech_Analyzer_class from speech_synthesizer import Speech_Synthesizer_class ################################################################ my_analyzer = Speech_Analyzer_class("speech_model.npz","spherical_code.npz") # model parameters generated by speech_model.py and spherical_code.py my_encryptor = Encryption_class("spherical_code.npz") # model parameters generated by spherical_code.py my_ps_sp_synthetizer = Pseudospeech_Synthetizer_class("pseudospeech_model.npz","spherical_code.npz") # model parameters generated by pseudo_speech_model.py and spherical_code.py my_sp_synthesizer = Speech_Synthesizer_class("speech_model.npz") # model parameters generated by speech_model.py # pseudo random data used for enciphering/deciphering keybits = np.random.randint(2, size = (160, 10000)) print("step 1") speech_samples = np.fromfile("temp/hts1a.raw", dtype='int16') # print(speech_samples.shape) ##### SPEECH ENCODING ###### print("step 2") pitch_indices, energy_indices, timbre_indices = my_analyzer.analyze_speech(speech_samples) ###### ENCRYPTION ###### print("step 3") pitch_indices_enc, energy_indices_enc, timbre_indices_enc = my_encryptor.speech_encryption(pitch_indices, energy_indices, timbre_indices, keybits) ###### PSEUDOSPEECH SYNTHESIS ###### print("step 4") signal = my_synthetizer.synthesize_pseudospeech(pitch_indices_enc, energy_indices_enc, timbre_indices_enc) ###### CHANNEL DISTORTION ###### print("step 5") signal_rec = channel(signal, "SILK", 16000, 48000) # data samples, codec type, sampling frequency (Hz), compression rate (b/s) ###### PSEUDOSPEECH ANALYSIS ###### print("step 6") pitch_indices_rec, energy_indices_rec, timbre_indices_rec = my_synthetizer.analyze_pseudospeech(signal_rec) # ###### DECRYPTION ###### print("step 7") pitch_indices_dec, energy_indices_dec, timbre_indices_dec = my_encryptor.speech_decryption(pitch_indices_rec, energy_indices_rec, timbre_indices_rec, keybits) # ###### SPEECH SYNTHESIS ###### print("step 8") my_speech_synthesizer.synthesize_speech(pitch_indices_dec, energy_indices_dec, timbre_indices_dec) # save to file / input of the narrowband (8kHz) LPCNet print("Finished") ################ # plt.figure() # plt.plot(energy_indices) # plt.figure() # plt.plot(pitch_indices) # plt.figure() # plt.plot(np.transpose(timbre_indices)) ################ # plt.figure() # plt.plot(energy_indices_enc) # plt.figure() # plt.plot(pitch_indices_enc) # plt.figure() # plt.plot(np.transpose(timbre_indices_enc)) ################ # plt.figure() # plt.plot(energy_indices_rec) # plt.figure() # plt.plot(pitch_indices_rec) # plt.figure() # plt.plot(np.transpose(timbre_indices_rec)) ################ # plt.figure() # plt.plot(energy_indices_dec) # plt.figure() # plt.plot(pitch_indices_dec) # plt.figure() # plt.plot(np.transpose(timbre_indices_dec)) ################ plt.show()
29.579439
177
0.740916
[ "MIT" ]
PiotrKrasnowski/Speech_Encryption
a_full_model.py
3,165
Python
#!/usr/bin/env python -u """ All commands that can be run in this project are available through this unified interface. This should be run with the ./plaster.sh helper to get into the correct context. """ import tempfile import numpy as np import time import os import sys import pandas as pd import json from pathlib import Path from munch import Munch from plumbum import colors from plumbum import FG, TF, cli, local from plaster.tools.zlog.zlog import important from plaster.run.sigproc_v2 import synth from plaster.tools.zlog.profile import prof, profile_from_file, profile_dump from plaster.tools.utils.tmp import tmp_file from plaster.tools.assets import assets from plaster.tools.test_tools.test_tools import run_p from plaster.run.run import RunResult from plaster.tools.zlog import zlog from plaster.tools.zlog.zlog import tell, h_line, spy from plaster.tools.utils import tmp from plaster.tools.utils import utils import logging log = logging.getLogger(__name__) class CommandError(Exception): def __init__(self, retcode=None): self.retcode = retcode def assert_env(): must_exist = ("ERISYON_ROOT", "JOBS_FOLDER") found = 0 for e in must_exist: if e in local.env: found += 1 else: print(f'Environment variable "{e}" not found.') if found != len(must_exist): raise CommandError(f"Environment variable(s) not found.") class DoFuncs: def is_dev(self): return local.env.get("ERISYON_DEV") == "1" def folder_user(self): return local.env["FOLDER_USER"] def run_user(self): return local.env["RUN_USER"] def clear(self): local["clear"] & FG def _print_job_folders(self, file_list, show_plaster_json=True): """ file_list is a list of