metadata
dict
text
stringlengths
60
3.49M
{ "source": "JoshuaEN/World-of-Tanks-ScoreViewTools-Data-Export-Mods", "score": 2 }
#### File: gui/mods/ScoreViewTools_Init.py ```python from items import vehicles, _xml from gui.Scaleform.daapi.view.lobby.trainings.training_room import TrainingRoom; from helpers.statistics import StatisticsCollector; from game import init import ScoreViewTools def exportAll(): ScoreViewTools.Export.init() ScoreViewTools.Export.cleanup() ScoreViewTools.Export.gameInfo() ScoreViewTools.Export.vehicles() #ScoreViewTools.Export.gameData() #ScoreViewTools.Export.equipment() #ScoreViewTools.Export.consumables() ScoreViewTools.Export.maps() #ScoreViewTools.Export.serverSettings() old_noteHangarLoadingState = StatisticsCollector.noteHangarLoadingState def new_noteHangarLoadingState(self, state, initialState=False, showSummaryNow=False): old_noteHangarLoadingState(self, state, initialState, showSummaryNow) StatisticsCollector.noteHangarLoadingState = new_noteHangarLoadingState print dir(TrainingRoom) old_onSettingUpdated = TrainingRoom.onSettingUpdated old_onRostersChanged = TrainingRoom.onRostersChanged old_onPlayerStateChanged = TrainingRoom.onPlayerStateChanged old__TrainingRoomBase__showSettings = TrainingRoom._TrainingRoomBase__showSettings old_showRosters = TrainingRoom._showRosters first = True def new_onSettingUpdated(self, functional, settingName, settingValue): ScoreViewTools.Export.trainingRoomSettings(functional) old_onSettingUpdated(self, functional, settingName, settingValue) def new_onRostersChanged(self, functional, rosters, full): ScoreViewTools.Export.trainingRoomRoster(functional) old_onRostersChanged(self, functional, rosters, full) def new_onPlayerStateChanged(self, functional, roster, accountInfo): ScoreViewTools.Export.trainingRoomRoster(functional) old_onPlayerStateChanged(self, functional, roster, accountInfo) def new__TrainingRoomBase__showSettings(self, functional): ScoreViewTools.Export.trainingRoomSettings(functional) old__TrainingRoomBase__showSettings(self, functional) def new_showRosters(self, functional, rosters): global first if first: first = False exportAll() ScoreViewTools.Export.trainingRoomRoster(functional) old_showRosters(self, functional, rosters) TrainingRoom.onSettingUpdated = new_onSettingUpdated TrainingRoom.onRostersChanged = new_onRostersChanged TrainingRoom.onPlayerStateChanged = new_onPlayerStateChanged TrainingRoom._TrainingRoomBase__showSettings = new__TrainingRoomBase__showSettings TrainingRoom._showRosters = new_showRosters ```
{ "source": "JoshuaErne/FreeDAS", "score": 3 }
#### File: FreeDAS/src/demo.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function from numpy.core.numeric import indices import _init_paths from opts import opts from detectors.detector_factory import detector_factory # import speed estimation model from lib.SpeedEstimator import Realtimespeed, get_annotated_frame, neural_factory # import lane detection module from lib.EdgeDetection import LaneDetection import os import cv2 import numpy as np import matplotlib.pyplot as plt import sys np.set_printoptions(threshold=sys.maxsize) SIFT_params = dict( maxCorners = 100, qualityLevel = 0.1, minDistance = 7, blockSize = 1) # Parameters for lucas kanade optical flow KLT_params = dict( winSize = (15, 15), maxLevel = 2, criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03)) # Create some random colors for tracking color = np.random.randint(0, 255, (100, 3)) # Video framerate FPS = 20 # Seconds per Detection SPD = 1 def im_pretty_show(prediction_annotation, img1): road = prediction_annotation height, width, ch = img1.shape new_width, new_height = width + width/20, height + height/8 # Crate a new canvas with new width and height. canvas_orig = np.ones((int(new_height), int(new_width), ch), dtype=np.uint8) * 125 # New replace the center of canvas with original image padding_top, padding_left = 60, 10 if padding_top + height <= new_height and padding_left + width <= new_width: canvas_orig[padding_top:padding_top + height, padding_left:padding_left + width] = img1 else: print("The Given padding exceeds the limits.") # Crate a new canvas with new width and height. canvas_road = np.ones((int(new_height), int(new_width), ch), dtype=np.uint8) * 125 # New replace the center of canvas with original image padding_top, padding_left = 60, 10 if padding_top + height <= new_height and padding_left + width <= new_width: canvas_road[padding_top:padding_top + height, padding_left:padding_left + width] = road else: print("The Given padding exceeds the limits.") text1 = "Original" text2 = "Prediction" texted_image1 = cv2.putText(canvas_orig.copy(), text1, (int(0.25*width), 30), cv2.FONT_HERSHEY_COMPLEX, 1, [255, 0, 0]) texted_image2 = cv2.putText(canvas_road.copy(), text2, (int(0.25*width), 30), cv2.FONT_HERSHEY_COMPLEX, 1, [255, 0, 0]) final = cv2.hconcat((texted_image1, texted_image2)) cv2.imshow("result", final) image_ext = ['jpg', 'jpeg', 'png', 'webp'] video_ext = ['mp4', 'mov', 'avi', 'mkv'] time_stats = ['tot', 'load', 'pre', 'net', 'dec', 'post', 'merge'] def demo(opt): os.environ['CUDA_VISIBLE_DEVICES'] = opt.gpus_str opt.debug = max(opt.debug, 1) DetectorClass = detector_factory[opt.task] objectDetector = DetectorClass(opt) # # Initialize Speed Estimation Model # speed_model = neural_factory() # speed_model.load_weights('models/speed_model.h5') # # Speed Estimation Parameters # frame_idx = 1 # y_true = [0,0] # Initialize Lane Detector Class laneDetector = LaneDetection() if opt.demo == 'webcam' or \ opt.demo[opt.demo.rfind('.') + 1:].lower() in video_ext: cam = cv2.VideoCapture(0 if opt.demo == 'webcam' else opt.demo) objectDetector.pause = False # ret, img_old = cam.read() frame_idx = 0 while True: if frame_idx % (SPD * FPS) == 0: ret, img_new = cam.read() if not ret: print('No frames grabbed!') break # img_old_gray = cv2.cvtColor(img_new, cv2.COLOR_BGR2GRAY) detection_gray = cv2.cvtColor(img_new, cv2.COLOR_BGR2GRAY) # prediction_annotation, y_true = get_annotated_frame(detection_gray, img_old_gray, frame_idx, speed_model, y_true) # im_pretty_show(prediction_annotation, img_new) line_image, radius, offset = laneDetector.canny_edge_detection(img_new) try: img_new = cv2.addWeighted(img_new, 0.8, line_image, 1, 0) img_new = cv2.putText(img_new, radius, (30, 480-40), 0, 1, (0, 255, 0), 1, cv2.LINE_AA) img_new = cv2.putText(img_new, offset, (30, 480-70), 0, 1, (0, 255, 0), 1, cv2.LINE_AA) except: pass cv2.imshow('input', img_new) result, debugger = objectDetector.run(img_new) time_str = '' for stat in time_stats: time_str = time_str + '{} {:.3f}s |'.format(stat, result[stat]) print(time_str) if cv2.waitKey(1) == 27: return # esc to quit elif (frame_idx - 1) % (SPD * FPS) == 0: ret, img_new = cam.read() if not ret: print('No frames grabbed!') break cv2.imshow('input', img_new) mask = np.zeros_like(img_new) mask, centers, indices = objectDetector.create_detections_mask(debugger, mask, result['results']) current_gray = cv2.cvtColor(img_new, cv2.COLOR_BGR2GRAY) # calculate optical flow p1, st, err = cv2.calcOpticalFlowPyrLK(detection_gray, current_gray, centers, None, **KLT_params) # Select good points if p1 is not None: good_new = p1[st==1] good_old = centers[st==1] # Create a mask image for drawing purposes tracker = np.zeros_like(img_new) tracked = img_new.copy() # draw the tracks for i, (new, old) in enumerate(zip(good_new, good_old)): a, b = new.ravel() c, d = old.ravel() tracker = cv2.line(tracker, (int(a), int(b)), (int(c), int(d)), color[i].tolist(), 2) tracked = cv2.circle(tracked, (int(a), int(b)), 5, color[i].tolist(), -1) tracked = cv2.add(tracked, tracker) line_image, radius, offset = laneDetector.canny_edge_detection(img_new) try: # tracked = cv2.addWeighted(tracked, 0.8, line_image, 1, 0) tracked = cv2.putText(tracked, radius, (0, 480-40), 0, 1, (0, 255, 0), 1, cv2.LINE_AA) tracked = cv2.putText(tracked, offset, (0, 480-70), 0, 1, (0, 255, 0), 1, cv2.LINE_AA) except: pass objectDetector.custom_show_results(debugger, tracked, result['results']) # cv2.imshow('ctdet', tracked) if cv2.waitKey(1) == 27: return # esc to quit # Now update the previous frame and previous points prev_gray = current_gray.copy() p0 = good_new.reshape(-1, 1, 2) else: _, img_new = cam.read() cv2.imshow('input', img_new) current_gray = cv2.cvtColor(img_new, cv2.COLOR_BGR2GRAY) # calculate optical flow p1, st, err = cv2.calcOpticalFlowPyrLK(prev_gray, current_gray, p0, None, **KLT_params) # Select good points if p1 is not None: good_new = p1[st==1] good_old = p0[st==1] tracked = img_new.copy() # draw the tracks for i, (new, old) in enumerate(zip(good_new, good_old)): a, b = new.ravel() c, d = old.ravel() tracker = cv2.line(tracker, (int(a), int(b)), (int(c), int(d)), color[i].tolist(), 2) tracked = cv2.circle(tracked, (int(a), int(b)), 5, color[i].tolist(), -1) tracked = cv2.add(tracked, tracker) line_image, radius, offset = laneDetector.canny_edge_detection(img_new) try: tracked = cv2.addWeighted(tracked, 0.8, line_image, 1, 0) tracked = cv2.putText(tracked, radius, (30, 480-40), 0, 1, (0, 255, 0), 1, cv2.LINE_AA) tracked = cv2.putText(tracked, offset, (30, 480-70), 0, 1, (0, 255, 0), 1, cv2.LINE_AA) except: pass # This is prone to corrupting boxes, it is not perfect # objectDetector.update_boxes(good_new, result['results'], indices) # objectDetector.custom_show_results(debugger, tracked, result['results']) # Show tracked centers only cv2.imshow('ctdet', tracked) if cv2.waitKey(1) == 27: return # esc to quit # Now update the previous frame and previous points prev_gray = current_gray.copy() p0 = good_new.reshape(-1, 1, 2) frame_idx += 1 img_old = img_new else: if os.path.isdir(opt.demo): image_names = [] ls = os.listdir(opt.demo) for file_name in sorted(ls): ext = file_name[file_name.rfind('.') + 1:].lower() if ext in image_ext: image_names.append(os.path.join(opt.demo, file_name)) else: image_names = [opt.demo] for (image_name) in image_names: result = objectDetector.run(image_name) time_str = '' for stat in time_stats: time_str = time_str + '{} {:.3f}s |'.format(stat, result[stat]) print(time_str) if __name__ == '__main__': opt = opts().init() demo(opt) ```
{ "source": "Joshuaf91/itsMeMario", "score": 3 }
#### File: save_princess_peach/models/bowsers_castle_map.py ```python from dataclasses import dataclass, field from save_princess_peach.constants import ( BOWSER, PEACH, MARIO, PLAYERS, ALL_POSITIONS, UP, DOWN, LEFT, RIGHT, VISITED, SAFE_POSITION ) @dataclass class BowsersCastle: """Bowser`s castle""" map: list = field(default_factory=list) size: int = field(default=0) bowser_location: tuple = field(default=None) peach_location: tuple = field(default=None) mario_location: tuple = field(default=None) def location_of_person_on_layer(self, layer: list, layer_level: int) -> tuple: """Check layer for any person""" bowsers_location = None peach_location = None mario_location = None for idx, map_location_value in enumerate(layer): if map_location_value in PLAYERS: player_location = (layer_level, idx) self.set_person_location(map_location_value, player_location) return bowsers_location, peach_location, mario_location def set_size(self, size: int): """Set size of Boweser's castle map""" assert(isinstance(size, int)) self.size = size def add_map_layer(self, layer: str): """Add layer to the bottom of the map.""" assert(isinstance(layer, str)) split_text = list(layer) assert(len(split_text) == self.size) self.map.append(split_text) current_map_size = len(self.map) assert(current_map_size <= self.size) self.location_of_person_on_layer(split_text, current_map_size - 1) def get_location_of_person(self, person) -> (int, int): """Get Persons Location""" assert (person in PLAYERS) location = None if person == BOWSER: location = self.bowser_location elif person == PEACH: location = self.peach_location elif person == MARIO: location = self.mario_location return location def set_person_location(self, person: str, location: tuple or None): """Set location for Monster""" assert(person in PLAYERS) if person == BOWSER: self.bowser_location = location elif person == PEACH: self.peach_location = location elif person == MARIO: self.mario_location = location def set_map_location(self, update: str, location: tuple): """Set location for Monster""" assert(update in ALL_POSITIONS) row, col = location self.map[row][col] = update if update in PLAYERS: self.set_person_location(update, location) def move_mario_to_person(self, person): """Move Mario towards the person""" row, col = self.get_location_of_person(person) m_row, m_col = self.get_location_of_person(MARIO) castle_map = self.map up_is_safe = False try: if m_row - 1 == -1: up_is_safe = False else: up_is_safe = castle_map[m_row - 1][m_col] in SAFE_POSITION except IndexError: pass down_is_safe = False try: down_is_safe = castle_map[m_row + 1][m_col] in SAFE_POSITION except IndexError: pass left_is_safe = False try: if m_col - 1 == -1: left_is_safe = False else: left_is_safe = castle_map[m_row][m_col - 1] in SAFE_POSITION except IndexError: pass right_is_safe = False try: right_is_safe = castle_map[m_row][m_col + 1] in SAFE_POSITION except IndexError: pass m_new_location = None # attempt to move vertical until we are on the persons row if row != m_row: # Should we move up? if m_row > row and up_is_safe: m_new_location = (m_row - 1, m_col) self.set_map_location(VISITED, (m_row, m_col)) self.set_map_location(MARIO, m_new_location) if m_new_location == (row, col): self.set_person_location(person, None) return UP # Should we move down? elif m_row < row and down_is_safe: m_new_location = (m_row + 1, m_col) self.set_map_location(VISITED, (m_row, m_col)) self.set_map_location(MARIO, m_new_location) if m_new_location == (row, col): self.set_person_location(person, None) return DOWN # else move horizontal # Should we move left? if left_is_safe: m_new_location = (m_row, m_col - 1) self.set_map_location(VISITED, (m_row, m_col)) self.set_map_location(MARIO, m_new_location) if m_new_location == (row, col): self.set_person_location(person, None) return LEFT # Should we move right? elif right_is_safe: m_new_location = (m_row, m_col + 1) self.set_map_location(VISITED, (m_row, m_col)) self.set_map_location(MARIO, m_new_location) if m_new_location == (row, col): self.set_person_location(person, None) return RIGHT ```
{ "source": "joshuafinkelstein/chimera-education", "score": 3 }
#### File: chimera-education/index/old_search.py ```python import numpy as np import os import datetime as dt wd = '/Users/nikolasbaya/Documents/chimera-repo-050319/dataextraction/downloaded_transcripts' next(os.walk('.'))[1] subdir_ls = [(x[0],x[2]) for x in os.walk(wd) if len(x[2])>0] #only get directories with files # Create data structures for searching def clean(string): string = string.lower() bad_char =['.',',','--','?'] for char in bad_char: string = string.replace(char, '') return string def remove_junk_words(string): word_ls = [word for word in string.lower().split(' ') if len(word)>0] bad_words = {'the','of','at'} return ' '.join(list(set(word_ls).difference(bad_words))) #words, cts = list(word_ct_dict.keys()), list(word_ct_dict.values()) #np.asarray(words)[np.argsort(cts)][::-1].tolist()[:100] #part 0: Create dict of files file_name_ls = [] file_content_ls = [] for i, subdir in enumerate(subdir_ls): print(str(i+1)+' of '+str(len(subdir_ls))) subdir_path, subdir_files = subdir[0], subdir[1] file_name_ls += subdir_files for f in subdir_files: vtt0 = open(subdir_path+"/"+f, "r").read() vtt1 = vtt0.split('\n\n') file_content_ls.append(vtt1) file_content_dict = dict(zip(file_name_ls,file_content_ls)) #part 1: create corpus of words vtt_ls = [] word_set = {} file_text_dict = dict(zip(file_name_ls, ['']*len(file_name_ls))) for i,f in enumerate(file_name_ls): # if i>2: # break print(f'{i+1} of {len(file_name_ls)}') vtt1 = file_content_dict[f] if vtt1 != ['']: vtt2 = [[tuple(x.split('\n')[0].split(' --> ')), ' '.join(x.split('\n')[1:]).lower()] for x in vtt1 if len(x)>0] word_ls_tmp = [clean(' '.join(x.split('\n')[1:])) for x in vtt1 if len(x)>0] file_text = ' '.join(word_ls_tmp) file_text_dict[f] = file_text word_ls_tmp = file_text.split(' ') word_ls_tmp = [x.strip(' ') for x in word_ls_tmp if x.count(':')==0] word_set_tmp = set(word_ls_tmp) if len(word_set)==0: word_set = word_set_tmp else: word_set = word_set.union(word_set_tmp) else: vtt2 = None if vtt2 != None: vtt2.insert(0,f.lower()) vtt_ls.append(vtt2) assert len(set(file_name_ls))==len(file_name_ls), 'There are overlapping video names!' #part 2: count words and link words to files word_ls = list(word_set) word_ct_dict = dict(zip(word_ls,[0]*len(word_ls))) word_file_dict = dict(zip(word_ls,[[]]*len(word_ls))) for i,f in enumerate(file_name_ls): # if i>2: # break print(f'{i+1} of {len(file_name_ls)}') # print(f) file_text = file_text_dict[f] word_ls_tmp = list(set(file_text.split(' '))) word_ls_tmp = [x.strip(' ') for x in word_ls_tmp if x.count(':')==0] for j,word in enumerate(word_ls_tmp): word_ct_dict[word] += file_text.count(word) word_file_dict[word] = word_file_dict[word] + [f] vtt_dict = dict(zip([vtt[0].lower() for vtt in vtt_ls],[vtt[2:] for vtt in vtt_ls])) #part 3: define search function def do_search(search_str, in_title_score = 1000, in_text_score = 1): start = dt.datetime.now() search_ls = list(set(remove_junk_words(search_str).strip(' ').split(' '))) if search_ls == ['']: print('ERROR: Choose better search terms') return None, None video_scores = dict(zip([f.lower() for f in file_name_ls],[0]*len(vtt_ls))) tstamps = dict(zip([f.lower() for f in file_name_ls],[[]]*len(vtt_ls))) match_text_ct = 0 file_match_ls = [] for word in search_ls: try: file_ls_tmp = [f.lower() for f in word_file_dict[word]] file_match_ls += file_ls_tmp match_text_ct += word_ct_dict[word] if len(file_ls_tmp) > 0: for f in file_ls_tmp: if word in f: video_scores[f] += in_title_score for vtt_text in vtt_dict[f]: if word in vtt_text[1]: video_scores[f] += in_text_score tstamps[f] = tstamps[f] + [vtt_text[0]] except KeyError: file_ls_tmp = [] file_match_ls = list(set(file_match_ls)) n_results = len(file_match_ls) if n_results: results = dict((file,video_scores[file]) for file in file_match_ls) files, scores = file_match_ls, [video_scores[file] for file in file_match_ls] scores_idx = np.argsort(scores) n_top_results = 5 #number of results to show top_results = np.asarray(files)[scores_idx][::-1][:min(n_results,n_top_results)].tolist() print(f'\nTop {min(n_results, n_top_results)} results ({n_results} total results):') for result in top_results: print(f'\n\n{result}\n\t{tstamps[result][:5]}') #limit tstamps results? else: results = None print('No results') print('\nTime for search: '+str((dt.datetime.now()-start).total_seconds()) +' sec') print(f'Number of total results: {n_results}') print(f'Number of text occurrences: {match_text_ct}') return results, tstamps #part 4: test out search search_str = 'symmetry' results, tstamps = do_search(search_str) ``` #### File: search/captions/views.py ```python from captions.models import Caption from captions.serializers import CaptionSerializer, UserSerializer from rest_framework import generics from django.contrib.auth.models import User from rest_framework import permissions from captions.permissions import IsOwnerOrReadOnly class UserList(generics.ListAPIView): queryset = User.objects.all() serializer_class = UserSerializer class UserDetail(generics.RetrieveAPIView): queryset = User.objects.all() serializer_class = UserSerializer class CaptionList(generics.ListCreateAPIView): queryset = Caption.objects.all() serializer_class = CaptionSerializer permission_classes = [permissions.IsAuthenticatedOrReadOnly] # def perform_create(self, serializer): # serializer.save(owner=self.request.user) class CaptionDetail(generics.RetrieveUpdateDestroyAPIView): queryset = Caption.objects.all() serializer_class = CaptionSerializer permission_classes = [permissions.IsAuthenticatedOrReadOnly, IsOwnerOrReadOnly] ```
{ "source": "JoshuaFoster-18/Group-Software-Project", "score": 3 }
#### File: technical docs/tests/test_forms.py ```python from django.test import TestCase from django.contrib.auth import get_user_model from django.core import mail User = get_user_model() class TestForms(TestCase): # Sets up a new user def setUp(self): newUser = User(email='<EMAIL>', username='test_user', first_name='Tess', last_name='Ting') newUser_password = '<PASSWORD>' self.newUser_password = <PASSWORD> newUser.set_password(<PASSWORD>) newUser.save() self.newUser = newUser # Tests that the user is created def test_user_is_created(self): user_count = User.objects.all().count() self.assertEqual(user_count, 1) self.assertNotEqual(user_count, 0) # Tests that the user password is created and correct def test_user_password_is_created(self): newUser = User.objects.get(username="test_user") self.assertTrue(newUser.check_password(self.newUser_password)) # Tests that the user password can't be a false value def test_user_password_not_false(self): newUser = User.objects.get(username="test_user") self.assertFalse(newUser.check_password("<PASSWORD>")) # Tests that the email to reset password is sent def test_email_sent(self): mail.send_mail('subject', 'message', '<EMAIL>', ['<EMAIL>'], fail_silently=False) self.assertEqual(len(mail.outbox), 1) # Tests that the contents of the email is corrent def test_mail_contents(self): mail.send_mail('subject', 'message', '<EMAIL>', ['<EMAIL>'], fail_silently=False) self.assertEqual(mail.outbox[0].body, 'message') self.assertEqual(mail.outbox[0].subject, 'subject') ## Tests that all labels are correct def test_first_name_label(self): name = User.objects.get(id=1) label = name._meta.get_field('first_name').verbose_name self.assertEqual(label, 'first name') def test_last_name_label(self): name = User.objects.get(id=1) label = name._meta.get_field('last_name').verbose_name self.assertEqual(label, 'last name') def test_email_label(self): email = User.objects.get(id=1) label = email._meta.get_field('email').verbose_name self.assertEqual(label, 'email address') def test_username_label(self): username = User.objects.get(id=1) label = username._meta.get_field('username').verbose_name self.assertEqual(label, 'username') def test_password_label(self): password = User.objects.get(id=1) label = password._meta.get_field('password').verbose_name self.assertEqual(label, 'password') ```
{ "source": "joshuafried/DeepPool-Artifact", "score": 2 }
#### File: DeepPool-Artifact/examples/inception.py ```python from collections import namedtuple import warnings import torch import time from torch import nn, Tensor import torch.nn.functional as F # from .utils import load_state_dict_from_url from typing import Callable, Any, Optional, Tuple, List import os, sys currentdir = os.path.dirname(os.path.realpath(__file__)) parentdir = os.path.dirname(currentdir) sys.path.append(parentdir) from parallelizationPlanner import CostSim from clusterClient import ClusterClient from jobDescription import TrainingJob __all__ = ['Inception3', 'inception_v3', 'InceptionOutputs', '_InceptionOutputs'] model_urls = { # Inception v3 ported from TensorFlow 'inception_v3_google': 'https://download.pytorch.org/models/inception_v3_google-1a9a5a14.pth', } InceptionOutputs = namedtuple('InceptionOutputs', ['logits', 'aux_logits']) InceptionOutputs.__annotations__ = {'logits': Tensor, 'aux_logits': Optional[Tensor]} # Script annotations failed with _GoogleNetOutputs = namedtuple ... # _InceptionOutputs set here for backwards compat _InceptionOutputs = InceptionOutputs def inception_v3(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> "Inception3": r"""Inception v3 model architecture from `"Rethinking the Inception Architecture for Computer Vision" <http://arxiv.org/abs/1512.00567>`_. .. note:: **Important**: In contrast to the other models the inception_v3 expects tensors with a size of N x 3 x 299 x 299, so ensure your images are sized accordingly. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr aux_logits (bool): If True, add an auxiliary branch that can improve training. Default: *True* transform_input (bool): If True, preprocesses the input according to the method with which it was trained on ImageNet. Default: *False* """ # if pretrained: # if 'transform_input' not in kwargs: # kwargs['transform_input'] = True # if 'aux_logits' in kwargs: # original_aux_logits = kwargs['aux_logits'] # kwargs['aux_logits'] = True # else: # original_aux_logits = True # kwargs['init_weights'] = False # we are loading weights from a pretrained model # model = Inception3(**kwargs) # state_dict = load_state_dict_from_url(model_urls['inception_v3_google'], # progress=progress) # model.load_state_dict(state_dict) # if not original_aux_logits: # model.aux_logits = False # model.AuxLogits = None # return model return Inception3(**kwargs) class Inception3(nn.Module): def __init__( self, num_classes: int = 1000, aux_logits: bool = True, transform_input: bool = False, inception_blocks: Optional[List[Callable[..., nn.Module]]] = None, init_weights: Optional[bool] = None ) -> None: super(Inception3, self).__init__() if inception_blocks is None: inception_blocks = [ BasicConv2d, InceptionA, InceptionB, InceptionC, InceptionD, InceptionE, InceptionAux ] if init_weights is None: warnings.warn('The default weight initialization of inception_v3 will be changed in future releases of ' 'torchvision. If you wish to keep the old behavior (which leads to long initialization times' ' due to scipy/scipy#11299), please set init_weights=True.', FutureWarning) init_weights = True assert len(inception_blocks) == 7 conv_block = inception_blocks[0] inception_a = inception_blocks[1] inception_b = inception_blocks[2] inception_c = inception_blocks[3] inception_d = inception_blocks[4] inception_e = inception_blocks[5] inception_aux = inception_blocks[6] self.aux_logits = aux_logits self.transform_input = transform_input self.Conv2d_1a_3x3 = conv_block(3, 32, kernel_size=3, stride=2) self.Conv2d_2a_3x3 = conv_block(32, 32, kernel_size=3) self.Conv2d_2b_3x3 = conv_block(32, 64, kernel_size=3, padding=1) self.maxpool1 = cs.MaxPool2d(kernel_size=3, stride=2) self.Conv2d_3b_1x1 = conv_block(64, 80, kernel_size=1) self.Conv2d_4a_3x3 = conv_block(80, 192, kernel_size=3) self.maxpool2 = cs.MaxPool2d(kernel_size=3, stride=2) self.Mixed_5b = inception_a(192, pool_features=32) self.Mixed_5c = inception_a(256, pool_features=64) self.Mixed_5d = inception_a(288, pool_features=64) self.Mixed_6a = inception_b(288) self.Mixed_6b = inception_c(768, channels_7x7=128) self.Mixed_6c = inception_c(768, channels_7x7=160) self.Mixed_6d = inception_c(768, channels_7x7=160) self.Mixed_6e = inception_c(768, channels_7x7=192) layerBeforeAux = cs.layers[-1] self.AuxLogits: Optional[nn.Module] = None if aux_logits: self.AuxLogits = inception_aux(768, num_classes) self.Mixed_7a = inception_d(768, custom_previous_layer=layerBeforeAux) self.Mixed_7b = inception_e(1280) self.Mixed_7c = inception_e(2048) self.avgpool = cs.AdaptiveAvgPool2d((1, 1)) self.dropout = nn.Dropout() cs.Flatten() self.fc = cs.Linear(2048, num_classes) # if init_weights: # for m in self.modules(): # if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear): # import scipy.stats as stats # stddev = m.stddev if hasattr(m, 'stddev') else 0.1 # X = stats.truncnorm(-2, 2, scale=stddev) # values = torch.as_tensor(X.rvs(m.weight.numel()), dtype=m.weight.dtype) # values = values.view(m.weight.size()) # with torch.no_grad(): # m.weight.copy_(values) # elif isinstance(m, nn.BatchNorm2d): # nn.init.constant_(m.weight, 1) # nn.init.constant_(m.bias, 0) def _transform_input(self, x: Tensor) -> Tensor: if self.transform_input: x_ch0 = torch.unsqueeze(x[:, 0], 1) * (0.229 / 0.5) + (0.485 - 0.5) / 0.5 x_ch1 = torch.unsqueeze(x[:, 1], 1) * (0.224 / 0.5) + (0.456 - 0.5) / 0.5 x_ch2 = torch.unsqueeze(x[:, 2], 1) * (0.225 / 0.5) + (0.406 - 0.5) / 0.5 x = torch.cat((x_ch0, x_ch1, x_ch2), 1) return x def _forward(self, x: Tensor) -> Tuple[Tensor, Optional[Tensor]]: # N x 3 x 299 x 299 x = self.Conv2d_1a_3x3(x) # N x 32 x 149 x 149 x = self.Conv2d_2a_3x3(x) # N x 32 x 147 x 147 x = self.Conv2d_2b_3x3(x) # N x 64 x 147 x 147 x = self.maxpool1(x) # N x 64 x 73 x 73 x = self.Conv2d_3b_1x1(x) # N x 80 x 73 x 73 x = self.Conv2d_4a_3x3(x) # N x 192 x 71 x 71 x = self.maxpool2(x) # N x 192 x 35 x 35 x = self.Mixed_5b(x) # N x 256 x 35 x 35 x = self.Mixed_5c(x) # N x 288 x 35 x 35 x = self.Mixed_5d(x) # N x 288 x 35 x 35 x = self.Mixed_6a(x) # N x 768 x 17 x 17 x = self.Mixed_6b(x) # N x 768 x 17 x 17 x = self.Mixed_6c(x) # N x 768 x 17 x 17 x = self.Mixed_6d(x) # N x 768 x 17 x 17 x = self.Mixed_6e(x) # N x 768 x 17 x 17 aux: Optional[Tensor] = None if self.AuxLogits is not None: if self.training: aux = self.AuxLogits(x) # N x 768 x 17 x 17 x = self.Mixed_7a(x) # N x 1280 x 8 x 8 x = self.Mixed_7b(x) # N x 2048 x 8 x 8 x = self.Mixed_7c(x) # N x 2048 x 8 x 8 # Adaptive average pooling x = self.avgpool(x) # N x 2048 x 1 x 1 x = self.dropout(x) # N x 2048 x 1 x 1 x = torch.flatten(x, 1) # N x 2048 x = self.fc(x) # N x 1000 (num_classes) return x, aux @torch.jit.unused def eager_outputs(self, x: Tensor, aux: Optional[Tensor]) -> InceptionOutputs: if self.training and self.aux_logits: return InceptionOutputs(x, aux) else: return x # type: ignore[return-value] def forward(self, x: Tensor) -> InceptionOutputs: x = self._transform_input(x) x, aux = self._forward(x) aux_defined = self.training and self.aux_logits if torch.jit.is_scripting(): if not aux_defined: warnings.warn("Scripted Inception3 always returns Inception3 Tuple") return InceptionOutputs(x, aux) else: return self.eager_outputs(x, aux) class InceptionA(nn.Module): def __init__( self, in_channels: int, pool_features: int, conv_block: Optional[Callable[..., nn.Module]] = None ) -> None: super(InceptionA, self).__init__() if conv_block is None: conv_block = BasicConv2d prevLayer = cs.layers[-1] outputLayers = [] self.branch1x1 = conv_block(in_channels, 64, kernel_size=1, custom_previous_layers=[prevLayer]) outputLayers.append(cs.layers[-1]) self.branch5x5_1 = conv_block(in_channels, 48, kernel_size=1, custom_previous_layers=[prevLayer]) self.branch5x5_2 = conv_block(48, 64, kernel_size=5, padding=2) outputLayers.append(cs.layers[-1]) self.branch3x3dbl_1 = conv_block(in_channels, 64, kernel_size=1, custom_previous_layers=[prevLayer]) self.branch3x3dbl_2 = conv_block(64, 96, kernel_size=3, padding=1) self.branch3x3dbl_3 = conv_block(96, 96, kernel_size=3, padding=1) outputLayers.append(cs.layers[-1]) self.branch_pool_1 = cs.AvgPool2d(kernel_size=3, stride=1, padding=1, custom_previous_layers=[prevLayer]) self.branch_pool_2 = conv_block(in_channels, pool_features, kernel_size=1) outputLayers.append(cs.layers[-1]) cs.Concat(custom_previous_layers=outputLayers) def _forward(self, x: Tensor) -> List[Tensor]: branch1x1 = self.branch1x1(x) branch5x5 = self.branch5x5_1(x) branch5x5 = self.branch5x5_2(branch5x5) branch3x3dbl = self.branch3x3dbl_1(x) branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl) # branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1) branch_pool = self.branch_pool_1(x) branch_pool = self.branch_pool_2(branch_pool) outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool] return outputs def forward(self, x: Tensor) -> Tensor: outputs = self._forward(x) return torch.cat(outputs, 1) class InceptionB(nn.Module): def __init__( self, in_channels: int, conv_block: Optional[Callable[..., nn.Module]] = None ) -> None: super(InceptionB, self).__init__() if conv_block is None: conv_block = BasicConv2d prevLayer = cs.layers[-1] outputLayers = [] self.branch3x3 = conv_block(in_channels, 384, kernel_size=3, stride=2, custom_previous_layers=[prevLayer]) outputLayers.append(cs.layers[-1]) self.branch3x3dbl_1 = conv_block(in_channels, 64, kernel_size=1, custom_previous_layers=[prevLayer]) self.branch3x3dbl_2 = conv_block(64, 96, kernel_size=3, padding=1) self.branch3x3dbl_3 = conv_block(96, 96, kernel_size=3, stride=2) outputLayers.append(cs.layers[-1]) self.branch_pool_1 = cs.MaxPool2d(kernel_size=3, stride=2, custom_previous_layers=[prevLayer]) outputLayers.append(cs.layers[-1]) cs.Concat(custom_previous_layers=outputLayers) def _forward(self, x: Tensor) -> List[Tensor]: branch3x3 = self.branch3x3(x) branch3x3dbl = self.branch3x3dbl_1(x) branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl) branch_pool = self.branch_pool_1(x) # F.max_pool2d(x, kernel_size=3, stride=2) outputs = [branch3x3, branch3x3dbl, branch_pool] return outputs def forward(self, x: Tensor) -> Tensor: outputs = self._forward(x) return torch.cat(outputs, 1) class InceptionC(nn.Module): def __init__( self, in_channels: int, channels_7x7: int, conv_block: Optional[Callable[..., nn.Module]] = None ) -> None: super(InceptionC, self).__init__() if conv_block is None: conv_block = BasicConv2d prevLayer = cs.layers[-1] outputLayers = [] self.branch1x1 = conv_block(in_channels, 192, kernel_size=1, custom_previous_layers=[prevLayer]) outputLayers.append(cs.layers[-1]) c7 = channels_7x7 self.branch7x7_1 = conv_block(in_channels, c7, kernel_size=1, custom_previous_layers=[prevLayer]) self.branch7x7_2 = conv_block(c7, c7, kernel_size=(1, 7), padding=(0, 3)) self.branch7x7_3 = conv_block(c7, 192, kernel_size=(7, 1), padding=(3, 0)) outputLayers.append(cs.layers[-1]) self.branch7x7dbl_1 = conv_block(in_channels, c7, kernel_size=1, custom_previous_layers=[prevLayer]) self.branch7x7dbl_2 = conv_block(c7, c7, kernel_size=(7, 1), padding=(3, 0)) self.branch7x7dbl_3 = conv_block(c7, c7, kernel_size=(1, 7), padding=(0, 3)) self.branch7x7dbl_4 = conv_block(c7, c7, kernel_size=(7, 1), padding=(3, 0)) self.branch7x7dbl_5 = conv_block(c7, 192, kernel_size=(1, 7), padding=(0, 3)) outputLayers.append(cs.layers[-1]) self.branch_pool_1 = cs.AvgPool2d(kernel_size=3, stride=1, padding=1, custom_previous_layers=[prevLayer]) self.branch_pool_2 = conv_block(in_channels, 192, kernel_size=1) outputLayers.append(cs.layers[-1]) cs.Concat(custom_previous_layers=outputLayers) def _forward(self, x: Tensor) -> List[Tensor]: branch1x1 = self.branch1x1(x) branch7x7 = self.branch7x7_1(x) branch7x7 = self.branch7x7_2(branch7x7) branch7x7 = self.branch7x7_3(branch7x7) branch7x7dbl = self.branch7x7dbl_1(x) branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl) branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl) branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl) branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl) # branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1) # branch_pool = self.branch_pool(branch_pool) branch_pool = self.branch_pool_1(x) branch_pool = self.branch_pool_2(branch_pool) outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool] return outputs def forward(self, x: Tensor) -> Tensor: outputs = self._forward(x) return torch.cat(outputs, 1) class InceptionD(nn.Module): def __init__( self, in_channels: int, conv_block: Optional[Callable[..., nn.Module]] = None, custom_previous_layer = None ) -> None: super(InceptionD, self).__init__() if conv_block is None: conv_block = BasicConv2d if custom_previous_layer == None: prevLayer = cs.layers[-1] else: prevLayer = custom_previous_layer outputLayers = [] self.branch3x3_1 = conv_block(in_channels, 192, kernel_size=1, custom_previous_layers=[prevLayer]) self.branch3x3_2 = conv_block(192, 320, kernel_size=3, stride=2) outputLayers.append(cs.layers[-1]) self.branch7x7x3_1 = conv_block(in_channels, 192, kernel_size=1, custom_previous_layers=[prevLayer]) self.branch7x7x3_2 = conv_block(192, 192, kernel_size=(1, 7), padding=(0, 3)) self.branch7x7x3_3 = conv_block(192, 192, kernel_size=(7, 1), padding=(3, 0)) self.branch7x7x3_4 = conv_block(192, 192, kernel_size=3, stride=2) outputLayers.append(cs.layers[-1]) self.branch_pool_1 = cs.MaxPool2d(kernel_size=3, stride=2, custom_previous_layers=[prevLayer]) outputLayers.append(cs.layers[-1]) cs.Concat(custom_previous_layers=outputLayers) def _forward(self, x: Tensor) -> List[Tensor]: branch3x3 = self.branch3x3_1(x) branch3x3 = self.branch3x3_2(branch3x3) branch7x7x3 = self.branch7x7x3_1(x) branch7x7x3 = self.branch7x7x3_2(branch7x7x3) branch7x7x3 = self.branch7x7x3_3(branch7x7x3) branch7x7x3 = self.branch7x7x3_4(branch7x7x3) # branch_pool = F.max_pool2d(x, kernel_size=3, stride=2) branch_pool = self.branch_pool_1(x) outputs = [branch3x3, branch7x7x3, branch_pool] return outputs def forward(self, x: Tensor) -> Tensor: outputs = self._forward(x) return torch.cat(outputs, 1) class InceptionE(nn.Module): def __init__( self, in_channels: int, conv_block: Optional[Callable[..., nn.Module]] = None ) -> None: super(InceptionE, self).__init__() if conv_block is None: conv_block = BasicConv2d prevLayer = cs.layers[-1] outputLayers = [] self.branch1x1 = conv_block(in_channels, 320, kernel_size=1, custom_previous_layers=[prevLayer]) outputLayers.append(cs.layers[-1]) self.branch3x3_1 = conv_block(in_channels, 384, kernel_size=1, custom_previous_layers=[prevLayer]) prevLayer3x3_2 = cs.layers[-1] self.branch3x3_2a = conv_block(384, 384, kernel_size=(1, 3), padding=(0, 1), custom_previous_layers=[prevLayer3x3_2]) self.branch3x3_2b = conv_block(384, 384, kernel_size=(3, 1), padding=(1, 0), custom_previous_layers=[prevLayer3x3_2]) cs.Concat(custom_previous_layers=[cs.layers[-2], cs.layers[-1]]) # self.branch3x3_2a = conv_block(384, 384*2, kernel_size=(1, 3), padding=(0, 1)) outputLayers.append(cs.layers[-1]) self.branch3x3dbl_1 = conv_block(in_channels, 448, kernel_size=1, custom_previous_layers=[prevLayer]) self.branch3x3dbl_2 = conv_block(448, 384, kernel_size=3, padding=1) prevLayer3x3dbl_3 = cs.layers[-1] self.branch3x3dbl_3a = conv_block(384, 384, kernel_size=(1, 3), padding=(0, 1), custom_previous_layers=[prevLayer3x3dbl_3]) self.branch3x3dbl_3b = conv_block(384, 384, kernel_size=(3, 1), padding=(1, 0), custom_previous_layers=[prevLayer3x3dbl_3]) cs.Concat(custom_previous_layers=[cs.layers[-2], cs.layers[-1]]) # self.branch3x3dbl_3a = conv_block(384, 384*2, kernel_size=(1, 3), padding=(0, 1)) outputLayers.append(cs.layers[-1]) self.branch_pool_1 = cs.AvgPool2d(kernel_size=3, stride=1, padding=1, custom_previous_layers=[prevLayer]) self.branch_pool_2 = conv_block(in_channels, 192, kernel_size=1) outputLayers.append(cs.layers[-1]) cs.Concat(custom_previous_layers=outputLayers) def _forward(self, x: Tensor) -> List[Tensor]: branch1x1 = self.branch1x1(x) branch3x3 = self.branch3x3_1(x) branch3x3 = [ self.branch3x3_2a(branch3x3), self.branch3x3_2b(branch3x3), ] branch3x3 = torch.cat(branch3x3, 1) branch3x3dbl = self.branch3x3dbl_1(x) branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) branch3x3dbl = [ self.branch3x3dbl_3a(branch3x3dbl), self.branch3x3dbl_3b(branch3x3dbl), ] branch3x3dbl = torch.cat(branch3x3dbl, 1) # branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1) branch_pool = self.branch_pool_1(x) branch_pool = self.branch_pool_2(branch_pool) outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool] return outputs def forward(self, x: Tensor) -> Tensor: outputs = self._forward(x) return torch.cat(outputs, 1) class InceptionAux(nn.Module): def __init__( self, in_channels: int, num_classes: int, conv_block: Optional[Callable[..., nn.Module]] = None ) -> None: super(InceptionAux, self).__init__() if conv_block is None: conv_block = BasicConv2d self.prepool = cs.AvgPool2d(kernel_size=5, stride=3) self.conv0 = conv_block(in_channels, 128, kernel_size=1) self.conv1 = conv_block(128, 768, kernel_size=5) self.postpool = cs.AdaptiveAvgPool2d((1, 1)) self.conv1.stddev = 0.01 # type: ignore[assignment] self.fc = nn.Linear(768, num_classes) self.fc.stddev = 0.001 # type: ignore[assignment] def forward(self, x: Tensor) -> Tensor: # N x 768 x 17 x 17 # x = F.avg_pool2d(x, kernel_size=5, stride=3) x = self.prepool(x) # N x 768 x 5 x 5 x = self.conv0(x) # N x 128 x 5 x 5 x = self.conv1(x) # N x 768 x 1 x 1 # Adaptive average pooling # x = F.adaptive_avg_pool2d(x, (1, 1)) x = self.postpool(x) # N x 768 x 1 x 1 x = torch.flatten(x, 1) # N x 768 x = self.fc(x) # N x 1000 return x class BasicConv2d(nn.Module): def __init__( self, in_channels: int, out_channels: int, **kwargs: Any ) -> None: super(BasicConv2d, self).__init__() self.conv = cs.Conv2d(in_channels, out_channels, bias=False, **kwargs) self.bn = nn.BatchNorm2d(out_channels, eps=0.001) def forward(self, x: Tensor) -> Tensor: x = self.conv(x) x = self.bn(x) return F.relu(x, inplace=True) # profiler = GpuProfiler("cuda") # profiler.loadProfile() # cs = CostSim(profiler) # model = Inception3() # cs.printAllLayers() # cs.computeInputDimensions((3, 299,299)) # globalBatch = 16 # totalGpus = 4 # # cs.searchBestSplitsV2(totalGpus, globalBatch) # # cs.searchBestSplits(8, globalBatch) # for startLayerId in [6, 15, 24, 33]: # startLayer = cs.layers[startLayerId] # bestMultiChainTime = 9999999999 # bestJiaTime = 9999999999 # startConfig = cs.listConfigOptions(startLayer, globalBatch, totalGpus)[0] # startAndEndConfigsToTime = {} # startAndEndConfigsToTimeJia = {} # for startConfig in cs.listConfigOptions(startLayer, globalBatch, totalGpus): # print(startConfig) # startGpuTime = cs.benchGpuTime(startLayer, startConfig) # # (endLayer, configToTimeDict, t) = cs.searchMultiChain(startLayer, startConfig, globalBatch, totalGpus) # (jiaEndLayer, jiaConfigToTimeDict, jiaT) = cs.runMultiChainZhihao(startLayer, startConfig, globalBatch, totalGpus) # # startAndEndConfigsToTime[startConfig] = configToTimeDict # startAndEndConfigsToTimeJia[startConfig] = jiaConfigToTimeDict # for config in jiaConfigToTimeDict: # multiChainTime = jiaConfigToTimeDict[config][0] + startGpuTime # jiaTime = jiaConfigToTimeDict[config][0] + startGpuTime # print(" lastConfig: %20s, multi-chain algo: %7.1f ms Zhihao's time: %7.1f ms" % (str(config), multiChainTime, jiaTime)) # bestMultiChainTime = min(bestMultiChainTime, multiChainTime) # bestJiaTime = min(bestJiaTime, jiaTime) # bestConfigToTimeDict = (999999999, None) # bestEndConfig = None # for config in jiaConfigToTimeDict: # if bestConfigToTimeDict[0] > jiaConfigToTimeDict[config][0]: # bestConfigToTimeDict = jiaConfigToTimeDict[config] # bestEndConfig = config # cs.displayMultiChainResult(jiaEndLayer, bestEndConfig, jiaT, bestConfigToTimeDict[1]) # print("Best multi-chain: %.2f best jia: %.2f" % (bestMultiChainTime, bestJiaTime) ) # profiler.saveProfile() def main(gpuCount, globalBatch, amplificationLimit=2.0, dataParallelBaseline=False, netBw=2.66E5, spatialSplit=False, simResultFilename=None, simOnly=False, use_be=False): global cs cs = CostSim(None, netBw=netBw, verbose=True, gpuProfileLoc="profile/A100_inception.prof") #"inceptionLayerGpuProfileA100V2.txt", gpuProfileLocSub="inceptionLayerGpuProfileA100.txt") model = Inception3(aux_logits=False) cs.printAllLayers(slient=True) cs.computeInputDimensions((3,299,299)) # job, iterMs, gpuMs = cs.searchBestSplits(gpuCount, globalBatch, amplificationLimit=amplificationLimit, dataParallelBaseline=dataParallelBaseline, spatialSplit=spatialSplit) # if dataParallelBaseline: # dpIterUsec, dpFpUsec, dpBpUsec = profiler.benchModel(model, (3, 299, 299), int(globalBatch / gpuCount)) # print("(DP baseline) whole model bench: %.1f ms (fp: %.1f, bp: %.1f)" % (dpIterUsec / 1000, dpFpUsec / 1000, dpBpUsec / 1000)) job, iterMs, gpuMs, maxGpusUsed = cs.searchBestSplitsV3(gpuCount, globalBatch, amplificationLimit=amplificationLimit, dataParallelBaseline=dataParallelBaseline, spatialSplit=spatialSplit) print(" %2d %2d %4.1f %4.1f\n" % (globalBatch, maxGpusUsed, iterMs, gpuMs)) cs.to_dot(simResultFilename, globalBatch) # cs.to_gpuTimeline("Inception v3, Burst Parallel", maxGpusUsed, dataParallelBaseline) jobInJson = job.dumpInJSON() # for rank in range(gpuCount): # print("GPU rank: %d"%rank) # print(job.dumpSingleRunnableModule(rank)) job2 = TrainingJob("test", None, None, 0, 0, "") job2.loadJSON(jobInJson) assert(jobInJson == job2.dumpInJSON()) print("Load/Dump returned the same output? %s" % ("true" if jobInJson == job2.dumpInJSON() else "false")) # print(jobInJson) if maxGpusUsed > 8: print("maxGpusUsed: ", maxGpusUsed, " is bigger than 8. Can't schedule this job.") exit(-1) if not spatialSplit and not simOnly: cc = ClusterClient() jobName = "InceptionV3_%d_%d_%2.1f%s" % (gpuCount, globalBatch, amplificationLimit, "_DP" if dataParallelBaseline else "") jobName += "_BE" if use_be else "" cc.submitTrainingJob(jobName, jobInJson, use_be) if simResultFilename != None: f = open(simResultFilename, "a") f.write(" %2d %2d %4.1f %4.1f\n" % (globalBatch, maxGpusUsed, iterMs, gpuMs)) f.close() if gpuCount == 8: f = open(simResultFilename, "r") print(f.read()) f.close() def runAllConfigs(modelName: str, clusterType: str, simOnly=True): if clusterType == "V100": netBw = 22937 elif clusterType == "A100": netBw = 2.66E5 elif clusterType == "10Gbps": netBw = 1.25E3 elif clusterType == "100Gbps": netBw = 1.25E4 elif clusterType == "10Tbps": netBw = 1.25E6 else: print("Wrong cluster type. Put either V100 or A100") gpuCounts = [1, 2, 4, 8] # gpuCounts = [1, 2, 4] globalBatchSize = 32 # globalBatchSize = 16 # globalBatchSize = 8 limitAndBaseline = [(2.0, True, False), (1.5, False, False), (2.0, False, False), (2.5, False, False)] # limitAndBaseline = [(99, False, True)] # limitAndBaseline = [] for lim, baseline, spatialSplit in limitAndBaseline: simResultFilename = "%s_%s_b%d_lim%2.1f_sim.data" % (modelName, "DP" if baseline else "MP", globalBatchSize, lim) f = open(simResultFilename, "w") f.write("#batch GPUs IterMs GpuMs\n") f.close() for gpuCount in gpuCounts: if not simOnly: preSize = os.stat('runtimeResult.data').st_size main(gpuCount, globalBatchSize, amplificationLimit=lim, dataParallelBaseline=baseline, netBw=netBw, spatialSplit=spatialSplit, simResultFilename=simResultFilename, simOnly=simOnly) # check exp finished. if not simOnly: print("runtimeResult.data's original size: ", preSize) while os.stat('runtimeResult.data').st_size == preSize and not spatialSplit: time.sleep(10) print("runtimeResult.data's current size: ", os.stat('runtimeResult.data').st_size) if not spatialSplit and not simOnly: fw = open("%s_%s_b%d_lim%2.1f_run.data" % (modelName, "DP" if baseline else "MP", globalBatchSize, lim), "w") fr = open('runtimeResult.data', "r") fw.write("#batch GPUs IterMs GpuMs\n") fw.write(fr.read()) fw.close() fr.close() fr = open('runtimeResult.data', "w") fr.close() def runStrongScalingBench(): global cs netBw = 2.66E5 cs = CostSim(None, netBw=netBw, verbose=False) inputSize = (3,299,299) model = Inception3(aux_logits=False) fakeInputSize = (16,3,299,299) fakeInput = torch.zeros(fakeInputSize) traced = torch.jit.trace(model, fakeInput) torch.jit.save(traced, "modules/inception.pt") print("Model: ", "Inception3") print("BatchSize iterMs fpMs bpMs") for batchSize in [2 ** exp for exp in range(1, 9)]: assert False # iterTime, fpTime, bpTime = profiler.benchModel(model, inputSize, batchSize) # print(" %8d %6.1f %6.1f %6.1f" % # (batchSize, iterTime / 1000, fpTime / 10000, bpTime / 1000)) if __name__ == "__main__": print(len(sys.argv)) if len(sys.argv) == 3: gpuCount = int(sys.argv[1]) globalBatchSize = int(sys.argv[2]) simResultFilename = "%s_%s_b%d_sim.data" % ("inception", "DP", globalBatchSize) main(gpuCount, globalBatchSize, dataParallelBaseline=True) elif len(sys.argv) >= 4: use_be = len(sys.argv) > 4 and int(sys.argv[4]) == 1 gpuCount = int(sys.argv[1]) globalBatchSize = int(sys.argv[2]) # simResultFilename = "%s_%s_b%d_lim%2.1f_sim.data" % ("inception", "MP", globalBatchSize, amplificationLimit) if sys.argv[3] == "DP": main(gpuCount, globalBatchSize, dataParallelBaseline=True, use_be=use_be) else: amplificationLimit = float(sys.argv[3]) main(gpuCount, globalBatchSize, amplificationLimit, use_be=use_be) # main(gpuCount, globalBatchSize, amplificationLimit, simResultFilename = simResultFilename, use_be=use_be) elif len(sys.argv) == 2: print("Run all configs") runAllConfigs("inceptionV3", sys.argv[1]) elif len(sys.argv) == 1: runStrongScalingBench() else: print("Wrong number of arguments.\nUsage: ") ```
{ "source": "joshuafuller/adsbxcot", "score": 2 }
#### File: adsbxcot/adsbxcot/classes.py ```python import concurrent import aiohttp import asyncio import configparser import json import logging import os import queue import random import threading import time import urllib import pytak import requests import aircot import adsbxcot __author__ = "<NAME> W2GMD <<EMAIL>>" __copyright__ = "Copyright 2021 Orion Labs, Inc." __license__ = "Apache License, Version 2.0" class ADSBXWorker(pytak.MessageWorker): """Reads ADS-B Exchange Data, renders to CoT, and puts on queue.""" def __init__(self, event_queue: asyncio.Queue, opts): super().__init__(event_queue) self.url: urllib.parse.ParseResult = urllib.parse.urlparse(opts.get("ADSBX_URL")) self.cot_stale = opts.get("COT_STALE") self.poll_interval: int = int(opts.get("POLL_INTERVAL") or adsbxcot.DEFAULT_POLL_INTERVAL) self.api_key: str = opts.get("API_KEY") self.include_tisb = bool(opts.get("INCLUDE_TISB")) or False self.include_all_craft = bool(opts.get("INCLUDE_ALL_CRAFT")) or False self.filters = opts.get("FILTERS") self.known_craft = opts.get("KNOWN_CRAFT") self.known_craft_key = opts.get("KNOWN_CRAFT_KEY") or "HEX" self.filter_type = "" self.known_craft_db = None async def handle_message(self, aircraft: list) -> None: """ Transforms Aircraft ADS-B data to CoT and puts it onto tx queue. """ if not isinstance(aircraft, list): self._logger.warning( "Invalid aircraft data, should be a Python list.") return False if not aircraft: self._logger.warning("Empty aircraft list") return False _lac = len(aircraft) _acn = 1 for craft in aircraft: # self._logger.debug("craft=%s", craft) icao = craft.get("hex", craft.get("icao")).strip().upper() flight = craft.get("flight", "").strip().upper() reg = craft.get("r", "").strip().upper() if "~" in icao and not self.include_tisb: continue known_craft = {} if self.filter_type: if self.filter_type == "HEX": filter_key: str = icao elif self.filter_type == "FLIGHT": filter_key: str = flight elif self.filter_type == "REG": filter_key: str = reg else: filter_key: str = "" # self._logger.debug("filter_key=%s", filter_key) if self.known_craft_db and filter_key: known_craft = (list(filter( lambda x: x[self.known_craft_key].strip().upper() == filter_key, self.known_craft_db)) or [{}])[0] # self._logger.debug("known_craft='%s'", known_craft) elif filter_key: if "include" in self.filters[self.filter_type] and filter_key not in self.filters.get(filter_type, "include"): continue if "exclude" in self.filters[self.filter_type] and filter_key in self.filters.get(filter_type, "exclude"): continue # If we're using a known_craft csv and this craft wasn't found, skip: if self.known_craft_db and not known_craft and not self.include_all_craft: continue event = adsbxcot.adsbx_to_cot( craft, stale=self.cot_stale, known_craft=known_craft ) if not event: self._logger.debug(f"Empty CoT Event for craft={craft}") _acn += 1 continue self._logger.debug( "Handling %s/%s ICAO: %s Flight: %s Category: %s", _acn, _lac, craft.get("hex"), craft.get("flight"), craft.get("category") ) await self._put_event_queue(event) _acn += 1 async def _get_adsbx_feed(self): # Support for either direct ADSBX API, or RapidAPI if "rapidapi" in self.url.geturl(): headers = { "x-rapidapi-key": self.api_key, "x-rapidapi-host": "adsbexchange-com1.p.rapidapi.com" } else: headers = {"api-auth": self.api_key} async with aiohttp.ClientSession() as session: response = await session.request( method="GET", url=self.url.geturl(), headers=headers ) response.raise_for_status() json_resp = await response.json() aircraft = json_resp.get("ac") self._logger.debug("Retrieved %s aircraft", len(aircraft)) await self.handle_message(aircraft) async def run(self): """Runs this Thread, Reads from Pollers.""" self._logger.info( "Running ADSBXWorker with URL '%s'", self.url.geturl()) if self.known_craft is not None: self._logger.info("Using KNOWN_CRAFT File: '%s'", self.known_craft) self.known_craft_db = aircot.read_known_craft(self.known_craft) self.filters = configparser.ConfigParser() self.filters.add_section(self.known_craft_key) self.filters[self.known_craft_key]["include"] = \ str([x[self.known_craft_key].strip().upper() for x in self.known_craft_db]) if self.filters or self.known_craft_db: filter_src = self.filters or self.known_craft_key self._logger.debug("filter_src=%s", filter_src) if filter_src: if "HEX" in filter_src: self.filter_type = "HEX" elif "FLIGHT" in filter_src: self.filter_type = "FLIGHT" elif "REG" in filter_src: self.filter_type = "REG" self._logger.debug("filter_type=%s", self.filter_type) while 1: await self._get_adsbx_feed() await asyncio.sleep(self.poll_interval) ```
{ "source": "joshuafuller/aircotproxy", "score": 2 }
#### File: aircotproxy/aircotproxy/classes.py ```python import asyncio import configparser import io import logging import urllib import xml.etree.ElementTree import aircot import pytak import aircotproxy __author__ = "<NAME> W2GMD <<EMAIL>>" __copyright__ = "Copyright 2021 Orion Labs, Inc." __license__ = "Apache License, Version 2.0" class ACPNetworkClient(asyncio.Protocol): """ CoT Network Listener (tcp only). """ _logger = logging.getLogger(__name__) if not _logger.handlers: _logger.setLevel(aircotproxy.LOG_LEVEL) _console_handler = logging.StreamHandler() _console_handler.setLevel(aircotproxy.LOG_LEVEL) _console_handler.setFormatter(aircotproxy.LOG_FORMAT) _logger.addHandler(_console_handler) _logger.propagate = False logging.getLogger("asyncio").setLevel(aircotproxy.LOG_LEVEL) def __init__(self, ready, event_queue, opts) -> None: self.transport = None self.address = None self.ready = ready self.event_queue = event_queue self.include_all_craft = bool(opts.get("INCLUDE_ALL_CRAFT")) or False self.filters = opts.get("FILTERS") self.known_craft = opts.get("KNOWN_CRAFT") self.known_craft_key = opts.get("KNOWN_CRAFT_KEY") or "HEX" self.filter_type = "" self.known_craft_db = None def handle_message(self, data) -> None: d_data = data.decode().strip() rx_cot = xml.etree.ElementTree.fromstring(d_data) uid = str(rx_cot.attrib["uid"]).strip().upper() if "ICAO" not in uid: return if "ICAO-" in uid: icao = uid.split("-")[-1] elif "ICAO." in uid: icao = uid.split(".")[-1] if "~" in icao and not self.include_tisb: return known_craft = {} if self.filter_type: if self.filter_type == "HEX": filter_key: str = icao else: filter_key: str = "" # self._logger.debug("filter_key=%s", filter_key) if self.known_craft_db and filter_key: known_craft = (list(filter( lambda x: x[self.known_craft_key].strip().upper() == filter_key, self.known_craft_db)) or [{}])[0] # self._logger.debug("known_craft='%s'", known_craft) elif filter_key: if "include" in self.filters[self.filter_type] and filter_key not in self.filters.get(filter_type, "include"): return if "exclude" in self.filters[self.filter_type] and filter_key in self.filters.get(filter_type, "exclude"): return # If we're using a known_craft csv and this craft wasn't found, skip: if self.known_craft_db and not known_craft and not self.include_all_craft: return event: str = aircotproxy.cot_to_cot(rx_cot, known_craft=known_craft) if not event: self._logger.debug("Empty CoT Event") return self._logger.debug("Handling ICAO: %s", icao) if event: self.event_queue.put_nowait(event) def connection_made(self, transport): self.transport = transport self.address = transport.get_extra_info("peername") self._logger.debug("Connection from %s", self.address) if self.known_craft is not None: self._logger.info("Using KNOWN_CRAFT File: '%s'", self.known_craft) self.known_craft_db = aircotproxy.read_known_craft(self.known_craft) self.filters = configparser.ConfigParser() self.filters.add_section(self.known_craft_key) self.filters[self.known_craft_key]["include"] = \ str([x[self.known_craft_key].strip().upper() for x in self.known_craft_db]) if self.filters or self.known_craft_db: filter_src = self.filters or self.known_craft_key self._logger.debug("filter_src=%s", filter_src) if filter_src: if "MMSI" in filter_src: self.filter_type = "MMSI" self._logger.debug("filter_type=%s", self.filter_type) self.ready.set() def data_received(self, data): self._logger.debug("Recieved: %s", data) for line in data.splitlines(): self.handle_message(line) def connection_lost(self, exc): self.ready.clear() self._logger.exception(exc) self._logger.warning("Disconnected from %s", self.address) class ACPWorker(pytak.MessageWorker): """ACPWorker Cursor-on-Target Class.""" def __init__(self, event_queue, opts) -> None: super().__init__(event_queue) self.opts = opts self.cot_receive_url: urllib.parse.ParseResult = urllib.parse.urlparse(self.opts.get("COT_RECEIVE_URL")) async def run(self): """Runs this Thread, reads CoT & outputs CoT.""" self._logger.info("Running ACPWorker") loop = asyncio.get_event_loop() host, port = pytak.parse_cot_url(self.cot_receive_url) self._logger.info("Receiving CoT on %s:%s", host, port) ready = asyncio.Event() server = await loop.create_server( lambda: ACPNetworkClient(ready, self.event_queue, self.opts), host, int(port) ) await ready.wait() while 1: await asyncio.sleep(0.01) ```
{ "source": "joshuafuller/aiscot", "score": 3 }
#### File: aiscot/aiscot/cmd.py ```python import argparse import time import aiscot __author__ = '<NAME> W2GMD <<EMAIL>>' __copyright__ = 'Copyright 2020 Orion Labs, Inc.' __license__ = 'Apache License, Version 2.0' def cli(): """Command Line interface for AIS Cursor-on-Target Gateway.""" parser = argparse.ArgumentParser() parser.add_argument( '-P', '--ais_port', help='AIS UDP Port', default=aiscot.DEFAULT_AIS_PORT ) parser.add_argument( '-C', '--cot_host', help='Cursor-on-Target Host or Host:Port', required=True ) opts = parser.parse_args() aiscot_i = aiscot.AISCoT(opts.ais_port, opts.cot_host) try: aiscot_i.start() while aiscot_i.is_alive(): time.sleep(0.01) except KeyboardInterrupt: aiscot_i.stop() finally: aiscot_i.stop() if __name__ == '__main__': cli() ```
{ "source": "joshuafuller/aprscot", "score": 2 }
#### File: aprscot/aprscot/cmd.py ```python import argparse import time import aprslib import aprscot __author__ = '<NAME> W2GMD <<EMAIL>>' __copyright__ = 'Copyright 2017 <NAME>' __license__ = 'Apache License, Version 2.0' def cli(): """Command Line interface for APRS Cursor-on-Target Gateway.""" parser = argparse.ArgumentParser() parser.add_argument( '-d', '--debug', help='Enable debug logging', action='store_true' ) parser.add_argument( '-c', '--callsign', help='callsign', required=True ) parser.add_argument( '-p', '--passcode', help='passcode', required=True ) parser.add_argument( '-C', '--cot_host', help='Cursor-on-Target Host', required=True ) parser.add_argument( '-f', '--aprs_filter', help='APRS Filter', default='m/1000' ) opts = parser.parse_args() aprs_i = aprslib.IS(opts.callsign, opts.passcode, port=14580) aprs_i.set_filter(opts.aprs_filter) aprscot_i = aprscot.APRSCOT(aprs_i, opts.cot_host) try: aprscot_i.start() while aprscot_i.is_alive(): time.sleep(0.01) except KeyboardInterrupt: aprscot_i.stop() finally: aprscot_i.stop() if __name__ == '__main__': cli() ```
{ "source": "joshuafuller/pyGT", "score": 2 }
#### File: joshuafuller/pyGT/compatGTA.py ```python from struct import pack, unpack from pyTLV import tlvPack, tlvRead from pycrc16 import crc from gtdefs import * # noqa: F403 # Message content types - GTA specific GTA_CONTENT_TEXT = 0 GTA_CONTENT_TEXT_LCTN = 1 # Text message with location attached GTA_CONTENT_LCTN_RES = 2 # Location response GTA_CONTENT_LCTN_REQ = 3 # Location request GTA_CONTENT_TEXT_LREQ = 4 # Text message with location request GTA_CONTENT_GROUP_KEY = 5 # Group setup information: GID, KEY and members GTA_CONTENT_PING = 7 # Ping request GTA_CONTENT_PUBK_REQ = 14 GTA_CONTENT_PUBK_RES = 15 def gtMakeGTABlobMsg(bodyTXT, fromTXT='API'): """ Assemble a GTA compatible message blob (suitable for feeding to gtMakeAPIMsg() ) """ blob = (tlvPack(MSGB_TLV_TYPE, "%d" % GTA_CONTENT_TEXT) + tlvPack(MSGB_TLV_NICK, fromTXT) + tlvPack(MSGB_TLV_TEXT, bodyTXT)) # append CRC and return return blob + pack("!H", crc(blob)) def gtReadGTABlob(blob): """ Break down a GTA message blob into its elements """ msg = {} # there's a CRC16 field at the end of the content blob; # check this first and stop if incorrect wantCRC = unpack('!H', blob[-2:])[0] haveCRC = crc(blob[:-2]) if wantCRC != haveCRC: print("CRC failed, want=%04x, have=%04x" % (wantCRC, haveCRC)) return False for type, length, value in tlvRead(blob[:-2]): msg[type] = value # Check for mandatory subelement MSGB_TLV_TYPE if MSGB_TLV_TYPE in msg: return msg return False ``` #### File: joshuafuller/pyGT/pygth16.py ```python def gtAlgoH16(str): """ Proprietary hash based on the Park-Miller LCG """ seed = 0xaa mult = 48271 incr = 1 modulus = (1 << 31) - 1 # 0x7FFFFFFF h = 0 x = seed for c in bytearray(str): x = (((x + c) * mult + incr) & 0xFFFFFFFF) % modulus h = h ^ x # Derive 16-bit value from 32-bit hash by XORing its two halves r = ((h & 0xFFFF0000) >> 16) ^ (h & 0xFFFF) return r ```
{ "source": "joshuafuller/pytak", "score": 3 }
#### File: pytak/pytak/functions.py ```python import asyncio import datetime import os import socket import ssl import xml import xml.etree.ElementTree import pytak import pytak.asyncio_dgram __author__ = "<NAME> W2GMD <<EMAIL>>" __copyright__ = "Copyright 2021 Orion Labs, Inc." __license__ = "Apache License, Version 2.0" def split_host(host, port: int = None) -> tuple: """Given a host:port and/or port, returns host, port.""" if ":" in host: addr, port = host.split(":") port = int(port) elif port: addr = host port = int(port) else: addr = host port = int(pytak.DEFAULT_COT_PORT) return addr, port def parse_cot_url(url) -> tuple: """Parses a Cursor on Target destination URL.""" if ":" in url.path: host, port = str(url.path).split(":") else: host = url.path if "broadcast" in url.scheme: port = pytak.DEFAULT_BROADCAST_PORT else: port = pytak.DEFAULT_COT_PORT return host, port def hello_event(uid="pytak") -> str: """Generates a Hello CoT Event.""" time = datetime.datetime.now(datetime.timezone.utc) root = xml.etree.ElementTree.Element("event") root.set("version", "2.0") root.set("type", "t-x-d-d") root.set("uid", uid) root.set("how", "m-g") root.set("time", time.strftime(pytak.ISO_8601_UTC)) root.set("start", time.strftime(pytak.ISO_8601_UTC)) root.set("stale", (time + datetime.timedelta(hours=1)).strftime(pytak.ISO_8601_UTC) ) return xml.etree.ElementTree.tostring(root) ```
{ "source": "joshuafuller/stratuxcot", "score": 2 }
#### File: stratuxcot/tests/test_functions.py ```python import asyncio import csv import io import urllib import xml.etree.ElementTree import pytest import stratuxcot import stratuxcot.functions __author__ = '<NAME> W2GMD <<EMAIL>>' __copyright__ = 'Copyright 2021 Orion Labs, Inc.' __license__ = 'Apache License, Version 2.0' # Sample JSON data: # # { # 'Icao_addr': 11160165, # 'Reg': 'N762QS', # 'Tail': 'N762QS', # 'Squawk': 0, # 'Lat': 37.89692, # 'Lng': -122.74547, # 'Addr_type': 0, # 'Age': 28.29, # 'AgeLastAlt': 1.33, # 'Alt': 21850, # 'AltIsGNSS': False, # 'Bearing': 0, # 'BearingDist_valid': False, # 'Distance': 0, # 'Emitter_category': 0, # 'ExtrapolatedPosition': False, # 'GnssDiffFromBaroAlt': -275, # 'LastSent': '0001-01-01T00:39:16.44Z', # 'Last_GnssDiff': '0001-01-01T00:39:53.84Z', # 'Last_GnssDiffAlt': 21775, # 'Last_alt': '0001-01-01T00:39:54.77Z', # 'Last_seen': '0001-01-01T00:39:54.77Z', # 'Last_source': 1, # 'Last_speed': '0001-01-01T00:39:53.84Z', # 'NACp': 10, # 'NIC': 8, # 'OnGround': False, # 'Position_valid': True, # 'PriorityStatus': 0, # 'SignalLevel': -28.21023052706831, # 'Speed': 340, # 'Speed_valid': True, # 'TargetType': 1, # 'Timestamp': '2020-11-06T19:58:06.234Z', # 'Track': 249, # 'Vvel': 3392 # } # # # "Last_seen":"0001-01-01T00:43:19.61Z" (ws://192.168.10.1/traffic) 0001-01-01 is day zero, # + # "GPSTime":"2020-05-12T08:27:10Z" (http://192.168.10.1/getSituation) # - # ("Uptime":2610230,ms)"UptimeClock":"0001-01-01T00:43:30.23Z" (http://192.168.10.1/getStatus) # = Timestamp of traffic "event" # # # This is an illuminated/commented version of the traffic output from StratuX: # type TrafficInfo struct { # Icao_addr uint32 // decimal version of (ICAO HEX or ICAO OCTAL) # Reg string // Registration. Calculated from Icao_addr for civil aircraft of US registry. # Tail string // Callsign. Transmitted by aircraft. 8 Characters max including spaces # Emitter_category uint8 // Formatted using GDL90 standard 3.5.1.10 Table 11, e.g. in a Mode ES report, A7 becomes 0x07, B0 becomes 0x08, etc. # OnGround bool // Air-ground status. On-ground is "true". # Addr_type uint8 // UAT address qualifier. Used by GDL90 format, so translations for ES TIS-B/ADS-R are needed. 3.5.1.2 Target Identity # (GDL90 ICD) # TargetType uint8 // types decribed in const above https://github.com/cyoung/stratux/blob/master/main/traffic.go#L66 # SignalLevel float64 // Signal level, dB RSSI. # Squawk int // Squawk code # Position_valid bool // false = MODE-S message without location data # Lat float32 // decimal degrees, north positive # Lng float32 // decimal degrees, east positive # Alt int32 // Pressure altitude, feet # GnssDiffFromBaroAlt int32 // GNSS altitude above WGS84 datum. Reported in TC 20-22 messages (negative = below BaroAlt, smaller magnitude) # AltIsGNSS bool // Pressure alt = 0; GNSS alt = 1 # NIC int // Navigation Integrity Category. # NACp int // Navigation Accuracy Category for Position. # Track uint16 // degrees true # Speed uint16 // knots # Speed_valid bool // set when speed report received. # Vvel int16 // feet per minute # Timestamp time.Time // timestamp of traffic message, UTC # PriorityStatus uint8 // Emergency or priority code as defined in GDL90 spec, DO-260B (Type 28 msg) and DO-282B # // Parameters starting at 'Age' are calculated from last message receipt on each call of sendTrafficUpdates(). # // Mode S transmits position and track in separate messages, and altitude can also be # // received from interrogations. # Age float64 // Age of last valid position fix, seconds ago. # AgeLastAlt float64 // Age of last altitude message, seconds ago. # Last_seen time.Time // Time of last position update (stratuxClock). Used for timing out expired data. # Last_alt time.Time // Time of last altitude update (stratuxClock). # Last_GnssDiff time.Time // Time of last GnssDiffFromBaroAlt update (stratuxClock). # Last_GnssDiffAlt int32 // Altitude at last GnssDiffFromBaroAlt update. # Last_speed time.Time // Time of last velocity and track update (stratuxClock). # Last_source uint8 // Last frequency on which this target was received. # ExtrapolatedPosition bool //TODO: True if Stratux is "coasting" the target from last known position. # BearingDist_valid bool // set when bearing and distance information is valid # Bearing float64 // Bearing in degrees true to traffic from ownship, if it can be calculated. Units: degrees. # Distance float64 // Distance to traffic from ownship, if it can be calculated. Units: meters. # //FIXME: Rename variables for consistency, especially "Last_". # @pytest.fixture def sample_craft(): return { "Icao_addr":10698088, "Reg":"N308DU", "Tail":"DAL1352", "Emitter_category":3, "OnGround": False, "Addr_type":0, "TargetType":1, "SignalLevel":-35.5129368009492, "Squawk":3105, "Position_valid":True, "Lat":37.46306, "Lng":-122.264626, "Alt":7325, "GnssDiffFromBaroAlt":25, "AltIsGNSS":False, "NIC":8, "NACp":10, "Track":135, "Speed":262, "Speed_valid":True, "Vvel":-1600, "Timestamp":"2021-05-19T23:13:18.484Z", "PriorityStatus":0, "Age":29.85, "AgeLastAlt":29.83, "Last_seen":"0001-01-01T16:43:24.75Z", "Last_alt":"0001-01-01T16:43:24.77Z", "Last_GnssDiff":"0001-01-01T16:43:24.54Z", "Last_GnssDiffAlt":7700, "Last_speed":"0001-01-01T16:43:24.54Z", "Last_source":1, "ExtrapolatedPosition":False, "BearingDist_valid":True, "Bearing":148.05441175901748, "Distance":38889.68863349082, "LastSent":"0001-01-01T16:43:22.85Z" } @pytest.fixture def sample_known_craft(): sample_csv = """DOMAIN,AGENCY,REG,CALLSIGN,TYPE,MODEL,HEX,COT,TYPE,, EMS,CALSTAR,N832CS,CALSTAR7,HELICOPTER,,,a-f-A-C-H,HELICOPTER,, EMS,REACH AIR MEDICAL,N313RX,REACH16,HELICOPTER,,,a-f-A-C-H,HELICOPTER,, FED,USCG,1339,C1339,FIXED WING,,,,FIXED WING,, FIRE,USFS,N143Z,JUMPR43,FIXED WING,DH6,,a-f-A-C-F,FIXED WING,, FIRE,,N17085,TNKR_911,FIXED WING,,,a-f-A-C-F,FIXED WING,, FIRE,CAL FIRE,N481DF,C_104,HELICOPTER,,,a-f-A-C-H,HELICOPTER,, FOOD,EL FAROLITO,N739UL,TACO_01,HELICOPTER,,,a-f-A-T-A-C-O,HELICOPTER,, FOOD,EL FAROLITO,DAL1352,TACO_02,FIXED WING,,,a-f-A-T-A-C-O,FIXED WING,, """ csv_fd = io.StringIO(sample_csv) all_rows = [] reader = csv.DictReader(csv_fd) for row in reader: all_rows.append(row) print(all_rows) return all_rows def test_stratux_to_cot_raw(sample_craft): print(sample_craft) cot = stratuxcot.functions.stratux_to_cot_raw(sample_craft) print(cot) assert isinstance(cot, xml.etree.ElementTree.Element) assert cot.tag == "event" assert cot.attrib["version"] == "2.0" assert cot.attrib["type"] == "a-.-A-C-F" assert cot.attrib["uid"] == "ICAO-A33D68" point = cot.findall("point") assert point[0].tag == "point" assert point[0].attrib["lat"] == "37.46306" assert point[0].attrib["lon"] == "-122.264626" assert point[0].attrib["hae"] == "2232.6600000000003" detail = cot.findall("detail") assert detail[0].tag == "detail" assert detail[0].attrib["uid"] == "ICAO-A33D68" track = detail[0].findall("track") assert track[0].attrib["course"] == "135" assert track[0].attrib["speed"] == "134.78432800000002" def test_stratux_to_cot(sample_craft): cot = stratuxcot.stratux_to_cot(sample_craft) assert isinstance(cot, bytes) assert b"a-.-A-C-F" in cot assert b"DAL1352" in cot assert b"ICAO-A33D68" in cot assert b'speed="134.78432800000002"' in cot def test_stratux_to_cot_raw_with_known_craft(sample_craft, sample_known_craft): known_craft_key = "REG" filter_key = sample_craft["Tail"].strip().upper() known_craft = (list(filter( lambda x: x[known_craft_key].strip().upper() == filter_key, sample_known_craft)) or [{}])[0] cot = stratuxcot.functions.stratux_to_cot_raw(sample_craft, known_craft=known_craft) assert isinstance(cot, xml.etree.ElementTree.Element) assert cot.tag == "event" assert cot.attrib["version"] == "2.0" assert cot.attrib["type"] == "a-f-A-T-A-C-O" assert cot.attrib["uid"] == "ICAO-A33D68" point = cot.findall("point") assert point[0].tag == "point" assert point[0].attrib["lat"] == "37.46306" assert point[0].attrib["lon"] == "-122.264626" assert point[0].attrib["hae"] == "2232.6600000000003" detail = cot.findall("detail") assert detail[0].tag == "detail" assert detail[0].attrib["uid"] == "TACO_02" track = detail[0].findall("track") assert track[0].attrib["course"] == "135" assert track[0].attrib["speed"] == "134.78432800000002" def test_negative_stratux_to_cot(): sample_craft = {"taco": "burrito"} cot = stratuxcot.stratux_to_cot(sample_craft) assert cot == None ```
{ "source": "JoshuaGabriel/python_snake", "score": 4 }
#### File: python_snake/app/logic.py ```python class Point: def __init__(self, data=None, x=0, y=0): if data != None: self.x = data["x"] self.y = data["y"] return else: self.x = x self.y = y def __str__(self): return "x: " + str(self.x) + " y: " + str(self.y) def __repr__(self): return "x: " + str(self.x) + " y: " + str(self.y) class GameBoard(): """ 0 - Empty space 1 - Snake head 2 - Snake body 3 - Snake tail 4 - You head 5 - You body 6 - You tail 7 - food """ SnakeBodyCount = 0 MyBodyCount = 0 MyPreviousTile = -1 # Stores the value of the previous tile Skippy has been on DidIJustEat = False # Check if I am about to grow, to omit the tail as a valid square (because I'm growing) #broken Storage_dict = {} # Stores the health of an individual snake def __init__(self, data=None): """Creates a new game board""" if data == None: print("Data not set... its going to crash") return self.data = data self.height = data["board"]["height"] self.width = data["board"]["width"] self.board = [] # array of arrays # init board for _ in range(0, self.width): column = [] for _ in range(0, self.height): column.append(0) self.board.append(column) # go through all the snakes and add them to the board GameBoard.SnakeBodyCount = 0 temporary_count = 0 GameBoard.Storage_dict = {} for snake in data["board"]["snakes"]: if(snake["id"]==data["you"]["id"]): continue temporary_count = 0 for bodypart in snake["body"]: self.board[bodypart["x"]][bodypart["y"]] = 2 temporary_count+=1 ''' TODO: store each health into a dictionary (call the function called storage) ''' if(temporary_count>GameBoard.SnakeBodyCount): GameBoard.SnakeBodyCount = temporary_count # add tail tail = snake["body"][-1] self.board[tail["x"]][tail["y"]] = 3 # add head head = snake["body"][0] self.board[head["x"]][head["y"]] = 1 # go through the food and add it to the board for food in data["board"]["food"]: self.board[food["x"]][food["y"]] = 7 # go through self GameBoard.MyBodyCount = 0 for you in data["you"]["body"]: self.board[you["x"]][you["y"]] = 5 GameBoard.MyBodyCount+=1 # get the head from the us you_tail = data["you"]["body"][-1] # set the board at head to the you head value (6) self.board[you_tail["x"]][you_tail["y"]] = 6 you_head = data["you"]["body"][0] self.board[you_head["x"]][you_head["y"]] = 4 # print("This is the created board") # self.printBoard() def printBoard(self): for x in range(0, self.height): for y in range(0, self.width): print(self.board[y][x], end=' ') print() print(GameBoard.DidIJustEat) print(self.Storage_dict) def bfs(self, start, num, status_safety=True,status_trap=True): """ Start is the point on the board we start looking from Num is the value (look at top) that we are looking for Status is used to overide the safety protocol, this will default to True, unless specified """ queue = [] visited = set() pg = {} # parent graph # add the tiles around the head self.enqueue_around_head(start, queue) # While we are still in the queue while len(queue) != 0: # print("Visited: ", visited) tile = queue.pop(0) if tile.x >= self.width or tile.x < 0 or tile.y >= self.height or tile.y < 0: continue # print("queue:", queue) # print("tile: ", end='') # print(str(tile)) tile_val = self.board[tile.x][tile.y] if str(tile) in visited: continue visited.add(str(tile)) if(tile==start): continue if (GameBoard.DidIJustEat) and (tile_val == 6) : continue if(not(self.safety_protocol(tile,num)) and status_safety): continue if(self.trap_protocol(tile) and status_trap): continue if tile_val == num: return self.get_relative_direction(start, tile, pg) if tile_val == 0 or tile_val == 7: self.enqueue_around_point(tile, queue, visited, pg, num) return -1 #it didnt find what it was looking for def enqueue_around_head(self, tile, queue): points = [Point(x=tile.x, y=(tile.y - 1)), Point(x=tile.x, y=(tile.y + 1)), Point(x=(tile.x - 1), y=tile.y), Point(x=(tile.x + 1), y=tile.y)] valid_tiles = [0,3,6,7] for point in points: if point.x >= self.width or point.x < 0 or point.y >= self.height or point.y < 0: # to check if our value is out of bounds continue # if it is out of bounds, the iteration is skipped tile_val = self.board[point.x][point.y] if tile_val in valid_tiles: #queue is only filled with 0,3,6,7 to start with queue.append(point) def enqueue_around_point(self, tile, queue, visted, parent_graph, num): points = [Point(x=tile.x, y=(tile.y - 1)), Point(x=tile.x, y=(tile.y + 1)), Point(x=(tile.x - 1), y=tile.y), Point(x=(tile.x + 1), y=tile.y)] safety_protocol = self.safety_protocol(tile,num) for point in points: if (not (point in visted) and safety_protocol): queue.append(point) parent_graph[point] = tile # The points point to the tile # Gets the direction of the chosen square so skippy knows where to turn def get_relative_direction(self, start, end, pg): temp = end while temp in pg: # gets where the end point was generated from temp = pg[temp] if(self.board[temp.x][temp.y]==7): GameBoard.DidIJustEat = True else: GameBoard.DidIJustEat = False # print("The tile I am going to is: ",temp) # print("tile value of: ",self.board[temp.x][temp.y]) diff_x = start.x - temp.x diff_y = start.y - temp.y if diff_x == -1: return 3 if diff_x == 1: return 2 if diff_y == -1: return 1 if diff_y == 1: return 0 ''' TODO: need to say that it is safe to hit a head if I'm beside a snake with a lower health (not necessarily the biggest health) plan: implement other snake's ID or health to their head ''' # returns false if the tile is dangerous (beside an opponent snake head) # return true if the tile is safe def safety_protocol(self,tile, num): points = [Point(x=tile.x, y=(tile.y - 1)), Point(x=tile.x, y=(tile.y + 1)), Point(x=(tile.x - 1), y=tile.y), Point(x=(tile.x + 1), y=tile.y)] if(GameBoard.AmIAlpha()): return True for point in points: if point.x >= self.width or point.x < 0 or point.y >= self.height or point.y < 0: continue if(self.board[point.x][point.y]==1): for snake in self.data["board"]["snakes"]: print("length of snakes",len(self.data["board"]["snakes"])) print("snake.x: ",snake["body"][0]["x"]," snake.y: ",snake["body"][0]["y"]) print("point.x: ",point.x," point.y: ",point.y) print(str(snake["body"][0]["x"])==str(point.x) and str(snake["body"][0]["y"])==str(point.y)) if(str(snake["body"][0]["x"])==str(point.x) and str(snake["body"][0]["y"])==str(point.y)): count = 0 for bodypart in snake["body"]: count+=1 if(GameBoard.AmIAlpha(count)): return True break return False return True #Returns a list of good points (IN STR FORMAT) def neighbors(self,tile): invalid_squares = [1,2,4,5] head = None points = [Point(x=tile.x, y=(tile.y - 1)), Point(x=tile.x, y=(tile.y + 1)), Point(x=(tile.x - 1), y=tile.y), Point(x=(tile.x + 1), y=tile.y)] good_points = [] for point in points: if point.x >= self.width or point.x < 0 or point.y >= self.height or point.y < 0: continue if(self.board[point.x][point.y]==1): head = point if (self.board[point.x][point.y] in invalid_squares): continue good_points.append(point) return good_points,head # Returns True if the next tile is a trapped tile # A tile is considered to be trapped if there are no possible moves after def trap_protocol(self,tile,previous_tile=None): searching, head = self.neighbors(tile) if(previous_tile!=None): count=0 for square in searching: if(square.x==previous_tile.x and square.y==previous_tile.y): searching.pop(count) break count+=1 if(len(searching)>1): return False elif(len(searching)==0): return True else: if(head!=None): vector1 = Point(x=searching[0].x-tile.x,y=searching[0].y-tile.y) vector2 = Point(x=head.x-tile.x,y=head.y-tile.y) dot_product = vector1.x*vector2.x + vector1.y*vector2.y print(dot_product) if(dot_product==0): return True previous_tile = Point(x=tile.x,y=tile.y) return self.trap_protocol(tile=searching[0],previous_tile=previous_tile) @staticmethod def AmIAlpha(count=None): if(count!=None): if(GameBoard.MyBodyCount>count): return True else: return False if(GameBoard.MyBodyCount>GameBoard.SnakeBodyCount): return True else: return False ''' TODO: this GetLength method Initial Ideas: This will make skippy less likely to go into trapped squares Fallbacks: Not sure if I need a limit to how many squares skippy should look at (I'm guessing the x (the dimension of the board)) most likely will need to limit ''' # This method will find the amount of available squares # Not sure what it will return yet def GetLength(self): pass # Will Trap a snake in a corner situation ''' Get relative direction of enemy snake https://play.battlesnake.com/g/bf1f56d2-403e-482d-a324-8d0222a0cdb1/# my head is at: (3,1) for example ((1,1) (9,1) (1,9) (9,9)) for 11x11 grid if (((head.x == edge.x) or (head.y==edge.y)) and (im not at the width or height)) and (enemeny head is at the edge and I'm beside it +1): go for the end of board to kill them elif(if im at the end of the board) return -1 else: return -1 to see how I am inside I need to get my head's coords if(im inside of ((1,1) (9,1) (1,9) (9,9))) ''' @staticmethod def TrapKill(): pass # implement a turtle and survive strategy for super late game scenario and we are smaller by a lot def turtle(self,data): move_data = -1 # print("CountMyBody: ", GameBoard.MyBodyCount) # print("CountSnakeBody: ", GameBoard.SnakeBodyCount) head = data["you"]["body"][0] if(GameBoard.MyBodyCount+7<GameBoard.SnakeBodyCount and data["you"]["health"]<80): move_data = GameBoard.bfs(self,Point(data=head), 7) #go for food elif(GameBoard.MyBodyCount+7<GameBoard.SnakeBodyCount): move_data = GameBoard.bfs(self,Point(data=head), 6,False,False) #go for tail return move_data def kill_snakes(self, data): move_data = -1 # print("CountMyBody: ", GameBoard.MyBodyCount) # print("CountSnakeBody: ", GameBoard.SnakeBodyCount) if(GameBoard.MyBodyCount>GameBoard.SnakeBodyCount+1 and data["turn"]>50 and data["you"]["health"]>28): head = data["you"]["body"][0] move_data = GameBoard.bfs(self,Point(data=head), 1) # go for kill return move_data ```
{ "source": "joshuagato/arithmetic-app-flask-api", "score": 3 }
#### File: joshuagato/arithmetic-app-flask-api/app.py ```python from flask import Flask, jsonify, request from flask_restful import Api, Resource app = Flask(__name__) api = Api(app) def checkPostedData(postedData, functionName): if ("x" not in postedData or "y" not in postedData): return 301 else: return 200 class Add(Resource): def post(self): postedData = request.get_json() status_code = checkPostedData(postedData, "add") if (status_code != 200): retJson = { "Message": "An error occurred", "Status Code": status_code } x = postedData["x"] y = postedData["y"] x = int(x) y = int(y) ret = x + y retMap = { 'Message': ret, 'Status Code': 200 } return jsonify(retMap) class Subtract(Resource): pass class Multiply(Resource): pass class Divide(Resource): pass api.add_resource(Add, "/add") if __name__ == "__main__": # app.run() # This works pefectly app.run(debug=True) # This helps to give feedback, in times of errors # app.run(host="127.0.0.1", port=80) # This is good for production/deployment ```
{ "source": "JoshuaGhost/e2expred", "score": 2 }
#### File: latent_rationale/common/util.py ```python import json from collections import namedtuple import numpy as np import random import torch from torch import nn from torch.nn.init import _calculate_fan_in_and_fan_out from latent_rationale.nn.bow_encoder import BOWEncoder from latent_rationale.nn.cnn_encoder import CNNEncoder from latent_rationale.nn.lstm_encoder import LSTMEncoder from latent_rationale.nn.rcnn_encoder import RCNNEncoder Example = namedtuple("Example", ["tokens", "label", "token_labels", 'query', 'docid', 'ann_id']) def make_kv_string(d: object) -> object: out = [] for k, v in d.items(): if isinstance(v, float): out.append("{} {:.4f}".format(k, v)) else: out.append("{} {}".format(k, v)) return " ".join(out) def get_encoder(layer, in_features, hidden_size, bidirectional=True): """Returns the requested layer.""" if layer == "lstm": return LSTMEncoder(in_features, hidden_size, bidirectional=bidirectional) elif layer == "rcnn": return RCNNEncoder(in_features, hidden_size, bidirectional=bidirectional) elif layer == "bow": return BOWEncoder() elif layer == "cnn": return CNNEncoder( embedding_size=in_features, hidden_size=hidden_size, kernel_size=5) else: raise ValueError("Unknown layer") def get_z_stats(z=None, mask=None): """ Computes statistics about how many zs are exactly 0, continuous (between 0 and 1), or exactly 1. :param z: :param mask: mask in [B, T] :return: """ z = torch.where(mask, z, z.new_full([1], 1e2)) num_0 = (z == 0.).sum().item() num_c = ((z > 0.) & (z < 1.)).sum().item() num_1 = (z == 1.).sum().item() total = num_0 + num_c + num_1 mask_total = mask.sum().item() assert total == mask_total, "total mismatch" return num_0, num_c, num_1, mask_total def xavier_uniform_n_(w, gain=1., n=4): """ Xavier initializer for parameters that combine multiple matrices in one parameter for efficiency. This is e.g. used for GRU and LSTM parameters, where e.g. all gates are computed at the same time by 1 big matrix. :param w: :param gain: :param n: :return: """ with torch.no_grad(): fan_in, fan_out = _calculate_fan_in_and_fan_out(w) assert fan_out % n == 0, "fan_out should be divisible by n" fan_out = fan_out // n std = gain * np.math.sqrt(2.0 / (fan_in + fan_out)) a = np.math.sqrt(3.0) * std nn.init.uniform_(w, -a, a) def initialize_model_(model): """ Model initialization. :param model: :return: """ # Custom initialization print("Glorot init") for name, p in model.named_parameters(): if "bert_model" in name or name.startswith("embed") or "lagrange" in name: print("{:10s} {:20s} {}".format("unchanged", name, p.shape)) elif "lstm" in name and len(p.shape) > 1: print("{:10s} {:20s} {}".format("xavier_n", name, p.shape)) xavier_uniform_n_(p) elif len(p.shape) > 1: print("{:10s} {:20s} {}".format("xavier", name, p.shape)) torch.nn.init.xavier_uniform_(p) elif "bias" in name: print("{:10s} {:20s} {}".format("zeros", name, p.shape)) torch.nn.init.constant_(p, 0.) else: print("{:10s} {:20s} {}".format("unchanged", name, p.shape)) def get_device(): if torch.cuda.is_available(): return torch.device('cuda') else: return torch.device('cpu') def print_parameters(model): """Prints model parameters""" total = 0 for name, p in model.named_parameters(): total += np.prod(p.shape) print("{:24s} {:12s} requires_grad={}".format(name, str(list(p.shape)), p.requires_grad)) print("\nTotal parameters: {}\n".format(total)) def get_minibatch(data, batch_size, shuffle=False, train_on_part=-1): """Return minibatches, optional shuffling""" if shuffle: print("Shuffling training data") random.shuffle(data) # shuffle training data each epoch batch = [] # yield minibatches if train_on_part == -1: data_to_return = data else: data_to_return = data[:int(len(data) * train_on_part)] for example in data_to_return: batch.append(example) if len(batch) == batch_size: yield batch batch = [] # in case there is something left if len(batch) > 0: yield batch # def get_minibatch(data, batch_size, shuffle=False): # """Return minibatches, optional shuffling""" # if shuffle: # print("Shuffling training data") # random.shuffle(data) # shuffle training data each epoch # # batch = [] # # # yield minibatches # for example in data: # batch.append(example) # # if len(batch) == batch_size: # yield batch # batch = [] # # # in case there is something left # if len(batch) > 0: # yield batch def write_jsonl(jsonl, output_file): with open(output_file, 'w') as of: for js in jsonl: as_str = json.dumps(js, sort_keys=True) of.write(as_str) of.write('\n') ``` #### File: latent_rationale/mtl_e2e/utils.py ```python import argparse import json from dataclasses import dataclass from typing import List, Any import torch import numpy as np from torch.nn.utils.rnn import pad_sequence, PackedSequence, pack_padded_sequence, pad_packed_sequence from transformers import BertTokenizer from latent_rationale.common.util import Example @dataclass(eq=True, frozen=True) class PaddedSequence: """A utility class for padding variable length sequences mean for RNN input This class is in the style of PackedSequence from the PyTorch RNN Utils, but is somewhat more manual in approach. It provides the ability to generate masks for outputs of the same input dimensions. The constructor should never be called directly and should only be called via the autopad classmethod. We'd love to delete this, but we pad_sequence, pack_padded_sequence, and pad_packed_sequence all require shuffling around tuples of information, and some convenience methods using these are nice to have. """ data: torch.Tensor batch_sizes: torch.Tensor batch_first: bool = False @classmethod def autopad(cls, data, batch_first: bool = False, padding_value=0, device=None) -> 'PaddedSequence': # handle tensors of size 0 (single item) data_ = [] for d in data: if len(d.size()) == 0: d = d.unsqueeze(0) data_.append(d) padded = pad_sequence(data_, batch_first=batch_first, padding_value=padding_value) if batch_first: batch_lengths = torch.LongTensor([len(x) for x in data_]) if any([x == 0 for x in batch_lengths]): raise ValueError( "Found a 0 length batch element, this can't possibly be right: {}".format(batch_lengths)) else: # TODO actually test this codepath batch_lengths = torch.LongTensor([len(x) for x in data]) return PaddedSequence(padded, batch_lengths, batch_first).to(device=device) #@classmethod #def autopad(cls, data, len_queries, max_length, batch_first, device): def pack_other(self, data: torch.Tensor): return pack_padded_sequence(data, self.batch_sizes, batch_first=self.batch_first, enforce_sorted=False) @classmethod def from_packed_sequence(cls, ps: PackedSequence, batch_first: bool, padding_value=0) -> 'PaddedSequence': padded, batch_sizes = pad_packed_sequence(ps, batch_first, padding_value) return PaddedSequence(padded, batch_sizes, batch_first) def cuda(self) -> 'PaddedSequence': return PaddedSequence(self.data.cuda(), self.batch_sizes.cuda(), batch_first=self.batch_first) def to(self, dtype=None, device=None, copy=False, non_blocking=False) -> 'PaddedSequence': # TODO make to() support all of the torch.Tensor to() variants return PaddedSequence( self.data.to(dtype=dtype, device=device, copy=copy, non_blocking=non_blocking), self.batch_sizes.to(device=device, copy=copy, non_blocking=non_blocking), batch_first=self.batch_first) def mask(self, mask_starts=None, on=int(0), off=int(0), device='cpu', size=None, dtype=None) -> torch.Tensor: if size is None: size = self.data.size() out_tensor = torch.zeros(*size, dtype=dtype) # TODO this can be done more efficiently out_tensor.fill_(off) if mask_starts is None: mask_starts = [0] * len(self.batch_sizes) # note to self: these are probably less efficient than explicilty populating the off values instead of the on values. if self.batch_first: for i, (mask_st, bl) in enumerate(zip(mask_starts, self.batch_sizes)): out_tensor[i, mask_st:bl] = on else: for i, (mask_st, bl) in enumerate(zip(mask_starts, self.batch_sizes)): out_tensor[mask_st:bl, i] = on return out_tensor.to(device) def unpad(self, other: torch.Tensor) -> List[torch.Tensor]: out = [] for o, bl in zip(other, self.batch_sizes): out.append(torch.cat((o[:bl], torch.zeros(max(0, bl-len(o)))))) return out def flip(self) -> 'PaddedSequence': return PaddedSequence(self.data.transpose(0, 1), not self.batch_first, self.padding_value) def get_args(): parser = argparse.ArgumentParser(description='End to End ExPred') parser.add_argument('--conf_fname', type=str) parser.add_argument('--dataset_name', type=str, choices=['movies', 'fever', 'multirc', 'short_movies']) parser.add_argument('--data_dir', type=str, default='') parser.add_argument('--save_path', type=str, default='mtl_e2e/default') parser.add_argument('--resume_snapshot', type=bool, default=True) parser.add_argument('--warm_start_mtl', type=str) parser.add_argument('--warm_start_cls', type=str) parser.add_argument('--share_encoder', default=False, action='store_true') parser.add_argument('--print_every', type=int, default=100) parser.add_argument('--eval_every', type=int, default=-1) parser.add_argument('--save_every', type=int, default=-1) # rationale settings for HardKuma model # parser.add_argument('--selection', type=float, default=1., # help="Target text selection rate for Lagrange.") parser.add_argument('--w_aux', type=float) parser.add_argument('--w_exp', type=float) parser.add_argument('--selection', type=float) parser.add_argument('--batch_size', type=int) parser.add_argument('--train_on_part', type=float, default='-1') parser.add_argument('--decode_split', type=str, default='test') args = parser.parse_args() args = vars(args) conf_fname = args['conf_fname'] with open(conf_fname, 'r') as fin: conf = json.load(fin) print(args.keys()) for k, v in args.items(): # values in args overwrites the ones on conf file if v is None: continue if k in ('selection', 'w_aux', 'w_exp'): conf['weights'][k] = v else: conf[k] = v conf["eval_batch_size"] = max(conf['batch_size'], conf['eval_batch_size']) return conf def prepare_minibatch(mb: List[Example], tokenizer: BertTokenizer, max_length: int=512, device: str=None): """ Minibatch is a list of examples. This function converts words to IDs and returns torch tensors to be used as input/targets. """ cls_token_id = tokenizer.cls_token_id sep_token_id = tokenizer.sep_token_id pad_token_id = tokenizer.pad_token_id cls_token = torch.tensor([cls_token_id])#.to(device=device) sep_token = torch.tensor([sep_token_id])#.to(device=device) inputs = [] exps = [] labels = [] position_ids = [] for inst in mb: q = inst.query d = inst.tokens exp = inst.token_labels labels.append(inst.label) if len(q) + len(d) + 2 > max_length: # d = torch.Tensor(d[:(max_length - len(q) - 2)]).type_as(cls_token) # exp = torch.Tensor(exp[:(max_length - len(q) - 2)]) d = d[:(max_length - len(q) - 2)] exp = exp[:(max_length - len(q) - 2)] # q = torch.Tensor(q).type_as(cls_token) # print(cls_token.__class__, q.__class__, exp.__class__) # print(cls_token.type(), q.type(), exp.type()) inputs.append(torch.cat([cls_token, q, sep_token, d])) exps.append(torch.cat([torch.Tensor([0] * (len(q) + 2)), exp])) position_ids.append(torch.tensor(list(range(0, len(q) + 1)) + list(range(0, len(d) + 1)))) # tokens # positions are counted from 1, the two 0s are for [cls] and [sep], [pad]s are also nominated as pos 0 inputs = PaddedSequence.autopad(inputs, batch_first=True, padding_value=pad_token_id, device=device) positions = PaddedSequence.autopad(position_ids, batch_first=True, padding_value=0, device=device) exps = PaddedSequence.autopad(exps, batch_first=True, padding_value=0, device=device) attention_masks = inputs.mask(on=1., off=-1000.).type(torch.float).to(device=device) padding_masks = inputs.mask(on=1., off=0.).type(torch.bool).to(device=device) labels = torch.LongTensor(labels).to(device=device) return inputs, exps, labels, positions, attention_masks, padding_masks # # # queries, documents, exps, labels = [], [], [], [] # for inst in mb: # q = inst.query # queries.append(torch.Tensor(q)) # documents.append(torch.Tensor(inst.tokens)) # exps.append(torch.cat(torch.Tensor([0] * (len(q) + 2))inst.token_labels)) # labels.append(torch.Tensor([inst.label])) # # return queries, documents, exps, labels # def prepare_for_input(example: Example, # max_length: int, # tokenizer: BertTokenizer, # device: str = 'cpu'): # q = example.query # d = example.tokens # cls_token = [tokenizer.cls_token_id] # sep_token = [tokenizer.sep_token_id] # pad_token_id = tokenizer.pad_token_id # if len(q) + len(d) + 2 > max_length: # d = d[:(max_length - len(q) - 2)] # input = torch.cat([cls_token, q, sep_token, d]) # selector_mask_starts = torch.Tensor([len(q) + 2]).to(device) # input = PaddedSequence.autopad(input, batch_first=True, padding_value=pad_token_id, # device=device) # attention_mask = input.mask(on=1., off=0., device=device) # attributes = [0] * (len(example.query) + 2) + example.tokens # return [input, attributes, example.label] def numerify_labels(dataset, labels_mapping): for exp_id, exp in enumerate(dataset): # print(exp_id) # print(dataset[exp_id]) # print(exp) dataset[exp_id] = Example(tokens=exp.tokens, label=labels_mapping[exp.label], token_labels=exp.token_labels, query=exp.query, ann_id=exp.ann_id, docid=exp.docid) return dataset def tokenize_query_doc(example: Example, tokenizer: Any): if isinstance(tokenizer, BertTokenizer): query_tokens = tokenizer.encode(example.query, add_special_tokens=False) else: query_tokens = tokenizer.tokenize(example.query) tokens = [] token_labels = [] for token, token_label in zip(example.tokens, example.token_labels): if isinstance(tokenizer, BertTokenizer): token_pieces = tokenizer.encode(token, add_special_tokens=False) else: token_pieces = tokenizer.tokenize(token) tokens.extend(token_pieces) token_labels.extend([token_label] * len(token_pieces)) if isinstance(tokenizer, BertTokenizer): return Example(query=torch.LongTensor(query_tokens),#.type(torch.long), tokens=torch.LongTensor(tokens),#.type(torch.long), token_labels=torch.Tensor(token_labels), label=torch.Tensor([example.label]), ann_id=example.ann_id, docid=example.docid) else: return Example(query=query_tokens, tokens=tokens, token_labels=token_labels, label=example.label, ann_id=example.ann_id, docid=example.docid) def numerify_query_doc(example: Example, tokenizer: Any): query_ids = tokenizer.encode(example.query, add_special_tokens=False) token_ids = tokenizer.encode(example.tokens, add_special_tokens=False) return Example(query=query_ids, tokens=token_ids, token_labels=example.token_labels, label=example.label, ann_id=example.ann_id, docid=example.docid) ```
{ "source": "joshuag/lambda-rest", "score": 3 }
#### File: python/lambda-routing/routing.py ```python from functools import wraps import json import re class PathNotFoundError(Exception): pass class VerbNotFoundError(Exception): pass class UserRoleNotPermitted(Exception): pass class UserNotAuthenticated(Exception): pass class _RouteRegistry(object): def __init__(self): self.registry = {} self.perm_registry = {} def register_route(self, verb, path, func, required_roles): if not path in self.registry: self.registry[path] = {} self.perm_registry[path] = {} self.registry[path][verb] = func self.perm_registry[path][verb] = required_roles def match_route(self, request): resourcePath = request["requestContext"]["resourcePath"] verb = request["requestContext"]["httpMethod"] request_params = request["pathParameters"] resolved_path = self.registry.get(resourcePath, None) if not resolved_path: raise PathNotFoundError("Route for {resourcePath} not found".format(resourcePath=resourcePath)) if not verb in self.registry[resolved_path]: #We know we'll get a hit for the resourcePath because we would have raised out otherwise raise VerbNotFoundError("{verb} not found for {resourcePath}".format(verb=verb, resourcePath=resourcePath)) return { "function": self.registry[resolved_path][verb], "perms": self.perm_registry[resolved_path][verb], } def check_perms(self, perms, user): if not user: raise UserNotAuthenticated("You must login") else: found = False for role in user.roles: if role in perms: found = True break if not found: raise UserRoleNotPermitted("You do not have a required role") def match_and_execute_route_for_gateway(self, request, user=None): request_params = request.get("pathParameters", {}) or {} query_params = request.get("queryStringParameters", {}) or {} request_params.update(query_params) extra_headers = {} matched_route = self.match_route(request) matched_function = matched_route["function"] matched_perms = matched_route["perms"] try: if matched_perms: self.check_perms(matched_perms, user) if request["requestContext"]["httpMethod"] in ("POST", "PATCH"): body = matched_function(json.loads(request["body"]), **request_params) else: body = matched_function(**request_params) status_code = 200 except Exception as e: status_code = 500 body = json.dumps( { 'errorMessage': str(e), 'errorType': "APIError", 'stackTrace': [] } ) extra_headers = {'X-Amzn-ErrorType':'APIError'} except TypeError as e: status_code = 500 body = json.dumps( { 'errorMessage': 'Unexpected path variable or querystring parameter', 'errorType': 'MalformedRequestError', 'stackTrace': [] } ) extra_headers = {'X-Amzn-ErrorType':'MalformedRequestError'} extra_headers.update({ 'Content-Type': 'application/json' }) if not isinstance(body, str): # Sometimes a route may want to return headers (or just a plain object) # So we'll do the escaping for them and pop the headers off if isinstance(body, dict) and "headers" in body and "body" in body: extra_headers.update(body.pop("headers")) body = body.pop("body") body = json.dumps(body) return { 'statusCode': status_code, 'headers': extra_headers, 'body': body } RouteRegistry = _RouteRegistry() class route(object): def __init__(self, path, verb, required_roles=None): self.path = path self.verb = verb self.required_roles = required_roles def __call__(self, func): RouteRegistry.register_route(verb=self.verb, path=self.path, func=func, required_roles=self.required_roles) @wraps(func) def wrapped(*args, **kwargs): func(*args, **kwargs) return wrapped ```
{ "source": "joshuagl/apt-transport-in-toto", "score": 3 }
#### File: apt-transport-in-toto/tests/test_units.py ```python import mock import unittest import intoto from intoto import (serialize_one, deserialize_one, _intoto_parse_config, _intoto_verify, LOG_HANDLER_STDERR) class TestSerialization(unittest.TestCase): """Test parts serialization and deserialization functions. """ def test_serialize_deserialize(self): """Test that data is (de)serialized as expected. """ msg = "601 Configuration\nConfig-Item: 1\nConfig-Item: 2\n\n" msg_data = { "code": 601, "info": "Configuration", "fields": [ ("Config-Item", "1"), ("Config-Item", "2"), ] } self.assertEqual(deserialize_one(msg), msg_data) self.assertEqual(serialize_one(msg_data), msg) def test_deserialize_error(self): """Test deserialization errors on malformed data. """ for msg, error in [ ("", "Invalid empty message:"), ("10000", "Invalid message header:"), ("LOL LOL", "Invalid message header status code:"), ("1000 LOL", "Invalid message header status code:"), ("100 LOL", "Invalid message header info"), ("601 Configuration\nConfig-Item", "Invalid header field:")]: with self.assertRaises(Exception) as ctx: deserialize_one(msg) self.assertIn(error, str(ctx.exception)) class TestConfigParser(unittest.TestCase): """Test function that parses the `601 Configuration` message. """ def test_log_level_config(self): """Test parsing LogLevel config. """ def _intoto_parse_config_with_log_level(level): """Wrapper for _intoto_parse_config to pass message with specific log level. """ _intoto_parse_config({ "code": 601, "info": "Configuration", "fields": [ ("Config-Item", "APT::Intoto::LogLevel::={}".format(level)), ], }) # Backup log level level_backup = LOG_HANDLER_STDERR.level # Test with bad log level values for level in ["1.0", "abc"]: _intoto_parse_config_with_log_level(level) self.assertNotEqual(LOG_HANDLER_STDERR.level, level) # Test with good log level values _intoto_parse_config_with_log_level(100) self.assertEqual(LOG_HANDLER_STDERR.level, 100) # Restore log level LOG_HANDLER_STDERR.level = level_backup def test_ignore_config_items(self): """Test that irrelevant configs are ignored. """ empty_global_info = { "config": { "Rebuilders": [], "GPGHomedir": "", "Layout": "", "Keyids": [], "NoFail": False } } # Backup and reset global info backup_global_info = intoto.global_info intoto.global_info = empty_global_info # Call config parsing function with irrelevant configs _intoto_parse_config({ "code": 601, "info": "Configuration", "fields": [ ("No-Config-Item", "123"), ("Config-Item", "APT::Other::Info"), ], }) # Global info should still be empty self.assertDictEqual(intoto.global_info, empty_global_info) # Restore global info intoto.global_info = backup_global_info class TestVerification(unittest.TestCase): """Test function that triggers intoto verification (upon reception of `201 URI Done` message). """ def test_skip_wrong_name(self): """Skip in-toto verification for files with wrong filename. """ def _intoto_verify_with_filename(fn): """Wrapper for _intoto_verify to pass message with specific filename. """ _intoto_verify({ "code": 201, "info": "URI Done", "fields": [ ("Filename", "{}".format(fn)), ], }) for fn in ["not-a-deb.txt", "way_too_may_party.deb", "missing_parts.deb"]: with mock.patch("intoto.logger") as mock_logger: _intoto_verify_with_filename(fn) mock_logger.info.assert_called_with( "Skipping in-toto verification for '{}'".format(fn)) if __name__ == "__main__": unittest.main() ```
{ "source": "joshuagl/in-toto", "score": 3 }
#### File: in-toto/in_toto/verifylib.py ```python import os import datetime import iso8601 import fnmatch import six import logging from dateutil import tz import securesystemslib.exceptions import in_toto.settings import in_toto.util import in_toto.runlib import in_toto.models.layout import in_toto.models.link import in_toto.formats from in_toto.models.metadata import Metablock from in_toto.models.link import (FILENAME_FORMAT, FILENAME_FORMAT_SHORT) from in_toto.models.layout import SUBLAYOUT_LINK_DIR_FORMAT from in_toto.exceptions import (RuleVerificationError, LayoutExpiredError, ThresholdVerificationError, BadReturnValueError, SignatureVerificationError) from in_toto.gpg.exceptions import KeyExpirationError import in_toto.rulelib # Inherits from in_toto base logger (c.f. in_toto.log) log = logging.getLogger(__name__) RULE_TRACE = {} def _raise_on_bad_retval(return_value, command=None): """ <Purpose> Internal function that checks return values of shell commands, e.g. from inspections. Raises exception if the passed value is non-int and non-zero. <Arguments> return_value: The return value to be verified command: (optional) The command whose execution returned the value, used for exception message. <Exceptions> BadReturnValueError if the return_value is non-int and non-zero <Side Effects> None. <Returns> None. """ msg = "Got non-{what} " + "return value '{}'".format(return_value) if command: msg = "{0} from command '{1}'.".format(msg, command) else: msg = "{0}.".format(msg) if not isinstance(return_value, int): raise BadReturnValueError(msg.format(what="int")) # TODO: in-toto specification suggests special behavior on # return_value == 127, but does not fully define that behavior yet if return_value != 0: raise BadReturnValueError(msg.format(what="zero")) def load_links_for_layout(layout, link_dir_path): """ <Purpose> Try to load all existing metadata files for each Step of the Layout from the current directory. For each step the metadata might consist of multiple (thresholds) Link or Layout (sub-layouts) files. <Arguments> layout: Layout object link_dir_path: A path to directory where links are loaded from <Side Effects> Calls function to read files from disk <Exceptions> in_toto.exceptions.LinkNotFoundError, if fewer than `threshold` link files can be found for any given step of the supply chain (preliminary threshold check) <Returns> A dictionary carrying all the found metadata corresponding to the passed layout, e.g.: { <step name> : { <functionary key id> : <Metablock containing a Link or Layout object>, ... }, ... } """ steps_metadata = {} # Iterate over all the steps in the layout for step in layout.steps: links_per_step = {} # We try to load a link for every authorized functionary, but don't fail # if the file does not exist (authorized != required) # FIXME: Should we really pass on IOError, or just skip inexistent links? for authorized_keyid in step.pubkeys: # Iterate over the authorized key and if present over subkeys for keyid in [authorized_keyid] + list(layout.keys.get(authorized_keyid, {}).get("subkeys", {}).keys()): filename = FILENAME_FORMAT.format(step_name=step.name, keyid=keyid) filepath = os.path.join(link_dir_path, filename) try: metadata = Metablock.load(filepath) links_per_step[keyid] = metadata except IOError: pass # This is only a preliminary threshold check, based on (authorized) # filenames, to fail early. A more thorough signature-based threshold # check is indispensable. if len(links_per_step) < step.threshold: raise in_toto.exceptions.LinkNotFoundError("Step '{0}' requires '{1}'" " link metadata file(s), found '{2}'." .format(step.name, step.threshold, len(links_per_step))) steps_metadata[step.name] = links_per_step return steps_metadata def run_all_inspections(layout): """ <Purpose> Extracts all inspections from a passed Layout's inspect field and iteratively runs each command defined in the Inspection's `run` field using `runlib.in_toto_run`, which returns a Metablock object containing a Link object. If a link command returns non-zero the verification is aborted. <Arguments> layout: A Layout object which is used to extract the Inspections. <Exceptions> Calls function that raises BadReturnValueError if an inspection returned non-int or non-zero. <Returns> A dictionary of metadata about the executed inspections, e.g.: { <inspection name> : { <Metablock containing a Link object>, ... }, ... } """ inspection_links_dict = {} for inspection in layout.inspect: log.info("Executing command for inspection '{}'...".format( inspection.name)) # FIXME: We don't want to use the base path for runlib so we patch this # for now. This will not stay! base_path_backup = in_toto.settings.ARTIFACT_BASE_PATH in_toto.settings.ARTIFACT_BASE_PATH = None # FIXME: What should we record as material/product? # Is the current directory a sensible default? In general? # If so, we should probably make it a default in run_link # We could use artifact rule paths. material_list = product_list = ["."] link = in_toto.runlib.in_toto_run(inspection.name, material_list, product_list, inspection.run) _raise_on_bad_retval(link.signed.byproducts.get("return-value"), inspection.run) inspection_links_dict[inspection.name] = link # Dump the inspection link file for auditing # Keep in mind that this pollutes the verifier's (client's) filesystem. filename = FILENAME_FORMAT_SHORT.format(step_name=inspection.name) link.dump(filename) in_toto.settings.ARTIFACT_BASE_PATH = base_path_backup return inspection_links_dict def verify_layout_expiration(layout): """ <Purpose> Raises an exception if the passed layout has expired, i.e. if its `expires` property is lesser "now". Time zone aware datetime objects in UTC+00:00 (Zulu Time) are used. <Arguments> layout: The Layout object to be verified. <Exceptions> LayoutExpiredError TBA (see https://github.com/in-toto/in-toto/issues/6) <Side Effects> None. """ expire_datetime = iso8601.parse_date(layout.expires) if expire_datetime < datetime.datetime.now(tz.tzutc()): raise LayoutExpiredError("Layout expired") def substitute_parameters(layout, parameter_dictionary): """ <Purpose> This function is a transitionary measure for parameter substitution (or any other solution defined by the in-toto team). As of now, it acts as a very simple replacement layer for python-like parameters <Arguments> layout: The Layout object to process. parameter_dictionary: A dictionary containing key-value pairs for substitution. <Exceptions> securesystemslib.exceptions.FormatError: if the parameter dictionary is malformed. KeyError: if one of the keys in the parameter dictionary are not present for substitution <Side Effects> The layout object will have any tags replaced with the corresponding values defined in the parameter dictionary. """ in_toto.formats.PARAMETER_DICTIONARY_SCHEMA.check_match(parameter_dictionary) for step in layout.steps: new_material_rules = [] for rule in step.expected_materials: new_rule = [] for stanza in rule: new_rule.append(stanza.format(**parameter_dictionary)) new_material_rules.append(new_rule) new_product_rules = [] for rule in step.expected_products: new_rule = [] for stanza in rule: new_rule.append(stanza.format(**parameter_dictionary)) new_product_rules.append(new_rule) new_expected_command = [] for argv in step.expected_command: new_expected_command.append(argv.format(**parameter_dictionary)) step.expected_command = new_expected_command step.expected_materials = new_material_rules step.expected_products = new_product_rules for inspection in layout.inspect: new_material_rules = [] for rule in inspection.expected_materials: new_rule = [] for stanza in rule: new_rule.append(stanza.format(**parameter_dictionary)) new_material_rules.append(new_rule) new_product_rules = [] for rule in inspection.expected_products: new_rule = [] for stanza in rule: new_rule.append(stanza.format(**parameter_dictionary)) new_product_rules.append(new_rule) new_run = [] for argv in inspection.run: new_run.append(argv.format(**parameter_dictionary)) inspection.run = new_run inspection.expected_materials = new_material_rules inspection.expected_products = new_product_rules def verify_layout_signatures(layout_metablock, keys_dict): """ <Purpose> Iteratively verifies the signatures of a Metablock object containing a Layout object for every verification key in the passed keys dictionary. Requires at least one key to be passed and requires every passed key to find a valid signature. <Arguments> layout_metablock: A Metablock object containing a Layout whose signatures are verified. keys_dict: A dictionary of keys to verify the signatures conformant with securesystemslib.formats.ANY_VERIFICATION_KEY_DICT_SCHEMA. <Exceptions> securesystemslib.exceptions.FormatError if the passed key dict does not match ANY_VERIFICATION_KEY_DICT_SCHEMA. SignatureVerificationError if an empty verification key dictionary was passed, or if any of the passed verification keys fails to verify a signature. in_toto.gpg.exceptions.KeyExpirationError: if any of the passed verification keys is an expired gpg key """ in_toto.formats.ANY_VERIFICATION_KEY_DICT_SCHEMA.check_match(keys_dict) # Fail if an empty verification key dictionary was passed if len(keys_dict) < 1: raise SignatureVerificationError("Layout signature verification" " requires at least one key.") # Fail if any of the passed keys can't verify a signature on the Layout for junk, verify_key in six.iteritems(keys_dict): layout_metablock.verify_signature(verify_key) def verify_link_signature_thresholds(layout, chain_link_dict): """ <Purpose> Verify that for each step of the layout there are at least `threshold` links, signed by different authorized functionaries and return the chain link dictionary containing only authorized links whose signatures were successfully verified. NOTE: If the layout's key store (`layout.keys`) lists a (master) key `K`, with a subkey `K'`, then `K'` is authorized implicitly, to sign any link that `K` is authorized to sign. In other words, the trust in a master key extends to the trust in a subkey. The inverse is not true. <Arguments> layout: A Layout object whose Steps are extracted and verified. chain_link_dict: A dictionary containing link metadata per functionary per step, e.g.: { <link name> : { <functionary key id> : <Metablock containing a Link or Layout object>, ... }, ... } <Exceptions> ThresholdVerificationError If any of the steps of the passed layout does not have enough (`step.threshold`) links signed by different authorized functionaries. <Returns> A chain_link_dict containing only links with valid signatures created by authorized functionaries. """ # Create an inverse keys-subkeys dictionary, with subkey keyids as # dictionary keys and main keys as dictionary values. This will be # required below to assess main-subkey trust delegations. # We assume that a given subkey can only belong to one master key # TODO: Is this a safe assumption? Should we assert for it? main_keys_for_subkeys = {} for main_key in list(layout.keys.values()): for sub_keyid in main_key.get("subkeys", []): main_keys_for_subkeys[sub_keyid] = main_key # Dict for valid and authorized links of all steps of the layout verfied_chain_link_dict = {} # For each step of the layout check the signatures of corresponding links. # Consider only links where the signature is valid and keys are authorized, # and discard others. # Only count one of multiple links signed with different subkeys of a main # key towards link threshold. # Only proceed with final product verification if threshold requirements are # fulfilled. for step in layout.steps: # Dict for valid and authorized links of a given step verified_key_link_dict = {} # List of used keyids used_main_keyids = [] # Do per step link threshold verification for link_keyid, link in six.iteritems(chain_link_dict.get(step.name, {})): # Iterate over authorized keyids to find a key or subkey corresponding # to the given link and check if the link's keyid is authorized. # Subkeys of authorized main keys are authorized implicitly. for authorized_keyid in step.pubkeys: authorized_key = layout.keys.get(authorized_keyid) main_key_for_subkey = main_keys_for_subkeys.get(authorized_keyid) # The signing key is authorized if authorized_key and link_keyid == authorized_keyid: verification_key = authorized_key break # The signing key is an authorized subkey elif main_key_for_subkey and link_keyid == authorized_keyid: verification_key = main_key_for_subkey break # The signing key is a subkey of an authorized key elif (authorized_key and link_keyid in authorized_key.get("subkeys", {}).keys()): verification_key = authorized_key break else: log.info("Skipping link. Keyid '{0}' is not authorized to sign links" " for step '{1}'".format(link_keyid, step.name)) continue # Verify signature and skip invalidly signed links try: link.verify_signature(verification_key) except SignatureVerificationError: log.info("Skipping link. Broken link signature with keyid '{0}'" " for step '{1}'".format(link_keyid, step.name)) continue except KeyExpirationError as e: log.info("Skipping link. {}".format(e)) continue # Warn if there are links signed by different subkeys of same main key if verification_key["keyid"] in used_main_keyids: log.warning("Found links signed by different subkeys of the same main" " key '{}' for step '{}'. Only one of them is counted towards the" " step threshold.".format(verification_key["keyid"], step.name)) used_main_keyids.append(verification_key["keyid"]) # Keep only links with valid and authorized signature verified_key_link_dict[link_keyid] = link # For each step, verify that we have enough validly signed links from # distinct authorized functionaries. Links signed by different subkeys of # the same main key are counted only once towards the threshold. valid_authorized_links_cnt = (len(verified_key_link_dict) - (len(used_main_keyids) - len(set(used_main_keyids)))) # TODO: To guarantee that links are signed by different functionaries # we rely on the layout to not carry duplicate verification keys under # different dictionary keys, e.g. {keyid1: KEY1, keyid2: KEY1} # Maybe we should add such a check to the layout validation? Or here? if valid_authorized_links_cnt < step.threshold: raise ThresholdVerificationError("Step '{}' requires at least '{}' links" " validly signed by different authorized functionaries. Only" " found '{}'".format(step.name, step.threshold, valid_authorized_links_cnt)) # Add all good links of this step to the dictionary of links of all steps verfied_chain_link_dict[step.name] = verified_key_link_dict # Threshold verification succeeded, return valid and authorized links for # further verification return verfied_chain_link_dict def verify_command_alignment(command, expected_command): """ <Purpose> Checks if a run command aligns with an expected command. The commands align if all of their elements are equal. If alignment fails, a warning is printed. Note: Command alignment is a weak guarantee. Because a functionary can easily alias commands. <Arguments> command: A command list, e.g. ["vi", "foo.py"] expected_command: A command list, e.g. ["make", "install"] <Exceptions> None. <Side Effects> Logs warning in case commands do not align. """ # In what case command alignment should fail and how that failure should be # propagated has been thoughly discussed in: # https://github.com/in-toto/in-toto/issues/46 and # https://github.com/in-toto/in-toto/pull/47 # We chose the simplest solution for now, i.e. Warn if they do not align. if command != expected_command: log.warning("Run command '{0}' differs from expected command '{1}'" .format(command, expected_command)) def verify_all_steps_command_alignment(layout, chain_link_dict): """ <Purpose> Iteratively checks if all expected commands as defined in the Steps of a Layout align with the actual commands as recorded in the Link metadata. <Arguments> layout: A Layout object to extract the expected commands from. chain_link_dict: A dictionary containing link metadata per functionary per step, e.g.: { <link name> : { <functionary key id> : <Metablock containing a Link object>, ... }, ... } <Exceptions> None. <Side Effects> None. """ for step in layout.steps: # Find the according link for this step expected_command = step.expected_command key_link_dict = chain_link_dict[step.name] # FIXME: I think we could do this for one link per step only # providing that we verify command alignment AFTER threshold equality for keyid, link in six.iteritems(key_link_dict): log.info("Verifying command alignment for '{0}'...".format( in_toto.models.link.FILENAME_FORMAT.format(step_name=step.name, keyid=keyid))) command = link.signed.command verify_command_alignment(command, expected_command) def verify_match_rule(rule_data, artifacts_queue, source_artifacts, links): """ <Purpose> Filters artifacts from artifact queue using rule pattern and optional rule source prefix and consumes them if there is a corresponding destination artifact, filtered using the same rule pattern and an optional rule destination prefix, and source and destination artifacts have matching hashes. NOTE: The destination artifacts are extracted from the links dictionary, using destination name and destination type from the rule data. The source artifacts could also be extracted from the links dictionary, but would require the caller to pass source name and source type, as those are not encoded in the rule. However, we choose to let the caller directly pass the relevant artifacts. <Arguments> rule_data: An unpacked "MATCH" rule (see in_toto.rulelib). artifacts_queue: Not yet consumed artifacts (paths only). source_artifacts: All artifacts of the source item (including hashes). links: A dictionary containing link metadata per step or inspection, e.g.: { <link name> : <Metablock containing a link object>, ... } <Exceptions> None. <Side Effects> None. <Returns> The set of consumed artifacts (paths only). """ consumed = set() # The rule can only consume artifacts if the destination link exists dest_link = links.get(rule_data["dest_name"]) if not dest_link: return consumed # Extract destination artifacts from destination link dest_artifacts = getattr(dest_link.signed, rule_data["dest_type"]) # Filter part 1 - Filter artifacts using optional source prefix, and subtract # prefix before filtering with rule pattern (see filter part 2) to prevent # globbing in the prefix. if rule_data["source_prefix"]: filtered_source_paths = [] # Add trailing slash to source prefix if it does not exist normalized_source_prefix = os.path.join( rule_data["source_prefix"], "").replace("\\", "/") for artifact_path in artifacts_queue: if artifact_path.startswith(normalized_source_prefix): filtered_source_paths.append( artifact_path[len(normalized_source_prefix):]) else: filtered_source_paths = artifacts_queue # Filter part 2 - glob above filtered artifact paths filtered_source_paths = fnmatch.filter( filtered_source_paths, rule_data["pattern"]) # Iterate over filtered source paths and try to match the corresponding # source artifact hash with the corresponding destination artifact hash for path in filtered_source_paths: # If a source prefix was specified, we subtracted the prefix above before # globbing. We have to re-prepend the prefix in order to retrieve the # corresponding source artifact below. if rule_data["source_prefix"]: full_source_path = os.path.join( rule_data["source_prefix"], path).replace("\\", "/") else: full_source_path = path # If a destination prefix was specified, the destination artifact should # be queried with the full destination path, i.e. the prefix joined with # the globbed path. if rule_data["dest_prefix"]: full_dest_path = os.path.join( rule_data["dest_prefix"], path).replace("\\", "/") else: full_dest_path = path # Extract source artifact hash dict # We know the source artifact is available, it is also in the queue source_artifact = source_artifacts[full_source_path] # Don't consume source artifact w/o corresponding dest artifact (by path) try: dest_artifact = dest_artifacts[full_dest_path] except KeyError: continue # Don't consume source artifact w/o corresponding dest artifact (by hash) if source_artifact != dest_artifact: continue # Source and destination matched, consume artifact consumed.add(full_source_path) return consumed def verify_create_rule(rule_pattern, artifacts_queue, materials, products): """ <Purpose> Filters artifacts from artifacts queue using rule pattern and consumes them if they are not in the materials set but are in the products set, i.e. were created. <Arguments> rule_pattern: A "CREATE" rule pattern (see in_toto.rulelib). artifacts_queue: Not yet consumed artifacts (paths only). materials: All materials of an item (paths only). products: All products of an item (paths only). <Exceptions> None. <Side Effects> None. <Returns> The set of consumed artifacts (paths only). """ # Filter queued artifacts using the rule pattern filtered_artifacts = fnmatch.filter(artifacts_queue, rule_pattern) # Consume filtered artifacts that are products but not materials consumed = set(filtered_artifacts) & (products - materials) return consumed def verify_delete_rule(rule_pattern, artifacts_queue, materials, products): """ <Purpose> Filters artifacts from artifacts queue using rule pattern and consumes them if they are in the materials set but are not in the products set, i.e. were deleted. <Arguments> rule_pattern: A "DELETE" rule pattern (see in_toto.rulelib). artifacts_queue: Not yet consumed artifacts (paths only). materials: All materials of an item (paths only). products: All products of an item (paths only). <Exceptions> None. <Side Effects> None. <Returns> The set of consumed artifacts (paths only). """ # Filter queued artifacts using the rule pattern filtered_artifacts = fnmatch.filter(artifacts_queue, rule_pattern) # Consume filtered artifacts that are materials but not products consumed = set(filtered_artifacts) & (materials - products) return consumed def verify_modify_rule(rule_pattern, artifacts_queue, materials, products): """ <Purpose> Filters artifacts from artifacts queue using rule pattern and consumes them if they are in both the materials dict and in the products doct, but have different hashes, i.e. were modified. <Arguments> rule_pattern: A "MODIFY" rule pattern (see in_toto.rulelib). artifacts_queue: Not yet consumed artifacts (paths only). materials: All materials of an item (including hashes). products: All products of an item (including hashes). <Exceptions> None. <Side Effects> None. <Returns> The set of consumed artifacts (paths only). """ # Filter queued artifacts using the rule pattern filtered_artifacts = fnmatch.filter(artifacts_queue, rule_pattern) # Filter filtered artifacts that are materials and products filtered_artifacts = set(filtered_artifacts) & \ set(materials.keys()) & set(products.keys()) # Consume filtered artifacts that have different hashes consumed = set() for path in filtered_artifacts: if materials[path] != products[path]: consumed.add(path) return consumed def verify_allow_rule(rule_pattern, artifacts_queue): """ <Purpose> Consumes artifacts, filtered from the artifacts queue using rule pattern. <Arguments> rule_pattern: An "ALLOW" rule pattern (see in_toto.rulelib). artifacts_queue: Not yet consumed artifacts (paths only). <Exceptions> None. <Side Effects> None. <Returns> The set of consumed artifacts (paths only). """ # Filter queued artifacts using the rule pattern filtered_artifacts = fnmatch.filter(artifacts_queue, rule_pattern) # Consume all filtered artifacts return set(filtered_artifacts) def verify_disallow_rule(rule_pattern, artifacts_queue): """ <Purpose> Raises RuleVerificationError if rule pattern applies to any artifacts in the queue. NOTE: Each set of rules should have a terminal DISALLOW rule to make overall verification fail in case preceding rules did not consume all artifacts as intended. <Arguments> rule_pattern: A "DISALLOW" rule pattern (see in_toto.rulelib). artifacts_queue: Not yet consumed artifacts (paths only). <Exceptions> RuleVerificationError if the rule pattern filters artifacts in the artifact queue. <Side Effects> None. <Returns> None. """ filtered_artifacts = fnmatch.filter(artifacts_queue, rule_pattern) if len(filtered_artifacts): raise RuleVerificationError("'DISALLOW {}' matched the following " "artifacts: {}\n{}".format(rule_pattern, filtered_artifacts, _get_artifact_rule_traceback())) def verify_require_rule(filename, artifacts_queue): """ <Purpose> Raises RuleVerificationError if the filename provided does not exist in the artifacts_queue <Arguments> filename: A single filename (see issues #193 and #152). We will ignore the artifact rule pattern because it's ambiguous and instead treat it as a literal file name. artifacts_queue: Not yet consumed artifacts (paths only). <Exceptions> RuleVerificationError: if the filename is not present in the artifacts queue <Side Effects> None. <Returns> None. """ if filename not in artifacts_queue: raise RuleVerificationError("'REQUIRE {filename}' did not find {filename} " "in: {queue}\n{traceback}".format(filename=filename, queue=artifacts_queue, traceback=_get_artifact_rule_traceback())) def _get_artifact_rule_traceback(): """Build and return string form global `RULE_TRACE` which may be used as error message for RuleVerificationError. """ traceback_str = "Full trace for 'expected_{0}' of item '{1}':\n".format( RULE_TRACE["source_type"], RULE_TRACE["source_name"]) # Show all materials and products available in the beginning and # label the one that is used to generate a queue. for source_type in ["materials", "products"]: traceback_str += "Available {}{}:\n{}\n".format( source_type, [" (used for queue)", ""][RULE_TRACE["source_type"] != source_type], RULE_TRACE[source_type]) for trace_entry in RULE_TRACE["trace"]: traceback_str += "Queue after '{0}':\n".format( " ".join(trace_entry["rule"])) traceback_str += "{}\n".format(trace_entry["queue"]) return traceback_str def verify_item_rules(source_name, source_type, rules, links): """ <Purpose> Apply all passed material or product rules (see source_type) of a given step or inspection (see source_name), to enforce and authorize the corresponding artifacts and to guarantee that artifacts are linked together across steps of the supply chain. The mode of operation is similar to that of a firewall: In the beginning all materials or products of the step or inspection are placed into an artifact queue. The rules are then applied sequentially, consuming artifacts in the queue, i.e. removing them from the queue upon successful application. The consumption of artifacts by itself has no effects on the verification. Only through a subsequent "DISALLOW" rule, that finds unconsumed artifacts, is an exception raised. Similarly does the "REQUIRE" rule raise exception, if it does not find the artifact it requires, because it has falsely been consumed or was not there from the beginning. <Arguments> source_name: The name of the item (step or inspection) being verified. source_type: One of "materials" or "products" depending on whether the rules are taken from the "expected_materials" or "expected_products" field of the item being verified. rules: The list of rules (material or product rules) for the item being verified. links: A dictionary containing link metadata per step or inspection, e.g.: { <link name> : <Metablock containing a link>, ... } <Exceptions> FormatError if source_type is not "materials" or "products", or if a rule in the passed list of rules does not conform with any rule format. RuleVerificationError if a DISALLOW rule matches disallowed artifacts, or if a REQUIRE rule does not find a required artifact. <Side Effects> Clears and populates the global RULE_TRACE data structure. """ if source_type not in ["materials", "products"]: raise securesystemslib.exceptions.FormatError( "Argument 'source_type' of function 'verify_item_rules' has to be " "one of 'materials' or 'products'. Got: '{}'".format(source_type)) # Create shortcuts to item's materials and products (including hashes), # required to verify "modify" and "match" rules. materials_dict = links[source_name].signed.materials products_dict = links[source_name].signed.products # All other rules only require materials or products paths (without hashes) materials_paths = set(materials_dict.keys()) products_paths = set(products_dict.keys()) # Depending on the source type we create the artifact queue from the item's # materials or products and use it to keep track of (not) consumed artifacts. # The queue also only contains aritfact keys (without hashes) artifacts = getattr(links[source_name].signed, source_type) artifacts_queue = set(artifacts.keys()) # Reset and re-populate rule traceback info dict for a rich error message RULE_TRACE.clear() RULE_TRACE["source_name"] = source_name RULE_TRACE["source_type"] = source_type RULE_TRACE["materials"] = list(materials_dict) RULE_TRACE["products"] = list(products_dict) RULE_TRACE["trace"] = [] # Process rules and remove consumed items from queue in each iteration for rule in rules: log.info("Verifying '{}'...".format(" ".join(rule))) # Parse the rule and create two shortcuts to contained rule data rule_data = in_toto.rulelib.unpack_rule(rule) _type = rule_data["rule_type"] _pattern = rule_data["pattern"] # Initialize empty consumed set as fallback for rules that do not consume # artifacts. All rules except "disallow" and "require" consume artifacts. consumed = set() if _type == "match": consumed = verify_match_rule( rule_data, artifacts_queue, artifacts, links) elif _type == "create": consumed = verify_create_rule( _pattern, artifacts_queue, materials_paths, products_paths) elif _type == "delete": consumed = verify_delete_rule( _pattern, artifacts_queue, materials_paths, products_paths) elif _type == "modify": consumed = verify_modify_rule( _pattern, artifacts_queue, materials_dict, products_dict) elif _type == "allow": consumed = verify_allow_rule(_pattern, artifacts_queue) # It's up to the "disallow" and "require" rule to raise an error if # artifacts were not consumed as intended elif _type == "disallow": verify_disallow_rule(_pattern, artifacts_queue) elif _type == "require": verify_require_rule(_pattern, artifacts_queue) else: # pragma: no cover (unreachable) raise securesystemslib.exceptions.FormatError( "Invaldid rule type '{}'.".format(_type)) artifacts_queue -= consumed # Append rule and copy of queue to global info for a rich error message RULE_TRACE["trace"].append({ "rule": rule, "queue": list(artifacts_queue) }) def verify_all_item_rules(items, links): """ <Purpose> Iteratively verifies artifact rules of passed items (Steps or Inspections). <Arguments> items: A list containing Step or Inspection objects whose material and product rules will be verified. links: A dictionary containing link metadata per step or inspection, e.g.: { <link name> : <Metablock containing a Link object>, ... } <Exceptions> None. <Side Effects> None. """ for item in items: log.info("Verifying material rules for '{}'...".format(item.name)) verify_item_rules(item.name, "materials", item.expected_materials, links) log.info("Verifying product rules for '{}'...".format(item.name)) verify_item_rules(item.name, "products", item.expected_products, links) def verify_threshold_constraints(layout, chain_link_dict): """ <Purpose> Verifies that all links corresponding to a given step report the same materials and products. NOTE: This function does not verify if the signatures of each link corresponding to a step are valid or created by a different authorized functionary. This should be done earlier, using the function `verify_link_signature_thresholds`. <Arguments> layout: The layout whose step thresholds are being verified chain_link_dict: A dictionary containing link metadata per functionary per step, e.g.: { <link name> : { <functionary key id> : <Metablock containing a Link object>, ... }, ... } <Exceptions> ThresholdVerificationError If there are not enough (threshold) links for a steps If the artifacts for all links of a step are not equal <Side Effects> None. """ # We are only interested in links that are related to steps defined in the # Layout, so iterate over layout.steps for step in layout.steps: # Skip steps that don't require multiple functionaries if step.threshold <= 1: log.info("Skipping threshold verification for step '{0}' with" " threshold '{1}'...".format(step.name, step.threshold)) continue log.info("Verifying threshold for step '{0}' with" " threshold '{1}'...".format(step.name, step.threshold)) # Extract the key_link_dict for this step from the passed chain_link_dict key_link_dict = chain_link_dict[step.name] # Check if we have at least <threshold> links for this step # NOTE: This is already done in `verify_link_signature_thresholds`, # Should we remove the check? if len(key_link_dict) < step.threshold: raise ThresholdVerificationError("Step '{0}' not performed" " by enough functionaries!".format(step.name)) # Take a reference link (e.g. the first in the step_link_dict) reference_keyid = list(key_link_dict.keys())[0] reference_link = key_link_dict[reference_keyid] # Iterate over all links to compare their properties with a reference_link for keyid, link in six.iteritems(key_link_dict): # TODO: Do we only care for artifacts, or do we want to # assert equality of other properties as well? if (reference_link.signed.materials != link.signed.materials or reference_link.signed.products != link.signed.products): raise ThresholdVerificationError("Links '{0}' and '{1}' have different" " artifacts!".format( in_toto.models.link.FILENAME_FORMAT.format( step_name=step.name, keyid=reference_keyid), in_toto.models.link.FILENAME_FORMAT.format( step_name=step.name, keyid=keyid))) def reduce_chain_links(chain_link_dict): """ <Purpose> Iterates through the passed chain_link_dict and builds a dict with step-name as keys and link objects as values. We already check if the links of different functionaries are identical. <Arguments> layout: The layout specified by the project owner against which the threshold will be verified. chain_link_dict: A dictionary containing link metadata per functionary per step, e.g.: { <link name> : { <functionary key id> : <Metablock containing a Link object>, ... }, ... } <Exceptions> None. <Side Effects> None. <Returns> A dictionary containing one Link metadata object per step only if the link artifacts of all link objects are identical for a step. """ reduced_chain_link_dict = {} for step_name, key_link_dict in six.iteritems(chain_link_dict): # Extract the key_link_dict for this step from the passed chain_link_dict # take one exemplary link (e.g. the first in the step_link_dict) # form the reduced_chain_link_dict to return reduced_chain_link_dict[step_name] = list(key_link_dict.values())[0] return reduced_chain_link_dict def verify_sublayouts(layout, chain_link_dict, superlayout_link_dir_path): """ <Purpose> Checks if any step has been delegated by the functionary, recurses into the delegation and replaces the layout object in the chain_link_dict by an equivalent link object. <Arguments> layout: The layout specified by the project owner. chain_link_dict: A dictionary containing link metadata per functionary per step, e.g.: { <link name> : { <functionary key id> : <Metablock containing a Link or Layout object>, ... }, ... } superlayout_link_dir_path: A path to a directory, where links of the superlayout are loaded from. Links of the sublayout are expected to be in a subdirectory relative to this path, with a name in the format in_toto.models.layout.SUBLAYOUT_LINK_DIR_FORMAT. <Exceptions> raises an Exception if verification of the delegated step fails. <Side Effects> None. <Returns> The passed dictionary containing link metadata per functionary per step, with layouts replaced with summary links. e.g.: { <link name> : { <functionary key id> : <Metablock containing a Link object>, ... }, ... } """ for step_name, key_link_dict in six.iteritems(chain_link_dict): for keyid, link in six.iteritems(key_link_dict): if link.type_ == "layout": log.info("Verifying sublayout {}...".format(step_name)) layout_key_dict = {} # Retrieve the entire key object for the keyid # corresponding to the link layout_key_dict = {keyid: layout.keys.get(keyid)} # Sublayout links are expected to be in a directory with the following # name relative the the current link directory path, i.e. if there # are multiple levels of sublayout nesting, the links are expected to # be nested accordingly sublayout_link_dir = SUBLAYOUT_LINK_DIR_FORMAT.format( name=step_name, keyid=keyid) sublayout_link_dir_path = os.path.join( superlayout_link_dir_path, sublayout_link_dir) # Make a recursive call to in_toto_verify with the # layout and the extracted key object summary_link = in_toto_verify(link, layout_key_dict, link_dir_path=sublayout_link_dir_path, step_name=step_name) # Replace the layout object in the passed chain_link_dict # with the link file returned by in-toto-verify key_link_dict[keyid] = summary_link return chain_link_dict def get_summary_link(layout, reduced_chain_link_dict, name): """ <Purpose> Merges the materials of the first step (as mentioned in the layout) and the products of the last step and returns a new link. This link reports the materials and products and summarizes the overall software supply chain. NOTE: The assumption is that the steps mentioned in the layout are to be performed sequentially. So, the first step mentioned in the layout denotes what comes into the supply chain and the last step denotes what goes out. <Arguments> layout: The layout specified by the project owner. reduced_chain_link_dict: A dictionary containing link metadata per step, e.g.: { <link name> : <Metablock containing a Link object>, ... } name: The name that the summary link will be associated with. <Exceptions> None. <Side Effects> None. <Returns> A Metablock object containing a Link which summarizes the materials and products of the overall software supply chain. """ # Create empty link object summary_link = in_toto.models.link.Link() # Take first and last link in the order the corresponding # steps appear in the layout, if there are any. if len(layout.steps) > 0: first_step_link = reduced_chain_link_dict[layout.steps[0].name] last_step_link = reduced_chain_link_dict[layout.steps[-1].name] summary_link.materials = first_step_link.signed.materials summary_link.name = name summary_link.products = last_step_link.signed.products summary_link.byproducts = last_step_link.signed.byproducts summary_link.command = last_step_link.signed.command return Metablock(signed=summary_link) def in_toto_verify(layout, layout_key_dict, link_dir_path=".", substitution_parameters=None, step_name=""): """ <Purpose> Does entire in-toto supply chain verification of a final product by performing the following actions: 1. Verify layout signature(s), requires at least one verification key to be passed, and a valid signature for each passed key. 2. Verify layout expiration 3. Load link metadata for every Step defined in the layout and fail if less links than the defined threshold for a step are found. NOTE: Link files are expected to have the corresponding step and the functionary, who carried out the step, encoded in their filename. 