content
stringlengths
7
928k
avg_line_length
float64
3.5
33.8k
max_line_length
int64
6
139k
alphanum_fraction
float64
0.08
0.96
licenses
sequence
repository_name
stringlengths
7
104
path
stringlengths
4
230
size
int64
7
928k
lang
stringclasses
1 value
import pymongo def connect_to_mongo(username="", password="", host="localhost", port=27017): credentials = "" if username and password: credentials = f"{username}:{password}@" connection_url = f"mongodb://{credentials}{host}:{port}" return pymongo.MongoClient(connection_url)
30.2
77
0.692053
[ "MIT" ]
stump-vote/stump-data-pipeline
src/stump_data_pipeline/mongo_client.py
302
Python
from __future__ import division import numpy as np import sys import os import shutil import vtk from vtk.util.numpy_support import vtk_to_numpy import matplotlib import matplotlib.pyplot as plt import matplotlib.image as mpimg import matplotlib.animation as animation import matplotlib.colors as mcolors import argparse import paraview.simple as parasim import multiprocessing as mp import copy sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname( __file__ ), '..', 'model'))) from geometry_generation import * matplotlib.rcParams['font.size'] = 6 import scipy.interpolate as interpsci import seaborn as sns def truncate_colormap(cmap, minval=0.0, maxval=1.0, n=-1): if n == -1: n = cmap.N new_cmap = mcolors.LinearSegmentedColormap.from_list( 'trunc({name},{a:.2f},{b:.2f})'.format(name=cmap.name, a=minval, b=maxval), cmap(np.linspace(minval, maxval, n))) return new_cmap def makeImage(snapshots, geometryX, geometryY, data_names, folder_name, times): fig = plt.figure(figsize=(7,4.72441/4*3)) ax1 = fig.add_subplot(231) ax2 = fig.add_subplot(234) ax3 = fig.add_subplot(232) ax4 = fig.add_subplot(235) ax5 = fig.add_subplot(233) ax6 = fig.add_subplot(236) axes = [[ax1, ax2], [ax3, ax4], [ax5, ax6]] all_axes = [ax1, ax2, ax3, ax4, ax5, ax6] for k in range(len(snapshots[0])): axes_current = axes[k] values = [[],[]] for j in range(len(data_names)): i = snapshots[j][k] reader = vtk.vtkXMLUnstructuredGridReader() reader.SetFileName(data_names[j] + '{0:06d}.vtu'.format(i)) reader.Update() data = reader.GetOutput() points = data.GetPoints() npts = points.GetNumberOfPoints() x = vtk_to_numpy(points.GetData())[:, 0] y = vtk_to_numpy(points.GetData())[:, 1] f = vtk_to_numpy(data.GetPointData().GetArray(0)) triangles = vtk_to_numpy(data.GetCells().GetData()) ntri = triangles.size//4 tri = np.take(triangles,[m for m in range(triangles.size) if m%4 != 0]).reshape(ntri, 3) waterX = np.linspace(0, 60000, 100) waterY = np.zeros(100) values[j].append(x) values[j].append(y) values[j].append(tri) values[j].append(f) levels = np.linspace(0, 1.0, 100, endpoint=True) cmap_new = truncate_colormap(plt.get_cmap("BuPu"), 0.25, 1.0) maxL = 51100 bed_interpolator = interpsci.interp1d(geometryX, geometryY, fill_value='extrapolate') geometryX = np.linspace(0, 60000, 1000) geometryY = bed_interpolator(geometryX) axes_current[0].fill_between(waterX, -200, 0, color='#94aec4ff', zorder=-21) axes_current[1].fill_between(waterX, -200, 0, color='#94aec4ff', zorder=-21) axes_current[0].fill_between(geometryX, -200, geometryY, color='#c69d6eff', zorder=-18) axes_current[1].fill_between(geometryX, -200, geometryY, color='#c69d6eff', zorder=-18) cnt1 = axes_current[0].tricontourf(values[0][0], values[0][1], values[0][2], values[0][3]*100, 100, cmap=cmap_new, levels=levels, extend='both', zorder=-20) cnt2 = axes_current[1].tricontourf(values[1][0], values[1][1], values[1][2], values[1][3]*100, 100, cmap=cmap_new, levels=levels, extend='both', zorder=-20) for cnt in [cnt1, cnt2]: for c in cnt.collections: c.set_edgecolor("face") axes_current[0].set_title("t = %.1f years" % (times[k]-0.5)) print("Processed file number " + str(i) + ".") labels = ['a', 'd', 'b', 'e', 'c', 'f'] for ax in all_axes: ax.set_xlim([49400,maxL]) ax.set_ylim([-200,100]) ax.set_rasterization_zorder(-10) for j in range(len(all_axes)): all_axes[j].text(0.025, 0.97, labels[j], transform=all_axes[j].transAxes, va='top', fontsize=8, weight='bold') for ax in [ax3, ax4, ax5, ax6]: plt.sca(ax) ylims = plt.yticks() print(ylims) locs = ylims[0][1:-1] labels = [] for j in range(len(locs)): labels.append('%.2f'%(locs[j])) plt.sca(ax) plt.yticks(locs, [" "]*len(locs)) for ax in [ax1, ax3, ax5]: plt.sca(ax) xlims = plt.xticks() print(xlims) locs = xlims[0][1:-1] labels = [] for j in range(len(locs)): labels.append('%.2f'%(locs[j])) plt.sca(ax) plt.xticks(locs, [" "]*len(locs)) for ax in [ax2, ax4, ax6]: plt.sca(ax) labelsx = [num/1000 for num in locs] plt.xticks(locs, labelsx) for ax in [ax2, ax4, ax6]: ax.set_xlabel('Distance (km)') for ax in [ax1, ax2]: ax.set_ylabel('Height (m)') ax1.text(-0.5, 0.5, 'No Advection', transform=ax1.transAxes, va='center', fontsize=12, rotation='vertical') ax2.text(-0.5, 0.5, 'Advection', transform=ax2.transAxes, va='center', fontsize=12, rotation='vertical') plt.tight_layout(pad=1.0,h_pad=-1.0,w_pad=0.0) fig.savefig(folder_name + "/" + "thumbnails_warm.eps", transparent=False) plt.close(fig) if __name__ == "__main__": sns.set(palette='colorblind') sns.set(font_scale=0.8) sns.set_style(style='ticks') starting_directory = os.getcwd() os.chdir(os.path.abspath(os.path.join(os.path.dirname( __file__ ), '..', 'tests'))) main_directory = os.getcwd() geometryX, geometryY, xz_boundary = make_geometry_grounded(-0.01, 50000, -150, 50, 100, 10) times = [0.5, 8.0, 15.5] directories = ['warm_noad', 'warm'] dataName = 'width_timeseries' data_names = [os.path.join(directory, dataName) for directory in directories] snapshots = [[], []] for i in range(len(directories)): for j in range(len(times)): if times[j] == int(0): snapshots[i].append(int(0)) else: os.chdir(directories[i]) reader_paraview = parasim.PVDReader(FileName=dataName + '.pvd') times_imported = reader_paraview.GetPropertyValue('TimestepValues') times_temp = 0.0 for k in range(len(times_imported)): if times_imported[k] >= times[j] and times_temp <= times[j]: snapshots[i].append(int(k)) break else: times_temp = times_imported[k] os.chdir(main_directory) os.chdir(main_directory) print(snapshots) makeImage(snapshots, geometryX, geometryY, data_names, starting_directory, times)
37.066667
164
0.601169
[ "MIT" ]
brberg/stokes-crevasse-advection
plotting/thumbnails_warm.py
6,672
Python
from PyQt5.QtGui import * from PyQt5.QtCore import * from PyQt5.QtWidgets import QColorDialog, QDialogButtonBox BB = QDialogButtonBox class ColorDialog(QColorDialog): def __init__(self, parent=None): super(ColorDialog, self).__init__(parent) self.setOption(QColorDialog.ShowAlphaChannel) # The Mac native dialog does not support our restore button. self.setOption(QColorDialog.DontUseNativeDialog) # Add a restore defaults button. # The default is set at invocation time, so that it # works across dialogs for different elements. self.default = None self.bb = self.layout().itemAt(1).widget() self.bb.addButton(BB.RestoreDefaults) self.bb.clicked.connect(self.checkRestore) def getColor(self, value=None, title=None, default=None): self.default = default if title: self.setWindowTitle(title) if value: self.setCurrentColor(value) return self.currentColor() if self.exec_() else None def checkRestore(self, button): if self.bb.buttonRole(button) & BB.ResetRole and self.default: self.setCurrentColor(self.default)
35.147059
70
0.680335
[ "Apache-2.0" ]
7eta/udk_labeler
view/libs/colorDialog.py
1,195
Python
# Copyright (C) 2019 Google Inc. # Licensed under http://www.apache.org/licenses/LICENSE-2.0 <see LICENSE file> """Provides an HTML cleaner function with sqalchemy compatible API""" import re import HTMLParser import bleach # Set up custom tags/attributes for bleach BLEACH_TAGS = [ 'caption', 'strong', 'em', 'b', 'i', 'p', 'code', 'pre', 'tt', 'samp', 'kbd', 'var', 'sub', 'sup', 'dfn', 'cite', 'big', 'small', 'address', 'hr', 'br', 'div', 'span', 'h1', 'h2', 'h3', 'h4', 'h5', 'h6', 'ul', 'ol', 'li', 'dl', 'dt', 'dd', 'abbr', 'acronym', 'a', 'img', 'blockquote', 'del', 'ins', 'table', 'tbody', 'tr', 'td', 'th', ] + bleach.ALLOWED_TAGS BLEACH_ATTRS = {} ATTRS = [ 'href', 'src', 'width', 'height', 'alt', 'cite', 'datetime', 'title', 'class', 'name', 'xml:lang', 'abbr' ] BUGGY_STRINGS_PATTERN = "&.{2,3};" for tag in BLEACH_TAGS: BLEACH_ATTRS[tag] = ATTRS CLEANER = bleach.sanitizer.Cleaner( tags=BLEACH_TAGS, attributes=BLEACH_ATTRS, strip=True ) PARSER = HTMLParser.HTMLParser() def cleaner(dummy, value, *_): """Cleans out unsafe HTML tags. Uses bleach and unescape until it reaches a fix point. Args: dummy: unused, sqalchemy will pass in the model class value: html (string) to be cleaned Returns: Html (string) without unsafe tags. """ if value is None: # No point in sanitizing None values return value if not isinstance(value, basestring): # No point in sanitizing non-strings return value value = unicode(value) buggy_strings = re.finditer(BUGGY_STRINGS_PATTERN, PARSER.unescape(value)) while True: lastvalue = value value = PARSER.unescape(CLEANER.clean(value)) if value == lastvalue: break # for some reason clean() function converts strings like "&*!;" to "&*;;". # if we have such string we are replacing new incorrect values to old ones if buggy_strings: backup_value = value updated_buggy_strings = re.finditer(BUGGY_STRINGS_PATTERN, value) for match in updated_buggy_strings: try: old_value = buggy_strings.next().group() start, finish = match.span() value = value[:start] + old_value + value[finish:] except StopIteration: # If we have different number of string after clean function # we should skip replacing return backup_value return value
27.55814
78
0.646835
[ "ECL-2.0", "Apache-2.0" ]
VRolich/ggrc-core
src/ggrc/utils/html_cleaner.py
2,370
Python
''' This script includes: 1. ClassifierOfflineTrain This is for offline training. The input data are the processed features. 2. class ClassifierOnlineTest(object) This is for online testing. The input data are the raw skeletons. It uses FeatureGenerator to extract features, and then use ClassifierOfflineTrain to recognize the action. Notice, this model is only for recognizing the action of one person. TODO: Add more comments to this function. ''' import numpy as np import sys import os import pickle import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from collections import deque import cv2 from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.datasets import make_moons, make_circles, make_classification from sklearn.neural_network import MLPClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.gaussian_process import GaussianProcessClassifier from sklearn.gaussian_process.kernels import RBF from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier from sklearn.naive_bayes import GaussianNB from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis from sklearn.decomposition import PCA if True: import sys import os ROOT = os.path.dirname(os.path.abspath(__file__))+"/../" sys.path.append(ROOT) from utils.lib_feature_proc import FeatureGenerator # -- Settings NUM_FEATURES_FROM_PCA = 50 # -- Classes class ClassifierOfflineTrain(object): ''' The classifer for offline training. The input features to this classifier are already processed by `class FeatureGenerator`. ''' def __init__(self): self._init_all_models() # self.clf = self._choose_model("Nearest Neighbors") # self.clf = self._choose_model("Linear SVM") # self.clf = self._choose_model("RBF SVM") # self.clf = self._choose_model("Gaussian Process") # self.clf = self._choose_model("Decision Tree") # self.clf = self._choose_model("Random Forest") self.clf = self._choose_model("Neural Net") def predict(self, X): ''' Predict the class index of the feature X ''' Y_predict = self.clf.predict(self.pca.transform(X)) return Y_predict def predict_and_evaluate(self, te_X, te_Y): ''' Test model on test set and obtain accuracy ''' te_Y_predict = self.predict(te_X) N = len(te_Y) n = sum(te_Y_predict == te_Y) accu = n / N return accu, te_Y_predict def train(self, X, Y): ''' Train model. The result is saved into self.clf ''' n_components = min(NUM_FEATURES_FROM_PCA, X.shape[1]) self.pca = PCA(n_components=n_components, whiten=True) self.pca.fit(X) # print("Sum eig values:", np.sum(self.pca.singular_values_)) print("Sum eig values:", np.sum(self.pca.explained_variance_ratio_)) X_new = self.pca.transform(X) print("After PCA, X.shape = ", X_new.shape) self.clf.fit(X_new, Y) def _choose_model(self, name): self.model_name = name idx = self.names.index(name) return self.classifiers[idx] def _init_all_models(self): self.names = ["Nearest Neighbors", "Linear SVM", "RBF SVM", "Gaussian Process", "Decision Tree", "Random Forest", "Neural Net", "AdaBoost", "Naive Bayes", "QDA"] self.model_name = None self.classifiers = [ KNeighborsClassifier(5), SVC(kernel="linear", C=10.0), SVC(gamma=0.01, C=1.0, verbose=True), GaussianProcessClassifier(1.0 * RBF(1.0)), DecisionTreeClassifier(max_depth=5), RandomForestClassifier( max_depth=30, n_estimators=100, max_features="auto"), MLPClassifier((20, 30, 40)), # Neural Net AdaBoostClassifier(), GaussianNB(), QuadraticDiscriminantAnalysis()] def _predict_proba(self, X): ''' Predict the probability of feature X belonging to each of the class Y[i] ''' Y_probs = self.clf.predict_proba(self.pca.transform(X)) return Y_probs # np.array with a length of len(classes) class ClassifierOnlineTest(object): ''' Classifier for online inference. The input data to this classifier is the raw skeleton data, so they are processed by `class FeatureGenerator` before sending to the self.model trained by `class ClassifierOfflineTrain`. ''' def __init__(self, model_path, action_labels, window_size, human_id=0): # -- Settings self.human_id = human_id with open(model_path, 'rb') as f: self.model = pickle.load(f) if self.model is None: print("my Error: failed to load model") assert False self.action_labels = action_labels self.THRESHOLD_SCORE_FOR_DISP = 0.5 # -- Time serials storage self.feature_generator = FeatureGenerator(window_size) self.reset() def reset(self): self.feature_generator.reset() self.scores_hist = deque() self.scores = None def predict(self, skeleton): ''' Predict the class (string) of the input raw skeleton ''' LABEL_UNKNOWN = "" is_features_good, features = self.feature_generator.add_cur_skeleton( skeleton) if is_features_good: # convert to 2d array features = features.reshape(-1, features.shape[0]) curr_scores = self.model._predict_proba(features)[0] self.scores = self.smooth_scores(curr_scores) if self.scores.max() < self.THRESHOLD_SCORE_FOR_DISP: # If lower than threshold, bad prediced_label = LABEL_UNKNOWN else: predicted_idx = self.scores.argmax() prediced_label = self.action_labels[predicted_idx] else: prediced_label = LABEL_UNKNOWN return prediced_label def smooth_scores(self, curr_scores): ''' Smooth the current prediction score by taking the average with previous scores ''' self.scores_hist.append(curr_scores) DEQUE_MAX_SIZE = 2 if len(self.scores_hist) > DEQUE_MAX_SIZE: self.scores_hist.popleft() if 1: # Use sum score_sums = np.zeros((len(self.action_labels),)) for score in self.scores_hist: score_sums += score score_sums /= len(self.scores_hist) print("\nMean score:\n", score_sums) return score_sums else: # Use multiply score_mul = np.ones((len(self.action_labels),)) for score in self.scores_hist: score_mul *= score return score_mul def draw_scores_onto_image(self, img_disp): if self.scores is None: return for i in range(len(self.action_labels)): FONT_SIZE = 0.6 TXT_X = 20 TXT_Y = 150 + i*30 COLOR_INTENSITY = 255 #if i == -1: # s = "{}".format(self.human_id) #else: #label = self.action_labels[i] #s = "{:<5}: {:.2f}".format(label, self.scores[i]) #COLOR_INTENSITY *= (0.0 + 1.0 * self.scores[i])**0.5 if i!=-1: label = self.action_labels[i] s = "{:<5}: {:.2f}".format(label, self.scores[i]) COLOR_INTENSITY *= (0.0 + 1.0 * self.scores[i])**0.5 cv2.putText(img_disp, text=s, org=(TXT_X, TXT_Y), fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=FONT_SIZE, color=(0, 0, int(COLOR_INTENSITY)), thickness=2)
35.855856
97
0.629899
[ "MIT" ]
eddylamhw/trAIner24
utils/lib_classifier.py
7,960
Python
#!/usr/bin/python import time import re import os class ScavUtility: def __init__(self): pass def check(self, email): regex = '^(?=.{1,64}@)[A-Za-z0-9_-]+(\\.[A-Za-z0-9_-]+)*@[^-][A-Za-z0-9-]+(\\.[A-Za-z0-9-]+)*(\\.[A-Za-z]{2,})$' if (re.search(regex, email)): return 1 else: return 0 def loadSearchTerms(self): searchterms = set() f = open("configs/searchterms.txt", "r") tmpcontent = f.readlines() f.close() for tmpline in tmpcontent: tmpline = tmpline.strip() searchterms.add(tmpline) return searchterms def archivepastes(self, directory): pastecount = len([name for name in os.listdir(directory) if os.path.isfile(os.path.join(directory, name))]) if pastecount > 48000: archivefilename = str(time.time()) + ".zip" os.system("zip -r pastebin_" + archivefilename + " " + directory) os.system("mv pastebin_" + archivefilename + " archive/.") os.system("rm " + directory + "/*")
29.567568
120
0.54479
[ "Apache-2.0" ]
SCR-Hy3n4/Scavenger
classes/utility.py
1,094
Python
#------------------------------------------------------------------------------ # Copyright (c) 2013, Nucleic Development Team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file COPYING.txt, distributed with this software. #------------------------------------------------------------------------------ from atom.api import Typed, ForwardTyped from .bounded_date import BoundedDate, ProxyBoundedDate class ProxyCalendar(ProxyBoundedDate): """ The abstract defintion of a proxy Calendar object. """ #: A reference to the Calendar declaration. declaration = ForwardTyped(lambda: Calendar) class Calendar(BoundedDate): """ A bounded date control which edits a Python datetime.date using a widget which resembles a calendar. """ #: A reference to the ProxyCalendar object. proxy = Typed(ProxyCalendar)
31.714286
79
0.606982
[ "BSD-3-Clause" ]
ContinuumIO/ashiba
enaml/enaml/widgets/calendar.py
888
Python
# -*- coding: utf-8 -*- """ WOLFEYES'S FRAMEWORK Python 3 / OpenCV 3 This file describes some TypeCheking decorators. Might be useless, but allows for almost very precise type checking, especially on keyworded args, which might help. """ # 'kargs' get the arguments and passes the decorator def args(*types, **ktypes): """Allow testing of input types: argkey=(types) or argkey=type""" # The decorator modifies the function def decorator(func): def modified(*args, **kargs): # The modified fonction takes some args and kargs, # Which we need to check before passing it to func. # Works much like a proxy/firewall. # Check args: position = 1 for arg, T in zip(args, types): if not isinstance(arg, T): raise TypeError("Positional arg (%d) should be of type(s) %s, got %s" % (position, T, type(arg))) position += 1 # Check kargs: for key, arg in kargs.items(): if key in ktypes: T = ktypes[key] if not isinstance(arg, T): raise TypeError("Keyworded arg '%s' should be of type(s) %s, got %s" % (key, T, type(arg))) # Actual result after check return func(*args, **kargs) # The decorator has decorated 'func' in 'modified' return modified # We pass the actual decorator right after getting the kargs return decorator # 'ret' gets the possible output types def ret(*types, **kargs): # Garde-fou if len(types) is 1 and not isinstance(types[0], type) and callable(types[0]): raise ValueError("You should not pass a function to TypeError.ret, maybe you did not write as '@TypeError.ret()...'") # This decorator will modify the function 'func' def decorator(func): def modified(*args, **kargs): # This is the modified function, 'modified' Works # like a proxy, just passes the arguments and # checks the type of the return's value ret = func(*args, **kargs) if not isinstance(ret, types): raise TypeError("The function %s is returning an abnormal value, expected %s but got %s" % (func, types, type(ret))) # func's return return ret # Modified function return modified # The actual decorator return decorator
33.405405
132
0.588592
[ "BSD-3-Clause" ]
TBIproject/WolfEye
WolfEyes/Utils/TypeChecker.py
2,472
Python
import requests def run(event, context): #return event.get('url') + 'aaa' r = requests.get(event.get('url')) return r.text #return '...**^^.This is a request test for url: {0}'.format(event.get('url'))
27.375
82
0.611872
[ "Apache-2.0" ]
owasp-sbot/pbx-gs-python-utils
_from_pydot/dev/request_test.py
219
Python
import insightconnect_plugin_runtime from .schema import StartPatchScanInput, StartPatchScanOutput, Input, Output, Component # Custom imports below from insightconnect_plugin_runtime.exceptions import PluginException import polling2 class StartPatchScan(insightconnect_plugin_runtime.Action): def __init__(self): super(self.__class__, self).__init__( name='start_patch_scan', description=Component.DESCRIPTION, input=StartPatchScanInput(), output=StartPatchScanOutput()) def run(self, params={}): endpoint_names = params.get(Input.HOSTNAMES, []) machine_group_ids = params.get(Input.MACHINE_GROUP_IDS, []) use_machine_credential = params.get(Input.USE_MACHINE_CREDENTIAL, False) max_poll_time = params.get(Input.MAX_POLL_TIME) if not endpoint_names and not machine_group_ids: raise PluginException(cause='No hostnames or machine group IDs specified.', assistance='Either hostnames or machine group IDs must be specified.' ) if use_machine_credential: if not endpoint_names: raise PluginException(cause='Machine credentials can only be set to true if hostname is specified.', assistance='Either provide a valid hostname or set machine credentials to False.') payload = { "credentialId": params.get(Input.CREDENTIAL_ID), "diagnosticTraceEnabled": params.get(Input.DIAGNOSTIC_TRACE_ENABLED), "endpointNames": endpoint_names, "machinegroupIds": machine_group_ids, "name": params.get(Input.NAME), "runAsCredentialId": params.get(Input.RUN_AS_CREDENTIAL_ID), "templateId": params.get(Input.TEMPLATE_ID), "useMachineCredential": use_machine_credential } self.connection.ivanti_api.create_session_credential() scan = self.connection.ivanti_api.start_patch_scan(payload) try: operation_location_url = scan.headers.get("Operation-Location") polling2.poll(lambda: self.connection.ivanti_api.get_operation_location(operation_location_url) .get("percentComplete") == 100, step=10, timeout=max_poll_time) except KeyError as e: raise PluginException( cause=f'{e} not found within the header.', assistance=f'If the issue persists please contact support.') except polling2.TimeoutException as e: raise PluginException( cause='Action timeout.', assistance=f'This scan has exceeded the maximum poll time of {max_poll_time}.') operation_location = self.connection.ivanti_api.get_operation_location(operation_location_url) scan_details = scan.json() scan_details['isComplete'] = True scan_details['updatedOn'] = operation_location['lastAction'] return { Output.SCAN_DETAILS: scan_details }
46.223881
120
0.656765
[ "MIT" ]
hashtagcyber/insightconnect-plugins
ivanti_security_controls/icon_ivanti_security_controls/actions/start_patch_scan/action.py
3,097
Python
import configparser import os import re import subprocess import sys import time import utilities_common.cli as clicommon from urllib.request import urlopen, urlretrieve import click from sonic_py_common import logger from swsscommon.swsscommon import SonicV2Connector from .bootloader import get_bootloader from .common import ( run_command, run_command_or_raise, IMAGE_PREFIX, UPPERDIR_NAME, WORKDIR_NAME, DOCKERDIR_NAME, ) from .exception import SonicRuntimeException SYSLOG_IDENTIFIER = "sonic-installer" LOG_ERR = logger.Logger.LOG_PRIORITY_ERROR LOG_WARN = logger.Logger.LOG_PRIORITY_WARNING LOG_NOTICE = logger.Logger.LOG_PRIORITY_NOTICE # Global Config object _config = None # Global logger instance log = logger.Logger(SYSLOG_IDENTIFIER) # This is from the aliases example: # https://github.com/pallets/click/blob/57c6f09611fc47ca80db0bd010f05998b3c0aa95/examples/aliases/aliases.py class Config(object): """Object to hold CLI config""" def __init__(self): self.path = os.getcwd() self.aliases = {} def read_config(self, filename): parser = configparser.RawConfigParser() parser.read([filename]) try: self.aliases.update(parser.items('aliases')) except configparser.NoSectionError: pass class AliasedGroup(click.Group): """This subclass of click.Group supports abbreviations and looking up aliases in a config file with a bit of magic. """ def get_command(self, ctx, cmd_name): global _config # If we haven't instantiated our global config, do it now and load current config if _config is None: _config = Config() # Load our config file cfg_file = os.path.join(os.path.dirname(__file__), 'aliases.ini') _config.read_config(cfg_file) # Try to get builtin commands as normal rv = click.Group.get_command(self, ctx, cmd_name) if rv is not None: return rv # No builtin found. Look up an explicit command alias in the config if cmd_name in _config.aliases: actual_cmd = _config.aliases[cmd_name] return click.Group.get_command(self, ctx, actual_cmd) # Alternative option: if we did not find an explicit alias we # allow automatic abbreviation of the command. "status" for # instance will match "st". We only allow that however if # there is only one command. matches = [x for x in self.list_commands(ctx) if x.lower().startswith(cmd_name.lower())] if not matches: return None elif len(matches) == 1: return click.Group.get_command(self, ctx, matches[0]) ctx.fail('Too many matches: %s' % ', '.join(sorted(matches))) # # Helper functions # _start_time = None _last_time = None def reporthook(count, block_size, total_size): global _start_time, _last_time cur_time = int(time.time()) if count == 0: _start_time = cur_time _last_time = cur_time return if cur_time == _last_time: return _last_time = cur_time duration = cur_time - _start_time progress_size = int(count * block_size) speed = int(progress_size / (1024 * duration)) percent = int(count * block_size * 100 / total_size) time_left = (total_size - progress_size) / speed / 1024 sys.stdout.write("\r...%d%%, %d MB, %d KB/s, %d seconds left... " % (percent, progress_size / (1024 * 1024), speed, time_left)) sys.stdout.flush() # TODO: Embed tag name info into docker image meta data at build time, # and extract tag name from docker image file. def get_docker_tag_name(image): # Try to get tag name from label metadata cmd = "docker inspect --format '{{.ContainerConfig.Labels.Tag}}' " + image proc = subprocess.Popen(cmd, stdout=subprocess.PIPE, shell=True, text=True) (out, _) = proc.communicate() if proc.returncode != 0: return "unknown" tag = out.rstrip() if tag == "<no value>": return "unknown" return tag def echo_and_log(msg, priority=LOG_NOTICE, fg=None): if priority >= LOG_ERR: # Print to stderr if priority is error click.secho(msg, fg=fg, err=True) else: click.secho(msg, fg=fg) log.log(priority, msg, False) # Function which validates whether a given URL specifies an existent file # on a reachable remote machine. Will abort the current operation if not def validate_url_or_abort(url): # Attempt to retrieve HTTP response code try: urlfile = urlopen(url) response_code = urlfile.getcode() urlfile.close() except IOError: response_code = None if not response_code: echo_and_log("Did not receive a response from remote machine. Aborting...", LOG_ERR) raise click.Abort() else: # Check for a 4xx response code which indicates a nonexistent URL if response_code / 100 == 4: echo_and_log("Image file not found on remote machine. Aborting...", LOG_ERR) raise click.Abort() # Callback for confirmation prompt. Aborts if user enters "n" def abort_if_false(ctx, param, value): if not value: ctx.abort() def get_container_image_name(container_name): # example image: docker-lldp-sv2:latest cmd = "docker inspect --format '{{.Config.Image}}' " + container_name proc = subprocess.Popen(cmd, stdout=subprocess.PIPE, shell=True, text=True) (out, _) = proc.communicate() if proc.returncode != 0: sys.exit(proc.returncode) image_latest = out.rstrip() # example image_name: docker-lldp-sv2 cmd = "echo " + image_latest + " | cut -d ':' -f 1" proc = subprocess.Popen(cmd, stdout=subprocess.PIPE, shell=True, text=True) image_name = proc.stdout.read().rstrip() return image_name def get_container_image_id(image_tag): # TODO: extract commond docker info fetching functions # this is image_id for image with tag, like 'docker-teamd:latest' cmd = "docker images --format '{{.ID}}' " + image_tag proc = subprocess.Popen(cmd, stdout=subprocess.PIPE, shell=True, text=True) image_id = proc.stdout.read().rstrip() return image_id def get_container_image_id_all(image_name): # All images id under the image name like 'docker-teamd' cmd = "docker images --format '{{.ID}}' " + image_name proc = subprocess.Popen(cmd, stdout=subprocess.PIPE, shell=True, text=True) image_id_all = proc.stdout.read() image_id_all = image_id_all.splitlines() image_id_all = set(image_id_all) return image_id_all def hget_warm_restart_table(db_name, table_name, warm_app_name, key): db = SonicV2Connector() db.connect(db_name, False) _hash = table_name + db.get_db_separator(db_name) + warm_app_name client = db.get_redis_client(db_name) return client.hget(_hash, key) def hdel_warm_restart_table(db_name, table_name, warm_app_name, key): db = SonicV2Connector() db.connect(db_name, False) _hash = table_name + db.get_db_separator(db_name) + warm_app_name client = db.get_redis_client(db_name) return client.hdel(_hash, key) def print_deprecation_warning(deprecated_cmd_or_subcmd, new_cmd_or_subcmd): click.secho("Warning: '{}' {}command is deprecated and will be removed in the future" .format(deprecated_cmd_or_subcmd, "" if deprecated_cmd_or_subcmd == "sonic_installer" else "sub"), fg="red", err=True) click.secho("Please use '{}' instead".format(new_cmd_or_subcmd), fg="red", err=True) def mount_squash_fs(squashfs_path, mount_point): run_command_or_raise(["mkdir", "-p", mount_point]) run_command_or_raise(["mount", "-t", "squashfs", squashfs_path, mount_point]) def umount(mount_point, read_only=True, recursive=False, force=True, remove_dir=True, raise_exception=True): flags = [] if read_only: flags.append("-r") if force: flags.append("-f") if recursive: flags.append("-R") run_command_or_raise(["umount", *flags, mount_point], raise_exception=raise_exception) if remove_dir: run_command_or_raise(["rm", "-rf", mount_point], raise_exception=raise_exception) def mount_overlay_fs(lowerdir, upperdir, workdir, mount_point): run_command_or_raise(["mkdir", "-p", mount_point]) overlay_options = "rw,relatime,lowerdir={},upperdir={},workdir={}".format(lowerdir, upperdir, workdir) run_command_or_raise(["mount", "overlay", "-t", "overlay", "-o", overlay_options, mount_point]) def mount_bind(source, mount_point): run_command_or_raise(["mkdir", "-p", mount_point]) run_command_or_raise(["mount", "--bind", source, mount_point]) def mount_procfs_chroot(root): run_command_or_raise(["chroot", root, "mount", "proc", "/proc", "-t", "proc"]) def mount_sysfs_chroot(root): run_command_or_raise(["chroot", root, "mount", "sysfs", "/sys", "-t", "sysfs"]) def update_sonic_environment(bootloader, binary_image_version): """Prepare sonic environment variable using incoming image template file. If incoming image template does not exist use current image template file. """ SONIC_ENV_TEMPLATE_FILE = os.path.join("usr", "share", "sonic", "templates", "sonic-environment.j2") SONIC_VERSION_YML_FILE = os.path.join("etc", "sonic", "sonic_version.yml") sonic_version = re.sub(IMAGE_PREFIX, '', binary_image_version) new_image_dir = bootloader.get_image_path(binary_image_version) new_image_mount = os.path.join('/', "tmp", "image-{0}-fs".format(sonic_version)) env_dir = os.path.join(new_image_dir, "sonic-config") env_file = os.path.join(env_dir, "sonic-environment") with bootloader.get_rootfs_path(new_image_dir) as new_image_squashfs_path: try: mount_squash_fs(new_image_squashfs_path, new_image_mount) next_sonic_env_template_file = os.path.join(new_image_mount, SONIC_ENV_TEMPLATE_FILE) next_sonic_version_yml_file = os.path.join(new_image_mount, SONIC_VERSION_YML_FILE) sonic_env = run_command_or_raise([ "sonic-cfggen", "-d", "-y", next_sonic_version_yml_file, "-t", next_sonic_env_template_file, ]) os.mkdir(env_dir, 0o755) with open(env_file, "w+") as ef: print(sonic_env, file=ef) os.chmod(env_file, 0o644) except SonicRuntimeException as ex: echo_and_log("Warning: SONiC environment variables are not supported for this image: {0}".format(str(ex)), LOG_ERR, fg="red") if os.path.exists(env_file): os.remove(env_file) os.rmdir(env_dir) finally: umount(new_image_mount) def migrate_sonic_packages(bootloader, binary_image_version): """ Migrate SONiC packages to new SONiC image. """ SONIC_PACKAGE_MANAGER = "sonic-package-manager" PACKAGE_MANAGER_DIR = "/var/lib/sonic-package-manager/" DOCKER_CTL_SCRIPT = "/usr/lib/docker/docker.sh" DOCKERD_SOCK = "docker.sock" VAR_RUN_PATH = "/var/run/" tmp_dir = "tmp" packages_file = "packages.json" packages_path = os.path.join(PACKAGE_MANAGER_DIR, packages_file) sonic_version = re.sub(IMAGE_PREFIX, '', binary_image_version) new_image_dir = bootloader.get_image_path(binary_image_version) new_image_upper_dir = os.path.join(new_image_dir, UPPERDIR_NAME) new_image_work_dir = os.path.join(new_image_dir, WORKDIR_NAME) new_image_docker_dir = os.path.join(new_image_dir, DOCKERDIR_NAME) new_image_mount = os.path.join("/", tmp_dir, "image-{0}-fs".format(sonic_version)) new_image_docker_mount = os.path.join(new_image_mount, "var", "lib", "docker") if not os.path.isdir(new_image_docker_dir): # NOTE: This codepath can be reached if the installation process did not # extract the default dockerfs. This can happen with docker_inram # though the bootloader class should have disabled the package # migration which is why this message is a non fatal error message. echo_and_log("Error: SONiC package migration cannot proceed due to missing docker folder", LOG_ERR, fg="red") return docker_started = False with bootloader.get_rootfs_path(new_image_dir) as new_image_squashfs_path: try: mount_squash_fs(new_image_squashfs_path, new_image_mount) # make sure upper dir and work dir exist run_command_or_raise(["mkdir", "-p", new_image_upper_dir]) run_command_or_raise(["mkdir", "-p", new_image_work_dir]) mount_overlay_fs(new_image_mount, new_image_upper_dir, new_image_work_dir, new_image_mount) mount_bind(new_image_docker_dir, new_image_docker_mount) mount_procfs_chroot(new_image_mount) mount_sysfs_chroot(new_image_mount) # Assume if docker.sh script exists we are installing Application Extension compatible image. if not os.path.exists(os.path.join(new_image_mount, os.path.relpath(DOCKER_CTL_SCRIPT, os.path.abspath(os.sep)))): echo_and_log("Warning: SONiC Application Extension is not supported in this image", LOG_WARN, fg="yellow") return run_command_or_raise(["chroot", new_image_mount, DOCKER_CTL_SCRIPT, "start"]) docker_started = True run_command_or_raise(["cp", packages_path, os.path.join(new_image_mount, tmp_dir, packages_file)]) run_command_or_raise(["touch", os.path.join(new_image_mount, "tmp", DOCKERD_SOCK)]) run_command_or_raise(["mount", "--bind", os.path.join(VAR_RUN_PATH, DOCKERD_SOCK), os.path.join(new_image_mount, "tmp", DOCKERD_SOCK)]) run_command_or_raise(["chroot", new_image_mount, "sh", "-c", "command -v {}".format(SONIC_PACKAGE_MANAGER)]) run_command_or_raise(["chroot", new_image_mount, SONIC_PACKAGE_MANAGER, "migrate", os.path.join("/", tmp_dir, packages_file), "--dockerd-socket", os.path.join("/", tmp_dir, DOCKERD_SOCK), "-y"]) finally: if docker_started: run_command_or_raise(["chroot", new_image_mount, DOCKER_CTL_SCRIPT, "stop"], raise_exception=False) umount(new_image_mount, recursive=True, read_only=False, remove_dir=False, raise_exception=False) umount(new_image_mount, raise_exception=False) class SWAPAllocator(object): """Context class to allocate SWAP memory.""" SWAP_MEM_SIZE = 1024 DISK_FREESPACE_THRESHOLD = 4 * 1024 TOTAL_MEM_THRESHOLD = 2048 AVAILABLE_MEM_THRESHOLD = 1200 SWAP_FILE_PATH = '/host/swapfile' KiB_TO_BYTES_FACTOR = 1024 MiB_TO_BYTES_FACTOR = 1024 * 1024 def __init__(self, allocate, swap_mem_size=None, total_mem_threshold=None, available_mem_threshold=None): """ Initialize the SWAP memory allocator. The allocator will try to setup SWAP memory only if all the below conditions are met: - allocate evaluates to True - disk has enough space(> DISK_MEM_THRESHOLD) - either system total memory < total_mem_threshold or system available memory < available_mem_threshold @param allocate: True to allocate SWAP memory if necessarry @param swap_mem_size: the size of SWAP memory to allocate(in MiB) @param total_mem_threshold: the system totla memory threshold(in MiB) @param available_mem_threshold: the system available memory threshold(in MiB) """ self.allocate = allocate self.swap_mem_size = SWAPAllocator.SWAP_MEM_SIZE if swap_mem_size is None else swap_mem_size self.total_mem_threshold = SWAPAllocator.TOTAL_MEM_THRESHOLD if total_mem_threshold is None else total_mem_threshold self.available_mem_threshold = SWAPAllocator.AVAILABLE_MEM_THRESHOLD if available_mem_threshold is None else available_mem_threshold self.is_allocated = False @staticmethod def get_disk_freespace(path): """Return free disk space in bytes.""" fs_stats = os.statvfs(path) return fs_stats.f_bsize * fs_stats.f_bavail @staticmethod def read_from_meminfo(): """Read information from /proc/meminfo.""" meminfo = {} with open("/proc/meminfo") as fd: for line in fd.readlines(): if line: fields = line.split() if len(fields) >= 2 and fields[1].isdigit(): meminfo[fields[0].rstrip(":")] = int(fields[1]) return meminfo def setup_swapmem(self): swapfile = SWAPAllocator.SWAP_FILE_PATH with open(swapfile, 'wb') as fd: os.posix_fallocate(fd.fileno(), 0, self.swap_mem_size * SWAPAllocator.MiB_TO_BYTES_FACTOR) os.chmod(swapfile, 0o600) run_command(f'mkswap {swapfile}; swapon {swapfile}') def remove_swapmem(self): swapfile = SWAPAllocator.SWAP_FILE_PATH run_command_or_raise(['swapoff', swapfile], raise_exception=False) try: os.unlink(swapfile) finally: pass def __enter__(self): if self.allocate: if self.get_disk_freespace('/host') < max(SWAPAllocator.DISK_FREESPACE_THRESHOLD, self.swap_mem_size) * SWAPAllocator.MiB_TO_BYTES_FACTOR: echo_and_log("Failed to setup SWAP memory due to insufficient disk free space...", LOG_ERR) return meminfo = self.read_from_meminfo() mem_total_in_bytes = meminfo["MemTotal"] * SWAPAllocator.KiB_TO_BYTES_FACTOR mem_avail_in_bytes = meminfo["MemAvailable"] * SWAPAllocator.KiB_TO_BYTES_FACTOR if (mem_total_in_bytes < self.total_mem_threshold * SWAPAllocator.MiB_TO_BYTES_FACTOR or mem_avail_in_bytes < self.available_mem_threshold * SWAPAllocator.MiB_TO_BYTES_FACTOR): echo_and_log("Setup SWAP memory") swapfile = SWAPAllocator.SWAP_FILE_PATH if os.path.exists(swapfile): self.remove_swapmem() try: self.setup_swapmem() except Exception: self.remove_swapmem() raise self.is_allocated = True def __exit__(self, *exc_info): if self.is_allocated: self.remove_swapmem() def validate_positive_int(ctx, param, value): """Callback to validate param passed is a positive integer.""" if isinstance(value, int) and value > 0: return value raise click.BadParameter("Must be a positive integer") # Main entrypoint @click.group(cls=AliasedGroup) def sonic_installer(): """ SONiC image installation manager """ if os.geteuid() != 0: exit("Root privileges required for this operation") # Warn the user if they are calling the deprecated version of the command (with an underscore instead of a hyphen) if os.path.basename(sys.argv[0]) == "sonic_installer": print_deprecation_warning("sonic_installer", "sonic-installer") # Install image @sonic_installer.command('install') @click.option('-y', '--yes', is_flag=True, callback=abort_if_false, expose_value=False, prompt='New image will be installed, continue?') @click.option('-f', '--force', is_flag=True, help="Force installation of an image of a type which differs from that of the current running image") @click.option('--skip_migration', is_flag=True, help="Do not migrate current configuration to the newly installed image") @click.option('--skip-package-migration', is_flag=True, help="Do not migrate current packages to the newly installed image") @click.option('--skip-setup-swap', is_flag=True, help='Skip setup temporary SWAP memory used for installation') @click.option('--swap-mem-size', default=1024, type=int, show_default='1024 MiB', help='SWAP memory space size', callback=validate_positive_int, cls=clicommon.MutuallyExclusiveOption, mutually_exclusive=['skip_setup_swap']) @click.option('--total-mem-threshold', default=2048, type=int, show_default='2048 MiB', help='If system total memory is lower than threshold, setup SWAP memory', cls=clicommon.MutuallyExclusiveOption, mutually_exclusive=['skip_setup_swap'], callback=validate_positive_int) @click.option('--available-mem-threshold', default=1200, type=int, show_default='1200 MiB', help='If system available memory is lower than threhold, setup SWAP memory', cls=clicommon.MutuallyExclusiveOption, mutually_exclusive=['skip_setup_swap'], callback=validate_positive_int) @click.argument('url') def install(url, force, skip_migration=False, skip_package_migration=False, skip_setup_swap=False, swap_mem_size=None, total_mem_threshold=None, available_mem_threshold=None): """ Install image from local binary or URL""" bootloader = get_bootloader() if url.startswith('http://') or url.startswith('https://'): echo_and_log('Downloading image...') validate_url_or_abort(url) try: urlretrieve(url, bootloader.DEFAULT_IMAGE_PATH, reporthook) click.echo('') except Exception as e: echo_and_log("Download error", e) raise click.Abort() image_path = bootloader.DEFAULT_IMAGE_PATH else: image_path = os.path.join("./", url) binary_image_version = bootloader.get_binary_image_version(image_path) if not binary_image_version: echo_and_log("Image file does not exist or is not a valid SONiC image file", LOG_ERR) raise click.Abort() # Is this version already installed? if binary_image_version in bootloader.get_installed_images(): echo_and_log("Image {} is already installed. Setting it as default...".format(binary_image_version)) if not bootloader.set_default_image(binary_image_version): echo_and_log('Error: Failed to set image as default', LOG_ERR) raise click.Abort() else: # Verify that the binary image is of the same type as the running image if not bootloader.verify_binary_image(image_path) and not force: echo_and_log("Image file '{}' is of a different type than running image.\n".format(url) + "If you are sure you want to install this image, use -f|--force.\n" + "Aborting...", LOG_ERR) raise click.Abort() echo_and_log("Installing image {} and setting it as default...".format(binary_image_version)) with SWAPAllocator(not skip_setup_swap, swap_mem_size, total_mem_threshold, available_mem_threshold): bootloader.install_image(image_path) # Take a backup of current configuration if skip_migration: echo_and_log("Skipping configuration migration as requested in the command option.") else: run_command('config-setup backup') update_sonic_environment(bootloader, binary_image_version) if not bootloader.supports_package_migration(binary_image_version) and not skip_package_migration: echo_and_log("Warning: SONiC package migration is not supported for this bootloader/image", fg="yellow") skip_package_migration = True if not skip_package_migration: migrate_sonic_packages(bootloader, binary_image_version) # Finally, sync filesystem run_command("sync;sync;sync") run_command("sleep 3") # wait 3 seconds after sync echo_and_log('Done') # List installed images @sonic_installer.command('list') def list_command(): """ Print installed images """ bootloader = get_bootloader() images = bootloader.get_installed_images() curimage = bootloader.get_current_image() nextimage = bootloader.get_next_image() click.echo("Current: " + curimage) click.echo("Next: " + nextimage) click.echo("Available: ") for image in images: click.echo(image) # Set default image for boot @sonic_installer.command('set-default') @click.argument('image') def set_default(image): """ Choose image to boot from by default """ # Warn the user if they are calling the deprecated version of the subcommand (with an underscore instead of a hyphen) if "set_default" in sys.argv: print_deprecation_warning("set_default", "set-default") bootloader = get_bootloader() if image not in bootloader.get_installed_images(): echo_and_log('Error: Image does not exist', LOG_ERR) raise click.Abort() bootloader.set_default_image(image) # Set image for next boot @sonic_installer.command('set-next-boot') @click.argument('image') def set_next_boot(image): """ Choose image for next reboot (one time action) """ # Warn the user if they are calling the deprecated version of the subcommand (with underscores instead of hyphens) if "set_next_boot" in sys.argv: print_deprecation_warning("set_next_boot", "set-next-boot") bootloader = get_bootloader() if image not in bootloader.get_installed_images(): echo_and_log('Error: Image does not exist', LOG_ERR) sys.exit(1) bootloader.set_next_image(image) # Uninstall image @sonic_installer.command('remove') @click.option('-y', '--yes', is_flag=True, callback=abort_if_false, expose_value=False, prompt='Image will be removed, continue?') @click.argument('image') def remove(image): """ Uninstall image """ bootloader = get_bootloader() images = bootloader.get_installed_images() current = bootloader.get_current_image() if image not in images: echo_and_log('Image does not exist', LOG_ERR) sys.exit(1) if image == current: echo_and_log('Cannot remove current image', LOG_ERR) sys.exit(1) # TODO: check if image is next boot or default boot and fix these bootloader.remove_image(image) # Retrieve version from binary image file and print to screen @sonic_installer.command('binary-version') @click.argument('binary_image_path') def binary_version(binary_image_path): """ Get version from local binary image file """ # Warn the user if they are calling the deprecated version of the subcommand (with an underscore instead of a hyphen) if "binary_version" in sys.argv: print_deprecation_warning("binary_version", "binary-version") bootloader = get_bootloader() version = bootloader.get_binary_image_version(binary_image_path) if not version: click.echo("Image file does not exist or is not a valid SONiC image file") sys.exit(1) else: click.echo(version) # Remove installed images which are not current and next @sonic_installer.command('cleanup') @click.option('-y', '--yes', is_flag=True, callback=abort_if_false, expose_value=False, prompt='Remove images which are not current and next, continue?') def cleanup(): """ Remove installed images which are not current and next """ bootloader = get_bootloader() images = bootloader.get_installed_images() curimage = bootloader.get_current_image() nextimage = bootloader.get_next_image() image_removed = 0 for image in images: if image != curimage and image != nextimage: echo_and_log("Removing image %s" % image) bootloader.remove_image(image) image_removed += 1 if image_removed == 0: echo_and_log("No image(s) to remove") DOCKER_CONTAINER_LIST = [ "bgp", "dhcp_relay", "lldp", "macsec", "nat", "pmon", "radv", "restapi", "sflow", "snmp", "swss", "syncd", "teamd", "telemetry" ] # Upgrade docker image @sonic_installer.command('upgrade-docker') @click.option('-y', '--yes', is_flag=True, callback=abort_if_false, expose_value=False, prompt='New docker image will be installed, continue?') @click.option('--cleanup_image', is_flag=True, help="Clean up old docker image") @click.option('--skip_check', is_flag=True, help="Skip task check for docker upgrade") @click.option('--tag', type=str, help="Tag for the new docker image") @click.option('--warm', is_flag=True, help="Perform warm upgrade") @click.argument('container_name', metavar='<container_name>', required=True, type=click.Choice(DOCKER_CONTAINER_LIST)) @click.argument('url') def upgrade_docker(container_name, url, cleanup_image, skip_check, tag, warm): """ Upgrade docker image from local binary or URL""" # Warn the user if they are calling the deprecated version of the subcommand (with an underscore instead of a hyphen) if "upgrade_docker" in sys.argv: print_deprecation_warning("upgrade_docker", "upgrade-docker") image_name = get_container_image_name(container_name) image_latest = image_name + ":latest" image_id_previous = get_container_image_id(image_latest) DEFAULT_IMAGE_PATH = os.path.join("/tmp/", image_name) if url.startswith('http://') or url.startswith('https://'): echo_and_log('Downloading image...') validate_url_or_abort(url) try: urlretrieve(url, DEFAULT_IMAGE_PATH, reporthook) except Exception as e: echo_and_log("Download error: {}".format(e), LOG_ERR) raise click.Abort() image_path = DEFAULT_IMAGE_PATH else: image_path = os.path.join("./", url) # Verify that the local file exists and is a regular file # TODO: Verify the file is a *proper Docker image file* if not os.path.isfile(image_path): echo_and_log("Image file '{}' does not exist or is not a regular file. Aborting...".format(image_path), LOG_ERR) raise click.Abort() warm_configured = False # warm restart enable/disable config is put in stateDB, not persistent across cold reboot, not saved to config_DB.json file state_db = SonicV2Connector(host='127.0.0.1') state_db.connect(state_db.STATE_DB, False) TABLE_NAME_SEPARATOR = '|' prefix = 'WARM_RESTART_ENABLE_TABLE' + TABLE_NAME_SEPARATOR _hash = '{}{}'.format(prefix, container_name) if state_db.get(state_db.STATE_DB, _hash, "enable") == "true": warm_configured = True state_db.close(state_db.STATE_DB) if container_name == "swss" or container_name == "bgp" or container_name == "teamd": if warm_configured is False and warm: run_command("config warm_restart enable %s" % container_name) # Fetch tag of current running image tag_previous = get_docker_tag_name(image_latest) # Load the new image beforehand to shorten disruption time run_command("docker load < %s" % image_path) warm_app_names = [] # warm restart specific procssing for swss, bgp and teamd dockers. if warm_configured is True or warm: # make sure orchagent is in clean state if swss is to be upgraded if container_name == "swss": skipPendingTaskCheck = "" if skip_check: skipPendingTaskCheck = " -s" cmd = "docker exec -i swss orchagent_restart_check -w 2000 -r 5 " + skipPendingTaskCheck proc = subprocess.Popen(cmd, stdout=subprocess.PIPE, shell=True, text=True) (out, err) = proc.communicate() if proc.returncode != 0: if not skip_check: echo_and_log("Orchagent is not in clean state, RESTARTCHECK failed", LOG_ERR) # Restore orignal config before exit if warm_configured is False and warm: run_command("config warm_restart disable %s" % container_name) # Clean the image loaded earlier image_id_latest = get_container_image_id(image_latest) run_command("docker rmi -f %s" % image_id_latest) # Re-point latest tag to previous tag run_command("docker tag %s:%s %s" % (image_name, tag_previous, image_latest)) sys.exit(proc.returncode) else: echo_and_log("Orchagent is not in clean state, upgrading it anyway") else: echo_and_log("Orchagent is in clean state and frozen for warm upgrade") warm_app_names = ["orchagent", "neighsyncd"] elif container_name == "bgp": # Kill bgpd to restart the bgp graceful restart procedure echo_and_log("Stopping bgp ...") run_command("docker exec -i bgp pkill -9 zebra") run_command("docker exec -i bgp pkill -9 bgpd") warm_app_names = ["bgp"] echo_and_log("Stopped bgp ...") elif container_name == "teamd": echo_and_log("Stopping teamd ...") # Send USR1 signal to all teamd instances to stop them # It will prepare teamd for warm-reboot run_command("docker exec -i teamd pkill -USR1 teamd > /dev/null") warm_app_names = ["teamsyncd"] echo_and_log("Stopped teamd ...") # clean app reconcilation state from last warm start if exists for warm_app_name in warm_app_names: hdel_warm_restart_table("STATE_DB", "WARM_RESTART_TABLE", warm_app_name, "state") run_command("docker kill %s > /dev/null" % container_name) run_command("docker rm %s " % container_name) if tag is None: # example image: docker-lldp-sv2:latest tag = get_docker_tag_name(image_latest) run_command("docker tag %s:latest %s:%s" % (image_name, image_name, tag)) run_command("systemctl restart %s" % container_name) # All images id under the image name image_id_all = get_container_image_id_all(image_name) # this is image_id for image with "latest" tag image_id_latest = get_container_image_id(image_latest) for id in image_id_all: if id != image_id_latest: # Unless requested, the previoud docker image will be preserved if not cleanup_image and id == image_id_previous: continue run_command("docker rmi -f %s" % id) exp_state = "reconciled" state = "" # post warm restart specific procssing for swss, bgp and teamd dockers, wait for reconciliation state. if warm_configured is True or warm: count = 0 for warm_app_name in warm_app_names: state = "" # Wait up to 180 seconds for reconciled state while state != exp_state and count < 90: sys.stdout.write("\r {}: ".format(warm_app_name)) sys.stdout.write("[%-s" % ('='*count)) sys.stdout.flush() count += 1 time.sleep(2) state = hget_warm_restart_table("STATE_DB", "WARM_RESTART_TABLE", warm_app_name, "state") log.log_notice("%s reached %s state" % (warm_app_name, state)) sys.stdout.write("]\n\r") if state != exp_state: echo_and_log("%s failed to reach %s state" % (warm_app_name, exp_state), LOG_ERR) else: exp_state = "" # this is cold upgrade # Restore to previous cold restart setting if warm_configured is False and warm: if container_name == "swss" or container_name == "bgp" or container_name == "teamd": run_command("config warm_restart disable %s" % container_name) if state == exp_state: echo_and_log('Done') else: echo_and_log('Failed', LOG_ERR) sys.exit(1) # rollback docker image @sonic_installer.command('rollback-docker') @click.option('-y', '--yes', is_flag=True, callback=abort_if_false, expose_value=False, prompt='Docker image will be rolled back, continue?') @click.argument('container_name', metavar='<container_name>', required=True, type=click.Choice(DOCKER_CONTAINER_LIST)) def rollback_docker(container_name): """ Rollback docker image to previous version""" # Warn the user if they are calling the deprecated version of the subcommand (with an underscore instead of a hyphen) if "rollback_docker" in sys.argv: print_deprecation_warning("rollback_docker", "rollback-docker") image_name = get_container_image_name(container_name) # All images id under the image name image_id_all = get_container_image_id_all(image_name) if len(image_id_all) != 2: echo_and_log("Two images required, but there are '{}' images for '{}'. Aborting...".format(len(image_id_all), image_name), LOG_ERR) raise click.Abort() image_latest = image_name + ":latest" image_id_previous = get_container_image_id(image_latest) version_tag = "" for id in image_id_all: if id != image_id_previous: version_tag = get_docker_tag_name(id) # make previous image as latest run_command("docker tag %s:%s %s:latest" % (image_name, version_tag, image_name)) if container_name == "swss" or container_name == "bgp" or container_name == "teamd": echo_and_log("Cold reboot is required to restore system state after '{}' rollback !!".format(container_name), LOG_ERR) else: run_command("systemctl restart %s" % container_name) echo_and_log('Done') # verify the next image @sonic_installer.command('verify-next-image') def verify_next_image(): """ Verify the next image for reboot""" bootloader = get_bootloader() if not bootloader.verify_next_image(): echo_and_log('Image verification failed', LOG_ERR) sys.exit(1) click.echo('Image successfully verified') if __name__ == '__main__': sonic_installer()