munches [Munch(folder="folder", name="foo.txt", size=123, mtime=123456789)] """ if len(file_list) == 0: print("No files found") return folders = { file.folder: Munch(folder=file.folder, size_gb=0, file_count=0,) for file in file_list } gb = 1024 ** 3 total_gb = 0 for file in file_list: folder = file.folder total_gb += file.size / gb folders[folder].size_gb += file.size / gb folders[folder].file_count += 1 df = pd.DataFrame.from_dict(folders, orient="index") formatters = dict( size_gb="{:10.2f}".format, folder="{:<40.40s}".format, file_count="{:.0f}".format, ) columns = ["folder", "size_gb", "file_count"] df = df.append(dict(folder="TOTAL", size_gb=total_gb), ignore_index=True) print(df.to_string(columns=columns, formatters=formatters)) def print_local_job_folders(self): important("Local job folders:") root = local.path("./jobs_folder") self._print_job_folders( [ Munch( folder=(p - root)[0], name=p.name, size=int(p.stat().st_size), mtime=int(p.stat().st_mtime), ) for p in root.walk() ] ) def validate_job_folder(self, job_folder, allow_run_folders=False): return assets.validate_job_folder( job_folder, allow_run_folders=allow_run_folders ) def run_zests_v2(self, cli_args, debug_mode): tell(f"Running zests v2...") # as os.environ is evaluated when it is first imported # we can't use any of the more graceful ways to set the environment with local.env(RUN_ENV="test", ZAP_DEBUG_MODE=debug_mode): zest_version = None try: from zest.version import __version__ as zest_version except ImportError: pass assert zlog.config_dict is not None assert zest_version.startswith("1.1.") with tmp.tmp_file() as tmp_path: with open(tmp_path, "w") as f: f.write(json.dumps(zlog.config_dict)) # cli_args += ["--logger_config_json", tmp_path] local["python"]["-u", "-m", "zest.zest_cli"].bound_command( *cli_args ) & FG(retcode=None) def run_nbstripout(self): """Strip all notebooks of output to save space in commits""" important("Stripping Notebooks...") result = ( local["find"][ ".", "-type", "f", "-not", "-path", "*/\.*", "-name", "*.ipynb", "-print", ] | local["xargs"]["nbstripout"] ) & TF(FG=True) if not result: raise CommandError def run_docker_build(self, docker_tag, quiet=False): important(f"Building docker tag {docker_tag}") with local.env(LANG="en_US.UTF-8"): args = [ "build", "-t", f"erisyon:{docker_tag}", "-f", "./scripts/main_env.docker", ] if quiet: args += ["--quiet"] args += "." local["docker"][args] & FG class DoCommand(cli.Application, DoFuncs): def main(self): return @DoCommand.subcommand("run_notebook") class RunNotebookCommand(cli.Application, DoFuncs): """ Run a notebook rendered to HTML """ def main(self, notebook_path, output_path: Path = None): args = [ "nbconvert", "--to", "html", "--execute", notebook_path, "--ExecutePreprocessor.timeout=1800", ] if output_path is not None: args += ["--output", output_path] local["jupyter"].bound_command(*args) & FG @DoCommand.subcommand("profile") class ProfileCommand(cli.Application, DoFuncs): gb = 1024 ** 3 skip_hardware = cli.Flag("--skip_hardware", help="Do not include hardware profile") skip_sigproc = cli.Flag("--skip_sigproc", help="Do not include sigproc profile") def fileio_test(self, jobs_folder): job_name = f"_profile/_{int(time.time()):08x}" large_random = np.random.uniform( size=1024 ** 3 // 8 ) # 8 because floats are 8 bytes def write_to(write_path): # import shutil # total, used, free = shutil.disk_usage(write_path.dirname) # print(f"Free disk at {write_path}: {free / gb:2.2f}GB ({free / total:2.1f}%)") write_path.dirname.mkdir() with open(write_path, "wb") as f: f.write(large_random) # PROFILE write to jobs_folder job_folder_write_path = jobs_folder / job_name try: with prof( "fileio_to_jobs_folder", gbs=large_random.nbytes / self.gb, _tell=True, ): write_to(job_folder_write_path) finally: job_folder_write_path.delete() # PROFILE write to plaster_tmp with tmp_file() as plaster_tmp_folder_write_path: with prof( "fileio_to_plaster_tmp", gbs=large_random.nbytes / self.gb, _tell=True, ): write_to(plaster_tmp_folder_write_path) # PROFILE write to /tmp tmp_folder_write_path = local.path(tempfile.mkstemp()) try: with prof("fileio_to_tmp", gbs=large_random.nbytes / self.gb, _tell=True): write_to(tmp_folder_write_path) finally: tmp_folder_write_path.delete() def cpu_test(self): mat = np.random.uniform(size=(5000, 5000)) with prof( "cpu_tests_matrix_invert", mega_elems=(mat.shape[0] * mat.shape[1]) / 1e6, _tell=True, ): np.linalg.inv(mat) def mem_test(self): gb = 1024 ** 3 rnd = np.random.uniform(size=(1_000, 500_000)) with prof("mem_tests_copy", gbs=rnd.nbytes / gb, _tell=True): rnd.copy() def sigproc_test(self, jobs_folder): """ This is adapted from zest_sigproc_v2_integration """ profile_folder = jobs_folder / "_profile" profile_folder.delete() job_folder = profile_folder / "sigproc_test" source_folder = profile_folder / "_synth_field" job_folder.mkdir() source_folder.mkdir() # GENERATE some fake data dim = (1024, 1024) n_channels = 1 n_cycles = 10 n_peaks = 500 psf_width = 1.5 bg_mean = 100.0 bg_std = 30.0 gain = 5000.0 def _synth_field(fl_i): with synth.Synth(n_channels=n_channels, n_cycles=n_cycles, dim=dim) as s: peaks = ( synth.PeaksModelGaussianCircular(n_peaks=n_peaks) .locs_randomize() .widths_uniform(psf_width) .amps_constant(gain) ) synth.CameraModel(bg_mean=bg_mean, bg_std=bg_std) synth.HaloModel() synth.IlluminationQuadraticFalloffModel() chcy_ims = s.render_chcy(0) for ch_i in range(chcy_ims.shape[0]): for cy_i in range(chcy_ims.shape[1]): np.save( str( source_folder / f"area_{fl_i:03d}_cell_000_{ch_i:03d}nm_{cy_i:03d}.npy" ), chcy_ims[ch_i, cy_i], ) n_fields = 2 for fl_i in range(n_fields): _synth_field(fl_i) run_p( [ f"gen", f"sigproc_v2", f"--job={job_folder}", f"--sigproc_source={source_folder}", f"--force", f"--self_calib", ] ) log_file = local.path(local.env["PLASTER_ROOT"]) / "plaster.log" log_file.delete() run_p(["run", job_folder, "--no_progress", "--skip_reports"]) profile_lines = profile_from_file(log_file) with colors.fg.DeepSkyBlue3: print() print(h_line("--")) print("PROFILE RESULTS") print(h_line("--")) profile_dump(profile_lines) def main(self, jobs_folder): assert_env() jobs_folder = local.path(jobs_folder) if not self.skip_hardware: tell(colors.cyan | "Profiling file_io") self.fileio_test(jobs_folder) tell(colors.cyan | "Profiling cpu") self.cpu_test() tell(colors.cyan | "Profiling mem") self.mem_test() if not self.skip_sigproc: tell(colors.cyan | "Profiling sigproc") self.sigproc_test(jobs_folder) @DoCommand.subcommand("profile_dump") class ProfileDumpCommand(cli.Application, DoFuncs): def main(self, log_path): assert_env() log_file = local.path(log_path) profile_lines = profile_from_file(log_file) profile_dump(profile_lines) @DoCommand.subcommand("test") class TestCommand(cli.Application, DoFuncs): """ Run tests """ no_clear = cli.Flag("--no_clear", help="Do not clear screen") integration = cli.Flag("--integration", help="Run integration tests") debug_mode = cli.Flag("--debug_mode", help="Put zap into debug_mode") cli_mode = cli.Flag("--cli_mode", help="Run without ui") def main(self, *args): if not self.no_clear: self.clear() cli_args = list(args) root = local.env["PLASTER_ROOT"] cli_args += [f"--root={root}"] folders = ( "./plaster", "./plaster/scripts", ) include_dirs = ":".join(folders) cli_args += [f"--include_dirs={include_dirs}"] with local.cwd(root): cli_args += [f"--hook_start=./scripts/testing_start.py:test_setup_logs"] if not self.debug_mode: if not self.cli_mode: cli_args += [f"--ui"] cli_args += [f"--n_workers", "8"] if self.integration: cli_args += [f"--groups=integration"] else: cli_args += [f"--exclude_groups=integration"] return self.run_zests_v2(cli_args, self.debug_mode) @DoCommand.subcommand("jupyter") class JupyterCommand(cli.Application, DoFuncs): ip = cli.SwitchAttr("--ip", str, default="0.0.0.0", help="ip to bind to") port = cli.SwitchAttr("--port", int, default="8080", help="port to bind to") def main(self, *args): assert_env() os.execlp( "jupyter", "jupyter", "notebook", f"--ip={self.ip}", f"--port={self.port}", "--allow-root", *args, ) @DoCommand.subcommand("pluck") class PluckCommand(cli.Application, DoFuncs): """ Pluck a field from a result pickle """ save_npy = cli.SwitchAttr("--save_npy", str, default=None, help="save as npy file") save_csv = cli.SwitchAttr( "--save_csv", str, default=None, help="save as csv file (dataframe only)" ) save_pkl = cli.SwitchAttr( "--save_pkl", str, default=None, help="save as pkl file (dataframe only)" ) def main(self, run_path, symbol): """ run_path: path to the run folder symbol: Eg: "sigproc_v2.sig" """ run = RunResult(run_path) parts = symbol.split(".") result = run[parts[0]] sym = getattr(result, parts[1]) if callable(sym): val = sym() else: val = sym if self.save_npy is not None: assert isinstance(val, np.ndarray) np.save(self.save_npy, val) if self.save_csv is not None: assert isinstance(val, pd.DataFrame) val.to_csv(self.save_csv) if self.save_pkl is not None: assert isinstance(val, pd.DataFrame) val.to_pickle(self.save_pkl) @DoCommand.subcommand("export_sigproc_v2") class ExportSigprocV2Command(cli.Application, DoFuncs): """ Export sigproc_v2 and raw data in easy to use formats. """ def main(self, run_path): """ run_path: path to the run folder (don't forget this is a subfolder of job) """ run = RunResult(run_path) name = run.run_folder.parent.name prefix = f"{name}__" tell(f"Prefixing saved files with {prefix}") tell("Saving sig.npy") np.save(f"{prefix}sig.npy", run.sigproc_v2.sig()) tell("Saving noi.npy") np.save(f"{prefix}noi.npy", run.sigproc_v2.noi()) tell("Saving df.csv") run.sigproc_v2.fields__n_peaks__peaks__radmat().to_csv(f"{prefix}df.csv") ims = [] for fl_i in range(run.sigproc_v2.n_fields): tell(f"Loading align field {fl_i} of {run.sigproc_v2.n_fields}") ims += [run.sigproc_v2.aln_unfilt_chcy_ims(fl_i)] tell("Saving aln_ims.npy") np.save(f"{prefix}aln_ims.npy", np.stack(ims)) tell("Saving example.py") utils.save( f"{prefix}example.py", f"import numpy as np\n" + f"import pandas as pd\n\n" + f'prefix = "{prefix}"' + utils.smart_wrap( """ sig = np.load(f"{prefix}sig.npy") noi = np.load(f"{prefix}noi.npy") df = pd.read_csv(f"{prefix}df.csv") ims = np.load(f"{prefix}aln_ims.npy", mmap_mode="r") n_peaks = sig.shape[0] n_fields, n_channels, n_cycles, im_mea, _ = ims.shape # Examine some peak peak_i = 123 # 0 <= peak_i < n_peaks ch_i = 0 # 0 <= ch_i < n_channels cy_i = 0 # 0 <= cy_i < n_cycles y, x, fl_i = df[df.peak_i == peak_i][["aln_y", "aln_x", "field_i"]].drop_duplicates().values.flatten().astype(int) peak_radius = 10 peak_im = ims[fl_i, ch_i, cy_i, y-peak_radius:y+peak_radius, x-peak_radius:x+peak_radius] # Now peak_im is a centered sub-image of that peak with shape=(peak_radius, peak_radius) """, width=200, assert_if_exceeds_width=True, ), ) tell("\n\nThe following commands may be useful:") # tell(f" tar czf {prefix}data.tar.gz {prefix}sig.npy {prefix}noi.npy {prefix}df.csv") # tell(f" tar czf {prefix}ims.tar.gz {prefix}aln_ims.npy") # tell("") # tell(f" aws s3 cp {prefix}data.tar.gz s3://erisyon-public") # tell(f" aws s3 cp {prefix}ims.tar.gz s3://erisyon-public") tell(f" aws s3 cp {prefix}sig.npy s3://erisyon-public") tell(f" aws s3 cp {prefix}noi.npy s3://erisyon-public") tell(f" aws s3 cp {prefix}df.csv s3://erisyon-public") tell(f" aws s3 cp {prefix}aln_ims.npy s3://erisyon-public") tell(f" aws s3 cp {prefix}example.py s3://erisyon-public") if __name__ == "__main__": try: DoCommand.subcommand("gen", "plaster.gen.gen_main.GenApp") DoCommand.subcommand("run", "plaster.run.run_main.RunApp") DoCommand.run() except (KeyboardInterrupt): print() # Add an extra line because various thing terminate with \r sys.exit(1) except Exception as e: log.exception(e) sys.exit(1)
31.690519
130
0.556816
[ "MIT" ]
erisyon/plaster
plaster/main.py
17,715
Python
# -*- coding: utf-8 -*- # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from airflow.models import BaseOperator from airflow.utils.decorators import apply_defaults from airflow.hooks.base_hook import BaseHook class GenericTransfer(BaseOperator): """ Moves data from a connection to another, assuming that they both provide the required methods in their respective hooks. The source hook needs to expose a `get_records` method, and the destination a `insert_rows` method. This is mean to be used on small-ish datasets that fit in memory. :param sql: SQL query to execute against the source database :type sql: str :param destination_table: target table :type destination_table: str :param source_conn_id: source connection :type source_conn_id: str :param destination_conn_id: source connection :type destination_conn_id: str :param preoperator: sql statement or list of statements to be executed prior to loading the data :type preoperator: str or list of str """ template_fields = ('sql', 'destination_table', 'preoperator') template_ext = ('.sql', '.hql',) ui_color = '#b0f07c' @apply_defaults def __init__( self, sql, destination_table, source_conn_id, destination_conn_id, preoperator=None, *args, **kwargs): super(GenericTransfer, self).__init__(*args, **kwargs) self.sql = sql self.destination_table = destination_table self.source_conn_id = source_conn_id self.destination_conn_id = destination_conn_id self.preoperator = preoperator def execute(self, context): source_hook = BaseHook.get_hook(self.source_conn_id) self.logger.info("Extracting data from %s", self.source_conn_id) self.logger.info("Executing: \n %s", self.sql) results = source_hook.get_records(self.sql) destination_hook = BaseHook.get_hook(self.destination_conn_id) if self.preoperator: self.logger.info("Running preoperator") self.logger.info(self.preoperator) destination_hook.run(self.preoperator) self.logger.info("Inserting rows into %s", self.destination_conn_id) destination_hook.insert_rows(table=self.destination_table, rows=results)
37.552632