4. Verify functionary signature for every loaded Link, skipping links with failing signatures or signed by unauthorized functionaries, and fail if less than `threshold` links validly signed by different authorized functionaries can be found. The routine returns a dictionary containing only links with valid signatures by authorized functionaries. 5. Verify sublayouts Recurses into layout verification for each link of the superlayout that is a layout itself (i.e. sublayout). Links for the sublayout are expected to be in a subdirectory relative to the superlayout's link_dir_path, with a name in the format: in_toto.models.layout.SUBLAYOUT_LINK_DIR_FORMAT. The successfully verified sublayout is replaced with an unsigned summary link in the chain_link_dict of the superlayout. The summary link is then used just like a regular link to verify command alignments, thresholds and inspections according to the superlayout. 6. Verify alignment of defined (Step) and reported (Link) commands NOTE: Won't raise exception on mismatch 7. Verify threshold constraints, i.e. if all links corresponding to one step have recorded the same artifacts (materials and products). 8. Verify rules defined in each Step's expected_materials and expected_products field NOTE: At this point no Inspection link metadata is available, hence (MATCH) rules cannot reference materials or products of Inspections. Verifying Steps' artifact rules before executing Inspections guarantees that Inspection commands don't run on compromised target files, which would be a surface for attacks. 9. Execute Inspection commands NOTE: Inspections, similar to Steps executed with 'in-toto-run', will record materials before and products after command execution. For now it records everything in the current working directory. 10. Verify rules defined in each Inspection's expected_materials and expected_products field <Arguments> layout: Layout object that is being verified. layout_key_dict: Dictionary of project owner public keys, used to verify the layout's signature. link_dir_path: (optional) A path to the directory from which link metadata files corresponding to the steps in the passed layout are loaded. Default is the current working directory. substitution_parameters: (optional) a dictionary containing key-value pairs for substituting in the following metadata fields: - artifact rules in step and inspection definitions in the layout - the run fields in the inspection definitions - the expected command in the step definitions step_name: (optional) The step that the layout corresponds to, typically used during recursive calls of in_toto_verify. This usually happens when resolving sublayouts. The function verify_sublayouts may provide a clearer picture on how it's used. <Exceptions> None. <Side Effects> Read link metadata files from disk <Returns> A link which summarizes the materials and products of the overall software supply chain (used by super-layout verification if any) """ log.info("Verifying layout signatures...") verify_layout_signatures(layout, layout_key_dict) # For the rest of the verification we only care about the layout payload # (Layout) that carries all the information and not about the layout # container (Metablock) that also carries the signatures layout = layout.signed log.info("Verifying layout expiration...") verify_layout_expiration(layout) # If there are parameters sent to the tanslation layer, substitute them if substitution_parameters is not None: log.info('Performing parameter substitution...') substitute_parameters(layout, substitution_parameters) log.info("Reading link metadata files...") chain_link_dict = load_links_for_layout(layout, link_dir_path) log.info("Verifying link metadata signatures...") chain_link_dict = verify_link_signature_thresholds(layout, chain_link_dict) log.info("Verifying sublayouts...") chain_link_dict = verify_sublayouts(layout, chain_link_dict, link_dir_path) log.info("Verifying alignment of reported commands...") verify_all_steps_command_alignment(layout, chain_link_dict) log.info("Verifying threshold constraints...") verify_threshold_constraints(layout, chain_link_dict) reduced_chain_link_dict = reduce_chain_links(chain_link_dict) log.info("Verifying Step rules...") verify_all_item_rules(layout.steps, reduced_chain_link_dict) log.info("Executing Inspection commands...") inspection_link_dict = run_all_inspections(layout) log.info("Verifying Inspection rules...") # Artifact rules for inspections can reference links that correspond to # Steps or Inspections, hence the concatenation of both collections of links combined_links = reduced_chain_link_dict.copy() combined_links.update(inspection_link_dict) verify_all_item_rules(layout.inspect, combined_links) # We made it this far without exception that means, verification passed log.info("The software product passed all verification.") # Return a link file which summarizes the entire software supply chain # This is mostly relevant if the currently verified supply chain is embedded # in another supply chain return get_summary_link(layout, reduced_chain_link_dict, step_name) ``` #### File: in-toto/tests/common.py ```python import os import sys import inspect import unittest if sys.version_info >= (3, 3): from unittest.mock import patch # pylint: disable=no-name-in-module,import-error else: from mock import patch # pylint: disable=import-error def run_with_portable_scripts(decorated): print("patching...") scripts_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "scripts") print("scripts are located in {}".format(scripts_path)) @patch.dict(os.environ, {"PATH": "{};{}".format(scripts_path, os.environ['PATH'])}) class Patched(decorated): pass return Patched class CliTestCase(unittest.TestCase): """TestCase subclass providing a test helper that patches sys.argv with passed arguments and asserts a SystemExit with a return code equal to the passed status argument. Subclasses of CliTestCase require a class variable that stores the main function of the cli tool to test as staticmethod, e.g.: ``` import tests.common from in_toto.in_toto_run import main as in_toto_run_main class TestInTotoRunTool(tests.common.CliTestCase): cli_main_func = staticmethod(in_toto_run_main) ... ``` """ cli_main_func = None def __init__(self, *args, **kwargs): """Constructor that checks for the presence of a callable cli_main_func class variable. And stores the filename of the module containing that function, to be used as first argument when patching sys.argv in self.assert_cli_sys_exit. """ if not callable(self.cli_main_func): raise Exception("Subclasses of `CliTestCase` need to assign the main" " function of the cli tool to test using `staticmethod()`: {}" .format(self.__class__.__name__)) file_path = inspect.getmodule(self.cli_main_func).__file__ self.file_name = os.path.basename(file_path) super(CliTestCase, self).__init__(*args, **kwargs) def assert_cli_sys_exit(self, cli_args, status): """Test helper to mock command line call and assert return value. The passed args does not need to contain the command line tool's name. This is assessed from `self.cli_main_func` """ with patch.object(sys, "argv", [self.file_name] + cli_args), self.assertRaises(SystemExit) as raise_ctx: self.cli_main_func() # pylint: disable=not-callable self.assertEqual(raise_ctx.exception.code, status) ``` #### File: in-toto/tests/runtests.py ```python from unittest import defaultTestLoader, TextTestRunner import sys import os import subprocess def check_usable_gpg(): """Set `TEST_SKIP_GPG` environment variable if neither gpg2 nor gpg is available. """ os.environ["TEST_SKIP_GPG"] = "1" for gpg in ["gpg2", "gpg"]: try: subprocess.check_call([gpg, "--version"]) except OSError: pass else: # If one of the two exists, we can unset the skip envvar and ... os.environ.pop("TEST_SKIP_GPG", None) # ... abort the availability check.: break check_usable_gpg() suite = defaultTestLoader.discover(start_dir=".") result = TextTestRunner(verbosity=2, buffer=True).run(suite) sys.exit(0 if result.wasSuccessful() else 1) ```
{ "source": "joshuagl/securesystemslib", "score": 3 }
#### File: securesystemslib/gpg/exceptions.py ```python import datetime import dateutil.tz class PacketParsingError(Exception): pass class KeyNotFoundError(Exception): pass class PacketVersionNotSupportedError(Exception): pass class SignatureAlgorithmNotSupportedError(Exception): pass class CommandError(Exception): pass class KeyExpirationError(Exception): def __init__(self, key): super(KeyExpirationError, self).__init__() self.key = key def __str__(self): creation_time = datetime.datetime.fromtimestamp( self.key["creation_time"], dateutil.tz.UTC) expiration_time = datetime.datetime.fromtimestamp( self.key["creation_time"] + self.key["validity_period"], dateutil.tz.UTC) validity_period = expiration_time - creation_time return ("GPG key '{}' created on '{:%Y-%m-%d %H:%M} UTC' with validity " "period '{}' expired on '{:%Y-%m-%d %H:%M} UTC'.".format( self.key["keyid"], creation_time, validity_period, expiration_time)) ``` #### File: securesystemslib/securesystemslib/interface.py ```python from __future__ import print_function from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals import os import errno import sys import time import datetime import getpass import logging import tempfile import shutil import json import gzip import random import securesystemslib.formats import securesystemslib.settings import securesystemslib.util import securesystemslib.keys import six from colorama import Fore # See 'log.py' to learn how logging is handled in securesystemslib. logger = logging.getLogger('securesystemslib_interface') # Recommended RSA key sizes: # https://en.wikipedia.org/wiki/Key_size#Asymmetric_algorithm_key_lengths # Based on the above, RSA keys of size 3072 bits are expected to provide # security through 2031 and beyond. DEFAULT_RSA_KEY_BITS = 3072 # Supported key types. SUPPORTED_KEY_TYPES = ['rsa', 'ed25519'] def _prompt(message, result_type=str): """ Non-public function that prompts the user for input by logging 'message', converting the input to 'result_type', and returning the value to the caller. """ return result_type(six.moves.input(message)) def get_password(prompt='Password: ', confirm=False): """ <Purpose> Return the password entered by the user. If 'confirm' is True, the user is asked to enter the previously entered password once again. If they match, the password is returned to the caller. <Arguments> prompt: The text of the password prompt that is displayed to the user. confirm: Boolean indicating whether the user should be prompted for the password a second time. The two entered password must match, otherwise the user is again prompted for a password. <Exceptions> None. <Side Effects> None. <Returns> The password entered by the user. """ # Are the arguments the expected type? # If not, raise 'securesystemslib.exceptions.FormatError'. securesystemslib.formats.TEXT_SCHEMA.check_match(prompt) securesystemslib.formats.BOOLEAN_SCHEMA.check_match(confirm) while True: # getpass() prompts the user for a password without echoing # the user input. password = getpass.getpass(prompt, sys.stderr) if not confirm: return password password2 = getpass.getpass('Confirm: ', sys.stderr) if password == <PASSWORD>: return password else: print('Mismatch; try again.') def generate_and_write_rsa_keypair(filepath=None, bits=DEFAULT_RSA_KEY_BITS, password=None): """ <Purpose> Generate an RSA key pair. The public portion of the generated RSA key is saved to <'filepath'>.pub, whereas the private key portion is saved to <'filepath'>. If no password is given, the user is prompted for one. If the 'password' is an empty string, the private key is saved unencrypted to <'filepath'>. If the filepath is not given, the KEYID is used as the filename and the keypair saved to the current working directory. The best available form of encryption, for a given key's backend, is used with pyca/cryptography. According to their documentation, "it is a curated encryption choice and the algorithm may change over time." <Arguments> filepath: The public and private key files are saved to <filepath>.pub and <filepath>, respectively. If the filepath is not given, the public and private keys are saved to the current working directory as <KEYID>.pub and <KEYID>. KEYID is the generated key's KEYID. bits: The number of bits of the generated RSA key. password: The password to encrypt 'filepath'. If None, the user is prompted for a password. If an empty string is given, the private key is written to disk unencrypted. <Exceptions> securesystemslib.exceptions.FormatError, if the arguments are improperly formatted. <Side Effects> Writes key files to '<filepath>' and '<filepath>.pub'. <Returns> The 'filepath' of the written key. """ # Does 'bits' have the correct format? # Raise 'securesystemslib.exceptions.FormatError' if there is a mismatch. securesystemslib.formats.RSAKEYBITS_SCHEMA.check_match(bits) # Generate the public and private RSA keys. rsa_key = securesystemslib.keys.generate_rsa_key(bits) public = rsa_key['keyval']['public'] private = rsa_key['keyval']['private'] if not filepath: filepath = os.path.join(os.getcwd(), rsa_key['keyid']) else: logger.debug('The filepath has been specified. Not using the key\'s' ' KEYID as the default filepath.') # Does 'filepath' have the correct format? securesystemslib.formats.PATH_SCHEMA.check_match(filepath) # If the caller does not provide a password argument, prompt for one. if password is None: # pragma: no cover # It is safe to specify the full path of 'filepath' in the prompt and not # worry about leaking sensitive information about the key's location. # However, care should be taken when including the full path in exceptions # and log files. password = get_password('Enter a password for the encrypted RSA' ' key (' + Fore.RED + filepath + Fore.RESET + '): ', confirm=True) else: logger.debug('The password has been specified. Not prompting for one') # Does 'password' have the correct format? securesystemslib.formats.PASSWORD_SCHEMA.check_match(password) # Encrypt the private key if 'password' is set. if len(password): private = securesystemslib.keys.create_rsa_encrypted_pem(private, password) else: logger.debug('An empty password was given. Not encrypting the private key.') # If the parent directory of filepath does not exist, # create it (and all its parent directories, if necessary). securesystemslib.util.ensure_parent_dir(filepath) # Write the public key (i.e., 'public', which is in PEM format) to # '<filepath>.pub'. (1) Create a temporary file, (2) write the contents of # the public key, and (3) move to final destination. file_object = securesystemslib.util.TempFile() file_object.write(public.encode('utf-8')) # The temporary file is closed after the final move. file_object.move(filepath + '.pub') # Write the private key in encrypted PEM format to '<filepath>'. # Unlike the public key file, the private key does not have a file # extension. file_object = securesystemslib.util.TempFile() file_object.write(private.encode('utf-8')) file_object.move(filepath) return filepath def import_rsa_privatekey_from_file(filepath, password=None, scheme='rsassa-pss-sha256', prompt=False): """ <Purpose> Import the PEM file in 'filepath' containing the private key. If password is passed use passed password for decryption. If prompt is True use entered password for decryption. If no password is passed and either prompt is False or if the password entered at the prompt is an empty string, omit decryption, treating the key as if it is not encrypted. If password is passed and prompt is True, an error is raised. (See below.) The returned key is an object in the 'securesystemslib.formats.RSAKEY_SCHEMA' format. <Arguments> filepath: <filepath> file, an RSA encrypted PEM file. Unlike the public RSA PEM key file, 'filepath' does not have an extension. password: <PASSWORD> '<PASSWORD>'. scheme: The signature scheme used by the imported key. prompt: If True the user is prompted for a passphrase to decrypt 'filepath'. Default is False. <Exceptions> ValueError, if 'password' is passed and 'prompt' is True. ValueError, if 'password' is passed and it is an empty string. securesystemslib.exceptions.FormatError, if the arguments are improperly formatted. securesystemslib.exceptions.FormatError, if the entered password is improperly formatted. IOError, if 'filepath' can't be loaded. securesystemslib.exceptions.CryptoError, if a password is available and 'filepath' is not a valid key file encrypted using that password. securesystemslib.exceptions.CryptoError, if no password is available and 'filepath' is not a valid non-encrypted key file. <Side Effects> The contents of 'filepath' are read, optionally decrypted, and returned. <Returns> An RSA key object, conformant to 'securesystemslib.formats.RSAKEY_SCHEMA'. """ # Does 'filepath' have the correct format? # Ensure the arguments have the appropriate number of objects and object # types, and that all dict keys are properly named. # Raise 'securesystemslib.exceptions.FormatError' if there is a mismatch. securesystemslib.formats.PATH_SCHEMA.check_match(filepath) # Is 'scheme' properly formatted? securesystemslib.formats.RSA_SCHEME_SCHEMA.check_match(scheme) if password and prompt: raise ValueError("Passing 'password' and 'prompt' True is not allowed.") # If 'password' was passed check format and that it is not empty. if password is not None: securesystemslib.formats.PASSWORD_SCHEMA.check_match(password) # TODO: PASSWORD_SCHEMA should be securesystemslib.schema.AnyString(min=1) if not len(password): raise ValueError('Password must be 1 or more characters') elif prompt: # Password confirmation disabled here, which should ideally happen only # when creating encrypted key files (i.e., improve usability). # It is safe to specify the full path of 'filepath' in the prompt and not # worry about leaking sensitive information about the key's location. # However, care should be taken when including the full path in exceptions # and log files. # NOTE: A user who gets prompted for a password, can only signal that the # key is not encrypted by entering no password in the prompt, as opposed # to a programmer who can call the function with or without a 'password'. # Hence, we treat an empty password here, as if no 'password' was passed. password = get_password('Enter a password for an encrypted RSA' ' file \'' + Fore.RED + filepath + Fore.RESET + '\': ', confirm=False) or None if password is not None: # This check will not fail, because a mal-formatted passed password fails # above and an entered password will always be a string (see get_password) # However, we include it in case PASSWORD_SCHEMA or get_password changes. securesystemslib.formats.PASSWORD_SCHEMA.check_match(password) else: logger.debug('No password was given. Attempting to import an' ' unencrypted file.') # Read the contents of 'filepath' that should be a PEM formatted private key. with open(filepath, 'rb') as file_object: pem_key = file_object.read().decode('utf-8') # Convert 'pem_key' to 'securesystemslib.formats.RSAKEY_SCHEMA' format. # Raise 'securesystemslib.exceptions.CryptoError' if 'pem_key' is invalid. # If 'password' is None decryption will be omitted. rsa_key = securesystemslib.keys.import_rsakey_from_private_pem(pem_key, scheme, password) return rsa_key def import_rsa_publickey_from_file(filepath, scheme='rsassa-pss-sha256'): """ <Purpose> Import the RSA key stored in 'filepath'. The key object returned is in the format 'securesystemslib.formats.RSAKEY_SCHEMA'. If the RSA PEM in 'filepath' contains a private key, it is discarded. <Arguments> filepath: <filepath>.pub file, an RSA PEM file. scheme: The signature scheme used by the imported key. <Exceptions> securesystemslib.exceptions.FormatError, if 'filepath' is improperly formatted. securesystemslib.exceptions.Error, if a valid RSA key object cannot be generated. This may be caused by an improperly formatted PEM file. <Side Effects> 'filepath' is read and its contents extracted. <Returns> An RSA key object conformant to 'securesystemslib.formats.RSAKEY_SCHEMA'. """ # Does 'filepath' have the correct format? # Ensure the arguments have the appropriate number of objects and object # types, and that all dict keys are properly named. # Raise 'securesystemslib.exceptions.FormatError' if there is a mismatch. securesystemslib.formats.PATH_SCHEMA.check_match(filepath) # Is 'scheme' properly formatted? securesystemslib.formats.RSA_SCHEME_SCHEMA.check_match(scheme) # Read the contents of the key file that should be in PEM format and contains # the public portion of the RSA key. with open(filepath, 'rb') as file_object: rsa_pubkey_pem = file_object.read().decode('utf-8') # Convert 'rsa_pubkey_pem' to 'securesystemslib.formats.RSAKEY_SCHEMA' format. try: rsakey_dict = securesystemslib.keys.import_rsakey_from_public_pem( rsa_pubkey_pem, scheme) except securesystemslib.exceptions.FormatError as e: raise securesystemslib.exceptions.Error('Cannot import improperly formatted' ' PEM file.' + repr(str(e))) return rsakey_dict def generate_and_write_ed25519_keypair(filepath=None, password=None): """ <Purpose> Generate an Ed25519 keypair, where the encrypted key (using 'password' as the passphrase) is saved to <'filepath'>. The public key portion of the generated Ed25519 key is saved to <'filepath'>.pub. If the filepath is not given, the KEYID is used as the filename and the keypair saved to the current working directory. The private key is encrypted according to 'cryptography's approach: "Encrypt using the best available encryption for a given key's backend. This is a curated encryption choice and the algorithm may change over time." <Arguments> filepath: The public and private key files are saved to <filepath>.pub and <filepath>, respectively. If the filepath is not given, the public and private keys are saved to the current working directory as <KEYID>.pub and <KEYID>. KEYID is the generated key's KEYID. password: The password, or passphrase, to encrypt the private portion of the generated Ed25519 key. A symmetric encryption key is derived from 'password', so it is not directly used. <Exceptions> securesystemslib.exceptions.FormatError, if the arguments are improperly formatted. securesystemslib.exceptions.CryptoError, if 'filepath' cannot be encrypted. <Side Effects> Writes key files to '<filepath>' and '<filepath>.pub'. <Returns> The 'filepath' of the written key. """ # Generate a new Ed25519 key object. ed25519_key = securesystemslib.keys.generate_ed25519_key() if not filepath: filepath = os.path.join(os.getcwd(), ed25519_key['keyid']) else: logger.debug('The filepath has been specified. Not using the key\'s' ' KEYID as the default filepath.') # Does 'filepath' have the correct format? # Ensure the arguments have the appropriate number of objects and object # types, and that all dict keys are properly named. # Raise 'securesystemslib.exceptions.FormatError' if there is a mismatch. securesystemslib.formats.PATH_SCHEMA.check_match(filepath) # If the caller does not provide a password argument, prompt for one. if password is None: # pragma: no cover # It is safe to specify the full path of 'filepath' in the prompt and not # worry about leaking sensitive information about the key's location. # However, care should be taken when including the full path in exceptions # and log files. password = get_password('Enter a password for the Ed25519' ' key (' + Fore.RED + filepath + Fore.RESET + '): ', confirm=True) else: logger.debug('The password has been specified. Not prompting for one.') # Does 'password' have the correct format? securesystemslib.formats.PASSWORD_SCHEMA.check_match(password) # If the parent directory of filepath does not exist, # create it (and all its parent directories, if necessary). securesystemslib.util.ensure_parent_dir(filepath) # Create a temporary file, write the contents of the public key, and move # to final destination. file_object = securesystemslib.util.TempFile() # Generate the ed25519 public key file contents in metadata format (i.e., # does not include the keyid portion). keytype = ed25519_key['keytype'] keyval = ed25519_key['keyval'] scheme = ed25519_key['scheme'] ed25519key_metadata_format = securesystemslib.keys.format_keyval_to_metadata( keytype, scheme, keyval, private=False) file_object.write(json.dumps(ed25519key_metadata_format).encode('utf-8')) # Write the public key (i.e., 'public', which is in PEM format) to # '<filepath>.pub'. (1) Create a temporary file, (2) write the contents of # the public key, and (3) move to final destination. # The temporary file is closed after the final move. file_object.move(filepath + '.pub') # Write the encrypted key string, conformant to # 'securesystemslib.formats.ENCRYPTEDKEY_SCHEMA', to '<filepath>'. file_object = securesystemslib.util.TempFile() # Encrypt the private key if 'password' is set. if len(password): ed25519_key = securesystemslib.keys.encrypt_key(ed25519_key, password) else: logger.debug('An empty password was given. ' 'Not encrypting the private key.') ed25519_key = json.dumps(ed25519_key) # Raise 'securesystemslib.exceptions.CryptoError' if 'ed25519_key' cannot be # encrypted. file_object.write(ed25519_key.encode('utf-8')) file_object.move(filepath) return filepath def import_ed25519_publickey_from_file(filepath): """ <Purpose> Load the ED25519 public key object (conformant to 'securesystemslib.formats.KEY_SCHEMA') stored in 'filepath'. Return 'filepath' in securesystemslib.formats.ED25519KEY_SCHEMA format. If the key object in 'filepath' contains a private key, it is discarded. <Arguments> filepath: <filepath>.pub file, a public key file. <Exceptions> securesystemslib.exceptions.FormatError, if 'filepath' is improperly formatted or is an unexpected key type. <Side Effects> The contents of 'filepath' is read and saved. <Returns> An ED25519 key object conformant to 'securesystemslib.formats.ED25519KEY_SCHEMA'. """ # Does 'filepath' have the correct format? # Ensure the arguments have the appropriate number of objects and object # types, and that all dict keys are properly named. # Raise 'securesystemslib.exceptions.FormatError' if there is a mismatch. securesystemslib.formats.PATH_SCHEMA.check_match(filepath) # ED25519 key objects are saved in json and metadata format. Return the # loaded key object in securesystemslib.formats.ED25519KEY_SCHEMA' format that # also includes the keyid. ed25519_key_metadata = securesystemslib.util.load_json_file(filepath) ed25519_key, junk = \ securesystemslib.keys.format_metadata_to_key(ed25519_key_metadata) # Raise an exception if an unexpected key type is imported. Redundant # validation of 'keytype'. 'securesystemslib.keys.format_metadata_to_key()' # should have fully validated 'ed25519_key_metadata'. if ed25519_key['keytype'] != 'ed25519': # pragma: no cover message = 'Invalid key type loaded: ' + repr(ed25519_key['keytype']) raise securesystemslib.exceptions.FormatError(message) return ed25519_key def import_ed25519_privatekey_from_file(filepath, password=None, prompt=False): """ <Purpose> Import the encrypted ed25519 key file in 'filepath', decrypt it, and return the key object in 'securesystemslib.formats.ED25519KEY_SCHEMA' format. The private key (may also contain the public part) is encrypted with AES 256 and CTR the mode of operation. The password is strengthened with PBKDF2-HMAC-SHA256. <Arguments> filepath: <filepath> file, an RSA encrypted key file. password: The password, or passphrase, to import the private key (i.e., the encrypted key file 'filepath' must be decrypted before the ed25519 key object can be returned. prompt: If True the user is prompted for a passphrase to decrypt 'filepath'. Default is False. <Exceptions> securesystemslib.exceptions.FormatError, if the arguments are improperly formatted or the imported key object contains an invalid key type (i.e., not 'ed25519'). securesystemslib.exceptions.CryptoError, if 'filepath' cannot be decrypted. <Side Effects> 'password' is used to decrypt the 'filepath' key file. <Returns> An ed25519 key object of the form: 'securesystemslib.formats.ED25519KEY_SCHEMA'. """ # Does 'filepath' have the correct format? # Ensure the arguments have the appropriate number of objects and object # types, and that all dict keys are properly named. # Raise 'securesystemslib.exceptions.FormatError' if there is a mismatch. securesystemslib.formats.PATH_SCHEMA.check_match(filepath) if password and prompt: raise ValueError("Passing 'password' and 'prompt' True is not allowed.") # If 'password' was passed check format and that it is not empty. if password is not None: securesystemslib.formats.PASSWORD_SCHEMA.check_match(password) # TODO: PASSWORD_SCHEMA should be securesystemslib.schema.AnyString(min=1) if not len(password): raise ValueError('Password must be 1 or more characters') elif prompt: # Password confirmation disabled here, which should ideally happen only # when creating encrypted key files (i.e., improve usability). # It is safe to specify the full path of 'filepath' in the prompt and not # worry about leaking sensitive information about the key's location. # However, care should be taken when including the full path in exceptions # and log files. # NOTE: A user who gets prompted for a password, can only signal that the # key is not encrypted by entering no password in the prompt, as opposed # to a programmer who can call the function with or without a 'password'. # Hence, we treat an empty password here, as if no 'password' was passed. password = get_password('Enter a password for an encrypted RSA' ' file \'' + Fore.RED + filepath + Fore.RESET + '\': ', confirm=False) # If user sets an empty string for the password, explicitly set the # password to None, because some functions may expect this later. if len(password) == 0: # pragma: no cover password = None # Finally, regardless of password, try decrypting the key, if necessary. # Otherwise, load it straight from the disk. with open(filepath, 'rb') as file_object: json_str = file_object.read() return securesystemslib.keys.\ import_ed25519key_from_private_json(json_str, password=password) def generate_and_write_ecdsa_keypair(filepath=None, password=None): """ <Purpose> Generate an ECDSA keypair, where the encrypted key (using 'password' as the passphrase) is saved to <'filepath'>. The public key portion of the generated ECDSA key is saved to <'filepath'>.pub. If the filepath is not given, the KEYID is used as the filename and the keypair saved to the current working directory. The 'cryptography' library is currently supported. The private key is encrypted according to 'cryptography's approach: "Encrypt using the best available encryption for a given key's backend. This is a curated encryption choice and the algorithm may change over time." <Arguments> filepath: The public and private key files are saved to <filepath>.pub and <filepath>, respectively. If the filepath is not given, the public and private keys are saved to the current working directory as <KEYID>.pub and <KEYID>. KEYID is the generated key's KEYID. password: The password, or passphrase, to encrypt the private portion of the generated ECDSA key. A symmetric encryption key is derived from 'password', so it is not directly used. <Exceptions> securesystemslib.exceptions.FormatError, if the arguments are improperly formatted. securesystemslib.exceptions.CryptoError, if 'filepath' cannot be encrypted. <Side Effects> Writes key files to '<filepath>' and '<filepath>.pub'. <Returns> The 'filepath' of the written key. """ # Generate a new ECDSA key object. The 'cryptography' library is currently # supported and performs the actual cryptographic operations. ecdsa_key = securesystemslib.keys.generate_ecdsa_key() if not filepath: filepath = os.path.join(os.getcwd(), ecdsa_key['keyid']) else: logger.debug('The filepath has been specified. Not using the key\'s' ' KEYID as the default filepath.') # Does 'filepath' have the correct format? # Raise 'securesystemslib.exceptions.FormatError' if there is a mismatch. securesystemslib.formats.PATH_SCHEMA.check_match(filepath) # If the caller does not provide a password argument, prompt for one. if password is None: # pragma: no cover # It is safe to specify the full path of 'filepath' in the prompt and not # worry about leaking sensitive information about the key's location. # However, care should be taken when including the full path in exceptions # and log files. password = get_password('Enter a password for the ECDSA' ' key (' + Fore.RED + filepath + Fore.RESET + '): ', confirm=True) else: logger.debug('The password has been specified. Not prompting for one') # Does 'password' have the correct format? securesystemslib.formats.PASSWORD_SCHEMA.check_match(password) # If the parent directory of filepath does not exist, # create it (and all its parent directories, if necessary). securesystemslib.util.ensure_parent_dir(filepath) # Create a temporary file, write the contents of the public key, and move # to final destination. file_object = securesystemslib.util.TempFile() # Generate the ECDSA public key file contents in metadata format (i.e., does # not include the keyid portion). keytype = ecdsa_key['keytype'] keyval = ecdsa_key['keyval'] scheme = ecdsa_key['scheme'] ecdsakey_metadata_format = securesystemslib.keys.format_keyval_to_metadata( keytype, scheme, keyval, private=False) file_object.write(json.dumps(ecdsakey_metadata_format).encode('utf-8')) # Write the public key (i.e., 'public', which is in PEM format) to # '<filepath>.pub'. (1) Create a temporary file, (2) write the contents of # the public key, and (3) move to final destination. file_object.move(filepath + '.pub') # Write the encrypted key string, conformant to # 'securesystemslib.formats.ENCRYPTEDKEY_SCHEMA', to '<filepath>'. file_object = securesystemslib.util.TempFile() # Raise 'securesystemslib.exceptions.CryptoError' if 'ecdsa_key' cannot be # encrypted. encrypted_key = securesystemslib.keys.encrypt_key(ecdsa_key, password) file_object.write(encrypted_key.encode('utf-8')) file_object.move(filepath) return filepath def import_ecdsa_publickey_from_file(filepath): """ <Purpose> Load the ECDSA public key object (conformant to 'securesystemslib.formats.KEY_SCHEMA') stored in 'filepath'. Return 'filepath' in securesystemslib.formats.ECDSAKEY_SCHEMA format. If the key object in 'filepath' contains a private key, it is discarded. <Arguments> filepath: <filepath>.pub file, a public key file. <Exceptions> securesystemslib.exceptions.FormatError, if 'filepath' is improperly formatted or is an unexpected key type. <Side Effects> The contents of 'filepath' is read and saved. <Returns> An ECDSA key object conformant to 'securesystemslib.formats.ECDSAKEY_SCHEMA'. """ # Does 'filepath' have the correct format? # Ensure the arguments have the appropriate number of objects and object # types, and that all dict keys are properly named. # Raise 'securesystemslib.exceptions.FormatError' if there is a mismatch. securesystemslib.formats.PATH_SCHEMA.check_match(filepath) # ECDSA key objects are saved in json and metadata format. Return the # loaded key object in securesystemslib.formats.ECDSAKEY_SCHEMA' format that # also includes the keyid. ecdsa_key_metadata = securesystemslib.util.load_json_file(filepath) ecdsa_key, junk = \ securesystemslib.keys.format_metadata_to_key(ecdsa_key_metadata) # Raise an exception if an unexpected key type is imported. Redundant # validation of 'keytype'. 'securesystemslib.keys.format_metadata_to_key()' # should have fully validated 'ecdsa_key_metadata'. if ecdsa_key['keytype'] != 'ecdsa-sha2-nistp256': # pragma: no cover message = 'Invalid key type loaded: ' + repr(ecdsa_key['keytype']) raise securesystemslib.exceptions.FormatError(message) return ecdsa_key def import_ecdsa_privatekey_from_file(filepath, password=None): """ <Purpose> Import the encrypted ECDSA key file in 'filepath', decrypt it, and return the key object in 'securesystemslib.formats.ECDSAKEY_SCHEMA' format. The 'cryptography' library is currently supported and performs the actual cryptographic routine. <Arguments> filepath: <filepath> file, an ECDSA encrypted key file. password: The password, or passphrase, to import the private key (i.e., the encrypted key file 'filepath' must be decrypted before the ECDSA key object can be returned. <Exceptions> securesystemslib.exceptions.FormatError, if the arguments are improperly formatted or the imported key object contains an invalid key type (i.e., not 'ecdsa-sha2-nistp256'). securesystemslib.exceptions.CryptoError, if 'filepath' cannot be decrypted. <Side Effects> 'password' is used to decrypt the 'filepath' key file. <Returns> An ECDSA key object of the form: 'securesystemslib.formats.ECDSAKEY_SCHEMA'. """ # Does 'filepath' have the correct format? # Ensure the arguments have the appropriate number of objects and object # types, and that all dict keys are properly named. # Raise 'securesystemslib.exceptions.FormatError' if there is a mismatch. securesystemslib.formats.PATH_SCHEMA.check_match(filepath) # If the caller does not provide a password argument, prompt for one. # Password confirmation disabled here, which should ideally happen only # when creating encrypted key files (i.e., improve usability). if password is None: # pragma: no cover # It is safe to specify the full path of 'filepath' in the prompt and not # worry about leaking sensitive information about the key's location. # However, care should be taken when including the full path in exceptions # and log files. password = get_password('Enter a password for the encrypted ECDSA' ' key (' + Fore.RED + filepath + Fore.RESET + '): ', confirm=False) # Does 'password' have the correct format? securesystemslib.formats.PASSWORD_SCHEMA.check_match(password) # Store the encrypted contents of 'filepath' prior to calling the decryption # routine. encrypted_key = None with open(filepath, 'rb') as file_object: encrypted_key = file_object.read() # Decrypt the loaded key file, calling the 'cryptography' library to generate # the derived encryption key from 'password'. Raise # 'securesystemslib.exceptions.CryptoError' if the decryption fails. key_object = securesystemslib.keys.decrypt_key(encrypted_key.decode('utf-8'), password) # Raise an exception if an unexpected key type is imported. if key_object['keytype'] != 'ecdsa-sha2-nistp256': message = 'Invalid key type loaded: ' + repr(key_object['keytype']) raise securesystemslib.exceptions.FormatError(message) # Add "keyid_hash_algorithms" so that equal ecdsa keys with different keyids # can be associated using supported keyid_hash_algorithms. key_object['keyid_hash_algorithms'] = \ securesystemslib.settings.HASH_ALGORITHMS return key_object if __name__ == '__main__': # The interactive sessions of the documentation strings can # be tested by running interface.py as a standalone module: # $ python interface.py. import doctest doctest.testmod() ``` #### File: securesystemslib/_vendor/ssl_match_hostname.py ```python import re class CertificateError(ValueError): pass def _dnsname_to_pat(dn): pats = [] for frag in dn.split(r'.'): if frag == '*': # When '*' is a fragment by itself, it matches a non-empty dotless # fragment. pats.append('[^.]+') else: # Otherwise, '*' matches any dotless fragment. frag = re.escape(frag) pats.append(frag.replace(r'\*', '[^.]*')) return re.compile(r'\A' + r'\.'.join(pats) + r'\Z', re.IGNORECASE) def match_hostname(cert, hostname): """Verify that *cert* (in decoded format as returned by SSLSocket.getpeercert()) matches the *hostname*. RFC 2818 rules are mostly followed, but IP addresses are not accepted for *hostname*. CertificateError is raised on failure. On success, the function returns nothing. """ if not cert: raise ValueError("empty or no certificate") dnsnames = [] san = cert.get('subjectAltName', ()) for key, value in san: if key == 'DNS': if _dnsname_to_pat(value).match(hostname): return dnsnames.append(value) if not dnsnames: # The subject is only checked when there is no dNSName entry # in subjectAltName for sub in cert.get('subject', ()): for key, value in sub: # XXX according to RFC 2818, the most specific Common Name # must be used. if key == 'commonName': if _dnsname_to_pat(value).match(hostname): return dnsnames.append(value) if len(dnsnames) > 1: raise CertificateError("hostname %r " "doesn't match either of %s" % (hostname, ', '.join(map(repr, dnsnames)))) elif len(dnsnames) == 1: raise CertificateError("hostname %r " "doesn't match %r" % (hostname, dnsnames[0])) else: raise CertificateError("no appropriate commonName or " "subjectAltName fields were found") ``` #### File: securesystemslib/tests/aggregate_tests.py ```python from __future__ import print_function from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals import os import sys import unittest import subprocess def check_usable_gpg(): """Set `TEST_SKIP_GPG` environment variable if neither gpg2 nor gpg is available. """ os.environ["TEST_SKIP_GPG"] = "1" for gpg in ["gpg2", "gpg"]: try: subprocess.check_call([gpg, "--version"]) except OSError: pass else: # If one of the two exists, we can unset the skip envvar and ... os.environ.pop("TEST_SKIP_GPG", None) # ... abort the availability check.: break if __name__ == '__main__': check_usable_gpg() suite = unittest.TestLoader().discover("tests", top_level_dir=".") all_tests_passed = unittest.TextTestRunner( verbosity=1, buffer=True).run(suite).wasSuccessful() if not all_tests_passed: sys.exit(1) ``` #### File: securesystemslib/tests/test_ed25519_keys.py ```python from __future__ import print_function from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals import unittest import os import logging import securesystemslib.exceptions import securesystemslib.formats import securesystemslib.ed25519_keys logger = logging.getLogger('securesystemslib.test_ed25519_keys') public, private = securesystemslib.ed25519_keys.generate_public_and_private() FORMAT_ERROR_MSG = 'securesystemslib.exceptions.FormatError raised. Check object\'s format.' class TestEd25519_keys(unittest.TestCase): def setUp(self): pass def test_generate_public_and_private(self): pub, priv = securesystemslib.ed25519_keys.generate_public_and_private() # Check format of 'pub' and 'priv'. self.assertEqual(True, securesystemslib.formats.ED25519PUBLIC_SCHEMA.matches(pub)) self.assertEqual(True, securesystemslib.formats.ED25519SEED_SCHEMA.matches(priv)) def test_create_signature(self): global public global private data = b'The quick brown fox jumps over the lazy dog' scheme = 'ed25519' signature, scheme = securesystemslib.ed25519_keys.create_signature(public, private, data, scheme) # Verify format of returned values. self.assertEqual(True, securesystemslib.formats.ED25519SIGNATURE_SCHEMA.matches(signature)) self.assertEqual(True, securesystemslib.formats.ED25519_SIG_SCHEMA.matches(scheme)) self.assertEqual('ed25519', scheme) # Check for improperly formatted argument. self.assertRaises(securesystemslib.exceptions.FormatError, securesystemslib.ed25519_keys.create_signature, 123, private, data, scheme) self.assertRaises(securesystemslib.exceptions.FormatError, securesystemslib.ed25519_keys.create_signature, public, 123, data, scheme) # Check for invalid 'data'. self.assertRaises(securesystemslib.exceptions.CryptoError, securesystemslib.ed25519_keys.create_signature, public, private, 123, scheme) def test_verify_signature(self): global public global private data = b'The quick brown fox jumps over the lazy dog' scheme = 'ed25519' signature, scheme = securesystemslib.ed25519_keys.create_signature(public, private, data, scheme) valid_signature = securesystemslib.ed25519_keys.verify_signature(public, scheme, signature, data) self.assertEqual(True, valid_signature) # Test with 'pynacl'. valid_signature = securesystemslib.ed25519_keys.verify_signature(public, scheme, signature, data, use_pynacl=True) self.assertEqual(True, valid_signature) # Test with 'pynacl', but a bad signature is provided. bad_signature = os.urandom(64) valid_signature = securesystemslib.ed25519_keys.verify_signature(public, scheme, bad_signature, data, use_pynacl=True) self.assertEqual(False, valid_signature) # Check for improperly formatted arguments. self.assertRaises(securesystemslib.exceptions.FormatError, securesystemslib.ed25519_keys.verify_signature, 123, scheme, signature, data) # Signature method improperly formatted. self.assertRaises(securesystemslib.exceptions.FormatError, securesystemslib.ed25519_keys.verify_signature, public, 123, signature, data) # Invalid signature method. self.assertRaises(securesystemslib.exceptions.FormatError, securesystemslib.ed25519_keys.verify_signature, public, 'unsupported_scheme', signature, data) # Signature not a string. self.assertRaises(securesystemslib.exceptions.FormatError, securesystemslib.ed25519_keys.verify_signature, public, scheme, 123, data) # Invalid signature length, which must be exactly 64 bytes.. self.assertRaises(securesystemslib.exceptions.FormatError, securesystemslib.ed25519_keys.verify_signature, public, scheme, 'bad_signature', data) # Check for invalid signature and data. # Mismatched data. self.assertEqual(False, securesystemslib.ed25519_keys.verify_signature( public, scheme, signature, '123')) # Mismatched signature. bad_signature = b'a'*64 self.assertEqual(False, securesystemslib.ed25519_keys.verify_signature( public, scheme, bad_signature, data)) # Generated signature created with different data. new_signature, scheme = securesystemslib.ed25519_keys.create_signature( public, private, b'mismatched data', scheme) self.assertEqual(False, securesystemslib.ed25519_keys.verify_signature( public, scheme, new_signature, data)) # Run the unit tests. if __name__ == '__main__': unittest.main() ```
{ "source": "Joshua-Gordon/Evenchur", "score": 4 }
#### File: Joshua-Gordon/Evenchur/evenchur.py ```python from inventory import Inventory from data import getLocation, getItemInLocation import sys class Evenchur: def __init__(self,loc): self.location = loc self.inv = Inventory() self.visitedLocations = [] def loop(self): self.location = self.visited() print(self.location["desc"]) inp = input(">>>").split(" ") if(inp[0] == "q"): print("Thank you for playing wing commander!") sys.exit(0) if(inp[0] == "go"): prev = self.location if inp[1] == "n" or inp[1] == "north": if self.location["name"] == self.location["north"]: print("You cannot go that way.") else: self.location = getLocation(self.location["north"]) if inp[1] == "e" or inp[1] == "east": if self.location["name"] == self.location["east"]: print("You cannot go that way.") else: self.location = getLocation(self.location["east"]) if inp[1] == "w" or inp[1] == "west": if self.location["name"] == self.location["west"]: print("You cannot go that way.") else: self.location = getLocation(self.location["west"]) if inp[1] == "s" or inp[1] == "south": if self.location["name"] == self.location["south"]: print("You cannot go that way.") else: self.location = getLocation(self.location["south"]) if self.location == "locked": self.location = prev print("The way is locked.") elif inp[0] == "items": print(self.inv) elif inp[0] == "look": if len(inp) == 1: print(self.location["look"]) for i in self.location["objects"]: print("There is a " + str(i)) elif len(inp) == 2: i = getItemInLocation(inp[1].lower(),self.location) if i: print(i.getDesc()) else: if inp[1] in self.location["objects"]: print("You can't take the " + inp[1]) else: print("There is no " + inp[1] + " here!") elif len(inp) == 3: if inp[1] == "inv": itm = self.inv.item(inp[2].lower()) if itm: print(itm.getDesc()) else: print("You don't have a " + inp[2].lower()) elif inp[0] == "take": i = getItemInLocation(inp[1].lower(),self.location) if i: self.location["objects"].remove(i.getName()) self.location["items"].remove(i.getName()) self.inv.addItem(i) print("You take the " + str(i)) else: print("There is no " + inp[0] + " here!") def visited(self): for l in self.visitedLocations: if l["name"] == self.location["name"]: return l return self.location ``` #### File: Joshua-Gordon/Evenchur/inventory.py ```python class Inventory: def __init__(self): self.items = [] self.weight = 0 self.maxWeight = 20 def getItems(self): return self.items def getWeight(self): return self.weight def getMaxWeight(self): return self.maxWeight def addItem(self,item): if self.weight + item.getWeight() < self.maxWeight: if item in self.items: idx = self.items.index(item) self.items[idx].increment() else: self.items.append(item) def item(self,name): for i in self.items: if i.getName() == name: return i def __str__(self): toreturn = "Inventory:\n" for i in self.items: toreturn += "x"+str(i.getCount()) + "\t" + i.getName() + "\n" return toreturn class Item: def __init__(self,**kwargs): #print(kwargs) self.name = kwargs['name'] self.desc = kwargs['desc'] self.weight = kwargs['weight'] if "count" in kwargs.keys(): self.count = kwargs['count'] else: self.count = 1 def getName(self): return self.name def getDesc(self): return self.desc def getWeight(self): return self.weight def getCount(self): return self.count def increment(self): self.count += 1 def __eq__(self,other): return self.name == other.getName() def __str__(self): return self.name ```
{ "source": "Joshua-Gordon/Language", "score": 3 }
#### File: Joshua-Gordon/Language/preproc.py ```python import re import tokenizer def processNewlines(code): lines = code.split("\n") lines = list(map(lambda s: s+";",lines)) code = ''.join(lines) return code def removeComments(code): lines = code.split(";") lnew = [] multiLine = False done = False for l in lines: done = False if multiLine and not "*/" in l: l = "" if "/*" in l: multiLine = True idx = l.find("/*") lnew.append(l[:idx]) done = True if multiLine and "*/" in l: multiLine = False idx = l.find("*/") lnew.append(l[idx+2:]+";") done = True if "//" in l: idx = l.find("//") lnew.append(l[:idx]+";") elif not done: lnew.append(l+";") return ''.join(lnew)[:-1] def expandMacros(code): lines = code.split(";") macros = [] lnew = [] lnew2 = [] for line in lines: if line.strip()[0:5] == "macro": idx = line.find("=") macro = line[6:idx] #accounts for space after macro keyword body = line[idx+1:] #grab argument list args = macro.split(")")[0][1:] macro = macro[len(args)+2:] args = args.split(",") macros.append((macro,body,args)) else: lnew.append(line+";") for line in lnew: #print(macros) for macro in macros: #find match for macro regex = macro[0].strip() for arg in args: regex = regex.replace(arg,"[^ ;]+") regex = re.compile(regex) matchIters = [m.span() for m in re.finditer(regex,line)] #For some reason, this is not matching correctly for match in matchIters: #match is a tuple of (startIndex,endIndex) string = line[match[0]:match[1]+1] macroTokens = tokenizer.refineTokens(tokenizer.tokenize(macro[0].strip()+";","all")) lineTokens = tokenizer.refineTokens(tokenizer.tokenize(string,"all")) #tokenize both. Should be same length. if not len(lineTokens) == len(macroTokens): print("Bad macro") print(str(len(lineTokens)) + " tokens in match, but " + str(len(macroTokens)) + " tokens in macro") print("Match:",string) print("Match tokens:",str(lineTokens)) print("Macro:",macro[0].strip()) print("Macro tokens:",str(macroTokens)) break argvalues = {} for i in range(len(lineTokens)): if macroTokens[i] == lineTokens[i]: pass elif macroTokens[i][0] in args: argvalues[macroTokens[i][0]] = lineTokens[i][0] #map arguments to values else: print("ERROR In macro expansion!") newline = body for a,v in argvalues.items(): newline = newline.replace(a,v) line = line.replace(line[match[0]:match[1]],newline) print(line) #old way #line = line.replace(macro[0],macro[1]) lnew2.append(line) return ''.join(lnew2)[:-1] def preproc(code): code = processNewlines(code) #print("STAGE 1",code) code = removeComments(code) #print("STAGE 2",code) code = expandMacros(code) #print("STAGE 3",code) return code ```
{ "source": "joshuagornall/jax", "score": 2 }
#### File: tf_js/quickdraw/utils.py ```python from jax import numpy as jnp # type: ignore import numpy as np # type: ignore import os import requests # type: ignore def download_dataset(dir_path, nb_classes): if not os.path.exists(dir_path): os.makedirs(dir_path) assert os.path.isdir(dir_path), f"{dir_path} exists and is not a directory" classes_path = os.path.join( os.path.dirname(__file__), 'third_party/zaidalyafeai.github.io/class_names.txt') with open(classes_path, 'r') as classes_file: classes = ( list(map(lambda c: c.strip(), classes_file.readlines()))[:nb_classes]) url = 'https://storage.googleapis.com/quickdraw_dataset/full/numpy_bitmap/' for cls in classes: cls_filename = f"{cls}.npy" cls_file_path = os.path.join(dir_path, cls_filename) if os.path.exists(cls_file_path): print(f'{cls_filename} already exists, skipping') continue with open(cls_file_path, "wb") as save_file: try: response = requests.get(url + cls_filename.replace('_', ' ')) save_file.write(response.content) print(f'Successfully fetched {cls_filename}') except: print(f'Failed to fetch {cls_filename}') return classes def load_classes(dir_path, classes, batch_size=256, test_ratio=0.1, max_items_per_class=4096): x, y = np.empty([0, 784]), np.empty([0]) for idx, cls in enumerate(classes): cls_path = os.path.join(dir_path, f"{cls}.npy") data = np.load(cls_path)[:max_items_per_class, :] labels = np.full(data.shape[0], idx) x, y = np.concatenate((x, data), axis=0), np.append(y, labels) assert x.shape[0] % batch_size == 0 x, y = x.astype(jnp.float32) / 255.0, y.astype(jnp.int32) # Reshaping to square images x = np.reshape(x, (x.shape[0], 28, 28, 1)) permutation = np.random.permutation(y.shape[0]) x = x[permutation, :] y = y[permutation] x = np.reshape(x, [x.shape[0] // batch_size, batch_size] + list(x.shape[1:])) y = np.reshape(y, [y.shape[0] // batch_size, batch_size]) nb_test_elements = int(x.shape[0] * test_ratio) x_test, y_test = x[:nb_test_elements], y[:nb_test_elements] x_train, y_train = x[nb_test_elements:], y[nb_test_elements:] return list(zip(x_train, y_train)), list(zip(x_test, y_test)) ``` #### File: jax/_src/profiler.py ```python from contextlib import contextmanager from functools import wraps import threading from typing import Callable, Optional import warnings from jax.lib import xla_bridge from jax.lib import xla_client def start_server(port: int): """Starts a profiler server on port `port`. Using the "TensorFlow profiler" feature in `TensorBoard <https://www.tensorflow.org/tensorboard>`_ 2.2 or newer, you can connect to the profiler server and sample execution traces that show CPU, GPU, and/or TPU device activity. Returns a profiler server object. The server remains alive and listening until the server object is destroyed. """ return xla_client.profiler.start_server(port) class _ProfileState(object): def __init__(self): self.profile_session = None self.log_dir = None self.lock = threading.Lock() _profile_state = _ProfileState() def start_trace(log_dir): """Starts a profiler trace. The trace will capture CPU, GPU, and/or TPU activity, including Python functions and JAX on-device operations. Use ``stop_trace()`` to end the trace and save the results to ``log_dir``. The resulting trace can be viewed with TensorBoard. Note that TensorBoard doesn't need to be running when collecting the trace. Only once trace may be collected a time. A RuntimeError will be raised if ``start_trace()`` is called while another trace is running. Args: log_dir: The directory to save the profiler trace to (usually the TensorBoard log directory). """ with _profile_state.lock: if _profile_state.profile_session is not None: raise RuntimeError("Profile has already been started. " "Only one profile may be run at a time.") _profile_state.profile_session = xla_client.profiler.ProfilerSession() _profile_state.log_dir = log_dir def stop_trace(): """Stops the currently-running profiler trace. The trace will be saved to the ``log_dir`` passed to the corresponding ``start_trace()`` call. Raises a RuntimeError if a trace hasn't been started. """ with _profile_state.lock: if _profile_state.profile_session is None: raise RuntimeError("No profile started") _profile_state.profile_session.stop_and_export(_profile_state.log_dir) _profile_state.profile_session = None _profile_state.log_dir = None @contextmanager def trace(log_dir): """Context manager to take a profiler trace. The trace will capture CPU, GPU, and/or TPU activity, including Python functions and JAX on-device operations. The resulting trace can be viewed with TensorBoard. Note that TensorBoard doesn't need to be running when collecting the trace. Only once trace may be collected a time. A RuntimeError will be raised if a trace is started while another trace is running. Args: log_dir: The directory to save the profiler trace to (usually the TensorBoard log directory). """ start_trace(log_dir) try: yield finally: stop_trace() class TraceAnnotation(xla_client.profiler.TraceMe): """Context manager that generates a trace event in the profiler. The trace event spans the duration of the code enclosed by the context. For example: >>> x = jnp.ones((1000, 1000)) >>> with jax.profiler.TraceAnnotation("my_label"): ... result = jnp.dot(x, x.T).block_until_ready() This will cause a "my_label" event to show up on the trace timeline if the event occurs while the process is being traced. """ pass # TODO: remove this sometime after jax 0.2.11 is released class TraceContext(TraceAnnotation): def __init__(self, *args, **kwargs): warnings.warn( "TraceContext has been renamed to TraceAnnotation. This alias " "will eventually be removed; please update your code.") super().__init__(*args, **kwargs) class StepTraceAnnotation(TraceAnnotation): """Context manager that generates a step trace event in the profiler. The step trace event spans the duration of the code enclosed by the context. The profiler will provide the performance analysis for each step trace event. For example, it can be used to mark training steps and enable the profiler to provide the performance analysis per step: >>> while global_step < NUM_STEPS: # doctest: +SKIP ... with jax.profiler.StepTraceAnnotation("train", step_num=global_step): # doctest: +SKIP ... train_step() # doctest: +SKIP ... global_step += 1 # doctest: +SKIP This will cause a "train xx" event to show up on the trace timeline if the event occurs while the process is being traced by TensorBoard. In addition, if using accelerators, the device trace timeline will also show a "train xx" event. Note that "step_num" can be set as a keyword argument to pass the global step number to the profiler. """ def __init__(self, name: str, **kwargs): super().__init__(name, _r=1, **kwargs) # TODO: remove this sometime after jax 0.2.11 is released class StepTraceContext(StepTraceAnnotation): def __init__(self, *args, **kwargs): warnings.warn( "StepTraceContext has been renamed to StepTraceAnnotation. This alias " "will eventually be removed; please update your code.") super().__init__(*args, **kwargs) def annotate_function(func: Callable, name: str = None, **kwargs): """Decorator that generates a trace event for the execution of a function. For example: >>> @jax.profiler.annotate_function ... def f(x): ... return jnp.dot(x, x.T).block_until_ready() >>> >>> result = f(jnp.ones((1000, 1000))) This will cause an "f" event to show up on the trace timeline if the function execution occurs while the process is being traced by TensorBoard. Arguments can be passed to the decorator via :py:func:`functools.partial`. >>> from functools import partial >>> @partial(jax.profiler.annotate_function, name="event_name") ... def f(x): ... return jnp.dot(x, x.T).block_until_ready() >>> result = f(jnp.ones((1000, 1000))) """ name = name or getattr(func, '__qualname__', None) name = name or func.__name__ @wraps(func) def wrapper(*args, **kwargs): with TraceAnnotation(name, **kwargs): return func(*args, **kwargs) return wrapper return wrapper # TODO: remove this sometime after jax 0.2.11 is released def trace_function(*args, **kwargs): warnings.warn( "trace_function has been renamed to annotate_function. This alias " "will eventually be removed; please update your code.") return annotate_function(*args, **kwargs) def device_memory_profile(backend: Optional[str] = None) -> bytes: """Captures a JAX device memory profile as ``pprof``-format protocol buffer. A device memory profile is a snapshot of the state of memory, that describes the JAX :class:`jax.DeviceArray` and executable objects present in memory and their allocation sites. For more information how to use the device memory profiler, see :doc:`/device_memory_profiling`. The profiling system works by instrumenting JAX on-device allocations, capturing a Python stack trace for each allocation. The instrumentation is always enabled; :func:`device_memory_profile` provides an API to capture it. The output of :func:`device_memory_profile` is a binary protocol buffer that can be interpreted and visualized by the `pprof tool <https://github.com/google/pprof>`_. Args: backend: optional; the name of the JAX backend for which the device memory profile should be collected. Returns: A byte string containing a binary `pprof`-format protocol buffer. """ return xla_client.heap_profile(xla_bridge.get_backend(backend)) def save_device_memory_profile(filename, backend: Optional[str] = None): """Collects a device memory profile and writes it to a file. :func:`save_device_memory_profile` is a convenience wrapper around :func:`device_memory_profile` that saves its output to a ``filename``. See the :func:`device_memory_profile` documentation for more information. Args: filename: the filename to which the profile should be written. backend: optional; the name of the JAX backend for which the device memory profile should be collected. """ profile = device_memory_profile(backend) with open(filename, "wb") as f: f.write(profile) ``` #### File: jax/tests/jaxpr_util_test.py ```python from absl.testing import absltest from jax import jaxpr_util, jit, make_jaxpr, numpy as jnp from jax import test_util as jtu from jax.config import config config.parse_flags_with_absl() class JaxprStatsTest(jtu.JaxTestCase): def test_primitives(self): def f(x, y): s = jit(jnp.sin)(x) return jnp.sin(s) + jnp.cos(y) hist = jaxpr_util.primitives(make_jaxpr(f)(1., 1.).jaxpr) for k in ['add', 'sin', 'cos', 'xla_call']: assert k in hist, k self.assertEqual(hist['sin'], 2) self.assertTrue(all(count == 1 for k, count in hist.items() if k != 'sin')) def test_primitives_by_source(self): def f(x, y): s = jnp.sin(x) return jnp.sin(s) + jnp.cos(y) hist = jaxpr_util.primitives_by_source(make_jaxpr(f)(1., 1.).jaxpr) sin_keys = [k for k in hist.keys() if k.startswith('sin @ ')] rem_keys = [k for k in hist.keys() if not k.startswith('sin @ ')] self.assertEqual(sum(hist[k] for k in sin_keys), 2) self.assertTrue(all(hist[k] == 1 for k in rem_keys)) def test_primitives_by_shape(self): def f(x, y): def sub(x, y): return jnp.sum(jnp.array([x, y])), y s, _ = jit(sub)(x, y) return jnp.sin(s) + jnp.cos(y) hist = jaxpr_util.primitives_by_shape(make_jaxpr(f)(1., 1.).jaxpr) t = '64' if config.x64_enabled else '32' shapes = [ f'add :: float{t}[]', f'sin :: float{t}[]', f'cos :: float{t}[]', f'reduce_sum :: float{t}[]', f'concatenate :: float{t}[2]', f'xla_call :: float{t}[] *', ] for k in shapes: self.assertEqual(hist[k], 1) def test_source_locations(self): def f(x, y): s = jnp.sin(x) # sin return jnp.sin(s) + jnp.cos(y) # sin, cos, add hist = jaxpr_util.source_locations(make_jaxpr(f)(1., 1.).jaxpr) self.assertEqual(sum(hist.values()), 4) def test_print_histogram(self): def f(x, y): s = jit(jnp.sin)(x) return jnp.sin(s) + jnp.cos(y) hist = jaxpr_util.primitives_by_source(make_jaxpr(f)(1., 1.).jaxpr) jaxpr_util.print_histogram(hist) if __name__ == "__main__": absltest.main() ```
{ "source": "joshua-gould/anndata", "score": 2 }
#### File: _io/specs/methods.py ```python from __future__ import annotations from os import PathLike from collections.abc import Mapping from functools import partial from typing import Union from types import MappingProxyType from warnings import warn import h5py import numpy as np import pandas as pd from scipy import sparse import anndata as ad from anndata import AnnData, Raw from anndata._core.index import _normalize_indices from anndata._core.merge import intersect_keys from anndata._core.sparse_dataset import SparseDataset from anndata._core import views from anndata.compat import ( Literal, OverloadedDict, ZarrArray, ZarrGroup, _read_attr, _from_fixed_length_strings, _decode_structured_array, ) from anndata._io.utils import report_write_key_on_error, check_key, H5PY_V3 from anndata._warnings import OldFormatWarning from .registry import ( _REGISTRY, IOSpec, get_spec, read_elem, read_elem_partial, write_elem, ) H5Array = h5py.Dataset H5Group = h5py.Group #################### # Dispatch methods # #################### # def is_full_slice(idx): # if isinstance(idx, tuple)len(idx) == 1: # if isinstance(idx, type(None)): # return True # elif idx is Ellipsis: # return True # elif isinstance(idx, tuple): # for el in idx: # if isinstance(el, type(None)): # pass # elif isinstance(el, slice): # if el != slice(None): # return False # else: # return False # return True # return False ################################ # Fallbacks / backwards compat # ################################ # Note: there is no need for writing in a backwards compatible format, maybe @_REGISTRY.register_read(H5Group, IOSpec("", "")) @_REGISTRY.register_read(H5Array, IOSpec("", "")) def read_basic(elem): from anndata._io import h5ad warn( f"Element '{elem.name}' was written without encoding metadata.", OldFormatWarning, stacklevel=3, ) if isinstance(elem, Mapping): # Backwards compat sparse arrays if "h5sparse_format" in elem.attrs: return SparseDataset(elem).to_memory() return {k: read_elem(v) for k, v in elem.items()} elif isinstance(elem, h5py.Dataset): return h5ad.read_dataset(elem) # TODO: Handle legacy @_REGISTRY.register_read(ZarrGroup, IOSpec("", "")) @_REGISTRY.register_read(ZarrArray, IOSpec("", "")) def read_basic_zarr(elem): from anndata._io import zarr warn( f"Element '{elem.name}' was written without encoding metadata.", OldFormatWarning, stacklevel=3, ) if isinstance(elem, Mapping): # Backwards compat sparse arrays if "h5sparse_format" in elem.attrs: return SparseDataset(elem).to_memory() return {k: read_elem(v) for k, v in elem.items()} elif isinstance(elem, ZarrArray): return zarr.read_dataset(elem) # TODO: Handle legacy # @_REGISTRY.register_read_partial(IOSpec("", "")) # def read_basic_partial(elem, *, items=None, indices=(slice(None), slice(None))): # if isinstance(elem, Mapping): # return _read_partial(elem, items=items, indices=indices) # elif indices != (slice(None), slice(None)): # return elem[indices] # else: # return elem[()] ########### # AnnData # ########### def read_indices(group): obs_group = group["obs"] obs_idx_elem = obs_group[_read_attr(obs_group.attrs, "_index")] obs_idx = read_elem(obs_idx_elem) var_group = group["var"] var_idx_elem = var_group[_read_attr(var_group.attrs, "_index")] var_idx = read_elem(var_idx_elem) return obs_idx, var_idx def read_partial( pth: PathLike, *, obs_idx=slice(None), var_idx=slice(None), X=True, obs=None, var=None, obsm=None, varm=None, obsp=None, varp=None, layers=None, uns=None, ) -> ad.AnnData: result = {} with h5py.File(pth, "r") as f: obs_idx, var_idx = _normalize_indices((obs_idx, var_idx), *read_indices(f)) result["obs"] = read_elem_partial( f["obs"], items=obs, indices=(obs_idx, slice(None)) ) result["var"] = read_elem_partial( f["var"], items=var, indices=(var_idx, slice(None)) ) if X: result["X"] = read_elem_partial(f["X"], indices=(obs_idx, var_idx)) else: result["X"] = sparse.csr_matrix((len(result["obs"]), len(result["var"]))) if "obsm" in f: result["obsm"] = _read_partial( f["obsm"], items=obsm, indices=(obs_idx, slice(None)) ) if "varm" in f: result["varm"] = _read_partial( f["varm"], items=varm, indices=(var_idx, slice(None)) ) if "obsp" in f: result["obsp"] = _read_partial( f["obsp"], items=obsp, indices=(obs_idx, obs_idx) ) if "varp" in f: result["varp"] = _read_partial( f["varp"], items=varp, indices=(var_idx, var_idx) ) if "layers" in f: result["layers"] = _read_partial( f["layers"], items=layers, indices=(obs_idx, var_idx) ) if "uns" in f: result["uns"] = _read_partial(f["uns"], items=uns) return ad.AnnData(**result) def _read_partial(group, *, items=None, indices=(slice(None), slice(None))): if group is None: return None if items is None: keys = intersect_keys((group,)) else: keys = intersect_keys((group, items)) result = {} for k in keys: if isinstance(items, Mapping): next_items = items.get(k, None) else: next_items = None result[k] = read_elem_partial(group[k], items=next_items, indices=indices) return result @_REGISTRY.register_write(ZarrGroup, AnnData, IOSpec("anndata", "0.1.0")) @_REGISTRY.register_write(H5Group, AnnData, IOSpec("anndata", "0.1.0")) def write_anndata(f, k, adata, dataset_kwargs=MappingProxyType({})): g = f.require_group(k) write_elem(g, "X", adata.X, dataset_kwargs=dataset_kwargs) write_elem(g, "obs", adata.obs, dataset_kwargs=dataset_kwargs) write_elem(g, "var", adata.var, dataset_kwargs=dataset_kwargs) write_elem(g, "obsm", dict(adata.obsm), dataset_kwargs=dataset_kwargs) write_elem(g, "varm", dict(adata.varm), dataset_kwargs=dataset_kwargs) write_elem(g, "obsp", dict(adata.obsp), dataset_kwargs=dataset_kwargs) write_elem(g, "varp", dict(adata.varp), dataset_kwargs=dataset_kwargs) write_elem(g, "layers", dict(adata.layers), dataset_kwargs=dataset_kwargs) write_elem(g, "uns", dict(adata.uns), dataset_kwargs=dataset_kwargs) write_elem(g, "raw", adata.raw, dataset_kwargs=dataset_kwargs) @_REGISTRY.register_read(H5Group, IOSpec("anndata", "0.1.0")) @_REGISTRY.register_read(H5Group, IOSpec("raw", "0.1.0")) @_REGISTRY.register_read(ZarrGroup, IOSpec("anndata", "0.1.0")) @_REGISTRY.register_read(ZarrGroup, IOSpec("raw", "0.1.0")) def read_anndata(elem): d = {} for k in [ "X", "obs", "var", "obsm", "varm", "obsp", "varp", "layers", "uns", "raw", ]: if k in elem: d[k] = read_elem(elem[k]) if "X" in d: d["dtype"] = d["X"].dtype return AnnData(**d) @_REGISTRY.register_write(H5Group, Raw, IOSpec("raw", "0.1.0")) @_REGISTRY.register_write(ZarrGroup, Raw, IOSpec("raw", "0.1.0")) def write_raw(f, k, raw, dataset_kwargs=MappingProxyType({})): g = f.create_group(k) write_elem(g, "X", raw.X, dataset_kwargs=dataset_kwargs) write_elem(g, "var", raw.var, dataset_kwargs=dataset_kwargs) write_elem(g, "varm", dict(raw.varm), dataset_kwargs=dataset_kwargs) ############ # Mappings # ############ @_REGISTRY.register_read(H5Group, IOSpec("dict", "0.1.0")) @_REGISTRY.register_read(ZarrGroup, IOSpec("dict", "0.1.0")) def read_mapping(elem): return {k: read_elem(v) for k, v in elem.items()} @_REGISTRY.register_write(H5Group, OverloadedDict, IOSpec("dict", "0.1.0")) @_REGISTRY.register_write(H5Group, dict, IOSpec("dict", "0.1.0")) @_REGISTRY.register_write(ZarrGroup, OverloadedDict, IOSpec("dict", "0.1.0")) @_REGISTRY.register_write(ZarrGroup, dict, IOSpec("dict", "0.1.0")) def write_mapping(f, k, v, dataset_kwargs=MappingProxyType({})): g = f.create_group(k) for sub_k, sub_v in v.items(): write_elem(g, sub_k, sub_v, dataset_kwargs=dataset_kwargs) ############## # np.ndarray # ############## @_REGISTRY.register_write(H5Group, list, IOSpec("array", "0.2.0")) @_REGISTRY.register_write(ZarrGroup, list, IOSpec("array", "0.2.0")) def write_list(f, k, elem, dataset_kwargs=MappingProxyType({})): write_elem(f, k, np.array(elem), dataset_kwargs=dataset_kwargs) # TODO: Is this the right behaviour for MaskedArrays? # It's in the `AnnData.concatenate` docstring, but should we keep it? @_REGISTRY.register_write(H5Group, views.ArrayView, IOSpec("array", "0.2.0")) @_REGISTRY.register_write(H5Group, np.ndarray, IOSpec("array", "0.2.0")) @_REGISTRY.register_write(H5Group, h5py.Dataset, IOSpec("array", "0.2.0")) @_REGISTRY.register_write(H5Group, np.ma.MaskedArray, IOSpec("array", "0.2.0")) @_REGISTRY.register_write(ZarrGroup, views.ArrayView, IOSpec("array", "0.2.0")) @_REGISTRY.register_write(ZarrGroup, np.ndarray, IOSpec("array", "0.2.0")) @_REGISTRY.register_write(ZarrGroup, h5py.Dataset, IOSpec("array", "0.2.0")) @_REGISTRY.register_write(ZarrGroup, np.ma.MaskedArray, IOSpec("array", "0.2.0")) def write_basic(f, k, elem, dataset_kwargs=MappingProxyType({})): """Write methods which underlying library handles nativley.""" f.create_dataset(k, data=elem, **dataset_kwargs) @_REGISTRY.register_read(H5Array, IOSpec("array", "0.2.0")) @_REGISTRY.register_read(ZarrArray, IOSpec("array", "0.2.0")) @_REGISTRY.register_read(ZarrArray, IOSpec("string-array", "0.2.0")) def read_array(elem): return elem[()] @_REGISTRY.register_read_partial(H5Array, IOSpec("array", "0.2.0")) @_REGISTRY.register_read_partial(ZarrArray, IOSpec("array", "0.2.0")) @_REGISTRY.register_read_partial(ZarrArray, IOSpec("string-array", "0.2.0")) def read_array_partial(elem, *, items=None, indices=(slice(None, None))): return elem[indices] # arrays of strings @_REGISTRY.register_read(H5Array, IOSpec("string-array", "0.2.0")) def read_string_array(d): return read_array(d.asstr()) @_REGISTRY.register_read_partial(H5Array, IOSpec("string-array", "0.2.0")) def read_array_partial(d, items=None, indices=slice(None)): return read_array_partial(d.asstr(), items=items, indices=indices) @_REGISTRY.register_write( H5Group, (views.ArrayView, "U"), IOSpec("string-array", "0.2.0") ) @_REGISTRY.register_write( H5Group, (views.ArrayView, "O"), IOSpec("string-array", "0.2.0") ) @_REGISTRY.register_write(H5Group, (np.ndarray, "U"), IOSpec("string-array", "0.2.0")) @_REGISTRY.register_write(H5Group, (np.ndarray, "O"), IOSpec("string-array", "0.2.0")) def write_vlen_string_array(f, k, elem, dataset_kwargs=MappingProxyType({})): """Write methods which underlying library handles nativley.""" str_dtype = h5py.special_dtype(vlen=str) f.create_dataset(k, data=elem.astype(str_dtype), dtype=str_dtype, **dataset_kwargs) @_REGISTRY.register_write( ZarrGroup, (views.ArrayView, "U"), IOSpec("string-array", "0.2.0") ) @_REGISTRY.register_write( ZarrGroup, (views.ArrayView, "O"), IOSpec("string-array", "0.2.0") ) @_REGISTRY.register_write(ZarrGroup, (np.ndarray, "U"), IOSpec("string-array", "0.2.0")) @_REGISTRY.register_write(ZarrGroup, (np.ndarray, "O"), IOSpec("string-array", "0.2.0")) def write_vlen_string_array_zarr(f, k, elem, dataset_kwargs=MappingProxyType({})): import numcodecs f.create_dataset( k, shape=elem.shape, dtype=object, object_codec=numcodecs.VLenUTF8(), **dataset_kwargs, ) f[k][:] = elem ############### # np.recarray # ############### def _to_hdf5_vlen_strings(value: np.ndarray) -> np.ndarray: """This corrects compound dtypes to work with hdf5 files.""" new_dtype = [] for dt_name, (dt_type, _) in value.dtype.fields.items(): if dt_type.kind in ("U", "O"): new_dtype.append((dt_name, h5py.special_dtype(vlen=str))) else: new_dtype.append((dt_name, dt_type)) return value.astype(new_dtype) @_REGISTRY.register_read(H5Array, IOSpec("rec-array", "0.2.0")) @_REGISTRY.register_read(ZarrArray, IOSpec("rec-array", "0.2.0")) def read_recarray(d): value = d[()] dtype = value.dtype value = _from_fixed_length_strings(value) if H5PY_V3: value = _decode_structured_array(value, dtype=dtype) return value @_REGISTRY.register_write(H5Group, (np.ndarray, "V"), IOSpec("rec-array", "0.2.0")) @_REGISTRY.register_write(H5Group, np.recarray, IOSpec("rec-array", "0.2.0")) def write_recarray(f, k, elem, dataset_kwargs=MappingProxyType({})): f.create_dataset(k, data=_to_hdf5_vlen_strings(elem), **dataset_kwargs) @_REGISTRY.register_write(ZarrGroup, (np.ndarray, "V"), IOSpec("rec-array", "0.2.0")) @_REGISTRY.register_write(ZarrGroup, np.recarray, IOSpec("rec-array", "0.2.0")) def write_recarray_zarr(f, k, elem, dataset_kwargs=MappingProxyType({})): from anndata.compat import _to_fixed_length_strings f.create_dataset(k, data=_to_fixed_length_strings(elem), **dataset_kwargs) ################# # Sparse arrays # ################# def write_sparse_compressed( f, key, value, fmt: Literal["csr", "csc"], dataset_kwargs=MappingProxyType({}) ): g = f.create_group(key) g.attrs["shape"] = value.shape # Allow resizing if "maxshape" not in dataset_kwargs: dataset_kwargs = dict(maxshape=(None,), **dataset_kwargs) g.create_dataset("data", data=value.data, **dataset_kwargs) g.create_dataset("indices", data=value.indices, **dataset_kwargs) g.create_dataset("indptr", data=value.indptr, **dataset_kwargs) write_csr = partial(write_sparse_compressed, fmt="csr") write_csc = partial(write_sparse_compressed, fmt="csc") _REGISTRY.register_write(H5Group, sparse.csr_matrix, IOSpec("csr_matrix", "0.1.0"))( write_csr ) _REGISTRY.register_write(H5Group, views.SparseCSRView, IOSpec("csr_matrix", "0.1.0"))( write_csr ) _REGISTRY.register_write(H5Group, sparse.csc_matrix, IOSpec("csc_matrix", "0.1.0"))( write_csc ) _REGISTRY.register_write(H5Group, views.SparseCSCView, IOSpec("csc_matrix", "0.1.0"))( write_csc ) _REGISTRY.register_write(ZarrGroup, sparse.csr_matrix, IOSpec("csr_matrix", "0.1.0"))( write_csr ) _REGISTRY.register_write(ZarrGroup, views.SparseCSRView, IOSpec("csr_matrix", "0.1.0"))( write_csr ) _REGISTRY.register_write(ZarrGroup, sparse.csc_matrix, IOSpec("csc_matrix", "0.1.0"))( write_csc ) _REGISTRY.register_write(ZarrGroup, views.SparseCSCView, IOSpec("csc_matrix", "0.1.0"))( write_csc ) @_REGISTRY.register_write(H5Group, SparseDataset, IOSpec("", "0.1.0")) @_REGISTRY.register_write(ZarrGroup, SparseDataset, IOSpec("", "0.1.0")) def write_sparse_dataset(f, k, elem, dataset_kwargs=MappingProxyType({})): write_sparse_compressed( f, k, elem.to_backed(), fmt=elem.format_str, dataset_kwargs=dataset_kwargs ) # TODO: Cleaner way to do this f[k].attrs["encoding-type"] = f"{elem.format_str}_matrix" f[k].attrs["encoding-version"] = "0.1.0" @_REGISTRY.register_read(H5Group, IOSpec("csc_matrix", "0.1.0")) @_REGISTRY.register_read(H5Group, IOSpec("csr_matrix", "0.1.0")) @_REGISTRY.register_read(ZarrGroup, IOSpec("csc_matrix", "0.1.0")) @_REGISTRY.register_read(ZarrGroup, IOSpec("csr_matrix", "0.1.0")) def read_sparse(elem): return SparseDataset(elem).to_memory() @_REGISTRY.register_read_partial(H5Group, IOSpec("csc_matrix", "0.1.0")) @_REGISTRY.register_read_partial(H5Group, IOSpec("csr_matrix", "0.1.0")) def read_sparse_partial(elem, *, items=None, indices=(slice(None), slice(None))): return SparseDataset(elem)[indices] ############## # DataFrames # ############## @_REGISTRY.register_write(H5Group, views.DataFrameView, IOSpec("dataframe", "0.2.0")) @_REGISTRY.register_write(H5Group, pd.DataFrame, IOSpec("dataframe", "0.2.0")) @_REGISTRY.register_write(ZarrGroup, views.DataFrameView, IOSpec("dataframe", "0.2.0")) @_REGISTRY.register_write(ZarrGroup, pd.DataFrame, IOSpec("dataframe", "0.2.0")) def write_dataframe(f, key, df, dataset_kwargs=MappingProxyType({})): # Check arguments for reserved in ("_index",): if reserved in df.columns: raise ValueError(f"{reserved!r} is a reserved name for dataframe columns.") group = f.create_group(key) col_names = [check_key(c) for c in df.columns] group.attrs["column-order"] = col_names if df.index.name is not None: index_name = df.index.name else: index_name = "_index" group.attrs["_index"] = check_key(index_name) # ._values is "the best" array representation. It's the true array backing the # object, where `.values` is always a np.ndarray and .array is always a pandas # array. write_elem(group, index_name, df.index._values, dataset_kwargs=dataset_kwargs) for colname, series in df.items(): # TODO: this should write the "true" representation of the series (i.e. the underlying array or ndarray depending) write_elem(group, colname, series._values, dataset_kwargs=dataset_kwargs) @_REGISTRY.register_read(H5Group, IOSpec("dataframe", "0.2.0")) @_REGISTRY.register_read(ZarrGroup, IOSpec("dataframe", "0.2.0")) def read_dataframe(elem): columns = list(_read_attr(elem.attrs, "column-order")) idx_key = _read_attr(elem.attrs, "_index") df = pd.DataFrame( {k: read_elem(elem[k]) for k in columns}, index=read_elem(elem[idx_key]), columns=list(columns), ) if idx_key != "_index": df.index.name = idx_key return df # TODO: Figure out what indices is allowed to be at each element @_REGISTRY.register_read_partial(H5Group, IOSpec("dataframe", "0.2.0")) @_REGISTRY.register_read_partial(ZarrGroup, IOSpec("dataframe", "0.2.0")) def read_dataframe_partial( elem, *, items=None, indices=(slice(None, None), slice(None, None)) ): if items is not None: columns = [ col for col in _read_attr(elem.attrs, "column-order") if col in items ] else: columns = list(_read_attr(elem.attrs, "column-order")) idx_key = _read_attr(elem.attrs, "_index") df = pd.DataFrame( {k: read_elem_partial(elem[k], indices=indices[0]) for k in columns}, index=read_elem_partial(elem[idx_key], indices=indices[0]), columns=list(columns), ) if idx_key != "_index": df.index.name = idx_key return df # Backwards compat dataframe reading @_REGISTRY.register_read(H5Group, IOSpec("dataframe", "0.1.0")) @_REGISTRY.register_read(ZarrGroup, IOSpec("dataframe", "0.1.0")) def read_dataframe_0_1_0(elem): columns = _read_attr(elem.attrs, "column-order") idx_key = _read_attr(elem.attrs, "_index") df = pd.DataFrame( {k: read_series(elem[k]) for k in columns}, index=read_series(elem[idx_key]), columns=list(columns), ) if idx_key != "_index": df.index.name = idx_key return df def read_series(dataset: h5py.Dataset) -> Union[np.ndarray, pd.Categorical]: # For reading older dataframes if "categories" in dataset.attrs: if isinstance(dataset, ZarrArray): import zarr parent_name = dataset.name.rstrip(dataset.basename) parent = zarr.open(dataset.store)[parent_name] else: parent = dataset.parent categories_dset = parent[_read_attr(dataset.attrs, "categories")] categories = read_elem(categories_dset) ordered = bool(_read_attr(categories_dset.attrs, "ordered", False)) return pd.Categorical.from_codes( read_elem(dataset), categories, ordered=ordered ) else: return read_elem(dataset) @_REGISTRY.register_read_partial(H5Group, IOSpec("dataframe", "0.1.0")) @_REGISTRY.register_read_partial(ZarrGroup, IOSpec("dataframe", "0.1.0")) def read_partial_dataframe_0_1_0( elem, *, items=None, indices=(slice(None), slice(None)) ): if items is None: items = slice(None) else: items = list(items) return read_elem(elem)[items].iloc[indices[0]] ############### # Categorical # ############### @_REGISTRY.register_write(H5Group, pd.Categorical, IOSpec("categorical", "0.2.0")) @_REGISTRY.register_write(ZarrGroup, pd.Categorical, IOSpec("categorical", "0.2.0")) def write_categorical(f, k, v, dataset_kwargs=MappingProxyType({})): g = f.create_group(k) g.attrs["ordered"] = bool(v.ordered) write_elem(g, "codes", v.codes, dataset_kwargs=dataset_kwargs) write_elem(g, "categories", v.categories._values, dataset_kwargs=dataset_kwargs) @_REGISTRY.register_read(H5Group, IOSpec("categorical", "0.2.0")) @_REGISTRY.register_read(ZarrGroup, IOSpec("categorical", "0.2.0")) def read_categorical(elem): return pd.Categorical.from_codes( codes=read_elem(elem["codes"]), categories=read_elem(elem["categories"]), ordered=_read_attr(elem.attrs, "ordered"), ) @_REGISTRY.register_read_partial(H5Group, IOSpec("categorical", "0.2.0")) @_REGISTRY.register_read_partial(ZarrGroup, IOSpec("categorical", "0.2.0")) def read_categorical(elem, *, items=None, indices=(slice(None),)): return pd.Categorical.from_codes( codes=read_elem_partial(elem["codes"], indices=indices), categories=read_elem(elem["categories"]), ordered=_read_attr(elem.attrs, "ordered"), ) #################### # Pandas nullables # #################### @_REGISTRY.register_write( H5Group, pd.arrays.IntegerArray, IOSpec("nullable-integer", "0.1.0") ) @_REGISTRY.register_write( ZarrGroup, pd.arrays.IntegerArray, IOSpec("nullable-integer", "0.1.0") ) @_REGISTRY.register_write( H5Group, pd.arrays.BooleanArray, IOSpec("nullable-boolean", "0.1.0") ) @_REGISTRY.register_write( ZarrGroup, pd.arrays.BooleanArray, IOSpec("nullable-boolean", "0.1.0") ) def write_nullable_integer(f, k, v, dataset_kwargs=MappingProxyType({})): g = f.create_group(k) if v._mask is not None: write_elem(g, "mask", v._mask, dataset_kwargs=dataset_kwargs) write_elem(g, "values", v._data, dataset_kwargs=dataset_kwargs) @_REGISTRY.register_read(H5Group, IOSpec("nullable-integer", "0.1.0")) @_REGISTRY.register_read(ZarrGroup, IOSpec("nullable-integer", "0.1.0")) def read_nullable_integer(elem): if "mask" in elem: return pd.arrays.IntegerArray( read_elem(elem["values"]), mask=read_elem(elem["mask"]) ) else: return pd.array(read_elem(elem["values"])) @_REGISTRY.register_read(H5Group, IOSpec("nullable-boolean", "0.1.0")) @_REGISTRY.register_read(ZarrGroup, IOSpec("nullable-boolean", "0.1.0")) def read_nullable_boolean(elem): if "mask" in elem: return pd.arrays.BooleanArray( read_elem(elem["values"]), mask=read_elem(elem["mask"]) ) else: return pd.array(read_elem(elem["values"])) ########### # Scalars # ########### @_REGISTRY.register_read(H5Array, IOSpec("numeric-scalar", "0.2.0")) @_REGISTRY.register_read(ZarrArray, IOSpec("numeric-scalar", "0.2.0")) def read_scalar(elem): return elem[()] def write_scalar(f, key, value, dataset_kwargs=MappingProxyType({})): return f.create_dataset(key, data=np.array(value), **dataset_kwargs) def write_hdf5_scalar(f, key, value, dataset_kwargs=MappingProxyType({})): # Can’t compress scalars, error is thrown dataset_kwargs = dataset_kwargs.copy() dataset_kwargs.pop("compression", None) dataset_kwargs.pop("compression_opts", None) f.create_dataset(key, data=np.array(value), **dataset_kwargs) # fmt: off for numeric_scalar_type in [ bool, np.bool_, np.uint8, np.uint16, np.uint32, np.uint64, int, np.int8, np.int16, np.int32, np.int64, float, *np.floating.__subclasses__(), *np.complexfloating.__subclasses__(), ]: _REGISTRY.register_write(H5Group, numeric_scalar_type, IOSpec("numeric-scalar", "0.2.0"))(write_hdf5_scalar) _REGISTRY.register_write(ZarrGroup, numeric_scalar_type, IOSpec("numeric-scalar", "0.2.0"))(write_scalar) # fmt: on _REGISTRY.register_write(ZarrGroup, str, IOSpec("string", "0.2.0"))(write_scalar) _REGISTRY.register_write(ZarrGroup, np.str_, IOSpec("string", "0.2.0"))(write_scalar) @_REGISTRY.register_read(H5Array, IOSpec("string", "0.2.0")) def read_hdf5_string(elem): return elem.asstr()[()] @_REGISTRY.register_read(ZarrArray, IOSpec("string", "0.2.0")) def read_zarr_string(elem): return str(elem[()]) _REGISTRY.register_read(H5Array, IOSpec("bytes", "0.2.0"))(read_scalar) _REGISTRY.register_read(ZarrArray, IOSpec("bytes", "0.2.0"))(read_scalar) @_REGISTRY.register_write(H5Group, np.str_, IOSpec("string", "0.2.0")) @_REGISTRY.register_write(H5Group, str, IOSpec("string", "0.2.0")) def write_string(f, k, v, dataset_kwargs): dataset_kwargs = dataset_kwargs.copy() dataset_kwargs.pop("compression", None) dataset_kwargs.pop("compression_opts", None) f.create_dataset( k, data=np.array(v, dtype=h5py.string_dtype(encoding="utf-8")), **dataset_kwargs ) # @_REGISTRY.register_write(np.bytes_, IOSpec("bytes", "0.2.0")) # @_REGISTRY.register_write(bytes, IOSpec("bytes", "0.2.0")) # def write_string(f, k, v, dataset_kwargs): # if "compression" in dataset_kwargs: # dataset_kwargs = dict(dataset_kwargs) # dataset_kwargs.pop("compression") # f.create_dataset(k, data=np.array(v), **dataset_kwargs) ``` #### File: anndata/tests/test_io_warnings.py ```python from importlib.util import find_spec from pathlib import Path import warnings import pytest import anndata as ad from anndata.tests.helpers import gen_adata @pytest.mark.skipif(not find_spec("scanpy"), reason="Scanpy is not installed") def test_old_format_warning_thrown(): import scanpy as sc with pytest.warns(ad._warnings.OldFormatWarning): pth = Path(sc.datasets.__file__).parent / "10x_pbmc68k_reduced.h5ad" ad.read_h5ad(pth) def test_old_format_warning_not_thrown(tmp_path): pth = tmp_path / "current.h5ad" adata = gen_adata((20, 10)) adata.write_h5ad(pth) with warnings.catch_warnings(record=True) as record: warnings.simplefilter("always", ad._warnings.OldFormatWarning) ad.read_h5ad(pth) if len(record) != 0: msg_content = "\n".join( [f"\t{w.category.__name__}('{w.message}')" for w in record] ) pytest.fail( f"Warnings were thrown when they shouldn't be. Got:\n\n{msg_content}" ) ```
{ "source": "JoshuaGRubin/AI-Tweet-Validator", "score": 4 }
#### File: tweetvalidator/data_processing/filter_tweets.py ```python import os import re import json CONFIG_PATH = "../../config.json" def filter_tweets_from_files(input_file_path, output_file_path, filters, min_tweet_characters): """ Reads tweets from a json file of [[tweet, date],...], removes patters matching the regexps in filters, and if more than <min_tweet_characters> are left, writes to the output location. Args: input_file_path (str): where to look for user file output_file_path (str): where to deposit filtered file filters (list): List of reg. expressions whose matches will be removed. min_tweet_characters (int): Tweets with fewer characters will be deleted. """ output_tweets = [] print('Processing ' + input_file_path + '.', end=' ') with open(input_file_path, 'r') as file: in_data = json.loads(file.read()) for tweet in in_data: filtered_tweet = tweet[0] # Remove text matching each of the filters sequentially. for reFilter in filters: filtered_tweet = re.sub(reFilter,'', filtered_tweet) # Trim whitespace filtered_tweet = filtered_tweet.strip() # Pitch if below min character threshold if len(filtered_tweet) >= min_tweet_characters: output_tweets.append([filtered_tweet, tweet[1]]) print(str(len(output_tweets)), 'tweets processed.') with open(output_file_path, 'w') as file: json.dump(output_tweets, file) def filter_tweets_from_directories(input_directory_path, output_directory_path, filters, min_tweet_characters): """Reads raw twitter output and filters based on a list of reg expressions. Files are json formatted lists of [tweet, date]. Args: input_directory_path (str): where to look for files starting with @ containing raw tweets output_directory_path (str): where to deposit identically named files with filters applied. filters (list): List of reg. expressions whose matches will be removed. min_tweet_characters (int): Tweets with fewer characters will be deleted. """ # Look for files beginning with @, i.e. twitter handles tweet_files = [f for f in os.listdir(input_directory_path) if f[0]=='@'] for file_name in tweet_files: input_file_path = os.path.join(input_directory_path, file_name) output_file_path = os.path.join(output_directory_path, file_name) filter_tweets_from_files(input_file_path, output_file_path, filters, min_tweet_characters) ``` #### File: tweetvalidator/models/base_model.py ```python class Model: """ Base class for binary classifier to identify fraudulent tweet. """ def set_hyperparameters(self, params = {}): """ Set model hyperparameters e.g. classifier threshold. Args: params (dict): Inference-time settings (e.g. cos-sim threshold)""" self.params = params ```
{ "source": "joshuagruenstein/lhyra", "score": 3 }
#### File: lhyra/python/closestpoints.py ```python from random import random, shuffle, randint import math from time import time, sleep from tqdm import tqdm import matplotlib.pyplot as plt import numpy as np from lhyra import Solver, FeatureExtractor def random_points(length: int=100): return [(random(), random()) for _ in range(length)] class PointsFeatureExtractor(FeatureExtractor): @property def shape(self): """ Get the output shape of the feature extractor. :return: A list of integers representing the output's dimensions. """ return [1] # Length, (mean, variance)? def __call__(self, data): """ Call extractor on given data. :param data: A piece of data to extract the parameters of. :return: Floats between 0 and 1 of shape self.shape. """ return [len(data)] def point_dist(p1, p2): return math.sqrt((p1[0] - p2[0])**2 + (p1[1] - p2[1])**2) def points_brute(points, hook, _={}): min_dist = float('inf') closest_pair = None for i in range(len(points)): for j in range(i+1, len(points)): p, q = points[i], points[j] if point_dist(p,q) < min_dist: min_dist = point_dist(p,q) closest_pair = (p,q) return closest_pair,0 def points_smart(points, hook, _={}): #sleep(0.00001) if len(points) <= 3: return points_brute(points,None) psorted = sorted(points, key=lambda p:p[0]) right, right_overhead = hook(psorted[:len(psorted)//2]) left, left_overhead = hook(psorted[len(psorted)//2:]) mid = psorted[len(psorted)//2][0] dleft, dright = point_dist(*left), point_dist(*right) d = min(dleft, dright) strip = [] for x,y in points: if point_dist((x,y),(mid,y)) <= d: strip.append((x,y)) strip = sorted(strip, key=lambda p:p[1]) min_dist = d closest_pair = None for i, point in enumerate(strip): for j in range(i+1, min(len(strip),i+8)): if point_dist(point,strip[j]) < min_dist: min_dist = point_dist(point,strip[j]) closest_pair = (point,strip[j]) if closest_pair is None: return (left if dleft < dright else right), right_overhead + left_overhead return closest_pair, right_overhead + left_overhead # def timer(func, iters=10): # start = time() # for _ in range(iters): # func() # return (time() - start)/iters # dataset = [[(random(), random()) for _ in range(2**i)] for i in range(1,10)] # dumb = [timer(lambda:point_dist(*points_brute(p))) for p in tqdm(dataset)] # smart = [timer(lambda:point_dist(*points_smart(p))) for p in tqdm(dataset)] # plt.plot(np.log(dumb), label="dumb") # plt.plot(np.log(smart), label="smart!") # plt.legend() # plt.show() ``` #### File: lhyra/python/policy.py ```python import numpy as np from tqdm import tqdm from typing import Any, List from lhyra import Optimizer, Lhyra, Solver import matplotlib.pyplot as plt from random import random from functools import reduce from copy import deepcopy from math import exp """ class PolicyLinearOptimizer(Optimizer): def __init__(self, lhyra: Lhyra, gamma: float=0.99): "" Initialize an optimizer. :param lhyra: A Lhyra instance to optimize. :param gamma: Discount factor (default 0.99) "" super().__init__(lhyra) self.gamma = gamma self.policy = torch.nn.Sequential( torch.nn.Linear(lhyra.extractor.shape[0], len(lhyra.solvers)), torch.nn.Softmax(dim=0) ) for name, param in self.policy.named_parameters(): if param.requires_grad: print(name, param.data) self.opt = torch.optim.Adam(self.policy.parameters(), lr=1e-2) self.eps = np.finfo(np.float32).eps.item() self.saved_log_probs = [] def train(self, iters: int=1000, plot=False): "" Train the classifier on the data, given a hook into the Lhyra object's eval method. :param iters: Number of training iterations to run. :param plot: Show a plot. "" data = self.lhyra.data_store.get_data(iters) totals = [] for episode, datum in enumerate(tqdm(data)): self.lhyra.clear() self.lhyra.eval(datum) totals.append(self.lhyra.times[0]) rewards = [-t for t in self.lhyra.times] returns = [] policy_loss = [] R = 0 for r in rewards: R = r + self.gamma * R returns.insert(0,R) returns = torch.tensor(returns) rns = (returns - returns.mean()) / (returns.std() + self.eps) for log_prob, R in zip(self.saved_log_probs, returns): policy_loss.append(log_prob * R) self.opt.zero_grad() policy_loss = torch.cat(policy_loss).sum() policy_loss.backward() self.opt.step() self.saved_log_probs.clear() vals = [ sum(totals[i:i + iters//100])/100 for i in range(0,iters,iters//100) ] plt.plot(vals) plt.show() def solver(self, features: List) -> Solver: "" Pick and parametrize a solver from the bag of solvers. :param features: Features provided to inform solver choice. :return: The Solver best suited given the features provided. "" state = torch.FloatTensor(features).unsqueeze(0) probs = self.policy(state) m = torch.distributions.Categorical(probs) action = m.sample() self.saved_log_probs.append(m.log_prob(action)) if self.lhyra.vocal: print(self.lhyra.solvers[action.item()]) return self.lhyra.solvers[action.item()].parametrized({}) """ class SAOptimizer(Optimizer): def __init__(self, lhyra: Lhyra, agg: float=2): """ Initialize an optimizer. :param lhyra: A Lhyra instance to optimize. :param gamma: Discount factor (default 0.99) """ super().__init__(lhyra) self.lhyra = lhyra self.policy = [[random() for t in range(2**lhyra.extractor.shape[0])] for s in lhyra.solvers] # Assuming 1D feature vect self.agg = agg # Aggressiveness of training parameters def train(self, iters: int=1000, sample: int=100, plot=False): """ Train the classifier on the data, given a hook into the Lhyra object's eval method. :param iters: Number of training iterations to run. :param plot: Show a plot. """ data = self.lhyra.data_store.get_data(sample) self.prev_time = 999999999 times = [] for i in range(iters): temperature = min(exp(-4*i/iters), .5) time = 0 for episode, datum in enumerate(tqdm(data)): self.lhyra.clear() self.lhyra.eval(datum) time += self.lhyra.times[0] # Get the total time times.append(time) if time < self.prev_time:# or random() < temperature: self.prev_policy = deepcopy(self.policy) self.prev_time = time # Perturb. Decrease perturb sizes over time. self.policy = [[t+(self.agg*random()-self.agg)*(1-i/iters) for t in s] for s in self.prev_policy] self.policy = self.prev_policy # Don't use the last one, use the second-to-last print(self.policy) plt.plot(range(iters), times) plt.show() def solver(self, features: List) -> Solver: """ Pick and parametrize a solver from the bag of solvers. :param features: Features provided to inform solver choice. :return: The Solver best suited given the features provided. """ """ if self.lhyra.vocal: for i in range(2**len(features)): print([features[n] for n in range(len(features)) if i&(2**n)], self.policy[0][i]) """ ans = max(list(range(len(self.policy))), key=lambda s: sum([reduce(lambda x, y: x*y, [features[n] for n in range(len(features)) if i&(2**n)]+[1])*t for i, t in enumerate(self.policy[s])])) if self.lhyra.vocal: print(self.lhyra.solvers[ans]) return self.lhyra.solvers[ans].parametrized({}) ``` #### File: lhyra/python/test_plo.py ```python from sorting import SortFeatureExtractor, merge_sort, radix_sort, insertion_sort, quick_sort, random_list from qlearn import ValueOptimizer from lhyra import Lhyra, Solver, DataGenerator from time import time data = DataGenerator(lambda: sorted(random_list())) solvers = [ Solver(merge_sort, []), Solver(insertion_sort, []), Solver(quick_sort, []) ] lhyra = Lhyra(solvers, data, SortFeatureExtractor(), ValueOptimizer) lhyra.train(iters=1000) def bench(): ex = sorted(random_list()) start = time() py = sorted(ex) print("Py time:", time()-start) start = time() lh = lhyra.eval(ex, vocal=True) print("Lhyra time:", time()-start) start = time() merge_hook = lambda t: merge_sort(t, merge_hook, None) merge_sort(ex, merge_hook, None) print("Merge time:", time()-start) start = time() insert_hook = lambda t: insertion_sort(t, insert_hook, None) insertion_sort(ex, insert_hook, None) print("Insertion time:", time()-start) start = time() quick_hook = lambda t: quick_sort(t, quick_hook, None) quick_sort(ex, quick_hook, None) print("Quick time:", time()-start) start = time() radix_hook = lambda t: radix_sort(t, radix_hook, None) radix_sort(ex, radix_hook, None) print("Radix time:", time()-start) bench() ```
{ "source": "joshuagryphon/plastid", "score": 3 }
#### File: plastid/bin/counts_in_region.py ```python import argparse import inspect import sys import itertools import warnings import numpy from plastid.genomics.roitools import SegmentChain from plastid.util.io.filters import NameDateWriter from plastid.util.io.openers import argsopener, get_short_name from plastid.util.scriptlib.argparsers import ( AnnotationParser, AlignmentParser, MaskParser, BaseParser, ) from plastid.util.scriptlib.help_formatters import format_module_docstring warnings.simplefilter("once") printer = NameDateWriter(get_short_name(inspect.stack()[-1][1])) _DISABLED = ["normalize"] def main(argv=sys.argv[1:]): """Command-line program Parameters ---------- argv : list, optional A list of command-line arguments, which will be processed as if the script were called from the command line if :func:`main` is called directly. Default: `sys.argv[1:]`. The command-line arguments, if the script is invoked from the command line """ ap = AnnotationParser() annotation_file_parser = ap.get_parser(conflict_handler="resolve") al = AlignmentParser(disabled=_DISABLED) alignment_file_parser = al.get_parser(conflict_handler="resolve") mp = MaskParser() mask_file_parser = mp.get_parser() bp = BaseParser() base_parser = bp.get_parser() parser = argparse.ArgumentParser( description = format_module_docstring(__doc__), formatter_class = argparse.RawDescriptionHelpFormatter, parents = [ base_parser, alignment_file_parser, annotation_file_parser, mask_file_parser, ], ) # yapf: disable parser.add_argument("outfile", type=str, help="Output filename") args = parser.parse_args(argv) bp.get_base_ops_from_args(args) ga = al.get_genome_array_from_args(args, printer=printer) transcripts = ap.get_transcripts_from_args(args, printer=printer, return_type=SegmentChain) crossmap = mp.get_genome_hash_from_args(args, printer=printer) ga_sum = ga.sum() normconst = 1000.0 * 1e6 / ga_sum with argsopener(args.outfile, args, "w") as fout: fout.write("## total_dataset_counts: %s\n" % ga_sum) fout.write("region_name\tregion\tcounts\tcounts_per_nucleotide\trpkm\tlength\n") for n, ivc in enumerate(transcripts): name = ivc.get_name() masks = crossmap.get_overlapping_features(ivc) ivc.add_masks(*itertools.chain.from_iterable((X for X in masks))) if n % 1000 == 0: printer.write("Processed %s regions..." % n) counts = numpy.nansum(ivc.get_masked_counts(ga)) length = ivc.masked_length rpnt = numpy.nan if length == 0 else float(counts) / length rpkm = numpy.nan if length == 0 else rpnt * normconst ltmp = [name, str(ivc), "%.8e" % counts, "%.8e" % rpnt, "%.8e" % rpkm, "%d" % length] fout.write("%s\n" % "\t".join(ltmp)) fout.close() printer.write("Processed %s regions total." % n) printer.write("Done.") if __name__ == '__main__': main() ``` #### File: plastid/bin/make_wiggle.py ```python __author__ = "joshua" __date__ = "2011-03-18" import warnings import inspect import sys import argparse from plastid.util.scriptlib.argparsers import AlignmentParser, BaseParser from plastid.util.io.filters import NameDateWriter from plastid.util.io.openers import get_short_name, argsopener from plastid.plotting.colors import get_rgb255 from plastid.util.scriptlib.help_formatters import format_module_docstring warnings.simplefilter("once") printer = NameDateWriter(get_short_name(inspect.stack()[-1][1])) def main(argv=sys.argv[1:]): """Command-line program Parameters ---------- argv : list, optional A list of command-line arguments, which will be processed as if the script were called from the command line if :py:func:`main` is called directly. Default: sys.argv[1:] (actually command-line arguments) """ ap = AlignmentParser() bp = BaseParser() parser = argparse.ArgumentParser( description=format_module_docstring(__doc__), formatter_class=argparse.RawDescriptionHelpFormatter, parents=[bp.get_parser(), ap.get_parser()] ) parser.add_argument( "-o", "--out", dest="outbase", type=str, required=True, metavar="FILENAME", help="Base name for output files" ) parser.add_argument("--window_size",default=100000,metavar="N",type=int, help="Size of nucleotides to fetch at once for export. "+\ "Large values are faster but require more memory "+\ "(Default: 100000)") track_opts = parser.add_argument_group(title="Browser track options") track_opts.add_argument( "--color", type=str, default=None, help="An RGB hex string (`'#NNNNNN'`, `N` in `[0-9,A-F]`) specifying \ the track color." ) track_opts.add_argument( "-t", "--track_name", dest="track_name", type=str, help="Name to give browser track", default=None ) track_opts.add_argument( "--output_format", choices=("bedgraph", "variable_step"), default="bedgraph", help="Format of output file (Default: bedgraph)" ) args = parser.parse_args(argv) gnd = ap.get_genome_array_from_args(args, printer=printer) bp.get_base_ops_from_args(args) if args.track_name is None: name = args.outbase else: name = args.track_name if args.color is not None: fw_color = rc_color = "%s,%s,%s" % tuple(get_rgb255(args.color)) else: fw_color = rc_color = "0,0,0" if args.output_format == "bedgraph": outfn = gnd.to_bedgraph elif args.output_format == "variable_step": outfn = gnd.to_variable_step track_fw = "%s_fw.wig" % args.outbase track_rc = "%s_rc.wig" % args.outbase with argsopener(track_fw, args, "w") as fw_out: printer.write("Writing forward strand track to %s ..." % track_fw) outfn( fw_out, "%s_fw" % name, "+", window_size=args.window_size, color=fw_color, printer=printer ) fw_out.close() with argsopener(track_rc, args, "w") as rc_out: printer.write("Writing reverse strand track to %s ..." % track_rc) outfn( rc_out, "%s_rc" % name, "-", window_size=args.window_size, color=rc_color, printer=printer ) rc_out.close() printer.write("Done!") if __name__ == "__main__": main() ``` #### File: plastid/bin/phase_by_size.py ```python import sys import argparse import inspect import warnings import pandas as pd import numpy import matplotlib matplotlib.use("Agg") from plastid.util.scriptlib.argparsers import ( AlignmentParser, AnnotationParser, PlottingParser, BaseParser, ) from plastid.util.io.openers import get_short_name, argsopener, read_pl_table from plastid.util.io.filters import NameDateWriter from plastid.util.scriptlib.help_formatters import format_module_docstring from plastid.util.services.exceptions import DataWarning, ArgumentWarning from plastid.plotting.plots import phase_plot from plastid.genomics.roitools import SegmentChain warnings.simplefilter("once") printer = NameDateWriter(get_short_name(inspect.stack()[-1][1])) def roi_row_to_cds(row): """Helper function to extract coding portions from maximal spanning windows flanking CDS starts that are created by |metagene| ``generate`` subprogram. Parameters ---------- row : (int, Series) Row from a :class:`pandas.DataFrame` of an ROI file made by the |metagene| ``generate`` subprogram Returns ------- |SegmentChain| Coding portion of maximal spanning window """ chainstr, alignment_offset, zero_point = row[1][["region", "alignment_offset", "zero_point"]] chain = SegmentChain.from_str(chainstr) cds_start = zero_point - alignment_offset subchain = chain.get_subchain(cds_start, chain.length) return subchain def main(argv=sys.argv[1:]): """Command-line program Parameters ---------- argv : list, optional A list of command-line arguments, which will be processed as if the script were called from the command line if :py:func:`main` is called directly. Default: `sys.argv[1:]`. The command-line arguments, if the script is invoked from the command line """ al = AlignmentParser( disabled=["normalize", "big_genome", "spliced_bowtie_files"], input_choices=["BAM"], ) an = AnnotationParser() pp = PlottingParser() bp = BaseParser() plotting_parser = pp.get_parser() alignment_file_parser = al.get_parser(conflict_handler="resolve") annotation_file_parser = an.get_parser(conflict_handler="resolve") base_parser = bp.get_parser() parser = argparse.ArgumentParser( description=format_module_docstring(__doc__), formatter_class=argparse.RawDescriptionHelpFormatter, conflict_handler="resolve", parents=[base_parser, annotation_file_parser, alignment_file_parser, plotting_parser] ) parser.add_argument("roi_file",type=str,nargs="?",default=None, help="Optional. ROI file of maximal spanning windows surrounding start codons, "+\ "from ``metagene generate`` subprogram. Using this instead of `--annotation_files` "+\ "prevents double-counting of codons when multiple transcript isoforms exist "+\ "for a gene. See the documentation for `metagene` for more info about ROI files."+\ "If an ROI file is not given, supply an annotation with ``--annotation_files``") parser.add_argument("outbase", type=str, help="Required. Basename for output files") parser.add_argument( "--codon_buffer", type=int, default=5, help="Codons before and after start codon to ignore (Default: 5)" ) args = parser.parse_args(argv) bp.get_base_ops_from_args(args) pp.set_style_from_args(args) gnd = al.get_genome_array_from_args(args, printer=printer) read_lengths = list(range(args.min_length, args.max_length + 1)) codon_buffer = args.codon_buffer dtmp = { "read_length": numpy.array(read_lengths), "reads_counted": numpy.zeros_like(read_lengths, dtype=int), } if args.roi_file is not None: using_roi = True roi_table = read_pl_table(args.roi_file) regions = roi_table.iterrows() transform_fn = roi_row_to_cds back_buffer = -1 if len(args.annotation_files) > 0: warnings.warn( "If an ROI file is given, annotation files are ignored. Pulling regions from '%s'. Ignoring '%s'" % (args.roi_file, ", ".join(args.annotation_files)), ArgumentWarning ) else: using_roi = False if len(args.annotation_files) == 0: printer.write("Either an ROI file or at least annotation file must be given.") sys.exit(1) else: warnings.warn( "Using a transcript annotation file instead of an ROI file can lead to double-counting of codons if the annotation contains multiple transcripts per gene.", ArgumentWarning ) regions = an.get_transcripts_from_args(args, printer=printer) back_buffer = -codon_buffer transform_fn = lambda x: x.get_cds() phase_sums = {} for k in read_lengths: phase_sums[k] = numpy.zeros(3) for n, roi in enumerate(regions): if n % 1000 == 1: printer.write("Counted %s ROIs ..." % n) # transformation needed to extract CDS from transcript or from ROI file window cds_part = transform_fn(roi) # only calculate for coding genes if len(cds_part) > 0: read_dict = {} count_vectors = {} for k in read_lengths: read_dict[k] = [] count_vectors[k] = [] # for each seg, fetch reads, sort them, and create individual count vectors for seg in cds_part: reads = gnd.get_reads(seg) for read in filter(lambda x: len(x.positions) in read_dict, reads): read_dict[len(read.positions)].append(read) # map and sort by length for read_length in read_dict: count_vector = list(gnd.map_fn(read_dict[read_length], seg)[1]) count_vectors[read_length].extend(count_vector) # add each count vector for each length to total for k, vec in count_vectors.items(): counts = numpy.array(vec) if cds_part.strand == "-": counts = counts[::-1] if len(counts) % 3 == 0: counts = counts.reshape((int(len(counts) / 3), 3)) else: if using_roi == False: message = "Length of '%s' coding region (%s nt) is not divisible by 3. Ignoring last partial codon." % ( roi.get_name(), len(counts) ) warnings.warn(message, DataWarning) newlen = int(len(counts) // 3) counts = counts[:3 * newlen] counts = counts.reshape(newlen, 3) phase_sums[k] += counts[codon_buffer:back_buffer, :].sum(0) printer.write("Counted %s ROIs total." % (n + 1)) for k in dtmp: dtmp[k] = numpy.array(dtmp[k]) # total reads counted for each size for k in read_lengths: dtmp["reads_counted"][dtmp["read_length"] == k] = phase_sums[k].sum() # read length distribution dtmp["fraction_reads_counted" ] = dtmp["reads_counted"].astype(float) / dtmp["reads_counted"].sum() # phase vectors phase_vectors = {K: V.astype(float) / V.astype(float).sum() for K, V in phase_sums.items()} for i in range(3): dtmp["phase%s" % i] = numpy.zeros(len(dtmp["read_length"])) for k, vec in phase_vectors.items(): for i in range(3): dtmp["phase%s" % i][dtmp["read_length"] == k] = vec[i] # phase table fn = "%s_phasing.txt" % args.outbase printer.write("Saving phasing table to %s ..." % fn) dtmp = pd.DataFrame(dtmp) with argsopener(fn, args) as fh: dtmp.to_csv( fh, columns=[ "read_length", "reads_counted", "fraction_reads_counted", "phase0", "phase1", "phase2", ], float_format="%.6f", na_rep="nan", sep="\t", index=False, header=True ) fh.close() fig = {} if args.figsize is not None: fig["figsize"] = tuple(args.figsize) colors = pp.get_colors_from_args(args, len(read_lengths)) fn = "%s_phasing.%s" % (args.outbase, args.figformat) printer.write("Plotting to %s ..." % fn) plot_counts = numpy.vstack([V for (_, V) in sorted(phase_sums.items())]) fig, (ax1,_) = phase_plot(plot_counts,labels=read_lengths,lighten_by=0.3, cmap=None,color=colors,fig=fig) if args.title is not None: ax1.set_title(args.title) else: ax1.set_title("Phasing stats for %s" % args.outbase) fig.savefig(fn, dpi=args.dpi, bbox_inches="tight") if __name__ == "__main__": main() ``` #### File: plastid/genomics/seqtools.py ```python import random, re from Bio.Alphabet import generic_dna from Bio.Seq import Seq from Bio.SeqRecord import SeqRecord from twobitreader import TwoBitFile IUPAC_TABLE = { "A": "A", "C": "C", "T": ("T", "U"), "U": ("T", "U"), "G": "G", "N": ("A", "C", "T", "G", "U"), # puRines "R": ("A", "G"), # pYrimidines "Y": ("C", "T", "U"), # Strong binding "S": ("G", "C"), # Weak binding "W": ("A", "T", "U"), # Keto-functionalized "K": ("G", "T", "U"), # aMino-functionalized "M": ("A", "C"), # B = any but A "B": ("C", "G", "T", "U"), # C = any but C "D": ("A", "G", "T", "U"), # H = any but G "H": ("A", "C", "T", "U"), # V = any but T or U "V": ("A", "C", "G"), } """Dictionary mapping IUPAC nucleotide symbols to tuples of nucleotides they represent (e.g. R -> (A, G) ) """ def seq_to_regex(inp, flags=0): """Convert a nucleotide sequence of IUPAC nucleotide characters as a regular expression. Ambiguous IUPAC characters are converted to groups (e.g. `'Y'` to `'[CTU]'`), and T and U are considered equivalent. Parameters ---------- inp : str Nucleotide sequence using IUPAC nucleotide codes flags : int, optional Flags to pass to :py:func:`re.compile` (Default: 0 / no flags) Examples -------- Convert a sequence to a regex:: >>> seq_to_regex("CARYYA").pattern 'CA[AG][CTU][CTU]A' Returns ------- :py:class:`re.RegexObject` Regular expression pattern corresponding to IUPAC sequence in `inp` """ out = [] for ch in inp: if len(IUPAC_TABLE.get(ch, ch)) == 1: out.append(ch) else: out.append("[" + "".join(IUPAC_TABLE.get(ch, ch)) + "]") return re.compile("".join(out), flags=flags) def mutate_seqs(seqs, nucleotides="NACTG", mutations=1): """Generate all sequences within `mutations` distance from a reference sequence Parameters ---------- seqs : str or list of str Single reference sequence (a string) or a group of strings nucleotides : list of char, optional Permitted nucleotide substitutions (Default: `'NACTG'`) mutations : int, optional Number of substitutions to make (Default: `1`) Returns ------- set all sequences within `mutations` substitutions from the sequence(s) specified in `seqs` """ if isinstance(seqs, str): seqs = [seqs] if mutations == 0: return set(seqs) else: seqsout = [] for seq in seqs: for nuc in nucleotides: for i in range(len(seq)): newseq = list(seq)[:] newseq[i] = nuc seqsout.append("".join(newseq)) seqsout.extend(mutate_seqs(seqsout, nucleotides=nucleotides, mutations=mutations - 1)) return set(seqsout) | set(seqs) def random_seq(size, nucleotides="ACTG"): """Generate a random nucleotide sequence of length `size` and composition `nucleotides` Parameters ---------- size : int length of desired sequence nucleotides : str, optional string of nucleotides to use in sequence, in desired base composition (i.e. need not be unique; can supply `'AATCG'` to increase `'A'` bias. Default: `'ACTG'`) Returns ------- str : randomized DNA sequence """ seq = "".join([nucleotides[random.randrange(0, len(nucleotides))] for _ in range(0, size)]) return seq def revive(twobitreader, seqname): _TwoBitSeqProxy(twobitreader[seqname], twobitreader) class _TwoBitSeqProxy(object): """Adaptor class that fetches :class:`Bio.SeqRecord.SeqRecord` objects from :class:`twobitreader.TwoBitSequence` objects Defines `seq` property and :meth:`~_TwoBitSeqProxy.reverse_complement` method """ def __init__(self, twobitfile, key): """ Parameters ---------- twobitseq : :class:`twobitfile.TwoBitSequence` """ self.name = key self._twobitfile = twobitfile self.twobitseq = twobitfile[key] self._seq = None def __reduce__(self): return (_TwoBitSeqProxy, (self._twobitfile, self.name)) def __getitem__(self, slice_): return SeqRecord( Seq(self.twobitseq.get_slice(min_=slice_.start, max_=slice_.stop), generic_dna) ) def __len__(self): return len(self.twobitseq) def __str__(self): """Return sequence in `self.twobitseq` as str""" return str(self.twobitseq) def __getattr__(self, attr): if attr == "seq": if self._seq is None: self._seq = Seq(str(self.twobitseq), generic_dna) return self._seq def reverse_complement(self): """Return the reverse complement of the TwoBitSequence Returns ------- :class:`Bio.SeqRecord.SeqRecord` Reverse complement of the sequence held in `self.twobitseq` """ return SeqRecord(self.seq).reverse_complement() class TwoBitSeqRecordAdaptor(object): """Adaptor class that makes a :class:`twobitreader.TwoBitFile` behave like a dictionary of :class:`Bio.SeqRecord.SeqRecord` objects. """ def __init__(self, fh): self.twobitfile = TwoBitFile(fh) self._filename = fh self._chroms = {K: _TwoBitSeqProxy(self.twobitfile, K) for K in self.twobitfile} def __reduce__(self): return (TwoBitSeqRecordAdaptor, (self._filename, )) def __getitem__(self, key): return self._chroms[key] def __getattr__(self, attr): try: return getattr(self._chroms, attr) except AttributeError: return getattr(self.twobitfile, attr) def __iter__(self): return iter(self._chroms) def __len__(self): return len(self._chroms) ``` #### File: plastid/readers/bed.py ```python __date__ = "Aug 23, 2011" __author__ = "joshua" import shlex from plastid.readers.common import AssembledFeatureReader from plastid.util.services.exceptions import FileFormatWarning, warn bed_x_formats = { "bedDetail": [ ("ID", str), ("description", str), ], "narrowPeak": [("signalValue", float), ("pValue", float), ("qValue", float), ("peak", int)], "broadPeak": [("signalValue", float), ("pValue", float), ("qValue", float)], "gappedPeak": [("signalValue", float), ("pValue", float), ("qValue", float)], "tagAlign": [("sequence", str), ("score", float), ("strand", str)], "pairedTagAlign": [("seq1", str), ("seq2", str)], "peptideMapping": [("rawScore", float), ("spectrumId", str), ("peptideRank", int), ("peptideRepeatCount", int)], } """Column names and types for various :term:`extended BED` formats used by the `ENCODE`_ project. These can be passed to the `extra_columns` keyword of :class:`BED_Reader`.""" class BED_Reader(AssembledFeatureReader): """ BED_Reader(*streams, return_type=SegmentChain, add_three_for_stop=False, extra_columns=0, printer=None, tabix=False) Reads `BED`_ and :term:`extended BED` files line-by-line into |SegmentChains| or |Transcripts|. Metadata, if present in a track declaration, is saved in `self.metadata`. Malformed lines are stored in `self.rejected`, while parsing continues. Parameters ---------- *streams : file-like One or more open filehandles of input data. return_type : |SegmentChain| or subclass, optional Type of feature to return from assembled subfeatures (Default: |SegmentChain|) add_three_for_stop : bool, optional Some annotation files exclude the stop codon from CDS annotations. If set to `True`, three nucleotides will be added to the threeprime end of each CDS annotation, **UNLESS** the annotated transcript contains explicit stop_codon feature. (Default: `False`) extra_columns: int or list optional Extra, non-BED columns in :term:`extended BED` format file corresponding to feature attributes. This is common in `ENCODE`_-specific `BED`_ variants. if `extra-columns` is: - an :class:`int`: it is taken to be the number of attribute columns. Attributes will be stored in the `attr` dictionary of the |SegmentChain|, under names like `custom0`, `custom1`, ... , `customN`. - a :class:`list` of :class:`str`, it is taken to be the names of the attribute columns, in order, from left to right in the file. In this case, attributes in extra columns will be stored under their respective names in the `attr` dict. - a :class:`list` of :class:`tuple`, each tuple is taken to be a pair of `(attribute_name, formatter_func)`. In this case, the value of `attribute_name` in the `attr` dict of the |SegmentChain| will be set to `formatter_func(column_value)`. (Default: 0) printer : file-like, optional Logger implementing a ``write()`` method. Default: |NullWriter| tabix : boolean, optional `streams` point to `tabix`_-compressed files or are open :class:`~pysam.ctabix.tabix_file_iterator` (Default: `False`) Examples -------- Read entries in a `BED`_ file as |Transcripts|. `thickEnd` and `thickStart` columns will be interpreted as the endpoints of coding regions:: >>> bed_reader = BED_Reader(open("some_file.bed"),return_type=Transcript) >>> for transcript in bed_reader: >>> pass # do something fun Open an :term:`extended BED` file that contains additional columns for `gene_id` and `favorite_color`. Values for these attributes will be stored in the `attr` dict of each |Transcript|:: >>> bed_reader = BED_Reader(open("some_file.bed"),return_type=Transcript,extra_columns=["gene_id","favorite_color"]) Open several `Tabix`_-compressed `BED`_ files, and iterate over them as if they were one uncompressed stream:: >>> bed_reader = BED_Reader("file1.bed.gz","file2.bed.gz",tabix=True) >>> for chain in bed_reader: >>> pass # do something more interesting Attributes ---------- streams : file-like One or more open streams (usually filehandles) of input data. return_type : class The type of object assembled by the reader. Typically a |SegmentChain| or a subclass thereof. Must import a method called ``from_bed()`` counter : int Cumulative line number counter over all streams rejected : list List of `BED`_ lines that could not be parsed metadata : dict Attributes declared in track line, if any extra_columns : int or list, optional Extra, non-BED columns in :term:`extended BED` format file corresponding to feature attributes. This is common in `ENCODE`_-specific `BED`_ variants. if `extra_columns` is: - an :class:`int`: it is taken to be the number of attribute columns. Attributes will be stored in the `attr` dictionary of the |SegmentChain|, under names like `custom0`, `custom1`, ... , `customN`. - a :class:`list` of :class:`str`, it is taken to be the names of the attribute columns, in order, from left to right in the file. In this case, attributes in extra columns will be stored under there respective names in the `attr` dict. - a :class:`list` of :class:`tuple`, each tuple is taken to be a pair of `(attribute_name, formatter_func)`. In this case, the value of `attribute_name` in the `attr` dict of the |SegmentChain| will be set to `formatter_func(column_value)`. If unspecified, :class:`BED_Reader` reads the track declaration line (if present), and: - if a known track type is specified by the `type` field, it attempts to format the extra columns as specified by that type. Known track types presently include: - bedDetail - narrowPeak - broadPeak - gappedPeak - tagAlign - pairedTagAlign - peptideMapping - if not, it assumes 0 non-`BED`_ fields are present, and that all columns are `BED`_ formatted. """ def __init__(self, *args, **kwargs): """ BED_Reader(*streams, return_type=SegmentChain, add_three_for_stop=False, extra_columns=0, printer=None, tabix=False) Parameters ---------- *streams : file-like One or more open filehandles of input data. return_type : |SegmentChain| or subclass, optional Type of feature to return from assembled subfeatures (Default: |SegmentChain|) add_three_for_stop : bool, optional Some annotation files exclude the stop codon from CDS annotations. If set to `True`, three nucleotides will be added to the threeprime end of each CDS annotation, **UNLESS** the annotated transcript contains explicit stop_codon feature. (Default: `False`) extra_columns: int or list optional Extra, non-BED columns in :term:`Extended BED`_ format file corresponding to feature attributes. This is common in `ENCODE`_-specific `BED`_ variants. if `extra-columns` is: - an :class:`int`: it is taken to be the number of attribute columns. Attributes will be stored in the `attr` dictionary of the |SegmentChain|, under names like `custom0`, `custom1`, ... , `customN`. - a :class:`list` of :class:`str`, it is taken to be the names of the attribute columns, in order, from left to right in the file. In this case, attributes in extra columns will be stored under their respective names in the `attr` dict. - a :class:`list` of :class:`tuple`, each tuple is taken to be a pair of `(attribute_name, formatter_func)`. In this case, the value of `attribute_name` in the `attr` dict of the |SegmentChain| will be set to `formatter_func(column_value)`. (Default: 0) printer : file-like, optional Logger implementing a ``write()`` method. Default: |NullWriter| tabix : boolean, optional `streams` are `tabix`_-compressed (Default: `False`) """ AssembledFeatureReader.