42.141907
150
0.669631
[ "Apache-2.0" ]
Cosmin-Jinga-MS/sonic-utilities
sonic_installer/main.py
38,012
Python
#!/usr/bin/python3 # encoding: utf-8 # Setup file for dulwich # Copyright (C) 2008-2016 Jelmer Vernooij <[email protected]> try: from setuptools import setup, Extension except ImportError: from distutils.core import setup, Extension has_setuptools = False else: has_setuptools = True from distutils.core import Distribution import io import os import sys from typing import Dict, Any if sys.version_info < (3, 6): raise Exception( 'Dulwich only supports Python 3.6 and later. ' 'For 2.7 support, please install a version prior to 0.20') dulwich_version_string = '0.20.32' class DulwichDistribution(Distribution): def is_pure(self): if self.pure: return True def has_ext_modules(self): return not self.pure global_options = Distribution.global_options + [ ('pure', None, "use pure Python code instead of C " "extensions (slower on CPython)")] pure = False if sys.platform == 'darwin' and os.path.exists('/usr/bin/xcodebuild'): # XCode 4.0 dropped support for ppc architecture, which is hardcoded in # distutils.sysconfig import subprocess p = subprocess.Popen( ['/usr/bin/xcodebuild', '-version'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, env={}) out, err = p.communicate() for line in out.splitlines(): line = line.decode("utf8") # Also parse only first digit, because 3.2.1 can't be parsed nicely if (line.startswith('Xcode') and int(line.split()[1].split('.')[0]) >= 4): os.environ['ARCHFLAGS'] = '' tests_require = ['fastimport'] if '__pypy__' not in sys.modules and sys.platform != 'win32': tests_require.extend([ 'gevent', 'geventhttpclient', 'setuptools>=17.1']) ext_modules = [ Extension('dulwich._objects', ['dulwich/_objects.c']), Extension('dulwich._pack', ['dulwich/_pack.c']), Extension('dulwich._diff_tree', ['dulwich/_diff_tree.c']), ] setup_kwargs = {} # type: Dict[str, Any] scripts = ['bin/dul-receive-pack', 'bin/dul-upload-pack'] if has_setuptools: setup_kwargs['extras_require'] = { 'fastimport': ['fastimport'], 'https': ['urllib3[secure]>=1.24.1'], 'pgp': ['gpg'], 'watch': ['pyinotify'], } setup_kwargs['install_requires'] = ['urllib3>=1.24.1', 'certifi'] setup_kwargs['include_package_data'] = True setup_kwargs['test_suite'] = 'dulwich.tests.test_suite' setup_kwargs['tests_require'] = tests_require setup_kwargs['entry_points'] = { "console_scripts": [ "dulwich=dulwich.cli:main", ]} setup_kwargs['python_requires'] = '>=3.6' else: scripts.append('bin/dulwich') with io.open(os.path.join(os.path.dirname(__file__), "README.rst"), encoding="utf-8") as f: description = f.read() setup(name='dulwich', author="Jelmer Vernooij", author_email="[email protected]", url="https://www.dulwich.io/", long_description=description, description="Python Git Library", version=dulwich_version_string, license='Apachev2 or later or GPLv2', project_urls={ "Bug Tracker": "https://github.com/dulwich/dulwich/issues", "Repository": "https://www.dulwich.io/code/", "GitHub": "https://github.com/dulwich/dulwich", }, keywords="git vcs", packages=['dulwich', 'dulwich.tests', 'dulwich.tests.compat', 'dulwich.contrib'], package_data={'': ['../docs/tutorial/*.txt', 'py.typed']}, scripts=scripts, ext_modules=ext_modules, zip_safe=False, distclass=DulwichDistribution, classifiers=[ 'Development Status :: 4 - Beta', 'License :: OSI Approved :: Apache Software License', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: 3.10', 'Programming Language :: Python :: Implementation :: CPython', 'Programming Language :: Python :: Implementation :: PyPy', 'Operating System :: POSIX', 'Operating System :: Microsoft :: Windows', 'Topic :: Software Development :: Version Control', ], **setup_kwargs )
32.153285
75
0.620204
[ "Apache-2.0" ]
epopcop/dulwich
setup.py
4,406
Python
import ctypes import logging import threading import time from contextlib import contextmanager from queue import Queue from typing import Any, Callable, Dict, Generator, Iterable, List, Optional, Tuple, Union, cast import attr import hypothesis import hypothesis.errors import requests from _pytest.logging import LogCaptureHandler, catching_logs from requests.auth import HTTPDigestAuth, _basic_auth_str from .._hypothesis import make_test_or_exception from ..checks import DEFAULT_CHECKS from ..constants import USER_AGENT from ..exceptions import InvalidSchema from ..loaders import from_uri from ..models import Case, Endpoint, Status, TestResult, TestResultSet from ..schemas import BaseSchema from ..utils import WSGIResponse, capture_hypothesis_output, get_base_url from . import events DEFAULT_DEADLINE = 500 # pragma: no mutate RawAuth = Tuple[str, str] # pragma: no mutate def get_hypothesis_settings(hypothesis_options: Optional[Dict[str, Any]] = None) -> hypothesis.settings: # Default settings, used as a parent settings object below settings = hypothesis.settings(deadline=DEFAULT_DEADLINE) if hypothesis_options is not None: settings = hypothesis.settings(settings, **hypothesis_options) return settings # pylint: disable=too-many-instance-attributes @attr.s class BaseRunner: schema: BaseSchema = attr.ib() checks: Iterable[Callable] = attr.ib() hypothesis_settings: hypothesis.settings = attr.ib(converter=get_hypothesis_settings) auth: Optional[RawAuth] = attr.ib(default=None) auth_type: Optional[str] = attr.ib(default=None) headers: Optional[Dict[str, Any]] = attr.ib(default=None) request_timeout: Optional[int] = attr.ib(default=None) seed: Optional[int] = attr.ib(default=None) def execute(self,) -> Generator[events.ExecutionEvent, None, None]: """Common logic for all runners.""" results = TestResultSet() initialized = events.Initialized( results=results, schema=self.schema, checks=self.checks, hypothesis_settings=self.hypothesis_settings ) yield initialized yield from self._execute(results) yield events.Finished(results=results, schema=self.schema, running_time=time.time() - initialized.start_time) def _execute(self, results: TestResultSet) -> Generator[events.ExecutionEvent, None, None]: raise NotImplementedError @attr.s(slots=True) class SingleThreadRunner(BaseRunner): """Fast runner that runs tests sequentially in the main thread.""" def _execute(self, results: TestResultSet) -> Generator[events.ExecutionEvent, None, None]: auth = get_requests_auth(self.auth, self.auth_type) with get_session(auth, self.headers) as session: for endpoint, test in self.schema.get_all_tests(network_test, self.hypothesis_settings, self.seed): for event in run_test( self.schema, endpoint, test, self.checks, results, session=session, request_timeout=self.request_timeout, ): yield event if isinstance(event, events.Interrupted): return @attr.s(slots=True) class SingleThreadWSGIRunner(SingleThreadRunner): def _execute(self, results: TestResultSet) -> Generator[events.ExecutionEvent, None, None]: for endpoint, test in self.schema.get_all_tests(wsgi_test, self.hypothesis_settings, self.seed): for event in run_test( self.schema, endpoint, test, self.checks, results, auth=self.auth, auth_type=self.auth_type, headers=self.headers, ): yield event if isinstance(event, events.Interrupted): return def _run_task( test_template: Callable, tasks_queue: Queue, events_queue: Queue, schema: BaseSchema, checks: Iterable[Callable], settings: hypothesis.settings, seed: Optional[int], results: TestResultSet, **kwargs: Any, ) -> None: # pylint: disable=too-many-arguments with capture_hypothesis_output(): while not tasks_queue.empty(): endpoint = tasks_queue.get() test = make_test_or_exception(endpoint, test_template, settings, seed) for event in run_test(schema, endpoint, test, checks, results, **kwargs): events_queue.put(event) def thread_task( tasks_queue: Queue, events_queue: Queue, schema: BaseSchema, checks: Iterable[Callable], settings: hypothesis.settings, auth: Optional[RawAuth], auth_type: Optional[str], headers: Optional[Dict[str, Any]], seed: Optional[int], results: TestResultSet, kwargs: Any, ) -> None: """A single task, that threads do. Pretty similar to the default one-thread flow, but includes communication with the main thread via the events queue. """ # pylint: disable=too-many-arguments prepared_auth = get_requests_auth(auth, auth_type) with get_session(prepared_auth, headers) as session: _run_task( network_test, tasks_queue, events_queue, schema, checks, settings, seed, results, session=session, **kwargs ) def wsgi_thread_task( tasks_queue: Queue, events_queue: Queue, schema: BaseSchema, checks: Iterable[Callable], settings: hypothesis.settings, seed: Optional[int], results: TestResultSet, kwargs: Any, ) -> None: # pylint: disable=too-many-arguments _run_task(wsgi_test, tasks_queue, events_queue, schema, checks, settings, seed, results, **kwargs) def stop_worker(thread_id: int) -> None: """Raise an error in a thread so it is possible to asynchronously stop thread execution.""" ctypes.pythonapi.PyThreadState_SetAsyncExc(ctypes.c_long(thread_id), ctypes.py_object(SystemExit)) class ThreadInterrupted(Exception): """Special exception when worker thread received SIGINT.""" @attr.s(slots=True) class ThreadPoolRunner(BaseRunner): """Spread different tests among multiple worker threads.""" workers_num: int = attr.ib(default=2) def _execute(self, results: TestResultSet) -> Generator[events.ExecutionEvent, None, None]: """All events come from a queue where different workers push their events.""" tasks_queue = self._get_tasks_queue() # Events are pushed by workers via a separate queue events_queue: Queue = Queue() workers = self._init_workers(tasks_queue, events_queue, results) def stop_workers() -> None: for worker in workers: # workers are initialized at this point and `worker.ident` is set with an integer value ident = cast(int, worker.ident) stop_worker(ident) worker.join() is_finished = False try: while not is_finished: # Sleep is needed for performance reasons # each call to `is_alive` of an alive worker waits for a lock # iterations without waiting are too frequent and a lot of time will be spent on waiting for this locks time.sleep(0.001) is_finished = all(not worker.is_alive() for worker in workers) while not events_queue.empty(): event = events_queue.get() yield event if isinstance(event, events.Interrupted): # Thread received SIGINT # We could still have events in the queue, but ignore them to keep the logic simple # for now, could be improved in the future to show more info in such corner cases raise ThreadInterrupted except ThreadInterrupted: stop_workers() except KeyboardInterrupt: stop_workers() yield events.Interrupted(results=results, schema=self.schema) def _get_tasks_queue(self) -> Queue: """All endpoints are distributed among all workers via a queue.""" tasks_queue: Queue = Queue() tasks_queue.queue.extend(self.schema.get_all_endpoints()) return tasks_queue def _init_workers(self, tasks_queue: Queue, events_queue: Queue, results: TestResultSet) -> List[threading.Thread]: """Initialize & start workers that will execute tests.""" workers = [ threading.Thread( target=self._get_task(), kwargs=self._get_worker_kwargs(tasks_queue, events_queue, results) ) for _ in range(self.workers_num) ] for worker in workers: worker.start() return workers def _get_task(self) -> Callable: return thread_task def _get_worker_kwargs(self, tasks_queue: Queue, events_queue: Queue, results: TestResultSet) -> Dict[str, Any]: return { "tasks_queue": tasks_queue, "events_queue": events_queue, "schema": self.schema, "checks": self.checks, "settings": self.hypothesis_settings, "auth": self.auth, "auth_type": self.auth_type, "headers": self.headers, "seed": self.seed, "results": results, "kwargs": {"request_timeout": self.request_timeout}, } class ThreadPoolWSGIRunner(ThreadPoolRunner): def _get_task(self) -> Callable: return wsgi_thread_task def _get_worker_kwargs(self, tasks_queue: Queue, events_queue: Queue, results: TestResultSet) -> Dict[str, Any]: return { "tasks_queue": tasks_queue, "events_queue": events_queue, "schema": self.schema, "checks": self.checks, "settings": self.hypothesis_settings, "seed": self.seed, "results": results, "kwargs": {"auth": self.auth, "auth_type": self.auth_type, "headers": self.headers}, } def execute_from_schema( schema: BaseSchema, checks: Iterable[Callable], *, workers_num: int = 1, hypothesis_options: Optional[Dict[str, Any]] = None, auth: Optional[RawAuth] = None, auth_type: Optional[str] = None, headers: Optional[Dict[str, Any]] = None, request_timeout: Optional[int] = None, seed: Optional[int] = None, ) -> Generator[events.ExecutionEvent, None, None]: """Execute tests for the given schema. Provides the main testing loop and preparation step. """ runner: BaseRunner if workers_num > 1: if schema.app: runner = ThreadPoolWSGIRunner( schema=schema, checks=checks, hypothesis_settings=hypothesis_options, auth=auth, auth_type=auth_type, headers=headers, seed=seed, workers_num=workers_num, ) else: runner = ThreadPoolRunner( schema=schema, checks=checks, hypothesis_settings=hypothesis_options, auth=auth, auth_type=auth_type, headers=headers, seed=seed, request_timeout=request_timeout, ) else: if schema.app: runner = SingleThreadWSGIRunner( schema=schema, checks=checks, hypothesis_settings=hypothesis_options, auth=auth, auth_type=auth_type, headers=headers, seed=seed, ) else: runner = SingleThreadRunner( schema=schema, checks=checks, hypothesis_settings=hypothesis_options, auth=auth, auth_type=auth_type, headers=headers, seed=seed, request_timeout=request_timeout, ) yield from runner.execute() def run_test( schema: BaseSchema, endpoint: Endpoint, test: Union[Callable, InvalidSchema], checks: Iterable[Callable], results: TestResultSet, **kwargs: Any, ) -> Generator[events.ExecutionEvent, None, None]: """A single test run with all error handling needed.""" # pylint: disable=too-many-arguments result = TestResult(endpoint=endpoint) yield events.BeforeExecution(results=results, schema=schema, endpoint=endpoint) hypothesis_output: List[str] = [] try: if isinstance(test, InvalidSchema): status = Status.error result.add_error(test) else: with capture_hypothesis_output() as hypothesis_output: test(checks, result, **kwargs) status = Status.success except AssertionError: status = Status.failure except hypothesis.errors.Flaky: status = Status.error result.mark_errored() # Sometimes Hypothesis detects inconsistent test results and checks are not available if result.checks: flaky_example = result.checks[-1].example else: flaky_example = None result.add_error( hypothesis.errors.Flaky( "Tests on this endpoint produce unreliable results: \n" "Falsified on the first call but did not on a subsequent one" ), flaky_example, ) except hypothesis.errors.Unsatisfiable: # We need more clear error message here status = Status.error result.add_error(hypothesis.errors.Unsatisfiable("Unable to satisfy schema parameters for this endpoint")) except KeyboardInterrupt: yield events.Interrupted(results=results, schema=schema) return except Exception as error: status = Status.error result.add_error(error) # Fetch seed value, hypothesis generates it during test execution result.seed = getattr(test, "_hypothesis_internal_use_seed", None) or getattr( test, "_hypothesis_internal_use_generated_seed", None ) results.append(result) yield events.AfterExecution( results=results, schema=schema, endpoint=endpoint, status=status, hypothesis_output=hypothesis_output ) def execute( # pylint: disable=too-many-arguments schema_uri: str, checks: Iterable[Callable] = DEFAULT_CHECKS, api_options: Optional[Dict[str, Any]] = None, loader_options: Optional[Dict[str, Any]] = None, hypothesis_options: Optional[Dict[str, Any]] = None, loader: Callable = from_uri, ) -> TestResultSet: generator = prepare( schema_uri=schema_uri, checks=checks, api_options=api_options, loader_options=loader_options, hypothesis_options=hypothesis_options, loader=loader, ) all_events = list(generator) finished = all_events[-1] return finished.results def prepare( # pylint: disable=too-many-arguments schema_uri: str, checks: Iterable[Callable] = DEFAULT_CHECKS, workers_num: int = 1, api_options: Optional[Dict[str, Any]] = None, loader_options: Optional[Dict[str, Any]] = None, hypothesis_options: Optional[Dict[str, Any]] = None, loader: Callable = from_uri, seed: Optional[int] = None, ) -> Generator[events.ExecutionEvent, None, None]: """Prepare a generator that will run test cases against the given API definition.""" api_options = api_options or {} loader_options = loader_options or {} if "base_url" not in loader_options: loader_options["base_url"] = get_base_url(schema_uri) schema = loader(schema_uri, **loader_options) return execute_from_schema( schema, checks, hypothesis_options=hypothesis_options, seed=seed, workers_num=workers_num, **api_options ) def network_test( case: Case, checks: Iterable[Callable], result: TestResult, session: requests.Session, request_timeout: Optional[int], ) -> None: """A single test body that will be executed against the target.""" # pylint: disable=too-many-arguments timeout = prepare_timeout(request_timeout) response = case.call(session=session, timeout=timeout) _run_checks(case, checks, result, response) def wsgi_test( case: Case, checks: Iterable[Callable], result: TestResult, auth: Optional[RawAuth], auth_type: Optional[str], headers: Optional[Dict[str, Any]], ) -> None: # pylint: disable=too-many-arguments headers = _prepare_wsgi_headers(headers, auth, auth_type) with catching_logs(LogCaptureHandler(), level=logging.DEBUG) as recorded: response = case.call_wsgi(headers=headers) result.logs.extend(recorded.records) _run_checks(case, checks, result, response) def _prepare_wsgi_headers( headers: Optional[Dict[str, Any]], auth: Optional[RawAuth], auth_type: Optional[str] ) -> Dict[str, Any]: headers = headers or {} headers.setdefault("User-agent", USER_AGENT) wsgi_auth = get_wsgi_auth(auth, auth_type) if wsgi_auth: headers["Authorization"] = wsgi_auth return headers def _run_checks( case: Case, checks: Iterable[Callable], result: TestResult, response: Union[requests.Response, WSGIResponse] ) -> None: errors = None for check in checks: check_name = check.__name__ try: check(response, result) result.add_success(check_name, case) except AssertionError as exc: errors = True # pragma: no mutate result.add_failure(check_name, case, str(exc)) if errors is not None: # An exception needed to trigger Hypothesis shrinking & flaky tests detection logic # The message doesn't matter raise AssertionError def prepare_timeout(timeout: Optional[int]) -> Optional[float]: """Request timeout is in milliseconds, but `requests` uses seconds""" output: Optional[Union[int, float]] = timeout if timeout is not None: output = timeout / 1000 return output @contextmanager def get_session( auth: Optional[Union[HTTPDigestAuth, RawAuth]] = None, headers: Optional[Dict[str, Any]] = None ) -> Generator[requests.Session, None, None]: with requests.Session() as session: if auth is not None: session.auth = auth session.headers["User-agent"] = USER_AGENT if headers is not None: session.headers.update(**headers) yield session def get_requests_auth(auth: Optional[RawAuth], auth_type: Optional[str]) -> Optional[Union[HTTPDigestAuth, RawAuth]]: if auth and auth_type == "digest": return HTTPDigestAuth(*auth) return auth def get_wsgi_auth(auth: Optional[RawAuth], auth_type: Optional[str]) -> Optional[str]: if auth: if auth_type == "digest": raise ValueError("Digest auth is not supported for WSGI apps") return _basic_auth_str(*auth) return None
35.88743
120
0.644657
[ "MIT" ]
hlobit/schemathesis
src/schemathesis/runner/__init__.py
19,128
Python
#!/usr/bin/env python import os import sys if __name__ == '__main__': os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'rateMyProf.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv)
33.875
74
0.688192
[ "MIT" ]
DefCon-007/rateMyProfessor
rateMyProf/manage.py
542
Python
# coding: utf-8 from __future__ import unicode_literals import json import re import socket from .common import InfoExtractor from ..compat import ( compat_etree_fromstring, compat_http_client, compat_str, compat_urllib_error, compat_urllib_parse_unquote, compat_urllib_parse_unquote_plus, ) from ..utils import ( clean_html, error_to_compat_str, ExtractorError, float_or_none, get_element_by_id, int_or_none, js_to_json, limit_length, parse_count, qualities, sanitized_Request, try_get, urlencode_postdata, urljoin, ) class FacebookIE(InfoExtractor): _VALID_URL = r'''(?x) (?: https?:// (?:[\w-]+\.)?(?:facebook\.com|facebookcorewwwi\.onion)/ (?:[^#]*?\#!/)? (?: (?: video/video\.php| photo\.php| video\.php| video/embed| story\.php| watch(?:/live)?/? )\?(?:.*?)(?:v|video_id|story_fbid)=| [^/]+/videos/(?:[^/]+/)?| [^/]+/posts/| groups/[^/]+/permalink/| watchparty/ )| facebook: ) (?P<id>[0-9]+) ''' _LOGIN_URL = 'https://www.facebook.com/login.php?next=http%3A%2F%2Ffacebook.com%2Fhome.php&login_attempt=1' _CHECKPOINT_URL = 'https://www.facebook.com/checkpoint/?next=http%3A%2F%2Ffacebook.com%2Fhome.php&_fb_noscript=1' _NETRC_MACHINE = 'facebook' IE_NAME = 'facebook' _VIDEO_PAGE_TEMPLATE = 'https://www.facebook.com/video/video.php?v=%s' _VIDEO_PAGE_TAHOE_TEMPLATE = 'https://www.facebook.com/video/tahoe/async/%s/?chain=true&isvideo=true&payloadtype=primary' _TESTS = [{ 'url': 'https://www.facebook.com/video.php?v=637842556329505&fref=nf', 'md5': '6a40d33c0eccbb1af76cf0485a052659', 'info_dict': { 'id': '637842556329505', 'ext': 'mp4', 'title': 're:Did you know Kei Nishikori is the first Asian man to ever reach a Grand Slam', 'uploader': 'Tennis on Facebook', 'upload_date': '20140908', 'timestamp': 1410199200, }, 'skip': 'Requires logging in', }, { # data.video 'url': 'https://www.facebook.com/video.php?v=274175099429670', 'info_dict': { 'id': '274175099429670', 'ext': 'mp4', 'title': 're:^Asif Nawab Butt posted a video', 'uploader': 'Asif Nawab Butt', 'upload_date': '20140506', 'timestamp': 1399398998, 'thumbnail': r're:^https?://.*', }, 'expected_warnings': [ 'title' ] }, { 'note': 'Video with DASH manifest', 'url': 'https://www.facebook.com/video.php?v=957955867617029', 'md5': 'b2c28d528273b323abe5c6ab59f0f030', 'info_dict': { 'id': '957955867617029', 'ext': 'mp4', 'title': 'When you post epic content on instagram.com/433 8 million followers, this is ...', 'uploader': 'Demy de Zeeuw', 'upload_date': '20160110', 'timestamp': 1452431627, }, 'skip': 'Requires logging in', }, { 'url': 'https://www.facebook.com/maxlayn/posts/10153807558977570', 'md5': '037b1fa7f3c2d02b7a0d7bc16031ecc6', 'info_dict': { 'id': '544765982287235', 'ext': 'mp4', 'title': '"What are you doing running in the snow?"', 'uploader': 'FailArmy', }, 'skip': 'Video gone', }, { 'url': 'https://m.facebook.com/story.php?story_fbid=1035862816472149&id=116132035111903', 'md5': '1deb90b6ac27f7efcf6d747c8a27f5e3', 'info_dict': { 'id': '1035862816472149', 'ext': 'mp4', 'title': 'What the Flock Is Going On In New Zealand Credit: ViralHog', 'uploader': 'S. Saint', }, 'skip': 'Video gone', }, { 'note': 'swf params escaped', 'url': 'https://www.facebook.com/barackobama/posts/10153664894881749', 'md5': '97ba073838964d12c70566e0085c2b91', 'info_dict': { 'id': '10153664894881749', 'ext': 'mp4', 'title': 'Average time to confirm recent Supreme Court nominees: 67 days Longest it\'s t...', 'thumbnail': r're:^https?://.*', 'timestamp': 1456259628, 'upload_date': '20160223', 'uploader': 'Barack Obama', }, }, { # have 1080P, but only up to 720p in swf params # data.video.story.attachments[].media 'url': 'https://www.facebook.com/cnn/videos/10155529876156509/', 'md5': '9571fae53d4165bbbadb17a94651dcdc', 'info_dict': { 'id': '10155529876156509', 'ext': 'mp4', 'title': 'She survived the holocaust — and years later, she’s getting her citizenship s...', 'timestamp': 1477818095, 'upload_date': '20161030', 'uploader': 'CNN', 'thumbnail': r're:^https?://.*', 'view_count': int, }, }, { # bigPipe.onPageletArrive ... onPageletArrive pagelet_group_mall # data.node.comet_sections.content.story.attachments[].style_type_renderer.attachment.media 'url': 'https://www.facebook.com/yaroslav.korpan/videos/1417995061575415/', 'info_dict': { 'id': '1417995061575415', 'ext': 'mp4', 'title': 'md5:1db063d6a8c13faa8da727817339c857', 'timestamp': 1486648217, 'upload_date': '20170209', 'uploader': 'Yaroslav Korpan', }, 'params': { 'skip_download': True, }, }, { 'url': 'https://www.facebook.com/LaGuiaDelVaron/posts/1072691702860471', 'info_dict': { 'id': '1072691702860471', 'ext': 'mp4', 'title': 'md5:ae2d22a93fbb12dad20dc393a869739d', 'timestamp': 1477305000, 'upload_date': '20161024', 'uploader': 'La Guía Del Varón', 'thumbnail': r're:^https?://.*', }, 'params': { 'skip_download': True, }, }, { # data.node.comet_sections.content.story.attachments[].style_type_renderer.attachment.media 'url': 'https://www.facebook.com/groups/1024490957622648/permalink/1396382447100162/', 'info_dict': { 'id': '1396382447100162', 'ext': 'mp4', 'title': 'md5:19a428bbde91364e3de815383b54a235', 'timestamp': 1486035494, 'upload_date': '20170202', 'uploader': 'Elisabeth Ahtn', }, 'params': { 'skip_download': True, }, }, { 'url': 'https://www.facebook.com/video.php?v=10204634152394104', 'only_matching': True, }, { 'url': 'https://www.facebook.com/amogood/videos/1618742068337349/?fref=nf', 'only_matching': True, }, { # data.mediaset.currMedia.edges 'url': 'https://www.facebook.com/ChristyClarkForBC/videos/vb.22819070941/10153870694020942/?type=2&theater', 'only_matching': True, }, { # data.video.story.attachments[].media 'url': 'facebook:544765982287235', 'only_matching': True, }, { # data.node.comet_sections.content.story.attachments[].style_type_renderer.attachment.media 'url': 'https://www.facebook.com/groups/164828000315060/permalink/764967300301124/', 'only_matching': True, }, { # data.video.creation_story.attachments[].media 'url': 'https://zh-hk.facebook.com/peoplespower/videos/1135894589806027/', 'only_matching': True, }, { # data.video 'url': 'https://www.facebookcorewwwi.onion/video.php?v=274175099429670', 'only_matching': True, }, { # no title 'url': 'https://www.facebook.com/onlycleverentertainment/videos/1947995502095005/', 'only_matching': True, }, { # data.video 'url': 'https://www.facebook.com/WatchESLOne/videos/359649331226507/', 'info_dict': { 'id': '359649331226507', 'ext': 'mp4', 'title': '#ESLOne VoD - Birmingham Finals Day#1 Fnatic vs. @Evil Geniuses', 'uploader': 'ESL One Dota 2', }, 'params': { 'skip_download': True, }, }, { # data.node.comet_sections.content.story.attachments[].style_type_renderer.attachment.all_subattachments.nodes[].media 'url': 'https://www.facebook.com/100033620354545/videos/106560053808006/', 'info_dict': { 'id': '106560053808006', }, 'playlist_count': 2, }, { # data.video.story.attachments[].media 'url': 'https://www.facebook.com/watch/?v=647537299265662', 'only_matching': True, }, { # data.node.comet_sections.content.story.attachments[].style_type_renderer.attachment.all_subattachments.nodes[].media 'url': 'https://www.facebook.com/PankajShahLondon/posts/10157667649866271', 'info_dict': { 'id': '10157667649866271', }, 'playlist_count': 3, }, { # data.nodes[].comet_sections.content.story.attachments[].style_type_renderer.attachment.media 'url': 'https://m.facebook.com/Alliance.Police.Department/posts/4048563708499330', 'info_dict': { 'id': '117576630041613', 'ext': 'mp4', # TODO: title can be extracted from video page 'title': 'Facebook video #117576630041613', 'uploader_id': '189393014416438', 'upload_date': '20201123', 'timestamp': 1606162592, }, 'skip': 'Requires logging in', }, { # node.comet_sections.content.story.attached_story.attachments.style_type_renderer.attachment.media 'url': 'https://www.facebook.com/groups/ateistiskselskab/permalink/10154930137678856/', 'info_dict': { 'id': '211567722618337', 'ext': 'mp4', 'title': 'Facebook video #211567722618337', 'uploader_id': '127875227654254', 'upload_date': '20161122', 'timestamp': 1479793574, }, }, { # data.video.creation_story.attachments[].media 'url': 'https://www.facebook.com/watch/live/?v=1823658634322275', 'only_matching': True, }, { 'url': 'https://www.facebook.com/watchparty/211641140192478', 'info_dict': { 'id': '211641140192478', }, 'playlist_count': 1, 'skip': 'Requires logging in', }] _SUPPORTED_PAGLETS_REGEX = r'(?:pagelet_group_mall|permalink_video_pagelet|hyperfeed_story_id_[0-9a-f]+)' _api_config = { 'graphURI': '/api/graphql/' } @staticmethod def _extract_urls(webpage): urls = [] for mobj in re.finditer( r'<iframe[^>]+?src=(["\'])(?P<url>https?://www\.facebook\.com/(?:video/embed|plugins/video\.php).+?)\1', webpage): urls.append(mobj.group('url')) # Facebook API embed # see https://developers.facebook.com/docs/plugins/embedded-video-player for mobj in re.finditer(r'''(?x)<div[^>]+ class=(?P<q1>[\'"])[^\'"]*\bfb-(?:video|post)\b[^\'"]*(?P=q1)[^>]+ data-href=(?P<q2>[\'"])(?P<url>(?:https?:)?//(?:www\.)?facebook.com/.+?)(?P=q2)''', webpage): urls.append(mobj.group('url')) return urls def _login(self): useremail, password = self._get_login_info() if useremail is None: return login_page_req = sanitized_Request(self._LOGIN_URL) self._set_cookie('facebook.com', 'locale', 'en_US') login_page = self._download_webpage(login_page_req, None, note='Downloading login page', errnote='Unable to download login page') lsd = self._search_regex( r'<input type="hidden" name="lsd" value="([^"]*)"', login_page, 'lsd') lgnrnd = self._search_regex(r'name="lgnrnd" value="([^"]*?)"', login_page, 'lgnrnd') login_form = { 'email': useremail, 'pass': password, 'lsd': lsd, 'lgnrnd': lgnrnd, 'next': 'http://facebook.com/home.php', 'default_persistent': '0', 'legacy_return': '1', 'timezone': '-60', 'trynum': '1', } request = sanitized_Request(self._LOGIN_URL, urlencode_postdata(login_form)) request.add_header('Content-Type', 'application/x-www-form-urlencoded') try: login_results = self._download_webpage(request, None, note='Logging in', errnote='unable to fetch login page') if re.search(r'<form(.*)name="login"(.*)</form>', login_results) is not None: error = self._html_search_regex( r'(?s)<div[^>]+class=(["\']).*?login_error_box.*?\1[^>]*><div[^>]*>.*?</div><div[^>]*>(?P<error>.+?)</div>', login_results, 'login error', default=None, group='error') if error: raise ExtractorError('Unable to login: %s' % error, expected=True) self._downloader.report_warning('unable to log in: bad username/password, or exceeded login rate limit (~3/min). Check credentials or wait.') return fb_dtsg = self._search_regex( r'name="fb_dtsg" value="(.+?)"', login_results, 'fb_dtsg', default=None) h = self._search_regex( r'name="h"\s+(?:\w+="[^"]+"\s+)*?value="([^"]+)"', login_results, 'h', default=None) if not fb_dtsg or not h: return check_form = { 'fb_dtsg': fb_dtsg, 'h': h, 'name_action_selected': 'dont_save', } check_req = sanitized_Request(self._CHECKPOINT_URL, urlencode_postdata(check_form)) check_req.add_header('Content-Type', 'application/x-www-form-urlencoded') check_response = self._download_webpage(check_req, None, note='Confirming login') if re.search(r'id="checkpointSubmitButton"', check_response) is not None: self._downloader.report_warning('Unable to confirm login, you have to login in your browser and authorize the login.') except (compat_urllib_error.URLError, compat_http_client.HTTPException, socket.error) as err: self._downloader.report_warning('unable to log in: %s' % error_to_compat_str(err)) return def _real_initialize(self): self._login() def _extract_from_url(self, url, video_id): webpage = self._download_webpage( url.replace('://m.facebook.com/', '://www.facebook.com/'), video_id) video_data = None def extract_video_data(instances): video_data = [] for item in instances: if try_get(item, lambda x: x[1][0]) == 'VideoConfig': video_item = item[2][0] if video_item.get('video_id'): video_data.append(video_item['videoData']) return video_data server_js_data = self._parse_json(self._search_regex( [r'handleServerJS\(({.+})(?:\);|,")', r'\bs\.handle\(({.+?})\);'], webpage, 'server js data', default='{}'), video_id, fatal=False) if server_js_data: video_data = extract_video_data(server_js_data.get('instances', [])) def extract_from_jsmods_instances(js_data): if js_data: return extract_video_data(try_get( js_data, lambda x: x['jsmods']['instances'], list) or []) def extract_dash_manifest(video, formats): dash_manifest = video.get('dash_manifest') if dash_manifest: formats.extend(self._parse_mpd_formats( compat_etree_fromstring(compat_urllib_parse_unquote_plus(dash_manifest)))) def process_formats(formats): # Downloads with browser's User-Agent are rate limited. Working around # with non-browser User-Agent. for f in formats: f.setdefault('http_headers', {})['User-Agent'] = 'facebookexternalhit/1.1' self._sort_formats(formats) def extract_relay_data(_filter): return self._parse_json(self._search_regex( r'handleWithCustomApplyEach\([^,]+,\s*({.*?%s.*?})\);' % _filter, webpage, 'replay data', default='{}'), video_id, fatal=False) or {} def extract_relay_prefetched_data(_filter): replay_data = extract_relay_data(_filter) for require in (replay_data.get('require') or []): if require[0] == 'RelayPrefetchedStreamCache': return try_get(require, lambda x: x[3][1]['__bbox']['result']['data'], dict) or {} if not video_data: server_js_data = self._parse_json(self._search_regex([ r'bigPipe\.onPageletArrive\(({.+?})\)\s*;\s*}\s*\)\s*,\s*["\']onPageletArrive\s+' + self._SUPPORTED_PAGLETS_REGEX, r'bigPipe\.onPageletArrive\(({.*?id\s*:\s*"%s".*?})\);' % self._SUPPORTED_PAGLETS_REGEX ], webpage, 'js data', default='{}'), video_id, js_to_json, False) video_data = extract_from_jsmods_instances(server_js_data) if not video_data: data = extract_relay_prefetched_data( r'"(?:dash_manifest|playable_url(?:_quality_hd)?)"\s*:\s*"[^"]+"') if data: entries = [] def parse_graphql_video(video): formats = [] q = qualities(['sd', 'hd']) for (suffix, format_id) in [('', 'sd'), ('_quality_hd', 'hd')]: playable_url = video.get('playable_url' + suffix) if not playable_url: continue formats.append({ 'format_id': format_id, 'quality': q(format_id), 'url': playable_url, }) extract_dash_manifest(video, formats) process_formats(formats) v_id = video.get('videoId') or video.get('id') or video_id info = { 'id': v_id, 'formats': formats, 'thumbnail': try_get(video, lambda x: x['thumbnailImage']['uri']), 'uploader_id': try_get(video, lambda x: x['owner']['id']), 'timestamp': int_or_none(video.get('publish_time')), 'duration': float_or_none(video.get('playable_duration_in_ms'), 1000), } description = try_get(video, lambda x: x['savable_description']['text']) title = video.get('name') if title: info.update({ 'title': title, 'description': description, }) else: info['title'] = description or 'Facebook video #%s' % v_id entries.append(info) def parse_attachment(attachment, key='media'): media = attachment.get(key) or {} if media.get('__typename') == 'Video': return parse_graphql_video(media) nodes = data.get('nodes') or [] node = data.get('node') or {} if not nodes and node: nodes.append(node) for node in nodes: story = try_get(node, lambda x: x['comet_sections']['content']['story'], dict) or {} attachments = try_get(story, [ lambda x: x['attached_story']['attachments'], lambda x: x['attachments'] ], list) or [] for attachment in attachments: attachment = try_get(attachment, lambda x: x['style_type_renderer']['attachment'], dict) ns = try_get(attachment, lambda x: x['all_subattachments']['nodes'], list) or [] for n in ns: parse_attachment(n) parse_attachment(attachment) edges = try_get(data, lambda x: x['mediaset']['currMedia']['edges'], list) or [] for edge in edges: parse_attachment(edge, key='node') video = data.get('video') or {} if video: attachments = try_get(video, [ lambda x: x['story']['attachments'], lambda x: x['creation_story']['attachments'] ], list) or [] for attachment in attachments: parse_attachment(attachment) if not entries: parse_graphql_video(video) return self.playlist_result(entries, video_id) if not video_data: m_msg = re.search(r'class="[^"]*uiInterstitialContent[^"]*"><div>(.*?)</div>', webpage) if m_msg is not None: raise ExtractorError( 'The video is not available, Facebook said: "%s"' % m_msg.group(1), expected=True) elif '>You must log in to continue' in webpage: self.raise_login_required() if not video_data and '/watchparty/' in url: post_data = { 'doc_id': 3731964053542869, 'variables': json.dumps({ 'livingRoomID': video_id, }), } prefetched_data = extract_relay_prefetched_data(r'"login_data"\s*:\s*{') if prefetched_data: lsd = try_get(prefetched_data, lambda x: x['login_data']['lsd'], dict) if lsd: post_data[lsd['name']] = lsd['value'] relay_data = extract_relay_data(r'\[\s*"RelayAPIConfigDefaults"\s*,') for define in (relay_data.get('define') or []): if define[0] == 'RelayAPIConfigDefaults': self._api_config = define[2] living_room = self._download_json( urljoin(url, self._api_config['graphURI']), video_id, data=urlencode_postdata(post_data))['data']['living_room'] entries = [] for edge in (try_get(living_room, lambda x: x['recap']['watched_content']['edges']) or []): video = try_get(edge, lambda x: x['node']['video']) or {} v_id = video.get('id') if not v_id: continue v_id = compat_str(v_id) entries.append(self.url_result( self._VIDEO_PAGE_TEMPLATE % v_id, self.ie_key(), v_id, video.get('name'))) return self.playlist_result(entries, video_id) if not video_data: # Video info not in first request, do a secondary request using # tahoe player specific URL tahoe_data = self._download_webpage( self._VIDEO_PAGE_TAHOE_TEMPLATE % video_id, video_id, data=urlencode_postdata({ '__a': 1, '__pc': self._search_regex( r'pkg_cohort["\']\s*:\s*["\'](.+?)["\']', webpage, 'pkg cohort', default='PHASED:DEFAULT'), '__rev': self._search_regex( r'client_revision["\']\s*:\s*(\d+),', webpage, 'client revision', default='3944515'), 'fb_dtsg': self._search_regex( r'"DTSGInitialData"\s*,\s*\[\]\s*,\s*{\s*"token"\s*:\s*"([^"]+)"', webpage, 'dtsg token', default=''), }), headers={ 'Content-Type': 'application/x-www-form-urlencoded', }) tahoe_js_data = self._parse_json( self._search_regex( r'for\s+\(\s*;\s*;\s*\)\s*;(.+)', tahoe_data, 'tahoe js data', default='{}'), video_id, fatal=False) video_data = extract_from_jsmods_instances(tahoe_js_data) if not video_data: raise ExtractorError('Cannot parse data') if len(video_data) > 1: entries = [] for v in video_data: video_url = v[0].get('video_url') if not video_url: continue entries.append(self.url_result(urljoin( url, video_url), self.ie_key(), v[0].get('video_id'))) return self.playlist_result(entries, video_id) video_data = video_data[0] formats = [] subtitles = {} for f in video_data: format_id = f['stream_type'] if f and isinstance(f, dict): f = [f] if not f or not isinstance(f, list): continue for quality in ('sd', 'hd'): for src_type in ('src', 'src_no_ratelimit'): src = f[0].get('%s_%s' % (quality, src_type)) if src: preference = -10 if format_id == 'progressive' else 0 if quality == 'hd': preference += 5 formats.append({ 'format_id': '%s_%s_%s' % (format_id, quality, src_type), 'url': src, 'quality': preference, }) extract_dash_manifest(f[0], formats) subtitles_src = f[0].get('subtitles_src') if subtitles_src: subtitles.setdefault('en', []).append({'url': subtitles_src}) if not formats: raise ExtractorError('Cannot find video formats') process_formats(formats) video_title = self._html_search_regex( r'<h2\s+[^>]*class="uiHeaderTitle"[^>]*>([^<]*)</h2>', webpage, 'title', default=None) if not video_title: video_title = self._html_search_regex( r'(?s)<span class="fbPhotosPhotoCaption".*?id="fbPhotoPageCaption"><span class="hasCaption">(.*?)</span>', webpage, 'alternative title', default=None) if not video_title: video_title = self._html_search_meta( 'description', webpage, 'title', default=None) if video_title: video_title = limit_length(video_title, 80) else: video_title = 'Facebook video #%s' % video_id uploader = clean_html(get_element_by_id( 'fbPhotoPageAuthorName', webpage)) or self._search_regex( r'ownerName\s*:\s*"([^"]+)"', webpage, 'uploader', default=None) or self._og_search_title(webpage, fatal=False) timestamp = int_or_none(self._search_regex( r'<abbr[^>]+data-utime=["\'](\d+)', webpage, 'timestamp', default=None)) thumbnail = self._html_search_meta(['og:image', 'twitter:image'], webpage) view_count = parse_count(self._search_regex( r'\bviewCount\s*:\s*["\']([\d,.]+)', webpage, 'view count', default=None)) info_dict = { 'id': video_id, 'title': video_title, 'formats': formats, 'uploader': uploader, 'timestamp': timestamp, 'thumbnail': thumbnail, 'view_count': view_count, 'subtitles': subtitles, } return info_dict def _real_extract(self, url): video_id = self._match_id(url) real_url = self._VIDEO_PAGE_TEMPLATE % video_id if url.startswith('facebook:') else url return self._extract_from_url(real_url, video_id) class FacebookPluginsVideoIE(InfoExtractor): _VALID_URL = r'https?://(?:[\w-]+\.)?facebook\.com/plugins/video\.php\?.*?\bhref=(?P<id>https.+)' _TESTS = [{ 'url': 'https://www.facebook.com/plugins/video.php?href=https%3A%2F%2Fwww.facebook.com%2Fgov.sg%2Fvideos%2F10154383743583686%2F&show_text=0&width=560', 'md5': '5954e92cdfe51fe5782ae9bda7058a07', 'info_dict': { 'id': '10154383743583686', 'ext': 'mp4', 'title': 'What to do during the haze?', 'uploader': 'Gov.sg', 'upload_date': '20160826', 'timestamp': 1472184808, }, 'add_ie': [FacebookIE.ie_key()], }, { 'url': 'https://www.facebook.com/plugins/video.php?href=https%3A%2F%2Fwww.facebook.com%2Fvideo.php%3Fv%3D10204634152394104', 'only_matching': True, }, { 'url': 'https://www.facebook.com/plugins/video.php?href=https://www.facebook.com/gov.sg/videos/10154383743583686/&show_text=0&width=560', 'only_matching': True, }] def _real_extract(self, url): return self.url_result( compat_urllib_parse_unquote(self._match_id(url)), FacebookIE.ie_key())
42.512023
159
0.523756
[ "Unlicense" ]
2ShedsJackson/yt-dlp
yt_dlp/extractor/facebook.py
30,062
Python
""" The patch module allows for a grid to be created and for data to be defined on that grid. Typical usage: -- create the grid grid = Grid1d(nx) -- create the data that lives on that grid data = CellCenterData1d(grid) bcObj = bcObject(xlb="reflect", xrb="reflect"_ data.registerVar("density", bcObj) ... data.create() -- initialize some data dens = data.get_var("density") dens[:,:] = ... -- fill the ghost cells data.fil_lBC("density") """ from __future__ import print_function import sys import numpy valid = ["outflow", "periodic", "reflect", "reflect-even", "reflect-odd", "dirichlet", "neumann"] class BCObject(object): """ Boundary condition container -- hold the BCs on each boundary for a single variable """ def __init__(self, xlb="outflow", xrb="outflow", odd_reflect_dir=""): # note: "reflect" is ambiguous and will be converted into # either reflect-even (the default) or reflect-odd if xlb not in valid or xrb not in valid: sys.exit("ERROR: invalid BC") # -x boundary self.xlb = xlb if self.xlb == "reflect": self.xlb = numpy.where(odd_reflect_dir == "x", "reflect-odd", "reflect-even") # +x boundary self.xrb = xrb if self.xrb == "reflect": self.xrb = numpy.where(odd_reflect_dir == "x", "reflect-odd", "reflect-even") # periodic checks if ((xlb == "periodic" and xrb != "periodic") or (xrb == "periodic" and xlb != "periodic")): sys.exit("ERROR: both xlb and xrb must be periodic") def __str__(self): """ print out some basic information about the BC object """ string = "BCs: -x: %s +x: %s " % \ (self.xlb, self.xrb) return string class Grid1d(object): """ the 1-d grid class. The grid object will contain the coordinate information (at various centerings). A basic (1-d) representation of the layout is: | | | X | | | | X | | | +--*--+- // -+--*--X--*--+--*--+- // -+--*--+--*--X--*--+- // -+--*--+ 0 ng-1 ng ng+1 ... ng+nx-1 ng+nx 2ng+nx-1 ilo ihi |<- ng ghostcells->|<---- nx interior zones ----->|<- ng ghostcells->| The '*' marks the data locations. """ def __init__(self, nx, ng=1, xmin=0.0, xmax=1.0): """ The class constructor function. The only data that we require is the number of points that make up the mesh. We optionally take the extrema of the domain, number of ghost cells (assume 1) """ # size of grid self.nx = nx self.ng = ng self.qx = 2*ng+nx # domain extrema self.xmin = xmin self.xmax = xmax # compute the indices of the block interior (excluding guardcells) self.ilo = ng self.ihi = ng+nx-1 # define the coordinate information at the left, center, and right # zone coordinates self.dx = (xmax - xmin)/nx self.xl = (numpy.arange(nx+2*ng) - ng)*self.dx + xmin self.xr = (numpy.arange(nx+2*ng) + 1.0 - ng)*self.dx + xmin self.x = 0.5*(self.xl + self.xr) def scratch_array(self): return numpy.zeros((self.qx), dtype=numpy.float64) def __str__(self): """ print out some basic information about the grid object """ return "1-d grid: nx = {}, ng = {}".format(self.nx, self.ng) class CellCenterData1d(object): """ the cell-centered data that lives on a grid. a CellCenterData1d object is built in a multi-step process before it can be used. We pass in a grid object to describe where the data lives: my_data = patch.CellCenterData1d(myGrid) register any variables that we expect to live on this patch. Here bcObject describes the boundary conditions for that variable. my_data.registerVar('density', bcObject) my_data.registerVar('x-momentum', bcObject) ... finally, finish the initialization of the patch my_data.create() This last step actually allocates the storage for the state variables. Once this is done, the patch is considered to be locked. New variables cannot be added. """ def __init__(self, grid, dtype=numpy.float64): self.grid = grid self.dtype = dtype self.data = None self.vars = [] self.nvar = 0 self.BCs = {} # time self.t = -1 self.initialized = 0 def register_var(self, name, bc_object): """ register a variable with CellCenterData1d object. Here we pass in a BCObject that describes the boundary conditions for that variable. """ if self.initialized == 1: sys.exit("ERROR: grid already initialized") self.vars.append(name) self.nvar += 1 self.BCs[name] = bc_object def create(self): """ called after all the variables are registered and allocates the storage for the state data """ if self.initialized == 1: sys.exit("ERROR: grid already initialized") self.data = numpy.zeros((self.nvar, self.grid.qx), dtype=self.dtype) self.initialized = 1 def __str__(self): """ print out some basic information about the ccData2d object """ if self.initialized == 0: mystr = "CellCenterData1d object not yet initialized" return mystr mystr = "cc data: nx = {}, ng = {}\n".format(self.grid.nx, self.grid.ng) + \ " nvars = {}\n".format(self.nvar) + \ "variables: \n" ilo = self.grid.ilo ihi = self.grid.ihi for n in range(self.nvar): mystr += "%16s: min: %15.10f max: %15.10f\n" % \ (self.vars[n], numpy.min(self.data[n, ilo:ihi+1]), numpy.max(self.data[n, ilo:ihi+1])) mystr += "%16s BCs: -x: %-12s +x: %-12s \n" %\ (" ", self.BCs[self.vars[n]].xlb, self.BCs[self.vars[n]].xrb) return mystr def get_var(self, name): """ return a data array the variable described by name. Any changes made to this are automatically reflected in the CellCenterData1d object. """ n = self.vars.index(name) return self.data[n, :] def zero(self, name): n = self.vars.index(name) self.data[n, :] = 0.0 def fill_BC_all(self): """ fill boundary conditions on all variables """ for name in self.vars: self.fill_BC(name) def fill_BC(self, name): """ fill the boundary conditions. This operates on a single state variable at a time, to allow for maximum flexibility we do periodic, reflect-even, reflect-odd, and outflow each variable name has a corresponding bc_object stored in the ccData2d object -- we refer to this to figure out the action to take at each boundary. """ # there is only a single grid, so every boundary is on # a physical boundary (except if we are periodic) # Note: we piggy-back on outflow and reflect-odd for # Neumann and Dirichlet homogeneous BCs respectively, but # this only works for a single ghost cell n = self.vars.index(name) # -x boundary if self.BCs[name].xlb == "outflow" or self.BCs[name].xlb == "neumann": for i in range(0, self.grid.ilo): self.data[n, i] = self.data[n, self.grid.ilo] elif self.BCs[name].xlb == "reflect-even": for i in range(0, self.grid.ilo): self.data[n, i] = self.data[n, 2*self.grid.ng-i-1] elif self.BCs[name].xlb in ["reflect-odd", "dirichlet"]: for i in range(0, self.grid.ilo): self.data[n, i] = -self.data[n, 2*self.grid.ng-i-1] elif self.BCs[name].xlb == "periodic": for i in range(0, self.grid.ilo): self.data[n, i] = self.data[n, self.grid.ihi-self.grid.ng+i+1] # +x boundary if self.BCs[name].xrb == "outflow" or self.BCs[name].xrb == "neumann": for i in range(self.grid.ihi+1, self.grid.nx+2*self.grid.ng): self.data[n, i] = self.data[n, self.grid.ihi] elif self.BCs[name].xrb == "reflect-even": for i in range(0, self.grid.ng): i_bnd = self.grid.ihi+1+i i_src = self.grid.ihi-i self.data[n, i_bnd] = self.data[n, i_src] elif self.BCs[name].xrb in ["reflect-odd", "dirichlet"]: for i in range(0, self.grid.ng): i_bnd = self.grid.ihi+1+i i_src = self.grid.ihi-i self.data[n, i_bnd] = -self.data[n, i_src] elif self.BCs[name].xrb == "periodic": for i in range(self.grid.ihi+1, 2*self.grid.ng + self.grid.nx): self.data[n, i] = self.data[n, i-self.grid.ihi-1+self.grid.ng] def restrict(self, varname): """ restrict the variable varname to a coarser grid (factor of 2 coarser) and return an array with the resulting data (and same number of ghostcells) """ fG = self.grid fData = self.get_var(varname) # allocate an array for the coarsely gridded data ng_c = fG.ng nx_c = fG.nx//2 cData = numpy.zeros((2*ng_c+nx_c), dtype=self.dtype) ilo_c = ng_c ihi_c = ng_c+nx_c-1 # fill the coarse array with the restricted data -- just # average the 2 fine cells into the corresponding coarse cell # that encompasses them. # This is done by shifting our view into the fData array and # using a stride of 2 in the indexing. cData[ilo_c:ihi_c+1] = \ 0.5*(fData[fG.ilo :fG.ihi+1:2] + fData[fG.ilo+1:fG.ihi+1:2]) return cData def prolong(self, varname): """ prolong the data in the current (coarse) grid to a finer (factor of 2 finer) grid. Return an array with the resulting data (and same number of ghostcells). We will reconstruct the data in the zone from the zone-averaged variables using the centered-difference slopes (x) f(x,y) = m x/dx + <f> When averaged over the parent cell, this reproduces <f>. Each zone's reconstrution will be averaged over 2 children. | | | | | | <f> | --> | | | | | | 1 | 2 | +-----------+ +-----+-----+ We will fill each of the finer resolution zones by filling all the 1's together, using a stride 2 into the fine array. Then the 2's, this allows us to operate in a vector fashion. All operations will use the same slopes for their respective parents. """ cG = self.grid cData = self.get_var(varname) # allocate an array for the coarsely gridded data ng_f = cG.ng nx_f = cG.nx*2 fData = numpy.zeros((2*ng_f+nx_f), dtype=self.dtype) ilo_f = ng_f ihi_f = ng_f+nx_f-1 # slopes for the coarse data m_x = cG.scratch_array() m_x[cG.ilo:cG.ihi+1] = \ 0.5*(cData[cG.ilo+1:cG.ihi+2] - cData[cG.ilo-1:cG.ihi]) # fill the '1' children fData[ilo_f:ihi_f+1:2] = \ cData[cG.ilo:cG.ihi+1] - 0.25*m_x[cG.ilo:cG.ihi+1] # fill the '2' children fData[ilo_f+1:ihi_f+1:2] = \ cData[cG.ilo:cG.ihi+1] + 0.25*m_x[cG.ilo:cG.ihi+1] return fData if __name__ == "__main__": # illustrate basic mesh operations myg = Grid1d(16, xmax=1.0) mydata = CellCenterData1d(myg) bc = BCObject() mydata.register_var("a", bc) mydata.create() a = mydata.get_var("a") a[:] = numpy.exp(-(myg.x - 0.5)**2/0.1**2) print(mydata)