80
0.700771
[ "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0", "BSD-3-Clause" ]
findpace/incubator-airflow
airflow/operators/generic_transfer.py
2,854
Python
#For the whatsapp statuses url given below #COOL import requests from bs4 import BeautifulSoup url_to_scrape = 'https://www.appstatustxt.com/cool-whatsapp-status/' r = requests.get(url_to_scrape) soup = BeautifulSoup(r.text,"html5lib") status_object=[] statuses=[] title=soup.title.string print(title) status_object=soup.find_all('span',style="color: #008000;") fo = open("cool.txt", "a") #Adding basic stuff for json syntax #fo.write("{\n") i=1; for status in status_object: if len(status.string)<=135: statuses.append(status.string+'\n') print(status.string) # actual_status=status.string.encode('utf-8') fo.write(status.string.encode('utf-8')+'\n') # fo.write('"'+str(i)+'":"'+actual_status+'",\n') i=i+1
29.8
69
0.695302
[ "MIT" ]
anay97/python-scraper
cool.py
745
Python
""" Author: Nathan Clack Date : 2009 Copyright (c) 2009 HHMI. Free downloads and distribution are allowed for any non-profit research and educational purposes as long as proper credit is given to the author. All other rights reserved. """ from .tests import plot_whiskers from ui.whiskerdata.trace import Whisker_Seg from numpy import * import pdb from functools import reduce def load(): from ui.whiskerdata import load_whiskers, load_trajectories from ui.genetiff import Reader movie = Reader('data/seq/whisker_data_0140.seq',adjuststipple=1) w,wid = load_whiskers('seq.whiskers') #movie = Reader('../../data/W0.tif',adjuststipple=1) #w,wid = load_whiskers('w0-grid.whiskers') #w,wid = load_whiskers('whisk-vc/whisk-vc/seq.whiskers') #movie = Reader('data/JF8410_041808_001.tif',adjuststipple=1) #w,wid = load_whiskers('test.whiskers') #movie = Reader('data/lorenz/090519-19a_0035.seq',adjuststipple=1) #w,wid = load_whiskers('lorenz.whiskers') #w,wid = load_whiskers('results/seq-hand.whiskers') #t,tid = load_trajectories('results/seq-hand.trajectories') return w,movie def check_bounds(wvd,shape): for fid, wv in wvd.items(): for i,w in wv.items(): for x,y,t,s in w: if x<0 or x>=shape[1] or y<0 or y>=shape[0]: print("out of bounds") pdb.set_trace() if not ( w.x.flags.contiguous and w.y.flags.contiguous ): print("not contiguous") pdb.set_trace() def fix(wvd,movie,scale=2, signal_per_pixel = 0, max_dist = 60, max_angle = 20.*pi/180.): shape = movie[0].shape for fid,wv in list(wvd.items()): print(fid) table = CollisionTable( wv, shape, scale ) r = set( resolution( table, wv ) ) for j,l in choose_gaps(movie[fid],r,signal_per_pixel,max_dist,max_angle): e = reduce( Whisker_Seg.join, j ) r.discard( j[0] ) r.discard( j[-1] ) r.add(e) wvd[fid] = dict( [ p for p in enumerate(r) ] ) return wvd def compute_join_length( px, py, tlow = 0.0, thigh = 1.0 ): from scipy.integrate import quad xp = polyder( px, 1 ) yp = polyder( py, 1 ) xp2 = polymul( xp, xp ) yp2 = polymul( yp, yp ) p = polyadd( xp2, yp2 ) integrand = lambda t: sqrt( polyval( p, t ) ) return quad(integrand, tlow, thigh) [0] def compute_join_curvature( px, py ): from scipy.integrate import quad xp = polyder( px, 1 ) xpp = polyder( px, 2 ) yp = polyder( py, 1 ) ypp = polyder( py, 2 ) pn = polyadd( polymul( xp, ypp ), polymul( yp, xpp )) #numerator pd = polyadd( polymul( xp, xp ) , polymul( yp, yp ) ) #denominator integrand = lambda t: fabs(polyval( pn, t )/( polyval( pd, t )**(1.5)) ) return quad(integrand, 0, 1) [0] def compute_join_angle( px, py ): from scipy.integrate import quad xp = polyder( px, 1 ) yp = polyder( py, 1 ) integrand = lambda t: arctan2(polyval(yp, t), polyval(xp, t)) return quad(integrand, 0, 1) [0] def _compute_intensity( im, x, y ): if ( x<0 ).any() or \ ( x>=im.shape[1] ).any() or \ ( y<0 ).any() or \ ( y>=im.shape[0] ).any(): return inf p = set( p for p in zip(x,y) ) score = 0 for j,i in p: score += im[i,j] return score/len(p) def compute_join_intensity( im, px, py ): tt = linspace(0,1,50) x = array( [round(polyval(px,t)) for t in tt] ) y = array( [round(polyval(px,t)) for t in tt] ) return _compute_intensity(im,x,y) def compute_join_score( im, px, py, thick = 2 ): tt = linspace(0,1,50) dpx = polyder(px) dpy = polyder(py) dL2 = polymul(dpx,dpx) + polymul(dpy,dpy) ux = polyval( px,tt ) uy = polyval( py,tt ) dx = diff(ux) #polyval( px,tt ) dy = diff(uy) #polyval( py,tt ) dx = r_[dx[0],dx] dy = r_[dy[0],dy] dL = sqrt( dx**2 + dy**2 ) a = _compute_intensity(im, ux, uy ) b = _compute_intensity(im, ux + thick*dy/dL , uy - thick*dx/dL ) c = _compute_intensity(im, ux - thick*dy/dL , uy + thick*dx/dL ) return (2*a - b - c)/4.0 def solve_polynomial_join( left, right, reverse = 0): """ Solves for a parametric cubic polynomial curve joining the right side of left to the left side of right. The curve matches slope and position at it's boundaries and is parameterized from 0 to 1; 0 being the left boundary and 1 being the right. method: parametric cubic matching position and slope of endpoints. This ends up being cheap to compute, since the matrix is known (interval of parameter is always 0 to 1) and so the inverse can be precomputed. minv is inverse of m, where: m = array( [ [ a**3, a**2, a, 1 ], [ b**3, b**2, b, 1 ], [ 3*a**2, 2*a , 1, 0 ], [ 3*b**2, 2*b , 1, 0 ] ] ) is the matrix for the linear system: m * coeff = v, with v = [ x(0) x(1) dx/dt(0) dx/dt(1) ]. Here a = 0 and b = 1 so m and it's inverse is always the same. """ minv = matrix( [[ 2., -2., 1., 1.], [-3., 3., -2., -1.], [ 0., 0., 1., 0.], [ 1., 0., 0., 0.]]) #take care of cases joining very short segements lr = len(right) ll = len(left) #L = length( right.x, right.y ) + length( left.x, left.y ) #dd = hypot( left.x[0] - right.x[-1], left.y[0] - right.y[-1] ) nl = ll/4 nr = lr/4 slope = lambda v: v[ 0] - v[-1] # want the total change over the length #slope = lambda v: diff(v).mean() length = lambda x,y: hypot(diff(x),diff(y)).sum() # euclidian distance in pixels # # Compute slope at boundary. # Uses a number of points near the boundary to compute slope. # Need to account for edge cases where one or both sides # consist of very few points. # if nr < 2 and nl < 2: lnorm = length( left.x , left.y ) rnorm = length( right.x , right.y ) dly = diff( left.y ).mean() / lnorm dlx = diff( left.x ).mean() / lnorm dry = diff(right.y ).mean() / rnorm drx = diff(right.x ).mean() / rnorm nl = 0 nr = lr - 1 elif nr < 2: # use the derivative on the other side lnorm = length( left.x[:nl], left.y[:nl] ) rnorm = length( right.x , right.y ) dly = -slope( left.y[(-nl):] ) / lnorm dlx = -slope( left.x[(-nl):] ) / lnorm dry = diff(right.y ).mean() / rnorm drx = diff(right.x ).mean() / rnorm nr = lr - 1 #print dly,dlx,dry,drx elif nl < 2: # use the derivative on the other side rnorm = length( right.x[:nr], right.y[:nr] ) lnorm = length( left.x , left.y ) dry = -slope(right.y[:nr] ) / rnorm drx = -slope(right.x[:nr] ) / rnorm dly = diff( left.y ).mean() / lnorm dlx = diff( left.x ).mean() / lnorm nl = 0 else: # the "normal" case rnorm = length( right.x[:nr], right.y[:nr] ) # Compute path length of right border region lnorm = length( left.x[(-nl):], left.y[(-nl):] ) # Compute path length of left border region dry = -slope(right.y[:nr] ) / rnorm # Compute dy/dl for right side drx = -slope(right.x[:nr] ) / rnorm # etc... dly = -slope( left.y[(-nl):] ) / lnorm dlx = -slope( left.x[(-nl):] ) / lnorm rnorm = hypot( left.x[0] - right.x[0], left.y[0] - right.y[0] ) lnorm = hypot( left.x[-1]- right.x[0], left.y[-1]- right.y[0] ) if not isfinite(dlx): dlx =(left.x[0] - right.x[0])/lnorm if not isfinite(dly): dly =(left.y[0] - right.y[0])/lnorm if not isfinite(drx): drx =(left.x[-1] - right.x[0])/rnorm if not isfinite(dry): dry =(left.y[-1] - right.y[0])/rnorm if reverse: dlx = -dlx dly = -dly drx = -drx dry = -dry ry = right.y[ 0] ## right.y[nr] ly = left.y[-1 ] ## left.y[-nl] rx = right.x[ 0] ## right.x[nr] lx = left.x[-1 ] ## left.x[-nl] L = hypot( rx-lx, ry-ly ) # Approximate dl/dt print("L:%g"%L) yv = matrix( [[ ly ], [ ry ], [ dly * L ], # dy/dt = dy/dl * dl/dt [ dry * L ]]) xv = matrix( [[ lx ], [ rx ], [ dlx * L ], [ drx * L ]]) cx = minv*xv cy = minv*yv if not (isfinite(cx).any() and isfinite(cy).any()): pdb.set_trace() return [array(t).squeeze() for t in (cx,cy)] def plot_join(px,py,*args,**kwargs): from pylab import plot, polyval tt = linspace(0,1,50) plot( polyval(px,tt), polyval(py,tt), *args, **kwargs ) def plot_test(px,py,thick=2): from pylab import plot tt = linspace(0,1,50) dpx = polyder(px) dpy = polyder(py) dL2 = polymul(dpx,dpx) + polymul(dpy,dpy) ux = polyval( px,tt ) uy = polyval( py,tt ) dx = diff(ux) #polyval( px,tt ) dy = diff(uy) #polyval( py,tt ) dx = r_[dx[0],dx] dy = r_[dy[0],dy] dL = sqrt( dx**2 + dy**2 ) plot( ux, uy , '.