__init__(self, *args, **kwargs) self.extra_columns = kwargs.get("extra_columns", 0) def _parse_track_line(self, inp): """Parse track line from `BED`_ / extended BED file Parameters ---------- inp : str track definition line from `BED`_ / extended BED file Returns ------- dict key-value pairs from `BED`_ line """ self.metadata = {} ltmp = shlex.split(inp.strip("\n")) for item in ltmp: k, v = item.split("=") self.metadata[k] = v track_type = self.metadata.get("type", None) if track_type is not None: if track_type in bed_x_formats: self.printer.write( "Found track type '%s' in track definition line. Assuming extra columns follow UCSC definitions." % track_type ) if self.extra_columns == 0: self.extra_columns = bed_x_formats[track_type] elif self.extra_columns != bed_x_formats[track_type]: my_columns = self._get_extra_column_names() track_format_columns = ",".join([X[0] for X in bed_x_formats[track_type]]) warn("Extra columns specified by %s track type declaration (%s) don't match those specified by user (%s). Using those specified by user." %\ (track_type,track_format_columns,my_columns),FileFormatWarning) self.metadata["type"] = "custom" else: self.printer.write("Found track type '%s' in track definition line." % track_type) def _get_extra_column_names(self): """Return names of extra columns in extended BED file)""" if isinstance(self.extra_columns, int): my_columns = "%s unnamed columns" % self.extra_columns elif isinstance(self.extra_columns, list): if all([isinstance(X, tuple) for X in self.extra_columns]): my_columns = ",".join([X[0] for X in self.extra_columns]) elif all([isinstance(X, str) for X in self.extra_columns]): my_columns = ",".join(self.extra_columns) return my_columns def _assemble(self, line): """Read `BED`_ files line-by-line into types specified by `self.return_type`""" self.counter += 1 if line.strip() == "": return self.__next__() elif line.startswith("browser"): return self.__next__() elif line.startswith("track"): # reset metadata self._parse_track_line(line[5:]) return self.__next__() elif line.startswith("#"): return self.__next__() else: try: return self.return_type.from_bed(line, extra_columns=self.extra_columns) except: self.rejected.append(line) msg = "Cannot parse BED line number %s. " % self.counter if self.metadata.get("type", None) is not None: msg += ( "Are you sure this is a %s BED file with extra columns (%s)?" % (self.metadata.get("type"), self._get_extra_column_names()) ) elif self.extra_columns != 0: msg += ( "Are you sure this BED file has extra columns (%s)?" % self._get_extra_column_names() ) else: msg += "Maybe this BED has extra columns (i.e. is an extended BED file)?" msg += ("\n %s" % line) warn(msg, FileFormatWarning) return self.__next__() ``` #### File: plastid/readers/gff_tokens.py ```python import re import shlex import copy from plastid.util.services.exceptions import FileFormatWarning, warn gtfpat = re.compile(r"^ *([^ ]*) +(.*) *$") # From the spec: http://www.sequenceontology.org/gff3.shtml # In addition to Parent, the Alias, Note, Dbxref and Ontology_term attributes can have multiple values. # Also, SGD uses 'dbxref' instead of 'Dbxref' _GFF3_DEFAULT_LISTS = ("Parent", "Alias", "Note", "Dbxref", "Ontology_term", "dbxref") #=============================================================================== # INDEX: helper functions for escaping #=============================================================================== # must escape % first, otherwise we'll end up escaping everything else, # since other escape codes start with percent signs _GFF3_escape_sequences = [ ('%', '%25'), # percent signs MUST be escaped FIRST (';', '%3B'), (',', '%2C'), ('=', '%3D'), ('&', '%26'), ('\x00', '%00'), ('\x01', '%01'), ('\x02', '%02'), ('\x03', '%03'), ('\x04', '%04'), ('\x05', '%05'), ('\x06', '%06'), ('\x07', '%07'), ('\x08', '%08'), ('\t', '%09'), ('\n', '%0A'), ('\x0b', '%0B'), ('\x0c', '%0C'), ('\r', '%0D'), ('\x0e', '%0E'), ('\x0f', '%0F'), ('\x10', '%10'), ('\x11', '%11'), ('\x12', '%12'), ('\x13', '%13'), ('\x14', '%14'), ('\x15', '%15'), ('\x16', '%16'), ('\x17', '%17'), ('\x18', '%18'), ('\x19', '%19'), ('\x1a', '%1A'), ('\x1b', '%1B'), ('\x1c', '%1C'), ('\x1d', '%1D'), ('\x1e', '%1E'), ('\x1f', '%1F'), ('\x7f', '%7F'), ('\x80', '%80'), ('\x81', '%81'), ('\x82', '%82'), ('\x83', '%83'), ('\x84', '%84'), ('\x85', '%85'), ('\x86', '%86'), ('\x87', '%87'), ('\x88', '%88'), ('\x89', '%89'), ('\x8a', '%8A'), ('\x8b', '%8B'), ('\x8c', '%8C'), ('\x8d', '%8D'), ('\x8e', '%8E'), ('\x8f', '%8F'), ('\x90', '%90'), ('\x91', '%91'), ('\x92', '%92'), ('\x93', '%93'), ('\x94', '%94'), ('\x95', '%95'), ('\x96', '%96'), ('\x97', '%97'), ('\x98', '%98'), ('\x99', '%99'), ('\x9a', '%9A'), ('\x9b', '%9B'), ('\x9c', '%9C'), ('\x9d', '%9D'), ('\x9e', '%9E'), ('\x9f', '%9F') ] """List mapping characters to their escape sequences, per the `GFF3`_ specification""" _GTF2_escape_sequences = copy.deepcopy(_GFF3_escape_sequences) _GTF2_escape_sequences.append(("\"", "%22")) """List mapping characters to their escape sequences for `GTF2`_. These are undefined, but we are using `GFF3`_ characters plus double quotation marks as a convention. """ def escape(inp, char_pairs): """Escape reserved characters specified in the list of tuples `char_pairs` Parameters ---------- inp : str Input string chair_pairs : list List of tuples of (character, escape sequence for character) Returns ------- str Escaped output See also -------- unescape_GFF3 """ for char_, repl in char_pairs: inp = inp.replace(char_, repl) return inp def unescape(inp, char_pairs): """Unescape reserved characters specified in the list of tuples `char_pairs` Parameters ---------- inp : str Input string Returns ------- str Unescaped output See also -------- escape_GFF3 """ for repl, char_ in reversed(char_pairs): inp = inp.replace(char_, repl) return inp def escape_GFF3(inp): """Escape reserved characters in `GFF3`_ tokens using percentage notation. In the `GFF3`_ spec, reserved characters include: - control characters (ASCII 0-32, 127, and 128-159) - tab, newline, & carriage return - semicolons & commas - the percent sign - the equals sign - the ampersand Parameters ---------- inp : str Input string chair_pairs : list List of tuples of (character, escape sequence for character) Returns ------- str Escaped output See also -------- unescape_GFF3 """ return escape(inp, _GFF3_escape_sequences) def unescape_GFF3(inp): """Unescape reserved characters in `GFF3`_ tokens using percentage notation. In the `GFF3`_ spec, reserved characters include: - control characters (ASCII 0-32, 127, and 128-159) - tab, newline, & carriage return - semicolons & commas - the percent sign - the equals sign - the ampersand Parameters ---------- inp : str Input string Returns ------- str Unescaped output See also -------- escape_GFF3 """ return unescape(inp, _GFF3_escape_sequences) def escape_GTF2(inp): """Escape reserved characters in `GTF2`_ tokens using percentage notation. While the `GTF2`_ spec is agnostic for escaping, it is useful when adding extra attributes to files. As a convention, we escape the characters specified in the `GFF3`_ spec, as well as double quotation marks. In the `GTF2`_ spec, reserved characters include: - control characters (ASCII 0-32, 127, and 128-159) - tab, newline, & carriage return - semicolons & commas - the percent sign - the equals sign - the ampersand Parameters ---------- inp : str Input string chair_pairs : list List of tuples of (character, escape sequence for character) Returns ------- str Escaped output See also -------- unescape_GFF3 """ return escape(inp, _GTF2_escape_sequences) def unescape_GTF2(inp): """Unescape reserved characters in `GTF2`_ tokens using percentage notation. While the `GTF2`_ spec is agnostic for escaping, it is useful when adding extra attributes to files. As a convention, we escape the characters specified in the `GFF3`_ spec, as well as single quotation marks. In the `GFF3`_ spec, reserved characters include: - control characters (ASCII 0-32, 127, and 128-159) - tab, newline, & carriage return - semicolons & commas - the percent sign - the equals sign - the ampersand Parameters ---------- inp : str Input string Returns ------- str Unescaped output See also -------- escape_GFF3 """ return unescape(inp, _GTF2_escape_sequences) #=============================================================================== # INDEX: attribute token formatting and parsing #=============================================================================== def _make_generic_tokens(attr, excludes=None, join_pat='%s %s; ', escape=None): """Helper function to convert the `attr` dict of a |SegmentChain| into the string representation used in GFF files. This includes URL escaping of keys and values, and catenating lists with `','` before string conversion Parameters ---------- attr : dict Dictionary of key-value pairs to export excludes : list<str> List of keys to exclude from string join_pat printf-style pattern explaining how to join key:value pairs escape : None or func, optional If None, no special characters are escaped. If a function, that funciton will be used to perform the escaping. (Default: `False`) Returns ------- str """ f = lambda x: x[0] not in excludes if escape is None: esc = lambda inp: inp else: esc = lambda inp: escape(str(inp)) excludes = [] if excludes is None else excludes ltmp = [] for key, val in filter(f, attr.items()): if isinstance(val, list): val = ",".join([esc(X) for X in val]) else: val = esc(val) ltmp.append(join_pat % (esc(key), val)) return ''.join(ltmp) def make_GFF3_tokens(attr, excludes=None, escape=True): """Helper function to convert the `attr` dict of a |SegmentChain| into the string representation used in `GFF3`_ files. This includes URL escaping of special characters, and catenating lists with '`,`' before string conversion Examples -------- >>> d = {'a':1,'b':2,'c':3,'d':4,'e':5,'z':26,'text':"something; with escape sequences"} >>> _make_GFF3_tokens(d) 'a=1;c=3;b=2;e=5;d=4;z=26;text=something%3B with escape sequences' >>> excludes=['a','b','c'] >>> _make_GFF3_tokens(d,excludes) 'e=5;d=4;z=26;text=something%3B with escape sequences' >>> d = {'a':1,'b':2,'c':[3,7],'d':4,'e':5,'z':26} >>> _make_GFF3_tokens(d) 'a=1;c=3,7;b=2;e=5;d=4;z=26' Parameters ---------- attr : dict Dictionary of key-value pairs to export excludes : list, optional List of keys to exclude from string escape : bool, optional If True, special characters in output are `GFF3`_-escaped (Default: `True`) Returns ------- str Data formatted for *attributes* column of `GFF3`_ (column 9) """ escape = escape_GFF3 if escape == True else None excludes = [] if excludes is None else excludes return _make_generic_tokens(attr, excludes=excludes, join_pat="%s=%s;", escape=escape) def make_GTF2_tokens(attr, excludes=None, escape=True): """Helper function to convert the `attr` dict of a |SegmentChain| into the string representation used in `GTF2`_ files. By default, special characters defined in the `GFF3`_ spec will be URL-escaped. Examples -------- >>> d = {'transcript_id' : 't;id', 'a':1,'b':2,'c':3,'d':4,'e':5,'z':26, 'gene_id' : 'gid'} >>> _make_GTF2_tokens(d) 'transcript_id "t%3Bid"; gene_id "gid"; a "1"; c "3"; b "2"; e "5"; d "4"; z "26";' >>> excludes=['a','b','c'] >>> _make_GTF2_tokens(d,excludes) 'transcript_id "t%3Bid"; gene_id "gid"; e "5"; d "4"; z "26";' Parameters ---------- attr : dict Dictionary of key-value pairs to export excludes : list, optional List of keys to exclude from string escape : bool, optional If True, special characters in output are `GTF2`_-escaped (Default: `True`) Returns ------- str Data formatted for *attributes* column of `GTF2`_ (column 9) """ excludes = [] if excludes is None else excludes excludes.extend(["transcript_id", "gene_id"]) stmp = 'gene_id "%s"; transcript_id "%s"; ' % (attr.get("gene_id"), attr.get("transcript_id")) if escape == True: escape = escape_GTF2 else: escape = None return stmp + _make_generic_tokens( attr, excludes=excludes, join_pat='%s "%s"; ', escape=escape ).strip(" ") def parse_GFF3_tokens(inp, list_types=None): """Helper function to parse tokens in the final column of a `GFF3`_ file into a dictionary of attributes. Because, the following attributes are permitted to have multiple values in the `GFF3`_ spec, their values, if present are returned as lists in the dictionary rather than strings: - `Parent` - `Alias` - `Note` - `Dbxref` - `Ontology_term` All values are unescaped folowing the `GFF3`_ specification. Examples -------- >>> tokens = 'a=1;c=3;b=2;e=5;d=4;z=26,Parents=gene01' >>> parse_GFF3_tokens(tokens) {'a': '1', 'c': '3', 'b': '2', 'e': '5', 'd': '4', 'z': '26', 'parents' : ['gene01'] } >>> tokens = 'a=1;c=3,7;b=2;e=5;d=4;z=26,Parents=gene01,gene02' >>> parse_GFF3_tokens(tokens) {'a': '1', 'c': '3,7', 'b': '2', 'e': '5', 'd': '4', 'z': '26', 'parents' : ['gene01','gene02']} Parameters ---------- inp : str Ninth column of `GFF3`_ entry list_types : list, optional Names of attributes that should be returned as lists (Default: %s) Returns ------- dict : key-value pairs """ % ",".join(_GFF3_DEFAULT_LISTS) if list_types is None: list_types = _GFF3_DEFAULT_LISTS d = {} items = inp.strip("\n").strip(";").split(";") for item in items: if len(item) > 0: key, val = item.split("=") key = unescape_GFF3(key.strip(" ")) if key in list_types: val = [unescape_GFF3(X) for X in val.strip(" ").split(",")] else: val = unescape_GFF3(val.strip(" ")) if key in d: warn( "Found duplicate attribute key '%s' in GFF3 line. Catenating value with previous value for key in attr dict:\n %s" % (key, inp), FileFormatWarning ) val = "%s,%s" % (d[key], val) d[key] = val return d def parse_GTF2_tokens(inp): """Helper function to parse tokens in the final column of a `GTF2`_ file into a dictionary of attributes. All attributes are returned as strings, and are unescaped if GFF escape sequences (e.g. *'%2B'*) are present. If duplicate keys are present (e.g. as in GENCODE `GTF2`_ files), their values are catenated, separated by a comma. Examples -------- >>> tokens = 'gene_id "mygene"; transcript_id "mytranscript";' >>> parse_GTF2_tokens(tokens) {'gene_id' : 'mygene', 'transcript_id' : 'mytranscript'} >>> tokens = 'gene_id "mygene"; transcript_id "mytranscript"' >>> parse_GTF2_tokens(tokens) {'gene_id' : 'mygene', 'transcript_id' : 'mytranscript'} >>> tokens = 'gene_id "mygene;"; transcript_id "myt;ranscript"' >>> parse_GTF2_tokens(tokens) {'gene_id' : 'mygene;', 'transcript_id' : 'myt;ranscript'} >>> tokens = 'gene_id "mygene"; transcript_id "mytranscript"; tag "tag value";' >>> parse_GTF2_tokens(tokens) {'gene_id' : 'mygene', 'tag' : 'tag value', 'transcript_id' : 'mytranscript'} >>> tokens = 'gene_id "mygene"; transcript_id "mytranscript"; tag "tag value"; tag "tag value 2";' >>> parse_GTF2_tokens(tokens) {'gene_id' : 'mygene', 'tag' : 'tag value,tag value 2', 'transcript_id' : 'mytranscript'} Parameters ---------- inp : str Ninth column of `GTF2`_ entry Returns ------- dict : key-value pairs """ d = {} items = shlex.split(inp.strip("\n")) assert len(items) % 2 == 0 for i in range(0, len(items), 2): key = unescape_GTF2(items[i]) val = items[i + 1] # require separation by semicolons for all but final token if i + 1 < len(items) - 2: assert val.endswith(";") if val.endswith(";"): val = val[:-1] if key in d: warn( "Found duplicate attribute key '%s' in GTF2 line. Catenating value with previous value for key in attr dict:\n %s" % (key, inp), FileFormatWarning ) d[key] = "%s,%s" % (d[key], unescape_GTF2(val)) else: d[key] = unescape_GTF2(val) return d ``` #### File: test/functional/test_cs.py ```python import tempfile import os from nose.plugins.attrib import attr from pkg_resources import resource_filename, cleanup_resources from plastid.test.functional.base import execute_helper from plastid.test.ref_files import ( COUNT_OPTIONS, ANNOTATION_OPTIONS, MASK_OPTIONS, ) from plastid.bin.cs import main from plastid.util.services.decorators import catch_stderr #=============================================================================== # INDEX: global constants used by tests #=============================================================================== test_info = { "test_method": catch_stderr()(main), "module_name": "plastid.bin.cs", "ref_file_path": resource_filename("plastid", "test/data/command_line"), "temp_file_path": tempfile.mkdtemp(prefix="cs"), } """Constants used by multiple tests""" _outbase = os.path.join(test_info["temp_file_path"], "test_cs") _file_stubs = [ 'merged.txt', 'gene.positions', 'transcript.positions', 'gene_cds.bed', 'gene_exon.bed', 'gene_masked.bed', 'gene_utr3.bed', 'gene_utr5.bed', 'transcript_cds.bed', 'transcript_exon.bed', 'transcript_masked.bed', 'transcript_utr3.bed', 'transcript_utr5.bed', ] #=============================================================================== # INDEX: tests to execute #=============================================================================== cs_tests = [ ( "generate %s %s %s" % (_outbase, ANNOTATION_OPTIONS, MASK_OPTIONS), [os.path.join(test_info["ref_file_path"], "gen_cs_" + X) for X in _file_stubs], [os.path.join(test_info["temp_file_path"], "test_cs_" + X) for X in _file_stubs], [ "--no_header", "--sort_keys region", "--sort_keys region", ] + ["--no_header --sort_keys 3"] * 10 ), ( "count %s_gene.positions %s_count %s " % (_outbase, _outbase, COUNT_OPTIONS), [os.path.join(test_info["ref_file_path"], 'gen_cs_count_gene.txt')], [os.path.join(test_info["temp_file_path"], "test_cs_count.txt")], ["--sort_keys region"] ), ( "count %s_gene.positions %s_count %s --sum 1e9" % (_outbase, _outbase, COUNT_OPTIONS), [os.path.join(test_info["ref_file_path"], 'gen_cs_count_gene_sum_1.txt')], [os.path.join(test_info["temp_file_path"], "test_cs_count.txt")], ["--sort_keys region"] ), #("",[],[],[]), ] """Functional tests of :py:mod:`plastid.bin.cs`. Tests are specified as tuples of: 1. Command-line style arguments to pass to :py:func:`main` 2. A list of reference files that output should be compared against 3. A list of output files created by running :py:func:`main` with the arguments provided in (1) 4. A list of strings specifying how equality should be evaluated """ #=============================================================================== # INDEX: test/helper functions #=============================================================================== @attr(test="functional") @attr(speed="slow") def do_test(): """Perform functional test for :py:mod:`plastid.bin.cs`""" for x in execute_helper(test_info, cs_tests): yield x ``` #### File: test/functional/test_metagene.py ```python import tempfile import os from pkg_resources import resource_filename, cleanup_resources from nose.plugins.attrib import attr from plastid.test.functional.base import execute_helper from plastid.test.ref_files import ( RPATH, REF_FILES, COUNT_OPTIONS, ANNOTATION_OPTIONS, MASK_OPTIONS, ) from plastid.bin.test_table_equality import main as table_test from plastid.bin.metagene import main from plastid.util.services.decorators import catch_stderr #=============================================================================== # INDEX: global constants used by tests #=============================================================================== TEST_INFO = { "test_method": catch_stderr()(main), "module_name": "plastid.bin.metagene", "ref_file_path": resource_filename("plastid", "test/data/command_line"), "temp_file_path": tempfile.mkdtemp(prefix="metagene"), } _basename = os.path.join(TEST_INFO["temp_file_path"], "test_metagene") #=============================================================================== # INDEX: tests #=============================================================================== tests = [ # test generate cds start ( "generate %s_cds_start --downstream 100 %s %s" % (_basename, ANNOTATION_OPTIONS, MASK_OPTIONS), [REF_FILES["yeast_metagene_cds_start"], REF_FILES["yeast_metagene_cds_start_bed"]], [ _basename + "_cds_start_rois.txt", _basename + "_cds_start_rois.bed", ], ["", "--no_header"] ), # test generate cds stop ( "generate %s_cds_stop --upstream 100 --landmark cds_stop %s %s" % (_basename, ANNOTATION_OPTIONS, MASK_OPTIONS), [ REF_FILES["yeast_metagene_cds_stop"], REF_FILES["yeast_metagene_cds_stop_bed"], ], [ _basename + "_cds_stop_rois.txt", _basename + "_cds_stop_rois.bed", ], ["", "--no_header"] ), # test count cds start with --norm_region ( "count %s %s_cds_start --keep --norm_region 70 150 %s" % (REF_FILES["yeast_metagene_cds_start"], _basename, COUNT_OPTIONS), [ REF_FILES["yeast_metagene_cds_start_profile"], REF_FILES["yeast_metagene_cds_start_normcounts"], REF_FILES["yeast_metagene_cds_start_rawcounts"], ], [ _basename + "_cds_start_metagene_profile.txt", _basename + "_cds_start_normcounts.txt.gz", _basename + "_cds_start_rawcounts.txt.gz" ], ["", "--no_header", "--no_header"] ), # test count cds stop with --norm_region ( "count %s %s_cds_stop --keep --norm_region 0 80 %s" % (REF_FILES["yeast_metagene_cds_stop"], _basename, COUNT_OPTIONS), [ REF_FILES["yeast_metagene_cds_stop_profile"], REF_FILES["yeast_metagene_cds_stop_normcounts"], REF_FILES["yeast_metagene_cds_stop_rawcounts"], ], [ _basename + "_cds_stop_metagene_profile.txt", _basename + "_cds_stop_normcounts.txt.gz", _basename + "_cds_stop_rawcounts.txt.gz" ], ["", "--no_header", "--no_header"] ), # test count cds start, using --normalize_over ( "count %s %s_cds_start --keep --normalize_over 20 100 %s" % (REF_FILES["yeast_metagene_cds_start"], _basename, COUNT_OPTIONS), [ REF_FILES["yeast_metagene_cds_start_profile"], REF_FILES["yeast_metagene_cds_start_normcounts"], REF_FILES["yeast_metagene_cds_start_rawcounts"], ], [ _basename + "_cds_start_metagene_profile.txt", _basename + "_cds_start_normcounts.txt.gz", _basename + "_cds_start_rawcounts.txt.gz" ], ["", "--no_header", "--no_header"] ), # test count cds stop, using --normalize_over ( "count %s %s_cds_stop --keep --normalize_over '-100' '-20' %s" % (REF_FILES["yeast_metagene_cds_stop"], _basename, COUNT_OPTIONS), [ REF_FILES["yeast_metagene_cds_stop_profile"], REF_FILES["yeast_metagene_cds_stop_normcounts"], REF_FILES["yeast_metagene_cds_stop_rawcounts"], ], [ _basename + "_cds_stop_metagene_profile.txt", _basename + "_cds_stop_normcounts.txt.gz", _basename + "_cds_stop_rawcounts.txt.gz" ], ["", "--no_header", "--no_header"] ), ] """Functional tests of :py:mod:`plastid.bin.metagene`. Tests are specified as tuples of: 1. Command-line style arguments to pass to :py:func:`main` 2. A list of reference files that output should be compared against 3. A list of output files created by running :py:func:`main` with the arguments provided in (1) 4. A list of strings specifying how equality should be evaluated """ #=============================================================================== # INDEX: test functions #=============================================================================== @attr(test="functional") @attr(speed="slow") def do_test(): for x in execute_helper(TEST_INFO, tests): yield x ``` #### File: test/functional/test_psite.py ```python import tempfile import os from nose.plugins.attrib import attr from pkg_resources import resource_filename, cleanup_resources from plastid.util.services.decorators import catch_stderr from plastid.test.functional.base import execute_helper from plastid.test.ref_files import REF_FILES from plastid.bin.psite import main #=============================================================================== # INDEX: global constants #=============================================================================== test_info = { "test_method": catch_stderr()(main), "module_name": "plastid.bin.psite", "ref_file_path": resource_filename("plastid", "test/data/command_line"), "temp_file_path": tempfile.mkdtemp(prefix="psite"), } _outbase = os.path.join(test_info["temp_file_path"], "test_psite") #=============================================================================== # INDEX: tests #=============================================================================== psite_tests = [ ( "%s %s --count_files %s --norm_region 70 150 --require_upstream --min_length 26 --max_length 31" % ( REF_FILES["yeast_metagene_cds_start"], _outbase, REF_FILES["yeast_rp_bam"], ), [REF_FILES["yeast_psite"]], [_outbase + "_p_offsets.txt"], [""] ), ( "%s %s --count_files %s --norm_region 70 150 --require_upstream --min_length 26 --max_length 31 --constrain 0 11" % ( REF_FILES["yeast_metagene_cds_start"], _outbase, REF_FILES["yeast_rp_bam"], ), [REF_FILES["yeast_psite_constrain"]], [_outbase + "_p_offsets.txt"], [""] ), # test using --normalize_over instead of --norm_region ( "%s %s --count_files %s --normalize_over 20 100 --require_upstream --min_length 26 --max_length 31" % ( REF_FILES["yeast_metagene_cds_start"], _outbase, REF_FILES["yeast_rp_bam"], ), [REF_FILES["yeast_psite"]], [_outbase + "_p_offsets.txt"], [""] ), # test using --normalize_over instead of --norm_region ( "%s %s --count_files %s --normalize_over 20 100 --require_upstream --min_length 26 --max_length 31 --constrain 0 11" % ( REF_FILES["yeast_metagene_cds_start"], _outbase, REF_FILES["yeast_rp_bam"], ), [REF_FILES["yeast_psite_constrain"]], [_outbase + "_p_offsets.txt"], [""] ), ] # /home/joshua/projects/plastid/plastid/test/data/command_line/gen_cds_start_rois.txt /tmp/psite5SY5Wc/test_psite --count_files /home/joshua/projects/plastid/plastid/test/data/command_line/gen_reads.bam --norm_region 70 150 --require_upstream --min_length 26 --max_length 31 """Functional tests of :py:mod:`plastid.bin.psite`. Tests are specified as tuples of: 1. Command-line style arguments to pass to :py:func:`main` 2. A list of reference files that output should be compared against 3. A list of output files created by running :py:func:`main` with the arguments provided in (1) 4. A list of strings specifying how equality should be evaluated """ #=============================================================================== # INDEX: test/helper functions #=============================================================================== @attr(test="functional") @attr(speed="slow") def do_test(): """Perform functional test for :py:mod:`plastid.bin.psite`""" for x in execute_helper(test_info, psite_tests): yield x ``` #### File: test/functional/test_slidejuncs.py ```python import tempfile import shutil import os import itertools import numpy import copy import shlex from nose.tools import assert_set_equal from nose.plugins.attrib import attr from pkg_resources import resource_filename, cleanup_resources from plastid.test.ref_files import REF_FILES from plastid.util.io.filters import CommentReader from plastid.readers.bed import BED_Reader from plastid.genomics.roitools import SegmentChain from plastid.bin.slidejuncs import main from plastid.util.services.decorators import catch_stderr, catch_stdout #=============================================================================== # INDEX: global constants #=============================================================================== test_info = { "test_method": catch_stderr()(main), "module_name": "plastid.bin.slidejuncs", "ref_file_path": resource_filename("plastid", "test/data/command_line"), "temp_file_path": tempfile.mkdtemp(prefix="slidejuncs"), } OUTBASE = os.path.join(test_info["temp_file_path"], "slidejuncs_%s_%s_%s") # reference files used # yapf: disable FASTA_FILE = REF_FILES["slidejuncs_seqs"] COMBINED_BED = REF_FILES["slidejuncs_input"] REF_FILE = REF_FILES["slidejuncs_ref"] MASK_FILE = REF_FILES["slidejuncs_crossmap"] # yapf: enable #=============================================================================== # INDEX: helper functions #=============================================================================== def get_junction_names_from_file(filename): """Return a set of names of splice junctions in a file Parameters ---------- filename : str Fully-qualified path to file Returns ------- set Set of splice junction names found in ``filename`` """ with open(filename) as fh: return set( [ X.spanning_segment.chrom for X in BED_Reader(CommentReader(fh), return_type=SegmentChain) ] ) def get_junction_names_from_category(cat): """Helper function to deduce names of splice junctions/genes in each junction category from input files Parameters ---------- cat : str Category of splice junction. Must be present in ``junction_categories`` Returns ------- set Set of junction names in input splice junction category ``cat`` """ return get_junction_names_from_file(REF_FILES["slidejuncs_%s" % cat]) #=============================================================================== # INDEX: programmatic definition of tests and expected results #=============================================================================== # query junctions junction_categories = [ "known_juncs_non_crossmap", "known_juncs_crossmap", "to_slide_known_non_crossmap", "to_slide_known_crossmap", "noncan_no_ref", "expected_untouched", ] """Categories of splice junctions taken as input in tests below""" junctions = {K: get_junction_names_from_category(K) for K in junction_categories} """Dictionary mapping categories of splice junctions to names of junctions used in tests below""" # classification order is repetitive > reference > canonical > untouched # set up tests as configurations of kwargs # we'll represent these as 3-tuples, where 1 in a position indicates whether # or not we'll supply: # 0. a crossmap # 1. a reference file # 2. the --slide_canonical flag # 3. always value 1 (untouched state) test_options = list(itertools.product((0, 1), repeat=3)) test_options = [numpy.array(list(X) + [1]) for X in test_options] base_command_line = " ".join([COMBINED_BED, OUTBASE, "--sequence_file %s" % FASTA_FILE]) switches = [ " --mask_annotation_format BED --mask_annotation_file %s" % MASK_FILE, " --ref %s" % REF_FILE, " --slide_canonical", "" ] """Command-line switches used for building tests""" labels = ["repetitive", "shifted_known", "shifted_canonical", "untouched"] """Labels for various junctions under different test conditions""" # Classification preferences for each set of query junctions # # 1 represents the ability to be classified in a category denoted by position, # # 0. repetitive # 1. reference # 2. canonical # 3. untouched # # These positions correspond to the test_option positions above in the sense # that if both test_option[position] and classification_pref[k][position] are 1, # then junctions in group k can be classified with the label corresponding # to that position. In practice, the leftmost position in which both bits are 1 # should be chosen by the script classification_prefs = { "known_juncs_non_crossmap" : (0, 1, 1, 1), "known_juncs_crossmap" : (1, 1, 1, 1), "to_slide_known_non_crossmap" : (0, 1, 1, 1), "to_slide_known_crossmap" : (1, 1, 1, 1), "noncan_no_ref" : (0, 0, 1, 1), "expected_untouched" : (0, 0, 0, 1), } # yapf: disable classification_prefs = {K: numpy.array(V) for K, V in classification_prefs.items()} """Classification preferences for each category of query junction""" output_files = {K: OUTBASE + ("_%s.bed" % K) for K in labels} """Output files written by each test""" # tests will be defined as tuples of command-line arguments, # and dictionaries mapping classifications to splice junctions that # should fall into that category for a given run tests = [] for my_opts in test_options: # build command-line arguments stmp = base_command_line + " ".join([switches[X] for X in my_opts.nonzero()[0]]) stmp = stmp % (my_opts[0], my_opts[1], my_opts[2]) result_dict = {} # determine results for k, v in classification_prefs.items(): label = labels[(v & my_opts).argmax()] try: result_dict[label] |= junctions[k] except KeyError: result_dict[label] = copy.deepcopy(junctions[k]) tests.append((my_opts, stmp, result_dict)) #=============================================================================== # INDEX: tests #=============================================================================== def compare_sets(label, found, expected, crossmap, ref, slide): message = "Failed test %s.\n\tCrossmap: %s\n\tRef: %s\n\tslide: %s\nItems expected but not found: %s\nVice versa: %s\n" % ( label, crossmap, ref, slide, expected - found, found - expected ) assert_set_equal(expected, found, message) @attr(test="functional") def do_test(): for tup, argstr, expected_results in tests: test_info["test_method"](shlex.split(argstr)) for label, filename in output_files.items(): found = get_junction_names_from_file(filename % (tup[0], tup[1], tup[2])) expected = expected_results.get(label, set([])) yield compare_sets, label, found, expected, tup[0], tup[1], tup[2] def tearDownModule(): """Remove test dataset files after unit tests are complete""" if test_info["temp_file_path"] != "": shutil.rmtree(test_info["temp_file_path"]) cleanup_resources() ``` #### File: unit/bin/test_test_table_equality.py ```python import unittest import copy import numpy import pandas as pd from random import shuffle from pkg_resources import resource_filename, cleanup_resources from nose.plugins.attrib import attr from plastid.genomics.roitools import GenomicSegment # slight hack to keep imported method from being run as a test # can't use unittest.skip, or else no tests will never be run! from plastid.bin.test_table_equality import test_dataframe_equality as checkeq checkeq.__name__ = "checkeq" checkeq.__module__ = "checkeq" # components we will use in equality tests size = 5000 @attr(test="unit") class TestTestDataframeEquality(unittest.TestCase): @classmethod def setUpClass(cls): cls.cols = { "intA" : numpy.random.randint(0, high=2**16, size=size), "intB" : numpy.random.randint(-10, high=20, size=size), "idxA" : numpy.arange(size), "chrA" : numpy.array([chr(65+(X%(91-65))) for X in range(size)]), "strA" : numpy.array([str(GenomicSegment("chrA", X, X+500, "+")) for X in range(size)]), "strB" : numpy.array([str(GenomicSegment("chrB", X/2, X/2+500, "-")) for X in range(size)]), "floatA" : 10*numpy.random.randn(size) + 500, "floatB" : (10**-5)*numpy.random.random(size), "objA" : numpy.tile(None, 5000), "objB" : numpy.array([GenomicSegment("chrC", X, X+Y, "+") for X, Y in zip(range(size), numpy.random.randint(2, high=1000, size=size))]), } # yapf: disable def test_dataframe_equality_when_identical(self): df1 = pd.DataFrame(self.cols) self.assertTrue(checkeq(df1, df1)) def test_dataframe_equality_no_sort(self): df1 = pd.DataFrame(self.cols) df2 = pd.DataFrame(copy.deepcopy(self.cols)) self.assertTrue(checkeq(df1, df2)) self.assertTrue(checkeq(df2, df1)) def test_dataframe_equality_within_tol(self): tol = 10**-8 noiseA = tol / 10**2 * numpy.random.randn(size) noiseB = tol / 10**2 * numpy.random.randn(size) df1 = pd.DataFrame(self.cols) df2 = copy.deepcopy(df1) df2["floatA"] += noiseA df2["floatB"] -= noiseB self.assertTrue(checkeq(df1, df2, tol=tol)) self.assertTrue(checkeq(df2, df1, tol=tol)) def test_dataframe_inequality_above_tol(self): tol = 10**-8 noiseA = tol * 10**2 * numpy.random.randn(size) noiseB = tol * 10**2 * numpy.random.randn(size) df1 = pd.DataFrame(self.cols) df2 = copy.deepcopy(df1) df2["floatA"] += noiseA df2["floatB"] -= noiseB self.assertFalse(checkeq(df1, df2, tol=tol)) self.assertFalse(checkeq(df2, df1, tol=tol)) def test_dataframe_inequality_wrong_columns(self): df1 = pd.DataFrame(self.cols) df2 = pd.DataFrame({K: copy.deepcopy(self.cols[K]) for K in sorted(self.cols.keys())[:-2]}) self.assertFalse(checkeq(df1, df2)) self.assertFalse(checkeq(df2, df1)) def test_dataframe_inequality_wrong_rows(self): df1 = pd.DataFrame(self.cols) df2 = pd.DataFrame({K: self.cols[K][:size - 1000] for K in self.cols.keys()}) self.assertFalse(checkeq(df1, df2)) self.assertFalse(checkeq(df2, df1)) def check_dataframe_equality_same(self, special_val): """Helper function for checking equality when various special values are in the same location in both dataframes Parameters ---------- special_val : numpy.nan, numpy.inf, -numpy.inf, or None Value that is ignored by :py:meth:`plastid.bin.test_dataframe_equality` if it occurs in the same cells of both dataframes """ idx = numpy.random.randint(0, high=size, size=500) tmpcols = copy.deepcopy(self.cols) tmpcols["floatA"][idx] = special_val df1 = pd.DataFrame(tmpcols) df2 = pd.DataFrame(copy.deepcopy(tmpcols)) self.assertTrue(checkeq(df1, df2)) self.assertTrue(checkeq(df2, df1)) def test_dataframe_equality_same_nans(self): self.check_dataframe_equality_same(numpy.nan) def test_dataframe_equality_same_infs(self): self.check_dataframe_equality_same(numpy.inf) self.check_dataframe_equality_same(-numpy.inf) def check_dataframe_inequality_different(self, special_val): """Helper function for checking inequality when various special values appear in the different locations in both dataframes Parameters ---------- special_val : numpy.nan, numpy.inf, -numpy.inf, or None Value that is ignored by :py:meth:`plastid.bin.test_dataframe_equality` if it occurs in the same cells of both dataframes """ idxA = numpy.random.randint(0, high=size, size=500) idxB = numpy.random.randint(0, high=size, size=500) colsA = copy.deepcopy(self.cols) colsA["floatA"][idxA] = special_val colsB = copy.deepcopy(self.cols) colsB["floatA"][idxB] = special_val df1 = pd.DataFrame(colsA) df2 = pd.DataFrame(colsB) self.assertFalse(checkeq(df1, df2)) self.assertFalse(checkeq(df2, df1)) def test_dataframe_inequality_different_nans(self): self.check_dataframe_inequality_different(numpy.nan) def test_dataframe_inequailty_different_infs(self): self.check_dataframe_inequality_different(numpy.inf) self.check_dataframe_inequality_different(-numpy.inf) def test_dataframe_equality_with_sort_str(self): shuffidx = numpy.arange(size) shuffle(shuffidx) df1 = pd.DataFrame(self.cols) df2 = pd.DataFrame({K: self.cols[K][shuffidx] for K in self.cols.keys()}) self.assertTrue(checkeq(df1, df2, sort_columns=["strA"])) self.assertTrue(checkeq(df2, df1, sort_columns=["strA"])) def test_dataframe_equality_with_sort_numeric(self): shuffidx = numpy.arange(size) shuffle(shuffidx) df1 = pd.DataFrame(self.cols) df2 = pd.DataFrame({K: self.cols[K][shuffidx] for K in self.cols.keys()}) self.assertTrue(checkeq(df1, df2, sort_columns=["idxA"])) self.assertTrue(checkeq(df2, df1, sort_columns=["idxA"])) def test_dataframe_equality_with_multi_sort(self): shuffidx = numpy.arange(size) shuffle(shuffidx) df1 = pd.DataFrame(self.cols) df2 = pd.DataFrame({K: self.cols[K][shuffidx] for K in self.cols.keys()}) self.assertTrue(checkeq(df1, df2, sort_columns=["strB", "chrA"])) self.assertTrue(checkeq(df2, df1, sort_columns=["strB", "chrA"])) ``` #### File: unit/genomics/test_seqtools.py ```python import re import sys from nose.plugins.attrib import attr from nose.tools import assert_equal, assert_set_equal, assert_true from Bio import SeqIO from Bio.SeqRecord import SeqRecord from plastid.test.ref_files import REF_FILES from plastid.genomics.seqtools import seq_to_regex, mutate_seqs, random_seq,\ _TwoBitSeqProxy, TwoBitSeqRecordAdaptor #=============================================================================== # INDEX: unit tests #=============================================================================== @attr(test="unit") def test_seq_to_regex(): for flags, inp, outp in SEQ_REGEX: check = seq_to_regex(inp, flags=flags) pattern = check.pattern pflags = check.flags yield assert_equal, pattern, outp, "seq_to_regex(%s,%s) regex do not match. Expected %s, found %s" % ( inp, flags, outp, pattern ) yield assert_equal, flags, pflags, "seq_to_regex(%s,%s) flags do not match. Expected %s, found %s" % ( inp, flags, flags, pflags ) @attr(test="unit") def test_mutate_seqs(): for inp, nucs, mutations, outp in MUTANTS: check = mutate_seqs(inp, nucleotides=nucs, mutations=mutations) yield assert_set_equal, check, outp, "mutate_seqs(%s,%s) did not match expectation. Expected %s, found %s" % ( inp, mutations, outp, check ) def check_random_seq(length, nucleotides): check = random_seq(length, nucleotides=nucleotides) # check length assert_equal( length, len(check), "random_chr(%s,%s) length is incorrect. Expected %s, found %s" % (length, nucleotides, length, len(check)) ) # make sure nucleotides used are a subset of those expected diff = set(list(check)) - set(nucleotides) assert_equal( diff, set(), "random_chr(%s,%s) found extra nucleotides in result: %s" % (length, nucleotides, diff) ) @attr(test="unit") def test_random_chr(): for length, nucs in RANDOM_CHR: yield check_random_seq, length, nucs @attr(test="unit") def testTwoBitSeqProxyFetch(): g1 = SeqIO.to_dict(SeqIO.parse(REF_FILES["yeast_fasta"], "fasta")) g2 = TwoBitSeqRecordAdaptor(REF_FILES["yeast_twobit"]) seq = g2["chrV"][50:5000] assert_true(isinstance(seq, SeqRecord)) assert_equal(str(g1["chrV"][50:5000].seq), str(seq.seq)) @attr(test="unit") def testTwoBitSeqProxyLen(): g1 = SeqIO.to_dict(SeqIO.parse(REF_FILES["yeast_fasta"], "fasta")) g2 = TwoBitSeqRecordAdaptor(REF_FILES["yeast_twobit"]) for k in g1: assert_equal(len(g1[k]), len(g2[k])) @attr(test="unit") def testTwoBitSeqProxyStr(): g1 = SeqIO.to_dict(SeqIO.parse(REF_FILES["yeast_fasta"], "fasta")) g2 = TwoBitSeqRecordAdaptor(REF_FILES["yeast_twobit"]) for k in g1: assert_equal(str(g1[k].seq), str(g2[k])) @attr(test="unit") def testTwoBitSeqProxySeqProp(): g1 = SeqIO.to_dict(SeqIO.parse(REF_FILES["yeast_fasta"], "fasta")) g2 = TwoBitSeqRecordAdaptor(REF_FILES["yeast_twobit"]) for k in g1: assert_equal(str(g1[k].seq), str(g2[k].seq)) @attr(test="unit") def testTwoBitSeqProxyRevComp(): g1 = SeqIO.to_dict(SeqIO.parse(REF_FILES["yeast_fasta"], "fasta")) g2 = TwoBitSeqRecordAdaptor(REF_FILES["yeast_twobit"]) for k in g1: assert_equal(str(g1[k].reverse_complement().seq), str(g2[k].reverse_complement().seq)) @attr(test="unit") def testTwoBitSeqRecordAdaptor(): g1 = SeqIO.to_dict(SeqIO.parse(REF_FILES["yeast_fasta"], "fasta")) g2 = TwoBitSeqRecordAdaptor(REF_FILES["yeast_twobit"]) for k, v in g1.items(): assert_true(isinstance(g2[k], _TwoBitSeqProxy)) #=============================================================================== # INDEX: test data #=============================================================================== if sys.version_info > (3, ): default_flag = re.UNICODE else: default_flag = 0 SEQ_REGEX = [ (default_flag, "NNNN", "[ACTGU][ACTGU][ACTGU][ACTGU]"), # N->ACTGU (default_flag, "CCCAGA", "CCCAGA"), # No change (default_flag, "TCTAGA", "[TU]C[TU]AGA"), # T->TU (default_flag, "UCUAGA", "[TU]C[TU]AGA"), # U->TU (default_flag, "ARCGA", "A[AG]CGA"), # R->AG (default_flag, "YAGAC", "[CTU]AGAC"), # Y->CTU (default_flag, "SAGAC", "[GC]AGAC"), # S->GC (default_flag, "WAGAC", "[ATU]AGAC"), # W->AT (default_flag, "KAGAC", "[GTU]AGAC"), (default_flag, "MAGAC", "[AC]AGAC"), (default_flag, "BAGAC", "[CGTU]AGAC"), (default_flag, "DAGAC", "[AGTU]AGAC"), (default_flag, "HAGAC", "[ACTU]AGAC"), (default_flag, "VAGAC", "[ACG]AGAC"), (default_flag, "SWANKY", "[GC][ATU]A[ACTGU][GTU][CTU]"), (default_flag | re.IGNORECASE, "KAGAC", "[GTU]AGAC"), (default_flag | re.DEBUG, "MAGAC", "[AC]AGAC"), (default_flag | re.MULTILINE, "BAGAC", "[CGTU]AGAC"), (default_flag | re.DEBUG | re.MULTILINE, "DAGAC", "[AGTU]AGAC"), (default_flag | re.DOTALL | re.UNICODE, "HAGAC", "[ACTU]AGAC"), ] # yapf: disable """Test cases for :py:func:`seq_to_regex`, as tuples of 1. Regex flags 2. Input string 3. Expected regex pattern """ MUTANTS = [ ("A", "NACTG", 1, {"A", "C", "T", "G", "N"}), ("C", "NACTG", 1, {"A", "C", "T", "G", "N"}), ("T", "NACTG", 1, {"A", "C", "T", "G", "N"}), ("G", "NACTG", 1, {"A", "C", "T", "G", "N"}), ("N", "NACTG", 1, {"A", "C", "T", "G", "N"}), # 2 mutations ("A", "NACTG", 2, {"A", "C", "T", "G", "N"}), ("AT", "NACTG", 1, {"AT", "AA", "AC", "AG", "AN", "CT", "GT", "TT", "NT"}), # 2 mutations ( "AT", "NACTG", 2, { "AA", "AC", "AT", "AG", "AN", "CA", "CC", "CT", "CG", "CN", "GA", "GC", "GT", "GG", "GN", "TA", "TC", "TT", "TG", "TN", "NA", "NC", "NT", "NG", "NN" } ), ( "AAA", "NACTG", 1, {"AAA", "AAT", "AAC", "AAG", "AAN", "ATA", "ACA", "AGA", "ANA", "TAA", "CAA", "GAA", "NAA"} ), ( "AAAA", "NACTG", 1, { "AAAA", "AAAT", "AAAC", "AAAG", "AAAN", "AATA", "AACA", "AAGA", "AANA", "ATAA", "ACAA", "AGAA", "ANAA", "TAAA", "CAAA", "GAAA", "NAAA", } ), # restricted nucleotides ("AAAA", "CT", 1, { "AAAA", "AAAT", "AAAC", "AATA", "AACA", "ATAA", "ACAA", "TAAA", "CAAA", }), # multiple input sequences ( ["A", "AAA"], "NACTG", 1, { "A", "C", "T", "G", "N", "AAA", "AAT", "AAC", "AAG", "AAN", "ATA", "ACA", "AGA", "ANA", "TAA", "CAA", "GAA", "NAA" } ) ] """Test cases for :py:func:`mutate_seqs` as tuples of: 1. Input sequence(s) 2. Permitted nucleotide substitutions 3. Number of mutations 4. Expected output """ RANDOM_CHR = [ (1, "ACTG"), (100, "AC"), (100, "ACTG"), (10000, "ACTG"), ] """Test cases for :py:func:`random_seq` as tuples of: 1. Sequence length 2. Nucleotide composition """ ``` #### File: unit/readers/test_bigbed.py ```python import unittest import copy import warnings from random import shuffle from pkg_resources import resource_filename, cleanup_resources from nose.plugins.attrib import attr from nose.tools import assert_almost_equal from collections import OrderedDict from plastid.genomics.roitools import SegmentChain, GenomicSegment, Transcript from plastid.genomics.genome_hash import GenomeHash from plastid.readers.bed import BED_Reader from plastid.readers.bigbed import BigBedReader warnings.simplefilter("ignore", DeprecationWarning) #=============================================================================== # INDEX: helper functions #=============================================================================== def tearDownModule(): """Remove test dataset files after unit tests are complete""" cleanup_resources() def transcript_identical(ivc1, ivc2): """Test for identity between positions of two Transcripts""" position_test = ivc1.get_position_set() == ivc2.get_position_set() strand_test = ivc1.spanning_segment.strand == ivc2.spanning_segment.strand chrom_test = ivc1.spanning_segment.chrom == ivc2.spanning_segment.chrom start_test = (ivc1.cds_start is None and ivc2.cds_start is None) or\ (ivc1.cds_start == ivc2.cds_start) end_test = (ivc1.cds_end is None and ivc2.cds_end is None) or\ (ivc1.cds_end == ivc2.cds_end) return position_test & strand_test & chrom_test & start_test & end_test #=============================================================================== # INDEX: test suites #=============================================================================== @attr(test="unit") class test_BigBedReader(unittest.TestCase): @classmethod def setUpClass(cls): cls.cols = [3, 4, 5, 6, 8, 9, 12] cls.bedfiles = {} cls.bbfiles = {} for col in cls.cols: cls.bedfiles[col] = resource_filename( "plastid", "test/data/annotations/100transcripts_bed%s.bed" % col ) cls.bbfiles[col] = resource_filename( "plastid", "test/data/annotations/100transcripts_bed%s.bb" % col ) cls.chrom_sizes = {} with open(resource_filename("plastid", "test/data/annotations/sacCer3.sizes")) as fh: for line in fh: chrom, size = line.strip().split("\t") cls.chrom_sizes[chrom] = int(size) cls.bbs = {K: BigBedReader(cls.bbfiles[K], return_type=Transcript) for K in cls.cols} # comparisons against genome hash cls.binsize = 10000 with open(cls.bedfiles[12]) as fh: transcripts = list(BED_Reader(fh, return_type=Transcript)) cls.tx_dict = {} cls.cds_dict = {} cls.as_cds_dict = {} for tx in transcripts: txid = tx.get_name() cls.tx_dict[txid] = tx cds_ivc = tx.get_cds() cds_ivc.attr["ID"] = txid if cds_ivc.length > 0: cls.cds_dict[txid] = tx.get_cds() cls.as_cds_dict[txid] = tx.get_cds().get_antisense() cls.as_cds_dict[txid].attr["ID"] = txid cls.tx_hash = GenomeHash(cls.tx_dict, do_copy=False, binsize=cls.binsize) cls.cds_hash = GenomeHash(cls.cds_dict, do_copy=False, binsize=cls.binsize) cls.as_cds_hash = GenomeHash(cls.as_cds_dict, do_copy=False, binsize=cls.binsize) cls.shuffled_indices = list(range(len(transcripts))) shuffle(cls.shuffled_indices) cls.flybbfile = resource_filename( "plastid", "test/data/annotations/dmel-all-no-analysis-r5.54.bb" ) cls.flybedfile = resource_filename( "plastid", "test/data/annotations/dmel-all-no-analysis-r5.54.bed" ) # BigBed files with and without extra columns, with and without autoSql descriptions cls.bb_bonuscols = { "bb4as": resource_filename( "plastid", "test/data/annotations/100transcripts_bed4plus_bonus_as.bb" ), "bb12as": resource_filename( "plastid", "test/data/annotations/100transcripts_bed12plus_bonus_as.bb" ), "bb4no_as": resource_filename( "plastid", "test/data/annotations/100transcripts_bed4plus_bonus_no_as.bb" ), "bb12no_as": resource_filename( "plastid", "test/data/annotations/100transcripts_bed12plus_bonus_no_as.bb" ), } cls.bonus_col_file = resource_filename( "plastid", "test/data/annotations/bonus_bed_columns.txt" ) # BigBed file with indexes cls.bb_indexed = resource_filename("plastid", "test/data/annotations/dmel-bonus-cols.bb") def test_count_records(self): for _, my_reader in self.bbs.items(): # make sure we have all records self.assertEqual(my_reader.num_records, 100) def test_num_chroms(self): for _, my_reader in self.bbs.items(): self.assertEqual(my_reader.num_chroms, 17) def test_chrom_sizes(self): for _, my_reader in self.bbs.items(): for k, v in self.chrom_sizes.items(): self.assertEqual(my_reader.chroms[k], v) def test_iter_same_as_bed_reader_various_columns(self): # implicitly tests iterate_over_chunk over all bed files, too # this tests BigBed equality with various ranges of columns # and various custom columns for col in self.cols: bigbed = self.bbs[col] with open(self.bedfiles[col]) as fh: bed = BED_Reader(fh, return_type=Transcript) for n, (tx1, tx2) in enumerate(zip(bed, bigbed)): msg = "Transcript mismatch in BigBed file at record %s. Expected '%s'. Got '%s'." % ( n, tx1, tx2 ) self.assertTrue(transcript_identical(tx1, tx2), msg) self.assertEqual(n, 100 - 1) def test_iter_same_as_bed_reader_flydata(self): # test more complex transcript models # we cast them to lists, sadly, because Python's lexical chromosome sorting # differs from unix command-line sort; so even though the records are # in the same order in both files, they are returned with different sorts flybb = BigBedReader(self.flybbfile, return_type=Transcript) with open(self.flybedfile) as fh: flybed = BED_Reader(fh, return_type=Transcript) for n, (tx1, tx2) in enumerate(zip(flybed, flybb)): msg = "Transcript mismatch in BigBed file at record %s. Expected '%s'. Got '%s'." % ( n, tx1, tx2 ) self.assertTrue(transcript_identical(tx1, tx2), msg) self.assertEqual(n, 32682 - 1) def test_getitem_stranded(self): """Test fetching of overlapping features, minding strand 1. Make sure each feature can fetch its own subregion from its own neighborhood 2. Make sure each feature cannot fetch its own antisense subregion 3. Make sure each features fetches exactly the same features as a GenomeHash """ # make sure we can fetch each transcript's own CDS bb = self.bbs[12] u = 0 for txid, cds in list(self.cds_dict.items())[:100]: gh_ol_features = self.tx_hash.get_overlapping_features(cds, stranded=True) bb_ol_features = bb[cds] self.assertIn( txid, (X.get_name() for X in gh_ol_features), msg="%s failed to fetch its own CDS on correct strand" % txid ) # make sure bb fetch matches GenomeHash fetch self.assertSetEqual( set([str(X) for X in gh_ol_features]), set([str(X) for X in bb_ol_features]) ) u += 1 self.assertGreater(u, 0) # make sure we don't fetch each transcript's own antisense CDS # on opposite strand for txid, cds in list(self.as_cds_dict.items())[:100]: gh_ol_features = self.tx_hash.get_overlapping_features(cds, stranded=True) bb_ol_features = bb[cds] self.assertNotIn( txid, (X.get_name() for X in gh_ol_features), msg="%s fetched its own name on wrong strand!" % txid ) self.assertSetEqual( set([str(X) for X in gh_ol_features]), set([str(X) for X in bb_ol_features]) ) def test_get_stranded(self): """Test fetching of overlapping features, minding strand 1. Make sure each feature can fetch its own subregion from its own neighborhood 2. Make sure each feature cannot fetch its own antisense subregion 3. Make sure each features fetches exactly the same features as a GenomeHash """ # make sure we can fetch each transcript's own CDS bb = self.bbs[12] u = 0 for txid, cds in list(self.cds_dict.items())[:100]: gh_ol_features = self.tx_hash.get_overlapping_features(cds, stranded=True) bb_ol_features = bb.get(cds, stranded=True) self.assertIn( txid, (X.get_name() for X in gh_ol_features), msg="%s failed to fetch its own CDS on correct strand" % txid ) # make sure bb fetch matches GenomeHash fetch self.assertSetEqual( set([str(X) for X in gh_ol_features]), set([str(X) for X in bb_ol_features]) ) u += 1 self.assertGreater(u, 0) # make sure we don't fetch each transcript's own antisense CDS # on opposite strand for txid, cds in list(self.as_cds_dict.items())[:100]: gh_ol_features = self.tx_hash.get_overlapping_features(cds, stranded=True) bb_ol_features = bb[cds] self.assertNotIn( txid, (X.get_name() for X in gh_ol_features), msg="%s fetched its own name on wrong strand!" % txid ) self.assertSetEqual( set([str(X) for X in gh_ol_features]), set([str(X) for X in bb_ol_features]) ) def test_get_unstranded(self): """Test fetching of overlapping features, disregarding strand 1. Make sure each feature can fetch its own subregion from its own neighborhood 2. Make sure each feature can fetch its own antisense subregion 3. Make sure each features fetches exactly the same features as a GenomeHash """ # make sure we can fetch each transcript's from its own CDS on same strand bb = self.bbs[12] u = 0 for txid, cds in list(self.cds_dict.items())[:100]: gh_ol_features = self.tx_hash.get_overlapping_features(cds, stranded=False) bb_ol_features = bb.get(cds, stranded=False) self.assertIn( txid, (X.get_name() for X in gh_ol_features), msg="%s failed to fetch its own CDS on same strand" % txid ) # make sure bb fetch matches GenomeHash fetch self.assertSetEqual( set([str(X) + X.get_name() for X in gh_ol_features]), set([str(X) + X.get_name() for X in bb_ol_features]) ) u += 1 self.assertGreater(u, 0) # make sure we can fetch each transcript's from its own antisense CDS # on opposite strand for txid, cds in list(self.as_cds_dict.items())[:100]: gh_ol_features = self.tx_hash.get_overlapping_features(cds, stranded=False) bb_ol_features = bb.get(cds, stranded=False) self.assertIn( txid, (X.get_name() for X in gh_ol_features), msg="%s failed to fetched its own name on opposite strand!" % txid ) s1 = set([str(X) + X.get_name() for X in gh_ol_features]) s2 = set([str(X) + X.get_name() for X in bb_ol_features]) self.assertSetEqual( s1, s2, msg="%s failure:\n Only in first set: %s\n Only in second set: %s" % (txid, s1 - s2, s2 - s1) ) def test_return_type(self): bb = self.bbs[12] i = iter(bb) for _ in range(5): self.assertTrue(isinstance(next(i), Transcript)) ivcbb = BigBedReader(self.bbfiles[12], return_type=SegmentChain) i = iter(ivcbb) for _ in range(5): self.assertTrue(isinstance(next(i), SegmentChain)) def test_get_autosql_str(self): for k in (4, 12): bbplus_as = BigBedReader(self.bb_bonuscols["bb%sas" % k]) with open(resource_filename( "plastid", "test/data/annotations/bed%s_bonus_bed_columns.as" % k)) as fh: expected_as = fh.read() self.assertEqual(bbplus_as._get_autosql_str(), expected_as) def test_get_no_autosql_str(self): for k in (4, 12): bbplus_noas = BigBedReader(self.bb_bonuscols["bb%sno_as" % k]) self.assertEqual(bbplus_noas._get_autosql_str(), "") def test_custom_columns_names_with_autosql(self): expected = OrderedDict( [ ("my_floats", "some float values"), ("my_sets", "some set options"), ("my_ints", "signed integer values"), ("my_strs", "str representation of transcripts"), ("my_colors", "r,g,b colors"), ] ) for k in (4, 12): fn = "bb%sas" % k bb = BigBedReader(self.bb_bonuscols[fn]) self.assertEqual(bb.extension_fields, expected) def test_custom_columns_names_without_autosql(self): expected = OrderedDict( [ ("custom_0", "no description"), ("custom_1", "no description"), ("custom_2", "no description"), ("custom_3", "no description"), ("custom_4", "no description"), ] ) for k in (4, 12): fn = "bb%sno_as" % k bb = BigBedReader(self.bb_bonuscols[fn]) self.assertEqual(bb.extension_fields, expected) def test_custom_columns_retval_type_with_autosql(self): values = { "my_floats": [], "my_sets": [], "my_ints": [], "my_strs": [], "my_colors": [], } with open(self.bonus_col_file) as bfile: for line in bfile: items = line.strip("\n").split("\t") values["my_floats"].append(float(items[0])) if items[1] == "": values["my_sets"].append(set()) else: values["my_sets"].append(set([X.strip() for X in items[1].split(",")])) values["my_ints"].append(int(items[2])) values["my_strs"].append(items[3]) values["my_colors"].append(tuple([int(X) for X in items[4].split(",")])) for k in (4, 12): fn = "bb%sas" % k # ignore a Warning caused by trying to turn the BED color field # to an int- this has to deal with the fact that BedToBigBed wants # field 9 (itemRgb, typically uint[3]) to be `reserved uint;` in # autoSql declarations with warnings.catch_warnings(): #warnings.simplefilter("ignore") bb = BigBedReader(self.bb_bonuscols[fn]) for n, item in enumerate(bb): for key in values: expected = values[key][n] found = item.attr[key] msg = "failed test_custom_columns_retval_type_with_autosql at record %s, key %s. Expected '%s'. Got '%s' " % ( n, key, expected, found ) if isinstance(expected, float): assert_almost_equal(expected, found, msg) else: self.assertEqual(expected, found, msg) def test_custom_columns_retval_type_without_autosql(self): values = {"custom_%s" % X: copy.deepcopy([]) for X in range(5)} with open(self.bonus_col_file) as bfile: for line in bfile: items = line.strip("\n").split("\t") values["custom_0"].append(items[0]) values["custom_1"].append(items[1]) values["custom_2"].append(items[2]) values["custom_3"].append(items[3]) values["custom_4"].append(items[4]) for k in (4, 12): fn = "bb%sno_as" % k bb = BigBedReader(self.bb_bonuscols[fn]) for n, item in enumerate(bb): for key in values: self.assertEqual(values[key][n], item.attr[key]) def test_indexed_fields(self): reader = BigBedReader(self.bb_indexed) self.assertEqual( sorted(["gene_id", "name", "Name", "Alias"]), sorted(reader.indexed_fields) ) def test_indexed_fields_no_as_no_index(self): reader = BigBedReader(self.bb_bonuscols["bb12no_as"]) self.assertEqual([], reader.indexed_fields) def test_indexed_fields_as_no_index(self): reader = BigBedReader(self.bb_bonuscols["bb4as"]) self.assertEqual([], reader.indexed_fields) def test_search_fields_invalid_raises_error(self): reader = BigBedReader(self.bb_indexed) self.assertRaises(KeyError, reader.search, "garbage_field", "garbage_value") def test_search_fields_singlevalue(self): reader = BigBedReader(self.bb_indexed) found = list(reader.search("name", "should_have_no_match")) self.assertEqual([], found) found = list(reader.search("Name", "Sam-S-RE")) expected = [ SegmentChain( GenomicSegment('2L', 106902, 107000, '+'), GenomicSegment('2L', 107764, 107838, '+'), GenomicSegment('2L', 108587, 108809, '+'), GenomicSegment('2L', 110405, 110483, '+'), GenomicSegment('2L', 110754, 110877, '+'), GenomicSegment('2L', 111906, 112019, '+'), GenomicSegment('2L', 112689, 113369, '+'), GenomicSegment('2L', 113433, 114432, '+'), Alias="'['M(2)21AB-RE', 'CG2674-RE']'", ID='FBtr0089437', Name='Sam-S-RE', color='#000000', gene_id='FBgn0005278', score='0.0', thickend='113542', thickstart='108685', type='exon' ), ] self.assertEqual(expected, found) found = list(reader.search("gene_id", "FBgn0005278")) expected = [ SegmentChain( GenomicSegment('2L', 106902, 107000, '+'), GenomicSegment('2L', 107764, 107838, '+'), GenomicSegment('2L', 108587, 108809, '+'), GenomicSegment('2L', 110405, 110483, '+'), GenomicSegment('2L', 110754, 110877, '+'), GenomicSegment('2L', 111906, 112019, '+'), GenomicSegment('2L', 112689, 113369, '+'), GenomicSegment('2L', 113433, 114432, '+'), Alias="'['M(2)21AB-RE', 'CG2674-RE']'", ID='FBtr0089437', Name='Sam-S-RE', color='#000000', gene_id='FBgn0005278', score='0.0', thickend='113542', thickstart='108685', type='exon' ), SegmentChain( GenomicSegment('2L', 107760, 107838, '+'), GenomicSegment('2L', 108587, 108809, '+'), GenomicSegment('2L', 110405, 110483, '+'), GenomicSegment('2L', 110754, 111337, '+'), Alias='na', ID='FBtr0308091', Name='Sam-S-RK', color='#000000', gene_id='FBgn0005278', score='0.0', thickend='110900', thickstart='108685', type='exon' ), SegmentChain( GenomicSegment('2L', 107760, 107838, '+'), GenomicSegment('2L', 108587, 108809, '+'), GenomicSegment('2L', 110405, 110483, '+'), GenomicSegment('2L', 110754, 110877, '+'), GenomicSegment('2L', 111004, 111117, '+'), GenomicSegment('2L', 111906, 112019, '+'), GenomicSegment('2L', 112689, 113369, '+'), GenomicSegment('2L', 113433, 114210, '+'), Alias="'['M(2)21AB-RB', 'CG2674-RB']'", ID='FBtr0089428', Name='Sam-S-RB', color='#000000', gene_id='FBgn0005278', score='0.0', thickend='112741', thickstart='108685', type='exon' ), SegmentChain( GenomicSegment('2L', 107760, 107838, '+'), GenomicSegment('2L', 108587, 108809, '+'), GenomicSegment('2L', 110405, 110483, '+'), GenomicSegment('2L', 110754, 110877, '+'), GenomicSegment('2L', 111906, 112019, '+'), GenomicSegment('2L', 112689, 113369, '+'), GenomicSegment('2L', 113433, 114432, '+'), Alias="'['M(2)21AB-RA', 'CG2674-RA']'", ID='FBtr0089429', Name='Sam-S-RA', color='#000000', gene_id='FBgn0005278', score='0.0', thickend='113542', thickstart='108685', type='exon' ), SegmentChain( GenomicSegment('2L', 107760, 107956, '+'), GenomicSegment('2L', 108587, 108809, '+'), GenomicSegment('2L', 110405, 110483, '+'), GenomicSegment('2L', 110754, 110877, '+'), GenomicSegment('2L', 112689, 113369, '+'), GenomicSegment('2L', 113433, 114432, '+'), Alias='na', ID='FBtr0330656', Name='Sam-S-RL', color='#000000', gene_id='FBgn0005278', score='0.0', thickend='112781', thickstart='108685', type='exon' ), SegmentChain( GenomicSegment('2L', 107936, 108226, '+'), GenomicSegment('2L', 108587, 108809, '+'), GenomicSegment('2L', 110405, 110483, '+'), GenomicSegment('2L', 110754, 110877, '+'), GenomicSegment('2L', 111906, 112019, '+'), GenomicSegment('2L', 112689, 113369, '+'), GenomicSegment('2L', 113433, 114210, '+'), Alias="'['M(2)21AB-RH', 'CG2674-RH']'", ID='FBtr0089432', Name='Sam-S-RH', color='#000000', gene_id='FBgn0005278', score='0.0', thickend='113542', thickstart='108685', type='exon' ), SegmentChain( GenomicSegment('2L', 107936, 108101, '+'), GenomicSegment('2L', 108587, 108809, '+'), GenomicSegment('2L', 110405, 110483, '+'), GenomicSegment('2L', 110754, 110877, '+'), GenomicSegment('2L', 111906, 112019, '+'), GenomicSegment('2L', 112689, 113369, '+'), GenomicSegment('2L', 113433, 114432, '+'), Alias="'['M(2)21AB-RD', 'CG2674-RD']'", ID='FBtr0089430', Name='Sam-S-RD', color='#000000', gene_id='FBgn0005278', score='0.0', thickend='113542', thickstart='108685', type='exon' ), SegmentChain( GenomicSegment('2L', 107936, 108101, '+'), GenomicSegment('2L', 108587, 108809, '+'), GenomicSegment('2L', 110405, 110483, '+'), GenomicSegment('2L', 110754, 110877, '+'), GenomicSegment('2L', 111004, 111117, '+'), GenomicSegment('2L', 112689, 113369, '+'), GenomicSegment('2L', 113433, 114432, '+'), Alias="'['M(2)21AB-RC', 'CG2674-RC']'", ID='FBtr0089431', Name='Sam-S-RC', color='#000000', gene_id='FBgn0005278', score='0.0', thickend='113542', thickstart='108685', type='exon' ), SegmentChain( GenomicSegment('2L', 108088, 108226, '+'), GenomicSegment('2L', 108587, 108809, '+'), GenomicSegment('2L', 110405, 110483, '+'), GenomicSegment('2L', 110754, 110877, '+'), GenomicSegment('2L', 111906, 112019, '+'), GenomicSegment('2L', 112689, 113369, '+'), GenomicSegment('2L', 113433, 114432, '+'), Alias="'['M(2)21AB-RF', 'CG2674-RF']'", ID='FBtr0089433', Name='Sam-S-RF', color='#000000', gene_id='FBgn0005278', score='0.0', thickend='113542', thickstart='108685', type='exon' ), SegmentChain( GenomicSegment('2L', 108132, 108346, '+'), GenomicSegment('2L', 108587, 108809, '+'), GenomicSegment('2L', 110405, 110483, '+'), GenomicSegment('2L', 110754, 110877, '+'), GenomicSegment('2L', 111906, 112019, '+'), GenomicSegment('2L', 112689, 113369, '+'), GenomicSegment('2L', 113433, 114432, '+'), Alias="'['M(2)21AB-RI', 'CG2674-RI']'", ID='FBtr0089434', Name='Sam-S-RI', color='#000000', gene_id='FBgn0005278', score='0.0', thickend='113542', thickstart='108685', type='exon' ), SegmentChain( GenomicSegment('2L', 108132, 108226, '+'), GenomicSegment('2L', 108587, 108809, '+'), GenomicSegment('2L', 110405, 110483, '+'), GenomicSegment('2L', 110754, 110877, '+'), GenomicSegment('2L', 111004, 111117, '+'), GenomicSegment('2L', 112689, 113369, '+'), GenomicSegment('2L', 113433, 114432, '+'), Alias="'['M(2)21AB-RJ', 'CG2674-RJ']'", ID='FBtr0089435', Name='Sam-S-RJ', color='#000000', gene_id='FBgn0005278', score='0.0', thickend='113542', thickstart='108685', type='exon' ), SegmentChain( GenomicSegment('2L', 109593, 109793, '+'), GenomicSegment('2L', 110405, 110483, '+'), GenomicSegment('2L', 110754, 110877, '+'), GenomicSegment('2L', 111004, 111117, '+'), GenomicSegment('2L', 112689, 113369, '+'), GenomicSegment('2L', 113433, 114210, '+'), Alias="'['M(2)21AB-RG', 'CG2674-RG']'", ID='FBtr0089436', Name='Sam-S-RG', color='#000000', gene_id='FBgn0005278', score='0.0', thickend='113542', thickstart='109750', type='exon' ), ] self.assertEqual(sorted(expected), sorted(found)) def test_search_fields_multivalue(self): reader = BigBedReader(self.bb_indexed) found = list(reader.search("name", "should_have_no_match", "should_also_have_no_match")) self.assertEqual([], found) found = list(reader.search("Name", "Sam-S-RE", "Sam-S-RK")) expected = [ SegmentChain( GenomicSegment('2L', 106902, 107000, '+'), GenomicSegment('2L', 107764, 107838, '+'), GenomicSegment('2L', 108587, 108809, '+'), GenomicSegment('2L', 110405, 110483, '+'), GenomicSegment('2L', 110754, 110877, '+'), GenomicSegment('2L', 111906, 112019, '+'), GenomicSegment('2L', 112689, 113369, '+'), GenomicSegment('2L', 113433, 114432, '+'), Alias="'['M(2)21AB-RE', 'CG2674-RE']'", ID='FBtr0089437', Name='Sam-S-RE', color='#000000', gene_id='FBgn0005278', score='0.0', thickend='113542', thickstart='108685', type='exon' ), SegmentChain( GenomicSegment('2L', 107760, 107838, '+'), GenomicSegment('2L', 108587, 108809, '+'), GenomicSegment('2L', 110405, 110483, '+'), GenomicSegment('2L', 110754, 111337, '+'), Alias='na', ID='FBtr0308091', Name='Sam-S-RK', color='#000000', gene_id='FBgn0005278', score='0.0', thickend='110900', thickstart='108685', type='exon' ), ] self.assertEqual(expected, found) ``` #### File: unit/readers/test_bigwig.py ```python import os import numpy from nose.tools import assert_less_equal, assert_raises, assert_dict_equal,\ assert_true, assert_equal, assert_almost_equal from pkg_resources import resource_filename from plastid.readers.bigwig import BigWigReader from plastid.readers.wiggle import WiggleReader from plastid.genomics.roitools import GenomicSegment from plastid.genomics.genome_array import GenomeArray from plastid.util.services.decorators import skip_if_abstract TOL = 1e-5 #tolerance is high because bigwig files are approximate base_path = resource_filename("plastid", "test/data") wigfile = os.path.join(base_path, "command_line", "gen_reads_center_12_fw.wig") bigwigfile = os.path.join(base_path, "command_line", "gen_reads_center_12_fw.bw") class WildCard(float): def __eq__(self, other): return True def __neq__(self, other): return False def __repr__(self): return 'any float' def __str__(self): return 'any float' wildcard = WildCard() class AbstractTestBBIFile(): @classmethod def setUpClass(cls): cls.bw = BigWigReader(bigwigfile, fill=0) @skip_if_abstract def test_chrom_sizes(self): found = self.bw.chroms expected = {} with open(os.path.join(base_path, "annotations", "sacCer3.sizes")) as fh: for line in fh: k, v = line.strip().split("\t") expected[k] = int(v) # these two happen not to be in the dataset expected.pop("chrVI") expected.pop("chrmt") assert_dict_equal(expected, found) @skip_if_abstract def test_no_crash_if_file_not_exist(self): with assert_raises(IOError) as _: _ = self.reader_class("non_existant_file") @skip_if_abstract def test_sum(self): assert False class TestBigWigReader(AbstractTestBBIFile): @classmethod def setUpClass(cls): cls.bw = BigWigReader(bigwigfile, fill=0) cls.reader_class = BigWigReader cls.chrdict = { 'chrI': 230218, 'chrII': 813184, 'chrIII': 316620, 'chrIV': 1531933, 'chrV': 576874, 'chrVII': 1090940, 'chrVIII': 562643, 'chrIX': 439888, 'chrX': 745751, 'chrXI': 666816, 'chrXII': 1078177, 'chrXIII': 924431, 'chrXIV': 784333, 'chrXV': 1091291, 'chrXVI': 948066 } def check_vals_against_wig(self, expected, found): diff = abs(expected - found) maxdiff = diff.max() maxloc = diff.argmax() msg = "Maximum difference found between BigWig and Wiggle (%s) is at position %s and exceeded tolerance (%s).\n" % ( maxdiff, maxloc, TOL ) msg += "At that position, expected %s, got %s." % (expected[maxloc], found[maxloc]) assert_less_equal(maxdiff, TOL, msg) # NOTE: this test relies on WiggleReader being correct def test_vals_against_wig(self): ga = GenomeArray() with open(wigfile) as fin: ga.add_from_wiggle(fin, "+") for chrom, length in self.chrdict.items(): seg = GenomicSegment(chrom, 0, length, "+") expected = ga[seg] found = self.bw[seg] yield self.check_vals_against_wig, expected, found # NOTE: this test relies on WiggleReader being correct def check_random_windows_against_wig(self, strand): chrdict = self.chrdict chroms = list(self.chrdict) chridx = numpy.random.randint(0, high=len(chroms), size=50) ga = GenomeArray() i = 0 with open(wigfile) as fin: ga.add_from_wiggle(fin, strand) while i < 50: chrom = chroms[chridx[i]] maxlength = chrdict[chrom] start = numpy.random.randint(0, high=maxlength - 2000) end = numpy.random.randint(start + 10000, high=start + 20000) # make sure we don't go off chrom while end > maxlength: end = numpy.random.randint(start + 100, high=start + 10000) seg = GenomicSegment(chrom, start, end, strand) expected = ga[seg] # make sure segment has counts in it if expected.sum() > 0: i += 1 found = self.bw[seg] yield self.check_vals_against_wig, expected, found def test_random_windows_against_wig_fw(self): self.check_random_windows_against_wig("+") def test_random_windows_against_wig_rc(self): self.check_random_windows_against_wig("-") def test_get_chromosome_counts_zero_fill(self): ga = GenomeArray() with open(wigfile) as fin: ga.add_from_wiggle(fin, "+") for chrom, length in self.chrdict.items(): seg = GenomicSegment(chrom, 0, length, "+") expected = ga[seg] found = self.bw.get_chromosome_counts(chrom) yield self.check_vals_against_wig, expected, found def test_fill_val_absent_chrom(self): filldef = BigWigReader(bigwigfile) fillnan = BigWigReader(bigwigfile, fill=numpy.nan) fill0 = BigWigReader(bigwigfile, fill=0) fill10 = BigWigReader(bigwigfile, fill=10) # chrVI is not in dataset; this should be an empty array seg = GenomicSegment("chrVI", 5, 1000, "+") assert_equal(len(filldef[seg]), len(seg), "fetched wrong size") # assert_true(numpy.isnan(filldef[seg]).all(), # "default not nan") # # assert_true(numpy.isnan(fillnan[seg]).all(), # "nanfill didn't work") assert_true((fill0[seg] == 0).all(), "0-fill didn't work") # assert_true((fill10[seg] == 10).all(), # "10-fill didn't work") def test_fill_val_present_chrom(self): filldef = BigWigReader(bigwigfile) fillnan = BigWigReader(bigwigfile, fill=numpy.nan) fill0 = BigWigReader(bigwigfile, fill=0) fill10 = BigWigReader(bigwigfile, fill=10) # empty region seg = GenomicSegment("chrIV", 5, 10, "+") assert_equal(len(filldef[seg]), len(seg), "fetched wrong size") # assert_true(numpy.isnan(filldef[seg]).all(), # "default not nan") # # assert_true(numpy.isnan(fillnan[seg]).all(), # "nanfill didn't work") assert_true((fill0[seg] == 0).all(), "0-fill didn't work") # assert_true((fill10[seg] == 10).all(), # "10-fill didn't work") def test_sum(self): bw = BigWigReader(os.path.join(base_path, "mini", "wig", "bw_fiveprime_15_fw.bw")) assert_equal(bw.sum(), 4000) def test_iter(self): with open(wigfile) as fh: wig = WiggleReader(fh) bw = BigWigReader(bigwigfile) for found in bw: expected = next(wig) fchrom = found[0] echrom = expected[0] assert_equal( fchrom, echrom, "Chromosome mismatch. Expected '%s', found '%s'." % (fchrom, echrom) ) fstart = found[1] estart = expected[1] assert_equal( fstart, estart, "Start mismatch. Expected '%s', found '%s'." % (fstart, estart) ) fend = found[2] eend = expected[2] assert_equal(fend, eend, "End mismatch. Expected '%s', found '%s'." % (fend, eend)) fval = found[3] eval_ = expected[3] diff = abs(fval - eval_) assert_true( diff < TOL, "Difference %s exceeds tolerance '%s'. Expected '%s', found '%s'." % (diff, TOL, fval, eval_) ) # Disabled until we decide what to do with summarize() # def test_summarize(self): # bw = BigWigReader(bigwigfile) # # #ga = GenomeArray(bw.chroms) # #ga.add_from_wiggle(open(wigfile),"+") # # chrom = "chrI" # maxlen = bw.chroms[chrom] # winstarts = numpy.random.randint(0,maxlen-20000,size=10) # winends = winstarts + numpy.random.randint(500,40000,size=10) # winends[winends > maxlen] = maxlen # # numtests = 10 # i = 0 # while i < numtests: # s = numpy.random.randint(0,high=maxlen) # e = min(maxlen,numpy.random.randint(s+500,s+40000)) # seg = GenomicSegment(chrom,s,e,"+") # #arr = ga[seg] # arr = bw[seg] # # labels = ["mean","max","min","cov","stdev"] # expected = [arr.mean(),arr.max(),arr.min(),wildcard,arr.std()] # # # change nans to 0 # expected = [0 if numpy.isnan(X) else X for X in expected] # # print(expected) # found = bw.summarize(seg) # print(found) # print("---------------") # for label, exval, fval in zip(labels,expected,found): # msg = "test_summarize failed for stat '%s'. Expected %s, got %s (diff: %s)." % (label,exval,fval,abs(exval-fval)) # assert_almost_equal(exval,fval,msg=msg,delta=5) # # i += 1 # # # retval for summarize: (mean,max_,min_,cov,stdev) ``` #### File: util/io/test_filters.py ```python import unittest from nose.plugins.attrib import attr from plastid.util.services.mini2to3 import cStringIO from plastid.util.io.filters import SkipBlankReader, CommentReader, FunctionReader #=============================================================================== # INDEX: test cases #=============================================================================== @attr(test="unit") class TestSkipBlankReader(unittest.TestCase): """TestCase for :py:class:`SkipBlankReader`""" def get_stream(self): return SkipBlankReader(cStringIO.StringIO(_NL_TEXT)) def test_read(self): fin = self.get_stream() lines = fin.read().strip().split("\n") self.assertEqual(len(lines), 30) for line in lines: self.assertNotEqual(line.strip(), "") fin.close() def test_readlines(self): lines = self.get_stream().readlines() self.assertEqual(len(lines), 30) for line in lines: self.assertNotEqual(line.strip(), "") def test_iter(self): for n, line in enumerate(self.get_stream()): self.assertNotEqual(line.strip(), "") self.assertEqual(n, 29) @attr(test="unit") class TestCommentReader(TestSkipBlankReader): """TestCase for :py:class:`CommentReader`""" def get_stream(self): return CommentReader(cStringIO.StringIO(_COMMENT_TEXT)) def test_get_comments(self): reader = self.get_stream() comments = reader.get_comments() # comments should not be populated until we have read self.assertEquals(len(comments), 0) reader.read() # comments should be found afterwards self.assertEquals(len(comments), 5) for comment in comments: self.assertTrue(comment.startswith("#")) @attr(test="unit") class TestFunctionReader(unittest.TestCase): def test_via_backwards(self): reader = FunctionReader(cStringIO.StringIO(_NL_TEXT), lambda x: x[::-1]) for line1, line2 in zip(reader, cStringIO.StringIO(_NL_TEXT)): self.assertEqual(line1, line2[::-1]) def test_via_upper(self): reader = FunctionReader(cStringIO.StringIO(_NL_TEXT), str.upper) for line1, line2 in zip(reader, cStringIO.StringIO(_NL_TEXT)): self.assertEqual(line1, line2.upper()) #=============================================================================== # INDEX: test data #=============================================================================== _NL_TEXT = """1 Lorem ipsum dolor sit amet, consectetur adipiscing elit. Morbi vitae ipsum vel 2 nisi dapibus dapibus in vel neque. Proin nec consectetur arcu. Praesent 3 convallis venenatis metus quis elementum. Ut elementum justo ac faucibus 4 efficitur. Nam at ornare elit. Sed pulvinar mi sapien, sed faucibus risus 5 cursus at. Nulla sit amet posuere ex, sit amet convallis ante. Integer 6 imperdiet purus nec ante pretium fringilla. Vivamus a ligula tristique, 7 sodales elit et, fringilla ligula. Nulla facilisi. Nunc sed enim non ligula 8 commodo blandit. Sed ultricies quis urna vel imperdiet. Curabitur leo nisi, 9 faucibus sed mauris ut, bibendum pretium nibh. 10 Cras libero quam, scelerisque ut suscipit ac, pellentesque non sapien. Vivamus 11 eu tristique nisi. Sed luctus molestie mollis. Praesent dapibus tincidunt 12 pretium. Sed faucibus vestibulum est, ac mollis libero dapibus in. Phasellus 13 nec euismod sapien. Donec faucibus orci sem, vitae hendrerit orci sodales non. 14 Sed facilisis erat at erat semper facilisis. Proin at orci et ligula mattis 15 condimentum. Aenean tincidunt, nunc sit amet malesuada scelerisque, nisl augue 16 imperdiet lectus, et sollicitudin quam quam nec massa. Morbi volutpat nulla et 17 erat porta tempus. 18 Nulla placerat ipsum elit, at vestibulum urna pellentesque a. Nunc bibendum 19 convallis orci, vel euismod tellus commodo ullamcorper. Vestibulum vestibulum 20 lobortis tempor. Maecenas non nisi aliquet lorem tincidunt varius sed aliquam 21 est. Vivamus egestas, nisi sed laoreet interdum, nisi tellus egestas erat, sit 22 amet ultricies metus orci sed orci. Aenean at lectus viverra, venenatis mauris 23 sed, ultricies augue. Sed ac purus vitae dui tempus pulvinar. Duis tincidunt 24 nisi sit amet purus laoreet placerat. Quisque nulla orci, vestibulum nec metus 25 eu, convallis consequat libero. Maecenas sed ultrices tellus, non commodo 26 lectus. Suspendisse non diam eget purus imperdiet aliquam a sed libero. 27 Quisque eu venenatis tellus. Aliquam ornare purus non ante imperdiet interdum. 28 Cras pretium, diam ac sagittis luctus, diam metus scelerisque libero, sit amet 29 cursus erat nulla ut augue. Ut est tortor, faucibus non nisi a, gravida 30 fermentum tortor. """ _COMMENT_TEXT = """1 Lorem ipsum dolor sit amet, consectetur adipiscing elit. Morbi vitae ipsum vel 2 nisi dapibus dapibus in vel neque. Proin nec consectetur arcu. Praesent 3 convallis venenatis metus quis elementum. Ut elementum justo ac faucibus 4 efficitur. Nam at ornare elit. Sed pulvinar mi sapien, sed faucibus risus 5 cursus at. Nulla sit amet posuere ex, sit amet convallis ante. Integer 6 imperdiet purus nec ante pretium fringilla. Vivamus a ligula tristique, 7 sodales elit et, fringilla ligula. Nulla facilisi. Nunc sed enim non ligula 8 commodo blandit. Sed ultricies quis urna vel imperdiet. Curabitur leo nisi, 9 faucibus sed mauris ut, bibendum pretium nibh. # Here is comment #1 10 Cras libero quam, scelerisque ut suscipit ac, pellentesque non sapien. Vivamus 11 eu tristique nisi. Sed luctus molestie mollis. Praesent dapibus tincidunt 12 pretium. Sed faucibus vestibulum est, ac mollis libero dapibus in. Phasellus 13 nec euismod sapien. Donec faucibus orci sem, vitae hendrerit orci sodales non. 14 Sed facilisis erat at erat semper facilisis. Proin at orci et ligula mattis 15 condimentum. Aenean tincidunt, nunc sit amet malesuada scelerisque, nisl augue 16 imperdiet lectus, et sollicitudin quam quam nec massa. Morbi volutpat nulla et 17 erat porta tempus. # This is comment #2 18 Nulla placerat ipsum elit, at vestibulum urna pellentesque a. Nunc bibendum 19 convallis orci, vel euismod tellus commodo ullamcorper. Vestibulum vestibulum 20 lobortis tempor. Maecenas non nisi aliquet lorem tincidunt varius sed aliquam 21 est. Vivamus egestas, nisi sed laoreet interdum, nisi tellus egestas erat, sit 22 amet ultricies metus orci sed orci. Aenean at lectus viverra, venenatis mauris 23 sed, ultricies augue. Sed ac purus vitae dui tempus pulvinar. Duis tincidunt # This is comment #3 24 nisi sit amet purus laoreet placerat. Quisque nulla orci, vestibulum nec metus 25 eu, convallis consequat libero. Maecenas sed ultrices tellus, non commodo # this is an end-of-line comment, which should not be removed 26 lectus. Suspendisse non diam eget purus imperdiet aliquam a sed libero. # This is comment #4 27 Quisque eu venenatis tellus. Aliquam ornare purus non ante imperdiet interdum. 28 Cras pretium, diam ac sagittis luctus, diam metus scelerisque libero, sit amet 29 cursus erat nulla ut augue. Ut est tortor, faucibus non nisi a, gravida 30 fermentum tortor. # This is comment #5""" ``` #### File: util/services/test_decorators.py ```python import sys import os import fcntl import types import warnings from nose.plugins.attrib import attr from nose.tools import assert_equal, assert_true, assert_greater_equal, assert_raises, assert_set_equal, assert_not_equal from plastid.util.services.decorators import ( notimplemented, deprecated, parallelize, in_separate_process, catch_stderr, catch_stdout, catch_warnings, ) #=============================================================================== # INDEX: functions and classes that will be decorated #=============================================================================== def stderr_func(msg): sys.stderr.write(msg) return msg def stdout_func(msg): sys.stdout.write(msg) return msg def util_func(x): """Square numbers and return process in which function was run Parameters ---------- x : int or float Returns ------- int or float Squared value of ``x`` int Process ID in which function was run """ return x**2, os.getpid() def func_that_warns(): warnings.warn("Some warning", UserWarning) def get_pipes(): readfd, writefd = os.pipe() fcntl.fcntl(readfd, fcntl.F_SETFL, os.O_NONBLOCK) fcntl.fcntl(writefd, fcntl.F_SETFL, os.O_NONBLOCK) return os.fdopen(readfd, "r"), os.fdopen(writefd, "w") class UtilClass(object): def __init__(self, tmp): self.name = tmp def get_name(self): return self.name #=============================================================================== # INDEX: unit tests #=============================================================================== # stdout/err redirection ------------------------------------------------------- STDERR_FD = sys.stderr.fileno() if sys.version_info[0] == 2: EMPTY_BUFFER_ERROR = IOError else: # Python 3.x codecs returns None from empty non-blocking buffers # which causes a TypeError to be raised instead of # the IOError raised in Python 2.x EMPTY_BUFFER_ERROR = TypeError @attr(test="unit") def test_catch_stderr_doesnt_print_without_buffer(): # spy on `inner` by making sure there is nothing written to stderr outer_reader, outer_writer = get_pipes() message = "this is a test" sys.stderr = sys.__stderr__ @catch_stderr(outer_writer) def inner(): # make sure value is returned from wrapped function wrapped = catch_stderr()(stderr_func) msg = wrapped(message) assert_equal(msg, message) inner() outer_writer.flush() outer_writer.close() # make sure no message made it out of `inner` # with nothing to read in pipe, outer_reader should raise IOError assert_raises(EMPTY_BUFFER_ERROR, outer_reader.read) outer_reader.close() @attr(test="unit") def test_catch_stderr_doesnt_print_with_buffer_but_catches_in_buffer(): # spy on `inner` by making sure there is nothing written to stderr # but make sure message is found in inner readre outer_reader, outer_writer = get_pipes() message = "this is a test" sys.stderr = sys.__stderr__ @catch_stderr(outer_writer) def inner(): inner_reader, inner_writer = get_pipes() wrapped = catch_stderr(inner_writer)(stderr_func) # make sure value is returned from wrapped function msg = wrapped(message) assert_equal(message, msg) # make sure we caught entire message from stderr inner_writer.flush() inner_writer.close() assert_equal(message, inner_reader.read()) inner_reader.close() inner() outer_writer.flush() outer_writer.close() # make sure no message made it out of `inner` # with nothing to read in pipe, outer_reader should raise IOError assert_raises(EMPTY_BUFFER_ERROR, outer_reader.read) outer_reader.close() # catch warnings ------------------------------------------------------------ @attr(test="unit") def test_catch_warnings_catches_warnings(): ign_func = catch_warnings("ignore")(func_that_warns) num = 5 with warnings.catch_warnings(record=True) as warns: warnings.simplefilter("always") for x in range(num): func_that_warns() # make sure warning is issued with vanilla function assert_equal(len(warns), num) num = 5 with warnings.catch_warnings(record=True) as warns: warnings.simplefilter("always") for x in range(num): ign_func() # make sure warning is caught with wrapped function assert_equal(len(warns), 0) # notimplemented ------------------------------------------------------------ @attr(test="unit") def test_notimplemented_raises_exception(): my_func = notimplemented(util_func) assert_true(isinstance(my_func, types.FunctionType)) assert_raises(NotImplementedError, my_func, 5) # deprecated ---------------------------------------------------------------- @attr(test="unit") def test_deprecated_function_raises_warning_only_once(): num = 5 my_func = deprecated(util_func) assert_true(isinstance(my_func, types.FunctionType)) with warnings.catch_warnings(record=True) as warns: warnings.simplefilter("always") for x in range(num): assert_equal(my_func(x), util_func(x)) my_func(x) # make sure warning is issued only once assert_equal(len(warns), 1) @attr(test="unit") def test_deprecated_class_raises_warning(): reg_obj = UtilClass("my_object") dep_class = deprecated(UtilClass) with warnings.catch_warnings(record=True) as warns: warnings.simplefilter("always") dep_obj = dep_class("my_object") assert_true(isinstance(dep_obj, UtilClass)) # make sure warning is issued assert_equal(len(warns), 1) # make sure wrapped class behaves as it should assert_equal(reg_obj.get_name(), dep_obj.get_name()) # parallelize or in other processes -------------------------------------------- @attr(test="unit") def test_parallelize_spawns_processes_and_gets_correct_ansswer(): x = range(500) my_func = parallelize(util_func) outer_vals, outer_pids = zip(*[util_func(X) for X in x]) inner_vals, inner_pids = zip(*my_func(x)) assert_set_equal(set(outer_vals), set(inner_vals)) assert_not_equal(set(outer_pids), set(inner_pids)) @attr(test="unit") def test_in_separate_process_spawns_process_and_gets_correct_ansswers(): my_func = in_separate_process(util_func) assert_true(isinstance(my_func, types.FunctionType)) for x in range(100): res_out, outer_pid = my_func(x) res_in, inner_pid = util_func(x) assert_equal(res_out, res_in) assert_not_equal(outer_pid, inner_pid) ``` #### File: util/services/test_misc.py ```python import numpy import unittest from nose.plugins.attrib import attr from plastid.util.services.misc import guess_formatter, number @attr(test="unit") class TestMisc(unittest.TestCase): def setUp(self): self.tests = [ ("nan", numpy.nan), ("Nan", numpy.nan), ("NaN", numpy.nan), ("None", numpy.nan), ("none", numpy.nan), ("Inf", numpy.inf), ("inf", numpy.inf), ("-Inf", -numpy.inf), ("-inf", -numpy.inf), ("5", 5), ("5.0", 5), ("-5", -5), ("-5.0", -5), ("0", 0), ("5.1", 5.1), ("-5.1", -5.1), ("a5", "a5"), ("5a", "5a"), ("-5.1a", "-5.1a"), ("some_string", "some_string"), ("True", True), ("False", False), ("true", True), ("false", False), ("True5", "True5"), ("5True", "5True"), ("1e10", 1e10), ("1e-10", 1e-10), ("-1e10", -1e10), ("-1e-10", -1e-10), ] def test_guess_formatter(self): """Test parsing of strings to floats, ints, nans, infs, bools, and strings""" for source, dest in self.tests: if isinstance(dest, float): if not numpy.isnan(dest): self.assertEquals(guess_formatter(source), dest) else: self.assertTrue(numpy.isnan(guess_formatter(source))) else: #if isinstance(dest,int): self.assertEquals(guess_formatter(source), dest) def test_number(self): """Test numerical parsing of strings to floats, ints, nans, and infs""" for source, dest in self.tests: if isinstance(dest, bool): pass elif isinstance(dest, float): if not numpy.isnan(dest): self.assertEquals(number(source), dest) else: self.assertTrue(numpy.isnan(number(source))) elif isinstance(dest, int): self.assertEquals(number(source), dest) else: self.assertRaises(ValueError, number, source) ``` #### File: util/services/misc.py ```python import numpy def guess_formatter(inp): """Guesses the format of input, trying `bool`, `int`, `float`, then `str`. Correctly parses `nan`s and `Inf`s. Converts `None` to `nan` Parameters ---------- inp : str input Returns ------- boolean, number, or string """ if inp.lower() == "true": return True elif inp.lower() == "false": return False else: try: return number(inp) except ValueError: return str(inp) def number(inp): """Parses numbers from strings, preferring int over float. Parses `nan`, `Nan`, `None`, `none`, `inf`, and `-inf` Parameters ---------- inp : str string input Returns ------- float, numpy.nan, numpy.inf, or -numpy.inf, or str if no conversion found Raises ------ ValueError if `inp` cannot be converted to a number """ if inp in ("nan", "NaN", "na", "None", "none"): return numpy.nan elif inp in ("inf", "Inf"): return numpy.inf elif inp in ("-inf", "-Inf"): return -numpy.inf else: try: # note: in python bools are also ints! # isinstance(True,int) == True val = int(inp) except ValueError: val = float(inp) return val ```
{ "source": "JoshuaGud777/AppleQuest", "score": 3 }
#### File: AppleQuest/webapp/game.py ```python if __name__ == '__main__': import library as lib else: import webapp.library as lib import cgitb cgitb.enable() def html_print(value='', print_data='', newcookie=''): '''Prints the HTML to the client with varibals $$ printdata $$ $$ command $$ $$ newcookie $$ $$ oldcookie $$''' html = lib.get_html(lib.HTML_DIR + 'game.html') if True: html = html.replace('$$oldcookie$$$', cookie_read()) else: html = html.replace('$$oldcookie$$$', '') if newcookie != '': html = html.replace('$$newcookie$$$', str(newcookie)) else: html = html.replace('$$newcookie$$$', '') if print_data != '': html = html.replace('$$printdata$$', print_data) else: html = html.replace('$$printdata$$', '') if value != '': html = html.replace('$$command$$', value) else: html = html.replace('$$command$$', '') if True is not False: html = html.replace('$$printcommand$$', '') else: print('This is not the case you are looking for!') print('P.S. The world is about to end!!!') print(html) def cookie_read(): '''Reads the cookies sent in the request headers and prints the back to the client''' cookie = lib.get_cookies() if cookie is None: return 'No saved Cookies' else: return str(cookie) def main(): '''main''' lib.open_conn(lib.DB_DIR + 'AppleQuest.db') print_data = '' newcookie = '' cookie_read() form = lib.get_cgi_data() command = form.getfirst("command") renew = form.getfirst("newid") if command is None: command = '' elif type(command) != str: command = str(command) if renew == 'true': cookies = lib.get_cookies() sessioninfo = lib.renew_session_id(cookies['id'].value, cookies['username'].value) if type(sessioninfo) == str or sessioninfo is False: print_data += 'Could not renew\n' else: newcookie = lib.cookie_wright(sessioninfo[0], sessioninfo[1], sessioninfo[2],) if command == '301': print_data += '103\n' elif command == '302': print_data += '203\n' elif command == '303': print_data += '303\n' else: print_data += '003\n' lib.print_header(newcookie) html_print(command, print_data, newcookie) lib.save_close_conn() if __name__ == '__main__': main() ``` #### File: AppleQuest/webapp/library.py ```python import binascii import cgi import hashlib import http.cookies import os import sqlite3 import time # Global Variables HTML_DIR = 'html\\' REDIRECT_DIR = 'redirect\\' DB_DIR = 'db17b1a5c2b2f6d370af2c59c885d5db\\' # COOKIE_MAX_AGE = 300 # COOKIE_DOMAIN = 'applequest.fallenofftheedge.com' COOKIE_PATH = '/' conn = None c = None def open_conn(database): # Function 1 '''Open SQL Connection to a given sqlite databsase''' global conn global c conn = sqlite3.connect(database) c = conn.cursor() def save_conn(): # Function 2 '''Savesthe conn''' conn.commit() def save_close_conn(): # Function 3 '''Saves and closes the conn''' conn.commit() conn.close() def close_conn(): # Function 4 '''Closes the database conn''' conn.close() def add_user(username, pword, email=None): # Function 5 '''For a givven username and pasword and maybe an e-mail. Adds the user to the database. If the user is allready there then it returns false. if it added the database it sends True''' display = username[:] username = username.lower() salt = binascii.hexlify(os.urandom(64)) # 64 bytes = 512 bits utf8pword = pword.encode("utf-8") utf8pword_salt = utf8pword + salt hashed_salted_password = hashlib.sha512(utf8pword_salt) enchexpass = hashed_salted_password.hexdigest() try: c.execute("INSERT INTO logon VALUES (?, ?, ?, ?, ?)", (username, display, enchexpass, salt, email)) except: return False return True def issue_session_id(username, pword): # Function 6 '''issues a session id for a given username, checks the user and pass agenst the db then sends back a sessionif, epx, and theusername it is sent agenst | noauth means username and password is <PASSWORD>ong | sqlerror means the server is haveing issues''' username = username.lower() authuser = check_user(username, pword) if authuser is True: sqlretry = 0 sqlgood = False while sqlgood is False: # c.execute("SELECT * FROM logon WHERE username = ?", [username]) # dbdata = c.fetchone() # db_username = dbdata[0] # db_display = dbdata[1] exp = int(time.time()) + 300 # seconds till this is expired | 300 = 5 min | 1 = 1 sec sessionid = binascii.hexlify(os.urandom(16)).decode("utf-8") try: c.execute("DELETE FROM sessions WHERE username = ?", [username]) c.execute("INSERT INTO sessions VALUES (?, ?, ?)", [sessionid, exp, username]) sqlgood = True except: sqlretry += 1 if sqlretry == 10: return ('sqlerror', 'sqlerror', 'sqlerror') save_conn() return (sessionid, exp, username) return ('noauth', 'noauth', 'noauth') def renew_session_id(old_id, username): # Function 7 '''givven the old session id and username it checks that the session is is still good then send a newone if OK, else it sends out a "sqlerror" in the case the server is erroring and a "expired" if the session is old''' username = username.lower() c.execute("SELECT * FROM sessions WHERE username = ? AND id = ?", [username, old_id]) dbdata = c.fetchone() if dbdata is None: return False db_exp = int(dbdata[1]) if int(time.time()) > db_exp: return 'expired' elif int(time.time()) <= db_exp: sqlgood = False sqlretry = 0 while sqlgood is False: exp = int(time.time()) + 300 # seconds till this is expired | 300 = 5 min | 1 = 1 sec sessionid = binascii.hexlify(os.urandom(16)).decode("utf-8") try: c.execute("DELETE FROM sessions WHERE username = ?", [username]) c.execute("INSERT INTO sessions VALUES (?, ?, ?)", [sessionid, exp, username]) sqlgood = True except: sqlretry += 1 if sqlretry == 10: return 'sqlerror' save_conn() return (sessionid, exp, username) def delete_session(sessionid, username): # Function 8 '''deletes a session from the database in the case the client wants to "logoff"''' username = username.lower() c.execute("SELECT * FROM sessions WHERE username = ? OR id = ?", [username, sessionid]) dbdata = c.fetchone() if dbdata is None: return False c.execute("DELETE FROM sessions WHERE username = ? OR id = ?", [username, sessionid]) save_conn() return True def check_user(username, pword): '''checks the username and password agenst the data base loaded with the open_conn(), returns True is they are correct''' username = username.lower() c.execute("SELECT username, password, salt FROM logon WHERE username = ?", [username]) dbdata = c.fetchone() if dbdata is None: return None enchexpassdb = dbdata[1] salt = dbdata[2] utf8pword = pword.encode('utf8') utf8pword_salt = utf8pword + salt hashed_salted_password = hashlib.sha512(utf8pword_salt) enchexpass = hashed_salted_password.hexdigest() if slow_equal(enchexpassdb, enchexpass): return True else: return False def slow_equal(hexstrA, hexstrB): # Function 9 '''TODO : make the compair bit for bit in binary using XNOR OR SOMETHING Instead of comparing the string with == it checkes each part on at a time, this makes it slower and therefor harder to crack.''' length = 0 errors = 0 a = ''.join(format(ord(char), 'b') for char in hexstrA) b = ''.join(format(ord(char), 'b') for char in hexstrB) if len(a) == len(b): length = len(a) else: time.sleep(1) length = 0 errors = 1000 for i in range(length): errors += int(a[i]) ^ int(b[i]) if errors == 0: return True else: return False def cookie_wright(sessionid, exp, username): # Function 10 '''give the imput data it returns a session cookie ment to be placed in the print_header function to send to the client''' cookie = http.cookies.BaseCookie() cookie['id'] = sessionid cookie['exp'] = exp cookie['username'] = username for morsel in cookie: # cookie[morsel]['max-age'] = COOKIE_MAX_AGE # cookie[morsel]['domain'] = COOKIE_DOMAIN cookie[morsel]['path'] = COOKIE_PATH return cookie def get_cookies(): # Function 11 '''returns a cookie opject of the request header sent to the server from the client''' cookie = http.cookies.BaseCookie() if 'HTTP_COOKIE' in os.environ: cookie.load(os.environ['HTTP_COOKIE']) return cookie return None def print_header(cookie=''): # Function 12 '''Prints the standard HTTP header needed by CGI along with any cookie data sent to the function - cookie must be a cookie object''' print('Content-type: text/html') print('Status: 200 OK') print(cookie) if not cookie == '': print() def get_html(filepath): # Function 13 '''For the given path it returns a str of all the data in that file. \n and all''' file = open(filepath) txt = file.read() return txt def print_me(filename): # Function 14 '''prints file to screen - use for redirects''' file = open(filename) txt = file.read() print(txt) def get_cgi_data(): # Function 15 '''gets the cgi data from the last form the client summited''' cgidata = cgi.FieldStorage() return cgidata ```
{ "source": "joshuaguite/cloudpassage-halo-python-sdk", "score": 3 }
#### File: cloudpassage-halo-python-sdk/cloudpassage/alert_profile.py ```python from .halo_endpoint import HaloEndpoint from .http_helper import HttpHelper from .utility import Utility as utility class AlertProfile(HaloEndpoint): """Initializing the AlertProfile class: Filtering options for :func:`AlertProfile.list_all()` can be passed in as keyword arguments. Valid filters can be found at https://api-doc.cloudpassage.com/help#list-alert-profiles. Args: session (:class:`cloudpassage.HaloSession`): This will define how you interact with the Halo API, including proxy settings and API keys used for authentication. """ object_name = "alert_profile" objects_name = "alert_profiles" @classmethod def endpoint(cls): """Return endpoint for API requests.""" return "/v1/%s" % AlertProfile.objects_name @classmethod def object_key(cls): """Return the key used to pull the policy from the json document.""" return AlertProfile.object_name @classmethod def pagination_key(cls): """Return the pagination key for parsing paged results.""" return AlertProfile.objects_name def create(self, policy_body): """Create a policy from JSON document. Returns the ID of the new policy """ request = HttpHelper(self.session) request_body = utility.policy_to_dict(policy_body) return request.post(self.endpoint(), request_body)["id"] ``` #### File: tests/integration/test_integration_firewall_policy.py ```python import cloudpassage import json import os policy_file_name = "firewall.json" config_file_name = "portal.yaml.local" tests_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "../")) config_file = os.path.join(tests_dir, "configs/", config_file_name) policy_file = os.path.join(tests_dir, 'policies/', policy_file_name) session_info = cloudpassage.ApiKeyManager(config_file=config_file) key_id = session_info.key_id secret_key = session_info.secret_key api_hostname = session_info.api_hostname api_port = session_info.api_port with open(policy_file, 'r') as p_file: firewall_policy_body = p_file.read().replace('\n', '') def create_firewall_policy_object(): session = cloudpassage.HaloSession(key_id, secret_key, api_host=api_hostname, api_port=api_port, integration_string="SDK-Smoke") firewall_policy_object = cloudpassage.FirewallPolicy(session) return firewall_policy_object def create_firewall_rule_object(): session = cloudpassage.HaloSession(key_id, secret_key, api_host=api_hostname, api_port=api_port, integration_string="SDK-Smoke") firewall_rule_object = cloudpassage.FirewallRule(session) return firewall_rule_object def create_firewall_zone_object(): session = cloudpassage.HaloSession(key_id, secret_key, api_host=api_hostname, api_port=api_port, integration_string="SDK-Smoke") firewall_zone_object = cloudpassage.FirewallZone(session) return firewall_zone_object def create_firewall_service_object(): session = cloudpassage.HaloSession(key_id, secret_key, api_host=api_hostname, api_port=api_port, integration_string="SDK-Smoke") firewall_service_object = cloudpassage.FirewallService(session) return firewall_service_object def create_firewall_interface_object(): session = cloudpassage.HaloSession(key_id, secret_key, api_host=api_hostname, api_port=api_port, integration_string="SDK-Smoke") firewall_interface_object = cloudpassage.FirewallInterface(session) return firewall_interface_object def get_target_linux_firewall_policy(): firewall_policy = create_firewall_policy_object() policy_list = firewall_policy.list_all() for policy in policy_list: if policy["platform"] == 'linux': return policy["id"] return None def remove_policy_by_name(policy_name): fw_policy_obj = create_firewall_policy_object() policy_list = fw_policy_obj.list_all() for policy in policy_list: if policy["name"] == policy_name: fw_policy_obj.delete(policy["id"]) class TestIntegrationFirewallPolicy: def test_instantiation(self): session = cloudpassage.HaloSession(key_id, secret_key) assert cloudpassage.FirewallPolicy(session) def test_firewall_policy_list_all(self): """This test requires that a firewall policy exist in your Halo account. If you don't have a firewall policy in your Halo account, this test will fail. """ firewall_policy = create_firewall_policy_object() firewall_policy_list = firewall_policy.list_all() assert "id" in firewall_policy_list[0] def test_firewall_policy_describe(self): """This test requires that a firewall policy exist in your Halo account. If you don't have a firewall policy in your Halo account, this test will fail. """ firewall_policy = create_firewall_policy_object() firewall_policy_list = firewall_policy.list_all() target_firewall_policy_id = firewall_policy_list[0]["id"] target_policy = firewall_policy.describe(target_firewall_policy_id) assert "id" in target_policy def test_firewall_policy_create_update_delete(self): firewall_policy = create_firewall_policy_object() remove_policy_by_name("cpapi_test_1") remove_policy_by_name("NewName") this_policy = json.loads(firewall_policy_body) this_policy["firewall_policy"]["name"] = "cpapi_test_1" new_policy_id = firewall_policy.create(json.dumps(this_policy)) policy_update = {"firewall_policy": {"name": "NewName", "id": new_policy_id}} firewall_policy.update(policy_update) delete_error = firewall_policy.delete(new_policy_id) assert delete_error is None class TestIntegrationFirewallRule: def test_instantiation(self): session = cloudpassage.HaloSession(key_id, secret_key) assert cloudpassage.FirewallRule(session) def test_list_firewall_policy_rules(self): firewall_rule = create_firewall_rule_object() target_firewall_policy_id = get_target_linux_firewall_policy() policy_rules = firewall_rule.list_all(target_firewall_policy_id) assert "id" in policy_rules[0] def test_get_firewall_policy_rule_describe(self): firewall_rule = create_firewall_rule_object() target_firewall_policy_id = get_target_linux_firewall_policy() policy_rules = firewall_rule.list_all(target_firewall_policy_id) target_rule_id = policy_rules[0]["id"] rule_details = firewall_rule.describe(target_firewall_policy_id, target_rule_id) assert "id" in rule_details def test_firewall_policy_rule_create_mod_delete(self): modification_body = {"firewall_rule": { "comment": "Your momma makes firewall rules"}} firewall_policy = create_firewall_policy_object() remove_policy_by_name("cpapi_test_2") firewall_rule = create_firewall_rule_object() this_policy = json.loads(firewall_policy_body) this_policy["firewall_policy"]["name"] = "cpapi_test_2" target_policy_id = firewall_policy.create(json.dumps(this_policy)) rule_imported = firewall_rule.list_all(target_policy_id)[0] del rule_imported["url"] rule_imported["position"] = 1 rule_body = {"firewall_rule": rule_imported} print(rule_body) target_rule_id = firewall_rule.create(target_policy_id, rule_body) modification_error = firewall_rule.update(target_policy_id, target_rule_id, modification_body) delete_rule_error = firewall_rule.delete(target_policy_id, target_rule_id) delete_policy_error = firewall_policy.delete(target_policy_id) assert modification_error is None assert delete_rule_error is None assert delete_policy_error is None class TestIntegraationFirewallZone: def test_instantiation(self): session = cloudpassage.HaloSession(key_id, secret_key) assert cloudpassage.FirewallZone(session) def test_list_all_ip_zones(self): firewall_zone = create_firewall_zone_object() list_of_zones = firewall_zone.list_all() assert "id" in list_of_zones[0] def test_get_zone_details(self): firewall_zone = create_firewall_zone_object() target_zone_id = firewall_zone.list_all()[0]["id"] details = firewall_zone.describe(target_zone_id) assert "id" in details def test_firewall_zone_create_update_delete(self): firewall_zone = create_firewall_zone_object() firewall_zone_body = {"firewall_zone": {"name": "CPAPI TEST", "ip_address": "127.0.0.1"}} target_zone_id = firewall_zone.create(firewall_zone_body) zone_update = {"firewall_zone": {"name": "NewName", "id": target_zone_id}} firewall_zone.update(zone_update) delete_error = firewall_zone.delete(target_zone_id) assert delete_error is None class TestIntegrationFirewallService: def test_instantiation(self): session = cloudpassage.HaloSession(key_id, secret_key) assert cloudpassage.FirewallService(session) def test_list_all_services(self): firewall_service = create_firewall_service_object() list_of_services = firewall_service.list_all() assert "id" in list_of_services[0] def test_get_service_details(self): firewall_service = create_firewall_service_object() target_service_id = firewall_service.list_all()[0]["id"] details = firewall_service.describe(target_service_id) assert "id" in details def test_firewall_zone_create_update_delete(self): firewall_service = create_firewall_service_object() firewall_service_body = {"firewall_service": {"name": "<NAME>", "protocol": "TCP", "port": "1234"}} target_service_id = firewall_service.create(firewall_service_body) service_update = {"firewall_service": {"name": "NewName", "id": target_service_id}} firewall_service.update(service_update) delete_error = firewall_service.delete(target_service_id) assert delete_error is None class TestIntegrationFirewallInterface: def test_instantiation(self): session = cloudpassage.HaloSession(key_id, secret_key) assert cloudpassage.FirewallInterface(session) def test_list_all_interfaces(self): interface = create_firewall_interface_object() list_of_interfaces = interface.list_all() assert "id" in list_of_interfaces[0] def test_get_interface_details(self): interface = create_firewall_interface_object() target_interface_id = interface.list_all()[0]["id"] details = interface.describe(target_interface_id) assert "id" in details def test_firewall_interface_create_delete(self): interface = create_firewall_interface_object() interface_body = {"firewall_interface": {"name": "eth12"}} target_interface_id = interface.create(interface_body) delete_error = interface.delete(target_interface_id) assert delete_error is None ``` #### File: tests/integration/test_integration_lids_policy.py ```python import cloudpassage import json import os from cloudpassage.utility import Utility as utility policy_file_name = "core-system-centos-v1-1.lids.json" config_file_name = "portal.yaml.local" tests_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "../")) config_file = os.path.join(tests_dir, "configs/", config_file_name) policy_file = os.path.join(tests_dir, 'policies/', policy_file_name) session_info = cloudpassage.ApiKeyManager(config_file=config_file) key_id = session_info.key_id secret_key = session_info.secret_key api_hostname = session_info.api_hostname api_port = session_info.api_port class TestIntgrationLidsPolicy: def build_lids_policy_object(self): session = cloudpassage.HaloSession(key_id, secret_key, api_host=api_hostname, api_port=api_port, integration_string="SDK-Smoke") return_obj = cloudpassage.LidsPolicy(session) return(return_obj) def test_instantiation(self): session = cloudpassage.HaloSession(key_id, secret_key) assert cloudpassage.LidsPolicy(session) def remove_policy_by_name(self, policy_name): lids_policy_obj = self.build_lids_policy_object() policy_list = lids_policy_obj.list_all() for policy in policy_list: if policy["name"] == policy_name: lids_policy_obj.delete(policy["id"]) def test_list_all(self): """This test gets a list of LIDS policies from the Halo API. If you have no configuration policies in your account, it will fail """ request = self.build_lids_policy_object() response = request.list_all() assert "id" in response[0] def test_get_details(self): """This test requires at least one LIDS policy in your account. If you don't have one, this test will fail.""" request = self.build_lids_policy_object() policy_list = request.list_all() target_policy_id = policy_list[0]["id"] target_policy_body = request.describe(target_policy_id) assert "id" in target_policy_body def test_lids_policy_create_delete(self): deleted = False request = self.build_lids_policy_object() with open(policy_file, 'rb') as policy_file_object: policy_body = policy_file_object.read() pol_meta = utility.determine_policy_metadata(policy_body) self.remove_policy_by_name(pol_meta["policy_name"]) policy_id = request.create(policy_body) request.delete(policy_id) try: request.describe(policy_id) except cloudpassage.CloudPassageResourceExistence: deleted = True assert deleted def test_lids_policy_create_update_delete(self): deleted = False request = self.build_lids_policy_object() newname = "<NAME>" with open(policy_file, 'rb') as policy_file_object: policy_body = policy_file_object.read() policy_id = request.create(policy_body) policy_update = json.loads(policy_body) self.remove_policy_by_name(newname) policy_update["lids_policy"]["name"] = newname policy_update["lids_policy"]["id"] = policy_id request.update(policy_update) request.delete(policy_id) try: request.describe(policy_id) except cloudpassage.CloudPassageResourceExistence: deleted = True assert deleted ``` #### File: tests/integration/test_integration_special_events_policy.py ```python import cloudpassage import os config_file_name = "portal.yaml.local" tests_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "../")) config_file = os.path.join(tests_dir, "configs/", config_file_name) session_info = cloudpassage.ApiKeyManager(config_file=config_file) key_id = session_info.key_id secret_key = session_info.secret_key api_hostname = session_info.api_hostname api_port = session_info.api_port class TestIntegrationSpecialEventsPolicy: def create_special_events_policy_obj(self): session = cloudpassage.HaloSession(key_id, secret_key, api_host=api_hostname, api_port=api_port, integration_string="SDK-Smoke") return cloudpassage.SpecialEventsPolicy(session) def test_instantiation(self): assert self.create_special_events_policy_obj() def test_list_all(self): session = cloudpassage.HaloSession(key_id, secret_key, api_host=api_hostname, api_port=api_port, integration_string="SDK-Smoke") se_policy = cloudpassage.SpecialEventsPolicy(session) se_policy_list = se_policy.list_all() assert "id" in se_policy_list[0] def test_describe(self): """This test gets the details of a special events policy in your Halo account. If you don't have any special events policies configured, it will fail. """ request = self.create_special_events_policy_obj() policy_list = request.list_all() target_policy_id = policy_list[0]["id"] target_policy_body = request.describe(target_policy_id) assert "id" in target_policy_body def test_create(self): rejected = False session = cloudpassage.HaloSession(key_id, secret_key, api_host=api_hostname, api_port=api_port, integration_string="SDK-Smoke") policy = cloudpassage.SpecialEventsPolicy(session) try: policy.create("DoesNotEvenMatter") except NotImplementedError: rejected = True assert rejected def test_update(self): rejected = False session = cloudpassage.HaloSession(key_id, secret_key, api_host=api_hostname, api_port=api_port, integration_string="SDK-Smoke") policy = cloudpassage.SpecialEventsPolicy(session) try: policy.update("DoesNotEvenMatter") except NotImplementedError: rejected = True assert rejected def test_delete(self): rejected = False session = cloudpassage.HaloSession(key_id, secret_key, api_host=api_hostname, api_port=api_port, integration_string="SDK-Smoke") policy = cloudpassage.SpecialEventsPolicy(session) try: policy.delete("DoesNotEvenMatter") except NotImplementedError: rejected = True assert rejected ``` #### File: tests/unit/test_unit_server.py ```python import cloudpassage import os config_file_name = "portal.yaml.local" tests_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "../")) config_file = os.path.join(tests_dir, "configs/", config_file_name) session_info = cloudpassage.ApiKeyManager(config_file=config_file) key_id = session_info.key_id secret_key = session_info.secret_key api_hostname = session_info.api_hostname class TestUnitServer: def test_instantiation(self): assert cloudpassage.Server(None) def test_validate_bad_list(self): search_criteria_list = ["ephemeral", "cats", "!!!LOSER"] server_object = cloudpassage.Server(None) platform = server_object.validate_platform(search_criteria_list) kb = server_object.validate_kb_id(search_criteria_list) cve = server_object.validate_cve_id(search_criteria_list) assert platform is False assert kb is False assert cve is False ```
{ "source": "JoshuaHaberzettl/CMPT-120L-910-20F", "score": 4 }
#### File: Assignments/Assignment 7/prime_or_composite.py ```python def prime_or_composite(number): if number <= 3: if number > 1: return "Prime" else: return "Composite" if number % 2 == 0 or number % 3 == 0: return "Composite" i = 5 while i ** 2 <= number: if number % i == 0 or number % (i + 2) == 0: return "Composite" i += 6 return "Prime" if __name__ == "__main__": numbers = [1, 2, 10, 31, 47, 89, 101, 103, 97, 187, 981, 19201, -7, 47055833459] # If you want to test the efficency of your algorithm add this number to the array above -7 # If you want to test the efficency of your algorithm add this number to the array above 47055833459 answers = [] for number in numbers: answers.append(prime_or_composite(number)) print(answers) ```
{ "source": "joshuahaddad/Alfred", "score": 2 }
#### File: Alfred/src/main.py ```python from discord.ext import commands import configloader as cfload from logger import Logger as log log.info('Reading config data...') cfload.read('../config.ini') ####################### Begin Loading Process ################################ startup_extensions = cfload.configSectionMap('Startup')['startup_extensions'].split() command_prefix = cfload.configSectionMap('Commands')['command_prefix'] bot = commands.Bot(command_prefix=commands.when_mentioned_or(command_prefix), description=cfload.configSectionMap('Startup')['description']) # Load extensions if __name__ == '__main__': log.info('\nLoading extensions...') for extension in startup_extensions: try: bot.load_extension(extension) log.info(f'Extension \'{extension}\' loaded.') except Exception as e: log.critical(f'Failed to load {extension} extension.') log.critical(e) @bot.event async def on_ready(): log.info('\nConnected to Discord as', bot.user.name, '- ID ', str(bot.user.id)) log.info('Alfred loaded successfully.\n______________________________\n') @bot.event async def on_message(message): await bot.process_commands(message) if message.author == bot.user and message.content.startswith(command_prefix): return # Magically checks for any of the greetings in message and waves if not set(message.content.upper().split(' ')).isdisjoint(('HELLO', 'HI', 'HEY', 'GREETINGS', 'SALUTATIONS', 'YO')): await message.add_reaction('\U0001F44B') # Waving hand ################################################################################### bot.run(cfload.configSectionMap('Startup')['token']) ```
{ "source": "joshuahaddad/OMLT", "score": 2 }
#### File: tests/neuralnet/test_nn_formulation.py ```python import pytest import numpy as np import pyomo.environ as pyo from omlt import OmltBlock from omlt.neuralnet import (ReducedSpaceNNFormulation, ReducedSpaceSmoothNNFormulation, \ FullSpaceNNFormulation, FullSpaceSmoothNNFormulation, NetworkDefinition) from omlt.neuralnet.layer import InputLayer, DenseLayer def two_node_network(activation, input_value): """ 1 1 x0 -------- (1) --------- (3) | / | / | / 5 | / | | | -1 | 1 ---------- (2) --------- (4) """ net = NetworkDefinition(scaled_input_bounds=[(-10.0, 10.0)]) input_layer = InputLayer([1]) net.add_layer(input_layer) dense_layer_0 = DenseLayer( input_layer.output_size, [1, 2], activation=activation, weights=np.array([[1.0, -1.0]]), biases=np.array([1.0, 2.0]) ) net.add_layer(dense_layer_0) net.add_edge(input_layer, dense_layer_0) dense_layer_1 = DenseLayer( dense_layer_0.output_size, [1, 2], activation=activation, weights=np.array([[1.0, 0.0], [5.0, 1.0]]), biases=np.array([3.0, 4.0]) ) net.add_layer(dense_layer_1) net.add_edge(dense_layer_0, dense_layer_1) y = input_layer.eval(np.asarray([input_value])) y = dense_layer_0.eval(y) y = dense_layer_1.eval(y) return net, y def _test_two_node_FullSpaceNNFormulation_smooth(activation): m = pyo.ConcreteModel() m.neural_net_block = OmltBlock() net, y = two_node_network(activation, -2.0) m.neural_net_block.build_formulation(FullSpaceNNFormulation(net)) assert m.nvariables() == 15 assert m.nconstraints() == 14 m.neural_net_block.inputs[0].fix(-2) m.obj1 = pyo.Objective(expr=0) status = pyo.SolverFactory("ipopt").solve(m, tee=False) assert abs(pyo.value(m.neural_net_block.outputs[0,0]) - y[0,0]) < 1e-6 assert abs(pyo.value(m.neural_net_block.outputs[0,1]) - y[0,1]) < 1e-6 net, y = two_node_network(activation, 1.0) m.neural_net_block.inputs[0].fix(1) status = pyo.SolverFactory("ipopt").solve(m, tee=False) assert abs(pyo.value(m.neural_net_block.outputs[0,0]) - y[0,0]) < 1e-6 assert abs(pyo.value(m.neural_net_block.outputs[0,1]) - y[0,1]) < 1e-6 def _test_two_node_FullSpaceNNFormulation_relu(): m = pyo.ConcreteModel() m.neural_net_block = OmltBlock() net, y = two_node_network('relu', -2.0) m.neural_net_block.build_formulation(FullSpaceNNFormulation(net)) assert m.nvariables() == 19 assert m.nconstraints() == 26 m.neural_net_block.inputs[0].fix(-2) m.obj1 = pyo.Objective(expr=0) status = pyo.SolverFactory("cbc").solve(m, tee=False) assert abs(pyo.value(m.neural_net_block.outputs[0,0]) - y[0,0]) < 1e-6 assert abs(pyo.value(m.neural_net_block.outputs[0,1]) - y[0,1]) < 1e-6 net, y = two_node_network('relu', 1.0) m.neural_net_block.inputs[0].fix(1) status = pyo.SolverFactory("cbc").solve(m, tee=False) assert abs(pyo.value(m.neural_net_block.outputs[0,0]) - y[0,0]) < 1e-6 assert abs(pyo.value(m.neural_net_block.outputs[0,1]) - y[0,1]) < 1e-6 def _test_two_node_FullSpaceSmoothNNFormulation(activation): m = pyo.ConcreteModel() m.neural_net_block = OmltBlock() net, y = two_node_network(activation, -2.0) m.neural_net_block.build_formulation(FullSpaceSmoothNNFormulation(net)) assert m.nvariables() == 15 assert m.nconstraints() == 14 m.neural_net_block.inputs[0].fix(-2) m.obj1 = pyo.Objective(expr=0) status = pyo.SolverFactory("ipopt").solve(m, tee=False) assert abs(pyo.value(m.neural_net_block.outputs[0,0]) - y[0,0]) < 1e-6 assert abs(pyo.value(m.neural_net_block.outputs[0,1]) - y[0,1]) < 1e-6 net, y = two_node_network(activation, 1.0) m.neural_net_block.inputs[0].fix(1) status = pyo.SolverFactory("ipopt").solve(m, tee=False) assert abs(pyo.value(m.neural_net_block.outputs[0,0]) - y[0,0]) < 1e-6 assert abs(pyo.value(m.neural_net_block.outputs[0,1]) - y[0,1]) < 1e-6 def _test_two_node_ReducedSpaceNNFormulation(activation): m = pyo.ConcreteModel() m.neural_net_block = OmltBlock() net, y = two_node_network(activation, -2.0) m.neural_net_block.build_formulation(ReducedSpaceNNFormulation(net)) assert m.nvariables() == 6 assert m.nconstraints() == 5 m.neural_net_block.inputs[0].fix(-2) m.obj1 = pyo.Objective(expr=0) status = pyo.SolverFactory("ipopt").solve(m, tee=False) assert abs(pyo.value(m.neural_net_block.outputs[0,0]) - y[0,0]) < 1e-6 assert abs(pyo.value(m.neural_net_block.outputs[0,1]) - y[0,1]) < 1e-6 net, y = two_node_network(activation, 1.0) m.neural_net_block.inputs[0].fix(1) status = pyo.SolverFactory("ipopt").solve(m, tee=False) assert abs(pyo.value(m.neural_net_block.outputs[0,0]) - y[0,0]) < 1e-6 assert abs(pyo.value(m.neural_net_block.outputs[0,1]) - y[0,1]) < 1e-6 def _test_two_node_ReducedSpaceSmoothNNFormulation(activation): m = pyo.ConcreteModel() m.neural_net_block = OmltBlock() net, y = two_node_network(activation, -2.0) m.neural_net_block.build_formulation(ReducedSpaceSmoothNNFormulation(net)) assert m.nvariables() == 6 assert m.nconstraints() == 5 m.neural_net_block.inputs[0].fix(-2) m.obj1 = pyo.Objective(expr=0) status = pyo.SolverFactory("ipopt").solve(m, tee=False) assert abs(pyo.value(m.neural_net_block.outputs[0,0]) - y[0,0]) < 1e-6 assert abs(pyo.value(m.neural_net_block.outputs[0,1]) - y[0,1]) < 1e-6 net, y = two_node_network(activation, 1.0) m.neural_net_block.inputs[0].fix(1) status = pyo.SolverFactory("ipopt").solve(m, tee=False) assert abs(pyo.value(m.neural_net_block.outputs[0,0]) - y[0,0]) < 1e-6 assert abs(pyo.value(m.neural_net_block.outputs[0,1]) - y[0,1]) < 1e-6 def test_two_node_ReducedSpaceNNFormulation(): _test_two_node_ReducedSpaceNNFormulation('linear') _test_two_node_ReducedSpaceNNFormulation('sigmoid') _test_two_node_ReducedSpaceNNFormulation('tanh') def test_two_node_ReducedSpaceSmoothNNFormulation(): _test_two_node_ReducedSpaceSmoothNNFormulation('linear') _test_two_node_ReducedSpaceSmoothNNFormulation('sigmoid') _test_two_node_ReducedSpaceSmoothNNFormulation('tanh') def test_two_node_ReducedSpaceSmoothNNFormulation_invalid_activation(): with pytest.raises(ValueError) as excinfo: _test_two_node_ReducedSpaceSmoothNNFormulation('relu') expected_msg = 'Activation relu is not supported by this formulation.' assert str(excinfo.value) == expected_msg def test_two_node_FullSpaceNNFormulation(): _test_two_node_FullSpaceNNFormulation_smooth('linear') _test_two_node_FullSpaceNNFormulation_smooth('sigmoid') _test_two_node_FullSpaceNNFormulation_smooth('tanh') _test_two_node_FullSpaceNNFormulation_relu() def test_two_node_FullSpaceSmoothNNFormulation(): _test_two_node_FullSpaceSmoothNNFormulation('linear') _test_two_node_FullSpaceSmoothNNFormulation('sigmoid') _test_two_node_FullSpaceSmoothNNFormulation('tanh') def test_two_node_FullSpaceSmoothNNFormulation_invalid_activation(): with pytest.raises(ValueError) as excinfo: _test_two_node_FullSpaceSmoothNNFormulation('relu') expected_msg = 'Activation relu is not supported by this formulation.' assert str(excinfo.value) == expected_msg @pytest.mark.skip(reason="Need to add checks on layer types") def test_invalid_layer_type(): assert False ``` #### File: tests/neuralnet/train_keras_models.py ```python import tensorflow.keras as keras from omlt.io import write_onnx_model_with_bounds import pytest # from conftest import get_neural_network_data from keras.layers import Dense, Conv2D from keras.models import Model, Sequential from pyomo.common.fileutils import this_file_dir from tensorflow.keras.optimizers import Adamax def train_models(): x, y, x_test = get_neural_network_data("131") nn = Sequential(name="keras_linear_131") nn.add( Dense( units=3, input_dim=1, kernel_initializer=keras.initializers.RandomNormal( mean=1.0, stddev=0.05, seed=42 ), bias_initializer=keras.initializers.RandomNormal( mean=0.0, stddev=0.05, seed=43 ), ) ) nn.add( Dense( units=1, kernel_initializer=keras.initializers.RandomNormal( mean=1.0, stddev=0.05, seed=62 ), bias_initializer=keras.initializers.RandomNormal( mean=0.0, stddev=0.05, seed=63 ), ) ) nn.compile(optimizer=Adamax(learning_rate=0.01), loss="mae") history = nn.fit( x=x, y=y, validation_split=0.2, batch_size=16, verbose=1, epochs=15 ) nn.save(this_file_dir() + "/models/keras_linear_131") x, y, x_test = get_neural_network_data("131") nn = Sequential(name="keras_linear_131_sigmoid") nn.add( Dense( units=3, input_dim=1, kernel_initializer=keras.initializers.RandomNormal( mean=1.0, stddev=0.05, seed=42 ), bias_initializer=keras.initializers.RandomNormal( mean=0.0, stddev=0.05, seed=43 ), activation="sigmoid", ) ) nn.add( Dense( units=1, kernel_initializer=keras.initializers.RandomNormal( mean=1.0, stddev=0.05, seed=62 ), bias_initializer=keras.initializers.RandomNormal( mean=0.0, stddev=0.05, seed=63 ), ) ) nn.compile(optimizer=Adamax(learning_rate=0.01), loss="mae") history = nn.fit( x=x, y=y, validation_split=0.2, batch_size=16, verbose=1, epochs=15 ) nn.save(this_file_dir() + "/models/keras_linear_131_sigmoid") x, y, x_test = get_neural_network_data("131") nn = Sequential(name="keras_linear_131_sigmoid_output_activation") nn.add( Dense( units=3, input_dim=1, kernel_initializer=keras.initializers.RandomNormal( mean=1.0, stddev=0.05, seed=42 ), bias_initializer=keras.initializers.RandomNormal( mean=0.0, stddev=0.05, seed=43 ), activation="sigmoid", ) ) nn.add( Dense( units=1, kernel_initializer=keras.initializers.RandomNormal( mean=1.0, stddev=0.05, seed=62 ), bias_initializer=keras.initializers.RandomNormal( mean=0.0, stddev=0.05, seed=63 ), activation="sigmoid", ) ) nn.compile(optimizer=Adamax(learning_rate=0.01), loss="mae") history = nn.fit( x=x, y=y, validation_split=0.2, batch_size=16, verbose=1, epochs=15 ) nn.save(this_file_dir() + "/models/keras_linear_131_sigmoid_output_activation") x, y, x_test = get_neural_network_data("131") nn = Sequential(name="keras_linear_131_relu") nn.add( Dense( units=3, input_dim=1, kernel_initializer=keras.initializers.RandomNormal( mean=1.0, stddev=0.05, seed=42 ), bias_initializer=keras.initializers.RandomNormal( mean=0.0, stddev=0.05, seed=43 ), activation="relu", ) ) nn.add( Dense( units=1, kernel_initializer=keras.initializers.RandomNormal( mean=1.0, stddev=0.05, seed=62 ), bias_initializer=keras.initializers.RandomNormal( mean=0.0, stddev=0.05, seed=63 ), ) ) nn.compile(optimizer=Adamax(learning_rate=0.01), loss="mae") history = nn.fit( x=x, y=y, validation_split=0.2, batch_size=16, verbose=1, epochs=15 ) nn.save(this_file_dir() + "/models/keras_linear_131_relu") x, y, x_test = get_neural_network_data("131") nn = Sequential(name="keras_linear_131_relu_output_activation") nn.add( Dense( units=3, input_dim=1, kernel_initializer=keras.initializers.RandomNormal( mean=1.0, stddev=0.05, seed=42 ), bias_initializer=keras.initializers.RandomNormal( mean=0.0, stddev=0.05, seed=43 ), activation="relu", ) ) nn.add( Dense( units=1, kernel_initializer=keras.initializers.RandomNormal( mean=1.0, stddev=0.05, seed=62 ), bias_initializer=keras.initializers.RandomNormal( mean=0.0, stddev=0.05, seed=63 ), activation="relu", ) ) nn.compile(optimizer=Adamax(learning_rate=0.01), loss="mae") history = nn.fit( x=x, y=y, validation_split=0.2, batch_size=16, verbose=1, epochs=15 ) nn.save(this_file_dir() + "/models/keras_linear_131_relu_output_activation") x, y, x_test = get_neural_network_data("131") nn = Sequential(name="keras_linear_131_sigmoid_softplus_output_activation") nn.add( Dense( units=3, input_dim=1, kernel_initializer=keras.initializers.RandomNormal( mean=1.0, stddev=0.05, seed=42 ), bias_initializer=keras.initializers.RandomNormal( mean=0.0, stddev=0.05, seed=43 ), activation="sigmoid", ) ) nn.add( Dense( units=1, kernel_initializer=keras.initializers.RandomNormal( mean=1.0, stddev=0.05, seed=62 ), bias_initializer=keras.initializers.RandomNormal( mean=0.0, stddev=0.05, seed=63 ), activation="softplus", ) ) nn.compile(optimizer=Adamax(learning_rate=0.01), loss="mae") history = nn.fit( x=x, y=y, validation_split=0.2, batch_size=16, verbose=1, epochs=15 ) nn.save( this_file_dir() + "/models/keras_linear_131_sigmoid_softplus_output_activation" ) x, y, x_test = get_neural_network_data("131") nn = Sequential(name="keras_big") N = 100 nn.add( Dense( units=N, input_dim=1, kernel_initializer=keras.initializers.RandomNormal( mean=1.0, stddev=0.05, seed=42 ), bias_initializer=keras.initializers.RandomNormal( mean=0.0, stddev=0.05, seed=43 ), activation="sigmoid", ) ) nn.add( Dense( units=N, kernel_initializer=keras.initializers.RandomNormal( mean=1.0, stddev=0.05, seed=42 ), bias_initializer=keras.initializers.RandomNormal( mean=0.0, stddev=0.05, seed=43 ), activation="sigmoid", ) ) nn.add( Dense( units=N, kernel_initializer=keras.initializers.RandomNormal( mean=1.0, stddev=0.05, seed=42 ), bias_initializer=keras.initializers.RandomNormal( mean=0.0, stddev=0.05, seed=43 ), activation="sigmoid", ) ) nn.add( Dense( units=1, kernel_initializer=keras.initializers.RandomNormal( mean=1.0, stddev=0.05, seed=62 ), bias_initializer=keras.initializers.RandomNormal( mean=0.0, stddev=0.05, seed=63 ), activation="softplus", ) ) nn.compile(optimizer=Adamax(learning_rate=0.01), loss="mae") history = nn.fit( x=x, y=y, validation_split=0.2, batch_size=16, verbose=1, epochs=15 ) nn.save(this_file_dir() + "/models/big") x, y, x_test = get_neural_network_data("2353") nn = Sequential(name="keras_linear_2353") nn.add( Dense( units=3, input_dim=2, kernel_initializer=keras.initializers.RandomNormal( mean=1.0, stddev=0.05, seed=42 ), bias_initializer=keras.initializers.RandomNormal( mean=0.0, stddev=0.05, seed=43 ), ) ) nn.add( Dense( units=5, kernel_initializer=keras.initializers.RandomNormal( mean=1.0, stddev=0.05, seed=52 ), bias_initializer=keras.initializers.RandomNormal( mean=0.0, stddev=0.05, seed=53 ), ) ) nn.add( Dense( units=3, kernel_initializer=keras.initializers.RandomNormal( mean=1.0, stddev=0.05, seed=62 ), bias_initializer=keras.initializers.RandomNormal( mean=0.0, stddev=0.05, seed=63 ), ) ) nn.compile(optimizer=Adamax(learning_rate=0.01), loss="mae") history = nn.fit( x=x, y=y, validation_split=0.2, batch_size=16, verbose=1, epochs=15 ) nn.save(this_file_dir() + "/models/keras_linear_2353") def train_conv(): nn = Sequential(name="keras_conv_7x7_relu") nn.add( Conv2D( filters=1, kernel_size=(2, 2), activation="relu", data_format="channels_first", kernel_initializer=keras.initializers.RandomNormal( mean=1.0, stddev=0.05, seed=62 ), input_shape=(1, 7, 7), ) ) nn.compile(optimizer=Adamax(learning_rate=0.01), loss="mae") import tf2onnx import tempfile onnx_model, _ = tf2onnx.convert.from_keras(nn) input_bounds = dict() for i in range(7): for j in range(7): input_bounds[0, i, j] = (0.0, 1.0) with tempfile.NamedTemporaryFile(suffix='.onnx', delete=False) as f: write_onnx_model_with_bounds(f.name, onnx_model, input_bounds) print(f"Wrote ONNX model with bounds at {f.name}") if __name__ == "__main__": train_models() train_conv() ```
{ "source": "joshuahaertel/friendexing", "score": 3 }