28.161364
84
0.548463
[ "BSD-3-Clause" ]
python-hydro/hydro_examples
multigrid/patch1d.py
12,391
Python
#!/usr/bin/python # coding: utf-8 # This file is execfile()d with the current directory set to its containing # dir. Note that not all possible configuration values are present in this # autogenerated file. All configuration values have a default; values that are # commented out serve to show the default. import sys import os import sphinx_rtd_theme # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. sys.path.insert(0, os.path.abspath(os.path.join('..'))) import pageit # noqa # -- General configuration ---------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinx.ext.doctest', 'sphinx.ext.autodoc', 'sphinxcontrib.napoleon'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. # source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'pageit' copyright = u'2013, Metaist' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = pageit.__version__ # The full version, including alpha/beta/rc tags. release = version # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # today = '' # Else, today_fmt is used as the format for a strftime call. # today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all # documents. # default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. # add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). # add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. # show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. # modindex_common_prefix = [] # -- Options for HTML output -------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'default' html_theme = "sphinx_rtd_theme" # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. # html_theme_path = [] html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". # html_title = None # A shorter title for the navigation bar. Default is the same as html_title. # html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. # html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. # html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. # html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. # html_use_smartypants = True # Custom sidebar templates, maps document names to template names. # html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. # html_additional_pages = {} # If false, no module index is generated. # html_domain_indices = True # If false, no index is generated. # html_use_index = True # If true, the index is split into individual pages for each letter. # html_split_index = False # If true, links to the reST sources are added to the pages. # html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. # html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. # html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. # html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). # html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'pageitdoc' # -- Options for LaTeX output ------------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # 'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass # [howto/manual]). latex_documents = [ ('index', 'pageit.tex', u'pageit Documentation', u'The Metaist', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. # latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. # latex_use_parts = False # If true, show page references after internal links. # latex_show_pagerefs = False # If true, show URL addresses after external links. # latex_show_urls = False # Documents to append as an appendix to all manuals. # latex_appendices = [] # If false, no module index is generated. # latex_domain_indices = True # -- Options for manual page output ------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'pageit', u'pageit Documentation', [u'The Metaist'], 1) ] # If true, show URL addresses after external links. # man_show_urls = False # -- Options for Texinfo output ----------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'pageit', u'pageit Documentation', u'The Metaist', 'pageit', pageit.__doc__.split('\n')[0], 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. # texinfo_appendices = [] # If false, no module index is generated. # texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. # texinfo_show_urls = 'footnote'
32.072874
79
0.709038
[ "MIT" ]
metaist/pageit
docs/conf.py
7,922
Python
from chainerui.models.log import Log def get_test_json(): return [ { "loss": 100, "epoch": 1, }, { "loss": 90, "epoch": 2, } ] def test_log_serialize_numbers(): json_data = get_test_json() logs = [Log(data) for data in json_data] serialized_data = [log.serialize for log in logs] assert serialized_data[0]['logDict']['epoch'] == 1 assert serialized_data[1]['logDict']['epoch'] == 2 def test_log_serialize_arbitrary_data(): json_data = get_test_json() json_data.insert( 0, { "loss": 110, "epoch": 0, "model_files": ["Model", "model.py"] } ) logs = [Log(data) for data in json_data] serialized_data = [log.serialize for log in logs] assert serialized_data[0]['logDict']['epoch'] == 0 assert serialized_data[0]['logDict']['model_files'] is None assert serialized_data[1]['logDict']['epoch'] == 1 assert serialized_data[2]['logDict']['epoch'] == 2 def test_log_serialize_nan_and_inf(): json_data = get_test_json() json_data.insert( 0, { "loss": float('nan'), "epoch": float('inf'), "iteration": 0, } ) logs = [Log(data) for data in json_data] serialized_data = [log.serialize for log in logs] assert serialized_data[0]['logDict']['iteration'] == 0 assert serialized_data[0]['logDict']['epoch'] is None assert serialized_data[0]['logDict']['loss'] is None assert serialized_data[1]['logDict']['epoch'] == 1 assert serialized_data[2]['logDict']['epoch'] == 2
25.692308
63
0.573653
[ "MIT" ]
chainer/chainerui
tests/models_tests/test_log.py
1,670
Python
#!/usr/bin/python3 """ An example script that cleans up failed experiments by moving them to the archive """ import argparse from datetime import datetime from clearml_agent import APIClient parser = argparse.ArgumentParser(description=__doc__) parser.add_argument("--project", "-P", help="Project ID. Only clean up experiments from this project") parser.add_argument("--user", "-U", help="User ID. Only clean up experiments assigned to this user") parser.add_argument( "--status", "-S", default="failed", help="Experiment status. Only clean up experiments with this status (default %(default)s)" ) parser.add_argument( "--iterations", "-I", type=int, help="Number of iterations. Only clean up experiments with less or equal number of iterations" ) parser.add_argument( "--sec-from-start", "-T", type=int, help="Seconds from start time. " "Only clean up experiments if less or equal number of seconds have elapsed since started" ) args = parser.parse_args() client = APIClient() tasks = client.tasks.get_all( project=[args.project] if args.project else None, user=[args.user] if args.user else None, status=[args.status] if args.status else None, system_tags=["-archived"] ) count = 0 for task in tasks: if args.iterations and (task.last_iteration or 0) > args.iterations: continue if args.sec_from_start: if not task.started: continue if (datetime.utcnow() - task.started.replace(tzinfo=None)).total_seconds() > args.sec_from_start: continue try: client.tasks.edit( task=task.id, system_tags=(task.system_tags or []) + ["archived"], force=True ) count += 1 except Exception as ex: print("Failed editing experiment: {}".format(ex)) print("Cleaned up {} experiments".format(count))
31.183333
105
0.676644
[ "Apache-2.0" ]
AzaelCicero/clearml-agent
examples/archive_experiments.py
1,871
Python
# Token type identifiers. AUT_INVALID = 0x00 AUT_OTHER_FILE32 = 0x11 AUT_OHEADER = 0x12 AUT_TRAILER = 0x13 AUT_HEADER32 = 0x14 AUT_HEADER32_EX = 0x15 AUT_DATA = 0x21 AUT_IPC = 0x22 AUT_PATH = 0x23 AUT_SUBJECT32 = 0x24 AUT_XATPATH = 0x25 AUT_PROCESS32 = 0x26 AUT_RETURN32 = 0x27 AUT_TEXT = 0x28 AUT_OPAQUE = 0x29 AUT_IN_ADDR = 0x2A AUT_IP = 0x2B AUT_IPORT = 0x2C AUT_ARG32 = 0x2D AUT_SOCKET = 0x2E AUT_SEQ = 0x2F AUT_ACL = 0x30 AUT_ATTR = 0x31 AUT_IPC_PERM = 0x32 AUT_LABEL = 0x33 AUT_GROUPS = 0x34 AUT_ACE = 0x35 AUT_PRIV = 0x38 AUT_UPRIV = 0x39 AUT_LIAISON = 0x3A AUT_NEWGROUPS = 0x3B AUT_EXEC_ARGS = 0x3C AUT_EXEC_ENV = 0x3D AUT_ATTR32 = 0x3E AUT_UNAUTH = 0x3F AUT_XATOM = 0x40 AUT_XOBJ = 0x41 AUT_XPROTO = 0x42 AUT_XSELECT = 0x43 AUT_XCOLORMAP = 0x44 AUT_XCURSOR = 0x45 AUT_XFONT = 0x46 AUT_XGC = 0x47 AUT_XPIXMAP = 0x48 AUT_XPROPERTY = 0x49 AUT_XWINDOW = 0x4A AUT_XCLIENT = 0x4B AUT_CMD = 0x51 AUT_EXIT = 0x52 AUT_ZONENAME = 0x60 AUT_HOST = 0x70 AUT_ARG64 = 0x71 AUT_RETURN64 = 0x72 AUT_ATTR64 = 0x73 AUT_HEADER64 = 0x74 AUT_SUBJECT64 = 0x75 AUT_PROCESS64 = 0x77 AUT_OTHER_FILE64 = 0x78 AUT_HEADER64_EX = 0x79 AUT_SUBJECT32_EX = 0x7A AUT_PROCESS32_EX = 0x7B AUT_SUBJECT64_EX = 0x7C AUT_PROCESS64_EX = 0x7D AUT_IN_ADDR_EX = 0x7E AUT_SOCKET_EX = 0x7F # # Pre-64-bit BSM, 32-bit tokens weren't explicitly named as '32'. We have # compatibility defines. AUT_HEADER = AUT_HEADER32 AUT_ARG = AUT_ARG32 AUT_RETURN = AUT_RETURN32 AUT_SUBJECT = AUT_SUBJECT32 AUT_PROCESS = AUT_PROCESS32 AUT_OTHER_FILE = AUT_OTHER_FILE32 # # * # The values for the following token ids are not defined by BSM. # # XXXRW: Not sure how to handle these in OpenBSM yet, but I'll give them # names more consistent with Sun's BSM. These originally came from Apple's # BSM. AUT_SOCKINET32 = 0x80 # XXX AUT_SOCKINET128 = 0x81 # XXX AUT_SOCKUNIX = 0x82 # XXX _AUT_RIGHTS = 0x83 # XXX FreeBSD AUT_ARG_UUID = 0x84 # UUID of argument object AUT_RETURN_UUID = 0x85 # UUID of returned object # # Apple specific tokens AUT_IDENTITY = 0xED AUT_KRB5_PRINCIPA = 0xEE AUT_CERT_HAHSH = 0xEF # print values for the arbitrary token AUP_BINARY = 0 AUP_OCTAL = 1 AUP_DECIMAL = 2 AUP_HEX = 3 AUP_STRING = 4 # # data-types for the arbitrary token AUR_BYTE = 0 AUR_CHAR = AUR_BYTE AUR_SHORT = 1 AUR_INT32 = 2 AUR_INT = AUR_INT32 AUR_INT64 = 3 # # ... and their sizes AUR_BYTE_SIZE = 1 # sizeof(u_char) AUR_CHAR_SIZE = AUR_BYTE_SIZE AUR_SHORT_SIZE = 2 # sizeof(uint16_t) AUR_INT32_SIZE = 4 # sizeof(uint32_t) AUR_INT_SIZE = AUR_INT32_SIZE AUR_INT64_SIZE = 8 # sizeof(uint64_t) AUR_BYTE_FORMAT = "B" AUR_CHAR_FORMAT = "c" AUR_SHORT_FORMAT = "H" AUR_INT32_FORMAT = "I" AUR_INT_FORMAT = AUR_INT32_FORMAT AUR_INT64_FORMAT = "Q" # # Modifiers for the header token PAD_NOTATTR = 0x4000 # nonattributable event PAD_FAILURE = 0x8000 # fail audit event # AUDIT_MAX_GROUPS = 16 # # * # A number of BSM versions are floating around and defined. Here are # constants for them. OpenBSM uses the same token types, etc, used in the # Solaris BSM version, but has a separate version number in order to # identify a potentially different event identifier name space. AUDIT_HEADER_VERSION_OLDDARWIN = 1 # In = retrospect, a mistake. AUDIT_HEADER_VERSION_SOLARIS = 2 AUDIT_HEADER_VERSION_TSOL25 = 3 AUDIT_HEADER_VERSION_TSOL = 4 AUDIT_HEADER_VERSION_OPENBSM10 = 10 AUDIT_HEADER_VERSION_OPENBSM11 = 11 AUDIT_HEADER_VERSION_OPENBSM = AUDIT_HEADER_VERSION_OPENBSM11 # AUT_TRAILER_MAGIC = 0xB105 # AUT_HEADERS = [AUT_HEADER32, AUT_HEADER32_EX, AUT_HEADER64, AUT_HEADER64_EX]
23.825503
76
0.773803
[ "MIT" ]
haginara/openbsm-python
bsm/audit_record.py
3,550
Python
# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from argparse import ArgumentParser from pyspark.sql import SparkSession from pyspark.sql.types import * LABEL_COL = 0 INT_COLS = list(range(1, 14)) CAT_COLS = list(range(14, 40)) if __name__ == '__main__': parser = ArgumentParser() parser.add_argument('--input', type=str, required=True, help="The path to the csv file to be processed.") parser.add_argument('--output', type=str, default=".", help="The path to the folder to save the parquet data.") args = parser.parse_args() spark = SparkSession.builder.getOrCreate() input = args.input output = args.output label_fields = [StructField('_c%d' % LABEL_COL, IntegerType())] int_fields = [StructField('_c%d' % i, IntegerType()) for i in INT_COLS] str_fields = [StructField('_c%d' % i, StringType()) for i in CAT_COLS] schema = StructType(label_fields + int_fields + str_fields) df = spark.read.schema(schema).option('sep', '\t').csv(input) df.write.parquet(output, mode="overwrite")
36.395349
114
0.723323
[ "Apache-2.0" ]
ColossusChang/BigDL
python/friesian/example/dlrm/csv_to_parquet.py
1,565
Python
from setuptools import setup requirements = ''' flask ''' name='imager' console_scripts = f''' pf-moves={name}.moves_gui:main pf-flash={name}.flash:main imager={name}.cli:main ''' packages=f''' {name} {name}.utils ''' setup( name=name, packages=packages.split(), version='0.1', description='IMX imaging using the PreciseFlex robot arm and LiCONiC fridge', url='https://github.com/pharmbio/robot-imager', author='Dan Rosén', author_email='[email protected]', python_requires='>=3.10', license='MIT', install_requires=requirements.split(), entry_points={'console_scripts': console_scripts.split()} )
20.515152
81
0.660266
[ "MIT" ]
pharmbio/imx-pharmbio-automation
setup.py
678
Python
import numpy as np import scipy from scipy.stats import qmc from scipy.stats import special_ortho_group import matplotlib.pyplot as plt from scipy.optimize import minimize import warnings from .ssp import SSP class SSPSpace: def __init__(self, domain_dim: int, ssp_dim: int, axis_matrix=None, phase_matrix=None, domain_bounds=None, length_scale=1): self.sample_points = None self.sample_ssps = None self.domain_dim = domain_dim self.ssp_dim = ssp_dim if not isinstance(length_scale, np.ndarray) or length_scale.size == 1: self.length_scale = length_scale * np.ones((self.domain_dim,)) if domain_bounds is not None: assert domain_bounds.shape[0] == domain_dim self.domain_bounds = domain_bounds if (axis_matrix is None) & (phase_matrix is None): raise RuntimeError("SSP spaces must be defined by either a axis matrix or phase matrix. Use subclasses to construct spaces with predefined axes.") elif (phase_matrix is None): assert axis_matrix.shape[0] == ssp_dim, f'Expected ssp_dim {axis_matrix.shape[0]}, got {ssp_dim}.' assert axis_matrix.shape[1] == domain_dim self.axis_matrix = axis_matrix self.phase_matrix = (-1.j*np.log(np.fft.fft(axis_matrix,axis=0))).real elif (axis_matrix is None): assert phase_matrix.shape[0] == ssp_dim assert phase_matrix.shape[1] == domain_dim self.phase_matrix = phase_matrix self.axis_matrix = np.fft.ifft(np.exp(1.j*phase_matrix), axis=0).real def update_lengthscale(self, scale): if not isinstance(scale, np.ndarray) or scale.size == 1: self.length_scale = scale * np.ones((self.domain_dim,)) else: assert scale.size == self.domain_dim self.length_scale = scale assert self.length_scale.size == self.domain_dim def encode(self,x): assert x.shape[0] == self.domain_dim ls_mat = np.atleast_2d(np.diag(1/self.length_scale.flatten())) scaled_x = ls_mat @ x data = np.fft.ifft( np.exp( 1.j * self.phase_matrix @ scaled_x ), axis=0 ).real return data def encode_and_deriv(self,x): ls_mat = np.atleast_2d(np.diag(1 / self.length_scale)) scaled_x = x @ ls_mat fdata = np.exp( 1.j * self.phase_matrix @ scaled_x.T ) data = np.fft.ifft( fdata, axis=0 ).real ddata = np.fft.ifft( 1.j * np.stack([np.diag(fdata[:,j]) for j in range(x.shape[0])]) @ self.phase_matrix @ ls_mat, axis=0 ).real return data.T, ddata.T def encode_fourier(self,x): assert x.shape[0] == self.domain_dim ls_mat = np.atleast_2d(np.diag(1/self.length_scale.flatten())) scaled_x = ls_mat @ x data = np.exp( 1.j * self.phase_matrix @ scaled_x ) return data def encode_as_SSP(self,x): assert x.shape[0] == self.domain_dim return SSP(self.encode(x),self) def decode(self,ssp,method='from-set', num_sample_pts=10000,from_set_method='grid',num_init_pts =10): if method=='least-squares': # problems duw to complex log x = np.linalg.lstsq(self.phase_matrix, (1.j*np.log(np.fft.fft(ssp,axis=0))).real)[0] #raise NotImplementedError() #fssp = np.fft.fft(ssp,axis=0) #x = np.linalg.lstsq(np.tile(self.phase_matrix,(2,1)), np.hstack([np.arccos(fssp.real), np.arcsin(fssp.imag)])) return x elif method=='from-set': sample_ssps, sample_points = self.get_sample_ssps(num_sample_pts,method=from_set_method) sims = sample_ssps.T @ ssp return sample_points[:,np.argmax(sims)] elif method=='direct-optim': x0 = self.decode(ssp, method='from-set',num_sample_pts=num_init_pts) def min_func(x,target=ssp): x_ssp = self.encode(np.atleast_2d(x)) return -np.inner(x_ssp, target).flatten() soln = minimize(min_func, x0, method='L-BFGS-B') return soln.x elif method=='grad_descent': x = self.decode(ssp, method='from-set',num_sample_pts=num_init_pts) fssp = np.fft.fft(ssp,axis=0) ls_mat = np.diag(1/self.length_scale.flatten()) for j in range(10): scaled_x = ls_mat @ x x_enc = np.exp(1.j * self.phase_matrix @ scaled_x) grad_mat = (1.j * (self.phase_matrix @ ls_mat).T * x_enc) grad = (grad_mat @ fssp.T).flatten() x = x - 0.1*grad.real return x elif method=='nonlin-reg': x = self.decode(ssp, method='from-set',num_sample_pts=num_init_pts) fssp = np.fft.fft(ssp,axis=0) dy = np.hstack([fssp.real, fssp.imag]) ls_mat = np.diag(1/self.length_scale.flatten()) for j in range(10): J = np.vstack([self.phase_matrix * np.sin(self.phase_matrix @ x @ ls_mat).reshape(1,-1), -self.phase_matrix * np.cos(self.phase_matrix @ x @ ls_mat).reshape(1,-1)]) soln = np.linalg.pinv(J.T @ J) @ J.T @ dy x = x + soln return x else: raise NotImplementedError() def clean_up(self,ssp,**kwargs): x = self.decode(ssp,**kwargs) return self.encode(x) def get_sample_points(self,num_points,method='grid'): if self.domain_bounds is None: bounds = np.vstack([-10*np.ones(self.domain_dim), 10*np.ones(self.domain_dim)]).T else: bounds = self.domain_bounds if method=='grid': n_per_dim = int(num_points**(1/self.domain_dim)) if n_per_dim**self.domain_dim != num_points: warnings.warn((f'Evenly distributing points over a ' f'{self.domain_dim} grid requires numbers ' f'of samples to be powers of {self.domain_dim}.' f'Requested {num_points} samples, returning ' f'{n_per_dim**self.domain_dim}'), RuntimeWarning) ### end if xs = np.linspace(bounds[:,0],bounds[:,1],n_per_dim) xxs = np.meshgrid(*[xs[:,i] for i in range(self.domain_dim)]) sample_points = np.array([x.reshape(-1) for x in xxs]) return sample_points elif method=='sobol': sampler = qmc.Sobol(d=self.domain_dim) lbounds = bounds[:,0] ubounds = bounds[:,1] u_sample_points = sampler.random(num_points) sample_points = qmc.scale(u_sample_points, lbounds, ubounds) return sample_points.T else: raise NotImplementedError() def get_sample_ssps(self,num_points,**kwargs): # make new if num_pts different than whats stored? sample_points = self.get_sample_points(num_points,**kwargs) sample_ssps = self.encode(sample_points) return sample_ssps, sample_points def identity(self): s = np.zeros(self.ssp_dim) s[0] = 1 return s def bind(self,a,b): return np.fft.ifft(np.fft.fft(a) * np.fft.fft(b)).real def invert(self,a): return a[-np.arange(len(a))] def normalize(self,ssp): return ssp/np.max([1e-6,np.sqrt(np.sum(ssp**2))]) def unitary(self,ssp): fssp = np.fft.fft(ssp) fssp = fssp/np.sqrt(fssp.real**2 + fssp.imag**2) return np.fft.ifft(fssp).real def unitary_fourier(self,fssp): fssp = fssp/np.sqrt(fssp.real**2 + fssp.imag**2) return fssp def decode_path(self, ssp_path, N_ma=None, n_samples = 10000): sample_ssps, sample_points = self.get_sample_ssps(n_samples) path = np.zeros((ssp_path.shape[0], self.domain_dim)) max_sims = np.zeros(ssp_path.shape[0]) for i in range(ssp_path.shape[0]): sims = sample_ssps.T @ ssp_path[i,:] max_sims[i] = np.max(sims) path[i,:] = sample_points[:,np.argmax(sims)] return path, max_sims def similarity_plot(self,ssp,n_grid=100,plot_type='heatmap',cmap="YlGnBu",ax=None,**kwargs): if ax is None: fig = plt.figure() ax = fig.add_subplot(111) if self.domain_dim == 1: xs = np.linspace(self.domain_bounds[0,0],self.domain_bounds[0,1], n_grid) im=ax.plot(xs, self.encode(xs.reshape(1,-1)).T @ self.data) ax.set_xlim(self.domain_bounds[0,0],self.domain_bounds[0,1]) elif self.domain_dim == 2: xs = np.linspace(self.domain_bounds[0,0],self.domain_bounds[0,1], n_grid) ys = np.linspace(self.domain_bounds[1,0],self.domain_bounds[1,1], n_grid) X,Y = np.meshgrid(xs,ys) sims = self.encode(np.vstack([X.reshape(-1),Y.reshape(-1)])).T @ ssp if plot_type=='heatmap': im=ax.pcolormesh(X,Y,sims.reshape(X.shape),cmap=cmap,**kwargs) elif plot_type=='contour': im=ax.contour(X,Y,sims.reshape(X.shape),cmap=cmap,**kwargs) elif plot_type=='contourf': im=ax.contourf(X,Y,sims.reshape(X.shape),cmap=cmap,**kwargs) ax.set_xlim(self.domain_bounds[0,0],self.domain_bounds[0,1]) ax.set_ylim(self.domain_bounds[1,0],self.domain_bounds[1,1]) else: raise NotImplementedError() return im class RandomSSPSpace(SSPSpace): def __init__(self, domain_dim: int, ssp_dim: int, domain_bounds=None, length_scale=1, rng=np.random.default_rng()): partial_phases = rng.random.rand(ssp_dim//2,domain_dim)*2*np.pi - np.pi axis_matrix = _constructaxisfromphases(partial_phases) super().__init__(domain_dim,ssp_dim,axis_matrix=axis_matrix, domain_bounds=domain_bounds,length_scale=length_scale) class HexagonalSSPSpace(SSPSpace): def __init__(self, domain_dim:int,ssp_dim: int=151, n_rotates:int=5, n_scales:int=5, scale_min=2*np.pi/np.sqrt(6) - 0.5, scale_max=2*np.pi/np.sqrt(6) + 0.5, domain_bounds=None, length_scale=1): if (n_rotates==5) & (n_scales==5) & (ssp_dim != 151): n_rotates = int(np.max([1,np.sqrt((ssp_dim-1)/(2*(domain_dim+1)))])) n_scales = n_rotates phases_hex = np.hstack([np.sqrt(1+ 1/domain_dim)*np.identity(domain_dim) - (domain_dim**(-3/2))*(np.sqrt(domain_dim+1) + 1), (domain_dim**(-1/2))*np.ones((domain_dim,1))]).T self.grid_basis_dim = domain_dim + 1 self.num_grids = n_rotates*n_scales scales = np.linspace(scale_min,scale_max,n_scales) phases_scaled = np.vstack([phases_hex*i for i in scales]) if (n_rotates==1): phases_scaled_rotated = phases_scaled elif (domain_dim==1): scales = np.linspace(scale_min,scale_max,n_scales+n_rotates) phases_scaled_rotated = np.vstack([phases_hex*i for i in scales]) elif (domain_dim == 2): angles = np.linspace(0,2*np.pi/3,n_rotates) R_mats = np.stack([np.stack([np.cos(angles), -np.sin(angles)],axis=1), np.stack([np.sin(angles), np.cos(angles)], axis=1)], axis=1) phases_scaled_rotated = (R_mats @ phases_scaled.T).transpose(0,2,1).reshape(-1,domain_dim) else: R_mats = special_ortho_group.rvs(domain_dim, size=n_rotates) phases_scaled_rotated = (R_mats @ phases_scaled.T).transpose(0,2,1).reshape(-1,domain_dim) axis_matrix = _constructaxisfromphases(phases_scaled_rotated) ssp_dim = axis_matrix.shape[0] super().__init__(domain_dim,ssp_dim,axis_matrix=axis_matrix, domain_bounds=domain_bounds,length_scale=length_scale) def sample_grid_encoders(self, n): sample_pts = self.get_sample_points(n,method='sobol') N = self.num_grids if N < n: sorts = np.hstack([np.arange(N), np.random.randint(0, N - 1, size = n - N)]) else: sorts = np.arange(n) encoders = np.zeros((self.ssp_dim,n)) for i in range(n): sub_mat = _get_sub_SSP(sorts[i],N,sublen=self.grid_basis_dim) proj_mat = _proj_sub_SSP(sorts[i],N,sublen=self.grid_basis_dim) sub_space = SSPSpace(self.domain_dim,2*self.grid_basis_dim + 1, axis_matrix= sub_mat @ self.axis_matrix) encoders[:,i] = N * proj_mat @ sub_space.encode(sample_pts[:,i]) return encoders def _constructaxisfromphases(K): d = K.shape[0] n = K.shape[1] axes = np.ones((d*2 + 1,n)) for i in range(n): F = np.ones((d*2 + 1,), dtype="complex") F[0:d] = np.exp(1.j*K[:,i]) F[-d:] = np.flip(np.conj(F[0:d])) F = np.fft.ifftshift(F) axes[:,i] = np.fft.ifft(F).real return axes def _get_sub_FourierSSP(n, N, sublen=3): # Return a matrix, \bar{A}_n # Consider the multi scale representation (S_{total}) and sub vectors (S_n) described in the paper # Then # \bar{A}_n F{S_{total}} = F{S_n} # i.e. pick out the sub vector in the Fourier domain tot_len = 2*sublen*N + 1 FA = np.zeros((2*sublen + 1, tot_len)) FA[0:sublen, sublen*n:sublen*(n+1)] = np.eye(sublen) FA[sublen, sublen*N] = 1 FA[sublen+1:, tot_len - np.arange(sublen*(n+1),sublen*n,-1)] = np.eye(sublen) return FA def _get_sub_SSP(n,N,sublen=3): # Return a matrix, A_n # Consider the multi scale representation (S_{total}) and sub vectors (S_n) described in the paper # Then # A_n S_{total} = S_n # i.e. pick out the sub vector in the time domain tot_len = 2*sublen*N + 1 FA = _get_sub_FourierSSP(n,N,sublen=sublen) W = np.fft.fft(np.eye(tot_len)) invW = np.fft.ifft(np.eye(2*sublen + 1)) A = invW @ np.fft.ifftshift(FA) @ W return A.real def _proj_sub_FourierSSP(n,N,sublen=3): # Return a matrix, \bar{B}_n # Consider the multi scale representation (S_{total}) and sub vectors (S_n) described in the paper # Then # \sum_n \bar{B}_n F{S_{n}} = F{S_{total}} # i.e. project the sub vector in the Fourier domain such that summing all such projections gives the full vector in Fourier domain tot_len = 2*sublen*N + 1 FB = np.zeros((2*sublen + 1, tot_len)) FB[0:sublen, sublen*n:sublen*(n+1)] = np.eye(sublen) FB[sublen, sublen*N] = 1/N # all sub vectors have a "1" zero freq term so scale it so full vector will have 1 FB[sublen+1:, tot_len - np.arange(sublen*(n+1),sublen*n,-1)] = np.eye(sublen) return FB.T def _proj_sub_SSP(n,N,sublen=3): # Return a matrix, B_n # Consider the multi scale representation (S_{total}) and sub vectors (S_n) described in the paper # Then # \sum_n B_n S_{n} = S_{total} # i.e. project the sub vector in the time domain such that summing all such projections gives the full vector tot_len = 2*sublen*N + 1 FB = _proj_sub_FourierSSP(n,N,sublen=sublen) invW = np.fft.ifft(np.eye(tot_len)) W = np.fft.fft(np.eye(2*sublen + 1)) B = invW @ np.fft.ifftshift(FB) @ W return B.real
44.44
158
0.594317
[ "MIT" ]
nsdumont/SemanticMapping
semanticmapping/sspspace.py
15,554
Python
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import warnings from typing import Callable, Dict, Optional, Sequence, Tuple, Union from google.api_core import grpc_helpers from google.api_core import gapic_v1 import google.auth # type: ignore from google.auth import credentials as ga_credentials # type: ignore from google.auth.transport.grpc import SslCredentials # type: ignore import grpc from google.cloud.datastore_v1.types import datastore from .base import DatastoreTransport, DEFAULT_CLIENT_INFO class DatastoreGrpcTransport(DatastoreTransport): """gRPC backend transport for Datastore. Each RPC normalizes the partition IDs of the keys in its input entities, and always returns entities with keys with normalized partition IDs. This applies to all keys and entities, including those in values, except keys with both an empty path and an empty or unset partition ID. Normalization of input keys sets the project ID (if not already set) to the project ID from the request. This class defines the same methods as the primary client, so the primary client can load the underlying transport implementation and call it. It sends protocol buffers over the wire using gRPC (which is built on top of HTTP/2); the ``grpcio`` package must be installed. """ _stubs: Dict[str, Callable] def __init__( self, *, host: str = "datastore.googleapis.com", credentials: ga_credentials.Credentials = None, credentials_file: str = None, scopes: Sequence[str] = None, channel: grpc.Channel = None, api_mtls_endpoint: str = None, client_cert_source: Callable[[], Tuple[bytes, bytes]] = None, ssl_channel_credentials: grpc.ChannelCredentials = None, client_cert_source_for_mtls: Callable[[], Tuple[bytes, bytes]] = None, quota_project_id: Optional[str] = None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, always_use_jwt_access: Optional[bool] = False, ) -> None: """Instantiate the transport. Args: host (Optional[str]): The hostname to connect to. credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. This argument is ignored if ``channel`` is provided. credentials_file (Optional[str]): A file with credentials that can be loaded with :func:`google.auth.load_credentials_from_file`. This argument is ignored if ``channel`` is provided. scopes (Optional(Sequence[str])): A list of scopes. This argument is ignored if ``channel`` is provided. channel (Optional[grpc.Channel]): A ``Channel`` instance through which to make calls. api_mtls_endpoint (Optional[str]): Deprecated. The mutual TLS endpoint. If provided, it overrides the ``host`` argument and tries to create a mutual TLS channel with client SSL credentials from ``client_cert_source`` or application default SSL credentials. client_cert_source (Optional[Callable[[], Tuple[bytes, bytes]]]): Deprecated. A callback to provide client SSL certificate bytes and private key bytes, both in PEM format. It is ignored if ``api_mtls_endpoint`` is None. ssl_channel_credentials (grpc.ChannelCredentials): SSL credentials for the grpc channel. It is ignored if ``channel`` is provided. client_cert_source_for_mtls (Optional[Callable[[], Tuple[bytes, bytes]]]): A callback to provide client certificate bytes and private key bytes, both in PEM format. It is used to configure a mutual TLS channel. It is ignored if ``channel`` or ``ssl_channel_credentials`` is provided. quota_project_id (Optional[str]): An optional project to use for billing and quota. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. always_use_jwt_access (Optional[bool]): Whether self signed JWT should be used for service account credentials. Raises: google.auth.exceptions.MutualTLSChannelError: If mutual TLS transport creation failed for any reason. google.api_core.exceptions.DuplicateCredentialArgs: If both ``credentials`` and ``credentials_file`` are passed. """ self._grpc_channel = None self._ssl_channel_credentials = ssl_channel_credentials self._stubs: Dict[str, Callable] = {} if api_mtls_endpoint: warnings.warn("api_mtls_endpoint is deprecated", DeprecationWarning) if client_cert_source: warnings.warn("client_cert_source is deprecated", DeprecationWarning) if channel: # Ignore credentials if a channel was passed. credentials = False # If a channel was explicitly provided, set it. self._grpc_channel = channel self._ssl_channel_credentials = None else: if api_mtls_endpoint: host = api_mtls_endpoint # Create SSL credentials with client_cert_source or application # default SSL credentials. if client_cert_source: cert, key = client_cert_source() self._ssl_channel_credentials = grpc.ssl_channel_credentials( certificate_chain=cert, private_key=key ) else: self._ssl_channel_credentials = SslCredentials().ssl_credentials else: if client_cert_source_for_mtls and not ssl_channel_credentials: cert, key = client_cert_source_for_mtls() self._ssl_channel_credentials = grpc.ssl_channel_credentials( certificate_chain=cert, private_key=key ) # The base transport sets the host, credentials and scopes super().__init__( host=host, credentials=credentials, credentials_file=credentials_file, scopes=scopes, quota_project_id=quota_project_id, client_info=client_info, always_use_jwt_access=always_use_jwt_access, ) if not self._grpc_channel: self._grpc_channel = type(self).create_channel( self._host, credentials=self._credentials, credentials_file=credentials_file, scopes=self._scopes, ssl_credentials=self._ssl_channel_credentials, quota_project_id=quota_project_id, options=[ ("grpc.max_send_message_length", -1), ("grpc.max_receive_message_length", -1), ], ) # Wrap messages. This must be done after self._grpc_channel exists self._prep_wrapped_messages(client_info) @classmethod def create_channel( cls, host: str = "datastore.googleapis.com", credentials: ga_credentials.Credentials = None, credentials_file: str = None, scopes: Optional[Sequence[str]] = None, quota_project_id: Optional[str] = None, **kwargs, ) -> grpc.Channel: """Create and return a gRPC channel object. Args: host (Optional[str]): The host for the channel to use. credentials (Optional[~.Credentials]): The authorization credentials to attach to requests. These credentials identify this application to the service. If none are specified, the client will attempt to ascertain the credentials from the environment. credentials_file (Optional[str]): A file with credentials that can be loaded with :func:`google.auth.load_credentials_from_file`. This argument is mutually exclusive with credentials. scopes (Optional[Sequence[str]]): A optional list of scopes needed for this service. These are only used when credentials are not specified and are passed to :func:`google.auth.default`. quota_project_id (Optional[str]): An optional project to use for billing and quota. kwargs (Optional[dict]): Keyword arguments, which are passed to the channel creation. Returns: grpc.Channel: A gRPC channel object. Raises: google.api_core.exceptions.DuplicateCredentialArgs: If both ``credentials`` and ``credentials_file`` are passed. """ return grpc_helpers.create_channel( host, credentials=credentials, credentials_file=credentials_file, quota_project_id=quota_project_id, default_scopes=cls.AUTH_SCOPES, scopes=scopes, default_host=cls.DEFAULT_HOST, **kwargs, ) @property def grpc_channel(self) -> grpc.Channel: """Return the channel designed to connect to this service. """ return self._grpc_channel @property def lookup(self) -> Callable[[datastore.LookupRequest], datastore.LookupResponse]: r"""Return a callable for the lookup method over gRPC. Looks up entities by key. Returns: Callable[[~.LookupRequest], ~.LookupResponse]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "lookup" not in self._stubs: self._stubs["lookup"] = self.grpc_channel.unary_unary( "/google.datastore.v1.Datastore/Lookup", request_serializer=datastore.LookupRequest.serialize, response_deserializer=datastore.LookupResponse.deserialize, ) return self._stubs["lookup"] @property def run_query( self, ) -> Callable[[datastore.RunQueryRequest], datastore.RunQueryResponse]: r"""Return a callable for the run query method over gRPC. Queries for entities. Returns: Callable[[~.RunQueryRequest], ~.RunQueryResponse]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "run_query" not in self._stubs: self._stubs["run_query"] = self.grpc_channel.unary_unary( "/google.datastore.v1.Datastore/RunQuery", request_serializer=datastore.RunQueryRequest.serialize, response_deserializer=datastore.RunQueryResponse.deserialize, ) return self._stubs["run_query"] @property def begin_transaction( self, ) -> Callable[ [datastore.BeginTransactionRequest], datastore.BeginTransactionResponse ]: r"""Return a callable for the begin transaction method over gRPC. Begins a new transaction. Returns: Callable[[~.BeginTransactionRequest], ~.BeginTransactionResponse]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "begin_transaction" not in self._stubs: self._stubs["begin_transaction"] = self.grpc_channel.unary_unary( "/google.datastore.v1.Datastore/BeginTransaction", request_serializer=datastore.BeginTransactionRequest.serialize, response_deserializer=datastore.BeginTransactionResponse.deserialize, ) return self._stubs["begin_transaction"] @property def commit(self) -> Callable[[datastore.CommitRequest], datastore.CommitResponse]: r"""Return a callable for the commit method over gRPC. Commits a transaction, optionally creating, deleting or modifying some entities. Returns: Callable[[~.CommitRequest], ~.CommitResponse]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "commit" not in self._stubs: self._stubs["commit"] = self.grpc_channel.unary_unary( "/google.datastore.v1.Datastore/Commit", request_serializer=datastore.CommitRequest.serialize, response_deserializer=datastore.CommitResponse.deserialize, ) return self._stubs["commit"] @property def rollback( self, ) -> Callable[[datastore.RollbackRequest], datastore.RollbackResponse]: r"""Return a callable for the rollback method over gRPC. Rolls back a transaction. Returns: Callable[[~.RollbackRequest], ~.RollbackResponse]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "rollback" not in self._stubs: self._stubs["rollback"] = self.grpc_channel.unary_unary( "/google.datastore.v1.Datastore/Rollback", request_serializer=datastore.RollbackRequest.serialize, response_deserializer=datastore.RollbackResponse.deserialize, ) return self._stubs["rollback"] @property def allocate_ids( self, ) -> Callable[[datastore.AllocateIdsRequest], datastore.AllocateIdsResponse]: r"""Return a callable for the allocate ids method over gRPC. Allocates IDs for the given keys, which is useful for referencing an entity before it is inserted. Returns: Callable[[~.AllocateIdsRequest], ~.AllocateIdsResponse]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "allocate_ids" not in self._stubs: self._stubs["allocate_ids"] = self.grpc_channel.unary_unary( "/google.datastore.v1.Datastore/AllocateIds", request_serializer=datastore.AllocateIdsRequest.serialize, response_deserializer=datastore.AllocateIdsResponse.deserialize, ) return self._stubs["allocate_ids"] @property def reserve_ids( self, ) -> Callable[[datastore.ReserveIdsRequest], datastore.ReserveIdsResponse]: r"""Return a callable for the reserve ids method over gRPC. Prevents the supplied keys' IDs from being auto- llocated by Cloud Datastore. Returns: Callable[[~.ReserveIdsRequest], ~.ReserveIdsResponse]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "reserve_ids" not in self._stubs: self._stubs["reserve_ids"] = self.grpc_channel.unary_unary( "/google.datastore.v1.Datastore/ReserveIds", request_serializer=datastore.ReserveIdsRequest.serialize, response_deserializer=datastore.ReserveIdsResponse.deserialize, ) return self._stubs["reserve_ids"] def close(self): self.grpc_channel.close() __all__ = ("DatastoreGrpcTransport",)
42.800948
87
0.62972
[ "Apache-2.0" ]
LaudateCorpus1/python-datastore
google/cloud/datastore_v1/services/datastore/transports/grpc.py
18,062
Python
from src.utils.config import config import json # import uuid import requests _NAMESPACE = "WS" _VER_NAMESPACE = "WSVER" _SAMPLE_NAMESPACE = "SMP" # versioned and non-versioned index have same version _SAMPLE_SET_INDEX_VERSION = 1 _SAMPLE_SET_INDEX_NAME = 'sample_set_' + str(_SAMPLE_SET_INDEX_VERSION) _VER_SAMPLE_SET_INDEX_NAME = 'sample_set_version_' + str(_SAMPLE_SET_INDEX_VERSION) # versioned and non-versioned index have same version _SAMPLE_INDEX_VERSION = 1 _SAMPLE_INDEX_NAME = 'sample_' + str(_SAMPLE_INDEX_VERSION) # _VER_SAMPLE_INDEX_NAME = 'sample_version_' + str(_SAMPLE_INDEX_VERSION) def _get_sample(sample_info): """ Get sample from SampleService sample_info - dict containing 'id' and 'version' of a sample """ headers = {"Authorization": config()['ws_token']} params = { "id": sample_info['id'] } if sample_info.get('version'): params['version'] = sample_info['version'] payload = { "method": "SampleService.get_sample", "id": "", # str(uuid.uuid4()), "params": [params], "version": "1.1" } resp = requests.post(url=config()['sample_service_url'], headers=headers, data=json.dumps(payload)) if not resp.ok: raise RuntimeError(f"Returned from sample service with status {resp.status_code} - {resp.text}") resp_json = resp.json() if resp_json.get('error'): raise RuntimeError(f"Error from SampleService - {resp_json['error']}") sample = resp_json['result'][0] return sample def _flatten_meta(meta, prefix=None): """ Flattens metadata fields in a Sample object. Fields are concatenated into a single string field to save into an Elasticsearch index meta - Sample Metadata to be flattened prefix - (optional) prefix for the metadata values. default=None """ new_meta = {} for key in meta: if prefix: val = prefix + ":" else: val = "" if "value" in meta[key]: val += str(meta[key]['value']) if "units" in meta[key]: val += ";" + str(meta[key]['units']) new_meta[key] = val return new_meta def _combine_meta(meta, flattened_meta, idx): """ Combine newly flattened metadata with existing metadata. This Function is designed to keep the indexing of the different metadata fields consistent for each node within the sample node tree s.t. all the fields in index (idx) 0 will be from item 0 in the node tree. Empty string ("") entries are Empty and added simply so that the indexing of all fields line up. meta - existing metadata. flattened_meta - newly flattened metadata. idx - current index of ndoe_tree. """ for key in flattened_meta: if key in meta: meta[key] += ["" for _ in range(idx - len(meta[key]))] + [flattened_meta[key]] else: meta[key] = ["" for _ in range(idx)] + [flattened_meta[key]] return meta def index_sample_set(obj_data, ws_info, obj_data_v1): """Indexer for KBaseSets.SampleSet object type""" info = obj_data['info'] if not obj_data.get('data'): raise Exception("no data in object") data = obj_data['data'] workspace_id = info[6] object_id = info[0] version = info[4] sample_set_id = f"{_NAMESPACE}::{workspace_id}:{object_id}" ver_sample_set_id = f"{_VER_NAMESPACE}::{workspace_id}:{object_id}:{version}" sample_set_index = { "_action": "index", "doc": { "description": data["description"], "sample_ids": [s['id'] for s in data['samples']], "sample_names": [s['name'] for s in data['samples']], "sample_versions": [s['version'] for s in data['samples']] }, "index": _SAMPLE_SET_INDEX_NAME, "id": sample_set_id } yield sample_set_index ver_sample_set_index = dict(sample_set_index) ver_sample_set_index['index'] = _VER_SAMPLE_SET_INDEX_NAME ver_sample_set_index['id'] = ver_sample_set_id yield ver_sample_set_index for samp in data["samples"]: # query the sample service for sample sample = _get_sample(samp) sample_id = f"{_SAMPLE_NAMESPACE}::{sample['id']}:{sample['version']}" # not sure on how we need to handle more than 1 node. if len(sample['node_tree']) == 1: meta_controlled = _flatten_meta( sample['node_tree'][0]['meta_controlled'] ) meta_user = _flatten_meta( sample['node_tree'][0]['meta_user'] ) meta_controlled['node_id'] = sample['node_tree'][0]['id'] else: meta_controlled, meta_user = {}, {} for idx, node in enumerate(sample['node_tree']): meta_controlled = _combine_meta( meta_controlled, _flatten_meta( node['meta_controlled'] ), idx ) meta_user = _combine_meta( meta_user, _flatten_meta( node['meta_user'] ), idx ) meta_controlled['node_id'] = node['id'] sample_index = { "_action": "index", "doc": { "save_date": sample['save_date'], "sample_version": sample['version'], "name": sample['name'], "parent_id": sample_set_id, **meta_user, **meta_controlled }, "index": _SAMPLE_INDEX_NAME, "id": sample_id } yield sample_index
36.417722
111
0.590024
[ "MIT" ]
slebras/index_runner
src/index_runner/es_indexers/sample_set.py
5,754
Python
from alipay import AliPay from django.core.paginator import Paginator from django.http import HttpResponseRedirect from django.http import JsonResponse from django.shortcuts import render from django.utils.http import urlquote from Qshop.settings import alipay_private_key_string, alipay_public_key_string from Seller.views import getPassword # Create your views here. def loginValid(func): """ :desc 闭包函数校验是否登录 :param func: :return: """ def inner(request, *args, **kwargs): email = request.COOKIES.get("user") s_email = request.session.get("user") if email and s_email and email == s_email: user = LoginUser.objects.filter(email=email).first() if user: return func(request, *args, **kwargs) return HttpResponseRedirect("/Buyer/login/") return inner def login(request): if request.method == "POST": erremail = "" email = request.POST.get("email") pwd = request.POST.get("pwd") user = LoginUser.objects.filter(email=email).first() if user: db_password = user.password pwd = getPassword(pwd) if db_password == pwd: response = HttpResponseRedirect("/Buyer/index/", locals()) response.set_cookie("user", user.email) response.set_cookie("user_id", user.id) response.set_cookie("username", urlquote(user.username)) request.session["user"] = user.email return response else: errpwd = "密码不匹配" else: erremail = "该邮箱未注册" return render(request, "buyer/login.html", locals()) def register(request): errmsg = "" if request.method == "POST": username = request.POST.get("user_name") pwd = request.POST.get("pwd") email = request.POST.get("email") db_email = LoginUser.objects.filter(email=email).first() db_username = LoginUser.objects.filter(username=username).first() if not db_email: if not db_username: user = LoginUser() user.username = username user.password = getPassword(pwd) user.email = email user.save() return HttpResponseRedirect("/Buyer/login/", locals()) else: errmsg = "用户名已存在" else: errmsg = "邮箱已注册" return render(request, "buyer/register.html", {"errmsg": errmsg}) def index(request): types = GoodsType.objects.all() goods_result = [] for type in types: goods = type.goods_set.order_by("goods_pro_date")[0:4] if len(goods) >= 4: goods_result.append({type: goods}) return render(request, "buyer/index.html", locals()) def logout(request): url = request.META.get("HTTP_REFERER", "/Buyer/index/") response = HttpResponseRedirect(url) cookies = request.COOKIES.keys() for cookie in cookies: response.delete_cookie(cookie) if request.session.get("user"): del request.session['user'] return response @loginValid def user_info(request): id = request.COOKIES.get("user_id") if id: user = LoginUser.objects.filter(id=id).first() return render(request, "buyer/user_center_info.html", locals()) @loginValid def user_site(request): id = request.COOKIES.get("user_id") if id: user = LoginUser.objects.filter(id=id).first() return render(request, "buyer/user_center_site.html", locals()) @loginValid def user_order(request): id = request.COOKIES.get("user_id") if id: user = LoginUser.objects.filter(id=id).first() order_lists = PayOrder.objects.filter(order_user=user).order_by("-order_date") return render(request, "buyer/user_center_order.html", locals()) """ def good_list(request): type = request.GET.get("type") keyword = request.GET.get("keyword") goods_list = [] if type == 'byid': if keyword: types = GoodsType.objects.get(id=keyword) goods_list = types.goods_set.order_by("goods_pro_date") elif type == 'bykey': if keyword: goods_list = Goods.objects.filter(goods_name__contains=keyword).order_by("goods_pro_date") if goods_list: nums = goods_list.count() nums = int(math.ceil(nums / 5)) recommon_list = goods_list[:nums] return render(request, "buyer/goods_list.html", locals()) """ def good_list(request, page): page = int(page) type = request.GET.get("type") keyword = request.GET.get("keyword") goods_list = [] if type == 'byid': # 按照商品id查 if keyword: types = GoodsType.objects.get(id=int(keyword)) goods_list = types.goods_set.order_by("goods_pro_date") elif type == 'bykey': # 按商品名字查 if keyword: goods_list = Goods.objects.filter(goods_name__contains=keyword).order_by("goods_pro_date") if goods_list: # 分页 page_list = Paginator(goods_list, 15) goods_list = page_list.page(page) pages = page_list.page_range # 推荐商品 nums = len(goods_list) nums = int(math.ceil(nums / 5)) recommon_list = goods_list[:nums] return render(request, "buyer/goods_list.html", locals()) def good_detail(request, id): good = Goods.objects.filter(id=int(id)).first() return render(request, "buyer/detail.html", locals()) import math import time import datetime from Buyer.models import * @loginValid def pay_order(request): """ get请求 商品详情页购买单个商品。传入商品id,数量。 post请求 购物车购买多个商品。 """ if request.method == "GET": num = request.GET.get("num") id = request.GET.get("id") if num and id: num = int(num) id = int(id) order = PayOrder() # 订单 order.order_number = str(time.time()).replace(".", "") order.order_date = datetime.datetime.now() order.order_user = LoginUser.objects.get(id=int(request.COOKIES.get("user_id"))) order.save() good = Goods.objects.get(id=id) order_info = OrderInfo() # 订单详情 order_info.order_id = order order_info.goods_id = good.id order_info.goods_picture = good.goods_picture order_info.goods_name = good.goods_name order_info.goods_count = num order_info.goods_price = good.goods_price order_info.goods_total_price = round(good.goods_price * num, 3) order_info.store_id = good.goods_store order_info.order_status = 0 # 状态 order_info.save() order.order_total = order_info.goods_total_price order.save() elif request.method == "POST": request_data = [] data = request.POST data_item = request.POST.items() for key, value in data_item: if key.startswith("check_"): id = int(key.split("_", 1)[1]) num = int(data.get("count_" + str(id))) request_data.append((id, num)) if request_data: order = PayOrder() # 创建订单 order.order_number = str(time.time()).replace(".", "") order.order_date = datetime.datetime.now() order.order_user = LoginUser.objects.get(id=int(request.COOKIES.get("user_id"))) order.order_total = 0.0 order.goods_number = 0 order.save() for id, num in request_data: good = Goods.objects.get(id=id) order_info = OrderInfo() # 订单详情 order_info.order_id = order order_info.goods_id = good.id order_info.goods_picture = good.goods_picture order_info.goods_name = good.goods_name order_info.goods_count = num order_info.goods_price = good.goods_price order_info.goods_total_price = round(good.goods_price * num, 3) order_info.store_id = good.goods_store order_info.order_status = 0 order_info.save() order.order_total += order_info.goods_total_price # 订单总价 order.goods_number += 1 # 商品种类个数 order.save() return render(request, "buyer/place_order.html", locals()) @loginValid def alipayOrder(request): """ 阿里支付,传入交易订单号,总金额 """ order_number = request.GET.get("order_number") total = request.GET.get("total") # 实例化支付 alipay = AliPay( appid="2016101200667714", app_notify_url=None, app_private_key_string=alipay_private_key_string, alipay_public_key_string=alipay_public_key_string, sign_type="RSA2" ) order_string = alipay.api_alipay_trade_page_pay( out_trade_no=order_number, # 订单编号 total_amount=str(total), # 金额 字符串类型 subject="生鲜交易", return_url="http://127.0.0.1:8000/Buyer/pay_result/", # 支付跳转页面 notify_url="http://127.0.0.1:8000/Buyer/pay_result/", ) result = "https://openapi.alipaydev.com/gateway.do?" + order_string return HttpResponseRedirect(result) @loginValid def pay_result(request): """ 支付结果页 如果有out_trade_no,支付成功,修改订单状态 """ out_trade_no = request.GET.get("out_trade_no") if out_trade_no: payorder = PayOrder.objects.get(order_number=out_trade_no) payorder.orderinfo_set.all().update(order_status=1) return render(request, "buyer/pay_result.html", locals()) @loginValid def delgood(request): sendData = { "code": 200, "data": "" } id = request.GET.get("id") if id: cart = Cart.objects.get(id=id) cart.delete() sendData["data"] = "删除编号%s成功"%id return JsonResponse(sendData) @loginValid def add_cart(request): """ 处理ajax 请求,添加商品到购物车 ,成功保存到数据库。 传入商品id,数量 """ sendData = { "code": 200, "data": "" } if request.method == "POST": id = int(request.POST.get("goods_id")) count = int(request.POST.get("count", 1)) goods = Goods.objects.get(id=id) cart = Cart() cart.goods_name = goods.goods_name cart.goods_num = count cart.goods_price = goods.goods_price cart.goods_picture = goods.goods_picture cart.goods_total = round(goods.goods_price * count, 3) cart.goods_id = goods.id cart.cart_user = request.COOKIES.get("user_id") cart.save() sendData['data'] = "加入购物车成功" else: sendData["code"] = 500 sendData["data"] = "请求方式错误" return JsonResponse(sendData) @loginValid def mycart(request): id = request.COOKIES.get("user_id") carts = Cart.objects.filter(cart_user=id).order_by("-id") number = carts.count() return render(request, "buyer/cart.html", locals())