-') plot( ux + thick*dy/dL , uy - thick*dx/dL ,'-') plot( ux - thick*dy/dL , uy + thick*dx/dL ,'-' ) def filter_ends( wv, min_score, shape, border = 10 ): """ Return candidate ends for joining. Returns an iterator yielding (Whisker_Seg, side). """ maxy, maxx = [x - border for x in shape] minx, miny = border, border test_point = lambda x,y: x>minx and x<maxx and y > miny and y < maxy bordertest = lambda e,side: test_point( e.x[side], e.y[side] ) scoretest = lambda e,side: e.scores[side] > min_score sides = [0,-1] for e in wv: for s in sides: if bordertest(e,s) and scoretest(e,s): yield e,s def plot_candidate_ends(im, wv, min_score, border = 10): from pylab import plot, imshow, cm, ion,ioff, show, text left,right = group_ends( list(filter_ends(wv,min_score,im.shape, border)) ) ioff() #imshow(im,cmap=cm.gray,hold=0) m = {0:'ro',-1:'gs'} for i,e in enumerate(left): s = 0 text(e.x[s],e.y[s],str(i),color=m[s][0]) plot([e.x[s]],[e.y[s]],m[s]) for i,e in enumerate(right): s = -1 text(e.x[s],e.y[s],str(i),color=m[s][0]) plot([e.x[s]],[e.y[s]],m[s]) show() ion() def group_ends( ends ): return [e for e,s in ends if s == 0], [e for e,s in ends if s == -1] def end_direction(w, side, n=16): a = 0 b = min( n, len(w) ) if side != 0: a = -b b = -1 dx = diff( w.x[a:b] ).mean() dy = diff( w.y[a:b] ).mean() return dx,dy def make_joining_whisker(px,py,dist,lthick,lscore,rthick,rscore): w = Whisker_Seg() tt = linspace(0,1,round(dist)) w.x = polyval(px,tt).astype(float32) w.y = polyval(py,tt).astype(float32) w.thick = polyval( [rthick-lthick,lthick], tt ).astype(float32) w.scores = polyval( [rscore-lscore,lscore], tt ).astype(float32) return w def choose_gaps(im,wv, signal_per_pixel = 0.0, max_dist=60, max_angle = pi/4.): left,right = group_ends( list(filter_ends(wv,100,im.shape)) ) theta = lambda w,side: reduce(arctan2, reversed( end_direction(w,side) ) ) dtheta = lambda left,right: fabs(theta(left,0) - theta(right,-1)) for i,a in enumerate(left): for j,b in enumerate(right): dx = a.x[ 0]-b.x[-1] dy = a.y[ 0]-b.y[-1] d = hypot(dx,dy) dth = dtheta(a,b) v = end_direction(a,0) norm = hypot(*v) proj = dot( v/norm, (dx,dy) ) # jth: angle change from a to direct line joining a,b jth = fabs(arctan2( hypot(*( dx-proj*v[0]/norm, dy-proj*v[1]/norm )) , proj )) #print i,j, #print "\tD: %g Proj: %g Theta: %g"%(d,proj,jth*180/pi) l=0; if d < max_dist and jth < max_angle and proj > 0: px,py = solve_polynomial_join( b, a ) l = compute_join_score(im,px,py) if l < -signal_per_pixel: #plot_test(px,py) print("\tScore: %g Theta: %g"%(l,jth*180/pi)) e = make_joining_whisker(px,py,d,b.thick[-1],b.scores[-1],a.thick[ 0],a.scores[ 0]) yield (b,e,a),l def gap_measures(im,wv): pmetric = lambda p: sqrt(dot(p[:-1],p[:-1])) left,right = group_ends( list(filter_ends(wv,100,im.shape)) ) shape = (len(left),len(right) ) d = zeros( shape ) l = zeros( shape ) c = zeros( shape ) cx = zeros( shape ) cy = zeros( shape ) for i,a in enumerate(left): for j,b in enumerate(right): dx = a.x[0 ]-b.x[-1] dy = a.y[0 ]-b.y[-1] d[i,j] = hypot(dx,dy) px,py = solve_polynomial_join( b, a ) lpx,lpy = solve_polynomial_join( a, a, reverse = 1 ) rpx,rpy = solve_polynomial_join( b, b, reverse = 1 ) cx[i,j] = max( pmetric( px - lpx ) , pmetric( px - rpx ) ) cy[i,j] = max( pmetric( px - lpx ) , pmetric( py - rpy ) ) #l[i,j] = compute_join_length(px,py) l[i,j] = compute_join_score(im,px,py) plot_test(px,py) #c[i,j] = compute_join_curvature(px,py) #if sqrt( px[0]**2 + py[0]**2 ) < 50.0: # plot_join(px,py) return d,l,cx,cy def trace_overlap(xxx_todo_changeme, xxx_todo_changeme1, thresh = 2.0 ): # DONE: does not assume that indexes run along same direction (wa,i) = xxx_todo_changeme (wb,j) = xxx_todo_changeme1 def dist(ia,ib): a,b = wa[ia], wb[ib] return hypot( a[0] - b[0], a[1] - b[1] ) # determine relative direction of indexing ia,ib = i,j if ia == len(wa)-1 or ib == len(wb)-1: if ia != 0 and ib != 0: dax = wa.x[ia-1] - wa.x[ia] day = wa.y[ia-1] - wa.y[ia] dbx = wb.x[ib-1] - wb.x[ib] dby = wb.y[ib-1] - wb.y[ib] elif ia == 0: dax = wa.x[ia+1] - wa.x[ia] day = wa.y[ia+1] - wa.y[ia] dbx = - wb.x[ib-1] + wb.x[ib] dby = - wb.y[ib-1] + wb.y[ib] elif ib == 0: dax = - wa.x[ia-1] + wa.x[ia] day = - wa.y[ia-1] + wa.y[ia] dbx = wb.x[ib+1] - wb.x[ib] dby = wb.y[ib+1] - wb.y[ib] else: dax = wa.x[ia+1] - wa.x[ia] day = wa.y[ia+1] - wa.y[ia] dbx = wb.x[ib+1] - wb.x[ib] dby = wb.y[ib+1] - wb.y[ib] stepa = -1; #only need to keep track of one direction enda = 0; notend = lambda i,n: i>n if( abs(dax) > abs(day) ): #determine by x change if( dax*dbx < 0 ): #have different signs stepa = 1 enda = len(wa) notend = lambda i,n: i<n-1 else: #determine by y change if( day*dby < 0 ): #have different signs stepa = 1 enda = len(wa) notend = lambda i,n: i<n-1 bnda = [i,i] bndb = [j,j] ms = 0 while ms < thresh and notend(ia,enda) and