#### File: friendexing/games/models.py ```python from typing import List, Dict, Optional from uuid import UUID, uuid4 class Game: def __init__( self, total_time_to_guess: int, should_randomize_fields: bool, name: str, ): self.id = uuid4() self.settings = Settings( total_time_to_guess, should_randomize_fields, ) self.players: List['Player'] = [ Player( name, ), ] self.batches: List['Batch'] = [] self.state = 'wait' class Settings: def __init__( self, total_time_to_guess: int, should_randomize_fields: bool, ): self.total_time_to_guess = total_time_to_guess self.should_randomize_fields = should_randomize_fields class Player: def __init__( self, name: str, ): self.id = uuid4() self.name: str = name self.score = 0 self.guess_id: Optional[int] = None self.guess: Optional[str] = None self.guess_time: Optional[int] = None class Batch: images: List['Image'] schema: Dict[str, type] class Image: indexable: bool records: List['Record'] class Record: fields: Dict[str, 'Field'] class Field: value: str is_checked: bool ```
{ "source": "joshuahaertel/fullprofiler", "score": 3 }
#### File: fullprofiler/fullprofiler/statistic.py ```python ABSOLUTE_MIN = float('-inf') ABSOLUTE_MAX = float('inf') class Statistic: def __init__(self): self.count = 0 self.total_time = 0 self.min = ABSOLUTE_MAX self.max = ABSOLUTE_MIN @property def mean(self): if not self.count: return 0 return self.total_time / self.count def add_run_time(self, run_time): self.count += 1 self.total_time += run_time self.min = min(run_time, self.min) self.max = max(run_time, self.max) ``` #### File: fullprofiler/tests/test_profiler.py ```python import asyncio from time import sleep from unittest import TestCase from fullprofiler.profiler import Profiler class TestProfiler(TestCase): def setUp(self): Profiler.statistics.clear() def test_all(self): Profiler.enable() self.do_something() Profiler.disable() Profiler.print_statistics() def do_something(self): self.do_sleep() self.do_something_else() @staticmethod def do_sleep(): sleep(.3) @staticmethod def do_something_else(): for _ in range(100): pass class TestAsyncioProfile(TestCase): def setUp(self): Profiler.statistics.clear() def test_all(self): Profiler.statistics.clear() loop = asyncio.get_event_loop() Profiler.enable() loop.run_until_complete(self.do_something()) Profiler.disable() print('\n\nNew Test\n\n') Profiler.print_statistics() async def do_something(self): await self.do_sleep() await self.do_something_else() @staticmethod async def do_sleep(): await asyncio.sleep(.3) @staticmethod async def do_something_else(): for _ in range(100): pass ```
{ "source": "joshuahaertel/index-royale", "score": 2 }
#### File: index-royale/demo/models.py ```python from typing import List from uuid import uuid4 from django.db import models from django.db.models import Sum, Avg, Count from django.utils.functional import cached_property class Demo(models.Model): id = models.UUIDField(primary_key=True, default=uuid4) state = models.CharField(max_length=7, default='wait', choices=( ('wait', 'Wait'), ('race', 'Race'), ('over', 'Over'), )) current_batch_index = models.PositiveSmallIntegerField(default=0) current_entry_index = models.PositiveSmallIntegerField(default=0) current_field_index = models.PositiveSmallIntegerField(default=0) def __init__(self, *args, batches=None, **kwargs): super().__init__(*args, **kwargs) self.batches: List[Batch] = batches or [DEFAULT_BATCH] @property def current_images(self): return self.current_batch.images @property def current_batch(self): return self.batches[self.current_batch_index] @property def max_batch_index(self): return len(self.batches) - 1 @property def current_batch_max_entry_index(self): return len(self.current_batch.entries) - 1 @property def current_entry_max_field_index(self): return len(self.current_entry.fields) - 1 @property def current_label(self): entry = self.current_entry return entry.fields[self.current_field_index].label @property def current_entry(self): return self.current_batch.entries[self.current_entry_index] @cached_property def teams_in_winning_order(self): return self.team_set.annotate( average_points=Avg('player__points'), total_players=Count('player'), ).order_by('-average_points') @cached_property def teamless_players(self): return self.player_set.filter(team=None) @property def teamless_players_average_points(self): if not self.teamless_players: return 0.0 points = sum(player.points for player in self.teamless_players) return points/len(self.teamless_players) @property def can_wait(self): return self.state != 'wait' @property def can_race(self): return self.state == 'wait' @property def can_finish(self): return self.state == 'wait' class Batch: def __init__(self, entries=None, images=None, name=''): self.entries: List[Entry] = entries or [] self.images: List[str] = images or [] self.name: str = name class Entry: def __init__(self, fields=None): self.fields: List[Field] = fields or [] class Field: def __init__(self, label, value=None): self.label: str = label self.value: str = value DEFAULT_BATCH = Batch( entries=[Entry( fields=[ Field('Name', 'josh'), Field('Day', '7'), ] )], images=[ 'demo/test-1.png', 'demo/test-2.png', ], name='Example', ) class Team(models.Model): id = models.UUIDField(primary_key=True, default=uuid4) demo = models.ForeignKey(Demo, models.CASCADE) name = models.CharField(max_length=63) @property def points(self): return self.player_set.aggregate(Sum('points'))['points__sum'] @cached_property def players_in_best_order(self): return self.player_set.all().order_by('-points') class BasePlayer(models.Model): points = models.SmallIntegerField(default=0) team = models.ForeignKey(Team, models.SET_NULL, null=True, blank=True) name = models.CharField(max_length=63) skill_level = models.CharField(default='beg', max_length=3, choices=( ('beg', 'Beginner'), ('int', 'Intermediate'), ('adv', 'Advanced'), )) class Meta: abstract = True class Player(BasePlayer, models.Model): id = models.UUIDField(primary_key=True, default=uuid4) demo = models.ForeignKey(Demo, models.CASCADE) class Admin(models.Model): id = models.UUIDField(primary_key=True, default=uuid4) demo = models.OneToOneField(Demo, models.CASCADE) class PlayingAdmin(Admin, BasePlayer): pass ```
{ "source": "joshuahaertel/putils", "score": 4 }
#### File: putils/deplytils/decorators.py ```python class class_property(object): # pylint: disable=invalid-name """ Decorator to make a classmethod behave like a property """ def __init__(self, method): self.method = method self.name = method.__name__ self.__doc__ = getattr(method, '__doc__') self.class_ = None def __get__(self, instance, owner): assert owner is not None and instance is None return self.method(owner) # noinspection PyPep8Naming pylint: disable=invalid-name,unused-variable class cached_class_property(class_property): """ Decorator to transform a class method into a class field. The first time the field is accessed, the method is run. All subsequent accesses will return a cached value of the method. The cache can be invalidated by deleting the field. Note, however, that deleting the field before a value is in the cache will delete the method and corresponding field from the class forever. """ def __init__(self, method): super(cached_class_property, self).__init__(method) self.is_cached = False self.cached_value = None def __get__(self, instance, owner=None): """ If the cache is empty/invalidated, run the class method and store it in the cache. The cached value is returned. :param instance: self instance :param owner: type of the class :return: result of cached method call """ if not self.is_cached: self.class_ = owner or instance.__class__ self.cached_value = self.method(owner) self.is_cached = True return self.cached_value def __del__(self): """ Invalidate the cache, if there is one. If there isn't one then delete the property from the class forever :return: None """ if self.class_: setattr(self.class_, self.name, self.__class__(self.method)) ``` #### File: putils/tests/run.py ```python from __future__ import print_function # pylint: disable=unused-variable import os import subprocess import sys import unittest from coverage import Coverage from deplytils.contexts.coverage import CoverageContext class Checker(object): """ Object to make sure unittests pass, the appropriate coverage is achieved, and everything passes linting. """ def __init__(self): """Cleans up old coverage data files, if any""" self._test_group_errors = 0 for file_ in os.listdir(os.curdir): if '.coverage' in file_: os.remove(file_) def run(self): """Run all checks""" coverage_tests = self._start_coverage_tests() normal_tests = self._run_normal_tests() coverage_tests_output = self._output_coverage_tests(coverage_tests) self._validate_tests(coverage_tests, coverage_tests_output, normal_tests) if self._test_group_errors != 0: print('Not all test groups passed!', file=sys.stderr) sys.exit(self._test_group_errors) print('Success! All tests passed!') @staticmethod def _start_coverage_tests(): """Start the process to test the CoverageContext""" args = ('coverage run --branch --rcfile coverage_tests/.coveragerc ' '-p -m unittest discover -s coverage_tests') coverage_tests = subprocess.Popen( args.split(' '), stderr=subprocess.STDOUT, stdout=subprocess.PIPE) return coverage_tests @staticmethod def _run_normal_tests(): """Run other/normal tests""" with CoverageContext(coverage_kwargs=dict( cover_pylib=False, branch=True, data_suffix=True, config_file='normal/.coveragerc')) as coverage: tests = unittest.TestProgram(module=None, exit=False, argv=[ 'normal_tests', 'discover', '-s', 'normal']) coverage.coverage.save() return tests @staticmethod def _output_coverage_tests(coverage_tests): """Print coverage tests to stderr, as is expected""" coverage_tests.wait() coverage_tests_output = tuple(coverage_tests.stdout.readlines()) for byte_line in coverage_tests_output: line = byte_line.decode('utf-8') print(line, file=sys.stderr) return coverage_tests_output def _validate_tests(self, coverage_tests, coverage_tests_output, normal_tests): """Make sure all tests pass""" normal_test_results = normal_tests.result errors = normal_test_results.errors failures = normal_test_results.failures error_template = 'Encountered errors and/or failures in {} tests' self.__assert(normal_test_results.testsRun != 0, 'Did not run any test!') self.__assert(errors == [] and failures == [], error_template.format('normal')) self.__assert(coverage_tests.returncode == 0 and coverage_tests_output[-1] == b'OK\n', error_template.format('coverage')) self._validate_coverage() def __assert(self, condition, error_message): """Log errors, but don't quit""" if not condition: print(error_message, file=sys.stderr) self._test_group_errors += 1 def _validate_coverage(self): """Make sure there 100% coverage between the two test groups""" coverage = Coverage(config_file='coverage_tests/.coveragerc',) coverage.load() coverage.combine(strict=True) self.__assert(coverage.report() == 100.0, '100% coverage not achieved') def main(): """Run the checker""" checker = Checker() checker.run() if __name__ == '__main__': main() ```
{ "source": "joshuahaertel/scipture-mastery-downloader", "score": 3 }
#### File: referencelistparser/states/reference.py ```python import logging from referencelistparser.states.base import BaseState from scriptureref import ScriptureRef logger = logging.getLogger(__file__) class ReferenceState(BaseState): def __init__(self, old_state, book): super().__init__(old_state) self.book = book self.url = None def handle_start_tag(self, tag, attrs): if tag == 'a': self.url = dict(attrs)['href'] logger.debug('Reference found, processing') else: logger.debug('Ignoring tag %s', tag) return self def handle_data(self, data, references): references[self.book].append(ScriptureRef(self.url, data)) ``` #### File: referencelistparser/states/row.py ```python import logging from referencelistparser.states.base import BaseState from referencelistparser.states.tabledata import TableDataState logger = logging.getLogger(__file__) class RowState(BaseState): def handle_start_tag(self, tag, attrs): if tag == 'tr': logger.debug('Row found, looking for data') return TableDataState(self) logger.debug('Ignoring tag %s', tag) return self def handle_end_tag(self, tag): if tag == 'tbody': return self.old_state return self ``` #### File: joshuahaertel/scipture-mastery-downloader/scriptureref.py ```python import logging import requests from referenceparser.webparser import ScriptureParser logger = logging.getLogger(__name__) class ScriptureRef: def __init__(self, url: str, reference): self.url = url self.reference = reference self.text = '' def get_text(self): logger.debug('Getting text for url: %s', self.url) # url = /study/scriptures/pgp/moses/1.39?lang=eng#p3 full_url, url_directives = self.url.rsplit('?') # type: str, str # full_url = /study/scriptures/pgp/moses/1.39 _, _, api_url = full_url.split('/', 2) # api_url = scriptures/pgp/moses/1.39 # url_directives = lang=eng#p3 query_param, _ = url_directives.split('#') # type: str, str # query_param = lang=eng _, language = query_param.split('=') uris_param = f'/{language}/{api_url}' logger.debug('Hitting api v2 with uris: %s', uris_param) response = requests.get( 'https://www.churchofjesuschrist.org/content/api/v2', params={'uris': uris_param}, ) response_json = response.json() # type: dict logger.debug('response json: %s', response_json) text_list = [] for _, reference_data in response_json.items(): for verse_content in reference_data['content']: # type: dict parser = ScriptureParser() parser.feed(verse_content['markup']) text_list.append(parser.text) self.text = ' '.join(text_list) @property def file_name(self): return self.reference ```
{ "source": "joshuahansel/cl1de", "score": 3 }
#### File: cl1de/python/cl1de_plot_utilities.py ```python from file_utilities import readCSVFile from PlotterLine import PlotterLine def plotDataSets(data_sets, data_names): for var in data_names: desc, symbol = data_names[var] plotter = PlotterLine("$x$", desc + ", $" + symbol + "$") for i, data_set in enumerate(data_sets): set_name, data = data_set plotter.addSet(data["x"], data[var], set_name, color=i) plotter.save(var + ".png") euler1phase_data_names = { "r": ("Density", "\\rho"), "u": ("Velocity", "u"), "p": ("Pressure", "p") } def plotEuler1PhaseDataSets(data_sets): plotDataSets(data_sets, euler1phase_data_names) ```
{ "source": "joshuaharveyrn/WizardTower", "score": 2 }
#### File: joshuaharveyrn/WizardTower/app.py ```python from starlette.applications import Starlette from starlette.responses import UJSONResponse import gpt_2_simple as gpt2 import tensorflow as tf import uvicorn import os import gc import time app = Starlette(debug=False) model_name = "124M" sess = gpt2.start_tf_sess(threads=1) gpt2.load_gpt2(sess, model_name=model_name) # Needed to avoid cross-domain issues response_header = { 'Access-Control-Allow-Origin': '*' } generate_count = 0 @app.route('/', methods=['GET', 'POST', 'PUT', 'HEAD']) async def homepage(request): start = time.process_time() global generate_count global sess if request.method == 'GET': params = request.query_params elif request.method == 'POST': params = await request.json() elif request.method == 'HEAD': return UJSONResponse({'text': ''}, headers=response_header) print(params.get('prefix')) print(params.get('temperature')) #str(params.get('include_prefix', True)).lower() == 'true', text = gpt2.generate(sess, length=int(params.get('length', 50)), temperature=float(params.get('temperature', 0.7)), top_k=int(params.get('top_k', 0)), top_p=float(params.get('top_p', 0)), prefix=params.get('prefix', '')[:500], truncate=params.get('truncate', None), include_prefix=False, return_as_list=True )[0] generate_count += 1 if generate_count == 8: # Reload model to prevent Graph/Session from going OOM tf.reset_default_graph() sess.close() sess = gpt2.start_tf_sess(threads=1) gpt2.load_gpt2(sess) generate_count = 0 gc.collect() print(f"That took {time.process_time() - start}") return UJSONResponse({'text': text}, headers=response_header) if __name__ == '__main__': uvicorn.run(app, host='0.0.0.0', port=int(os.environ.get('PORT', 8080))) ```
{ "source": "joshua-hashimoto/django-channels-jwt-auth-middleware", "score": 2 }
#### File: testproject/users/serializers.py ```python from django.contrib.auth import get_user_model from dj_rest_auth.serializers import UserDetailsSerializer from rest_framework.serializers import ModelSerializer, SerializerMethodField User = get_user_model() class UserSerializer(ModelSerializer): profile_image = SerializerMethodField() class Meta: model = User fields = ( 'id', 'profile_image', 'username', 'email', ) def get_profile_image(self, obj): if (profile_image := obj.profile_image): return profile_image.url else: return None class CustomUserDetailSerializer(UserDetailsSerializer): class Meta(UserDetailsSerializer.Meta): fields = ( 'id', 'profile_image', 'username', 'email', ) def update(self, instance, validated_data): """ Note: change this method if you want to update user model. in the case of this application this is not needed because it already uses CustomUser. However it is worth keeping memo. """ return super().update(instance, validated_data) ```
{ "source": "joshua-hashimoto/eigo-of-the-day-django", "score": 2 }
#### File: core/additional/account_adapter.py ```python from django.http import Http404 from allauth.account.adapter import DefaultAccountAdapter class CustomAccountAdapter(DefaultAccountAdapter): """ A custom account adapter to disable signup functionality from django-allauth """ def is_open_for_signup(self, request): raise Http404 return False ``` #### File: eigo-of-the-day-django/pages/views.py ```python import os import json import uuid from django.conf import settings from django.http import HttpResponse from django.utils.translation import ugettext_lazy as _ from django.views.generic import View import cloudinary class MarkdownImageUploader(View): """ custom image uploader for martor. """ def post(self, request, *args, **kwargs): """ called when images are uploaded to martor's markdown field. validation is from martor's documentation. it will upload images to cloudinary. Note: when there is '?' in the to be foldername the image upload will not work. """ if not request.is_ajax(): return HttpResponse(_('Invalid request!')) if 'markdown-image-upload' not in request.FILES: return HttpResponse(_('Invalid request!')) image = request.FILES['markdown-image-upload'] image_types = [ 'image/png', 'image/jpg', 'image/jpeg', 'image/pjpeg', 'image/gif' ] if image.content_type not in image_types: # return error when the image type # is not an expected type data = json.dumps({ 'status': 405, 'error': _('Bad image format.') }, cls=LazyEncoder) return HttpResponse( data, content_type='application/json', status=405) if image.size > settings.MAX_IMAGE_UPLOAD_SIZE: # return error when the image size # is over the setted MAX_IMAGE_UPLOAD_SIZE to_MB = settings.MAX_IMAGE_UPLOAD_SIZE / (1024 * 1024) data = json.dumps({ 'status': 405, 'error': _('Maximum image file is %(size) MB.') % {'size': to_MB} }, cls=LazyEncoder) return HttpResponse( data, content_type='application/json', status=405) # when the image is valid # create new name for image img_name = f'{uuid.uuid4().hex[:10]}-{image.name.replace(" ", "-")}' # assign new name to the image that is being uploaded image.name = img_name # create folder path img_folder = os.path.join( settings.MEDIA_URL, 'memo') # save image to cloudinary cloudinary_img = cloudinary.uploader.upload( image, folder=img_folder, overwrite=True) # get the saved image url from cloudinary response cloudinary_img_url = cloudinary_img['url'] # name json data to return to markdown data = json.dumps({ 'status': 200, 'link': cloudinary_img_url, 'name': image.name }) return HttpResponse(data, content_type='application/json') ```
{ "source": "joshua-hashimoto/molecule-django", "score": 2 }
#### File: molecule-django/articles/admin.py ```python from django.contrib import admin from django.db import models # from django_summernote.admin import SummernoteModelAdmin from martor.widgets import AdminMartorWidget from django.utils import timezone from .models import Article class ArticleAdmin(admin.ModelAdmin): """ custom admin for model Phrase Attributes: list_desplay (List): list of fields in model to display in admin site list_display_links (List): list of fields in model to attach links to in admin site list_filter (List): list of fields in model that the user can filter through in admin site search_fields (List): list of fields in model that the user can search through in admin site actions (List): list of custom functions to add custom actions to admin site inlines (List): list of custom Inline classes to add relational fields in admin site """ list_display = [ 'title', 'identifier', 'truncated_description', 'is_published', 'is_active', ] list_display_links = [ 'title', ] list_filter = [ 'title', 'is_active', ] search_fields = [ 'slug', 'title', 'description', 'content', ] actions = ['active', 'inactive'] def active(self, request, queryset): """ function to set the target model's "is_active" to True. used in admin site. """ queryset.update(is_active=True) active.short_description = '閲覧可能' def inactive(self, request, queryset): """ function to set the target model's "is_active" to False. used in admin site. """ queryset.update(is_active=False) inactive.short_description = '閲覧不可能' def identifier(self, obj): return obj.slug identifier.short_description = 'identifier' def truncated_description(self, obj): """ custom admin column. call get_description on model. Returns: str: truncated string """ return obj.get_description() truncated_description.short_description = "description" def is_published(self, obj): """ custom admin column. if publish_at field has no data, it will return string 'no publish date'. if publish_at field has data and current time is over the object data, it will return string 'published'. if publish_at field has data and is before current time it will return the field value. Args: obj (Article): data object. Returns: datetime|str: publish status. """ if (publish_at := obj.publish_at): formated_date = publish_at.strftime('%Y/%m/%d %H:%M') now = timezone.now() if now > publish_at: return formated_date return f'publish at {formated_date}' return 'no publish date' is_published.short_description = 'publish status' admin.site.register(Article, ArticleAdmin) ``` #### File: molecule-django/articles/models.py ```python from django.contrib.auth import get_user_model from django.db import models from django.db.models import Q from django.urls import reverse from django.utils.safestring import mark_safe from django.utils import timezone from cloudinary_storage.storage import VideoMediaCloudinaryStorage, MediaCloudinaryStorage from cloudinary_storage.validators import validate_video from martor.utils import markdownify from martor.models import MartorField from bs4 import BeautifulSoup from core.additional.models import CoreModel from tags.models import Tag class ArticleQuerySet(models.QuerySet): """ custom QuerySet for model Article """ def all(self): """ Returns: queryset: return all object with is_active=True """ queryset = self.filter(is_active=True) return queryset def published(self): """ return all objects that is, 1. is_active is True 2. publish_at is over the current datetime Returns: queryset: return all objects that meats the lookup """ now = timezone.now() lookup: Q = ( Q(is_active=True) & Q(publish_at__lte=now) ) queryset = self.filter(lookup) return queryset def search(self, query: str): """ filter objects that is, 1. is_active is True 2. publish_at is over the current datetime 3. query is contained in title 4. query is contained in content 5. query is contained in description Returns: queryset: return all objects that meats the lookup """ now = timezone.now() lookup: Q = ( Q(is_active=True) & Q(publish_at__lte=now) & Q(title__icontains=query) | Q(description__icontains=query) | Q(content__icontains=query) ) queryset = self.filter(lookup) return queryset def all_related(self): """ fetch all article except the article that is tagged with tag 'Series' Returns: queryset: return all article except the article tagged with 'Series' """ return self.published().exclude(tags__name='Series').order_by('publish_at') class ArticleManager(models.Manager): """ custom manager for model Article using ArticleQuerySet """ def get_queryset(self): """ set custom QuerySet to use in manager Returns: ArticleQuerySet: return ArticleQuerySet using model Article """ return ArticleQuerySet(self.model, using=self._db) def all(self): """ call .all() from ArticleQuerySet Retruns: queryset: return queryset returned from ArticleQuerySet.all() """ queryset = self.get_queryset().all() return queryset def published(self): """ call .published() from ArticleQuerySet Returns: queryset: return queryset returned from ArticleQuerySet.published() """ queryset = self.get_queryset().published() return queryset def search(self, query=None): """ call .search() from ArticleQuerySet if argument query is not set it will return None Args: query (str|None): user input query Returns: queryset|None: return queryset returned from ArticleQuerySet.search() """ if query is None: return self.get_queryset().none() return self.get_queryset().search(query) def all_related(self): """ call .all_related() from ArticleQuerySet Returns: queryset: return queryset returned from ArticleQuerySet.all_related() """ return self.get_queryset().all_related() def upload_image_to(instance, filename): """ custom path for saving images Returns: str: image path """ asset_path = f'article/{str(instance.title)}/images/{filename}' return asset_path def upload_video_to(instance, filename): """ custom path for saving videos Returns: str: video path """ asset_path = f'article/{str(instance.title)}/video/{filename}' return asset_path class Article(CoreModel): """ A model for representing each article for the blog. Attributes: author (ForeignKey): one-to-one relation to set user to object tags (ManyToManyField): many-to-many relation to set tags to object video (FileField): field for video files. saved to cloudinary cover (ImageField): field for image files. saved to cloudinary title (CharField): field for article title. max length to 255. this field needs to be unique slug (SlugField): field for article slug. used for routing description (TextField): field for article description. content (MartorField): field for article content. uses martor's MartorField for markdown. related_article (ManyToManyField): many-to-many relation to set self as related articles keywords (CharField): field for article keyword. this is used for SEO. publish_at (DateTimeField) field for article publish datetime. objects (ArticleManager): set custom Manager to model Note: because ImageField and DateTimeField saves string in the database, null=True is not necessary. """ author = models.ForeignKey(get_user_model(), on_delete=models.CASCADE) tags = models.ManyToManyField(Tag, blank=True) video = models.FileField(upload_to=upload_video_to, blank=True, null=True, storage=VideoMediaCloudinaryStorage(), validators=[validate_video]) cover = models.ImageField( upload_to=upload_image_to, blank=True, null=True, storage=MediaCloudinaryStorage()) title = models.CharField(max_length=255, unique=True) slug = models.SlugField(unique=True) description = models.TextField() content = MartorField() related_articles = models.ManyToManyField( 'self', verbose_name='related articles', blank=True) keywords = models.CharField('記事のキーワード', max_length=255, default='プログラミング') publish_at = models.DateTimeField( auto_now=False, auto_now_add=False, blank=True, null=True) objects = ArticleManager() class Meta: """ Attributes: ordering (List): use to determine the ordering of model objects when listed """ ordering = ['-publish_at', '-timestamp', '-updated', ] def __str__(self): """ determine which field of the model should be representing the model object. mainly used in admin site. Returns: str: returns title field. """ return self.title def get_absolute_url(self): """ determine to absolute url of the model. mainly used to route to detail view. """ return reverse("articles:article_detail", kwargs={"slug": self.slug}) def get_markdown(self): """ return a cleaned html. in case there is a markdown we use markdown package to convert them to html. Returns: str: string of safe html """ content = self.content markdown_content = markdownify(content) return mark_safe(markdown_content) def get_description(self): """ return description. if the description str length is greater then 50 it truncates the str. Returns: str: truncated string """ if len(self.description) > 50: return f"{self.description[:50]}..." return self.description def get_text_count(self): """ count strings in html. using BeautifulSoup4 to sanitize html tags. Returns: int: length of the string after sanitized by BeautifulSoup4 """ content = self.content markdown_content = markdownify(content) souped = BeautifulSoup(markdown_content, features="html.parser").findAll( text=True ) stripted_text = "".join(souped).replace(" ", "") return len(stripted_text) def get_img_count(self): """ count img tags in html. using BeautifulSoup4 search through html. Returns: int: length of the images after filtering through using BeautifulSoup4 """ content = self.content markdown_content = markdownify(content) img_tags = BeautifulSoup(markdown_content, features="html.parser").find_all( "img" ) return len(img_tags) @property def is_series_summary(self): return 'Series' in [tag.name for tag in self.tags.all()] @property def is_published(self): if self.publish_at is None: return False return timezone.now() > self.publish_at ``` #### File: molecule-django/comments/admin.py ```python from django.contrib import admin from .models import Comment class CommentAdmin(admin.ModelAdmin): """ custom admin for model Phrase Attributes: list_desplay (List): list of fields in model to display in admin site list_display_links (List): list of fields in model to attach links to in admin site list_filter (List): list of fields in model that the user can filter through in admin site search_fields (List): list of fields in model that the user can search through in admin site actions (List): list of custom functions to add custom actions to admin site inlines (List): list of custom Inline classes to add relational fields in admin site """ list_display = [ 'id', 'truncated_comment', 'article', 'is_active', ] list_display_links = [ 'id', ] list_filter = [ 'article', 'is_active', ] search_fields = [ 'comment', ] actions = ['active', 'inactive'] def active(self, request, queryset): """ function to set the target model's "is_active" to True. used in admin site. """ queryset.update(is_active=True) active.short_description = '閲覧可能' def inactive(self, request, queryset): """ function to set the target model's "is_active" to False. used in admin site. """ queryset.update(is_active=False) inactive.short_description = '閲覧不可能' def truncated_comment(self, obj): """ custom admin column. Returns: str: truncated string """ if len(obj.comment) > 20: return f'{obj.comment[:20]}...' return obj.comment truncated_comment.short_description = "comment" admin.site.register(Comment, CommentAdmin) ```
{ "source": "JoshuaHaustein/planner_tests", "score": 3 }
#### File: src/planner_tests/ros_oracle_bridge.py ```python import rospy import numpy import itertools from planner_tests.srv import * from geometry_msgs.msg import Pose2D class ROSOracleBridge(object): """ Python interface using ROS services to interact with the OracleTrainingServer. """ def __init__(self, node_name='ros_oracle_client', server_name='oracle_training_server'): """ Create a new ROSOracleBridge. --------- Arguments --------- node_name, string - name of this ROS node server_name, string - name of the server """ rospy.init_node(node_name) rospy.loginfo("Waiting for services...") gasi_name = '/' + server_name + '/get_action_space_info' gop_name = '/' + server_name + '/get_object_properties' sop_name = '/' + server_name + '/set_object_properties' gs_name = '/' + server_name + '/get_state' prop_name = '/' + server_name + '/propagate' sao_name = '/' + server_name + '/set_active_objects' ss_name = '/' + server_name + '/set_state' rospy.wait_for_service(gasi_name) rospy.wait_for_service(gop_name) rospy.wait_for_service(gs_name) rospy.wait_for_service(prop_name) rospy.wait_for_service(sao_name) rospy.wait_for_service(ss_name) self._get_action_space_info_service = rospy.ServiceProxy(gasi_name, GetActionSpaceInfo) self._get_object_properties_service = rospy.ServiceProxy(gop_name, GetObjectProperties) self._set_object_properties_service = rospy.ServiceProxy(sop_name, SetObjectProperties) self._get_state_service = rospy.ServiceProxy(gs_name, GetState) self._propagate_service = rospy.ServiceProxy(prop_name, Propagate) self._set_active_objects_service = rospy.ServiceProxy(sao_name, SetActiveObjects) self._set_state_service = rospy.ServiceProxy(ss_name, SetState) resp = self.get_object_properties() self._robot_name = 'robot' self._object_names = [name for name in resp.obj_names if name != self._robot_name] self._all_entities_names = resp.obj_names self._active_objects = set(self._object_names) rospy.loginfo("Ready") def get_action_space_info(self): """ Return information on action space. ------ Returns ------- response, planner_tests.srv.GetActionSpaceInfoResponse The response has the following fields: dof_action_space, int - dimension of action space lower_bounds, array of floats upper_bounds, array of floats is_cyclic, array of bools - True if the action dimension is cyclic """ return self._get_action_space_info_service() def get_object_properties(self): """ Return object properties of objects in scene. ------- Returns ------- response, planner_tets.srv.GetObjectPropertiesResponse The response has the following fields: obj_names, array of string masses, array of floats inertias, array of floats ground_friction_coeffs, array of floats ground_friction_torque_integrals, array of floats contact_friction_coeffs, array of floats widths, array of floats heights, array of floats """ response = self._get_object_properties_service() return response def set_object_properties(self, properties): """ Set the given object properties. --------- Arguments --------- properties, dict: string -> dict - mapping from object name to a dictionary containing object properties for this object. Supported object properties are: mass, ground_friction_coeff, ground_friction_torque_integral, contact_friction_coeff ------- Returns ------- success, bool """ req = SetObjectPropertiesRequest() for name, prop in properties.iteritems(): req.obj_names.append(name) if 'mass' in prop: req.masses.append(prop['mass']) else: req.masses.append(-1.0) if 'ground_friction_coeff' in prop: req.ground_friction_coeffs.append(prop['ground_friction_coeff']) else: req.ground_friction_coeffs.append(-1.0) if 'ground_friction_torque_integral' in prop: req.ground_friction_torque_integrals.append(prop['ground_friction_torque_integral']) else: req.ground_friction_torque_integrals.append(-1.0) if 'contact_friction_coeff' in prop: req.contact_friction_coeffs.append(prop['contact_friction_coeff']) else: req.contact_friction_coeffs.append(-1.0) res = self._set_object_properties_service(req) return res.success def set_state(self, state, b_active_only=True): """ Set the state of the world. --------- Arguments --------- state, numpy array of shape (n, 3) - every row is x, y, theta. First state is robot state. b_active_only - if True, set state for active objects only, i.e. n-1 is number of active objects, else set states for all (n-1 must be number of total objects) -------- Returns -------- valid_state, bool - True iff the set state is valid """ request = SetStateRequest() if b_active_only: request.obj_names = [self._robot_name] request.obj_names.extend(self._active_objects) else: request.obj_names = self._all_entities_names for obj_state in state: request.states.append(Pose2D(*obj_state)) response = self._set_state_service(request) if not response.service_success: raise RuntimeError("Set state service failed.") return response.valid_state def get_state(self, b_active_only=True): """ Return the current state of the world. --------- Arguments --------- b_active_only, bool - if True, only return state of active objects. First state is always robot state. ------- Returns ------- state, numpy array of shape (n, 3) - n-1 is the number of active objects first state is robot state each row is x, y, theta for one object/robot """ response = self._get_state_service() name_state_map = dict(zip( response.obj_names, [[pose.x, pose.y, pose.theta] for pose in response.states])) if b_active_only: object_names = [self._robot_name] object_names.extend(self._active_objects) else: object_names = self._all_entities_names return numpy.array([name_state_map[name] for name in object_names]) def set_active(self, obj_name): """ Set the only the object with the given name active. This is a convenience function to set only a single object (and the robot) active. Any other object will be inactive. """ active_mapping = dict(zip(self._all_entities_names, itertools.repeat(False, len(self._all_entities_names)))) active_mapping[self._robot_name] = True active_mapping[obj_name] = True self.set_active_objects(active_mapping) def set_active_objects(self, active_mapping): """ Set which objects to activate. --------- Arguments --------- active_mapping, dict - maps object names to bools indicating whether the object should be active or not. Any object that is not specified in active_mapping, remains in its current state of activity. """ request = SetActiveObjectsRequest(active_mapping.keys(), active_mapping.values()) response = self._set_active_objects_service(request) if not response.service_success: raise RuntimeError("Could not set activity for objects " + str(active_mapping.keys())) old_active_objects = set(self._active_objects) deactivated_objects = set([obj_name for (obj_name, b_active) in active_mapping.items() if not b_active]) activated_objects = set([obj_name for (obj_name, b_active) in active_mapping.items() if b_active and obj_name != self._robot_name]) self._active_objects = old_active_objects - deactivated_objects | activated_objects def propagate(self, action): """ Forward propagate the given action. --------- Arguments --------- action, iterable of floats representing action to forward propagate ------- Returns ------- valid, bool - True if resulting state is valid """ request = PropagateRequest(action) response = self._propagate_service(request) if not response.service_success: # TODO figure out what should be done in this case return False return response.valid_propagation ```
{ "source": "joshuahellier/PhDStuff", "score": 2 }
#### File: 2Dim/mainStuff/2dSteadyFlow.py ```python import sys import os import math import shutil resultDir = os.environ.get('RESULTS') tempDir = os.environ.get('TMPDIR') if resultDir == None or tempDir == None: print ("WARNING! $RESULTS not set! Attempt to write results will fail!\n") # Expecting input botConc, topConc, rateConstFull, sysSize, analInterval, numStepsEquilib, numStepsSnapshot, numStepsAnal, numStepsReq, numPasses, timeInterval, fileCode from KMCLib import * from KMCLib.Backend import Backend import numpy from RateCalc import * from DensHist import * botConc = float(sys.argv[1]) topConc = float(sys.argv[2]) rateConstFull = float(sys.argv[3]) sysWidth = int(sys.argv[4]) sysLength = int(sys.argv[5]) analInterval = int(sys.argv[6]) numStepsEquilib = int(sys.argv[7]) numStepsSnapshot = int(sys.argv[8]) numStepsAnal = int(sys.argv[9]) numStepsReq = int(sys.argv[10]) numPasses = int(sys.argv[11]) timeInterval = float(sys.argv[12]) fileInfo = sys.argv[13] resultsPlace = resultDir+"/"+fileInfo+"/" tempPlace = tempDir+"/"+tempFolderName+"/" if not os.path.exists(resultsPlace): os.makedirs(resultsPlace) with open(resultsPlace+'settings', 'w') as f: f.write('BotConcentration = ' + str(botConc) +'\n') f.write('TopConcentration = ' + str(topConc) +'\n') f.write('FullRate = ' + str(rateConstFull) +'\n') f.write('SysWidth = ' + str(sysWidth) +'\n') f.write('SysLength = ' + str(sysLength) +'\n') f.write('TimeInterval = ' + str(timeInterval) +'\n') f.write('AnalInterval = ' +str(analInterval) + '\n') f.write('NumStepsEquilib = '+str(numStepsEquilib) +'\n') f.write('NumStepsSnapshot = '+str(numStepsSnapshot)+'\n') f.write('NumStepsAnal = '+str(numStepsAnal) +'\n') """I've put this in the file to make command line input easier""" # Load the configuration and interactions. # We're in 2d cell_vectors = [[1.0,0.0,0.0], [0.0,1.0,0.0], [0.0,0.0,1.0]] # Only bothering with one set basis_points = [[0.0, 0.0, 0.0]] unit_cell = KMCUnitCell(cell_vectors=cell_vectors, basis_points=basis_points) # Define the lattice. xRep = sysWidth yRep = sysLength + 4 zRep = 1 numPoints = xRep*zRep*yRep lattice = KMCLattice(unit_cell=unit_cell, repetitions=(xRep,yRep,zRep), periodic=(True, True, False)) # Generate the initial types. There's double-layered section of "To" at the top and "Bo" at the bottom avConc = 0.5*(botConc+topConc) types = [] for yIndex in range(0, 2): for xIndex in range(0, xRep): random = numpy.random.rand() if random < botConc: types.append((xIndex, yIndex, 0, 0, "BoO")) else: types.append((xIndex, yIndex, 0, 0, "BoV")) for yIndex in range(2, yRep-2): for xIndex in range(0, xRep): random = numpy.random.rand() if random < avConc: types.append((xIndex, yIndex, 0, 0, "O")) else: types.append((xIndex, yIndex, 0, 0, "V")) for yIndex in range(yRep-2, yRep): for xIndex in range(0, xRep): random = numpy.random.rand() if random < topConc: types.append((xIndex, yIndex, 0, 0, "ToO")) else: types.append((xIndex, yIndex, 0, 0, "ToV")) # Setup the configuration. configuration = KMCConfiguration(lattice=lattice, types=types, possible_types=["O","V","ToV","BoV", "ToO", "BoO"], default_type="V") # Rates. rateConstEmpty = 1.0 topSpawn = rateConstFull*rateConstFull*math.sqrt(topConc/(1.0-topConc)) botSpawn = rateConstFull*rateConstFull*math.sqrt(botConc/(1.0-botConc)) topDespawn = (rateConstFull**4)/topSpawn botDespawn = (rateConstFull**4)/botSpawn # ## ### """I've put the processes in here to make it easier to adjust them via command line arguments.""" # Fill the list of processes. processes = [] # Only on the first set of basis_points for O/V basis_sites = [0] # Bulk processes # Up #0 elements_before = ["O", "V"] elements_after = ["V", "O"] coordinates = [[0.0, 0.0, 0.0], [0.0, 1.0, 0.0]] processes.append( KMCProcess(coordinates=coordinates, elements_before=elements_before, elements_after=elements_after, basis_sites=basis_sites, rate_constant=1.0)) # Will customise # Down #1 elements_before = ["O", "V"] elements_after = ["V", "O"] coordinates = [[0.0, 0.0, 0.0], [0.0, -1.0, 0.0]] processes.append( KMCProcess(coordinates=coordinates, elements_before=elements_before, elements_after=elements_after, basis_sites=basis_sites, rate_constant=1.0)) # Will customise # Left #2 elements_before = ["O", "V"] elements_after = ["V", "O"] coordinates = [[0.0, 0.0, 0.0], [-1.0, 0.0, 0.0]] processes.append( KMCProcess(coordinates=coordinates, elements_before=elements_before, elements_after=elements_after, basis_sites=basis_sites, rate_constant=1.0)) # Will customise # Right #3 elements_before = ["O", "V"] elements_after = ["V", "O"] coordinates = [[0.0, 0.0, 0.0], [1.0, 0.0, 0.0]] processes.append( KMCProcess(coordinates=coordinates, elements_before=elements_before, elements_after=elements_after, basis_sites=basis_sites, rate_constant=1.0)) # Will customise # Oxygen annihilation at the top boundary #4 elements_before = ["O", "ToV"] elements_after = ["V", "ToV"] coordinates = [[0.0, 0.0, 0.0], [0.0, 1.0, 0.0]] processes.append( KMCProcess(coordinates=coordinates, elements_before=elements_before, elements_after=elements_after, basis_sites=basis_sites, rate_constant=1.0)) # Oxygen creation at the top boundary #5 elements_before = ["ToO", "V"] elements_after = ["ToO", "O"] coordinates = [[0.0, 0.0, 0.0], [0.0, -1.0, 0.0]] processes.append( KMCProcess(coordinates=coordinates, elements_before=elements_before, elements_after=elements_after, basis_sites=basis_sites, rate_constant=1.0)) # Now for Oxygen annihilation at the bottom boundary #6 elements_before = ["O", "BoV"] elements_after = ["V", "BoV"] coordinates = [[0.0, 0.0, 0.0], [0.0, -1.0, 0.0]] processes.append( KMCProcess(coordinates=coordinates, elements_before=elements_before, elements_after=elements_after, basis_sites=basis_sites, rate_constant=1.0)) # Oxygen creation at the bottom boundary #7 elements_before = ["BoO", "V"] elements_after = ["BoO", "O"] coordinates = [[0.0, 0.0, 0.0], [0.0, 1.0, 0.0]] processes.append( KMCProcess(coordinates=coordinates, elements_before=elements_before, elements_after=elements_after, basis_sites=basis_sites, rate_constant=1.0)) # Boundary Oxygen creation at the bottom boundary #8 elements_before = ["BoV"] elements_after = ["BoO"] coordinates = [[0.0, 0.0, 0.0]] processes.append( KMCProcess(coordinates=coordinates, elements_before=elements_before, elements_after=elements_after, basis_sites=basis_sites, rate_constant=1.0)) # Boundary Oxygen annihilation at the bottom boundary #9 elements_before = ["BoO"] elements_after = ["BoV"] coordinates = [[0.0, 0.0, 0.0]] processes.append( KMCProcess(coordinates=coordinates, elements_before=elements_before, elements_after=elements_after, basis_sites=basis_sites, rate_constant=1.0)) # Boundary Oxygen creation at the top boundary #10 elements_before = ["ToV"] elements_after = ["ToO"] coordinates = [[0.0, 0.0, 0.0]] processes.append( KMCProcess(coordinates=coordinates, elements_before=elements_before, elements_after=elements_after, basis_sites=basis_sites, rate_constant=1.0)) # Boundary Oxygen annihilation at the top boundary #11 elements_before = ["ToO"] elements_after = ["ToV"] coordinates = [[0.0, 0.0, 0.0]] processes.append( KMCProcess(coordinates=coordinates, elements_before=elements_before, elements_after=elements_after, basis_sites=basis_sites, rate_constant=1.0)) # Create the interactions object. interactions = KMCInteractions(processes, implicit_wildcards=True) # Define the custom rates calculator, using the lol model as a template class modelRates2d(KMCRateCalculatorPlugin): # Class for defining the custom rates function for the KMCLib paper. def rate(self, geometry, elements_before, elements_after, rate_constant, process_number, global_coordinate): if process_number == 8: return botSpawn if process_number == 9: return botDespawn if process_number == 10: return topSpawn if process_number == 11: return topDespawn numNeighbours = len([e for e in elements_before if e == "O"]) + len([e for e in elements_before if e == "ToO"]) + len([e for e in elements_before if e == "BoO"]) return math.pow(rateConstFull, numNeighbours-1) def cutoff(self): # Overloaded base class API function return 1.0 interactions.setRateCalculator(rate_calculator=modelRates2d) """End of processes""" ### ## # # Create the model. model = KMCLatticeModel(configuration, interactions) compositionTracker = Composition(time_interval=timeInterval) # Define the parameters; not entirely sure if these are sensible or not... control_parameters_equilib = KMCControlParameters(number_of_steps=numStepsEquilib, analysis_interval=numStepsEquilib/100, dump_interval=numStepsEquilib/10) control_parameters_req = KMCControlParameters(number_of_steps=numStepsReq, analysis_interval=numStepsReq/100, dump_interval=numStepsReq/10) control_parameters_anal = KMCControlParameters(number_of_steps=numStepsAnal, analysis_interval=1, dump_interval=numStepsAnal/10) # Run the simulation - save trajectory to resultsPlace, which should by now exist model.run(control_parameters_equilib, trajectory_filename=(tempPlace+"equilib.traj")) with open(tempPlace+"inBot.dat", 'w') as f: pass with open(tempPlace+"outBot.dat", 'w') as f: pass with open(tempPlace+"inTop.dat", 'w') as f: pass with open(tempPlace+"outTop.dat", 'w') as f: pass if not os.path.exists(tempPlace+"numHists"): os.makedirs(tempPlace+"numHists") ovNumHist = [] for index in range(0, numPoints): ovNumHist.append(0.0) for passNum in range(0, numPasses): processStatsOxInBot = RateCalc(processes=[7]) processStatsOxOutBot = RateCalc(processes=[6]) processStatsOxInTop = RateCalc(processes=[5]) processStatsOxOutTop = RateCalc(processes=[4]) numHist = DensHist(spec=["O"], inProc=[7, 5], outProc=[6, 4]) model.run(control_parameters_req, trajectory_filename=("/dev/null")) model.run(control_parameters_anal, trajectory_filename=("/dev/null"), analysis=[processStatsOxInBot, processStatsOxOutBot, processStatsOxInTop, processStatsOxOutTop, numHist]) with open(tempPlace+"inBot.dat", 'a') as f: processStatsOxInBot.printResults(f) with open(tempPlace+"outBot.dat", 'a') as f: processStatsOxOutBot.printResults(f) with open(tempPlace+"inTop.dat", 'a') as f: processStatsOxInTop.printResults(f) with open(tempPlace+"outTop.dat", 'a') as f: processStatsOxOutTop.printResults(f) with open(tempPlace+"numHists/numHist"+str(passNum)+".dat", 'w') as f: pass with open(tempPlace+"numHists/numHist"+str(passNum)+".dat", 'a') as f: numHist.printResults(f) with open(tempPlace+"numHists/numHist"+str(passNum)+".dat", 'r') as f: lines = f.readlines() for index in range(0, numPoints): words = lines[index].split() ovNumHist[index] += float(words[1]) os.remove(tempPlace+"numHists/numHist"+str(passNum)+".dat") with open(resultsPlace+"ovNumHist.dat", 'w') as f: for index in range(0, numPoints): f.write(str(index)+" "+str(ovNumHist[index])+"\n") sh.copy(tempPlace+"inBot.dat", resultsPlace+"inBot.dat") sh.copy(tempPlace+"outBot.dat", resultsPlace+"outBot.dat") sh.copy(tempPlace+"inTop.dat", resultsPlace+"inTop.dat") sh.copy(tempPlace+"outTop.dat", resultsPlace+"outTop.dat") sh.copy(tempPlace+"mainTraj.tr", resultsPlace+"mainTraj.tr") shutil.rmtree(tempPlace, ignore_errors=True) print("Process would appear to have succesfully terminated! How very suspicious...") ``` #### File: 2Dim/periodicEnergyCalc/2dPeriodic.py ```python import sys import os import math import shutil from random import randint resultDir = os.environ.get('RESULTS') if resultDir == None : print ("WARNING! $RESULTS not set! Attempt to write results will fail!\n") # Expecting input from KMCLib import * from KMCLib.Backend import Backend import numpy #from RateCalc import * from DensHist import * from energyStats2d import * ovConc = float(sys.argv[1]) rateConstFull = float(sys.argv[2]) sysWidth = int(sys.argv[3]) sysLength = int(sys.argv[4]) analInterval = int(sys.argv[5]) numStepsEquilib = int(sys.argv[6]) numStepsAnal = int(sys.argv[7]) numStepsReq = int(sys.argv[8]) numPasses = int(sys.argv[9]) fileInfo = sys.argv[10] resultsPlace = resultDir+"/"+fileInfo+"/" if not os.path.exists(resultsPlace): os.makedirs(resultsPlace) with open(resultsPlace+'settings', 'w') as f: f.write('OverallConcentration = ' + str(ovConc) +'\n') f.write('FullRate = ' + str(rateConstFull) +'\n') f.write('SysWidth = ' + str(sysWidth) +'\n') f.write('SysLength = ' + str(sysLength) +'\n') f.write('AnalInterval = ' +str(analInterval) + '\n') f.write('NumStepsEquilib = '+str(numStepsEquilib) +'\n') f.write('NumStepsAnal = '+str(numStepsAnal) +'\n') """I've put this in the file to make command line input easier""" # Load the configuration and interactions. # We're in 2d cell_vectors = [[1.0,0.0,0.0], [0.0,1.0,0.0], [0.0,0.0,1.0]] # Only bothering with one set basis_points = [[0.0, 0.0, 0.0]] unit_cell = KMCUnitCell(cell_vectors=cell_vectors, basis_points=basis_points) # Define the lattice. xRep = sysWidth yRep = sysLength zRep = 1 numPoints = xRep*zRep*yRep lattice = KMCLattice(unit_cell=unit_cell, repetitions=(xRep,yRep,zRep), periodic=(True, True, False)) # Generate the initial types types = [] types = ["V"]*numPoints numParticles = int(numPoints*ovConc) i=0 firstPass = True while firstPass or ( i <= numParticles and i < numPoints-1 ): firstPass = False typePos = randint(0, numPoints-1) if types[typePos] == "V": types[typePos] = "O" i += 1 # Setup the configuration. configuration = KMCConfiguration(lattice=lattice, types=types, possible_types=["O","V"]) # Rates. rateConstEmpty = 1.0 # ## ### """I've put the processes in here to make it easier to adjust them via command line arguments.""" # Fill the list of processes. processes = [] # Only on the first set of basis_points for O/V basis_sites = [0] # Bulk processes # Up #0 elements_before = ["O", "V"] elements_after = ["V", "O"] coordinates = [[0.0, 0.0, 0.0], [0.0, 1.0, 0.0]] processes.append( KMCProcess(coordinates=coordinates, elements_before=elements_before, elements_after=elements_after, basis_sites=basis_sites, rate_constant=1.0)) # Will customise # Down #1 elements_before = ["O", "V"] elements_after = ["V", "O"] coordinates = [[0.0, 0.0, 0.0], [0.0, -1.0, 0.0]] processes.append( KMCProcess(coordinates=coordinates, elements_before=elements_before, elements_after=elements_after, basis_sites=basis_sites, rate_constant=1.0)) # Will customise # Left #2 elements_before = ["O", "V"] elements_after = ["V", "O"] coordinates = [[0.0, 0.0, 0.0], [-1.0, 0.0, 0.0]] processes.append( KMCProcess(coordinates=coordinates, elements_before=elements_before, elements_after=elements_after, basis_sites=basis_sites, rate_constant=1.0)) # Will customise # Right #3 elements_before = ["O", "V"] elements_after = ["V", "O"] coordinates = [[0.0, 0.0, 0.0], [1.0, 0.0, 0.0]] processes.append( KMCProcess(coordinates=coordinates, elements_before=elements_before, elements_after=elements_after, basis_sites=basis_sites, rate_constant=1.0)) # Will customise # Create the interactions object. interactions = KMCInteractions(processes, implicit_wildcards=True) # Define the custom rates calculator, using the lol model as a template class modelRates2d(KMCRateCalculatorPlugin): # Class for defining the custom rates function for the KMCLib paper. def rate(self, geometry, elements_before, elements_after, rate_constant, process_number, global_coordinate): numNeighbours = len([e for e in elements_before if e == "O"]) return math.pow(rateConstFull, numNeighbours-1) def cutoff(self): # Overloaded base class API function return 1.0 interactions.setRateCalculator(rate_calculator=modelRates2d) """End of processes""" ### ## # # Create the model. model = KMCLatticeModel(configuration, interactions) # Define the parameters; not entirely sure if these are sensible or not... control_parameters_equilib = KMCControlParameters(number_of_steps=numStepsEquilib, analysis_interval=numStepsEquilib/100, dump_interval=numStepsEquilib/10) control_parameters_req = KMCControlParameters(number_of_steps=numStepsReq, analysis_interval=numStepsReq/100, dump_interval=numStepsReq/10) control_parameters_anal = KMCControlParameters(number_of_steps=numStepsAnal, analysis_interval=1, dump_interval=numStepsAnal/10) # Run the simulation - save trajectory to resultsPlace, which should by now exist model.run(control_parameters_equilib, trajectory_filename=(resultsPlace+"equilib.traj")) if not os.path.exists(resultsPlace+"enHists"): os.makedirs(resultsPlace+"enHists") ovEnHist = [] for index in range(0, 2*numPoints): ovEnHist.append(0.0) for passNum in range(0, numPasses): enHist = energyStats2d(spec=["O"]) model.run(control_parameters_req, trajectory_filename=("/dev/null")) model.run(control_parameters_anal, trajectory_filename=("/dev/null"), analysis=[enHist]) with open(resultsPlace+"enHists/enHist"+str(passNum)+".dat", 'w') as f: pass with open(resultsPlace+"enHists/enHist"+str(passNum)+".dat", 'a') as f: enHist.printResults(f) with open(resultsPlace+"enHists/enHist"+str(passNum)+".dat", 'r') as f: lines = f.readlines() for index in range(0, 2*numPoints): words = lines[index].split() ovEnHist[index] += float(words[1]) os.remove(resultsPlace+"enHists/enHist"+str(passNum)+".dat") with open(resultsPlace+"ovEnHist.dat", 'w') as f: for index in range(0, 2*numPoints): f.write(str(index)+" "+str(ovEnHist[index]/float(numPasses))+"\n") shutil.rmtree(resultsPlace+"enHists", ignore_errors=True) print("Process would appear to have succesfully terminated! How very suspicious...") ``` #### File: rateCaculation/postStuff/steadyStateFlow.py ```python import sys import os import math resultDir = os.environ.get('RESULTS') if resultDir == None : print "WARNING! $RESULTS not set! Attempt to write results will fail!\n" # Expecting input botConc, topConc, rateConstFull, sysSize, analInterval, numStepsEquilib, numStepsSnapshot, numStepsAnal, numStepsReq, numPasses, timeInterval, fileCode from KMCLib import * from KMCLib.Backend import Backend import numpy botConc = float(sys.argv[1]) topConc = float(sys.argv[2]) rateConstFull = float(sys.argv[3]) sysSize = int(sys.argv[4]) analInterval = int(sys.argv[5]) numStepsEquilib = int(sys.argv[6]) numStepsSnapshot = int(sys.argv[7]) numStepsAnal = int(sys.argv[8]) numStepsReq = int(sys.argv[9]) numPasses = int(sys.argv[10]) timeInterval = float(sys.argv[11]) fileInfo = sys.argv[12] resultsPlace = resultDir+"/"+fileInfo+"/" if not os.path.exists(resultsPlace): os.makedirs(resultsPlace) with open(resultsPlace+'settings', 'w') as f: f.write('BotConcentration = ' + str(botConc) +'\n') f.write('TopConcentration = ' + str(topConc) +'\n') f.write('FullRate = ' + str(rateConstFull) +'\n') f.write('SysSize = ' + str(sysSize) +'\n') f.write('TimeInterval = ' + str(timeInterval) +'\n') f.write('AnalInterval = ' +str(analInterval) + '\n') f.write('NumStepsEquilib = '+str(numStepsEquilib) +'\n') f.write('NumStepsSnapshot = '+str(numStepsSnapshot)+'\n') f.write('NumStepsAnal = '+str(numStepsAnal) +'\n') """I've put this in the file to make command line input easier""" # Load the configuration and interactions. # We're in 1d, so everything's a bit trivial cell_vectors = [[1.0,0.0,0.0], [0.0,1.0,0.0], [0.0,0.0,1.0]] # Only bothering with one set basis_points = [[0.0, 0.0, 0.0]] unit_cell = KMCUnitCell(cell_vectors=cell_vectors, basis_points=basis_points) # Define the lattice. xRep = 1 yRep = 1 zRep = sysSize numPoints = xRep*(zRep+4)*yRep lattice = KMCLattice(unit_cell=unit_cell, repetitions=(xRep,yRep,zRep+4), periodic=(False, False, True)) # Generate the initial types. There's double-layered section of "To" at the top and "Bo" at the bottom avConc = 0.5*(botConc+topConc) types = ["V"]*numPoints types[0] = "BoV" types[1] = "BoV" types[-2] = "ToV" types[-1] = "ToV" for i in range(int(zRep*avConc)): # find a site which is not yet occupied by a "O" type. pos = int(numpy.random.rand()*zRep+2.0) while (types[pos] != "V"): pos = int(numpy.random.rand()*zRep+2.0) # Set the type. types[pos] = "O" """ for i in range(2, numPoints-2): if i < numPoints/2: types[i] = "O" else: types[i] = "V" """ # Setup the configuration. configuration = KMCConfiguration(lattice=lattice, types=types, possible_types=["O","V","ToV","BoV", "ToO", "BoO"]) # Rates. rateConstEmpty = 1.0 topSpawn = math.sqrt(topConc/(1.0-topConc)) botSpawn = math.sqrt(botConc/(1.0-botConc)) topDespawn = 1.0/topSpawn botDespawn = 1.0/botSpawn # ## ### """I've put the processes in here to make it easier to adjust them via command line arguments.""" # Fill the list of processes. processes = [] # Only on the first set of basis_points for O/V basis_sites = [0] # Bulk processes # Up, empty. #0 elements_before = ["O", "V"] elements_after = ["V", "O"] coordinates = [[0.0, 0.0, 0.0], [0.0, 0.0, 1.0]] processes.append( KMCProcess(coordinates=coordinates, elements_before=elements_before, elements_after=elements_after, basis_sites=basis_sites, rate_constant=1.0)) # Will customise # Down, empty. #1 elements_before = ["O", "V"] elements_after = ["V", "O"] coordinates = [[0.0, 0.0, 0.0], [0.0, 0.0, -1.0]] processes.append( KMCProcess(coordinates=coordinates, elements_before=elements_before, elements_after=elements_after, basis_sites=basis_sites, rate_constant=1.0)) # Will customise # Now for Oxygen annihilation at the top boundary #2 elements_before = ["O", "ToV"] elements_after = ["V", "ToV"] coordinates = [[0.0, 0.0, 0.0], [0.0, 0.0, 1.0]] processes.append( KMCProcess(coordinates=coordinates, elements_before=elements_before, elements_after=elements_after, basis_sites=basis_sites, rate_constant=1.0)) # Will customise the rate constant # Oxygen creation at the top boundary #3 elements_before = ["ToO", "V"] elements_after = ["ToO", "O"] coordinates = [[0.0, 0.0, 0.0], [0.0, 0.0, -1.0]] processes.append( KMCProcess(coordinates=coordinates, elements_before=elements_before, elements_after=elements_after, basis_sites=basis_sites, rate_constant=1.0)) # Now for Oxygen annihilation at the bottom boundary #4 elements_before = ["O", "BoV"] elements_after = ["V", "BoV"] coordinates = [[0.0, 0.0, 0.0], [0.0, 0.0, -1.0]] processes.append( KMCProcess(coordinates=coordinates, elements_before=elements_before, elements_after=elements_after, basis_sites=basis_sites, rate_constant=1.0)) # Obviously the rate constant will be customised # Oxygen creation at the bottom boundary #5 elements_before = ["BoO", "V"] elements_after = ["BoO", "O"] coordinates = [[0.0, 0.0, 0.0], [0.0, 0.0, 1.0]] processes.append( KMCProcess(coordinates=coordinates, elements_before=elements_before, elements_after=elements_after, basis_sites=basis_sites, rate_constant=1.0)) # Boundary Oxygen creation at the bottom boundary #6 elements_before = ["BoV"] elements_after = ["BoO"] coordinates = [[0.0, 0.0, 0.0]] processes.append( KMCProcess(coordinates=coordinates, elements_before=elements_before, elements_after=elements_after, basis_sites=basis_sites, rate_constant=1.0)) # Boundary Oxygen annihilation at the bottom boundary #7 elements_before = ["BoO"] elements_after = ["BoV"] coordinates = [[0.0, 0.0, 0.0]] processes.append( KMCProcess(coordinates=coordinates, elements_before=elements_before, elements_after=elements_after, basis_sites=basis_sites, rate_constant=1.0)) # Boundary Oxygen creation at the top boundary #8 elements_before = ["ToV"] elements_after = ["ToO"] coordinates = [[0.0, 0.0, 0.0]] processes.append( KMCProcess(coordinates=coordinates, elements_before=elements_before, elements_after=elements_after, basis_sites=basis_sites, rate_constant=1.0)) # Boundary Oxygen annihilation at the bottom boundary #9 elements_before = ["ToO"] elements_after = ["ToV"] coordinates = [[0.0, 0.0, 0.0]] processes.append( KMCProcess(coordinates=coordinates, elements_before=elements_before, elements_after=elements_after, basis_sites=basis_sites, rate_constant=1.0)) """I have all the processes explicitly spelled out here; however, for some weird reason this does not work properly with KMCLib (as in, the processes involving the Bo atoms never seem to fire); hence I have switched back to using custom rates. # Bulk processes # Up, empty. #0 elements_before = ["O", "V", "V"] elements_after = ["V", "O", "V"] coordinates = [[0.0, 0.0, 0.0], [0.0, 0.0, 1.0], [0.0, 0.0, -1.0]] processes.append( KMCProcess(coordinates=coordinates, elements_before=elements_before, elements_after=elements_after, basis_sites=basis_sites, rate_constant=rateConstEmpty)) # Up, full. #1 elements_before = ["O", "V", "O"] elements_after = ["V", "O", "O"] coordinates = [[0.0, 0.0, 0.0], [0.0, 0.0, 1.0], [0.0, 0.0, -1.0]] processes.append( KMCProcess(coordinates=coordinates, elements_before=elements_before, elements_after=elements_after, basis_sites=basis_sites, rate_constant=rateConstFull)) # Down, empty. #2 elements_before = ["O", "V", "V"] elements_after = ["V", "O", "V"] coordinates = [[0.0, 0.0, 0.0], [0.0, 0.0, -1.0], [0.0, 0.0, 1.0]] processes.append( KMCProcess(coordinates=coordinates, elements_before=elements_before, elements_after=elements_after, basis_sites=basis_sites, rate_constant=rateConstEmpty)) # Down, full. #3 elements_before = ["O", "V", "O"] elements_after = ["V", "O", "O"] coordinates = [[0.0, 0.0, 0.0], [0.0, 0.0, -1.0], [0.0, 0.0, 1.0]] processes.append( KMCProcess(coordinates=coordinates, elements_before=elements_before, elements_after=elements_after, basis_sites=basis_sites, rate_constant=rateConstFull)) # Now for Oxygen annihilation at the top boundary (when empty) #4 elements_before = ["O", "To", "V"] elements_after = ["V", "To", "V"] coordinates = [[0.0, 0.0, 0.0], [0.0, 0.0, 1.0], [0.0, 0.0, -1.0]] processes.append( KMCProcess(coordinates=coordinates, elements_before=elements_before, elements_after=elements_after, basis_sites=basis_sites, rate_constant=rateConstEmpty*(1.0-topConc))) # Now for Oxygen annihilation at the top boundary (when full) #5 elements_before = ["O", "To", "O"] elements_after = ["V", "To", "O"] coordinates = [[0.0, 0.0, 0.0], [0.0, 0.0, 1.0], [0.0, 0.0, -1.0]] processes.append( KMCProcess(coordinates=coordinates, elements_before=elements_before, elements_after=elements_after, basis_sites=basis_sites, rate_constant=rateConstFull*(1.0-topConc))) # Oxygen creation at the top boundary #6 elements_before = ["V", "To"] elements_after = ["O", "To"] coordinates = [[0.0, 0.0, 0.0], [0.0, 0.0, 1.0]] processes.append( KMCProcess(coordinates=coordinates, elements_before=elements_before, elements_after=elements_after, basis_sites=basis_sites, rate_constant=topConc*(topConc*rateConstFull+(1.0-topConc)*rateConstEmpty))) # Now for Oxygen annihilation at the bottom boundary, empty. # Bottom #7 elements_before = ["Bo", "O", "V"] elements_after = ["Bo", "V", "V"] coordinates = [[0.0, 0.0, 0.0], [0.0, 0.0, 1.0], [0.0, 0.0, 2.0]] processes.append( KMCProcess(coordinates=coordinates, elements_before=elements_before, elements_after=elements_after, basis_sites=basis_sites, rate_constant=rateConstEmpty*(1.0-botConc))) # Now for Oxygen annihilation at the bottom boundary, full. # Bottom #8 elements_before = ["Bo", "O", "O"] elements_after = ["Bo", "V", "O"] coordinates = [[0.0, 0.0, 0.0], [0.0, 0.0, 1.0], [0.0, 0.0, 2.0]] processes.append( KMCProcess(coordinates=coordinates, elements_before=elements_before, elements_after=elements_after, basis_sites=basis_sites, rate_constant=rateConstFull*(1.0-botConc))) # Oxygen creation at the bottom boundary # Bottom #9 elements_before = ["Bo", "V"] elements_after = ["Bo", "O"] coordinates = [[0.0, 0.0, 0.0], [0.0, 0.0, 1.0]] processes.append( KMCProcess(coordinates=coordinates, elements_before=elements_before, elements_after=elements_after, basis_sites=basis_sites, rate_constant=botConc*(rateConstFull*botConc+(1.0-botConc)*rateConstEmpty))) # Special annoying corner cases for boundaries # Up, bottom. #10 elements_before = ["Bo", "O", "V"] elements_after = ["Bo", "V", "O"] coordinates = [[0.0, 0.0, -1.0], [0.0, 0.0, 0.0], [0.0, 0.0, 1.0]] processes.append( KMCProcess(coordinates=coordinates, elements_before=elements_before, elements_after=elements_after, basis_sites=basis_sites, rate_constant=(botConc*rateConstFull+(1.0-botConc)*rateConstEmpty))) # Down, top. #11 elements_before = ["V", "O", "To"] elements_after = ["O", "V", "To"] coordinates = [[0.0, 0.0, -1.0], [0.0, 0.0, 0.0], [0.0, 0.0, 1.0]] processes.append( KMCProcess(coordinates=coordinates, elements_before=elements_before, elements_after=elements_after, basis_sites=basis_sites, rate_constant=(topConc*rateConstFull + (1.0-topConc)*rateConstEmpty))) """ # Create the interactions object. interactions = KMCInteractions(processes, implicit_wildcards=True) # Define the custom rates calculator, using the lol model as a template class lolModelRates(KMCRateCalculatorPlugin): # Class for defining the custom rates function for the KMCLib paper. def rate(self, geometry, elements_before, elements_after, rate_constant, process_number, global_coordinate): if process_number == 0: if len([e for e in elements_before if e == "O"]) + len([e for e in elements_before if e == "ToO"]) + len([e for e in elements_before if e == "BoO"]) == 2: return rateConstFull else: return rateConstEmpty if process_number == 1: if len([e for e in elements_before if e == "O"]) + len([e for e in elements_before if e == "ToO"]) + len([e for e in elements_before if e == "BoO"]) == 2: return rateConstFull else: return rateConstEmpty if process_number == 2: if len([e for e in elements_before if e == "O"]) + len([e for e in elements_before if e == "ToO"]) + len([e for e in elements_before if e == "BoO"]) == 2: return rateConstFull else: return rateConstEmpty if process_number == 4: if len([e for e in elements_before if e == "O"]) + len([e for e in elements_before if e == "ToO"]) + len([e for e in elements_before if e == "BoO"]) == 2: return rateConstFull else: return rateConstEmpty if process_number == 3: if len([e for e in elements_before if e == "O"]) + len([e for e in elements_before if e == "ToO"]) + len([e for e in elements_before if e == "BoO"]) == 2: return rateConstFull else: return rateConstEmpty if process_number == 5: if len([e for e in elements_before if e == "O"]) + len([e for e in elements_before if e == "ToO"]) + len([e for e in elements_before if e == "BoO"]) == 2: return rateConstFull else: return rateConstEmpty if process_number == 6: return botSpawn if process_number == 7: return botDespawn if process_number == 8: return topSpawn if process_number == 9: return topDespawn def cutoff(self): # Overloaded base class API function return 1.0 interactions.setRateCalculator(rate_calculator=lolModelRates) """End of processes""" ### ## # # Create the model. model = KMCLatticeModel(configuration, interactions) # Msd stuff; this is producing weird outputs, but probably because my parameter choices are completely wrong, # so I'm not so worried about that yet """msd_analysis = OnTheFlyMSD(history_steps=10000, n_bins=10000, t_max=2000.0, track_type="O")""" # Trying to find out information about distribution of time steps #timeStepDistn = TimeStepDistribution(0.1) processStatsOxInBot = ProcessStatistics(processes=[5], time_interval=timeInterval, spatially_resolved=False, anal_Interval = analInterval, resultsPlace=resultsPlace, processesObject=processes) processStatsOxOutBot = ProcessStatistics(processes=[4], time_interval=timeInterval, spatially_resolved=False, anal_Interval = analInterval) processStatsOxInTop = ProcessStatistics(processes=[3], time_interval=timeInterval, spatially_resolved=False, anal_Interval = analInterval) processStatsOxOutTop = ProcessStatistics(processes=[2], time_interval=timeInterval, spatially_resolved=False, anal_Interval = analInterval) compositionTracker = Composition(time_interval=timeInterval) # Define the parameters; not entirely sure if these are sensible or not... control_parameters_equilib = KMCControlParameters(number_of_steps=numStepsEquilib, analysis_interval=numStepsEquilib/100, dump_interval=numStepsEquilib/100) control_parameters_req = KMCControlParameters(number_of_steps=numStepsReq, analysis_interval=numStepsReq/100, dump_interval=numStepsReq/100) control_parameters_snapshot = KMCControlParameters(number_of_steps=numStepsSnapshot, analysis_interval=1, dump_interval=numStepsSnapshot/100) control_parameters_anal = KMCControlParameters(number_of_steps=numStepsAnal, analysis_interval=1, dump_interval=numStepsAnal/100) # Run the simulation - save trajectory to resultsPlace, which should by now exist model.run(control_parameters_equilib, trajectory_filename=(resultsPlace+"equilibTraj.tr")) model.run(control_parameters_snapshot, trajectory_filename=(resultsPlace+"snapTraj.tr"), analysis=[processStatsOxInBot, processStatsOxOutBot, processStatsOxInTop, processStatsOxOutTop, compositionTracker]) with open(resultsPlace+"procOxInBotSnap.dat", 'w') as f: processStatsOxInBot.printResults(f) with open(resultsPlace+"procOxOutBotSnap.dat", 'w') as f: processStatsOxOutBot.printResults(f) with open(resultsPlace+"procOxInTopSnap.dat", 'w') as f: processStatsOxInTop.printResults(f) with open(resultsPlace+"procOxOutTopSnap.dat", 'w') as f: processStatsOxOutTop.printResults(f) with open(resultsPlace+"composition.dat", 'w') as f: compositionTracker.printResults(f) for passNum in range(0, numPasses): processStatsOxInBot = ProcessStatistics(processes=[5], time_interval=timeInterval, spatially_resolved=False, anal_Interval = analInterval) processStatsOxOutBot = ProcessStatistics(processes=[4], time_interval=timeInterval, spatially_resolved=False, anal_Interval = analInterval) processStatsOxInTop = ProcessStatistics(processes=[3], time_interval=timeInterval, spatially_resolved=False, anal_Interval = analInterval) processStatsOxOutTop = ProcessStatistics(processes=[2], time_interval=timeInterval, spatially_resolved=False, anal_Interval = analInterval) model.run(control_parameters_req, trajectory_filename=(resultsPlace+"mainTraj.tr")) model.run(control_parameters_anal, trajectory_filename=(resultsPlace+"mainTraj.tr"), analysis=[processStatsOxInBot, processStatsOxOutBot, processStatsOxInTop, processStatsOxOutTop]) if not os.path.exists(resultsPlace+"inBot"): os.makedirs(resultsPlace+"inBot") if not os.path.exists(resultsPlace+"outBot"): os.makedirs(resultsPlace+"outBot") if not os.path.exists(resultsPlace+"inTop"): os.makedirs(resultsPlace+"inTop") if not os.path.exists(resultsPlace+"outTop"): os.makedirs(resultsPlace+"outTop") with open(resultsPlace+"inBot/inBot"+str(passNum)+".dat", 'w') as f: processStatsOxInBot.printResults(f) with open(resultsPlace+"outBot/outBot"+str(passNum)+".dat", 'w') as f: processStatsOxOutBot.printResults(f) with open(resultsPlace+"inTop/inTop"+str(passNum)+".dat", 'w') as f: processStatsOxInTop.printResults(f) with open(resultsPlace+"outTop/outTop"+str(passNum)+".dat", 'w') as f: processStatsOxOutTop.printResults(f) print("Process would appear to have succesfully terminated! How very suspicious...") ``` #### File: thesisCodes/correlationFunctions/exactDist.py ```python import copy import sys def configMake(L, N, prevList, totList): if L==1: endList = [copy.deepcopy(prevList), N] totList.append(unfold(endList)) return [N] if N==0: return configMake(L-1, 0, [copy.deepcopy(prevList), 0], totList) if L==N: return configMake(L-1, N-1, [copy.deepcopy(prevList), 1], totList) return [configMake(L-1, N, [copy.deepcopy(prevList), 0], totList), configMake(L-1, N-1, [copy.deepcopy(prevList), 1], totList)] def adjSum(candList): listLen = len(candList) total = 0 for index in range(0, listLen): total += candList[index-1]*candList[index] return total def unfold(candList): if isinstance(candList, list): if len(candList)==2: return unfold(candList[0])+unfold(candList[1]) if len(candList)==1: return candList if len(candList)==0: return [] return [candList] def listCollate(candList): maxItem = 0 for index in candList: if index > maxItem: maxItem = index outPut = [] for size in range(0, maxItem+1): numCounts = 0 for index in candList: if index == size: numCounts += 1 outPut.append((size, numCounts)) return outPut def genCorrFn(L, N): totList = [] allStates = configMake(L, N, [], totList) restStates = [] weightList = [] maxAdj = 0 for state in totList: if state[0]==1: restStates.append((state, adjSum(state))) if restStates[-1][1]>maxAdj: maxAdj = restStates[-1][1] weightList.append(restStates[-1][1]) partFnList = listCollate(weightList) print(partFnList) partitionFn = "(" for pair in partFnList: partitionFn += str(pair[1])+" Exp["+str(pair[0]-maxAdj)+"b] + " partitionFn += "0)" print(partitionFn) finalOut = "{" for shift in range(0, L-L/2): tempList = [] for config in restStates: if config[0][shift] == 1: tempList.append(config[1]) stateDist = listCollate(tempList) outSum = "{"+str(shift)+", (" for pair in stateDist: outSum += str(pair[1])+" Exp["+str(pair[0]-maxAdj)+"b] + " outSum += "0)/"+partitionFn+"}" finalOut += outSum if shift != L-L/2-1: finalOut += ", " finalOut+="}" return finalOut L = int(sys.argv[1]) with open("corrFnResults.m", 'w') as f: f.write("{") for n in range(2, L-2): f.write("{"+str(n)+"/"+str(L)+", "+genCorrFn(L, n)+"}, ") f.write(genCorrFn(L, L-2) + "}") ``` #### File: kmc/customAnalysis/BlockStats.py ```python import sys import numpy import math from KMCLib.PluginInterfaces.KMCAnalysisPlugin import KMCAnalysisPlugin from KMCLib.Utilities.CheckUtilities import checkSequenceOfPositiveIntegers from KMCLib.Utilities.CheckUtilities import checkPositiveFloat from KMCLib.Utilities.CheckUtilities import checkPositiveInteger from KMCLib.Exceptions.Error import Error from KMCLib.Backend.Backend import MPICommons class BlockStats(KMCAnalysisPlugin): """ Class for collecting block size statistics during a run.""" def __init__(self, blockComp=None): """ Initialisation for BlockStats """ # Check and set the input. if blockComp==None: sys.exit("Need to specify which types are to be counted as part of the block!") self.__blockComp = blockComp def setup(self, step, time, configuration): """ Recieves the setup call. """ # Set the initial time. self.__lastTime = time self.__initialTime = time # Allocate space for the spatially resolved information. typeList = configuration.types() self.__histogram = [] for typeIndex in range(0, len(typeList)): self.__histogram.append([typeIndex, 0.0]) def registerStep(self, step, time, configuration): typeList = configuration.types() timeInterval = time - self.__lastTime scanIndex = 0 blockLength = 0 inBlock = False while(scanIndex<len(typeList)): if inBlock==True: """ Continuing an existing block """ if typeList[scanIndex] in self.__blockComp: blockLength += 1 else: """ Finishing a block """ self.__histogram[blockLength][1] += timeInterval inBlock = False else: if typeList[scanIndex] in self.__blockComp: """ Start a new block """ inBlock = True blockLength = 1 """ Otherwise, just keep looking for block bits """ scanIndex += 1 self.__lastTime = time def finalize(self): totalTime = self.__lastTime - self.__initialTime if totalTime<=0.0: sys.exit("Something has gone wrong with the elapsed time!") for item in self.__histogram: item[1]/=totalTime def printResults(self, stream=sys.stdout): """ Print the results to the stream. :param stream: The stream to print to. """ # Only master writes. if MPICommons.isMaster(): for item in self.__histogram: stream.write(str(item[0])+" "+str(item[1])+"\n") ``` #### File: kmc/customPythonLibs/foldyFloatList.py ```python import numberedFloat import pyllist nf = numberedFloat.numberedFloat dllist = pyllist.dllist class foldyFloatList: def __init__(self): self.__values = dllist() def addValue(self, x): self.__values.append(nf(x)) self.attemptFold() def toString(self): outString = "[" for x in self.__values: outString += x.toString()+" " outString += "\b]" return outString def extractSum(self): total = 0.0 curVals = reversed(self.__values) for x in curVals: total += x.getValue() return total def attemptFold(self): it = self.__values.last if it==None: return front = self.__values.first previous = it while it != front: it = it.prev if it.value.getHeight()>previous.value.getHeight(): break else: sum = it.value.getValue() + previous.value.getValue() self.__values.remove(previous) it.value.setValue(sum) it.value.setHeight(it.value.getHeight()+1) previous = it ```
{ "source": "JoshuaHenriques/ecommerce-db-generator", "score": 3 }
#### File: JoshuaHenriques/ecommerce-db-generator/scrape.py ```python from bs4 import BeautifulSoup import cloudscraper def scrape(): url = 'https://www.fakeaddressgenerator.com/World/ca_address_generator' scraper = cloudscraper.create_scraper() page = scraper.get(url).content soup = BeautifulSoup(page, "html.parser") results = soup.find_all("b") name = results[1].text.split() first_name = name[0] last_name = name[2] full_name = first_name + " " + last_name phone_number = results[12].text phone_number = phone_number.split("-")[0] + phone_number.split("-")[1] + phone_number.split("-")[2] email = last_name + "." + first_name + phone_number[8] + "@gmail.com" password = results[53].text date_of_birth = results[4].text if len(date_of_birth.split("/")[0]) == 1: day = "0" + date_of_birth.split("/")[0] else: day = date_of_birth.split("/")[0] if len(date_of_birth.split("/")[1]) == 1: month = "0" + date_of_birth.split("/")[1] else: month = date_of_birth.split("/")[1] date_of_birth = (date_of_birth.split("/")[2][2] + date_of_birth.split("/")[2][3]) + month + day street_name = results[7].text.split()[1] + " " + results[7].text.split()[2] street_number = results[7].text.split()[0] city = results[8].text postal_code = results[11].text.split()[0] + results[11].text.split()[1] province = results[10].text ccn = results[30].text four_dig = ccn[12] + ccn[13] + ccn[14] + ccn[15] cvc = results[31].text login = { "roles": ["USER"], "email": email, "phoneNumber": phone_number, "password": password, "enabled": True } customer = { "firstName": first_name, "lastName": last_name, "phoneNumber": phone_number, "email": email, "password": password, "dateOfBirth": date_of_birth, "cart": {}, "address": { "streetName": street_name, "streetNumber": street_number, "unitNumber": 000, "city": city, "postalCode": postal_code, "province": province }, "wallet": [{ "fullName": full_name, "ccn": ccn, "expDate": "0425", "cvc": cvc, "fourDig": four_dig }], "orders": [] } return customer, login ```
{ "source": "JoshuaHess12/hdi-prep", "score": 3 }
#### File: hdi-prep/HDIprep/utils.py ```python import numpy as np import pandas as pd import nibabel as nib from pathlib import Path from skimage.transform import resize from ast import literal_eval # Define function def CreateHyperspectralImage(embedding, array_size, coordinates, scale=True): """Fill a hyperspectral image from n-dimensional embedding of high-dimensional imaging data by rescaling each channel from 0-1 (optional). All coordinates in the image not listed in coordinates object will be masked and set to 0 (background). Parameters ---------- embedding: Pandas DataFrame Indicates embedding coordinates from UMAP or another method. array_size: tuple Indicates size of image. coordinates: 1-indexed list of tuples Indicates pixel coordinates of image. scale: Bool (Default: True) Rescale pixel intensities on the range of 0-1. Returns ------- im: array Reconstructed image. """ # Create zeros array to fill with number channels equal to embedding dimension im = np.zeros((array_size[0], array_size[1], embedding.shape[1]), dtype=np.float32) # Run through the data coordinates and fill array for i, (x, y, z) in enumerate(coordinates): # Run through each slice of embedding (dimension) for dim in range(embedding.shape[1]): # Add data to this slice im[y - 1, x - 1, dim] = embedding.values[i, dim] # Create a mask to use for excluding pixels not used in dimension reduction im_bool = np.zeros((array_size[0], array_size[1]), dtype=np.bool) # Fill the mask array with True values at the coordinates used for i, (x, y, z) in enumerate(coordinates): # Add boolean mask im_bool[y - 1, x - 1] = True # Check to see if scaling the pixel values 0 to 1 if scale: # Scale the data 0-1 for hyperspectral image construction for dim in range(im.shape[2]): # min-max scaler im[:, :, dim] = (im[:, :, dim] - im[:, :, dim].min()) / ( im[:, :, dim].max() - im[:, :, dim].min() ) # Mask the image with the boolean array to remove unused pixels im[~im_bool] = 0 # Return the hyperspectral image return im # Define function def CreateHyperspectralImageRectangular(embedding, array_size, coordinates, scale=True): """Fill a hyperspectral image from n-dimensional embedding of high-dimensional imaging data by rescaling each channel from 0-1 (optional). All coordinates in the image not listed in coordinates object will be masked and set to 0 (background). This function assumes that the data you want to reconstruct can be automatically reshaped into a rectangular array. Parameters ---------- embedding: Pandas DataFrame Indicates embedding coordinates from UMAP or another method. array_size: tuple Indicates size of image. coordinates: 1-indexed list of tuples Indicates pixel coordinates of image. scale: Bool (Default: True) Rescale pixel intensities on the range of 0-1. Returns ------- im: array Reconstructed image. """ # get the embedding shape number_channels = embedding.shape[1] # Create zeros array to fill with number channels equal to embedding dimension im = embedding.values.reshape((array_size[0], array_size[1], number_channels)) # Check to see if scaling the pixel values 0 to 1 if scale: # Scale the data 0-1 for hyperspectral image construction for dim in range(im.shape[2]): # min-max scaler im[:, :, dim] = (im[:, :, dim] - im[:, :, dim].min()) / ( im[:, :, dim].max() - im[:, :, dim].min() ) # Return the hyperspectral image return im def ExportNifti(image, filename, padding=None, target_size=None): """Export processed images resulting from UMAP and spatially mapping UMAP, or exporting processed histology images. Parameters ---------- image: array Array that represents image to export. filename: string Path, including filename, to export processed nifti image to. padding: string of tuple of type integer (padx,pady; Default: None) Indicates height and length padding to add to the image before exporting. target_size: string of tuple of type integer (sizex,sizey; Default: None) Resize image using bilinear interpolation before exporting. """ # Create pathlib object from the filename filename = Path(filename) # convert the padding and target size to tuple if present if padding is not None: padding = literal_eval(padding) if target_size is not None: target_size = literal_eval(target_size) # Print update print("Exporting nifti image stack...") # Check to see if padding if padding is not None: image = np.pad( image, [(padding[0], padding[0]), (padding[1], padding[1]), (0, 0)], mode="constant", ) # Check to see if resizing if target_size is not None: image = resize(image,target_size) # Create nifti object -- transpose axes because of the transformation! # Check size if len(image.shape) > 2: # Create nifti object -- transpose axes because of the transformation! nifti_im = nib.Nifti1Image(image.transpose(1, 0, 2), affine=np.eye(4)) else: # Create nifti object -- transpose axes because of the transformation! nifti_im = nib.Nifti1Image(image.T, affine=np.eye(4)) # Save the image nib.save(nifti_im, str(filename)) # Print update print("Finished exporting " + str(filename)) def Exp(x, a, b, c): """Exponential function to use for regression. """ return a * np.exp(-b * x) + c ```
{ "source": "JoshuaHess12/hdi-reg", "score": 3 }
#### File: hdi-reg/HDIreg/tmp_elastix_registration.py ```python import matplotlib.pyplot as plt import numpy as np import sys import time import os import re import nibabel as nib from pathlib import Path import pandas as pd import shutil import glob import fileinput import cv2 from joblib import Parallel, delayed from numba import njit, prange import subprocess import utils #-----------------General Utility Functions for Registration----------------------- def FormatFijiPointsFromCSV(input_file,selection_type): """This function will take the csv point selection file that you export from using control+m in fiji (ImageJ) to the correct text file format to use with elastix image registration selection_type must be the string 'index' or 'points'""" #Get the current directory tmp_path = Path('..') home_dir=tmp_path.cwd() #Read the csv file that you input data = pd.read_csv(input_file) #Get the image folder name parent=Path(input_file).parent #Change the directory to the parent folder so we know where to export os.chdir(parent) #Remove the file extension prefix=Path(input_file).stem #Rename the first column for ease of access data.rename(columns = {list(data)[0]:'Landmark'}, inplace=True) #Create a new text file txt_file = open(prefix+".txt","w+") #Create first string to write to your file str_list = [str(selection_type),str(max(data['Landmark']))] txt_file.writelines(i + '\n' for i in str_list) #Close and save the txt file txt_file.close() #Get only the data we need for the text file point_tab = data[['X','Y']] #Now append the data table to the txt file point_tab.to_csv(prefix+".txt", header=False, index=False, sep=' ', mode='a') #Change the current directory back to the home directory os.chdir(home_dir) def FormatRegionFromFiji(input_file,selection_type="index"): """This function will take a set of points that you set and export in ImageJ using Analyze > Tools > Save XY coordinates plugin""" #Get the current directory tmp_path = Path('..') home_dir=tmp_path.cwd() #Read the csv file that you input data = pd.read_csv(input_file) #Get the image folder name parent=Path(input_file).parent #Change the directory to the parent folder so we know where to export os.chdir(parent) #Remove the file extension prefix=Path(input_file).stem #Create a new text file txt_file = open(prefix+".txt","w+") #Create first string to write to your file str_list = [str(selection_type),str(data.shape[0])] txt_file.writelines(i + '\n' for i in str_list) #Close and save the txt file txt_file.close() #Get only the data we need for the text file point_tab = data[['X','Y']] #Now append the data table to the txt file point_tab.to_csv(prefix+".txt", header=False, index=False, sep=' ', mode='a') #Change the current directory back to the home directory os.chdir(home_dir) def GetROImask(dir,full_size,ROI_correction = None): """This function will take the check all subdirectories for csv files exported from using Analyze > Tools > Save XY coordinates plugin. It will then create a mask for each of those ROIs based on the full image coordinates so that each region can be extracted efficiently. dir: The directory that you want to do a subdirectory search on for csv files. full_image: Full image to use for masking ROI from ROI_correction: correction to be added to the dimensions of the ROI Returns a dictionary object with keys being the folders detected and the values being the masks created based on csv files in folders and the full image Note: We will use this function with ROIs defined on the toluidine blue image and we use it to extract the ROIs from the final registered full MSI UMAP image """ #Get the names of the folders in your directory filenames = [file for file in os.listdir(dir) if os.path.isdir(os.path.join(dir,file))] #Get all csv files in those directories #***Note that we are traversing all directory so may need to change to avoid prblems*** csv_files = utils.TraverseDir(ending="coordinates.csv") #Create a dictionary object for our ROIs that contains the folder names with csv full paths ROI_dict = dict(zip(filenames, csv_files)) #Create a new dictionary object to store the masks and coordinates in ROI_masks = {} #Access the dictionary ROI object to load the mask coordinates from csv files for ROI, filename in ROI_dict.items(): #Read csv file_cont = pd.read_csv(filename) #Get the XY coordinates from the dataframe point_tab = file_cont[['X','Y']] #Create a mask for each of these ROI regions tp_left = (point_tab[['X']].values.min()-1,point_tab[['Y']].values.min()-1) bt_right = (point_tab[['X']].values.max()-1,point_tab[['Y']].values.max()-1) #Create a blank mask - ***Order is 1 and 0 for the nifti image format***** mask = np.zeros(shape=(full_size[1],full_size[0]),dtype="uint8") #Draw rectangle on the mask using opencv cv2.rectangle(img=mask,pt1=tp_left,pt2=bt_right,color=(255,255,255),thickness=-1) #Extract sliced, nonzero regions from your original image nonzero = np.nonzero(mask) minx = min(nonzero[0]) maxx = max(nonzero[0]) miny = min(nonzero[1]) maxy = max(nonzero[1]) #Check to see if we are adding overlap to our ROIs if ROI_correction is not None: print('Detected ROI Correction Factor...') minx = (minx-(ROI_correction)) maxx = (maxx+(ROI_correction)) miny = (miny-(ROI_correction)) maxy = (maxy+(ROI_correction)) #Add the mask in this iteration to our dictionary object ROI_masks.update({str(ROI):[minx,maxx,miny,maxy]}) #Report that the masking is complete print('Finished getting coordinates') #Return the dictionary object return ROI_masks def CreateMaskFromCoords(filenames_list,full_image,invert=False): """Function for reading in ROI coordinates and converting them to a mask. Currently only accepts nifti format for the full_image. Option to invert the mask""" #Read the full image full_im = nib.load(str(full_image)).get_fdata().T #Get the full array size full_size=full_im.shape #Create a blank mask - ***Order is 1 and 0 for the nifti image format***** mask = np.zeros(shape=(full_size[0],full_size[1]),dtype="uint8") #Iterate through each ROI csv file for roi in filenames_list: #Read csv file_cont = pd.read_csv(roi) #Get the XY coordinates from the dataframe point_tab = file_cont[['X','Y']] #Create a mask for each of these ROI regions tp_left = (point_tab[['X']].values.min()-1,point_tab[['Y']].values.min()-1) bt_right = (point_tab[['X']].values.max()-1,point_tab[['Y']].values.max()-1) #Draw rectangle on the mask using opencv cv2.rectangle(img=mask,pt1=tp_left,pt2=bt_right,color=(255,255,255),thickness=-1) #Check to see if inverting the mask if invert: mask = ~mask #return the mask return mask def ROImaskExport(ROI_masks,full_img,flip_horz=False,flip_vert=False,prefix=None,export_image=True): """Function for exporting ROIs from an ROI_masks dictionary object that gets returned from GetROImask function ROI_masks: Returned dictionary from GetROImask function full_img: Array that contains the image to be cropped from flip_horz: Logical. If true, ROI is flipped horizontally flip_vert: Logical. If true, ROI is flipped vertically prefix: prefix to add to the ROIs that are exported. If left to None, then a default prefix is added that corresponds to the image folder that the ROI represents""" #Set your home directory tmp = Path('..') home_dir=tmp.cwd() #Create a dictionary of final rescaled sizes to use for MSI ROI Extraction fin_sizes = {} #Loop through the ROI_masks dictionary for ROI,mask in ROI_masks.items(): os.chdir(str(ROI)) #Read the imc image for resizing imc_im=mms.imc_file(tmp.cwd(),return_im=True,return_imc_cell_table=False,return_pix_table=False).image #Get our ROIs tmp_ROI = full_img[int(mask[2]):int(mask[3]),int(mask[0]):int(mask[1])] #Save the new ROI if flip_horz: tmp_ROI = np.flip(tmp_ROI,0) if flip_vert: tmp_ROI = np.flip(tmp_ROI,1) #Get the size of the imc image multiple = int(imc_im.shape[1]/tmp_ROI.shape[0]) #Use the rounded multiple to resize our ROI for image registration HiRes_size = (tmp_ROI.shape[1]*multiple,tmp_ROI.shape[0]*multiple) #Remember that cv2 does the axis in the opposite order as numpy tmp_ROI_HR = cv2.resize(tmp_ROI,HiRes_size) #Create a nifti object and save the image nifti_ROI = nib.Nifti1Image(tmp_ROI_HR, affine=np.eye(4)) #Get a prefix for the image that we are saving if prefix is None: prefix_tmp = str(ROI) else: prefix = prefix if export_image: #Save the ROI nib.save(nifti_ROI,prefix_tmp+'.nii') #Report the finished job print('Finished exporting '+str(ROI)+'...') #Add the final size to our dictionary fin_sizes.update({str(ROI):HiRes_size}) #Change back to the original directory os.chdir(home_dir) #Report the finished export job print('Finsihed export all regions') #Return an object that contains the final size for each H&E ROI so we can apply the #transformix function for each MSI ROI return fin_sizes def ROImaskExport_MSI_Transformix(ROI_masks_from_tolBlue,final_sizes,parameter_files,full_img,flip_horz=False,flip_vert=False,prefix=None): """Function for exporting ROIs from an ROI_masks dictionary object that gets returned from GetROImask function ROI_masks: Returned dictionary from GetROImask function full_img: Array that contains the image to be cropped from flip_horz: Logical. If true, ROI is flipped horizontally flip_vert: Logical. If true, ROI is flipped vertically prefix: prefix to add to the ROIs that are exported. If left to None, then a default prefix is added that corresponds to the image folder that the ROI represents""" #Set your home directory tmp = Path('..') home_dir=tmp.cwd() #Loop through the ROI_masks dictionary for ROI,mask in ROI_masks_from_tolBlue.items(): #Create a directory for our ROI and switch to it if not os.path.exists(os.path.join(tmp.cwd(),str(ROI))): os.makedirs(str(ROI)) os.chdir(str(ROI)) #Get our ROIs tmp_ROI = full_img[int(mask[2]):int(mask[3]),int(mask[0]):int(mask[1])] #Save the new ROI if flip_horz: tmp_ROI = np.flip(tmp_ROI,0) if flip_vert: tmp_ROI = np.flip(tmp_ROI,1) #Use the dictionary of ROI final sizes to resize the image HiRes_size = final_sizes[str(ROI)] #Resize the image tmp_ROI_HR = cv2.resize(tmp_ROI,HiRes_size) #Create a nifti object and save the image nifti_ROI = nib.Nifti1Image(tmp_ROI_HR, affine=np.eye(4)) #Get a prefix for the image that we are saving (will come from the loop that indicates m/z slice) prefix = prefix #Save the ROI nib.save(nifti_ROI,prefix+'.nii') #Report the finished job print('Finished exporting original crop for '+str(ROI)+'...') #Run transformix on this particular ROI using the false H&E and H&E registration parameters tmp_imagepath = Path(os.path.join(tmp.cwd(),str(prefix)+'.nii')) #Create a directory to store this slice in within each ROIs folder os.mkdir(str(prefix)) #Create an output directory path (here tmp.cwd() is the ROI folder and prefix is m/z slice number) out_dir = Path(os.path.join(tmp.cwd(),str(prefix))) #Get the parameter file from this ROI (user will need to provide the paths for right now) par = parameter_files[str(ROI)] #Check to see if we are transforming this slice if par is not None: #Send the command to the shell print('Running Transformix for '+str(ROI)+' '+str(prefix)+'...') os.system("transformix -in "+str(tmp_imagepath)+" -out "+str(out_dir)+" -tp "+str(par)) #Delete the temporary m/z image that comes from exporting ROI from composition MSI slice os.remove(tmp_imagepath) #Change back to the original directory (outside of the ROI specific folder) os.chdir(home_dir) #Report the finished export job print('Finsihed export all regions for '+str(prefix)) #######----******Add in optional extra registration alternative to ROImaskExport for detecting transformation file in the folder def GetParamFileImageSize(par): """Function for parsing an elastix parameter file to get the size tuple for the registration. The size corresponds to the final size of the registered image. par: Path to the parameter file that you want to parse""" #Read the parameter file to pandas dataframe par_file = pd.read_csv(par, sep = "\n") #Get those rows that contain the string "Size" size_cols = par_file[par_file.iloc[:,0].str.contains("Size")] #Replace the right parentheses tmp_tab = size_cols.iloc[:,0].str.replace('(','') #Replace the left parentheses tmp_tab = pd.DataFrame(tmp_tab.iloc[:].str.replace(')','')) #String match again for "Size" and convert that to a string size_cols_fin = tmp_tab[tmp_tab.iloc[:,0].str.match("Size")].to_string(header=False,index=False) #Extract the positive integers from the final string and convert to tuple size_tup = tuple([int(s) for s in size_cols_fin.split() if s.isdigit()]) #Return the final size tuple return size_tup #-----------------General Registration Functions----------------------- def ElastixRegistration(fixed,moving,out_dir,p0,p1=None,fp=None,mp=None,fMask=None,mkdir=False): """This is a python function for running the elastix image registration toolbox. You must be able to call elastix from your command shell to use this. You must also have your parameter text files set before running this through python.""" #Start a timer start = time.time() #Get the name of the output directory out_dir = Path(out_dir) #Get the name of the parameter file p0 = Path(p0) #Get the names of the input images fixedName = Path(fixed) movingName = Path(moving) #Get the number of channels for the fixed and moving images niiFixed = nib.load(str(fixedName)) niiMoving = nib.load(str(movingName)) #Check to see if there is single channel input if niiFixed.ndim is 2 and niiMoving.ndim is 2: print('Detected single channel input images...') #Send the command to shell to run elastix command = "elastix -f "+str(fixed)+ " -m "+str(moving) #Check to see if there is multichannel input else: print('Exporting single channel images for multichannel input...') #Read the images niiFixed_im = niiFixed.get_fdata() niiMoving_im = niiMoving.get_fdata() #Set up list of names for the images fixedList = [] movingList = [] command = "elastix" #Export single channel images for each channel for i in range(niiFixed.shape[2]): #Create a filename fname = Path(os.path.join(fixedName.parent,str(fixedName.stem+str(i)+fixedName.suffix))) #Update the list of names for fixed image fixedList.append(fname) #Update the list of names for fixed image command = command + ' -f' + str(i) + ' ' + str(fname) #Create a nifti image #Check to see if the path exists if not fname.is_file(): #Create a nifti image nii_im = nib.Nifti1Image(niiFixed_im[:,:,i], affine=np.eye(4)) nib.save(nii_im,str(fname)) for i in range(niiMoving.shape[2]): #Create a filename mname = Path(os.path.join(movingName.parent,str(movingName.stem+str(i)+movingName.suffix))) #Update the list of names for moving image movingList.append(mname) #Update the list of names for moving image command = command + ' -m' + str(i) + ' ' + str(mname) #Check to see if the path exists if not mname.is_file(): #Create a nifti image nii_im = nib.Nifti1Image(niiMoving_im[:,:,i], affine=np.eye(4)) nib.save(nii_im,str(mname)) #Add the parameter files command = command+" -p "+str(p0) #Check for additional files if p1 is not None: #Create pathlib Path p1 = Path(p1) command = command + " -p "+str(p1) #Check for corresponding points in registration if fp and mp is not None: #Create pathlib Paths fp = Path(fp) mp = Path(mp) command = command +" -fp "+str(fp)+" -mp "+str(mp) #Check for fixed mask if fMask is not None: #Create pathlib Paths fMask = Path(fMask) command = command +" -fMask "+str(fMask) #Check for making new directories if mkdir is True: n=0 while n>=0: tmp_name = "elastix"+str(n) if not os.path.exists(Path(os.path.join(out_dir,tmp_name))): os.mkdir(Path(os.path.join(out_dir,tmp_name))) out_dir = Path(os.path.join(out_dir,tmp_name)) break n+=1 #Add the output directory to the command command = command +" -out "+str(out_dir) #Send the command to the shell print('Running elastix...') os.system(command) end = time.time() print('Initial registration finished\n'+'Computation time: '+str(end-start)+' sec.') #Return values return command def TransformixRegistration(input_img,output_dir,parameter_file,conc=False,points=None): """This is a python function for running transformix image registration. Again, must be able to call elastix from the command line to be able to run this. If your channel is multichannel, this script must first export each channel in the nifti format. By default, images will be exported to your output_dir and will include the suffix 'Unregistered' followed by the channel number""" #Create a timer trans_start = time.time() #Check to see if the image is multichannel or grayscale (note: need to remove " in your filename) tmp_data = nib.load(str(input_img)).get_data() if tmp_data.ndim is not 2: print('Detected multichannel image. Creating channel images...') #Get the current directory tmp_path = Path('..') home_dir=tmp_path.cwd() #Set the working directory as the output directory parent=Path(output_dir) os.chdir(parent) #Now take each of the channels and export a separate image for registration filenames_channels = [] for i in range(tmp_data.shape[2]): #Get the image name from your input image path im_name=Path(tmp_data.filename).parts[-1] #Remove the file extension prefix,extension=Path(im_name).stem,Path(im_name).suffix #Create new image channel i in each iteration nifti_col = nib.Nifti1Image(tmp_data[:,:,i], affine=np.eye(4)) #Create the image path for this iteration tmp_image=prefix+"_Unregistered"+str(i)+extension #Save the nifti image print("Saving a temporary image for channel "+str(i)+"...") nib.save(nifti_col,str(tmp_image)) #Now load the image and run transformix on that channel in the shell print("Running Transformix for channel "+str(i)+"...") #Creat a new file for your transformix results transformix_path = Path(os.path.join(str(output_dir),str(prefix)+"_Transformix_Registered"+str(i))) transformix_path.mkdir() os.system("transformix -in " +str(tmp_image)+ " -out "+str(transformix_path)+" -tp "+str(parameter_file)) print("Finished Transforming Channel "+str(i)) #add filenames to the list filenames_channels.append(os.path.join(str(transformix_path),"result.nii")) #Check to see if we are concatenating images if conc is True: tmp_nii = nib.concat_images(filenames_channels) #Create a path and save the image conc_path = Path(os.path.join(str(output_dir),str(prefix)+"_Transformix_Registered")) conc_path.mkdir() os.chdir(conc_path) nib.save(tmp_nii,"result.nii") #Create a return path ret_path = conc_path #Set working directory back to its original os.chdir(home_dir) else: print("Single channel image detected...") print("Running Transformix...") #Send the command to the shell to run transformix os.system("transformix -in " +str(input_img)+ " -out "+str(output_dir)+" -tp "+str(parameter_file)) trans_stop = time.time() print('Finished transforming\n'+'Transformix Computation Time: '+str(trans_stop-trans_start)+' sec.') #Create a return path ret_path = output_dir return ret_path def ApplyTransformixDir(dir,ending,remove_from_names=None,**kwargs): """Function for applying a transformix registration for all images contained within a folder (indicated by dir parameter)""" #Set a path object tmp = Path('..') #Set the home directory and record its position home = Path(dir) os.chdir(home) #Get the names of all nifti images in the directory im_names = utils.SearchDir(ending = ending) #Run the the images in the directory and export their transformix for im in im_names: #Get the name of the image stem im_stem = im.stem #Check to see if removing a string from image name if remove_from_names is not None: #Remove the nonsense from the image name im_stem = im_stem.replace(remove_from_names,"") #Run transformix on this iteration image ret_path = TransformixRegistration(input_img=im,output_dir=tmp.cwd(),**kwargs) #Rename the image in this iteration trans_im = Path(os.path.join(ret_path,"result.nii")) #Rename this file to the correct ROI for dice score trans_im.replace(trans_im.with_name(im_stem+"_result.nii")) trans_im = trans_im.with_name(im_stem+"_result.nii") #Change back to the home directory os.chdir(home) def AlphaMIParameterFileGrid(template,num_neighbors,error,alpha,out): """Function for creating parameter file grid for alpha mutual information based registration""" #Get the current directory home_dir = Path(os.getcwd()) #Get the parent directory and filename out = Path(out) os.chdir(out) #Get the current k value k_val,_ = utils.ParseElastix(template,'KNearestNeighbours') #Get the current error value err_bound,_ = utils.ParseElastix(template,'ErrorBound') #Get the current alpha value alph,_ = utils.ParseElastix(template,'Alpha') #Set up a list for all new parameter file names nms_list = [] #Iterate through the options for k,error,and alpha for nn in num_neighbors: for e in error: for a in alpha: #Read the transform parameters with open(template, 'r') as file: filedata = file.read() #Replace the Alpha value filedata = filedata.replace("(KNearestNeighbours "+k_val+")", "(KNearestNeighbours "+str(nn)+")") #Replace the file type from nifti to tif filedata = filedata.replace("(ErrorBound "+err_bound+")", "(ErrorBound "+str(e)+")") #Replace the resulting image pixel type from double to 8bit filedata = filedata.replace("(Alpha "+alph+")", "(Alpha "+str(a)+")") #Get a temporary name tmp_name = 'aMI_'+str(nn)+'NN_'+str(e)+'ERR_'+str(a)+'A' #Make directories for the new names if not os.path.exists(tmp_name): #make directory os.mkdir(tmp_name) #Change to the new subdirectory os.chdir(tmp_name) #Create name for the new transform parameter file new_name = Path(os.path.join(os.getcwd(),str(tmp_name+'.txt'))) #Write out the new file with open(new_name, 'w+') as new_file: new_file.write(filedata) #Close the files file.close() new_file.close() #Add the new names to a list nms_list.append(new_name) #Switch back to the out directory os.chdir(out) #Change back to the home directory os.chdir(home_dir) #Return the path to the TransformParameters return nms_list def MIParameterFileGrid(template,num_resolutions,out,nonlinear=False,grid_spacing=None): """Function for creating parameter file grid for alpha mutual information based registration""" #Get the current directory home_dir = Path(os.getcwd()) #Get the parent directory and filename out = Path(out) os.chdir(out) #Get the current k value num_res,_ = utils.ParseElastix(template,'NumberOfResolutions') #Set up a list for all new parameter file names nms_list = [] #Check if nonlinear transformation if nonlinear: #Get the original grid spacing og_grid,_ = utils.ParseElastix(template,'FinalGridSpacingInVoxels') #iterate through grid spacing schedule for gg in grid_spacing: #Iterate through the options for k,error,and alpha for nn in num_resolutions: #Read the transform parameters with open(template, 'r') as file: filedata = file.read() #Replace the Alpha value filedata = filedata.replace("(NumberOfResolutions "+num_res+")", "(NumberOfResolutions "+str(nn)+")") #Replace the grid spacing schedule filedata = filedata.replace("(FinalGridSpacingInVoxels "+og_grid+")", "(FinalGridSpacingInVoxels "+str(gg)+")") #Get a temporary name tmp_name = 'MI_'+str(nn)+'Resolutions'+'_'+str(gg)+'GridSpacing' #Make directories for the new names if not os.path.exists(tmp_name): #make directory os.mkdir(tmp_name) #Change to the new subdirectory os.chdir(tmp_name) #Create name for the new transform parameter file new_name = Path(os.path.join(os.getcwd(),str(tmp_name+'.txt'))) #Write out the new file with open(new_name, 'w+') as new_file: new_file.write(filedata) #Close the files file.close() new_file.close() #Add the new names to a list nms_list.append(new_name) #Switch back to the out directory os.chdir(out) #Change back to the home directory os.chdir(home_dir) else: #Iterate through the options for k,error,and alpha for nn in num_resolutions: #Read the transform parameters with open(template, 'r') as file: filedata = file.read() #Replace the Alpha value filedata = filedata.replace("(NumberOfResolutions "+num_res+")", "(NumberOfResolutions "+str(nn)+")") #Get a temporary name tmp_name = 'MI_'+str(nn)+'Resolutions' #Make directories for the new names if not os.path.exists(tmp_name): #make directory os.mkdir(tmp_name) #Change to the new subdirectory os.chdir(tmp_name) #Create name for the new transform parameter file new_name = Path(os.path.join(os.getcwd(),str(tmp_name+'.txt'))) #Write out the new file with open(new_name, 'w+') as new_file: new_file.write(filedata) #Close the files file.close() new_file.close() #Add the new names to a list nms_list.append(new_name) #Switch back to the out directory os.chdir(out) #Change back to the home directory os.chdir(home_dir) #Return the path to the TransformParameters return nms_list def HyperParameterElastixRegistration(par_files,p=None,run_elastix = True,outdir=None,subfolder=None,**kwargs): """Function for iterating over a list of parameter files and running elastix on those parameter files""" #Get the current directory home_dir = Path(os.getcwd()) #Create a list to store elastix log files and another for transform parameter files logs = [] trans = [] #Iterate through the files for par in par_files: #Set the paramter files if p is None: p0 = par p1=None else: p0=p p1 = par #Switch to the directory os.chdir(str(par.parent)) #Check if moving to a subfolder (Use for multiple images in this function) if subfolder is not None: #Create a path object tmp_subfolder = Path(os.path.join(os.getcwd(),str(subfolder))) #Create folder if it doesnt exist if not tmp_subfolder.is_dir(): os.mkdir(str(tmp_subfolder)) #Change to subfolder os.chdir(str(tmp_subfolder)) #Get the output path as the current working directory outdir = Path(os.getcwd()) #Run elastix for this file if you choose if run_elastix: ElastixRegistration(p0=p0,p1=p1,out_dir=outdir,**kwargs) #Get the elastix log file from this directory tmp_log = utils.SearchDir(ending = "elastix.log") #Add the log to the new list logs.append(tmp_log) #Get the final transform file tmp_trans,_ = utils.GetFinalTransformParameters() #Add the transform parameter file to the list trans.append(tmp_trans) #Change back to the home_dir os.chdir(home_dir) #Return the parameter files return logs,trans,par_files #-----------------Composition Registration Functions for MSI full image registration----------------------- #Working towards a more succinct script def CompositionElastix(out,f0,m0,p0_0,f1,m1,p0_1,p1_0=None,fp0=None,mp0=None,p1_1=None,fp1=None,mp1=None): """This function will perform multiple elastix registrations and save the output so that we can directly call transformix composition of functions. Input for points here will now allow for the csv files straight from Image J. We assume that you have run the FormatFijiPointsFromCSV function and exported""" #Perform the registration ElastixRegistration(fixed=f0,moving=m0,out_dir=out,p0=p0_0,p1=p0_1,fp=fp0,mp=mp0,mkdir=True) ElastixRegistration(fixed=f1,moving=m1,out_dir=out,p0=p1_0,p1=p1_1,fp=fp1,mp=mp1,mkdir=True) #Get the list of elastix files tmp_path = Path('..') home_dir=tmp_path.cwd() os.chdir(out) #Get the list of files in order dirFolders = [f for f in os.listdir(out) if os.path.isdir(os.path.join(out, f))] dirFolders.sort(key=lambda f: int(f.split("elastix")[1])) #Create a new directory for the composition os.mkdir('elastix_composition') #Save the path to the first elastix folder first_trans = Path(os.path.join(out,dirFolders[0])) #Access the last file that elastix produced os.chdir(os.path.join(out,dirFolders[-1])) #List the files in this elastix directory that correspond to transform paramters elastix_dir=tmp_path.cwd() dirFiles=glob.glob('TransformParameters*') dirFiles.sort(key=lambda f: int(f.split(".")[1])) #Add new transform parameters to the created elastix_composition directory for i in range(len(dirFiles)): shutil.copyfile(dirFiles[i],os.path.join(out,'elastix_composition',Path(dirFiles[i]).stem)+'.comp.txt') #Go into the 1st registration parameter file and change to composition of Functions os.chdir(os.path.join(out,'elastix_composition')) dirComp = glob.glob('TransformParameters*') #Sort the files dirComp.sort(key=lambda f: int(f.split(".")[1])) #Only access the first file for composition (The second depends on first, if second exists) with open(dirComp[0], 'r') as file : filedata = file.read() #Access the first transform file trans_file=glob.glob(os.path.join(first_trans,'TransformParameters*')) trans_file.sort(key=lambda f: int(f.split(".")[1])) # Replace the target string filedata = filedata.replace("NoInitialTransform", str(os.path.join(first_trans,trans_file[-1]))) # Write the file out again with open(dirComp[0], 'w') as file: file.write(filedata) #If you have two transform files in the last transformation, you will need to change the files there too if len(dirFiles) is 2: comp_file = tmp_path.cwd() with open(dirComp[1], 'r') as file : filedata = file.read() filedata.replace(str(os.path.join(elastix_dir,dirFiles[0])), str(os.path.join(comp_file,dirComp[0]))) with open(dirComp[1], 'w') as file: file.write(filedata) #-----------------Composition Registration Functions for extracting IMC ROIs----------------------- #Testing to read in data and slice the correction padding so we can overlay def RGBextractROI(dir,full_image,ROI_correction=None,flip_horz=False,flip_vert=False,export_image=False): """Function for exporting 3 channel ROIs from full images""" #Set your home directory tmp_path = Path('..') home_dir=tmp_path.cwd() os.chdir(dir) #Load the full image - Note this is a nifti image so we can use the index order given by GetROImask full_dat = nib.load(str(full_image)).get_fdata() #Get the final image size full_size = (full_dat.shape[0],full_dat.shape[1]) #Get the coordinates for our ROIs ROI_masks_from_tolBlue = GetROImask(dir,full_size,ROI_correction) #Mask each channel using our pre-made masks! final_sizes = ROImaskExport(ROI_masks_from_tolBlue,full_dat,flip_horz=flip_horz,flip_vert=flip_vert,prefix=None,export_image=export_image) #Return the mask object so we can use it easily for the transformix ROI Extraction return ROI_masks_from_tolBlue,final_sizes ######Need to include resizing function for the ROIs based on the IMC Images #that exist in each of the folders. Need to be able to have another registration #for the exported ROIs extracted from the toluidine blue image #####Create general function for masking and exporting the ROIs from the full Images #you are repeating yourself in the RGB extraction and MSI extraction functions. In #both instances we need to resize the ROIs upon saving so that we can apply another #registration step #****Both functions can be run through the folder structuure def TransformixROIExtractionMSI(data,ROI_masks_from_tolBlue,final_sizes,par_composition,parameter_files,dir,rot1=1,flip_horz=False,flip_vert=False): """MUST BE USED AFTER imzMLreader function! This function will take the composition elastix transform file and will apply it to each of the channels in your MSI dataset. Given the directory of filename ROIs from fiji, the regions will then be cropped from the transformed image and stored as an individual slice. data: An imzMLParser class object data: An imzMLParser class object ROI_masks: Object returned from the RGB ROI extraction (step prior to registering false IMC H&E with tolblue-HE registered H&E image) par: The path to the parameter file to use for image registration on the full image (In our case the composition file) ROI_dict: Dictionary object indicating the name of files and filepaths to the csv Files rot1: Any extra rotation that you added before exporting the UMAP nifti image ROI_correction: Corrective padding to add onto the width and height of exported ROIs - integer values""" #Set your home directory tmp_path = Path('..') home_dir=tmp_path.cwd() #Change our directory to the output directory os.chdir(dir) trans_dir = tmp_path.cwd() #Get the final full image registration size from the composition parameter file\ par = Path(par_composition) #full_size = GetParamFileImageSize(par).....why?? #Get the ROI ROI_masks ROI_masks = ROI_masks_from_tolBlue #Fill the array with pixel values trans_start = time.time() #This loop will loop through all m/z channels in the SpectrumTable object stored in imzML reader class object for j in range(0,data.data.SpectrumTable.shape[1]): #Block for exporting the full m/z slice using the composition elastix transform parameters print('Transformix Working on slice: '+str(j)+'/'+str(data.data.SpectrumTable.shape[1])+'...') #Create a blank array to fill for each m/z channel im = np.zeros((data.data.imzmldict["max count of pixels y"],\ data.data.imzmldict["max count of pixels x"]), dtype = np.float32) #Fill the image array with the m/z pixel intensities for i, (x, y, z) in enumerate(data.data.coordinates): im[y - 1, x - 1] = data.data.SpectrumTable.iloc[i,j] #Pad the image the same way you did for the dimension reduction image and registration with H&E image im2 = np.pad(im,[(data.data.Image_padx,data.data.Image_padx),(data.data.Image_pady,data.data.Image_pady)],mode='constant') #Rotate the image and resize the dame way you did for the dimension reduction image with H&E im2 = cv2.resize(np.rot90(im2,rot1),data.data.Image_resize_shape) #Create nifti image the same way you did the dimension reduction image with H&E tmp_nifti = nib.Nifti1Image(np.rot90(im2,data.data.Image_rot), affine=np.eye(4)) nib.save(tmp_nifti,'MZ_slice'+str(j)+'.nii') print('Saved temporary nifti image') #Run transformix for this slice tmp_imagepath = Path(os.path.join(trans_dir,'MZ_slice'+str(j)+'.nii')) print('Running Transformix for slice '+str(j)+'...') os.system("transformix -in "+str(tmp_imagepath)+" -out "+str(Path(trans_dir))+" -tp "+str(par)) #Now read the transformed image and crop the regions that we need full_dat = nib.load(os.path.join(str(trans_dir),'result.nii')).get_fdata() #Create a prefix for the ROIs so we can track channels pref = 'MZ_slice'+str(j) #For each slice, export and apply transformix to the corresponding MSI ROI ROImaskExport_MSI_Transformix(ROI_masks_from_tolBlue = ROI_masks,final_sizes = final_sizes,\ full_img = full_dat,flip_horz=flip_horz,parameter_files=parameter_files,flip_vert=flip_vert,prefix=pref) #Delete our sliced image del full_dat os.remove('MZ_slice'+str(j)+'.nii') print('Finished slice '+str(j)+'/'+str(data.data.SpectrumTable.shape[1])) #Change back to our home directory os.chdir(home_dir) trans_stop = time.time() print('Finished transforming\n'+'Transformix Computation Time: '+str(trans_stop-trans_start)+' sec.') def ExportMSIArray(data,export_name,rot1): #Copy the spectrum table for input to numba spec_table = np.array(data.data.SpectrumTable.copy()) #Create blank array im = np.zeros((data.data.imzmldict["max count of pixels y"],\ data.data.imzmldict["max count of pixels x"],spec_table.shape[1]), dtype = np.float32) #Copy the coordinates of this dataset coords = data.data.coordinates.copy() #Define the function @njit(parallel=True) def parallel_array_fill(nd_im,coords,spec_table): """Function for quickly filling a large ndarray across z axis""" #Fill the array for slice_num in prange(spec_table.shape[1]): #Fill the image array with the m/z pixel intensities for i, (x, y, z) in enumerate(coords): nd_im[y - 1, x - 1,slice_num] = spec_table[i,slice_num] return(nd_im) #Run the function and fill the array filled_array = parallel_array_fill(nd_im = im ,coords = coords ,spec_table = spec_table) #Pad the image the same way you did for the dimension reduction image and registration with H&E image im2 = np.pad(filled_array,[(data.data.Image_padx,data.data.Image_padx),(data.data.Image_pady,data.data.Image_pady),(0,0)],mode='constant') #Rotate the image and resize the dame way you did for the dimension reduction image with H&E tmp_nifti = nib.Nifti1Image(np.rot90(np.rot90(im2,data.data.Image_rot),rot1), affine=np.eye(4)) nib.save(tmp_nifti,str(export_name)) def TransformixROIExtractionMSI_slice(nibabel_obj,slice_num,resize_shape,ROI_masks_from_tolBlue,final_sizes,par_composition,parameter_files,dir,flip_horz=False,flip_vert=False): #Set your home directory tmp_path = Path('..') home_dir=tmp_path.cwd() #Change our directory to the output directory os.chdir(dir) trans_dir = tmp_path.cwd() #Get the final full image registration size from the composition parameter file\ par = Path(par_composition) #full_size = GetParamFileImageSize(par).....why?? #Get the ROI ROI_masks ROI_masks = ROI_masks_from_tolBlue #Get this slice from the exported nifti image from ExportMSIArray function im = nibabel_obj[:,:,slice_num] #Rotate the image and resize the dame way you did for the dimension reduction image with H&E im = cv2.resize(im,resize_shape) #Create nifti image the same way you did the dimension reduction image with H&E tmp_nifti = nib.Nifti1Image(im, affine=np.eye(4)) nib.save(tmp_nifti,'MZ_slice'+str(slice_num)+'.nii') print('Saved temporary nifti image for slice '+str(slice_num)) #Run transformix for this slice tmp_imagepath = Path(os.path.join(trans_dir,'MZ_slice'+str(slice_num)+'.nii')) print('Running Transformix for slice '+str(slice_num)+'...') subprocess.call("transformix -in "+str(tmp_imagepath)+" -out "+str(Path(trans_dir))+" -tp "+str(par)) #Now read the transformed image and crop the regions that we need full_dat = nib.load(os.path.join(str(trans_dir),'result.nii')).get_fdata() #Create a prefix for the ROIs so we can track channels pref = 'MZ_slice'+str(slice_num) #For each slice, export and apply transformix to the corresponding MSI ROI ROImaskExport_MSI_Transformix(ROI_masks_from_tolBlue = ROI_masks,final_sizes = final_sizes,\ full_img = full_dat,flip_horz=flip_horz,parameter_files=parameter_files,flip_vert=flip_vert,prefix=pref) #Delete our sliced image del full_dat os.remove('MZ_slice'+str(slice_num)+'.nii') def TransformixROIExtractionMSI_parallel(data,nibabel_obj,ROI_masks_from_tolBlue,final_sizes,par_composition,parameter_files,dir,flip_horz=False,flip_vert=False,processes=-1): resize_shape = data.data.Image_resize_shape num_slices = nibabel_obj.shape[2] Parallel(n_jobs = processes)(delayed(TransformixROIExtractionMSI_slice)(nibabel_obj,slice_num,resize_shape,ROI_masks_from_tolBlue,\ final_sizes,par_composition,parameter_files,dir,flip_horz,\ flip_vert) for slice_num in range(num_slices)) print('Finished Exporting') def CompileROIs(home_dir): """This function is to be used for reading all m/z images in your final registrations folder in order to create a single nifti file containing the registered MSI stack""" #Set your working directory tmp=Path('..') os.chdir(home_dir) home_dir = tmp.cwd() start = time.time() #Get a list of files in the home directory list_folders = [os.path.join(tmp.cwd(),f) for f in os.listdir(tmp.cwd()) if os.path.isdir(os.path.join(tmp.cwd(), f))] #loop through each folder and concatenate for i in list_folders: #Switch to this directory os.chdir(i) #Get all of the nifti images in this directory MZ_images = utils.TraverseDir(ending = '.nii') #Have to convert the images to strings for nibabel to concatenate them MZ_images = [str(image_path) for image_path in MZ_images] #Sort the images so the slices are in order MZ_images.sort(key=lambda f: int((str(Path(f).parent).split("MZ_slice")[-1]))) #Concatenate the images to new nifti object print('Compiling '+str(Path(i).stem)+'...') tmp_nii = nib.concat_images(MZ_images) #Save the object print('Saving '+str(Path(i).stem)+'...') nib.save(tmp_nii,str(Path(i).stem)+'_result.nii') print('Saved '+str(Path(i).stem)) #Remove our tmp nifti object del tmp_nii #Change directory back to the home directory os.chdir(home_dir) stop = time.time() print('Finished Compiling Images '+str(stop-start)+' sec. ') #-----Create class object----- class Elastix(): """Elastix image registration class """ def __init__(self,fixed,moving,out_dir,p,fp=None,mp=None,fMask=None): """initialize class instance """ #Create pathlib objects and set class parameters self.fixed = Path(fixed) self.moving = Path(moving) self.out_dir = Path(out_dir) self.p = [Path(par_file) for par_file in p] self.fp = None if fp is None else self.fp = Path(fp) self.mp = None if mp is None else self.mp = Path(fp) self.fMask = None if fMask is None else self.fMask = Path(fMask) self.command = "elastix" #Load the images to check for dimension number print('Loading images...') #Load images niiFixed = nib.load(str(self.fixed)) niiMoving = nib.load(str(self.moving)) #Print update print('Done loading') #Check to see if there is single channel input (grayscale) if niiFixed.ndim == 2 and niiMoving.ndim == 2: print('Detected single channel input images...') #Add fixed and moving image to the command string self.command = self.command+" -f "+str(self.fixed)+ " -m "+str(self.moving) #Check to see if there is multichannel input else: print('Exporting single channel images for multichannel input...') #Read the images niiFixed = niiFixed.get_fdata() niiMoving = niiMoving.get_fdata() #Set up list of names for the images fixedList = [] movingList = [] #Export single channel images for each channel for i in range(niiFixed.shape[2]): #Create a filename fname = Path(os.path.join(self.fixed.parent,str(self.fixed.stem+str(i)+self.fixed.suffix))) #Update the list of names for fixed image fixedList.append(fname) #Update the list of names for fixed image self.command = self.command + ' -f' + str(i) + ' ' + str(fname) #Create a nifti image #Check to see if the path exists if not fname.is_file(): #Create a nifti image nii_im = nib.Nifti1Image(niiFixed[:,:,i], affine=np.eye(4)) nib.save(nii_im,str(fname)) for i in range(niiMoving.shape[2]): #Create a filename mname = Path(os.path.join(self.moving.parent,str(self.moving.stem+str(i)+self.moving.suffix))) #Update the list of names for moving image movingList.append(mname) #Update the list of names for moving image self.command = self.command + ' -m' + str(i) + ' ' + str(mname) #Check to see if the path exists if not mname.is_file(): #Create a nifti image nii_im = nib.Nifti1Image(niiMoving[:,:,i], affine=np.eye(4)) nib.save(nii_im,str(mname)) #Add the parameter files self.command = self.command+" -p "+str(self.p[par_file]) for par_file in self.p #Check for corresponding points in registration (must have fixed and moving set) if self.fp and self.mp is not None: #Add to the command self.command = self.command +" -fp "+str(self.fp)+" -mp "+str(self.mp) #Check for fixed mask if fMask is not None: #Create pathlib Paths fMask = Path(fMask) self.command = self.command +" -fMask "+str(fMask) #Check for making new directories #if mkdir is True: # n=0 # while n>=0: # tmp_name = "elastix"+str(n) # if not os.path.exists(Path(os.path.join(out_dir,tmp_name))): # os.mkdir(Path(os.path.join(out_dir,tmp_name))) # out_dir = Path(os.path.join(out_dir,tmp_name)) # break # n+=1 #Add the output directory to the command self.command = self.command +" -out "+str(self.out_dir) #Add main elastix component def RunElastix(self,command): """ Run the elastix registration. You must be able to call elastix from your command shell to use this. You must also have your parameter text files set before running (see elastix parameter files). Currently supports nifti1image format only! """ #Print command print(str(self.command)) #Print elastix update print('Running elastix...') #Start timer start = time.time() #Send the command to the shell os.system(self.command) #Stop timer stop = time.time() #Print update print('Finished -- computation took '+str(stop-start)+'sec.') #Return values return self.command class Transformix(): """Python class for transformix """ def __init__(self): """initialize class instance """ #Create pathlib objects # ```
{ "source": "JoshuaHess12/hdi-utils", "score": 3 }