29.986301
102
0.604568
[ "MIT" ]
songdanlee/DjangoWorkSpace
Qshop/Buyer/views.py
11,385
Python
import errno, os from django.db import models from django.http import Http404, HttpResponseServerError from discodex.restapi.resource import Resource, Collection from discodex.restapi.resource import (HttpResponseAccepted, HttpResponseCreated, HttpResponseNoContent, HttpResponseServiceUnavailable) from discodex import settings from discodex.mapreduce import (Indexer, DiscoDBIterator) from discodex.objects import (DataSet, IChunks, Indices, Index, Results, Dict) from disco.core import Disco from disco.ddfs import DDFS from disco.error import DiscoError from disco.util import flatten, parse_dir discodex_settings = settings.DiscodexSettings() disco_master_url = discodex_settings['DISCODEX_DISCO_MASTER'] disco_prefix = discodex_settings['DISCODEX_DISCO_PREFIX'] index_prefix = discodex_settings['DISCODEX_INDEX_PREFIX'] purge_file = discodex_settings['DISCODEX_PURGE_FILE'] disco_master = Disco(disco_master_url) ddfs = DDFS(disco_master_url) NOT_FOUND, OK, ACTIVE, DEAD = 'unknown job', 'ready', 'active', 'dead' class IndexCollection(Collection): allowed_methods = ('GET', 'POST') def delegate(self, request, *args, **kwargs): name = str(kwargs.pop('name')) return IndexResource(name)(request, *args, **kwargs) @property def names(self): return ddfs.list(index_prefix) def __iter__(self): for name in self.names: yield IndexResource(name) def create(self, request, *args, **kwargs): dataset = DataSet.loads(request.raw_post_data) prefix = '%s:discodb:' % disco_prefix job = Indexer(disco_master, prefix, dataset) try: job.run() except ImportError, e: return HttpResponseServerError("Callable object not found: %s" % e) except DiscoError, e: return HttpResponseServerError("Failed to run indexing job: %s" % e) return HttpResponseAccepted(job.name) def read(self, request, *args, **kwargs): return Indices(self.names).response(request) class IndexResource(Collection): allowed_methods = ('GET', 'POST', 'PUT', 'DELETE') def __init__(self, name): self.name = name self.responses['POST'] = 'append' def delegate(self, request, *args, **kwargs): if self.status == NOT_FOUND: raise Http404 return DiscoDBResource(self)(request, *args, **kwargs) @property def exists(self): return ddfs.exists(self.tag) @property def isdisco(self): return self.name.startswith(disco_prefix) @property def isindex(self): return self.name.startswith(index_prefix) @property def jobname(self): if self.isdisco: return self.name if self.isindex: return self.name.replace(index_prefix, disco_prefix, 1) return '%s:%s' % (disco_prefix, self.name) @property def tag(self): return self.jobname.replace(disco_prefix, index_prefix, 1) @property @models.permalink def url(self): return 'index', (), {'name': self.name} @property def ichunks(self): return ddfs.blobs(self.tag) @property def status(self): if self.exists: return OK if self.isdisco: status, results = disco_master.results(self.name) if status == OK: _prefix, type, id = self.name.split(':', 2) ddfs.put(self.tag, [[url.replace('disco://', '%s://' % type, 1) for url in urls] for urls in ddfs.blobs(results)]) disco_master.purge(self.jobname) return status return NOT_FOUND def read(self, request, *args, **kwargs): status = self.status if status == OK: return Index(ddfs.get(self.tag)).response(request) if status == ACTIVE: return HttpResponseServiceUnavailable(2) if status == DEAD: return HttpResponseServerError("Indexing failed.") raise Http404 def append(self, request, *args, **kwargs): ddfs.tag(self.tag, [['tag://%s' % IndexResource(request.raw_post_data).tag]]) return HttpResponseCreated(self.url) def update(self, request, *args, **kwargs): ddfs.put(self.tag, IChunks.loads(request.raw_post_data)) return HttpResponseCreated(self.url) def delete(self, request, *args, **kwargs): ddfs.delete(self.tag) ddfs.delete(ddfs.job_tag(self.jobname)) return HttpResponseNoContent() class DiscoDBResource(Resource): allowed_methods = ('GET', 'POST') def __init__(self, index): self.index = index def read(self, request, *args, **kwargs): from discodex.mapreduce.func import reify method = str(kwargs.pop('method', None) or '') arg = str(kwargs.pop('arg', None) or '') streams = [reify(s) for s in kwargs.pop('streams').split('|') if s] reduce = reify((kwargs.pop('reduce') or 'None').strip('}')) try: job = DiscoDBIterator(disco_master, disco_prefix, self.index, method, arg, streams, reduce, **dict(request.GET.items())).run() except DiscoError, e: return HttpResponseServerError("Failed to run DiscoDB job: %s" % e) try: results = Results(job.results) except DiscoError, e: return HttpResponseServerError("DiscoDB job failed: %s" % e) finally: if os.path.exists(purge_file): disco_master.purge(job.name) return results.response(request) def create(self, request, *args, **kwargs): kwargs.update(Dict.loads(request.raw_post_data)) return self.read(request, *args, **kwargs)
33.182292
85
0.578402
[ "BSD-3-Clause" ]
dimazest/disco
contrib/discodex/lib/discodex/models.py
6,371
Python
#Import Library import warnings import numpy as np import datetime from extract_data import * from word_encoder import * from sklearn import svm from sklearn.ensemble import RandomForestClassifier from sklearn.naive_bayes import GaussianNB from sklearn import tree # send the extracted data availble from extract_data to the encode function # this function vectorizes the text based data into ASCII format for use by # the algorithms encoded_data = encode(data) scores = [] # convert the float scores to int. Multiplying by 10 helps us keep the decimal # level precision which would otherwise be lost in typecasting i = 0 while i < len(label): scores.append(int (float(label[i]) * 10)) i += 1; # ignore depricated warning def warn(*args, **kwargs): pass warnings.warn = warn # SVM classifier svm_clf = svm.SVC(kernel = 'linear') #svm_clf.fit(encoded_data, scores) # Gaussian Naive Bayes gnb_clf = GaussianNB() gnb_clf.fit(encoded_data, scores) # Random Forest rf_clf = RandomForestClassifier(n_estimators=10) rf_clf.fit(encoded_data, scores) # Decision Tree dt_clf = tree.DecisionTreeClassifier() dt_clf.fit(encoded_data, scores) #print("SVM:") #print(svm_clf.predict ([1403, 2752, 3263, 4200, 4309, 4417, 4518, 4675, 5909, 6102, 6500, 8459, 8672, 8882, 9712, 9810, 10524, 10757, 11096, 11299, 11461, 11617, 11775])) print("Gaussian Naive Bayes:") print(gnb_clf.predict ([1403, 2752, 3263, 4200, 4309, 4417, 4518, 4675, 5909, 6102, 6500, 8459, 8672, 8882, 9712, 9810, 10524, 10757, 11096, 11299, 11461, 11617, 11775])) print("Random Forest:") print(rf_clf.predict ([1403, 2752, 3263, 4200, 4309, 4417, 4518, 4675, 5909, 6102, 6500, 8459, 8672, 8882, 9712, 9810, 10524, 10757, 11096, 11299, 11461, 11617, 11775])) print("Decision Tree:") print(dt_clf.predict ([1403, 2752, 3263, 4200, 4309, 4417, 4518, 4675, 5909, 6102, 6500, 8459, 8672, 8882, 9712, 9810, 10524, 10757, 11096, 11299, 11461, 11617, 11775])) print("End time: " + str(datetime.datetime.now()).split('.')[0])
30.8
171
0.732767
[ "MIT" ]
aksh4y/IMDb-Rating-Prediction
Project/algorithm.old.py
2,002
Python
import setuptools with open("README.md", "r") as fh: long_description = fh.read() setuptools.setup( name="py-mcc-f1", version="0.1.0", author="Arthur Colombini Gusmão", description="MCC-F1 Curve", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/arthurcgusmao/py-mcc-f1", packages=setuptools.find_packages(), install_requires=[ "numpy>=1.14.0", "scikit-learn>=0.22" ], classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], python_requires='>=3.6', )
26.423077
53
0.630277
[ "MIT" ]
arthurcgusmao/py-mcc-f1
setup.py
688
Python
from __future__ import division import databench import math import random class Dummypi(databench.Analysis): """A dummy analysis.""" @databench.on def connected(self): yield self.data.init({'samples': 100000}) @databench.on def run(self): """Run when button is pressed.""" inside = 0 for draws in range(1, self.data['samples']): # generate points and check whether they are inside the unit circle r1 = random.random() r2 = random.random() if r1 ** 2 + r2 ** 2 < 1.0: inside += 1 # every 1000 iterations, update status if draws % 1000 != 0: continue # debug yield self.emit('log', {'draws': draws, 'inside': inside}) # calculate pi and its uncertainty given the current draws p = inside / draws pi = { 'estimate': 4.0 * p, 'uncertainty': 4.0 * math.sqrt(draws * p * (1.0 - p)) / draws, } # send status to frontend yield self.set_state(pi=pi) yield self.emit('log', {'action': 'done'}) @databench.on def samples(self, value): yield self.set_state(samples=value)
26.142857
79
0.527713
[ "MIT" ]
phillipaug/Data-Analysis-General-repository
databench/analyses_packaged/dummypi/analysis.py
1,281
Python
# This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. """ This script will be executed whenever a change is pushed to the master branch. It will schedule multiple child tasks that build the app, run tests and execute code quality tools: """ import datetime import json import taskcluster import os from lib.tasks import schedule_task TASK_ID = os.environ.get('TASK_ID') REPO_URL = os.environ.get('MOBILE_HEAD_REPOSITORY') BRANCH = os.environ.get('MOBILE_HEAD_BRANCH') COMMIT = os.environ.get('MOBILE_HEAD_REV') OWNER = "[email protected]" SOURCE = "https://github.com/mozilla-mobile/focus-android/tree/master/tools/taskcluster" def generate_build_task(): return taskcluster.slugId(), generate_task( name="(Focus for Android) Build", description="Build Focus/Klar for Android from source code.", command=('echo "--" > .adjust_token' ' && python tools/l10n/check_translations.py' ' && ./gradlew --no-daemon clean assemble')) def generate_unit_test_task(buildTaskId): return taskcluster.slugId(), generate_task( name="(Focus for Android) Unit tests", description="Run unit tests for Focus/Klar for Android.", command='echo "--" > .adjust_token && ./gradlew --no-daemon clean test', dependencies=[buildTaskId]) def generate_code_quality_task(buildTaskId): return taskcluster.slugId(), generate_task( name="(Focus for Android) Code quality", description="Run code quality tools on Focus/Klar for Android code base.", command='echo "--" > .adjust_token && ./gradlew --no-daemon clean detektCheck ktlint lint pmd checkstyle spotbugs', dependencies=[buildTaskId]) def generate_compare_locales_task(): return taskcluster.slugId(), generate_task( name="(Focus for Android) String validation", description="Check Focus/Klar for Android for errors in en-US and l10n.", command=('pip install "compare-locales>=5.0.2,<6.0"' ' && mkdir -p /opt/focus-android/test_artifacts' ' && compare-locales --validate l10n.toml .' ' && compare-locales --json=/opt/focus-android/test_artifacts/data.json l10n.toml .'), artifacts={ "public": { "type": "directory", "path": "/opt/focus-android/test_artifacts", "expires": taskcluster.stringDate(taskcluster.fromNow('1 week')) } }) def generate_ui_test_task(dependencies, engine="Klar", device="ARM"): ''' :param str engine: Klar, Webview :param str device: ARM, X86 :return: uiWebviewARMTestTaskId, uiWebviewARMTestTask ''' if engine is "Klar": engine = "geckoview" assemble_engine = engine elif engine is "Webview": engine = "webview" assemble_engine = "Focus" else: raise Exception("ERROR: unknown engine type --> Aborting!") task_name = "(Focus for Android) UI tests - {0} {1}".format(engine, device) task_description = "Run UI tests for {0} {1} build for Android.".format(engine, device) build_dir = "assemble{0}{1}Debug".format(assemble_engine, device.capitalize()) build_dir_test = "assemble{0}{1}DebugAndroidTest".format(assemble_engine, device.capitalize()) print('BUILD_DIR: {0}'.format(build_dir)) print('BUILD_DIR_TEST: {0}'.format(build_dir_test)) device = device.lower() return taskcluster.slugId(), generate_task( name=task_name, description=task_description, command=('echo "--" > .adjust_token' ' && ./gradlew --no-daemon clean ' + build_dir + ' ' + build_dir_test + ' ' ' && ./tools/taskcluster/google-firebase-testlab-login.sh' ' && tools/taskcluster/execute-firebase-tests.sh ' + device + ' ' + engine), dependencies=dependencies, scopes=['secrets:get:project/focus/firebase'], routes=['notify.irc-channel.#android-ci.on-any'], artifacts={ "public": { "type": "directory", "path": "/opt/focus-android/test_artifacts", "expires": taskcluster.stringDate(taskcluster.fromNow('1 week')) } }) # For GeckoView, upload nightly (it has release config) by default, all Release builds have WV def upload_apk_nimbledroid_task(dependencies): return taskcluster.slugId(), generate_task( name="(Focus for Android) Upload Debug APK to Nimbledroid", description="Upload APKs to Nimbledroid for performance measurement and tracking.", command=('echo "--" > .adjust_token' ' && ./gradlew --no-daemon clean assembleKlarArmNightly' ' && python tools/taskcluster/upload_apk_nimbledroid.py'), dependencies=dependencies, scopes=['secrets:get:project/focus/nimbledroid'], ) def generate_task(name, description, command, dependencies=[], artifacts={}, scopes=[], routes=[]): created = datetime.datetime.now() expires = taskcluster.fromNow('1 month') deadline = taskcluster.fromNow('1 day') return { "workerType": "github-worker", "taskGroupId": TASK_ID, "expires": taskcluster.stringDate(expires), "retries": 5, "created": taskcluster.stringDate(created), "tags": {}, "priority": "lowest", "schedulerId": "taskcluster-github", "deadline": taskcluster.stringDate(deadline), "dependencies": [TASK_ID] + dependencies, "routes": routes, "scopes": scopes, "requires": "all-completed", "payload": { "features": { "taskclusterProxy": True }, "maxRunTime": 7200, "image": "mozillamobile/focus-android:1.4", "command": [ "/bin/bash", "--login", "-c", "git fetch %s %s && git config advice.detachedHead false && git checkout %s && %s" % (REPO_URL, BRANCH, COMMIT, command) ], "artifacts": artifacts, "deadline": taskcluster.stringDate(deadline) }, "provisionerId": "aws-provisioner-v1", "metadata": { "name": name, "description": description, "owner": OWNER, "source": SOURCE } } if __name__ == "__main__": queue = taskcluster.Queue({'baseUrl': 'http://taskcluster/queue/v1'}) buildTaskId, buildTask = generate_build_task() schedule_task(queue, buildTaskId, buildTask) unitTestTaskId, unitTestTask = generate_unit_test_task(buildTaskId) schedule_task(queue, unitTestTaskId, unitTestTask) codeQualityTaskId, codeQualityTask = generate_code_quality_task(buildTaskId) schedule_task(queue, codeQualityTaskId, codeQualityTask) clTaskId, clTask = generate_compare_locales_task() schedule_task(queue, clTaskId, clTask) uiWebviewARMTestTaskId, uiWebviewARMTestTask = generate_ui_test_task( [unitTestTaskId, codeQualityTaskId], "Webview", "ARM") schedule_task(queue, uiWebviewARMTestTaskId, uiWebviewARMTestTask) # uiWebviewX86TestTaskId, uiWebviewX86TestTask = generate_ui_test_task([unitTestTaskId, codeQualityTaskId], "Webview", "X86") # schedule_task(queue, uiWebviewX86TestTaskId, uiWebviewX86TestTask) uploadNDTaskId, uploadNDTask = upload_apk_nimbledroid_task([unitTestTaskId, codeQualityTaskId]) schedule_task(queue, uploadNDTaskId, uploadNDTask)
39.854167
136
0.644668
[ "MPL-2.0" ]
kglazko/focus-android
tools/taskcluster/schedule-master-build.py
7,652
Python
from . import ( admin, ban, close, contact, copyright, donate, download, emoji, help, legacy, noop, roll, search, settings, shortlink, start, stop, submit, top_missed, view, vote, ) __all__ = ['admin', 'ban', 'contact', 'copyright', 'close', 'donate', 'download', 'emoji', 'help', 'legacy', 'noop', 'roll', 'search', 'settings', 'shortlink', 'start', 'stop', 'submit', 'top_missed', 'view', 'vote']
18.071429
98
0.51581
[ "Unlicense" ]
RobbiNespu/hyperboria
nexus/bot/handlers/__init__.py
506
Python
# Copyright 2018 Xanadu Quantum Technologies Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests that exectation values are correctly computed in the plugin devices""" import pytest import numpy as np import pennylane as qml from contextlib import contextmanager from conftest import U, U2, A, B np.random.seed(42) @contextmanager def mimic_execution_for_expval(device): device.reset() with device.execution_context(): yield if not device.shots is None: device._samples = device.generate_samples() @pytest.mark.parametrize("shots", [None, 8192]) class TestExpval: """Test expectation values""" def test_identity_expectation(self, device, shots, tol): """Test that identity expectation value (i.e. the trace) is 1""" theta = 0.432 phi = 0.123 dev = device(2) with mimic_execution_for_expval(dev): dev.apply( [qml.RX(theta, wires=[0]), qml.RX(phi, wires=[1]), qml.CNOT(wires=[0, 1]),] ) O = qml.Identity name = "Identity" dev._obs_queue = [O(wires=[0], do_queue=False), O(wires=[1], do_queue=False)] res = np.array( [dev.expval(O(wires=[0], do_queue=False)), dev.expval(O(wires=[1], do_queue=False)),] ) assert np.allclose(res, np.array([1, 1]), **tol) def test_pauliz_expectation(self, device, shots, tol): """Test that PauliZ expectation value is correct""" theta = 0.432 phi = 0.123 dev = device(2) with mimic_execution_for_expval(dev): dev.apply( [qml.RX(theta, wires=[0]), qml.RX(phi, wires=[1]), qml.CNOT(wires=[0, 1]),] ) O = qml.PauliZ name = "PauliZ" dev._obs_queue = [O(wires=[0], do_queue=False), O(wires=[1], do_queue=False)] res = np.array( [dev.expval(O(wires=[0], do_queue=False)), dev.expval(O(wires=[1], do_queue=False)),] ) assert np.allclose(res, np.array([np.cos(theta), np.cos(theta) * np.cos(phi)]), **tol) def test_paulix_expectation(self, device, shots, tol): """Test that PauliX expectation value is correct""" theta = 0.432 phi = 0.123 dev = device(2) O = qml.PauliX with mimic_execution_for_expval(dev): dev.apply( [qml.RY(theta, wires=[0]), qml.RY(phi, wires=[1]), qml.CNOT(wires=[0, 1]),], rotations=O(wires=[0], do_queue=False).diagonalizing_gates() + O(wires=[1], do_queue=False).diagonalizing_gates(), ) dev._obs_queue = [O(wires=[0], do_queue=False), O(wires=[1], do_queue=False)] res = np.array( [dev.expval(O(wires=[0], do_queue=False)), dev.expval(O(wires=[1], do_queue=False)),] ) assert np.allclose(res, np.array([np.sin(theta) * np.sin(phi), np.sin(phi)]), **tol) def test_pauliy_expectation(self, device, shots, tol): """Test that PauliY expectation value is correct""" theta = 0.432 phi = 0.123 dev = device(2) O = qml.PauliY with mimic_execution_for_expval(dev): dev.apply( [qml.RX(theta, wires=[0]), qml.RX(phi, wires=[1]), qml.CNOT(wires=[0, 1]),], rotations=O(wires=[0], do_queue=False).diagonalizing_gates() + O(wires=[1], do_queue=False).diagonalizing_gates(), ) dev._obs_queue = [O(wires=[0], do_queue=False), O(wires=[1], do_queue=False)] res = np.array( [dev.expval(O(wires=[0], do_queue=False)), dev.expval(O(wires=[1], do_queue=False)),] ) assert np.allclose(res, np.array([0, -(np.cos(theta)) * np.sin(phi)]), **tol) def test_hadamard_expectation(self, device, shots, tol): """Test that Hadamard expectation value is correct""" theta = 0.432 phi = 0.123 dev = device(2) O = qml.Hadamard with mimic_execution_for_expval(dev): dev.apply( [qml.RY(theta, wires=[0]), qml.RY(phi, wires=[1]), qml.CNOT(wires=[0, 1]),], rotations=O(wires=[0], do_queue=False).diagonalizing_gates() + O(wires=[1], do_queue=False).diagonalizing_gates(), ) dev._obs_queue = [O(wires=[0], do_queue=False), O(wires=[1], do_queue=False)] res = np.array( [dev.expval(O(wires=[0], do_queue=False)), dev.expval(O(wires=[1], do_queue=False)),] ) expected = np.array( [ np.sin(theta) * np.sin(phi) + np.cos(theta), np.cos(theta) * np.cos(phi) + np.sin(phi), ] ) / np.sqrt(2) assert np.allclose(res, expected, **tol) def test_hermitian_expectation(self, device, shots, tol): """Test that arbitrary Hermitian expectation values are correct""" theta = 0.432 phi = 0.123 dev = device(2) O = qml.Hermitian with mimic_execution_for_expval(dev): dev.apply( [qml.RY(theta, wires=[0]), qml.RY(phi, wires=[1]), qml.CNOT(wires=[0, 1]),], rotations=O(A, wires=[0], do_queue=False).diagonalizing_gates() + O(A, wires=[1], do_queue=False).diagonalizing_gates(), ) dev._obs_queue = [ O(A, wires=[0], do_queue=False), O(A, wires=[1], do_queue=False), ] res = np.array( [ dev.expval(O(A, wires=[0], do_queue=False)), dev.expval(O(A, wires=[1], do_queue=False)), ] ) a = A[0, 0] re_b = A[0, 1].real d = A[1, 1] ev1 = ((a - d) * np.cos(theta) + 2 * re_b * np.sin(theta) * np.sin(phi) + a + d) / 2 ev2 = ((a - d) * np.cos(theta) * np.cos(phi) + 2 * re_b * np.sin(phi) + a + d) / 2 expected = np.array([ev1, ev2]) assert np.allclose(res, expected, **tol) def test_multi_mode_hermitian_expectation(self, device, shots, tol): """Test that arbitrary multi-mode Hermitian expectation values are correct""" theta = 0.432 phi = 0.123 dev = device(2) O = qml.Hermitian with mimic_execution_for_expval(dev): dev.apply( [qml.RY(theta, wires=[0]), qml.RY(phi, wires=[1]), qml.CNOT(wires=[0, 1]),], rotations=O(B, wires=[0, 1], do_queue=False).diagonalizing_gates(), ) dev._obs_queue = [O(B, wires=[0, 1], do_queue=False)] res = np.array([dev.expval(O(B, wires=[0, 1], do_queue=False))]) # below is the analytic expectation value for this circuit with arbitrary # Hermitian observable B expected = 0.5 * ( 6 * np.cos(theta) * np.sin(phi) - np.sin(theta) * (8 * np.sin(phi) + 7 * np.cos(phi) + 3) - 2 * np.sin(phi) - 6 * np.cos(phi) - 6 ) assert np.allclose(res, expected, **tol) @pytest.mark.parametrize("shots", [None, 8192]) class TestTensorExpval: """Test tensor expectation values""" def test_paulix_pauliy(self, device, shots, tol): """Test that a tensor product involving PauliX and PauliY works correctly""" theta = 0.432 phi = 0.123 varphi = -0.543 dev = device(3) obs = qml.PauliX(wires=[0], do_queue=False) @ qml.PauliY(wires=[2], do_queue=False) with mimic_execution_for_expval(dev): dev.apply( [ qml.RX(theta, wires=[0]), qml.RX(phi, wires=[1]), qml.RX(varphi, wires=[2]), qml.CNOT(wires=[0, 1]), qml.CNOT(wires=[1, 2]), ], rotations=obs.diagonalizing_gates(), ) res = dev.expval(obs) expected = np.sin(theta) * np.sin(phi) * np.sin(varphi) assert np.allclose(res, expected, **tol) def test_pauliz_hadamard(self, device, shots, tol): """Test that a tensor product involving PauliZ and PauliY and hadamard works correctly""" theta = 0.432 phi = 0.123 varphi = -0.543 dev = device(3) obs = ( qml.PauliZ(wires=[0], do_queue=False) @ qml.Hadamard(wires=[1], do_queue=False) @ qml.PauliY(wires=[2], do_queue=False) ) with mimic_execution_for_expval(dev): dev.apply( [ qml.RX(theta, wires=[0]), qml.RX(phi, wires=[1]), qml.RX(varphi, wires=[2]), qml.CNOT(wires=[0, 1]), qml.CNOT(wires=[1, 2]), ], rotations=obs.diagonalizing_gates(), ) res = dev.expval(obs) expected = -(np.cos(varphi) * np.sin(phi) + np.sin(varphi) * np.cos(theta)) / np.sqrt(2) assert np.allclose(res, expected, **tol) def test_hermitian(self, device, shots, tol): """Test that a tensor product involving qml.Hermitian works correctly""" theta = 0.432 phi = 0.123 varphi = -0.543 dev = device(3) A = np.array( [ [-6, 2 + 1j, -3, -5 + 2j], [2 - 1j, 0, 2 - 1j, -5 + 4j], [-3, 2 + 1j, 0, -4 + 3j], [-5 - 2j, -5 - 4j, -4 - 3j, -6], ] ) obs = qml.PauliZ(wires=[0], do_queue=False) @ qml.Hermitian(A, wires=[1, 2], do_queue=False) with mimic_execution_for_expval(dev): dev.apply( [ qml.RX(theta, wires=[0]), qml.RX(phi, wires=[1]), qml.RX(varphi, wires=[2]), qml.CNOT(wires=[0, 1]), qml.CNOT(wires=[1, 2]), ], rotations=obs.diagonalizing_gates(), ) res = dev.expval(obs) expected = 0.5 * ( -6 * np.cos(theta) * (np.cos(varphi) + 1) - 2 * np.sin(varphi) * (np.cos(theta) + np.sin(phi) - 2 * np.cos(phi)) + 3 * np.cos(varphi) * np.sin(phi) + np.sin(phi) ) assert np.allclose(res, expected, **tol)
32.896657
100
0.530537
[ "Apache-2.0" ]
wongwsvincent/pennylane-cirq
tests/test_expval.py
10,823
Python
## # @filename : epd4in2b.py # @brief : Implements for Dual-color e-paper library # @author : Yehui from Waveshare # # Copyright (C) Waveshare August 15 2017 # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documnetation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS OR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # from . import epdif from PIL import Image import RPi.GPIO as GPIO # Display resolution EPD_WIDTH = 400 EPD_HEIGHT = 300 # EPD4IN2B commands PANEL_SETTING = 0x00 POWER_SETTING = 0x01 POWER_OFF = 0x02 POWER_OFF_SEQUENCE_SETTING = 0x03 POWER_ON = 0x04 POWER_ON_MEASURE = 0x05 BOOSTER_SOFT_START = 0x06 DEEP_SLEEP = 0x07 DATA_START_TRANSMISSION_1 = 0x10 DATA_STOP = 0x11 DISPLAY_REFRESH = 0x12 DATA_START_TRANSMISSION_2 = 0x13 VCOM_LUT = 0x20 W2W_LUT = 0x21 B2W_LUT = 0x22 W2B_LUT = 0x23 B2B_LUT = 0x24 PLL_CONTROL = 0x30 TEMPERATURE_SENSOR_CALIBRATION = 0x40 TEMPERATURE_SENSOR_SELECTION = 0x41 TEMPERATURE_SENSOR_WRITE = 0x42 TEMPERATURE_SENSOR_READ = 0x43 VCOM_AND_DATA_INTERVAL_SETTING = 0x50 LOW_POWER_DETECTION = 0x51 TCON_SETTING = 0x60 RESOLUTION_SETTING = 0x61 GSST_SETTING = 0x65 GET_STATUS = 0x71 AUTO_MEASURE_VCOM = 0x80 VCOM_VALUE = 0x81 VCM_DC_SETTING = 0x82 PARTIAL_WINDOW = 0x90 PARTIAL_IN = 0x91 PARTIAL_OUT = 0x92 PROGRAM_MODE = 0xA0 ACTIVE_PROGRAM = 0xA1 READ_OTP_DATA = 0xA2 POWER_SAVING = 0xE3 class EPD: def __init__(self): self.reset_pin = epdif.RST_PIN self.dc_pin = epdif.DC_PIN self.busy_pin = epdif.BUSY_PIN self.width = EPD_WIDTH self.height = EPD_HEIGHT def digital_write(self, pin, value): epdif.epd_digital_write(pin, value) def digital_read(self, pin): return epdif.epd_digital_read(pin) def delay_ms(self, delaytime): epdif.epd_delay_ms(delaytime) def send_command(self, command): self.digital_write(self.dc_pin, GPIO.LOW) # the parameter type is list but not int # so use [command] instead of command epdif.spi_transfer([command]) def send_data(self, data): self.digital_write(self.dc_pin, GPIO.HIGH) # the parameter type is list but not int # so use [data] instead of data epdif.spi_transfer([data]) def init(self): if (epdif.epd_init() != 0): return -1 self.reset() self.send_command(BOOSTER_SOFT_START) self.send_data (0x17) self.send_data (0x17) self.send_data (0x17) # 07 0f 17 1f 27 2F 37 2f self.send_command(POWER_ON) self.wait_until_idle() self.send_command(PANEL_SETTING) self.send_data(0x0F) # LUT from OTP def wait_until_idle(self): while(self.digital_read(self.busy_pin) == 0): # 0: busy, 1: idle self.delay_ms(100) def reset(self): self.digital_write(self.reset_pin, GPIO.LOW) # module reset self.delay_ms(200) self.digital_write(self.reset_pin, GPIO.HIGH) self.delay_ms(200) def get_frame_buffer(self, image): buf = [0xFF] * int(self.width * self.height / 8) # Set buffer to value of Python Imaging Library image. # Image must be in mode 1. image_monocolor = image.convert('1') imwidth, imheight = image_monocolor.size if imwidth != self.width or imheight != self.height: raise ValueError('Image must be same dimensions as display \ ({0}x{1}).' .format(self.width, self.height)) pixels = image_monocolor.load() for y in range(self.height): for x in range(self.width): # Set the bits for the column of pixels at the current position. if pixels[x, y] == 0: buf[int((x + y * self.width) / 8)] &= ~(0x80 >> (x % 8)) return buf def display_frame(self, frame_buffer_black, frame_buffer_red): if (frame_buffer_black != None): self.send_command(DATA_START_TRANSMISSION_1) self.delay_ms(2) for i in range(0, int(self.width * self.height / 8)): self.send_data(frame_buffer_black[i]) self.delay_ms(2) if (frame_buffer_red != None): self.send_command(DATA_START_TRANSMISSION_2) self.delay_ms(2) for i in range(0, int(self.width * self.height / 8)): self.send_data(frame_buffer_red[i]) self.delay_ms(2) self.send_command(DISPLAY_REFRESH) self.wait_until_idle() # after this, call epd.init() to awaken the module def sleep(self): self.send_command(VCOM_AND_DATA_INTERVAL_SETTING) self.send_data(0xF7) # border floating self.send_command(POWER_OFF) self.wait_until_idle() self.send_command(DEEP_SLEEP) self.send_data(0xA5) # check code ### END OF FILE ###
35.75
81
0.543357
[ "MIT" ]
Richard-Kirby/sema_clock
display/epd4in2b.py
7,150
Python
# -*- coding: utf-8 -*- """This module is a stub for classes related to vulnerability exposure scores. Copyright: (c) 2022 Illumio License: Apache2, see LICENSE for more details. """ from dataclasses import dataclass from illumio.util import MutableObject @dataclass class Vulnerability(MutableObject): score: int = None
17.842105
78
0.731563
[ "Apache-2.0" ]
dsommerville-illumio/illumio-py
illumio/vulnerabilities/vulnerability.py
339
Python
import fileinput from itertools import permutations SEQ = [int(x) for x in fileinput.input()] LEN = 25 for i in range(LEN, len(SEQ)): for x, y in permutations(SEQ[i-LEN:i], 2): if x + y == SEQ[i]: break else: INVALID = SEQ[i] print "Part 1:", INVALID break for n in range(2, len(SEQ)): tot = 0 for i in range(len(SEQ)-n): tot = sum(SEQ[i:i+n]) if tot == INVALID: print "Part 2:", min(SEQ[i:i+n]) + max(SEQ[i:i+n])
22
62
0.529644
[ "MIT" ]
iKevinY/advent
2020/day09.py
506
Python
import logging import os from pathlib import Path import typing from logging.handlers import RotatingFileHandler from dotenv import load_dotenv import services.pv_simulator.constants as constants from services.pv_simulator.main_loop import MainLoop from services.pv_simulator.mq_receiver import MQReceiver, MQReceiverFactory from services.pv_simulator.pv_power_value_calculator import PVPowerValueCalculator from services.pv_simulator.typing_custom_protocols import ( MQReceiverProtocol, PVPowerValueCalculatorProtocol ) from services.pv_simulator import utils current_dir_path: Path = Path(__file__).parent.absolute() load_dotenv(dotenv_path=f"{current_dir_path}/.env") def get_test_modules_names() -> typing.List[str]: from services.pv_simulator.tests.unit import constants_for_tests return constants_for_tests.TESTS_MODULES def get_mq_receiver(callback: typing.Callable[[], bool]) -> MQReceiverProtocol: return MQReceiverFactory.get_mq_receiver(constants.MQ_RECEIVER_TYPE, check_if_must_exit=callback) def get_pv_power_value_calculator() -> PVPowerValueCalculatorProtocol: return PVPowerValueCalculator(constants.MINUTES_DATA_SET, constants.PV_POWER_VALUES_DATA_SET) def main(sys_argv: typing.List[str]) -> None: """PV simulator execution entry point. Parameters ---------- sys_argv : list contains the list of arguments passed to the CLI during its execution. The first argument contains the executed script name. """ main_logger: typing.Optional[logging.Logger] = None try: must_exit_after_24h = os.getenv("MUST_EXIT_AFTER_24H", "0") must_exit_after_24h = \ True if must_exit_after_24h.isdecimal() and int(must_exit_after_24h) == 1 else False main_logger = utils.initialize_loggers(current_dir_path) main_loop: MainLoop = MainLoop(constants.LOGGER_NAME, constants.RESULTS_LOGGER_NAME, current_dir_path, must_exit_after_24h, get_mq_receiver, get_pv_power_value_calculator, tests_modules_names_provider=get_test_modules_names) main_loop.handle_arguments(sys_argv) except KeyboardInterrupt: if main_logger is not None: main_logger.exception("Required to abort:") else: import traceback traceback.print_exc() except Exception: if main_logger is not None: main_logger.exception("Error:") else: import traceback traceback.print_exc()
36.675676
110
0.695652
[ "MIT" ]
reynierg/pv_simulator_challenge
services/pv_simulator/main.py
2,714
Python
from .tools import pair, check_sizes from .dcn_v2 import deform_conv2d_jt from .init import trunc_normal_
35
36
0.847619
[ "MIT" ]
liuruiyang98/Jittor-MLP
models_jittor/utils/__init__.py
105
Python
# -*- coding: utf-8 -*- from __future__ import print_function import argparse import aerospike from aerospike import exception as e try: from aerospike_helpers.operations import map_operations as mh except: pass # Needs Aerospike client >= 3.4.0 import datetime import pprint import random import sys import time argparser = argparse.ArgumentParser(add_help=False) argparser.add_argument( "--help", dest="help", action="store_true", help="Displays this message." ) argparser.add_argument( "-U", "--username", dest="username", metavar="<USERNAME>", help="Username to connect to database.", ) argparser.add_argument( "-P", "--password", dest="password", metavar="<PASSWORD>", help="Password to connect to database.", ) argparser.add_argument( "-h", "--host", dest="host", default="127.0.0.1", metavar="<ADDRESS>", help="Address of Aerospike server.", ) argparser.add_argument( "-p", "--port", dest="port", type=int, default=3000, metavar="<PORT>", help="Port of the Aerospike server.", ) argparser.add_argument( "-n", "--namespace", dest="namespace", default="test", metavar="<NS>", help="Port of the Aerospike server.", ) argparser.add_argument( "-s", "--set", dest="set", default="profiles", metavar="<SET>", help="Port of the Aerospike server.", ) argparser.add_argument( "-i", "--interactive", dest="interactive", action="store_true", help="Interactive Mode", ) options = argparser.parse_args() if options.help: argparser.print_help() print() sys.exit(1) def version_tuple(version): return tuple(int(i) for i in version.split(".")) def pause(): input("Hit return to continue") if options.namespace and options.namespace != "None": namespace = options.namespace else: namespace = None set = options.set if options.set and options.set != "None" else None config = {"hosts": [(options.host, options.port)]} try: client = aerospike.client(config).connect(options.username, options.password) policy = {"key": aerospike.POLICY_KEY_SEND} except e.ClientError as e: if not options.quiet: print("Error: {0} [{1}]".format(e.msg, e.code)) sys.exit(2) version = client.info_all("version") release = list(version.values())[0][1].split(" ")[-1] if version_tuple(aerospike.__version__) < version_tuple("3.4.0") or version_tuple( release ) < version_tuple("4.6"): print( "\nPlease use Python client >= 3.4.0, ", "Aerospike database >= 4.6 for this example.", ) sys.exit(3) pp = pprint.PrettyPrinter(indent=2) spacer = "=" * 30 epoch = datetime.datetime(2019, 1, 1) now = datetime.datetime.now() try: # Find all segments whose TTL is before this hour key = (namespace, set, "u3") current_hour = int((now - epoch).total_seconds() / 3600) print("\nCurrent hour is {} hours since epoch".format(current_hour)) if options.interactive: pause() ops = [ mh.map_get_by_value_range( "u", [0, aerospike.null()], [current_hour - 1, aerospike.null()], aerospike.MAP_RETURN_KEY, False, ), mh.map_size("u"), ] _, _, b = client.operate_ordered(key, ops) stale_segments, total_segments = b print("This user has a total of {} segments".format(total_segments[1])) print( "Of those, a total of {} segments should be cleaned".format( len(stale_segments[1]) ) ) print("Show all segments with a segment TTL before the current hour:") print(stale_segments) print(spacer) # Clean up the stale segments using a background scan with a transaction # attached to it print("Clean the stale segments from the entire namespace") if options.interactive: pause() ops = [ mh.map_remove_by_value_range( "u", [0, aerospike.null()], [current_hour - 1, aerospike.null()], aerospike.MAP_RETURN_NONE, False, ) ] # _, _, _ = client.operate_ordered(key, ops) scan = client.scan(namespace, set) scan.add_ops(ops) job_id = scan.execute_background() # wait for job to finish while True: response = client.job_info(job_id, aerospike.JOB_SCAN) if response["status"] != aerospike.JOB_STATUS_INPROGRESS: break time.sleep(0.25) ops = [ mh.map_get_by_value_range( "u", [0, aerospike.null()], [current_hour - 1, aerospike.null()], aerospike.MAP_RETURN_KEY, False, ), mh.map_size("u"), ] _, _, b = client.operate_ordered(key, ops) stale_segments, total_segments = b print("This user now has a total of {} segments".format(total_segments[1])) print( "Of those, a total of {} segments should be cleaned".format( len(stale_segments[1]) ) ) print("Show all segments with a segment TTL before the current hour:") print(stale_segments) print(spacer) except Exception as e: print("Error: {0} [{1}]".format(e.msg, e.code)) client.close()
26.185
82
0.618675
[ "MIT" ]
aerospike-examples/modeling-user-segmentation
trim_segments.py
5,237
Python
import copy from enum import Enum from jinja2 import Template from typing import List from dispatch.conversation.enums import ConversationButtonActions from dispatch.incident.enums import IncidentStatus from .config import ( DISPATCH_UI_URL, INCIDENT_RESOURCE_CONVERSATION_REFERENCE_DOCUMENT, INCIDENT_RESOURCE_EXECUTIVE_REPORT_DOCUMENT, INCIDENT_RESOURCE_INCIDENT_FAQ_DOCUMENT, INCIDENT_RESOURCE_INCIDENT_REVIEW_DOCUMENT, INCIDENT_RESOURCE_INVESTIGATION_DOCUMENT, INCIDENT_RESOURCE_INVESTIGATION_SHEET, ) class MessageType(str, Enum): incident_daily_summary = "incident-daily-summary" incident_daily_summary_no_incidents = "incident-daily-summary-no-incidents" incident_executive_report = "incident-executive-report" incident_notification = "incident-notification" incident_participant_welcome = "incident-participant-welcome" incident_resources_message = "incident-resources-message" incident_tactical_report = "incident-tactical-report" incident_task_list = "incident-task-list" incident_task_reminder = "incident-task-reminder" incident_status_reminder = "incident-status-reminder" incident_participant_suggested_reading = "incident-participant-suggested-reading" INCIDENT_STATUS_DESCRIPTIONS = { IncidentStatus.active: "This incident is under active investigation.", IncidentStatus.stable: "This incident is stable, the bulk of the investigation has been completed or most of the risk has been mitigated.", IncidentStatus.closed: "This no longer requires additional involvement, long term incident action items have been assigned to their respective owners.", } INCIDENT_TASK_REMINDER_DESCRIPTION = """ You are assigned to the following incident tasks. This is a reminder that these tasks have passed their due date. Please review and update them as appropriate. Resolving them will stop the reminders.""".replace( "\n", " " ).strip() INCIDENT_TASK_LIST_DESCRIPTION = """The following are open incident tasks.""" INCIDENT_DAILY_SUMMARY_DESCRIPTION = """ Daily Incidents Summary""".replace( "\n", " " ).strip() INCIDENT_DAILY_SUMMARY_ACTIVE_INCIDENTS_DESCRIPTION = f""" Active Incidents (<{DISPATCH_UI_URL}/incidents/status|Details>)""".replace( "\n", " " ).strip() INCIDENT_DAILY_SUMMARY_NO_ACTIVE_INCIDENTS_DESCRIPTION = """ There are no active incidents at this moment.""".replace( "\n", " " ).strip() INCIDENT_DAILY_SUMMARY_STABLE_CLOSED_INCIDENTS_DESCRIPTION = """ Stable or Closed Incidents (last 24 hours)""".replace( "\n", " " ).strip() INCIDENT_DAILY_SUMMARY_NO_STABLE_CLOSED_INCIDENTS_DESCRIPTION = """ There are no stable or closed incidents in the last 24 hours.""".replace( "\n", " " ).strip() INCIDENT_COMMANDER_DESCRIPTION = """ The Incident Commander (IC) is responsible for knowing the full context of the incident. Contact them about any questions or concerns.""".replace( "\n", " " ).strip() INCIDENT_COMMANDER_READDED_DESCRIPTION = """ {{ commander_fullname }} (Incident Commander) has been re-added to the conversation. Please, handoff the Incident Commander role before leaving the conversation.""".replace( "\n", " " ).strip() INCIDENT_TICKET_DESCRIPTION = """ Ticket for tracking purposes. It contains a description of the incident and links to resources.""".replace( "\n", " " ).strip() INCIDENT_CONVERSATION_DESCRIPTION = """ Private conversation for real-time discussion. All incident participants get added to it. """.replace( "\n", " " ).strip() INCIDENT_CONVERSATION_REFERENCE_DOCUMENT_DESCRIPTION = """ Document containing the list of slash commands available to the Incident Commander (IC) and participants in the incident conversation.""".replace( "\n", " " ).strip() INCIDENT_CONFERENCE_DESCRIPTION = """ Video conference and phone bridge to be used throughout the incident. Password: {{conference_challenge if conference_challenge else 'N/A'}} """.replace( "\n", "" ).strip() INCIDENT_STORAGE_DESCRIPTION = """ Common storage for all incident artifacts and documents. Add logs, screen captures, or any other data collected during the investigation to this drive. It is shared with all incident participants.""".replace( "\n", " " ).strip() INCIDENT_INVESTIGATION_DOCUMENT_DESCRIPTION = """ This is a document for all incident facts and context. All incident participants are expected to contribute to this document. It is shared with all incident participants.""".replace( "\n", " " ).strip() INCIDENT_INVESTIGATION_SHEET_DESCRIPTION = """ This is a sheet for tracking impacted assets. All incident participants are expected to contribute to this sheet. It is shared with all incident participants.""".replace( "\n", " " ).strip() INCIDENT_FAQ_DOCUMENT_DESCRIPTION = """ First time responding to an information security incident? This document answers common questions encountered when helping us respond to an incident.""".replace( "\n", " " ).strip() INCIDENT_REVIEW_DOCUMENT_DESCRIPTION = """ This document will capture all lessons learned, questions, and action items raised during the incident.""".replace( "\n", " " ).strip() INCIDENT_EXECUTIVE_REPORT_DOCUMENT_DESCRIPTION = """ This is a document that contains an executive report about the incident.""".replace( "\n", " " ).strip() INCIDENT_DOCUMENT_DESCRIPTIONS = { INCIDENT_RESOURCE_CONVERSATION_REFERENCE_DOCUMENT: INCIDENT_CONVERSATION_REFERENCE_DOCUMENT_DESCRIPTION, INCIDENT_RESOURCE_EXECUTIVE_REPORT_DOCUMENT: INCIDENT_EXECUTIVE_REPORT_DOCUMENT_DESCRIPTION, INCIDENT_RESOURCE_INCIDENT_FAQ_DOCUMENT: INCIDENT_FAQ_DOCUMENT_DESCRIPTION, INCIDENT_RESOURCE_INCIDENT_REVIEW_DOCUMENT: INCIDENT_REVIEW_DOCUMENT_DESCRIPTION, INCIDENT_RESOURCE_INVESTIGATION_DOCUMENT: INCIDENT_INVESTIGATION_DOCUMENT_DESCRIPTION, INCIDENT_RESOURCE_INVESTIGATION_SHEET: INCIDENT_INVESTIGATION_SHEET_DESCRIPTION, } INCIDENT_PARTICIPANT_WELCOME_DESCRIPTION = """ You\'re being contacted because we think you may be able to help us during this information security incident. Please review the content below and join us in the incident Slack channel.""".replace( "\n", " " ).strip() INCIDENT_WELCOME_CONVERSATION_COPY = """ This is the incident conversation. Please pull in any individuals you feel may be able to help resolve this incident.""".replace( "\n", " " ).strip() INCIDENT_PARTICIPANT_SUGGESTED_READING_DESCRIPTION = """ Dispatch thinks the following documents might be relevant to this incident.""".replace( "\n", " " ).strip() INCIDENT_NOTIFICATION_PURPOSES_FYI = """ This message is for notification purposes only.""".replace( "\n", " " ).strip() INCIDENT_CAN_REPORT_REMINDER = """ It's time to send a new CAN report. Go to the Demisto UI and run the CAN Report playbook from the Playground Work Plan.""".replace( "\n", " " ).strip() INCIDENT_VULNERABILITY_DESCRIPTION = """ We are tracking the details of the vulnerability that led to this incident in the VUL Jira issue linked above.""".replace( "\n", " " ).strip() INCIDENT_STABLE_DESCRIPTION = """ The risk has been contained and the incident marked as stable.""".replace( "\n", " " ).strip() INCIDENT_CLOSED_DESCRIPTION = """ The incident has been resolved and marked as closed.""".replace( "\n", " " ).strip() INCIDENT_TACTICAL_REPORT_DESCRIPTION = """ The following conditions, actions, and needs summarize the current status of the incident.""".replace( "\n", " " ).strip() INCIDENT_NEW_ROLE_DESCRIPTION = """ {{assigner_fullname}} has assigned the role of {{assignee_role}} to {{assignee_fullname}}. Please, contact {{assignee_firstname}} about any questions or concerns.""".replace( "\n", " " ).strip() INCIDENT_REPORT_REMINDER_DESCRIPTION = """You have not provided a {{report_type}} for this incident recently. You can use `{{command}}` in the conversation to assist you in writing one.""".replace( "\n", " " ).strip() INCIDENT_STATUS_REMINDER_DESCRIPTION = """You have not updated the status for this incident recently. If the incident has been resolved, you can use `{{command}}` in the conversation to assist you in closing your incident.""".replace( "\n", " " ).strip() INCIDENT_TASK_NEW_DESCRIPTION = """ The following incident task has been created in the incident document.\n\n*Description:* {{task_description}}\n\n*Assignees:* {{task_assignees|join(',')}}""" INCIDENT_TASK_RESOLVED_DESCRIPTION = """ The following incident task has been resolved in the incident document.\n\n*Description:* {{task_description}}\n\n*Assignees:* {{task_assignees|join(',')}}""" INCIDENT_WORKFLOW_CREATED_DESCRIPTION = """ A new workflow instance has been created. \n\n *Creator:* {{instance_creator_name}} """ INCIDENT_WORKFLOW_UPDATE_DESCRIPTION = """ This workflow's status has changed from *{{ instance_status_old }}* to *{{ instance_status_new }}*. \n\n*Workflow Description*: {{workflow_description}} \n\n *Creator:* {{instance_creator_name}} """ INCIDENT_WORKFLOW_COMPLETE_DESCRIPTION = """ This workflow's status has changed from *{{ instance_status_old }}* to *{{ instance_status_new }}*. \n\n *Workflow Description:* {{workflow_description}} \n\n *Creator:* {{instance_creator_name}} {% if instance_artifacts %} \n\n *Workflow Artifacts:* \n\n {% for a in instance_artifacts %}- <{{a.weblink}}|{{a.name}}> \n\n{% endfor %} {% endif %} """ INCIDENT_TYPE_CHANGE_DESCRIPTION = """ The incident type has been changed from *{{ incident_type_old }}* to *{{ incident_type_new }}*.""" INCIDENT_STATUS_CHANGE_DESCRIPTION = """ The incident status has been changed from *{{ incident_status_old }}* to *{{ incident_status_new }}*.""" INCIDENT_PRIORITY_CHANGE_DESCRIPTION = """ The incident priority has been changed from *{{ incident_priority_old }}* to *{{ incident_priority_new }}*.""" INCIDENT_NAME_WITH_ENGAGEMENT = { "title": "{{name}} Incident Notification", "title_link": "{{ticket_weblink}}", "text": INCIDENT_NOTIFICATION_PURPOSES_FYI, "button_text": "Join Incident", "button_value": "{{incident_id}}", "button_action": ConversationButtonActions.invite_user, } INCIDENT_NAME = { "title": "{{name}} Incident Notification", "title_link": "{{ticket_weblink}}", "text": INCIDENT_NOTIFICATION_PURPOSES_FYI, } INCIDENT_TITLE = {"title": "Incident Title", "text": "{{title}}"} INCIDENT_DESCRIPTION = {"title": "Incident Description", "text": "{{description}}"} INCIDENT_STATUS = { "title": "Incident Status - {{status}}", "status_mapping": INCIDENT_STATUS_DESCRIPTIONS, } INCIDENT_TYPE = {"title": "Incident Type - {{type}}", "text": "{{type_description}}"} INCIDENT_PRIORITY = { "title": "Incident Priority - {{priority}}", "text": "{{priority_description}}", } INCIDENT_PRIORITY_FYI = { "title": "Incident Priority - {{priority}}", "text": "{{priority_description}}", } INCIDENT_COMMANDER = { "title": "Incident Commander - {{commander_fullname}}", "title_link": "{{commander_weblink}}", "text": INCIDENT_COMMANDER_DESCRIPTION, } INCIDENT_CONFERENCE = { "title": "Incident Conference", "title_link": "{{conference_weblink}}", "text": INCIDENT_CONFERENCE_DESCRIPTION, } INCIDENT_STORAGE = { "title": "Incident Storage", "title_link": "{{storage_weblink}}", "text": INCIDENT_STORAGE_DESCRIPTION, } INCIDENT_CONVERSATION_COMMANDS_REFERENCE_DOCUMENT = { "title": "Incident Conversation Commands Reference Document", "title_link": "{{conversation_commands_reference_document_weblink}}", "text": INCIDENT_CONVERSATION_REFERENCE_DOCUMENT_DESCRIPTION, } INCIDENT_INVESTIGATION_DOCUMENT = { "title": "Incident Investigation Document", "title_link": "{{document_weblink}}", "text": INCIDENT_INVESTIGATION_DOCUMENT_DESCRIPTION, } INCIDENT_INVESTIGATION_SHEET = { "title": "Incident Investigation Sheet", "title_link": "{{sheet_weblink}}", "text": INCIDENT_INVESTIGATION_SHEET_DESCRIPTION, } INCIDENT_REVIEW_DOCUMENT = { "title": "Incident Review Document", "title_link": "{{review_document_weblink}}", "text": INCIDENT_REVIEW_DOCUMENT_DESCRIPTION, } INCIDENT_FAQ_DOCUMENT = { "title": "Incident FAQ Document", "title_link": "{{faq_weblink}}", "text": INCIDENT_FAQ_DOCUMENT_DESCRIPTION, } INCIDENT_TYPE_CHANGE = {"title": "Incident Type Change", "text": INCIDENT_TYPE_CHANGE_DESCRIPTION} INCIDENT_STATUS_CHANGE = { "title": "Incident Status Change", "text": INCIDENT_STATUS_CHANGE_DESCRIPTION, } INCIDENT_PRIORITY_CHANGE = { "title": "Incident Priority Change", "text": INCIDENT_PRIORITY_CHANGE_DESCRIPTION, } INCIDENT_PARTICIPANT_SUGGESTED_READING_ITEM = { "title": "{{name}}", "title_link": "{{weblink}}", "text": "{{description}}", } INCIDENT_PARTICIPANT_WELCOME = { "title": "Welcome to {{name}}", "title_link": "{{ticket_weblink}}", "text": INCIDENT_PARTICIPANT_WELCOME_DESCRIPTION, } INCIDENT_PARTICIPANT_WELCOME_MESSAGE = [ INCIDENT_PARTICIPANT_WELCOME, INCIDENT_TITLE, INCIDENT_STATUS, INCIDENT_TYPE, INCIDENT_PRIORITY, INCIDENT_COMMANDER, INCIDENT_INVESTIGATION_DOCUMENT, INCIDENT_STORAGE, INCIDENT_CONFERENCE, INCIDENT_CONVERSATION_COMMANDS_REFERENCE_DOCUMENT, INCIDENT_FAQ_DOCUMENT, ] INCIDENT_RESOURCES_MESSAGE = [ INCIDENT_COMMANDER, INCIDENT_INVESTIGATION_DOCUMENT, INCIDENT_REVIEW_DOCUMENT, INCIDENT_STORAGE, INCIDENT_CONFERENCE, INCIDENT_CONVERSATION_COMMANDS_REFERENCE_DOCUMENT, INCIDENT_FAQ_DOCUMENT, ] INCIDENT_NOTIFICATION_COMMON = [INCIDENT_TITLE] INCIDENT_NOTIFICATION = INCIDENT_NOTIFICATION_COMMON.copy() INCIDENT_NOTIFICATION.extend( [INCIDENT_STATUS, INCIDENT_TYPE, INCIDENT_PRIORITY_FYI, INCIDENT_COMMANDER] ) INCIDENT_TACTICAL_REPORT = [ {"title": "Incident Tactical Report", "text": INCIDENT_TACTICAL_REPORT_DESCRIPTION}, {"title": "Conditions", "text": "{{conditions}}"}, {"title": "Actions", "text": "{{actions}}"}, {"title": "Needs", "text": "{{needs}}"}, ] INCIDENT_EXECUTIVE_REPORT = [ {"title": "Incident Title", "text": "{{title}}"}, {"title": "Current Status", "text": "{{current_status}}"}, {"title": "Overview", "text": "{{overview}}"}, {"title": "Next Steps", "text": "{{next_steps}}"}, ] INCIDENT_REPORT_REMINDER = [ { "title": "{{name}} Incident - {{report_type}} Reminder", "title_link": "{{ticket_weblink}}", "text": INCIDENT_REPORT_REMINDER_DESCRIPTION, }, INCIDENT_TITLE, ] INCIDENT_STATUS_REMINDER = [ { "title": "{{name}} Incident - Status Reminder", "title_link": "{{ticket_weblink}}", "text": INCIDENT_STATUS_REMINDER_DESCRIPTION, }, INCIDENT_TITLE, INCIDENT_STATUS, ] INCIDENT_TASK_REMINDER = [ {"title": "Incident - {{ name }}", "text": "{{ title }}"}, {"title": "Creator", "text": "{{ creator }}"}, {"title": "Description", "text": "{{ description }}"}, {"title": "Priority", "text": "{{ priority }}"}, {"title": "Created At", "text": "", "datetime": "{{ created_at}}"}, {"title": "Resolve By", "text": "", "datetime": "{{ resolve_by }}"}, {"title": "Link", "text": "{{ weblink }}"}, ] INCIDENT_NEW_ROLE_NOTIFICATION = [ { "title": "New {{assignee_role}} - {{assignee_fullname}}", "title_link": "{{assignee_weblink}}", "text": INCIDENT_NEW_ROLE_DESCRIPTION, } ] INCIDENT_TASK_NEW_NOTIFICATION = [ { "title": "New Incident Task", "title_link": "{{task_weblink}}", "text": INCIDENT_TASK_NEW_DESCRIPTION, } ] INCIDENT_TASK_RESOLVED_NOTIFICATION = [ { "title": "Resolved Incident Task", "title_link": "{{task_weblink}}", "text": INCIDENT_TASK_RESOLVED_DESCRIPTION, } ] INCIDENT_WORKFLOW_CREATED_NOTIFICATION = [ { "title": "Workflow Created - {{workflow_name}}", "text": INCIDENT_WORKFLOW_CREATED_DESCRIPTION, } ] INCIDENT_WORKFLOW_UPDATE_NOTIFICATION = [ { "title": "Workflow Status Change - {{workflow_name}}", "title_link": "{{instance_weblink}}", "text": INCIDENT_WORKFLOW_UPDATE_DESCRIPTION, } ] INCIDENT_WORKFLOW_COMPLETE_NOTIFICATION = [ { "title": "Workflow Completed - {{workflow_name}}", "title_link": "{{instance_weblink}}", "text": INCIDENT_WORKFLOW_COMPLETE_DESCRIPTION, } ] INCIDENT_COMMANDER_READDED_NOTIFICATION = [ {"title": "Incident Commander Re-Added", "text": INCIDENT_COMMANDER_READDED_DESCRIPTION} ] def render_message_template(message_template: List[dict], **kwargs): """Renders the jinja data included in the template itself.""" data = [] new_copy = copy.deepcopy(message_template) for d in new_copy: if d.get("status_mapping"): d["text"] = d["status_mapping"][kwargs["status"]] if d.get("datetime"): d["datetime"] = Template(d["datetime"]).render(**kwargs) d["text"] = Template(d["text"]).render(**kwargs) d["title"] = Template(d["title"]).render(**kwargs) if d.get("title_link"): d["title_link"] = Template(d["title_link"]).render(**kwargs) if d["title_link"] == "None": # skip blocks with no content continue # skip blocks that do not have new links rendered, as no real value was provided if not d["title_link"]: continue if d.get("button_text"): d["button_text"] = Template(d["button_text"]).render(**kwargs) if d.get("button_value"): d["button_value"] = Template(d["button_value"]).render(**kwargs) data.append(d) return data