ib > 0: moves = ( ( ia + stepa, ib - 1 ), ( ia + stepa, ib ), ( ia , ib - 1 ) ) scores = [dist( iam, ibm ) for iam, ibm in moves] ms = min(scores) for idx,s in enumerate( scores ): #choose best move if s == ms: ia,ib = moves[idx] break #relax at boundary, move downhill if not notend(ia,enda) and ib == 0: pass elif not notend(ia,enda): last = ms s = dist( ia, ib - 1 ) while s < last and ib > 1: ib -= 1 last = s s = dist( ia, ib - 1 ) elif ib == 0: last = ms s = dist( ia + stepa, ib ) while s < last and notend(ia,enda-stepa): ia += stepa last = s s = dist( ia + stepa, ib ) bnda[0] = ia bndb[0] = ib #flip direction if stepa == -1: stepa = 1 enda = len(wa) notend = lambda i,n:i<n-1 else: stepa = -1 enda = 0 notend = lambda i,n: i>n ia,ib = i,j ms = 0 while ms < thresh and notend(ia,enda) and ib < len(wb)-1: moves = ( ( ia + stepa, ib + 1 ), ( ia + stepa, ib ), ( ia , ib + 1 ) ) scores = [dist( iam, ibm ) for iam, ibm in moves] ms = min(scores) for idx,s in enumerate(scores): if s == ms: ia,ib = moves[idx] break #relax at boundary, move downhill if not notend(ia,enda) and ib == len(wb)-1: pass elif not notend(ia,enda): last = ms s = dist( ia, ib + 1 ) while s < last and ib < len(wb)-2: ib += 1 last = s s = dist( ia, ib + 1 ) elif ib == len(wb)-1: last = ms s = dist( ia + stepa, ib ) while s < last and notend(ia,enda-stepa): ia += stepa last = s s = dist( ia + stepa, ib ) bnda[1] = ia bndb[1] = ib bnda.sort() return bnda, bndb def resolution(table, wvd): rest = set(wvd.values()) match = next(table) while match: keep,discard = merge(match) if discard: for a in discard: table.remove( a ) for a in keep: yield a for a,i in match: rest.discard(a) match = next(table) for a in rest: yield a def pairwise_merge( match ): overhang = 8 wa = match[0][0] wb = match[1][0] bnda, bndb = trace_overlap(*match) iscomplete = lambda bnd,w: bnd[0] < overhang and bnd[1] >= len(w)-overhang if iscomplete(bnda,wa) or iscomplete(bndb,wb): sa = wa.scores.sum() sb = wb.scores.sum() if sa > sb: return wa,None else: return None,wb return None,None def merge( match ): dep = dict( [ (e[0],0) for e in match ] ) #iterate through all pairs and mark those who are contained in another whisker # The pairwise merge should impose a strict ordering match = list(match) for i,ma in enumerate(match): for j,mb in enumerate(match[ (i+1): ]): ra,rb = pairwise_merge( (ma,mb) ) if ra or rb: if not ra: dep[ma[0]] = 1 if not rb: dep[mb[0]] = 1 # partition into two sets. Those to keep and those to discard. # Those to keep depend on none of the others. return [ k for k,v in dep.items() if v==0 ], \ [ k for k,v in dep.items() if v!=0 ] class CollisionTable(object): def __init__(self, wvd, shape, scale): """ `wvd` may be either a dict or list of whiskers """ object.__init__(self) self._map = {} self._shape = shape self._scale = scale self._stride = stride = shape[1]/scale self.topx = lambda p: int(p[0]/scale) + stride * int(p[1]/scale) self._build_inverse_table( wvd ) def _build_inverse_table(self, wvd ): g = enumerate(wvd) if isinstance(wvd, dict): g = iter(wvd.items()) for i,w in g: self.add(w) def update( self, changes ): """ Changes is a dict mapping old whisker segments to new segments """ last = None for w,p in changes.items(): self.remove(w) if p: self.add(p[0]) # add back ends self.add(p[-1]) last = p[1] if last: self.add(last) # add back last middle def add(self, w): if not w: return hash = lambda e: enumerate( map(self.topx,list(zip(e.x,e.y))) ) for i,px in hash(w): self._map.setdefault(px,set()).add( (w,i) ) for i,px in hash(w): # scan back through and remove repeat hits on a pixel for x in [e for e in self._map[px] if e[0] == w][1:]: self._map[px].remove(x) def remove(self, w): if not w: return hash = lambda e: enumerate( map(self.topx,list(zip(e.x,e.y))) ) for i,px in hash(w): s = self._map.get(px) if s: s.discard( (w,i) ) def __iter__(self): m = next(self) while m: yield m m = next(self) def __next__(self): """ This changes the inverse table by removing hits. Returns a (Whisker_Seg, index),(Whisker_Seg, index)... tuple or None, if done. """ todelete = [] retval = None for px,s in self._map.items(): todelete.append(px) # get rid of references to visited pixels if len(s) > 1: retval = s break for k in todelete: del self._map[k] return retval def counts( self ): tosc = lambda e: e/self._scale im = zeros(list(map(tosc, self._shape))) imr = im.ravel() for px,s in self._map.items(): imr[px] = len(s) #len(set( [e for e,i in s] )) return im
32.529221
99
0.550155
[ "BSD-3-Clause" ]
aiporre/whisk
whisk/test_merge3.py
20,038
Python