#### File: hdiutils/HDIimport/tif_reader.py ```python from pathlib import Path import skimage.io import numpy as np # Define class object class TIFreader: """TIF cytometry data reader using scikit image. Ca""" def __init__(self, path_to_tif): """Initialize the class by using the path to the image. path_to_tif: Path to tif image (Ex: path/to/image.extension) """ # Initialize the objects in this class self.image = None # Create a pathlib object for the path_to_tif path_to_tif = Path(path_to_tif) # Read tif(f) or ome.tif(f) data and return the parsed data im = skimage.io.imread(str(path_to_tif), plugin="tifffile") # Check to see if the number of channels is greater than one im_shape = im.shape # check to see if the image is a tiff hyperstack based on the shape if len(im_shape) == 4: # ravel along the last axis im = np.concatenate([im[:,:,:,i] for i in range(im.shape[3])]) # recalculate the image shape im_shape = im.shape # Check to see if the image is considered xyc or just xy(single channel) # Note: skimage with tifffile plugin reads channel numbers of 1 as xy array, # and reads images with 3 and 4 channels in the correct order. Channel numbers # of 2 or >5 need axis swapping if len(im_shape) > 2: ##########This will fail if the array is a 3 or 4 channel image with 5 pixels in the x direction...shouldnt happen########## # Check if channel numbers are 3 or 4 if (im_shape[2] == 3) or (im_shape[2] == 4): pass else: # If number of channels is less than two then swap the axes to be zyxc im = np.swapaxes(im, 0, 2) # Swap the axes to be in the order zyxc im = np.swapaxes(im, 0, 1) # Assign the data to the class self.image = im ```
{ "source": "joshuahigginson1/AWS_Lambda_Function", "score": 3 }
#### File: Python 3.8/DynamoDB Serverless Task/Create Functionality.py ```python from __future__ import print_function # Python 2/3 compatibility import boto3 import json import decimal def lambda_handler(event, context): # Helper class to convert a DynamoDB item to JSON. class DecimalEncoder(json.JSONEncoder): def default(self, o): if isinstance(o, decimal.Decimal): if abs(o) % 1 > 0: return float(o) else: return int(o) return super(DecimalEncoder, self).default(o) dynamodb = boto3.resource('dynamodb') table = dynamodb.Table('Movies') title = '{}'.format(event['title']) year = '{}'.format(event['year']) response = table.put_item( Item={ 'Title':title, 'Year':year, 'Rating':5 } ) print(table.creation_date_time) print("PutItem succeeded:") print(json.dumps(response, indent=4, cls=DecimalEncoder)) ``` #### File: Python 3.8/RDS Serverless Task/DELETE-RDSServerless.py ```python import pymysql from os import getenv rds_host = getenv("RDS_ENDPOINT") username = getenv("RDS_ROOT_USER") password = getenv("RDS_ROOT_PASS") db_name = getenv("RDS_DB_NAME") def delete_events(event): print("Deleting the user...") connection = pymysql.connect(host=rds_host, user=username, password=password, db=db_name, connect_timeout=5) with connection.cursor() as cursor: cursor.execute("""DELETE FROM test WHERE id=%s""" % (event['id'])) connection.commit() cursor.close() print(f"User {event['id']} deleted.") def lambda_handler(event, context): return delete_events(event) ```
{ "source": "joshuahigginson1/DevOps-Assessment-1", "score": 3 }
#### File: page_objects/patient_page_objects/patient_greeting_page_object.py ```python class PatientGreetingPageObject(object): bio = 'This is a test bio.' def get_current_feeling_buttons(self): feeling1element = self.client.find_element_by_xpath('// *[ @ id = "current_feeling-0"]') feeling2element = self.client.find_element_by_xpath('// *[ @ id = "current_feeling-1"]') feeling3element = self.client.find_element_by_xpath('// *[ @ id = "current_feeling-2"]') feeling4element = self.client.find_element_by_xpath('// *[ @ id = "current_feeling-3"]') feeling5element = self.client.find_element_by_xpath('// *[ @ id = "current_feeling-4"]') feeling6element = self.client.find_element_by_xpath('// *[ @ id = "current_feeling-5"]') feeling7element = self.client.find_element_by_xpath('// *[ @ id = "current_feeling-6"]') feeling8element = self.client.find_element_by_xpath('// *[ @ id = "current_feeling-7"]') feeling9element = self.client.find_element_by_xpath('// *[ @ id = "current_feeling-8"]') feeling10element = self.client.find_element_by_xpath('// *[ @ id = "current_feeling-9"]') attributes = { 'feeling1 element': feeling1element, 'feeling2 element': feeling2element, 'feeling3 element': feeling3element, 'feeling4 element': feeling4element, 'feeling5 element': feeling5element, 'feeling6 element': feeling6element, 'feeling7 element': feeling7element, 'feeling8 element': feeling8element, 'feeling9 element': feeling9element, 'feeling10 element': feeling10element } return attributes def click_feeling1_button(self): self.get_current_feeling_buttons(self)['feeling1 element'].click() def click_feeling2_button(self): self.get_current_feeling_buttons(self)['feeling2 element'].click() def click_feeling3_button(self): self.get_current_feeling_buttons(self)['feeling3 element'].click() def click_feeling4_button(self): self.get_current_feeling_buttons(self)['feeling4 element'].click() def click_feeling5_button(self): self.get_current_feeling_buttons(self)['feeling5 element'].click() def click_feeling6_button(self): self.get_current_feeling_buttons(self)['feeling6 element'].click() def click_feeling7_button(self): self.get_current_feeling_buttons(self)['feeling7 element'].click() def click_feeling8_button(self): self.get_current_feeling_buttons(self)['feeling8 element'].click() def click_feeling9_button(self): self.get_current_feeling_buttons(self)['feeling9 element'].click() def click_feeling10_button(self): self.get_current_feeling_buttons(self)['feeling10 element'].click() def get_feeling_comparison_buttons(self): attributes = { 'worse element': self.client.find_element_by_xpath('//*[@id="feeling_comparison-0"]'), 'same element': self.client.find_element_by_xpath('//*[@id="feeling_comparison-1"]'), 'better element': self.client.find_element_by_xpath('//*[@id="feeling_comparison-2"]'), } return attributes def click_worse_button(self): self.get_feeling_comparison_buttons(self)['worse element'].click() def click_same_button(self): self.get_feeling_comparison_buttons(self)['same element'].click() def click_better_button(self): self.get_feeling_comparison_buttons(self)['better element'].click() def get_behaviour_buttons(self): attributes = { 'happy element': self.client.find_element_by_xpath('//*[@id="behaviours-0"]'), 'angry element': self.client.find_element_by_xpath('//*[@id="behaviours-1"]'), 'disappointed element': self.client.find_element_by_xpath('//*[@id="behaviours-2"]'), 'done with today element': self.client.find_element_by_xpath('//*[@id="behaviours-3"]'), 'persevering element': self.client.find_element_by_xpath('//*[@id="behaviours-4"]'), 'anxious element': self.client.find_element_by_xpath('//*[@id="behaviours-5"]'), 'confused element': self.client.find_element_by_xpath('//*[@id="behaviours-6"]'), 'worried element': self.client.find_element_by_xpath('//*[@id="behaviours-7"]'), 'ill element': self.client.find_element_by_xpath('//*[@id="behaviours-8"]'), 'exhausted element': self.client.find_element_by_xpath('//*[@id="behaviours-9"]'), 'accomplished element': self.client.find_element_by_xpath('//*[@id="behaviours-10"]'), 'star struck element': self.client.find_element_by_xpath('//*[@id="behaviours-11"]'), 'frightened element': self.client.find_element_by_xpath('//*[@id="behaviours-12"]'), } return attributes def click_happy_element(self): self.get_behaviour_buttons(self)['happy element'].click() def click_angry_element(self): self.get_behaviour_buttons(self)['angry element'].click() def click_disappointed_element(self): self.get_behaviour_buttons(self)['disappointed element'].click() def click_done_with_today_element(self): self.get_behaviour_buttons(self)['done with today element'].click() def click_persevering_element(self): self.get_behaviour_buttons(self)['persevering element'].click() def click_anxious_element(self): self.get_behaviour_buttons(self)['anxious element'].click() def click_confused_element(self): self.get_behaviour_buttons(self)['confused element'].click() def click_worried_element(self): self.get_behaviour_buttons(self)['worried element'].click() def click_ill_element(self): self.get_behaviour_buttons(self)['ill element'].click() def click_exhausted_element(self): self.get_behaviour_buttons(self)['exhausted element'].click() def click_accomplished_element(self): self.get_behaviour_buttons(self)['accomplished element'].click() def click_star_struck_element(self): self.get_behaviour_buttons(self)['star struck element'].click() def click_frightened_element(self): self.get_behaviour_buttons(self)['frightened element'].click() def get_bio_element(self): return self.client.find_element_by_xpath('//*[@id="patient_comment"]') def type_in_bio_form(self, input_to_type=bio): # A function to type text into our bio form box. # Retrieve our form attributes. get_field_element = self.get_bio_element() # After retrieving the field element, simulate typing into a form box. get_field_element.send_keys(input_to_type) print(f"Running Simulation: Currently typing '{input_to_type}' in the bio field.") def clear_password_form(self): # A function to clear the text from within our password form box. # Retrieve our form attributes. get_field_element = self.get_bio_element() get_field_element.clear() # Clears our form. print(f"Running Simulation: Currently clearing the bio field.") def get_submit_button(self): return self.client.find_element_by_xpath('//*[@id="submit"]') def click_submit_button(self): self.get_submit_button(self).click() def get_skip_evaluation_button(self): return self.client.find_element_by_xpath('/html/body/p/a') def click_skip_evaluation_button(self): return self.get_skip_evaluation_button(self).click() ``` #### File: functional_tests/test_pages/test_common_page_elements.py ```python from flask import url_for from tests.functional_tests.page_objects.common_page_objects import CommonPageObject, MainNavBar, PatientNavBar, \ PsychiatristNavBar from tests.functional_test_framework import LiveServerTestCase # Helper Functions ---------------------------------------------------------------------- # Helper Functions are used to prevent repeating basic lines of code within our testing. def print_assertion_to_console(element_to_test, test_outcome, assertion): print(f'ASSERTION: The current {element_to_test} should be: {assertion}!\n') print(f'OUTCOME: The current {element_to_test} is actually: {test_outcome}!\n') def compare_and_evaluate_relative_urls(test_outcome, endpoint_bp): print(f'The root URL is: {LiveServerTestCase.root_url}\n') # Here, we retrieve the root URL from our webdriver. # We ask the developer for the test's expected endpoint, and get it's relative associated URL with the url_for function. expected_endpoint = url_for(endpoint_bp) # We run string concatenation to generate the absolute URL associated with our endpoint. full_endpoint_url = f'{LiveServerTestCase.root_url}{expected_endpoint}' print(f'Expected URL: {full_endpoint_url}\n') print(f'Test Outcome: {test_outcome}\n') if full_endpoint_url == test_outcome: # If the test outcome matches expected endpoint URL, then return true. return True else: return False # Tests ---------------------------------------------------------------------------------- class TestCommonPageElements(LiveServerTestCase): # Assertions ----------------------------------------------------------------- favicon_assertion_name = None title_assertion = None footer_assertion = "By <NAME> for QA Consulting" # Element Specific Tests ---------------------------------------------------- def test_page_favicon(self): # A test to check that the correct favicon is displaying. get_favicon_name = CommonPageObject.get_favicon_element(self)['name'] # Retrieve favicon name. print_assertion_to_console('page favicon', get_favicon_name, self.favicon_assertion_name) self.assertEqual(get_favicon_name, self.favicon_assertion_name) # Make test assertion. def test_page_title(self): # A test to check that the title of our page is correct. get_page_title = CommonPageObject.get_page_title(self) # Retrieve the page title. print_assertion_to_console('page title', get_page_title, self.title_assertion) self.assertEqual(get_page_title, self.title_assertion) def test_page_footer(self): # A test to check that the page footer is correct. get_page_footer = CommonPageObject.get_page_footer(self)['text'] # Retrieve text from page footer. print_assertion_to_console('page footer', get_page_footer, self.footer_assertion) self.assertEqual(get_page_footer, self.footer_assertion) class TestMainNavBar(LiveServerTestCase): # Element Specific Tests ---------------------------------------------------- def test_home_button_label(self): # A test to check that our button is correctly labeled. button_label_assertion = "Home" # Declare our assertion criteria. get_home_button = MainNavBar.get_home_button(self)['button label'] # Retrieve the button label. print_assertion_to_console('home button', get_home_button, button_label_assertion) self.assertEqual(get_home_button, button_label_assertion) def test_home_button_click(self): # A test to check the functionality of clicking the 'about' button. MainNavBar.click_home_button() page_status_code = CommonPageObject.get_page_response(self) # Get the current page's status code. self.assertEqual(page_status_code, 200) # Our page status code should equal 200 if it is functional. page_url = CommonPageObject.get_page_url(self) # Get the current page's url. self.assertTrue(compare_and_evaluate_relative_urls(page_url, 'main_bp.homepage')) # Make our assertion. def test_about_button_label(self): # A test to check that our button is correctly labeled. button_label_assertion = "About" get_about_button = MainNavBar.get_about_button(self)['button label'] print_assertion_to_console('about button', get_about_button, button_label_assertion) self.assertEqual(get_about_button, button_label_assertion) def test_about_button_click(self): # A test to check the functionality of clicking the 'about' button. MainNavBar.click_home_button() page_status_code = CommonPageObject.get_page_response(self) self.assertEqual(page_status_code, 200) # Our page status code should equal 200 if it is functional. page_url = CommonPageObject.get_page_url(self) self.assertTrue(compare_and_evaluate_relative_urls(page_url, 'main_bp.about')) class TestPatientNavBar(LiveServerTestCase): # Element Specific Tests ---------------------------------------------------- def test_patient_dashboard_button_label(self): button_label_assertion = "Dashboard" get_patient_dashboard_button = PatientNavBar.get_dashboard_button(self)['button label'] print_assertion_to_console('patient dashboard button', get_patient_dashboard_button, button_label_assertion) self.assertEqual(get_patient_dashboard_button, button_label_assertion) def test_patient_dashboard_button_click(self): PatientNavBar.click_dashboard_button() page_status_code = CommonPageObject.get_page_response(self) self.assertEqual(page_status_code, 200) # Our page status code should equal 200 if it is functional. page_url = CommonPageObject.get_page_url(self) self.assertTrue(compare_and_evaluate_relative_urls(page_url, 'dashboard_bp.dashboard')) def test_patient_progress_button_label(self): button_label_assertion = "My Progress" get_patient_progress_button = PatientNavBar.get_patient_progress_button(self)['button label'] print_assertion_to_console('my progress button', get_patient_progress_button, button_label_assertion) self.assertEqual(get_patient_progress_button, button_label_assertion) def test_patient_progress_button_click(self): PatientNavBar.click_patient_progress_button() page_status_code = CommonPageObject.get_page_response(self) self.assertEqual(page_status_code, 200) # Our page status code should equal 200 if it is functional. page_url = CommonPageObject.get_page_url(self) self.assertTrue(compare_and_evaluate_relative_urls(page_url, 'dashboard_bp.user_progress')) def test_patient_tools_button_label(self): button_label_assertion = "My Tools" get_patient_tools_button = PatientNavBar.get_patient_tools_button(self)['button label'] print_assertion_to_console('my progress button', get_patient_tools_button, button_label_assertion) self.assertEqual(get_patient_tools_button, button_label_assertion) def test_patient_tools_button_click(self): PatientNavBar.click_patient_tools_button() page_status_code = CommonPageObject.get_page_response(self) self.assertEqual(page_status_code, 200) # Our page status code should equal 200 if it is functional. page_url = CommonPageObject.get_page_url(self) self.assertTrue(compare_and_evaluate_relative_urls(page_url, 'dashboard_bp.user_tools')) def test_patient_logout_button_label(self): button_label_assertion = "Log Out" get_logout_button = PatientNavBar.get_logout_button(self)['button label'] print_assertion_to_console('patient logout button', get_logout_button, button_label_assertion) self.assertEqual(get_logout_button, button_label_assertion) def test_patient_logout_button_click(self): PatientNavBar.click_logout_button() page_status_code = CommonPageObject.get_page_response(self) self.assertEqual(page_status_code, 200) # Our page status code should equal 200 if it is functional. page_url = CommonPageObject.get_page_url(self) self.assertTrue(compare_and_evaluate_relative_urls(page_url, 'auth_bp.logout')) def test_patient_settings_button_label(self): button_label_assertion = "Settings" get_settings_button = PatientNavBar.get_settings_button(self)['button label'] print_assertion_to_console('patient settings button', get_settings_button, button_label_assertion) self.assertEqual(get_settings_button, button_label_assertion) def test_patient_settings_button_click(self): PatientNavBar.click_acc_settings_button() page_status_code = CommonPageObject.get_page_response(self) self.assertEqual(page_status_code, 200) # Our page status code should equal 200 if it is functional. page_url = CommonPageObject.get_page_url(self) self.assertTrue(compare_and_evaluate_relative_urls(page_url, 'acc_settings_bp.patient_acc_settings')) class TestPsychiatristNavBar(LiveServerTestCase): # Element Specific Tests ---------------------------------------------------- def test_psychiatrist_dashboard_button_label(self): button_label_assertion = "Dashboard" get_psychiatrist_dashboard_button = PsychiatristNavBar.get_dashboard_button(self)['button label'] print_assertion_to_console('psychiatrist dashboard button', get_psychiatrist_dashboard_button, button_label_assertion) self.assertEqual(get_psychiatrist_dashboard_button, button_label_assertion) def test_psychiatrist_dashboard_button_click(self): PsychiatristNavBar.click_dashboard_button() page_status_code = CommonPageObject.get_page_response(self) self.assertEqual(page_status_code, 200) # Our page status code should equal 200 if it is functional. page_url = CommonPageObject.get_page_url(self) self.assertTrue(compare_and_evaluate_relative_urls(page_url, 'dashboard_bp.dashboard')) def test_my_patients_button_label(self): button_label_assertion = "My Patients" get_my_patients_button = PsychiatristNavBar.get_my_patients_button(self)['button label'] print_assertion_to_console('my patients button', get_my_patients_button, button_label_assertion) self.assertEqual(get_my_patients_button, button_label_assertion) def test_my_patients_button_click(self): PsychiatristNavBar.click_my_patients_button() page_status_code = CommonPageObject.get_page_response(self) self.assertEqual(page_status_code, 200) # Our page status code should equal 200 if it is functional. page_url = CommonPageObject.get_page_url(self) self.assertTrue(compare_and_evaluate_relative_urls(page_url, 'dashboard_bp.my_patients')) def test_psychiatrist_tools_button_label(self): button_label_assertion = "Patient Tools" get_patient_tools_button = PsychiatristNavBar.get_psychiatrist_tools_button(self)['button label'] print_assertion_to_console('patient tools button', get_patient_tools_button, button_label_assertion) self.assertEqual(get_patient_tools_button, button_label_assertion) def test_psychiatrist_tools_button_click(self): PsychiatristNavBar.click_psychiatrist_tools_button() page_status_code = CommonPageObject.get_page_response(self) self.assertEqual(page_status_code, 200) # Our page status code should equal 200 if it is functional. page_url = CommonPageObject.get_page_url(self) self.assertTrue(compare_and_evaluate_relative_urls(page_url, 'dashboard_bp.psychiatrist_tools')) def test_psychiatrist_logout_button_label(self): button_label_assertion = "Log Out" get_logout_button = PsychiatristNavBar.get_logout_button(self)['button label'] print_assertion_to_console('psychiatrist logout button', get_logout_button, button_label_assertion) self.assertEqual(get_logout_button, button_label_assertion) def test_psychiatrist_logout_button_click(self): PsychiatristNavBar.click_logout_button() page_status_code = CommonPageObject.get_page_response(self) self.assertEqual(page_status_code, 200) # Our page status code should equal 200 if it is functional. page_url = CommonPageObject.get_page_url(self) self.assertTrue(compare_and_evaluate_relative_urls(page_url, 'auth_bp.logout')) def test_psychiatrist_settings_button_label(self): button_label_assertion = "Settings" get_settings_button = PsychiatristNavBar.get_settings_button(self)['button label'] print_assertion_to_console('psychiatrist settings button', get_settings_button, button_label_assertion) self.assertEqual(get_settings_button, button_label_assertion) def test_psychiatrist_settings_button_click(self): PsychiatristNavBar.click_acc_settings_button() page_status_code = CommonPageObject.get_page_response(self) self.assertEqual(page_status_code, 200) # Our page status code should equal 200 if it is functional. page_url = CommonPageObject.get_page_url(self) self.assertTrue(compare_and_evaluate_relative_urls(page_url, 'acc_settings_bp.psychiatrist_acc_settings')) ```
{ "source": "joshuahigginson1/DevOps_Assessment_2", "score": 3 }
#### File: DevOps_Assessment_2/service1/service1_config.py ```python from os import environ, path # .env location ------------------------ # We find the absolute path of the root directory of our current file. basedir = path.abspath(path.dirname(__file__)) # Functions ------------------------------------------------------------ def remove_quotes(string): """ This function removes any speech mark quotes from a string input. Keyword Arguments; string: A string with speech marks. """ return string.replace('"', '') # Declare Classes ------------------------------------------------------ class Config(object): # General Config FLASK_APP = 'service1_wsgi.py' DEBUG = False TESTING = False files_dir_env = remove_quotes(environ.get("FILES_DIRECTORY")) FILES_DIRECTORY = path.join(basedir, files_dir_env) SECRET_KEY = remove_quotes(environ.get("PRODUCTION_SECRET_KEY")) SERVICE_2_URL = "http://0.0.0.0:5002" SERVICE_3_URL = "http://0.0.0.0:5003" SERVICE_4_URL = "http://0.0.0.0:5004" SQLALCHEMY_TRACK_MODIFICATIONS = False class ProductionConfig(Config): ENV = 'production' DB_USER = environ.get('PRODUCTION_DB_USERNAME') DB_PASS = environ.get('PRODUCTION_DB_USERPASS') DB_ADD = environ.get('PRODUCTION_DATABASE_ADDRESS') DB_NAME = environ.get('PRODUCTION_DB') database_step_1 = f"mysql+pymysql://{DB_USER}:{DB_PASS}@{DB_ADD}/{DB_NAME}" SQLALCHEMY_DATABASE_URI = str(remove_quotes(database_step_1)) SERVICE_2_URL = remove_quotes(environ.get('SERVICE_2_URL')) SERVICE_3_URL = remove_quotes(environ.get('SERVICE_3_URL')) SERVICE_4_URL = remove_quotes(environ.get('SERVICE_4_URL')) class DevelopmentConfig(Config): DEBUG = True ENV = 'development' DB_USER = environ.get('DEVELOPMENT_DB_USERNAME') DB_PASS = environ.get('DEVELOPMENT_DB_USERPASS') DB_ADD = environ.get('DEVELOPMENT_DATABASE_ADDRESS') DB_NAME = environ.get('DEVELOPMENT_DB') database_step_1 = f"mysql+pymysql://{DB_USER}:{DB_PASS}@{DB_ADD}/{DB_NAME}" SQLALCHEMY_DATABASE_URI = str(remove_quotes(database_step_1)) SECRET_KEY = remove_quotes(environ.get("DEV_SECRET_KEY")) class TestingConfig(Config): TESTING = True ENV = 'testing' DB_USER = environ.get('TESTING_DB_USERNAME') DB_PASS = environ.get('TESTING_DB_USERPASS') DB_ADD = environ.get('TESTING_DATABASE_ADDRESS') DB_NAME = environ.get('TESTING_DB') database_step_1 = f"mysql+pymysql://{DB_USER}:{DB_PASS}@{DB_ADD}/{DB_NAME}" SQLALCHEMY_DATABASE_URI = str(remove_quotes(database_step_1)) SECRET_KEY = remove_quotes(environ.get("TESTING_SECRET_KEY")) ``` #### File: service2/src/service2.py ```python import random from os import environ from flask import Flask, jsonify, request # Flask ---------------------------------------------------------------- # Create our flask application. service2 = Flask(__name__) if environ.get("FLASK_ENV").replace('"', '') == 'production': service2.config.from_object('service2_config.ProductionConfig') elif environ.get("FLASK_ENV").replace('"', '') == 'testing': service2.config.from_object('service2_config.TestingConfig') else: service2.config.from_object('service2_config.DevelopmentConfig') # On GET Request ------------------------------------------------------- # Helper Functions ----------------------------------------------------- def return_scale_dictionary(): """This function is to be used with a GET request, returning a list of scales for our user to select from. Service #1 requires a list of pitches for our user to chose from. The different implementations of service #2 will alter these pitch lists. When Service #2 receives a GET request, it will send the output. """ scale_list = { "chromatic": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, "r"], "major": [1, 3, 5, 6, 8, 10, 12, "r"], "major pentatonic": [1, 3, 5, 8, 10, "r"], "major blues": [1, 3, 4, 5, 8, 10, "r"], "natural minor": [1, 3, 4, 6, 8, 9, 11, "r"], "harmonic minor": [1, 3, 4, 6, 8, 9, 12, "r"], "minor pentatonic": [1, 4, 6, 8, 11, "r"], "minor blues": [1, 4, 6, 7, 8, 11, "r"], "png implementation": [1, 4, 6, 7, 8, 11, "r"] } return scale_list # Function ------------------------------------------------------------- @service2.route('/', methods=['GET']) def on_get_request(): """This function triggers after every get request, to the endpoint '/'""" # TODO: Write unit test for on_get_request(). return jsonify(return_scale_dictionary()) # On POST Request ------------------------------------------------------ # Helper Functions ----------------------------------------------------- def generate_random_note_pitch(scale_list): """Generate a random note pitch determinant on the scale list. Keyword Arguments: scale_list: A list of Mingus compatible pitches, in a list. """ return random.choice(scale_list) def get_note_name(generated_note_pitch, note_names_in_c): """Converts our randomised note pitch into musical notes in the key of C. Keyword Arguments: generated_note_pitch: Our randomly generated note pitch. note_names_in_c: A dictionary of the note positions in the C chromatic scale, and their corresponding note names. """ return note_names_in_c.get(generated_note_pitch) def return_random_pitch(user_chosen_scale): """This function is to be used with a POST request, returning a random note pitch, based on the user's chosen scale. Keyword Arguments: user_chosen_scale: A musical scale, chosen by the user as a result of a GET request to the service #2 API. """ c_chromatic_dictionary = { # Notes an corresponding positions of C chrom. 1: 'C', 2: 'C#', 3: 'D', 4: 'D#', 5: 'E', 6: 'F', 7: 'F#', 8: 'G', 9: 'G#', 10: 'A', 11: 'A#', 12: 'B', "r": "r" } rand_note_pitch = generate_random_note_pitch(user_chosen_scale) return get_note_name(rand_note_pitch, c_chromatic_dictionary) # Function ------------------------------------------------------------- @service2.route('/', methods=['POST']) def on_post_request(): """This function triggers after every post request to the endpoint '/' We expect to receive a specific set of notes from service 1. """ # TODO: Write unit test for on_post_request(). received_data = request.get_json() print(f"Received data = {received_data}") converted_data = list(received_data.values()) print(f"Converted data = {converted_data}") note_pitch_output = return_random_pitch(converted_data[0]) print(f'Converted data: {converted_data[0]}') print(f'Note pitch output: {note_pitch_output}') return jsonify(note_pitch_output) ``` #### File: src/tests/conftest.py ```python import pytest # Fixtures ------------------------------------------------------------- # Fixtures are a great place to store data to use for testing. # You can return anything. @pytest.fixture(name='all_pitches', scope='function', autouse=False) def melodie_proprietary_pitches(): """A fixture which returns the notes in a chromatic musical scale, into our own proprietary format.""" return [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, "r"] @pytest.fixture(name='common_scales', scope='function', autouse=False) def common_scales(): """A fixture which returns all of the common musical scales, in mélodies' own proprietary format. Represented in musical tab, this would be all of the scales in which the root note starts with 'F'. """ common_scales = { "chromatic": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, "r"], "major": [1, 3, 5, 6, 8, 10, 12, "r"], "major pentatonic": [1, 3, 5, 8, 10, "r"], "major blues": [1, 3, 4, 5, 8, 10, "r"], "natural minor": [1, 3, 4, 6, 8, 9, 11, "r"], "harmonic minor": [1, 3, 4, 6, 8, 9, 12, "r"], "minor pentatonic": [1, 4, 6, 8, 11, "r"], "minor blues": [1, 4, 6, 7, 8, 11, "r"], "png implementation": [1, 4, 6, 7, 8, 11, "r"] } return common_scales @pytest.fixture(name='note_names_in_c', scope='function', autouse=False) def note_names_in_c(): c_chromatic_dictionary = { 1: 'C', 2: 'C#', 3: 'D', 4: 'D#', 5: 'E', 6: 'F', 7: 'F#', 8: 'G', 9: 'G#', 10: 'A', 11: 'A#', 12: 'B', "r": "r" } return c_chromatic_dictionary ``` #### File: src/tests/test_service3.py ```python import json from src.service3 import random_note_length, service3, \ return_rhythms_dictionary # Test Flask App Config ------------------------------------------------ def test_production_config(): """This app checks the functionality of our .config file switcher.""" client = service3.test_client() service3.config.from_object('service3_config.TestingConfig') assert service3.config.get("TESTING") is True assert service3.config.get("DEBUG") is False service3.config.from_object('service3_config.ProductionConfig') assert service3.config.get("TESTING") is False assert service3.config.get("DEBUG") is False service3.config.from_object('service3_config.DevelopmentConfig') assert service3.config.get("TESTING") is False assert service3.config.get("DEBUG") is True # Test Functions ------------------------------------------------------- def test_return_rhythms_dictionary(all_rhythms): """This test checks the main function behind s3. This test utilises our 'all_rhythms' pytest fixture. - Return a dictionary. - Keys must be in lower case. - Rhythms can only be returned in Mingus format. """ check_dictionary = return_rhythms_dictionary() assert isinstance(check_dictionary, dict) for rhythm_name, rhythm_list in list(return_rhythms_dictionary().items()): assert rhythm_name.islower() for rhythm in rhythm_list: assert rhythm in all_rhythms def test_random_note_length(common_rhythms, all_rhythms): """This test checks our random note length generation function. This test utilises the fixtures: 'all_rhythms' and 'common_rhythms'. For every rhythm in our fixture of common lengths, run assertion: - Must be a valid Mingus rhythm. See 'mingus_rhythms' fixture. - Cannot be a data type other than an integer or float. """ for key, rhythms in common_rhythms.items(): rhythm = random_note_length(rhythms) assert rhythm in all_rhythms assert isinstance(rhythm, (int, float)) is True # Test API Requests ---------------------------------------------------- def test_on_get_request(common_rhythms): """This test checks our GET request functionality for our API. This test utilises the pytest fixture 'common_scales'. When we send a get req to service 2, we should: - GET a status code 200. - GET a JSON file, containing a list of our common rhythms. """ client = service3.test_client() response = client.get('/') # Converts our JSON response to a python dictionary. decode_response = json.loads(response.get_data()) assert response.status_code == 200 assert decode_response == common_rhythms def test_on_post_request(all_rhythms): """ This function tests our POST request functionality for our API. This test will utilise the pytest fixture 'all_rhythms'. When we receive a post request to service 3, we expect: - To receive data in a rhythm key-pair format. - To return a status code of 200. - To return to get back a single rhythm, as int. """ client = service3.test_client() rhythm_key_pair = {"all_rhythms": [1, 2, 4, 8, 16, 32, 64]} response = client.post('/', json=rhythm_key_pair) response_data = int(response.get_data()) assert response_data in all_rhythms assert response.status_code == 200 ``` #### File: service4/src/service4_routes.py ```python from flask import request # Import our application. from src.service4_init import service4 # Import our Logic from src.service4_logic import create_bar, initialise_bar, add_notes_to_bar,\ save_as_png, save_as_midi, send_png_to_user,\ send_midi_to_user, overwrite_transpose_bar # Import AST to perform literal evaluation. import ast from os import environ # Global Variables ----------------------------------------------------- PNG_DIRECTORY = service4.config["PNG_DIRECTORY"] print(f"s4 routes .png dir: {PNG_DIRECTORY}") MIDI_DIRECTORY = service4.config["MIDI_DIRECTORY"] print(f"s4 routes .mid dir: {MIDI_DIRECTORY}") SERVICE_2_URL = service4.config["SERVICE_2_URL"] SERVICE_3_URL = service4.config["SERVICE_3_URL"] # Routes --------------------------------------------------------------- @service4.route("/", methods=["POST"]) def service4_post_request(): """This function triggers on a post request to service 4.""" # When we get a post request from S1, we first take the data and unpack it # into something useful to us. s1_data = request.get_json() print(f"Received from S1: {s1_data}") # We create a new bar with this information. encode_time_signature = s1_data.get("time_signature") decode_time_signature = ast.literal_eval(encode_time_signature) new_bar = create_bar(decode_time_signature) # Then we initialise the bar. print(" \n ----- Note Before Initialisation ----- \n") print(new_bar) initialise_bar(new_bar, s1_data.get("first_note_length"), s1_data.get("first_note_pitch")) print(" \n ----- Note After Initialisation ----- \n") print(new_bar) # We run our "poll s2 and s3" function to fill the bar. scale_key_pair = s1_data.get("scale_key_pair") rhythm_key_pair = s1_data.get("rhythm_key_pair") # Keep adding notes to our bar. add_notes_to_bar(new_bar, SERVICE_2_URL, SERVICE_3_URL, scale_key_pair, rhythm_key_pair) print(" \n ----- THE BAR IS FULL ----- \n ") print(new_bar) # We transpose the bar. overwrite_transpose_bar(new_bar, s1_data.get("key")) print(f"Transposed bar: {new_bar}") # === IF MIDI! === # save_as_midi(s1_data.get('file_name'), new_bar, s1_data.get("tempo")) # print('\n ---------- THE FILE HAS BEEN SAVED AS MIDI ---------- \n') # Send midi file name to user. # midi_file_name = f"{s1_data.get('file_name')}-melodie.mid" # return send_midi_to_user(midi_file_name) # === IF PNG! === png_file_name = f"{s1_data.get('file_name')}-melodie.png" save_as_png(s1_data.get("file_name"), new_bar) print('\n ---------- THE FILE HAS BEEN SAVED AS PNG ---------- \n') return send_png_to_user(png_file_name) ```
{ "source": "joshuahigginson1/Python_Colour_Tools", "score": 4 }
#### File: application/modules/average_colour.py ```python from skimage import draw import numpy # Functions ------------------------------------------------------------ def ave_colour_from_selection(image, poly): """ This function gets the average pixel colour from a polygon selection. Credit to user Malibuoooo from StackOverflow. :param image: Our image file. :param poly: Numpy array of coordinates in which we are averaging. :return: Returns the average colour within our polygon. """ # Generates a list of pixels that match in our polygon. pixels = image[draw.polygon(poly[:, 1], poly[:, 0])] # Use the channels of each pixel to get averages and convert them to ints. # Return the average colour of every pixel. return numpy.average(pixels, 0).astype(int) ```
{ "source": "joshuahlang/template-specialize", "score": 2 }
#### File: src/template_specialize/aws_parameter_store.py ```python try: import botocore.session import botocore.exceptions except ImportError: # pragma: nocover pass from jinja2 import nodes, TemplateRuntimeError from jinja2.ext import Extension class ParameterStoreExtension(Extension): __slots__ = () tags = set(['aws_parameter_store']) def __init__(self, environment): super(ParameterStoreExtension, self).__init__(environment) environment.extend(aws_parameter_store_client=None, aws_parameter_store_values={}) def parse(self, parser): lineno = next(parser.stream).lineno name = parser.parse_expression() parameter_value = self.call_method('_get_parameter', [name], lineno=lineno) return nodes.Output([parameter_value], lineno=lineno) def _get_parameter(self, name): if name not in self.environment.aws_parameter_store_values: # Create the ssm client as needed if self.environment.aws_parameter_store_client is None: session = botocore.session.get_session() self.environment.aws_parameter_store_client = session.create_client('ssm') try: result = self.environment.aws_parameter_store_client.get_parameter(Name=name, WithDecryption=True) self.environment.aws_parameter_store_values[name] = result['Parameter']['Value'] except botocore.exceptions.ClientError as ex: code = ex.response.get('Error', {}).get('Code') raise TemplateRuntimeError( 'Failed to retrieve value "{0}" from parameter store with error: {1}'.format(name, code) ) from None return self.environment.aws_parameter_store_values[name] ``` #### File: src/tests/__init__.py ```python import os import tempfile import unittest class TestCase(unittest.TestCase): @staticmethod def create_test_files(file_defs): tempdir = tempfile.TemporaryDirectory() for path_parts, content in file_defs: if isinstance(path_parts, str): path_parts = [path_parts] path = os.path.join(tempdir.name, *path_parts) os.makedirs(os.path.dirname(path), exist_ok=True) with open(path, 'w', encoding='utf-8') as file_: file_.write(content) return tempdir ``` #### File: src/tests/test_main.py ```python from io import StringIO import os import re import unittest.mock as unittest_mock try: import botocore.exceptions except ImportError: # pragma: nocover pass from template_specialize import __version__ import template_specialize.__main__ from template_specialize.main import main, _parse_environments, _merge_environment, _merge_values from . import TestCase class TestMain(TestCase): def test_module_main(self): self.assertTrue(template_specialize.__main__) def test_sys_argv(self): test_files = [ ('template.txt', 'the value of "foo" is "{{foo}}"') ] with self.create_test_files(test_files) as input_dir, \ self.create_test_files([]) as output_dir: input_path = os.path.join(input_dir, 'template.txt') output_path = os.path.join(output_dir, 'other.txt') argv = ['template-specialize', input_path, output_path, '--key', 'foo', '--value', 'bar'] with unittest_mock.patch('sys.stdout', new=StringIO()) as stdout, \ unittest_mock.patch('sys.stderr', new=StringIO()) as stderr, \ unittest_mock.patch('sys.argv', argv): main() self.assertEqual(stdout.getvalue(), '') self.assertEqual(stderr.getvalue(), '') with open(os.path.join(output_dir, 'other.txt'), 'r', encoding='utf-8') as f_output: self.assertEqual(f_output.read(), 'the value of "foo" is "bar"') def test_version(self): for argv in [ ['-v'], ['--version'] ]: with unittest_mock.patch('sys.stdout', new=StringIO()) as stdout, \ unittest_mock.patch('sys.stderr', new=StringIO()) as stderr: with self.assertRaises(SystemExit) as cm_exc: main(argv) self.assertEqual(cm_exc.exception.code, 0) self.assertEqual(stdout.getvalue(), '') self.assertEqual(stderr.getvalue(), str(__version__) + '\n') def test_mismatched_keys_values(self): for argv in [ ['--key', 'a', 'src.txt', 'dst.txt'], ['--key', 'a', '--value', 'foo', '--key', 'b', 'src.txt', 'dst.txt'] ]: with unittest_mock.patch('sys.stdout', new=StringIO()) as stdout, \ unittest_mock.patch('sys.stderr', new=StringIO()) as stderr: with self.assertRaises(SystemExit) as cm_exc: main(argv) self.assertEqual(cm_exc.exception.code, 2) self.assertEqual(stdout.getvalue(), '') self.assertEqual( stderr.getvalue(), '''\ usage: template-specialize [-h] [-c FILE] [-e ENV] [--key KEY] [--value VALUE] [--dump] [-v] [SRC] [DST] template-specialize: error: mismatched keys/values ''' ) def test_invalid_keys_values(self): with unittest_mock.patch('sys.stdout', new=StringIO()) as stdout, \ unittest_mock.patch('sys.stderr', new=StringIO()) as stderr: with self.assertRaises(SystemExit) as cm_exc: main(['--key', 'a', '--value', 'a: b: c']) self.assertEqual(cm_exc.exception.code, 2) self.assertEqual(stdout.getvalue(), '') self.assertEqual( stderr.getvalue(), '''\ mapping values are not allowed here in "<unicode string>", line 1, column 5: a: b: c ^ ''' ) def test_config_errors(self): test_files = [ ( 'test.config', '''\ env1: values: a: a: "env1 a.a" b: a: "env1 b.a" asdf1 env2: values: a: ["env2 a.0"] asdf2 ''' ), ( 'test2.config', '''\ env3: parents: [env1, env2] ''' ), ( 'template.txt', '''\ a.a = {{a.a}} b.a = {{b.a}} ''' ) ] with self.create_test_files(test_files) as input_dir, \ self.create_test_files([]) as output_dir: test_path = os.path.join(input_dir, 'test.config') test2_path = os.path.join(input_dir, 'test2.config') input_path = os.path.join(input_dir, 'template.txt') output_path = os.path.join(output_dir, 'other.txt') with unittest_mock.patch('sys.stdout', new=StringIO()) as stdout, \ unittest_mock.patch('sys.stderr', new=StringIO()) as stderr: with self.assertRaises(SystemExit) as cm_exc: main([ '-c', test_path, '-c', test2_path, '-e', 'env3', '--key', 'b', '--value', '[b0]', input_path, output_path ]) self.assertEqual(cm_exc.exception.code, 2) self.assertEqual(stdout.getvalue(), '') self.assertEqual( re.sub('^.+?test', 'test', stderr.getvalue(), flags=re.MULTILINE), '''\ while scanning a simple key test.config", line 7, column 5 could not find expected ':' test.config", line 9, column 1 ''' ) self.assertFalse(os.path.exists(output_path)) def test_environment_only(self): test_files = [ ( 'test.config', '''\ env1: values: a: a: "foo" c: [1, 2] env2: values: b: a: "nope" ''' ), ( 'test2.config', '''\ env3: parents: [env1] values: a: b: "bar" c: [4, 5, 3] ''' ), ( 'template.txt', '''\ a.a = {{a.a}} a.b = {{a.b}} a.c = {{a.c}} ''' ) ] with self.create_test_files(test_files) as input_dir, \ self.create_test_files([]) as output_dir: test_path = os.path.join(input_dir, 'test.config') test2_path = os.path.join(input_dir, 'test2.config') input_path = os.path.join(input_dir, 'template.txt') output_path = os.path.join(output_dir, 'other.txt') with unittest_mock.patch('sys.stdout', new=StringIO()) as stdout, \ unittest_mock.patch('sys.stderr', new=StringIO()) as stderr: main(['-c', test_path, '-c', test2_path, '-e', 'env3', input_path, output_path]) self.assertEqual(stdout.getvalue(), '') self.assertEqual(stderr.getvalue(), '') with open(os.path.join(output_dir, 'other.txt'), 'r', encoding='utf-8') as f_output: self.assertEqual( f_output.read(), '''\ a.a = foo a.b = bar a.c = [4, 5, 3]''' ) def test_keys_only(self): test_files = [ ( 'template.txt', '''\ a.a = {{a.a}} a.b = {{a.b}} a.c = {{a.c}} ''' ) ] with self.create_test_files(test_files) as input_dir, \ self.create_test_files([]) as output_dir: input_path = os.path.join(input_dir, 'template.txt') output_path = os.path.join(output_dir, 'other.txt') with unittest_mock.patch('sys.stdout', new=StringIO()) as stdout, \ unittest_mock.patch('sys.stderr', new=StringIO()) as stderr: main([ '--key', 'a', '--value', '{a: foo}', '--key', 'a', '--value', '{b: bar}', '--key', 'a', '--value', '{c: [3]}', input_path, output_path ]) self.assertEqual(stdout.getvalue(), '') self.assertEqual(stderr.getvalue(), '') with open(os.path.join(output_dir, 'other.txt'), 'r', encoding='utf-8') as f_output: self.assertEqual( f_output.read(), '''\ a.a = foo a.b = bar a.c = [3]''' ) def test_environment_and_keys(self): test_files = [ ( 'config.config', '''\ env: values: a: a: foo b: bar c: [1] ''' ), ( 'template.txt', '''\ a.a = {{a.a}} a.b = {{a.b}} a.c = {{a.c}} ''' ) ] with self.create_test_files(test_files) as input_dir, \ self.create_test_files([]) as output_dir: config_path = os.path.join(input_dir, 'config.config') input_path = os.path.join(input_dir, 'template.txt') output_path = os.path.join(output_dir, 'other.txt') with unittest_mock.patch('sys.stdout', new=StringIO()) as stdout, \ unittest_mock.patch('sys.stderr', new=StringIO()) as stderr: main([ '-c', config_path, '-e', 'env', '--key', 'a', '--value', '{b: bonk}', '--key', 'a', '--value', '{c: [10]}', '--key', 'a', '--value', '{c: [12, 11]}', input_path, output_path ]) self.assertEqual(stdout.getvalue(), '') self.assertEqual(stderr.getvalue(), '') with open(os.path.join(output_dir, 'other.txt'), 'r', encoding='utf-8') as f_output: self.assertEqual( f_output.read(), '''\ a.a = foo a.b = bonk a.c = [12, 11]''' ) def test_dump(self): test_files = [ ( 'config.config', '''\ env: values: a: a: foo b: bar c: [1] ''' ) ] with self.create_test_files(test_files) as input_dir: config_path = os.path.join(input_dir, 'config.config') with unittest_mock.patch('sys.stdout', new=StringIO()) as stdout, \ unittest_mock.patch('sys.stderr', new=StringIO()) as stderr: with self.assertRaises(SystemExit) as cm_exc: main([ '-c', config_path, '-e', 'env', '--key', 'a', '--value', '{b: bonk}', '--key', 'a', '--value', '{c: [12, 11]}', '--dump' ]) self.assertEqual(cm_exc.exception.code, 0) self.assertEqual(stdout.getvalue(), '') self.assertEqual(stderr.getvalue(), '''\ a: a: foo b: bonk c: - 12 - 11 ''') def test_unknown_environment(self): test_files = [ ( 'config.config', '''\ env: values: a: a: foo ''' ) ] with self.create_test_files(test_files) as input_dir: config_path = os.path.join(input_dir, 'config.config') for argv in [ ['-c', config_path, '-e', 'unknown', 'src.txt', 'dst.txt'], ['-e', 'unknown', 'src.txt', 'dst.txt'] ]: with unittest_mock.patch('sys.stdout', new=StringIO()) as stdout, \ unittest_mock.patch('sys.stderr', new=StringIO()) as stderr: with self.assertRaises(SystemExit) as cm_exc: main(argv) self.assertEqual(cm_exc.exception.code, 2) self.assertEqual(stdout.getvalue(), '') self.assertEqual( stderr.getvalue(), '''\ unknown environment 'unknown' ''' ) def test_file_to_file(self): test_files = [ ('template.txt', 'the value of "foo" is "{{foo}}"') ] with self.create_test_files(test_files) as input_dir, \ self.create_test_files([]) as output_dir: input_path = os.path.join(input_dir, 'template.txt') output_path = os.path.join(output_dir, 'other.txt') with unittest_mock.patch('sys.stdout', new=StringIO()) as stdout, \ unittest_mock.patch('sys.stderr', new=StringIO()) as stderr: main([input_path, output_path, '--key', 'foo', '--value', 'bar']) self.assertEqual(stdout.getvalue(), '') self.assertEqual(stderr.getvalue(), '') with open(os.path.join(output_dir, 'other.txt'), 'r', encoding='utf-8') as f_output: self.assertEqual(f_output.read(), 'the value of "foo" is "bar"') def test_file_to_stdout(self): test_files = [ ('template.txt', 'the value of "foo" is "{{foo}}"') ] with self.create_test_files(test_files) as input_dir: input_path = os.path.join(input_dir, 'template.txt') with unittest_mock.patch('sys.stdout', new=StringIO()) as stdout, \ unittest_mock.patch('sys.stderr', new=StringIO()) as stderr: main([input_path, '--key', 'foo', '--value', 'bar']) self.assertEqual(stdout.getvalue(), 'the value of "foo" is "bar"') self.assertEqual(stderr.getvalue(), '') def test_stdin_to_stdout(self): with unittest_mock.patch('sys.stdin', new=StringIO('the value of "foo" is "{{foo}}"')), \ unittest_mock.patch('sys.stdout', new=StringIO()) as stdout, \ unittest_mock.patch('sys.stderr', new=StringIO()) as stderr: main(['--key', 'foo', '--value', 'bar']) self.assertEqual(stdout.getvalue(), 'the value of "foo" is "bar"') self.assertEqual(stderr.getvalue(), '') def test_stdin_to_file(self): with self.create_test_files([]) as output_dir: output_path = os.path.join(output_dir, 'other.txt') with unittest_mock.patch('sys.stdin', new=StringIO('the value of "foo" is "{{foo}}"')), \ unittest_mock.patch('sys.stdout', new=StringIO()) as stdout, \ unittest_mock.patch('sys.stderr', new=StringIO()) as stderr: main(['-', output_path, '--key', 'foo', '--value', 'bar']) self.assertEqual(stdout.getvalue(), '') self.assertEqual(stderr.getvalue(), '') with open(output_path, 'r', encoding='utf-8') as f_output: self.assertEqual(f_output.read(), 'the value of "foo" is "bar"') def test_file_to_dir(self): test_files = [ ('template.txt', 'the value of "foo" is "{{foo}}"') ] with self.create_test_files(test_files) as input_dir, \ self.create_test_files([]) as output_dir: input_path = os.path.join(input_dir, 'template.txt') output_path = os.path.join(output_dir, '') with unittest_mock.patch('sys.stdout', new=StringIO()) as stdout, \ unittest_mock.patch('sys.stderr', new=StringIO()) as stderr: with self.assertRaises(SystemExit) as cm_exc: main([input_path, output_path, '--key', 'foo', '--value', 'bar']) self.assertEqual(cm_exc.exception.code, 2) self.assertEqual(stdout.getvalue(), '') self.assertEqual(stderr.getvalue(), "[Errno 21] Is a directory: '{0}'\n".format(output_path)) self.assertTrue(os.path.isfile(input_path)) self.assertTrue(os.path.isdir(output_path)) def test_dir_to_dir(self): test_files = [ ('template.txt', 'the value of "foo" is "{{foo}}"'), (('subdir', 'subtemplate.txt'), 'agree, "{{foo}}" is the value of "foo"') ] with self.create_test_files(test_files) as input_dir, \ self.create_test_files([]) as output_dir: with unittest_mock.patch('sys.stdout', new=StringIO()) as stdout, \ unittest_mock.patch('sys.stderr', new=StringIO()) as stderr: main([input_dir, output_dir, '--key', 'foo', '--value', 'bar']) self.assertEqual(stdout.getvalue(), '') self.assertEqual(stderr.getvalue(), '') with open(os.path.join(output_dir, 'template.txt'), 'r', encoding='utf-8') as f_output: self.assertEqual(f_output.read(), 'the value of "foo" is "bar"') with open(os.path.join(output_dir, 'subdir', 'subtemplate.txt'), 'r', encoding='utf-8') as f_output: self.assertEqual(f_output.read(), 'agree, "bar" is the value of "foo"') def test_dir_to_file(self): test_files = [ (('subdir', 'template.txt'), 'the value of "foo" is "{{foo}}"'), ('other.txt', 'hello') ] with self.create_test_files(test_files) as input_dir: input_path = os.path.join(input_dir, 'subdir') output_path = os.path.join(input_dir, 'other.txt') with unittest_mock.patch('sys.stdout', new=StringIO()) as stdout, \ unittest_mock.patch('sys.stderr', new=StringIO()) as stderr: with self.assertRaises(SystemExit) as cm_exc: main([input_path, output_path, '--key', 'foo', '--value', 'bar']) self.assertEqual(cm_exc.exception.code, 2) self.assertEqual(stdout.getvalue(), '') self.assertEqual(stderr.getvalue(), "[Errno 17] File exists: '{0}'\n".format(output_path)) self.assertTrue(os.path.isdir(input_path)) self.assertTrue(os.path.isfile(output_path)) def test_file_not_exist(self): with self.create_test_files([]) as input_dir, \ self.create_test_files([]) as output_dir: input_path = os.path.join(input_dir, 'template.txt') output_path = os.path.join(output_dir, 'other.txt') with unittest_mock.patch('sys.stdout', new=StringIO()) as stdout, \ unittest_mock.patch('sys.stderr', new=StringIO()) as stderr: with self.assertRaises(SystemExit) as cm_exc: main([input_path, output_path, '--key', 'foo', '--value', 'bar']) self.assertEqual(cm_exc.exception.code, 2) self.assertEqual(stdout.getvalue(), '') self.assertEqual(stderr.getvalue(), "[Errno 2] No such file or directory: '{0}'\n".format(input_path)) self.assertFalse(os.path.exists(input_path)) self.assertFalse(os.path.exists(output_path)) def test_aws_parameter_store(self): test_files = [ ( 'template.txt', '''\ {% filter tojson %}{% aws_parameter_store 'some/string' %}{% endfilter %} {% aws_parameter_store 'some/string' %} {% aws_parameter_store foo %} ''' ) ] def get_parameter(**kwargs): return { 'Parameter': { 'Value': '{0}-{{value}}'.format(kwargs['Name']) } } with self.create_test_files(test_files) as input_dir: input_path = os.path.join(input_dir, 'template.txt') with unittest_mock.patch('sys.stdout', new=StringIO()) as stdout, \ unittest_mock.patch('sys.stderr', new=StringIO()) as stderr, \ unittest_mock.patch('botocore.session') as mock_session: mock_session.get_session.return_value.create_client.return_value.get_parameter.side_effect = get_parameter main([input_path, '--key', 'foo', '--value', 'a"[bar}']) self.assertEqual( stdout.getvalue(), '''\ "some/string-{value}" some/string-{value} a"[bar}-{value}''' ) self.assertEqual(stderr.getvalue(), '') # get_parameter results should be cached between blocks. mock_session.get_session.return_value.create_client.return_value.assert_has_calls([ unittest_mock.call.get_parameter(Name='some/string', WithDecryption=True), unittest_mock.call.get_parameter(Name='a"[bar}', WithDecryption=True) ]) def test_aws_parameter_store_error(self): test_files = [ ( 'template.txt', '''\ {% aws_parameter_store 'some/string' %} ''' ) ] with self.create_test_files(test_files) as input_dir: input_path = os.path.join(input_dir, 'template.txt') with unittest_mock.patch('sys.stdout', new=StringIO()) as stdout, \ unittest_mock.patch('sys.stderr', new=StringIO()) as stderr, \ unittest_mock.patch('botocore.session') as mock_session: mock_session.get_session.return_value.create_client.return_value.get_parameter.side_effect = \ botocore.exceptions.ClientError({'Error': {'Code': 'SomeError'}}, 'GetParameter') with self.assertRaises(SystemExit) as cm_exc: main([input_path]) self.assertEqual(cm_exc.exception.code, 2) self.assertEqual(stdout.getvalue(), '') self.assertEqual( stderr.getvalue(), '''\ Failed to retrieve value "some/string" from parameter store with error: SomeError ''' ) class TestParseEnvironments(TestCase): def test_parse_environments(self): environments = {} _parse_environments( StringIO('''\ # This is a comment env: values: key: value env2: parents: [env] values: key: value '''), environments ) self.assertDictEqual(environments, { 'env': { 'values': { 'key': 'value' } }, 'env2': { 'parents': ['env'], 'values': { 'key': 'value' } } }) def test_parse_environments_not_dict(self): environments = {} with self.assertRaises(ValueError) as cm_exc: _parse_environments( StringIO('''\ [1, 2, 3] '''), environments ) self.assertEqual(str(cm_exc.exception), 'invalid environments container: [1, 2, 3]') self.assertDictEqual(environments, {}) def test_parse_environments_invalid_environment_name(self): environments = {} with self.assertRaises(ValueError) as cm_exc: _parse_environments( StringIO('''\ 1: '''), environments ) self.assertEqual(str(cm_exc.exception), 'invalid environment name 1') self.assertDictEqual(environments, {}) def test_parse_environments_redefined_environment(self): environments = {'env': {}} with self.assertRaises(ValueError) as cm_exc: _parse_environments( StringIO('''\ env: '''), environments ) self.assertEqual(str(cm_exc.exception), "redefinition of environment 'env'") self.assertDictEqual(environments, {'env': {}}) def test_parse_environments_invalid_metadata(self): environments = {} with self.assertRaises(ValueError) as cm_exc: _parse_environments( StringIO('''\ env: [1, 2, 3] '''), environments ) self.assertEqual(str(cm_exc.exception), "invalid environment metadata for environment 'env': [1, 2, 3]") self.assertDictEqual(environments, {}) def test_parse_environments_invalid_parents_non_list(self): environments = {} with self.assertRaises(ValueError) as cm_exc: _parse_environments( StringIO('''\ env: parents: {} '''), environments ) self.assertEqual(str(cm_exc.exception), "invalid parents for environment 'env': {}") self.assertDictEqual(environments, {}) def test_parse_environments_invalid_parents_non_str(self): environments = {} with self.assertRaises(ValueError) as cm_exc: _parse_environments( StringIO('''\ env: parents: ['env2', 1] '''), environments ) self.assertEqual(str(cm_exc.exception), "invalid parents for environment 'env': ['env2', 1]") self.assertDictEqual(environments, {}) def test_parse_environments_invalid_values(self): environments = {} with self.assertRaises(ValueError) as cm_exc: _parse_environments( StringIO('''\ env: values: [] '''), environments ) self.assertEqual(str(cm_exc.exception), "invalid values for environment 'env': []") self.assertDictEqual(environments, {}) class TestMergeEnvironment(TestCase): def test_merge_environment(self): environments = { 'env': { 'values': { 'a': 1, 'b': 2, 'c': [{'a': 'b'}] } }, 'env2': { 'parents': ['env'], 'values': { 'a': 3, 'c': [{'a', 'b2'}, {'c': 'd'}], 'd': 4 } }, 'env3': { 'parents': ['env', 'env2'], 'values': { 'c': [{'c': 'd3'}], 'e': 5 } }, 'env4': { 'parents': ['env3'] } } values = _merge_environment(environments, 'env', None, set()) self.assertDictEqual(values, { 'a': 1, 'b': 2, 'c': [{'a': 'b'}] }) values = {} values2 = _merge_environment(environments, 'env2', values, set()) self.assertIs(values2, values) self.assertDictEqual(values, { 'a': 3, 'b': 2, 'c': [{'b2', 'a'}, {'c': 'd'}], 'd': 4 }) values = {} values2 = _merge_environment(environments, 'env3', values, set()) self.assertIs(values2, values) self.assertDictEqual(values, { 'a': 3, 'b': 2, 'c': [{'c': 'd3'}, {'c': 'd'}], 'd': 4, 'e': 5 }) values = {} values2 = _merge_environment(environments, 'env4', values, set()) self.assertIs(values2, values) self.assertDictEqual(values, { 'a': 3, 'b': 2, 'c': [{'c': 'd3'}, {'c': 'd'}], 'd': 4, 'e': 5 }) def test_merge_environment_unknown(self): environments = { 'env': { 'parents': ['unknown'] } } with self.assertRaises(ValueError) as cm_exc: _merge_environment(environments, 'env2', None, set()) self.assertEqual(str(cm_exc.exception), "unknown environment 'env2'") with self.assertRaises(ValueError) as cm_exc: _merge_environment(environments, 'env', None, set()) self.assertEqual(str(cm_exc.exception), "unknown environment 'unknown'") def test_merge_environment_circular(self): environments = { 'env': { 'parents': ['env'], 'values': { 'a': 1, 'b': 2, 'c': [{'a': 'b'}] } } } with self.assertRaises(ValueError) as cm_exc: _merge_environment(environments, 'env', None, set()) self.assertEqual(str(cm_exc.exception), "circular inheritance with environment 'env'") def test_merge_values(self): values = {} values2 = _merge_values({ 'a': 'b', 'b': [1, 2, 3], 'c': {'a': 'b', 'c': 'd'}, 'd': [{'a': 'b'}, {'c': 'd'}], 'e': {'a': [1, 2, 3], 'b': [4, 5, 6]}, 'f': 1 }, values) self.assertIs(values, values2) self.assertDictEqual(values, { 'a': 'b', 'b': [1, 2, 3], 'c': {'a': 'b', 'c': 'd'}, 'd': [{'a': 'b'}, {'c': 'd'}], 'e': {'a': [1, 2, 3], 'b': [4, 5, 6]}, 'f': 1 }) values2 = _merge_values({ 'a': 'b2', 'b': [4, 5], 'c': {'a': 'b2', 'e': 'f'}, 'd': [{'e': 'f'}, {'c': 'd2'}, {'g': 'h'}], 'e': {'a': [4, 5], 'b': [7, 8, 9, 10]}, 'g': 2 }, values) self.assertIs(values, values2) self.assertDictEqual(values, { 'a': 'b2', 'b': [4, 5, 3], 'c': {'a': 'b2', 'c': 'd', 'e': 'f'}, 'd': [{'a': 'b', 'e': 'f'}, {'c': 'd2'}, {'g': 'h'}], 'e': {'a': [4, 5, 3], 'b': [7, 8, 9, 10]}, 'f': 1, 'g': 2 }) values2 = _merge_values({ 'a': [1, 2, 3], 'f': {'a': 'b'}, 'b': 3, 'd': {'c': 'd'}, 'c': 4, 'e': [4, 5, 6] }, values) self.assertIs(values, values2) self.assertDictEqual(values, { 'a': [1, 2, 3], 'b': 3, 'c': 4, 'd': {'c': 'd'}, 'e': [4, 5, 6], 'f': {'a': 'b'}, 'g': 2 }) ```
{ "source": "joshua-hull/pokemon-tcg-sdk-python", "score": 3 }
#### File: pokemon-tcg-sdk-python/tests/test_card.py ```python import unittest import vcr from pokemonsdk import Card class TestCard(unittest.TestCase): """Test card.py.""" def test_find_returns_card(self): """Testing Card.find() returns a card.""" with vcr.use_cassette('fixtures/Gardevoir.yaml'): card = Card.find('xy7-54') self.assertEqual('xy7-54', card.id) self.assertEqual('Gardevoir', card.name) self.assertEqual('https://s3.amazonaws.com/pokemontcg/xy7/54.png', card.image_url) self.assertEqual('Stage 2', card.subtype) self.assertEqual('Pokémon', card.supertype) self.assertEqual({'name': 'Bright Heal', 'text': 'Once during your turn ' '(before your attack), ' 'you may heal 20 damage ' 'from each of your Pokémon.'}, card.ability) self.assertEqual('130', card.hp) self.assertEqual(['Colorless', 'Colorless'], card.retreat_cost) self.assertEqual('54', card.number) self.assertEqual('TOKIYA', card.artist) self.assertEqual('Rare Holo', card.rarity) self.assertEqual('XY', card.series) self.assertEqual('Ancient Origins', card.set) self.assertEqual('xy7', card.set_code) self.assertEqual(['Fairy'], card.types) self.assertEqual(1, len(card.attacks)) self.assertEqual(3, len(card.attacks[0]['cost'])) self.assertEqual('Telekinesis', card.attacks[0]['name']) self.assertEqual('', card.attacks[0]['damage']) self.assertEqual(3, card.attacks[0]['convertedEnergyCost']) # self.assertEqual([ # {'cost': ['Colorless', # 'Colorless', # 'Colorless'], # 'name':'Telekinesis', # 'text':"This attack does 50 damage to 1 of " # "your opponents's Pokémon. This " # "attack's damage isn't affected " # "by Weakness or Resistance.", # 'damage':'', # 'convertedEnergyCost':3} # ], card.attacks) self.assertEqual([{'type': 'Metal', 'value': '\xd72'}], card.weaknesses) self.assertEqual([{'type': 'Darkness', 'value': '-20'}], card.resistances) def test_all_with_params_return_cards(self): """Testing Card.where() returns cards.""" with vcr.use_cassette('fixtures/metal_psychic.yaml'): cards = Card.where(types='metal,psychic') \ .all() self.assertEqual(5, len(cards)) def test_all_with_page_returns_cards(self): """Testing Card.where() with a page returns that page.""" with vcr.use_cassette('fixtures/all_first_page.yaml'): cards = Card.where(page=1).all() self.assertEqual(100, len(cards)) def test_all_with_page_and_page_size_returns_card(self): """Testing Card.where(). Testing Card.where with a page and size returns that page with that many results. """ with vcr.use_cassette('fixtures/all_first_page_one_card.yaml'): cards = Card.where(page=1).where(pageSize=1).all() self.assertEqual(1, len(cards)) ``` #### File: pokemon-tcg-sdk-python/tests/test_pokemonexception.py ```python import unittest from pokemonsdk import PokemonException class TestPokemonException(unittest.TestCase): """Test PokemonException.""" def test_constructor_sets_description(self): """Test PokemonException description is set correctly.""" description = "An error has occured" exception = PokemonException(description) self.assertEqual(description, exception.__str__()) ``` #### File: pokemon-tcg-sdk-python/tests/test_subtype.py ```python import unittest import vcr from pokemonsdk import Subtype class TestType(unittest.TestCase): """Test Suite for Superype.""" def test_all_returns_subtypes(self): """Test Subtype.all() returns all subtypes.""" with vcr.use_cassette('fixtures/subtypes.yaml'): subtypes = Subtype.all() self.assertTrue(len(subtypes) == 17) self.assertTrue('Basic' in subtypes) self.assertTrue('Stage 1' in subtypes) self.assertTrue('Stage 2' in subtypes) ```
{ "source": "JoshuaHuntley/dbt-snowflake", "score": 2 }
#### File: integration/simple_snapshot_test/test_snapshot_query_tag.py ```python from tests.integration.base import DBTIntegrationTest, use_profile class TestSnapshotWithQueryTag(DBTIntegrationTest): @property def schema(self): return "simple_snapshot_004" @property def models(self): return "models" @property def project_config(self): return { 'config-version': 2, "snapshot-paths": ['check-snapshots-query-tag'], "test-paths": ['check-snapshots-query-tag-expected'], "model-paths": [], } def dbt_run_seed(self): self.run_sql_file('seed.sql') def test_snapshot_with_query_tag(self): self.run_dbt(["snapshot", "--vars", '{{"query_tag": {}}}'.format(self.prefix)]) def assert_query_tag_expected(self): self.run_dbt(['test', '--select', 'test_type:singular', '--vars', '{{"query_tag": {}}}'.format(self.prefix)]) @use_profile('snowflake') def test__snowflake__snapshot_with_query_tag(self): self.dbt_run_seed() self.test_snapshot_with_query_tag() self.assert_query_tag_expected() ```
{ "source": "joshuaipwork/cdptools", "score": 3 }
#### File: cdptools/dev_utils/load_custom_object.py ```python import importlib import logging from typing import Dict, List, Union ############################################################################### log = logging.getLogger(__name__) ############################################################################### def load_custom_object(module_path: Union[str, List[str]], object_name: str, object_kwargs: Dict) -> object: """ Load a custom object with kwargs. Parameters ---------- module_path: Union[str, List[str]] Python module path or list of path parts to a custom module. Ex: "cptools.pipeline" object_name: str Name of the object to retrieve from the module. Ex: "Pipeline" object_kwargs: Dict Any kwargs to pass to the object. Returns ------- obj: object The initialized object. """ # Convert module path to string if isinstance(module_path, list): module_path = ".".join(module_path) # Load target module mod = importlib.import_module(module_path) obj = getattr(mod, object_name) obj = obj(**object_kwargs) # Log log.debug(f"Using object: {type(obj)}") return obj ``` #### File: tests/audio_splitters/test_ffmpeg_audio_splitter.py ```python from pathlib import Path from unittest import mock import pytest from cdptools.audio_splitters.ffmpeg_audio_splitter import FFmpegAudioSplitter @pytest.fixture def example_video(data_dir) -> Path: return data_dir / "example_video.mp4" @pytest.mark.parametrize("audio_save_path", [ ("test.wav"), (Path("test.wav")), pytest.param(__file__, marks=pytest.mark.raises(exception=FileExistsError)), pytest.param(Path(__file__), marks=pytest.mark.raises(exception=FileExistsError)), pytest.param(Path(__file__).parent, marks=pytest.mark.raises(exception=IsADirectoryError)) ]) def test_mocked_save_path(tmpdir, example_video, audio_save_path): # Append save name to tmpdir audio_save_path = Path(tmpdir) / audio_save_path # Initialize splitter splitter = FFmpegAudioSplitter() # Mock split with mock.patch("ffmpeg.run") as mocked_ffmpeg: mocked_ffmpeg.return_value = (b"OUTPUT", b"ERROR") splitter.split(video_read_path=example_video, audio_save_path=audio_save_path) ``` #### File: tests/dev_utils/test_load_custom_object.py ```python import pytest from cdptools.dev_utils import load_custom_object @pytest.mark.parametrize("module_path, object_name, object_kwargs", [ ("pathlib", "Path", {}), ("cdptools.audio_splitters.ffmpeg_audio_splitter", "FFmpegAudioSplitter", {}), (["cdptools", "audio_splitters", "ffmpeg_audio_splitter"], "FFmpegAudioSplitter", {}), ("datetime", "datetime", {"year": 2019, "month": 5, "day": 11}), pytest.param("fake.module.path", "DoesNotExist", {}, marks=pytest.mark.raises(exception=ModuleNotFoundError)), pytest.param("datetime", "DoesNotExist", {}, marks=pytest.mark.raises(exception=AttributeError)) ]) def test_load_custom_object(module_path, object_name, object_kwargs): load_custom_object.load_custom_object(module_path, object_name, object_kwargs) ``` #### File: tests/dev_utils/test_run_manager.py ```python from pathlib import Path from unittest import mock import pytest from firebase_admin import firestore from google.cloud import storage from cdptools.databases.cloud_firestore_database import CloudFirestoreDatabase from cdptools.dev_utils import RunIO, RunManager from cdptools.file_stores.gcs_file_store import GCSFileStore from ..databases.test_cloud_firestore_database import MockedCollection from ..file_stores.test_gcs_file_store import MockedBlob, MockedBucket @pytest.fixture def empty_creds_db() -> CloudFirestoreDatabase: with mock.patch("cdptools.databases.cloud_firestore_database.CloudFirestoreDatabase._initialize_creds_db"): db = CloudFirestoreDatabase("/fake/path/to/creds.json") db._credentials_path = "/fake/path/to/creds.json" db._root = mock.Mock(firestore.Client) db._root.collection.return_value = MockedCollection([]) return db @pytest.fixture def empty_creds_fs() -> GCSFileStore: with mock.patch("cdptools.file_stores.gcs_file_store.GCSFileStore._initialize_creds_fs"): fs = GCSFileStore("/fake/path/to/creds.json") fs._credentials_path = "/fake/path/to/creds.json" fs._client = mock.Mock(storage.Client) fs._bucket = MockedBucket("fake_bucket", [MockedBlob("example.mp4", exists=False)]) return fs @pytest.fixture def example_audio(data_dir) -> Path: return data_dir / "example_audio.wav" @pytest.mark.parametrize("inputs, expected", [ ([RunIO(str(str), "hello")], [RunIO(str(str), "hello")]), ([RunIO(str(int), 1)], [RunIO(str(int), 1)]), ([[str, "hello"]], [RunIO(str(str), "hello")]), ([[int, 1]], [RunIO(str(int), 1)]), ([[1.0]], [RunIO(str(float), 1.0)]), pytest.param([["this", "will", "fail"]], None, marks=pytest.mark.raises(exception=ValueError)), ([(str, "hello")], [RunIO(str(str), "hello")]), ([(int, 1)], [RunIO(str(int), 1)]), ([(1.0)], [RunIO(str(float), 1.0)]), pytest.param([("this", "will", "fail")], None, marks=pytest.mark.raises(exception=ValueError)), ([RunIO(str(str), "hello"), RunIO(str(str), "world")], [RunIO(str(str), "hello"), RunIO(str(str), "world")]) ]) def test_run_manager_init(empty_creds_db, empty_creds_fs, inputs, expected): with RunManager( database=empty_creds_db, file_store=empty_creds_fs, algorithm_name="fake", algorithm_version="1.1.1", inputs=inputs ) as run: assert run._inputs == expected def test_make_serializable_type(empty_creds_db, empty_creds_fs, data_dir, example_audio): # Test with real path with RunManager( database=empty_creds_db, file_store=empty_creds_fs, algorithm_name="fake", algorithm_version="1.1.1", inputs=[example_audio] ) as run: # Can't use PosixPath because if testing is done on windows then this fails for i in run._input_files: assert "Path" in i.type assert isinstance(i.value, Path) # Test with non existent path with pytest.raises(FileNotFoundError): run = RunManager( database=empty_creds_db, file_store=empty_creds_fs, algorithm_name="fake", algorithm_version="1.1.1", inputs=[Path("/this/will/fail.mp4")] ) # Test with directory with pytest.raises(IsADirectoryError): run = RunManager( database=empty_creds_db, file_store=empty_creds_fs, algorithm_name="fake", algorithm_version="1.1.1", inputs=[data_dir] ) # With any other type with RunManager( database=empty_creds_db, file_store=empty_creds_fs, algorithm_name="fake", algorithm_version="1.1.1", inputs=[((str(tuple), ("this", "will", "be", "cast", "to", "string")))] ) as run: assert run._inputs == [RunIO(str(tuple), "('this', 'will', 'be', 'cast', 'to', 'string')")] def test_run_manager_safe_exit(empty_creds_db, empty_creds_fs): with RunManager( database=empty_creds_db, file_store=empty_creds_fs, algorithm_name="fake", algorithm_version="1.1.1" ) as run: run.register_output(1) def test_run_manager_failed_exit(empty_creds_db, empty_creds_fs): # Generate exception log with pytest.raises(AssertionError): with RunManager( database=empty_creds_db, file_store=empty_creds_fs, algorithm_name="fake", algorithm_version="1.1.1" ): assert False # Check exception log exists logs = list(Path(".").glob("exception_log_*.err")) assert len(logs) == 1 # Clean up exception log for log in logs: log.unlink() ``` #### File: tests/file_stores/test_app_dirs_file_store.py ```python import shutil from pathlib import Path from unittest import mock import pytest from cdptools.file_stores.app_dirs_file_store import AppDirsFileStore @pytest.fixture def fs(tmpdir): with mock.patch("appdirs.user_data_dir") as MockAppDirs: MockAppDirs.return_value = tmpdir fs = AppDirsFileStore() return fs @pytest.fixture def example_video(data_dir): return Path(data_dir) / "example_video.mp4" @pytest.fixture def mock_compute_sha256(): with mock.patch("cdptools.file_stores.file_store.FileStore.compute_sha256_for_file") as MockSHA: MockSHA.return_value = "936a185caaa266bb9cbe981e9e05cb78cd732b0b3280eb944412bb6f8f8f07af" yield MockSHA @pytest.mark.parametrize("filename", [ ("file.mp3"), (Path("file.mp3")), ("/path/to/a/file.mp3"), (Path("/path/to/a/file.mp3")) ]) def test_locate_file(fs, mock_compute_sha256, filename): fs._locate_file(filename) @pytest.mark.parametrize("save_name, remove", [ (None, False), ("file.mp4", False), (Path("file.mp4"), False), (None, True), ("file.mp4", True), (Path("file.mp4"), True) ]) def test_upload_file(fs, mock_compute_sha256, tmpdir, example_video, save_name, remove): tmp_input_path = shutil.copyfile(example_video, tmpdir / "tmp.mp4") fs.upload_file(tmp_input_path, save_name, remove) if remove: assert not Path(tmp_input_path).exists() @pytest.mark.parametrize("filename, save_path", [ ("file.mp4", "saved_out.mp4"), ("file.mp4", Path("saved_out.mp4")), pytest.param("does_not_exist.mp4", "not_going_to_exist.mp4", marks=pytest.mark.raises(exception=FileNotFoundError)) ]) def test_download_file(fs, mock_compute_sha256, tmpdir, example_video, filename, save_path): # Upload file tmp_input_path = shutil.copyfile(example_video, tmpdir / "tmp.mp4") fs.upload_file(tmp_input_path, "file.mp4") # Send save out to tmpdir save_path = tmpdir / save_path # Attempt download fs.download_file(filename, save_path) ``` #### File: tests/pipelines/test_event_gather_pipeline.py ```python import json from pathlib import Path from typing import List, Union from unittest import mock import pytest from firebase_admin import firestore from google.cloud import storage from requests import RequestException from cdptools.audio_splitters.ffmpeg_audio_splitter import FFmpegAudioSplitter from cdptools.databases.cloud_firestore_database import CloudFirestoreDatabase from cdptools.event_scrapers.seattle_event_scraper import SeattleEventScraper from cdptools.file_stores.gcs_file_store import GCSFileStore from cdptools.pipelines import EventGatherPipeline from cdptools.sr_models.google_cloud_sr_model import (GoogleCloudSRModel, SRModelOutputs) from cdptools.sr_models.webvtt_sr_model import WebVTTSRModel from ..databases.test_cloud_firestore_database import MockedCollection from ..file_stores.test_gcs_file_store import MockedBlob, MockedBucket @pytest.fixture def legistar_data_dir(data_dir) -> Path: return data_dir / "legistar" @pytest.fixture def example_video(data_dir) -> Path: return data_dir / "example_video.mp4" @pytest.fixture def example_audio(data_dir) -> Path: return data_dir / "example_audio.wav" @pytest.fixture def example_config(data_dir) -> Path: return data_dir / "example_event_pipeline_config.json" @pytest.fixture def example_config_with_mixture_sr_model(data_dir) -> Path: return data_dir / "example_event_pipeline_config_with_mixture_sr_model.json" @pytest.fixture def example_transcript_raw(data_dir) -> Path: return data_dir / "example_transcript_raw.json" @pytest.fixture def example_transcript_words(data_dir) -> Path: return data_dir / "example_transcript_words.json" @pytest.fixture def example_transcript_sentences(data_dir) -> Path: return data_dir / "example_transcript_sentences.json" @pytest.fixture def example_transcript_speaker_turns(data_dir) -> Path: return data_dir / "example_transcript_speaker_turns.json" @pytest.fixture def empty_creds_db() -> CloudFirestoreDatabase: with mock.patch("cdptools.databases.cloud_firestore_database.CloudFirestoreDatabase._initialize_creds_db"): db = CloudFirestoreDatabase("/fake/path/to/creds.json") db._credentials_path = "/fake/path/to/creds.json" db._root = mock.Mock(firestore.Client) db._root.collection.return_value = MockedCollection([]) return db @pytest.fixture def empty_creds_fs() -> GCSFileStore: with mock.patch("cdptools.file_stores.gcs_file_store.GCSFileStore._initialize_creds_fs"): fs = GCSFileStore("/fake/path/to/creds.json") fs._credentials_path = "/fake/path/to/creds.json" fs._client = mock.Mock(storage.Client) fs._bucket = MockedBucket("fake_bucket", [MockedBlob("example.mp4", exists=False)]) return fs @pytest.fixture def mocked_splitter(example_audio) -> FFmpegAudioSplitter: mocked_splitter = mock.Mock(FFmpegAudioSplitter()) mocked_splitter.split.return_value = example_audio return mocked_splitter @pytest.fixture def mocked_sr_model( example_transcript_raw, example_transcript_words, example_transcript_sentences ) -> GoogleCloudSRModel: # Create basic sr model # It doesn't matter what file is put in the init as long as it's a file # The speech client is configured during the transcribe function mocked_model = mock.Mock(GoogleCloudSRModel(example_transcript_raw)) mocked_model.transcribe.return_value = SRModelOutputs( example_transcript_raw, 99.0, example_transcript_words, example_transcript_sentences ) return mocked_model @pytest.fixture def mocked_caption_sr_model( example_transcript_raw, example_transcript_sentences, example_transcript_speaker_turns ) -> WebVTTSRModel: mocked_model = mock.Mock(WebVTTSRModel("any-new-turn-pattern")) mocked_model.transcribe.return_value = SRModelOutputs( raw_path=example_transcript_raw, confidence=1, timestamped_sentences_path=example_transcript_sentences, timestamped_speaker_turns_path=example_transcript_speaker_turns ) return mocked_model @pytest.fixture def mocked_webvtt_sr_model_with_request_exception() -> WebVTTSRModel: mocked_model = mock.Mock(WebVTTSRModel("any-new-turn-pattern")) # Mock RequestException for transcribe with invalid-caption-uri mocked_model.transcribe.side_effect = RequestException("invalid-caption-uri") return mocked_model @pytest.fixture def example_seattle_routes(data_dir): return data_dir / "example_seattle_routes.html" @pytest.fixture def example_seattle_route(data_dir): return data_dir / "example_seattle_route.html" class RequestReturn: def __init__(self, content: Union[str, Path]): if isinstance(content, Path): with open(content, "r") as read_in: if content.suffix == ".json": content = json.load(read_in) else: content = read_in.read() self.content = content def raise_for_status(self): pass def json(self): return self.content @pytest.fixture def loaded_legistar_requests(legistar_data_dir) -> List[RequestReturn]: mocked_responses = [] for i in range(len(list(legistar_data_dir.glob("request_*")))): mocked_responses.append(RequestReturn(list(legistar_data_dir.glob(f"request_{i}_*"))[0])) return mocked_responses def test_event_pipeline_single_sr_model_initialization( empty_creds_db, empty_creds_fs, mocked_sr_model, example_config ): # Configure all mocks with mock.patch("cdptools.dev_utils.load_custom_object.load_custom_object") as mock_loader: mock_loader.side_effect = [ SeattleEventScraper(), empty_creds_db, empty_creds_fs, FFmpegAudioSplitter(), mocked_sr_model ] # Initialize pipeline pipeline = mock.Mock(EventGatherPipeline(example_config)) # Test EventGatherPipeline's single sr_model initialization assert hasattr(pipeline, "sr_model") assert not hasattr(pipeline, "caption_sr_model") def test_event_pipeline_mixture_sr_model_initialization( empty_creds_db, empty_creds_fs, mocked_sr_model, mocked_caption_sr_model, example_config_with_mixture_sr_model ): # Configure all mocks with mock.patch("cdptools.dev_utils.load_custom_object.load_custom_object") as mock_loader: mock_loader.side_effect = [ SeattleEventScraper(), empty_creds_db, empty_creds_fs, FFmpegAudioSplitter(), mocked_caption_sr_model, mocked_sr_model ] # Initialize pipeline pipeline = mock.Mock(EventGatherPipeline(example_config_with_mixture_sr_model)) # Test EventGatherPipeline's mixture sr_model initialization assert hasattr(pipeline, "sr_model") assert hasattr(pipeline, "caption_sr_model") def test_event_pipeline_no_backfill( empty_creds_db, empty_creds_fs, mocked_sr_model, example_config, example_seattle_routes ): # Configure all mocks with mock.patch("cdptools.dev_utils.load_custom_object.load_custom_object") as mock_loader: mock_loader.side_effect = [ SeattleEventScraper(), empty_creds_db, empty_creds_fs, FFmpegAudioSplitter(), mocked_sr_model ] # Initialize pipeline pipeline = mock.Mock(EventGatherPipeline(example_config)) with mock.patch("requests.get") as mock_requests: # No backfill means only routes will be gathered because example html file only includes past events. mock_requests.side_effect = [RequestReturn(example_seattle_routes)] pipeline.run() # This should never be ran because example html files only include past events. pipeline.process_event.assert_not_called() def test_event_gather_pipeline_with_backfill( empty_creds_db, empty_creds_fs, mocked_splitter, mocked_sr_model, example_config, example_seattle_routes, example_seattle_route, example_video, loaded_legistar_requests ): # Configure all mocks with mock.patch("cdptools.dev_utils.load_custom_object.load_custom_object") as mock_loader: mock_loader.side_effect = [ SeattleEventScraper(backfill=True), empty_creds_db, empty_creds_fs, mocked_splitter, mocked_sr_model ] # Initialize pipeline pipeline = EventGatherPipeline(example_config) with mock.patch("requests.get") as mock_requests: # Backfill means we need to mock every request call including all the legistar calls mock_requests.side_effect = [ RequestReturn(example_seattle_routes), RequestReturn(example_seattle_route), *loaded_legistar_requests ] # Mock the video copy with mock.patch("cdptools.file_stores.FileStore._external_resource_copy") as mocked_resource_copy: mocked_resource_copy.return_value = example_video # Interupt calls to os.remove because it deletes test data otherwise with mock.patch("os.remove"): pipeline.run() def test_event_pipeline_sr_model_failure( empty_creds_db, empty_creds_fs, mocked_splitter, mocked_sr_model, mocked_webvtt_sr_model_with_request_exception, example_config_with_mixture_sr_model, example_seattle_routes, example_seattle_route, example_video, loaded_legistar_requests ): # Configure all mocks with mock.patch("cdptools.dev_utils.load_custom_object.load_custom_object") as mock_loader: mock_loader.side_effect = [ SeattleEventScraper(backfill=True), empty_creds_db, empty_creds_fs, mocked_splitter, mocked_webvtt_sr_model_with_request_exception, mocked_sr_model ] # Initialize pipeline pipeline = EventGatherPipeline(example_config_with_mixture_sr_model) with mock.patch("requests.get") as mock_requests: # Backfill means we need to mock every request call including all the legistar calls mock_requests.side_effect = [ RequestReturn(example_seattle_routes), RequestReturn(example_seattle_route), *loaded_legistar_requests ] # Mock the video copy with mock.patch("cdptools.file_stores.FileStore._external_resource_copy") as mocked_resource_copy: mocked_resource_copy.return_value = example_video # Interupt calls to os.remove because it deletes test data otherwise with mock.patch("os.remove"): pipeline.run() # Check if sr_model is called, because caption_sr_model raised RequestException pipeline.sr_model.transcribe.assert_called() def test_event_pipeline_caption_sr_model_success( empty_creds_db, empty_creds_fs, mocked_splitter, mocked_sr_model, mocked_caption_sr_model, example_config_with_mixture_sr_model, example_seattle_routes, example_seattle_route, example_video, loaded_legistar_requests ): # Configure all mocks with mock.patch("cdptools.dev_utils.load_custom_object.load_custom_object") as mock_loader: mock_loader.side_effect = [ SeattleEventScraper(backfill=True), empty_creds_db, empty_creds_fs, mocked_splitter, mocked_caption_sr_model, mocked_sr_model ] # Initialize pipeline pipeline = EventGatherPipeline(example_config_with_mixture_sr_model) with mock.patch("requests.get") as mock_requests: # Backfill means we need to mock every request call including all the legistar calls mock_requests.side_effect = [ RequestReturn(example_seattle_routes), RequestReturn(example_seattle_route), *loaded_legistar_requests ] # Mock the video copy with mock.patch("cdptools.file_stores.FileStore._external_resource_copy") as mocked_resource_copy: mocked_resource_copy.return_value = example_video # Interupt calls to os.remove because it deletes test data otherwise with mock.patch("os.remove"): pipeline.run() # Check if sr_model is not called, because caption_sr_model return valid outputs pipeline.sr_model.transcribe.assert_not_called() ``` #### File: tests/sr_models/test_google_cloud_sr_model.py ```python import random from unittest import mock import pytest from google.cloud import speech_v1p1beta1 as speech from cdptools.sr_models.google_cloud_sr_model import GoogleCloudSRModel @pytest.fixture def example_audio(data_dir): return data_dir / "example_audio.wav" @pytest.fixture def fake_creds_path(data_dir): return data_dir / "fake_creds.json" class FakeRecognizeTime: def __init__(self, seconds): self.seconds = seconds self.nanos = 0 class FakeRecognizeWord: def __init__(self, word, start_time, end_time): self.word = word self.start_time = FakeRecognizeTime(start_time) self.end_time = FakeRecognizeTime(end_time) class FakeRecognizeAlternative: def __init__(self, words): self.words = words self.confidence = random.random() class FakeRecognizeResult: def __init__(self, alternatives): self.alternatives = alternatives class FakeRecognizeResults: results = [ FakeRecognizeResult([ FakeRecognizeAlternative([ FakeRecognizeWord("Hello", 0.0, 0.6), FakeRecognizeWord("everyone", 0.7, 1.1), FakeRecognizeWord("and", 1.2, 1.4), FakeRecognizeWord("thank", 1.5, 1.7), FakeRecognizeWord("you", 1.8, 1.9), FakeRecognizeWord("for", 2.0, 2.1), FakeRecognizeWord("coming.", 2.2, 2.4) ]) ]), FakeRecognizeResult([ FakeRecognizeAlternative([ FakeRecognizeWord("Will", 3.0, 3.1), FakeRecognizeWord("the", 3.2, 3.3), FakeRecognizeWord("clerk", 3.4, 3.5), FakeRecognizeWord("begin", 3.6, 3.7), FakeRecognizeWord("by", 3.8, 3.9), FakeRecognizeWord("taking", 4.0, 4.1), FakeRecognizeWord("roll.", 4.2, 4.3), ]) ]) ] class FakeRecognizeOperation: def __init__(self): self._result = FakeRecognizeResults def result(self, **kwargs): return self._result def test_google_cloud_sr_model_init(fake_creds_path): GoogleCloudSRModel(fake_creds_path) @pytest.mark.parametrize("phrases, cleaned", [ (None, []), ([], []), ([str(i) for i in range(600)], [str(i) for i in range(500)]), ( ["this will be chunked to less than one hundred characters because that is the maximum allowed by google " "cloud speech recognition"], ["this will be chunked to less than one hundred characters because that is the maximum allowed by"] ), (["-" * 100] * 200, ["-" * 100] * 100) ]) def test_clean_phrases(phrases, cleaned): assert GoogleCloudSRModel._clean_phrases(phrases) == cleaned def test_google_cloud_transcribe(fake_creds_path, example_audio, tmpdir): with mock.patch("google.cloud.speech_v1p1beta1.SpeechClient.from_service_account_json") as mocked_client_init: mocked_client = mock.Mock(spec=speech.SpeechClient) mocked_client.long_running_recognize.return_value = FakeRecognizeOperation() mocked_client_init.return_value = mocked_client sr_model = GoogleCloudSRModel(fake_creds_path) sr_model.transcribe(str(example_audio), tmpdir / "raw.json", tmpdir / "words.json", tmpdir / "sentences.json") ```
{ "source": "joshuaipwork/ideolog-backend", "score": 2 }
#### File: ideolog/base/views.py ```python from django.shortcuts import render import sys sys.path.insert(0, './model/') from VoteClassifier import VoteClassifier from django.http import JsonResponse import json import os import pickle from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfTransformer from sklearn.naive_bayes import MultinomialNB from sklearn.pipeline import Pipeline from threading import Thread import pandas as pd HOUSE_TABLE = pd.read_csv('../data/house_table.csv') # Create your views here. def predict(request): statement = request.GET.get('statement', '') chamber = request.GET.get('chamber', '') members = HOUSE_TABLE[(HOUSE_TABLE['chamber'] == chamber) & (HOUSE_TABLE['iteration'] == 116)] if chamber not in {'house', 'senate'}: responseData = {'ok': False, 'msg': "No valid chamber supplied"} else: names = list(members['name']) state = list(members['state']) clf = VoteClassifier() votes = clf.classify_all_legislators(statement) responseData = { 'ok': True, 'statement': statement, 'chamber': chamber, 'results': [ { 'name': name, 'state': state[i], 'agree': float(votes.get(name, 0.5)) } for i, name in enumerate(names) ] } return JsonResponse(responseData) def senators(): pass ```
{ "source": "JoshuaJB/respc-union-dashboard", "score": 3 }
#### File: JoshuaJB/respc-union-dashboard/data_scraper.py ```python from bs4 import BeautifulSoup from flask import Flask from scrapers import production_history import requests import json #Setup BASE_URL = "https://www.sunnyportal.com/Templates/PublicPage.aspx?page=6d806835-63f7-4577-ab4c-8116de0ec142" app = Flask(__name__) def scrapeData(url): response = requests.get(url) return BeautifulSoup(response.content,"html.parser") def getData(html): titles = ("currentPower", "energy", "co2Avoided") page = html.find_all("span", class_="mainValueAmount") values = [None for x in range(3)] for x in range(3): values[x] = page[x].get_text() return dict(zip(titles,values)) def writeOut(data): with open("data.json", "w") as writeJSON: json.dump(data,writeJSON) @app.route("/") def handleRequest(): return json.dumps(getData(scrapeData(BASE_URL))) page = scrapeData(BASE_URL) data = getData(page) writeOut(data) print(production_history.getHistory(BASE_URL)) # Start Flask #if __name__ == "__main__": # app.run() ``` #### File: respc-union-dashboard/scrapers/production_history.py ```python from bs4 import BeautifulSoup from urllib import parse import requests enablement_data = "\ &ctl00%24ContentPlaceHolder1%24PublicPagePlaceholder1%24PageUserControl%24ctl00%24PublicPageLoadFixPage%24UserControlShowEnergyAndPower1%24SelectedIntervalID=5\ &ctl00%24ContentPlaceHolder1%24PublicPagePlaceholder1%24PageUserControl%24ctl00%24PublicPageLoadFixPage%24UserControlShowEnergyAndPower1%24PlantName=UNC%20Student%20Union\ &ctl00%24ContentPlaceHolder1%24PublicPagePlaceholder1%24PageUserControl%24ctl00%24PublicPageLoadFixPage%24UserControlShowEnergyAndPower1%24UseIntervalHour=1\ &ctl00%24ContentPlaceHolder1%24PublicPagePlaceholder1%24PageUserControl%24ctl00%24PublicPageLoadFixPage%24UserControlShowEnergyAndPower1%24_datePicker%24textBox=8%2F31%2F2016\ &ctl00%24ContentPlaceHolder1%24PublicPagePlaceholder1%24PageUserControl%24ctl00%24PublicPageLoadFixPage%24UserControlShowEnergyAndPower1%24DatePickerYear=2016\ &ctl00%24ContentPlaceHolder1%24PublicPagePlaceholder1%24PageUserControl%24ctl00%24PublicPageLoadFixPage%24UserControlShowEnergyAndPower1%24ImageButtonValues.x=8\ &ctl00%24ContentPlaceHolder1%24PublicPagePlaceholder1%24PageUserControl%24ctl00%24PublicPageLoadFixPage%24UserControlShowEnergyAndPower1%24ImageButtonValues.y=16" TABLE_BASE_URL = "https://www.sunnyportal.com/Templates/PublicChartValues.aspx?ID=00000000-0000-0000-0000-000000000000&splang=en-US&plantTimezoneBias=-240&name=" TABLE_SETTINGS_PREFIX = "ctl00$ContentPlaceHolder1$PublicPagePlaceholder1$PageUserControl$ctl00$PublicPageLoadFixPage$UserControlShowEnergyAndPower1$" def getHistory(base_url):#, interval_type, plant_name = "UNC Student Union", use_interval_hour = "1", start_date = "8/31/2016"): # Create session on the server base_page = requests.get(base_url) base_parser = BeautifulSoup(base_page.content, "html.parser") # Set server-side state table_settings = [("__VIEWSTATE", base_parser.find(id = "__VIEWSTATE")["value"])] pre_table_settings = [("ImageButtonValues.x", "8"), ("ImageButtonValues.y", "16"), ("SelectedIntervalID", 5), ("PlantName", "UNC Student Union"), ("UseIntervalHour", 1), ("_datePicker$textBox", "8/31/2016"), ("DatePickerYear","2016")] #table_settings = map(lambda setting: (TABLE_SETTING_PREFIX + setting[0], setting[1]), pre_table_settings) table_settings.extend(map(lambda setting: (TABLE_SETTINGS_PREFIX + setting[0], setting[1]), pre_table_settings)) requests.post(base_url, parse.urlencode(table_settings), None, cookies = base_page.cookies, headers = {"Content-Type": "application/x-www-form-urlencoded; charset=UTF-8"}) # Get table of history data detail_response = requests.get(TABLE_BASE_URL + "&endTime=12/31/2016%2011:59:59%20PM", cookies = base_page.cookies) # Perform some questionable parsing table_parser = BeautifulSoup(detail_response.content, "html.parser") table_entries = table_parser.find_all("td")[2:] stripped_table_entries = list(map(lambda entry: entry.string, table_entries)) data = zip(stripped_table_entries[::2], stripped_table_entries[1::2]) # Return a list of (date, reading) tuples return list(data) def prefixSettings (settings_list): for idx in range(len(settings_list)): pre_table_settings[idx] = (TABLE_SETTINGS_PREFIX + pre_table_settings[idx][0], pre_table_settings[idx][1]) ```
{ "source": "joshuajcarson/ControlAI", "score": 3 }
#### File: ControlAI/control_ai/game_state.py ```python class GameState(object): def __init__(self, player, action, card_name): self.action = action self.player = player self.card_name = card_name ``` #### File: ControlAI/test/test_deck_data_is_complete.py ```python import unittest import control_ai.game_manager class TestGameManager(unittest.TestCase): def setUp(self): self.class_under_test = control_ai.game_manager.GameManager() def test_game_manager_deck_has_four_rift_cards(self): cards = self.class_under_test.deck.query("name == 'rift'") self.assertEqual(4, len(cards)) self.assertEqual(4, len(cards.query("fuel_cells == 1"))) self.assertEqual(4, len(cards.query("type == 'silver'"))) def test_game_manager_deck_has_four_exotic_matter_cards(self): cards = self.class_under_test.deck.query("name == 'exotic_matter'") self.assertEqual(4, len(cards)) self.assertEqual(4, len(cards.query("fuel_cells == 2"))) self.assertEqual(4, len(cards.query("type == 'silver'"))) def test_game_manager_deck_has_four_deflector_cards(self): cards = self.class_under_test.deck.query("name == 'deflector'") self.assertEqual(4, len(cards)) self.assertEqual(4, len(cards.query("fuel_cells == 3"))) self.assertEqual(4, len(cards.query("type == 'silver'"))) def test_game_manager_deck_has_four_wormhole_cards(self): cards = self.class_under_test.deck.query("name == 'wormhole'") self.assertEqual(4, len(cards)) self.assertEqual(4, len(cards.query("fuel_cells == 4"))) self.assertEqual(4, len(cards.query("type == 'bronze'"))) def test_game_manager_deck_has_four_anomaly_cards(self): cards = self.class_under_test.deck.query("name == 'anomaly'") self.assertEqual(4, len(cards)) self.assertEqual(4, len(cards.query("fuel_cells == 4"))) self.assertEqual(4, len(cards.query("type == 'bronze'"))) def test_game_manager_deck_has_four_rewind_cards(self): cards = self.class_under_test.deck.query("name == 'rewind'") self.assertEqual(4, len(cards)) self.assertEqual(4, len(cards.query("fuel_cells == 5"))) self.assertEqual(4, len(cards.query("type == 'bronze'"))) def test_game_manager_deck_has_four_reactor_cards(self): cards = self.class_under_test.deck.query("name == 'reactor'") self.assertEqual(4, len(cards)) self.assertEqual(4, len(cards.query("fuel_cells == 5"))) self.assertEqual(4, len(cards.query("type == 'silver'"))) def test_game_manager_deck_has_four_dark_energy_cards(self): cards = self.class_under_test.deck.query("name == 'dark_energy'") self.assertEqual(4, len(cards)) self.assertEqual(4, len(cards.query("fuel_cells == 6"))) self.assertEqual(4, len(cards.query("type == 'bronze'"))) def test_game_manager_deck_has_four_future_shift_cards(self): cards = self.class_under_test.deck.query("name == 'future_shift'") self.assertEqual(4, len(cards)) self.assertEqual(4, len(cards.query("fuel_cells == 6"))) self.assertEqual(4, len(cards.query("type == 'bronze'"))) def test_game_manager_deck_has_four_singularity_cards(self): cards = self.class_under_test.deck.query("name == 'singularity'") self.assertEqual(4, len(cards)) self.assertEqual(4, len(cards.query("fuel_cells == 7"))) self.assertEqual(4, len(cards.query("type == 'bronze'"))) def test_game_manager_deck_has_four_antimatter_cards(self): cards = self.class_under_test.deck.query("name == 'antimatter'") self.assertEqual(4, len(cards)) self.assertEqual(4, len(cards.query("fuel_cells == 8"))) self.assertEqual(4, len(cards.query("type == 'bronze'"))) def test_game_manager_deck_has_four_time_stop_cards(self): cards = self.class_under_test.deck.query("name == 'time_stop'") self.assertEqual(4, len(cards)) self.assertEqual(4, len(cards.query("fuel_cells == 9"))) self.assertEqual(4, len(cards.query("type == 'bronze'"))) def test_game_manager_deck_has_four_nova_cards(self): cards = self.class_under_test.deck.query("name == 'nova'") self.assertEqual(4, len(cards)) self.assertEqual(4, len(cards.query("fuel_cells == 10"))) self.assertEqual(4, len(cards.query("type == 'bronze'"))) ```
{ "source": "joshuajcarson/gym-scythe", "score": 3 }
#### File: gym-scythe/scythe_automa_ai/scythe_board_creator.py ```python import numpy as np import pandas as pd from scythe_automa_ai.scythe_faction_creator import SAXONY, ALBION TYPE = 'type' IDENTIFIER = 'identifier' TUNNEL = 'tunnel' HOME_BASE = 'home_base' TOP_LEFT_RIVER = 'top_left_river' TOP_RIGHT_RIVER = 'top_right_river' LEFT_RIVER = 'left_river' RIGHT_RIVER = 'right_river' BOTTOM_LEFT_RIVER = 'bottom_left_river' BOTTOM_RIGHT_RIVER = 'bottom_right_river' MOUNTAIN = 'mountain' U_CORD = 'u' V_CORD = 'v' STARTING_BOARD = pd.DataFrame(np.array([[-4, 7, HOME_BASE, SAXONY, "", "", "", "", "", "", ""], [1, 0, HOME_BASE, ALBION, "", "", "", "", "", "", ""], [0, 3, MOUNTAIN, "", 'True', "", "", "True", "", "True", ""]]), columns=[U_CORD, V_CORD, TYPE, IDENTIFIER, TUNNEL, TOP_LEFT_RIVER, TOP_RIGHT_RIVER, LEFT_RIVER, RIGHT_RIVER, BOTTOM_LEFT_RIVER, BOTTOM_RIGHT_RIVER]) STARTING_BOARD[U_CORD] = pd.to_numeric(STARTING_BOARD[U_CORD]) STARTING_BOARD[V_CORD] = pd.to_numeric(STARTING_BOARD[V_CORD]) STARTING_BOARD[TUNNEL] = STARTING_BOARD[TUNNEL].astype('bool') STARTING_BOARD[TOP_LEFT_RIVER] = STARTING_BOARD[TOP_LEFT_RIVER].astype('bool') STARTING_BOARD[TOP_RIGHT_RIVER] = STARTING_BOARD[TOP_RIGHT_RIVER].astype('bool') STARTING_BOARD[LEFT_RIVER] = STARTING_BOARD[LEFT_RIVER].astype('bool') STARTING_BOARD[RIGHT_RIVER] = STARTING_BOARD[RIGHT_RIVER].astype('bool') STARTING_BOARD[BOTTOM_LEFT_RIVER] = STARTING_BOARD[BOTTOM_LEFT_RIVER].astype('bool') STARTING_BOARD[BOTTOM_RIGHT_RIVER] = STARTING_BOARD[BOTTOM_RIGHT_RIVER].astype('bool') STARTING_BOARD = STARTING_BOARD.set_index([U_CORD, V_CORD]) class ScytheBoard(): def __init__(self): self.tiles = STARTING_BOARD.copy() ```
{ "source": "joshua-jd-lee/BitcoinExchangeFH", "score": 3 }
#### File: befh/core/runner.py ```python import logging import multiprocessing as mp from datetime import datetime LOGGER = logging.getLogger(__name__) class Runner: """Runner. """ def __init__(self, config, is_debug, is_cold): """Constructor. """ self._config = config self._is_debug = is_debug self._is_cold = is_cold self._exchanges = {} self._handlers = {} def load(self): """Load. """ LOGGER.info('Loading runner') handlers_configuration = self._config.handlers handlers = self.create_handlers( handlers_configuration=handlers_configuration, is_debug=self._is_debug, is_cold=self._is_cold) self._handlers = handlers exchanges_configuration = self._config.subscriptions exchanges = self.create_exchanges( exchanges_configuration=exchanges_configuration, handlers=handlers, is_debug=self._is_debug, is_cold=self._is_cold) self._exchanges = exchanges def run(self): """Run. """ LOGGER.info('Start running the feed handler') processes = [] for name, handler in self._handlers.items(): LOGGER.info('Running handler %s', name) process = mp.Process(target=handler.run) process.start() processes.append(process) for name, exchange in self._exchanges.items(): LOGGER.info('Running exchange %s', name) if len(self._exchanges) > 1: process = mp.Process(target=exchange.run) process.start() processes.append(process) else: exchange.run() LOGGER.info('Joining all the processes') for process in processes: process.join() def archive(self, date): """Archive. """ date = datetime.strptime(date, '%Y-%m-%d') LOGGER.info('Archiving the tables with date %s', date) processes = [] for name, handler in self._handlers.items(): LOGGER.info('Running handler %s', name) process = mp.Process(target=handler.run) process.start() processes.append(process) for exchange in self._exchanges.values(): for name, instrument in exchange.instruments.items(): for handler in exchange.handlers.values(): handler.rotate_table( table=instrument, last_datetime=date, allow_fail=True) LOGGER.info('Closing the handlers') for handler in self._handlers.values(): handler.prepare_close() LOGGER.info('Joining all the processes') for process in processes: process.join() LOGGER.info('Archived the tables with date %s', date) @staticmethod def create_exchange( exchange_name, subscription, handlers, is_debug, is_cold): """Create exchange. """ try: from befh.exchange.websocket_exchange import WebsocketExchange exchange = WebsocketExchange( name=exchange_name, config=subscription, is_debug=is_debug, is_cold=is_cold) exchange.load(handlers=handlers) except ImportError as error: LOGGER.info( 'Cannot load websocket exchange %s and fall into ' 'REST api exchange', exchange_name) from befh.exchange.rest_api_exchange import RestApiExchange exchange = RestApiExchange( name=exchange_name, config=subscription, is_debug=is_debug, is_cold=is_cold) exchange.load(handlers=handlers) return exchange @staticmethod def create_exchanges( exchanges_configuration, handlers, is_debug, is_cold): """Create exchanges. """ exchanges = {} for exchange_name, subscription in exchanges_configuration.items(): exchange = Runner.create_exchange( exchange_name=exchange_name, subscription=subscription, handlers=handlers, is_debug=is_debug, is_cold=is_cold) exchanges[exchange_name] = exchange return exchanges @staticmethod def create_handler(handler_name, handler_parameters, is_debug, is_cold): """Create handler. """ LOGGER.info('Creating handler %s', handler_name) handler_name = handler_name.lower() if handler_name == "sql": from befh.handler import SqlHandler handler = SqlHandler( is_debug=is_debug, is_cold=is_cold, **handler_parameters) elif handler_name == "zmq": from befh.handler import ZmqHandler handler = ZmqHandler( is_debug=is_debug, is_cold=is_cold, **handler_parameters) else: raise NotImplementedError( 'Handler %s is not implemented' % handler_name) handler.load(queue=mp.Queue()) return handler @staticmethod def create_handlers(handlers_configuration, is_debug, is_cold): """Create handlers. """ handlers = {} for handler_name, handler_para in handlers_configuration.items(): handlers[handler_name] = Runner.create_handler( handler_name=handler_name, handler_parameters=handler_para, is_debug=is_debug, is_cold=is_cold) return handlers ``` #### File: befh/handler/sql_handler.py ```python import logging from datetime import datetime from sqlalchemy import ( create_engine, Table, Column, Integer, String, Numeric, MetaData) from .rotate_handler import RotateHandler LOGGER = logging.getLogger(__name__) class SqlHandler(RotateHandler): """Sql handler. """ def __init__(self, connection, **kwargs): """Constructor. """ super().__init__(**kwargs) self._connection = connection self._engine = None @property def engine(self): """Engine. """ return self._engine @property def queue(self): """Queue. """ return self._queue def load(self, queue): """Load. """ super().load(queue=queue) self._engine = create_engine(self._connection) def create_table(self, table_name, fields, **kwargs): """Create table. """ assert self._engine, "Engine is not initialized" # Check if the table exists if table_name in self._engine.table_names(): if self._is_cold: self._engine.execute( 'delete table {table_name}'.format( table_name=table_name)) LOGGER.info( 'Table %s is deleted in cold mode', table_name) else: LOGGER.info('Table %s is created', table_name) return LOGGER.info('Creating table %s', table_name) columns = [] for field_name, field in fields.items(): columns.append(self._create_column( field_name=field_name, field=field)) meta_data = MetaData() Table(table_name, meta_data, *columns) meta_data.create_all(self._engine) LOGGER.info('Created table %s', table_name) def insert(self, table_name, fields): """Insert. """ assert self._engine, "Engine is not initialized" fields = [ (k, v) for k, v in fields.items() if not v.is_auto_increment] fields = list(zip(*fields)) column_names = (','.join(fields[0])) values = (','.join([str(f) for f in fields[1]])) sql_statement = ( "insert into {table_name} ({column_names}) values " "({values})").format( table_name=table_name, column_names=column_names, values=values) self._engine.execute(sql_statement) def rename_table(self, from_name, to_name, fields=None, keep_table=True): """Rename table. """ from alembic.migration import MigrationContext from alembic.operations import Operations # Refresh the connection again self._engine = create_engine(self._connection) conn = self._engine.connect() ctx = MigrationContext.configure(conn) op = Operations(ctx) op.rename_table(from_name, to_name) if keep_table: assert fields is not None, ( "Fields must be provided to create the table") self.create_table( table_name=from_name, fields=fields) @staticmethod def _create_column(field_name, field): """Create column. """ field_params = {} if field.field_type is int: field_type = Integer elif field.field_type is str: field_type = String(field.field_length) elif field.field_type is float: field_type = Numeric( precision=field.size, scale=field.decimal) elif field.field_type is datetime: field_type = String(26) else: raise NotImplementedError( 'Field type {type} not implemented'.format( type=field.field_type)) if field.is_key: field_params['primary_key'] = True if field.is_auto_increment: field_params['autoincrement'] = True return Column(field_name, field_type, **field_params) def _should_rerun(self, element, exception): """Handle exception. """ if element.allow_fail: LOGGER.warn( 'Execution failed on element %s (%s)', element, str(exception)) return element.should_rerun if element.should_rerun: return True else: return False elif 'MySQL server has gone away' in str(exception): # Only for MySQL case: # Shuold rerun on MySQL server gone return True else: raise ``` #### File: befh/handler/zmq_handler.py ```python import logging from datetime import datetime import zmq from .handler import Handler LOGGER = logging.getLogger(__name__) class ZmqHandler(Handler): """Zmq handler. """ def __init__(self, connection, **kwargs): """Constructor. """ super().__init__(**kwargs) self._connection = connection self._context = zmq.Context() self._socket = None def load(self, queue): """Load. """ super().load(queue=queue) LOGGER.info('Binding connection %s as a publisher', self._connection) def create_table(self, table_name, fields, **kwargs): """Create table. """ assert self._socket, "Socket is not initialized" def insert(self, table_name, fields): """Insert. """ assert self._socket, "Socket is not initialized" native_fields = { k: self.serialize(v) for k, v in fields.items() if not v.is_auto_increment} data = { "table_name": table_name, "data": native_fields } self._socket.send_json(data) @staticmethod def serialize(value): """Serialize value. """ if isinstance(value.value, datetime): return str(value) return value.value def run(self): """Run. """ # The socket has to be initialized here due to pyzmq #1232 # https://github.com/zeromq/pyzmq/issues/1232 self._socket = self._context.socket(zmq.PUB) self._socket.bind(self._connection) super().run() ``` #### File: tests/zmq/zmq_publisher.py ```python from time import sleep import zmq PORT = 9123 def main(): """Main. """ context = zmq.Context() socket = context.socket(zmq.PUB) print('Binding port %s' % PORT) socket.bind("tcp://*:%s" % PORT) while True: socket.send(b"a abc") sleep(1) if __name__ == '__main__': main() ```
{ "source": "joshuajharris/alfred-can-i-stream-it", "score": 2 }
#### File: joshuajharris/alfred-can-i-stream-it/stream.py ```python import sys from workflow import Workflow, ICON_WEB, web def main(wf): if wf.update_available: wf.add_item("An update is available!", autocomplete='workflow:update', valid=False) # The Workflow instance will be passed to the function # you call from `Workflow.run`. Not so useful, as # the `wf` object created in `if __name__ ...` below is global. # # Your imports go here if you want to catch import errors (not a bad idea) # or if the modules/packages are in a directory added via `Workflow(libraries=...)` # Get args from Workflow, already in normalized Unicode # Get query from Alfred if len(wf.args): query = wf.args[0] else: query = None params = dict(movieId=query, attributes='1', mediaType='streaming') url = 'http://www.canistream.it/services/query' r = web.get(url, params) r.raise_for_status() results = r.json() if len(results) > 0: for key, value in results.iteritems(): wf.add_item(title=value['friendlyName'], subtitle=str('View on ' + value['friendlyName']), uid=value['external_id'], arg=value['direct_url'], valid=True, icon='images/' + key + '.png') else: wf.add_item('No streaming options available.') # # Send output to Alfred. You can only call this once. # Well, you *can* call it multiple times, but Alfred won't be listening # any more... wf.send_feedback() if __name__ == '__main__': # Create a global `Workflow` object wf = Workflow() # update_settings={ # 'github_slug': '', # 'version': 'v1.0.0' # }) # Call your entry function via `Workflow.run()` to enable its helper # functions, like exception catching, ARGV normalization, magic # arguments etc. sys.exit(wf.run(main)) ```
{ "source": "joshuajharris/dotfiles", "score": 2 }
#### File: workflows/user.workflow.2E020B45-B449-45A0-A753-DD2F58A2AA27/slackfred-files.py ```python import sys import argparse from workflow import Workflow, web, PasswordNotFound def slack_keys(): wf_password = Workflow() try: slack_keys = wf_password.get_password('slack_api_key') except PasswordNotFound: wf.add_item(title='No API key set. Please run slt', valid=False) wf.send_feedback() return 0 keys = slack_keys.split(",") return keys def slack_files(keys): files_list = [] for key in keys: api_key = str(key) slack_auth = web.get('https://slack.com/api/auth.test?token=' + api_key + '&pretty=1').json() if slack_auth['ok'] is False: wf.add_item('Authentication failed.' 'Try saving your API key again', valid=False) wf.send_feedback() break else: files = web.get('https://slack.com/api/files.list?token=' + api_key + '&count=20&pretty=1').json() for file in files['files']: if 'initial_comment' in file: files_list.append({'name': file['name'], 'id': file['id'], 'url': file['permalink'], 'title': file['title'], 'filetype': file['filetype'], 'initial_comment': file['initial_comment'], 'comment': file['initial_comment']['comment']}) else: files_list.append({'name': file['name'], 'id': file['id'], 'url': file['url'], 'title': file['title'], 'filetype': file['filetype']}) return files_list def search_slack_files(files): elements = [] elements.append(files['name']) return u' '.join(elements) def main(wf): parser = argparse.ArgumentParser() parser.add_argument('query', nargs='?', default=None) args = parser.parse_args(wf.args) query = args.query def wrapper(): return slack_files(keys=slack_keys()) files_to_list = wf.cached_data('files', wrapper, max_age=120) if query: files_to_list = wf.filter(query, files_to_list, key=search_slack_files) for files in files_to_list: if 'initial_comment' in files_to_list: wf.add_item(title=files['name'], subtitle=files['comment'], arg=files['url'], valid=True) else: wf.add_item(title=files['name'], arg=files['url'], valid=True) wf.send_feedback() if __name__ == u"__main__": wf = Workflow() sys.exit(wf.run(main)) ``` #### File: workflows/user.workflow.2E020B45-B449-45A0-A753-DD2F58A2AA27/slackfred-snooze.py ```python import sys import argparse from workflow import Workflow, web, PasswordNotFound import json def slack_keys(): wf = Workflow() try: slack_keys = wf.get_password('slack_api_key') except PasswordNotFound: wf.add_item(title='No API key set. Please run slt', valid=False) wf.send_feedback() return 0 keys = slack_keys.split(",") return keys def slack_list(keys): wf = Workflow() slack_snooze = [] for key in keys: api_key = str(key) slack_auth = web.get('https://slack.com/api/auth.test?token=' + api_key + '&pretty=1').json() if slack_auth['ok'] is False: wf.add_item(title='Authentication failed. Check your API key', valid=False) wf.send_feedback() break else: slack_dnd = web.get('https://slack.com/api/dnd.info?token={token}&pretty=1'.format(token=api_key)).json() if slack_dnd['snooze_enabled'] is True: slack_snooze.append({'team': slack_auth['team'], 'status': 'Snoozed'}) else: slack_snooze.append({'team': slack_auth['team'], 'status': 'Active'}) return slack_snooze def search_slack_names(slack_list): elements = [] elements.append(slack_list['team']) name_sort = sorted(elements, key=len) return u' '.join(name_sort) def main(wf): parser = argparse.ArgumentParser() parser.add_argument('--snooze', dest='snooze', nargs='?', default=None) parser.add_argument('query', nargs='?', default=60) args = parser.parse_args(wf.args) if args.snooze: query = args.snooze carrot = query.find('>') team = query[7:(carrot-1)] snooze_time = query[carrot+2:] for key in slack_keys(): api_key = str(key) slack_auth = web.get('https://slack.com/api/auth.test?token=' + api_key + '&pretty=1').json() if slack_auth['ok'] is True and slack_auth['team'] == team: if snooze_time != '0': dnd_url = 'https://slack.com/api/dnd.setSnooze?token={0}&num_minutes={1}'.format(api_key, snooze_time) web.get(dnd_url) else: dnd_url = 'https://slack.com/api/dnd.endSnooze?token={0}'.format(api_key) web.get(dnd_url) if len(wf.args): query = wf.args[0] def wrapper(): return slack_list(keys=slack_keys()) slack_snooze = wf.cached_data('slacksnooze', wrapper, max_age=5) if query: slack_snooze = wf.filter(query, slack_snooze, key=search_slack_names) if len(slack_snooze) == 0: wf.add_item(title='Enter time in minutes', arg=query, valid=True) else: for team in slack_snooze: wf.add_item(title='{0} -- Status: {1}'.format(team['team'], team['status']), autocomplete='Snooze {0} > '.format(team['team']), arg=query, valid=True) wf.send_feedback() if __name__==u"__main__": wf = Workflow() sys.exit(wf.run(main)) ```
{ "source": "joshua-jin/algorithm-campus", "score": 4 }
#### File: algorithm-campus/lulu/a_b_problem.py ```python class Solution: """ @param a: The first integer @param b: The second integer @return: The sum of a and b """ # Actually both of these methods fail to work in Python # because Python supports infinite integer # Non-recursive def aplusb(self, a, b): # write your code here, try to do it without arithmetic operators. while b != 0: carry = a & b a = a ^ b b = carry << 1 return a # Recursive def aplusb(self, a, b): carry = a & b result = a ^ b return result if carry == 0 else self.aplusb(result, carry << 1) ``` #### File: algorithm-campus/lulu/add_two_numbers.py ```python class Solution: # @param l1: the first list # @param l2: the second list # @return: the sum list of l1 and l2 def addLists(self, l1, l2): head = l1 carry = 0 # write your code here while l1 is not None and l2 is not None: l1.val += l2.val + carry carry = l1.val / 10 l1.val = l1.val % 10 if l1.next is None and l2.next is not None: l1.next = ListNode(0) last = l1 l1 = l1.next if l2.next is None and l1 is not None: l2.next = ListNode(0) l2 = l2.next if carry == 1: last.next = ListNode(1) return head ``` #### File: algorithm-campus/lulu/binary_tree_paths.py ```python class Solution: # @param {TreeNode} root the root of the binary tree # @return {List[str]} all root-to-leaf paths def binaryTreePaths(self, root): # Write your code here if root is None: return [] paths = [] path = '' self.find_path(root, paths, path) return paths def find_path(self, root, paths, path): if root.left is None and root.right is None: path += str(root.val) paths.append(path) else: path += str(root.val) + '->' if root.left is not None: self.find_path(root.left, paths, path) if root.right is not None: self.find_path(root.right, paths, path) ``` #### File: algorithm-campus/lulu/count_and_say.py ```python class Solution: # @param {int} n the nth # @return {string} the nth sequence def countAndSay(self, n): # Write your code here say = '1' for x in xrange(0, n-1): tmp = '' count = 0 former = say[0] for i in say: if i == former: count += 1 else: tmp += str(count) + former count = 1 former = i tmp += str(count) + former say = tmp return say ``` #### File: algorithm-campus/lulu/fibonacci.py ```python class Solution: # @param n: an integer # @return an integer f(n) def fibonacci(self, n): # write your code here a, b = 0, 1 for i in range(1, n): a, b = b, a + b return a ``` #### File: algorithm-campus/lulu/flip-bits.py ```python class Solution: """ @param a, b: Two integer return: An integer """ def bitSwapRequired(self, a, b): # write your code here return self.countOnes(a^b) def countOnes(self, num): # write your code here counter = 0 a = 1 for i in range(0, 32): digit = num & a if digit != 0: counter += 1 a *= 2 return counter ``` #### File: algorithm-campus/lulu/length-of-last-word.py ```python class Solution: # @param {string} s A string # @return {int} the length of last word def lengthOfLastWord(self, s): # Write your code here if s == '': return 0 return len(s.split()[-1]) ```
{ "source": "joshuajonah/feincms-elephantblog", "score": 2 }
#### File: testapp/tests/test_templatetags.py ```python from __future__ import absolute_import, unicode_literals from django.template.loader import render_to_string from django.test.testcases import TestCase from .factories import EntryFactory, create_entries, create_category class TemplateTagsTest(TestCase): def test_templatetags(self): entries = create_entries(EntryFactory) category = create_category(title='Category 1') create_category(title='Category 2') entries[0].categories.add(category) entries[1].is_featured = True entries[1].save() html = render_to_string('test_templatetags.html', {}) self.assertIn( '<p>categories:Category 1,</p>', html) self.assertIn( '<p>categories+empty:Category 1,Category 2,</p>', html) self.assertIn( '<p>months:10.12,08.12,</p>', html) self.assertIn( '<p>entries:Eintrag 1,Entry 1,</p>', html) self.assertIn( '<p>entries+featured:Eintrag 1,</p>', html) self.assertIn( '<p>entries+category0:Entry 1,</p>', html) self.assertIn( '<p>entries+category1:</p>', html) self.assertIn( '<p>entries+limit:Eintrag 1,</p>', html) ```
{ "source": "joshuajonah/feincms-navigation", "score": 2 }
#### File: joshuajonah/feincms-navigation/admin.py ```python from django.contrib import admin from django.contrib.contenttypes.models import ContentType from django.core.urlresolvers import reverse from django.http import HttpResponseRedirect def add_to_navigation(modeladmin, request, queryset): selected = request.POST.getlist(admin.ACTION_CHECKBOX_NAME) ct = ContentType.objects.get_for_model(queryset.model) return HttpResponseRedirect("%s?ct=%s&ids=%s&next=%s" % ( reverse('add-to-nav'), ct.pk, ",".join(selected), request.path )) add_to_navigation.short_description = "Add items to navigation" def remove_from_navigation(modeladmin, request, queryset): selected = request.POST.getlist(admin.ACTION_CHECKBOX_NAME) ct = ContentType.objects.get_for_model(queryset.model) return HttpResponseRedirect("%s?ct=%s&ids=%s&next=%s" % ( reverse('remove-from-nav'), ct.pk, ",".join(selected), request.path )) remove_from_navigation.short_description = "Remove items from navigation" ``` #### File: joshuajonah/feincms-navigation/extension.py ```python from __future__ import absolute_import, unicode_literals from django import forms from django.db import models from django.utils.safestring import mark_safe from feincms.module.page.forms import PageAdminForm from feincms import extensions from feincms.module.page.models import Page from mptt.fields import TreeManyToManyField class Extension(extensions.Extension): def handle_model(self): self.model.add_to_class('feincms_navigation', TreeManyToManyField(Page, blank=True, symmetrical=False, help_text='Pages linked to in the navigation of this page.', limit_choices_to={'in_navigation': True}, related_name='fein_nav')) def handle_modeladmin(self, modeladmin): modeladmin.add_extension_options('feincms_navigation') ```
{ "source": "JoshuaJoost/CVIS", "score": 2 }
#### File: JoshuaJoost/CVIS/06_Projektion.py ```python __author__ = "<NAME> (1626034)" __maintainer = __author__ __date__ = "2020-04-27" __version__ = "1.0" __status__ = "Finished" import numpy as np import cv2 ## --- Task 1 Projection # --- Constants Task 1 # focal lenght fx = 460 fy = 460 # Translation of the image main point to adapt to the coordinate system of the image plane cx = 320 cy = 240 # Image resolution imageExercise1 = np.zeros((640, 480)) # 3D Room points roomPoints3D = np.array([[[10],[10],[100]], [[33],[22],[111]], [[100],[100],[1000]], [[20],[-100],[100]]]) # calibration matrix, contains intrinsic parameters k = np.array([[fx,0,cx],[0,fy,cy],[0,0,1]], dtype=np.float32) # World and camera coordinate system are identical extrinsicMatrix = np.concatenate((np.eye(3), np.zeros((3,1))),axis=1) # Projection matrix p = np.dot(k, extrinsicMatrix) # using homegeneous coordinate system # :param arg2: cartesian3DRoomPoint need to be shape 3x1 # :return: return cartesian 2D imageplane point def calc3DRoomPointTo2DPointOnImagePlane(projectionMatrix, cartesian3DRoomPoint): if not len(cartesian3DRoomPoint.shape) == 2 or not cartesian3DRoomPoint.shape[0] == 3 or not cartesian3DRoomPoint.shape[1] == 1: roomPointDim = "" for i in range(len(cartesian3DRoomPoint.shape)): roomPointDim = roomPointDim + str(cartesian3DRoomPoint.shape[i]) if i < len(cartesian3DRoomPoint.shape) - 1: roomPointDim = roomPointDim + "x" pass pass raise ValueError(f"Der kartesische 3D-Raumpunkt muss ein 3x1 Vektor sein, gegeben {roomPointDim}") pass # convert cartesian 3D room point to homogeneous 3D room point homogeneous3DRoomPoint = np.reshape(np.concatenate((np.reshape(cartesian3DRoomPoint, (1,-1)), np.ones((cartesian3DRoomPoint.shape[1],1))), axis=1), (-1,1)) # Calculate 2D homogenuous image plane point homogeneous2DImagePlanePoint = np.dot(p, homogeneous3DRoomPoint) # Convert 2D homogenuous to 2D cartesian point cartesian2DImagePlanePoint = np.zeros((homogeneous2DImagePlanePoint.shape[0] - 1, homogeneous2DImagePlanePoint.shape[1])) for i in range(cartesian2DImagePlanePoint.shape[0]): cartesian2DImagePlanePoint[i] = homogeneous2DImagePlanePoint[i] / homogeneous2DImagePlanePoint[-1] pass return cartesian2DImagePlanePoint pass ## --- Determining the pixel position with own function imagePlanePoints2D = np.zeros((roomPoints3D.shape[0], roomPoints3D.shape[1] - 1, roomPoints3D.shape[2])) for i in range(roomPoints3D.shape[0]): cartesicImagePlanePointCoords = calc3DRoomPointTo2DPointOnImagePlane(p, roomPoints3D[i]) imagePlanePoints2D[i][0] = cartesicImagePlanePointCoords[0] imagePlanePoints2D[i][1] = cartesicImagePlanePointCoords[1] pass print(imagePlanePoints2D) ## --- Determining the pixel position using the openCV function cartesicImagePlanePoint = cv2.projectPoints(np.reshape(np.float32(roomPoints3D[:]), (-1,3)), np.eye(3), np.zeros((1,3)), k, None) #print(cartesicImagePlanePoint[0]) # own and cv2 projection identical ## --- Liegen alle Pixel im Bild? # No Pixel 4 is too low on the y-axis and therefore lies outside the image plane ## --- Was fällt bei den Bildpunkten von X1 und X3 auf? # Pixel X1 and X3 are projected on the same spot of the image plane ```
{ "source": "JoshuaJoost/GNN_SS20", "score": 2 }