33.210526
158
0.712305
[ "Apache-2.0" ]
oliverzgy/dispatch
src/dispatch/messaging.py
17,668
Python
import random import copy from collections import defaultdict from collections import deque from collections import namedtuple from matplotlib import pyplot as plt import numpy as np class Q(): def __init__(self, n_actions, observation_space, bin_size, low_bound=None, high_bound=None, initial_mean=0.0, initial_std=0.0): self.n_actions = n_actions self._observation_dimension = 1 for d in observation_space.shape: self._observation_dimension *= d self._bin_sizes = bin_size if isinstance(bin_size, list) else [bin_size] * self._observation_dimension self._dimension_bins = [] for i, low, high in self._low_high_iter(observation_space, low_bound, high_bound): b_size = self._bin_sizes[i] bins = self._make_bins(low, high, b_size) print(bins) self._dimension_bins.append(bins) # if we encounter the new observation, we initialize action evaluations self.table = defaultdict(lambda: initial_std * np.random.randn(self.n_actions) + initial_mean) @classmethod def _make_bins(cls, low, high, bin_size): bins = np.arange(low, high, (float(high) - float(low)) / (bin_size - 2)) # exclude both ends if min(bins) < 0 and 0 not in bins: bins = np.sort(np.append(bins, [0])) # 0 centric bins return bins @classmethod def _low_high_iter(cls, observation_space, low_bound, high_bound): lows = observation_space.low highs = observation_space.high for i in range(len(lows)): low = lows[i] if low_bound is not None: _low_bound = low_bound if not isinstance(low_bound, list) else low_bound[i] low = low if _low_bound is None else max(low, _low_bound) high = highs[i] if high_bound is not None: _high_bound = high_bound if not isinstance(high_bound, list) else high_bound[i] high = high if _high_bound is None else min(high, _high_bound) yield i, low, high def observation_to_state(self, observation): state = 0 # caution: bin_size over 10 will not work accurately unit = max(self._bin_sizes) for d, o in enumerate(observation.flatten()): state = state + np.digitize(o, self._dimension_bins[d]) * pow(unit, d) # bin_size numeral system return state def values(self, observation): state = self.observation_to_state(observation) return self.table[state] class Agent(): def __init__(self, q, epsilon=0.05): self.q = q self.epsilon = epsilon def act(self, observation): action = -1 if np.random.random() < self.epsilon: action = np.random.choice(self.q.n_actions) else: action = np.argmax(self.q.values(observation)) return action class Trainer(): def __init__(self, agent, gamma=0.95, learning_rate=0.1, learning_rate_decay=None, epsilon=0.05, epsilon_decay=None, max_step=-1,target=500): self.agent = agent self.gamma = gamma self.learning_rate = learning_rate self.learning_rate_decay = learning_rate_decay self.epsilon = epsilon self.epsilon_decay = epsilon_decay self.max_step = max_step def train(self, env, episode_count, render=False): mean_step_all =[] mean_q_all=[] goal_time_all=[] reward_all=[] self.agent.epsilon = self.epsilon values = [] steps = deque(maxlen=100) lr = self.learning_rate for i in range(episode_count): reward_total = 0 goal_time =0 obs = env.reset() step = 0 done = False while not done: if render: env.render() action = self.agent.act(obs) next_obs, reward, done,goal_time= env.step(action) reward_total+= reward goal_time += goal_time state = self.agent.q.observation_to_state(obs) future = 0 if done else np.max(self.agent.q.values(next_obs)) value = self.agent.q.table[state][action] self.agent.q.table[state][action] += lr * (reward + self.gamma * future - value) obs = next_obs values.append(value) step += 1 if self.max_step > 0 and step > self.max_step: done = True else: mean = np.mean(values) steps.append(step) mean_step = np.mean(steps) print("Episode {}: {}steps(avg{}). epsilon={:.3f}, lr={:.3f}, mean q value={:.2f}".format( i, step, mean_step, self.agent.epsilon, lr, mean) ) mean_step_all.append(mean_step) mean_q_all.append(mean) reward_all.append(reward_total) if mean_step>1000: render=True if self.epsilon_decay is not None: self.agent.epsilon = self.epsilon_decay(self.agent.epsilon, i) if self.learning_rate_decay is not None: lr = self.learning_rate_decay(lr, i) # plot in comparsion plt.xlabel('Episodes') plt.ylabel('reward') # plt.plot(mean_step_all, label='Q-learning', color='blue') plt.plot(reward_all, label='Q-learning', color='yellow') plt.plot(goal_time_all, label='Q-learning', color='green') # plt.legend(['reward', 'Q-learning'], loc='upper right') plt.title('reward/Episode') plt.show() # plot in comparsion plt.xlabel('Episodes') plt.ylabel('goal_time') # plt.plot(mean_step_all, label='Q-learning', color='blue') plt.plot(goal_time_all, label='Q-learning', color='green') # plt.legend(['reward', 'Q-learning'], loc='upper right') plt.title('goal/Episode') plt.show()
36.664706
145
0.574683
[ "MIT" ]
cisc474projectgroup/cartpole-q-learning
agent.py
6,233
Python
# coding: utf-8 # /*########################################################################## # # Copyright (c) 2015-2018 European Synchrotron Radiation Facility # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ###########################################################################*/ """ The silx package contains the following main sub-packages: - silx.gui: Qt widgets for data visualization and data file browsing - silx.image: Some processing functions for 2D images - silx.io: Reading and writing data files (HDF5/NeXus, SPEC, ...) - silx.math: Some processing functions for 1D, 2D, 3D, nD arrays - silx.opencl: OpenCL-based data processing - silx.sx: High-level silx functions suited for (I)Python console. - silx.utils: Miscellaneous convenient functions See silx documentation: http://www.silx.org/doc/silx/latest/ """ __authors__ = ["Jérôme Kieffer"] __license__ = "MIT" __date__ = "31/08/2018" import os as _os import logging as _logging _logging.getLogger(__name__).addHandler(_logging.NullHandler()) project = _os.path.basename(_os.path.dirname(_os.path.abspath(__file__))) try: from ._version import __date__ as date # noqa from ._version import ( version, version_info, hexversion, strictversion, dated_version, ) # noqa except ImportError: raise RuntimeError( "Do NOT use %s from its sources: build it and use the built version" % project )
37.830769
79
0.697031
[ "MIT" ]
kif/freesas
freesas/__init__.py
2,461
Python
import pytest import activeLearning as tP def test_sayHello(): assert tP.sayHello() == 'Hello World' assert tP.sayHello('Sankha') == 'Hello Sankha' assert tP.sayHello(-1) == 'Hello -1' return
23.222222
50
0.669856
[ "MIT" ]
sankhaMukherjee/activeLearning
tests/test_activeLearning.py
209
Python
from __future__ import absolute_import from __future__ import division from __future__ import print_function class SubCommand(object): name = NotImplementedError("Please add 'name' member in your SubCommand") help = NotImplementedError("Please add 'help' member in your SubCommand") def addParser(self, parser): raise NotImplementedError("Please implement 'addParser' method in your SubCommand") def execute(self): raise NotImplementedError("Please implement 'execute' method in your SubCommand")
35.533333
91
0.765478
[ "BSD-3-Clause" ]
Stibbons/python-project-bootstrap
src/ppb/cli/sub_cmd/_sub_command.py
533
Python
def encrypt(): message = raw_input("Enter the message you want to encrypt") ascii_message = [ord(char)+3 for char in message] encrypt_message = [ chr(char) for char in ascii_message] print ''.join(encrypt_message) def decrypt(): message = raw_input("Enter the message you want to decrypt") ascii_message = [ord(char)-3 for char in message] decrypt_message = [ chr(char) for char in ascii_message] print ''.join(decrypt_message) flag = True while flag == True: choice = raw_input("What do you want to do? \n1. Encrypt a message 2. Decrypt a message \nEnter 'e' or 'd' respectively!") if choice =='e' or choice=="1": encrypt() elif choice == 'd' or choice=="2": decrypt() else: play_again = raw_input("Do you want to try agian or Do you want to exit? (Y/N)") if play_again == 'Y': continue elif play_again == 'N': break
35.88
124
0.653289
[ "MIT" ]
Ena-Sharma/Meraki_Solution
Debugging-4/cipher2_0.py
897
Python
with frontend.signin(): frontend.page("repositories", expect={ "document_title": testing.expect.document_title(u"Repositories"), "content_title": testing.expect.paleyellow_title(0, u"Repositories"), "pageheader_links": testing.expect.pageheader_links("authenticated", "administrator"), "script_user": testing.expect.script_user("admin") })
81.142857
112
0.473592
[ "Apache-2.0" ]
SyuTingSong/critic
testing/tests/001-main/001-empty/002-authenticated/008-repositories.py
568
Python
from jgsnippets.strings.encoding import clean_encoding from jgsnippets.strings.format import jprint, pprint
53.5
54
0.878505
[ "MIT" ]
jgontrum/jgsnippets
jgsnippets/strings/__init__.py
107
Python
"""Queuing Search Algorithm. """ import copy import numpy as np import opytimizer.math.random as r import opytimizer.utils.constant as c import opytimizer.utils.logging as l from opytimizer.core import Optimizer logger = l.get_logger(__name__) class QSA(Optimizer): """A QSA class, inherited from Optimizer. This is the designed class to define QSA-related variables and methods. References: J. Zhang et al. Queuing search algorithm: A novel metaheuristic algorithm for solving engineering optimization problems. Applied Mathematical Modelling (2018). """ def __init__(self, params=None): """Initialization method. Args: params (dict): Contains key-value parameters to the meta-heuristics. """ logger.info('Overriding class: Optimizer -> QSA.') # Overrides its parent class with the receiving params super(QSA, self).__init__() # Builds the class self.build(params) logger.info('Class overrided.') def _calculate_queue(self, n_agents, t_1, t_2, t_3): """Calculates the number of agents that belongs to each queue. Args: n_agents (int): Number of agents. t_1 (float): Fitness value of first agent in the population. t_2 (float): Fitness value of second agent in the population. t_3 (float): Fitness value of third agent in the population. Returns: The number of agents in first, second and third queues. """ # Checks if potential service time is bigger than `epsilon` if t_1 > c.EPSILON: # Calculates the proportion of agents in first, second and third queues n_1 = (1 / t_1) / ((1 / t_1) + (1 / t_2) + (1 / t_3)) n_2 = (1 / t_2) / ((1 / t_1) + (1 / t_2) + (1 / t_3)) n_3 = (1 / t_3) / ((1 / t_1) + (1 / t_2) + (1 / t_3)) # If the potential service time is smaller than `epsilon` else: # Each queue will have 1/3 ratio n_1 = 1 / 3 n_2 = 1 / 3 n_3 = 1 / 3 # Calculates the number of agents that belongs to each queue q_1 = int(n_1 * n_agents) q_2 = int(n_2 * n_agents) q_3 = int(n_3 * n_agents) return q_1, q_2, q_3 def _business_one(self, agents, function, beta): """Performs the first business phase. Args: agents (list): List of agents. function (Function): A Function object that will be used as the objective function. beta (float): Range of fluctuation. """ # Sorts agents agents.sort(key=lambda x: x.fit) # Copies temporary agents to represent `A_1`, `A_2` and `A_3` A_1, A_2, A_3 = copy.deepcopy(agents[0]), copy.deepcopy(agents[1]), copy.deepcopy(agents[2]) # Calculates the number of agents in each queue q_1, q_2, _ = self._calculate_queue(len(agents), A_1.fit, A_2.fit, A_3.fit) # Represents the update patterns by eq. 4 and eq. 5 case = None # Iterates through all agents for i, agent in enumerate(agents): # Creates another temporary agent a = copy.deepcopy(agent) # If index is smaller than the number of agents in first queue if i < q_1: # If it is the first agent in first queue if i == 0: # Defines the case as one case = 1 # `A` will receive a copy from `A_1` A = copy.deepcopy(A_1) # If index is between first and second queues elif q_1 <= i < q_1 + q_2: # If index is the first agent in second queue if i == q_1: # Defines the case as one case = 1 # `A` will receive a copy from `A_2` A = copy.deepcopy(A_2) # If index is between second and third queues else: # If index is the first agent in third queue if i == q_1 + q_2: # Defines the case as one case = 1 # `A` will receive a copy from `A_3` A = copy.deepcopy(A_3) # Generates a uniform random number alpha = r.generate_uniform_random_number(-1, 1) # Generates an Erlang distribution E = r.generate_gamma_random_number(1, 0.5, (agent.n_variables, agent.n_dimensions)) # If case is defined as one if case == 1: # Generates an Erlang number e = r.generate_gamma_random_number(1, 0.5, 1) # Calculates the fluctuation (eq. 6) F_1 = beta * alpha * (E * np.fabs(A.position - a.position)) + \ e * (A.position - a.position) # Updates the temporary agent's position (eq. 4) a.position = A.position + F_1 # Evaluates the agent a.fit = function(a.position) # If new fitness is better than current agent's fitness if a.fit < agent.fit: # Replaces the current agent's position and fitness agent.position = copy.deepcopy(a.position) agent.fit = copy.deepcopy(a.fit) # Defines the case as one case = 1 # If new fitness is worse than current agent's fitness else: # Defines the case as two case = 2 # If case is defined as two else: # Calculates the fluctuation (eq. 7) F_2 = beta * alpha * (E * np.fabs(A.position - a.position)) # Updates the temporary agent's position (eq. 5) a.position += F_2 # Evaluates the agent a.fit = function(a.position) # If new fitness is better than current agent's fitness if a.fit < agent.fit: # Replaces the current agent's position and fitness agent.position = copy.deepcopy(a.position) agent.fit = copy.deepcopy(a.fit) # Defines the case as two case = 2 # If new fitness is worse than current agent's fitness else: # Defines the case as one case = 1 def _business_two(self, agents, function): """Performs the second business phase. Args: agents (list): List of agents. function (Function): A Function object that will be used as the objective function. """ # Sorts agents agents.sort(key=lambda x: x.fit) # Copies temporary agents to represent `A_1`, `A_2` and `A_3` A_1, A_2, A_3 = copy.deepcopy(agents[0]), copy.deepcopy(agents[1]), copy.deepcopy(agents[2]) # Calculates the number of agents in each queue q_1, q_2, _ = self._calculate_queue(len(agents), A_1.fit, A_2.fit, A_3.fit) # Calculates the probability of handling the business pr = [i / len(agents) for i in range(1, len(agents) + 1)] # Calculates the confusion degree cv = A_1.fit / (A_2.fit + A_3.fit + c.EPSILON) # Iterates through all agents for i, agent in enumerate(agents): # Creates another temporary agent a = copy.deepcopy(agent) # If index is smaller than the number of agents in first queue if i < q_1: # `A` will receive a copy from `A_1` A = copy.deepcopy(A_1) # If index is between first and second queues elif q_1 <= i < q_1 + q_2: # `A` will receive a copy from `A_2` A = copy.deepcopy(A_2) # If index is between second and third queues else: # `A` will receive a copy from `A_3` A = copy.deepcopy(A_3) # Generates a uniform random number r1 = r.generate_uniform_random_number() # If random number is smaller than probability of handling the business if r1 < pr[i]: # Randomly selects two individuals A_1, A_2 = np.random.choice(agents, 2, replace=False) # Generates another uniform random number r2 = r.generate_uniform_random_number() # Generates an Erlang number e = r.generate_gamma_random_number(1, 0.5, 1) # If random number is smaller than confusion degree if r2 < cv: # Calculates the fluctuation (eq. 14) F_1 = e * (A_1.position - A_2.position) # Update agent's position (eq. 12) a.position += F_1 # If random number is bigger than confusion degree else: # Calculates the fluctuation (eq. 15) F_2 = e * (A.position - A_1.position) # Update agent's position (eq. 13) a.position += F_2 # Evaluates the agent a.fit = function(a.position) # If the new fitness is better than the current agent's fitness if a.fit < agent.fit: # Replaces the current agent's position and fitness agent.position = copy.deepcopy(a.position) agent.fit = copy.deepcopy(a.fit) def _business_three(self, agents, function): """Performs the third business phase. Args: agents (list): List of agents. function (Function): A Function object that will be used as the objective function. """ # Sorts agents agents.sort(key=lambda x: x.fit) # Calculates the probability of handling the business pr = [i / len(agents) for i in range(1, len(agents) + 1)] # Iterates through all agents for i, agent in enumerate(agents): # Creates another temporary agent a = copy.deepcopy(agent) # Iterates through all decision variables for j in range(agent.n_variables): # Generates a uniform random number r1 = r.generate_uniform_random_number() # If random number is smaller than probability of handling the business if r1 < pr[i]: # Randomly selects two individuals A_1, A_2 = np.random.choice(agents, 2, replace=False) # Generates an Erlang number e = r.generate_gamma_random_number(1, 0.5, 1) # Updates temporary agent's position (eq. 17) a.position[j] = A_1.position[j] + e * (A_2.position[j] - a.position[j]) # Evaluates the agent a.fit = function(a.position) # If the new fitness is better than the current agent's fitness if a.fit < agent.fit: # Replaces the current agent's position and fitness agent.position = copy.deepcopy(a.position) agent.fit = copy.deepcopy(a.fit) def update(self, space, function, iteration, n_iterations): """Wraps Queue Search Algorithm over all agents and variables. Args: space (Space): Space containing agents and update-related information. function (Function): A Function object that will be used as the objective function. iteration (int): Current iteration. n_iterations (int): Maximum number of iterations. """ # Calculates the range of fluctuation. beta = np.exp(np.log(1 / (iteration + c.EPSILON)) * np.sqrt(iteration / n_iterations)) # Performs the first business phase self._business_one(space.agents, function, beta) # Performs the second business phase self._business_two(space.agents, function) # Performs the third business phase self._business_three(space.agents, function)
35.446991
100
0.546035
[ "Apache-2.0" ]
anukaal/opytimizer
opytimizer/optimizers/social/qsa.py
12,371
Python
# coding: utf-8 # # Copyright 2022 :Barry-Thomas-Paul: Moss # # Licensed under the Apache License, Version 2.0 (the "License") # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http: // www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Struct Class # this is a auto generated file generated by Cheetah # Namespace: com.sun.star.ucb # Libre Office Version: 7.3 from typing import TYPE_CHECKING from ooo.oenv.env_const import UNO_ENVIRONMENT, UNO_RUNTIME, UNO_NONE if (not TYPE_CHECKING) and UNO_RUNTIME and UNO_ENVIRONMENT: import uno def _get_class(): orig_init = None ordered_keys = ('Source', 'Action', 'Content', 'Id') def init(self, *args, **kwargs): if len(kwargs) == 0 and len(args) == 1 and getattr(args[0], "__class__", None) == self.__class__: orig_init(self, args[0]) return kargs = kwargs.copy() for i, arg in enumerate(args): kargs[ordered_keys[i]] = arg orig_init(self, **kargs) type_name = 'com.sun.star.ucb.ContentEvent' struct = uno.getClass(type_name) struct.__ooo_ns__ = 'com.sun.star.ucb' struct.__ooo_full_ns__= type_name struct.__ooo_type_name__ = 'struct' orig_init = struct.__init__ struct.__init__ = init return struct ContentEvent = _get_class() else: from ...lo.ucb.content_event import ContentEvent as ContentEvent __all__ = ['ContentEvent']
34.259259
109
0.672973
[ "Apache-2.0" ]
Amourspirit/ooo_uno_tmpl
ooobuild/dyn/ucb/content_event.py
1,850
Python
# A lot of failures in these tests on Mac OS X. # Byte order related? import unittest from ctypes import * from ctypes.test import need_symbol import _ctypes_test class CFunctions(unittest.TestCase): _dll = CDLL(_ctypes_test.__file__) def S(self): return c_longlong.in_dll(self._dll, "last_tf_arg_s").value def U(self): return c_ulonglong.in_dll(self._dll, "last_tf_arg_u").value def test_byte(self): self._dll.tf_b.restype = c_byte self._dll.tf_b.argtypes = (c_byte,) self.assertEqual(self._dll.tf_b(-126), -42) self.assertEqual(self.S(), -126) def test_byte_plus(self): self._dll.tf_bb.restype = c_byte self._dll.tf_bb.argtypes = (c_byte, c_byte) self.assertEqual(self._dll.tf_bb(0, -126), -42) self.assertEqual(self.S(), -126) def test_ubyte(self): self._dll.tf_B.restype = c_ubyte self._dll.tf_B.argtypes = (c_ubyte,) self.assertEqual(self._dll.tf_B(255), 85) self.assertEqual(self.U(), 255) def test_ubyte_plus(self): self._dll.tf_bB.restype = c_ubyte self._dll.tf_bB.argtypes = (c_byte, c_ubyte) self.assertEqual(self._dll.tf_bB(0, 255), 85) self.assertEqual(self.U(), 255) def test_short(self): self._dll.tf_h.restype = c_short self._dll.tf_h.argtypes = (c_short,) self.assertEqual(self._dll.tf_h(-32766), -10922) self.assertEqual(self.S(), -32766) def test_short_plus(self): self._dll.tf_bh.restype = c_short self._dll.tf_bh.argtypes = (c_byte, c_short) self.assertEqual(self._dll.tf_bh(0, -32766), -10922) self.assertEqual(self.S(), -32766) def test_ushort(self): self._dll.tf_H.restype = c_ushort self._dll.tf_H.argtypes = (c_ushort,) self.assertEqual(self._dll.tf_H(65535), 21845) self.assertEqual(self.U(), 65535) def test_ushort_plus(self): self._dll.tf_bH.restype = c_ushort self._dll.tf_bH.argtypes = (c_byte, c_ushort) self.assertEqual(self._dll.tf_bH(0, 65535), 21845) self.assertEqual(self.U(), 65535) def test_int(self): self._dll.tf_i.restype = c_int self._dll.tf_i.argtypes = (c_int,) self.assertEqual(self._dll.tf_i(-2147483646), -715827882) self.assertEqual(self.S(), -2147483646) def test_int_plus(self): self._dll.tf_bi.restype = c_int self._dll.tf_bi.argtypes = (c_byte, c_int) self.assertEqual(self._dll.tf_bi(0, -2147483646), -715827882) self.assertEqual(self.S(), -2147483646) def test_uint(self): self._dll.tf_I.restype = c_uint self._dll.tf_I.argtypes = (c_uint,) self.assertEqual(self._dll.tf_I(4294967295), 1431655765) self.assertEqual(self.U(), 4294967295) def test_uint_plus(self): self._dll.tf_bI.restype = c_uint self._dll.tf_bI.argtypes = (c_byte, c_uint) self.assertEqual(self._dll.tf_bI(0, 4294967295), 1431655765) self.assertEqual(self.U(), 4294967295) def test_long(self): self._dll.tf_l.restype = c_long self._dll.tf_l.argtypes = (c_long,) self.assertEqual(self._dll.tf_l(-2147483646), -715827882) self.assertEqual(self.S(), -2147483646) def test_long_plus(self): self._dll.tf_bl.restype = c_long self._dll.tf_bl.argtypes = (c_byte, c_long) self.assertEqual(self._dll.tf_bl(0, -2147483646), -715827882) self.assertEqual(self.S(), -2147483646) def test_ulong(self): self._dll.tf_L.restype = c_ulong self._dll.tf_L.argtypes = (c_ulong,) self.assertEqual(self._dll.tf_L(4294967295), 1431655765) self.assertEqual(self.U(), 4294967295) def test_ulong_plus(self): self._dll.tf_bL.restype = c_ulong self._dll.tf_bL.argtypes = (c_char, c_ulong) self.assertEqual(self._dll.tf_bL(b' ', 4294967295), 1431655765) self.assertEqual(self.U(), 4294967295) def test_longlong(self): self._dll.tf_q.restype = c_longlong self._dll.tf_q.argtypes = (c_longlong, ) self.assertEqual(self._dll.tf_q(-9223372036854775806), -3074457345618258602) self.assertEqual(self.S(), -9223372036854775806) def test_longlong_plus(self): self._dll.tf_bq.restype = c_longlong self._dll.tf_bq.argtypes = (c_byte, c_longlong) self.assertEqual(self._dll.tf_bq(0, -9223372036854775806), -3074457345618258602) self.assertEqual(self.S(), -9223372036854775806) def test_ulonglong(self): self._dll.tf_Q.restype = c_ulonglong self._dll.tf_Q.argtypes = (c_ulonglong, ) self.assertEqual(self._dll.tf_Q(18446744073709551615), 6148914691236517205) self.assertEqual(self.U(), 18446744073709551615) def test_ulonglong_plus(self): self._dll.tf_bQ.restype = c_ulonglong self._dll.tf_bQ.argtypes = (c_byte, c_ulonglong) self.assertEqual(self._dll.tf_bQ(0, 18446744073709551615), 6148914691236517205) self.assertEqual(self.U(), 18446744073709551615) def test_float(self): self._dll.tf_f.restype = c_float self._dll.tf_f.argtypes = (c_float,) self.assertEqual(self._dll.tf_f(-42.), -14.) self.assertEqual(self.S(), -42) def test_float_plus(self): self._dll.tf_bf.restype = c_float self._dll.tf_bf.argtypes = (c_byte, c_float) self.assertEqual(self._dll.tf_bf(0, -42.), -14.) self.assertEqual(self.S(), -42) def test_double(self): self._dll.tf_d.restype = c_double self._dll.tf_d.argtypes = (c_double,) self.assertEqual(self._dll.tf_d(42.), 14.) self.assertEqual(self.S(), 42) def test_double_plus(self): self._dll.tf_bd.restype = c_double self._dll.tf_bd.argtypes = (c_byte, c_double) self.assertEqual(self._dll.tf_bd(0, 42.), 14.) self.assertEqual(self.S(), 42) def test_longdouble(self): self._dll.tf_D.restype = c_longdouble self._dll.tf_D.argtypes = (c_longdouble,) self.assertEqual(self._dll.tf_D(42.), 14.) self.assertEqual(self.S(), 42) def test_longdouble_plus(self): self._dll.tf_bD.restype = c_longdouble self._dll.tf_bD.argtypes = (c_byte, c_longdouble) self.assertEqual(self._dll.tf_bD(0, 42.), 14.) self.assertEqual(self.S(), 42) def test_callwithresult(self): def process_result(result): return result * 2 self._dll.tf_i.restype = process_result self._dll.tf_i.argtypes = (c_int,) self.assertEqual(self._dll.tf_i(42), 28) self.assertEqual(self.S(), 42) self.assertEqual(self._dll.tf_i(-42), -28) self.assertEqual(self.S(), -42) def test_void(self): self._dll.tv_i.restype = None self._dll.tv_i.argtypes = (c_int,) self.assertEqual(self._dll.tv_i(42), None) self.assertEqual(self.S(), 42) self.assertEqual(self._dll.tv_i(-42), None) self.assertEqual(self.S(), -42) # The following repeats the above tests with stdcall functions (where # they are available) try: WinDLL except NameError: def stdcall_dll(*_): pass else: class stdcall_dll(WinDLL): def __getattr__(self, name): if name[:2] == '__' and name[-2:] == '__': raise AttributeError(name) func = self._FuncPtr(("s_" + name, self)) setattr(self, name, func) return func @need_symbol('WinDLL') class stdcallCFunctions(CFunctions): _dll = stdcall_dll(_ctypes_test.__file__) if __name__ == '__main__': unittest.main()
37.051643
89
0.628865
[ "Apache-2.0" ]
BirknerAlex/cloudbase-init-installer-1
Python36_x64_Template/Lib/ctypes/test/test_cfuncs.py
7,892
Python
# coding: utf-8 # Copyright (c) 2016, 2022, Oracle and/or its affiliates. All rights reserved. # This software is dual-licensed to you under the Universal Permissive License (UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl or Apache License 2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose either license. from oci.util import formatted_flat_dict, NONE_SENTINEL, value_allowed_none_or_none_sentinel # noqa: F401 from oci.decorators import init_model_state_from_kwargs @init_model_state_from_kwargs class WorkRequestLogEntryCollection(object): """ Wrapper object for an array of WorkRequestLogEntry objects. """ def __init__(self, **kwargs): """ Initializes a new WorkRequestLogEntryCollection object with values from keyword arguments. The following keyword arguments are supported (corresponding to the getters/setters of this class): :param items: The value to assign to the items property of this WorkRequestLogEntryCollection. :type items: list[oci.network_load_balancer.models.WorkRequestLogEntry] """ self.swagger_types = { 'items': 'list[WorkRequestLogEntry]' } self.attribute_map = { 'items': 'items' } self._items = None @property def items(self): """ Gets the items of this WorkRequestLogEntryCollection. An array of WorkRequestLogEntry objects. :return: The items of this WorkRequestLogEntryCollection. :rtype: list[oci.network_load_balancer.models.WorkRequestLogEntry] """ return self._items @items.setter def items(self, items): """ Sets the items of this WorkRequestLogEntryCollection. An array of WorkRequestLogEntry objects. :param items: The items of this WorkRequestLogEntryCollection. :type: list[oci.network_load_balancer.models.WorkRequestLogEntry] """ self._items = items def __repr__(self): return formatted_flat_dict(self) def __eq__(self, other): if other is None: return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not self == other
32
245
0.680458
[ "Apache-2.0", "BSD-3-Clause" ]
LaudateCorpus1/oci-python-sdk
src/oci/network_load_balancer/models/work_request_log_entry_collection.py
2,272
Python
class Solution: def twoSum(self, nums, target): """ :type nums: List[int] :type target: int :rtype: List[int] """ lookup = dict(((v, i) for i, v in enumerate(nums))) return next(( (i+1, lookup.get(target-v)+1) for i, v in enumerate(nums) if lookup.get(target-v, i) != i), None) a = Solution() print(a.twoSum([2, 11, 7, 15],9)) # 越简单的问题越要小心
29.266667
59
0.498861
[ "MIT" ]
mengyangbai/leetcode
array/twosum.py
459
Python
# # @lc app=leetcode id=102 lang=python3 # # [102] Binary Tree Level Order Traversal # # @lc code=start # Definition for a binary tree node. class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right from typing import List, Optional class Solution: def levelOrder(self, root: Optional[TreeNode]) -> List[List[int]]: ans = [] def _larger(n): for i in range(len(ans), n + 1): ans.append([]) def _traversal(node, depth): if node != None: _larger(depth) tmp = ans[depth] tmp.append(node.val) _traversal(node.left, depth + 1) _traversal(node.right, depth + 1) _traversal(root, 0) return ans # @lc code=end
26.151515
70
0.543453
[ "MIT" ]
ryderfang/LeetCode
Difficulty/Medium/102.binary-tree-level-order-traversal.py
863
Python
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- from azure.cli.command_modules.monitor.util import get_operator_map, get_aggregation_map from knack.log import get_logger logger = get_logger(__name__) def create_metric_alert(client, resource_group_name, rule_name, scopes, condition, disabled=False, description=None, tags=None, actions=None, severity=2, window_size='5m', evaluation_frequency='1m', auto_mitigate=None): from azure.mgmt.monitor.models import (MetricAlertResource, MetricAlertSingleResourceMultipleMetricCriteria, MetricAlertMultipleResourceMultipleMetricCriteria) # generate names for the conditions for i, cond in enumerate(condition): cond.name = 'cond{}'.format(i) criteria = None target_resource_type = None target_resource_region = None if len(scopes) == 1: criteria = MetricAlertSingleResourceMultipleMetricCriteria(all_of=condition) else: criteria = MetricAlertMultipleResourceMultipleMetricCriteria(all_of=condition) target_resource_type = _parse_resource_type(scopes) target_resource_region = 'global' kwargs = { 'description': description, 'severity': severity, 'enabled': not disabled, 'scopes': scopes, 'evaluation_frequency': evaluation_frequency, 'window_size': window_size, 'criteria': criteria, 'target_resource_type': target_resource_type, 'target_resource_region': target_resource_region, 'actions': actions, 'tags': tags, 'location': 'global', 'auto_mitigate': auto_mitigate } return client.create_or_update(resource_group_name, rule_name, MetricAlertResource(**kwargs)) def update_metric_alert(instance, scopes=None, description=None, enabled=None, tags=None, severity=None, window_size=None, evaluation_frequency=None, auto_mitigate=None, add_actions=None, remove_actions=None, add_conditions=None, remove_conditions=None): if scopes is not None: instance.scopes = scopes if description is not None: instance.description = description if enabled is not None: instance.enabled = enabled if tags is not None: instance.tags = tags if severity is not None: instance.severity = severity if window_size is not None: instance.window_size = window_size if evaluation_frequency is not None: instance.evaluation_frequency = evaluation_frequency if auto_mitigate is not None: instance.auto_mitigate = auto_mitigate # process action removals if remove_actions is not None: instance.actions = [x for x in instance.actions if x.action_group_id.lower() not in remove_actions] # process action additions if add_actions is not None: for action in add_actions: match = next( (x for x in instance.actions if action.action_group_id.lower() == x.action_group_id.lower()), None ) if match: match.webhook_properties = action.webhook_properties else: instance.actions.append(action) # process condition removals if remove_conditions is not None: instance.criteria.all_of = [x for x in instance.criteria.all_of if x.name not in remove_conditions] def _get_next_name(): i = 0 while True: possible_name = 'cond{}'.format(i) match = next((x for x in instance.criteria.all_of if x.name == possible_name), None) if match: i = i + 1 continue return possible_name # process condition additions if add_conditions is not None: for condition in add_conditions: condition.name = _get_next_name() instance.criteria.all_of.append(condition) return instance def list_metric_alerts(client, resource_group_name=None): if resource_group_name: return client.list_by_resource_group(resource_group_name) return client.list_by_subscription() def create_metric_rule(client, resource_group_name, rule_name, target, condition, description=None, disabled=False, location=None, tags=None, email_service_owners=False, actions=None): from azure.mgmt.monitor.models import AlertRuleResource, RuleEmailAction condition.data_source.resource_uri = target custom_emails, webhooks, _ = _parse_actions(actions) actions = [ RuleEmailAction(send_to_service_owners=email_service_owners, custom_emails=custom_emails) ] + (webhooks or []) rule = AlertRuleResource( location=location, alert_rule_resource_name=rule_name, is_enabled=not disabled, condition=condition, tags=tags, description=description, actions=actions) return client.create_or_update(resource_group_name, rule_name, rule) def update_metric_rule(instance, target=None, condition=None, description=None, enabled=None, metric=None, operator=None, threshold=None, aggregation=None, period=None, tags=None, email_service_owners=None, add_actions=None, remove_actions=None): # Update general properties if description is not None: instance.description = description if enabled is not None: instance.is_enabled = enabled if tags is not None: instance.tags = tags # Update conditions if condition is not None: target = target or instance.condition.data_source.resource_uri instance.condition = condition if metric is not None: instance.condition.data_source.metric_name = metric if operator is not None: instance.condition.operator = get_operator_map()[operator] if threshold is not None: instance.condition.threshold = threshold if aggregation is not None: instance.condition.time_aggregation = get_aggregation_map()[aggregation] if period is not None: instance.condition.window_size = period if target is not None: instance.condition.data_source.resource_uri = target # Update actions emails, webhooks, curr_email_service_owners = _parse_actions(instance.actions) # process removals if remove_actions is not None: removed_emails, removed_webhooks = _parse_action_removals(remove_actions) emails = [x for x in emails if x not in removed_emails] webhooks = [x for x in webhooks if x.service_uri not in removed_webhooks] # process additions if add_actions is not None: added_emails, added_webhooks, _ = _parse_actions(add_actions) emails = list(set(emails) | set(added_emails)) webhooks = webhooks + added_webhooks # Replace the existing actions array. This potentially restructures rules that were created # via other methods (Portal, ARM template). However, the functionality of these rules should # be the same. from azure.mgmt.monitor.models import RuleEmailAction if email_service_owners is None: email_service_owners = curr_email_service_owners actions = [RuleEmailAction(send_to_service_owners=email_service_owners, custom_emails=emails)] + webhooks instance.actions = actions return instance def _parse_actions(actions): """ Actions come in as a combined list. This method separates the webhook actions into a separate collection and combines any number of email actions into a single email collection and a single value for `email_service_owners`. If any email action contains a True value for `send_to_service_owners` then it is assumed the entire value should be True. """ from azure.mgmt.monitor.models import RuleEmailAction, RuleWebhookAction actions = actions or [] email_service_owners = None webhooks = [x for x in actions if isinstance(x, RuleWebhookAction)] custom_emails = set() for action in actions: if isinstance(action, RuleEmailAction): if action.send_to_service_owners: email_service_owners = True custom_emails = custom_emails | set(action.custom_emails) return list(custom_emails), webhooks, email_service_owners def _parse_action_removals(actions): """ Separates the combined list of keys to remove into webhooks and emails. """ flattened = list({x for sublist in actions for x in sublist}) emails = [] webhooks = [] for item in flattened: if item.startswith('http://') or item.startswith('https://'): webhooks.append(item) else: emails.append(item) return emails, webhooks def _parse_resource_type(scopes): from msrestazure.tools import parse_resource_id from azure.cli.core import CLIError namespace = None resource_type = None for item in scopes: item_namespace = parse_resource_id(item)['namespace'] item_resource_type = parse_resource_id(item)['resource_type'] if namespace is None and resource_type is None: namespace = item_namespace resource_type = item_resource_type else: if namespace != item_namespace or resource_type != item_resource_type: raise CLIError('Multiple scopes should be the same resource type.') return namespace + '/' + resource_type
42.447826
116
0.679402
[ "MIT" ]
21m57/azure-cli
src/azure-cli/azure/cli/command_modules/monitor/operations/metric_alert.py
9,763
Python
# -*- coding: utf-8 -*- # cox regression if __name__ == "__main__": import pandas as pd import time import numpy as np from lifelines import CoxPHFitter from lifelines.datasets import load_rossi, load_regression_dataset reps = 1 df = load_rossi() df = pd.concat([df] * reps) cp_breslow = CoxPHFitter(penalizer=0.01, l1_ratio=0.0, baseline_estimation_method="breslow") start_time = time.time() cp_breslow.fit(df, duration_col="week", event_col="arrest", show_progress=True) print("--- %s seconds ---" % (time.time() - start_time)) cp_breslow.print_summary(2) print(cp_breslow.score(df)) print(cp_breslow.score(df, scoring_method="concordance_index"))
31.043478
96
0.689076
[ "MIT" ]
ManuelaS/lifelines
perf_tests/cp_perf_test.py
714
Python
# Copyright 2010 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import datetime import uuid from oslo_serialization import jsonutils from oslo_utils import netutils from oslo_utils import timeutils import routes import six from six.moves import range import webob import webob.dec import webob.request from nova.api import auth as api_auth from nova.api import openstack as openstack_api from nova.api.openstack import api_version_request as api_version from nova.api.openstack import auth from nova.api.openstack import compute from nova.api.openstack.compute.legacy_v2 import limits from nova.api.openstack.compute import versions from nova.api.openstack import urlmap from nova.api.openstack import wsgi as os_wsgi from nova.compute import api as compute_api from nova.compute import flavors from nova.compute import vm_states from nova import context from nova.db.sqlalchemy import models from nova import exception as exc import nova.netconf from nova.network import api as network_api from nova import objects from nova.objects import base from nova import quota from nova.tests.unit import fake_block_device from nova.tests.unit import fake_network from nova.tests.unit.objects import test_keypair from nova import utils from nova import wsgi QUOTAS = quota.QUOTAS FAKE_UUID = 'aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa' FAKE_UUIDS = {} class Context(object): pass class FakeRouter(wsgi.Router): def __init__(self, ext_mgr=None): pass @webob.dec.wsgify def __call__(self, req): res = webob.Response() res.status = '200' res.headers['X-Test-Success'] = 'True' return res @webob.dec.wsgify def fake_wsgi(self, req): return self.application def wsgi_app(inner_app_v2=None, fake_auth_context=None, use_no_auth=False, ext_mgr=None, init_only=None): if not inner_app_v2: inner_app_v2 = compute.APIRouter(ext_mgr, init_only) if use_no_auth: api_v2 = openstack_api.FaultWrapper(auth.NoAuthMiddleware( limits.RateLimitingMiddleware(inner_app_v2))) else: if fake_auth_context is not None: ctxt = fake_auth_context else: ctxt = context.RequestContext('fake', 'fake', auth_token=True) api_v2 = openstack_api.FaultWrapper(api_auth.InjectContext(ctxt, limits.RateLimitingMiddleware(inner_app_v2))) mapper = urlmap.URLMap() mapper['/v2'] = api_v2 mapper['/v1.1'] = api_v2 mapper['/'] = openstack_api.FaultWrapper(versions.Versions()) return mapper def wsgi_app_v21(inner_app_v21=None, fake_auth_context=None, use_no_auth=False, ext_mgr=None, init_only=None, v2_compatible=False): if not inner_app_v21: inner_app_v21 = compute.APIRouterV21(init_only) if v2_compatible: inner_app_v21 = openstack_api.LegacyV2CompatibleWrapper(inner_app_v21) if use_no_auth: api_v21 = openstack_api.FaultWrapper(auth.NoAuthMiddlewareV3( limits.RateLimitingMiddleware(inner_app_v21))) else: if fake_auth_context is not None: ctxt = fake_auth_context else: ctxt = context.RequestContext('fake', 'fake', auth_token=True) api_v21 = openstack_api.FaultWrapper(api_auth.InjectContext(ctxt, limits.RateLimitingMiddleware(inner_app_v21))) mapper = urlmap.URLMap() mapper['/v2'] = api_v21 mapper['/v2.1'] = api_v21 mapper['/'] = openstack_api.FaultWrapper(versions.Versions()) return mapper def stub_out_key_pair_funcs(stubs, have_key_pair=True, **kwargs): def key_pair(context, user_id): return [dict(test_keypair.fake_keypair, name='key', public_key='public_key', **kwargs)] def one_key_pair(context, user_id, name): if name == 'key': return dict(test_keypair.fake_keypair, name='key', public_key='public_key', **kwargs) else: raise exc.KeypairNotFound(user_id=user_id, name=name) def no_key_pair(context, user_id): return [] if have_key_pair: stubs.Set(nova.db, 'key_pair_get_all_by_user', key_pair) stubs.Set(nova.db, 'key_pair_get', one_key_pair) else: stubs.Set(nova.db, 'key_pair_get_all_by_user', no_key_pair) def stub_out_rate_limiting(stubs): def fake_rate_init(self, app): super(limits.RateLimitingMiddleware, self).__init__(app) self.application = app v2_limits = nova.api.openstack.compute.legacy_v2.limits stubs.Set(v2_limits.RateLimitingMiddleware, '__init__', fake_rate_init) stubs.Set(v2_limits.RateLimitingMiddleware, '__call__', fake_wsgi) def stub_out_instance_quota(stubs, allowed, quota, resource='instances'): def fake_reserve(context, **deltas): requested = deltas.pop(resource, 0) if requested > allowed: quotas = dict(instances=1, cores=1, ram=1) quotas[resource] = quota usages = dict(instances=dict(in_use=0, reserved=0), cores=dict(in_use=0, reserved=0), ram=dict(in_use=0, reserved=0)) usages[resource]['in_use'] = (quotas[resource] * 0.9 - allowed) usages[resource]['reserved'] = quotas[resource] * 0.1 raise exc.OverQuota(overs=[resource], quotas=quotas, usages=usages) stubs.Set(QUOTAS, 'reserve', fake_reserve) def stub_out_networking(stubs): def get_my_ip(): return '127.0.0.1' stubs.Set(netutils, 'get_my_ipv4', get_my_ip) def stub_out_compute_api_snapshot(stubs): def snapshot(self, context, instance, name, extra_properties=None): # emulate glance rejecting image names which are too long if len(name) > 256: raise exc.Invalid return dict(id='123', status='ACTIVE', name=name, properties=extra_properties) stubs.Set(compute_api.API, 'snapshot', snapshot) class stub_out_compute_api_backup(object): def __init__(self, stubs): self.stubs = stubs self.extra_props_last_call = None stubs.Set(compute_api.API, 'backup', self.backup) def backup(self, context, instance, name, backup_type, rotation, extra_properties=None): self.extra_props_last_call = extra_properties props = dict(backup_type=backup_type, rotation=rotation) props.update(extra_properties or {}) return dict(id='123', status='ACTIVE', name=name, properties=props) def stub_out_nw_api_get_instance_nw_info(stubs, num_networks=1, func=None): fake_network.stub_out_nw_api_get_instance_nw_info(stubs) def stub_out_nw_api(stubs, cls=None, private=None, publics=None): if not private: private = '192.168.0.3' if not publics: publics = ['1.2.3.4'] class Fake(object): def __init__(self, skip_policy_check=False): pass def get_instance_nw_info(*args, **kwargs): pass def get_floating_ips_by_fixed_address(*args, **kwargs): return publics def validate_networks(self, context, networks, max_count): return max_count def create_pci_requests_for_sriov_ports(self, context, system_metadata, requested_networks): pass if cls is None: cls = Fake stubs.Set(network_api, 'API', cls) fake_network.stub_out_nw_api_get_instance_nw_info(stubs) class FakeToken(object): id_count = 0 def __getitem__(self, key): return getattr(self, key) def __init__(self, **kwargs): FakeToken.id_count += 1 self.id = FakeToken.id_count for k, v in six.iteritems(kwargs): setattr(self, k, v) class FakeRequestContext(context.RequestContext): def __init__(self, *args, **kwargs): kwargs['auth_token'] = kwargs.get('auth_token', 'fake_auth_token') super(FakeRequestContext, self).__init__(*args, **kwargs) class HTTPRequest(os_wsgi.Request): @staticmethod def blank(*args, **kwargs): kwargs['base_url'] = 'http://localhost/v2' use_admin_context = kwargs.pop('use_admin_context', False) version = kwargs.pop('version', os_wsgi.DEFAULT_API_VERSION) out = os_wsgi.Request.blank(*args, **kwargs) out.environ['nova.context'] = FakeRequestContext('fake_user', 'fake', is_admin=use_admin_context) out.api_version_request = api_version.APIVersionRequest(version) return out class HTTPRequestV21(os_wsgi.Request): @staticmethod def blank(*args, **kwargs): kwargs['base_url'] = 'http://localhost/v3' use_admin_context = kwargs.pop('use_admin_context', False) version = kwargs.pop('version', os_wsgi.DEFAULT_API_VERSION) out = os_wsgi.Request.blank(*args, **kwargs) out.api_version_request = api_version.APIVersionRequest(version) out.environ['nova.context'] = FakeRequestContext('fake_user', 'fake', is_admin=use_admin_context) return out class TestRouter(wsgi.Router): def __init__(self, controller, mapper=None): if not mapper: mapper = routes.Mapper() mapper.resource("test", "tests", controller=os_wsgi.Resource(controller)) super(TestRouter, self).__init__(mapper) class TestRouterV21(wsgi.Router): def __init__(self, controller, mapper=None): if not mapper: mapper = routes.Mapper() mapper.resource("test", "tests", controller=os_wsgi.ResourceV21(controller)) super(TestRouterV21, self).__init__(mapper) class FakeAuthDatabase(object): data = {} @staticmethod def auth_token_get(context, token_hash): return FakeAuthDatabase.data.get(token_hash, None) @staticmethod def auth_token_create(context, token): fake_token = FakeToken(created_at=timeutils.utcnow(), **token) FakeAuthDatabase.data[fake_token.token_hash] = fake_token FakeAuthDatabase.data['id_%i' % fake_token.id] = fake_token return fake_token @staticmethod def auth_token_destroy(context, token_id): token = FakeAuthDatabase.data.get('id_%i' % token_id) if token and token.token_hash in FakeAuthDatabase.data: del FakeAuthDatabase.data[token.token_hash] del FakeAuthDatabase.data['id_%i' % token_id] class FakeRateLimiter(object): def __init__(self, application): self.application = application @webob.dec.wsgify def __call__(self, req): return self.application def create_info_cache(nw_cache): if nw_cache is None: pub0 = ('192.168.1.100',) pub1 = ('2001:db8:0:1::1',) def _ip(ip): return {'address': ip, 'type': 'fixed'} nw_cache = [ {'address': 'aa:aa:aa:aa:aa:aa', 'id': 1, 'network': {'bridge': 'br0', 'id': 1, 'label': 'test1', 'subnets': [{'cidr': '192.168.1.0/24', 'ips': [_ip(ip) for ip in pub0]}, {'cidr': 'b33f::/64', 'ips': [_ip(ip) for ip in pub1]}]}}] if not isinstance(nw_cache, six.string_types): nw_cache = jsonutils.dumps(nw_cache) return { "info_cache": { "network_info": nw_cache, "deleted": False, "created_at": None, "deleted_at": None, "updated_at": None, } } def get_fake_uuid(token=0): if token not in FAKE_UUIDS: FAKE_UUIDS[token] = str(uuid.uuid4()) return FAKE_UUIDS[token] def fake_instance_get(**kwargs): def _return_server(context, uuid, columns_to_join=None, use_slave=False): return stub_instance(1, **kwargs) return _return_server def fake_compute_get(**kwargs): def _return_server_obj(context, uuid, want_objects=False, expected_attrs=None): return stub_instance_obj(context, **kwargs) return _return_server_obj def fake_actions_to_locked_server(self, context, instance, *args, **kwargs): raise exc.InstanceIsLocked(instance_uuid=instance['uuid']) def fake_instance_get_all_by_filters(num_servers=5, **kwargs): def _return_servers(context, *args, **kwargs): servers_list = [] marker = None limit = None found_marker = False if "marker" in kwargs: marker = kwargs["marker"] if "limit" in kwargs: limit = kwargs["limit"] if 'columns_to_join' in kwargs: kwargs.pop('columns_to_join') if 'use_slave' in kwargs: kwargs.pop('use_slave') if 'sort_keys' in kwargs: kwargs.pop('sort_keys') if 'sort_dirs' in kwargs: kwargs.pop('sort_dirs') for i in range(num_servers): uuid = get_fake_uuid(i) server = stub_instance(id=i + 1, uuid=uuid, **kwargs) servers_list.append(server) if marker is not None and uuid == marker: found_marker = True servers_list = [] if marker is not None and not found_marker: raise exc.MarkerNotFound(marker=marker) if limit is not None: servers_list = servers_list[:limit] return servers_list return _return_servers def fake_compute_get_all(num_servers=5, **kwargs): def _return_servers_objs(context, search_opts=None, limit=None, marker=None, want_objects=False, expected_attrs=None, sort_keys=None, sort_dirs=None): db_insts = fake_instance_get_all_by_filters()(None, limit=limit, marker=marker) expected = ['metadata', 'system_metadata', 'flavor', 'info_cache', 'security_groups'] return base.obj_make_list(context, objects.InstanceList(), objects.Instance, db_insts, expected_attrs=expected) return _return_servers_objs def stub_instance(id=1, user_id=None, project_id=None, host=None, node=None, vm_state=None, task_state=None, reservation_id="", uuid=FAKE_UUID, image_ref="10", flavor_id="1", name=None, key_name='', access_ipv4=None, access_ipv6=None, progress=0, auto_disk_config=False, display_name=None, include_fake_metadata=True, config_drive=None, power_state=None, nw_cache=None, metadata=None, security_groups=None, root_device_name=None, limit=None, marker=None, launched_at=timeutils.utcnow(), terminated_at=timeutils.utcnow(), availability_zone='', locked_by=None, cleaned=False, memory_mb=0, vcpus=0, root_gb=0, ephemeral_gb=0, instance_type=None, launch_index=0, kernel_id="", ramdisk_id="", user_data=None): if user_id is None: user_id = 'fake_user' if project_id is None: project_id = 'fake_project' if metadata: metadata = [{'key': k, 'value': v} for k, v in metadata.items()] elif include_fake_metadata: metadata = [models.InstanceMetadata(key='seq', value=str(id))] else: metadata = [] inst_type = flavors.get_flavor_by_flavor_id(int(flavor_id)) sys_meta = flavors.save_flavor_info({}, inst_type) if host is not None: host = str(host) if key_name: key_data = 'FAKE' else: key_data = '' if security_groups is None: security_groups = [{"id": 1, "name": "test", "description": "Foo:", "project_id": "project", "user_id": "user", "created_at": None, "updated_at": None, "deleted_at": None, "deleted": False}] # ReservationID isn't sent back, hack it in there. server_name = name or "server%s" % id if reservation_id != "": server_name = "reservation_%s" % (reservation_id, ) info_cache = create_info_cache(nw_cache) if instance_type is None: instance_type = flavors.get_default_flavor() flavorinfo = jsonutils.dumps({ 'cur': instance_type.obj_to_primitive(), 'old': None, 'new': None, }) instance = { "id": int(id), "created_at": datetime.datetime(2010, 10, 10, 12, 0, 0), "updated_at": datetime.datetime(2010, 11, 11, 11, 0, 0), "deleted_at": datetime.datetime(2010, 12, 12, 10, 0, 0), "deleted": None, "user_id": user_id, "project_id": project_id, "image_ref": image_ref, "kernel_id": kernel_id, "ramdisk_id": ramdisk_id, "launch_index": launch_index, "key_name": key_name, "key_data": key_data, "config_drive": config_drive, "vm_state": vm_state or vm_states.BUILDING, "task_state": task_state, "power_state": power_state, "memory_mb": memory_mb, "vcpus": vcpus, "root_gb": root_gb, "ephemeral_gb": ephemeral_gb, "ephemeral_key_uuid": None, "hostname": display_name or server_name, "host": host, "node": node, "instance_type_id": 1, "instance_type": inst_type, "user_data": user_data, "reservation_id": reservation_id, "mac_address": "", "launched_at": launched_at, "terminated_at": terminated_at, "availability_zone": availability_zone, "display_name": display_name or server_name, "display_description": "", "locked": locked_by is not None, "locked_by": locked_by, "metadata": metadata, "access_ip_v4": access_ipv4, "access_ip_v6": access_ipv6, "uuid": uuid, "progress": progress, "auto_disk_config": auto_disk_config, "name": "instance-%s" % id, "shutdown_terminate": True, "disable_terminate": False, "security_groups": security_groups, "root_device_name": root_device_name, "system_metadata": utils.dict_to_metadata(sys_meta), "pci_devices": [], "vm_mode": "", "default_swap_device": "", "default_ephemeral_device": "", "launched_on": "", "cell_name": "", "architecture": "", "os_type": "", "extra": {"numa_topology": None, "pci_requests": None, "flavor": flavorinfo, }, "cleaned": cleaned} instance.update(info_cache) instance['info_cache']['instance_uuid'] = instance['uuid'] return instance def stub_instance_obj(ctxt, *args, **kwargs): db_inst = stub_instance(*args, **kwargs) expected = ['metadata', 'system_metadata', 'flavor', 'info_cache', 'security_groups'] inst = objects.Instance._from_db_object(ctxt, objects.Instance(), db_inst, expected_attrs=expected) inst.fault = None return inst def stub_volume(id, **kwargs): volume = { 'id': id, 'user_id': 'fakeuser', 'project_id': 'fakeproject', 'host': 'fakehost', 'size': 1, 'availability_zone': 'fakeaz', 'instance_uuid': 'fakeuuid', 'mountpoint': '/', 'status': 'fakestatus', 'attach_status': 'attached', 'name': 'vol name', 'display_name': 'displayname', 'display_description': 'displaydesc', 'created_at': datetime.datetime(1999, 1, 1, 1, 1, 1), 'snapshot_id': None, 'volume_type_id': 'fakevoltype', 'volume_metadata': [], 'volume_type': {'name': 'vol_type_name'}} volume.update(kwargs) return volume def stub_volume_create(self, context, size, name, description, snapshot, **param): vol = stub_volume('1') vol['size'] = size vol['display_name'] = name vol['display_description'] = description try: vol['snapshot_id'] = snapshot['id'] except (KeyError, TypeError): vol['snapshot_id'] = None vol['availability_zone'] = param.get('availability_zone', 'fakeaz') return vol def stub_volume_update(self, context, *args, **param): pass def stub_volume_delete(self, context, *args, **param): pass def stub_volume_get(self, context, volume_id): return stub_volume(volume_id) def stub_volume_notfound(self, context, volume_id): raise exc.VolumeNotFound(volume_id=volume_id) def stub_volume_get_all(context, search_opts=None): return [stub_volume(100, project_id='fake'), stub_volume(101, project_id='superfake'), stub_volume(102, project_id='superduperfake')] def stub_volume_check_attach(self, context, *args, **param): pass def stub_snapshot(id, **kwargs): snapshot = { 'id': id, 'volume_id': 12, 'status': 'available', 'volume_size': 100, 'created_at': timeutils.utcnow(), 'display_name': 'Default name', 'display_description': 'Default description', 'project_id': 'fake' } snapshot.update(kwargs) return snapshot def stub_snapshot_create(self, context, volume_id, name, description): return stub_snapshot(100, volume_id=volume_id, display_name=name, display_description=description) def stub_compute_volume_snapshot_create(self, context, volume_id, create_info): return {'snapshot': {'id': 100, 'volumeId': volume_id}} def stub_snapshot_delete(self, context, snapshot_id): if snapshot_id == '-1': raise exc.SnapshotNotFound(snapshot_id=snapshot_id) def stub_compute_volume_snapshot_delete(self, context, volume_id, snapshot_id, delete_info): pass def stub_snapshot_get(self, context, snapshot_id): if snapshot_id == '-1': raise exc.SnapshotNotFound(snapshot_id=snapshot_id) return stub_snapshot(snapshot_id) def stub_snapshot_get_all(self, context): return [stub_snapshot(100, project_id='fake'), stub_snapshot(101, project_id='superfake'), stub_snapshot(102, project_id='superduperfake')] def stub_bdm_get_all_by_instance(context, instance_uuid, use_slave=False): return [fake_block_device.FakeDbBlockDeviceDict( {'id': 1, 'source_type': 'volume', 'destination_type': 'volume', 'volume_id': 'volume_id1', 'instance_uuid': instance_uuid}), fake_block_device.FakeDbBlockDeviceDict( {'id': 2, 'source_type': 'volume', 'destination_type': 'volume', 'volume_id': 'volume_id2', 'instance_uuid': instance_uuid})] def fake_get_available_languages(): existing_translations = ['en_GB', 'en_AU', 'de', 'zh_CN', 'en_US'] return existing_translations def fake_not_implemented(*args, **kwargs): raise NotImplementedError()
33.100551