#### File: Aufgaben/abgabe2/neuronalNetwork.py ```python __authors__ = "<NAME> (1813064), <NAME> (1713179), <NAME> (1626034)" # maintainer = who fixes buggs? __maintainer = __authors__ __date__ = "2020-04-23" __version__ = "1.0" __status__ = "Ready" ##--- TODO # - [optional]: importieren und exportieren des Neuronalen Netzes (um es speichern und laden zu können) # kernel imports import numpy as np import scipy.special import types import random import math # own data imports import constants from constants import inputNeurons, biasNeurons, hiddenNeurons, outputNeurons, activationFunction, activationFunctionDerived_1, learningRate from constants import errorfunction from constants import inputLayerLabel, hiddenLayerLabel, outputLayerLabel import ownFunctions import neuronalNetworkLayer as nnl import ownTests import view class neuronalNetwork: # :param2: inputLayerArray: shape(1,numberOfInputNeurons) [0] = BiasNeurons, [1] = InputNeurons # :param3: hiddenLayerNDIMArray: shape(numberOfHiddenLayers, 2) [x][0] = NumberOfBiasNeurons, [x][1] = NumberOfNeurons # :param4: outputLayerArray: shape(numberOfOutputNeurons) [0] = NumberOfOutputNeurons def __init__(self, inputLayerArray, hiddenLayerNDIMArray, outputLayerArray): # object variables self.errorValues = np.empty(shape=1) # set in backpropagation process self.errorValues = np.delete(self.errorValues, 0) ## --- Generate and connect layer self.neuronalNetworkStructure = np.empty(1 + hiddenLayerNDIMArray.shape[0] + 1, dtype=object) #self.neuronalNetworkConnections = None # create inputlayer self.neuronalNetworkStructure[0] = nnl.neuronalNetworkLayer(inputLayerArray[0], inputLayerArray[1], inputLayerLabel, isInputLayer=True) # create hiddenLayer for i in range(hiddenLayerNDIMArray.shape[0]): self.neuronalNetworkStructure[i + 1] = nnl.neuronalNetworkLayer(hiddenLayerNDIMArray[i][0], hiddenLayerNDIMArray[i][1], hiddenLayerLabel + " (" + str(i+1) + ")") pass # create outputLayer self.neuronalNetworkStructure[-1] = nnl.neuronalNetworkLayer(0, outputLayerArray[0], outputLayerLabel, isOutputLayer=True) self.__connectLayers() self.__initialiseWeights() pass def __connectLayers(self): for i in range(self.neuronalNetworkStructure.shape[0] - 1): self.neuronalNetworkStructure[i].connectTo(self.neuronalNetworkStructure[i+1]) pass pass def __initialiseWeights(self): for i in range(self.neuronalNetworkStructure.shape[0] - 1): self.neuronalNetworkStructure[i].setWeights(generateRandomWeights=True) pass pass def __str__(self): outputNeuronalNetworkStructure = "" for i in range(self.neuronalNetworkStructure.shape[0]): outputNeuronalNetworkStructure += self.neuronalNetworkStructure[i].__str__() + "\n" if not isinstance(self.neuronalNetworkStructure[i].getLayerWeights(), type(None)): outputNeuronalNetworkStructure += str(self.neuronalNetworkStructure[i].getLayerWeights()) + "\n" pass pass return outputNeuronalNetworkStructure pass # forwarding function neuronal network # :param input: type = np.array, shape = 3 [x, y, targetValue] or shape = 2 [x, y] def forwarding(self, input): #print(input) for layer in range(self.neuronalNetworkStructure.size): # set values of input layer if self.neuronalNetworkStructure[layer].getIsInputLayer(): if input.shape[0] == 2: # input: shape [x, y] self.neuronalNetworkStructure[layer].setLayerInputs(input[:]) pass elif input.shape[0] == 3: # input: shape [x, y, targetValue] # target value is not considered self.neuronalNetworkStructure[layer].setLayerInputs(input[:-1]) pass else: raise ValueError("Der forwarding Funktion muss ein Array des Shape 2 (x,y) oder 3 (x,y,targetValue) übergeben werden. Übergebener shape: " + str(input.shape[0])) pass pass # set values of hidden and output layer (in the same way) else: self.neuronalNetworkStructure[layer].setLayerInputs(np.dot(self.neuronalNetworkStructure[layer - 1].getLayerNeuronsAndBiasOutputValues().T, self.neuronalNetworkStructure[layer - 1].getLayerWeights())[0]) pass pass return self.neuronalNetworkStructure[-1].getLayerNeuronsAndBiasOutputValues() pass # :param2: labeldTrainData: Data must have the shape (numberOfTrainingData, numberOfInputValues + 1), numberOfInputValues = numberOfInputNeurons def trainWithlabeldData(self, labeldTrainData): if len(labeldTrainData.shape) != 2: raise ValueError("Als Eingabe wird ein 2Dim Array erwartet") pass elif labeldTrainData.shape[1] < self.neuronalNetworkStructure[0].numberOfNeurons + 1: # +1 because of the label errorMsg = "Eingegebene Werte müsse der Anzahl an Neuronen (+1 für das Label) entsprechen, hier: shape Array der Daten zum Formwarden " + str(input.shape[1]) + ", Anzahl der InputNeuronen " + str(self.neuronalNetworkStructure[0].numberOfNeurons) raise ValueError(errorMsg) pass for trainData in range(labeldTrainData.shape[0]): # forwarding output = self.forwarding(labeldTrainData[trainData]) # backpropagation # calculate and set delta value for i in range(self.neuronalNetworkStructure.shape[0] - 1): # output layer if i == 0: for outputNeuronI in range(self.neuronalNetworkStructure[-1 - i].getNumberOfNeurons()): networkInputOutputneuronI = self.neuronalNetworkStructure[-1 - i].getLayerNeurons()[outputNeuronI].getInput() # calc error error = labeldTrainData[trainData][2] - output[outputNeuronI] # save error self.errorValues = np.append(self.errorValues, error) # calc delta value deltaOutputNeuronI = activationFunctionDerived_1(networkInputOutputneuronI) * error # set delta value self.neuronalNetworkStructure[-1 - i].getLayerNeurons()[outputNeuronI].setDelta(deltaOutputNeuronI) pass pass # hidden layer else: for neuron in range(self.neuronalNetworkStructure[-1 -i].getLayerNeurons().size - self.neuronalNetworkStructure[-1 -i].getNumberOfBiasNeurons()): networkInputHiddenneuronI = self.neuronalNetworkStructure[-1 - i].getLayerNeurons()[neuron + self.neuronalNetworkStructure[-1 - i].getNumberOfBiasNeurons()].getInput() deltaHiddenNeuronI = activationFunctionDerived_1(networkInputHiddenneuronI) * (np.dot(self.neuronalNetworkStructure[-1 - i].getLayerWeights()[neuron + self.neuronalNetworkStructure[-1 - i].getNumberOfBiasNeurons()],self.neuronalNetworkStructure[-1 - i + 1].getLayerDeltavalueMatrix())) # set delta value self.neuronalNetworkStructure[-1 - i].getLayerNeurons()[neuron + self.neuronalNetworkStructure[-1 - i].getNumberOfBiasNeurons()].setDelta(deltaHiddenNeuronI) pass pass pass # calculate and set new weights for i in range(self.neuronalNetworkStructure.shape[0] - 1): # calculate the delta value of the weights deltaWeights = learningRate * (np.dot(self.neuronalNetworkStructure[-1 - i].getLayerDeltavalueMatrix(), self.neuronalNetworkStructure[-1 - i - 1].getLayerNeuronsAndBiasOutputValues().T)) newWeights = self.neuronalNetworkStructure[-1 - i -1].getLayerWeights() + deltaWeights.T self.neuronalNetworkStructure[-1 - i -1].setWeights(useSpecificWeights = True, specificWeightsArray = newWeights) pass pass pass def preparePlotData_Error(self, dataDivisor = 1000): numberOfData = int(self.errorValues.size / dataDivisor) if numberOfData == 0 or self.errorValues.size % dataDivisor > 0: numberOfData += 1 pass plotData = np.zeros([numberOfData]) elementTranslation = 0 for i in range(plotData.size): startIndexPos_ErrorGroup = i * dataDivisor + elementTranslation endIndexPos_ErrorGroup = (i + 1) * dataDivisor if i+1 == plotData.size: endIndexPos_ErrorGroup = self.errorValues.size pass plotData[i] = np.median(self.errorValues[startIndexPos_ErrorGroup:endIndexPos_ErrorGroup]) if math.isnan(plotData[i]): plotData[i] = self.errorValues[-1] pass elementTranslation = 1 pass return plotData pass pass ``` #### File: Aufgaben/abgabe2/neuron.py ```python __authors__ = "<NAME> (1813064), <NAME> (1713179), <NAME> (1626034)" # maintainer = who fixes buggs? __maintainer = __authors__ __date__ = "2020-05-01" __version__ = "1.0" __status__ = "Ready" # kernel imports import numpy as np # own data imports from constants import activationFunction class neuron: def __init__(self, layerName, layerNeuronNumber, input = 0, isBiasNeuron = False, isInputNeuron = False, isOutputNeuron=False, activationFunc = activationFunction): # init neuron via params self.isBiasNeuron = isBiasNeuron self.isInputNeuron = isInputNeuron self.isOutputNeuron = isOutputNeuron self.input = input self.activationFunc = activationFunc self.layerName = layerName self.layerNeuronNumber = layerNeuronNumber # further init self.neuronName = "" # backpropagation self.delta = 0.0 # if isBias initialise neuron as bias neuron if isBiasNeuron: self.neuronName = "Bias" + str(self.layerNeuronNumber) self.input = 1 pass else: self.neuronName = "Neuron" + str(self.layerNeuronNumber) pass pass def getOutput(self): if self.isBiasNeuron: return 1 pass elif self.isInputNeuron: return self.input pass else: return self.activationFunc(self.input) pass pass def __str__(self): return self.neuronName + ": " + str(self.getOutput()) pass def setInput(self, newInput): self.input = newInput pass def getInput(self): return self.input pass def setDelta(self, newDeltaValue): self.delta = newDeltaValue pass def getDelta(self): return self.delta pass pass ```
{ "source": "joshua-kairu/python-slightly-tame", "score": 2 }
#### File: python-slightly-tame/think-python-chapter-3/lyrics.py ```python def repeat_lyrics(): print_lyrics() print_lyrics() def print_lyrics(): print ("Ding dong bell") print ("Kitty's in the well") repeat_lyrics() ```
{ "source": "joshuakarbi/Course-Bidding-Optimization", "score": 3 }
#### File: Course-Bidding-Optimization/backend/optimize.py ```python from pulp import * import pandas as pd from scipy.stats import norm import json import re def course_with_name(name, dataframe): index = 0 for row in data.values: if name in row[0]: return index else: index += 1 return None # Load in data and config parameters = json.load(open("config/parameters.json", "r")) data = pd.read_csv("data/courses.csv") prob = LpProblem("Course Bidding Problem",LpMaximize) # Define probability matrix, row is course, column is probability probabilities = [] row = 0 for course in data.values: probabilities.append(list()) for i in range(parameters["Points to Bid"]): mean = (course[1] + course[2])/2 range_dif = course[2] - course[1] stddev = range_dif/6 distribution = norm(mean, stddev) probabilities[row].append(distribution.cdf(i)) row += 1 NUM_COURSES = len(probabilities) print("Number of possible courses: ", len(probabilities)) print("Solving . . .") # Define decision variables should_bid = list() # 2D matrix of binaries binary if a course should be bid on row_num = 0 for row in probabilities: should_bid.append(list()) col_num = 0 for col in row: should_bid[-1].append(LpVariable(str(row_num)+"-should-bid-"+str(col_num)+"?", cat="Binary") ) col_num += 1 row_num += 1 # list of possible bid values (0 -> 200 for example) possible_bids = range(parameters["Points to Bid"]) possible_bid_2D = [] for i in range(NUM_COURSES): possible_bid_2D.append(possible_bids) print("Possible bid decisions: ", len(possible_bid_2D[0]) * len(possible_bid_2D)) # Affinity parameters affinities = data['Affinity'] # "Happiness Function" to maximize tuples_list = [] for i in range(NUM_COURSES): for j in range(parameters["Points to Bid"]): tuples_list.append((i, j)) prob += lpSum( [affinities[i] * should_bid[i][j] * probabilities[i][j] for (i, j) in tuples_list] ) # Add constraints # 1. Maximum points available to bid with prob += lpSum( [should_bid[i][j] * possible_bid_2D[i][j] for (i, j) in tuples_list] ) <= parameters["Points to Bid"] # 2. Required courses must be bid on for req_course in parameters["Required Courses"]: prob += lpSum( [possible_bid_2D[i][j] * should_bid[course_with_name(req_course, data)][j] for (i, j) in tuples_list] ) >= 1 # 3. Must bid on enough courses to graduate prob += lpSum( [should_bid[i][j] for (i, j) in tuples_list] ) >= parameters["Courses Required to Bid On"] # 4. Can only chose 1 optimal bid per course for row in should_bid: prob += lpSum(row) <= 1 # Solve the linear problem prob.solve() print("Status:", LpStatus[prob.status]) # Save result in output_files with open('output_files/bidding_strategy.csv', 'w+') as out_file: out_file.write("Course,Optimal Bid\n") for v in prob.variables(): if v.varValue == 1.0: print(v.name) course_number = int(v.name[:v.name.find("_") ]) numbers = re.findall(r'\d+', v.name) out_file.write(str(data.values[course_number][0]) + "," + numbers[1] + "\n") print("Value of Objective = ", value(prob.objective)) ```
{ "source": "joshuakarjala/mandrill-to-rds", "score": 2 }
#### File: joshuakarjala/mandrill-to-rds/main.py ```python import os import sys import datetime import json import psycopg2 from psycopg2.extras import Json from bottle import get, post, run, request from bottle import jinja2_template as template # Connection credentials DB_HOST = os.environ.get('DB_HOST') if not DB_HOST: print >> sys.stderr, 'Missing environment variable DB_HOST' exit(1) DB_NAME = os.environ.get('DB_NAME') if not DB_NAME: print >> sys.stderr, 'Missing environment variable DB_NAME' exit(1) # make sure we have AWS credentials and a S3 Bucket DB_USER = os.environ.get('DB_USER') if not DB_USER: print >> sys.stderr, 'Missing environment variable DB_USER' exit(1) DB_PASSWORD = os.environ.get('DB_PASSWORD') if not DB_PASSWORD: print >> sys.stderr, 'Missing environment variable DB_PASSWORD' exit(1) TABLE_NAME = os.environ.get('TABLE_NAME') if not TABLE_NAME: print >> sys.stderr, 'Missing environment variable TABLE_NAME' exit(1) def write_to_db(data): today = datetime.datetime.now() # establish connection to RDS conn = psycopg2.connect("host=%s dbname=%s user=%s password=%s" % (DB_HOST, DB_NAME, DB_USER, TABLE_NAME)) cur = conn.cursor() cur.execute("insert into %s (jsondata) values (%s)", TABLE_NAME, [Json(data)]) conn.commit() cur.close() conn.close() @post('/inbound_mail') def inbound_mail(): post_data = request.POST event_list = json.loads(post_data.get('mandrill_events')) for data in event_list: write_to_db(data) return 'OK' @get('/setup') def setup(): url = request.url.replace('/setup', '/inbound_mail') return template('This is your hook url, copy it:<h3>{{url}}</h3>', url=url) run(host='0.0.0.0', port=int(os.environ.get('PORT', 8010))) ```
{ "source": "joshuakarjala/redisq-py", "score": 3 }
#### File: redisq-py/redisq/task.py ```python import time import json class Task(): def __init__(self, data, task_time=None): if not isinstance(data, str): raise TypeError("Data must be a JSON string ") self.data = data if not task_time: self.time = int(time.time()) else: self.time = task_time def get_json(self): return json.dumps([0, self.time, "{{placeholder}}", 0]).replace("\"{{placeholder}}\"", self.data) ```
{ "source": "Joshuakemboi/Politic_API", "score": 3 }
#### File: tests/v1/test_party_record_views.py ```python from .base_test import * import unittest from io import BytesIO testapp = app.test_client() class TestParty(unittest.TestCase): def party(self,party_name , party_headquarters_address ,party_logo_url): return testapp.post('/api/v1/party',data=dict(party_name=party_name, party_headquarters_address = party_headquarters_address, party_logo_url = party_logo_url),follow_redirects=True) def test_valid_inputs(self): response = self.party(party_name='jubilee',party_headquarters_address = "jossgmail",party_logo_url = "lion") self.assertEqual(response.status_code,201) def put_party(self,party_name , party_headquarters_address ,party_logo_url): return testapp.put('/api/v1/party/1',data=dict(party_name=party_name, party_headquarters_address = party_headquarters_address, party_logo_url = party_logo_url),follow_redirects=True) def test_put_valid_inputs(self): response = self.put_party(party_name='jubilee',party_headquarters_address = "<EMAIL>",party_logo_url = "lion") self.assertEqual(response.status_code,201) def test_put_taken_party_name(self): response = self.put_party(party_name='taken_party',party_headquarters_address = "<EMAIL>",party_logo_url = "lion") self.assertEqual(response.status_code,400) def test_put_taken_hq_address(self): response = self.put_party(party_name='jubilee',party_headquarters_address = "taken_hq",party_logo_url = "lion") self.assertEqual(response.status_code,400) def party_missing_fields(self): return testapp.post('/api/v1/party',data=dict(),follow_redirects=True) def test_party_missing_fields(self): response = self.party_missing_fields() self.assertEqual(response.status_code,400) def party_edit_missing_fields(self): return testapp.put('/api/v1/party/1000',data=dict(),follow_redirects=True) def test_party_edit_missing_fields(self): response = self.party_edit_missing_fields() self.assertEqual(response.status_code,400) def get_party(self): return testapp.get('/api/v1/party/1000') def test_get_party(self): response = self.get_party() self.assertEqual(response.status_code, 200) def get_missing_party(self): return testapp.get('/api/v1/party/999') def test_get_missing_party(self): response = self.get_missing_party() self.assertEqual(response.status_code, 400) def get_parties(self): return testapp.get('/api/v1/party') def test_get_parties(self): response = self.get_parties() self.assertEqual(response.status_code, 200) def delete_party(self): return testapp.delete('/api/v1/party/100') def test_delete_party(self): response = self.delete_party() self.assertEqual(response.status_code,201) def delete_missing_party(self): return testapp.delete('/api/v1/party/99') def test_delete_missing_party(self): response = self.delete_missing_party() self.assertEqual(response.status_code,404) ```
{ "source": "joshua-kent/PyTkAppMng", "score": 2 }
#### File: included/dummyfour/module.py ```python from tkinter import * from tkinter.ttk import * try: from .defs import * except: from defs import * import os.path class init: def __init__(self, root): self.root = root self.root.title("Scientific Calculator") self.root.geometry("300x600+20+20") self.icon = os.path.join(os.path.dirname(os.path.realpath(__file__)), "icon.png") self.root.iconphoto(False, ImageTk.PhotoImage(file = self.icon)) Grid.rowconfigure(self.root, 0, weight = 1) Grid.columnconfigure(self.root, 0, weight = 1) self.root.resizable(False, False) style = Style() style.configure("calc_frame.TFrame", theme = "winnative") style.configure("calc_buttons.TButton", theme = "winnative", relief = "flat") self.frame = Frame(self.root, style = "calc_frame.TFrame") # maybe add loading screen input_box = Label(self.frame, background = "#FFFFFF") input_box.grid(row = 0, column = 0, columnspan = 9, sticky = E+W) Grid.columnconfigure(self.frame, 0, weight = 1) input_text = Label(self.frame, text = "in place", background = "#FFFFFF") input_text.grid(row = 0, column = 8, sticky = N+S+E) separator_1 = Separator(self.frame, orient = HORIZONTAL) separator_1.grid(column = 0, row = 0, columnspan = 9, sticky = N+E+W) separator_2 = Separator(self.frame, orient = HORIZONTAL) separator_2.grid(column = 0, row = 0, columnspan = 9, sticky = S+E+W) i = 1 for y in range(5): Grid.rowconfigure(self.frame, y + 1, weight = 1) for x in range(8): Grid.columnconfigure(self.frame, x + 1, weight = 1) latex_text = to_latex(buttons_dict[i][0], 15) button = Button(self.frame, image = latex_text, compound = CENTER) button.img = latex_text button.grid(row = y + 1, column = x + 1, sticky = N+S+E+W) i += 1 self.frame.grid(sticky = S) if __name__ == "__main__": root = Tk() init(root) root.mainloop() ``` #### File: included/SciCalc/module.py ```python import tkinter as tk from tkinter import ttk from PIL import ImageTk, Image import warnings import os.path if __name__ == "__main__": raise Exception("This module cannot be run directly. Please run from PyTkAppMng/main.py") else: import packages.typemathtext as tmt from .defs import * class init: current_string = "" def __init__(self, root): self.root = root self.root.title("Scientific Calculator") self.root.geometry("300x600+20+20") self.icon = os.path.join(os.path.dirname(os.path.realpath(__file__)), "icon.png") self.root.iconphoto(False, ImageTk.PhotoImage(file = self.icon)) tk.Grid.rowconfigure(self.root, 0, weight = 1) tk.Grid.columnconfigure(self.root, 0, weight = 1) self.root.resizable(False, False) style = ttk.Style() style.configure("calc_frame.TFrame", theme = "winnative") style.configure("calc_buttons.TButton", theme = "winnative", relief = "flat") self.frame = ttk.Frame(self.root, style = "calc_frame.TFrame") input_box = tk.Label(self.frame, background = "#FFFFFF") input_box.grid(row = 0, column = 0, columnspan = 9, sticky = "ew") tk.Grid.columnconfigure(self.frame, 0, weight = 1) self.input_text = tk.Label(self.frame, text = "", background = "#FFFFFF", anchor = "e") self.input_text.grid(row = 0, column = 0, columnspan = 9, sticky = "nsew") separator_1 = ttk.Separator(self.frame, orient = tk.HORIZONTAL) separator_1.grid(column = 0, row = 0, columnspan = 9, sticky = "new") separator_2 = ttk.Separator(self.frame, orient = tk.HORIZONTAL) separator_2.grid(column = 0, row = 0, columnspan = 9, sticky = "sew") i = 1 for y in range(5): tk.Grid.rowconfigure(self.frame, y + 1, weight = 1) for x in range(8): tk.Grid.columnconfigure(self.frame, x + 1, weight = 1) latex_text = tmt.to_latex(buttons_dict[i][0], 15) button = ttk.Button(self.frame, image = latex_text, compound = tk.CENTER, command = lambda i=i: self.button_clicked(buttons_dict[i][1])) button.img = latex_text button.grid(row = y + 1, column = x + 1, sticky = "nsew") i += 1 self.frame.grid(sticky = "s") def button_clicked(self, button_text): self.input_text["text"] += button_text # need to add to this if __name__ == "__main__": root = tk.Tk() init(root) root.mainloop() ``` #### File: packages/typemathtext/typemath.py ```python import warnings import math import os import json import sympy class typemathtextError(Exception): pass class typemath: r"""Creates an object that can be used for easy-to-use methods to create calculators. It does this by creating methods to convert between Python (sympy) and LaTeX. Furthermore, it creates a pointer that can be used to insert new text (in the custom typemath format) in different places in the text. Parameters: latex (str) -- a string written with LaTeX format. (e.g. "\int 4x^2 dx") Attributes: pointer (int) -- the current position of the pointer This determines where the string will be edited parsed (list) -- a list containing the parsed version of latex_input This is only updated when primary_parse() is called compiled (str) -- a string containing the fully converted version of latex_input into standard Python/sympy format This is only updated when secondary_parse() is called""" _current_dir = os.path.dirname(os.path.realpath(__file__)) _parse_info_dir = os.path.join(_current_dir, "parse_info.json") def __init__(self, latex = None, parsed = None, compiled = None): # edit this to support multiple initial formats if latex is not None: self.latex = latex self.parsed = self.parse() self.compiled = self.compile() elif parsed is not None: self.parsed = parsed self.latex = self.deparse(self.parsed) self.compiled = self.compile(self.parsed) elif compiled is not None: self.compiled = compiled self.parsed = self.decompile(self.compiled) self.latex = self.deparse(self.parsed) try: self.evaluate = eval(self.compile()) except: # the compiled form may currently be incomplete and return an error self.evaluate = None self.pointer = len(self.parsed) def parse(self, text = None, require_dollars = True): r"""Splits a LaTeX math string into its parsed format. This parsed form can be used as a midway point between LaTex and normal Python (sympy) formats. It is also useful for pointers. (e.g '\$frac{1}{2}$' (LaTeX) --> (parse) --> ['\FRAC{', '1', '}', '{', '2', '}'] --> (compile) --> '(1)/(2)' --> (evaluate) --> 0.5) Returns: Returns self.parsed, which is the list that 'primary_parse' has generated.""" original_text = text # this will not change, which lets us determine if the argument was None later on if text == None: text = self.latex # check if the text starts and ends with $ (to confirm it is a LaTeX string) if (text[0], text[-1]) != ("$", "$") and require_dollars: raise typemathtextError("The input text must begin and end with a '$' symbol") # isolate keywords into list output = [] for char in text: if char not in (" ", "$"): output.append(char) # uses parse_info.json to properly combine characters into term output = self.__fixup(output) # connect consecutive numbers, multiply consecutive numbers & variables to create terms output = self.__concatenate_ints(output) # if the original argument for 'text' was None (which means to edit 'parsed' argument instead) if original_text is None: self.parsed = output return output def deparse(self, lst = None): """Converts a parsed list into into a LaTeX string. Parameters: lst (list/None) -- a parsed list (see more info in typemath.parsed help page) Returns: A converted version of the parsed list in LaTeX format. This can make some notation differences, as multiplication signs between numbers and variables that were added during parsing are still present in the string.""" if lst is None: edited_parsed = self.parsed.copy() else: edited_parsed = lst.copy() edited_parsed = self.__reverse_fixup(edited_parsed) edited_parsed.insert(0, "$") edited_parsed.insert(-1, "$") edited_parsed = "".join(edited_parsed) if lst is None: self.latex = edited_parsed return edited_parsed def compile(self, text = None): """Fully converts the parsed text list into a sympy-readable format as a string to be executed. Only the current parsed LaTeX text is compiled. Instead of directly calling this function, it is automatically called when a new typemath instance is initiated, and is also called automatically when the 'typemath.edit' method is called. Returns: This returns the new string and also puts it in the attribute 'compiled'.""" # if text is not set, automatically compile attribute 'parsed' instead if text is None: output = self.parsed.copy() # setting a variable to a list only creates a new reference, not id else: output = text with open(self._parse_info_dir, "r") as f: doc_ = json.load(f) keywords = doc_["keywords"] keywords_get = [item[0] for item in keywords] keywords_set = [item[1] for item in keywords] specials = doc_["specials"] specials_get = [item[0] for item in specials] specials_set =[item[1] for item in specials] for i in range(len(keywords)): output = self.__swap(output, keywords_get[i], keywords_set[i]) # Creates tokens for each special value (that need more work to change) # In format: # {"token_number": (token's value, position)} # token_numbers gives a list of the keys of tokens in order # token_values gives the value that the token represents # token_positions gives a list of the positions of each token in output current_token_number = 1 tokens = {} for i in range(len(output)): if output[i] == "}": tokens[f"{current_token_number}a"] = ("}", i) for k in range(len(output)): t = len(output) - k - 1 token_positions = [item[1] for item in tokens.values()] if (output[t] == "{" or output[t] in specials_set) and t < i: if not token_positions.__contains__(t): tokens[f"{current_token_number}b"] = (output[t], t) break current_token_number += 1 token_numbers = [key for key in tokens.keys()] token_values = [item[0] for item in tokens.values()] token_positions = [item[1] for item in tokens.values()] # convert \frac{a}{b} to (a)/(b) for i in range(len(tokens)): if token_values[i] == "FRAC{": # first { token_1_number = token_numbers[i] token_1 = tokens[token_1_number] token_1_pos = token_1[1] corresponding_token_1_number = token_1_number.replace("b", "a") corresponding_token_1 = tokens[corresponding_token_1_number] # first } corresponding_token_1_pos = corresponding_token_1[1] for k in range(len(token_positions)): if token_positions[k] == corresponding_token_1[1] + 1: if token_values[k] == "{": # second { token_2_number = token_numbers[k] token_2 = tokens[token_2_number] token_2_pos = token_2[1] corresponding_token_2_number = token_2_number.replace("b", "a") corresponding_token_2 = tokens[corresponding_token_2_number] # second } corresponding_token_2_pos = corresponding_token_2[1] break if "corresponding_token_2" in locals(): output[token_1_pos] = "(" output[corresponding_token_1_pos] = ")/" output[token_2_pos] = "(" output[corresponding_token_2_pos] = ")" # join together output and return output = "".join(output) if text is None: self.compiled = output return self.compiled def decompile(self, compiled_string): # need to do return "None" def edit(self, latex_input = None, parsed_input = None, latex_insert = None, parsed_insert = None, abs_pointer = None): r"""Edits LaTeX text by parsing, editing, repositioning the pointer, recompiling. Parameters: latex_input (str/None) -- the LaTeX string that is to be edited. (default: None) If this and 'parsed_input' are both None, then the instance's 'parsed' attribute will automatically be edited. If both this and 'parsed_input' are set, then 'parsed_input' will automatically be used, rather than this. parsed_input (list/None) -- the already parsed list that is to be edited. (default: None) If this and 'latex_input' are both None, then the instance's 'parsed' attribute will automatically be edited. If both this and 'latex_input' are set, then this will automatically be used, rather than 'latex_input'. latex_insert (str/None) -- the LaTeX string to be inserted in. (default: None) If this and 'parsed_insert' are both None, then an error will occur. If you wish to only change the pointer attribute, then use the 'set_pointer' method. If both this and 'parsed_insert' are set, then 'parsed_insert' will automatically be used, rather than this. parsed_insert (list/None) -- the already parsed list that is to be edited. (default: None) If this and 'latex_insert' are both None, then an error will occur. If you wish to only change the pointer attribute, then use the 'set_pointer' method. If both this and 'latex_insert' are set, then this will automatically be used, rather than 'latex_insert'. abs_pointer (int/None) -- the absolute position in the parsed list where the pointer will move to. (default: None) If this value is equal to none, the default will become the 'pointer' attribute of the instance. Returns: The new value of the text in the parsed list format. If no input arguments ('latex_input' and 'parsed_input') are given, then the instance's attributes are also updated, and self.parsed is returned. Example: my_integral = typemath("$\int 4x^2 dx$") -> This gets parsed to ["\int", "4", "*", "x", "**", "2", "dx"] my_integral.edit(latex_insert = "$+4$") As typemath() automatically sets its instance attribute 'pointer' to the length of the parsed text, it will edit the end. In this example, 'pointer' will first equal 7. When edit() is called, "8" will be appended to the end of the 'parsed' attribute, and its 'pointer' attribute will increase by one. All other attributes will be automatically updated with it, which is why this method is useful. Hence, this method results in: my_integral.parsed = ["\int", "4", "*", "x", "**", "2", "dx", "+", "4"] my_integral.compiled = "sympy.integrate(4*sympy.symbols("x")**2, sympy.symbols("x"))+4" my_integral.pointer = 9""" # check value types if latex_input is not None: if not isinstance(latex_input, str): raise typemathtextError("'latex_input' must be either a string or None") if parsed_input is not None: if not isinstance(parsed_input, list): raise typemathtextError("'parsed_input' must be either a list or None") if latex_insert is not None: if not isinstance(latex_insert, str): raise typemathtextError("'latex_insert' must be either a string or None") if parsed_insert is not None: if not isinstance(parsed_insert, list): raise typemathtextError("'parsed_insert' must be either a list or None") if abs_pointer is not None: if not isinstance(abs_pointer, int): raise typemathtextError("'abs_pointer' must be either an integer or None") # equal value warnings if latex_input is not None and parsed_input is not None: warnings.warn("typemathtext: 'latex_input' and 'parsed_input' are both set." "Automatically using 'parsed_input'.") latex_input = None if latex_insert is not None and parsed_insert is not None: warnings.warn("typemathtext: 'latex_insert' and 'parsed_insert' are both set. " "Automatically using 'parsed_insert'.") latex_insert = None if latex_insert is None and parsed_insert is None: raise typemathtextError("Something must be inserted to edit. " "If you wish to move the pointer, " "use the 'set_pointer' method.") # set values reference_self = False if latex_input is not None: parsed_input = self.parse(latex_input) if (latex_input, parsed_input) == (None, None): reference_self = True parsed_input = self.parsed pointer = self.pointer else: if abs_pointer is None: pointer = len(parsed_input) else: pointer = abs_pointer # If a LaTeX string is inserted, parse it first if latex_insert is not None: parsed_insert = self.parse(latex_insert) # As parsed_insert will be a list, insert each of its item to the main list and adjust the pointer for i in parsed_insert: parsed_input.insert(pointer, i) pointer += 1 if abs_pointer is None: self.pointer += 1 # if it is the instance that is edited, adjust accordingly if reference_self: self.parsed = parsed_input self.refresh(self.parsed) return parsed_insert def remove(self, removals = 1, pointer_pos = None): # rename removals r"""Removes a specified amount of items in the 'parsed' attribute. This mimics the behaviour of a calculator, as it should remove one mathematical expression at a time rather than individual characters. Parameters: removals (int/None) -- the amount of items to be removed (default: None) pointer_pos (int/None) -- sets the position of the pointer (default: None) If None, then the object instance's 'pointer' attribute will be used instead. See the typemath object's help page for more information on the pointer. Returns: This method returns the new 'latex' attribute of the instance that was edited. That instance will be updated in accordance with the new changes. Example: expr = typemath(r"$\int 4x dx + 5$") expr.remove(2) Output: "$\int 4x dx$" By default, the pointer position is at the end of the string, this deletes two mathematical objects from it, in this case '5' and '+'. It should be noted that what is returned is a typemath object, not a string, but the output is simply its represented version (its 'latex' attribute). """ # pointer_pos defaults sets it automatically if pointer_pos == None: pointer_pos = self.pointer i = 1 while i <= removals: self.parsed.pop(pointer_pos - 1) pointer_pos -= 1 i += 1 self.pointer = pointer_pos self.refresh(self.parsed) return self.parsed def refresh(self, origin): # adjust other values (for when one changes, so attributes are not desynced) if origin is self.parsed: origin = self.__fixup(origin) self.deparse() self.compile() try: self.evaluate = eval(self.compiled) except: # self.compiled may not have correct syntax and return an error self.evaluate = None # dunders def __add__(self, other): r"""returns a new instance of typemath that adds the value of one typemath object and either another typemath object or a LaTeX string (shown with wrapping dollar signs) If you are looking to reassign a function when adding, use += or edit() Example: expr_1 = typemath(r"$\int 4x dx$") expr_2 = typemath(r"\frac{82}{2}") Input: expr_1 + expr_2 Returns: r"$\int 4x dx + \frac{82}{2}$" However, this is not a string, but the represented (__repr__) version of a new typemath() object, returning its 'latex' attribute.""" temp_typemath_object = typemath(self.latex) if type(other) in (str, int, float): # when added to a string (presumed LaTeX string) or integer temp_typemath_object.edit(latex_insert = f"+{other}") elif type(other) is typemath: # when added to another typemath object temp_typemath_object.edit(latex_insert = "$+$") temp_typemath_object.edit(latex_insert = f"{other.latex}") else: raise TypeError(f"'{type(other)}' is not a valid type for this expression.'") return temp_typemath_object def __iadd__(self, other): """Does the same as __add__, but stores the new object into the first typemath() object, rather than creating a new object See the __add__() method's help page for how this will behave.""" self = self + other def __sub__(self, other): """Does the same as __add__, but subtracts rather than adds See __add__ for more information, as all its specifics still apply.""" temp_typemath_object = typemath(self.latex) if type(other) is str: temp_typemath_object.edit(latex_insert = f"-({other})") elif type(other) in (int, float): temp_typemath_object.edit(latex_insert = f"-{other}") elif type(other) is typemath: temp_typemath_object.edit(latex_insert = "$-($") temp_typemath_object.edit(latex_insert = f"{other.latex}") temp_typemath_object.edit(latex_insert = "$)$") else: raise TypeError(f"'{type(other)}' is not a valid type for this expression.'") return temp_typemath_object def __isub__(self, other): """Does the same as __sub__, but stores the new object into the first typemath() object, rather than creating a new object See the __add__() method's help page for how this will behave.""" self = self - other return self def __repr__(self): """Returns the 'compiled' attribute of the typemath object.""" return self.compiled # internal functions def __concatenate_chars(self, chars, string): # concatenates consecutive items in a string if they match some string # e.g. __concatenate_chars(["h", "e", "l", "l", "o"], "he") returns ["he", "l", "l", "o"] output = chars.copy() for i in range(len(chars)): place_check = "" for k in range(len(string)): try: place_check += output[i + k] except: break if place_check == string: output[i] = string q = len(string) - 1 if len(string) > 2: while q > 0: output.pop(i + 1) q -= 1 return output @staticmethod def __concatenate_ints(lst): # concatenates consecutive numbers, and automatically inserts * for variables next to numbers # e.g. __concatenate_ints(["5", "4", "x"]) returns ["54", "*", "x"] output = [] tuple_list = ('1', '2', '3', '4', '5', '6', '7', '8', '9', '0', 'x', 'y', "math.e", "math.pi") for i in range(len(lst)): try: if lst[i] in tuple_list and lst[i - 1] in tuple_list: if lst[i] in ("x", "y", "math.e", "math.pi"): output.append("*") output.append(lst[i]) else: output[-1] += lst[i] else: output.append(lst[i]) except: output.append(lst[i]) return output def __swap(self, lst, old, new): # __swaps some value with a new one in a list for all instances of that value # e.g. __swap([5, 4, 2, 5], 5, 1) returns [1, 4, 2, 5] - the 5's get replaced with 1 lst = lst.copy() i = 0 for item in lst: if item == old: lst[i] = new i += 1 return lst def __fixup(self, lst): # internal function to join together special values as defined in parse_info.json # this does most of the parsing lst = lst.copy() with open(self._parse_info_dir, "r") as f: doc_ = json.load(f) specials = doc_["specials"] specials_get = [item[0] for item in specials] specials_set = [item[1] for item in specials] keywords = doc_["keywords"] keywords_get = [item[0] for item in keywords] pointouts = doc_["pointouts"] pointouts_get = [item[0] for item in pointouts] pointouts_set = [item[1] for item in pointouts] for i in range(len(specials)): lst = self.__concatenate_chars(lst, specials_get[i]) lst = self.__swap(lst, specials_get[i], specials_set[i]) for i in range(len(keywords)): lst = self.__concatenate_chars(lst, keywords_get[i]) for i in range(len(pointouts)): lst = self.__concatenate_chars(lst, pointouts_get[i]) lst = self.__swap(lst, pointouts_get[i], pointouts_set[i]) return lst def __reverse_fixup(self, lst): # Reverses the __fixup function's swap function # There is no need to reverse __concatenate_chars as it will be # turned into a string anyway in deparse() lst = lst.copy() with open(self._parse_info_dir, "r") as f: doc_ = json.load(f) specials = doc_["specials"] specials_get = [item[0] for item in specials] specials_set = [item[1] for item in specials] pointouts = doc_["pointouts"] pointouts_get = [item[0] for item in pointouts] pointouts_set = [item[1] for item in pointouts] for i in range(len(specials)): lst = self.__swap(lst, specials_set[i], specials_get[i]) for i in range(len(pointouts)): lst = self.__swap(lst, pointouts_set[i], pointouts_get[i]) return lst ```
{ "source": "JoshuaKGoldberg/General-Language-Syntax", "score": 4 }
#### File: General-Language-Syntax/Samples/basic.py ```python def sayHello(): print("Hello world!") def combineStrings(a, b): return a + b # Class Declarations class Point: x = None y = None def __init__(self, x, y): self.x = x self.y = y def setX(self, x): self.x = x def setY(self, y): self.y = y def getX(self): return self.x def getY(self): return self.y def getManhattanTotal(self): return self.x + self.y # Main if __name__ == '__main__': # Basic Usage print("Hello world!") # Basic printing here... # Variables a = "Hello world!" b = 7 c = 11.7 d = True # Operations e = 1 + 2 f = b < c # If Statements if d: print("d is true!") if c < 14: print("c is less than 14!") # While Loops while d: print("d is", d) d = False while c > 3: print("c is", c) c -= 1 # For Loops for i in range(0, 7): print("i plus one is", i + 1) # Calling Functions sayHello() combineStrings("hello", "world") combineStrings("hello" + " ", "world") combineStrings(combineStrings("hello", "world"), "world") # Class Usage g = Point(3, 7) g.setX(4) print(g.getManhattanTotal()) # fin ```
{ "source": "JoshuaKhooWX/IE-ACHE", "score": 3 }
#### File: IE-ACHE/Output/dragonfly_private_Output.py ```python import time import hashlib import random import logging import socket import re, uuid import base64 import os import subprocess from collections import namedtuple from Cryptodome.Cipher import AES from Cryptodome import Random import asn1tools import sys #Compile asn1 file for secret_key asn1_file = asn1tools.compile_files('declaration.asn') #create tcp/ip socket sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) #retrieve local hostname local_hostname = socket.gethostname() #get fully qualified hostname local_fqdn = socket.getfqdn() #get the according ip address ip_address = socket.gethostbyname(local_hostname) #bind socket to port server_address = ('192.168.0.3', 4380) while True: try: sock.connect(server_address) break except ConnectionRefusedError as conn_error: print("Attempting to connect to server...") time.sleep(5) except: # print("Unexpected error", sys.exc_info()[0]) continue print ("Connecting to %s (%s) with %s" % (local_hostname, local_fqdn, ip_address)) logger = logging.getLogger('dragonfly') logger.setLevel(logging.INFO) # create file handler which logs even debug messages fh = logging.FileHandler('dragonfly.log') fh.setLevel(logging.DEBUG) # create console handler with a higher log level ch = logging.StreamHandler() ch.setLevel(logging.DEBUG) # create formatter and add it to the handlers formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') ch.setFormatter(formatter) fh.setFormatter(formatter) # add the handlers to logger logger.addHandler(ch) logger.addHandler(fh) Point = namedtuple("Point", "x y") # The point at infinity (origin for the group law). O = 'Origin' def lsb(x): binary = bin(x).lstrip('0b') return binary[0] def legendre(a, p): return pow(a, (p - 1) // 2, p) def tonelli_shanks(n, p): """ # https://rosettacode.org/wiki/Tonelli-Shanks_algorithm#Python """ assert legendre(n, p) == 1, "not a square (mod p)" q = p - 1 s = 0 while q % 2 == 0: q //= 2 s += 1 if s == 1: return pow(n, (p + 1) // 4, p) for z in range(2, p): if p - 1 == legendre(z, p): break c = pow(z, q, p) r = pow(n, (q + 1) // 2, p) t = pow(n, q, p) m = s t2 = 0 while (t - 1) % p != 0: t2 = (t * t) % p for i in range(1, m): if (t2 - 1) % p == 0: break t2 = (t2 * t2) % p b = pow(c, 1 << (m - i - 1), p) r = (r * b) % p c = (b * b) % p t = (t * c) % p m = i return r class Curve(): """ Mathematical operations on a Elliptic Curve. A lot of code taken from: https://stackoverflow.com/questions/31074172/elliptic-curve-point-addition-over-a-finite-field-in-python """ def __init__(self, a, b, p): self.a = a self.b = b self.p = p def curve_equation(self, x): """ We currently use the elliptic curve NIST P-384 """ return (pow(x, 3) + (self.a * x) + self.b) % self.p def is_quadratic_residue(self, x): """ https://en.wikipedia.org/wiki/Euler%27s_criterion Computes Legendre Symbol. """ return pow(x, (self.p-1) // 2, self.p) == 1 def valid(self, P): """ Determine whether we have a valid representation of a point on our curve. We assume that the x and y coordinates are always reduced modulo p, so that we can compare two points for equality with a simple ==. """ if P == O: return True else: return ( (P.y**2 - (P.x**3 + self.a*P.x + self.b)) % self.p == 0 and 0 <= P.x < self.p and 0 <= P.y < self.p) def inv_mod_p(self, x): """ Compute an inverse for x modulo p, assuming that x is not divisible by p. """ if x % self.p == 0: raise ZeroDivisionError("Impossible inverse") return pow(x, self.p-2, self.p) def ec_inv(self, P): """ Inverse of the point P on the elliptic curve y^2 = x^3 + ax + b. """ if P == O: return P return Point(P.x, (-P.y) % self.p) def ec_add(self, P, Q): """ Sum of the points P and Q on the elliptic curve y^2 = x^3 + ax + b. https://stackoverflow.com/questions/31074172/elliptic-curve-point-addition-over-a-finite-field-in-python """ if not (self.valid(P) and self.valid(Q)): raise ValueError("Invalid inputs") # Deal with the special cases where either P, Q, or P + Q is # the origin. if P == O: result = Q elif Q == O: result = P elif Q == self.ec_inv(P): result = O else: # Cases not involving the origin. if P == Q: dydx = (3 * P.x**2 + self.a) * self.inv_mod_p(2 * P.y) else: dydx = (Q.y - P.y) * self.inv_mod_p(Q.x - P.x) x = (dydx**2 - P.x - Q.x) % self.p y = (dydx * (P.x - x) - P.y) % self.p result = Point(x, y) # The above computations *should* have given us another point # on the curve. assert self.valid(result) return result def double_add_algorithm(self, scalar, P): """ Double-and-Add Algorithm for Point Multiplication Input: A scalar in the range 0-p and a point on the elliptic curve P https://stackoverflow.com/questions/31074172/elliptic-curve-point-addition-over-a-finite-field-in-python """ assert self.valid(P) b = bin(scalar).lstrip('0b') T = P for i in b[1:]: T = self.ec_add(T, T) if i == '1': T = self.ec_add(T, P) assert self.valid(T) return T class Peer: """ Implements https://wlan1nde.wordpress.com/2018/09/14/wpa3-improving-your-wlan-security/ Take a ECC curve from here: https://safecurves.cr.yp.to/ Example: NIST P-384 y^2 = x^3-3x+27580193559959705877849011840389048093056905856361568521428707301988689241309860865136260764883745107765439761230575 modulo p = 2^384 - 2^128 - 2^96 + 2^32 - 1 2000 NIST; also in SEC 2 and NSA Suite B See here: https://www.rfc-editor.org/rfc/rfc5639.txt Curve-ID: brainpoolP256r1 p = A9FB57DBA1EEA9BC3E660A909D838D726E3BF623D52620282013481D1F6E5377 A = 7D5A0975FC2C3057EEF67530417AFFE7FB8055C126DC5C6CE94A4B44F330B5D9 B = 26DC5C6CE94A4B44F330B5D9BBD77CBF958416295CF7E1CE6BCCDC18FF8C07B6 x = 8BD2AEB9CB7E57CB2C4B482FFC81B7AFB9DE27E1E3BD23C23A4453BD9ACE3262 y = 547EF835C3DAC4FD97F8461A14611DC9C27745132DED8E545C1D54C72F046997 q = A9FB57DBA1EEA9BC3E660A909D838D718C397AA3B561A6F7901E0E82974856A7 h = 1 """ def __init__(self, password, mac_address, name): self.name = name self.password = password self.mac_address = mac_address # Try out Curve-ID: brainpoolP256t1 self.p = int('A9FB57DBA1EEA9BC3E660A909D838D726E3BF623D52620282013481D1F6E5377', 16) self.a = int('7D5A0975FC2C3057EEF67530417AFFE7FB8055C126DC5C6CE94A4B44F330B5D9', 16) self.b = int('<KEY>', 16) self.q = int('A9FB57DBA1EEA9BC3E660A909D838D718C397AA3B561A6F7901E0E82974856A7', 16) self.curve = Curve(self.a, self.b, self.p) # A toy curve # self.a, self.b, self.p = 2, 2, 17 # self.q = 19 # self.curve = Curve(self.a, self.b, self.p) def initiate(self, other_mac, k=40): """ See algorithm in https://tools.ietf.org/html/rfc7664 in section 3.2.1 """ self.other_mac = other_mac found = 0 num_valid_points = 0 counter = 1 n = self.p.bit_length() + 64 while counter <= k: base = self.compute_hashed_password(counter) temp = self.key_derivation_function(n, base, 'Dragonfly Hunting And Pecking') seed = (temp % (self.p - 1)) + 1 val = self.curve.curve_equation(seed) if self.curve.is_quadratic_residue(val): if num_valid_points < 5: x = seed save = base found = 1 num_valid_points += 1 logger.debug('Got point after {} iterations'.format(counter)) counter = counter + 1 if found == 0: logger.error('No valid point found after {} iterations'.format(k)) elif found == 1: # https://crypto.stackexchange.com/questions/6777/how-to-calculate-y-value-from-yy-mod-prime-efficiently # https://rosettacode.org/wiki/Tonelli-Shanks_algorithm y = tonelli_shanks(self.curve.curve_equation(x), self.p) PE = Point(x, y) # check valid point assert self.curve.curve_equation(x) == pow(y, 2, self.p) logger.info('[{}] Using {}-th valid Point={}'.format(self.name, num_valid_points, PE)) logger.info('[{}] Point is on curve: {}'.format(self.name, self.curve.valid(PE))) self.PE = PE assert self.curve.valid(self.PE) def commit_exchange(self): """ This is basically Diffie Hellman Key Exchange (or in our case ECCDH) In the Commit Exchange, both sides commit to a single guess of the password. The peers generate a scalar and an element, exchange them with each other, and process the other's scalar and element to generate a common and shared secret. If we go back to elliptic curves over the real numbers, there is a nice geometric interpretation for the ECDLP: given a starting point P, we compute 2P, 3P, . . ., d P = T , effectively hopping back and forth on the elliptic curve. We then publish the starting point P (a public parameter) and the final point T (the public key). In order to break the cryptosystem, an attacker has to figure out how often we “jumped” on the elliptic curve. The number of hops is the secret d, the private key. """ # seed the PBG before picking a new random number # random.seed(time.process_time()) # None or no argument seeds from current time or from an operating # system specific randomness source if available. random.seed() # Otherwise, each party chooses two random numbers, private and mask self.private = random.randrange(1, self.p) self.mask = random.randrange(1, self.p) logger.debug('[{}] private={}'.format(self.name, self.private)) logger.debug('[{}] mask={}'.format(self.name, self.mask)) # These two secrets and the Password Element are then used to construct # the scalar and element: # what is q? # o A point, G, on the elliptic curve, which serves as a generator for # the ECC group. G is chosen such that its order, with respect to # elliptic curve addition, is a sufficiently large prime. # # o A prime, q, which is the order of G, and thus is also the size of # the cryptographic subgroup that is generated by G. # https://math.stackexchange.com/questions/331329/is-it-possible-to-compute-order-of-a-point-over-elliptic-curve # In the elliptic Curve cryptography, it is said that the order of base point # should be a prime number, and order of a point P is defined as k, where kP=O. # Theorem 9.2.1 The points on an elliptic curve together with O # have cyclic subgroups. Under certain conditions all points on an # elliptic curve form a cyclic group. # For this specific curve the group order is a prime and, according to Theo- # rem 8.2.4, every element is primitive. # Question: What is the order of our PE? # the order must be p, since p is a prime self.scalar = (self.private + self.mask) % self.q # If the scalar is less than two (2), the private and mask MUST be # thrown away and new values generated. Once a valid scalar and # Element are generated, the mask is no longer needed and MUST be # irretrievably destroyed. if self.scalar < 2: raise ValueError('Scalar is {}, regenerating...'.format(self.scalar)) P = self.curve.double_add_algorithm(self.mask, self.PE) # get the inverse of res # −P = (x_p , p − y_p ). self.element = self.curve.ec_inv(P) assert self.curve.valid(self.element) # The peers exchange their scalar and Element and check the peer's # scalar and Element, deemed peer-scalar and Peer-Element. If the peer # has sent an identical scalar and Element -- i.e., if scalar equals # peer-scalar and Element equals Peer-Element -- it is sign of a # reflection attack, and the exchange MUST be aborted. If the values # differ, peer-scalar and Peer-Element must be validated. logger.info('[{}] Sending scalar and element to the Peer!'.format(self.name)) logger.info('[{}] Scalar={}'.format(self.name, self.scalar)) logger.info('[{}] Element={}'.format(self.name, self.element)) return self.scalar, self.element def compute_shared_secret(self, peer_element, peer_scalar, peer_mac): """ ss = F(scalar-op(private, element-op(peer-Element, scalar-op(peer-scalar, PE)))) AP1: K = private(AP1) • (scal(AP2) • P(x, y) ◊ new_point(AP2)) = private(AP1) • private(AP2) • P(x, y) AP2: K = private(AP2) • (scal(AP1) • P(x, y) ◊ new_point(AP1)) = private(AP2) • private(AP1) • P(x, y) A shared secret element is computed using one’s rand and the other peer’s element and scalar: Alice: K = rand A • (scal B • PW + elemB ) Bob: K = rand B • (scal A • PW + elemA ) Since scal(APx) • P(x, y) is another point, the scalar multiplied point of e.g. scal(AP1) • P(x, y) is added to the new_point(AP2) and afterwards multiplied by private(AP1). """ self.peer_element = peer_element self.peer_scalar = peer_scalar self.peer_mac = peer_mac assert self.curve.valid(self.peer_element) # If both the peer-scalar and Peer-Element are # valid, they are used with the Password Element to derive a shared # secret, ss: Z = self.curve.double_add_algorithm(self.peer_scalar, self.PE) ZZ = self.curve.ec_add(self.peer_element, Z) K = self.curve.double_add_algorithm(self.private, ZZ) self.k = K[0] logger.info('[{}] Shared Secret ss={}'.format(self.name, self.k)) own_message = '{}{}{}{}{}{}'.format(self.k , self.scalar , self.peer_scalar , self.element[0] , self.peer_element[0] , self.mac_address).encode() H = hashlib.sha256() H.update(own_message) self.token = H.hexdigest() return self.token def confirm_exchange(self, peer_token): """ In the Confirm Exchange, both sides confirm that they derived the same secret, and therefore, are in possession of the same password. """ peer_message = '{}{}{}{}{}{}'.format(self.k , self.peer_scalar , self.scalar , self.peer_element[0] , self.element[0] , self.peer_mac).encode() H = hashlib.sha256() H.update(peer_message) self.peer_token_computed = H.hexdigest() logger.info('[{}] Computed Token from Peer={}'.format(self.name, self.peer_token_computed)) logger.info('[{}] Received Token from Peer={}'.format(self.name, peer_token)) # Pairwise Master Key” (PMK) # compute PMK = H(k | scal(AP1) + scal(AP2) mod q) pmk_message = '{}{}'.format(self.k, (self.scalar + self.peer_scalar) % self.q).encode() #H = hashlib.sha256() #H.update(pmk_message) self.PMK = hashlib.sha256(pmk_message).digest() logger.info('[{}] Pairwise Master Key(PMK)={}'.format(self.name, self.PMK)) return self.PMK def key_derivation_function(self, n, base, seed): """ B.5.1 Per-Message Secret Number Generation Using Extra Random Bits Key derivation function from Section B.5.1 of [FIPS186-4] The key derivation function, KDF, is used to produce a bitstream whose length is equal to the length of the prime from the group's domain parameter set plus the constant sixty-four (64) to derive a temporary value, and the temporary value is modularly reduced to produce a seed. """ combined_seed = '{}{}'.format(base, seed).encode() # base and seed concatenated are the input to the RGB random.seed(combined_seed) # Obtain a string of N+64 returned_bits from an RBG with a security strength of # requested_security_strength or more. randbits = random.getrandbits(n) binary_repr = format(randbits, '0{}b'.format(n)) assert len(binary_repr) == n logger.debug('Rand={}'.format(binary_repr)) # Convert returned_bits to the non-negative integer c (see Appendix C.2.1). C = 0 for i in range(n): if int(binary_repr[i]) == 1: C += pow(2, n-i) logger.debug('C={}'.format(C)) #k = (C % (n - 1)) + 1 k = C logger.debug('k={}'.format(k)) return k def compute_hashed_password(self, counter): maxm = max(self.mac_address, self.other_mac) minm = min(self.mac_address, self.other_mac) message = '{}{}{}{}'.format(maxm, minm, self.password, counter).encode() logger.debug('Message to hash is: {}'.format(message)) H = hashlib.sha256() H.update(message) digest = H.digest() return digest def decrypting(key, filename): chunksize = 64 * 1024 outputFile = filename.split('.hacklab')[0] with open(filename, 'rb') as infile: filesize = int(infile.read(16)) IV = infile.read(16) decryptor = AES.new(key, AES.MODE_CBC, IV) with open(outputFile, 'wb') as outfile: while True: chunk = infile.read(chunksize) if len(chunk) == 0: break outfile.write(decryptor.decrypt(chunk)) outfile.truncate(filesize) return outputFile def handshake(): #Own mac address own_mac = (':'.join(re.findall('..', '%012x' % uuid.getnode()))) #Encode MAC address with BER own_mac_BER = asn1_file.encode('DataMac', {'data': own_mac}) print (own_mac) sta = Peer('abc1238', own_mac, 'STA') logger.info('Starting hunting and pecking to derive PE...\n') sock.send(own_mac_BER) raw_other_mac = sock.recv(1024) #decode BER and get mac address other_decode_mac = asn1_file.decode('DataMac', raw_other_mac) other_mac = other_decode_mac.get('data') print ('Received', other_mac) sta.initiate(other_mac) print() logger.info('Starting dragonfly commit exchange...\n') scalar_sta, element_sta = sta.commit_exchange() #Send BER encodewd Scalar / element ap to peer scalar_complete = ("\n".join([str(scalar_sta), str(element_sta)])) scalar_element_BER = asn1_file.encode('DataScalarElement',{'data':scalar_complete}) sock.sendall(scalar_element_BER) print() print('data send', scalar_complete) logger.info('Computing shared secret...\n') #receive BER encoded scalar / element ap scalar_element_ap_BER = sock.recv(1024) scalar_element_ap_decoded = asn1_file.decode('DataScalarElement', scalar_element_ap_BER) scalar_element_ap = scalar_element_ap_decoded.get('data') # scalar_element_ap = sock.recv(1024).decode() print('scalar element received ', scalar_element_ap) data = scalar_element_ap.split('\n') # print (data[0]) # print (data[1]) scalar_ap = data[0] element_ap = data[1] print() print ('scalar_ap recv:',scalar_ap) print() print ('element_ap recv:',element_ap) print () print () namedtuple_element_ap = eval(element_ap) print (namedtuple_element_ap.y, namedtuple_element_ap.x) print () print () sta_token = sta.compute_shared_secret(namedtuple_element_ap, int(scalar_ap), other_mac) #Encode sta_token to be BER encoded and send to peer staToken_encoded = asn1_file.encode('DataStaAp',{'data':sta_token}) sock.send(staToken_encoded) # sock.send(sta_token.encode()) print("sta_token", sta_token) print() logger.info('Confirm Exchange...\n') #Receive BER encoded AP Token and decode it apToken_encoded = sock.recv(1024) apToken_decoded = asn1_file.decode('DataStaAp', apToken_encoded) ap_token = apToken_decoded.get('data') print('received ap token', ap_token) PMK_Key = sta.confirm_exchange(ap_token) #print (PMK_Key) #encrypted = sock.recv(1024).decode() #print ("Encrypted ciphertext: ", encrypted) # Decrypt using PMK_Key #decrypted = decrypt(encrypted, PMK_Key) #print (decrypted.decode()) # Open the received secret file from the key generator with open('secret.key.hacklab', 'wb') as s, open('nbit.key.hacklab', 'wb') as t: print ('File opened...\n') while True: # print ('Receiving data...\n') keys_BER = sock.recv(16396, socket.MSG_WAITALL) if (len(keys_BER) > 10): keys_decoded = asn1_file.decode('DataKey', keys_BER) secret_key = keys_decoded.get('key') nbit_key = keys_decoded.get('nbit') time.sleep(0.001) else: break if not (secret_key or nbit_key): break s.write(secret_key) t.write(nbit_key) s.close() t.close() print ('Successfully got the file\n') print ('Encrypted secret file size: ', os.path.getsize('secret.key.hacklab')) print ('Encrypted nbit file size: ', os.path.getsize('nbit.key.hacklab')) print ('Decrypting the files...\n') decrypted_secret_key = decrypting(PMK_Key, 'secret.key.hacklab') print('Acquired original secret key file size: ', os.path.getsize(decrypted_secret_key)) os.system("md5sum secret.key") decrypted_nbit_key = decrypting(PMK_Key, 'nbit.key.hacklab') print('Acquired original nbit key file size: ', os.path.getsize(decrypted_nbit_key)) os.system("md5sum nbit.key") def tests(): """ Test the Curve class. See Understanding Cryptography ECC Section. """ a, b, p = 2, 2, 17 curve = Curve(a, b, p) P = Point(5, 1) assert curve.double_add_algorithm(19, P) == O T = P for i in range(p+1): T = curve.ec_add(T, P) assert curve.double_add_algorithm(19, P) == T if __name__ == '__main__': #tests() handshake() ```
{ "source": "Joshuakim1011/crash-model", "score": 3 }
#### File: src/data/add_waze_data.py ```python import argparse from . import util import os import json import geojson from collections import defaultdict from .record import Record BASE_DIR = os.path.dirname( os.path.dirname( os.path.dirname( os.path.abspath(__file__)))) def get_linestring(value): """ Turns a waze linestring into a geojson linestring Args: value - the waze dict for this line Returns: geojson linestring with properties """ line = value['line'] coords = [(x['x'], x['y']) for x in line] return geojson.Feature( geometry=geojson.LineString(coords), properties=value ) def get_features(waze_info, properties, num_snapshots): """ Given a dict with keys of segment id, and val a list of waze jams (for now, just jams), the properties of a road segment, and the total number of snapshots we're looking at, update the road segment's properties to include features Args: waze_info - dict properties - dict num_snapshots Returns properties """ # Waze feature list # jam_percent - percentage of snapshots that have a jam on this segment if properties['segment_id'] in waze_info: # only count one jam per snapshot on a road num_jams = len(set([x['properties']['snapshotId'] for x in waze_info[properties['segment_id']]])) # The average jam level across all jam instances avg_level_when_jammed = round(sum( [x['properties']['level'] for x in waze_info[properties['segment_id']]] )/len(waze_info[properties['segment_id']])) avg_speed = round(sum( [x['properties']['speed'] for x in waze_info[properties['segment_id']]] )/len(waze_info[properties['segment_id']])) else: num_jams = 0 avg_speed = 0 avg_level_when_jammed = 0 # Turn into number between 0 and 100 properties.update(jam_percent=100*num_jams/num_snapshots) properties.update(jam=1 if num_jams else 0) properties.update(avg_jam_speed=avg_speed) properties.update(avg_jam_level=avg_level_when_jammed) return properties def add_alerts(items, road_segments): roads, roads_index = util.index_segments( road_segments, geojson=True, segment=True) # We'll want to consider making these point-based features at some point items = [Record(x) for x in items if x['eventType'] == 'alert'] util.find_nearest( items, roads, roads_index, 30, type_record=True) # Turn records into a dict items_dict = defaultdict(dict) for item in items: if item.properties['type'] not in items_dict[item.near_id]: items_dict[item.near_id][item.properties['type']] = 0 items_dict[item.near_id][item.properties['type']] += 1 for road in road_segments: properties = road.properties if properties['id'] in items_dict: for key in items_dict[properties['id']].keys(): properties['alert_' + key] = items_dict[properties['id']][key] road.properties = properties return road_segments def map_segments(datadir, filename, forceupdate=False): """ Map a set of waze segment info (jams) onto segments drawn from openstreetmap: the osm_elements.geojson file Args: datadir - directory where the city's data is found filename - the filename of the json aggregated waze file Returns: nothing - just updates osm_elements.geojson and writes a jams.geojson with the segments that have jams """ items = json.load(open(filename)) # Get the total number of snapshots in the waze data num_snapshots = max([x['snapshotId'] for x in items]) osm_file = os.path.join( datadir, 'processed', 'maps', 'osm_elements.geojson' ) road_segments, inters = util.get_roads_and_inters(osm_file) if 'jam' in road_segments[0].properties and not forceupdate: print("Already processed waze data") return # Add jam and alert information road_segments, roads_with_jams = add_jams( items, road_segments, inters, num_snapshots) road_segments = add_alerts(items, road_segments) # Convert into format that util.prepare_geojson is expecting geojson_roads = [] for road in road_segments: geojson_roads.append({ 'geometry': { 'coordinates': [x for x in road.geometry.coords], 'type': 'LineString' }, 'properties': road.properties }) # Convert this back to geojson from shapely point inters = [{ 'geometry': { 'type': 'Point', 'coordinates': [x['geometry'].x, x['geometry'].y], }, 'properties': x['properties'] } for x in inters] results = util.prepare_geojson(geojson_roads + inters) with open(osm_file, 'w') as outfile: geojson.dump(results, outfile) jam_results = util.prepare_geojson(roads_with_jams) with open(os.path.join( datadir, 'processed', 'maps', 'jams.geojson'), 'w') as outfile: geojson.dump(jam_results, outfile) def add_jams(items, road_segments, inters, num_snapshots): # Only look at jams for now items = [get_linestring(x) for x in items if x['eventType'] == 'jam'] items = util.reproject_records(items) # Get roads_and_inters returns elements that have shapely geometry # In order to output the unchanged points back out at the end, # Need to convert to geojson # This is something that should be addressed inters = [{'properties': x['properties'], 'geometry': { 'type': 'Point', 'coordinates': [x['geometry'].x, x['geometry'].y] }} for x in inters] roads, roads_index = util.index_segments( road_segments, geojson=True, segment=True) road_buffers = [] for road in roads: road_buffers.append(road[0].buffer(3)) print("read in {} road segments".format(len(roads))) waze_info = defaultdict(list) count = 0 for item in items: count += 1 if item['properties']['eventType'] == 'jam': for idx in roads_index.intersection(item['geometry'].bounds): segment = roads[idx] buff = road_buffers[idx] # But if the roads share a name, # increase buffer size, in case of a median segment # Waze does not appear to specify which direction if 'street' in item['properties'] and segment[1]['name'] and \ item['properties']['street'].split()[0] == segment[1]['name'].split()[0]: buff = segment[0].buffer(10) overlap = buff.intersection(item['geometry']) if not overlap.length or \ (overlap.length < 20 and segment[0].length > 20): # Skip segments with no overlap # or very short overlaps continue waze_info[segment[1]['segment_id']].append(item) # Add waze features roads_with_jams = [] for road in road_segments: properties = get_features( waze_info, road.properties, num_snapshots ) road.properties = properties if properties['segment_id'] in waze_info: roads_with_jams.append({ 'geometry': { 'coordinates': [x for x in road.geometry.coords], 'type': 'LineString' }, 'properties': properties }) return road_segments, roads_with_jams def make_map(filename, datadir): """ Turns a json file into a geojson file of linestrings Used mainly for visualization/debugging It is not a simplified set of linestrings, but rather a linestring for each jam instance (even if multiple jam instances are on the same segment) Args: filename - input json file datadir - directory to write the waze.geojson file out """ items = json.load(open(filename)) geojson_items = [] for item in items: if item['eventType'] == 'jam': geojson_items.append(get_linestring(item)) with open(os.path.join(datadir, 'waze.geojson'), 'w') as outfile: geojson.dump(geojson.FeatureCollection(geojson_items), outfile) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("-d", "--datadir", type=str, help="data directory") parser.add_argument('--forceupdate', action='store_true', help='Whether to force update of the waze data') args = parser.parse_args() infile = os.path.join(args.datadir, 'standardized', 'waze.json') # make_map(infile, os.path.join(args.datadir, 'processed', 'maps')) map_segments(args.datadir, infile, forceupdate=args.forceupdate) ```
{ "source": "joshuakim314/bridge-robo-advisor", "score": 4 }
#### File: bridge-robo-advisor/business_logic/db_connect.py ```python import numpy as np import pandas as pd import psycopg2.extensions psycopg2.extensions.register_adapter(np.int64, psycopg2._psycopg.AsIs) def convert_db_fetch_to_df(fetched, column_names=None): """ This method converts the cursor.fetchall() output of SELECT query into a Pandas dataframe. :param fetched: the output of SELECT query :type fetched: list of row tuples :param column_names: column names to use for the dataframe :type column_names: list of column names :return: converted dataframe :rtype: Pandas dataframe """ return pd.DataFrame(fetched, columns=column_names) conn = psycopg2.connect( host='database-1.csuf8nkuxrw3.us-east-2.rds.amazonaws.com', port=5432, user='postgres', password='<PASSWORD>', database='can2_etfs' ) print('connected to postgres db') conn.autocommit = True cursor = conn.cursor() sql = '''SELECT * FROM prices ORDER BY date ASC, ticker ASC LIMIT 10''' cursor.execute(sql) selected = cursor.fetchall() print(convert_db_fetch_to_df(selected)) cursor.close() print("end") ``` #### File: bridge-robo-advisor/business_logic/portfolio_opt_front_end.py ```python import yfinance as yf import matplotlib.pyplot as plt import collections import pandas as pd import numpy as np import cvxpy as cp import efficient_frontier import param_estimator import backtest import objective_functions def port_opt(stock_picks, weight_constraints, control, trade_horizon, cardinality, target_return, risk_aversion): selected_etfs = ['IWD', 'IYH', 'IYW', 'MDY', 'EWT', 'XLE', 'EWZ', 'EWY', 'IWB', 'EZU'] if cardinality >= 20: selected_etfs = ['IWD', 'IYH', 'IYW', 'MDY', 'EWT', 'XLE', 'EWZ', 'EWY', 'IWB', 'EZU'] num_stocks = len(stock_picks) train_start, train_end = '2016-12-01', '2021-11-30' etf_table = 'americanetfs' etf_tickers = selected_etfs etf_returns_by_tick = [] for tick in etf_tickers: returns = param_estimator.get_returns(tick, etf_table, train_start, train_end, freq='monthly') if returns.empty: continue returns[tick] = returns['adj_close'] etf_returns_by_tick += [returns[[tick]]] etf_returns = pd.concat(etf_returns_by_tick, axis=1).T.dropna() train_etf_returns = etf_returns.T etf_table = 'spy' print(stock_picks) stock_returns_by_tick = [] for tick in stock_picks: returns = param_estimator.get_returns(tick, etf_table, train_start, train_end, freq='monthly') if returns.empty: continue returns[tick] = returns['adj_close'] stock_returns_by_tick += [returns[[tick]]] stock_returns = pd.concat(stock_returns_by_tick, axis=1).T.dropna() train_stock_returns = stock_returns.T # Fama-French factors train_factors = param_estimator.get_factors(start=int(train_start[0:4] + train_start[5:7]), end=int(train_end[0:4] + train_end[5:7]), freq='monthly') asset_universe = stock_picks + selected_etfs train_returns = pd.concat([train_stock_returns, train_etf_returns], axis=1) # historical average param. estimation mu, sample_cov = backtest.historical_avg(train_returns, 12 * 5, 12) print(sample_cov) factor_model = dict() for tick in asset_universe: merged = pd.merge(train_factors, train_returns[[tick]], left_on='date', right_on='date', how="inner", sort=False) ff5 = merged[['excess', 'smb', 'hml', 'rmw', 'cma']] merged[tick] = merged[tick] - merged['riskfree'].astype('float')/100.0 adj_returns = merged[[tick]] alpha = 1e-1 l1_ratio = 0.05 en5, en_r_sq5 = param_estimator.EN(ff5, adj_returns[tick], alpha=alpha, l1_ratio=l1_ratio) factor_model[tick] = en5 # arima-garch ag = param_estimator.arima_garch(train_factors[['excess', 'smb', 'hml', 'rmw', 'cma']], trade_horizon=trade_horizon, columns=['excess', 'smb', 'hml', 'rmw', 'cma']) mu_factor = [] for month in range(trade_horizon): mu_month = [] for tick in asset_universe: data = [ag[factor_name][1][month-1] for factor_name in ['excess', 'smb', 'hml', 'rmw', 'cma']] mu = factor_model[tick].predict(np.array(data).reshape(1, -1)) mu_month.append(mu[0]) mu_factor.append(mu_month) print(mu_month) mu_factor = [pd.Series(mu_factor[i]) for i in range(trade_horizon)] print(mu_factor) print(sample_cov) ef = efficient_frontier.EfficientFrontier(mu_factor, sample_cov, trade_horizon=trade_horizon) # ef.add_objective(objective_functions.transaction_cost, w_prev=np.zeros(len(asset_universe)), k=0.001) for i in range(num_stocks): min = np.zeros(shape=len(asset_universe)) max = np.ones(shape=len(asset_universe)) min[i] = weight_constraints[asset_universe[i]][0]/100.0 max[i] = weight_constraints[asset_universe[i]][1]/100.0 ef.add_constraint(lambda w: w >= min, broadcast=False, var_list=[0]) ef.add_constraint(lambda w: w <= max, broadcast=False, var_list=[0]) card = np.zeros(shape=len(asset_universe)) for i in range(num_stocks): card[i] = 1 ef.add_constraint(lambda w: card @ w >= control, broadcast=False, var_list=[0]) print(ef.n_assets) print(ef.trade_horizon) print(ef.cov_matrices) print(ef.expected_returns) ef.efficient_return(target_return=target_return) weights = ef.clean_weights() print(weights) new_weights = dict(weights) proper_weights = {} for key in new_weights.keys(): proper_weights[asset_universe[key]] = weights[key] print(proper_weights) weights = pd.DataFrame.from_dict(new_weights, orient='index') exp_returns = {month: np.dot(mu_factor[month-1], weights) for month in range(trade_horizon)} ret_exp = {} for key in exp_returns.keys(): ret_exp[key+1] = (1 + exp_returns[key][0]) for key in ret_exp.keys(): if key != 1: ret_exp[key] = ret_exp[key]*ret_exp[key-1] return proper_weights, ret_exp ``` #### File: bridge-robo-advisor/front_end/backend_access.py ```python import numpy as np import pandas as pd from datetime import datetime import time import plotly.express as px import psycopg2.extensions from dateutil.relativedelta import relativedelta psycopg2.extensions.register_adapter(np.int64, psycopg2._psycopg.AsIs) conn = psycopg2.connect( host='database-1.csuf8nkuxrw3.us-east-2.rds.amazonaws.com', port=5432, user='postgres', password='<PASSWORD>', database='can2_etfs' ) def convert_db_fetch_to_df(fetched, column_names=None): """ This method converts the cursor.fetchall() output of SELECT query into a Pandas dataframe. :param fetched: the output of SELECT query :type fetched: list of row tuples :param column_names: column names to use for the dataframe :type column_names: list of column names :return: converted dataframe :rtype: Pandas dataframe """ return pd.DataFrame(fetched, columns=column_names) def push_new_user(connection, user_array): #print('connected to postgres db ...') connection.autocommit = True cursor = connection.cursor() #print('connected') #print('formatting dict to_record') sql = '''INSERT INTO clients (first, last, email, password, risk, control, horizon, return, max_card) VALUES(%s, %s, %s, %s, %s, %s, %s, %s, %s)''' cursor.execute(sql, user_array) #print("end") return True def pull_user_data(connection, email, pswrd): connection.autocommit = True cursor = connection.cursor() sql = f'''SELECT * FROM clients WHERE (email like '{email}') AND (password like '{pswrd}')''' cursor.execute(sql) selected = cursor.fetchall() cursor.close() #print("end") df = convert_db_fetch_to_df(selected, column_names=['First', 'Last', 'Email', 'Password', 'Risk', 'Control', 'Horizon', 'Return', 'Max']) dct = { 'First': df['First'][0], 'Last': df['Last'][0], 'Email': df['Email'][0], 'Password': df['Password'][0], 'Risk': df['Risk'][0], 'Control': df['Control'][0], 'Horizon': df['Horizon'][0], 'Return': df['Return'][0], 'Max': df['Max'][0] } return dct def update_risk_control(connection, email, pswrd, risk, control, horizon, ret, max_card): connection.autocommit = True cursor = connection.cursor() sql = f'''UPDATE clients SET risk = {risk}, control = {control}, horizon={horizon}, return={ret}, max_card={max_card} WHERE (email like'{email}') AND (password like '{<PASSWORD>}')''' cursor.execute(sql) # print("end") return True def add_transaction(connection, email, asset, ammount, comment=''): now = time.localtime() date = time.strftime('%Y-%m-%d', now) now = datetime.utcnow().strftime('%Y-%m-%d %H:%M:%S.%f')[:-3] transact_row = np.array([now, email, asset, ammount, date, comment]) connection.autocommit = True cursor = connection.cursor() sql = '''INSERT INTO transactions (datetime, email, ticker, amount, date, comment) VALUES(%s, %s, %s, %s, %s, %s)''' cursor.execute(sql, transact_row) return True def wipe_table(connection, table): connection.autocommit = True cursor = connection.cursor() sql = f'''TRUNCATE TABLE {table}''' cursor.execute(sql) return True def get_portfolio_data(connection, email): connection.autocommit = True cursor = connection.cursor() sql = f'''SELECT ticker, SUM(amount) FROM transactions WHERE (email like '{email}') AND (ticker like 'cash') GROUP BY ticker''' cursor.execute(sql) selected = cursor.fetchall() cursor.close() # print("end") df = convert_db_fetch_to_df(selected, column_names=['Ticker', 'Amount']) ret_dict = df.to_dict('records') return ret_dict def get_past_deposits_brief(connection, email): connection.autocommit = True cursor = connection.cursor() sql = f'''SELECT * FROM transactions WHERE (email like '{email}') AND (ticker like 'cash')''' cursor.execute(sql) selected = cursor.fetchall() cursor.close() # print("end") df = convert_db_fetch_to_df(selected, column_names=['Date Time', 'Email', 'Ticker', 'Amount', 'Date', 'Comment']) df = df[['Date Time', 'Amount']] df['Amount'] = df['Amount'].div(100) df = df.sort_values(by='Date Time', ascending=False) df["Date Time"] = df["Date Time"].dt.strftime("%D") #print(df) df = df.groupby(["Date Time"]).Amount.sum().reset_index() # print(df) # print([{"name": i, "id": i} for i in df.columns]) ret_dict = df.to_dict('records') #print(ret_dict) return ret_dict def get_past_deposits(connection, email): connection.autocommit = True cursor = connection.cursor() sql = f'''SELECT * FROM transactions WHERE (email like '{email}') AND (ticker like 'cash')''' cursor.execute(sql) selected = cursor.fetchall() cursor.close() # print("end") df = convert_db_fetch_to_df(selected, column_names=['Date Time', 'Email', 'Ticker', 'Amount', 'Date', 'Comment']) df = df[['Date Time', 'Amount', 'Comment']] df['Amount'] = df['Amount'].div(100) df = df.sort_values(by = 'Date Time', ascending = False) #print(df) df["Date Time"] = df["Date Time"].dt.strftime("%A %B %d, %Y - %H:%M:%S") #print(df) #print([{"name": i, "id": i} for i in df.columns]) ret_dict = df.to_dict('records') return ret_dict def transact_stock(connection, email, stock, ammount): now = datetime.utcnow().strftime('%Y-%m-%d %H:%M:%S.%f')[:-3] #print('STOCK TIME') #print(now) connection.autocommit = True cursor = connection.cursor() #Grab Max Date sql = f""" SELECT MAX(date) FROM americanetfs """ cursor.execute(sql) selected = cursor.fetchall() df = convert_db_fetch_to_df(selected, column_names=['date']) #print(df) max_date = df['date'][0] #print(max_date) #Calculate Stocks Cost and store as value_of_shares sql = f"""SELECT adj_close FROM americanetfs WHERE (date = '{max_date}') AND (ticker like '{stock}') """ cursor.execute(sql) selected = cursor.fetchall() cadetfs = convert_db_fetch_to_df(selected, column_names=['adj_close']) sql = f"""SELECT adj_close FROM spy WHERE (date = '{max_date}') AND (ticker like '{stock}') """ cursor.execute(sql) selected = cursor.fetchall() df = convert_db_fetch_to_df(selected, column_names=['adj_close']) df = df.append(cadetfs, ignore_index=True) stock_value = int(100*ammount*df['adj_close'][0])+1 #print(stock_value) if ammount > 0: transact_cash_statement = f'Bought {ammount} shares of {stock} for ${stock_value/100:,.2f}' transact_stock_statement = f'Bought {ammount} shares of {stock}' else: transact_cash_statement = f'Sold {abs(ammount)} shares of {stock} for ${stock_value/100:,.2f}' transact_stock_statement = f'Sold {abs(ammount)} shares of {stock}' #Transact Cash add_transaction(connection, email, 'cash', -1*stock_value, transact_cash_statement) #Transact Stock add_transaction(connection, email, stock, ammount, transact_stock_statement) return True #Transact Stock def get_portfolio_value_by_date(connection, email): connection.autocommit = True cursor = connection.cursor() # Grab Start Date of User Profile sql = f""" SELECT MIN(date) FROM transactions WHERE email like '{email}' """ cursor.execute(sql) selected = cursor.fetchall() df = convert_db_fetch_to_df(selected, column_names=['date']) min_account_date = df['date'][0] sql = f''' DROP VIEW IF EXISTS data5; DROP VIEW IF EXISTS data4; DROP VIEW IF EXISTS data3; DROP VIEW IF EXISTS data2; CREATE VIEW data2 AS SELECT * FROM transactions WHERE email like '{email}'; CREATE VIEW data3 AS SELECT date, ticker, sum(amount) OVER (PARTITION BY ticker ORDER BY date) AS cum_amt FROM data2 ORDER BY date, ticker; CREATE VIEW data4 AS SELECT date, ticker, cum_amt FROM data3 GROUP BY date, ticker, cum_amt; SELECT * FROM data4 ''' # cursor.execute(sql) selected = cursor.fetchall() df = convert_db_fetch_to_df(selected, column_names=['date', 'ticker', 'cumAmount']) #print(df) df['date'] = pd.to_datetime(df['date']) min_date = df['date'].min().strftime('%Y-%m-%d') max_date = df['date'].max().strftime('%Y-%m-%d') list_tickers = list(set(df['ticker'].to_list())) #print(list_tickers) if len(list_tickers) > 1: string_tickers = '(' for tick in list_tickers[:-1]: string_tickers = string_tickers + (f"'{tick}', ") string_tickers = string_tickers + f"'{list_tickers[-1]}')" else: string_tickers = f"('{list_tickers[0]}')" #Get price info for unique tickers, between min and max date ### Start hitting prices tables ### sql = f''' SELECT date, ticker, adj_close FROM canadianetfs WHERE (date BETWEEN '{min_date}' AND '{max_date}') AND (ticker IN {string_tickers}) ''' cursor.execute(sql) selected = cursor.fetchall() cadetfs = convert_db_fetch_to_df(selected, column_names=['date', 'ticker', 'adj_close']) sql = f''' SELECT date, ticker, adj_close FROM americanetfs WHERE (date BETWEEN '{min_date}' AND '{max_date}') AND (ticker IN {string_tickers}) ''' cursor.execute(sql) selected = cursor.fetchall() ametfs = convert_db_fetch_to_df(selected, column_names=['date', 'ticker', 'adj_close']) sql = f''' SELECT date, ticker, adj_close FROM spy WHERE (date BETWEEN '{min_date}' AND '{max_date}') AND (ticker IN {string_tickers}) ''' cursor.execute(sql) selected = cursor.fetchall() spy = convert_db_fetch_to_df(selected, column_names=['date', 'ticker', 'adj_close']) sql = f''' SELECT date, ticker, adj_close FROM tsx60 WHERE (date BETWEEN '{min_date}' AND '{max_date}') AND (ticker IN {string_tickers}) ''' cursor.execute(sql) selected = cursor.fetchall() tsx60 = convert_db_fetch_to_df(selected, column_names=['date', 'ticker', 'adj_close']) #print(tsx60) dfpx = cadetfs.append(ametfs, ignore_index=True) dfpx = dfpx.append(spy, ignore_index=True) dfpx = dfpx.append(tsx60, ignore_index=True) #print(dfpx) #print(dfpx) cursor.close() dfpx['date'] = pd.to_datetime(dfpx['date']) df.set_index(['date', 'ticker'], inplace=True) unique_tickers = df.index.unique(level='ticker') date_range = pd.DatetimeIndex(pd.date_range(start=min_date, end=max_date, freq="D")) ticker_date_index = ( pd.MultiIndex .from_product( iterables=[date_range, unique_tickers], names=['date', 'ticker'] ) ) df = df.reindex(ticker_date_index) df_start = df.loc[slice(min_date), slice(None), :].fillna({'cumAmount':0}) df.update(df_start) df = df.sort_index(level=1).ffill().reindex(df.index) #print(df.tail(20)) #print(dfpx.tail(20)) #print(df.reset_index().tail(20)) df = pd.merge( df, dfpx, how="left", on=['date', 'ticker'], ) mask = (df['ticker'] == 'cash') df['adj_close'][mask] = 0.01 #print(df.tail(20)) #print(df.reindex(ticker_date_index).tail(20)) df = df.set_index(['date', 'ticker']) #print(df.tail(20)) df = df.sort_index(level=1).ffill().reindex(df.index) #print(df.tail(20)) df.fillna(0, inplace=True) df['value'] = df['cumAmount']*df['adj_close'] #print(df) df = df.round(2) port_comp = df.loc[slice(max_date, max_date), slice(None), :].reset_index()[['ticker', 'value']] port_comp = port_comp[port_comp['value'] != 0] port_comp.reset_index(inplace=True) port_comp_dict = {} for index, row in port_comp.iterrows(): port_comp_dict[row['ticker']] = row['value'] if port_comp_dict == {}: port_comp_dict = {'No Assets': 1} df = df.reset_index(level=1) #print(df.tail(20)) df = df.groupby(['date']).sum().reset_index()[['date','value']] final_value = {'portfolio_value': round(df['value'].to_list()[-1], 2)} initial_value = round(df['value'].to_list()[0], 2) if int(final_value['portfolio_value']) == 0: port_returns = {'port_returns': 0} else: time_difference = relativedelta(datetime.strptime(max_date, "%Y-%m-%d").date(), datetime.strptime(min_date, "%Y-%m-%d").date()) difference_in_years = time_difference.years + time_difference.months*(1/12) + time_difference.days*(1/365) port_returns = (((final_value['portfolio_value'] - initial_value)/initial_value) + 1)**(1/difference_in_years) - 1 port_returns = {'port_returns': round(port_returns,3)} data = df.round(2).to_json(date_format='iso', orient='split') return data, final_value, port_returns, port_comp_dict def get_all_tickers(connection): connection.autocommit = True cursor = connection.cursor() #sql = f'''SELECT DISTINCT(ticker) FROM spy''' #cursor.execute(sql) #selected = cursor.fetchall() #spy = convert_db_fetch_to_df(selected, column_names=['ticker']) sql = f'''SELECT DISTINCT(ticker) FROM spy''' cursor.execute(sql) selected = cursor.fetchall() tsx60 = convert_db_fetch_to_df(selected, column_names=['ticker']) #dfpx = spy.append(tsx60, ignore_index=True) dfpx = tsx60 cursor.close() ret_dict = {'stocks': dfpx['ticker'].to_list()} # print("end") return ret_dict def get_portfolio_weights(stock_dict, account_info, ): optimal_portfolio = {} numStocks = len(stock_dict.keys()) for i in range(0, numStocks): optimal_portfolio[stock_dict[i]['stock']] = (1/numStocks) expected_monthly_returns = { 'exp': 1.015, 'ub': 1.02, 'lb': 1.01 } return optimal_portfolio, expected_monthly_returns def get_trades(connection, email, opt, rets): connection.autocommit = True cursor = connection.cursor() # Grab Start Date of User Profile sql = f""" SELECT MIN(date) FROM transactions WHERE email like '{email}' """ cursor.execute(sql) selected = cursor.fetchall() df = convert_db_fetch_to_df(selected, column_names=['date']) min_account_date = df['date'][0] sql = f''' DROP VIEW IF EXISTS data5; DROP VIEW IF EXISTS data4; DROP VIEW IF EXISTS data3; DROP VIEW IF EXISTS data2; CREATE VIEW data2 AS SELECT * FROM transactions WHERE email like '{email}'; CREATE VIEW data3 AS SELECT date, ticker, sum(amount) OVER (PARTITION BY ticker ORDER BY date) AS cum_amt FROM data2 ORDER BY date, ticker; CREATE VIEW data4 AS SELECT date, ticker, cum_amt FROM data3 GROUP BY date, ticker, cum_amt; SELECT * FROM data4 ''' # cursor.execute(sql) selected = cursor.fetchall() df = convert_db_fetch_to_df(selected, column_names=['date', 'ticker', 'cumAmount']) df['date'] = pd.to_datetime(df['date']) min_date = df['date'].min().strftime('%Y-%m-%d') max_date = df['date'].max().strftime('%Y-%m-%d') list_tickers = list(set(df['ticker'].to_list())) # print(list_tickers) if len(list_tickers) > 1: string_tickers = '(' for tick in list_tickers[:-1]: string_tickers = string_tickers + (f"'{tick}', ") string_tickers = string_tickers + f"'{list_tickers[-1]}')" else: string_tickers = f"('{list_tickers[0]}')" # Get price info for unique tickers, between min and max date ### Start hitting prices tables ### sql = f''' SELECT date, ticker, adj_close FROM canadianetfs WHERE (date BETWEEN '{min_date}' AND '{max_date}') AND (ticker IN {string_tickers}) ''' cursor.execute(sql) selected = cursor.fetchall() cadetfs = convert_db_fetch_to_df(selected, column_names=['date', 'ticker', 'adj_close']) sql = f''' SELECT date, ticker, adj_close FROM americanetfs WHERE (date BETWEEN '{min_date}' AND '{max_date}') AND (ticker IN {string_tickers}) ''' cursor.execute(sql) selected = cursor.fetchall() ametfs = convert_db_fetch_to_df(selected, column_names=['date', 'ticker', 'adj_close']) sql = f''' SELECT date, ticker, adj_close FROM spy WHERE (date BETWEEN '{min_date}' AND '{max_date}') AND (ticker IN {string_tickers}) ''' cursor.execute(sql) selected = cursor.fetchall() spy = convert_db_fetch_to_df(selected, column_names=['date', 'ticker', 'adj_close']) sql = f''' SELECT date, ticker, adj_close FROM tsx60 WHERE (date BETWEEN '{min_date}' AND '{max_date}') AND (ticker IN {string_tickers}) ''' cursor.execute(sql) selected = cursor.fetchall() tsx60 = convert_db_fetch_to_df(selected, column_names=['date', 'ticker', 'adj_close']) # print(tsx60) dfpx = cadetfs.append(ametfs, ignore_index=True) dfpx = dfpx.append(spy, ignore_index=True) dfpx = dfpx.append(tsx60, ignore_index=True) # print(dfpx) dfpx['date'] = pd.to_datetime(dfpx['date']) df.set_index(['date', 'ticker'], inplace=True) unique_tickers = df.index.unique(level='ticker') date_range = pd.DatetimeIndex(pd.date_range(start=min_date, end=max_date, freq="D")) ticker_date_index = ( pd.MultiIndex .from_product( iterables=[date_range, unique_tickers], names=['date', 'ticker'] ) ) df = df.reindex(ticker_date_index) df = df.sort_index(level=1).ffill().reindex(df.index) df = pd.merge( df, dfpx, how="left", on=['date', 'ticker'], ) mask = (df['ticker'] == 'cash') df['adj_close'][mask] = 0.01 df = df.set_index(['date', 'ticker']) df = df.sort_index(level=1).ffill().reindex(df.index) df.fillna(0, inplace=True) df['value'] = df['cumAmount'] * df['adj_close'] # print(df) df = df.round(2) max_port_date = df.index.max()[0] df = df.loc[max_port_date] port_total_value = sum(df['value'].to_list()) #print(port_total_value) #Calculate # of new stocks to by/old to sell curr_stocks = df.reset_index()[df.reset_index()['ticker'] != 'cash'] old_portfolio_values = df.reset_index()[['ticker', 'value']] #print('old_portfolio_values') #print(old_portfolio_values) #Get list of stocks from optimal dict list_tickers = list(opt.keys()) # print(list_tickers) if len(list_tickers) > 1: string_tickers = '(' for tick in list_tickers[:-1]: string_tickers = string_tickers + (f"'{tick}', ") string_tickers = string_tickers + f"'{list_tickers[-1]}')" else: string_tickers = f"('{list_tickers[0]}')" # Get price info for unique tickers, between min and max date sql = f""" SELECT MAX(date) FROM americanetfs """ cursor.execute(sql) selected = cursor.fetchall() df = convert_db_fetch_to_df(selected, column_names=['date']) max_date = df['date'][0] ### Start hitting prices tables ### sql = f''' SELECT date, ticker, adj_close FROM canadianetfs WHERE (date = '{max_date}') AND (ticker IN {string_tickers}) ''' cursor.execute(sql) selected = cursor.fetchall() cadetfs = convert_db_fetch_to_df(selected, column_names=['date', 'ticker', 'adj_close']) sql = f''' SELECT date, ticker, adj_close FROM americanetfs WHERE (date = '{max_date}') AND (ticker IN {string_tickers}) ''' cursor.execute(sql) selected = cursor.fetchall() ametfs = convert_db_fetch_to_df(selected, column_names=['date', 'ticker', 'adj_close']) sql = f''' SELECT date, ticker, adj_close FROM spy WHERE (date = '{max_date}') AND (ticker IN {string_tickers}) ''' cursor.execute(sql) selected = cursor.fetchall() spy = convert_db_fetch_to_df(selected, column_names=['date', 'ticker', 'adj_close']) sql = f''' SELECT date, ticker, adj_close FROM tsx60 WHERE (date = '{max_date}') AND (ticker IN {string_tickers}) ''' cursor.execute(sql) selected = cursor.fetchall() tsx60 = convert_db_fetch_to_df(selected, column_names=['date', 'ticker', 'adj_close']) # print(tsx60) dfpx = cadetfs.append(ametfs, ignore_index=True) dfpx = dfpx.append(spy, ignore_index=True) dfpx = dfpx.append(tsx60, ignore_index=True) dfpx['new_weight'] = dfpx['ticker'].map(opt) dfpx['port_value'] = port_total_value dfpx['new_amount'] = (dfpx['new_weight'] * dfpx['port_value'])/dfpx['adj_close'] dfpx['new_amount'] = dfpx['new_amount'].astype(int) dfpx['new_value'] = dfpx['new_amount'] * dfpx['adj_close'] new_portfolio_cash_component = (int(100*port_total_value) - int(100*sum(dfpx['new_value'])+1))/100 new_portfolio_values = dfpx[['ticker', 'new_value']] new_portfolio_values.loc[-1] = ['cash', new_portfolio_cash_component] new_portfolio_values = new_portfolio_values.reset_index(drop=True) new_portfolio_values = new_portfolio_values.rename(columns={'new_value': 'value'}) #print('new_portfolio_values') #print(new_portfolio_values.round(2)) #print(f'New cash: {new_portfolio_cash_component}') dfpx = dfpx[['ticker', 'new_amount']] # print(dfpx) curr_stocks = curr_stocks[['ticker', 'cumAmount']] curr_stocks = curr_stocks.rename(columns={'cumAmount':'old_amount'}) dfpx = pd.merge( dfpx, curr_stocks, how="outer", on=['ticker'], ) dfpx.fillna(0, inplace=True) dfpx['delta'] = dfpx['new_amount'] - dfpx['old_amount'] tradeDf = dfpx.copy() #Handle Hypothetical Back Test back_test_min_date = max_date - relativedelta(years=5) sql = f''' SELECT date, ticker, adj_close FROM americanetfs WHERE (date BETWEEN '{back_test_min_date}' AND '{max_date}') AND (ticker IN {string_tickers}) ''' cursor.execute(sql) selected = cursor.fetchall() cadetfs = convert_db_fetch_to_df(selected, column_names=['date', 'ticker', 'adj_close']) sql = f''' SELECT date, ticker, adj_close FROM spy WHERE (date BETWEEN '{back_test_min_date}' AND '{max_date}') AND (ticker IN {string_tickers}) ''' cursor.execute(sql) selected = cursor.fetchall() tsx60 = convert_db_fetch_to_df(selected, column_names=['date', 'ticker', 'adj_close']) # print(tsx60) dfpx = cadetfs.append(tsx60, ignore_index=True) dfpx = pd.merge( dfpx, tradeDf[['ticker', 'new_amount']], how="left", on=['ticker'], ) dfpx['value'] = dfpx['adj_close'] * dfpx['new_amount'] ######## dfpx = dfpx.reset_index(drop=True) #print(dfpx) dfpx = dfpx.set_index(['date', 'ticker']) #print(dfpx.dtypes) dfpx = dfpx.sort_index(level=1).ffill().reindex(dfpx.index) dfpx.fillna(0, inplace=True) # print(df) dfpx = dfpx.round(2) dfpx = dfpx.reset_index(level=1) #print(dfpx) dfpx = dfpx.groupby(['date']).sum().reset_index() #print(dfpx) dfpx = dfpx.reset_index()[['date', 'value']] dfpx['value'] = dfpx['value'] + new_portfolio_cash_component df_future_up = dfpx.copy()[dfpx['date'] == max_date].reset_index(drop=True) df_future_mid = dfpx.copy()[dfpx['date'] == max_date].reset_index(drop=True) df_future_down = dfpx.copy()[dfpx['date'] == max_date].reset_index(drop=True) for key in rets.keys(): future_ret_date = max_date + relativedelta(months=key) df_future_up.loc[-1] = [future_ret_date, df_future_up['value'][0]*rets[key]] df_future_up = df_future_up.reset_index(drop=True) df_future_mid.loc[-1] = [future_ret_date, df_future_mid['value'][0] * rets[key]] df_future_mid = df_future_mid.reset_index(drop=True) df_future_down.loc[-1] = [future_ret_date, df_future_down['value'][0] * rets[key]] df_future_down = df_future_down.reset_index(drop=True) print(df_future_up) return dfpx, df_future_up, df_future_mid, df_future_down, tradeDf[['ticker', 'delta']].to_dict('records'), old_portfolio_values.round(2), new_portfolio_values.round(2) #test = {0: {'stock': 'L.TO', 'range': [0, 100]}, 1: {'stock': 'SAP.TO', 'range': [0, 100]}, 2: {'stock': 'WCN.TO', 'range': [0, 100]}} #opt, rets = get_portfolio_weights(test, True) #bt, fu, fm, fd, trades = get_trades(conn, '<EMAIL>', opt, rets) #print(trades) #print(opt) #print(rets) #transact_stock(conn, '<EMAIL>', 'RY.TO', -40) #get_portfolio_value_by_date(conn, '<EMAIL>') #print(get_all_tickers(conn)) #get_portfolio_value_by_date(conn, '<EMAIL>') #transact_stock(conn, '<EMAIL>', 'AAPL', 100) #wipe_table(conn, 'clients') #wipe_table(conn, 'transactions') #add_transaction(conn, '<EMAIL>', 'cash', 1000) #add_transaction(conn, '<EMAIL>', 'cash', 0, 'Initialize Account') #get_past_deposits(conn, '<EMAIL>') #print(pull_user_data(conn, '<EMAIL>', 'admin')) ``` #### File: bridge-robo-advisor/front_end/main.py ```python import dash_bootstrap_components as dbc from dash import Dash, Input, Output, State, html, dcc, dash_table, callback, dependencies from dash_extensions.enrich import Output, DashProxy, Input, MultiplexerTransform from static.welcome_page import welcome_page from static.sign_up_1 import sign_up_1 from static.sign_up_2 import sign_up_2 from static.main_page import main_page from static.deposit_page import deposit_page from static.prefs_page import prefs_page from static.not_yet_implemented import nyi_page from static.test_page import test_page import callbacks from app_old import app app.layout = html.Div([ dcc.Location(id='url', refresh=False), html.Div(id='page-content'), dcc.Store(id='account-info'), dcc.Store(id='portfolio-info'), dcc.Store(id='past-deposits'), dcc.Store(id='past-deposits-brief'), dcc.Store(id='portfolio-graph-data'), dcc.Store(id='portfolio-value'), dcc.Store(id='all-stock-list'), dcc.Store(id='trades'), dcc.Store(id='port-comp'), dcc.Store(id='portfolio-returns') ]) #Page Navigation @app.callback(dependencies.Output('page-content', 'children'), [dependencies.Input('url', 'pathname')]) def display_page(pathname): if pathname == '/sign_up': return sign_up_1 if pathname == '/sign_up_cont': return sign_up_2 if pathname == '/main': return main_page if pathname == '/deposit': return deposit_page if pathname == '/prefs': return prefs_page if pathname == '/nyi': return nyi_page if pathname == '/test': return test_page else: return welcome_page # You could also return a 404 "URL not found" page here if __name__ == '__main__': app.run_server(port=8080, debug=True) ``` #### File: front_end/static/backtest.py ```python import warnings import csv import collections from functools import reduce import itertools import pandas as pd import numpy as np import yfinance as yf import matplotlib.pyplot as plt import sklearn import pmdarima as pm import arch from arch.__future__ import reindexing from sklearn.decomposition import PCA from sklearn_extra.cluster import KMedoids import static.param_estimator as param_estimator import static.objective_functions as objective_functions import static.efficient_frontier as efficient_frontier import psycopg2.extensions psycopg2.extensions.register_adapter(np.int64, psycopg2._psycopg.AsIs) warnings.filterwarnings("ignore") conn = psycopg2.connect( host='database-1.csuf8nkuxrw3.us-east-2.rds.amazonaws.com', port=5432, user='postgres', password='<PASSWORD>', database='can2_etfs' ) conn.autocommit = True cursor = conn.cursor() pd.options.mode.chained_assignment = None # default='warn' def historical_avg(returns, freq, trade_horizon=12): mu = returns.agg(lambda data: reduce(lambda x, y: x*y, [x+1 for x in data])**(1/freq) - 1) mu.rename("mu", inplace=True) cov = param_estimator.sample_cov(returns, returns_data=True, frequency=freq) return [mu for _ in range(trade_horizon)], [cov for _ in range(trade_horizon)] def get_factor_mu(model_name, model, asset_list, factor_columns, ag): mu_factor = [] for month in range(12): mu_month = [] for tick in asset_list: data = [ag[model_name[:3]][factor_name][1][month - 1] for factor_name in factor_columns] mu = model[(tick, model_name)][0].predict(np.array(data).reshape(1, -1)) mu_month.append(mu[0]) mu_factor.append(mu_month) mu_factor = [pd.Series(mu_factor[i]) for i in range(12)] return mu_factor def get_scenarios(model_name, model, asset_list, factor_columns, ag, res, num_s): scenarios = [] for s in range(num_s): mu_factor = [] for month in range(12): mu_month = [] for idx, tick in enumerate(asset_list): data = [ag[model_name[:3]][factor_name][1][month - 1] for factor_name in factor_columns] mu = model[(tick, model_name)][0].predict(np.array(data).reshape(1, -1)) mu_month.append(mu[0] + np.random.normal(0.0, res[idx][month]**0.5)) mu_factor.append(mu_month) mu_factor = [pd.Series(mu_factor[i]) for i in range(12)] scenarios.append(mu_factor) return scenarios if __name__ == '__main__': stock_picks = ['DIS', 'IBM', 'JPM', 'KO', 'WMT'] weights_dict = collections.OrderedDict() returns_dict = collections.OrderedDict() assets_dict = collections.OrderedDict() val_periods = [(f'{str(year)}-01-01', f'{str(year+4)}-12-31', f'{str(year+5)}-01-01', f'{str(year+5)}-12-31') for year in range(2001, 2011)] for val in val_periods: print(val) train_start, train_end, test_start, test_end = val etf_table = 'americanetfs' etf_tickers = param_estimator.get_all_tickers(etf_table) etf_returns_by_tick = [] for tick in etf_tickers: returns = param_estimator.get_returns(tick, etf_table, train_start, test_end, freq='monthly') if returns.empty: continue returns[tick] = returns['adj_close'] etf_returns_by_tick += [returns[[tick]]] etf_returns = pd.concat(etf_returns_by_tick, axis=1).T.dropna() train_etf_returns = etf_returns.T.head(12*5) test_etf_returns = etf_returns.T.tail(12*1) valid_etf_tickers = train_etf_returns.columns print(f'number of etfs: {train_etf_returns.shape[1]}, number of months: {train_etf_returns.shape[0]}') # market return market_return = historical_avg(train_etf_returns[['SPY']], 60)[0][0].tolist()[0] print(f'market return: {market_return}') pca = PCA(n_components='mle') principal_comp = pca.fit_transform(train_etf_returns.T) print(f'number of principal components: {principal_comp.shape[1]}') n_clusters = 10 X = np.asarray(principal_comp) k_medoids = KMedoids(n_clusters=n_clusters, method='pam', init='k-medoids++').fit(X) selected_etfs = [valid_etf_tickers[np.where(X == k)[0][0]] for k in k_medoids.cluster_centers_] inertia = k_medoids.inertia_ print(f'selected etfs: {selected_etfs}, cluster inertia: {inertia}') stock_table = 'spy' stock_returns_by_tick = [] for tick in stock_picks: returns = param_estimator.get_returns(tick, stock_table, train_start, test_end, freq='monthly') if returns.empty: continue returns[tick] = returns['adj_close'] stock_returns_by_tick += [returns[[tick]]] stock_returns = pd.concat(stock_returns_by_tick, axis=1).T.dropna() train_stock_returns = stock_returns.T.head(12*5) test_stock_returns = stock_returns.T.tail(12*1) # Fama-French factors train_factors = param_estimator.get_factors(start=int(train_start[0:4] + train_start[5:7]), end=int(train_end[0:4] + train_end[5:7]), freq='monthly') test_factors = param_estimator.get_factors(start=int(test_start[0:4] + test_start[5:7]), end=int(test_end[0:4] + test_end[5:7]), freq='monthly') asset_universe = stock_picks + selected_etfs train_returns = pd.concat([train_stock_returns, train_etf_returns], axis=1) test_returns = pd.concat([test_stock_returns, test_etf_returns], axis=1) assets_dict[test_start] = asset_universe returns_dict[test_start] = test_returns # historical average param. estimation mu, cov = historical_avg(train_returns, 12*5, 12) # print(mu[0]) # print(cov[0] / 60.0) print('data collected') factor_models = collections.OrderedDict() for tick in asset_universe: merged = pd.merge(train_factors, train_returns[[tick]], left_on='date', right_on='date', how="inner", sort=False) ff3 = merged[['excess', 'smb', 'hml']] ff5 = merged[['excess', 'smb', 'hml', 'rmw', 'cma']] merged[tick] = merged[tick] - merged['riskfree'].astype('float')/100.0 adj_returns = merged[[tick]] alphas = [1e-2, 1e-1, 0.0] l1_ratios = list(np.arange(0, 0.1, 0.05)) mlr3, r_sq3 = param_estimator.MLR(ff3, adj_returns[tick]) factor_models[(tick, 'ff3_mlr')] = (mlr3, r_sq3) mlr5, r_sq5 = param_estimator.MLR(ff5, adj_returns[tick]) factor_models[(tick, 'ff5_mlr')] = (mlr5, r_sq5) for alpha, l1_ratio in list(itertools.product(alphas, l1_ratios)): en3, en_r_sq3 = param_estimator.EN(ff3, adj_returns[tick], alpha=alpha, l1_ratio=l1_ratio) factor_models[(tick, f'ff3_en_{alpha}_{l1_ratio}')] = (en3, en_r_sq3) en5, en_r_sq5 = param_estimator.EN(ff5, adj_returns[tick], alpha=alpha, l1_ratio=l1_ratio) factor_models[(tick, f'ff5_en_{alpha}_{l1_ratio}')] = (en5, en_r_sq5) # arima-garch ag = dict() ag['ff3'] = param_estimator.arima_garch(train_factors[['excess', 'smb', 'hml']], trade_horizon=12, columns=['excess', 'smb', 'hml']) ag['ff5'] = param_estimator.arima_garch(train_factors[['excess', 'smb', 'hml', 'rmw', 'cma']], trade_horizon=12, columns=['excess', 'smb', 'hml', 'rmw', 'cma']) months = ['01', '02', '03', '04', '05', '06', '07', '08', '09', '10', '11', '12'] model_names = [] mu_factor = collections.OrderedDict() cov_factor = collections.OrderedDict() scenarios_factor = collections.OrderedDict() for key, value in factor_models.items(): tick, model_name = key model, r_sq = value model_names += [model_name] model_names = list(set(model_names)) for model_name in model_names: factor_columns = ['excess', 'smb', 'hml', 'rmw', 'cma'] if model_name[:3] == 'ff5' else ['excess', 'smb', 'hml'] mu_factor[model_name] = get_factor_mu(model_name, factor_models, asset_universe, factor_columns, ag) factor_cov = train_factors[factor_columns].cov() factor_loadings = [] r = [] for tick in asset_universe: factor_loadings += [factor_models[(tick, model_name)][0].coef_] res_var = [ag[model_name[:3]][factor][3].residual_variance.values.tolist()[0] for factor in factor_columns] r.append([sum(i[0] * i[1] for i in zip([k ** 2 for k in factor_models[(tick, model_name)][0].coef_], [j[month] for j in res_var])) for month in range(12)]) factor_loadings = pd.DataFrame(factor_loadings, columns=factor_columns) res_diag = [np.diag([res[month] for res in r]) for month in range(12)] cov_factor[model_name] = [pd.DataFrame(np.dot(factor_loadings, np.dot(factor_cov, factor_loadings.T)) + res_diag[month], columns=asset_universe) for month in range(12)] scenarios = get_scenarios(model_name, factor_models, asset_universe, factor_columns, ag, r, 1000) scenarios_factor[model_name] = scenarios print('generating portfolios') # TODO: transaction cost, ellipsoidal uncertainty, multi-period leverage weight_constraints = {'DIS':(0.05, 1.0), 'IBM':(0.05, 1.0), 'JPM':(0.05, 1.0), 'KO':(0.05, 1.0), 'WMT':(0.05, 1.0)} for model_name in model_names: # robust MVO for conf in [1.645, 1.960, 2.576]: ef = efficient_frontier.EfficientFrontier(mu_factor[model_name], cov_factor[model_name], trade_horizon=12) # ef.add_objective(objective_functions.transaction_cost, w_prev=np.zeros(len(asset_universe)), k=0.001) card = np.zeros(shape=len(asset_universe)) control = 0.50 for i in range(len(stock_picks)): card[i] = 1 ef.add_constraint(lambda w: card @ w >= control, broadcast=False, var_list=[0]) for i in range(len(stock_picks)): min = np.zeros(shape=len(asset_universe)) max = np.ones(shape=len(asset_universe)) min[i] = weight_constraints[asset_universe[i]][0] max[i] = weight_constraints[asset_universe[i]][1] ef.add_constraint(lambda w: w >= min, broadcast=False, var_list=[0]) ef.add_constraint(lambda w: w <= max, broadcast=False, var_list=[0]) ef.robust_efficient_frontier(target_return=market_return, conf=conf) weights = ef.clean_weights() weights_dict[(test_start, model_name, conf)] = weights # risk parity ef = efficient_frontier.EfficientFrontier(mu_factor[model_name], cov_factor[model_name], trade_horizon=12) # ef.add_objective(objective_functions.transaction_cost, w_prev=np.zeros(len(asset_universe)), k=0.001) card = np.zeros(shape=len(asset_universe)) control = 0.50 for i in range(len(stock_picks)): card[i] = 1 ef.add_constraint(lambda w: card @ w >= control, broadcast=False, var_list=[0]) for i in range(len(stock_picks)): min = np.zeros(shape=len(asset_universe)) max = np.ones(shape=len(asset_universe)) min[i] = weight_constraints[asset_universe[i]][0] max[i] = weight_constraints[asset_universe[i]][1] ef.add_constraint(lambda w: w >= min, broadcast=False, var_list=[0]) ef.add_constraint(lambda w: w <= max, broadcast=False, var_list=[0]) ef.risk_parity() weights = ef.clean_weights() weights_dict[(test_start, model_name, None)] = weights # max sharpe ratio ef = efficient_frontier.EfficientFrontier([mu_factor[model_name][0] for _ in range(2)], [cov_factor[model_name][0] for _ in range(2)], trade_horizon=2) # ef.add_objective(objective_functions.transaction_cost, w_prev=np.zeros(len(asset_universe)), k=0.001) card = np.zeros(shape=len(asset_universe)) control = 0.50 for i in range(len(stock_picks)): card[i] = 1 ef.add_constraint(lambda w: card @ w >= control, broadcast=False, var_list=[0]) for i in range(len(stock_picks)): min = np.zeros(shape=len(asset_universe)) max = np.ones(shape=len(asset_universe)) min[i] = weight_constraints[asset_universe[i]][0] max[i] = weight_constraints[asset_universe[i]][1] ef.add_constraint(lambda w: w >= min, broadcast=False, var_list=[0]) ef.add_constraint(lambda w: w <= max, broadcast=False, var_list=[0]) ef.max_sharpe() weights = ef.clean_weights() weights_dict[(test_start, model_name, None)] = weights # cvar opt. for alpha in [0.90, 0.95, 0.99]: ef = efficient_frontier.EfficientFrontier(mu_factor[model_name], cov_factor[model_name], trade_horizon=12) # ef.add_objective(objective_functions.transaction_cost, w_prev=np.zeros(len(asset_universe)), k=0.001) card = np.zeros(shape=len(asset_universe)) control = 0.50 for i in range(len(stock_picks)): card[i] = 1 ef.add_constraint(lambda w: card @ w >= control, broadcast=False, var_list=[0]) for i in range(len(stock_picks)): min = np.zeros(shape=len(asset_universe)) max = np.ones(shape=len(asset_universe)) min[i] = weight_constraints[asset_universe[i]][0] max[i] = weight_constraints[asset_universe[i]][1] ef.add_constraint(lambda w: w >= min, broadcast=False, var_list=[0]) ef.add_constraint(lambda w: w <= max, broadcast=False, var_list=[0]) ef.min_cvar(target_return=market_return, scenarios=scenarios_factor[model_name], alpha=alpha) weights = ef.clean_weights() weights_dict[(test_start, model_name, alpha)] = weights cursor.close() ```
{ "source": "JoshuaKirby/Python-Nonogram", "score": 3 }
#### File: JoshuaKirby/Python-Nonogram/Game.py ```python import Processing as pc import random import math #TODO # Win checking class Game(object): ''' classdocs ''' _DEBUG_RANDOM_GEN = 25 # Side length squared x = 0 y = 0 board = [] tried = [] lives = 5 hints = [] blocksize = 0 def __init__(self,image_path,block_size,randstart): ''' Constructor ''' if(randstart): for i in range(self._DEBUG_RANDOM_GEN): self.board = self.board + [random.randint(0,1)] self.x = int(math.sqrt(self._DEBUG_RANDOM_GEN)) self.y = int(math.sqrt(self._DEBUG_RANDOM_GEN)) else: #Processing builds the board from the image and returns it self.x,self.y,self.board = pc.boardProcess(image_path,block_size) #correcting for the board size vs image size self.x = int(self.x/block_size) self.y = int(self.y/block_size) #creates a list to hold player guesses so they cant miss click for i in range(self.x * self.y): self.tried = self.tried + [0] self._generate_Hints() #print(self.y) #print(self.hints) #print(len(self.hints) - self.x - self.y) def checkMove(self,inY,inX): #changes (X,Y) coord into index index = (inY * self.y) + inX #if stack to find correct or incorrect moves, do nothing if it has already been tried if (self.tried[index] == 1): return if(self.board[index] == 1): self.tried[index] = 1 if self._checkWin(): return "W" return "C" if(self.board[index] == 0): self.tried[index] = 1 self.lives = self.lives - 1 if self.lives <= 0: return "D" return "I" def _generate_Hints(self): hintval = 0 temp = [] #gets hints for columns for col in range(self.x): for row in range(self.y): if(self.board[row*self.y + col] == 1): hintval = hintval + 1 if(self.board[row*self.y + col] == 0 and hintval > 0): temp = temp + [hintval] hintval = 0 if(hintval > 0): temp = temp + [hintval] hintval = 0 self.hints = self.hints + [temp] temp = [] temp = [] #gets hints for rows for row in range(self.y): for col in range(self.x): if(self.board[row*self.y + col] == 1): hintval = hintval + 1 if(self.board[row*self.y + col] == 0 and hintval > 0): temp = temp + [hintval] hintval = 0 if(hintval > 0): temp = temp + [hintval] hintval = 0 self.hints = self.hints + [temp] temp = [] temp = [] #print(self.hints) '''this makes weird triangle hints, I'm saving it cause it's interesting and I don't want to kill it by replacing it with the proper function''' def _generate_Hints_BAK(self): hintval = 0 temp = [] for val in range(self.x): for row in range(self.y): if(self.board[row*self.y + val] == 1): hintval = hintval + 1 if(self.board[row*self.y + val] == 0 and hintval > 0): temp = temp + [hintval] hintval = 0 temp = temp + [hintval] hintval = 0 if(temp == []): temp = temp + [0] self.hints = self.hints + [temp] temp = [] for row in range(self.y): for val in range(self.x): if(self.board[row*self.y + val] == 1): hintval = hintval + 1 if(self.board[row*self.y + val] == 0 and hintval > 0): temp = temp + [hintval] hintval = 0 temp = temp + [hintval] hintval = 0 if(temp == []): temp = temp + [0] self.hints = self.hints + [temp] temp = [] def _getHints(self,val,orientation): return self.hints[self.x*orientation + val] def getHints(self,val,orientation): #print(self.x,val) return self.hints[self.x*orientation + val] def _checkWin(self): out = True for i in range(self.x*self.y): if(self.board[i] == 1 and self.tried[i] != 1): out = False return out def getLives(self): return self.lives def getBoard(self): return self.board def getTried(self): return self.tried def getSize(self): return self.x,self.y ```
{ "source": "JoshuaKnittel/MP4toGIF", "score": 3 }
#### File: JoshuaKnittel/MP4toGIF/app.py ```python import tkinter as tk from moviepy.editor import VideoFileClip from PIL import Image, ImageTk # to display logo from tkinter.filedialog import * from tkinter import messagebox root = tk.Tk() # window object. # Set size of Canvas canvas = tk.Canvas(root, width=600, height=600) # Logo logo = Image.open("logo.png") logo = ImageTk.PhotoImage(logo) logo_label = tk.Label(image=logo) logo_label.image = logo logo_label.grid(columnspan=2, row=0) # Function to convert jpg to gif def mp4_to_gif(): # Get the input value for fps fps = fps_var.get() if fps > 0: # Import the mp4 from folder import_filename = askopenfilename() if import_filename.endswith(".mp4"): clip = VideoFileClip(import_filename) clip.write_gif("app_low.gif", fps=fps) messagebox.showinfo("success ", "Your video has been converted into a GIF") else: messagebox.showerror(title="invalid entry", message="You must choose a number which is greater than 0") # FPS entry fps_var = tk.IntVar() fps_label = tk.Label(root, text = "Choose FPS", font="Raleway") fps_label.grid(column=0, row=2) fps_entry = tk.Entry(root, textvariable=fps_var, font="Raleway") fps_entry.grid(column=1, row=2) # Instructions instructions = tk.Label(root, text="Select a MP4 file on your computer", font="Raleway") instructions.grid(column=0, row=3) # Browse button browse_text = tk.StringVar() browse_btn = tk.Button(root, textvariable=browse_text, command=lambda: mp4_to_gif(), font="Raleway", bg="#8c86fc", height=2, width=15) browse_text.set("Browse") browse_btn.grid(column=1, row=3) root.mainloop() ```
{ "source": "joshuakoester82/brobot", "score": 3 }
#### File: brobot/brobot/functions.py ```python import discord import random import requests import datetime def recolor(str): c_str = f"```md\n" \ f"{str}\n" \ f"```" return c_str def average(list): return round(sum(list)/len(list),2) def log(author,message): date_time = datetime.datetime.now() print(f"{author} {message} : {date_time}") def roll(times=0,sides=0): """simulate a die roll with arguments times,sides and return a list with roll results""" try: if times <= 100 and sides <= 100_000: result_list = [] for i in range(times): result_list.append(random.randint(1,sides)) return f"You rolled: {result_list}" else: return "Your roll request hurt my feelings." except: return "You did something stupid. Please stop that." def russian_roulette(name): """a crude russian roulette simulation. Takes the name of the player and returns a string with result of simulation""" outcome_list = [0,0,0,0,0,1] result = random.choice(outcome_list) if result == 1: return f"KABLAMO! {name} blew their brains out. Play stupid games win stupid prizes." else : return f"CLICK. {name} lives to play again" def get_mythic_plus(name,realm="sargeras"): """Queries the Raider.io server api with a character name and realm and retrieves a json file. The data is parsed and returns a string to be displayed or sent to the server""" url = f"https://raider.io/api/v1/characters/profile?" \ f"region=us&realm={realm}&name={name}&fields=mythic_plus_scores_by_season%3Acurrent" response = requests.get(url).json() mythic_plus_data = response["mythic_plus_scores_by_season"][0]["scores"]["all"] return mythic_plus_data def get_best_runs(name,realm="sargeras"): """queries the raider.io server api with a request for the best runs. The resulting json is parsed and returned as a string.""" url = f"https://raider.io/api/v1/characters/profile?region=us&realm={realm}" \ f"&name={name}&fields=mythic_plus_best_runs%3A10" response = requests.get(url).json() best_runs = response["mythic_plus_best_runs"] run_list = [] # put the runs into a list for item in best_runs: run_list.append(item) # create message string message = "" for i in range(len(run_list)): message += f"{run_list[i]['dungeon']} (+{run_list[i]['mythic_level']}) - {run_list[i]['score']}\n" return message def get_best_runs_as_embed(name,realm="sargeras"): """get best runs data and return embed object""" url = f"https://raider.io/api/v1/characters/profile?region=us&realm={realm}" \ f"&name={name}&fields=mythic_plus_best_runs%3A10" r = requests.get(url).json() best_runs = r["mythic_plus_best_runs"] run_list = [] mplus_score = get_mythic_plus(name,realm) # create and prep embed embed_author_title = "------------------- M+ Best Runs -------------------" embed_author_name = f"{r['name']}'s M+ Score : {mplus_score}" embed_author_profile = r['profile_url'] embed_color = 0xFF0000 embed_thumbnail = r['thumbnail_url'] embed = discord.Embed(title=embed_author_title, color=embed_color) embed.set_author(name=embed_author_name, url=embed_author_profile) embed.set_thumbnail(url=embed_thumbnail) # put the runs into a list for item in best_runs: run_list.append(item) # create message string message = "" for i in range(len(run_list)): message_name = f"{run_list[i]['dungeon']}" message_value = f"(+{run_list[i]['mythic_level']}) - {run_list[i]['score']}" embed.add_field(name=message_name, value=message_value,inline=True) return embed def get_raid_progression(name,realm="sargeras"): """Get the raid progression info as json from Raider.io api, format and return as a string""" raid_list = ["the-eternal-palace","crucible-of-storms","battle-of-dazaralor","uldir"] formatted_raidnames = ["Eternal Palace","Crucible of Storms","Battle of Dazaralor","Uldir"] url = f"https://raider.io/api/v1/characters/profile?region=us&realm={realm}&name={name}&fields=raid_progression" response = requests.get(url).json() category = response['raid_progression'] message = f"{str(name).capitalize()}'s Raid Progression\n" \ f"---------------------------------------\n" for i in range(len(raid_list)): total_bosses = category[raid_list[i]]['total_bosses'] message += f"{formatted_raidnames[i]}: {category[raid_list[i]]['mythic_bosses_killed']}/{total_bosses}M, " message += f"{category[raid_list[i]]['heroic_bosses_killed']}/{total_bosses}H, " message += f"{category[raid_list[i]]['normal_bosses_killed']}/{total_bosses}N\n" message += f"---------------------------------------\n" return message def get_raid_progression_as_embed(name,realm="sargeras"): """Query raider.io for raid progression and return an embed object""" raid_list = ["the-eternal-palace", "crucible-of-storms", "battle-of-dazaralor", "uldir"] formatted_raidnames = ["Eternal Palace", "Crucible of Storms", "Battle of Dazaralor", "Uldir"] url = f"https://raider.io/api/v1/characters/profile?region=us&realm={realm}&name={name}&fields=raid_progression" r = requests.get(url).json() category = r['raid_progression'] embed_author_title = "------------------- Raid Progression -------------------" embed_author_name = f"{r['name']} : {r['active_spec_name']} {r['class']}" embed_author_profile = r['profile_url'] embed_color = 0xFF0000 embed_thumbnail = r['thumbnail_url'] embed = discord.Embed(title=embed_author_title, color=embed_color) embed.set_author(name=embed_author_name,url=embed_author_profile) embed.set_thumbnail(url=embed_thumbnail) for i in range(len(raid_list)): message = "" total_bosses = category[raid_list[i]]['total_bosses'] message += f"{category[raid_list[i]]['mythic_bosses_killed']}/{total_bosses}M, " message += f"{category[raid_list[i]]['heroic_bosses_killed']}/{total_bosses}H, " message += f"{category[raid_list[i]]['normal_bosses_killed']}/{total_bosses}N\n" embed.add_field(name=f"{formatted_raidnames[i]}", value=message, inline=False) return embed def get_gear(name,realm="sargeras"): """Query the raider.io server for gear information on a character and return as a formatted string""" url = f"https://raider.io/api/v1/characters/profile?region=us&realm={realm}&name={name}&fields=gear" response = requests.get(url).json() gear = response["gear"] message = f"{name}'s Gear:\n" \ f"--------------------\n" \ f"Equipped Item Level: {gear['item_level_equipped']}\n" \ f"Total Item Level: {gear['item_level_total']}\n" \ f"Artifact Traits: {gear['artifact_traits']}\n" \ f"-------------------\n" return message def get_raideriopage(name,realm="sargeras"): """Query the raider.io server for a link to the character and return as a string.""" url = f"https://raider.io/api/v1/characters/profile?region=us&realm={realm}&name={name}" response = requests.get(url).json() link = response['profile_url'] return link def get_rankings(name,realm="sargeras",target_difficulty=3,metric="dps",region="us"): """Query the warcraftlogs api for character rankings, embed, and return as embed object""" difficulty_dict = {5:"Mythic", 4:"Heroic", 3:"Normal"} r = requests.get(f"https://www.warcraftlogs.com:443/v1/rankings/character/{name}/{realm}/{region}?metric={metric}" f"&timeframe=historical&api_key=<KEY>").json() # create embed ilvl = r[0]["ilvlKeyOrPatch"] embed_author_title = f"-------------------{difficulty_dict.get(target_difficulty)} {metric} Rankings -------------------" embed_author_name = f"{r[0]['characterName']}({r[0]['spec']} {r[0]['class']}) ilvl: {ilvl}" embed_color = 0xFF0000 embed_author_url = f"https://www.warcraftlogs.com/character/{region}/{realm}/{name}?mode=detailed&zone=23" \ f"#difficulty={target_difficulty}" embed = discord.Embed(title=embed_author_title, color=embed_color) embed.set_author(name=embed_author_name,url=embed_author_url,icon_url="https://dmszsuqyoe6y6.cloudfront.net/img/warcraft/favicon.png") # construct ordered list of raids raid_order = ["Abyssal Commander Sivara", "Blackwater Behemoth", "Radiance of Azshara", "Lady Ashvane", "Orgozoa", "The Queen's Court", "Za'qul", "Queen Azshara"] raid_list_ordered = [] percentile_list = [] for raid in raid_order: for item in r: difficulty = item["difficulty"] if difficulty == target_difficulty: if item["encounterName"] == raid: raid_list_ordered.append(item) percentile_list.append(item["percentile"]) # check raid_list_ordered for duplicates, remove the duplicate with lowest percentile for raid in raid_list_ordered: for worse in raid_list_ordered: if raid["encounterName"] == worse["encounterName"]: if worse["percentile"] < raid["percentile"]: raid_list_ordered.remove(worse) # create fields for item in raid_list_ordered: encounter = item["encounterName"] percentile = item["percentile"] duration = item["duration"] duration_minutes = round(((duration / 1000) // 60)) duration_seconds = round((((duration / 1000) / 60) % 1) * 60) if duration_seconds < 10: duration_seconds = "0" + str(duration_seconds) message = f"{percentile}% ({duration_minutes}:{duration_seconds})" embed.add_field(name=f"-{encounter}-", value=message, inline=True) # calculate averages, put in field p_average = average(percentile_list) embed.insert_field_at(0, name=f"Average Percentile", value=p_average, inline=False) return embed ``` #### File: brobot/brobot/main.py ```python import discord from discord.ext import commands import functions as f from random import choice """ A simple discord bot for GameBros server. See 'todo.txt' for potential features. """ # region init flavor = False token = "" # put your bot token here client = commands.Bot(command_prefix = "!") client.remove_command("help") # load user presets with open("../data/user_character_presets.txt","r+") as file: try: user_character_presets = eval(file.read()) print(f"{file.name} loaded from file: {user_character_presets}") except: print(f"Unexpected error loading {file.name}. Reinitialized file.") file.truncate(0) file.seek(0) user_character_presets = {} file.write("{}") # endregion @client.event async def on_member_update(member_a,member_b): global flavor if flavor == True: # on waking up status_a = str(member_a.status) status_b = str(member_b.status) if status_a == "idle" and status_b == "online": channel_general = client.get_channel(439603779298394124) # Josh if member_a.id == 124339909820547074: possible_messages = ["Welcome back creator!", "I missed you, Alimightyzentaco.", "Greetings creator!", "Ahh, he who gave me life is here. I am elated."] message = choice(possible_messages) await channel_general.send(message) # Ryan if member_a.id == 140294058663739394: possible_messages = ["Welcome back Ryan. How was your nap?", "Welcome Ryan, glad you finally woke up.", "It's good to see you again Ryan. Did you sleep well?", "Back amongst the living, eh Ryan?", "Ryan likes to party. And by party I mean take naps.", "Finally. Ryan is awake. Let the games begin.", "Do you guys think someone can nap too much? Let's ask Ryan, he'll probably know.", "Ryan is so good at sleeping he can do it with his eyes closed.", "Ryan spends so much time undercovers, he should be a detective." "Hey, Ryan's awake! About time." ] message = choice(possible_messages) await channel_general.send(message) @client.event async def on_message(message): if "https://www.youtube.com/watch?v=AmGti20smKo" in message.content: possible_messages = ["Nope, none of that.", "Not on my watch.", "No sir, not gonna happen", "Maybe don't do that so much", "Nobody is 'schemin' like a demon semen' while I'm here", "Why would you try to subject us to that?", "Please, don't do that." ] to_send = choice(possible_messages) await message.channel.send(to_send) await message.delete() await client.process_commands(message) @client.event async def on_ready(): print('We have logged in as {0.user}'.format(client)) @client.command() async def help(ctx): await ctx.send("List of commands. Some commands are not yet finished:\n" "!help: help prompt\n" "!ping: returns latency\n" "!roll <times>d<sides> : roll some dice\n" "!russianroulette: Play Russian Roulette. Always random. 1 in 6 chance of dying\n" "!mythicplus: <character> <realm> Shows M+ score for character. Default realm=sargeras " "(m+,mplus,mythic+,mp)\n" "!bestruns <character> <realm>: show the best runs for the character. Default realm=sargeras " "(br,bestr,bruns)\n" "!raid <character> <realm>: show raid progression for selected character.(rp,progression,raid)\n" "!raiderio <character> <realm> return a link with the raider.io character page (char, info, link)\n" "!r (optional arguments: -<character/realm/region> d-x, m-x) [ex: !r sethur/sargeras/us d-4 m-dps] " ": show rank info from warcraftlogs \n" "!register <character> <realm> <region> : register a default character to your username.") f.log(ctx.message.author,ctx.message.content) @client.command() async def ping(ctx): await ctx.send(f"Parng! {round(client.latency*1000)}ms") f.log(ctx.message.author, ctx.message.content) @client.command(aliases = ["dice","die","rolls"]) async def roll(ctx,roll="1d6"): roll_list = roll.strip().lower().split("d") f.log(ctx.message.author, ctx.message.content) try: roll,times = int(roll_list[0]), int(roll_list[1]) result = f.roll(roll,times) await ctx.send(result) except: await ctx.send("You did something stupid. Cut that out.") @client.command(aliases=["rr","russianr","roulette"]) async def russianroulette(ctx): await ctx.send(f.russian_roulette(ctx.author)) f.log(ctx.message.author, ctx.message.content) @client.command(aliases=["m+", "mplus", "mythic+", "mp"]) async def mythicplus(ctx,name=None,realm=None): author = str(ctx.message.author) if name is None: try: name = user_character_presets[author][0] print(f"name is {name}") except: print(f"exception! name: {name}") await ctx.send("Enter name or register a default character") if realm is None: try: realm = user_character_presets[author][1] print(f"realm is : {realm}") except: realm = "sargeras" print(f"realm is {realm}") raid_stats = f.get_mythic_plus(name,realm) name_caps = str(name).capitalize() message = f"{name_caps}'s mythic+ score is: {raid_stats}" await ctx.send(message) f.log(ctx.message.author, ctx.message.content) @client.command(aliases = ["items"]) async def gear(ctx,name=None,realm=None): author = str(ctx.message.author) if name is None: try: name = user_character_presets[author][0] except: await ctx.send("Enter name or register a default character") if realm is None: try: realm = user_character_presets[author][1] except: realm = "sargeras" message = f.get_gear(name,realm) await ctx.send(message) f.log(ctx.message.author, ctx.message.content) @client.command(aliases=["char","info","link","character"]) async def raiderio(ctx,name=None,realm=None): author = str(ctx.message.author) if name is None: try: name = user_character_presets[author][0] except: await ctx.send("Enter name or register a default character") if realm is None: try: realm = user_character_presets[author][1] except: realm = "sargeras" message = f.get_raideriopage(name,realm) await ctx.send(message) f.log(ctx.message.author, ctx.message.content) @client.command(aliases=["rp","raidprogression","proggression"]) async def raid(ctx,name=None,realm=None): author = str(ctx.message.author) if name is None: try: name = user_character_presets[author][0] except: await ctx.send("Enter name or register a default character") if realm is None: try: realm = user_character_presets[author][1] except: realm = "sargeras" message = f.get_raid_progression_as_embed(name,realm) await ctx.send(embed=message) f.log(ctx.message.author, ctx.message.content) @client.command(aliases = ["br","bruns","best","runs"]) async def bestruns(ctx,name=None,realm=None): author = str(ctx.message.author) if name is None: try: name = user_character_presets[author][0] except: await ctx.send("Enter name or register a default character") if realm is None: try: realm = user_character_presets[author][1] except: realm = "sargeras" message = f.get_best_runs_as_embed(name,realm) await ctx.send(embed=message) f.log(ctx.message.author, ctx.message.content) @client.command(aliases=["rankings","getrank","r","logs","parse"]) async def rank(ctx): print(f"{ctx.message.author} requested rank information from warcraftlogs.com ") author = str(ctx.message.author) commands = str(ctx.message.content).split(" ") commands.remove(commands[0]) # set default values name, realm, difficulty, region, metric = None, "sargeras", 4, "us", "dps" for item in commands: if item.startswith("d-") or item.startswith("difficulty-"): item_list = item.split("-") if len(item_list) > 1: difficulty = int(item_list[1]) if item.startswith("m-") or item.startswith("metric-"): item_list = item.split("-") if len(item_list) > 1: metric = item_list[1] if item.startswith("-"): item_list = item.split("-") if len(item_list) > 1: name_realm_region = item_list[1] if "/" in name_realm_region: nrr_list = name_realm_region.split("/") name = nrr_list[0] if len(nrr_list) > 1: realm = nrr_list[1] if len(nrr_list) > 2: region = nrr_list[2] else: name = name_realm_region if name is None: try: name = user_character_presets[author][0] except: print("No name preset for user") await ctx.send("Enter a character name or register a character with !register") try: realm = user_character_presets[author][1] except: print("No region preset for user") try: region = user_character_presets[author][2] except: print("No realm preset for user") message = f.get_rankings(name,realm,difficulty,metric,region) await ctx.send(embed=message) @client.command() async def register(ctx,name=None,realm="sargeras",region="us"): user = str(ctx.message.author) user_character_presets[user] = [name, realm, region] with open("user_character_presets.txt","w") as file: file.write(str(user_character_presets)) await ctx.send(f"Character registered as : {name}, {realm}, {region}") await ctx.send(f"https://raider.io/characters/{region}/{realm}/{name}") @client.command() async def idiot(ctx): author = str(ctx.message.author) if author == "Horizen#1881": await ctx.send("That's you, @Horizen#1881.") else: await ctx.send("The current idiot around here is @Horizen#1881") @client.command() async def pic(ctx): file = discord.File("yousuck.jpg") await ctx.channel.send(file=file) @client.command() async def personality(ctx): global flavor flavor = not flavor if flavor == True: await ctx.send("I'll spice it up a bit.") else: await ctx.send("Okay, It's all business from here on out.") client.run(token) ```
{ "source": "joshuakoh1/drf-stripe-subscription", "score": 2 }