79
0.624402
[ "Apache-2.0" ]
isabella232/nova
nova/tests/unit/api/openstack/fakes.py
24,031
Python
# made by @Eviral from . import * @bot.on(admin_cmd(pattern="indanime(.*)")) async def xd(event): await event.edit("wishing to all🇮🇳🇮🇳...") event.pattern_match.group(1) async for tele in borg.iter_dialogs(): if tele.is_group: chat = tele.id lol = 0 done = 0 try: await bot.send_message( chat, '⣿⣿⣿⣿⣿⣍⠀⠉⠻⠟⠻⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿\n⣿⣿⣿⣿⣿⡇⠀⠀⠀⠀⣰⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿\n⣿⣿⣿⣿⣿⣿⠓⠀⠀⢒⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿\n⣿⣿⣿⣿⡿⠃⠀⠀⠀⠀⠈⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿⠿⣿\n⣿⡿⠋⠋⠀⠀⠀⠀⠀⠀⠈⠙⠻⢿⢿⣿⣿⡿⣿⣿⡟⠋⠀⢀⣩\n⣿⣿⡄⠀⠀⠀⠀⠀⠁⡀⠀⠀⠀⠀⠈⠉⠛⢷⣭⠉⠁⠀⠀⣿⣿\n⣇⣀. INDIA🇮🇳INDIA🇮🇳⠆⠠..⠘⢷⣿⣿⣛⠐⣶⣿⣿\n⣿⣄⠀⣰⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠐⢀⣠⣿⣿⣿⣾⣿⣿⣿\n⣿⣿⣿⣿⠀⠀⠀⠀⡠⠀⠀⠀⠀⠀⢀⣠⣿⣿⣿⣿⣿⣿⣿⣿⣿\n⣿⣿⣿⣿⠀⠀⠀⠀⠀⠀⠀⠄⠀⣤⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿\n⣿⣿⣿⣿⡄⠀⠀⠀⠀⠀⣠⣤⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿\n⣿⣿⣿⣿⣿⠀⠀⠂⠀⠀⢿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿\n⣿⣿⣿⣿⣿⣇⠀⠀⠀⢠⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿\n⣿⣿⣿⣿⣿⣿⡆⠀⢀⣼⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿\n⣿⣿⣿⣿⣿⣿⣿⣦⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿\n\n[нαρργ ιи∂ρєи∂єиϲє ∂αγ🇮🇳](https://t.me/FirexSupport)', ) done += 1 except: lol += 1 await event.reply( 'happy Independence day 🇮🇳 from FIREX support\nthanks for using this Plugin.' ) CmdHelp("indanime").add_command("indanime", None, "Wish u happy indpendamce day").add()
38.225806
488
0.357806
[ "MIT" ]
aksr-aashish/FIREXUSERBOT
userbot/plugins/indanime.py
1,969
Python
"""Support for Aqualink temperature sensors.""" from __future__ import annotations from openpeerpower.components.sensor import DOMAIN, SensorEntity from openpeerpower.config_entries import ConfigEntry from openpeerpower.const import DEVICE_CLASS_TEMPERATURE, TEMP_CELSIUS, TEMP_FAHRENHEIT from openpeerpower.core import OpenPeerPower from . import AqualinkEntity from .const import DOMAIN as AQUALINK_DOMAIN PARALLEL_UPDATES = 0 async def async_setup_entry( opp: OpenPeerPower, config_entry: ConfigEntry, async_add_entities ) -> None: """Set up discovered sensors.""" devs = [] for dev in opp.data[AQUALINK_DOMAIN][DOMAIN]: devs.append(OppAqualinkSensor(dev)) async_add_entities(devs, True) class OppAqualinkSensor(AqualinkEntity, SensorEntity): """Representation of a sensor.""" @property def name(self) -> str: """Return the name of the sensor.""" return self.dev.label @property def unit_of_measurement(self) -> str | None: """Return the measurement unit for the sensor.""" if self.dev.name.endswith("_temp"): if self.dev.system.temp_unit == "F": return TEMP_FAHRENHEIT return TEMP_CELSIUS return None @property def state(self) -> str | None: """Return the state of the sensor.""" if self.dev.state == "": return None try: state = int(self.dev.state) except ValueError: state = float(self.dev.state) return state @property def device_class(self) -> str | None: """Return the class of the sensor.""" if self.dev.name.endswith("_temp"): return DEVICE_CLASS_TEMPERATURE return None
29.166667
87
0.662286
[ "Apache-2.0" ]
OpenPeerPower/core
openpeerpower/components/iaqualink/sensor.py
1,750
Python
""" Copyright (C) 2020 Piek Solutions LLC Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ import requests import binascii from codecs import getencoder import time def enforce_hex(addr): if type(addr) == int and addr < 256: return hex(addr).lstrip('0x') elif type(addr) == str: return addr.lstrip('0x') else: raise ValueError('addr must be hex string or int < 256') def scanI2c(ip): """ scans devices on i2c bus :return: list of hex string addresses present on i2c bus """ try: req_url = 'http://' + ip + '/i2c/scan' resp = requests.get(url=req_url) return resp.content.decode('utf-8') except ValueError: print("i2c failed scan") class I2cHttpDevice: def __init__(self, ip, dev_addr): # device address should be hex string self.url = 'http://' + ip + '/i2c/' self.dev_addr = enforce_hex(dev_addr) def read(self, reg_addr, len_read): """ read len_read bytes starting from register reg_addr :param reg_addr: (str) register address to read in hex :param len_read: (int) number of bytes to read :return: bytestring of data """ assert len_read < 256, "num of bytes to read cannot exceed 255" hex_reg_addr = enforce_hex(reg_addr) try: req_url = '%sread/%s/%s/%d' % (self.url, self.dev_addr, hex_reg_addr, len_read) resp = requests.get(url=req_url) return binascii.a2b_hex(resp.content) except ValueError: print("i2c failed read") def write(self, reg_addr, data, len_data=0): """ :param reg_addr: (str) register address to write to in hex :param data: (str or bytes) hex-encoded bytes, ie: '014ce8' :param len_data: (optional int) dummy variable to support code portability :return: None """ hex_reg_addr = enforce_hex(reg_addr) if type(data) == bytes: # to work across python 2+3: # https://izziswift.com/whats-the-correct-way-to-convert-bytes-to-a-hex-string-in-python-3/ data = getencoder('hex')(data)[0].decode('ascii') try: req_url = '%swrite/%s/%s/%s' % (self.url, self.dev_addr, hex_reg_addr, data) requests.get(url=req_url) except ValueError: print("i2c device 0x%s failed write" % self.dev_addr) class BME280(I2cHttpDevice): """ Bosch BME280 https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bme280-ds002.pdf code adapted from BME280.py, http://abyz.me.uk/rpi/pigpio/examples.html (2016-08-05) This example shows that porting the original code to use the Wifi Papaya Controller is straightforward and minimal """ _calib00 = 0x88 _T1 = 0x88 - _calib00 _T2 = 0x8A - _calib00 _T3 = 0x8C - _calib00 _P1 = 0x8E - _calib00 _P2 = 0x90 - _calib00 _P3 = 0x92 - _calib00 _P4 = 0x94 - _calib00 _P5 = 0x96 - _calib00 _P6 = 0x98 - _calib00 _P7 = 0x9A - _calib00 _P8 = 0x9C - _calib00 _P9 = 0x9E - _calib00 _H1 = 0xA1 - _calib00 _chip_id = 0xD0 _reset = 0xE0 _calib26 = 0xE1 _H2 = 0xE1 - _calib26 _H3 = 0xE3 - _calib26 _xE4 = 0xE4 - _calib26 _xE5 = 0xE5 - _calib26 _xE6 = 0xE6 - _calib26 _H6 = 0xE7 - _calib26 _ctrl_hum = 0xF2 _status = 0xF3 _ctrl_meas = 0xF4 _config = 0xF5 _rawdata = 0xF7 _press = 0xF7 _temp = 0xFA _humid = 0xFD _p_msb = 0xF7 - _rawdata _p_lsb = 0xF8 - _rawdata _p_xlsb = 0xF9 - _rawdata _t_msb = 0xFA - _rawdata _t_lsb = 0xFB - _rawdata _t_xlsb = 0xFC - _rawdata _h_msb = 0xFD - _rawdata _h_lsb = 0xFE - _rawdata _os_ms = [0, 1, 2, 4, 8, 16] def __init__(self, i2c_conn, gpib_addr, sampling): super().__init__(i2c_conn, gpib_addr) # additional initialization procedure self.sampling = sampling self._load_calibration() self.measure_delay = self._measurement_time(sampling, sampling, sampling) self.t_fine = 0.0 def _s16(self, _calib, off): v = self._u16(_calib, off) if v > 32767: v -= 65536 return v def _u16(self, _calib, off): return _calib[off] | (_calib[off + 1] << 8) def _u8(self, _calib, off): return _calib[off] def _s8(self, _calib, off): v = self._u8(_calib, off) if v > 127: v -= 256 return v def _measurement_time(self, os_temp, os_press, os_hum): ms = ((1.25 + 2.3 * self._os_ms[os_temp]) + (0.575 + 2.3 * self._os_ms[os_press]) + (0.575 + 2.3 * self._os_ms[os_hum])) return ms / 1000.0 def _load_calibration(self): d1 = self.read(self._calib00, 26) self.T1 = self._u16(d1, self._T1) self.T2 = self._s16(d1, self._T2) self.T3 = self._s16(d1, self._T3) self.P1 = self._u16(d1, self._P1) self.P2 = self._s16(d1, self._P2) self.P3 = self._s16(d1, self._P3) self.P4 = self._s16(d1, self._P4) self.P5 = self._s16(d1, self._P5) self.P6 = self._s16(d1, self._P6) self.P7 = self._s16(d1, self._P7) self.P8 = self._s16(d1, self._P8) self.P9 = self._s16(d1, self._P9) self.H1 = self._u8(d1, self._H1) d2 = self.read(self._calib26, 7) self.H2 = self._s16(d2, self._H2) self.H3 = self._u8(d2, self._H3) t = self._u8(d2, self._xE5) t_l = t & 15 t_h = (t >> 4) & 15 self.H4 = (self._u8(d2, self._xE4) << 4) | t_l if self.H4 > 2047: self.H4 -= 4096 self.H5 = (self._u8(d2, self._xE6) << 4) | t_h if self.H5 > 2047: self.H5 -= 4096 self.H6 = self._s8(d2, self._H6) def _read_raw_data(self): # write control bytes for oversampling config self.write(self._ctrl_hum, bytes([self.sampling]), 1) self.write(self._ctrl_meas, bytes([self.sampling << 5 | self.sampling << 2 | 1]), 1) time.sleep(self.measure_delay) # read 8 bytes starting from register self._rawdata d = self.read(self._rawdata, 8) # print(''.join(format(x, '02x') for x in d)) msb = d[self._t_msb] lsb = d[self._t_lsb] xlsb = d[self._t_xlsb] raw_t = ((msb << 16) | (lsb << 8) | xlsb) >> 4 msb = d[self._p_msb] lsb = d[self._p_lsb] xlsb = d[self._p_xlsb] raw_p = ((msb << 16) | (lsb << 8) | xlsb) >> 4 msb = d[self._h_msb] lsb = d[self._h_lsb] raw_h = (msb << 8) | lsb return raw_t, raw_p, raw_h def read_temp(self): # write measurement control byte self.write(self._ctrl_meas, bytes([self.sampling << 5 | self.sampling << 2 | 1]), 1) time.sleep(self.measure_delay) # read 3 bytes starting from register self._temp d = self.read(self._temp, 3) # print(''.join(format(x, '02x') for x in d)) msb, lsb, xlsb = d raw_t = ((msb << 16) | (lsb << 8) | xlsb) >> 4 var1 = (raw_t / 16384.0 - (self.T1) / 1024.0) * float(self.T2) var2 = (((raw_t) / 131072.0 - (self.T1) / 8192.0) * ((raw_t) / 131072.0 - (self.T1) / 8192.0)) * (self.T3) self.t_fine = var1 + var2 t = (var1 + var2) / 5120.0 return t def read_data(self): raw_t, raw_p, raw_h = self._read_raw_data() var1 = (raw_t / 16384.0 - (self.T1) / 1024.0) * float(self.T2) var2 = (((raw_t) / 131072.0 - (self.T1) / 8192.0) * ((raw_t) / 131072.0 - (self.T1) / 8192.0)) * (self.T3) self.t_fine = var1 + var2 t = (var1 + var2) / 5120.0 var1 = (self.t_fine / 2.0) - 64000.0 var2 = var1 * var1 * self.P6 / 32768.0 var2 = var2 + (var1 * self.P5 * 2.0) var2 = (var2 / 4.0) + (self.P4 * 65536.0) var1 = ((self.P3 * var1 * var1 / 524288.0) + (self.P2 * var1)) / 524288.0 var1 = (1.0 + var1 / 32768.0) * self.P1 if var1 != 0.0: p = 1048576.0 - raw_p p = (p - (var2 / 4096.0)) * 6250.0 / var1 var1 = self.P9 * p * p / 2147483648.0 var2 = p * self.P8 / 32768.0 p = p + (var1 + var2 + self.P7) / 16.0 else: p = 0 h = self.t_fine - 76800.0 h = ((raw_h - ((self.H4) * 64.0 + (self.H5) / 16384.0 * h)) * ((self.H2) / 65536.0 * (1.0 + (self.H6) / 67108864.0 * h * (1.0 + (self.H3) / 67108864.0 * h)))) h = h * (1.0 - self.H1 * h / 524288.0) if h > 100.0: h = 100.0 elif h < 0.0: h = 0.0 return t, p, h
33.512739
756
0.566949
[ "BSD-3-Clause" ]
papaya-iot/papaya-examples
python/papaya_i2chttpinst.py
10,523
Python
# You should modify this for your own use. # In particular, set the FQDN to your domain name, and # pick and set a secure SECRET_KEY. If you are going # to run HA, you will want to modify the SQLALCHEMY # variables to point to your shared server rather than # SQLite3. import os ENV = os.environ.get("ENV", "dev") SECRET_KEY = 'top-secret' SQLALCHEMY_DATABASE_URI = 'sqlite:///db.sqlite' SQLALCHEMY_TRACK_MODIFICATIONS = False PERMANENT_SESSION_LIFETIME = 60 * 60 * 20 BOOTSTRAP_CDN_FORCE_SSL = True BOOTSTRAP_SERVE_LOCAL = True SCHEME = "https" FQDN = f'fed-{ENV}.bortels.us' URL = f'{SCHEME}://{FQDN}'
30.3
54
0.745875
[ "MIT" ]
bortels/awsfed
app/config.py
606
Python
# Copyright 2009-2015 Eucalyptus Systems, Inc. # # Redistribution and use of this software in source and binary forms, # with or without modification, are permitted provided that the following # conditions are met: # # Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from requestbuilder import Arg from euca2ools.commands.iam import IAMRequest, arg_account_name class DeleteAccount(IAMRequest): DESCRIPTION = '[Eucalyptus cloud admin only] Delete an account' ARGS = [arg_account_name( help='name or ID of the account to delete (required)'), Arg('-r', '--recursive', dest='Recursive', action='store_const', const='true', help='''delete all users, groups, and policies associated with the account as well''')]
49.5
78
0.743222
[ "MIT" ]
cirobessa/receitas-aws
paws/lib/python2.7/site-packages/euca2ools-3.4.1_2_g6b3f62f2-py2.7.egg/euca2ools/commands/iam/deleteaccount.py
1,881
Python
# evaluate cnn for monthly car sales dataset from math import sqrt from numpy import array from numpy import mean from numpy import std from pandas import DataFrame from pandas import concat from pandas import read_csv from sklearn.metrics import mean_squared_error from keras.models import Sequential from keras.layers import Dense from keras.layers import Flatten from keras.layers.convolutional import Conv1D from keras.layers.convolutional import MaxPooling1D from matplotlib import pyplot # split a univariate dataset into train/test sets def train_test_split(data, n_test): return data[:-n_test], data[-n_test:] # transform list into supervised learning format def series_to_supervised(data, n_in, n_out=1): df = DataFrame(data) cols = list() # input sequence (t-n, ... t-1) for i in range(n_in, 0, -1): cols.append(df.shift(i)) # forecast sequence (t, t+1, ... t+n) for i in range(0, n_out): cols.append(df.shift(-i)) # put it all together agg = concat(cols, axis=1) # drop rows with NaN values agg.dropna(inplace=True) return agg.values # root mean squared error or rmse def measure_rmse(actual, predicted): return sqrt(mean_squared_error(actual, predicted)) # fit a model def model_fit(train, config): # unpack config n_input, n_filters, n_kernel, n_epochs, n_batch = config # prepare data data = series_to_supervised(train, n_input) train_x, train_y = data[:, :-1], data[:, -1] train_x = train_x.reshape((train_x.shape[0], train_x.shape[1], 1)) # define model model = Sequential() model.add(Conv1D(n_filters, n_kernel, activation='relu', input_shape=(n_input, 1))) model.add(Conv1D(n_filters, n_kernel, activation='relu')) model.add(MaxPooling1D()) model.add(Flatten()) model.add(Dense(1)) model.compile(loss='mse', optimizer='adam') # fit model.fit(train_x, train_y, epochs=n_epochs, batch_size=n_batch, verbose=0) return model # forecast with a pre-fit model def model_predict(model, history, config): # unpack config n_input, _, _, _, _ = config # prepare data x_input = array(history[-n_input:]).reshape((1, n_input, 1)) # forecast yhat = model.predict(x_input, verbose=0) return yhat[0] # walk-forward validation for univariate data def walk_forward_validation(data, n_test, cfg): predictions = list() # split dataset train, test = train_test_split(data, n_test) # fit model model = model_fit(train, cfg) # seed history with training dataset history = [x for x in train] # step over each time-step in the test set for i in range(len(test)): # fit model and make forecast for history yhat = model_predict(model, history, cfg) # store forecast in list of predictions predictions.append(yhat) # add actual observation to history for the next loop history.append(test[i]) # estimate prediction error error = measure_rmse(test, predictions) print(' > %.3f' % error) return error # repeat evaluation of a config def repeat_evaluate(data, config, n_test, n_repeats=30): # fit and evaluate the model n times scores = [walk_forward_validation(data, n_test, config) for _ in range(n_repeats)] return scores # summarize model performance def summarize_scores(name, scores): # print a summary scores_m, score_std = mean(scores), std(scores) print('%s: %.3f RMSE (+/- %.3f)' % (name, scores_m, score_std)) # box and whisker plot pyplot.boxplot(scores) pyplot.show() series = read_csv('monthly-car-sales.csv', header=0, index_col=0) data = series.values # data split n_test = 12 # define config config = [36, 256, 3, 100, 100] # grid search scores = repeat_evaluate(data, config, n_test) # summarize scores summarize_scores('cnn', scores)
30.974359
84
0.74117
[ "MIT" ]
gdepalma93/bright-athlete-academy
Resources/books/deep_learning_time_series_forecasting/code/chapter_14/03_cnn_forecast_model.py
3,624
Python
from __future__ import absolute_import from __future__ import division from __future__ import print_function import cv2 import numpy as np from progress.bar import Bar import time import torch import os try: from external.nms import soft_nms except: print('NMS not imported! If you need it,' ' do \n cd $CenterNet_ROOT/src/lib/external \n make') from models.decode import ctdet_decode from models.utils import flip_tensor from utils.image import get_affine_transform from utils.post_process import ctdet_post_process from utils.debugger import Debugger from .base_detector import BaseDetector class CtdetDetector(BaseDetector): def __init__(self, opt): super(CtdetDetector, self).__init__(opt) def process(self, images, return_time=False): with torch.no_grad(): output = self.model(images)[-1] hm = output['hm'].sigmoid_() wh = output['wh'] reg = output['reg'] if self.opt.reg_offset else None if self.opt.flip_test: hm = (hm[0:1] + flip_tensor(hm[1:2])) / 2 wh = (wh[0:1] + flip_tensor(wh[1:2])) / 2 reg = reg[0:1] if reg is not None else None torch.cuda.synchronize() forward_time = time.time() dets = ctdet_decode(hm, wh, reg=reg, cat_spec_wh=self.opt.cat_spec_wh, K=self.opt.K) if return_time: return output, dets, forward_time else: return output, dets def post_process(self, dets, meta, scale=1): dets = dets.detach().cpu().numpy() dets = dets.reshape(1, -1, dets.shape[2]) dets = ctdet_post_process( dets.copy(), [meta['c']], [meta['s']], meta['out_height'], meta['out_width'], self.opt.num_classes) for j in range(1, self.num_classes + 1): dets[0][j] = np.array(dets[0][j], dtype=np.float32).reshape(-1, 5) dets[0][j][:, :4] /= scale return dets[0] def merge_outputs(self, detections): results = {} for j in range(1, self.num_classes + 1): results[j] = np.concatenate( [detection[j] for detection in detections], axis=0).astype(np.float32) if len(self.scales) > 1 or self.opt.nms: soft_nms(results[j], Nt=0.5, method=2) scores = np.hstack( [results[j][:, 4] for j in range(1, self.num_classes + 1)]) if len(scores) > self.max_per_image: kth = len(scores) - self.max_per_image thresh = np.partition(scores, kth)[kth] for j in range(1, self.num_classes + 1): keep_inds = (results[j][:, 4] >= thresh) results[j] = results[j][keep_inds] return results def debug(self, debugger, images, dets, output, scale=1): detection = dets.detach().cpu().numpy().copy() detection[:, :, :4] *= self.opt.down_ratio for i in range(1): img = images[i].detach().cpu().numpy().transpose(1, 2, 0) img = ((img * self.std + self.mean) * 255).astype(np.uint8) pred = debugger.gen_colormap(output['hm'][i].detach().cpu().numpy()) debugger.add_blend_img(img, pred, 'pred_hm_{:.1f}'.format(scale)) debugger.add_img(img, img_id='out_pred_{:.1f}'.format(scale)) for k in range(len(dets[i])): if detection[i, k, 4] > self.opt.center_thresh: debugger.add_coco_bbox(detection[i, k, :4], detection[i, k, -1], detection[i, k, 4], img_id='out_pred_{:.1f}'.format(scale)) def show_results(self, debugger, image, results): debugger.add_img(image, img_id='ctdet') for j in range(1, self.num_classes + 1): for bbox in results[j]: if bbox[4] > self.opt.vis_thresh: debugger.add_coco_bbox(bbox[:4], j - 1, bbox[4], img_id='ctdet') debugger.show_all_imgs(pause=self.pause) #prefix = image_name.split('.')[0] #path = os.path.dirname(self.opt.det_output_path) + '/img' #debugger.save_all_imgs(path, prefix) def save_results_only(self, debugger, image, results, image_name): debugger.add_img(image, img_id='ctdet') for j in range(1, self.num_classes + 1): for bbox in results[j]: if bbox[4] > self.opt.vis_thresh: debugger.add_coco_bbox(bbox[:4], j - 1, bbox[4], img_id='ctdet') prefix = image_name.split('.')[0] path = os.path.dirname(self.opt.det_output_path) + '/img' debugger.save_all_imgs(path, prefix)
38.513514
90
0.638363
[ "MIT" ]
Wastoon/XinTong_CenterNet
src/lib/detectors/ctdet.py
4,275
Python
import abc from abc import ABCMeta from typing import Callable from typing import Iterator from typing import List from typing import Optional from xsdata.codegen.models import Attr from xsdata.codegen.models import Class from xsdata.models.config import GeneratorConfig from xsdata.utils.constants import return_true class ContainerInterface(abc.ABC): """Wrap a list of classes and expose a simple api for easy access and process.""" __slots__ = ("config",) def __init__(self, config: GeneratorConfig): self.config = config @abc.abstractmethod def __iter__(self) -> Iterator[Class]: """Create an iterator for the class map values.""" @abc.abstractmethod def find(self, qname: str, condition: Callable = return_true) -> Optional[Class]: """Search by qualified name for a specific class with an optional condition callable.""" @abc.abstractmethod def find_inner(self, source: Class, qname: str) -> Class: """Search by qualified name for a specific inner class or fail.""" @abc.abstractmethod def add(self, item: Class): """Add class item to the container.""" @abc.abstractmethod def extend(self, items: List[Class]): """Add a list of classes the container.""" @abc.abstractmethod def reset(self, item: Class, qname: str): """Update the given class qualified name.""" class HandlerInterface(abc.ABC): """Class handler interface.""" __slots__ = () @abc.abstractmethod def process(self, target: Class): """Process the given target class.""" class RelativeHandlerInterface(HandlerInterface, metaclass=ABCMeta): """Class handler interface with access to the complete classes container.""" __slots__ = "container" def __init__(self, container: ContainerInterface): self.container = container def base_attrs(self, target: Class) -> List[Attr]: attrs: List[Attr] = [] for extension in target.extensions: base = self.container.find(extension.type.qname) assert base is not None attrs.extend(base.attrs) attrs.extend(self.base_attrs(base)) return attrs class ContainerHandlerInterface(abc.ABC): """Class container.""" __slots__ = "container" def __init__(self, container: ContainerInterface): self.container = container @abc.abstractmethod def run(self): """Run the process for the whole container."""
27.25
85
0.67491
[ "MIT" ]
amal-khailtash/xsdata
xsdata/codegen/mixins.py
2,507
Python
#!/usr/bin/python import gdbm import sys import os db_filename = "aclhistory.db" example_filename = "HOMEOFFICEROLL3_20180521.CSV" example_status = "D" if len(sys.argv) != 3: scriptname = os.path.basename(str(sys.argv[0])) print "usage:", scriptname, "<FILENAME>", "<STATUS>" print "\t Pass in the filename and status to be set in the .db file(" + db_filename + ")" print "\t Example: ", scriptname, example_filename, example_status print "\t to set file", example_filename, "=", example_status, "in", db_filename os._exit(1) file_to_set = str(sys.argv[1]) status_to_set = str(sys.argv[2]) db_file = gdbm.open(db_filename,'c') for f in db_file.keys(): if f == file_to_set: print "Updating the key", f db_file[f] = status_to_set print "File", f, "State", db_file[f]
27
90
0.702427
[ "MIT" ]
UKHomeOffice/dq-ssm_ingest
ADT/aclhistory-edit.py
783
Python
from Tree import TreeNode def zdir(root): if root[0] == 0: return 0 #left elif root[1] ==0: return 1 #right else: return 2 #nothing def add_nodes(root, nodes): for i in range(0,len(nodes)): if nodes[i][0] == root.gfv(): root.addChild(add_nodes(TreeNode(nodes[i], 0), nodes[0:i] + nodes[i+1:])) elif nodes[i][1] == root.gfv(): root.addChild(add_nodes(TreeNode(nodes[i], 1), nodes[0:i] + nodes[i+1:])) return root f = open("Day24DB") cm = [] for l in f.readlines(): t = l.split('/') cm.append((int(t[0]), int(t[1]), 0)) cm = sorted(cm, key=sum, reverse=True) begs = filter(lambda x: x[0] == 0 or x[1] == 0 , cm) cm = filter(lambda x: not(x[0] == 0 or x[1] == 0), cm) rts = map(lambda x: TreeNode(x, zdir(x)), begs) t = TreeNode((0,0),2) for root in rts: t.addChild(add_nodes(root, filter(lambda x: not(x[0] == root.l and x[1] == root.r), cm))) print "Looking for max" print t.gwgh() print t.glen() print t.glnw()
23.634146
90
0.593395
[ "MIT" ]
JanStoltman/100DaysOfCode
AdventOfCode/Day24.py
969
Python
""" Django settings for project project. Generated by 'django-admin startproject' using Django 1.8.1. For more information on this file, see https://docs.djangoproject.com/en/1.8/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.8/ref/settings/ """ import django # Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.8/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'y*b^6p#z&cm2)8rzgbp2i4k*+rg2h%60l*bmf6hg&ro!z0-ael' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True # SECURITY WARNING: do not use '*' on production or use some HTTP(S) proxy ALLOWED_HOSTS = ['*'] # Application definition INSTALLED_APPS = ( 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ) # Django 1 if django.VERSION[0] == 1: MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'django.middleware.security.SecurityMiddleware', ) else: # Django 2+ MIDDLEWARE = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'django.middleware.security.SecurityMiddleware', ) ROOT_URLCONF = 'project.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'project.wsgi.application' # Database # https://docs.djangoproject.com/en/1.8/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Internationalization # https://docs.djangoproject.com/en/1.8/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.8/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = os.path.join(BASE_DIR, 'staticfiles')
28.016807
74
0.695861
[ "Apache-2.0" ]
AlexMeier99/s2i-python-container
examples/django-different-port-test-app/project/settings.py
3,334
Python
from flask import current_app, render_template from flask_restful import Resource, reqparse from flask_mail import Message from utils.authorizations import admin_required from models.user import UserModel class Email(Resource): NO_REPLY = "[email protected]" # Should this be dwellingly address? parser = reqparse.RequestParser() parser.add_argument("user_id", required=True) parser.add_argument("subject", required=True) parser.add_argument("body", required=True) @admin_required def post(self): data = Email.parser.parse_args() user = UserModel.find_by_id(data.user_id) message = Message(data.subject, sender=Email.NO_REPLY, body=data.body) message.recipients = [user.email] current_app.mail.send(message) return {"message": "Message sent"} @staticmethod def send_reset_password_msg(user): token = user.reset_password_token() msg = Message( "Reset password for Dwellingly", sender=Email.NO_REPLY, recipients=[user.email], ) msg.body = render_template("emails/reset_msg.txt", user=user, token=token) msg.html = render_template("emails/reset_msg.html", user=user, token=token) current_app.mail.send(msg) @staticmethod def send_user_invite_msg(user): token = user.reset_password_token() msg = Message( "Create Your Dwellingly Account", sender=Email.NO_REPLY, recipients=[user.email], ) msg.body = render_template("emails/invite_user_msg.txt", user=user, token=token) msg.html = render_template( "emails/invite_user_msg.html", user=user, token=token ) current_app.mail.send(msg)
33.433962
88
0.667607
[ "MIT" ]
donovan-PNW/dwellinglybackend
resources/email.py
1,772
Python
# coding=utf-8 """ API for dataset indexing, access and search. """ from __future__ import absolute_import import logging from cachetools.func import lru_cache from datacube import compat from datacube.model import Dataset, DatasetType, MetadataType from datacube.utils import InvalidDocException, check_doc_unchanged, jsonify_document, get_doc_changes, contains from . import fields from .exceptions import DuplicateRecordError, UnknownFieldError _LOG = logging.getLogger(__name__) class MetadataTypeResource(object): def __init__(self, db): """ :type db: datacube.index.postgres._api.PostgresDb """ self._db = db def add(self, definition, allow_table_lock=False): """ :type definition: dict :param allow_table_lock: Allow an exclusive lock to be taken on the table while creating the indexes. This will halt other user's requests until completed. If false, creation will be slightly slower and cannot be done in a transaction. :rtype: datacube.model.MetadataType """ # This column duplication is getting out of hand: MetadataType.validate(definition) name = definition['name'] existing = self._db.get_metadata_type_by_name(name) if existing: # They've passed us the same one again. Make sure it matches what is stored. # TODO: Support for adding/updating search fields? check_doc_unchanged( existing.definition, definition, 'Metadata Type {}'.format(name) ) else: self._db.add_metadata_type( name=name, definition=definition, concurrently=not allow_table_lock ) return self.get_by_name(name) @lru_cache() def get(self, id_): """ :rtype: datacube.model.MetadataType """ return self._make(self._db.get_metadata_type(id_)) @lru_cache() def get_by_name(self, name): """ :rtype: datacube.model.MetadataType """ record = self._db.get_metadata_type_by_name(name) if not record: return None return self._make(record) def check_field_indexes(self, allow_table_lock=False, rebuild_all=False): """ Create or replace per-field indexes and views. :param allow_table_lock: Allow an exclusive lock to be taken on the table while creating the indexes. This will halt other user's requests until completed. If false, creation will be slightly slower and cannot be done in a transaction. """ self._db.check_dynamic_fields(concurrently=not allow_table_lock, rebuild_all=rebuild_all) def _make_many(self, query_rows): return (self._make(c) for c in query_rows) def _make(self, query_row): """ :rtype list[datacube.model.MetadataType] """ definition = query_row['definition'] dataset_ = definition['dataset'] return MetadataType( query_row['name'], dataset_, dataset_search_fields=self._db.get_dataset_fields(query_row), id_=query_row['id'] ) class DatasetTypeResource(object): """ :type _db: datacube.index.postgres._api.PostgresDb :type metadata_type_resource: MetadataTypeResource """ def __init__(self, db, metadata_type_resource): """ :type db: datacube.index.postgres._api.PostgresDb :type metadata_type_resource: MetadataTypeResource """ self._db = db self.metadata_type_resource = metadata_type_resource def from_doc(self, definition): """ Create a Product from its definitions :param dict definition: product definition document :rtype: datacube.model.DatasetType """ # This column duplication is getting out of hand: DatasetType.validate(definition) metadata_type = definition['metadata_type'] # They either specified the name of a metadata type, or specified a metadata type. # Is it a name? if isinstance(metadata_type, compat.string_types): metadata_type = self.metadata_type_resource.get_by_name(metadata_type) else: # Otherwise they embedded a document, add it if needed: metadata_type = self.metadata_type_resource.add(metadata_type, allow_table_lock=False) if not metadata_type: raise InvalidDocException('Unknown metadata type: %r' % definition['metadata_type']) return DatasetType(metadata_type, definition) def add(self, type_): """ Add a Product :param datacube.model.DatasetType type_: Product to add :rtype: datacube.model.DatasetType """ DatasetType.validate(type_.definition) existing = self._db.get_dataset_type_by_name(type_.name) if existing: # TODO: Support for adding/updating match rules? # They've passed us the same collection again. Make sure it matches what is stored. check_doc_unchanged( existing.definition, jsonify_document(type_.definition), 'Dataset type {}'.format(type_.name) ) else: self._db.add_dataset_type( name=type_.name, metadata=type_.metadata_doc, metadata_type_id=type_.metadata_type.id, definition=type_.definition ) return self.get_by_name(type_.name) def update(self, type_, allow_unsafe_updates=False): """ Update a product. Unsafe changes will throw a ValueError by default. (An unsafe change is anything that may potentially make the product incompatible with existing datasets of that type) :param datacube.model.DatasetType type_: Product to add :param allow_unsafe_updates bool: Allow unsafe changes. Use with caution. :rtype: datacube.model.DatasetType """ DatasetType.validate(type_.definition) existing = self._db.get_dataset_type_by_name(type_.name) if not existing: raise ValueError('Unknown product %s, cannot update – did you intend to add it?' % type_.name) def handle_unsafe(msg): if not allow_unsafe_updates: raise ValueError(msg) else: _LOG.warning("Ignoring %s", msg) # We'll probably want to use offsets in the future (ie. nested dicts), not just keys, but for now this suffices. safe_keys_to_change = ('description', 'metadata') doc_changes = get_doc_changes(existing.definition, jsonify_document(type_.definition)) for offset, old_value, new_value in doc_changes: _LOG.info('Changing %s %s: %r -> %r', type_.name, '.'.join(offset), old_value, new_value) key_name = offset[0] if key_name not in safe_keys_to_change: handle_unsafe('Potentially unsafe update: changing %r of product definition.' % key_name) # You can safely make the match rules looser but not tighter. if key_name == 'metadata': # Tightening them could exclude datasets already matched to the product. # (which would make search results wrong) if not contains(old_value, new_value, case_sensitive=True): handle_unsafe('Unsafe update: new product match rules are not a superset of old ones.') if doc_changes: _LOG.info("Updating product %s", type_.name) self._db.update_dataset_type( name=type_.name, metadata=type_.metadata_doc, metadata_type_id=type_.metadata_type.id, definition=type_.definition ) # Clear our local cache. Note that other users may still have # cached copies for the duration of their connections. self.get_by_name.cache_clear() self.get.cache_clear() else: _LOG.info("No changes detected for product %s", type_.name) def update_document(self, definition, allow_unsafe_update=False): """ Update a Product using its difinition :param dict definition: product definition document :rtype: datacube.model.DatasetType """ type_ = self.from_doc(definition) return self.update(type_, allow_unsafe_updates=allow_unsafe_update) def add_document(self, definition): """ Add a Product using its difinition :param dict definition: product definition document :rtype: datacube.model.DatasetType """ type_ = self.from_doc(definition) return self.add(type_) @lru_cache() def get(self, id_): """ Retrieve Product by id :param int id_: id of the Product :rtype: datacube.model.DatasetType """ return self._make(self._db.get_dataset_type(id_)) @lru_cache() def get_by_name(self, name): """ Retrieve Product by name :param str name: name of the Product :rtype: datacube.model.DatasetType """ result = self._db.get_dataset_type_by_name(name) if not result: return None return self._make(result) def get_with_fields(self, field_names): """ Return dataset types that have all the given fields. :param tuple[str] field_names: :rtype: __generator[DatasetType] """ for type_ in self.get_all(): for name in field_names: if name not in type_.metadata_type.dataset_fields: break else: yield type_ def search(self, **query): """ Return dataset types that have all the given fields. :param dict query: :rtype: __generator[DatasetType] """ for type_, q in self.search_robust(**query): if not q: yield type_ def search_robust(self, **query): """ Return dataset types that match match-able fields and dict of remaining un-matchable fields. :param dict query: :rtype: __generator[(DatasetType, dict)] """ for type_ in self.get_all(): q = query.copy() if q.pop('product', type_.name) != type_.name: continue if q.pop('metadata_type', type_.metadata_type.name) != type_.metadata_type.name: continue for key, value in list(q.items()): try: exprs = fields.to_expressions(type_.metadata_type.dataset_fields.get, **{key: value}) except UnknownFieldError as e: break try: if all(expr.evaluate(type_.metadata_doc) for expr in exprs): q.pop(key) else: break except (AttributeError, KeyError, ValueError) as e: continue else: yield type_, q def get_all(self): """ Retrieve all Products :rtype: iter[datacube.model.DatasetType] """ return (self._make(record) for record in self._db.get_all_dataset_types()) def _make_many(self, query_rows): return (self._make(c) for c in query_rows) def _make(self, query_row): """ :rtype datacube.model.DatasetType """ return DatasetType( definition=query_row['definition'], metadata_type=self.metadata_type_resource.get(query_row['metadata_type_ref']), id_=query_row['id'], ) class DatasetResource(object): """ :type _db: datacube.index.postgres._api.PostgresDb :type types: datacube.index._datasets.DatasetTypeResource """ def __init__(self, db, dataset_type_resource): """ :type db: datacube.index.postgres._api.PostgresDb :type dataset_type_resource: datacube.index._datasets.DatasetTypeResource """ self._db = db self.types = dataset_type_resource def get(self, id_, include_sources=False): """ Get dataset by id :param uuid id_: id of the dataset to retrieve :param bool include_sources: get the full provenance graph? :rtype: datacube.model.Dataset """ if not include_sources: return self._make(self._db.get_dataset(id_), full_info=True) datasets = {result['id']: (self._make(result, full_info=True), result) for result in self._db.get_dataset_sources(id_)} for dataset, result in datasets.values(): dataset.metadata_doc['lineage']['source_datasets'] = { classifier: datasets[str(source)][0].metadata_doc for source, classifier in zip(result['sources'], result['classes']) if source } dataset.sources = { classifier: datasets[str(source)][0] for source, classifier in zip(result['sources'], result['classes']) if source } return datasets[id_][0] def get_derived(self, id_): """ Get drived datasets :param uuid id_: dataset id :rtype: list[datacube.model.Dataset] """ return [self._make(result) for result in self._db.get_derived_datasets(id_)] def has(self, dataset): """ Have we already indexed this dataset? :param datacube.model.Dataset dataset: dataset to check :rtype: bool """ return self._db.contains_dataset(dataset.id) def add(self, dataset, skip_sources=False): """ Ensure a dataset is in the index. Add it if not present. :param datacube.model.Dataset dataset: dataset to add :param bool skip_sources: don't attempt to index source (use when sources are already indexed) :rtype: datacube.model.Dataset """ if not skip_sources: for source in dataset.sources.values(): self.add(source) was_inserted = False sources_tmp = dataset.type.dataset_reader(dataset.metadata_doc).sources dataset.type.dataset_reader(dataset.metadata_doc).sources = {} try: _LOG.info('Indexing %s', dataset.id) with self._db.begin() as transaction: try: was_inserted = transaction.insert_dataset(dataset.metadata_doc, dataset.id, dataset.type.id) for classifier, source_dataset in dataset.sources.items(): transaction.insert_dataset_source(classifier, dataset.id, source_dataset.id) # try to update location in the same transaction as insertion. # if insertion fails we'll try updating location later # if insertion succeeds the location bit can't possibly fail if dataset.local_uri: transaction.ensure_dataset_location(dataset.id, dataset.local_uri) except DuplicateRecordError as e: _LOG.warning(str(e)) if not was_inserted: existing = self.get(dataset.id) if existing: check_doc_unchanged( existing.metadata_doc, jsonify_document(dataset.metadata_doc), 'Dataset {}'.format(dataset.id) ) # reinsert attempt? try updating the location if dataset.local_uri: try: self._db.ensure_dataset_location(dataset.id, dataset.local_uri) except DuplicateRecordError as e: _LOG.warning(str(e)) finally: dataset.type.dataset_reader(dataset.metadata_doc).sources = sources_tmp return dataset def archive(self, ids): """ Mark datasets as archived :param list[uuid] ids: list of dataset ids to archive """ with self._db.begin() as transaction: for id_ in ids: transaction.archive_dataset(id_) def restore(self, ids): """ Mark datasets as not archived :param list[uuid] ids: list of dataset ids to restore """ with self._db.begin() as transaction: for id_ in ids: transaction.restore_dataset(id_) def get_field_names(self, type_name=None): """ :param str type_name: :rtype: __generator[str] """ if type_name is None: types = self.types.get_all() else: types = [self.types.get_by_name(type_name)] for type_ in types: for name in type_.metadata_type.dataset_fields: yield name def get_locations(self, dataset): """ :param datacube.model.Dataset dataset: dataset :rtype: list[str] """ return self._db.get_locations(dataset.id) def _make(self, dataset_res, full_info=False): """ :rtype datacube.model.Dataset :param bool full_info: Include all available fields """ return Dataset( self.types.get(dataset_res.dataset_type_ref), dataset_res.metadata, dataset_res.local_uri, indexed_by=dataset_res.added_by if full_info else None, indexed_time=dataset_res.added if full_info else None ) def _make_many(self, query_result): """ :rtype list[datacube.model.Dataset] """ return (self._make(dataset) for dataset in query_result) def search_by_metadata(self, metadata): """ Perform a search using arbitrary metadata, returning results as Dataset objects. Caution – slow! This will usually not use indexes. :param dict metadata: :rtype: list[datacube.model.Dataset] """ return self._make_many(self._db.search_datasets_by_metadata(metadata)) def search(self, **query): """ Perform a search, returning results as Dataset objects. :param dict[str,str|float|datacube.model.Range] query: :rtype: __generator[datacube.model.Dataset] """ for dataset_type, datasets in self._do_search_by_product(query): for dataset in self._make_many(datasets): yield dataset def search_by_product(self, **query): """ Perform a search, returning datasets grouped by product type. :param dict[str,str|float|datacube.model.Range] query: :rtype: __generator[(datacube.model.DatasetType, __generator[datacube.model.Dataset])]] """ for dataset_type, datasets in self._do_search_by_product(query): yield dataset_type, self._make_many(datasets) def count(self, **query): """ Perform a search, returning count of results. :param dict[str,str|float|datacube.model.Range] query: :rtype: int """ # This may be optimised into one query in the future. result = 0 for product_type, count in self._do_count_by_product(query): result += count return result def count_by_product(self, **query): """ Perform a search, returning a count of for each matching product type. :param dict[str,str|float|datacube.model.Range] query: :returns: Sequence of (product, count) :rtype: __generator[(datacube.model.DatasetType, int)]] """ return self._do_count_by_product(query) def count_by_product_through_time(self, period, **query): """ Perform a search, returning counts for each product grouped in time slices of the given period. :param dict[str,str|float|datacube.model.Range] query: :param str period: Time range for each slice: '1 month', '1 day' etc. :returns: For each matching product type, a list of time ranges and their count. :rtype: __generator[(datacube.model.DatasetType, list[(datetime.datetime, datetime.datetime), int)]] """ return self._do_time_count(period, query) def count_product_through_time(self, period, **query): """ Perform a search, returning counts for a single product grouped in time slices of the given period. Will raise an error if the search terms match more than one product. :param dict[str,str|float|datacube.model.Range] query: :param str period: Time range for each slice: '1 month', '1 day' etc. :returns: For each matching product type, a list of time ranges and their count. :rtype: list[(str, list[(datetime.datetime, datetime.datetime), int)]] """ return next(self._do_time_count(period, query, ensure_single=True))[1] def _get_dataset_types(self, q): types = set() if 'product' in q.keys(): types.add(self.types.get_by_name(q['product'])) else: # Otherwise search any metadata type that has all the given search fields. types = self.types.get_with_fields(tuple(q.keys())) if not types: raise ValueError('No type of dataset has fields: %r', tuple(q.keys())) return types def _get_product_queries(self, query): for dataset_type, q in self.types.search_robust(**query): q['dataset_type_id'] = dataset_type.id yield q, dataset_type def _do_search_by_product(self, query, return_fields=False, with_source_ids=False): for q, dataset_type in self._get_product_queries(query): dataset_fields = dataset_type.metadata_type.dataset_fields query_exprs = tuple(fields.to_expressions(dataset_fields.get, **q)) select_fields = None if return_fields: select_fields = tuple(dataset_fields.values()) yield (dataset_type, self._db.search_datasets( query_exprs, select_fields=select_fields, with_source_ids=with_source_ids )) def _do_count_by_product(self, query): for q, dataset_type in self._get_product_queries(query): dataset_fields = dataset_type.metadata_type.dataset_fields query_exprs = tuple(fields.to_expressions(dataset_fields.get, **q)) count = self._db.count_datasets(query_exprs) if count > 0: yield dataset_type, count def _do_time_count(self, period, query, ensure_single=False): if 'time' not in query: raise ValueError('Counting through time requires a "time" range query argument') query = dict(query) start, end = query['time'] del query['time'] product_quries = list(self._get_product_queries(query)) if ensure_single: if len(product_quries) == 0: raise ValueError('No products match search terms: %r' % query) if len(product_quries) > 1: raise ValueError('Multiple products match single query search: %r' % ([dt.name for q, dt in product_quries],)) for q, dataset_type in product_quries: dataset_fields = dataset_type.metadata_type.dataset_fields query_exprs = tuple(fields.to_expressions(dataset_fields.get, **q)) yield dataset_type, list(self._db.count_datasets_through_time( start, end, period, dataset_fields.get('time'), query_exprs )) def search_summaries(self, **query): """ Perform a search, returning just the search fields of each dataset. :param dict[str,str|float|datacube.model.Range] query: :rtype: dict """ for dataset_type, results in self._do_search_by_product(query, return_fields=True): for columns in results: yield dict(columns) def search_eager(self, **query): """ Perform a search, returning results as Dataset objects. :param dict[str,str|float|datacube.model.Range] query: :rtype: list[datacube.model.Dataset] """ return list(self.search(**query))
36.196481
120
0.606741
[ "Apache-2.0" ]
cronosnull/agdc-v2
datacube/index/_datasets.py
24,690
Python
import discord import io import aiohttp from aiohttp import request, ClientSession from src.embeds.image_embed import ImageEmbed async def request_canvas_image(ctx, url, member: discord.Member = None, params={}, is_gif=False): params_url = "&" + "&".join(["{}={}".format(k, v) for k, v in params.items()]) if params != {} else "" async with ClientSession() as wastedSession: async with wastedSession.get(f'{url}?avatar={member.avatar_url_as(format="png", size=1024)}{params_url}') as wastedImage: imageData = io.BytesIO(await wastedImage.read()) await wastedSession.close() await ctx.send(file=discord.File(imageData, 'image.gif' if is_gif else 'image.png')) async def request_image(ctx, url, params={}, key="link", title="Requested image", description="", footer=""): params_url = "&" + "&".join(["{}={}".format(k, v) for k, v in params.items()]) if params != {} else "" async with request("GET", url + params_url) as response: if response.status == 200: data = await response.json() if "caption" in data: title = data["caption"] embed = ImageEmbed( ctx, title, description, footer, data[key] ) await embed.send() else: await ctx.send(f"API returned a {response.status} status :((") async def request_text(ctx, url, key, params={}, text_format="{}"): params_url = "&" + "&".join(["{}={}".format(k, v) for k, v in params.items()]) if params != {} else "" print(params_url) async with request("GET", url + params_url) as response: if response.status == 200: data = await response.json() print(data) await ctx.send(text_format.format(data[key])) else: await ctx.send(f"API returned a {response.status} status :((")
40.72
129
0.556483
[ "MIT" ]
alejandrodlsp/grogu-bot
src/helpers/api_handler.py
2,036
Python
"""Configuration file for the Sphinx documentation builder. This file only contains a selection of the most common options. For a full list see the documentation: https://www.sphinx-doc.org/en/master/usage/configuration.html """ import configparser # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # # import os # import sys # sys.path.insert(0, os.path.abspath('.')) # Get the global config info as currently stated # (we use the config file to avoid actually loading any python here) config = configparser.ConfigParser() config.read(["../../src/sqlfluff/config.ini"]) stable_version = config.get("sqlfluff", "stable_version") # -- Project information ----------------------------------------------------- project = "SQLFluff" copyright = "2019, Alan Cruickshank" author = "Alan Cruickshank" # The full version, including alpha/beta/rc tags release = stable_version # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ # Autodocumentation from docstrings "sphinx.ext.autodoc", # Allow Google style docstrings "sphinx.ext.napoleon", # Documenting click commands "sphinx_click.ext", ] # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = [] # Master doc master_doc = "index" # If true, the current module name will be prepended to all description # unit titles (such as .. function::). add_module_names = False # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = "alabaster" html_favicon = "favicon-fluff.png" # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ["_static"] # -- Options for Alabaster Theme --------------------------------------------- html_theme_options = { "logo": "images/sqlfluff-lrg.png", # Icon for iOS shortcuts "touch_icon": "images/sqlfluff-sm2-sq.png", "github_user": "sqlfluff", "github_repo": "sqlfluff", # Github Fork button "github_banner": True, # Github link button "github_button": True, # Codecov button "codecov_button": True, } def ultimate_replace(app, docname, source): """Replaces variables in docs, including code blocks. From: https://github.com/sphinx-doc/sphinx/issues/4054#issuecomment-329097229 """ result = source[0] for key in app.config.ultimate_replacements: result = result.replace(key, app.config.ultimate_replacements[key]) source[0] = result ultimate_replacements = {"|release|": release} def setup(app): """Configures the documentation app.""" app.add_config_value("ultimate_replacements", {}, True) app.connect("source-read", ultimate_replace)
32.587719
82
0.655989
[ "MIT" ]
Aeolun/sqlfluff
docs/source/conf.py
3,715
Python
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 1999-2021 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from ... import opcodes as OperandDef from ..utils import infer_dtype from .core import TensorBinOp from .utils import arithmetic_operand @arithmetic_operand(sparse_mode='binary_and') class TensorHypot(TensorBinOp): _op_type_ = OperandDef.HYPOT _func_name = 'hypot' @infer_dtype(np.hypot) def hypot(x1, x2, out=None, where=None, **kwargs): """ Given the "legs" of a right triangle, return its hypotenuse. Equivalent to ``sqrt(x1**2 + x2**2)``, element-wise. If `x1` or `x2` is scalar_like (i.e., unambiguously cast-able to a scalar type), it is broadcast for use with each element of the other argument. (See Examples) Parameters ---------- x1, x2 : array_like Leg of the triangle(s). out : Tensor, None, or tuple of Tensor and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs Returns ------- z : Tensor The hypotenuse of the triangle(s). Examples -------- >>> import mars.tensor as mt >>> mt.hypot(3*mt.ones((3, 3)), 4*mt.ones((3, 3))).execute() array([[ 5., 5., 5.], [ 5., 5., 5.], [ 5., 5., 5.]]) Example showing broadcast of scalar_like argument: >>> mt.hypot(3*mt.ones((3, 3)), [4]).execute() array([[ 5., 5., 5.], [ 5., 5., 5.], [ 5., 5., 5.]]) """ op = TensorHypot(**kwargs) return op(x1, x2, out=out, where=where)
32.461538
79
0.646919
[ "Apache-2.0" ]
Alfa-Shashank/mars
mars/tensor/arithmetic/hypot.py
2,532
Python
from enum import Enum class IndexMethod(str, Enum): """ Used to specify the index method for a :class:`Column <piccolo.columns.base.Column>`. """ btree = "btree" hash = "hash" gist = "gist" gin = "gin" def __str__(self): return f"{self.__class__.__name__}.{self.name}" def __repr__(self): return self.__str__()
18.6
55
0.594086
[ "MIT" ]
gmos/piccolo
piccolo/columns/indexes.py
372
Python
# -*- coding: utf-8 -*- # # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # DO NOT EDIT! This is a generated sample ("Request", "language_entities_gcs") # To install the latest published package dependency, execute the following: # pip install google-cloud-language # sample-metadata # title: Analyzing Entities (GCS) # description: Analyzing Entities in text file stored in Cloud Storage # usage: python3 samples/v1/language_entities_gcs.py [--gcs_content_uri "gs://cloud-samples-data/language/entity.txt"] # [START language_entities_gcs] from google.cloud import language_v1 from google.cloud.language_v1 import enums def sample_analyze_entities(gcs_content_uri): """ Analyzing Entities in text file stored in Cloud Storage Args: gcs_content_uri Google Cloud Storage URI where the file content is located. e.g. gs://[Your Bucket]/[Path to File] """ client = language_v1.LanguageServiceClient() # gcs_content_uri = 'gs://cloud-samples-data/language/entity.txt' # Available types: PLAIN_TEXT, HTML type_ = enums.Document.Type.PLAIN_TEXT # Optional. If not specified, the language is automatically detected. # For list of supported languages: # https://cloud.google.com/natural-language/docs/languages language = "en" document = {"gcs_content_uri": gcs_content_uri, "type": type_, "language": language} # Available values: NONE, UTF8, UTF16, UTF32 encoding_type = enums.EncodingType.UTF8 response = client.analyze_entities(document, encoding_type=encoding_type) # Loop through entitites returned from the API for entity in response.entities: print(u"Representative name for the entity: {}".format(entity.name)) # Get entity type, e.g. PERSON, LOCATION, ADDRESS, NUMBER, et al print(u"Entity type: {}".format(enums.Entity.Type(entity.type).name)) # Get the salience score associated with the entity in the [0, 1.0] range print(u"Salience score: {}".format(entity.salience)) # Loop over the metadata associated with entity. For many known entities, # the metadata is a Wikipedia URL (wikipedia_url) and Knowledge Graph MID (mid). # Some entity types may have additional metadata, e.g. ADDRESS entities # may have metadata for the address street_name, postal_code, et al. for metadata_name, metadata_value in entity.metadata.items(): print(u"{}: {}".format(metadata_name, metadata_value)) # Loop over the mentions of this entity in the input document. # The API currently supports proper noun mentions. for mention in entity.mentions: print(u"Mention text: {}".format(mention.text.content)) # Get the mention type, e.g. PROPER for proper noun print( u"Mention type: {}".format(enums.EntityMention.Type(mention.type).name) ) # Get the language of the text, which will be the same as # the language specified in the request or, if not specified, # the automatically-detected language. print(u"Language of the text: {}".format(response.language)) # [END language_entities_gcs] def main(): import argparse parser = argparse.ArgumentParser() parser.add_argument( "--gcs_content_uri", type=str, default="gs://cloud-samples-data/language/entity.txt", ) args = parser.parse_args() sample_analyze_entities(args.gcs_content_uri) if __name__ == "__main__": main()
38.113208
120
0.70297
[ "Apache-2.0" ]
MShaffar19/python-language
samples/v1/language_entities_gcs.py
4,040
Python
# coding=utf-8 from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy import logging import math import torch import torch.nn as nn import torch.nn.functional as nnf from torch.nn import Dropout, Softmax, Linear, Conv3d, LayerNorm from torch.nn.modules.utils import _pair, _triple import configs as configs from torch.distributions.normal import Normal logger = logging.getLogger(__name__) ATTENTION_Q = "MultiHeadDotProductAttention_1/query" ATTENTION_K = "MultiHeadDotProductAttention_1/key" ATTENTION_V = "MultiHeadDotProductAttention_1/value" ATTENTION_OUT = "MultiHeadDotProductAttention_1/out" FC_0 = "MlpBlock_3/Dense_0" FC_1 = "MlpBlock_3/Dense_1" ATTENTION_NORM = "LayerNorm_0" MLP_NORM = "LayerNorm_2" def np2th(weights, conv=False): """Possibly convert HWIO to OIHW.""" if conv: weights = weights.transpose([3, 2, 0, 1]) return torch.from_numpy(weights) def swish(x): return x * torch.sigmoid(x) ACT2FN = {"gelu": torch.nn.functional.gelu, "relu": torch.nn.functional.relu, "swish": swish} class Attention(nn.Module): def __init__(self, config, vis): super(Attention, self).__init__() self.vis = vis self.num_attention_heads = config.transformer["num_heads"] self.attention_head_size = int(config.hidden_size / self.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = Linear(config.hidden_size, self.all_head_size) self.key = Linear(config.hidden_size, self.all_head_size) self.value = Linear(config.hidden_size, self.all_head_size) self.out = Linear(config.hidden_size, config.hidden_size) self.attn_dropout = Dropout(config.transformer["attention_dropout_rate"]) self.proj_dropout = Dropout(config.transformer["attention_dropout_rate"]) self.softmax = Softmax(dim=-1) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward(self, hidden_states): mixed_query_layer = self.query(hidden_states) mixed_key_layer = self.key(hidden_states) mixed_value_layer = self.value(hidden_states) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) attention_probs = self.softmax(attention_scores) weights = attention_probs if self.vis else None attention_probs = self.attn_dropout(attention_probs) context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) attention_output = self.out(context_layer) attention_output = self.proj_dropout(attention_output) return attention_output, weights class Mlp(nn.Module): def __init__(self, config): super(Mlp, self).__init__() self.fc1 = Linear(config.hidden_size, config.transformer["mlp_dim"]) self.fc2 = Linear(config.transformer["mlp_dim"], config.hidden_size) self.act_fn = ACT2FN["gelu"] self.dropout = Dropout(config.transformer["dropout_rate"]) self._init_weights() def _init_weights(self): nn.init.xavier_uniform_(self.fc1.weight) nn.init.xavier_uniform_(self.fc2.weight) nn.init.normal_(self.fc1.bias, std=1e-6) nn.init.normal_(self.fc2.bias, std=1e-6) def forward(self, x): x = self.fc1(x) x = self.act_fn(x) x = self.dropout(x) x = self.fc2(x) x = self.dropout(x) return x class Embeddings(nn.Module): """Construct the embeddings from patch, position embeddings. """ def __init__(self, config, img_size): super(Embeddings, self).__init__() self.config = config down_factor = config.down_factor patch_size = _triple(config.patches["size"]) n_patches = int((img_size[0]/2**down_factor// patch_size[0]) * (img_size[1]/2**down_factor// patch_size[1]) * (img_size[2]/2**down_factor// patch_size[2])) self.hybrid_model = CNNEncoder(config, n_channels=2) in_channels = config['encoder_channels'][-1] self.patch_embeddings = Conv3d(in_channels=in_channels, out_channels=config.hidden_size, kernel_size=patch_size, stride=patch_size) self.position_embeddings = nn.Parameter(torch.zeros(1, n_patches, config.hidden_size)) self.dropout = Dropout(config.transformer["dropout_rate"]) def forward(self, x): x, features = self.hybrid_model(x) x = self.patch_embeddings(x) # (B, hidden. n_patches^(1/2), n_patches^(1/2)) x = x.flatten(2) x = x.transpose(-1, -2) # (B, n_patches, hidden) embeddings = x + self.position_embeddings embeddings = self.dropout(embeddings) return embeddings, features class Block(nn.Module): def __init__(self, config, vis): super(Block, self).__init__() self.hidden_size = config.hidden_size self.attention_norm = LayerNorm(config.hidden_size, eps=1e-6) self.ffn_norm = LayerNorm(config.hidden_size, eps=1e-6) self.ffn = Mlp(config) self.attn = Attention(config, vis) def forward(self, x): h = x x = self.attention_norm(x) x, weights = self.attn(x) x = x + h h = x x = self.ffn_norm(x) x = self.ffn(x) x = x + h return x, weights class Encoder(nn.Module): def __init__(self, config, vis): super(Encoder, self).__init__() self.vis = vis self.layer = nn.ModuleList() self.encoder_norm = LayerNorm(config.hidden_size, eps=1e-6) for _ in range(config.transformer["num_layers"]): layer = Block(config, vis) self.layer.append(copy.deepcopy(layer)) def forward(self, hidden_states): attn_weights = [] for layer_block in self.layer: hidden_states, weights = layer_block(hidden_states) if self.vis: attn_weights.append(weights) encoded = self.encoder_norm(hidden_states) return encoded, attn_weights class Transformer(nn.Module): def __init__(self, config, img_size, vis): super(Transformer, self).__init__() self.embeddings = Embeddings(config, img_size=img_size) self.encoder = Encoder(config, vis) def forward(self, input_ids): embedding_output, features = self.embeddings(input_ids) encoded, attn_weights = self.encoder(embedding_output) # (B, n_patch, hidden) return encoded, attn_weights, features class Conv3dReLU(nn.Sequential): def __init__( self, in_channels, out_channels, kernel_size, padding=0, stride=1, use_batchnorm=True, ): conv = nn.Conv3d( in_channels, out_channels, kernel_size, stride=stride, padding=padding, bias=not (use_batchnorm), ) relu = nn.ReLU(inplace=True) bn = nn.BatchNorm3d(out_channels) super(Conv3dReLU, self).__init__(conv, bn, relu) class DecoderBlock(nn.Module): def __init__( self, in_channels, out_channels, skip_channels=0, use_batchnorm=True, ): super().__init__() self.conv1 = Conv3dReLU( in_channels + skip_channels, out_channels, kernel_size=3, padding=1, use_batchnorm=use_batchnorm, ) self.conv2 = Conv3dReLU( out_channels, out_channels, kernel_size=3, padding=1, use_batchnorm=use_batchnorm, ) self.up = nn.Upsample(scale_factor=2, mode='trilinear', align_corners=False) def forward(self, x, skip=None): x = self.up(x) if skip is not None: x = torch.cat([x, skip], dim=1) x = self.conv1(x) x = self.conv2(x) return x class DecoderCup(nn.Module): def __init__(self, config, img_size): super().__init__() self.config = config self.down_factor = config.down_factor head_channels = config.conv_first_channel self.img_size = img_size self.conv_more = Conv3dReLU( config.hidden_size, head_channels, kernel_size=3, padding=1, use_batchnorm=True, ) decoder_channels = config.decoder_channels in_channels = [head_channels] + list(decoder_channels[:-1]) out_channels = decoder_channels self.patch_size = _triple(config.patches["size"]) skip_channels = self.config.skip_channels blocks = [ DecoderBlock(in_ch, out_ch, sk_ch) for in_ch, out_ch, sk_ch in zip(in_channels, out_channels, skip_channels) ] self.blocks = nn.ModuleList(blocks) def forward(self, hidden_states, features=None): B, n_patch, hidden = hidden_states.size() # reshape from (B, n_patch, hidden) to (B, h, w, hidden) l, h, w = (self.img_size[0]//2**self.down_factor//self.patch_size[0]), (self.img_size[1]//2**self.down_factor//self.patch_size[1]), (self.img_size[2]//2**self.down_factor//self.patch_size[2]) x = hidden_states.permute(0, 2, 1) x = x.contiguous().view(B, hidden, l, h, w) x = self.conv_more(x) for i, decoder_block in enumerate(self.blocks): if features is not None: skip = features[i] if (i < self.config.n_skip) else None #print(skip.shape) else: skip = None x = decoder_block(x, skip=skip) return x class SpatialTransformer(nn.Module): """ N-D Spatial Transformer Obtained from https://github.com/voxelmorph/voxelmorph """ def __init__(self, size, mode='bilinear'): super().__init__() self.mode = mode # create sampling grid vectors = [torch.arange(0, s) for s in size] grids = torch.meshgrid(vectors) grid = torch.stack(grids) grid = torch.unsqueeze(grid, 0) grid = grid.type(torch.FloatTensor) # registering the grid as a buffer cleanly moves it to the GPU, but it also # adds it to the state dict. this is annoying since everything in the state dict # is included when saving weights to disk, so the model files are way bigger # than they need to be. so far, there does not appear to be an elegant solution. # see: https://discuss.pytorch.org/t/how-to-register-buffer-without-polluting-state-dict self.register_buffer('grid', grid) def forward(self, src, flow): # new locations new_locs = self.grid + flow shape = flow.shape[2:] # need to normalize grid values to [-1, 1] for resampler for i in range(len(shape)): new_locs[:, i, ...] = 2 * (new_locs[:, i, ...] / (shape[i] - 1) - 0.5) # move channels dim to last position # also not sure why, but the channels need to be reversed if len(shape) == 2: new_locs = new_locs.permute(0, 2, 3, 1) new_locs = new_locs[..., [1, 0]] elif len(shape) == 3: new_locs = new_locs.permute(0, 2, 3, 4, 1) new_locs = new_locs[..., [2, 1, 0]] return nnf.grid_sample(src, new_locs, align_corners=True, mode=self.mode) class DoubleConv(nn.Module): """(convolution => [BN] => ReLU) * 2""" def __init__(self, in_channels, out_channels, mid_channels=None): super().__init__() if not mid_channels: mid_channels = out_channels self.double_conv = nn.Sequential( nn.Conv3d(in_channels, mid_channels, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv3d(mid_channels, out_channels, kernel_size=3, padding=1), nn.ReLU(inplace=True) ) def forward(self, x): return self.double_conv(x) class Down(nn.Module): """Downscaling with maxpool then double conv""" def __init__(self, in_channels, out_channels): super().__init__() self.maxpool_conv = nn.Sequential( nn.MaxPool3d(2), DoubleConv(in_channels, out_channels) ) def forward(self, x): return self.maxpool_conv(x) class CNNEncoder(nn.Module): def __init__(self, config, n_channels=2): super(CNNEncoder, self).__init__() self.n_channels = n_channels decoder_channels = config.decoder_channels encoder_channels = config.encoder_channels self.down_num = config.down_num self.inc = DoubleConv(n_channels, encoder_channels[0]) self.down1 = Down(encoder_channels[0], encoder_channels[1]) self.down2 = Down(encoder_channels[1], encoder_channels[2]) self.width = encoder_channels[-1] def forward(self, x): features = [] x1 = self.inc(x) features.append(x1) x2 = self.down1(x1) features.append(x2) feats = self.down2(x2) features.append(feats) feats_down = feats for i in range(self.down_num): feats_down = nn.MaxPool3d(2)(feats_down) features.append(feats_down) return feats, features[::-1] class RegistrationHead(nn.Sequential): def __init__(self, in_channels, out_channels, kernel_size=3, upsampling=1): conv3d = nn.Conv3d(in_channels, out_channels, kernel_size=kernel_size, padding=kernel_size // 2) conv3d.weight = nn.Parameter(Normal(0, 1e-5).sample(conv3d.weight.shape)) conv3d.bias = nn.Parameter(torch.zeros(conv3d.bias.shape)) super().__init__(conv3d) class ViTVNet(nn.Module): def __init__(self, config, img_size=(64, 256, 256), int_steps=7, vis=False): super(ViTVNet, self).__init__() self.transformer = Transformer(config, img_size, vis) self.decoder = DecoderCup(config, img_size) self.reg_head = RegistrationHead( in_channels=config.decoder_channels[-1], out_channels=config['n_dims'], kernel_size=3, ) self.spatial_trans = SpatialTransformer(img_size) self.config = config #self.integrate = VecInt(img_size, int_steps) def forward(self, x): source = x[:,0:1,:,:] x, attn_weights, features = self.transformer(x) # (B, n_patch, hidden) x = self.decoder(x, features) flow = self.reg_head(x) #flow = self.integrate(flow) out = self.spatial_trans(source, flow) return out, flow class VecInt(nn.Module): """ Integrates a vector field via scaling and squaring. Obtained from https://github.com/voxelmorph/voxelmorph """ def __init__(self, inshape, nsteps): super().__init__() assert nsteps >= 0, 'nsteps should be >= 0, found: %d' % nsteps self.nsteps = nsteps self.scale = 1.0 / (2 ** self.nsteps) self.transformer = SpatialTransformer(inshape) def forward(self, vec): vec = vec * self.scale for _ in range(self.nsteps): vec = vec + self.transformer(vec, vec) return vec CONFIGS = { 'ViT-V-Net': configs.get_3DReg_config(), }
36.311258
200
0.610615
[ "MIT" ]
junyuchen245/ViT-V-Net_for_3D_Image_Registration
ViT-V-Net/models.py
16,449
Python
import keras from keras.datasets import mnist # input image dimensions img_rows, img_cols = 28, 28 input_shape = (img_rows, img_cols, 1) num_classes = 10 def get_mnist_data(): # the data, shuffled and split between train and test sets (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1) x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1) x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255 x_test /= 255 print('x_train shape:', x_train.shape) print(x_train.shape[0], 'train samples') print(x_test.shape[0], 'test samples') # convert class vectors to binary class matrices y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) return x_train, y_train, x_test, y_test
31.448276
70
0.710526
[ "MIT" ]
Stochastic13/keract
examples/data.py
912
Python
# -*- coding: utf-8 -*- import random import itertools from collections import defaultdict class Chat(object): cache_size = 200 # user_num = list(range(1, 100)) # random.shuffle(user_num) colors = ['赤', '青', '黄', '緑', '紫', '黒', '茶', '灰色', '金', '銀'] fruits = ['りんご', 'みかん', 'メロン', 'パイナップル', 'ぶどう', '梨', 'いちご', 'もも', 'さくらんぼ', 'バナナ'] fruits_with_color = itertools.product(colors, fruits) user_name = list(map(lambda n: n[0]+n[1], fruits_with_color)) random.shuffle(user_name) def __init__(self): self.cache = defaultdict(list) self.nickname_dic = defaultdict(dict) def set_nickname(self, room_id, client_name): self.nickname_dic[room_id].update({client_name:str(self.__get_random_name())}) def get_nickname(self, room_id, client_name): return self.nickname_dic[room_id][client_name] def update_cache(self, chat, room_id): self.cache[room_id].append(chat) if len(self.cache[room_id]) > self.cache_size: self.cache[room_id] = self.cache[-self.cache_size:] def __get_random_name(self): return self.user_name.pop() def clear_caches(self, room_id): del self.cache[room_id] del self.nickname_dic[room_id]
31.923077
86
0.64257
[ "MIT" ]
Hironsan/Brain_Hacker
handlers/brainstorming/chat.py
1,331
Python
import imp from os import path from setuptools import setup VERSION = imp.load_source( 'version', path.join('.', 'zunzuncito', 'version.py')) VERSION = VERSION.__version__ readme = open('README.rst', 'r') setup( name='zunzuncito', version=VERSION, author='Nicolas Embriz', author_email='[email protected]', description="A micro-framework for creating REST API's", license='BSD', keywords='wsgi web api framework rest http', url='http://www.zunzun.io', download_url='https://github.com/nbari/zunzuncito/tarball/master', platforms="any", packages=['zunzuncito'], classifiers=[ 'Development Status :: 4 - Beta', 'Environment :: Console', 'Environment :: Web Environment', 'Intended Audience :: Developers', 'Intended Audience :: System Administrators', 'License :: OSI Approved :: BSD License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 2.7', 'Topic :: Internet :: WWW/HTTP :: WSGI', 'Topic :: Software Development :: Libraries :: Application Frameworks' ], long_description=readme.read() )
29.404762
78
0.622672
[ "BSD-3-Clause" ]
nbari/zunzuncito
setup.py
1,235
Python
""" Argo Server API You can get examples of requests and responses by using the CLI with `--gloglevel=9`, e.g. `argo list --gloglevel=9` # noqa: E501 The version of the OpenAPI document: VERSION Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 from openapi_client.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, ) from ..model_utils import OpenApiModel from openapi_client.exceptions import ApiAttributeError class FCVolumeSource(ModelNormal): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { } validations = { } @cached_property def additional_properties_type(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded """ return (bool, date, datetime, dict, float, int, list, str, none_type,) # noqa: E501 _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ return { 'fs_type': (str,), # noqa: E501 'lun': (int,), # noqa: E501 'read_only': (bool,), # noqa: E501 'target_wwns': ([str],), # noqa: E501 'wwids': ([str],), # noqa: E501 } @cached_property def discriminator(): return None attribute_map = { 'fs_type': 'fsType', # noqa: E501 'lun': 'lun', # noqa: E501 'read_only': 'readOnly', # noqa: E501 'target_wwns': 'targetWWNs', # noqa: E501 'wwids': 'wwids', # noqa: E501 } read_only_vars = { } _composed_schemas = {} @classmethod @convert_js_args_to_python_args def _from_openapi_data(cls, *args, **kwargs): # noqa: E501 """FCVolumeSource - a model defined in OpenAPI Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) fs_type (str): Filesystem type to mount. Must be a filesystem type supported by the host operating system. Ex. \"ext4\", \"xfs\", \"ntfs\". Implicitly inferred to be \"ext4\" if unspecified.. [optional] # noqa: E501 lun (int): Optional: FC target lun number. [optional] # noqa: E501 read_only (bool): Optional: Defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts.. [optional] # noqa: E501 target_wwns ([str]): Optional: FC target worldwide names (WWNs). [optional] # noqa: E501 wwids ([str]): Optional: FC volume world wide identifiers (wwids) Either wwids or combination of targetWWNs and lun must be set, but not both simultaneously.. [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) self = super(OpenApiModel, cls).__new__(cls) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value) return self required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', ]) @convert_js_args_to_python_args def __init__(self, *args, **kwargs): # noqa: E501 """FCVolumeSource - a model defined in OpenAPI Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) fs_type (str): Filesystem type to mount. Must be a filesystem type supported by the host operating system. Ex. \"ext4\", \"xfs\", \"ntfs\". Implicitly inferred to be \"ext4\" if unspecified.. [optional] # noqa: E501 lun (int): Optional: FC target lun number. [optional] # noqa: E501 read_only (bool): Optional: Defaults to false (read/write). ReadOnly here will force the ReadOnly setting in VolumeMounts.. [optional] # noqa: E501 target_wwns ([str]): Optional: FC target worldwide names (WWNs). [optional] # noqa: E501 wwids ([str]): Optional: FC volume world wide identifiers (wwids) Either wwids or combination of targetWWNs and lun must be set, but not both simultaneously.. [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value) if var_name in self.read_only_vars: raise ApiAttributeError(f"`{var_name}` is a read-only attribute. Use `from_openapi_data` to instantiate " f"class with read only attributes.")
47.375
228
0.579621
[ "Apache-2.0" ]
2kindsofcs/argo-workflows
sdks/python/client/openapi_client/model/fc_volume_source.py
12,886
Python
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A module to blocker devices based on device blocklists.""" from __future__ import absolute_import from __future__ import division from __future__ import google_type_annotations from __future__ import print_function from tradefed_cluster import datastore_entities def IsLabBlocked(lab_name): """Check if the lab is blocked. Args: lab_name: lab name Returns: true if the lab is blocked, otherwise false. """ device_blocklists = ( datastore_entities.DeviceBlocklist.query() .filter(datastore_entities.DeviceBlocklist.lab_name == lab_name) .fetch(1)) return bool(device_blocklists)
32.405405
74
0.764804
[ "Apache-2.0" ]
maksonlee/tradefed_cluster
tradefed_cluster/device_blocker.py
1,199
Python
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2020. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """The Grover operator.""" from typing import List, Optional, Union import numpy from qiskit.circuit import QuantumCircuit, QuantumRegister, AncillaRegister # from qiskit.quantum_info import Statevector, Operator, DensityMatrix from qiskit.quantum_info import Operator from .standard_gates import MCXGate class GroverOperator(QuantumCircuit): r"""The Grover operator. Grover's search algorithm [1, 2] consists of repeated applications of the so-called Grover operator used to amplify the amplitudes of the desired output states. This operator, :math:`\mathcal{Q}`, consists of the phase oracle, :math:`\mathcal{S}_f`, zero phase-shift or zero reflection, :math:`\mathcal{S}_0`, and an input state preparation :math:`\mathcal{A}`: .. math:: \mathcal{Q} = \mathcal{A} \mathcal{S}_0 \mathcal{A}^\dagger \mathcal{S}_f In the standard Grover search we have :math:`\mathcal{A} = H^{\otimes n}`: .. math:: \mathcal{Q} = H^{\otimes n} \mathcal{S}_0 H^{\otimes n} \mathcal{S}_f = D \mathcal{S_f} The operation :math:`D = H^{\otimes n} \mathcal{S}_0 H^{\otimes n}` is also referred to as diffusion operator. In this formulation we can see that Grover's operator consists of two steps: first, the phase oracle multiplies the good states by -1 (with :math:`\mathcal{S}_f`) and then the whole state is reflected around the mean (with :math:`D`). This class allows setting a different state preparation, as in quantum amplitude amplification (a generalization of Grover's algorithm), :math:`\mathcal{A}` might not be a layer of Hardamard gates [3]. The action of the phase oracle :math:`\mathcal{S}_f` is defined as .. math:: \mathcal{S}_f: |x\rangle \mapsto (-1)^{f(x)}|x\rangle where :math:`f(x) = 1` if :math:`x` is a good state and 0 otherwise. To highlight the fact that this oracle flips the phase of the good states and does not flip the state of a result qubit, we call :math:`\mathcal{S}_f` a phase oracle. Note that you can easily construct a phase oracle from a bitflip oracle by sandwiching the controlled X gate on the result qubit by a X and H gate. For instance .. parsed-literal:: Bitflip oracle Phaseflip oracle q_0: ──■── q_0: ────────────■──────────── ┌─┴─┐ ┌───┐┌───┐┌─┴─┐┌───┐┌───┐ out: ┤ X ├ out: ┤ X ├┤ H ├┤ X ├┤ H ├┤ X ├ └───┘ └───┘└───┘└───┘└───┘└───┘ There is some flexibility in defining the oracle and :math:`\mathcal{A}` operator. Before the Grover operator is applied in Grover's algorithm, the qubits are first prepared with one application of the :math:`\mathcal{A}` operator (or Hadamard gates in the standard formulation). Thus, we always have operation of the form :math:`\mathcal{A} \mathcal{S}_f \mathcal{A}^\dagger`. Therefore it is possible to move bitflip logic into :math:`\mathcal{A}` and leaving the oracle only to do phaseflips via Z gates based on the bitflips. One possible use-case for this are oracles that do not uncompute the state qubits. The zero reflection :math:`\mathcal{S}_0` is usually defined as .. math:: \mathcal{S}_0 = 2 |0\rangle^{\otimes n} \langle 0|^{\otimes n} - \mathbb{I}_n where :math:`\mathbb{I}_n` is the identity on :math:`n` qubits. By default, this class implements the negative version :math:`2 |0\rangle^{\otimes n} \langle 0|^{\otimes n} - \mathbb{I}_n`, since this can simply be implemented with a multi-controlled Z sandwiched by X gates on the target qubit and the introduced global phase does not matter for Grover's algorithm. Examples: >>> from qiskit.circuit import QuantumCircuit >>> from qiskit.circuit.library import GroverOperator >>> oracle = QuantumCircuit(2) >>> oracle.z(0) # good state = first qubit is |1> >>> grover_op = GroverOperator(oracle, insert_barriers=True) >>> grover_op.draw() ┌───┐ ░ ┌───┐ ░ ┌───┐ ┌───┐ ░ ┌───┐ state_0: ┤ Z ├─░─┤ H ├─░─┤ X ├───────■──┤ X ├──────░─┤ H ├ └───┘ ░ ├───┤ ░ ├───┤┌───┐┌─┴─┐├───┤┌───┐ ░ ├───┤ state_1: ──────░─┤ H ├─░─┤ X ├┤ H ├┤ X ├┤ H ├┤ X ├─░─┤ H ├ ░ └───┘ ░ └───┘└───┘└───┘└───┘└───┘ ░ └───┘ >>> oracle = QuantumCircuit(1) >>> oracle.z(0) # the qubit state |1> is the good state >>> state_preparation = QuantumCircuit(1) >>> state_preparation.ry(0.2, 0) # non-uniform state preparation >>> grover_op = GroverOperator(oracle, state_preparation) >>> grover_op.draw() ┌───┐┌──────────┐┌───┐┌───┐┌───┐┌─────────┐ state_0: ┤ Z ├┤ RY(-0.2) ├┤ X ├┤ Z ├┤ X ├┤ RY(0.2) ├ └───┘└──────────┘└───┘└───┘└───┘└─────────┘ >>> oracle = QuantumCircuit(4) >>> oracle.z(3) >>> reflection_qubits = [0, 3] >>> state_preparation = QuantumCircuit(4) >>> state_preparation.cry(0.1, 0, 3) >>> state_preparation.ry(0.5, 3) >>> grover_op = GroverOperator(oracle, state_preparation, ... reflection_qubits=reflection_qubits) >>> grover_op.draw() ┌───┐ ┌───┐ state_0: ──────────────────────■──────┤ X ├───────■──┤ X ├──────────■──────────────── │ └───┘ │ └───┘ │ state_1: ──────────────────────┼──────────────────┼─────────────────┼──────────────── │ │ │ state_2: ──────────────────────┼──────────────────┼─────────────────┼──────────────── ┌───┐┌──────────┐┌────┴─────┐┌───┐┌───┐┌─┴─┐┌───┐┌───┐┌────┴────┐┌─────────┐ state_3: ┤ Z ├┤ RY(-0.5) ├┤ RY(-0.1) ├┤ X ├┤ H ├┤ X ├┤ H ├┤ X ├┤ RY(0.1) ├┤ RY(0.5) ├ └───┘└──────────┘└──────────┘└───┘└───┘└───┘└───┘└───┘└─────────┘└─────────┘ >>> mark_state = Statevector.from_label('011') >>> diffuse_operator = 2 * DensityMatrix.from_label('000') - Operator.from_label('III') >>> grover_op = GroverOperator(oracle=mark_state, zero_reflection=diffuse_operator) >>> grover_op.draw(fold=70) ┌─────────────────┐ ┌───┐ » state_0: ┤0 ├──────┤ H ├──────────────────────────» │ │┌─────┴───┴─────┐ ┌───┐ » state_1: ┤1 UCRZ(0,pi,0,0) ├┤0 ├─────┤ H ├──────────» │ ││ UCRZ(pi/2,0) │┌────┴───┴────┐┌───┐» state_2: ┤2 ├┤1 ├┤ UCRZ(-pi/4) ├┤ H ├» └─────────────────┘└───────────────┘└─────────────┘└───┘» « ┌─────────────────┐ ┌───┐ «state_0: ┤0 ├──────┤ H ├───────────────────────── « │ │┌─────┴───┴─────┐ ┌───┐ «state_1: ┤1 UCRZ(pi,0,0,0) ├┤0 ├────┤ H ├────────── « │ ││ UCRZ(pi/2,0) │┌───┴───┴────┐┌───┐ «state_2: ┤2 ├┤1 ├┤ UCRZ(pi/4) ├┤ H ├ « └─────────────────┘└───────────────┘└────────────┘└───┘ References: [1]: L. K. Grover (1996), A fast quantum mechanical algorithm for database search, `arXiv:quant-ph/9605043 <https://arxiv.org/abs/quant-ph/9605043>`_. [2]: I. Chuang & M. Nielsen, Quantum Computation and Quantum Information, Cambridge: Cambridge University Press, 2000. Chapter 6.1.2. [3]: Brassard, G., Hoyer, P., Mosca, M., & Tapp, A. (2000). Quantum Amplitude Amplification and Estimation. `arXiv:quant-ph/0005055 <http://arxiv.org/abs/quant-ph/0005055>`_. """ def __init__( self, # oracle: Union[QuantumCircuit, Statevector], oracle: QuantumCircuit, state_preparation: Optional[QuantumCircuit] = None, # zero_reflection: Optional[Union[QuantumCircuit, DensityMatrix, Operator]] = None, zero_reflection: Optional[Union[QuantumCircuit, Operator]] = None, reflection_qubits: Optional[List[int]] = None, insert_barriers: bool = False, mcx_mode: str = "noancilla", name: str = "Q", ) -> None: r""" Args: oracle: The phase oracle implementing a reflection about the bad state. Note that this is not a bitflip oracle, see the docstring for more information. state_preparation: The operator preparing the good and bad state. For Grover's algorithm, this is a n-qubit Hadamard gate and for amplitude amplification or estimation the operator :math:`\mathcal{A}`. zero_reflection: The reflection about the zero state, :math:`\mathcal{S}_0`. reflection_qubits: Qubits on which the zero reflection acts on. insert_barriers: Whether barriers should be inserted between the reflections and A. mcx_mode: The mode to use for building the default zero reflection. name: The name of the circuit. """ super().__init__(name=name) # store inputs # if isinstance(oracle, Statevector): # from qiskit.circuit.library import Diagonal # pylint: disable=cyclic-import # oracle = Diagonal((-1) ** oracle.data) self._oracle = oracle # if isinstance(zero_reflection, (Operator, DensityMatrix)): # from qiskit.circuit.library import Diagonal # pylint: disable=cyclic-import # zero_reflection = Diagonal(zero_reflection.data.diagonal()) self._zero_reflection = zero_reflection self._reflection_qubits = reflection_qubits self._state_preparation = state_preparation self._insert_barriers = insert_barriers self._mcx_mode = mcx_mode # build circuit self._build() @property def reflection_qubits(self): """Reflection qubits, on which S0 is applied (if S0 is not user-specified).""" if self._reflection_qubits is not None: return self._reflection_qubits num_state_qubits = self.oracle.num_qubits - self.oracle.num_ancillas return list(range(num_state_qubits)) @property def zero_reflection(self) -> QuantumCircuit: """The subcircuit implementing the reflection about 0.""" if self._zero_reflection is not None: return self._zero_reflection num_state_qubits = self.oracle.num_qubits - self.oracle.num_ancillas return _zero_reflection(num_state_qubits, self.reflection_qubits, self._mcx_mode) @property def state_preparation(self) -> QuantumCircuit: """The subcircuit implementing the A operator or Hadamards.""" if self._state_preparation is not None: return self._state_preparation num_state_qubits = self.oracle.num_qubits - self.oracle.num_ancillas hadamards = QuantumCircuit(num_state_qubits, name="H") # apply Hadamards only on reflection qubits, rest will cancel out hadamards.h(self.reflection_qubits) return hadamards @property def oracle(self): """The oracle implementing a reflection about the bad state.""" return self._oracle def _build(self): num_state_qubits = self.oracle.num_qubits - self.oracle.num_ancillas self.add_register(QuantumRegister(num_state_qubits, name="state")) num_ancillas = numpy.max( [ self.oracle.num_ancillas, self.zero_reflection.num_ancillas, self.state_preparation.num_ancillas, ] ) if num_ancillas > 0: self.add_register(AncillaRegister(num_ancillas, name="ancilla")) self.compose(self.oracle, list(range(self.oracle.num_qubits)), inplace=True) if self._insert_barriers: self.barrier() self.compose( self.state_preparation.inverse(), list(range(self.state_preparation.num_qubits)), inplace=True, ) if self._insert_barriers: self.barrier() self.compose( self.zero_reflection, list(range(self.zero_reflection.num_qubits)), inplace=True ) if self._insert_barriers: self.barrier() self.compose( self.state_preparation, list(range(self.state_preparation.num_qubits)), inplace=True ) # minus sign self.global_phase = numpy.pi # TODO use the oracle compiler or the bit string oracle def _zero_reflection( num_state_qubits: int, qubits: List[int], mcx_mode: Optional[str] = None ) -> QuantumCircuit: qr_state = QuantumRegister(num_state_qubits, "state") reflection = QuantumCircuit(qr_state, name="S_0") num_ancillas = MCXGate.get_num_ancilla_qubits(len(qubits) - 1, mcx_mode) if num_ancillas > 0: qr_ancilla = AncillaRegister(num_ancillas, "ancilla") reflection.add_register(qr_ancilla) else: qr_ancilla = [] reflection.x(qubits) if len(qubits) == 1: reflection.z(0) # MCX does not allow 0 control qubits, therefore this is separate else: reflection.h(qubits[-1]) reflection.mcx(qubits[:-1], qubits[-1], qr_ancilla[:], mode=mcx_mode) reflection.h(qubits[-1]) reflection.x(qubits) return reflection
47.233553
101
0.548088
[ "Apache-2.0" ]
SpinQTech/SpinQKit
qiskit/circuit/library/grover_operator.py
16,719
Python
import numpy as np import copy, operator from qtensor.optimisation.Optimizer import OrderingOptimizer from qtensor import utils from functools import reduce import networkx as nx import qtree def reducelist(f, lst, x=0): prev = x for i in lst: prev = f(prev, i) yield prev class RGreedyOptimizer(OrderingOptimizer): """ An orderer that greedy selects vertices using boltzman probabilities. """ def __init__(self, *args, temp=0.002, repeats=10, **kwargs): super().__init__(*args, **kwargs) self.temp = temp self.repeats = repeats def _get_ordering(self, graph, **kwargs): node_names = nx.get_node_attributes(graph, 'name') node_sizes = nx.get_node_attributes(graph, 'size') peo, path = self._get_ordering_ints(graph) peo = [qtree.optimizer.Var(var, size=node_sizes[var], name=node_names[var]) for var in peo] #print('tw=', max(path)) return peo, path def _get_ordering_ints(self, old_graph, free_vars=[]): best_peo = None best_width = np.inf best_widths = None for i in range(self.repeats): graph = copy.deepcopy(old_graph) peo = [] widths = [] while graph.number_of_nodes(): ngs = np.array(list( map(len, map(operator.itemgetter(1), graph.adjacency())) )) weights = np.exp(-(ngs - np.min(ngs))/self.temp) #print(ngs) #print(weights) # 1, 3, 5, 2, 1 distrib = np.array([0]+list(reducelist(lambda x, y:x+y, weights, 0))) #print(distrib) # 0, 1, 4, 9, 11, 12 rnd = np.random.random()*distrib[-1] # between 0 and 12 = say, 5 # find the smallest value that larger than rnd bool_map = distrib < rnd # True, True, True, False, False, False select_map = bool_map[1:] ^ bool_map[:-1] selected_elem = np.array(list(graph.nodes))[select_map] assert len(selected_elem)==1, 'Error in algorithm, please submit an issue' selected_node = selected_elem[0] utils.eliminate_node_no_structure(graph, selected_node) peo.append(int(selected_node)) widths.append(int(ngs[select_map][0])) if max(widths) < best_width: best_peo = peo best_widths = widths best_width = max(widths) return best_peo, best_widths
34.205128
90
0.552099
[ "BSD-3-Clause" ]
DaniloZZZ/QTensor
qtensor/optimisation/RGreedy.py
2,668
Python
import os import json __author__ = 'Manfred Minimair <[email protected]>' class JSONStorage: """ File storage for a dictionary. """ file = '' # file name of storage file data = None # data dict indent = ' ' # indent prefix for pretty printing json files def __init__(self, path, name): """ Initizlize. :param path: path to the storage file; empty means the current direcory. :param name: file name, json file; may include a path. """ if path: os.makedirs(path, exist_ok=True) self.file = os.path.normpath(os.path.join(path, name)) try: with open(self.file) as data_file: self.data = json.load(data_file) except FileNotFoundError: self.data = dict() self.dump() def dump(self): """ Dump data into storage file. """ with open(self.file, 'w') as out_file: json.dump(self.data, out_file, indent=self.indent) def get(self, item): """ Get stored item. :param item: name, string, of item to get. :return: stored item; raises a KeyError if item does not exist. """ return self.data[item] def set(self, item, value): """ Set item's value; causes the data to be dumped into the storage file. :param item: name, string of item to set. :param value: value to set. """ self.data[item] = value self.dump() def __getattr__(self, item): """ Get stored item with .-notation if not defined as a class member. :param item: name, string of item compatible with Python class member name. :return value of item. """ if item in self.data: return self.data[item] else: raise AttributeError
28.029412
77
0.559811
[ "ECL-2.0", "Apache-2.0" ]
mincode/netdata
netdata/workers/json_storage.py
1,906
Python
from __future__ import annotations import asyncio import logging import uuid from collections import defaultdict from collections.abc import Hashable from dask.utils import parse_timedelta from distributed.client import Client from distributed.utils import TimeoutError, log_errors from distributed.worker import get_worker logger = logging.getLogger(__name__) class MultiLockExtension: """An extension for the scheduler to manage MultiLocks This adds the following routes to the scheduler * multi_lock_acquire * multi_lock_release The approach is to maintain `self.locks` that maps a lock (unique name given to `MultiLock(names=, ...)` at creation) to a list of users (instances of `MultiLock`) that "requests" the lock. Additionally, `self.requests` maps a user to its requested locks and `self.requests_left` maps a user to the number of locks still need. Every time a user `x` gets to the front in `self.locks[name] = [x, ...]` it means that `x` now holds the lock `name` and when it holds all the requested locks `acquire()` can return. Finally, `self.events` contains all the events users are waiting on to finish. """ def __init__(self, scheduler): self.scheduler = scheduler self.locks = defaultdict(list) # lock -> users self.requests = {} # user -> locks self.requests_left = {} # user -> locks still needed self.events = {} self.scheduler.handlers.update( {"multi_lock_acquire": self.acquire, "multi_lock_release": self.release} ) def _request_locks(self, locks: list[str], id: Hashable, num_locks: int) -> bool: """Request locks Parameters ---------- locks: List[str] Names of the locks to request. id: Hashable Identifier of the `MultiLock` instance requesting the locks. num_locks: int Number of locks in `locks` requesting Return ------ result: bool Whether `num_locks` requested locks are free immediately or not. """ assert id not in self.requests self.requests[id] = set(locks) assert len(locks) >= num_locks and num_locks > 0 self.requests_left[id] = num_locks locks = sorted(locks, key=lambda x: len(self.locks[x])) for i, lock in enumerate(locks): self.locks[lock].append(id) if len(self.locks[lock]) == 1: # The lock was free self.requests_left[id] -= 1 if self.requests_left[id] == 0: # Got all locks needed # Since we got all locks need, we can remove the rest of the requests self.requests[id] -= set(locks[i + 1 :]) return True return False def _refain_locks(self, locks, id): """Cancel/release previously requested/acquired locks Parameters ---------- locks: List[str] Names of the locks to refain. id: Hashable Identifier of the `MultiLock` instance refraining the locks. """ waiters_ready = set() for lock in locks: if self.locks[lock][0] == id: self.locks[lock].pop(0) if self.locks[lock]: new_first = self.locks[lock][0] self.requests_left[new_first] -= 1 if self.requests_left[new_first] <= 0: # Notice, `self.requests_left[new_first]` might go below zero # if more locks are freed than requested. self.requests_left[new_first] = 0 waiters_ready.add(new_first) else: self.locks[lock].remove(id) assert id not in self.locks[lock] del self.requests[id] del self.requests_left[id] for waiter in waiters_ready: self.scheduler.loop.add_callback(self.events[waiter].set) async def acquire(self, locks=None, id=None, timeout=None, num_locks=None): with log_errors(): if not self._request_locks(locks, id, num_locks): assert id not in self.events event = asyncio.Event() self.events[id] = event future = event.wait() if timeout is not None: future = asyncio.wait_for(future, timeout) try: await future except TimeoutError: self._refain_locks(locks, id) return False finally: del self.events[id] # At this point `id` acquired all `locks` assert self.requests_left[id] == 0 return True def release(self, id=None): with log_errors(): self._refain_locks(self.requests[id], id) class MultiLock: """Distributed Centralized Lock Parameters ---------- names: List[str] Names of the locks to acquire. Choosing the same name allows two disconnected processes to coordinate a lock. client: Client (optional) Client to use for communication with the scheduler. If not given, the default global client will be used. Examples -------- >>> lock = MultiLock(['x', 'y']) # doctest: +SKIP >>> lock.acquire(timeout=1) # doctest: +SKIP >>> # do things with protected resource 'x' and 'y' >>> lock.release() # doctest: +SKIP """ def __init__(self, names=[], client=None): try: self.client = client or Client.current() except ValueError: # Initialise new client self.client = get_worker().client self.names = names self.id = uuid.uuid4().hex self._locked = False def acquire(self, blocking=True, timeout=None, num_locks=None): """Acquire the lock Parameters ---------- blocking : bool, optional If false, don't wait on the lock in the scheduler at all. timeout : string or number or timedelta, optional Seconds to wait on the lock in the scheduler. This does not include local coroutine time, network transfer time, etc.. It is forbidden to specify a timeout when blocking is false. Instead of number of seconds, it is also possible to specify a timedelta in string format, e.g. "200ms". num_locks : int, optional Number of locks needed. If None, all locks are needed Examples -------- >>> lock = MultiLock(['x', 'y']) # doctest: +SKIP >>> lock.acquire(timeout="1s") # doctest: +SKIP Returns ------- True or False whether or not it successfully acquired the lock """ timeout = parse_timedelta(timeout) if not blocking: if timeout is not None: raise ValueError("can't specify a timeout for a non-blocking call") timeout = 0 result = self.client.sync( self.client.scheduler.multi_lock_acquire, locks=self.names, id=self.id, timeout=timeout, num_locks=num_locks or len(self.names), ) self._locked = True return result def release(self): """Release the lock if already acquired""" if not self.locked(): raise ValueError("Lock is not yet acquired") ret = self.client.sync(self.client.scheduler.multi_lock_release, id=self.id) self._locked = False return ret def locked(self): return self._locked def __enter__(self): self.acquire() return self def __exit__(self, *args, **kwargs): self.release() async def __aenter__(self): await self.acquire() return self async def __aexit__(self, *args, **kwargs): await self.release() def __reduce__(self): return (type(self), (self.names,))
33.995798
89
0.582252
[ "BSD-3-Clause" ]
bryanwweber/distributed
distributed/multi_lock.py
8,091
Python
import torchvision import numpy as np import matplotlib import matplotlib.pyplot as plt def display_and_save_batch(title, batch, data, save=True, display=True): """Display and save batch of image using plt""" im = torchvision.utils.make_grid(batch, nrow=int(batch.shape[0]**0.5)) plt.title(title) plt.imshow(np.transpose(im.cpu().numpy(), (1, 2, 0)), cmap='gray') if save: plt.savefig('results/' + title + data + '.png', transparent=True, bbox_inches='tight') if display: plt.show() def display_and_save_latent(batch, label, data, save=True, display=True): """Display and save batch of 2-D latent variable using plt""" colors = ['black', 'red', 'green', 'blue', 'yellow', 'cyan', 'magenta', 'pink', 'violet', 'grey'] z = batch.cpu().detach().numpy() l = label.cpu().numpy() plt.title('Latent variables') plt.scatter(z[:,0], z[:,1], c=l, cmap=matplotlib.colors.ListedColormap(colors)) plt.xlim(-3, 3, ) plt.ylim(-3, 3) if save: plt.savefig('results/latent-variable' + data + '.png', transparent=True, bbox_inches='tight') if display: plt.show()
39.37931
101
0.643608
[ "MIT" ]
jaywonchung/Learning-ML
Implementations/Conditional-Variational-Autoencoder/plot_utils.py
1,142
Python
import binascii from PySide2.QtWidgets import QTableWidget, QTableWidgetItem, QAbstractItemView from PySide2.QtCore import Qt class QPatchTableItem: def __init__(self, patch, old_bytes): self.patch = patch self.old_bytes = old_bytes def widgets(self): patch = self.patch widgets = [ QTableWidgetItem("%#x" % patch.addr), QTableWidgetItem("%d bytes" % len(patch)), QTableWidgetItem(binascii.hexlify(self.old_bytes).decode("ascii") if self.old_bytes else "<unknown>"), QTableWidgetItem(binascii.hexlify(patch.new_bytes).decode("ascii")), ] for w in widgets: w.setFlags(w.flags() & ~Qt.ItemIsEditable) return widgets class QPatchTable(QTableWidget): HEADER = ['Address', 'Size', 'Old Bytes', 'New Bytes'] def __init__(self, instance, parent): super(QPatchTable, self).__init__(parent) self.setColumnCount(len(self.HEADER)) self.setHorizontalHeaderLabels(self.HEADER) self.setSelectionBehavior(QAbstractItemView.SelectRows) self.verticalHeader().setVisible(False) self.items = [ ] self.instance = instance self.instance.patches.am_subscribe(self._watch_patches) def current_patch(self): selected_index = self.currentRow() if 0 <= selected_index < len(self.items): return self.items[selected_index] else: return None def reload(self): current_row = self.currentRow() self.clearContents() self.items = [QPatchTableItem(item, self._get_bytes(self.instance.project, item.addr, len(item))) for item in self.instance.project.kb.patches.values()] items_count = len(self.items) self.setRowCount(items_count) for idx, item in enumerate(self.items): for i, it in enumerate(item.widgets()): self.setItem(idx, i, it) #if 0 <= current_row < len(self.items): # self.setCurrentItem(current_row, 0) def _on_state_selected(self, *args): if self._selected is not None: self._selected(self.current_state_record()) def _watch_patches(self, **kwargs): if not self.instance.patches.am_none: self.reload() @staticmethod def _get_bytes(proj, addr, size): try: return proj.loader.memory.load(addr, size) except KeyError: return None
30.46988
114
0.619217
[ "BSD-2-Clause" ]
CrackerCat/angr-management