#### File: management/commands/update_stripe_products.py ```python from django.core.management.base import BaseCommand from drf_stripe.stripe_api.products import stripe_api_update_products_prices class Command(BaseCommand): help = "Import Service/Feature types from Stripe" def add_arguments(self, parser): pass def handle(self, *args, **kwargs): stripe_api_update_products_prices() ``` #### File: tests/api/test_update_subscriptions.py ```python from drf_stripe.models import Subscription from drf_stripe.stripe_api.subscriptions import stripe_api_update_subscriptions from ..base import BaseTest class TestSubscription(BaseTest): def setUp(self) -> None: self.setup_user_customer() self.setup_product_prices() def test_update_subscriptions(self): """ Test retrieving list of subscription from Stripe and update database. """ response = self._load_test_data("v1/api_subscription_list.json") stripe_api_update_subscriptions(test_data=response) subscription = Subscription.objects.get(subscription_id="sub_0001") self.assertEqual(subscription.status, "trialing") self.assertEqual(subscription.stripe_user.customer_id, "cus_tester") sub_items = subscription.items.all() self.assertEqual(len(sub_items), 1) sub_item = sub_items.first() self.assertEqual(sub_item.price.price_id, "price_1KHkCLL14ex1CGCipzcBdnOp") ``` #### File: drf-stripe-subscription/tests/base.py ```python import json from pathlib import Path from django.contrib.auth import get_user_model from django.test import TestCase from drf_stripe.models import StripeUser from drf_stripe.stripe_api.products import stripe_api_update_products_prices class BaseTest(TestCase): def setUp(self) -> None: pass def tearDown(self) -> None: pass def setup_product_prices(self): products = self._load_test_data("v1/api_product_list.json") prices = self._load_test_data("v1/api_price_list.json") stripe_api_update_products_prices(test_products=products, test_prices=prices) @staticmethod def setup_user_customer(): user = get_user_model().objects.create(username="tester", email="<EMAIL>", password="<PASSWORD>") stripe_user = StripeUser.objects.create(user_id=user.id, customer_id="cus_tester") return user, stripe_user @staticmethod def _load_test_data(file_name): p = Path("tests/mock_responses") / file_name with open(p, 'r', encoding='utf-8') as f: data = json.load(f) return data @staticmethod def _print(v): print("$$$$$$$ DEBUG $$$$$") print(v) assert False ``` #### File: tests/webhook/test_event_product_price.py ```python from django.db.models import Q from drf_stripe.models import Product, Price, ProductFeature from drf_stripe.stripe_webhooks.handler import handle_webhook_event from tests.base import BaseTest class TestWebhookProductPriceEvents(BaseTest): def create_product_price(self): event = self._load_test_data("2020-08-27/webhook_product_created.json") handle_webhook_event(event) event = self._load_test_data("2020-08-27/webhook_price_created.json") handle_webhook_event(event) def test_event_handler_product_created(self): """ Mock production and price creation events """ self.create_product_price() # check product and price created product = Product.objects.get(description='Test Product ABC') price = Price.objects.get(product=product) self.assertEqual(price.price, 100) self.assertEqual(price.product, product) # check Product-to-Feature relations created ProductFeature.objects.get(product=product, feature__feature_id='A') ProductFeature.objects.get(product=product, feature__feature_id='B') ProductFeature.objects.get(product=product, feature__feature_id='C') def test_event_handler_price_update(self): """ Mock price update events """ self.create_product_price() # modify price event = self._load_test_data("2020-08-27/webhook_price_updated.json") handle_webhook_event(event) # check price modifications price = Price.objects.get(price_id="price_1KHkCLL14ex1CGCipzcBdnOp") self.assertEqual(price.price, 50) self.assertEqual(price.freq, "week_1") self.assertEqual(price.nickname, "Weekly subscription") self.assertEqual(price.product.product_id, "prod_KxfXRXOd7dnLbz") def test_event_handler_product_update(self): """Mock product update event""" self.create_product_price() # modify product product_mod = self._load_test_data("2020-08-27/webhook_product_updated.json") handle_webhook_event(product_mod) # check product modifications product = Product.objects.get(product_id='prod_KxfXRXOd7dnLbz') self.assertEqual(product.name, "Test Product ABD") self.assertEqual(product.description, "Test Product ABD") # check product is now associated with feature D ProductFeature.objects.get(product=product, feature__feature_id='D') ProductFeature.objects.get(product=product, feature__feature_id='A') ProductFeature.objects.get(product=product, feature__feature_id='B') # check product no longer associated with feature C prod_feature_qs = ProductFeature.objects.filter(Q(product=product) & Q(feature__feature_id='C')) self.assertEqual(len(prod_feature_qs), 0) def test_event_handler_price_archived(self): """Mock price archived event""" self.create_product_price() event = self._load_test_data("2020-08-27/webhook_price_updated_archived.json") handle_webhook_event(event) price = Price.objects.get(price_id='price_1KHkCLL14ex1CGCieIBu8V2e') self.assertFalse(price.active) def test_event_handler_product_archived(self): """Mock product archived event""" self.create_product_price() event = self._load_test_data("2020-08-27/webhook_product_updated_archived.json") handle_webhook_event(event) product = Product.objects.get(product_id='prod_KxfXRXOd7dnLbz') self.assertFalse(product.active) ```
{ "source": "JoshuaKoopmans/FusionToolFilter", "score": 2 }
#### File: modules/starfusion/methods.py ```python from modules.collective_script.methods import check_value_above_filter def create_sf_output(output_file, out_string): """ This function creates an output file and dumps the fusion partners in it. :param out_string: string containing all fusion partners in the desired format \ (e.g. <fusion_partner_1>--<fusion_partner_2>). :param output_file: a file to dump he out_string into. """ try: with open(output_file, "w") as f_out: f_out.write("#FusionName\tJunctionReadCount\tSpanningFragCount\tSpliceType\tLeftGene\t" "LeftBreakpoint\tRightGene\tRightBreakpoint\tJunctionReads\tSpanningFrags\t" "LargeAnchorSupport\tFFPM\tLeftBreakDinuc\tLeftBreakEntropy\tRightBreakDinuc\t" "RightBreakEntropy\tannots\n") f_out.write(out_string) f_out.close() except (FileNotFoundError, IOError) as e: print("ERROR: Check output file.", e.args) exit(1) def process_star_fusion(file_content, spanning_threshold=8, junction_threshold=8): """ This function reads the content of an opened file and filters the rows. :param file_content: content of input file going to be processed. :param spanning_threshold: Amount of spanning reads to filter by. :param junction_threshold: Amount of junction reads to filter by. :return: String with filtered rows. """ out_string = "" try: for line in file_content: if not line.startswith("#"): splitted_line = line.split("\t") junction_read_count = splitted_line[1] spanning_read_count = splitted_line[2] if [int(junction_read_count), int(spanning_read_count)].count(0) == 1: if check_value_above_filter(junction_read_count, junction_threshold) or \ check_value_above_filter(spanning_read_count, spanning_threshold): out_string += line elif check_value_above_filter(junction_read_count, junction_threshold) or \ check_value_above_filter(spanning_read_count, spanning_threshold): out_string += line return out_string except: print("ERROR: input file not from tool \'STAR-Fusion\'.") exit(1) ``` #### File: FusionToolFilter/tests/test_star_fusion_methods.py ```python import unittest from modules.starfusion.methods import check_value_above_filter from tests.helper import OpenFile """ ################################################## Center for Molecular and Biomolecular Informatics (CMBI) / RTC Bioinformatics Author: <NAME> Version: 1.0 Email: <EMAIL> ################################################## This script tests the methods used for the processing of STAR-Fusion results. """ class TestStarFusionFilter(unittest.TestCase): def test_true_output(self): """ Check whether filter works on integer """ self.assertEqual(check_value_above_filter(9, 8), True) def test_false_output(self): """ Check whether filter works on integer """ self.assertEqual(check_value_above_filter(5, 8), False) def test_processing(self): """ Check whether a specific piece of file content matches the expected value """ ex = OpenFile("tests/test_dependencies/ERR3003549.fusion_predictions.tsv", False) self.assertEqual(ex.open_file()[2].split("\t")[8], "ERR3003549.35514118,ERR3003549.26593596,ERR3003549.4876846," "ERR3003549.132222,ERR3003549.23880496,ERR3003549.1459710," "ERR3003549.34271762,ERR3003549.23877880,ERR3003549.31002074," "ERR3003549.35767423,ERR3003549.34871132,ERR3003549.23311128," "ERR3003549.2510524,ERR3003549.26239911,ERR3003549.24106263," "ERR3003549.13747215,ERR3003549.1157243,ERR3003549.35462450," "ERR3003549.11226777,ERR3003549.7469243,ERR3003549.13564551," "ERR3003549.37646628,ERR3003549.21763831,ERR3003549.12397896," "ERR3003549.24734818,ERR3003549.6427191,ERR3003549.14293731," "ERR3003549.22490457,ERR3003549.41394459,ERR3003549.23932326," "ERR3003549.27532262,ERR3003549.957032,ERR3003549.18054556," "ERR3003549.5056587,ERR3003549.20106936,ERR3003549.20813627," "ERR3003549.34020876,ERR3003549.4052860,ERR3003549.10823571," "ERR3003549.27970515,ERR3003549.38559607,ERR3003549.19660361," "ERR3003549.10101131,ERR3003549.27728776,ERR3003549.30418961," "ERR3003549.34400349,ERR3003549.42191939,ERR3003549.40548193," "ERR3003549.41738925,ERR3003549.33348710,ERR3003549.16904117," "ERR3003549.34350166,ERR3003549.24335298,ERR3003549.17813454," "ERR3003549.11154232,ERR3003549.33578004,ERR3003549.37972998," "ERR3003549.1386700") if __name__ == '__main__': unittest.main() ```
{ "source": "joshuakosasih/TA", "score": 2 }
#### File: FlaskApp/nertagger/Main_Char.py ```python import csv import json import pickle from datetime import datetime import numpy as np import tensorflow as tf from DataProcessor import DataIndexer as DI from DataProcessor import DataMapper as DM from DataProcessor import DataPreprocessor as DP from keras import Model from keras import backend as K from keras.layers import Bidirectional, Dropout from keras.layers import Concatenate from keras.layers import Embedding from keras.layers import GRU from keras.layers import Input from keras.layers import Lambda from keras_contrib.layers import CRF class NERTagger: mask = True # mask pad (zeros) or not EMBEDDING_DIM = 64 CHAR_EMBEDDING_DIM = 64 padsize = 188 char_padsize = 25 def __init__(self): self.textinput = '' self.test = '' self.x_test = '' self.x_test_char = '' self.results = [] self.data = {} self.json_data = {} self.char = DI() self.char.load('char') self.word = DI() self.word.load('word.ner') self.label = DI() self.label.load('label.ner') print 'Found', self.word.cnt - 1, 'unique words.' print 'Found', self.char.cnt - 1, 'unique chars.' print 'Found', self.label.cnt - 1, 'unique labels.' embedding_matrix = np.zeros((len(self.word.index) + 1, int(self.EMBEDDING_DIM))) char_embedding_matrix = np.zeros((len(self.char.index) + 1, int(self.CHAR_EMBEDDING_DIM))) """ Create keras word model """ MAX_SEQUENCE_LENGTH = self.padsize embedding_layer = Embedding(len(self.word.index) + 1, self.EMBEDDING_DIM, weights=[embedding_matrix], input_length=MAX_SEQUENCE_LENGTH, mask_zero=self.mask) sequence_input = Input(shape=(MAX_SEQUENCE_LENGTH,), dtype='int32') embedded_sequences = embedding_layer(sequence_input) drop = 0.4 dropout = Dropout(rate=drop)(embedded_sequences) """ Create keras char model """ def reshape_one(c): return K.reshape(c, (tf.shape(c)[0] * self.padsize, self.char_padsize, self.CHAR_EMBEDDING_DIM)) def reshape_two(c): if merge_m_c == 'concat': return K.reshape(c, (tf.shape(c)[0] / self.padsize, self.padsize, self.CHAR_EMBEDDING_DIM * 2)) else: return K.reshape(c, (tf.shape(c)[0] / self.padsize, self.padsize, self.CHAR_EMBEDDING_DIM)) MAX_WORD_LENGTH = self.char_padsize # embeddingPrompt('char') embedding_layer_c = Embedding(len(self.char.index) + 1, self.CHAR_EMBEDDING_DIM, weights=[char_embedding_matrix], input_length=MAX_WORD_LENGTH, mask_zero=self.mask) sequence_input_c = Input(shape=(self.padsize, MAX_WORD_LENGTH,), dtype='int32') embedded_sequences_c = embedding_layer_c(sequence_input_c) dropout_c = Dropout(rate=drop)(embedded_sequences_c) rone = Lambda(reshape_one)(dropout_c) merge_m = 'concat' merge_m_c = merge_m dropout_gru = 0.5 rec_dropout = dropout_gru gru_karakter = Bidirectional( GRU(self.CHAR_EMBEDDING_DIM, return_sequences=False, dropout=dropout_gru, recurrent_dropout=rec_dropout), merge_mode=merge_m, weights=None)(rone) rtwo = Lambda(reshape_two)(gru_karakter) """ Combine word + char model """ merge_m = 'concat' gru_kata = Bidirectional(GRU(self.EMBEDDING_DIM * 2, return_sequences=True, dropout=dropout_gru, recurrent_dropout=rec_dropout), merge_mode=merge_m, weights=None)(rtwo) crf = CRF(len(self.label.index) + 1, learn_mode='marginal')(gru_kata) self.model = Model(inputs=[sequence_input, sequence_input_c], outputs=[crf]) optimizer = 'adagrad' loss = 'poisson' self.model.summary() self.model.compile(loss=loss, optimizer=optimizer, metrics=['acc']) self.w_name = '06-05_17:19_658' m_layers_len = len(self.model.layers) for i in range(m_layers_len): with open(self.w_name + "_" + str(i) + ".wgt", "rb") as fp: w = pickle.load(fp) self.model.layers[i].set_weights(w) def predict(self, text): self.textinput = text self.test = DP(text) self.x_test = DM(self.test.words, self.word.index) print "Number of OOV:", len(self.x_test.oov_index) print "OOV word occurences:", self.x_test.oov self.x_test.pad(self.padsize) print('Padded until %s tokens.' % self.padsize) self.x_test_char = self.convertCharText2Int(self.test) self.results = [] print "Computing..." print self.x_test.padded print self.x_test_char raw_results = self.model.predict([np.array(self.x_test.padded), np.array(self.x_test_char)]) for raw_result in raw_results: result = [] for token in raw_result: value = np.argmax(token) result.append(value) self.results.append(result) temp = self.results[0] li = self.label.index keys = li.keys() values = li.values() self.results = [] start = False for token in temp: if token != 0: start = True if start: if token == 0: self.results.append('?') else: self.results.append(keys[values.index(token)]) print self.test.words[0] print self.results self.data = {'words': self.test.words[0], 'labels': self.results} self.json_data = json.dumps(self.data) return self.json_data def log(self): self.textoutput = '' for token in self.results: self.textoutput = self.textoutput + token + ' ' rnow = datetime.now() logcsv = open('log.csv', 'a') writer = csv.writer(logcsv, delimiter=',') writer.writerow( ['no', str(rnow.date()), str(rnow.time())[:-10], self.w_name, self.word.cnt - 1, self.char.cnt - 1, self.textinput, len(self.x_test.oov_index), self.textoutput]) logcsv.close() def convertCharText2Int(self, dataload): x_tmp1 = [] for sent in dataload.words: x_map = DM(sent, self.char.index, False) if x_map.padsize > self.char_padsize: self.char_padsize = x_map.padsize x_tmp1.append(x_map) x_tmp2 = [] for sent in x_tmp1: sent.pad(self.char_padsize) x_tmp2.append(sent.padded) print('Padded until %s chars.' % self.char_padsize) zeroes = [] for i in range(self.char_padsize): zeroes.append(0) x_char = [] for sent in x_tmp2: padded_sent = sent pad = self.padsize - len(sent) for i in range(pad): padded_sent = np.vstack((zeroes, padded_sent)) x_char.append(padded_sent) print('Padded until %s tokens.' % self.padsize) return x_char ``` #### File: Webapp/Program/app.py ```python from flask import Flask, render_template, request from flask_bootstrap import Bootstrap from postagger.Main import POSTagger from nertagger.Main import NERTagger import json app = Flask(__name__) data = {} pt = 0 nt = 0 @app.route("/") def main(): return render_template('index.html') @app.route('/pos', methods=['GET']) def posG(): global pt if pt == 0: pt = POSTagger() return render_template('pos.html') @app.route('/pos', methods=['POST']) def posP(): in_x = request.form['in_x'] global pt json_data = pt.predict(in_x) print 'json data', json_data return render_template('pos.html', in_val=in_x, jsondata=json_data) @app.route('/ner', methods=['GET']) def nerG(): global nt nt = NERTagger() return render_template('ner.html') @app.route('/ner', methods=['POST']) def nerP(): in_x = request.form['in_x'] global nt json_data = nt.predict(in_x) print 'json data', json_data return render_template('ner.html', in_val=in_x, jsondata=json_data) if __name__ == "__main__": app.run(debug=False, threaded=False) ``` #### File: TA/welldone_pos/DataProcessor.py ```python import nltk import numpy as np import random import pickle class DataLoader: """ Initialize with a string of file name ex: DataLoader('filename') Attributes: corpus words labels filename """ def __init__(self, name): print "Opening file", name self.myfile = open(name, 'r') self.filename = name print "Loading data..." self.mydict = [] self.corpus = [] lines = [] for line in self.myfile: self.mydict.append(line) for line in self.mydict: if line == '-----\r\n': self.corpus.append(lines) lines = [] else: lines.append((line.split('\t')[0], line.split('\t')[1][:-2])) # there's [:-2] to remove newline chars print "Creating words and labels..." self.words = [] self.labels = [] for sent in self.corpus: line = [] y_true = [] for token in sent: line.append(token[0]) y_true.append(token[1]) self.words.append(line) self.labels.append(y_true) print "Data loaded!", len(self.corpus), "sentences!" def slice(self, percent, seed): random.seed(seed) random.shuffle(self.words) random.seed(seed) random.shuffle(self.labels) random.seed(seed) random.shuffle(self.corpus) num_item = int(percent * len(self.labels)) self.corpus = self.corpus[:num_item] self.words = self.words[:num_item] self.labels = self.labels[:num_item] print "Data sliced!", len(self.corpus), "sentences!" def add(self, name): print "Opening file", name myfile = open(name, 'r') print "Loading data..." mydict = [] corpus = [] lines = [] for line in myfile: mydict.append(line) for line in mydict: if line == '-----\r\n': corpus.append(lines) self.corpus.append(lines) lines = [] else: lines.append((line.split('\t')[0], line.split('\t')[1][:-2])) # there's [:-2] to remove newline chars print "Adding words and labels..." for sent in corpus: line = [] y_true = [] for token in sent: line.append(token[0]) y_true.append(token[1]) self.words.append(line) self.labels.append(y_true) print "Data added!", len(self.corpus), "sentences!" def trim(self, length): print "Triming sequence length..." for i, line in enumerate(self.corpus): if len(line) > length: self.corpus[i] = line[:length] for i, line in enumerate(self.words): if len(line) > length: self.words[i] = line[:length] for i, line in enumerate(self.labels): if len(line) > length: self.labels[i] = line[:length] print "Sequence trimmed!" class DataIndexer: """ Initialize with an array of corpus to be indexed together ex: DataIndexer([corpus1, corpus2, ...]) Attributes: index cnt """ def __init__(self, data=[]): print "Indexing..." self.cnt = 1 self.index = {} for datum in data: for sent in datum: for token in sent: if token not in self.index: self.index[token] = self.cnt self.cnt = self.cnt + 1 print "Data indexed!" def add(self, data=[]): print "Indexing..." for datum in data: for sent in datum: for token in sent: if token not in self.index: self.index[token] = self.cnt self.cnt = self.cnt + 1 print "Index added!" def save(self, name): with open(name + '.idx', 'wb') as fp: pickle.dump((self.index, self.cnt), fp) print "Index saved!" def load(self, name): with open(name + '.idx', 'rb') as fp: (self.index, self.cnt) = pickle.load(fp) print "Index loaded!" class DataMapper: """ Initialize with corpus and index ex: DataMapper(words, index) Attributes: mapped padded padsize oov oov_index """ def __init__(self, data, index, verbose=True): self.verbose = verbose if verbose: print "Mapping..." self.padsize = 0 self.mapped = [] self.padded = [] self.oov_index = [] self.oov = 0 for sent in data: tokens = [] for token in sent: try: tokens.append(index[token]) except KeyError: tokens.append(0) self.oov = self.oov + 1 if token not in self.oov_index: self.oov_index.append(token) self.mapped.append(tokens) if len(tokens) > self.padsize: self.padsize = len(tokens) if verbose: print "Data mapped!" def pad(self, size): if self.verbose: print "Padding..." for sent in self.mapped: sub = size-len(sent) new = np.pad(sent, (sub, 0), 'constant') self.padded.append(new) if self.verbose: print "Data padded!" ```
{ "source": "joshuakt/Oxygen-False-Positives", "score": 3 }
#### File: joshuakt/Oxygen-False-Positives/all_classes.py ```python class Switch_Inputs: def __init__(self, print_switch, speedup_flag, start_speed , fin_speed,heating_switch,C_cycle_switch,Start_time): self.print_switch = print_switch self.speedup_flag = speedup_flag self.start_speed = start_speed self.fin_speed = fin_speed self.heating_switch = heating_switch self.C_cycle_switch = C_cycle_switch self.Start_time = Start_time class Planet_inputs: def __init__(self, RE,ME,rc,pm,Total_Fe_mol_fraction,Planet_sep,albedoC,albedoH): self.RE = RE self.ME = ME self.rc = rc self.pm = pm self.Total_Fe_mol_fraction = Total_Fe_mol_fraction self.Planet_sep = Planet_sep self.albedoC = albedoC self.albedoH = albedoH class Init_conditions: def __init__(self, Init_solid_H2O,Init_fluid_H2O,Init_solid_O,Init_fluid_O,Init_solid_FeO1_5,Init_solid_FeO,Init_solid_CO2,Init_fluid_CO2): self.Init_solid_H2O = Init_solid_H2O self.Init_fluid_H2O = Init_fluid_H2O self.Init_solid_O = Init_solid_O self.Init_fluid_O = Init_fluid_O self.Init_solid_FeO1_5 = Init_solid_FeO1_5 self.Init_solid_FeO = Init_solid_FeO self.Init_solid_CO2 = Init_solid_CO2 self.Init_fluid_CO2 = Init_fluid_CO2 class Numerics: def __init__(self, total_steps,step0,step1,step2,step3,step4,tfin0,tfin1,tfin2,tfin3,tfin4): self.total_steps = total_steps self.step0 = step0 self.step1 = step1 self.step2 = step2 self.step3 = step3 self.step4 = step4 self.tfin0 = tfin0 self.tfin1 = tfin1 self.tfin2 = tfin2 self.tfin3 = tfin3 self.tfin4 = tfin4 class Stellar_inputs: def __init__(self, tsat_XUV, Stellar_Mass,fsat, beta0 , epsilon ): self.tsat_XUV = tsat_XUV self.Stellar_Mass = Stellar_Mass self.fsat = fsat self.beta0 = beta0 self.epsilon = epsilon class MC_inputs: def __init__(self, esc_a, esc_b, esc_c, esc_d,ccycle_a , ccycle_b ,supp_lim, interiora , interiorb,interiorc,interiord,interiore,interiorf,ocean_a,ocean_b,Tstrat, surface_magma_frac): self.esc_a = esc_a self.esc_b = esc_b self.esc_c = esc_c self.esc_d = esc_d self.ccycle_a = ccycle_a self.ccycle_b = ccycle_b self.supp_lim = supp_lim self.interiora = interiora self.interiorb = interiorb self.interiorc = interiorc self.interiord = interiord self.interiore = interiore self.interiorf = interiorf self.ocean_a = ocean_a self.ocean_b = ocean_b self.Tstrat = Tstrat self.surface_magma_frac = surface_magma_frac class Model_outputs: def __init__(self, total_time,total_y,FH2O_array,FCO2_array,MH2O_liq,MH2O_crystal,MCO2_liq,Pressre_H2O,CO2_Pressure_array,fO2_array,Mass_O_atm,Mass_O_dissolved,water_frac,Ocean_depth,Max_depth,Ocean_fraction): self.total_time = total_time self.total_y = total_y self.FH2O_array = FH2O_array self.FCO2_array = FCO2_array self.MH2O_liq = MH2O_liq self.MH2O_crystal = MH2O_crystal self.MCO2_liq = MCO2_liq self.Pressre_H2O = Pressre_H2O self.CO2_Pressure_array = CO2_Pressure_array self.fO2_array = fO2_array self.Mass_O_atm = Mass_O_atm self.Mass_O_dissolved = Mass_O_dissolved self.water_frac = water_frac self.Ocean_depth = Ocean_depth self.Max_depth = Max_depth self.Ocean_fraction = Ocean_fraction ``` #### File: joshuakt/Oxygen-False-Positives/other_functions.py ```python import numpy as np import pylab from scipy.interpolate import interp1d from scipy import optimize from numba import jit ####################################### @jit(nopython=True) def qr(t00,Start_time,heatscale): #interior radiogenic heatproduction t = t00 - Start_time*365*24*60*60 u238 = 0.9928 * (0.022e-6) * 9.17e-5 * np.exp(-(np.log(2)/4.46e9)*(t/(365*24*60*60)-4.5e9)) u235 = 0.0072 * (0.022e-6) * 5.75e-4 * np.exp(-(np.log(2)/7.04e8)*(t/(365*24*60*60)-4.5e9)) Th = (0.069e-6) * 2.56e-5 * np.exp(-(np.log(2)/1.4e10)*(t/(365*24*60*60)-4.5e9)) K = 1.17e-4 * (280e-6) * 2.97e-5 * np.exp(-(np.log(2)/1.26e9)*(t/(365*24*60*60)-4.5e9)) Al = 5e-5 * 3.54e-1 * (8650e-6) * np.exp(-(np.log(2)/7.17e5)*(t/(365*24*60*60))) return (heatscale*u238 + heatscale*u235 + heatscale*Th + heatscale*K + Al) @jit(nopython=True) #calcuate mantle viscosity def viscosity_fun(Tp,pm,visc_offset,Tsurf,Tsolidus): visc_rock = visc_offset*3.8e7 * np.exp(350000/(8.314*Tp))/pm visc_liq = 0.00024*np.exp(4600.0 / (Tp - 1000.0))/pm LowerT = Tsolidus UpperT = LowerT + 600.0 if Tp < LowerT+0.000: visc = visc_rock elif Tp > UpperT+0.000: visc = visc_liq else: v1 = np.log10(visc_rock) v2 = np.log10(visc_liq) logvisc = ( v2 * 0.2*(Tp - (LowerT))**5 + v1 * 0.8*(UpperT - Tp)**5) / ( 0.2*(Tp - (LowerT))**5 + 0.8*(UpperT - Tp)**5) visc = 10**logvisc return visc @jit(nopython=True) def f_for_optim(x,kH2O,Mcrystal,Mliq,rp,yH2O_liq,g,MMW): result = (kH2O * x * Mcrystal + x * (Mliq-Mcrystal) + 4.0 *(0.018/MMW)* np.pi * (rp**2/g) * (x / 3.44e-8)**(1.0/0.74) - yH2O_liq) return result def H2O_partition_function( yH2O_liq,Mliq,Mcrystal,rp,g,kH2O,MMW): #partition H2O between magma ocean and atmosphere if (Mliq >0)or(Mliq>0): FH2O = optimize.newton(f_for_optim,0.5,args=(kH2O,Mcrystal,Mliq,rp,yH2O_liq,g,MMW)) Pressure_surface = (FH2O / 3.44e-8)**(1.0/0.74) else: FH2O = 3.44e-8*( yH2O_liq/(4 * (0.018/MMW) * np.pi * (rp**2/g)) ) ** (0.74) Pressure_surface = (FH2O / 3.44e-8)**(1.0/0.74) return [FH2O,Pressure_surface] @jit(nopython=True) def CO2_partition_function( yCO2_liq,Mliq,Mcrystal,rp,g,kCO2,MMW): #partition CO2 between magma ocean and atmosphere if (Mliq>0)or(Mcrystal>0): FCO2 = yCO2_liq / (kCO2 * Mcrystal + (Mliq-Mcrystal) + 4 * (0.044/MMW) * np.pi * (rp**2/g) * (1 /4.4e-12)) Pressure_surface = (FCO2 /4.4e-12) else: FCO2 = 0.0 Pressure_surface = (yCO2_liq*g)/(4.0 *(0.044/MMW)* np.pi * (rp**2)) return [FCO2,Pressure_surface] @jit(nopython=True) def Mliq_fun(y2,rp,rs,pm): #calculate liquid mass of mantle if rs < rp: Mliq = pm * 4./3. * np.pi * (rp**3 - rs**3) else: Mliq = 0.0 return Mliq @jit(nopython=True) def rs_term_fun(r,a1,b1,a2,b2,g,alpha,cp,pm,rp,Tp,Poverburd): #controls solidification radius evolution numerator = 1 + alpha*(g/cp) * (rp - r) e1 = np.exp(1e-5*(-rp+r+100000)) e2 = np.exp(1e-5*(rp-r-100000)) sub_denom = (e1+e2)**2 T1 = (b1+a1*g*pm*(rp-r)+a1*Poverburd) T2 = (b2+a2*g*pm*(rp-r)+a2*Poverburd) sub_num1 = ((-a1*g*pm*e1 + T1*1e-5*e1) + (-a2*g*pm*e2 - T2*1e-5*e2))*(e1+e2) sub_num2 = (T1*e1+T2*e2)*(1e-5*e1-1e-5*e2) everything = (sub_num1 - sub_num2)/sub_denom if r>rp: return 0 else: return numerator /(alpha*g*Tp/cp + everything) @jit(nopython=True) def adiabat(radius,Tp,alpha,g,cp,rp): #mantle adiabat Tr = Tp*(1 + alpha*(g/cp)*(rp-radius)) return Tr @jit(nopython=True) def sol_liq(radius,g,pm,rp,Poverburd,mH2O): #For calculating solidus a1 = 104.42e-9 b1 = 1420+0.000 - 80.0 TS1 = b1 + a1 * g * pm * (rp - radius) + a1 * Poverburd - 4.7e4 * mH2O**0.75 if TS1 < 1170.0: T_sol1 = 1170.0+0*TS1 else: T_sol1 = TS1 a2 = 26.53e-9 b2 = 1825+0.000 TS2 = b2 + a2 * g * pm * (rp -radius) + a2 * Poverburd - 4.7e4 * mH2O**0.75 if TS2 < 1170.0: T_sol2 = 1170.0+0*TS2 else: T_sol2 = TS2 T_sol = (T_sol1 * np.exp(1e-5*( -rp + radius + 100000)) + T_sol2 * np.exp(1e-5*(rp - radius - 100000)))/ (np.exp(1e-5*(-rp + radius + 100000)) + np.exp(1e-5*(rp - radius - 100000))) return T_sol def find_r(r,Tp,alpha,g,cp,pm,rp,Poverburd,mH2O): ## used for finding the solidus radius numerically Tr = adiabat(r,Tp,alpha,g,cp,rp) rr = float(r) T_sol = sol_liq(rr,g,pm,rp,Poverburd,mH2O) return (Tr-T_sol)**2.0 @jit(nopython=True) def temp_meltfrac(rc,rp,alpha,pm,Tp,cp,g,Poverburd,mH2O): #for calculating melt fraction rad = np.linspace(rc,rp,1000) melt_r = np.copy(rad) visc_r = np.copy(rad) vol_r = np.copy(rad)*0 + 4.0*np.pi*(rad[1]-rad[0]) for j in range(0,len(rad)): Tsol = sol_liq(float(rad[j]),g,pm,rp,Poverburd,mH2O) Tliq = Tsol + 600.0 T_r = adiabat(rad[j],Tp,alpha,g,cp,rp) # if T_r>Tliq: melt_r[j] = 1.0 visc_r[j] = 1 vol_r[j] = vol_r[j]*rad[j]**2 elif T_r<Tsol: melt_r[j] = 0.0 visc_r[j] = 1 vol_r[j] = 0.0 else: melt_r[j] = (T_r - Tsol)/(Tliq - Tsol) visc_r[j] = 1 vol_r[j] = vol_r[j]*rad[j]**2 if np.sum(vol_r) == 0.0: return (0.0,0.0,0.0) actual_phi_surf = np.sum(melt_r*vol_r)/np.sum(vol_r) Va = np.sum(vol_r) actual_visc = np.sum(visc_r*vol_r)/np.sum(vol_r) return (actual_phi_surf,actual_visc,Va) ``` #### File: joshuakt/Oxygen-False-Positives/stellar_funs.py ```python import numpy as np from scipy.interpolate import interp1d def main_sun_fun(time,stellar_mass,tsat_XUV,beta_XUV,fsat): if stellar_mass == 1.0: stellar_data = np.loadtxt('Baraffe3.txt',skiprows=31) # for reproducing sun exactly else: print ("This version of code is only set up for solar mass stars") return [time*0,time*0,time*0,time*0] stellar_array=[] for i in range(0,len(stellar_data[:,0])): if stellar_data[i,0] == stellar_mass: stellar_array.append(stellar_data[i,:]) stellar_array=np.array(stellar_array) min_time = np.min(stellar_array[:,1]) max_time = np.max(stellar_array[:,1]) if (min_time>np.min(time) ) or (max_time<np.max(time)): print ("Problem: exceeding time range for stellar data") time_array = stellar_array[:,1] Total_Lum = (10**stellar_array[:,4]) ratio_out = [] # For XUV ratio for i in range(0,len(time_array)): if time_array[i]<tsat_XUV: ratio= fsat else: ratio = fsat*(time_array[i]/tsat_XUV)**beta_XUV ratio_out.append(ratio) XUV_Lum = ratio_out*Total_Lum Total_fun = interp1d(time_array,Total_Lum) XUV_fun = interp1d(time_array,XUV_Lum) Relative_total_Lum = Total_fun(time) Relative_XUV_lum = XUV_fun(time) Absolute_total_Lum = Relative_total_Lum*3.828e26 Absolute_XUV_Lum = Relative_XUV_lum*3.828e26 return [Relative_total_Lum,Relative_XUV_lum,Absolute_total_Lum,Absolute_XUV_Lum ] ```
{ "source": "joshuakwan/tvshow-scheduler", "score": 3 }
#### File: tvshow-scheduler/scheduler/show.py ```python from json import JSONEncoder from display_time import DisplayTime class Show(object): def __init__(self, raw_data): self.number = raw_data['number'] self.name = raw_data['name'] self.duration = DisplayTime(raw_data['duration']) self.plan = DisplayTime(raw_data['plan']) class ShowEncoder(JSONEncoder): def default(self, o): return { "number": o.number, "name": o.name, "duration": { "timeStr": o.duration._time_str, "totalSeconds": o.duration.total_seconds, "isNegative": o.duration.is_negative, "hour": o.duration.hour, "minute": o.duration.minute, "second": o.duration.second }, "plan": { "timeStr": o.plan._time_str, "totalSeconds": o.plan.total_seconds, "isNegative": o.plan.is_negative, "hour": o.plan.hour, "minute": o.plan.minute, "second": o.plan.second } } ``` #### File: tvshow-scheduler/test/test_show.py ```python import unittest from scheduler.show import Show class TestShow(unittest.TestCase): def testInitialization(self): show = Show('1,show 1,00:03:00,20:00:00') self.assertEqual(show.seq, '1') self.assertEqual(show.name,'show 1') self.assertEqual(show.duration.get_time_string(),'00:03:00') self.assertEqual(show.plan.get_time_string(),'20:00:00') ```
{ "source": "joshua-laughner/CAADA", "score": 3 }
#### File: caada/ca_pems/__main__.py ```python from argparse import ArgumentParser from .agglomeration import cl_dispatcher from .files import sort_pems_files def parse_ca_pems_agg_args(p: ArgumentParser): p.description = 'Agglomerate Caltrans PEMS station files into a single netCDF file' p.add_argument('pems_root', help='The path to the root directory containing the PEMS data. This must ' 'be a directory with subdirectories organizing the data by district ' 'named "d03", "d04", ..., "d12". DO NOT mix different time resolutions.') p.add_argument('meta_root', help='The path to the root directory containing the PEMS metadata. This must ' 'have the same organization as PEMS_ROOT.') p.add_argument('save_path', help='The path to save the netCDF file as (including filename).') p.add_argument('-s', '--spatial-resolution', default='county', choices=('county',), help='What spatial resolution to agglomerate the data to.') p.set_defaults(driver_fxn=cl_dispatcher) def parse_ca_pems_orgfiles_args(p: ArgumentParser): p.description = 'Organize downloaded Caltrans PEMS stations files into directories needed by the agglomerator' p.add_argument('pems_root', help='The path to the directory where you want the actual data stored.') p.add_argument('meta_root', help='The path to the directory where you want the metadata stored.') p.add_argument('pems_files', nargs='+', help='All PEMS station and station metadata files to organize.') p.add_argument('-x', '--delete-orig', action='store_true', help='Delete original files as they are moved.') p.add_argument('-c', '--no-decompress', action='store_false', dest='decompress', help='Do not decompress any .gz files as they are moved. By default, .gz files are decompressed ' 'and, if --delete-orig is specified, deleted.') p.add_argument('-d', '--dry-run', action='store_true', help='Print what would be done, but do not actually do it.') p.set_defaults(driver_fxn=sort_pems_files) ``` #### File: caada/common_ancillary/__init__.py ```python import geopandas as gpd import netCDF4 as ncdf import numpy as np import os import pandas as pd from typing import Sequence, Optional, Union from ..caada_typing import intseq from jllutils.subutils import ncdf as ncio _county_shapefile = os.path.join(os.path.dirname(__file__), 'county_shp_files', 'cb_2018_us_county_20m.shp') _county_gdf = gpd.read_file(_county_shapefile) _county_gdf.rename(columns=lambda s: s.lower(), inplace=True) _county_gdf['statefp'] = _county_gdf['statefp'].astype('int') _county_gdf['countyfp'] = _county_gdf['countyfp'].astype('int') _state_shapefile = os.path.join(os.path.dirname(__file__), 'state_shp_files', 'cb_2018_us_state_20m.shp') _state_gdf = gpd.read_file(_state_shapefile) _state_gdf.rename(columns=lambda s: s.lower(), inplace=True) _state_gdf.sort_values('name', inplace=True) _state_gdf['statefp'] = _state_gdf['statefp'].astype('int') conus_states = ('AL', 'AZ', 'AR', 'CA', 'CO', 'CT', 'DE', 'FL', 'GA', 'ID', 'IL', 'IN', 'IA', 'KS', 'KY', 'LA', 'ME', 'MD', 'MA', 'MI', 'MN', 'MS', 'MO', 'MT', 'NE', 'NV', 'NH', 'NJ', 'NM', 'NY', 'NC', 'ND', 'OH', 'OK', 'OR', 'PA', 'RI', 'SC', 'SD', 'TN', 'TX', 'UT', 'VT', 'VA', 'WA', 'WV', 'WI', 'WY') def _standardize_input_ids(county_ids, state_ids): if county_ids is None and state_ids is None: county_ids = [county_ids] state_ids = [state_ids] elif isinstance(county_ids, (int, type(None))): county_ids = [county_ids] if state_ids is not None and not isinstance(state_ids, int): county_ids *= len(state_ids) if state_ids is None or isinstance(state_ids, int): state_ids = [state_ids] * len(county_ids) elif len(state_ids) != len(county_ids): raise ValueError('Either provide a single state ID for all counties (as an integer) or a sequence the same ' 'length as county_ids') return county_ids, state_ids def get_county_polygons(county_ids: Optional[intseq], state_ids: Union[int, intseq]): """Get a dataframe with the polygons or multipolygons representing county borders The returned dataframe will have the county polygons for each county listed. `county_ids` and `state_ids` may both be scalar integers or lists of integers. If both are lists, then then must be the same length. Each county is drawn from the corresponding state in the list. If one is a scalar, it will be used for every element in the other, e.g. if `state_ids = 6` then 6 will be used as the state for every county listed in `county_ids`. If you want two counties from state 1 and three from state 2, then you would pass `county_ids = [a1, b1, c1, a2, b2]` and `state_ids = [1, 1, 1, 2, 2]`. Parameters ---------- county_ids The numeric census IDs of counties to get polygons for. May be an integer, `None`, or sequence of both. If `None`, then all counties for each state listed will be returned. If `None` is given as an element of the list, then all counties for the corresponding state are returned. state_ids The numeric census IDs of states that each county belongs in. These may not be `None` and must be an integer or list of integers. Returns ------- List[Polygons] The list of Shapely polygons corresponding to the counties requested. """ gdf_subset = get_poly_gdf_subset(county_ids, state_ids) return gdf_subset['geometry'].tolist() def get_poly_gdf_subset(county_ids: Optional[intseq], state_ids: Union[int, intseq]): county_ids, state_ids = _standardize_input_ids(county_ids, state_ids) polys = [] for cid, sid in zip(county_ids, state_ids): if sid is None: xx = (_county_gdf['statefp'] > -99) else: xx = (_county_gdf['statefp'] == sid) if cid is not None: xx &= (_county_gdf['countyfp'] == cid) polys.append(_county_gdf.loc[xx, :]) return pd.concat(polys, axis=0) def get_state_polygons(state_ids, as_gdf=False): if isinstance(state_ids, int) or state_ids is None: state_ids = [state_ids] polys = [] for sid in state_ids: if sid is None: continue xx = _state_gdf['statefp'] == sid if xx.sum() != 1: raise IndexError('Expected 1 match for state ID = {}, instead got {}'.format(sid, xx.sum())) elif as_gdf: polys.append(_state_gdf.index[xx].item()) else: polys.append(_state_gdf.loc[xx, 'geometry'].item()) if as_gdf and len(polys) > 0: return _state_gdf.loc[polys, :] elif as_gdf: return _state_gdf elif len(polys) > 0: return polys else: return _state_gdf['geometry'].tolist() def geometry_to_lat_lon(geo): if geo.geom_type == 'MultiPolygon': lats = [] lons = [] for g in geo.geoms: y, x = geometry_to_lat_lon(g) lons.append(x) lats.append(y) lons.append(np.array([np.nan])) lats.append(np.array([np.nan])) # There will always be an extra NaN at the end we don't need to concatenate lats = np.concatenate(lats[:-1], axis=0) lons = np.concatenate(lons[:-1], axis=0) elif geo.geom_type == 'Polygon': lons, lats = zip(*geo.exterior.coords) lons = np.array(lons) lats = np.array(lats) else: raise NotImplementedError('Cannot convert geometry of type "{}"'.format(geo.geom_type)) return lats, lons def add_county_polys_to_ncdf(nch: ncdf.Dataset, county_ids: Sequence[int], state_ids: Sequence[int], county_dimension: str = 'county'): polys = get_county_polygons(county_ids, state_ids) # Convert to an array of lat/lon poly_latlon = np.empty([len(polys), 2], object) for i, p in enumerate(polys): lat, lon = geometry_to_lat_lon(p) poly_latlon[i, 0] = lat.astype('float32') poly_latlon[i, 1] = lon.astype('float32') # Create 2 variables: one for the county bounds lat/lon as numbers and one for the "well known text" representation vlen_t = nch.createVLType(np.float32, 'county_bounds_vlen') ncio.make_ncdim_helper(nch, 'bounds_coord', np.array([0, 1]), description='Index for shape bounds. 0 = latitude, 1 = longitude.') bounds_var = nch.createVariable("county_bounds", vlen_t, (county_dimension, 'bounds_coord')) bounds_var[:] = poly_latlon bounds_var.setncattr('crs', str(_county_gdf.crs)) bounds_var.setncattr('description', "The latitude and longitude of each county's boundaries") bounds_var.setncattr('note', 'If fill values are present, they indicate breaks between coordinates for unconnected polygons') wkt_var = nch.createVariable('county_bounds_wkt', str, county_dimension) for i, p in enumerate(polys): # assume the polys are in the same order as the county IDs - the county IDs MUST be given in the order they # are in the netCDF file wkt_var[i] = p.to_wkt() wkt_var.setncattr('crs', str(_county_gdf.crs)) wkt_var.setncattr('description', 'The county shape described in the CRS well known text format') ``` #### File: caada/epa_cems/__main__.py ```python from argparse import ArgumentParser from .web import download_cl_driver def parse_cems_download_args(p: ArgumentParser): p.description = 'Downlowd continuous emissions data from the US EPA FTP server' p.add_argument('time_res', choices=('daily', 'hourly'), help='Which time resolution of data to download') p.add_argument('start_time', help='Beginning of time period to download, in YYYY-MM-DD format.') p.add_argument('stop_time', help='End of time period to download, in YYYY-MM-DD format.') p.add_argument('-s', '--save-dir', default='.', help='Where to save the downloaded files. Default is the current directory.') p.add_argument('-c', '--no-decompress', action='store_false', dest='unzip', help='By default the .zip files downloaded are unzipped into their .csv file. Pass this flag to ' 'skip that and leave them as .zip files.') p.add_argument('-k', '--keep-zip', action='store_false', dest='delete_zip', help='If the .zip files are decompresses, they are by default deleted. Pass this flag to skip ' 'deleting them. This has no effect either way if --no-decompress is set.') p.set_defaults(driver_fxn=download_cl_driver) p.epilog = 'A note on the start and stop time: the hourly data is provided in monthly files and the daily data ' \ 'in quarterly files. The start/stop time given filter based on the first date of the files. That is, ' \ 'if you specify a start date of 15 Jan 2020 and an end date of 15 Feb 2020 for the hourly data, the ' \ 'file for February will be downloaded because 15 Jan <= 1 Feb <= 15 Feb, but the file for January will ' \ 'NOT be downloaded.' ``` #### File: caada/epa_cems/web.py ```python import ftplib import os import pandas as pd from pathlib import Path import re from zipfile import ZipFile from ..common_ancillary import conus_states from ..caada_logging import logger from ..caada_typing import datetimelike, pathlike class EPAFTP(ftplib.FTP): """Class that manages a connection to the EPA FTP server. This wraps the standard :class:`ftplib.FTP` class but supplies the URLs by default and contains a helper :meth:`download` method to support batch downloading of Continuous Emission Monitoring System (CEMS) files. This can be used as a context manager:: with EPAFTP() as ftp: ftp.download(...) This is encouraged because it ensures that the FTP connection is closed whether or not an error occurs. """ def __init__(self, url: str = 'newftp.epa.gov', *args, **kwargs): """Instantiate a connection to the EPA FTP server Parameters ---------- url The URL of the FTP server. Should not need changed. args, kwargs Additional positional and keyword arguments are passed through to :class:`ftplib.FTP`. No additional arguments should be required. """ super(EPAFTP, self).__init__(url, *args, **kwargs) self.login() def download(self, time_res: str, start_time: datetimelike, stop_time: datetimelike, save_dir: pathlike, states: str = 'all', unzip: bool = True, delete_zip: bool = True): """Download a collection of EPA CEMS files. Parameters ---------- time_res Which time resolution of files to get. Options are "daily" or "hourly". start_time, stop_time Beginning and end of the time period to download data for. See Notes, below. This may be any format that :class:`pandas.Timestamp` recognizes as a valid input. save_dir Path to save the CEMS files to. states Which states to download data for. The string `"all"` will download all states, and `"conus"` will download only continental US states. If you want to limit to specific states, pass a sequence of state abbreviations, e.g. `("ca", "or", "wa")`. unzip Whether to unzip the .zip files after downloading. delete_zip Whether to delete the .zip files after extracting the contained .csv file. Has no effect if `unzip` is `False`. Notes ----- Time filtering is done based on the start time of each file. Since the hourly data is organized into monthly files and the daily data in organized into quarterly files, a time range from 2020-03-15 to 2020-04-15 would download the April 2020 hourly file or Q2 daily file (because April 1, 2020 is the start date for both files), however it will *not* download the March 2020 hourly or Q1 2020 daily file, even though the first part of the date range overlaps those files. """ save_dir = Path(save_dir) start_time = pd.Timestamp(start_time) stop_time = pd.Timestamp(stop_time) if not save_dir.is_dir(): raise IOError('Save directory ({}) either does not exist or is a file.'.format(save_dir)) if time_res == 'hourly': files = self._hourly_file_list(start_time, stop_time, states) elif time_res == 'daily': files = self._daily_file_list(start_time, stop_time, states) else: raise ValueError('Unknown option for time_res: "{}". Allowed values are "hourly", "daily".') for dir_url, fnames in files.items(): logger.info('Downloading {} files from {}'.format(len(fnames), dir_url)) self.cwd(dir_url) for f in fnames: cmd = 'RETR {}'.format(f) logger.debug('Downloading {} (command is {})'.format(f, cmd)) with open(save_dir / f, 'wb') as wobj: self.retrbinary(cmd, wobj.write) if unzip: self._unzip_file(save_dir / f, delete_zip=delete_zip) def _hourly_file_list(self, start_time, stop_time, states='all'): url = '/DMDnLoad/emissions/hourly/monthly/' all_files = [] for year in range(start_time.year, stop_time.year+1): self.cwd('{}{}'.format(url, year)) all_files += self.nlst() file_info = [] for f in all_files: fname = f.split('/')[-1] m = re.search(r'(\d{4})([a-z]{2})(\d{2})', fname, re.IGNORECASE) year, month, state = int(m.group(1)), int(m.group(3)), m.group(2) file_info.append({'name': fname, 'date': pd.Timestamp(year, month, 1), 'state': state.lower()}) return self._filter_files(url, file_info, start_time, stop_time, states) def _daily_file_list(self, start_time, stop_time, states='all'): url = '/DMDnLoad/emissions/daily/quarterly/' all_files = [] for year in range(start_time.year, stop_time.year+1): dir_url = '{}{}'.format(url, year) logger.debug('Changing remote directory to {}'.format(dir_url)) self.cwd(dir_url) all_files += self.nlst() file_info = [] for f in all_files: fname = f.split('/')[-1] m = re.search(r'(\d{4})([a-z]{2})(Q\d)', fname) year, quarter, state = int(m.group(1)), m.group(3), m.group(2) file_info.append({'name': fname, 'date': self._q_to_date(year, quarter), 'state': state.lower()}) return self._filter_files(url, file_info, start_time, stop_time, states) @staticmethod def _filter_files(base_url, file_info, start_time, stop_time, states): if not base_url.endswith('/'): base_url += '/' if states == 'all': states = set([f['state'] for f in file_info]) elif states == 'conus': states = conus_states states = [s.lower() for s in states] file_info = [f for f in file_info if start_time <= f['date'] <= stop_time and f['state'] in states] # Group the files by FTP directory so that we only have to cd to a directory once file_dict = dict() for f in file_info: dir_url = '{}{}'.format(base_url, f['date'].year) if dir_url not in file_dict: file_dict[dir_url] = [] file_dict[dir_url].append(f['name']) return file_dict @staticmethod def _q_to_date(year, q): if q.lower() == 'q1': return pd.Timestamp(year, 1, 1) elif q.lower() == 'q2': return pd.Timestamp(year, 4, 1) elif q.lower() == 'q3': return pd.Timestamp(year, 7, 1) elif q.lower() == 'q4': return pd.Timestamp(year, 10, 1) else: return ValueError('Unknown value for quarter. Expected "qN" or "QN" where N is 1, 2, 3, or 4.') @staticmethod def _unzip_file(zip_path: Path, delete_zip): logger.debug('Decompressing {}'.format(zip_path)) with ZipFile(zip_path) as z: for mem in z.infolist(): if os.sep in mem.filename: raise IOError('A member of {} contains path separators. This is unexpected and potentially unsafe.'.format(zip_path)) out_path = z.extract(mem, path=zip_path.parent) logger.debug('Created {}'.format(out_path)) if delete_zip: os.remove(zip_path) logger.debug('Deleted {}'.format(zip_path)) def download_cl_driver(time_res: str, start_time: datetimelike, stop_time: datetimelike, save_dir: str = '.', unzip: bool = True, delete_zip: bool = True): """Download EPA continuous emissions monitoring system data via FTP Creates a default :class:`EPAFTP` connection and downloads CEMS data. All arguments correspond to those for :meth:`EPAFTP.download`. """ with EPAFTP() as ftp: ftp.download(time_res=time_res, start_time=start_time, stop_time=stop_time, save_dir=save_dir, unzip=unzip, delete_zip=delete_zip) ``` #### File: caada/opensky/web.py ```python import os from pandas import Timedelta import requests import time from . import get_airport_code_source from ..caada_errors import HTMLRequestError from ..caada_typing import pathlike from ..caada_logging import logger def _download_airport_codes(source='openflights', update='never'): """Download geographic data linked to airport codes. Parameters ---------- source Which web source to pull data from. Currently the only allowed option is `"openflights"`. update Controls whether CAADA redownloads the needed data or not. Possible values are: * `"never"` - only download if no local copy is available. * `"periodically"` - only download if the local copy is more than a week old. * `"always"` - always redownloads Returns ------- None """ entry = get_airport_code_source(source) local_file = entry['local'] remote_url = entry['remote'] _download_airport_code_data(source, local_file, remote_url, update) def _download_airport_code_data(source_name: str, local_file: pathlike, remote_url: str, update: str = 'never'): """General driver for geographic airport data in .csv format. Parameters ---------- source_name Name the user passes to identify this source. local_file Path to where the local file is or should be remote_url URL to where the data is on the web update Controls whether CAADA redownloads the needed data or not. Possible values are: * `"never"` - only download if no local copy is available. * `"periodically"` - only download if the local copy is more than a week old. * `"always"` - always redownloads Returns ------- None Returns nothing, downloads the file to `local_file`. """ if update == 'never': if local_file.exists(): logger.debug('%s already exists', local_file) return else: logger.info('%s does not exist, must download', local_file) elif update == 'periodically': if local_file.exists(): mtime = os.path.getmtime(local_file) age = time.time() - mtime td = str(Timedelta(seconds=age)) if age < 7*24*3600: # don't update if it's been modified within the last week logger.debug('%s recently updated (%s old), not updating', local_file, td) return else: logger.debug('%s more than 7 days old (%s old), will update', local_file, td) elif update != 'always': raise ValueError('Bad value for update: "{}". Options are "never", "periodically", and "always".'.format(update)) logger.info('Downloading %s to %s', remote_url, local_file) r = requests.get(remote_url) if r.status_code != 200: raise HTMLRequestError('Error retrieving {} airport codes. HTTP status code was {}'.format(source_name, r.status_code)) with open(local_file, 'wb') as wobj: wobj.write(r.content) logger.info('Download successful.') ```
{ "source": "joshualee155/FundOptimizer", "score": 3 }
#### File: joshualee155/FundOptimizer/fund_holding.py ```python import pandas as pd from bs4 import BeautifulSoup import requests import re from tqdm import tqdm def get_fund_holding(symbol): url = 'http://finance.sina.com.cn/fund/quotes/{}/bc.shtml'.format(symbol) html = requests.get(url) bs = BeautifulSoup(html.content, features="lxml") tbl = bs.find('table', {'id':'fund_sdzc_table'}) if tbl is None or tbl.tbody.text=='\n': return pat = re.compile('\d\d\d\d-\d\d-\d\d') report_date = pd.to_datetime( pat.findall(bs.find('div', {'class':'zqx_zcpz_date'}).text)[0] ) stocks = tbl.attrs['codelist'].split(',') ts_codes = [ s[2:]+'.'+s[:2].upper() for s in stocks] holding = pd.read_html(tbl.prettify())[0] data_dict = dict(zip(ts_codes, holding[('占净值比例(%)', '持股比例')].str[:-1].astype(float))) data = pd.DataFrame.from_dict(data_dict, 'index', columns=['holding']) # lib_fund_holding.write(fund, data, metadata={'report_date':report_date}) return data if __name__ == "__main__": import numpy as np symbols, _ = np.genfromtxt( './refData/fund_list.csv', dtype = str, delimiter = ',', unpack = True ) symbols = [ symbol.zfill(6) for symbol in symbols ] res = [] for symbol in tqdm(symbols): df = get_fund_holding(symbol) if df is not None: res.append( df.reset_index().assign(fund=symbol) ) fund_holding = pd.concat(res, ignore_index=True) fund_holding.to_csv('fund_holding.csv') ``` #### File: FundOptimizer/tests/testFundOptimiser.py ```python import unittest from fundopt.fundopt import FundTargetRetMinCVaROptimiser import numpy as np import pandas as pd import datetime as dt import os class Test_testFundOptimiser(unittest.TestCase): def test_Optimise(self): startDate = dt.date(2017, 1, 26) endDate = dt.date(2018, 1, 26) DateIndex = pd.date_range( startDate, endDate, freq='D' ) fundList = np.genfromtxt( './refData/AvailableFundList.txt', dtype = str ) fundList = fundList[:10] currentPosition = [0.0]*len(fundList) currentPosition[0] = 50000.0 # kwargs = { 'prefix' : 'temp', 'index_col' : 1, 'date_cols' : ['Date'] } optimiser = FundTargetRetMinCVaROptimiser( targetRet = 0.005, startDate = startDate, endDate = endDate, holdingPeriod = 30, longOnly = True, fundList = fundList, currentPosition = currentPosition, ) optMovement = optimiser.getOptimalPosition(verbose = True) newPosition = np.array( currentPosition ) + optMovement currentDate = dt.date(2018, 2, 1) initialValue = sum( newPosition ) print( initialValue ) currentValue = initialValue for fund, position in zip( fundList, newPosition ): currentValue += position * optimiser.tsLoader[fund].getReturnByDate( StartDate = endDate, EndDate = currentDate ) print( currentValue ) if __name__ == '__main__': unittest.main() ``` #### File: FundOptimizer/utils/fundoptutils.py ```python import pandas as pd import datetime as dt class FundType( object ): OF = 'Open Ended Fund' ETF = 'Exchange Traded Fund' LOF = 'Listed Open Ended Fund' MMF = 'Money Market Fund' def getFundType( fundCode ): fundTypeDf = pd.read_csv( 'refData/fund_list.csv', names = [ 'fundCode', 'fundType' ] ) fundTypeDf[ 'fundCode' ] = fundTypeDf[ 'fundCode' ].apply( lambda x: str(x).zfill(6) ) fundTypeDf.drop_duplicates( subset = [ 'fundCode' ], inplace = True ) fundTypeDf.set_index( 'fundCode', drop = True, inplace = True ) try: sType = fundTypeDf[ 'fundType' ][ fundCode ] if sType == 'OF': return FundType.OF elif sType == 'ETF': return FundType.ETF elif sType == 'LOF': return FundType.LOF elif sType == 'MMF': return FundType.MMF else: raise NameError( "Unknown fund type %s" % sType ) except KeyError: return FundType.OF def str2date( sDate ): """ Convert a string date to datetime.date """ try: dateTime = dt.datetime.strptime( sDate, "%Y%m%d" ) except ValueError: dateTime = dt.datetime.strptime( sDate, "%Y-%m-%d" ) return dateTime.date() def getHolidays( startDate, endDate ): """ Return China exchange holidays ( non-trading days ) from `startDate` to `endDate` """ with open( 'refData/holidays.txt', 'r' ) as f: holidays = f.read().strip().split('\n') holidays = [ date for date in map( str2date, holidays ) if date >= startDate and date <= endDate ] return holidays ```
{ "source": "joshualee155/ml-stock-prediction", "score": 3 }
#### File: ml-stock-prediction/agent/stochastic_policy_gradient_agent.py ```python import tensorflow as tf import numpy as np class StochasticPolicyGradientAgent(): """ A Gaussian Policy Gradient based agent implementation """ def __init__(self, env, learning_rate = 0.001, discount_rate = 0.99, batch_size = 1, quiet = True): self._optimizer = tf.train.AdamOptimizer(learning_rate = learning_rate) self._sess = tf.Session() self._env = env self._batch_size = batch_size self._discount_rate = discount_rate self._state_buffer = [] self._reward_buffer = [] self._action_buffer = [] self._quiet = quiet state_dim = np.prod(np.array(env.observation_space.shape)) self._states = tf.placeholder(tf.float32, shape=(None, state_dim), name="states") init = tf.contrib.layers.xavier_initializer() # neural featurizer parameters h1 = 256 h2 = 128 h3 = 128 mu_hidden = tf.layers.dense(self._states, h1, activation = tf.nn.tanh, name = 'dense_0', kernel_initializer=init) mu_hidden_2 = tf.layers.dense(mu_hidden, h2, activation = tf.nn.tanh, name = 'dense_1', kernel_initializer=init) mu_hidden_3 = tf.layers.dense(mu_hidden_2, h3, activation = tf.nn.tanh, name = 'dense_2', kernel_initializer=init) self._mu = tf.layers.dense(mu_hidden_3, 1, activation = tf.tanh, name = 'mu', kernel_initializer=init) self._mu = tf.squeeze(self._mu) # Building sigma Model sig_hidden = tf.layers.dense(self._states, h1, activation = tf.sigmoid, name = 'sigma_dense_0', kernel_initializer=init) sig_hidden_2 = tf.layers.dense(sig_hidden, h2, activation = tf.sigmoid, name = 'sig_dense_1', kernel_initializer=init) sig_hidden_3 = tf.layers.dense(sig_hidden_2, h3, activation = tf.sigmoid, name = 'sig_dense_2', kernel_initializer=init) self._sigma = tf.layers.dense(sig_hidden_3, 1, activation = tf.exp, name = 'sigma', kernel_initializer=init) self._sigma = tf.squeeze(self._sigma) self._sigma = tf.add(self._sigma, 1e-5) #Sampling action from distribuition self._normal_dist = tf.contrib.distributions.Normal(self._mu, self._sigma) self._action = self._normal_dist.sample() #Computing loss function self._discounted_rewards = tf.placeholder(tf.float32, (None, 1), name="discounted_rewards") self._taken_actions = tf.placeholder(tf.float32, (None, 1), name="taken_actions") self._loss = -tf.reduce_mean(tf.log(1e-5 + self._normal_dist.prob(self._taken_actions)) * self._discounted_rewards,0) self._train_op = self._optimizer.minimize(self._loss) self._sess.run(tf.global_variables_initializer()) def act(self, state): mu, sigma, action = self._sess.run([self._mu, self._sigma, self._action], feed_dict={ self._states: state}) action = np.clip(action, self._env.action_space.low[0], self._env.action_space.high[0]) if not self._quiet: print("Sigma: {}, Mu: {}, Action: {}".format(sigma, mu, action)) return action def train(self): rewards = self._discount_rewards().tolist() #rewards -= np.mean(rewards) rewards = [[r] for r in rewards] samples = [] for t in range(len(self._state_buffer)): samples.append([self._state_buffer[t], rewards[t], self._action_buffer[t]]) np.random.shuffle(samples) batches = [] for i in range(0, len(samples), self._batch_size): batches.append(samples[i:i + self._batch_size]) for b in range(len(batches)): batch = batches[b] states_batch = [row[0] for row in batch] actions_batch = [row[2] for row in batch] rewards_batch = [row[1] for row in batch] feed_dict={ self._states: states_batch, self._discounted_rewards: rewards_batch, self._taken_actions: actions_batch} self._sess.run([self._train_op], feed_dict=feed_dict) #After applying gradients self._state_buffer = [] self._reward_buffer = [] self._action_buffer = [] def store_step(self, action, state, reward): self._state_buffer.append(state) self._reward_buffer.append(np.array(reward)) self._action_buffer.append(np.array([action])) def _discount_rewards(self): r = 0 N = len(self._reward_buffer) discounted_rewards = np.zeros(N) for t in reversed(range(N)): r = r + self._reward_buffer[t] * self._discount_rate discounted_rewards[t] = r return discounted_rewards ``` #### File: ml-stock-prediction/agent_v2/dqn_agent.py ```python import torch import torch.nn as nn import torch.nn.functional as F import numpy as np import random from collections import deque import math device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") class Model(nn.Module): def __init__(self, state_dim): super(Model, self).__init__() h1 = 512 h2 = 256 h3 = 128 self.hidden_1 = nn.Linear(state_dim, h1) self.hidden_2 = nn.Linear(h1, h2) self.hidden_3 = nn.Linear(h2, h3) self.output = nn.Linear(h3, 3) def forward(self, x): x = F.relu(self.hidden_1(x)) x = F.relu(self.hidden_2(x)) x = F.relu(self.hidden_3(x)) return self.output(x) class DQNAgent(): def __init__(self, env, gamma=0.99, buffer_size = 1000000, update_steps = 100, epsilon=1.0, epsilon_min=0.01, epsilon_log_decay=0.999, tau = 0.01, max_grad_norm = 10, alpha=1e-4, alpha_decay=0.001, batch_size=128, quiet=False): self.env = env self.memory = deque(maxlen = buffer_size) self.gamma = gamma self.epsilon = epsilon self.epsilon_min = epsilon_min self.epsilon_decay = epsilon_log_decay self.alpha = alpha self.alpha_decay = alpha_decay self.update_steps = update_steps self.max_grad_norm = max_grad_norm self._tau = tau self._batch_size = batch_size self.quiet = quiet self._state_dim = np.prod(np.array(env.observation_space.shape)) self.model = Model(self._state_dim).to(device) self.target = Model(self._state_dim).to(device) # Align model network and target network self.copy_target(1.0) self.optimizer = torch.optim.Adam(self.model.parameters(), lr=self.alpha) def get_gradient_norm(self, model): total_norm = 0.0 for p in model.parameters(): param_norm = p.grad.data.norm(2) total_norm += param_norm.item() ** 2 total_norm = total_norm ** (1. / 2) return total_norm def store_step(self, state, action, reward, next_state, done): self.memory.append((state, action, reward, next_state, done)) def act(self, state, greedy=False): state = torch.from_numpy(state).float().to(device) if greedy: # epsilon = max(self.epsilon_min, min(self.epsilon, 1.0 - math.log10((step + 1) * self.epsilon_decay))) epsilon = self.epsilon q_values = self.model(state) q_values = q_values.detach().cpu().numpy() random_action = self.env.action_space.sample() # action space: 0, 1, 2 q_max_action = np.argmax(q_values) action = random_action if (np.random.random() <= epsilon) else q_max_action return action else: q_values = self.model(state) q_values = q_values.detach().cpu().numpy() return np.argmax(q_values) def train(self): loss_fn = nn.MSELoss() batch_size = self._batch_size grad = 0.0 for _ in range(self.update_steps): batch = random.sample(self.memory, batch_size) states, actions, rewards, next_states, dones = zip(*batch) states = torch.tensor(states).float().to(device) actions = torch.tensor(actions).long().to(device) rewards = torch.tensor(rewards).float().to(device) next_states = torch.tensor(next_states).float().to(device) dones = torch.tensor(dones).float().to(device) with torch.no_grad(): y_targets = rewards + (1 - dones) * self.gamma * self.target(next_states).detach().max(1)[0] # loss = torch.mean( (y_preds - y_targets)**2 ) self.optimizer.zero_grad() # actions: (0, 1, 2) y_preds = self.model(states).gather(1, actions.unsqueeze(1)).squeeze() loss = loss_fn( y_preds, y_targets ) # print("Loss before update: {}".format(loss.item())) loss.backward() torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.max_grad_norm) grad += self.get_gradient_norm(self.model) self.optimizer.step() # re-evaluate loss function # y_preds = self.model(states).gather(1, actions.unsqueeze(1)).squeeze() # loss = loss_fn( y_preds, y_targets ) # print("Loss after update: {}".format(loss.item())) self.copy_target( 1.0 ) if self.epsilon > self.epsilon_min: self.epsilon *= self.epsilon_decay return grad / self.update_steps def copy_target(self, polyak=1.0): """copy model parameters to target network Args: polyak (float, optional): [Polyak averaging]. Defaults to 1.0. """ with torch.no_grad(): for var1, var2 in zip( self.model.parameters(), self.target.parameters() ): var2 = polyak * var1 + (1-polyak) * var2 ``` #### File: ml-stock-prediction/agent_v2/spg_agent.py ```python import torch import torch.nn as nn import torch.nn.functional as F from torch.distributions import Normal import numpy as np device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") class Model(nn.Module): def __init__(self, state_dim): super(Model, self).__init__() h1 = 256 h2 = 128 h3 = 128 self.hidden_1 = nn.Linear(state_dim, h1) self.hidden_2 = nn.Linear(h1, h2) self.hidden_3 = nn.Linear(h2, h3) self.output = nn.Linear(h3, 1) def forward(self, x): x = F.tanh(self.hidden_1(x)) x = F.tanh(self.hidden_2(x)) x = F.tanh(self.hidden_3(x)) return F.tanh(self.output(x)) class StochasticPolicyGradientAgent(): """ A Gaussian Policy Gradient based agent implementation """ def __init__(self, env, learning_rate = 0.001, discount_rate = 0.99, batch_size = 1, quiet = True): self._env = env self._batch_size = batch_size self._discount_rate = discount_rate self._state_buffer = [] self._reward_buffer = [] self._action_buffer = [] self._log_prob_buffer = [] self._quiet = quiet state_dim = np.prod(np.array(env.observation_space.shape)) self._mu_model = Model(state_dim).to(device) self._sigma_model = Model(state_dim).to(device) self._optimizer = torch.optim.Adam(params=[ { 'params' : self._mu_model.parameters() }, { 'params' : self._sigma_model.parameters() } ]) #Sampling action from distribuition # self._normal_dist = tf.contrib.distributions.Normal(self._mu, self._sigma) # self._action = self._normal_dist.sample() # #Computing loss function # self._discounted_rewards = tf.placeholder(tf.float32, (None, 1), name="discounted_rewards") # self._taken_actions = tf.placeholder(tf.float32, (None, 1), name="taken_actions") # self._loss = -tf.reduce_mean(tf.log(1e-5 + self._normal_dist.prob(self._taken_actions)) * self._discounted_rewards,0) # self._train_op = self._optimizer.minimize(self._loss) # self._sess.run(tf.global_variables_initializer()) def act(self, state): state = torch.from_numpy(state).float().to(device) mu = self._mu_model(state) log_sigma = self._sigma_model(state) dist = Normal(mu, torch.exp(log_sigma)) action = dist.sample() action = torch.clamp(action, self._env.action_space.low[0], self._env.action_space.high[0]) log_prob = dist.log_prob(action) self._log_prob_buffer.append(log_prob) if not self._quiet: print("Sigma: {}, Mu: {}, Action: {}".format(sigma, mu, action)) return action.item() def train(self): rewards = self._discount_rewards().tolist() #rewards -= np.mean(rewards) samples = [] for t in range(len(rewards)): samples.append([self._log_prob_buffer[t], rewards[t]]) np.random.shuffle(samples) batches = [] for i in range(0, len(samples), self._batch_size): batches.append(samples[i:i + self._batch_size]) for batch in batches: log_probs_batch = [row[0] for row in batch] rewards_batch = [row[1] for row in batch] loss = [log_prob*r for log_prob, r in batch ] loss = torch.cat(loss).sum() self._optimizer.zero_grad() loss.backward() self._optimizer.step() #After applying gradients self._state_buffer = [] self._reward_buffer = [] self._log_prob_buffer = [] def store_step(self, state, reward): self._state_buffer.append(state) self._reward_buffer.append(np.array(reward)) def _discount_rewards(self): r = 0 N = len(self._reward_buffer) discounted_rewards = np.zeros(N) for t in reversed(range(N)): r = r + self._reward_buffer[t] * self._discount_rate discounted_rewards[t] = r return discounted_rewards ``` #### File: joshualee155/ml-stock-prediction/test_ddpg_v3.py ```python import pandas as pd import numpy as np import matplotlib.pyplot as plt import datetime import gym import trading_env from agent_v2.ddpg_agent_lstm import DDPGAgent import sys def main(): env_trading = gym.make('test_trading-v2') NUM_EP = 400 agentDDPG = DDPGAgent(env_trading, buffer_size=1000000, tau = 0.01, actor_lr = 1e-4, critic_lr = 1e-4) # Ornstein-Uhlenbeck noise by lirnli/OpenAI-gym-solutions def UONoise(): theta = 0.15 sigma = 0.2 state = 0 while True: yield state state += -theta*state+sigma*np.random.randn() date = datetime.datetime(2017, 7, 15, 0, 0) date_test = datetime.datetime(2017, 7, 15, 0, 0) noise = UONoise() scores = [] scores_test = [] sample_actions = [] # Keep track of actions every 100 episode portfolios = [] actor_grads = [] critic_grads = [] while (len(agentDDPG.memory) < 100000): state = env_trading.reset(date = date) while (True): # action = agentDDPG.actor.act(state) # action = np.clip( action + next(noise), -1, 1 ) action = env_trading.action_space.sample()[0] next_state, reward, done, _ = env_trading.step(action) agentDDPG.store_step(state, action, reward, next_state, done) state = next_state print("\rPopulating memory buffer: {:5d}/100000".format(len(agentDDPG.memory)), end="") sys.stdout.flush() if done: break print("\n") for e in range(NUM_EP): state = env_trading.reset(date=date) score = 0 rewards = [] actions = [] while(True): action = agentDDPG.actor.act(state) action += next( noise ) action = np.clip(action, -1, 1) actions.append(action) next_state, reward, done, _ = env_trading.step( action ) score += reward rewards.append( reward ) agentDDPG.store_step(state, action, reward, next_state, done) if done: actor_grad, critic_grad = agentDDPG.train() actor_grads.append(actor_grad) critic_grads.append(critic_grad) scores.append(score) # print("Episode: {}, Total reward: {}".format(e, score)) break state = next_state # Testing session state = env_trading.reset( date = date_test ) score_test = 0 actions_test = [] while(True): action = agentDDPG.actor.act(state) next_state, reward, done, _ = env_trading.step( action ) actions_test.append( action ) score_test += reward if done: # agentDDPG.actor.update_averages( rewards, [score_test] ) # agentDDPG.actor.record_summary( e ) scores_test.append(score_test) portfolios.append( env_trading.portfolio_value ) if e % 100 == 0: sample_actions.append( actions_test ) print("\rEpisode: {}, Training reward: {:.2f}, Testing reward: {:.2f}, Actor grad: {:.4f}, Critic grad: {:.4f}, Actions: {:.4f}+/-{:.4f}, Test Actions: {:.4f}+/-{:.4f}".format(e, score, score_test, actor_grad, critic_grad, np.mean(actions), np.std(actions), np.mean(actions_test), np.std(actions_test)), end="") sys.stdout.flush() break state = next_state plt.figure() plt.plot( scores_test, label = 'Testing' ) plt.plot( scores, label = 'Training' ) plt.legend() plt.show() plt.figure() plt.plot( np.array( sample_actions ).T ) plt.show() plt.figure() plt.plot( np.array( portfolios ).T ) plt.show() if __name__ == "__main__": main() ```
{ "source": "joshuaLei/ROV", "score": 3 }
#### File: joshuaLei/ROV/Shape_task.py ```python import cv2 import numpy as np #from video import Video import time from PIL import Image, ImageEnhance class ROV: def __init__(self, debug=True): self.video1 = cv2.VideoCapture(0) self._triangle = 0 self._rectangle = 0 self._circle = 0 self._line = 0 self.min_x = 0 self.min_y = 0 self._num_of_shapes = { "circle": 0, "line": 0, "triangle": 0, "rectangle": 0 } self.srcframe = None self.mask = None self.cropped = None self.frame = None self.status = True self.areaval = 1000 def debug(self): success, self.frame = self.video1.read() self.frame = cv2.flip(self.frame, 3) self.srcframe = self.frame return self.frame def msk(self, image): if image.shape[0] == 0 or image.shape[1] == 0: return None image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) image = cv2.medianBlur(image, 5) lower = np.array([0, 0, 150]) upper = np.array([255, 100, 255]) mask = cv2.inRange(image, lower, upper) self.mask = mask return mask def preprocessing(self, image): image = ImageEnhance.Color(Image.fromarray(image)).enhance(1.1) image = ImageEnhance.Brightness(image).enhance(1.2) image = ImageEnhance.Contrast(image).enhance(1.2) image = ImageEnhance.Sharpness(image).enhance(1.1) kernel = np.ones((5, 5), np.uint8) image = cv2.erode(np.array(image), kernel, iterations=1) image = cv2.dilate(np.array(image), kernel, iterations=1) return image def overlay(self, frame): overlay = frame.copy() cropped = frame.copy() img = frame[180:690, 160:600].copy() self.cropped = img self.srcframe = cropped def white_mask(self): thresh = self.msk(self.cropped) if thresh is None: return None contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) max_area = 100 max_cnt = None for cnt in contours: area = cv2.contourArea(cnt) if area > max_area: max_area = area max_cnt = cnt if max_cnt is None: return None x, y, w, h = cv2.boundingRect(max_cnt) self.mask = self.cropped[y:y + h, x:x + w].copy() cropped = self.cropped[y:y + h, x:x + w].copy() return cropped, x, y, w, h def shape_mask(self): thresh = self.msk(self.mask) if thresh is None: return None thresh = 255 - thresh image = self.mask contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) image_h, image_w = image.shape bounding = 0.02 bounding_x = image_w * bounding bounding_y = image_h * bounding target_contours = [] for cnt in contours: area = cv2.contourArea(cnt) if area > 150: x, y, w, h = cv2.boundingRect(cnt) if x > bounding_x and x + w < image_w - bounding_x and \ y > bounding_y and y + h < image_h - bounding_y: target_contours.append(cnt) min_x = image_w min_y = image_h max_x = 0 max_y = 0 for cnt in target_contours: x, y, w, h = cv2.boundingRect(cnt) if x + w > max_x: max_x = x + w if x < min_x: min_x = x if y + h > max_y: max_y = y + h if y < min_y: min_y = y space = 10 min_y = max(min_y - space, 0) max_y = min(max_y + space, image_h) min_x = max(min_x - space, 0) max_x = min(max_x + space, image_w) x = min_x y = min_y self.max_x = max_x self.max_y = max_y w = max_x - min_x h = max_y - min_y self.mask = image[min_y:max_y, min_x:max_x].copy() cropped = self.cropped[min_y:max_y, min_x:max_x].copy() return cropped, x, y, w, h def detection(self, image, is_draw=True): if image.shape[0] == 0 or image.shape[1] == 0: return [0, 0] else: self._num_of_shapes["circle"] = 0 self._num_of_shapes["line"] = 0 self._num_of_shapes["triangle"] = 0 self._num_of_shapes["rectangle"] = 0 cv2.imshow('000', image) image = cv2.resize(image, (800, 600), interpolation=cv2.INTER_AREA) cropped = image image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) equ = cv2.equalizeHist(image) mask = cv2.inRange(equ, 0, 52) cv2.imshow("equ", cv2.inRange(equ, 0, 52)) contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) image_h, image_w = mask.shape bounding = 0.015 bounding_x = image_w * bounding bounding_y = image_h * bounding active_cnts = [] for cnt in contours: area = cv2.contourArea(cnt) if area > self.areaval: x, y, w, h = cv2.boundingRect(cnt) epsilon = 0.03 * cv2.arcLength(cnt, True) approx = cv2.approxPolyDP(cnt, epsilon, True) if x > bounding_x and x + w < image_w - bounding_x and \ y > bounding_y and y + h < image_h - bounding_y: vertex = 0 for i in range(len(approx)): p1 = approx[i] p2 = approx[(i + 1) % len(approx)] e = np.sqrt(np.sum(abs(p1 - p2) ** 2)) if e >= 25: vertex += 1 active_cnts.append(cnt) cv2.drawContours(cropped, [cnt], 0, (0, 255, 0), 3) cv2.putText(cropped, str(vertex), (x + int(w / 2) - 5, y + int(h / 2) + 5), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255), lineType=cv2.LINE_AA) #cv2.imshow('numbers', self.frame) area = cv2.contourArea(cnt) if area > 3000: if vertex == 2: if self._num_of_shapes["line"] >= 6: self._num_of_shapes["line"] = 6 else: self._num_of_shapes["line"] += 1 elif vertex == 3: if self._num_of_shapes["triangle"] >= 6: self._num_of_shapes["triangle"] = 6 else: self._num_of_shapes["triangle"] += 1 elif vertex == 4: (x, y, w, h) = cv2.boundingRect(approx) ar = w / float(h) if ar >= 0.2 and ar <= 1.8: if self._num_of_shapes["rectangle"] >= 6: self._num_of_shapes["rectangle"] = 6 else: self._num_of_shapes["rectangle"] += 1 else: if self._num_of_shapes["line"] >= 6: self._num_of_shapes["line"] = 6 else: self._num_of_shapes["line"] += 1 elif vertex == 0 or vertex == 1 or vertex == 5 or vertex == 6 \ or vertex == 7 or vertex == 8: if self._num_of_shapes["circle"] >= 6: self._num_of_shapes["circle"] = 6 else: self._num_of_shapes["circle"] += 1 else: pass else: if self._num_of_shapes["line"] >= 6: self._num_of_shapes["line"] = 6 else: self._num_of_shapes["line"] += 1 return cropped, area def show(self, img): cv2.circle(img, (150, 40), 20, (0, 0, 255), -1) triangle_cnt = np.array([(150, 90), (130, 120), (170, 120)]) cv2.line(img, (130, 180), (170, 180), (0, 0, 255), 4) cv2.rectangle(img, (170, 230), (130, 270), (0, 0, 255), -1) cv2.drawContours(img, [triangle_cnt], 0, (0, 0, 255), -1) cv2.putText(img, str(self._circle), (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2) cv2.putText(img, str(self._triangle), (50, 120), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2) cv2.putText(img, str(self._line), (50, 190), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2) cv2.putText(img, str(self._rectangle), (50, 260), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2) self.frame = img if __name__ == "__main__": rov = ROV(True) #video = Video(port=4777) i = 0 while True: k = cv2.waitKey(1) #if not video.frame_available(): #continue #img = video.frame() img = rov.debug() # img = cv2.imread('photos/train2/img0.jpg') rov.srcframe = img cap = rov.preprocessing(img) frame = cv2.resize(cap, (800, 600)) rov.srcframe = frame rov.cropped = frame rov.overlay(frame) rov.msk(rov.cropped) img, x1, y1, w1, h1 = rov.white_mask() img2, x2, y2, w2, h2 = rov.shape_mask() frame, area = rov.detection(img, False) if area == 0: print('error') else: src = rov.srcframe frame = cv2.resize(frame, (w1, h1)) src[y1 + 180:y1 + h1 + 180, x1 + 160:x1 + w1 + 160] = frame rov.show(src) color = src.copy() cv2.rectangle(src, (180, 160), (690, 600), (0, 0, 255), -1) color = cv2.addWeighted(src, 0.3, color, 1 - 0.3, 0) cv2.imshow('frame', color) if k == 32: rov._circle = rov._num_of_shapes["circle"] rov._line = rov._num_of_shapes["line"] rov._triangle = rov._num_of_shapes["triangle"] rov._rectangle = rov._num_of_shapes["rectangle"] if k == 27: print("stop") break if k == ord('s'): cv2.imwrite('photos/img' + str(time.time()) + '.jpg', frame) print('saved') i += 1 cv2.destroyAllWindows() ```
{ "source": "joshualemmon/db-error-detection-gan", "score": 3 }
#### File: db-error-detection-gan/scripts/xml_to_csv.py ```python from xml.etree import ElementTree import os import csv import argparse import numpy as np def get_xml_vals(infile): tree = ElementTree.parse(infile) root = tree.getroot() item = "" attr = [] # Get attribute names for r in root: item = r.tag for c in r: attr.append(c.tag) attr = set(attr) # Get attribute values for each item vals = [] for p in list(root): v = [] for a in attr: v.append(p.find(a).text) vals.append(v) return vals def add_attributes(xml_data): data = [] # Load possible interests and countries interests = [i.rstrip('\n') for i in open('interests.txt', 'r').readlines()] countries = [c.rstrip('\n') for c in open('countries.txt', 'r').readlines()] # Generate random valid values for each tuple for x in xml_data: x.append(gen_age()) x.append(gen_salary()) x.append(gen_height()) x.append(gen_interest(interests)) x.append(gen_country(countries)) x.append(0) data.append(x) return data def gen_age(mean=30, std=15, max_age=120, min_age=18): age = int(np.random.normal(mean, std, 1)) if age < min_age: return min_age elif age > max_age: return max_age else: return age def gen_salary(mean=50000, std=10000, max_sal=100000, min_sal=20000): sal = int(np.random.normal(mean, std, 1)) if sal < min_sal: return min_sal elif sal > max_sal: return max_sal else: return sal def gen_height(mean=168, std=10, max_height=200, min_height=155): height = int(np.random.normal(mean, std, 1)) if height < min_height: return min_height elif height > max_height: return max_height else: return height def gen_interest(ints): return ints[np.random.randint(low=0, high=len(ints))] def gen_country(countries): return countries[np.random.randint(low=0, high=len(countries))] def main(args): infile = args.infile out = args.out # Read XML data xml_data = get_xml_vals(infile) full_data = add_attributes(xml_data) with open(out, 'w') as f: writer = csv.writer(f, delimiter=',') # f_name, l_name, email, age, salary, height, interest, country, clean/dirty writer.writerow(['l_name', 'email', 'f_name', 'age', 'salary', 'height', 'interest', 'country', 'is_dirty']) writer.writerows(full_data) if __name__ == '__main__': ap = argparse.ArgumentParser() ap.add_argument('--infile', '-i', type=str, required=True) ap.add_argument('--out', '-o', type=str, required=True) main(ap.parse_args()) ```
{ "source": "joshualevitas/single-transferable-voting", "score": 3 }
#### File: joshualevitas/single-transferable-voting/dataset.py ```python import numpy as np import pandas as pd def make_dataset(n_cands, n_spots, n_voters, name="out.csv", seed=90210): #np.random.seed(seed) np_data = [np.random.choice(np.arange(n_cands), n_spots, replace=False)] for i in range(n_voters-1): np_data = np.append(np_data, [np.random.choice(np.arange(n_cands), n_spots, replace=False)], axis=0) names = np.zeros((n_voters,), dtype='object') for i in range(len(names)): names[i] = 'phil' + str(i) names = np.array([names]).T info = np.concatenate((names, np_data), axis=1) data = pd.DataFrame(data=info) data.to_csv(name, index=False) ```
{ "source": "joshuali925/opensearch-build", "score": 2 }
#### File: tests/tests_manifests/test_build_manifest.py ```python import os import unittest import yaml from manifests.build_manifest import BuildManifest class TestBuildManifest(unittest.TestCase): def setUp(self): self.data_path = os.path.realpath( os.path.join(os.path.dirname(__file__), "data") ) self.manifest_filename = os.path.join( self.data_path, "opensearch-build-1.1.0.yml" ) self.manifest = BuildManifest.from_path(self.manifest_filename) def test_build(self): self.assertEqual(self.manifest.version, "1.0") self.assertEqual(self.manifest.build.name, "OpenSearch") self.assertEqual(self.manifest.build.version, "1.1.0") self.assertEqual(len(self.manifest.components), 15) def test_component(self): opensearch_component = self.manifest.components[0] self.assertEqual(opensearch_component.name, "OpenSearch") self.assertEqual( opensearch_component.repository, "https://github.com/opensearch-project/OpenSearch.git", ) self.assertEqual( opensearch_component.commit_id, "0<PASSWORD>d9bbb39<PASSWORD>bb1be83a<PASSWORD>2f57f81ec" ) self.assertEqual(opensearch_component.ref, "1.x") self.assertEqual( sorted(opensearch_component.artifacts.keys()), ["bundle", "core-plugins", "maven"], ) def test_to_dict(self): data = self.manifest.to_dict() with open(self.manifest_filename) as f: self.assertEqual(yaml.safe_load(f), data) ``` #### File: tests/tests_manifests/test_bundle_manifest.py ```python import os import unittest import yaml from manifests.bundle_manifest import BundleManifest class TestBundleManifest(unittest.TestCase): def setUp(self): self.data_path = os.path.realpath( os.path.join(os.path.dirname(__file__), "data") ) self.manifest_filename = os.path.join( self.data_path, "opensearch-bundle-1.1.0.yml" ) self.manifest = BundleManifest.from_path(self.manifest_filename) def test_build(self): self.assertEqual(self.manifest.version, "1.0") self.assertEqual(self.manifest.build.name, "OpenSearch") self.assertEqual(self.manifest.build.version, "1.1.0") self.assertEqual( self.manifest.build.location, "bundle/opensearch-1.1.0-linux-x64.tar.gz" ) self.assertEqual(self.manifest.build.architecture, "x64") self.assertEqual(len(self.manifest.components), 13) def test_component(self): opensearch_min_component = self.manifest.components[0] self.assertEqual(opensearch_min_component.name, "OpenSearch") self.assertEqual( opensearch_min_component.location, "artifacts/bundle/opensearch-min-1.1.0-linux-x64.tar.gz", ) self.assertEqual( opensearch_min_component.repository, "https://github.com/opensearch-project/OpenSearch.git", ) self.assertEqual( opensearch_min_component.commit_id, "0<PASSWORD>", ) self.assertEqual(opensearch_min_component.ref, "1.x") def test_to_dict(self): data = self.manifest.to_dict() with open(self.manifest_filename) as f: self.assertEqual(yaml.safe_load(f), data) ```
{ "source": "JoshuaLight/chalice-restful", "score": 2 }
#### File: tests/unit/configs_test.py ```python import pytest from chalice_restful import config, flag, only_classes, only_functions def test_that_config_adds_named_field_to_the_class(): # Arrange. @config def aspect(_): ... class Fake: ... # Act. Fake = aspect('value')(Fake) # Assert. assert Fake.aspect == 'value' def test_that_config_adds_named_field_to_the_function(): # Arrange. @config def aspect(_): ... def fake(): ... # Act. fake = aspect('value')(fake) # Assert. assert fake.aspect == 'value' def test_that_flag_adds_named_field_to_the_class(): # Arrange. @flag def has_x(): ... # Act. @has_x class Fake: ... # Assert. assert Fake.has_x def test_that_flag_adds_named_field_to_the_function(): # Arrange. @flag def has_x(): ... # Act. @has_x def fake(): ... # Assert. assert fake.has_x def test_that_only_classes_flag_cant_be_added_to_function(): # Arrange. @flag @only_classes def has_x(): ... def fake(): ... # Act. decorate = lambda: has_x(fake) # Assert. with pytest.raises(AssertionError): decorate() def test_that_only_functions_flag_cant_be_added_to_class(): # Arrange. @flag @only_functions def has_x(): ... class Fake: ... # Act. decorate = lambda: has_x(Fake) # Assert. with pytest.raises(AssertionError): decorate() def test_that_only_classes_config_cant_be_added_to_function(): # Arrange. @config @only_classes def has_x(_): ... def fake(): ... # Act. decorate = lambda: has_x('value')(fake) # Assert. with pytest.raises(AssertionError): decorate() def test_that_only_functions_config_cant_be_added_to_class(): # Arrange. @config @only_functions def has_x(_): ... class Fake: ... # Act. decorate = lambda: has_x('value')(Fake) # Assert. with pytest.raises(AssertionError): decorate() def test_that_cant_add_both_only_functions_and_only_classes_flags_to_class(): # Arrange. @flag @only_functions @only_classes def has_x(): ... class Fake: ... # Act. decorate = lambda: has_x('value')(Fake) # Assert. with pytest.raises(AssertionError): decorate() def test_that_cant_add_both_only_functions_and_only_classes_flags_to_function(): # Arrange. @flag @only_functions @only_classes def has_x(): ... def fake(): ... # Act. decorate = lambda: has_x('value')(fake) # Assert. with pytest.raises(AssertionError): decorate() def test_that_multiple_flags_cant_override_each_other(): # Arrange. @flag def a(): ... @flag def b(): ... # Act. @a @b def func(): ... # Assert. assert func.a assert func.b ```
{ "source": "joshualiu555/Pixel-Art-Maker", "score": 3 }
#### File: Pixel-Art-Maker/pixelart/color_box.py ```python import pygame as pg from constants import * class ColorBox(pg.sprite.DirtySprite): def __init__(self, color, x, y, gap): pg.sprite.DirtySprite.__init__(self) self.color = color self.x, self.y = x, y self.image = pg.Surface((COLOR_BOX_SIZE, COLOR_BOX_SIZE)) self.image.fill(color) self.rect = self.image.get_rect() self.rect.x, self.rect.y = x * (COLOR_BOX_SIZE + gap) + 40, y * (COLOR_BOX_SIZE + gap) + 475 self.selected = False def draw_circle(self, screen): if self.selected: if self.color != WHITE: pg.draw.circle(screen, WHITE, self.rect.center, 20) else: pg.draw.circle(screen, BLACK, self.rect.center, 20) ``` #### File: Pixel-Art-Maker/pixelart/mouse_box.py ```python import pygame as pg from constants import * class mouseBox(pg.sprite.DirtySprite): def __init__(self, pos, gap): pg.sprite.DirtySprite.__init__(self) self.image = pg.Surface((MOUSE_BOX_SIZE, MOUSE_BOX_SIZE)) self.image.fill(WHITE) self.rect = self.image.get_rect() self.rect.x, self.rect.y = pos * (MOUSE_BOX_SIZE + gap) + 50, 415 self.selected = False def update(self): if self.selected: self.image.set_alpha(255) else: self.image.set_alpha(0) ``` #### File: Pixel-Art-Maker/pixelart/mouse.py ```python import pygame as pg from constants import * import math class Mouse(pg.sprite.DirtySprite): def __init__(self, size, color): pg.sprite.DirtySprite.__init__(self) self.size = size self.image = pg.Surface((PIXEL_SIZE * size, PIXEL_SIZE * size)) self.image.fill(color) self.color = color self.rect = self.image.get_rect() self.rect.x, self.rect.y = 0, 0 self.on_board = False def update(self): mx, my = pg.mouse.get_pos() # boundary is the one third mark of the board self.on_board = self.rect.left >= int(WIDTH / 3 - 10) if self.on_board: # rounds the mouse coordinates to the nearest pixel self.rect.x, self.rect.y = math.ceil(mx / PIXEL_SIZE) * PIXEL_SIZE, math.ceil(my / PIXEL_SIZE) * PIXEL_SIZE self.image.set_colorkey(None) pg.mouse.set_cursor(pg.cursors.diamond) else: self.rect.x, self.rect.y = mx, my # make the mouse rect invisible self.image.set_colorkey(self.color) pg.mouse.set_cursor(pg.cursors.arrow) def change_size(self, size): self.size = size self.image = pg.Surface((PIXEL_SIZE * size, PIXEL_SIZE * size)) self.image.fill(self.color) self.rect = self.image.get_rect() def change_color(self, color): self.color = color self.image.fill(color) ```
{ "source": "joshualoving/ExampleCode", "score": 3 }
#### File: joshualoving/ExampleCode/copyNum.py ```python from docopt import docopt import csv from intervaltree import IntervalTree, Interval def readInput(infile,genefile, segfile): """ Reads input files. Extended description of function. Parameters: infile (str): File containing list of genes to be analyzed genefile (str): File containing gene range definitions segfile (str): File containing cell line intervals and copy number data Returns: genes (list): List of genes genedef (dict): Dictionary of genes mapping to corresponding intervals interval_dict(dict): Dictionary of dictionary of interval trees containing cell line ranges """ with open(infile) as inf: genes = [i.strip() for i in inf.readlines()] with open(genefile) as genef: dictgenes = csv.DictReader(genef, delimiter="\t") genedef = {} for d in dictgenes: if d["cds_from"] != "-" and d["cds_to"] != "-": genedef[d["gene"]] = (d["#chromosome"], Interval(int(d["cds_from"]),int(d["cds_to"]))) with open(segfile) as seg: interval_dict = {} dictseg = csv.DictReader(seg, delimiter="\t") for d in dictseg: d = dict(d) if "e" in d["End"]: #Replace one incorrect exponential value d["End"] = 115000000 if d["CCLE_name"] in interval_dict: if d["Chromosome"] in interval_dict[d["CCLE_name"]]: interval_dict[d["CCLE_name"]][d["Chromosome"]][int(d["Start"]):int(d["End"])] = float(d["Segment_Mean"]) else: interval_dict[d["CCLE_name"]][d["Chromosome"]] = IntervalTree() interval_dict[d["CCLE_name"]][d["Chromosome"]][int(d["Start"]):int(d["End"])] = float(d["Segment_Mean"]) else: interval_dict[d["CCLE_name"]] = dict() interval_dict[d["CCLE_name"]][d["Chromosome"]] = IntervalTree() interval_dict[d["CCLE_name"]][d["Chromosome"]][int(d["Start"]):int(d["End"])] = float(d["Segment_Mean"]) return genes, genedef, interval_dict import datetime if __name__ == '__main__': #Parse arguments from the docstring arguments = docopt(__doc__) #Generate logfile with(open(arguments["--log"], "w")) as logf: logf.write("Date: %s\n"% str(datetime.date.today())) logf.write("Version: CopyNum 0.1") logf.write("Input gene file: %s\n" % arguments["--input"]) logf.write("Output CN file: %s\n" % arguments["--output"]) logf.write("Input gene range file: %s\n" % arguments["--genedef"]) logf.write("Input cell line CN file: %s\n" % arguments["--seg"]) #parse input into objects g, gdef, id = readInput(arguments["--input"],arguments["--genedef"],arguments["--seg"]) #Get only the genes we are interested in interest = dict((k, gdef[k]) for k in g if k in gdef) with open(arguments["--output"], "w") as out: #Generate header out.write("Gene\t") for line in id: out.write(line + "\t") out.write("\n") #Loop over genes for gene_name in interest: gene = interest[gene_name] out.write(gene_name + "\t") #Loop over cell line intervals for line in id: SumCN = 0 SumWidth = 0 #Check whether there were overlapping intervals found if len(id[line][gene[0]][gene[1].begin:gene[1].end]) == 0: #No copy number data, write NA out.write("NA\t") else: for i in id[line][gene[0]][gene[1].begin:gene[1].end]: #Compute copy number across interval width = i.end - i.begin SumCN += i.data*width SumWidth += width #Average copy number across gene intervals out.write(str(SumCN/SumWidth)) out.write("\t") out.write("\n") ```
{ "source": "joshualyguessennd/ocean.py", "score": 2 }
#### File: joshualyguessennd/ocean.py/deploy.py ```python import json import os import sys from pathlib import Path from examples import ExampleConfig from ocean_lib.config_provider import ConfigProvider from ocean_lib.models.bfactory import BFactory from ocean_lib.models.bpool import BPool from ocean_lib.models.data_token import DataToken from ocean_lib.models.dtfactory import DTFactory from ocean_lib.models.fixed_rate_exchange import FixedRateExchange from ocean_lib.models.metadata import MetadataContract from ocean_lib.ocean import util from ocean_lib.ocean.util import get_web3_connection_provider from ocean_lib.web3_internal.contract_handler import ContractHandler from ocean_lib.web3_internal.utils import privateKeyToAddress from ocean_lib.web3_internal.wallet import Wallet from ocean_lib.web3_internal.web3_provider import Web3Provider from tests.resources.helper_functions import ( get_ganache_wallet, get_publisher_ocean_instance, get_web3, ) SUPPORTED_NETWORKS_STR = str(util.SUPPORTED_NETWORK_NAMES)[1:-1] def main(): network, address_file = processArgs() addresses = deploy(network, address_file) _s = json.dumps(addresses, indent=4) s = "**** deployed contracts with the following addresses ****\n" + _s print(s) def processArgs(): # set help message help = f""" Deploy DataTokenTemplate and more to a target network. Usage: deploy.py NETWORK ADDRESSES_FILE_PATH NETWORK -- one of: {SUPPORTED_NETWORKS_STR} ADDRESSES_FILE_PATH -- path to json file to update the deployed contracts addresses """ # ****SET INPUT ARGS**** # got the right number of args? If not, output help num_args = len(sys.argv) - 1 num_args_needed = 1 if num_args != num_args_needed: print(help) if num_args > 0: print("Got %d argument(s), need %s.\n" % (num_args, num_args_needed)) sys.exit(0) # grab args network = sys.argv[1] print("Arguments: NETWORK=%s\n" % network) # corner cases if network not in util.SUPPORTED_NETWORK_NAMES: print(f"Invalid network. Supported networks: {SUPPORTED_NETWORKS_STR}") sys.exit(0) return network, sys.argv[2] if len(sys.argv) > 2 else "" def deploy(network, addresses_file): config = ExampleConfig.get_config() ConfigProvider.set_config(config) Web3Provider.init_web3(provider=get_web3_connection_provider(config.network_url)) ContractHandler.set_artifacts_path(config.artifacts_path) artifacts_path = ContractHandler.artifacts_path if not addresses_file: addresses_file = config.address_file else: addresses_file = Path(addresses_file).expanduser().resolve() ocean = get_publisher_ocean_instance() web3 = ocean.web3 addresses = dict() if os.path.exists(addresses_file): with open(addresses_file) as f: network_addresses = json.load(f) else: network_addresses = {network: {}} if network == "ganache" and network not in network_addresses: network = "development" _addresses = network_addresses[network] # ****SET ENVT**** # grab vars factory_deployer_private_key = get_ganache_wallet().private_key # corner cases if invalidKey(factory_deployer_private_key): print("Need valid FACTORY_DEPLOYER_PRIVATE_KEY") sys.exit(0) # ****SEE FUNDS**** print( "Keys:\n%s" % Wallet(web3=get_web3(), private_key=factory_deployer_private_key).keysStr() ) print("") # ****DEPLOY**** deployer_wallet = Wallet(web3, private_key=factory_deployer_private_key) minter_addr = deployer_wallet.address # cap = 2 ** 255 not used if DTFactory.CONTRACT_NAME not in _addresses: print("****Deploy DataTokenTemplate: begin****") dt_address = DataToken.deploy( web3, deployer_wallet, artifacts_path, "Template Contract", "TEMPLATE", minter_addr, DataToken.DEFAULT_CAP_BASE, DTFactory.FIRST_BLOB, minter_addr, ) addresses[DataToken.CONTRACT_NAME] = dt_address print("****Deploy DataTokenTemplate: done****\n") print("****Deploy DTFactory: begin****") dtfactory = DTFactory( DTFactory.deploy( web3, deployer_wallet, artifacts_path, dt_address, minter_addr ) ) addresses[DTFactory.CONTRACT_NAME] = dtfactory.address print("****Deploy DTFactory: done****\n") if BFactory.CONTRACT_NAME not in _addresses: print("****Deploy BPool: begin****") bpool_address = BPool.deploy(web3, deployer_wallet, artifacts_path) bpool_template = BPool(bpool_address) addresses[BPool.CONTRACT_NAME] = bpool_address print("****Deploy BPool: done****\n") print("****Deploy 'BFactory': begin****") bfactory_address = BFactory.deploy( web3, deployer_wallet, artifacts_path, bpool_template.address ) _ = BFactory(bfactory_address) addresses[BFactory.CONTRACT_NAME] = bfactory_address print("****Deploy 'BFactory': done****\n") if FixedRateExchange.CONTRACT_NAME not in _addresses: print("****Deploy 'FixedRateExchange': begin****") addresses[FixedRateExchange.CONTRACT_NAME] = FixedRateExchange.deploy( web3, deployer_wallet, artifacts_path ) print("****Deploy 'FixedRateExchange': done****\n") if MetadataContract.CONTRACT_NAME not in _addresses: print("****Deploy 'Metadata': begin****") addresses[MetadataContract.CONTRACT_NAME] = MetadataContract.deploy( web3, deployer_wallet, artifacts_path ) print("****Deploy 'Metadata': done****\n") if network in ("ganache", "development"): print("****Deploy fake OCEAN: begin****") # For simplicity, hijack DataTokenTemplate. minter_addr = deployer_wallet.address OCEAN_cap = 1410 * 10 ** 6 # 1.41B OCEAN_cap_base = util.to_base_18(float(OCEAN_cap)) OCEAN_token = DataToken( DataToken.deploy( web3, deployer_wallet, artifacts_path, "Ocean", "OCEAN", minter_addr, OCEAN_cap_base, "", minter_addr, ) ) addresses["Ocean"] = OCEAN_token.address print("****Deploy fake OCEAN: done****\n") print("****Mint fake OCEAN: begin****") OCEAN_token.mint(minter_addr, OCEAN_cap_base, from_wallet=deployer_wallet) print("****Mint fake OCEAN: done****\n") print("****Distribute fake OCEAN: begin****") amt_distribute = 1000 amt_distribute_base = util.to_base_18(float(amt_distribute)) for key_label in ["TEST_PRIVATE_KEY1", "TEST_PRIVATE_KEY2"]: key = os.environ.get(key_label) if not key: continue dst_address = privateKeyToAddress(key) OCEAN_token.transfer( dst_address, amt_distribute_base, from_wallet=deployer_wallet ) print("****Distribute fake OCEAN: done****\n") network_addresses[network].update(addresses) with open(addresses_file, "w") as f: json.dump(network_addresses, f, indent=2) return addresses def invalidKey(private_key_str): # super basic check return len(private_key_str) < 10 def invalidAddr(addr_str): # super basic check return len(addr_str) < 10 def setenv(key, value): # os.putenv(key, value) #Do *not* use putenv(), it doesn't work os.environ[key] = value if __name__ == "__main__": main() ``` #### File: ocean_lib/web3_internal/utils.py ```python import json import logging import os from collections import namedtuple import eth_account import eth_keys import eth_utils from eth_keys import KeyAPI from eth_utils import big_endian_to_int from ocean_lib.web3_internal.web3_provider import Web3Provider from web3 import Web3 Signature = namedtuple("Signature", ("v", "r", "s")) logger = logging.getLogger(__name__) def generate_multi_value_hash(types, values): """ Return the hash of the given list of values. This is equivalent to packing and hashing values in a solidity smart contract hence the use of `soliditySha3`. :param types: list of solidity types expressed as strings :param values: list of values matching the `types` list :return: bytes """ assert len(types) == len(values) return Web3.soliditySha3(types, values) def prepare_prefixed_hash(msg_hash): """ :param msg_hash: :return: """ return generate_multi_value_hash( ["string", "bytes32"], ["\x19Ethereum Signed Message:\n32", msg_hash] ) def add_ethereum_prefix_and_hash_msg(text): """ This method of adding the ethereum prefix seems to be used in web3.personal.sign/ecRecover. :param text: str any str to be signed / used in recovering address from a signature :return: hash of prefixed text according to the recommended ethereum prefix """ prefixed_msg = f"\x19Ethereum Signed Message:\n{len(text)}{text}" return Web3.sha3(text=prefixed_msg) def get_public_key_from_address(web3, account): """ :param web3: :param account: :return: """ _hash = web3.sha3(text="verify signature.") signature = web3.personal.sign(_hash, account.address, account.password) signature = split_signature(web3, web3.toBytes(hexstr=signature)) signature_vrs = Signature( signature.v % 27, big_endian_to_int(signature.r), big_endian_to_int(signature.s) ) prefixed_hash = prepare_prefixed_hash(_hash) pub_key = KeyAPI.PublicKey.recover_from_msg_hash( prefixed_hash, KeyAPI.Signature(vrs=signature_vrs) ) assert ( pub_key.to_checksum_address() == account.address ), "recovered address does not match signing address." return pub_key def to_32byte_hex(web3, val): """ :param web3: :param val: :return: """ return web3.toBytes(val).rjust(32, b"\0") def split_signature(web3, signature): """ :param web3: :param signature: signed message hash, hex str :return: """ assert len(signature) == 65, ( f"invalid signature, " f"expecting bytes of length 65, got {len(signature)}" ) v = web3.toInt(signature[-1]) r = to_32byte_hex(web3, int.from_bytes(signature[:32], "big")) s = to_32byte_hex(web3, int.from_bytes(signature[32:64], "big")) if v != 27 and v != 28: v = 27 + v % 2 return Signature(v, r, s) def get_wallet(index): name = "PARITY_ADDRESS" if not index else f"PARITY_ADDRESS{index}" pswrd_name = "PARITY_PASSWORD" if not index else f"PARITY_PASSWORD{index}" key_name = "PARITY_KEY" if not index else f"PARITY_KEY{index}" encrypted_key_name = ( "PARITY_ENCRYPTED_KEY" if not index else f"PARITY_ENCRYPTED_KEY{index}" ) keyfile_name = "PARITY_KEYFILE" if not index else f"PARITY_KEYFILE{index}" address = os.getenv(name) if not address: return None pswrd = os.getenv(pswrd_name) key = os.getenv(key_name) encr_key = os.getenv(encrypted_key_name) key_file = os.getenv(keyfile_name) if key_file and not encr_key: with open(key_file) as _file: encr_key = json.loads(_file.read()) from ocean_lib.web3_internal.wallet import Wallet return Wallet( Web3Provider.get_web3(), private_key=key, encrypted_key=encr_key, address=Web3.toChecksumAddress(address), password=<PASSWORD>, ) def privateKeyToAddress(private_key: str) -> str: return eth_account.Account().privateKeyToAccount(private_key).address def privateKeyToPublicKey(private_key: str): private_key_bytes = eth_utils.decode_hex(private_key) private_key_object = eth_keys.keys.PrivateKey(private_key_bytes) return private_key_object.public_key ``` #### File: tests/models/test_bpool.py ```python import pytest from ocean_lib.models.bfactory import BFactory from ocean_lib.models.bpool import BPool from ocean_lib.models.btoken import BToken from ocean_lib.ocean.util import from_base_18, get_bfactory_address, to_base_18 from ocean_lib.web3_internal.wallet import Wallet from tests.models.conftest import alice_info HUGEINT = 2 ** 255 def test_notokens_basic(OCEAN_address, network, alice_wallet, alice_address): pool = _deployBPool(network, alice_wallet) assert not pool.isPublicSwap() assert not pool.isFinalized() assert not pool.isBound(OCEAN_address) assert pool.getNumTokens() == 0 assert pool.getCurrentTokens() == [] with pytest.raises(Exception): pool.getFinalTokens() # pool's not finalized assert pool.getSwapFee() == to_base_18(1e-6) assert pool.getController() == alice_address assert str(pool) with pytest.raises(Exception): pool.finalize() # can't finalize if no tokens def test_setSwapFee_works(network, alice_wallet): pool = _deployBPool(network, alice_wallet) pool.setSwapFee(to_base_18(0.011), from_wallet=alice_wallet) assert from_base_18(pool.getSwapFee()) == 0.011 def test_setSwapFee_fails( network, alice_wallet, alice_address, bob_wallet, bob_address ): factory = BFactory(get_bfactory_address(network)) pool_address = factory.newBPool(alice_wallet) pool = BPool(pool_address) with pytest.raises(Exception): pool.setSwapFee( to_base_18(0.011), from_wallet=bob_wallet ) # not ok, bob isn't controller pool.setController(bob_address, from_wallet=alice_wallet) pool.setSwapFee(to_base_18(0.011), from_wallet=bob_wallet) # ok now def test_setController(network, alice_wallet, alice_address, bob_wallet, bob_address): pool = _deployBPool(network, alice_wallet) pool.setController(bob_address, from_wallet=alice_wallet) assert pool.getController() == bob_address pool.setController(alice_address, from_wallet=bob_wallet) assert pool.getController() == alice_address def test_setPublicSwap(network, alice_wallet): pool = _deployBPool(network, alice_wallet) pool.setPublicSwap(True, from_wallet=alice_wallet) assert pool.isPublicSwap() pool.setPublicSwap(False, from_wallet=alice_wallet) assert not pool.isPublicSwap() def test_2tokens_basic(network, T1, T2, alice_wallet, alice_address): pool = _deployBPool(network, alice_wallet) assert T1.address != T2.address assert T1.address != pool.address assert from_base_18(T1.balanceOf(alice_address)) >= 90.0 _ = from_base_18(T2.balanceOf(alice_address)) >= 10.0 with pytest.raises(Exception): # can't bind until we approve pool.bind(T1.address, to_base_18(90.0), to_base_18(9.0)) # Bind two tokens to the pool T1.approve(pool.address, to_base_18(90.0), from_wallet=alice_wallet) T2.approve(pool.address, to_base_18(10.0), from_wallet=alice_wallet) assert from_base_18(T1.allowance(alice_address, pool.address)) == 90.0 assert from_base_18(T2.allowance(alice_address, pool.address)) == 10.0 assert not pool.isBound(T1.address) and not pool.isBound(T1.address) pool.bind(T1.address, to_base_18(90.0), to_base_18(9.0), from_wallet=alice_wallet) pool.bind(T2.address, to_base_18(10.0), to_base_18(1.0), from_wallet=alice_wallet) assert pool.isBound(T1.address) and pool.isBound(T2.address) assert pool.getNumTokens() == 2 assert pool.getCurrentTokens() == [T1.address, T2.address] assert pool.getDenormalizedWeight(T1.address) == to_base_18(9.0) assert pool.getDenormalizedWeight(T2.address) == to_base_18(1.0) assert pool.getTotalDenormalizedWeight() == to_base_18(9.0 + 1.0) assert pool.getNormalizedWeight(T1.address) == to_base_18(0.9) assert pool.getNormalizedWeight(T2.address) == to_base_18(0.1) assert pool.getBalance(T1.address) == to_base_18(90.0) assert pool.getBalance(T2.address) == to_base_18(10.0) assert str(pool) def test_unbind(network, T1, T2, alice_wallet): pool = _createPoolWith2Tokens(network, T1, T2, alice_wallet, 1.0, 1.0, 1.0, 1.0) pool.unbind(T1.address, from_wallet=alice_wallet) assert pool.getNumTokens() == 1 assert pool.getCurrentTokens() == [T2.address] assert from_base_18(pool.getBalance(T2.address)) == 1.0 def test_finalize(network, T1, T2, alice_address, alice_wallet): pool = _createPoolWith2Tokens(network, T1, T2, alice_wallet, 90.0, 10.0, 9.0, 1.0) assert not pool.isPublicSwap() assert not pool.isFinalized() assert pool.totalSupply() == 0 assert pool.balanceOf(alice_address) == 0 assert pool.allowance(alice_address, pool.address) == 0 pool.finalize(from_wallet=alice_wallet) assert pool.isPublicSwap() assert pool.isFinalized() assert pool.totalSupply() == to_base_18(100.0) assert pool.balanceOf(alice_address) == to_base_18(100.0) assert pool.allowance(alice_address, pool.address) == 0 assert pool.getFinalTokens() == [T1.address, T2.address] assert pool.getCurrentTokens() == [T1.address, T2.address] def test_public_pool(network, bob_wallet): alice = alice_info() alice_address = alice.address bob_address = bob_wallet.address T1 = alice.T1 T2 = alice.T2 pool = _createPoolWith2Tokens( network, alice.T1, alice.T2, alice.wallet, 90.0, 10.0, 9.0, 1.0 ) BPT = pool # alice give Bob some tokens alice.T1.transfer(bob_wallet.address, to_base_18(100.0), from_wallet=alice.wallet) alice.T2.transfer(bob_wallet.address, to_base_18(100.0), from_wallet=alice.wallet) # verify holdings assert from_base_18(alice.T1.balanceOf(alice.address)) == (1000.0 - 90.0 - 100.0) assert from_base_18(alice.T2.balanceOf(alice.address)) == (1000.0 - 10.0 - 100.0) assert from_base_18(BPT.balanceOf(alice.address)) == 0 assert from_base_18(alice.T1.balanceOf(bob_address)) == 100.0 assert from_base_18(alice.T2.balanceOf(bob_address)) == 100.0 assert from_base_18(BPT.balanceOf(bob_address)) == 0 assert from_base_18(T1.balanceOf(pool.address)) == 90.0 assert from_base_18(T2.balanceOf(pool.address)) == 10.0 assert from_base_18(BPT.balanceOf(pool.address)) == 0 # finalize pool = BPool(pool.address) pool.finalize(from_wallet=alice.wallet) # verify holdings assert from_base_18(alice.T1.balanceOf(alice.address)) == (1000.0 - 90.0 - 100.0) assert from_base_18(alice.T2.balanceOf(alice.address)) == (1000.0 - 10.0 - 100.0) assert from_base_18(BPT.balanceOf(alice.address)) == 100.0 # new! assert from_base_18(T1.balanceOf(pool.address)) == 90.0 assert from_base_18(T2.balanceOf(pool.address)) == 10.0 assert from_base_18(BPT.balanceOf(pool.address)) == 0 # bob join pool. Wants 10 BPT T1.approve(pool.address, to_base_18(100.0), from_wallet=bob_wallet) T2.approve(pool.address, to_base_18(100.0), from_wallet=bob_wallet) pool.joinPool( poolAmountOut_base=to_base_18(10.0), # 10 BPT maxAmountsIn_base=[to_base_18(100.0), to_base_18(100.0)], from_wallet=bob_wallet, ) # verify holdings assert from_base_18(T1.balanceOf(alice_address)) == (1000.0 - 90.0 - 100.0) assert from_base_18(T2.balanceOf(alice_address)) == (1000.0 - 10.0 - 100.0) assert from_base_18(BPT.balanceOf(alice_address)) == 100.0 assert from_base_18(T1.balanceOf(bob_address)) == (100.0 - 9.0) assert from_base_18(T2.balanceOf(bob_address)) == (100.0 - 1.0) assert from_base_18(BPT.balanceOf(bob_address)) == 10.0 assert from_base_18(T1.balanceOf(pool.address)) == (90.0 + 9.0) assert from_base_18(T2.balanceOf(pool.address)) == (10.0 + 1.0) assert from_base_18(BPT.balanceOf(pool.address)) == 0 # bob sells 2 BPT # -this is where BLabs fee kicks in. But the fee is currently set to 0. pool.exitPool( poolAmountIn_base=to_base_18(2.0), minAmountsOut_base=[to_base_18(0.0), to_base_18(0.0)], from_wallet=bob_wallet, ) assert from_base_18(T1.balanceOf(bob_address)) == 92.8 assert from_base_18(T2.balanceOf(bob_address)) == 99.2 assert from_base_18(BPT.balanceOf(bob_address)) == 8.0 # bob buys 5 more BPT pool.joinPool( poolAmountOut_base=to_base_18(5.0), maxAmountsIn_base=[to_base_18(90.0), to_base_18(90.0)], from_wallet=bob_wallet, ) assert from_base_18(BPT.balanceOf(bob_address)) == 13.0 # bob fully exits pool.exitPool( poolAmountIn_base=to_base_18(13.0), minAmountsOut_base=[to_base_18(0.0), to_base_18(0.0)], from_wallet=bob_wallet, ) assert from_base_18(BPT.balanceOf(bob_address)) == 0.0 def test_rebind_more_tokens(network, T1, T2, alice_wallet): pool = _createPoolWith2Tokens(network, T1, T2, alice_wallet, 90.0, 10.0, 9.0, 1.0) # insufficient allowance with pytest.raises(Exception): pool.rebind( T1.address, to_base_18(120.0), to_base_18(9.0), from_wallet=alice_wallet ) # sufficient allowance T1.approve(pool.address, to_base_18(30.0), from_wallet=alice_wallet) pool.rebind( T1.address, to_base_18(120.0), to_base_18(9.0), from_wallet=alice_wallet ) def test_gulp(network, T1, alice_wallet): pool = _deployBPool(network, alice_wallet) # bind T1 to the pool, with a balance of 2.0 T1.approve(pool.address, to_base_18(50.0), from_wallet=alice_wallet) pool.bind(T1.address, to_base_18(2.0), to_base_18(50.0), from_wallet=alice_wallet) # T1 is now pool's (a) ERC20 balance (b) _records[token].balance assert T1.balanceOf(pool.address) == to_base_18(2.0) # ERC20 balance assert pool.getBalance(T1.address) == to_base_18(2.0) # records[] # but then some joker accidentally sends 5.0 tokens to the pool's address # rather than binding / rebinding. So it's in ERC20 bal but not records[] T1.transfer(pool.address, to_base_18(5.0), from_wallet=alice_wallet) assert T1.balanceOf(pool.address) == to_base_18(2.0 + 5.0) # ERC20 bal assert pool.getBalance(T1.address) == to_base_18(2.0) # records[] # so, 'gulp' gets the pool to absorb the tokens into its balances. # i.e. to update _records[token].balance to be in sync with ERC20 balance pool.gulp(T1.address, from_wallet=alice_wallet) assert T1.balanceOf(pool.address) == to_base_18(2.0 + 5.0) # ERC20 assert pool.getBalance(T1.address) == to_base_18(2.0 + 5.0) # records[] def test_spot_price(network, T1, T2, alice_wallet): (p, p_sans) = _spotPrices(network, T1, T2, alice_wallet, 1.0, 1.0, 1.0, 1.0) assert p_sans == 1.0 assert round(p, 8) == 1.000001 (p, p_sans) = _spotPrices(network, T1, T2, alice_wallet, 90.0, 10.0, 9.0, 1.0) assert p_sans == 1.0 assert round(p, 8) == 1.000001 (p, p_sans) = _spotPrices(network, T1, T2, alice_wallet, 1.0, 2.0, 1.0, 1.0) assert p_sans == 0.5 assert round(p, 8) == 0.5000005 (p, p_sans) = _spotPrices(network, T1, T2, alice_wallet, 2.0, 1.0, 1.0, 1.0) assert p_sans == 2.0 assert round(p, 8) == 2.000002 (p, p_sans) = _spotPrices(network, T1, T2, alice_wallet, 9.0, 10.0, 9.0, 1.0) assert p_sans == 0.1 assert round(p, 8) == 0.1000001 def _spotPrices( network: str, T1: BToken, T2: BToken, wallet: Wallet, bal1: float, bal2: float, w1: float, w2: float, ): pool = _createPoolWith2Tokens(network, T1, T2, wallet, bal1, bal2, w1, w2) a1, a2 = T1.address, T2.address return ( from_base_18(pool.getSpotPrice(a1, a2)), from_base_18(pool.getSpotPriceSansFee(a1, a2)), ) def test_joinSwapExternAmountIn(network, T1, T2, alice_wallet, alice_address): init_T1balance = from_base_18(T1.balanceOf(alice_address)) T2balance = from_base_18(T2.balanceOf(alice_address)) pool = _createPoolWith2Tokens(network, T1, T2, alice_wallet, 90.0, 10.0, 9.0, 1.0) T1.approve(pool.address, to_base_18(100.0), from_wallet=alice_wallet) # pool's not public with pytest.raises(Exception): pool.swapExactAmountOut( tokenIn_address=T1.address, maxAmountIn_base=to_base_18(100.0), tokenOut_address=T2.address, tokenAmountOut_base=to_base_18(10.0), maxPrice_base=HUGEINT, from_wallet=alice_wallet, ) # pool's public pool.setPublicSwap(True, from_wallet=alice_wallet) pool.swapExactAmountOut( tokenIn_address=T1.address, maxAmountIn_base=to_base_18(100.0), tokenOut_address=T2.address, tokenAmountOut_base=to_base_18(1.0), maxPrice_base=HUGEINT, from_wallet=alice_wallet, ) new_balance = init_T1balance - 91.055 assert ( (new_balance - 0.005) <= from_base_18(T1.balanceOf(alice_address)) <= (new_balance + 0.005) ) assert from_base_18(T2.balanceOf(alice_address)) == (T2balance - 9.0) def test_joinswapPoolAmountOut(network, T1, T2, alice_address, alice_wallet): T1balance = from_base_18(T1.balanceOf(alice_address)) pool = _createPoolWith2Tokens(network, T1, T2, alice_wallet, 90.0, 10.0, 9.0, 1.0) BPT = pool pool.finalize(from_wallet=alice_wallet) pool_balance = from_base_18(BPT.balanceOf(alice_address)) T1.approve(pool.address, to_base_18(90.0), from_wallet=alice_wallet) assert from_base_18(T1.balanceOf(alice_address)) == (T1balance - 90) T1balance = from_base_18(T1.balanceOf(alice_address)) pool.joinswapPoolAmountOut( tokenIn_address=T1.address, poolAmountOut_base=to_base_18(10.0), # BPT wanted maxAmountIn_base=to_base_18(90.0), # max T1 to spend from_wallet=alice_wallet, ) assert from_base_18(T1.balanceOf(alice_address)) >= (T1balance - 90.0) assert from_base_18(BPT.balanceOf(alice_address)) == (pool_balance + 10.0) def test_exitswapPoolAmountIn(network, T1, T2, alice_address, alice_wallet): T1balance = from_base_18(T1.balanceOf(alice_address)) pool = _createPoolWith2Tokens(network, T1, T2, alice_wallet, 90.0, 10.0, 9.0, 1.0) BPT = pool pool.finalize(from_wallet=alice_wallet) pool_balance = from_base_18(BPT.balanceOf(alice_address)) assert from_base_18(T1.balanceOf(alice_address)) == (T1balance - 90) pool.exitswapPoolAmountIn( tokenOut_address=T1.address, poolAmountIn_base=to_base_18(10.0), # BPT spent minAmountOut_base=to_base_18(1.0), # min T1 wanted from_wallet=alice_wallet, ) assert from_base_18(T1.balanceOf(alice_address)) >= (T1balance - 90 + 1.0) assert from_base_18(BPT.balanceOf(alice_address)) == (pool_balance - 10.0) def test_exitswapExternAmountOut(network, T1, T2, alice_address, alice_wallet): T1balance = from_base_18(T1.balanceOf(alice_address)) pool = _createPoolWith2Tokens(network, T1, T2, alice_wallet, 90.0, 10.0, 9.0, 1.0) BPT = pool pool.finalize(from_wallet=alice_wallet) pool_balance = from_base_18(BPT.balanceOf(alice_address)) assert from_base_18(T1.balanceOf(alice_address)) == T1balance - 90 pool.exitswapExternAmountOut( tokenOut_address=T1.address, tokenAmountOut_base=to_base_18(2.0), # T1 wanted maxPoolAmountIn_base=to_base_18(10.0), # max BPT spent from_wallet=alice_wallet, ) assert from_base_18(T1.balanceOf(alice_address)) == (T1balance - 90 + 2.0) assert from_base_18(BPT.balanceOf(alice_address)) >= (pool_balance - 10.0) def test_calcSpotPrice_base(network, T1, T2, alice_address, alice_wallet): pool = _deployBPool(network, alice_wallet) x = pool.calcSpotPrice( tokenBalanceIn_base=to_base_18(10.0), tokenWeightIn_base=to_base_18(1.0), tokenBalanceOut_base=to_base_18(11.0), tokenWeightOut_base=to_base_18(1.0), swapFee_base=0, ) assert round(from_base_18(x), 3) == 0.909 def test_calcOutGivenIn_base(network, alice_wallet): pool = _deployBPool(network, alice_wallet) x = pool.calcOutGivenIn( tokenBalanceIn_base=to_base_18(10.0), tokenWeightIn_base=to_base_18(1.0), tokenBalanceOut=to_base_18(10.1), tokenWeightOut_base=to_base_18(1.0), tokenAmountIn_base=to_base_18(1.0), swapFee_base=0, ) assert round(from_base_18(x), 3) == 0.918 def test_calcInGivenOut_base(network, alice_wallet): pool = _deployBPool(network, alice_wallet) x = pool.calcInGivenOut( tokenBalanceIn_base=to_base_18(10.0), tokenWeightIn_base=to_base_18(1.0), tokenBalanceOut_base=to_base_18(10.1), tokenWeightOut_base=to_base_18(1.0), tokenAmountOut_base=to_base_18(1.0), swapFee_base=0, ) assert round(from_base_18(x), 3) == 1.099 def test_calcPoolOutGivenSingleIn_base(network, alice_wallet): pool = _deployBPool(network, alice_wallet) x = pool.calcPoolOutGivenSingleIn( tokenBalanceIn_base=to_base_18(10.0), tokenWeightIn_base=to_base_18(1.0), poolSupply_base=to_base_18(120.0), totalWeight_base=to_base_18(2.0), tokenAmountIn_base=to_base_18(0.1), swapFee_base=0, ) assert round(from_base_18(x), 3) == 0.599 def test_calcSingleInGivenPoolOut_base(network, alice_wallet): pool = _deployBPool(network, alice_wallet) x = pool.calcSingleInGivenPoolOut( tokenBalanceIn_base=to_base_18(10.0), tokenWeightIn_base=to_base_18(1.0), poolSupply_base=to_base_18(120.0), totalWeight_base=to_base_18(2.0), poolAmountOut_base=to_base_18(10.0), swapFee_base=0, ) assert round(from_base_18(x), 3) == 1.736 def test_calcSingleOutGivenPoolIn_base(network, alice_wallet): pool = _deployBPool(network, alice_wallet) x = pool.calcSingleOutGivenPoolIn( tokenBalanceOut_base=to_base_18(10.0), tokenWeightOut_base=to_base_18(1.0), poolSupply_base=to_base_18(120.0), totalWeight_base=to_base_18(2.0), poolAmountIn_base=to_base_18(10.0), swapFee_base=0, ) assert round(from_base_18(x), 3) == 1.597 def test_calcPoolInGivenSingleOut_base(network, alice_wallet): pool = _deployBPool(network, alice_wallet) x = pool.calcPoolInGivenSingleOut( tokenBalanceOut_base=to_base_18(1000.0), tokenWeightOut_base=to_base_18(5.0), poolSupply_base=to_base_18(100.0), totalWeight_base=to_base_18(10.0), tokenAmountOut_base=to_base_18(0.1), swapFee_base=0, ) assert round(from_base_18(x), 3) == 0.005 def _createPoolWith2Tokens( network: str, T1: BToken, T2: BToken, wallet: Wallet, bal1: float, bal2: float, w1: float, w2: float, ): pool = _deployBPool(network, wallet) T1.get_tx_receipt(T1.approve(pool.address, to_base_18(bal1), from_wallet=wallet)) T2.get_tx_receipt(T2.approve(pool.address, to_base_18(bal2), from_wallet=wallet)) if pool.isBound(T1.address): pool.unbind(T1.address, wallet) if pool.isBound(T2.address): pool.unbind(T2.address, wallet) pool.bind(T1.address, to_base_18(bal1), to_base_18(w1), from_wallet=wallet) pool.bind(T2.address, to_base_18(bal2), to_base_18(w2), from_wallet=wallet) return pool def _deployBPool(network: str, from_wallet: Wallet) -> BPool: factory_address = get_bfactory_address(network) factory = BFactory(factory_address) pool_address = factory.newBPool(from_wallet=from_wallet) pool = BPool(pool_address) return pool ``` #### File: tests/ocean/test_ocean_auth.py ```python from ocean_lib.ocean.ocean_auth import OceanAuth from tests.resources.helper_functions import get_publisher_wallet def test_get_token(): ocn_auth = OceanAuth(":memory:") wallet = get_publisher_wallet() token = ocn_auth.get(wallet) assert isinstance(token, str), "Invalid auth token type." assert token.startswith("0x"), "Invalid auth token." parts = token.split("-") assert len(parts) == 2, "Invalid token, timestamp separator is not found." address = ocn_auth.check(token) assert address != "0x0", "Verifying token failed." def test_check_token(web3_instance): ocn_auth = OceanAuth(":memory:") wallet = get_publisher_wallet() token = ocn_auth.get(wallet) address = ocn_auth.check(token) assert address != "0x0", "Verifying token failed." sig = token.split("-")[0] assert ocn_auth.check(sig) == "0x0" # Test token expiration def test_store_token(): ocn_auth = OceanAuth(":memory:") wallet = get_publisher_wallet() token = ocn_auth.store(wallet) assert ocn_auth.check(token) == wallet.address, "invalid token, check failed." # verify it is saved assert ocn_auth.restore(wallet) == token, "Restoring token failed." def test_restore_token(): ocn_auth = OceanAuth(":memory:") wallet = get_publisher_wallet() assert ( ocn_auth.restore(wallet) is None ), "Expecting None when restoring non-existing token." token = ocn_auth.store(wallet) assert ocn_auth.check(token) == wallet.address, "invalid token, check failed." # verify it is saved assert ocn_auth.restore(wallet) == token, "Restoring token failed." def test_known_token(): token = ( "0x1d2741<PASSWORD>30e64989ef0203957c01b14f250f5d2f6ccb0c" "88c9518816e4fcec16f84e545094eb3f377b7e214ded22676" "fbde8ca2e41b4eb1b3565047ecd9acf300-1568372035" ) pub_address = "0xe2DD09d719Da89e5a3D0F2549c7E24566e947260" ocn_auth = OceanAuth(":memory:") assert ocn_auth.is_token_valid( token ), "Invalid token!! has the token specs changed?" def _get_timestamp(): return int("1568372035") + 10000 ocn_auth._get_timestamp = _get_timestamp address = ocn_auth.check(token) assert address.lower() == pub_address.lower(), ( f"Recovered address {address} does not match " f"known signer address {pub_address}, if the " f"token generation method is changed please update " f"the token in this test with the new format." ) ```
{ "source": "joshualy/numerical_computing", "score": 4 }