angrmanagement/ui/widgets/qpatch_table.py
2,529
Python
import enum import SimpleITK as sitk @enum.unique class Interpolation(enum.Enum): """Interpolation techniques available in ITK. Example: >>> import torchio as tio >>> transform = tio.RandomAffine(image_interpolation='nearest') """ #: Interpolates image intensity at a non-integer pixel position by copying the intensity for the nearest neighbor. NEAREST: str = 'sitkNearestNeighbor' #: Linearly interpolates image intensity at a non-integer pixel position. LINEAR: str = 'sitkLinear' #: Computes the B-spline interpolation weights over the support region of the B-spline. BSPLINE: str = 'sitkBSpline' GAUSSIAN: str = 'sitkGaussian' LABEL_GAUSSIAN: str = 'sitkLabelGaussian' HAMMING: str = 'sitkHammingWindowedSinc' COSINE: str = 'sitkCosineWindowedSinc' WELCH: str = 'sitkWelchWindowedSinc' LANCZOS: str = 'sitkLanczosWindowedSinc' BLACKMAN: str = 'sitkBlackmanWindowedSinc' def get_sitk_interpolator(interpolation: str) -> int: if not isinstance(interpolation, str): message = ( f'Interpolation must be a string, not {type(interpolation)}' ) raise ValueError(message) string = getattr(Interpolation, interpolation.upper()).value return getattr(sitk, string)
32.4
118
0.703704
[ "Apache-2.0" ]
jwitos/torchio
torchio/transforms/interpolation.py
1,296
Python
# -*- coding: utf-8 -*- # # Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """service-management operations describe command.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals from googlecloudsdk.calliope import base from googlecloudsdk.command_lib.endpoints import common_flags _ERROR = ('The `service-management operations describe` command has been ' 'replaced by `endpoints operations describe` and ' '`services operations describe`.') @base.Deprecate(is_removed=True, error=_ERROR) class Describe(base.DescribeCommand): """Describes an operation resource for a given operation name.""" @staticmethod def Args(parser): """Args is called by calliope to gather arguments for this command. Args: parser: An argparse parser that you can use to add arguments that go on the command line after this command. Positional arguments are allowed. """ common_flags.operation_flag(suffix='to describe').AddToParser(parser) parser.display_info.AddFormat( ':(metadata.startTime.date(format="%Y-%m-%d %H:%M:%S %Z", tz=LOCAL)) ' '[transforms] default') parser.add_argument( '--full', action='store_true', default=False, help=('Print the entire operation resource, which could be large. ' 'By default, a summary will be printed instead.')) def Run(self, args): """Stubs 'service-management operations describe'. Args: args: argparse.Namespace, The arguments that this command was invoked with. """ pass
33.6
78
0.708333
[ "Apache-2.0" ]
bshaffer/google-cloud-sdk
lib/surface/service_management/operations/describe.py
2,184
Python
""" Reads the version information from the manifest of the Chrome extension. Author: Mustafa Emre Acer """ import json import sys def ReadChromeExtensionVersion(manifest_path): with open(manifest_path) as manifest_file: manifest = json.load(manifest_file) print(manifest['version']) if __name__ == "__main__": if len(sys.argv) > 1: ReadChromeExtensionVersion(sys.argv[1]) else: print('\nUsage: chrome_extension_version.py <manifest_path>\n') exit(-1)
22.090909
74
0.726337
[ "MIT" ]
meacer/deasciifier
build/chrome_extension_version.py
486
Python
""" Backprop NN training on Madelon data (Feature selection complete) """ import os import csv import time import sys sys.path.append("C:/ABAGAIL/ABAGAIL.jar") from func.nn.backprop import BackPropagationNetworkFactory from shared import SumOfSquaresError, DataSet, Instance from opt.example import NeuralNetworkOptimizationProblem from func.nn.backprop import RPROPUpdateRule, BatchBackPropagationTrainer import opt.RandomizedHillClimbing as RandomizedHillClimbing import opt.SimulatedAnnealing as SimulatedAnnealing import opt.ga.StandardGeneticAlgorithm as StandardGeneticAlgorithm from func.nn.activation import ActivationFunction # Network parameters found "optimal" in Assignment 1 INPUT_LAYER = 31 HIDDEN_LAYER1 = 62 HIDDEN_LAYER2 = 62 HIDDEN_LAYER3 = 62 OUTPUT_LAYER = 1 TRAINING_ITERATIONS = 5001 OUTFILE = 'BACKPROP_LOG.txt' def initialize_instances(infile): """Read the m_trg.csv CSV data into a list of instances.""" instances = [] # Read in the CSV file #with open(infile, "r") as dat: dat = open(infile,"r") reader = csv.reader(dat) dat.close() for row in reader: instance = Instance([float(value) for value in row[:-1]]) if float(row[-1]) < 0: instance.setLabel(Instance(0)) else: instance.setLabel(Instance(1)) #instance.setLabel(Instance(0 if float(row[-1]) < 0 else 1)) instances.append(instance) return instances def errorOnDataSet(network,ds,measure): N = len(ds) error = 0. correct = 0 incorrect = 0 for instance in ds: network.setInputValues(instance.getData()) network.run() actual = instance.getLabel().getContinuous() predicted = network.getOutputValues().get(0) predicted = max(min(predicted,1),0) if abs(predicted - actual) < 0.5: correct += 1 else: incorrect += 1 output = instance.getLabel() output_values = network.getOutputValues() example = Instance(output_values, Instance(output_values.get(0))) error += measure.value(output, example) MSE = error/float(N) acc = correct/float(correct+incorrect) return MSE,acc def train(oa, network, oaName, training_ints,validation_ints,testing_ints, measure): """Train a given network on a set of instances. """ print ("\nError results for {}\n---------------------------".format(oaName)) times = [0] for iteration in xrange(TRAINING_ITERATIONS): start = time.clock() oa.train() elapsed = time.clock()-start times.append(times[-1]+elapsed) if iteration % 10 == 0: MSE_trg, acc_trg = errorOnDataSet(network,training_ints,measure) MSE_val, acc_val = errorOnDataSet(network,validation_ints,measure) MSE_tst, acc_tst = errorOnDataSet(network,testing_ints,measure) txt = '{},{},{},{},{},{},{},{}\n'.format(iteration,MSE_trg,MSE_val,MSE_tst,acc_trg,acc_val,acc_tst,times[-1]); print (txt) #with open(OUTFILE,'a+') as f: f=open(OUTFILE,'a+') f.write(txt) f.close() def main(): """Run this experiment""" training_ints = initialize_instances('m_trg.csv') testing_ints = initialize_instances('m_test.csv') validation_ints = initialize_instances('m_val.csv') factory = BackPropagationNetworkFactory() measure = SumOfSquaresError() data_set = DataSet(training_ints) relu = RELU() rule = RPROPUpdateRule() oa_names = ["Backprop"] classification_network = factory.createClassificationNetwork([INPUT_LAYER, HIDDEN_LAYER1,HIDDEN_LAYER2,HIDDEN_LAYER3, OUTPUT_LAYER],relu) train(BatchBackPropagationTrainer(data_set,classification_network,measure,rule), classification_network, 'Backprop', training_ints,validation_ints,testing_ints, measure) if __name__ == "__main__": #with open(OUTFILE,'w') as f: f=open(OUTFILE,'a+') f.write('{},{},{},{},{},{},{},{}\n'.format('iteration','MSE_trg','MSE_val','MSE_tst','acc_trg','acc_val','acc_tst','elapsed')) f.close() main()
35.482759
173
0.670068
[ "MIT" ]
tirthajyoti/Randomized_Optimization
ABAGAIL_execution/flipflop.py
4,116
Python
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from ... import _utilities, _tables from . import outputs from ._enums import * from ._inputs import * __all__ = ['MachineLearningCompute'] class MachineLearningCompute(pulumi.CustomResource): def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, compute_name: Optional[pulumi.Input[str]] = None, identity: Optional[pulumi.Input[pulumi.InputType['IdentityArgs']]] = None, location: Optional[pulumi.Input[str]] = None, properties: Optional[pulumi.Input[Union[pulumi.InputType['AKSArgs'], pulumi.InputType['AmlComputeArgs'], pulumi.InputType['ComputeInstanceArgs'], pulumi.InputType['DataFactoryArgs'], pulumi.InputType['DataLakeAnalyticsArgs'], pulumi.InputType['DatabricksArgs'], pulumi.InputType['HDInsightArgs'], pulumi.InputType['VirtualMachineArgs']]]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, sku: Optional[pulumi.Input[pulumi.InputType['SkuArgs']]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, workspace_name: Optional[pulumi.Input[str]] = None, __props__=None, __name__=None, __opts__=None): """ Machine Learning compute object wrapped into ARM resource envelope. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] compute_name: Name of the Azure Machine Learning compute. :param pulumi.Input[pulumi.InputType['IdentityArgs']] identity: The identity of the resource. :param pulumi.Input[str] location: Specifies the location of the resource. :param pulumi.Input[Union[pulumi.InputType['AKSArgs'], pulumi.InputType['AmlComputeArgs'], pulumi.InputType['ComputeInstanceArgs'], pulumi.InputType['DataFactoryArgs'], pulumi.InputType['DataLakeAnalyticsArgs'], pulumi.InputType['DatabricksArgs'], pulumi.InputType['HDInsightArgs'], pulumi.InputType['VirtualMachineArgs']]] properties: Compute properties :param pulumi.Input[str] resource_group_name: Name of the resource group in which workspace is located. :param pulumi.Input[pulumi.InputType['SkuArgs']] sku: The sku of the workspace. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Contains resource tags defined as key/value pairs. :param pulumi.Input[str] workspace_name: Name of Azure Machine Learning workspace. """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() __props__['compute_name'] = compute_name __props__['identity'] = identity __props__['location'] = location __props__['properties'] = properties if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__['resource_group_name'] = resource_group_name __props__['sku'] = sku __props__['tags'] = tags if workspace_name is None and not opts.urn: raise TypeError("Missing required property 'workspace_name'") __props__['workspace_name'] = workspace_name __props__['name'] = None __props__['system_data'] = None __props__['type'] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:machinelearningservices/v20210101:MachineLearningCompute"), pulumi.Alias(type_="azure-native:machinelearningservices:MachineLearningCompute"), pulumi.Alias(type_="azure-nextgen:machinelearningservices:MachineLearningCompute"), pulumi.Alias(type_="azure-native:machinelearningservices/latest:MachineLearningCompute"), pulumi.Alias(type_="azure-nextgen:machinelearningservices/latest:MachineLearningCompute"), pulumi.Alias(type_="azure-native:machinelearningservices/v20180301preview:MachineLearningCompute"), pulumi.Alias(type_="azure-nextgen:machinelearningservices/v20180301preview:MachineLearningCompute"), pulumi.Alias(type_="azure-native:machinelearningservices/v20181119:MachineLearningCompute"), pulumi.Alias(type_="azure-nextgen:machinelearningservices/v20181119:MachineLearningCompute"), pulumi.Alias(type_="azure-native:machinelearningservices/v20190501:MachineLearningCompute"), pulumi.Alias(type_="azure-nextgen:machinelearningservices/v20190501:MachineLearningCompute"), pulumi.Alias(type_="azure-native:machinelearningservices/v20190601:MachineLearningCompute"), pulumi.Alias(type_="azure-nextgen:machinelearningservices/v20190601:MachineLearningCompute"), pulumi.Alias(type_="azure-native:machinelearningservices/v20191101:MachineLearningCompute"), pulumi.Alias(type_="azure-nextgen:machinelearningservices/v20191101:MachineLearningCompute"), pulumi.Alias(type_="azure-native:machinelearningservices/v20200101:MachineLearningCompute"), pulumi.Alias(type_="azure-nextgen:machinelearningservices/v20200101:MachineLearningCompute"), pulumi.Alias(type_="azure-native:machinelearningservices/v20200218preview:MachineLearningCompute"), pulumi.Alias(type_="azure-nextgen:machinelearningservices/v20200218preview:MachineLearningCompute"), pulumi.Alias(type_="azure-native:machinelearningservices/v20200301:MachineLearningCompute"), pulumi.Alias(type_="azure-nextgen:machinelearningservices/v20200301:MachineLearningCompute"), pulumi.Alias(type_="azure-native:machinelearningservices/v20200401:MachineLearningCompute"), pulumi.Alias(type_="azure-nextgen:machinelearningservices/v20200401:MachineLearningCompute"), pulumi.Alias(type_="azure-native:machinelearningservices/v20200501preview:MachineLearningCompute"), pulumi.Alias(type_="azure-nextgen:machinelearningservices/v20200501preview:MachineLearningCompute"), pulumi.Alias(type_="azure-native:machinelearningservices/v20200515preview:MachineLearningCompute"), pulumi.Alias(type_="azure-nextgen:machinelearningservices/v20200515preview:MachineLearningCompute"), pulumi.Alias(type_="azure-native:machinelearningservices/v20200601:MachineLearningCompute"), pulumi.Alias(type_="azure-nextgen:machinelearningservices/v20200601:MachineLearningCompute"), pulumi.Alias(type_="azure-native:machinelearningservices/v20200801:MachineLearningCompute"), pulumi.Alias(type_="azure-nextgen:machinelearningservices/v20200801:MachineLearningCompute"), pulumi.Alias(type_="azure-native:machinelearningservices/v20200901preview:MachineLearningCompute"), pulumi.Alias(type_="azure-nextgen:machinelearningservices/v20200901preview:MachineLearningCompute")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(MachineLearningCompute, __self__).__init__( 'azure-native:machinelearningservices/v20210101:MachineLearningCompute', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'MachineLearningCompute': """ Get an existing MachineLearningCompute resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() __props__["identity"] = None __props__["location"] = None __props__["name"] = None __props__["properties"] = None __props__["sku"] = None __props__["system_data"] = None __props__["tags"] = None __props__["type"] = None return MachineLearningCompute(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter def identity(self) -> pulumi.Output[Optional['outputs.IdentityResponse']]: """ The identity of the resource. """ return pulumi.get(self, "identity") @property @pulumi.getter def location(self) -> pulumi.Output[Optional[str]]: """ Specifies the location of the resource. """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ Specifies the name of the resource. """ return pulumi.get(self, "name") @property @pulumi.getter def properties(self) -> pulumi.Output[Any]: """ Compute properties """ return pulumi.get(self, "properties") @property @pulumi.getter def sku(self) -> pulumi.Output[Optional['outputs.SkuResponse']]: """ The sku of the workspace. """ return pulumi.get(self, "sku") @property @pulumi.getter(name="systemData") def system_data(self) -> pulumi.Output['outputs.SystemDataResponse']: """ Read only system data """ return pulumi.get(self, "system_data") @property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Mapping[str, str]]]: """ Contains resource tags defined as key/value pairs. """ return pulumi.get(self, "tags") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ Specifies the type of the resource. """ return pulumi.get(self, "type") def translate_output_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return _tables.SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
59.895604
3,183
0.710669
[ "Apache-2.0" ]
pulumi-bot/pulumi-azure-native
sdk/python/pulumi_azure_native/machinelearningservices/v20210101/machine_learning_compute.py
10,901
Python
# Copyright Contributors to the Amundsen project. # SPDX-License-Identifier: Apache-2.0 import unittest from unittest.mock import ANY from databuilder.models.graph_serializable import ( RELATION_END_KEY, RELATION_END_LABEL, RELATION_REVERSE_TYPE, RELATION_START_KEY, RELATION_START_LABEL, RELATION_TYPE, ) from databuilder.models.table_source import TableSource from databuilder.serializers import neo4_serializer, neptune_serializer from databuilder.serializers.neptune_serializer import ( NEPTUNE_CREATION_TYPE_JOB, NEPTUNE_CREATION_TYPE_RELATIONSHIP_PROPERTY_NAME_BULK_LOADER_FORMAT, NEPTUNE_HEADER_ID, NEPTUNE_HEADER_LABEL, NEPTUNE_LAST_EXTRACTED_AT_RELATIONSHIP_PROPERTY_NAME_BULK_LOADER_FORMAT, NEPTUNE_RELATIONSHIP_HEADER_FROM, NEPTUNE_RELATIONSHIP_HEADER_TO, ) DB = 'hive' SCHEMA = 'base' TABLE = 'test' CLUSTER = 'default' SOURCE = '/etl/sql/file.py' class TestTableSource(unittest.TestCase): def setUp(self) -> None: super(TestTableSource, self).setUp() self.table_source = TableSource(db_name='hive', schema=SCHEMA, table_name=TABLE, cluster=CLUSTER, source=SOURCE) self.start_key = f'{DB}://{CLUSTER}.{SCHEMA}/{TABLE}/_source' self.end_key = f'{DB}://{CLUSTER}.{SCHEMA}/{TABLE}' def test_get_source_model_key(self) -> None: source = self.table_source.get_source_model_key() self.assertEqual(source, f'{DB}://{CLUSTER}.{SCHEMA}/{TABLE}/_source') def test_get_metadata_model_key(self) -> None: metadata = self.table_source.get_metadata_model_key() self.assertEqual(metadata, 'hive://default.base/test') def test_create_nodes(self) -> None: nodes = self.table_source.create_nodes() self.assertEqual(len(nodes), 1) def test_create_relation(self) -> None: relations = self.table_source.create_relation() self.assertEquals(len(relations), 1) serialized_relation = neo4_serializer.serialize_relationship(relations[0]) expected_relation = { RELATION_START_KEY: self.start_key, RELATION_START_LABEL: TableSource.LABEL, RELATION_END_KEY: self.end_key, RELATION_END_LABEL: 'Table', RELATION_TYPE: TableSource.SOURCE_TABLE_RELATION_TYPE, RELATION_REVERSE_TYPE: TableSource.TABLE_SOURCE_RELATION_TYPE } self.assertDictEqual(expected_relation, serialized_relation) def test_create_relation_neptune(self) -> None: relations = self.table_source.create_relation() serialized_relations = neptune_serializer.convert_relationship(relations[0]) expected = [ { NEPTUNE_HEADER_ID: "{from_vertex_id}_{to_vertex_id}_{label}".format( from_vertex_id=self.start_key, to_vertex_id=self.end_key, label=TableSource.SOURCE_TABLE_RELATION_TYPE ), NEPTUNE_RELATIONSHIP_HEADER_FROM: self.start_key, NEPTUNE_RELATIONSHIP_HEADER_TO: self.end_key, NEPTUNE_HEADER_LABEL: TableSource.SOURCE_TABLE_RELATION_TYPE, NEPTUNE_LAST_EXTRACTED_AT_RELATIONSHIP_PROPERTY_NAME_BULK_LOADER_FORMAT: ANY, NEPTUNE_CREATION_TYPE_RELATIONSHIP_PROPERTY_NAME_BULK_LOADER_FORMAT: NEPTUNE_CREATION_TYPE_JOB }, { NEPTUNE_HEADER_ID: "{from_vertex_id}_{to_vertex_id}_{label}".format( from_vertex_id=self.end_key, to_vertex_id=self.start_key, label=TableSource.TABLE_SOURCE_RELATION_TYPE ), NEPTUNE_RELATIONSHIP_HEADER_FROM: self.end_key, NEPTUNE_RELATIONSHIP_HEADER_TO: self.start_key, NEPTUNE_HEADER_LABEL: TableSource.TABLE_SOURCE_RELATION_TYPE, NEPTUNE_LAST_EXTRACTED_AT_RELATIONSHIP_PROPERTY_NAME_BULK_LOADER_FORMAT: ANY, NEPTUNE_CREATION_TYPE_RELATIONSHIP_PROPERTY_NAME_BULK_LOADER_FORMAT: NEPTUNE_CREATION_TYPE_JOB } ] self.assertListEqual(expected, serialized_relations)
43.20202
118
0.679448
[ "Apache-2.0" ]
JacobSMoller/amundsendatabuilder
tests/unit/models/test_table_source.py
4,277
Python
__copyright__ = "Copyright (C) 2009-2013 Andreas Kloeckner" __license__ = """ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import pymbolic.primitives as prim import pytest from pymbolic import parse from pytools.lex import ParseError from pymbolic.mapper import IdentityMapper try: reduce except NameError: from functools import reduce # {{{ utilities def assert_parsed_same_as_python(expr_str): # makes sure that has only one line expr_str, = expr_str.split("\n") from pymbolic.interop.ast import ASTToPymbolic import ast ast2p = ASTToPymbolic() try: expr_parsed_by_python = ast2p(ast.parse(expr_str).body[0].value) except SyntaxError: with pytest.raises(ParseError): parse(expr_str) else: expr_parsed_by_pymbolic = parse(expr_str) assert expr_parsed_by_python == expr_parsed_by_pymbolic def assert_parse_roundtrip(expr_str): expr = parse(expr_str) from pymbolic.mapper.stringifier import StringifyMapper strified = StringifyMapper()(expr) assert strified == expr_str, (strified, expr_str) # }}} def test_integer_power(): from pymbolic.algorithm import integer_power for base, expn in [ (17, 5), (17, 2**10), (13, 20), (13, 1343), ]: assert base**expn == integer_power(base, expn) def test_expand(): from pymbolic import var, expand x = var("x") u = (x+1)**5 expand(u) def test_substitute(): from pymbolic import parse, substitute, evaluate u = parse("5+x.min**2") xmin = parse("x.min") assert evaluate(substitute(u, {xmin: 25})) == 630 def test_no_comparison(): from pymbolic import parse x = parse("17+3*x") y = parse("12-5*y") def expect_typeerror(f): try: f() except TypeError: pass else: raise AssertionError expect_typeerror(lambda: x < y) expect_typeerror(lambda: x <= y) expect_typeerror(lambda: x > y) expect_typeerror(lambda: x >= y) def test_structure_preservation(): x = prim.Sum((5, 7)) from pymbolic.mapper import IdentityMapper x2 = IdentityMapper()(x) assert x == x2 def test_sympy_interaction(): pytest.importorskip("sympy") import sympy as sp x, y = sp.symbols("x y") f = sp.Function("f") s1_expr = 1/f(x/sp.sqrt(x**2+y**2)).diff(x, 5) # pylint:disable=not-callable from pymbolic.interop.sympy import ( SympyToPymbolicMapper, PymbolicToSympyMapper) s2p = SympyToPymbolicMapper() p2s = PymbolicToSympyMapper() p1_expr = s2p(s1_expr) s2_expr = p2s(p1_expr) assert sp.ratsimp(s1_expr - s2_expr) == 0 p2_expr = s2p(s2_expr) s3_expr = p2s(p2_expr) assert sp.ratsimp(s1_expr - s3_expr) == 0 # {{{ fft def test_fft_with_floats(): numpy = pytest.importorskip("numpy") import numpy.linalg as la from pymbolic.algorithm import fft, ifft for n in [2**i for i in range(4, 10)]+[17, 12, 948]: a = numpy.random.rand(n) + 1j*numpy.random.rand(n) f_a = fft(a) a2 = ifft(f_a) assert la.norm(a-a2) < 1e-10 f_a_numpy = numpy.fft.fft(a) assert la.norm(f_a-f_a_numpy) < 1e-10 class NearZeroKiller(IdentityMapper): def map_constant(self, expr): if isinstance(expr, complex): r = expr.real i = expr.imag if abs(r) < 1e-15: r = 0 if abs(i) < 1e-15: i = 0 return complex(r, i) else: return expr def test_fft(): numpy = pytest.importorskip("numpy") from pymbolic import var from pymbolic.algorithm import fft, sym_fft vars = numpy.array([var(chr(97+i)) for i in range(16)], dtype=object) print(vars) print(fft(vars)) traced_fft = sym_fft(vars) from pymbolic.mapper.stringifier import PREC_NONE from pymbolic.mapper.c_code import CCodeMapper ccm = CCodeMapper() code = [ccm(tfi, PREC_NONE) for tfi in traced_fft] for cse_name, cse_str in enumerate(ccm.cse_name_list): print(f"{cse_name} = {cse_str}") for i, line in enumerate(code): print("result[%d] = %s" % (i, line)) # }}} def test_sparse_multiply(): numpy = pytest.importorskip("numpy") pytest.importorskip("scipy") import scipy.sparse as ss la = numpy.linalg mat = numpy.random.randn(10, 10) s_mat = ss.csr_matrix(mat) vec = numpy.random.randn(10) mat_vec = s_mat*vec from pymbolic.algorithm import csr_matrix_multiply mat_vec_2 = csr_matrix_multiply(s_mat, vec) assert la.norm(mat_vec-mat_vec_2) < 1e-14 # {{{ parser def test_parser(): from pymbolic import parse parse("(2*a[1]*b[1]+2*a[0]*b[0])*(hankel_1(-1,sqrt(a[1]**2+a[0]**2)*k) " "-hankel_1(1,sqrt(a[1]**2+a[0]**2)*k))*k /(4*sqrt(a[1]**2+a[0]**2)) " "+hankel_1(0,sqrt(a[1]**2+a[0]**2)*k)") print(repr(parse("d4knl0"))) print(repr(parse("0."))) print(repr(parse("0.e1"))) assert parse("0.e1") == 0 assert parse("1e-12") == 1e-12 print(repr(parse("a >= 1"))) print(repr(parse("a <= 1"))) print(repr(parse(":"))) print(repr(parse("1:"))) print(repr(parse(":2"))) print(repr(parse("1:2"))) print(repr(parse("::"))) print(repr(parse("1::"))) print(repr(parse(":1:"))) print(repr(parse("::1"))) print(repr(parse("3::1"))) print(repr(parse(":5:1"))) print(repr(parse("3:5:1"))) assert_parse_roundtrip("()") assert_parse_roundtrip("(3,)") assert_parse_roundtrip("[x + 3, 3, 5]") assert_parse_roundtrip("[]") assert_parse_roundtrip("[x]") assert_parse_roundtrip("g[i, k] + 2.0*h[i, k]") parse("g[i,k]+(+2.0)*h[i, k]") print(repr(parse("a - b - c"))) print(repr(parse("-a - -b - -c"))) print(repr(parse("- - - a - - - - b - - - - - c"))) print(repr(parse("~(a ^ b)"))) print(repr(parse("(a | b) | ~(~a & ~b)"))) print(repr(parse("3 << 1"))) print(repr(parse("1 >> 3"))) print(parse("3::1")) assert parse("e1") == prim.Variable("e1") assert parse("d1") == prim.Variable("d1") from pymbolic import variables f, x, y, z = variables("f x y z") assert parse("f((x,y),z)") == f((x, y), z) assert parse("f((x,),z)") == f((x,), z) assert parse("f(x,(y,z),z)") == f(x, (y, z), z) assert parse("f(x,(y,z),z, name=15)") == f(x, (y, z), z, name=15) assert parse("f(x,(y,z),z, name=15, name2=17)") == f( x, (y, z), z, name=15, name2=17) assert_parsed_same_as_python("5+i if i>=0 else (0 if i<-1 else 10)") assert_parsed_same_as_python("0 if 1 if 2 else 3 else 4") assert_parsed_same_as_python("0 if (1 if 2 else 3) else 4") assert_parsed_same_as_python("(2, 3,)") with pytest.deprecated_call(): parse("1+if(0, 1, 2)") # }}} def test_mappers(): from pymbolic import variables f, x, y, z = variables("f x y z") for expr in [ f(x, (y, z), name=z**2) ]: from pymbolic.mapper import WalkMapper from pymbolic.mapper.dependency import DependencyMapper str(expr) IdentityMapper()(expr) WalkMapper()(expr) DependencyMapper()(expr) def test_func_dep_consistency(): from pymbolic import var from pymbolic.mapper.dependency import DependencyMapper f = var("f") x = var("x") dep_map = DependencyMapper(include_calls="descend_args") assert dep_map(f(x)) == {x} assert dep_map(f(x=x)) == {x} def test_conditions(): from pymbolic import var x = var("x") y = var("y") assert str(x.eq(y).and_(x.le(5))) == "x == y and x <= 5" def test_graphviz(): from pymbolic import parse expr = parse("(2*a[1]*b[1]+2*a[0]*b[0])*(hankel_1(-1,sqrt(a[1]**2+a[0]**2)*k) " "-hankel_1(1,sqrt(a[1]**2+a[0]**2)*k))*k /(4*sqrt(a[1]**2+a[0]**2)) " "+hankel_1(0,sqrt(a[1]**2+a[0]**2)*k)") from pymbolic.mapper.graphviz import GraphvizMapper gvm = GraphvizMapper() gvm(expr) print(gvm.get_dot_code()) # {{{ geometric algebra @pytest.mark.parametrize("dims", [2, 3, 4, 5]) # START_GA_TEST def test_geometric_algebra(dims): pytest.importorskip("numpy") import numpy as np from pymbolic.geometric_algebra import MultiVector as MV # noqa vec1 = MV(np.random.randn(dims)) vec2 = MV(np.random.randn(dims)) vec3 = MV(np.random.randn(dims)) vec4 = MV(np.random.randn(dims)) vec5 = MV(np.random.randn(dims)) # Fundamental identity assert ((vec1 ^ vec2) + (vec1 | vec2)).close_to(vec1*vec2) # Antisymmetry assert (vec1 ^ vec2 ^ vec3).close_to(- vec2 ^ vec1 ^ vec3) vecs = [vec1, vec2, vec3, vec4, vec5] if len(vecs) > dims: from operator import xor as outer assert reduce(outer, vecs).close_to(0) assert (vec1.inv()*vec1).close_to(1) assert (vec1*vec1.inv()).close_to(1) assert ((1/vec1)*vec1).close_to(1) assert (vec1/vec1).close_to(1) for a, b, c in [ (vec1, vec2, vec3), (vec1*vec2, vec3, vec4), (vec1, vec2*vec3, vec4), (vec1, vec2, vec3*vec4), (vec1, vec2, vec3*vec4*vec5), (vec1, vec2*vec1, vec3*vec4*vec5), ]: # Associativity assert ((a*b)*c).close_to(a*(b*c)) assert ((a ^ b) ^ c).close_to(a ^ (b ^ c)) # The inner product is not associative. # scalar product assert ((c*b).project(0)) .close_to(b.scalar_product(c)) assert ((c.rev()*b).project(0)) .close_to(b.rev().scalar_product(c)) assert ((b.rev()*b).project(0)) .close_to(b.norm_squared()) assert b.norm_squared() >= 0 assert c.norm_squared() >= 0 # Cauchy's inequality assert b.scalar_product(c) <= abs(b)*abs(c) + 1e-13 # contractions # (3.18) in [DFM] assert abs(b.scalar_product(a ^ c) - (b >> a).scalar_product(c)) < 1e-13 # duality, (3.20) in [DFM] assert ((a ^ b) << c) .close_to(a << (b << c)) # two definitions of the dual agree: (1.2.26) in [HS] # and (sec 3.5.3) in [DFW] assert (c << c.I.rev()).close_to(c | c.I.rev()) # inverse for div in list(b.gen_blades()) + [vec1, vec1.I]: assert (div.inv()*div).close_to(1) assert (div*div.inv()).close_to(1) assert ((1/div)*div).close_to(1) assert (div/div).close_to(1) assert ((c/div)*div).close_to(c) assert ((c*div)/div).close_to(c) # reverse properties (Sec 2.9.5 [DFM]) assert c.rev().rev() == c assert (b ^ c).rev() .close_to(c.rev() ^ b.rev()) # dual properties # (1.2.26) in [HS] assert c.dual() .close_to(c | c.I.rev()) assert c.dual() .close_to(c*c.I.rev()) # involution properties (Sec 2.9.5 DFW) assert c.invol().invol() == c assert (b ^ c).invol() .close_to(b.invol() ^ c.invol()) # commutator properties # Jacobi identity (1.1.56c) in [HS] or (8.2) in [DFW] assert (a.x(b.x(c)) + b.x(c.x(a)) + c.x(a.x(b))).close_to(0) # (1.57) in [HS] assert a.x(b*c) .close_to(a.x(b)*c + b*a.x(c)) # END_GA_TEST # }}} def test_ast_interop(): src = """ def f(): xx = 3*y + z * (12 if x < 13 else 13) yy = f(x, y=y) """ import ast mod = ast.parse(src.replace("\n ", "\n")) print(ast.dump(mod)) from pymbolic.interop.ast import ASTToPymbolic ast2p = ASTToPymbolic() for f in mod.body: if not isinstance(f, ast.FunctionDef): continue for stmt in f.body: if not isinstance(stmt, ast.Assign): continue lhs, = stmt.targets lhs = ast2p(lhs) rhs = ast2p(stmt.value) print(lhs, rhs) def test_compile(): from pymbolic import parse, compile code = compile(parse("x ** y"), ["x", "y"]) assert code(2, 5) == 32 # Test pickling of compiled code. import pickle code = pickle.loads(pickle.dumps(code)) assert code(3, 3) == 27 def test_unifier(): from pymbolic import var from pymbolic.mapper.unifier import UnidirectionalUnifier a, b, c, d, e, f = [var(s) for s in "abcdef"] def match_found(records, eqns): for record in records: if eqns <= set(record.equations): return True return False recs = UnidirectionalUnifier("abc")(a+b*c, d+e*f) assert len(recs) == 2 assert match_found(recs, {(a, d), (b, e), (c, f)}) assert match_found(recs, {(a, d), (b, f), (c, e)}) recs = UnidirectionalUnifier("abc")(a+b, d+e+f) assert len(recs) == 6 assert match_found(recs, {(a, d), (b, e+f)}) assert match_found(recs, {(a, e), (b, d+f)}) assert match_found(recs, {(a, f), (b, d+e)}) assert match_found(recs, {(b, d), (a, e+f)}) assert match_found(recs, {(b, e), (a, d+f)}) assert match_found(recs, {(b, f), (a, d+e)}) vals = [var("v" + str(i)) for i in range(100)] recs = UnidirectionalUnifier("a")(sum(vals[1:]) + a, sum(vals)) assert len(recs) == 1 assert match_found(recs, {(a, var("v0"))}) recs = UnidirectionalUnifier("abc")(a+b+c, d+e) assert len(recs) == 0 recs = UnidirectionalUnifier("abc")(f(a+b, f(a+c)), f(b+c, f(b+d))) assert len(recs) == 1 assert match_found(recs, {(a, b), (b, c), (c, d)}) def test_long_sympy_mapping(): sp = pytest.importorskip("sympy") from pymbolic.interop.sympy import SympyToPymbolicMapper SympyToPymbolicMapper()(sp.sympify(int(10**20))) SympyToPymbolicMapper()(sp.sympify(int(10))) def test_stringifier_preserve_shift_order(): for expr in [ parse("(a << b) >> 2"), parse("a << (b >> 2)") ]: assert parse(str(expr)) == expr LATEX_TEMPLATE = r"""\documentclass{article} \usepackage{amsmath} \begin{document} %s \end{document}""" def test_latex_mapper(): from pymbolic import parse from pymbolic.mapper.stringifier import LaTeXMapper, StringifyMapper tm = LaTeXMapper() sm = StringifyMapper() equations = [] def add(expr): # Add an equation to the list of tests. equations.append(r"\[{}\] % from: {}".format(tm(expr), sm(expr))) add(parse("a * b + c")) add(parse("f(a,b,c)")) add(parse("a ** b ** c")) add(parse("(a | b) ^ ~c")) add(parse("a << b")) add(parse("a >> b")) add(parse("a[i,j,k]")) add(parse("a[1:3]")) add(parse("a // b")) add(parse("not (a or b) and c")) add(parse("(a % b) % c")) add(parse("(a >= b) or (b <= c)")) add(prim.Min((1,)) + prim.Max((1, 2))) add(prim.Substitution(prim.Variable("x") ** 2, ("x",), (2,))) add(prim.Derivative(parse("x**2"), ("x",))) # Run LaTeX and ensure the file compiles. import os import tempfile import subprocess import shutil latex_dir = tempfile.mkdtemp("pymbolic") try: tex_file_path = os.path.join(latex_dir, "input.tex") with open(tex_file_path, "w") as tex_file: contents = LATEX_TEMPLATE % "\n".join(equations) tex_file.write(contents) try: subprocess.check_output( ["latex", "-interaction=nonstopmode", "-output-directory=%s" % latex_dir, tex_file_path], universal_newlines=True) except OSError: # FIXME: Should be FileNotFoundError on Py3 pytest.skip("latex command not found") except subprocess.CalledProcessError as err: raise AssertionError(str(err.output)) finally: shutil.rmtree(latex_dir) def test_flop_counter(): x = prim.Variable("x") y = prim.Variable("y") z = prim.Variable("z") subexpr = prim.CommonSubexpression(3 * (x**2 + y + z)) expr = 3*subexpr + subexpr from pymbolic.mapper.flop_counter import FlopCounter, CSEAwareFlopCounter assert FlopCounter()(expr) == 4 * 2 + 2 assert CSEAwareFlopCounter()(expr) == 4 + 2 def test_make_sym_vector(): numpy = pytest.importorskip("numpy") from pymbolic.primitives import make_sym_vector assert len(make_sym_vector("vec", 2)) == 2 assert len(make_sym_vector("vec", numpy.int32(2))) == 2 assert len(make_sym_vector("vec", [1, 2, 3])) == 3 def test_multiplicative_stringify_preserves_association(): for inner in ["*", " / ", " // ", " % "]: for outer in ["*", " / ", " // ", " % "]: if outer == inner: continue assert_parse_roundtrip(f"x{outer}(y{inner}z)") assert_parse_roundtrip(f"(y{inner}z){outer}x") assert_parse_roundtrip("(-1)*(((-1)*x) / 5)") def test_differentiator_flags_for_nonsmooth_and_discontinuous(): import pymbolic.functions as pf from pymbolic.mapper.differentiator import differentiate x = prim.Variable("x") with pytest.raises(ValueError): differentiate(pf.fabs(x), x) result = differentiate(pf.fabs(x), x, allowed_nonsmoothness="continuous") assert result == pf.sign(x) with pytest.raises(ValueError): differentiate(pf.sign(x), x) result = differentiate(pf.sign(x), x, allowed_nonsmoothness="discontinuous") assert result == 0 def test_np_bool_handling(): from pymbolic.mapper.evaluator import evaluate numpy = pytest.importorskip("numpy") expr = prim.LogicalNot(numpy.bool_(False)) assert evaluate(expr) is True if __name__ == "__main__": import sys if len(sys.argv) > 1: exec(sys.argv[1]) else: from pytest import main main([__file__]) # vim: fdm=marker
27.831361
83
0.590837
[ "MIT" ]
sv2518/pymbolic
test/test_pymbolic.py
18,814
Python
"""Support for the OpenWeatherMap (OWM) service.""" from homeassistant.components.weather import WeatherEntity from homeassistant.const import TEMP_CELSIUS from .const import ( ATTR_API_CONDITION, ATTR_API_FORECAST, ATTR_API_HUMIDITY, ATTR_API_PRESSURE, ATTR_API_TEMPERATURE, ATTR_API_WIND_BEARING, ATTR_API_WIND_SPEED, ATTRIBUTION, DOMAIN, ENTRY_NAME, ENTRY_WEATHER_COORDINATOR, ) from .weather_update_coordinator import WeatherUpdateCoordinator async def async_setup_entry(hass, config_entry, async_add_entities): """Set up OpenWeatherMap weather entity based on a config entry.""" domain_data = hass.data[DOMAIN][config_entry.entry_id] name = domain_data[ENTRY_NAME] weather_coordinator = domain_data[ENTRY_WEATHER_COORDINATOR] unique_id = f"{config_entry.unique_id}" owm_weather = OpenWeatherMapWeather(name, unique_id, weather_coordinator) async_add_entities([owm_weather], False) class OpenWeatherMapWeather(WeatherEntity): """Implementation of an OpenWeatherMap sensor.""" def __init__( self, name, unique_id, weather_coordinator: WeatherUpdateCoordinator, ): """Initialize the sensor.""" self._name = name self._unique_id = unique_id self._weather_coordinator = weather_coordinator @property def name(self): """Return the name of the sensor.""" return self._name @property def unique_id(self): """Return a unique_id for this entity.""" return self._unique_id @property def should_poll(self): """Return the polling requirement of the entity.""" return False @property def attribution(self): """Return the attribution.""" return ATTRIBUTION @property def condition(self): """Return the current condition.""" return self._weather_coordinator.data[ATTR_API_CONDITION] @property def temperature(self): """Return the temperature.""" return self._weather_coordinator.data[ATTR_API_TEMPERATURE] @property def temperature_unit(self): """Return the unit of measurement.""" return TEMP_CELSIUS @property def pressure(self): """Return the pressure.""" return self._weather_coordinator.data[ATTR_API_PRESSURE] @property def humidity(self): """Return the humidity.""" return self._weather_coordinator.data[ATTR_API_HUMIDITY] @property def wind_speed(self): """Return the wind speed.""" wind_speed = self._weather_coordinator.data[ATTR_API_WIND_SPEED] if self.hass.config.units.name == "imperial": return round(wind_speed * 2.24, 2) return round(wind_speed * 3.6, 2) @property def wind_bearing(self): """Return the wind bearing.""" return self._weather_coordinator.data[ATTR_API_WIND_BEARING] @property def forecast(self): """Return the forecast array.""" return self._weather_coordinator.data[ATTR_API_FORECAST] @property def available(self): """Return True if entity is available.""" return self._weather_coordinator.last_update_success async def async_added_to_hass(self): """Connect to dispatcher listening for entity data notifications.""" self.async_on_remove( self._weather_coordinator.async_add_listener(self.async_write_ha_state) ) async def async_update(self): """Get the latest data from OWM and updates the states.""" await self._weather_coordinator.async_request_refresh()
29.435484
83
0.682466
[ "Apache-2.0" ]
123dev/core
homeassistant/components/openweathermap/weather.py
3,650
Python
# -*- coding: utf-8 -*- # nodeandtag's package version information __version_major__ = "0.2" __version__ = "{}a1".format(__version_major__) __version_long__ = "{}a1".format(__version_major__) __status__ = "Alpha" __author__ = "Jeremy Morosi" __author_email__ = "[email protected]" __url__ = "https://github.com/Nauja/nodeandtag"
30.636364
51
0.750742
[ "MIT" ]
Nauja/noteandtag
noteandtag/__version__.py
337
Python
from __future__ import absolute_import, division, print_function import os import subprocess import sys from setuptools import find_packages, setup PROJECT_PATH = os.path.dirname(os.path.abspath(__file__)) VERSION = """ # This file is auto-generated with the version information during setup.py installation. __version__ = '{}' """ # Find pyro version. for line in open(os.path.join(PROJECT_PATH, 'pyro', '__init__.py')): if line.startswith('version_prefix = '): version = line.strip().split()[2][1:-1] # Append current commit sha to version commit_sha = '' try: commit_sha = subprocess.check_output(['git', 'rev-parse', '--short', 'HEAD'], cwd=PROJECT_PATH).decode('ascii').strip() except OSError: pass # Write version to _version.py if commit_sha: version += '+{}'.format(commit_sha) with open(os.path.join(PROJECT_PATH, 'pyro', '_version.py'), 'w') as f: f.write(VERSION.format(version)) # Convert README.md to rst for display at https://pypi.python.org/pypi/pyro-ppl # When releasing on pypi, make sure pandoc is on your system: # $ brew install pandoc # OS X # $ sudo apt-get install pandoc # Ubuntu Linux try: import pypandoc long_description = pypandoc.convert('README.md', 'rst') except (IOError, ImportError, OSError) as e: sys.stderr.write('Failed to convert README.md to rst:\n {}\n'.format(e)) sys.stderr.flush() long_description = open('README.md').read() # Remove badges since they will always be obsolete. blacklist = ['Build Status', 'Latest Version', 'Documentation Status', 'travis-ci.org', 'pypi.python.org', 'pyro-ppl.readthedocs.io'] long_description = '\n'.join( [line for line in long_description.split('\n') if not any(patt in line for patt in blacklist)]) # examples/tutorials EXTRAS_REQUIRE = [ 'jupyter>=1.0.0', 'matplotlib>=1.3', 'observations>=0.1.4', 'pillow', 'torchvision', 'visdom>=0.1.4', 'pandas', 'wget', ] if sys.version_info[0] == 2: EXTRAS_REQUIRE.append('functools32') setup( name='pyro-ppl', version=version, description='A Python library for probabilistic modeling and inference', long_description=long_description, packages=find_packages(include=['pyro', 'pyro.*']), url='http://pyro.ai', author='Uber AI Labs', author_email='[email protected]', install_requires=[ # if you add any additional libraries, please also # add them to `docs/requirements.txt` 'contextlib2', 'graphviz>=0.8', 'networkx>=2.2', 'numpy>=1.7', 'opt_einsum>=2.2.0', 'six>=1.10.0', 'torch==0.4.0', 'tqdm>=4.25', ], extras_require={ 'extras': EXTRAS_REQUIRE, 'test': EXTRAS_REQUIRE + [ 'nbval', 'pytest==3.7', 'pytest-cov', 'scipy>=0.19.0', 'ipython<=6.5.0', # https://github.com/jupyter/jupyter_console/issues/158 ], 'profile': ['prettytable', 'pytest-benchmark', 'snakeviz'], 'dev': EXTRAS_REQUIRE + [ 'flake8', 'isort', 'nbformat', 'nbsphinx>=0.3.2', 'nbstripout', 'nbval', 'pypandoc', 'pytest==3.7', 'pytest-xdist', 'ipython<=6.5.0', # https://github.com/jupyter/jupyter_console/issues/158 'scipy>=0.19.0', 'sphinx', 'sphinx_rtd_theme', 'yapf', ], }, tests_require=['flake8', 'pytest==3.7'], keywords='machine learning statistics probabilistic programming bayesian modeling pytorch', license='MIT License', classifiers=[ 'Intended Audience :: Developers', 'Intended Audience :: Education', 'Intended Audience :: Science/Research', 'Operating System :: POSIX :: Linux', 'Operating System :: MacOS :: MacOS X', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.6', ], # yapf )
31.284615
99
0.601672
[ "MIT" ]
cglazner/pyro
setup.py
4,067
Python
from __future__ import unicode_literals from django.apps import apps from django.db import models from django.urls import reverse from django.utils.encoding import force_text, python_2_unicode_compatible from django.utils.translation import ugettext @python_2_unicode_compatible class Collection(object): _registry = [] @classmethod def get_all(cls): return sorted(cls._registry, key=lambda entry: entry._order) def __init__(self, label, icon=None, link=None, queryset=None, model=None, order=None): self._label = label self._icon = icon self._link = link self._queryset = queryset self._model = model self._order = order or 99 self.__class__._registry.append(self) def __str__(self): return force_text(self.label) def resolve(self): self.children = self._get_children() self.icon = self._icon self.label = self._label self.url = None if self._link: self.icon = getattr(self._link, 'icon', self._icon) self.url = reverse(viewname=self._link.view, args=self._link.args) return '' def _get_children(self): if self._queryset: return self._queryset else: if self._model: return self._model.objects.all() class Dashboard(object): _registry = {} @classmethod def get(cls, name): return cls._registry[name] def __init__(self, name, label): self.name = name self.label = label self.widgets = {} self.removed_widgets = [] self.__class__._registry[name] = self def add_widget(self, widget, order=0): self.widgets[widget] = {'widget': widget, 'order': order} def get_widgets(self): """ Returns a list of widgets sorted by their 'order'. If two or more widgets have the same 'order', sort by label. """ return map( lambda x: x['widget'], filter( lambda x: x['widget'] not in self.removed_widgets, sorted( self.widgets.values(), key=lambda x: (x['order'], x['widget'].label) ) ) ) def remove_widget(self, widget): self.removed_widgets.append(widget) class DashboardWidget(object): _registry = [] @classmethod def get_all(cls): return cls._registry def __init__(self, label, func=None, icon=None, link=None, queryset=None, statistic_slug=None): self.label = label self.icon = icon self.link = link self.queryset = queryset self.func = func self.statistic_slug = statistic_slug self.__class__._registry.append(self) @python_2_unicode_compatible class ModelAttribute(object): __registry = {} @classmethod def get_for(cls, model, type_names=None): result = [] try: for type_name, attributes in cls.__registry[model].iteritems(): if not type_names or type_name in type_names: result.extend(attributes) return result except IndexError: # We were passed a model instance, try again using the model of # the instance # If we are already in the model class, exit with an error if model.__class__ == models.base.ModelBase: raise return cls.get_for[type(model)] @classmethod def get_choices_for(cls, model, type_names=None): return [ ( attribute.name, attribute ) for attribute in cls.get_for(model, type_names) ] @classmethod def help_text_for(cls, model, type_names=None): result = [] for count, attribute in enumerate(cls.get_for(model, type_names), 1): result.append( '{}) {}'.format( count, force_text(attribute.get_display(show_name=True)) ) ) return ' '.join( [ugettext('Available attributes: \n'), ', \n'.join(result)] ) def get_display(self, show_name=False): if self.description: return '{} - {}'.format( self.name if show_name else self.label, self.description ) else: return force_text(self.name if show_name else self.label) def __str__(self): return self.get_display() def __init__(self, model, name, label=None, description=None, type_name=None): self.model = model self.label = label self.name = name self.description = description for field in model._meta.fields: if field.name == name: self.label = field.verbose_name self.description = field.help_text self.__registry.setdefault(model, {}) if isinstance(type_name, list): for single_type in type_name: self.__registry[model].setdefault(single_type, []) self.__registry[model][single_type].append(self) else: self.__registry[model].setdefault(type_name, []) self.__registry[model][type_name].append(self) class MissingItem(object): _registry = [] @classmethod def get_all(cls): return cls._registry def __init__(self, label, condition, description, view): self.label = label self.condition = condition self.description = description self.view = view self.__class__._registry.append(self) @python_2_unicode_compatible class Filter(object): _registry = {} @classmethod def get(cls, slug): return cls._registry[slug] @classmethod def all(cls): return cls._registry def __init__(self, label, slug, filter_kwargs, model, object_permission=None, hide_links=False): self.label = label self.slug = slug self.filter_kwargs = filter_kwargs self.model = model self.object_permission = object_permission self.hide_links = hide_links self.__class__._registry[self.slug] = self def __str__(self): return force_text(self.label) def get_queryset(self, user): AccessControlList = apps.get_model( app_label='acls', model_name='AccessControlList' ) queryset = self.model.objects.all() for kwargs in self.filter_kwargs: queryset = queryset.filter(**kwargs) queryset = queryset.distinct() if self.object_permission: return AccessControlList.objects.filter_by_access( self.object_permission, user, queryset=queryset ) else: return queryset class Package(object): _registry = [] @classmethod def get_all(cls): return cls._registry def __init__(self, label, license_text): self.label = label self.license_text = license_text self.__class__._registry.append(self) class PropertyHelper(object): """ Makes adding fields using __class__.add_to_class easier. Each subclass must implement the `constructor` and the `get_result` method. """ @staticmethod @property def constructor(source_object): return PropertyHelper(source_object) def __init__(self, instance): self.instance = instance def __getattr__(self, name): return self.get_result(name=name) def get_result(self, name): """ The method that produces the actual result. Must be implemented by each subclass. """ raise NotImplementedError
27.916968
100
0.604423
[ "Apache-2.0" ]
marumadang/mayan-edms
mayan/apps/common/classes.py
7,733
Python
# -*- coding: utf-8 -*- # # Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # DO NOT EDIT! This is a generated sample ("Request", "speech_transcribe_multichannel") # To install the latest published package dependency, execute the following: # pip install google-cloud-speech # sample-metadata # title: Multi-Channel Audio Transcription (Local File) # description: Transcribe a short audio file with multiple channels # usage: python3 samples/v1/speech_transcribe_multichannel.py [--local_file_path "resources/multi.wav"] # [START speech_transcribe_multichannel] from google.cloud import speech_v1 import io def sample_recognize(local_file_path): """ Transcribe a short audio file with multiple channels Args: local_file_path Path to local audio file, e.g. /path/audio.wav """ client = speech_v1.SpeechClient() # local_file_path = 'resources/multi.wav' # The number of channels in the input audio file (optional) audio_channel_count = 2 # When set to true, each audio channel will be recognized separately. # The recognition result will contain a channel_tag field to state which # channel that result belongs to enable_separate_recognition_per_channel = True # The language of the supplied audio language_code = "en-US" config = { "audio_channel_count": audio_channel_count, "enable_separate_recognition_per_channel": enable_separate_recognition_per_channel, "language_code": language_code, } with io.open(local_file_path, "rb") as f: content = f.read() audio = {"content": content} response = client.recognize(config, audio) for result in response.results: # channel_tag to recognize which audio channel this result is for print(u"Channel tag: {}".format(result.channel_tag)) # First alternative is the most probable result alternative = result.alternatives[0] print(u"Transcript: {}".format(alternative.transcript)) # [END speech_transcribe_multichannel] def main(): import argparse parser = argparse.ArgumentParser() parser.add_argument("--local_file_path", type=str, default="resources/multi.wav") args = parser.parse_args() sample_recognize(args.local_file_path) if __name__ == "__main__": main()
32.632184
105
0.726664
[ "Apache-2.0" ]
AzemaBaptiste/google-cloud-python
speech/samples/v1/speech_transcribe_multichannel.py
2,839
Python
from hydroDL import pathSMAP, master import os from hydroDL.data import dbCsv # train for each cont contLst = [ 'Africa', 'Asia', 'Australia', 'Europe', 'NorthAmerica', 'SouthAmerica', ] subsetLst = ['Globalv4f1_' + x for x in contLst] subsetLst.append('Globalv4f1') outLst = [x + '_v4f1_y1' for x in contLst] outLst.append('Global_v4f1_y1') caseLst = ['Forcing', 'Soilm'] cid = 0 for k in range(len(subsetLst)): for case in caseLst: if case == 'Forcing': varLst = dbCsv.varForcingGlobal else: varLst = dbCsv.varSoilmGlobal optData = master.default.update( master.default.optDataSMAP, rootDB=pathSMAP['DB_L3_Global'], subset=subsetLst[k], tRange=[20150401, 20160401], varT=varLst) optModel = master.default.optLstm optLoss = master.default.optLossSigma optTrain = master.default.optTrainSMAP out = os.path.join(pathSMAP['Out_L3_Global'], outLst[k] + '_' + case) masterDict = master.wrapMaster(out, optData, optModel, optLoss, optTrain) master.runTrain(masterDict, cudaID=cid % 3, screen=outLst[k]) cid = cid + 1 # master.train(masterDict) # some of them failed and rerun # master.runTrain( # r'/mnt/sdb/rnnSMAP/Model_SMAPgrid/L3_Global/Africa_v4f1_y1_Forcing/', # cudaID=1, # screen='Africa_v4f1_y1_Forcing') # master.runTrain( # r'/mnt/sdb/rnnSMAP/Model_SMAPgrid/L3_Global/Asia_v4f1_y1_Soilm/', # cudaID=0, # screen='Asia_v4f1_y1_Soilm') # master.runTrain( # r'/mnt/sdb/rnnSMAP/Model_SMAPgrid/L3_Global/NorthAmerica_v4f1_y1_Soilm/', # cudaID=1, # screen='NorthAmerica_v4f1_y1_Soilm') # master.runTrain( # r'/mnt/sdb/rnnSMAP/Model_SMAPgrid/L3_Global/Global_v4f1_y1_Forcing/', # cudaID=2, # screen='Global_v4f1_y1_Forcing')
30.887097
79
0.644386
[ "MIT" ]
fkwai/geolearn
app/global/train_cont.py
1,915
Python
import torch import torch.nn as nn from .subnet import DoubleConv, UpConv, RRCU class R2UNet(nn.Module): def __init__(self, in_ch, out_ch, base_ch=64): super(R2UNet, self).__init__() self.inc = DoubleConv(in_ch, base_ch) self.down = nn.MaxPool2d(kernel_size=2, stride=2) self.down1 = self._Down(base_ch, base_ch * 2) self.down2 = self._Down(base_ch * 2, base_ch * 4) self.down3 = self._Down(base_ch * 4, base_ch * 8) self.down4 = self._Down(base_ch * 8, base_ch * 16) self.up1 = self._Up(base_ch * 16, base_ch * 8) self.up2 = self._Up(base_ch * 8, base_ch * 4) self.up3 = self._Up(base_ch * 4, base_ch * 2) self.up4 = self._Up(base_ch * 2, base_ch) self.outc = nn.Conv2d(base_ch, out_ch, kernel_size=1, stride=1, padding=0) def forward(self, x): x1 = self.inc(x) x2 = self.down1(x1) x3 = self.down2(x2) x4 = self.down3(x3) x5 = self.down4(x4) x = self.up1(x5, x4) x = self.up2(x, x3) x = self.up3(x, x2) x = self.up4(x, x1) x = self.outc(x) return x class _Down(nn.Module): def __init__(self, in_ch, out_ch): super(R2UNet._Down, self).__init__() self.down = nn.Sequential( nn.MaxPool2d(kernel_size=2), RRCU(in_ch, out_ch) ) def forward(self, x): x = self.down(x) return x class _Up(nn.Module): def __init__(self, in_ch, out_ch): super(R2UNet._Up, self).__init__() self.up = UpConv(in_ch, out_ch) self.conv = RRCU(in_ch, out_ch) def forward(self, x1, x2): x1 = self.up(x1) x = torch.cat([x2, x1], dim=1) x = self.conv(x) return x
31.898305
82
0.529756
[ "MIT" ]
nitsaick/pytorch-kit
network/r2unet.py
1,882
Python