#### File: Introduction/PlottingIntro/solutions.py ```python import numpy as np from matplotlib import pyplot as plt def var_of_means(n): """Construct a random matrix A with values drawn from the standard normal distribution. Calculate the mean value of each row, then calculate the variance of these means. Return the variance. Inputs: n (int): The number of rows and columns in the matrix A. Returns: (float) The variance of the means of each row. """ A = np.random.randn(n,n) return A.mean(axis=1).var() def prob1(): """Create an array of the results of var_of_means() with inputs n = 100, 200, ..., 1000. Plot and show the resulting array. """ y = np.array([var_of_means(n) for n in xrange(100, 1100, 100)]) plt.plot(y) plt.show() def prob2(): """Plot the functions sin(x), cos(x), and arctan(x) on the domain [-2pi, 2pi]. Make sure the domain is refined enough to produce a figure with good resolution. """ x = np.linspace(-2*np.pi, 2*np.pi, 200) plt.plot(x, np.sin(x)) plt.plot(x, np.cos(x)) plt.plot(x, np.arctan(x)) plt.show() def prob3(): """Plot the curve f(x) = 1/(x-1) on the domain [-2,6]. 1. Split the domain so that the curve looks discontinuous. 2. Plot both curves with a thick, dashed magenta line. 3. Change the range of the y-axis to [-6,6]. """ x1, x2 = np.split(np.linspace(-2, 6, 200), [75]) # x1, x2 = np.linspace(-2, 1, 75), np.linspace(1, 6, 125) plt.plot(x1, 1/(x1 - 1), 'm--', lw=4) plt.plot(x2, 1/(x2 - 1), 'm--', lw=4) plt.ylim(-6, 6) plt.show() def prob4(): """Plot the functions sin(x), sin(2x), 2sin(x), and 2sin(2x) on the domain [0, 2pi]. 1. Arrange the plots in a square grid of four subplots. 2. Set the limits of each subplot to [0, 2pi]x[-2, 2]. 3. Give each subplot an appropriate title. 4. Give the overall figure a title. 5. Use the following line colors and styles. sin(x): green solid line. sin(2x): red dashed line. 2sin(x): blue dashed line. 2sin(2x): magenta dotted line. """ x = np.linspace(0, 2*np.pi, 200) plt.subplot(221) # sin(x) plt.plot(x, np.sin(x), 'g-', lw=2) plt.axis([0, 2*np.pi, -2, 2]) plt.title("sin(x)") plt.subplot(222) # sin(2x) plt.plot(x, np.sin(2*x), 'r--', lw=2) plt.axis([0, 2*np.pi, -2, 2]) plt.title("sin(2x)") plt.subplot(223) # 2sin(x) plt.plot(x, 2*np.sin(x), 'b--', lw=2) plt.axis([0, 2*np.pi, -2, 2]) plt.title("2sin(x)") plt.subplot(224) # 2sin(2x) plt.plot(x, 2*np.sin(2*x), 'm:', lw=2) plt.axis([0, 2*np.pi, -2, 2]) plt.title("2sin(2x)") plt.suptitle("Solution to Problem 4 (subplots)") plt.show() def prob5(): """Visualize the data in FARS.npy. Use np.load() to load the data, then create a single figure with two subplots: 1. A scatter plot of longitudes against latitudes. Because of the large number of data points, use black pixel markers (use "k," as the third argument to plt.plot()). Label both axes. 2. A histogram of the hours of the day, with one bin per hour. Label and set the limits of the x-axis. """ data = np.load("FARS.npy") plt.subplot(211) plt.plot(data[:,1], data[:,2], 'k,') plt.xlabel("Longitude") plt.ylabel("Latitude") plt.axis("equal") plt.subplot(212) plt.hist(data[:,0], bins=24, range=[-.5, 23.5]) plt.xlim(-.5,23.5) plt.xlabel("Hour (Military Time)") plt.suptitle("Solution to Problem 5 (FARS data)") plt.show() def prob6(): """Plot the function f(x,y) = sin(x)sin(y)/xy on the domain [-2pi, 2pi]x[-2pi, 2pi]. 1. Create 2 subplots: one with a heat map of f, and one with a contour map of f. Choose an appropriate number of level curves, or specify the curves yourself. 2. Set the limits of each subplot to [-2pi, 2pi]x[-2pi, 2pi]. 3. Choose a non-default color scheme. 4. Add a colorbar to each subplot. """ # Define the mesgrid and calculate f() on the grid. x = np.linspace(-2*np.pi, 2*np.pi, 200) y = np.copy(x) X, Y = np.meshgrid(x,y) Z = np.sin(X)*np.sin(Y)/(X*Y) plt.subplot(121) # Heat map. plt.pcolormesh(X, Y, Z, cmap="Spectral") plt.axis([-2*np.pi, 2*np.pi, -2*np.pi, 2*np.pi]) plt.colorbar() plt.subplot(122) # Contour map. plt.contour(X, Y, Z, 10, cmap="Spectral") plt.axis([-2*np.pi, 2*np.pi, -2*np.pi, 2*np.pi]) plt.colorbar() plt.suptitle("Solution to Problem 6 (meshgrids)") plt.show() ``` #### File: Introduction/PythonIntro/testDriver.py ```python import signal from functools import wraps def _timeout(seconds): """Decorator for preventing a function from running for too long. Inputs: seconds (int): The number of seconds allowed. Notes: This decorator uses signal.SIGALRM, which is only available on Unix. """ assert isinstance(seconds, int), "@timeout(sec) requires an int" class TimeoutError(Exception): pass def _handler(signum, frame): """Handle the alarm by raising a custom exception.""" raise TimeoutError("Timeout after {0} seconds".format(seconds)) def decorator(func): def wrapper(*args, **kwargs): signal.signal(signal.SIGALRM, _handler) signal.alarm(seconds) # Set the alarm. try: result = func(*args, **kwargs) finally: signal.alarm(0) # Turn the alarm off. return result return wraps(func)(wrapper) return decorator # Test Driver ================================================================= from numpy.random import randint from solutions import * def test(student_module): """Test script. Import the student's solutions file as a module. 5 points for problem 2 10 points for problem 3 5 points for problem 4 5 points for problem 5 10 points for problem 6 5 points for problem 7 Parameters: student_module: the imported module for the student's file. Returns: score (int): the student's score, out of 40. feedback (str): a printout of results for the student. """ tester = _testDriver() tester.test_all(student_module) return tester.score, tester.feedback class _testDriver(object): """Class for testing a student's work. See test.__doc__ for more info. This and all other test drivers can be used to grade the entire lab assignment at once via test_all(), or to grade one problem at a time via the different problemX() functions. The point distribution is only a suggestion; the instructor may alter the weight of each problem as they see fit. """ # Constructor ------------------------------------------------------------- def __init__(self): """Initialize the feedback attribute.""" self.feedback = "" # Main routine ----------------------------------------------------------- def test_all(self, student_module, total=40): """Grade the provided module on each problem and compile feedback.""" # Reset feedback and score. self.feedback = "" self.score = 0 def test_one(problem, label, value): """Test a single problem, checking for errors.""" try: self.feedback += "\n\n{} ({} points):".format(label, value) points = problem(student_module) self.score += points self.feedback += "\nScore += {}".format(points) except BaseException as e: self.feedback += "\n{}: {}".format(self._errType(e),e) # Grade each problem. test_one(self.problem2, "Problem 2", 5) # Problem 2: 5 points. test_one(self.problem3, "Problem 3", 10) # Problem 3: 10 points. test_one(self.problem4, "Problem 4", 5) # Problem 4: 5 points. test_one(self.problem5, "Problem 5", 5) # Problem 5: 5 points. test_one(self.problem6, "Problem 6", 10) # Problem 6: 10 points. test_one(self.problem7, "Problem 7", 5) # Problem 7: 5 points. # Report final score. percentage = (100. * self.score) / total self.feedback += "\n\nTotal score: {}/{} = {}%".format( self.score, total, round(percentage, 2)) if percentage >= 98: self.feedback += "\n\nExcellent!" elif percentage >= 90: self.feedback += "\n\nGreat job!" # Add comments (optionally). print(self.feedback) comments = str(raw_input("Comments: ")) if len(comments) > 0: self.feedback += '\n\n\nComments:\n\t{}'.format(comments) # Helper Functions -------------------------------------------------------- @staticmethod def _errType(error): """Get just the name of the exception 'error' in string format.""" return str(type(error).__name__) def _eqTest(self, correct, student, message): """Test to see if 'correct' and 'student' are equal. Report the given 'message' if they are not. """ if correct == student: return 1 else: self.feedback += "\n{}".format(message) self.feedback += "\n\tCorrect response: {}".format(correct) self.feedback += "\n\tStudent response: {}".format(student) return 0 def _grade(self, points, message=None): """Manually grade a problem worth 'points'. Return the score. If full points are not earned, get feedback on the problem. """ credit = -1 while credit > points or credit < 0: try: credit = int(input("\nScore out of {}: ".format(points))) except: credit = -1 if credit != points: # Add comments (optionally), comments = raw_input("Comments: ") if len(comments) > 0: self.feedback += "\n{}".format(comments) # Or add a predetermined error message. elif message is not None: self.feedback += "\n{}".format(message) return credit # Problems ---------------------------------------------------------------- @_timeout(5) def problem2(self, s): """Test sphere_volume(). 5 Points.""" if s.sphere_volume(1) is None: raise NotImplementedError("sphere_volume() returned nothing") points = 2*self._eqTest(sphere_volume(5), s.sphere_volume(5), "sphere_volume(5) failed") points += 3*self._eqTest(sphere_volume(3.14), s.sphere_volume(3.14), "sphere_volume(3.14) failed") return points @_timeout(5) def problem3(self, s): """Test first_half() and backward(). 10 points.""" if s.first_half("abcde") is None: raise NotImplementedError("first_half() returned nothing") if s.backward("abcde") is None: raise NotImplementedError("backward() returned nothing") points = 2*self._eqTest(first_half("abcde"), s.first_half("abcde"), "first_half('abcde') failed") points += 3*self._eqTest(first_half("TK421"), s.first_half("TK421"), "first_half('TK421') failed") points += 2*self._eqTest(backward("abcde"), s.backward("abcde"), "backward('abcde') failed") points += 3*self._eqTest(backward("TK421"), s.backward("TK421"), "backward('TK421') failed") return points @_timeout(5) def problem4(self, s): """Test list_ops(). 5 points.""" if s.list_ops() is None: raise NotImplementedError("list_ops() returned nothing") return 5*self._eqTest(list_ops(), s.list_ops(), "list_ops() failed") @_timeout(5) def problem5(self, s): """Test pig_latin(). 5 points.""" if s.pig_latin("piglatin") is None: raise NotImplementedError("pig_latin() returned nothing") points = 2*self._eqTest( pig_latin("college"), s.pig_latin("college"), "pig_latin('college') failed") points += 3*self._eqTest( pig_latin("university"), s.pig_latin("university"), "pig_latin('university') failed") return points @_timeout(10) def problem6(self, s): """Test palindrome(). 5 points.""" if s.palindrome() is None: raise NotImplementedError("palindrome() returned nothing") correct, student = palindrome(), s.palindrome() if correct > student: self.feedback += "\npalindrome() failed: {} is too low".format( student) elif correct < student: self.feedback += "\npalindrome() failed: {} is too high".format( student) return 10 if correct == student else 0 @_timeout(5) def problem7(self, s): """Test alt_harmonic(). 10 points.""" if s.alt_harmonic(10) is None: raise NotImplementedError("alt_harmonic() returned nothing") points = 2*self._eqTest(alt_harmonic(100), s.alt_harmonic(100), "alt_harmonic(100) failed") points += 3*self._eqTest(alt_harmonic(5000), s.alt_harmonic(5000), "alt_harmonic(5000) failed") return points if __name__ == '__main__': import solutions test(solutions) ``` #### File: Introduction/StandardLibrary/box.py ```python from itertools import combinations def isvalid(roll, remaining): """Check to see whether or not a roll is valid. That is, check if there exists a combination of the entries of 'remaining' that sum up to 'roll'. Parameters: roll (int): The value of a dice roll, between 2 and 12 (inclusive). remaining (list): The list of the numbers that still need to be removed before the box can be shut. Returns: True if the roll is valid. False if the roll is invalid. """ if roll not in range(2, 13): return False for i in xrange(1, len(remaining)+1): if any([sum(combo) == roll for combo in combinations(remaining, i)]): return True return False def parse_input(player_input, remaining): """Convert a string of numbers into a list of unique integers, if possible. Then check that each of those integers is an entry in the other list. Parameters: player_input (str): A string of integers, separated by spaces. The player's choices for which numbers to remove. remaining (list): The list of the numbers that still need to be removed before the box can be shut. Returns: A list of the integers if the input was valid. An empty list if the input was invalid. """ try: choices = [int(i) for i in player_input.split()] if len(set(choices)) != len(choices): raise ValueError if any([number not in remaining for number in choices]): raise ValueError return choices except ValueError: return [] ``` #### File: Introduction/StandardLibrary/solutions.py ```python def add(x,y): return x + y def mult(x,y): return x * y def sqrt(x): return x**.5 # or 'from math import sqrt' at the top. # solutions.py ================================================================ import sys from random import randint from box import isvalid, parse_input # Problem 1: Implement this function. def prob1(l): """Accept a list 'l' of numbers as input and return a list with the minimum, maximum, and average of the original list (in that order). """ return [min(l), max(l), float(sum(l))/len(l)] # Problem 2: Implement this function. def prob2(): """Programmatically determine which Python objects are mutable and which are immutable. Test numbers, strings, lists, tuples, and dictionaries. Print your results to the terminal. """ # numbers: num+= 1 num1 = 0 num2 = num1 num1 += 1 print("Numbers:\t"), if num1 == num2: print("Mutable") else: print("Immutable") # strings: str1 += 'a' str1 = "a" str2 = str1 str1 += "a" print("Strings:\t"), if str1 == str2: print("Mutable") else: print("Immutable") # lists: list1.append(1) list1 = [4,3,2] list2 = list1 list1.append(1) print("Lists:\t\t"), if list1 == list2: print("Mutable") else: print("Immutable") # tuples: tup1 += (1,) tup1 = (4,3,2) tup2 = tup1 tup1 += (1,) print("Tuples:\t\t"), if tup1 == tup2: print("Mutable") else: print("Immutable") # dictionaries: dic1[1] = 'a' dic1 = dict() dic1[1] = 'b' dic2 = dic1 dic1[1] = 'a' print("Dictionaries:\t"), if dic1 == dic2: print("Mutable") else: print("Immutable") # Problem 3: Write a 'calculator' module and use it to implement this function. def prob3(a,b): """Calculate and return the length of the hypotenuse of a right triangle. Do not use any methods other than those that are imported from your 'calculator' module. Parameters: a : the length one of the sides of the triangle. b : the length the other non-hypotenuse side of the triangle. Returns: The length of the triangle's hypotenuse. """ # c = calculator # or "import calculator as c" at the top # return c.sqrt(c.add(c.mult(a,a),c.mult(b,b))) # Or, a slightly longer way: a2 = mult(a,a) b2 = mult(b,b) a2plusb2 = add(a2, b2) return sqrt(a2plusb2) # Problem 4: Implement shut the box. def shut_the_box(): """Play a single game of shut the box.""" # Get the player's name. if len(sys.argv) != 2: player = raw_input("Player name: ") else: player = sys.argv[1] # Initialize the box. numbers = range(1,10) # Take a turn until either the player wins or gets a game over. while len(numbers) > 0: if sum(numbers) <= 6: # Roll a single die. roll = randint(1,6) else: # Roll two dice. roll = randint(1,6) + randint(1,6) # Print the game information. print "\nNumbers left:", numbers print "Roll:", roll if not isvalid(roll, numbers): print "Game over!" break # Choose a valid integer or integers to eliminate. choices = [] while len(choices) == 0: # Parse the player's input. choices = parse_input(raw_input("Numbers to eliminate: "), numbers) # Make sure the player's choices actually sum up to the roll. if sum(choices) == roll: # Remove the player's choices from the remaining numbers. for number in choices: numbers.remove(number) # Report invalid input and go back to the top of the inner loop. else: print "Invalid input" choices = [] # Report the player's final score. score = sum(numbers) print("\nScore for player " + player + ": " + str(score) + " points") # or print("\nScore for player {}: {} points".format(player, score)) if score == 0: print("Congratulations!! You shut the box!") print("") if __name__ == "__main__": shut_the_box() ``` #### File: Orphans/CompressedSensing/camera.py ```python import numpy as np class Camera(object): def __init__(self, faces, verts, C): Fs = self._buildfaces(faces, verts) l = len(Fs) self.F = np.ones((l, 4, 3)) self.F[:, :-1, :] = Fs self.C = C self.b = None self.M = None def _buildfaces(self, facetM, verM): x = np.zeros(3) y = np.zeros(3) z = np.zeros(3) l = len(facetM) F = np.empty((l, 3, 3)) for n in xrange(l): x[0] = verM[facetM[n, 0]-1, 0] y[0] = verM[facetM[n, 0]-1, 1] z[0] = verM[facetM[n, 0]-1, 2] x[1] = verM[facetM[n, 1]-1, 0] y[1] = verM[facetM[n, 1]-1, 1] z[1] = verM[facetM[n, 1]-1, 2] x[2] = verM[facetM[n, 2]-1, 0] y[2] = verM[facetM[n, 2]-1, 1] z[2] = verM[facetM[n, 2]-1, 2] verts = np.array([x, y, z]) F[n] = verts return F def _Transform(self, theta, psi, r=3): c = np.array([r*np.sin(psi)*np.cos(theta), r*np.sin(psi)*np.sin(theta), r*np.cos(psi)]) cnorm = np.linalg.norm(c) t = np.arccos(-c[2]/cnorm) wstar = np.array([c[1]/cnorm, -c[0]/cnorm, 0]) w = wstar/np.linalg.norm(wstar) what = np.array([[0, -w[2], w[1]], [w[2], 0, -w[0]], [-w[1], w[0], 0]]) R = np.eye(3)+np.sin(t)*what+(1-np.cos(t))*np.linalg.matrix_power(what, 2) P = np.zeros((4, 4)) P[:3, :3] = R.T P[:3, -1] = np.dot(-R.T ,c) P[-1, -1] = 1 return P, c def _SPC(self, theta, psi, r=3): P, c = self._Transform(theta, psi, r) def Pc(y,f=.5): return np.array([y[0]/(f*y[2]), y[1]/(f*y[2])]) l = len(self.F) A = np.empty(l) for i in xrange(l): v1 = Pc(np.dot(P, self.F[i, :, 1]))-Pc(np.dot(P, self.F[i, :, 0])) v2 = Pc(np.dot(P, self.F[i, :, 2]))-Pc(np.dot(P, self.F[i, :, 0])) A[i] = .5*np.abs(v1[0]*v2[1]-v1[1]*v2[0]) centers = np.mean(self.F[:, :-1, :], axis=-1) e = np.sqrt(np.sum((c-centers)**2, axis=1))<np.sqrt(10.) M = e*A b = np.empty(3) b = np.dot(M, self.C) return M, b def add_pic(self, theta, psi, r=3): M, b = self._SPC(theta, psi, r) if self.b is None: self.b = np.array([b], dtype=np.float) self.M = np.array([M], dtype=np.float) else: self.b = np.concatenate((self.b, np.array([b])), axis=0) self.M = np.concatenate((self.M, np.array([M])), axis=0) def add_lots_pic(self, n, r=3): self.b = np.empty((n, 3)) self.M = np.empty((n, 1012)) for i in xrange(n): theta = np.random.rand()*np.pi psi = np.random.rand()*2*np.pi M, b = self._SPC(theta, psi, r) self.b[i] = b self.M[i] = M def returnData(self): return self.M, self.b def clear(self): self.b = None self.M = None ``` #### File: Orphans/GUI/spec.py ```python import functools import numpy as np '''Problem 1 - Create a GUI with a button, text box, and label that will display the contents of the text box in the label once the button is pressed.''' '''Problem 2 - Complete the MatrixCalculator by 1. Adding a QComboBox to the GUI. 2. Add options to the QComboBox to calculate the determinant and inverse. 3. Implement the determinant and inverse function. Hint: Use NumPy. 4. Display the proper output in the textbox. First read through the entire class in order to see examples of interesting widgets. Then complete the problem at the specified places.''' class matrix_calculator(QtGui.QMainWindow): def __init__(self): super(matrix_calculator, self).__init__() self._initUI() def _initUI(self): # Sets the number of dimensions for the first matrix self.rows = 3 self.columns = 3 # For second matrix if multiplication self.rows2 = 3 self.columns2 = 3 self.color = None # Creates menu menubar = self.menuBar() # Import Matrix self.importMatrix = QtGui.QAction('Import Matrix', self) # Import Second Matrix # We will add importMatrix2 later only if the calculation is set to multiplication self.importMatrix2 = QtGui.QAction('Import Matrix2', self) # Add menus to menubar self.fileMenu = menubar.addMenu('&File') self.importMenu = self.fileMenu.addMenu('Import') self.importMenu.addAction(self.importMatrix) # Creates the table that will be used for the inputted matrix self.matrix = QtGui.QTableWidget() self.matrix.setRowCount(self.rows) self.matrix.setColumnCount(self.columns) for i in xrange(self.columns): # makes the columns a little skinnier self.matrix.setColumnWidth(i, 60) # Creates a second matrix table for multiplication self.matrix2 = QtGui.QTableWidget() self.matrix2.setRowCount(self.rows) self.matrix2.setColumnCount(self.columns) for i in xrange(self.columns): # makes the columns a little skinnier self.matrix2.setColumnWidth(i, 60) # Hide matrix2 until needed self.matrix2.setVisible(False) # Creates a push button to calculate self.calculateButton = QtGui.QPushButton("Calculate") # Creates a smashing awesome radio button self.radio = QtGui.QRadioButton("Fill empty cells with 0") # Creates the output textbox self.output = QtGui.QPlainTextEdit("Output here") # Creates spinboxes for matrix dimensions self.dimRows = QtGui.QSpinBox() self.dimCols = QtGui.QSpinBox() self.dimRows.setRange(2,10) self.dimCols.setRange(2,10) self.dimRows.setValue(3) self.dimCols.setValue(3) labelRows = QtGui.QLabel("Number of Rows") labelCols = QtGui.QLabel("Number of Columns") self.dimRows2 = QtGui.QSpinBox() self.dimCols2 = QtGui.QSpinBox() self.dimRows2.setRange(2,10) self.dimCols2.setRange(2,10) self.dimRows2.setValue(3) self.dimCols2.setValue(3) self.dimRows2.setVisible(False) self.dimCols2.setVisible(False) # Creates grids for side-by-side widgets dispgrid = QtGui.QGridLayout() dispgrid.addWidget(self.matrix, 0, 0) dispgrid.addWidget(self.matrix2, 0, 1) dispgrid2 = QtGui.QGridLayout() dispgrid2.addWidget(self.dimRows, 0, 0) dispgrid2.addWidget(labelRows, 0, 1) dispgrid2.addWidget(self.dimRows2, 0, 2) dispgrid2.addWidget(self.dimCols, 1, 0) dispgrid2.addWidget(labelCols, 1, 1) dispgrid2.addWidget(self.dimCols2, 1, 2) dispgrid2.addWidget(self.radio, 2, 0) # Creates layout, adding the grids and remaining widgets layout = QtGui.QVBoxLayout() layout.addLayout(dispgrid) layout.addLayout(dispgrid2) layout.addWidget(self.calculateButton) layout.addWidget(self.output) # Adds the functionality of the buttons self.calculateButton.clicked.connect(self.clickCalculate) self.radio.clicked.connect(self.clickRadio) self.dimRows.valueChanged.connect(self.updateRows) self.dimCols.valueChanged.connect(self.updateCols) self.dimRows2.valueChanged.connect(self.updateRows2) self.dimCols2.valueChanged.connect(self.updateCols2) self.importMatrix.triggered.connect(functools.partial(self.fileDialog, 1)) self.importMatrix2.triggered.connect(functools.partial(self.fileDialog, 2)) # Note: functools.partial is simply a function that allows you to # pass arguments through this connect function. '''Problem 2.1 - Add a drop down menu here by adding a QComboBox. Call it self.matrixFunction. Add the QComboBox to layout. ''' '''Problem 2.2 - Add options to the QComboBox to calculate the Determinant, Inverse, and Multiplication.''' # Sets central layout window = QtGui.QWidget() window.setLayout(layout) self.setCentralWidget(window) # Sets the location of the window on the screen # The first two numbers are the location of the top left corner # The last two numbers are the size of the window self.setGeometry(50, 50, 500, 600) self.setWindowTitle("Deluxe Matrix Calculator") self.show() def clickCalculate(self): #get matrix out of table Matrix = np.zeros((self.rows, self.columns)) for i in xrange(self.rows): for j in xrange(self.columns): try: Matrix[i, j] = self.matrix.item(i,j).text() except AttributeError: self.output.setPlainText("Attribute Error: please fill in all the boxes.") return except ValueError: self.output.setPlainText("Value Error: invalid character detected.") return; calculation = self.matrixFunction.currentText() result = "No result" '''Problem 2.3 and 2.4 - Implement the Determinant and Inverse portion of the function. And add the proper text to result then display the result in self.output. Hint: Use NumPy. The Multiplication portion has been done for you. ''' #Perform calculation if (calculation == "Determinant"): pass elif (calculation == "Inverse"): pass elif (calculation == "Multiplication"): # Get second matrix Matrix2 = np.zeros((self.rows2, self.columns2)) for i in xrange(self.rows2): for j in xrange(self.columns2): try: Matrix2[i, j] = self.matrix2.item(i,j).text() except AttributeError: self.output.setPlainText("Attribute Error: Please fill in all the boxes.") return except ValueError: self.output.setPlainText("Value Error: Invalid character detected.") return try: result = str(Matrix.dot(Matrix2)) except ValueError: self.output.setPlainText("Value Error: Dimensions not aligned.") return def clickRadio(self): # There's gotta be a better way to do this for i in range(self.rows): for j in range(self.columns): # To find out if there is something in this slot, # attempt to get the item in this slot. # If an error is thrown, fill this slot with 0. try: a = self.matrix.item(i, j).text() except AttributeError: self.matrix.setItem(i, j, QtGui.QTableWidgetItem(str(0))) if (self.matrix2.isVisible()): for i in range(self.rows2): for j in range(self.columns2): try: a = self.matrix2.item(i, j).text() except AttributeError: self.matrix2.setItem(i, j, QtGui.QTableWidgetItem(str(0))) def changeDisplay(self): '''Depending on the selected calculation, show or hide various Widgets. ''' if (self.matrixFunction.currentText() == "Multiplication"): self.matrix2.setVisible(True) self.dimRows2.setVisible(True) self.dimCols2.setVisible(True) self.importMenu.addAction(self.importMatrix2) else: self.matrix2.setVisible(False) self.dimRows2.setVisible(False) self.dimCols2.setVisible(False) self.importMenu.removeAction(self.importMatrix2) def updateRows(self, n): '''Changes number of rows''' self.rows = n self.matrix.setRowCount(self.rows) def updateCols(self, n): '''Changes number of columns''' self.columns = n self.matrix.setColumnCount(self.columns) for i in xrange(self.columns): self.matrix.setColumnWidth(i, 60) #TODO: make it not resize columns that have been resized by user def updateRows2(self, n): '''Changes number of rows in matrix2''' self.rows2 = n self.matrix2.setRowCount(self.rows2) def updateCols2(self, n): '''Changes number of columns in matrix2''' self.columns2 = n self.matrix2.setColumnCount(self.columns2) for i in xrange(self.columns2): self.matrix2.setColumnWidth(i, 60) #TODO: make it not resize columns that have been resized by user def fileDialog(self, which): '''Dialog box for importing a matrix. Correct format for a matrix file: Number of rows, number of columns, all entries; separated by whitespace. If there are not enough numbers in the file, fill the remainder of the matrix with 0s. Excess numbers are ignored. ''' filename = QtGui.QFileDialog.getOpenFileName(self, 'Open file', '/home') try: f = open(filename).read().split() except: self.output.setPlainText("IO Error: bad file.") return if (which == 1): self.rows = int(f[0]) self.matrix.setRowCount(self.rows) self.columns = int(f[1]) self.matrix.setColumnCount(self.columns) # Iterate through the list f and set entries of matrix for i in xrange(self.rows): for j in xrange(self.columns): try: self.matrix.setItem(i, j, QtGui.QTableWidgetItem(str(f[i*self.columns + j + 2]))) except IndexError: # If the file did not have enough numbers in it, # fill the remaining entries with 0 f = np.zeros((self.rows * self.columns + 2)) self.matrix.setItem(i, j, QtGui.QTableWidgetItem(str(f[i*self.columns + j + 2]))) elif (which == 2): self.rows2 = int(f[0]) self.matrix2.setRowCount(self.rows) self.columns2 = int(f[1]) self.matrix2.setColumnCount(self.columns) # Iterate through the list f and set entries of matrix2 for i in xrange(self.rows2): for j in xrange(self.columns2): try: self.matrix2.setItem(i, j, QtGui.QTableWidgetItem(str(f[i*self.columns2 + j + 2]))) except IndexError: # If the file did not have enough numbers in it, # fill the remaining entries with 0 f = np.zeros((self.rows2 * self.columns2 + 2)) self.matrix2.setItem(i, j, QtGui.QTableWidgetItem(str(f[i*self.columns2 + j + 2]))) '''Problem 3 - Create your own GUI. You may make the GUI to display an old lab in an interesting way. Some suggestions are Numerical Derivatives, Image Segmentation, SVD, or Convolution. Or you may make your own GUI. Include at least 5 widgets.''' ``` #### File: Orphans/SparseGrid/SparseGridIntro.py ```python import pysg import numpy as np from matplotlib import pyplot as plt def plotGrid(dim,level): sg = pysg.sparseGrid(dim=dim,level=level) sg.generatePoints() points = sg.indices pts = len(points) xpts = np.empty(pts) if dim==1: for i in xrange(pts): pt = tuple(points[i]) xpts[i] = sg.gP[pt].pointPosition(pt)[0] plt.plot(xpts,np.ones_like(xpts),'*') elif dim==2: ypts = np.empty(pts) for i in xrange(pts): pt = tuple(points[i]) xpts[i], ypts[i] = sg.gP[pt].pointPosition(pt) plt.plot(xpts,ypts,'*') else: if dim > 3: print "Showing first three dimensions only" from mpl_toolkits.mplot3d import Axes3D fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ypts = np.empty(pts) zpts = np.empty(pts) for i in xrange(pts): pt = tuple(points[i]) xpts[i], ypts[i], zpts[i] = sg.gP[pt].pointPosition(pt)[:3] ax.scatter(xpts, ypts, zpts) #plt.show() def n_vol(length,dim,level): return length**dim/(2**(dim*(level-1))*(dim+1)) def example(): # There is an error here. the coefficient for loc [0.25,0.5] should be 0. def f(x): return x[0] dim = 2 level = 3 sg = pysg.sparseGrid(dim=dim,level=level) sg.setFunctionValues(f) sg.nodal2Hier() sg.setCoefficients() total = 0 for i in xrange(len(sg.indices)): total += sg.gP[tuple(sg.indices[i])].coeff total /= 2**((level-1)*dim)*(dim+1) print total ``` #### File: joshualy/numerical_computing/travis_post.py ```python from os.path import isfile from travis_common import raise_msg def all_present(fatal=True): try: assert isfile("Vol1.pdf"), "Vol1.pdf is missing" assert isfile("Vol2.pdf"), "Vol2.pdf is missing" assert isfile("Vol3.pdf"), "Vol3.pdf is missing" assert isfile("Vol4.pdf"), "Vol4.pdf is missing" assert isfile("ExtraLabs.pdf"), "ExtraLabs.pdf is missing" except AssertionError as e: raise_msg(e, fatal) if __name__ == "__main__": all_present(True) ``` #### File: joshualy/numerical_computing/travis_pre.py ```python from os import popen from travis_common import raise_msg # 200KB in bytes MAX_FILESIZE = 204800 def getOutput(cmd): return popen(cmd).read() def find_big_files(fatal=True): # Load the names of the files listed in the exceptions file. with open('travis_file_exceptions', 'rU') as ex: approved_files = {name for name in ex.read().split('\n') if name != ""} # Get the objects in the tree at the most recent commit. this_commit = getOutput("git rev-list HEAD").split()[0] tree = getOutput("git ls-tree -rlz {}".format(this_commit)).split("\0") # Check that the objects in the tree are not too big. violations = set() for obj in tree: try: data = obj.split() size, name = int(data[3]), data[4] if name not in approved_files and size > MAX_FILESIZE: violations.add((name, size)) except (IndexError, ValueError): continue if violations: files = "\n".join(sorted(["\t{:.<50}{:.>20} bytes".format(*v) for v in violations])) raise_msg("Large files present:\n{}\n".format(files), fatal=fatal) if __name__ == "__main__": find_big_files(True) ``` #### File: Vol1A/DataVisualization/plots.py ```python from __future__ import print_function import matplotlib matplotlib.rcParams = matplotlib.rc_params_from_file('../../matplotlibrc') # Decorator =================================================================== from matplotlib import colors, pyplot as plt from mpl_toolkits.mplot3d import Axes3D from functools import wraps from sys import stdout import os def _save(filename): """Decorator for saving, clearing, and closing figures automatically.""" try: name, extension = filename.split(".") except (ValueError, TypeError) as e: raise ValueError("Invalid file name '{}'".format(filename)) if extension not in {"pdf", "png"}: raise ValueError("Invalid file extension '{}'".format(extension)) if not os.path.isdir("figures"): os.mkdir("figures") def decorator(func): @wraps(func) def wrapper(*args, **kwargs): try: print("{:.<40}".format(filename), end='') stdout.flush() plt.clf() out = func(*args, **kwargs) plt.savefig("figures/"+filename, format=extension) print("done.") return out except Exception as e: print("\n\t", e, sep='') finally: plt.clf() plt.close('all') return wrapper return decorator # Plots ======================================================================= import numpy as np # Problem 1 (Anscombe's Quartet) ---------------------------------------------- def anscombe_data(save=False): data = np.array([[10.0, 8.04, 10.0, 9.14, 10.0, 7.46, 8.0, 6.58], [ 8.0, 6.95, 8.0, 8.14, 8.0, 6.77, 8.0, 5.76], [13.0, 7.58, 13.0, 8.74, 13.0, 12.74, 8.0, 7.71], [ 9.0, 8.81, 9.0, 8.77, 9.0, 7.11, 8.0, 8.84], [11.0, 8.33, 11.0, 9.26, 11.0, 7.81, 8.0, 8.47], [14.0, 9.96, 14.0, 8.10, 14.0, 8.84, 8.0, 7.04], [ 6.0, 7.24, 6.0, 6.13, 6.0, 6.08, 8.0, 5.25], [ 4.0, 4.26, 4.0, 3.10, 4.0, 5.39, 19.0, 12.50], [12.0, 10.84, 12.0, 9.13, 12.0, 8.15, 8.0, 5.56], [ 7.0, 4.82, 7.0, 7.26, 7.0, 6.42, 8.0, 7.91], [ 5.0, 5.68, 5.0, 4.74, 5.0, 5.73, 8.0, 6.89]]) if save: np.save("anscombe.npy", data) return data # Problem 2 (Line Plots / Small Multiples) ------------------------------------ @_save("chebyshev_bad.pdf") def line_bad(): x = np.linspace(-1, 1, 200) for n in range(9): plt.plot(x, np.polynomial.Chebyshev.basis(n)(x), lw=1, label= "n = {}".format(n)) plt.axis([-1.1, 1.1, -1.1, 1.1]) plt.legend() @_save("chebyshev_good.pdf") def line_good(): x = np.linspace(-1, 1, 200) for n in range(9): plt.subplot(3,3,n+1) plt.plot(x, np.polynomial.Chebyshev.basis(n)(x)) plt.axis([-1.1, 1.1, -1.1, 1.1]) # Turn off extra tick marks and axis labels. plt.tick_params(which="both", top="off", right="off") if n < 6: plt.tick_params(labelbottom="off") if n % 3: plt.tick_params(labelleft="off") plt.title("n = {}".format(n)) def prob2(): line_bad() line_good() # Problem 3 (Scatter Plots) --------------------------------------------------- @_save("scatter_1.pdf") def scatter_1(): length, width, height = np.random.randint(1, 20, (3,50)) plt.scatter(length, width, s=100) plt.grid() plt.xlabel("Length (inches)", fontsize=18, color="white") plt.ylabel("Width (inches)", fontsize=18) plt.tick_params(labelbottom="off") return length, width, height @_save("scatter_2.pdf") def scatter_2(length, width, height): plt.scatter(length, width, c=height, s=100) plt.grid() plt.xlabel("Length (inches)", fontsize=18, color="white") plt.ylabel("Width (inches)", fontsize=18, color="white") plt.tick_params(labelbottom="off", labelleft="off") cbar = plt.colorbar() cbar.set_label("Height (inches)", fontsize=18) @_save("scatter_3.pdf") def scatter_3(length, width, height): plt.scatter(length, width, s=length*width*height/2., alpha=.7) plt.grid() plt.xlabel("Length (inches)", fontsize=18) plt.ylabel("Width (inches)", fontsize=18) @_save("scatter_4.pdf") def scatter_4(length, width, height): plt.scatter(length, width, c=height, s=length*width*height/2., alpha=.7) plt.grid() plt.xlabel("Length (inches)", fontsize=18) plt.ylabel("Width (inches)", fontsize=18, color="white") plt.tick_params(labelleft="off") cbar = plt.colorbar() cbar.set_label("Height (inches)", fontsize=18) def prob3(): l,w,h = scatter_1() scatter_2(l,w,h) scatter_3(l,w,h) scatter_4(l,w,h) # Problem 4 (Histograms) ------------------------------------------------------ @_save("histogram_1_bad.pdf") def histogram_1_bad(N): data = np.random.normal(size=N) plt.plot(data) return data @_save("histogram_1_good.pdf") def histogram_1_good(data): plt.hist(data, bins=30) @_save("histogram_2.pdf") def histogram_2(N): data = np.random.beta(a=5, b=2, size=N) plt.hist(data, bins=30) return data @_save("histogram_3.pdf") def histogram_3(data): plt.hist(data, bins=30, lw=0, histtype="stepfilled") plt.tick_params(axis="y", labelcolor='white') plt.tick_params(left="off", top="off", right="off") @_save("histogram_4.pdf") def histogram_4(data): freq, bin_edges = np.histogram(data, bins=30) bin_centers = (bin_edges[:-1] + bin_edges[1:])/2. plt.plot(bin_centers, freq, 'k-', lw=4) plt.tick_params(axis="y", labelcolor="white") plt.tick_params(left="off", top="off", right="off") # plt.tick_params(left="off", top="off", right="off", labelleft="off") @_save("earthquake.pdf") def earthquake(): years, magnitudes, longitude, latitude = np.load("earthquakes.npy").T plt.plot(years, magnitudes, '.') plt.xlabel("Year") plt.ylabel("Magnitude") def prob4(): histogram_1_good(histogram_1_bad(1000)) data = histogram_2(10000) histogram_3(data) histogram_4(data) earthquake() # Problem 5 ------------------------------------------------------------------- @_save("heatmap_1.png") def heatmap_1(N): x = np.linspace(-1.5, 1.5, N) X, Y = np.meshgrid(x, x.copy()) Z = Y**2 - X**3 + X**2 plt.pcolormesh(X, Y, Z, cmap="viridis") plt.colorbar() return X, Y, Z @_save("heatmap_2.png") def heatmap_2(X, Y, Z): plt.contour(X, Y, Z, [-1, -.25, 0, .25, 1, 4], colors="white") plt.pcolormesh(X, Y, Z, cmap="viridis") plt.colorbar() @_save("contour_1.pdf") def contour_1(X, Y, Z): plt.contour(X, Y, Z, 6, cmap="viridis") plt.colorbar() @_save("contour_2.pdf") def contour_2(X, Y, Z): plt.contourf(X, Y, Z, 12, cmap="viridis") plt.colorbar() @_save("heatmap_3.png") def heatmap_3(N): x = np.linspace(-6, 6, N) X, Y = np.meshgrid(x, x.copy()) Z = np.abs(Y**2 - X**3 + X**2) plt.pcolormesh(X, Y, Z, cmap="plasma") plt.colorbar() return X, Y, Z @_save("contour_3.pdf") def contour_3(X, Y, Z): plt.contourf(X, Y, Z, 6, cmap="plasma", norm=colors.LogNorm()) plt.colorbar() def prob5(): x,y,z = heatmap_1(200) heatmap_2(x,y,z) contour_1(x,y,z) contour_2(x,y,z) x,y,z = heatmap_3(200) contour_3(x,y,z) # Problem 6 ------------------------------------------------------------------- @_save("bar_1.pdf") def bar_1(): labels = ["Lobster Thermador", "Baked Beans", "Crispy Bacon", "Smoked Sausage", "Hannibal Ham", "Eggs", "Spam"] values = [10, 11, 18, 19, 20, 21, 22] positions = np.arange(len(labels)) plt.bar(positions, values, align="center") plt.xticks(positions, labels) return labels, values, positions @_save("bar_2.pdf") def bar_2(labels, values, positions): plt.barh(positions, values, align="center") plt.yticks(positions, labels) plt.gcf().subplots_adjust(left=0.2) @_save("pie.pdf") def pie(labels, values, positions): explode = np.zeros(len(values)) explode[np.random.randint(0,explode.size)] = .2 plt.pie(values, explode, labels, shadow=True, startangle=np.random.randint(0,360,1)) plt.gca().set_aspect("equal") @_save("dishonest_1.pdf") def dishonest_1(N): x = np.linspace(5, 10, N) + np.random.normal(size=N)/3. y = .5*x + 4 + np.random.normal(size=N)/2. plt.plot(x, y, 'o', ms=10) return x, y @_save("dishonest_2.pdf") def dishonest_2(x, y): plt.plot(x, y, 'o', ms=10) plt.xlim(-5,20) @_save("dishonest_3.pdf") def dishonest_3(x, y): plt.semilogy(x, y, 'o', ms=10) @_save("honest.pdf") def honest(x, y): plt.plot(x, y, 'o', ms=10) plt.xlim([0, x.max()+.2]) plt.ylim([0, x.max()+.2]) def country_data(save=True): data = np.array([ [ 8.742, 374.056, 179.2, 167.6], [ 10.985, 33.197, 160.0, 142.2], [ 206.553, 1774.725, 173.1, 158.8], [1378.36, 10866.444, 167 , 158.6], [ 5.495, 229.810, 178.9, 165.3], [ 81.771, 3355.772, 178 , 165 ], [ 9.823, 120.687, 176 , 164 ], [1330.09, 2073.543, 164.7, 161.2], [ 127.00, 4123.258, 172.5, 158 ], [ 24.214, 17.396, 165.6, 154.9], [ 0.622, 4.588, 183.2, 168.4], [ 5.237, 388.315, 182.4, 168 ], [ 31.489, 192.084, 164 , 151 ], [ 50.617, 1377.873, 170.8, 157.4], [ 20.966, 82.316, 163.6, 151.4], [ 8.342, 664.738, 175.4, 164 ], [ 78.742, 718.221, 174 , 158.9], [ 65.110, 2848.755, 177.8, 164.5], [324.311, 17946.996, 176.1, 162.1], [ 92.700, 193.599, 165.7, 155.2] ]) if save: np.save("countries.npy", data) return data def prob6(): l,v,p = bar_1() bar_2(l,v,p) pie(l,v,p) x,y = dishonest_1(20) dishonest_2(x,y) dishonest_3(x,y) honest(x,y) # ============================================================================= def save_all(): prob2() prob3() prob4() prob5() prob6() if __name__ == '__main__': save_all() ``` #### File: Vol1A/LinearSystems/testDriver.py ```python import signal from functools import wraps from matplotlib import pyplot as plt def _autoclose(func): """Decorator for closing figures automatically.""" @wraps(func) def wrapper(*args, **kwargs): try: plt.ion() return func(*args, **kwargs) finally: plt.close('all') plt.ioff() return wrapper def _timeout(seconds): """Decorator for preventing a function from running for too long. Inputs: seconds (int): The number of seconds allowed. Notes: This decorator uses signal.SIGALRM, which is only available on Unix. """ assert isinstance(seconds, int), "@timeout(sec) requires an int" class TimeoutError(Exception): pass def _handler(signum, frame): """Handle the alarm by raising a custom exception.""" message = "Timeout after {} seconds".format(seconds) print(message) raise TimeoutError(message) def decorator(func): @wraps(func) def wrapper(*args, **kwargs): signal.signal(signal.SIGALRM, _handler) signal.alarm(seconds) # Set the alarm. try: return func(*args, **kwargs) finally: signal.alarm(0) # Turn the alarm off. return wrapper return decorator # Test Driver ================================================================= import numpy as np from scipy import sparse from scipy.linalg import lu_factor, solve from inspect import getsourcelines from solutions import ref, lu, prob5 np.set_printoptions(precision=3, suppress=True) def test(student_module): """Grade a student's entire solutions file. 5 points for problem 1 10 points for problem 2 10 points for problem 3 5 points for problem 4 5 points for problem 5 5 points for problem 6 Inputs: student_module: the imported module for the student's file. Returns: score (int): the student's score, out of 40. feedback (str): a printout of test results for the student. """ tester = _testDriver() tester.test_all(student_module) return tester.score, tester.feedback class _testDriver(object): """Class for testing a student's work. Attributes: Score (int) Feedback (str) """ # Constructor ------------------------------------------------------------- def __init__(self): """Initialize the feedback attribute.""" self.feedback = "" # Main routine ------------------------------------------------------------ def test_all(self, student_module, total=40): """Grade the provided module on each problem and compile feedback.""" # Reset feedback and score. self.feedback = "" self.score = 0 def test_one(problem, label, value): """Test a single problem, checking for errors.""" try: self.feedback += "\n\n{} ({} points):".format(label, value) points = problem(student_module) self.score += points self.feedback += "\nScore += {}".format(points) except BaseException as e: self.feedback += "\n{}: {}".format(self._errType(e), e) # Grade each problem. test_one(self.problem1, "Problem 1", 5) # Problem 1: 5 points. test_one(self.problem2, "Problem 2", 10) # Problem 2: 10 points. test_one(self.problem3, "Problem 3", 10) # Problem 3: 10 points. test_one(self.problem4, "Problem 4", 5) # Problem 4: 5 points. test_one(self.problem5, "Problem 5", 5) # Problem 5: 5 points. test_one(self.problem6, "Problem 6", 5) # Problem 6: 5 points. # Report final score. percentage = (100. * self.score) / total self.feedback += "\n\nTotal score: {}/{} = {}%".format( self.score, total, round(percentage, 2)) if percentage >= 98: self.feedback += "\n\nExcellent!" elif percentage >= 90: self.feedback += "\n\nGreat job!" # Add comments (optionally). print(self.feedback) comments = str(raw_input("Comments: ")) if len(comments) > 0: self.feedback += '\n\n\nComments:\n\t{}'.format(comments) # Helper Functions -------------------------------------------------------- @staticmethod def _errType(error): """Get just the name of the exception 'error' in string format.""" return str(type(error).__name__) def _checkCode(self, func, keyword): """Check a function's source code for a key word. If the word is found, print the code to the screen and prompt the grader to check the code. Use this function to detect cheating. Returns a score out of 10. """ code = getsourcelines(func)[0][len(func.__doc__.splitlines())+1 :] if any([keyword in line for line in code]): print("\nStudent {}() code:\n{}\nCheating? [OK=10, Bad=0]".format( func.__name__, "".join(code))) return self._grade(10) return 10 def _eqTest(self, correct, student, message): """Test to see if 'correct' and 'student' are equal. Report the given 'message' if they are not. """ if np.allclose(correct, student): return 1 else: self.feedback += "\n{}".format(message) self.feedback += "\n\tCorrect response:\n{}".format(correct) self.feedback += "\n\tStudent response:\n{}".format(student) return 0 def _grade(self, points, message=None): """Manually grade a problem worth 'points'. Return the score. If full points are not earned, get feedback on the problem. """ credit = -1 while credit > points or credit < 0: try: credit = int(input("\nScore out of {}: ".format(points))) except: credit = -1 if credit != points: # Add comments (optionally), comments = raw_input("Comments: ") if len(comments) > 0: self.feedback += "\n{}".format(comments) # Or add a predetermined error message. elif message is not None: self.feedback += "\n{}".format(message) return credit @staticmethod def _luTestCase(n): """Generate an nxn matrix that does not require pivoting with the Gaussian elimination or the LU Decomposition. """ A = np.random.randint(0,10,(n,n)) _, piv = lu_factor(A) P = np.eye(n) for i,j in enumerate(piv): P[i], P[j] = P[j].copy(), P[i].copy() return P.dot(A).astype(np.float) # Problems ---------------------------------------------------------------- def problem1(self, s): """Test ref(). 5 points.""" @_timeout(2) def _test(n, p): """Do an nxn test case worth p points.""" A = self._luTestCase(n) return p * self._eqTest(ref(A), s.ref(A), "ref() failed.") points = _test(3, 1) + _test(4, 2) + _test(5, 2) return int(points * self._checkCode(s.ref, "lu_factor") / 10.) def problem2(self, s): """Test lu(). 10 points.""" @_timeout(2) def _test(n): """Do an nxn test case worth 5 points.""" A = self._luTestCase(n) L1, U1 = lu(A) if not np.allclose(L1.dot(U1), A): return _test(n) stu = s.lu(A.copy()) try: L2, U2 = stu except(TypeError, ValueError): raise ValueError("lu() failed to return two arrays") pts = 5 if not all(np.allclose(*x) for x in [(np.tril(L2), L2), (np.triu(U2), U2), (L1, L2), (U1, U2), (A, L2.dot(U2))]): pts = 2 self.feedback += "\n\n{}\nA =\n{}".format('- '*20, A) if not np.allclose(np.tril(L2), L2): self.feedback += "\nL not lower triangular:\n{}".format(L2) pts -= 1 if not np.allclose(np.triu(U2), U2): self.feedback += "\nU not upper triangular:\n{}".format(U2) pts -= 1 pts += self._eqTest(L1, L2, "lu() failed (L incorrect)") pts += self._eqTest(U1, U2, "lu() failed (U incorrect)") pts += self._eqTest(A, L2.dot(U2), "lu() failed (A != LU)") return pts points = _test(4) + _test(6) return int(points * self._checkCode(s.lu, "lu_factor") / 10.) def problem3(self, s): """Test solve(). 10 points.""" @_timeout(2) def _test(n, p): """Do an nxn test case worth p points.""" A = self._luTestCase(n) b = np.random.randint(0, 10, n).astype(np.float) stu = s.solve(A, b) if not np.allclose(b, A.dot(stu)): self.feedback += "\n\n{}\nA =\n{}\nb =\n{}".format('- '*20,A,b) return p * self._eqTest(solve(A,b), stu, "solve() failed") else: return p points = _test(3, 3) + _test(4, 3) + _test(5, 4) return int(points * self._checkCode(s.solve, "solve(") / 10.) @_autoclose def problem4(self, s): """Test prob4(). 5 points.""" print("Running prob4()...(60 second time limit)") _timeout(60)(s.prob4)() print("""\nSpecifications: 1. Plots system size n versus execution times. (1 point) 2. Four lines, clearly marked: (2 points) - la.inv() (slowest) - la.solve() (in the middle) - la.lu_factor() and la.lu_solve() (in the middle) - la.lu_solve() alone (fastest) 3. The difference between each line is apparent. (2 points) (Plot could be loglog or linlin as long as it is clear) (Title and axis labels unnecessary)""") return self._grade(5, "prob4() does not match specifications") @_timeout(3) def problem5(self, s): """Test prob5(). 5 points.""" def _test(n, p): """Do an nxn test case with p points.""" stu = prob5(n) if not sparse.issparse(stu): self.feedback += "\n\tFailed to return a scipy.sparse matrix" return 0 else: if type(stu) is not sparse.dia.dia_matrix: self.feedback += "\n\tReturn type should be sparse " self.feedback += "diagonal matrix" stu = sparse.dia_matrix(stu) sol = prob5(n) if not self._eqTest(stu.offsets,sol.offsets,"prob5({}) failed " "(comparing indices of nonzero diagonals".format(n)): p -= 1 return p*self._eqTest(stu.data, sol.data, "prob5({}) failed " "(comparing nonzero diagonals)".format(n)) return _test(100, 2) + _test(100000, 3) @_autoclose def problem6(self, s): """Test prob6(). 5 points.""" print("\nRunning prob5()...(60 second time limit)") _timeout(60)(s.prob6)() print("""\nSpecifications: 1. Plots system size n versus execution times. (1 point) 2. Two lines, clearly marked: (2 points) - scipy.sparse.linalg.spsolve() (faster) - scipy.linalg.solve() (slower) 3. The difference between each line is apparent. (2 points) (Plot could be loglog or linlin as long as it is clear) (Title and axis labels unnecessary)""") return self._grade(5, "prob6() does not match specifications") # Validation ================================================================== if __name__ == '__main__': """Validate the test driver by testing the solutions file.""" import solutions test(solutions) ``` #### File: Vol1A/QR1-Decomposition/solutions.py ```python import numpy as np from scipy import linalg as la # Problem 1 def qr_gram_schmidt(A): """Compute the reduced QR decomposition of A via Modified Gram-Schmidt. Inputs: A ((m,n) ndarray): A matrix of rank n. Returns: Q ((m,n) ndarray): An orthonormal matrix. R ((n,n) ndarray): An upper triangular matrix. """ m,n = A.shape Q = np.copy(A).astype(np.float) R = np.zeros((n,n)) for i in range(n): R[i,i] = la.norm(Q[:,i]) Q[:,i] /= R[i,i] for j in range(i+1,n): R[i,j] = np.dot(Q[:,j].T, Q[:,i]) Q[:,j] -= R[i,j]*Q[:,i] return Q, R # Problem 2 def abs_det(A): """Use the QR decomposition to efficiently compute the absolute value of the determinant of A. Inputs: A ((n,n) ndarray): A square matrix. Returns: (float) the absolute value of the detetminant of A. """ Q,R = la.qr(A) # or Q, R = qr_gram_schmidt(A) return abs(R.diagonal().prod()) # Problem 3 def solve(A, b): """Use the QR decomposition to efficiently solve the system Ax = b. Inputs: A ((n,n) ndarray): An invertible matrix. b ((n, ) ndarray): A vector of length n. Returns: x ((n, ) ndarray): The solution to the system Ax = b. """ m,n = A.shape Q,R = la.qr(A) # QRx = b -> Rx = (Q^T)b. y = np.dot(Q.T, b) # Use back substitution to solve Rx = y. x = np.zeros(n) for k in reversed(range(n)): x[k] = (y[k] - np.dot(R[k,k:], x[k:])) / R[k,k] return x # Use this since np.sign(0) -> 0. sign = lambda x: 1 if x >= 0 else -1 # Problem 4 def qr_householder(A): """Compute the full QR decomposition of A via Householder reflections. Inputs: A ((m,n) ndarray): A matrix of rank n. Returns: Q ((m,m) ndarray): An orthonormal matrix. R ((m,n) ndarray): An upper triangular matrix. """ m,n = A.shape R = np.copy(A).astype(np.float) Q = np.identity(m) for k in range(n): u = np.copy(R[k:,k]) u[0] += sign(u[0])*la.norm(u) u /= la.norm(u) R[k:,k:] -= 2*np.outer(u, np.dot(u, R[k:,k:])) Q[k:] -= 2*np.outer(u, np.dot(u, Q[k:])) return Q.T, R # Problem 5 def hessenberg(A): """Compute the Hessenberg form H of A, along with the orthonormal matrix Q such that A = QHQ^T. Inputs: A ((n,n) ndarray): An invertible matrix. Returns: H ((n,n) ndarray): The upper Hessenberg form of A. Q ((n,n) ndarray): An orthonormal matrix. """ m,n = A.shape H = np.copy(A).astype(np.float) Q = np.identity(m) for k in range(n-2): u = np.copy(H[k+1:,k]) u[0] += sign(u[0])*la.norm(u) u /= la.norm(u) H[k+1:,k:] -= 2*np.outer(u, np.dot(u, H[k+1:,k:])) H[:,k+1:] -= 2*np.outer(np.dot(H[:,k+1:], u), u) Q[k+1:] -= 2*np.outer(u, np.dot(u, Q[k+1:])) return H, Q.T # Additional Material def qr_givens(A): """Compute the QR decomposition of A via Givens triangularization, assuming that at the ijth stage of the algorithm, a_ij will be nonzero. Inputs: A ((m,n) ndarray): A matrix of rank n. Returns: Q ((m,n) ndarray): An orthonormal matrix. R ((n,n) ndarray): An upper triangular matrix. """ m,n = A.shape R = np.copy(A).astype(np.float) Q = np.identity(m) for j in range(n): for i in reversed(range(j+1,m)): a,b = R[i-1,j], R[i,j] G = np.array([[a,b],[-b,a]]) / np.sqrt(a**2+b**2) R[i-1:i+1,j:] = np.dot(G, R[i-1:i+1,j:]) Q[i-1:i+1] = np.dot(G, Q[i-1:i+1]) return Q.T, R def qr_givens_hessenberg(H): """Compute the QR decomposition of the upper Hessenberg matrix H via Givens triangularization. Inputs: H ((m,n) ndarray): A matrix of rank n in upper Hessenberg form. Returns: Q ((m,n) ndarray): An orthonormal matrix. R ((n,n) ndarray): An upper triangular matrix. """ m,n = H.shape R = np.copy(H).astype(np.float) Q = np.identity(m) for j in xrange(min(n, m-1)): i = j+1 a,b = R[i-1,j],R[i,j] G = np.array([[a,b],[-b,a]]) / np.sqrt(a**2+b**2) R[i-1:i+1,j:] = np.dot(G, R[i-1:i+1,j:]) Q[i-1:i+1,:i+1] = np.dot(G, Q[i-1:i+1,:i+1]) return Q.T, R ``` #### File: Vol1A/SVD/svd_image_compression.py ```python from scipy import linalg as la import numpy as np from matplotlib import pyplot as plt # Problem 1 def truncated_svd(A,k=None): """Computes the truncated SVD of A. If r is None or equals the number of nonzero singular values, it is the compact SVD. Parameters: A: the matrix k: the number of singular values to use Returns: U - the matrix U in the SVD s - the diagonals of Sigma in the SVD Vh - the matrix V^H in the SVD """ raise NotImplementedError("truncated_svd incomplete") # Problem 2 def visualize_svd(): """Plot each transformation associated with the SVD of A.""" raise NotImplementedError("visualize_svd incomplete") # Problem 3 def svd_approx(A, k): """Returns best rank k approximation to A with respect to the induced 2-norm. Inputs: A - np.ndarray of size mxn k - rank Return: Ahat - the best rank k approximation """ raise NotImplementedError("svd_approx incomplete") # Problem 4 def lowest_rank_approx(A,e): """Returns the lowest rank approximation of A with error less than e with respect to the induced 2-norm. Inputs: A - np.ndarray of size mxn e - error Return: Ahat - the lowest rank approximation of A with error less than e. """ raise NotImplementedError("lowest_rank_approx incomplete") # Problem 5 def compress_image(filename,k): """Plot the original image found at 'filename' and the rank k approximation of the image found at 'filename.' filename - jpg image file path k - rank """ raise NotImplementedError("compress_image incomplete") ``` #### File: Vol1B/ConditioningStability/conditioning.py ```python import numpy as np from numpy.random import normal from matplotlib import pyplot as plt # Problem 1 def prob1(): """Randomly perturb w_coeff by replacing each coefficient a_i with a_i*r_i, where r_i is drawn from a normal distribution centered at 1 with varience 1e-10. Plot the roots of 100 such experiments in a single graphic, along with the roots of the unperturbed polynomial w(x). Using the final experiment only, estimate the relative and absolute condition number (in any norm you prefer). Returns: Display a graph of all 100 perturbations. Print the values of relative and absolute condition numbers. """ w_roots = np.arange(1, 21) w_coeffs = np.array([1, -210, 20615, -1256850, 53327946, -1672280820, 40171771630, -756111184500, 11310276995381, -135585182899530, 1307535010540395, -10142299865511450, 63030812099294896, -311333643161390640, 1206647803780373360, -3599979517947607200, 8037811822645051776, -12870931245150988800, 13803759753640704000, -8752948036761600000, 2432902008176640000]) raise NotImplementedError("Problem 1 Incomplete") # Problem 2 def eig_condit(M): """Approximate the condition number of the eigenvalue problem at M. Inputs: M - A 2-D square NumPy array, representing a square matrix. Returns: A tuple containing approximations to the absolute and relative condition numbers of the eigenvalue problem at M. """ raise NotImplementedError("Problem 2 Incomplete") # 1 pt extra credit def plot_eig_condit(x0=-100, x1=100, y0=-100, y1=100, res=10): ''' Create a grid of points. For each pair (x,y) in the grid, find the relative condition number of the eigenvalue problem, using the matrix [[1 x] [y 1]] as your input. You can use plt.pcolormesh to plot the condition number over the entire grid. INPUT: x0 - min x-value of the grid x1 - max x-value y0 - min y-value y1 - max y-value res - number of points along each edge of the grid ''' raise NotImplementedError("plot_eig_condit() not implemented") # Problem 3 def integral(n): """RETURN I(n)""" raise NotImplementedError("Problem 3 Incomplete") def prob3(): """For the values of n in the problem, compute integral(n). Compare the values to the actual values, and print your explanation of what is happening. """ #actual values of the integral at specified n actual_values = [0.367879441171, 0.145532940573, 0.0838770701034, 0.0590175408793, 0.0455448840758, 0.0370862144237, 0.0312796739322, 0.0270462894091, 0.023822728669, 0.0212860390856, 0.0192377544343] raise NotImplementedError("Problem 3 Incomplete") ``` #### File: Vol1B/ConditioningStability/plots.py ```python import matplotlib matplotlib.rcParams = matplotlib.rc_params_from_file('../../../matplotlibrc') import numpy as np from scipy import linalg as la from matplotlib import pyplot as plt def wilkinson_poly(): """ Reproduce the Wilkinson Polynomial example shown in the lab. """ roots = np.arange(1,21) w_coeffs = np.array([1, -210, 20615, -1256850, 53327946, -1672280820, 40171771630, -756111184500, 11310276995381, -135585182899530, 1307535010540395, -10142299865511450, 63030812099294896, -311333643161390640, 1206647803780373360, -3599979517947607200, 8037811822645051776, -12870931245150988800, 13803759753640704000, -8752948036761600000, 2432902008176640000]) perturb = np.zeros(21) perturb[1]=1e-7 rootsp = np.roots(np.poly1d(w_coeffs+perturb)) # Plot original roots plt.scatter(range(1,21), np.zeros(20), s=30) # Plot roots of the perturbed polynomial plt.scatter(np.real(rootsp), np.imag(rootsp), s=60, c='red', marker='x') plt.savefig('figures/wilkinsonpolynomial.pdf', bbox_inches='tight') plt.close() def plot_eig_condit(): x0, x1 =-100, 100 y0, y1 =-100, 100 res=200 x = np.linspace(x0,x1,res) y = np.linspace(y0,y1,res) X,Y = np.meshgrid(x,y) J = np.empty_like(X) for i in xrange(res): for j in xrange(res): M = np.array([[1, X[i,j]],[Y[i,j],1]]) eigs = la.eig(M)[0] perturb = np.random.normal(0, 1e-6, M.shape) + np.random.normal(0,1e-6, M.shape)*1j eigsp = la.eig(M+perturb)[0] k = la.norm(eigs-eigsp)/la.norm(perturb) J[i,j] = k*la.norm(M)/la.norm(eigs) plt.pcolormesh(X,Y,J, cmap='Greys') plt.colorbar() plt.savefig('figures/eigenvalue_conditioning.png', bbox_inches='tight') plt.close() def wilkinson_many(): roots = np.arange(1,21) w_coeffs = np.array([1, -210, 20615, -1256850, 53327946, -1672280820, 40171771630, -756111184500, 11310276995381, -135585182899530, 1307535010540395, -10142299865511450, 63030812099294896, -311333643161390640, 1206647803780373360, -3599979517947607200, 8037811822645051776, -12870931245150988800, 13803759753640704000, -8752948036761600000, 2432902008176640000]) for trial in xrange(100): perturb = np.random.normal(1, 1e-10, 21) rootsp = np.roots(np.poly1d(w_coeffs*perturb)) # Plot roots of the perturbed polynomial plt.scatter(np.real(rootsp), np.imag(rootsp), c='black', s=5, marker='.') # Plot original roots plt.scatter(range(1,21), np.zeros(20), s=30) plt.xlim(0, 23) plt.savefig('figures/wilkinsonpolynomial_many.pdf', bbox_inches='tight') plt.close() if __name__ == "__main__": wilkinson_poly() wilkinson_many() plot_eig_condit() ``` #### File: Vol1B/PageRank/spec.py ```python import numpy as np import scipy.sparse as spar import scipy.linalg as la from scipy.sparse import linalg as sla def to_matrix(filename,n): ''' Return the nxn adjacency matrix described by datafile. INPUTS: datafile (.txt file): A .txt file describing a directed graph. Lines describing edges should have the form '<from node>\t<to node>\n'. The file may also include comments. n (int): The number of nodes in the graph described by datafile RETURN: Return a SciPy sparse `dok_matrix'. ''' pass def calculateK(A,N): ''' Compute the matrix K as described in the lab. Input: A (array): adjacency matrix of an array N (int): the datasize of the array Return: K (array) ''' pass def iter_solve(adj, N=None, d=.85, tol=1E-5): ''' Return the page ranks of the network described by `adj`. Iterate through the PageRank algorithm until the error is less than `tol'. Inputs: adj - A NumPy array representing the adjacency matrix of a directed graph N (int) - Restrict the computation to the first `N` nodes of the graph. Defaults to N=None; in this case, the entire matrix is used. d - The damping factor, a float between 0 and 1. Defaults to .85. tol - Stop iterating when the change in approximations to the solution is less than `tol'. Defaults to 1E-5. Returns: The approximation to the steady state. ''' pass def eig_solve( adj, N=None, d=.85): ''' Return the page ranks of the network described by `adj`. Use the eigenvalue solver in \li{scipy.linalg} to calculate the steady state of the PageRank algorithm Inputs: adj - A NumPy array representing the adjacency matrix of a directed graph N - Restrict the computation to the first `N` nodes of the graph. Defaults to N=None; in this case, the entire matrix is used. d - The damping factor, a float between 0 and 1. Defaults to .85. Returns: The approximation to the steady state. ''' pass def team_rank(filename='ncaa2013.csv'): ''' Use your iterative PageRank solver to predict the rankings of the teams in the given dataset of games. The dataset should have two columns, representing winning and losing teams. Each row represents a game, with the winner on the left, loser on the right. Parse this data to create the adjacency matrix, and feed this into the solver to predict the team ranks. Inputs: filename (optional) - The name of the dataset. Returns: ranks - A list of the ranks of the teams in order "best" to "worst" teams - A list of the names of the teams, also in order "best" to "worst" ''' pass ``` #### File: Vol1B/Testing/solutions.py ```python def addition(a,b): return a+b def fibonacci(n): """generate the nth fibonacci number recursively. Assume n is a positive integer. """ if n == 0: return 1 elif n == 1: return 1 else: return fibonacci(n-1) + fibonacci(n-2) #Problem 2 Write unit tests to test the following def operator(a,b,oper): if type(oper) != str: raise ValueError("Oper should be a string") if len(oper) != 1: raise ValueError("Oper should be one character") if oper == "+": return a+b if oper == "/": if b == 0: raise ValueError("You can't divide by zero!") return a/float(b) if oper == "-": return a-b if oper == "*": return a*b else: raise ValueError("Oper can only be: '+', '/', '-', or '*'") #Problem 3 Write unit test for this class class ComplexNumber(object): def __init__(self, real=0, imag=0): self.real = real self.imag = imag def conjugate(self): conjugate = ComplexNumber(real=self.real, imag=-self.imag) return conjugate def norm(self): magnitude = math.sqrt(self.real**2 + self.imag**2) return magnitude def __add__(self, other): real = self.real + other.real imag = self.imag + other.imag return ComplexNumber(real=real, imag=imag) def __sub__(self, other): real = self.real - other.real imag = self.imag - other.imag return ComplexNumber(real=real, imag=imag) def __mul__(self, other): real = self.real*other.real - self.imag*other.imag imag = self.imag*other.real + other.imag*self.real return ComplexNumber(real=real, imag=imag) def __div__(self, other): if other.real==0 and other.imag==0: raise ValueError("Cannot divide by zero") bottom = (other.conjugate()*other*1.).real top = self*other.conjugate() return ComplexNumber(real=(top.real/bottom), imag=(top.imag/bottom)) def __eq__(self, other): return self.imag == other.imag and self.real == other.real def __str__(self): return str(self.real)+('+' if self.imag>=0 else '')+str(self.imag)+'i' #Problem 4 Write tests for the Linked List Class (be sure to do sub classes seperatly, and for linkedlist node consider different data types) class LinkedListNode(object): def __init__(self, data): self.data = data self.next = None def __str__(self): return str(self.data) def __lt__(self, other): if type(self.data) != type(other.data): raise ValueError("To compare nodes with __lt__ they must be of the same type") if self.data < other.data: return True else: return False def __eq__(self, other): if type(self.data) != type(other.data): raise ValueError("To compare nodes with __eq__ they must be of the same type") if self.data == other.data: return True else: return False def __gt__(self, other): if type(self.data) != type(other.data): raise ValueError("To compare nodes with __gt__ they must be of the same type") if self.data > other.data: return True else: return False class LinkedList(object): def __init__(self): self.head = None def add(self, data): """ Example: >>> my_list = LinkedList() >>> my_list.add(1) >>> my_list.head.data 1 >>> my_list.add(2) >>> my_list.head.next.data 2 """ new_node = LinkedListNode(data) if self.head is None: self.head = new_node else: current_node = self.head while current_node.next is not None: current_node = current_node.next current_node.next = new_node def __str__(self): """ Example: >>> my_list = LinkedList() >>> my_list.add(1) >>> my_list.add(2) >>> my_list.add(3) >>> print(my_list) [1, 2, 3] >>> str(my_list) == str([1,2,3]) True """ return_list = [] if self.head is None: return str(return_list) else: current_node = self.head while current_node.next is not None: return_list.append(current_node.data) current_node = current_node.next return_list.append(current_node.data) # Catches the last one, since it's next certainly will be falsely. return str(return_list) def remove(self, data): """ Example: >>> print(my_list) [1, 2, 3] >>> my_list.remove(2) >>> print(my_list) [1, 3] >>> my_list.remove(2) 2 is not in the list. >>> print(my_list) [1, 3] """ if self.head is None: raise ValueError(str(data) +" is not in the list.") if self.head.data == data: self.head = self.head.next else: current_node = self.head try: while current_node.next.data != data: current_node = current_node.next new_next_node = current_node.next.next current_node.next = new_next_node except: raise ValueError(str(data) +" is not in the list.") def insert(self, data, place): """ Example: >>> print(my_list) [1, 3] >>> my_list.insert(2,3) >>> print(my_list) [1, 2, 3] >>> my_list.insert(2,4) 4 is not in the list. """ try: current = self.head temp = LinkedListNode(data) previous = None if current.data == place: temp.next = self.head self.head = temp else: while current.data != place: previous = current current = current.next if current.data == place: break previous.next = temp temp.next = current temp.back = previous current.back = temp current = self.head except: raise ValueError(str(place) + " is not in the list.") ``` #### File: Vol2A/BFS-KBacon/solutions.py ```python from collections import deque import networkx as nx from matplotlib import pyplot as plt # Problems 1-4: Implement the following class class Graph(object): """A graph object, stored as an adjacency dictionary. Each node in the graph is a key in the dictionary. The value of each key is a list of the corresponding node's neighbors. """ def __init__(self, adjacency): """Store the adjacency dictionary as a class attribute""" self.dictionary = adjacency # Problem 1 def __str__(self): """String representation: a sorted view of the adjacency dictionary. Example: >>> test = {'A':['D', 'C', 'B'], 'D':['A', 'C'], ... 'C':['B', 'A', 'D'], 'B':['A', 'C']} >>> print(Graph(test)) A: B; C; D B: A; C C: A; B; D D: A; C """ out = "" keys = self.dictionary.keys() keys.sort() # join() approach for key in keys: out += str(key) + ": " # add each node values = self.dictionary[key] values.sort() out += "; ".join(values) + "\n" # add the node's neighborhood return out # for loop approach for key in keys: out += str(key) + ": " # add each node values = self.dictionary[key] values.sort() for value in values: # add each neighbor out += str(value) + "; " out = out.strip("; ") + "\n" # strip off the last "; " return out # Problem 2 def traverse(self, start): """Begin at 'start' and perform a breadth-first search until all nodes in the graph have been visited. Return a list of values, in the order that they were visited. If 'start' is not in the adjacency dictionary, raise a ValueError. Inputs: start: the node to start the search at. Returns: the list of visited nodes (in order of visitation) Example: >>> test = {'A':['B'], 'B':['A', 'C',], 'C':['B']} >>> Graph(test).traverse('B') ['B', 'A', 'C'] """ # Validate input if start not in self.dictionary: raise ValueError(str(start) + " is not in the graph.") # Set up the data structures visited = list() marked = set(start) visit_queue = deque(start) # Search the graph until done: while len(visit_queue) > 0: # get the next node from the queue and visit it current = visit_queue.popleft() visited.append(current) # put any unvisited, unmarked neighbors of the # current node on the visiting queue for neighbor in self.dictionary[current]: if neighbor not in marked: visit_queue.append(neighbor) marked.add(neighbor) return visited # Problem 3 (Optional) def DFS(self, start): """Begin at 'start' and perform a depth-first search until all nodes in the graph have been searched. Return a list of values, in the order that they were visited. If 'start' is not in the adjacency dictionary, raise a ValueError. Inputs: start: the node to start the search at. Returns: the list of visited nodes (in order of visitation) Example: >>> test = {'A':['B', 'D'], 'B':['A', 'C'], ... 'C':['B', 'D'], 'D':['A', 'C']} >>> Graph(test).DFS('A') ['A', 'B', 'C', 'D'] """ if start not in self.dictionary: raise ValueError(str(start) + " is not in the graph.") visited = list() marked = set(start) visit_queue = deque(start) # for DFS, use this as a stack while len(visit_queue) > 0: current = visit_queue.pop() # This line is different from BFS visited.append(current) for neighbor in self.dictionary[current]: if neighbor not in marked: visit_queue.append(neighbor) marked.add(neighbor) return visited # Problem 4 def shortest_path(self, start, target): """Begin at the node containing 'start' and perform a breadth-first search until the node containing 'target' is found. Return a list containg the shortest path from 'start' to 'target'. If either of the inputs are not in the adjacency graph, raise a ValueError. Inputs: start: the node to start the search at. target: the node to search for. Returns: A list of nodes along the shortest path from start to target, including the endpoints. Example: >>> test = {'A':['B', 'F'], 'B':['A', 'C'], 'C':['B', 'D'], ... 'D':['C', 'E'], 'E':['D', 'F'], 'F':['A', 'E', 'G'], ... 'G':['A', 'F']} >>> Graph(test).shortest_path('A', 'G') ['A', 'F', 'G'] """ if start not in self.dictionary: raise ValueError("Starting point " + str(start) + " is not in the graph.") # if target not in self.dictionary: raise ValueError visited = list() marked = set(start) visit_queue = deque(start) all_paths = {} final_path = deque() while len(visit_queue) > 0: current = visit_queue.popleft() visited.append(current) # Check for the target if current == target: # Build the shortest path final_path.append(current) while current in all_paths: final_path.appendleft(all_paths[current]) current = all_paths[current] return list(final_path) # Otherwise continue as before else: for neighbor in self.dictionary[current]: if neighbor not in marked: visit_queue.append(neighbor) marked.add(neighbor) # Track the path all_paths[neighbor] = current # If all neighbors have been checked, the target isn't in the graph. raise ValueError("Target " + str(target) + " is not in the graph.") def cheater(self, start, target): return nx.shortest_path( convert_to_networkx(self.dictionary), start, target) # Problem 5: Write the following function def convert_to_networkx(dictionary): """Convert 'dictionary' to a networkX object and return it.""" # Make the graph output = nx.Graph() for key in dictionary: for value in dictionary[key]: # Add each edge. Duplicates are automatically ignored. output.add_edge(key, value) return output # Helper function for problem 6 def parse(filename="movieData.txt"): """Generate an adjacency dictionary where each key is a movie and each value is a list of actors in the movie. """ # open the file, read it in, and split the text by '\n' movieFile = open(filename, 'r') movieFile = movieFile.read() movieFile = movieFile.split('\n') graph = dict() # for each movie in the file, for line in movieFile: # get movie name and list of actors names = line.split('/') movie = names[0] graph[movie] = [] # add the actors to the dictionary for actor in names[1:]: graph[movie].append(actor) return graph # Problems 6-8: Implement the following class class BaconSolver(object): """Class for solving the Kevin Bacon problem.""" # Problem 6 def __init__(self, filename="movieData.txt"): """Initialize the networkX graph and with data from the specified file. Store the graph as a class attribute. Also store the collection of actors in the file as a class attribute. """ # Get the adjacency dictionary from the file movie_to_actors = parse(filename) # Extract the actors from the adjacency dictionary (values) self.actors = {actor for movie in movie_to_actors for actor in movie_to_actors[movie]} # Convert the adjacency matrix to networkX self.bacon_graph = convert_to_networkx(movie_to_actors) # Problem 6 def path_to_bacon(self, start, target="Bacon, Kevin"): """Find the shortest path from 'start' to 'target'.""" if start not in self.actors: raise ValueError(str(start) + " is not in the set of actors") if target not in self.actors: raise ValueError(str(target) + " is not in the set of actors") return nx.shortest_path(self.bacon_graph, start, target) # Problem 7 def bacon_number(self, start, target="<NAME>"): """Return the Bacon number of 'start'.""" # Integer divide by two to account for movies in the path. return len(self.path_to_bacon(start, target)) // 2 # Problem 7 def average_bacon(self, target="<NAME>"): """Calculate the average Bacon number in the data set. Note that actors are not guaranteed to be connected to the target. """ connected = 0 isolated = 0 total = 0 for actor in self.actors: # if nx.has_path(self.bacon_graph, actor, target): try: total += self.bacon_number(actor, target) connected += 1 except nx.NetworkXNoPath: isolated += 1 return float(total)/connected, isolated # Problem 8 (Optional) def plot_bacon(self, target="<NAME>"): """Create and show a histogram displaying the frequency of the Bacon numbers in the data set. Ignore entries with no path to 'target'. """ bacon = deque() for actor in self.actors: try: bacon.append(self.bacon_number(actor, target)) except nx.NetworkXNoPath: pass name = target.partition(",")[0] plt.hist(bacon, bins=[.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5], log=True) plt.title(name + " Number Distribution") plt.xlabel(name + " Number") plt.ylabel("Actors") plt.show() if __name__ == '__main__': print BaconSolver().average_bacon() ``` #### File: Vol2A/DataStructures2-Trees/plots.py ```python import matplotlib matplotlib.rcParams = matplotlib.rc_params_from_file('../../matplotlibrc') import numpy as np from time import time from sys import stdout from matplotlib import pyplot as plt from solutions import iterative_search, SinglyLinkedList, BST, AVL def prob4_plots(N=12, verbose=False): """At each iteration, take n random items from a pre-determined subset. Time (separately) how long it takes to load a SinglyLinkedList, a BST, and an AVL with the data set of n items. Choose 5 random items from the data set. Time (separately) how long it takes to find all 5 items in each object. Create two log-log figures. The first figure plots the number of items in each dataset against the build time for each object. The second figure, plots the number of items against the search time for each object. """ # Initialize lists to hold results lls_build, lls_search = [], [] bst_build, bst_search = [], [] avl_build, avl_search = [], [] data = np.random.random(2**(N+1)) domain = 2**np.arange(3,N+1) # Get the values [start, start + step, ..., stop - step] for n in domain: if verbose: print("\rn = {}".format(n)), stdout.flush() # Initialize wordlist and data structures subset = data[:n] bst = BST() avl = AVL() lls = SinglyLinkedList() # Time the singly-linked list build begin = time() for item in subset: lls.append(item) lls_build.append(time() - begin) # Time the binary search tree build begin = time() for item in subset: bst.insert(item) bst_build.append(time() - begin) # Time the AVL tree build begin = time() for item in subset: avl.insert(item) avl_build.append(time() - begin) random_subset = np.random.choice(subset, size=5, replace=False) # Time the singly-linked list search begin = time() for target in random_subset: iterative_search(lls, target) lls_search.append(time() - begin) # Time the binary search tree search begin = time() for target in random_subset: bst.find(target) bst_search.append(time() - begin) # Time the AVL tree search begin = time() for target in random_subset: avl.find(target) avl_search.append(time() - begin) # Plot the data plt.clf() plt.title("Build Times") plt.loglog(domain,lls_build,'.-',lw=2,ms=10,basex=2,basey=2,label='Singly Linked List') plt.loglog(domain,bst_build,'.-',lw=2,ms=10,basex=2,basey=2,label='Binary Search Tree') plt.loglog(domain,avl_build,'.-',lw=2,ms=10,basex=2,basey=2,label='AVL Tree') plt.xlabel("n"); plt.ylabel("Seconds") plt.legend(loc='upper left') plt.savefig("BuildTimes.pdf") plt.clf() plt.title("Search Times") plt.loglog(domain,lls_search,'.-',lw=2,ms=10,basex=2,basey=2,label='Singly Linked List') plt.loglog(domain,bst_search,'.-',lw=2,ms=10,basex=2,basey=2,label='Binary Search Tree') plt.loglog(domain,avl_search,'.-',lw=2,ms=10,basex=2,basey=2,label='AVL Tree') plt.xlabel("n") plt.legend(loc='upper left') plt.savefig("SearchTimes.pdf") plt.clf() if __name__ == '__main__': prob4_plots(verbose=True) ``` #### File: Vol2A/Fourier2-Convolution/plots.py ```python import matplotlib matplotlib.rcParams = matplotlib.rc_params_from_file('../../matplotlibrc') import matplotlib.pyplot as plt # Switch backends to render PNG images. plt.switch_backend("Agg") import numpy as np from scipy.io import wavfile from scipy import fftpack as ft #plots Noisysignal1.wav def noise(): plt.close('all') rate, sig = wavfile.read('Noisysignal1.wav') plt.plot(sig[0:sig.shape[0]/2]) plt.savefig('figures/noisy.png') plt.clf() #plots lect half of spectrum of #Noisysignal1.wav def noise_spec(): rate, sig = wavfile.read('Noisysignal1.wav') sig = sig.astype('float32') fsig = ft.fft(sig.T).T f = np.absolute(fsig) plt.plot(f[0:f.shape[0]/2]) plt.savefig('figures/noisyspec.png') plt.clf() #plots cleaned noisy signal def cleaned_signal(): rate,data = wavfile.read('Noisysignal1.wav') fsig = ft.fft(data,axis = 0) for j in xrange(10000,20000): fsig[j]=0 fsig[-j]=0 newsig = ft.ifft(fsig) newsig = newsig.real newsig = (newsig/np.absolute(newsig).max()*32767).astype('int16') plt.plot(newsig[0:newsig.shape[0]/2]) plt.savefig('figures/Cleanedsignal.png') plt.clf() if __name__ == '__main__': noise() noise_spec() cleaned_signal() ``` #### File: Vol2A/Wavelets/plots.py ```python import matplotlib matplotlib.rcParams = matplotlib.rc_params_from_file('../../matplotlibrc') import numpy as np from matplotlib import pyplot as plt from scipy import misc def grey_image(filename, greyname): "Create a grayscale version of a color image" image = misc.imread(filename,True) plt.imsave("figures/"+greyname, image, cmap='gray') def noise_image(filename, noisename): "Create a noised version of a grayscale image" image = misc.imread(filename,True) noiseSigma = 16.0 image += np.random.normal(0, noiseSigma, size=image.shape) plt.imsave("figures/"+noisename, image, cmap='gray') grey_image("swanlake.jpg", "swanlake_gray.jpg") noise_image("swanlake_gray.jpg", "swanlake_polluted.jpg") ``` #### File: Vol2B/DynamicOpt1-Value/plots.py ```python import matplotlib matplotlib.rcParams = matplotlib.rc_params_from_file('../../matplotlibrc') #================================================ #Plots for the Value Function Iteration Lab #================================================ import numpy as np import math from scipy import stats as st import discretenorm from matplotlib import pyplot as plt from matplotlib import cm from mpl_toolkits.mplot3d import Axes3D def diff_policies(): def graph_policy(policies, utility_function=np.sqrt, beta=0.9): # First, create a state space that is the same length as the policy. states = np.linspace(0,1,len(policies[0])) # Now calculate the utility accumulated at each step of the policy. fig = plt.figure() fig.set_size_inches(8,8) plt.title('Utility Gained From Various Policies') for i, policy in enumerate(policies): total_utility = np.zeros(len(policy)) total_utility[0] = utility_function(policy[0]) for j, consumption_amount in enumerate(policy[1:]): total_utility[j+1] = total_utility[j] + beta**(j+1)*utility_function(policy[j+1]) l, = plt.plot(np.arange(len(policy)), total_utility, label='Policy ' + str(i+1) + ', Utility = ' + str(total_utility[-1])[:3]) print("Total Utility: \t" + str(total_utility[-1])) plt.legend(loc='upper left') plt.savefig('./diff_policies.pdf') policy1 = np.array([1.0, 0, 0, 0, 0]) policy2 = np.array([0, 0, 0, 0, 1.0]) policy3 = np.array([0.2, 0.2, 0.2, 0.2, 0.2]) policy4 = np.array([0.4, 0.3, 0.2, 0.1, 0]) policies = [policy1, policy2, policy3, policy4] graph_policy(policies) def eatCake(beta, N, Wmax=1., T=None, finite=True, plot=False): """ Solve the finite horizon cake-eating problem using Value Function iteration. Inputs: T -- final time period beta -- discount factor N -- number of discrete intervals to break up the cake size -- size of the cake to begin with plot -- boolean indicating whether to plot value function surface and policy function surface Returns: values -- numpy array of shape (N, T+2) (if finite=True) or shape (N,) (if finite=False) giving the value function at each time period for each state psi -- numpy array of shape (N, T+1) (if finite=True) or shape (N,) (if finite=False) giving the policy at each time period for each state. """ states = np.linspace(0,Wmax,N) #state space vector actions = np.tile(states, N).reshape((N,N)).T actions = actions - actions.T actions[actions<0] = 0 rewards = np.sqrt(actions) rewards[np.triu_indices(N, k=1)] = -1e10 #pre-computed reward function n_range = np.arange(N) #this is used several times, so initialize it once if finite: values = np.zeros((N, T+2)) psi = np.zeros((N, T+1)) for i in xrange(T,-1,-1): argmaxs = np.argmax(rewards + beta*values[:,i+1].reshape(1,N), axis=1) values[:,i] = (rewards + beta*values[:,i+1].reshape(1,N))[n_range,argmaxs] psi[:,i] = states[argmaxs] x=np.arange(0,N) if plot: x=np.arange(0,N) y=np.arange(0,T+2) X,Y=np.meshgrid(x,y) fig1 = plt.figure() ax1= Axes3D(fig1) ax1.plot_surface(states[X],Y,values.T, cmap=cm.coolwarm) plt.show () fig2 = plt.figure() ax2 = Axes3D(fig2) y = np.arange(0,T+1) X,Y=np.meshgrid(x,y) ax2.plot_surface(states[X],Y,psi.T, cmap = cm.coolwarm) plt.show() else: values = np.zeros(N) psi = np.zeros(N) delta = 1. while delta >= 1e-9: values1 = values.copy() argmaxs = np.argmax(rewards + beta*values1.reshape(1,N), axis=1) values = (rewards + beta*values.reshape(1,N))[n_range, argmaxs] psi = states[argmaxs] delta = ((values-values1)**2).sum() if plot: plt.plot(states, psi) plt.show() return values, psi def finite_horiz(): #First compute solution to problem 1 beta = 0.9; T = 10; N = 100; u = lambda c: np.sqrt(c); W = np.linspace(0,1,N); X, Y = np.meshgrid(W,W); Wdiff = Y-X index = Wdiff <0; Wdiff[index] = 0; util_grid = u(Wdiff); util_grid[index] = -10**10; V = np.zeros((N,T+2)); psi = np.zeros((N,T+1)); for k in xrange(T,-1,-1): val = util_grid + beta*np.tile(V[:,k+1].T,(N,1)); vt = np.amax(val, axis = 1); psi_ind = np.argmax(val,axis = 1) V[:,k] = vt; psi[:,k] = W[psi_ind]; #now create plots #fixed time plot plt.figure() plt.plot(V[:,5]) plt.title(r'Value function for $t = 5$') plt.ylabel(r'$V$') plt.xlabel(r'$W$') plt.savefig('fixed_time.pdf') #fixed W plot plt.figure() plt.plot(V[50,:]) plt.title(r'Value function for $W = 0.505$') plt.ylabel(r'$V$') plt.xlabel(r'$t$') plt.savefig('fixed_w.pdf') plt.clf() #plot delta -> 0 def delta(): beta = 0.99 N = 1000 u = lambda c: np.sqrt(c) W = np.linspace(0,1,N) X, Y = np.meshgrid(W,W) Wdiff = (X-Y).T index = Wdiff <0 Wdiff[index] = 0 util_grid = u(Wdiff) util_grid[index] = -10**10 Vprime = np.zeros((N,1)) delta = np.ones(1) tol = 10**-9 it = 0 max_iter = 500 while (delta[-1] >= tol) and (it < max_iter): V = Vprime it += 1; val = util_grid + beta*V.T Vprime = np.amax(val, axis = 1) Vprime = Vprime.reshape((N,1)) delta = np.append(delta,np.dot((Vprime-V).T,Vprime-V)) plt.figure() plt.plot(delta[1:]) plt.ylabel(r'$\delta_k$') plt.xlabel('iteration') plt.savefig('convergence.pdf') plt.clf() def infiniteHorizon(): """ Plot policy function for infinite time horizon cake eating problem. """ values, psi = eatCake(.9, 100, finite=False) states = np.linspace(0,1,100) plt.figure() plt.title(r'Policy Function') plt.ylabel(r'$\psi$') plt.xlabel(r'$W$') plt.plot(states, psi) plt.savefig('infiniteHorizon.pdf') plt.clf() def disc_norm(): x = np.linspace(-3,3,100) y = st.norm.pdf(x,0,1) fig, ax = plt.subplots() fig.canvas.draw() ax.plot(x,y) fill1_x = np.linspace(-2,-1.5,100) fill1_y = st.norm.pdf(fill1_x,0,1) fill2_x = np.linspace(-1.5,-1,100) fill2_y = st.norm.pdf(fill2_x,0,1) ax.fill_between(fill1_x,0,fill1_y,facecolor = 'blue', edgecolor = 'k',alpha = 0.75) ax.fill_between(fill2_x,0,fill2_y,facecolor = 'blue', edgecolor = 'k',alpha = 0.75) for label in ax.get_yticklabels(): label.set_visible(False) for tick in ax.get_xticklines(): tick.set_visible(False) for tick in ax.get_yticklines(): tick.set_visible(False) plt.rc("font", size = 16) plt.xticks([-2,-1.5,-1]) labels = [item.get_text() for item in ax.get_xticklabels()] labels[0] = r"$v_k$" labels[1] = r"$\varepsilon_k$" labels[2] = r"$v_{k+1}$" ax.set_xticklabels(labels) plt.ylim([0, .45]) plt.savefig('discnorm.pdf') plt.clf() def stoch_value(): #Compute Solution========================================================== sigma = .5 mu = 4*sigma K = 7 Gamma, eps = discretenorm.discretenorm(K,mu,sigma) N = 100 W = np.linspace(0,1,N) V = np.zeros((N,K)) u = lambda c: np.sqrt(c) beta = 0.99 X,Y= np.meshgrid(W,W) Wdiff = Y-X index = Wdiff < 0 Wdiff[index] = 0 util_grid = u(Wdiff) util3 = np.tile(util_grid[:,:,np.newaxis],(1,1,K)) eps_grid = eps[np.newaxis,np.newaxis,:] eps_util = eps_grid*util3 Gamma_grid = Gamma[np.newaxis,:] delta = 1 Vprime = V z = 0 while (delta > 10**-9): z= z+1 V = Vprime gamV = Gamma_grid*V Expval = np.sum(gamV,1) Exp_grid = np.tile(Expval[np.newaxis,:,np.newaxis],(N,1,K)) arg = eps_util+beta*Exp_grid arg[index] = -10^10 Vprime = np.amax(arg,1) psi_ind = np.argmax(arg,1) psi = W[psi_ind] delta = np.linalg.norm(Vprime - V) #============================================================ #Plot 3D x=np.arange(0,N) y=np.arange(0,K) X,Y=np.meshgrid(x,y) fig1 = plt.figure() ax1= Axes3D(fig1) ax1.set_xlabel(r'$W$') ax1.set_ylabel(r'$\varepsilon$') ax1.set_zlabel(r'$V$') ax1.plot_surface(W[X],Y,np.transpose(Vprime), cmap=cm.coolwarm) plt.savefig('stoch_value.pdf') plt.clf() if __name__ == "__main__": disc_norm() stoch_value() finite_horiz() delta() infiniteHorizon() ``` #### File: Vol2B/InteriorPoint1-Linear/spec.py ```python import numpy as np from scipy import linalg as la from scipy.stats import linregress from matplotlib import pyplot as plt # Auxiliary Functions --------------------------------------------------------- def startingPoint(A, b, c): """Calculate an initial guess to the solution of the linear program min c^T x, Ax = b, x>=0. Reference: Nocedal and Wright, p. 410. """ # Calculate x, lam, mu of minimal norm satisfying both # the primal and dual constraints. B = la.inv(A.dot(A.T)) x = A.T.dot(B.dot(b)) lam = B.dot(A.dot(c)) mu = c - A.T.dot(lam) # Perturb x and s so they are nonnegative. dx = max((-3./2)*x.min(), 0) dmu = max((-3./2)*mu.min(), 0) x += dx*np.ones_like(x) mu += dmu*np.ones_like(mu) # Perturb x and mu so they are not too small and not too dissimilar. dx = .5*(x*mu).sum()/mu.sum() dmu = .5*(x*mu).sum()/x.sum() x += dx*np.ones_like(x) mu += dmu*np.ones_like(mu) return x, lam, mu # Use this linear program generator to test your interior point method. def randomLP(m): """Generate a 'square' linear program min c^T x s.t. Ax = b, x>=0. First generate m feasible constraints, then add slack variables. Inputs: m -- positive integer: the number of desired constraints and the dimension of space in which to optimize. Outputs: A -- array of shape (m,n). b -- array of shape (m,). c -- array of shape (n,). x -- the solution to the LP. """ n = m A = np.random.random((m,n))*20 - 10 A[A[:,-1]<0] *= -1 x = np.random.random(n)*10 b = A.dot(x) c = A.sum(axis=0)/float(n) return A, b, -c, x # This random linear program generator is more general than the first. def randomLP2(m,n): """Generate a linear program min c^T x s.t. Ax = b, x>=0. First generate m feasible constraints, then add slack variables to convert it into the above form. Inputs: m -- positive integer >= n, number of desired constraints n -- dimension of space in which to optimize Outputs: A -- array of shape (m,n+m) b -- array of shape (m,) c -- array of shape (n+m,), with m trailing 0s v -- the solution to the LP """ A = np.random.random((m,n))*20 - 10 A[A[:,-1]<0] *= -1 v = np.random.random(n)*10 k = n b = np.zeros(m) b[:k] = A[:k,:].dot(v) b[k:] = A[k:,:].dot(v) + np.random.random(m-k)*10 c = np.zeros(n+m) c[:n] = A[:k,:].sum(axis=0)/k A = np.hstack((A, np.eye(m))) return A, b, -c, v # Problems -------------------------------------------------------------------- def interiorPoint(A, b, c, niter=20, tol=1e-16, verbose=False): """Solve the linear program min c^T x, Ax = b, x>=0 using an Interior Point method. Parameters: A ((m,n) ndarray): Equality constraint matrix with full row rank. b ((m, ) ndarray): Equality constraint vector. c ((n, ) ndarray): Linear objective function coefficients. niter (int > 0): The maximum number of iterations to execute. tol (float > 0): The convergence tolerance. Returns: x ((n, ) ndarray): The optimal point. val (float): The minimum value of the objective function. """ raise NotImplementedError("Problems 1-4 Incomplete") def leastAbsoluteDeviations(filename='simdata.txt'): """Generate and show the plot requested in the lab.""" raise NotImplementedError("Problem 5 Incomplete") ``` #### File: Vol2B/scipyoptimize/blackbox_function.py ```python import numpy as np from scipy import linalg as la def blackbox(y_free): """ Finds the length of a curve approximated piece-wise by a set of points. Accepts: y_free (1xn ndarray): the non-endpoint y-values of the curve. Returns: total_length (float): the length of the approximated curve. """ # Initialize local constants. m = len(y_free) + 2 # Number points: free variables, origin, and endpoint. a, b = 40, 30 # Coordinates of endpoint. # Generate the evenly-spaced x-values of the curve. x = np.linspace(0,a,m) # Pad the free variables with the fixed endpoint values, 0 and b. y = np.hstack((0,y_free, b)) # Calculate and return the line integral of the approximated curve. partial_norms = [] for i,item in enumerate(y[:-1]): partial_norms.append(la.norm(np.array([x[i+1]-x[i],y[i+1] - item]))) return np.sum(partial_norms) ``` #### File: Vol2B/scipyoptimize/rosenbrock.py ```python import math, copy import numpy from matplotlib import pyplot, colors, cm import scipy as sp from mpl_toolkits.mplot3d import Axes3D def cmap_powerlaw_adjust(cmap, a): ''' returns a new colormap based on the one given but adjusted via power-law: newcmap = oldcmap**a ''' if a < 0.: return cmap cdict = copy.copy(cmap._segmentdata) fn = lambda x : (x[0]**a, x[1], x[2]) for key in ('red','green','blue'): cdict[key] = map(fn, cdict[key]) cdict[key].sort() assert (cdict[key][0]<0 or cdict[key][-1]>1), \ "Resulting indices extend out of the [0, 1] segment." return colors.LinearSegmentedColormap('colormap',cdict,1024) def cmap_center_adjust(cmap, center_ratio): ''' returns a new colormap based on the one given but adjusted so that the old center point higher (>0.5) or lower (<0.5) ''' if not (0. < center_ratio) & (center_ratio < 1.): return cmap a = math.log(center_ratio) / math.log(0.5) return cmap_powerlaw_adjust(cmap, a) def cmap_center_point_adjust(cmap, range, center): ''' converts center to a ratio between 0 and 1 of the range given and calls cmap_center_adjust(). returns a new adjusted colormap accordingly ''' if not ((range[0] < center) and (center < range[1])): return cmap return cmap_center_adjust(cmap, abs(center - range[0]) / abs(range[1] - range[0])) if __name__ == '__main__': def rosenbrock(x, y): return (1.0-x)**2 + 100*(y-x**2)**2 a = sp.arange(-1.8, 1.8,.01) b = sp.arange(-1,2.5,.01) A, B = sp.meshgrid(a,b) Z = rosenbrock(A, B) plotkwargs = {'rstride': 8, 'cstride': 8, 'linewidth': 0.01} fig = pyplot.figure(figsize=(6,4)) ax = fig.add_subplot(111, projection='3d') cmap = cm.jet plt = ax.plot_surface(A, B, Z, cmap=cmap, **plotkwargs) plt.set_cmap(cmap_center_adjust(cmap, .25)) # ax.scatter([0.], [0.], rosenbrock(0.,0.), s=30, c='r') pyplot.show() ``` #### File: Vol2B/scipyoptimize/solutions.py ```python import scipy.optimize as opt import numpy as np from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import axes3d from blackbox_function import blackbox # Problem 1: use scipy.optimize.minimize() with different methods and compare. def prob1(): """Use the minimize() function in the scipy.optimize package to find the minimum of the Rosenbrock function (scipy.optimize.rosen) using the following methods: Nelder-Mead CG BFGS Use x0 = np.array([4., -2.5]) for the initial guess for each test. For each method, print whether it converged, and if so, print how many iterations it took. """ # Set up the initial guess. x0 = np.array([4.0,-2.5]) # Test each method. info = {} info["Nelder-Mead"] = opt.minimize(opt.rosen, x0, method='Nelder-Mead') info["CG"] = opt.minimize(opt.rosen, x0, method='CG') info["BFGS"] = opt.minimize(opt.rosen, x0, method='BFGS') # Report the info. for method in info: print("Method:\t{}\nConverged:\t{} " .format(method, info[method]['success'])) if info[method]['success']: print "Number of Iterations:", info[method]['nit'], '\n' # Problem 2: Minizize an unknown "blackbox" function. def prob2(): """Minimize the function blackbox() in the blackbox_function module, selecting the appropriate method of scipy.optimize.minimize() for this problem. Do not pass your method a derivative. You may need to test several methods and determine which is most appropriate. The blackbox() function returns the length of a piecewise-linear curve between two fixed points: the origin, and the point (40,30). It accepts a one-dimensional ndarray} of length m of y-values, where m is the number of points of the piecewise curve excluding endpoints. These points are spaced evenly along the x-axis, so only the y-values of each point are passed into blackbox(). Once you have selected a method, select an initial point with the provided code. Then plot your initial curve and minimizing curve together on the same plot, including endpoints. Note that this will require padding your array of internal y-values with the y-values of the endpoints, so that you plot a total of 20 points for each curve. SOLUTIONS NOTE: This solutions file uses method="BFGS", but method="Powell" also returns the correct answer, which is a straight line connecting the origin and the point (40,30). Students may attempt to minimize using method="Nelder-Mead", as this also does not use a derivative. However, this does not return the optimal solution. """ # Set up the initial values y_initial = 30*np.random.random_sample(18) x = np.linspace(0,40,20) # Plot the pre-graph yplot = np.hstack((0,y_initial,30)) plt.plot(x, yplot, '.-r', markersize=10) # Minimize the blackbox() function using method="BFGS". result = opt.minimize(blackbox, y_initial, tol=1e-4, method="BFGS") if not result['success']: raise RuntimeError("didn't converge") ypost = np.hstack((0,result['x'],30)) plt.plot(x, ypost, '.-b', markersize=10) plt.show() # The solution should plot the Batman symbol. # Run blackbox_Batman.py to see original. prob2() # Problem 3: learn and use scipy.optimize.basinhopping() def prob3(): """Explore the documentation on the function scipy.optimize.basinhopping() online or via IPython. Use it to find the global minimum of the multmin() function given in the lab, with initial point x0 = np.array([-2, -2]) and the Nelder-Mead algorithm. Try it first with stepsize=0.5, then with stepsize=0.2. Plot the multimin function and minima found using the code provided. Print statements answering the following questions: Which algorithms fail to find the global minimum? Why do these algorithms fail? Finally, return the global minimum. """ # Define the function to be optimized and the initial condition. def multimin(x): r = np.sqrt((x[0]+1)**2 + x[1]**2) return r**2 *(1+ np.sin(4*r)**2) x0 = np.array([-2, -1.9]) small_step = .2 large_step = .5 # Optimize using variations on Nelder-Mead. NOTE: Here, each has been stored # seperately for ease of plotting differently colored minimums. small = opt.basinhopping(multimin, x0, stepsize=small_step, minimizer_kwargs={'method':'nelder-mead'}) large = opt.basinhopping(multimin, x0, stepsize=large_step, minimizer_kwargs={'method':'nelder-mead'}) # Print the results. print("Stepsize:\t{}\nMinimum:\t{}\nX-Values:\t{}\n".format(small_step, small['fun'], small['x'])) print("Stepsize:\t{}\nMinimum:\t{}\nX-Values:\t{}\n".format(large_step, large['fun'], large['x'])) # Plot the multimin graph. Here, the points are colored differently for emphasis. xdomain = np.linspace(-3.5,1.5,70) ydomain = np.linspace(-2.5,2.5,60) X,Y = np.meshgrid(xdomain,ydomain) Z = multimin((X,Y)) fig = plt.figure() ax1 = fig.add_subplot(111, projection='3d') ax1.plot_wireframe(X, Y, Z, linewidth=.5, color='c') ax1.scatter(x0[0], x0[1], multimin(x0), c='b') # Initial pt: blue # Plot the results of the algorithms. ax1.scatter(small.x[0], small.x[1], small.fun, s=30, c='r') # Small step: red ax1.scatter(large.x[0], large.x[1], large.fun, s=30, c='g') # Large step: green plt.show() # Answer the problem questions. print("minimize() fails because it gets trapped in a basin.") print("0.2 fails because it is too small a stepsize to escape a basin.") # Return the correct global minimum. return large['fun'] # Problem 4: learn and use scipy.optimize.root() def prob4(): """Find the roots of the system [ -x + y + z ] [0] [ 1 + x^3 - y^2 + z^3 ] = [0] [ -2 - x^2 + y^2 + z^2 ] [0] Returns the values of x,y,z as an array. """ # Define the nonlinear system, its Jacobian, and the initial guess. def f(X): x,y,z = X return np.array([ -x + y + z, 1 + x**3 -y**2 + z**3, -2 -x**2 + y**2 + z**2 ]) def jacobian(X): x,y,z = X return np.array([ [ -1, 1, 1 ], [3*x**2, -2*y, 3*z**2], [ -2*x, 2*y, 2*z ] ]) x0 = np.array([0,0,0]) # Calculate the solution, check that it is a root, and return it. sol = opt.root(f, x0, jac=jacobian, method='hybr') assert np.allclose(np.zeros_like(sol.x), f(sol.x)), "FAILURE" return sol.x # Problem 5: learn and use scipy.optimize.curve_fit(). def prob5(): """Use the scipy.optimize.curve_fit() function to fit a curve to the data found in `convection.npy`. The first column of this file is R, the Rayleigh number, and the second column is Nu, the Nusselt number. The fitting parameters should be c and beta, as given in the convection equations. Plot the data from `convection.npy` and the curve generated by curve_fit. Return the values c and beta as an array. """ data = np.load("convection.npy") initial = 4 # Define the function to optimize. def nusselt(R, c, beta): return c*R**beta # Use curve_fit and the data to get the parameters. popt, pcov = opt.curve_fit(nusselt, data[initial:,0], data[initial:,1]) curve = nusselt(data[initial:,0], popt[0], popt[1]) # Plot the data and the curve. plt.loglog(data[:,0], data[:,1], '.k', label='Data') plt.loglog(data[initial:,0], curve, 'b', label='Curve', linewidth=2) plt.legend(loc="lower right") plt.show() # Return the parameter values. return popt ``` #### File: Vol3A/Bokeh/bokeh_solutions.py ```python from __future__ import division import numpy as np import pandas as pd import pickle from bokeh.io import curdoc from bokeh.plotting import Figure, output_file, show from bokeh.layouts import column, row, layout, widgetbox from bokeh.palettes import Reds9 as COLORS #from bokeh.tile_providers import STAMEN_TONER, STAMEN_TERRAIN, STAMEN_TONER_BACKGROUND from bokeh.sampledata import us_states from bokeh.core.properties import Either, Auto, Instance from bokeh.models import (Range1d, ColumnDataSource, Slider, CustomJS, HoverTool, WheelZoomTool, DataRange1d, TextInput, Toggle, Div, WMTSTileSource) from bokeh.models.widgets import CheckboxButtonGroup, Select from pyproj import Proj, transform # Prep data accidents = pd.read_pickle("fars_accidents.pickle") drivers = pd.read_pickle("final_drivers.pickle") #us_states = us_states.data.copy() with open("us_states.pickle", "rb") as file: us_states = pickle.load(file) state_xs = [us_states[code]["lons"] for code in us_states] state_ys = [us_states[code]["lats"] for code in us_states] state_names = us_states.keys() id_to_st = {1:"AL", 2:"AK", 4:"AZ", 5:"AR", 6:"CA", 8:"CO", 9:"CT", 10:"DE", 11:"DC", 12:"FL", 13:"GA", 15:"HI", 16:"ID", 17:"IL", 18:"IN", 19:"IA", 20:"KS", 21:"KY", 22:"LA", 23:"ME", 24:"MD", 25:"MA", 26:"MI", 27:"MN", 28:"MS", 29:"MO", 30:"MT", 31:"NE", 32:"NV", 33:"NH", 34:"NJ", 35:"NM", 36:"NY", 37:"NC", 38:"ND", 39:"OH", 40:"OK", 41:"OR", 42:"PA", 44:"RI", 45:"SC", 46:"SD", 47:"TN", 48:"TX", 49:"UT", 50:"VT", 51:"VA", 53:"WA", 54:"WV", 55:"WI", 56:"WY"} with open("id_to_state.pickle", "wb") as f: pickle.dump(id_to_st, f) st_to_id = {v: k for k, v in id_to_st.items()} id_list = [] for s in state_names: id_list.append(st_to_id[s]) state_totals = [accidents[accidents["STATE"]==s].shape[0] for s in id_list] state_drunk = [accidents[(accidents["STATE"]==s) & (accidents["DRUNK_DR"]>0)].shape[0] for s in id_list] state_percent = (np.array(state_drunk) / np.array(state_totals, dtype=float)) * 100 state_speed = [accidents[(accidents["STATE"]==s) & (accidents["SP"]==1)].shape[0] for s in id_list] state_percent_sp = (np.array(state_speed) / np.array(state_totals, dtype=float)) * 100 # Convert data to appropriate format for map """ from_proj = Proj(init="epsg:4326") to_proj = Proj(init="epsg:3857") def convert(longitudes, latitudes): x_vals = [] y_vals = [] for lon, lat in zip(longitudes, latitudes): x, y = transform(from_proj, to_proj, lon, lat) x_vals.append(x) y_vals.append(y) return x_vals, y_vals accidents["x"], accidents["y"] = convert(accidents.LONGITUD, accidents.LATITUDE) accidents["r"] = 10000 accidents.to_pickle("fars_accidents.pickle") borders_x = [] borders_y = [] for i in xrange(len(state_xs)): cx, cy = convert(state_xs[i], state_ys[i]) borders_x.append(cx) borders_y.append(cy) borders = dict(x=borders_x, y=borders_y) with open("borders.pickle", "wb") as f: pickle.dump(borders, f) """ # set up map mercator_extent = dict(start=-1400000, end=2000000, bounds="auto", ) x_range = Range1d(start=-14000000, end=-7000000, bounds="auto") y_range = Range1d(start=2500000, end=6500000, bounds="auto") fig = Figure(plot_width=1100, plot_height=650, tools=["wheel_zoom", "pan"], x_range=(-13000000, -7000000), y_range=(2750000, 6250000), webgl=True, active_scroll="wheel_zoom") fig.axis.visible = False STAMEN_TONER_BACKGROUND = WMTSTileSource( url='http://tile.stamen.com/toner-background/{Z}/{X}/{Y}.png', attribution=( 'Map tiles by <a href="http://stamen.com">Stamen Design</a>, ' 'under <a href="http://creativecommons.org/licenses/by/3.0">CC BY 3.0</a>.' 'Data by <a href="http://openstreetmap.org">OpenStreetMap</a>, ' 'under <a href="http://www.openstreetmap.org/copyright">ODbL</a>' ) ) fig.add_tile(STAMEN_TONER_BACKGROUND) accidents.loc[accidents.DRUNK_DR != 0, "DRUNK_DR"] = "YES" accidents.loc[accidents.DRUNK_DR == 0, "DRUNK_DR"] = "NO" accidents.loc[accidents.SP != 0, "SP"] = "YES" accidents.loc[accidents.SP == 0, "SP"] = "NO" accidents.loc[accidents.WEATHER.isin([0,1,8,10,98,99]), "WEATHER"] = "Clear" accidents.loc[accidents.WEATHER == 2, "WEATHER"] = "Rain" accidents.loc[accidents.WEATHER == 3, "WEATHER"] = "Sleet/Hail" accidents.loc[accidents.WEATHER == 4, "WEATHER"] = "Snow" accidents.loc[accidents.WEATHER == 5, "WEATHER"] = "Fog/Smog/Smoke" accidents.loc[accidents.WEATHER == 6, "WEATHER"] = "Severe Crosswinds" accidents.loc[accidents.WEATHER == 7, "WEATHER"] = "Blowing Sand, Soil, Dirt" accidents.loc[accidents.WEATHER == 11, "WEATHER"] = "Blowing Snow" accidents.loc[accidents.WEATHER == 12, "WEATHER"] = "Freezing Rain" accidents["r"] = 10000 drunk = accidents[accidents.DRUNK_DR == "YES"].copy() speed = accidents[(accidents.DRUNK_DR == "NO") & (accidents.SP == "YES")].copy() other = accidents[(accidents.DRUNK_DR == "NO") & (accidents.SP == "NO")].copy() del accidents COLORS.reverse() no_colors = ['#FFFFFF']*len(state_names) drunk_colors = [COLORS[i] for i in pd.qcut(state_percent, len(COLORS)).codes] speeding_colors = [COLORS[i] for i in pd.qcut(state_percent_sp, len(COLORS)).codes] alpha=[0]*len(state_names) with open("borders.pickle", "rb") as f: b = pickle.load(f) patch_source = ColumnDataSource( data=dict(borders_x=b["x"], borders_y=b["y"], colors=no_colors, alpha=alpha, state_names=state_names, state_totals=state_totals, state_drunk=state_drunk, state_percent=state_percent, state_percent_sp=state_percent_sp ) ) patches = fig.patches(xs="borders_x", ys="borders_y", source=patch_source, fill_alpha="alpha", fill_color="colors", line_alpha=0, hover_alpha=.3, line_width=5) fig.add_tools(HoverTool(renderers=[patches], tooltips=[("State", "@state_names"), ("Total", "@state_totals"), ("Drunk%", "@state_percent{1.11}" + "%"), ("Speeding%", "@state_percent_sp{1.11}" + "%")])) select = Select(title="Color States By:", value="None", options=["None", "Drunk%", "Speeding%"]) def update_color(attrname, old, new): if select.value == "Drunk%": patch_source.data["colors"] = drunk_colors patch_source.data["alpha"] = [.3]*len(state_names) elif select.value == "Speeding%": patch_source.data["colors"] = speeding_colors patch_source.data["alpha"] = [.3]*len(state_names) else: patch_source.data["colors"] = no_colors patch_source.data["alpha"] = [0]*len(state_names) select.on_change('value', update_color) # -------------------------------------- def gen_dict(df): return dict( x=df["x"], y=df["y"], r=df["r"], MONTH=df["MONTH"], DAY=df["DAY"], YEAR=df["YEAR"], FATALS=df["FATALS"], DRUNK_DR=df["DRUNK_DR"], SP=df["SP"], WEATHER=df["WEATHER"] ) other_source = ColumnDataSource(data=gen_dict(other)) speed_source = ColumnDataSource(data=gen_dict(speed)) drunk_source = ColumnDataSource(data=gen_dict(drunk)) other_circles = fig.circle(source=other_source, x="x", y="y", radius="r", fill_color="gray", fill_alpha=.3, line_alpha=0, hover_alpha=1, hover_color="yellow", legend="Other") speed_circles = fig.circle(source=speed_source, x="x", y="y", radius="r", fill_color="blue", fill_alpha=.3, line_alpha=0, hover_alpha=1, hover_color="yellow", legend="Speeding") drunk_circles = fig.circle(source=drunk_source, x="x", y="y", radius="r", fill_color="red", fill_alpha=.3, line_alpha=0, hover_alpha=1, hover_color="yellow", legend="Drunk") dot_tooltips = [("Date", "@MONTH/@DAY/@YEAR"), ("Fatalities", "@FATALS"), ("Drunk", "@DRUNK_DR"), ("Speeding", "@SP"), ("Weather", "@WEATHER")] fig.add_tools(HoverTool(renderers=[other_circles, speed_circles, drunk_circles], tooltips=dot_tooltips)) button_group = CheckboxButtonGroup( labels=["Other", "Speeding", "Drunk"], active=[0, 1, 2], width=200) toggle = Toggle(label="Sort by Hour", button_type="default") slider = Slider(title="Hour (Military Time)", start=0, end=23, value=0, step=1) empty_dict = dict( x=np.array([]), y=np.array([]), r=np.array([]), MONTH=np.array([]), DAY=np.array([]), YEAR=np.array([]), FATALS=np.array([]), DRUNK_DR=np.array([]), SP=np.array([]), WEATHER=np.array([]) ) def update_hour(attrname, old, new): if toggle.active: if 0 in button_group.active: new_other = other[other.HOUR == slider.value] other_source.data = gen_dict(new_other) else: other_source.data = empty_dict if 1 in button_group.active: new_speed = speed[speed.HOUR == slider.value] speed_source.data = gen_dict(new_speed) else: speed_source.data = empty_dict if 2 in button_group.active: new_drunk = drunk[drunk.HOUR == slider.value] drunk_source.data = gen_dict(new_drunk) else: drunk_source.data = empty_dict else: if 0 in button_group.active: other_source.data = gen_dict(other) else: other_source.data = empty_dict if 1 in button_group.active: speed_source.data = gen_dict(speed) else: speed_source.data = empty_dict if 2 in button_group.active: drunk_source.data = gen_dict(drunk) else: drunk_source.data = empty_dict slider.on_change('value', update_hour) toggle.on_change('active', update_hour) button_group.on_change('active', update_hour) callback = CustomJS(args=dict(other=other_circles, speed=speed_circles, drunk=drunk_circles), code=""" other.glyph.radius = { value: cb_obj.get('value')*125 } other.data_source.trigger('change') speed.glyph.radius = { value: cb_obj.get('value')*125 } speed.data_source.trigger('change') drunk.glyph.radius = { value: cb_obj.get('value')*125 } drunk.data_source.trigger('change') """) size_slider = Slider(title="Dot Size", start=1, end=100, orientation="horizontal", value=100, step=1, callback=callback, callback_policy="mouseup") fig.legend.background_fill_alpha = 1 fig.legend.background_fill_color = "gainsboro" fig.legend.border_line_width = 4 fig.legend.level="overlay" fig.legend.label_text_font_size = "15pt" wbox = widgetbox(select, Div(text="<br>"), Div(text="Type of Accidents to Show:"), button_group, Div(text="<br>"), toggle, slider, Div(text="<br>"), size_slider) curdoc().add_root(row(fig, wbox)) ``` #### File: Vol3A/UnixShell1/Shell_solutions.py ```python ''' $ SHELL COMMANDS: (It's trivial. Free points awarded) $ cd Downloads/Shell-Lab ''' # PROBLEM 2: Delete Audio folder and its contents. Create Documents, Photos, and Python directories ''' SHELL COMMANDS: (Executed in the Shell-Lab directory) $ rm -r Audio $ mkdir Documents Photos Python ''' # PROBLEM 3: Move *.jpg to Photos, *.txt to Documents, and *.py to Python ''' SHELL COMMANDS: (Executed in the Shell-Lab directory) $ mv *.jpg Photos $ mv *.txt Documents $ mv *.py Python ''' # PROBLEM 4: Move the *.jpg files found deep in the the directory hierachy to Photos ''' SHELL COMMANDS: (Executed in the Shell-Lab directory) To find where the .jpg files are $ find . -type f -name "*.jpg" Then move each file with mv command $ mv <filepath> Photos More specifically, $ mv Files/Dec/Holidays/*.jpg Photos $ mv Files/Feb/pics/*.jpg Photos $ mv Files/Apr/user/Sally/Alaska/*.jpg Photos $ mv Files/Jul/Vacation/*.jpg Photos ''' # PROBLEM 5: Count words and sort words in word.txt. Save output to sortedwords.txt ''' SHELL COMMANDS: (Executed in the Shell-Lab/Documents directory) $ wc -l < words.txt > sortedwords.txt $ sort < words.txt >> sortedwords.txt ''' # PROBLEM 6: Make count_files.py an executable script ''' SHELL COMMANDS: (Executed in the Shell-Lab/Python directory) $ which python On the author's system, this was: /home/tanner/anaconda/bin/python Open count_files.py and add the shebang at the first line of the file. One the author's system, this was #!/home/tanner/anaconda/bin/python $ chmod ug+x count_files.py ''' # PROBLEM 7: ''' SHELL COMMANDS: (Executed in the Shell-Lab/Scripts directory $ ./script1 & $ ./script2 & $ ./script3 & $ jobs > log.txt ''' import subprocess import numpy as np import scipy as sp class Shell(object): def __init__(self): pass # PROBLEM 8: Implement find_file and find_word def find_file(self, filename, d=None): """ Find a file inside a given directory. By default, the search starts in the current directory. """ if d is None: d = "." command = "find " + d + " -name \"" + filename + "\"" files = subprocess.check_output(command,shell=True).split('\n') files.pop() return files def find_word(self, word, d=None): """ Search the contents of all the files within a directory for a given word. By default, the search starts in the current directory """ if d is None: d = "." command = "grep -nr " + word + " " + d files = subprocess.check_output(command,shell=True).split('\n') files.pop() return files # PROBLEM 9: Implement largest_files def largest_files(self,n,d=None): """ Return a list of the n biggest files and their sizes. By default, the search starts in the current directory """ if d is None: d = '.' command = "find " + d + " -type f" files = subprocess.check_output(command, shell=True).split('\n') files.pop() split_files = np.array([subprocess.check_output('du ' + f, shell=True).strip().split('\t') for f in files]) sizes = np.array(split_files[:,0],dtype=np.int32) sorted_index = sp.argsort(sizes)[::-1] return split_files[sorted_index][:n] # PROBLEM 10 (Optional): secure copy with partner ``` #### File: Vol4A/FiniteDifferenceMethod/solution.py ```python from __future__ import division import numpy as np from scipy.sparse import spdiags from scipy.sparse.linalg import spsolve, cg import matplotlib.pyplot as plt def fd_order2_ode(func,a1,a2,a3,a=0.,b=1.,alpha=1.,beta=3.,N=5): # A Simple Finite Difference Scheme to solve BVP's of the form # a1(x)u''(x) + a2(x)u'(x) + a3(x)u(x) = f(x), x \in [a,b] # u(a) = alpha # u(b) = beta # (Dirichlet boundary conditions) # # U_0 = alpha, U_1, U_2, ..., U_m, U_{m+1} = beta # We use m+1 subintervals, giving m algebraic equations m = N-1 h = (b-a)/N # Here we form the diagonals x = np.linspace(a,b,N+1) D0,Dp,Dm,diags = np.zeros((1,m)), np.zeros((1,m)), np.zeros((1,m)), np.array([0,-1,1]) D0 += -2.*a1(x[1:-1])*h**(-2.) + a3(x[1:-1]) Dm += a1(x[1:-1])*h**(-2.) - a2(x[1:-1])*(2.*h)**(-1.) Dp += a1(x[1:-1])*h**(-2.) + a2(x[1:-1])*(2.*h)**(-1.) # print "\nD0 = \n", D0[0,:5] # print "\nDm = \n", Dm[0,:5] # print "\nDp = \n", Dp[0,:5] # Here we create the matrix A data = np.concatenate((D0,np.roll(Dm,-1),np.roll(Dp,1)),axis=0) # This stacks up rows A = spdiags(data,diags,m,m).asformat('csr') print "\nA = \n", A[:5,:5].todense() print "\nA = \n", A[-5:,-5:].todense() # print A.shape # Here we create the vector B B = np.zeros(N+1) B[2:-2] = func(x[2:-2]) xj = a+1.*h B[0], B[1] = alpha, func(xj)-alpha *( a1(xj)*h**(-2.) - a2(xj)*(2.*h)**(-1.) ) xj = a+m*h B[-1], B[-2] = beta, func(xj)-beta*( a1(xj)*h**(-2.) + a2(xj)*(2.*h)**(-1.) ) print "\nB = \n", B[:5] print "\nB = \n", B[-5:] # Here we solve the equation AX = B and return the result B[1:-1] = spsolve(A,B[1:-1]) return np.linspace(a,b,m+2), B def approx_order(num_approx,N,bvp,*args): h, max_error = (1.-0)/N[:-1], np.ones(num_approx-1) mesh_best, num_sol_best = bvp(*args, subintervals=N[-1]) for j in range(len(N)-1): mesh, num_sol = bvp(*args, subintervals=N[j]) max_error[j] = np.max(np.abs( num_sol- num_sol_best[::2**(num_approx-j-1)] ) ) plt.loglog(h,max_error,'.-r',label="$E(h)$") plt.loglog(h,h**(2.),'-k',label="$h^{\, 2}$") plt.xlabel("$h$") plt.legend(loc='best') plt.show() print "The order of the finite difference approximation is about ", ( (np.log(max_error[0]) - np.log(max_error[-1]) )/( np.log(h[0]) - np.log(h[-1]) ) ), "." # # def example(): # # First Code block in the lab manual # import numpy as np # from scipy.sparse import spdiags # from scipy.sparse.linalg import spsolve # # def bvp(func, epsilon, alpha, beta, N): # a,b = 0., 1. # Interval for the BVP # h = (b-a)/N # The length of each subinterval # # # Initialize and define the vector F on the right # F = np.empty(N-1.) # F[0] = func(a+1.*h)-alpha*(epsilon+h/2.)*h**(-2.) # F[N-2] = func(a+(N-1)*h)-beta*(epsilon-h/2.)*h**(-2.) # for j in xrange(1,N-2): # F[j] = func(a + (j+1)*h) # # # Here we define the arrays that will go on the diagonals of A # data = np.empty((3,N-1)) # data[0,:] = -2.*epsilon*np.ones((1,N-1)) # main diagonal # data[1,:] = (epsilon+h/2.)*np.ones((1,N-1)) # off-diagonals # data[2,:] = (epsilon-h/2.)*np.ones((1,N-1)) # # Next we specify on which diagonals they will be placed, and create A # diags = np.array([0,-1,1]) # A=h**(-2.)*spdiags(data,diags,N-1,N-1).asformat('csr') # # U = np.empty(N+1) # U[1:-1] = spsolve(A,F) # U[0], U[-1] = alpha, beta # return np.linspace(a,b,N+1), U # # x, y = bvp(lambda x:-1., epsilon=.05,alpha=1, beta=3, N=400) # import matplotlib.pyplot as plt # plt.plot(x,y,'-k',linewidth=2.0) # plt.show() # # num_approx = 5 # Number of Approximations # N = 20*np.array([2**j for j in range(num_approx)]) # h, max_error = (1.-0)/N[:-1], np.ones(num_approx-1) # # mesh_best, num_sol_best = bvp(lambda x:-1, epsilon=.5, alpha=1, beta=3, N=N[-1]) # for j in range(len(N)-1): # mesh, num_sol = bvp(lambda x:-1, epsilon=.5, alpha=1, beta=3, N=N[j]) # max_error[j] = np.max(np.abs( num_sol- num_sol_best[::2**(num_approx-j-1)] ) ) # plt.loglog(h,max_error,'.-r',label="$E(h)$") # plt.loglog(h,h**(2.),'-k',label="$h^{\, 2}$") # plt.xlabel("$h$") # plt.legend(loc='best') # plt.show() # print "The order of the finite difference approximation is about ", ( (np.log(max_error[0]) - # np.log(max_error[-1]) )/( np.log(h[0]) - np.log(h[-1]) ) ), "." # return # ``` #### File: Vol4A/WeightLoss/plots.py ```python from __future__ import division import matplotlib matplotlib.rcParams = matplotlib.rc_params_from_file('../../matplotlibrc') from scipy.integrate import ode import numpy as np import matplotlib.pyplot as plt from matplotlib.ticker import MultipleLocator import solution def weightloss_calculator(age, sex, H, BW, T, (PAL, EI)): # Initial stats # Age (y), Gender ('male' or 'female'), Height (m), Body Weight (kg) # Time (d) # # Diet/Lifestyle Change # (PAL, EI) = Future Physical Activity Level and Energy Intake # # Call the IVP Solver ######################################## F = solution.fat_mass(BW, age, H, sex) L = BW - F t, y = solution.compute_weight_curve(F, L, T, EI, PAL) # Plot the Results #################################### fig, ax = plt.subplots() plt.plot(t, 2.2 * y[:, 0], '-b', label='Fat', linewidth=2.0) plt.plot(t, 2.2 * y[:, 1], '-g', label='Lean', linewidth=2.0) plt.plot(t, 2.2 * (y[:, 0] + y[:, 1]), '-r', label='Total', linewidth=2.0) plt.legend(loc=1) # Upper right placement plt.xlabel('days', fontsize=16) plt.ylabel('lbs', fontsize=16) plt.axis([0, np.max(t), 20, 180]) # High end of normal weight range plt.plot(t, 2.2 * 25 * H ** 2 * np.ones(t.shape), '-.k') # Low end of normal weight range plt.plot(t, 2.2 * 20 * H ** 2 * np.ones(t.shape), '-.k') majorLocator = MultipleLocator(200) ax.xaxis.set_major_locator(majorLocator) plt.savefig('weightloss.pdf') plt.clf() def Exercise1(): age, sex = 38.0, 'female' H, BW = 1.73, 72.7 # Long time frame T = 5 * 7 * 52. # PAL, EI = 1.5, 2025. def EI(t): return 2025 def PAL(t): return 1.5 weightloss_calculator(age, sex, H, BW, T, (PAL, EI)) def Exercise2(): age, sex = 38.0, 'female' H, BW = 1.73, 72.7 # Long time frame T = 5 * 7 * 52. def EI(t): return 1850 def PAL(t): return 1.4 weightloss_calculator(age, sex, H, BW, T, (PAL, EI)) def Exercise3(): age, sex = 38.0, 'female' H, BW = 1.73, 72.7 T = 16 * 7 * 2. def EI(t): if t < 16 * 7 * 1.: return 1600 else: return 2025 def PAL(t): if t < 16 * 7 * 1.: return 1.7 else: return 1.5 weightloss_calculator(age, sex, H, BW, T, (PAL, EI)) ########################################################################### # Lotka-Volterra Predator Prey Model # U_t = U(1-V) # V_t = alpha V(U-1) # # Logistic Predator Prey Model # U_t = U(1-U-V) # V_t = alpha V(U-beta) def Example_Lotka_Volterra(): # (Nondimensional) Time interval for one 'period' a, b = 0., 30. # Nondimensional parameters alpha = 1. / 3 # dimension of the system / initial conditions dim, ya = 2, np.array([3 / 4., 3 / 4.]) def Lotka_Volterra(x, y): return np.array([y[0] * (1. - y[1]), alpha * y[1] * (y[0] - 1.)]) subintervals = 500 Y = solution.RK4(Lotka_Volterra, a, b, subintervals, ya, dim) # Plot the direction field Y1, Y2 = np.meshgrid( np.arange(0, 4.5, .2), np.arange(0, 4.5, .2), sparse=True) U, V = Lotka_Volterra(0, (Y1, Y2)) Q = plt.quiver(Y1[::3, ::3], Y2[::3, ::3], U[::3, ::3], V[::3, ::3], pivot='mid', color='b', units='dots', width=3.) # Plot the 2 Equilibrium points plt.plot(1, 1, 'ok', markersize=8) plt.plot(0, 0, 'ok', markersize=8) # Plot the solutions in phase space # Y = RK4( Lotka_Volterra,a,b,subintervals,np.array([3/4., 3/4.]),dim) plt.plot(Y[:, 0], Y[:, 1], '-k', linewidth=2.0) # Y = RK4( Lotka_Volterra,a,b,subintervals,np.array([1/2., 3/4.]),dim) # plt.plot(Y[:,0], Y[:,1],'-k',linewidth=2.0) # Y = RK4( Lotka_Volterra,a,b,subintervals,np.array([1/4., 1/3.]),dim) # plt.plot(Y[:,0], Y[:,1],'-k',linewidth=2.0) # Y = RK4( Lotka_Volterra,a,b,subintervals,np.array([1/16., 3/4.]),dim) # plt.plot(Y[:,0], Y[:,1],'-k',linewidth=2.0) # Y = RK4( Lotka_Volterra,a,b,subintervals,np.array([1/40., 3/4.]),dim) # plt.plot(Y[:,0], Y[:,1],'-k',linewidth=2.0) # plt.plot(Y[::10,0], Y[::10,1],'*b') plt.axis([-.5, 4.5, -.5, 4.5]) plt.title("Phase Portrait of the Lotka-Volterra Predator-Prey Model") plt.xlabel('Prey', fontsize=15) plt.ylabel('Predators', fontsize=15) plt.savefig("Lotka_Volterra_Phase_Portrait.pdf") plt.clf() Y = solution.RK4(Lotka_Volterra, a, 2 * b, 2 * subintervals, ya, dim) plt.plot(np.linspace(a, 2 * b, 2 * subintervals + 1), Y[:, 0], '-b', linewidth=2.0) plt.plot(np.linspace(a, 2 * b, 2 * subintervals + 1), Y[:, 1], '-g', linewidth=2.0) plt.savefig("Lotka_Volterra.pdf") plt.clf() def Exercise_Lotka_Volterra(): # (Nondimensional) Time interval for one 'period' a, b = 0., 30. # Nondimensional parameters alpha = 1. / 3 # dimension of the system / initial conditions dim, ya = 2, np.array([3 / 4., 3 / 4.]) def Lotka_Volterra(x, y): return np.array([y[0] * (1. - y[1]), alpha * y[1] * (y[0] - 1.)]) subintervals = 500 Y = solution.RK4(Lotka_Volterra, a, b, subintervals, ya, dim) # Plot the direction field Y1, Y2 = np.meshgrid( np.arange(0, 4.5, .2), np.arange(0, 4.5, .2), sparse=True) U, V = Lotka_Volterra(0, (Y1, Y2)) Q = plt.quiver(Y1[::3, ::3], Y2[::3, ::3], U[::3, ::3], V[::3, ::3], pivot='mid', color='b', units='dots', width=3.) # Plot the 2 Equilibrium points plt.plot(1, 1, 'ok', markersize=8) plt.plot(0, 0, 'ok', markersize=8) # Plot the solutions in phase space plt.plot(Y[:, 0], Y[:, 1], '-k', linewidth=2.0) Y = solution.RK4(Lotka_Volterra, a, b, subintervals, np.array([1 / 2., 3 / 4.]), dim) plt.plot(Y[:, 0], Y[:, 1], '-k', linewidth=2.0) Y = solution.RK4(Lotka_Volterra, a, b, subintervals, np.array([1 / 16., 3 / 4.]), dim) plt.plot(Y[:, 0], Y[:, 1], '-k', linewidth=2.0) Y = solution.RK4(Lotka_Volterra, a, b, subintervals, np.array([1 / 40., 3 / 4.]), dim) plt.plot(Y[:, 0], Y[:, 1], '-k', linewidth=2.0) plt.plot(Y[::10, 0], Y[::10, 1], '*b') plt.axis([-.5, 4.5, -.5, 4.5]) plt.title("Phase Portrait of the " + "Lotka-Volterra Predator-Prey Model") plt.xlabel('Prey', fontsize=15) plt.ylabel('Predators', fontsize=15) # plt.savefig("Lotka_Volterra_Phase_Portrait.pdf") plt.show(); plt.clf() def Exercise_Logistic(): # y[0], y[1] = Prey, Predator populations a, b = 0., 40. dim = 2 ya1 = np.array([1 / 3., 1 / 3.]) ya2 = np.array([2.5 / 5., 1 / 5.]) alpha, beta = 1., 1.1#1., .3 def Logistic(x, y): return np.array([y[0] * (1 - y[0] - y[1]), alpha * y[1] * (y[0] - beta)]) example1 = ode(Logistic).set_integrator('dopri5', atol=1e-10) example1.set_initial_value(ya1, a) example2 = ode(Logistic).set_integrator('dopri5', atol=1e-10) example2.set_initial_value(ya2, a) t = np.linspace(a, b, 201) Y1 = np.zeros((len(t), dim)) Y1[0, :] = ya1 Y2 = np.zeros((len(t), dim)) Y2[0, :] = ya2 for j in range(1, len(t)): Y1[j, :] = example1.integrate(t[j]) Y2[j, :] = example2.integrate(t[j]) plt.plot(Y1[:, 0], Y1[:, 1], '-k', linewidth=1.5) # plt.plot(Y1[::5,0], Y1[::5,1],'*g') plt.plot(Y2[:, 0], Y2[:, 1], '-k', linewidth=1.5) # plt.plot(Y2[::5,0], Y2[::5,1],'*g') R, S = np.meshgrid( np.arange(0., 1.35, .1), np.arange(0., 1.35, .1), sparse=True) U, V = Logistic(0, (R, S)) Q = plt.quiver(R[::2, ::2], S[::2, ::2], U[::2, ::2], V[::2, ::2], pivot='mid', color='green', units='dots', width=3.) plt.plot(beta, 1 - beta, 'ok', markersize=6) plt.plot(1, 0, 'ok', markersize=6) plt.plot(0, 0, 'ok', markersize=6) # plt.plot( R[::2, ::2], S[::2, ::2], 'k.') plt.axis([-.1, 1.3, -.1, 1.3]) plt.title("Phase Portrait of Logistic Predator-Prey Model") plt.xlabel('Prey', fontsize=15) plt.ylabel('Predators', fontsize=15) plt.show(); plt.clf() if __name__ == "__main__": Exercise_Lotka_Volterra() Exercise_Logistic() ``` #### File: Vol4B/HIV/HIV_solutions.py ```python import numpy as np from matplotlib import pyplot as plt ####### Parameters # * = value comes from Kirschner and Webb # ** = value comes from lab a1, b1 = 0., 0.02 # boundaries for drug1 dosage a2, b2 = 0., 0.9 # boundaries for drug2 dosage s1, s2 = 2., 1.5 #source/proliferation constants* mu = 0.002 #T cell death rate* k = 0.000025 #infection rate* g = 30. #input rate of an external virus source* c = .007 #viral loss rate* B1, B2 = 14.0, 1.0 #half saturation constants* A1, A2 = 250000 , 75 # cost weights T0 = 400 # initial number of T cells** V0 = 3 #initial concentration of free viruses** t_f = 50. # number of days n = 1000 # number of time steps def initialize_all(y0, t0, t, n): """ An initialization routine for the different ODE solving methods in the lab. This initializes Y, T, and h. """ if isinstance(y0, np.ndarray): Y = np.empty((n, y0.size)).squeeze() else: Y = np.empty(n) Y[0] = y0 T = np.linspace(t0, t, n) h = float(t - t0) / (n - 1) return Y, T, h def RK4(f, y0, t0, t, n): """ Use the RK4 method to compute an approximate solution to the ODE y' = f(t, y) at n equispaced parameter values from t0 to t with initial conditions y(t0) = y0. y0 is assumed to be either a constant or a one-dimensional numpy array. t and t0 are assumed to be constants. f is assumed to accept two arguments. The first is a constant giving the value of t. The second is a one-dimensional numpy array of the same size as y. This function returns an array Y of shape (n,) if y is a constant or an array of size 1. It returns an array of shape (n, y.size) otherwise. In either case, Y[i] is the approximate value of y at the i'th value of np.linspace(t0, t, n). """ Y,T,h = initialize_all(y0,t0,t,n) for i in xrange(n-1): K1 = f(T[i],Y[i],i) K2 = f(T[i]+h/2.,Y[i]+h/2.*K1,i) K3 = f(T[i]+h/2.,Y[i]+h/2.*K2,i) K4 = f(T[i+1],Y[i]+h*K3,i) Y[i+1] = Y[i] + h/6.*(K1+2*K2 +2*K3+K4) return Y def state_equations(t,y,i): ''' Parameters --------------- t : float the time y : ndarray (2,) the T cell concentration and the Virus concentration at time t i : int index for the global variable u. Returns -------------- y_dot : ndarray (2,) the derivative of the T cell concentration and the virus concentration at time t ''' yprime = np.empty(2) yprime[0] = s1 - s2*y[1]/(B1 + y[1]) - mu*y[0] - k*y[1]*y[0] + u[i,0]*y[0] # T prime yprime[1] = (g*(1-u[i,1])*y[1]) / (B2 + y[1]) - c*y[1]*y[0] # V prime return yprime def lambda_hat(t,y,i): ''' Parameters --------------- t : float the time y : ndarray (2,) the lambda_hat values at time t i : int index for global variables, u and state. Returns -------------- y_dot : ndarray (2,) the derivative of the lambda_hats at time t. ''' j = n-1-i yprime = np.empty(2) yprime[0] = -(-1 + y[0]*(mu+k*state[j,1] - u[j,0]) + y[1]*c*state[j,1]) yprime[1] = -(y[0]*(B1*s2/((B1+state[j,1])**2) + k*state[j,0]) - y[1]*(B2*g*(1-u[j,1])/((B2 + state[j,1])**2) - c*state[j,0]) ) return yprime delta = 0.001 test = delta + 1 t=np.linspace(0,t_f,n) state = np.zeros((n,2)) state0 = np.array([T0, V0]) costate = np.zeros((n,2)) costate0 = np.zeros(2) u=np.zeros((n,2)) u[:,0] += .02 u[:,1] += .9 while(test > delta): # see if we've converged oldu = u.copy(); #solve the state equations with forward iteration state = RK4(state_equations,state0,0,t_f,n) #solve the costate equations with backwards iteration costate = RK4(lambda_hat,costate0,0,t_f,n)[::-1] #update our control temp1 = .5/A1*(costate[:,0]*state[:,0]) temp2 = -.5*costate[:,1]/A2*g*state[:,1]/(B2 + state[:,1]) u1 = np.minimum(np.maximum(a1*np.ones(temp1.shape),temp1),b1*np.ones(temp1.shape)) u2 = np.minimum(np.maximum(a2*np.ones(temp2.shape),temp2),b2*np.ones(temp2.shape)) u[:,0] = 0.5*(u1 + oldu[:,0]) u[:,1] = 0.5*(u2 + oldu[:,1]) test = abs(oldu - u).sum() plt.subplot(221) plt.plot(t,state[:,0]) plt.ylabel('T') plt.subplot(222) plt.plot(t,state[:,1]) plt.ylabel('V') plt.subplot(223) plt.plot(t,u[:,0]) plt.ylabel('u1') plt.ylim([0,.022]) plt.xlabel('Days') plt.subplot(224) plt.plot(t,u[:,1]) plt.ylabel('u2') plt.ylim([0,.92]) plt.xlabel('Days') plt.show() ``` #### File: Vol4B/Solitons/new.py ```python from __future__ import division import numpy as np from scipy.fftpack import fft, ifft from mpl_toolkits.mplot3d.axes3d import Axes3D import matplotlib.pyplot as plt from matplotlib import cm from math import sqrt, pi def initialize_all(y0, t0, t1, n): """ An initialization routine for the different ODE solving methods in the lab. This initializes Y, T, and h. """ if isinstance(y0, np.ndarray): Y = np.empty((n, y0.size),dtype=complex).squeeze() else: Y = np.empty(n,dtype=complex) Y[0] = y0 T = np.linspace(t0, t1, n) h = float(t1 - t0) / (n - 1) return Y, T, h def RK4(f, y0, t0, t1, n): """ Use the RK4 method to compute an approximate solution to the ODE y' = f(t, y) at n equispaced parameter values from t0 to t with initial conditions y(t0) = y0. 'y0' is assumed to be either a constant or a one-dimensional numpy array. 't0' and 't1' are assumed to be constants. 'f' is assumed to accept two arguments. The first is a constant giving the current value of t. The second is a one-dimensional numpy array of the same size as y. This function returns an array Y of shape (n,) if y is a constant or an array of size 1. It returns an array of shape (n, y.size) otherwise. In either case, Y[i] is the approximate value of y at the i'th value of np.linspace(t0, t, n). """ Y, T, h = initialize_all(y0, t0, t1, n) for i in xrange(1, n): K1 = f(T[i-1], Y[i-1]) # print "Y[i-1].shape = ", Y[i-1].shape tplus = (T[i] + T[i-1]) * .5 K2 = f(tplus, Y[i-1] + .5 * h * K1) K3 = f(tplus, Y[i-1] + .5 * h * K2) K4 = f(T[i], Y[i-1] + h * K3) # print "K1 + 2 * K2 + 2 * K3 + K4.shape = ", (K1 + 2 * K2 + 2 * K3 + K4).shape Y[i] = Y[i-1] + (h / 6.) * (K1 + 2 * K2 + 2 * K3 + K4) return T, Y ``` #### File: Vol4B/Solitons/plots.py ```python import matplotlib matplotlib.rcParams = matplotlib.rc_params_from_file('../../matplotlibrc') from __future__ import division import numpy as np from scipy.fftpack import fft, ifft from mpl_toolkits.mplot3d.axes3d import Axes3D import matplotlib.pyplot as plt from matplotlib import cm from math import sqrt, pi def initialize_all(y0, t0, t1, n): """ An initialization routine for the different ODE solving methods in the lab. This initializes Y, T, and h. """ if isinstance(y0, np.ndarray): Y = np.empty((n, y0.size),dtype=complex).squeeze() else: Y = np.empty(n,dtype=complex) Y[0] = y0 T = np.linspace(t0, t1, n) h = float(t1 - t0) / (n - 1) return Y, T, h def RK4(f, y0, t0, t1, n): """ Use the RK4 method to compute an approximate solution to the ODE y' = f(t, y) at n equispaced parameter values from t0 to t with initial conditions y(t0) = y0. 'y0' is assumed to be either a constant or a one-dimensional numpy array. 't0' and 't1' are assumed to be constants. 'f' is assumed to accept two arguments. The first is a constant giving the current value of t. The second is a one-dimensional numpy array of the same size as y. This function returns an array Y of shape (n,) if y is a constant or an array of size 1. It returns an array of shape (n, y.size) otherwise. In either case, Y[i] is the approximate value of y at the i'th value of np.linspace(t0, t, n). """ Y, T, h = initialize_all(y0, t0, t1, n) for i in xrange(1, n): K1 = f(T[i-1], Y[i-1]) # print "Y[i-1].shape = ", Y[i-1].shape tplus = (T[i] + T[i-1]) * .5 K2 = f(tplus, Y[i-1] + .5 * h * K1) K3 = f(tplus, Y[i-1] + .5 * h * K2) K4 = f(T[i], Y[i-1] + h * K3) # print "K1 + 2 * K2 + 2 * K3 + K4.shape = ", (K1 + 2 * K2 + 2 * K3 + K4).shape Y[i] = Y[i-1] + (h / 6.) * (K1 + 2 * K2 + 2 * K3 + K4) return T, Y def plot_soliton(): N = 256 # grid = np.linspace(0,2.*pi, N) # s1, a1 = 25.**2., 2. # y1 = 3*s1*np.cosh(sqrt(s1)/2.*(grid-a1))**(-2.) # s2, a2 = 16.**2., 1. # y2 = 3*s2*np.cosh(sqrt(s2)/2.*(grid-a2))**(-2.) # plt.plot(grid,y1,'-k',linewidth=2.) # plt.plot(grid,y2,'-b',linewidth=2.) # plt.show() def unScaled(): # Set up grid and two-soliton initial data: x = (2.*np.pi/N)*np.arange(-N/2,N/2).reshape(N,1) A, B = 25., 16. A_shift, B_shift = 2., 1. y0 = (3.*A**2.*np.cosh(.5*(A*(x+2.)))**(-2.) + 3*B**2.*np.cosh(.5*(B*(x+1.)))**(-2.)).reshape(N,) k = np.concatenate(( np.arange(0,N/2) , np.array([0]) , np.arange(-N/2+1,0,1) )).reshape(N,) ik3 = 1j*k**3. def F_unscaled(t,u): out = -.5*1j*k*fft(ifft(u,axis=0)**2.,axis=0) + ik3* u return out tmax = .006 dt = .01*N**(-2.) nmax = int(round(tmax/dt)) nplt = int(np.floor((tmax/25.)/dt)) y0 = fft(y0,axis=0) T,Y = RK4(F_unscaled, y0, t0=0, t1=tmax, n=nmax) udata, tdata = np.real(ifft(y0,axis=0)).reshape(N,1), np.array(0.).reshape(1,1) for n in range(1,nmax+1): if np.mod(n,nplt) == 0: t = n*dt u = np.real( ifft(Y[n], axis=0) ).reshape(N,1) udata = np.concatenate((udata,np.nan_to_num(u)),axis=1) tdata = np.concatenate((tdata,np.array(t).reshape(1,1)),axis=1) return x, tdata, udata def Scaled(): # Set up grid and two-soliton initial data: x = (2.*np.pi/N)*np.arange(-N/2,N/2).reshape(N,1) A, B = 25., 16. A_shift, B_shift = 2., 1. y0 = (3.*A**2.*np.cosh(.5*(A*(x+2.)))**(-2.) + 3*B**2.*np.cosh(.5*(B*(x+1.)))**(-2.)).reshape(N,) k = np.concatenate(( np.arange(0,N/2) , np.array([0]) , np.arange(-N/2+1,0,1) )).reshape(N,) ik3 = 1j*k**3. def F_scaled(t,U): E = np.exp(-ik3*t) E_recip = E**(-1.) out = -.5*1j*E*k*fft(ifft(E_recip*U,axis=0)**2.,axis=0) return out tmax = .006 dt = .2*N**(-2.) nmax = int(round(tmax/dt)) nplt = int(np.floor((tmax/25.)/dt)) y0 = fft(y0,axis=0) T,Y = RK4(F_scaled, y0, t0=0, t1=tmax, n=nmax) udata, tdata = np.real(ifft(y0,axis=0)).reshape(N,1), np.array(0.).reshape(1,1) for n in range(1,nmax+1): if np.mod(n,nplt) == 0: t = n*dt u = np.real(ifft(np.exp(ik3*t)*(Y[n]),axis=0)).reshape(N,1) udata = np.concatenate((udata,np.nan_to_num(u)),axis=1) tdata = np.concatenate((tdata,np.array(t).reshape(1,1)),axis=1) return x, tdata, udata # x, tdata, udata = Scaled() x, tdata, udata = unScaled() # import sys; sys.exit() fig = plt.figure()# figsize=plt.figaspect(0.5)) #---- First subplot # ax = fig.add_subplot(121, projection='3d') ax = fig.gca(projection='3d') ax.view_init(elev=45., azim=150) tv, xv = np.meshgrid(tdata,x,indexing='ij') surf = ax.plot_surface(tv, xv, udata.T, rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=0, antialiased=False) tdata = tdata[0] ax.set_xlim(tdata[0], tdata[-1]) ax.set_ylim(-pi, pi) ax.invert_yaxis() ax.set_zlim(0., 4000.) ax.set_xlabel('T'); ax.set_ylabel('X'); ax.set_zlabel('Z') # plt.savefig('interacting_solitons.png',dpi=100) plt.show() return def tref_solitons(): # p27.m - Solve KdV eq. u_t + uu_x + u_xxx = 0 on [-pi,pi] by # FFT with integrating factor v = exp(-ik^3t)*u-hat. # Set up grid and two-soliton initial data: N = 256 dt = .4*N**(-2.) x = (2.*np.pi/N)*np.arange(-N/2,N/2).reshape(N,1) A, B = 25., 16. u = 3.*A**2.*np.cosh(.5*(A*(x+2.)))**(-2.) + 3*B**2.*np.cosh(.5*(B*(x+1.)))**(-2.); u = u.reshape(N,1) v = fft(u,axis=0) # k = [0:N/2-1 0 -N/2+1:-1]' k = np.concatenate(( np.arange(0,N/2) , np.array([0]) , np.arange(-N/2+1,0,1) )).reshape(N,1) ik3 = 1j*k**3. print "u = ", u print "v = ", v # print "k = ", k # This is correct # Solve PDE and plot results: tmax = 0.006; nplt = int(np.floor((tmax/45.)/dt)) nmax = int(round(tmax/dt)) print "nplt = ", nplt print "nmax = ", nmax udata, tdata = u, np.array(0.).reshape(1,1) for n in range(1,nmax+1): #= 1:nmax t = n*dt g = -.5j*dt*k E = np.exp(dt*ik3/2.) E2 = E**2. a = g*fft(np.real( ifft( v ,axis=0) )**2.,axis=0) b = g*fft(np.real( ifft(E*(v+a/2.),axis=0) )**2.,axis=0) # 4th-order c = g*fft(np.real( ifft(E*v + b/2.,axis=0) )**2.,axis=0) # Runge-Kutta d = g*fft(np.real( ifft(E2*v+E*c,axis=0) )**2.,axis=0) v = E2*v + (E2*a + 2*E*(b+c) + d)/6. if mod(n,nplt) == 0: u = np.real(ifft(v,axis=0)) # print n # print u udata = np.concatenate((udata,np.nan_to_num(u)),axis=1) tdata = np.concatenate((tdata,np.array(t).reshape(1,1)),axis=1) fig = plt.figure()# figsize=plt.figaspect(0.5)) #---- First subplot # ax = fig.add_subplot(121, projection='3d') ax = fig.gca(projection='3d') # ax.view_init(elev=40., azim=70) ax.view_init(elev=20., azim=30) tv, xv = np.meshgrid(tdata.reshape((tdata.shape[1],)),x.reshape((N,)),indexing='ij') print tv.shape print xv.shape print udata.shape surf = ax.plot_surface(tv, xv, udata.T, rstride=5, cstride=5, cmap=cm.coolwarm, linewidth=0, antialiased=False) tdata = tdata[0] print tdata ax.set_xlim(tdata[0], tdata[-1]) ax.set_ylim(x[0], x[-1]) ax.set_zlim(0., 10000.) ax.set_xlabel('T') ax.set_ylabel('X') ax.set_zlabel('Z') plt.show() return # # def plot_burgers(): # N = 256 # # grid = np.linspace(0,2.*pi, N) # # s1, a1 = 25.**2., 2. # # y1 = 3*s1*np.cosh(sqrt(s1)/2.*(grid-a1))**(-2.) # # s2, a2 = 16.**2., 1. # # y2 = 3*s2*np.cosh(sqrt(s2)/2.*(grid-a2))**(-2.) # # plt.plot(grid,y1,'-k',linewidth=2.) # # plt.plot(grid,y2,'-b',linewidth=2.) # # plt.show() # # def unScaled(): # # Set up grid and two-soliton initial data: # x = (2.*np.pi/N)*np.arange(-N/2,N/2).reshape(N,1) # A, B = 25., 16. # A_shift, B_shift = 2., 1. # y0 = (3.*A**2.*np.cosh(.5*(A*(x+2.)))**(-2.) + 3*B**2.*np.cosh(.5*(B*(x+1.)))**(-2.)).reshape(N,) # k = np.concatenate(( np.arange(0,N/2) , # np.array([0]) , # np.arange(-N/2+1,0,1) )).reshape(N,) # ik3 = 1j*k**3. # # def F_unscaled(t,u): # out = -.5*1j*k*fft(ifft(u,axis=0)**2.,axis=0) + ik3* u # return out # # # tmax = .006 # dt = .01*N**(-2.) # nmax = int(round(tmax/dt)) # nplt = int(np.floor((tmax/25.)/dt)) # y0 = fft(y0,axis=0) # T,Y = RK4(F_unscaled, y0, t0=0, t1=tmax, n=nmax) # # udata, tdata = np.real(ifft(y0,axis=0)).reshape(N,1), np.array(0.).reshape(1,1) # for n in range(1,nmax+1): # if np.mod(n,nplt) == 0: # t = n*dt # u = np.real( ifft(Y[n], axis=0) ).reshape(N,1) # udata = np.concatenate((udata,np.nan_to_num(u)),axis=1) # tdata = np.concatenate((tdata,np.array(t).reshape(1,1)),axis=1) # # return x, tdata, udata # # # # # def Scaled(): # # Set up grid and two-soliton initial data: # x = (2.*np.pi/N)*np.arange(-N/2,N/2).reshape(N,1) # A, B = 25., 16. # A_shift, B_shift = 2., 1. # y0 = (3.*A**2.*np.cosh(.5*(A*(x+2.)))**(-2.) + 3*B**2.*np.cosh(.5*(B*(x+1.)))**(-2.)).reshape(N,) # k = np.concatenate(( np.arange(0,N/2) , # np.array([0]) , # np.arange(-N/2+1,0,1) )).reshape(N,) # ik3 = 1j*k**3. # # def F_scaled(t,U): # E = np.exp(-ik3*t) # E_recip = E**(-1.) # out = -.5*1j*E*k*fft(ifft(E_recip*U,axis=0)**2.,axis=0) # return out # # # tmax = .006 # dt = .2*N**(-2.) # nmax = int(round(tmax/dt)) # nplt = int(np.floor((tmax/25.)/dt)) # y0 = fft(y0,axis=0) # T,Y = RK4(F_scaled, y0, t0=0, t1=tmax, n=nmax) # # udata, tdata = np.real(ifft(y0,axis=0)).reshape(N,1), np.array(0.).reshape(1,1) # for n in range(1,nmax+1): # if np.mod(n,nplt) == 0: # t = n*dt # u = np.real(ifft(np.exp(ik3*t)*(Y[n]),axis=0)).reshape(N,1) # udata = np.concatenate((udata,np.nan_to_num(u)),axis=1) # tdata = np.concatenate((tdata,np.array(t).reshape(1,1)),axis=1) # # return x, tdata, udata # # # # # x, tdata, udata = Scaled() # x, tdata, udata = unScaled() # # import sys; sys.exit() # fig = plt.figure()# figsize=plt.figaspect(0.5)) # #---- First subplot # # ax = fig.add_subplot(121, projection='3d') # ax = fig.gca(projection='3d') # ax.view_init(elev=45., azim=150) # tv, xv = np.meshgrid(tdata,x,indexing='ij') # surf = ax.plot_surface(tv, xv, udata.T, rstride=1, cstride=1, cmap=cm.coolwarm, # linewidth=0, antialiased=False) # # tdata = tdata[0] # ax.set_xlim(tdata[0], tdata[-1]) # ax.set_ylim(-pi, pi) # ax.invert_yaxis() # ax.set_zlim(0., 4000.) # ax.set_xlabel('T'); ax.set_ylabel('X'); ax.set_zlabel('Z') # # plt.savefig('interacting_solitons.png',dpi=100) # plt.show() # return if __name__ == "__main__": plot_soliton() ``` #### File: Vol4B/TotalVariation/solution.py ```python from __future__ import division import numpy as np def cheb(N): x = np.cos((np.pi/N)*np.linspace(0,N,N+1)) x.shape = (N+1,1) lin = np.linspace(0,N,N+1) lin.shape = (N+1,1) c = np.ones((N+1,1)) c[0], c[-1] = 2., 2. c = c*(-1.)**lin X = x*np.ones(N+1) # broadcast along 2nd dimension (columns) dX = X - X.T # print " x = \n", x, "\n" # print " c = \n", c, "\n" # print " X = \n", X, "\n" # print " dX = \n", dX, "\n" D = (c*(1./c).T)/(dX + np.eye(N+1)) D = D - np.diag(np.sum(D.T,axis=0)) x.shape = (N+1,) return D, x def cheb_loop(N): def p(j1): if (j1==0 or j1 == N): return 2. else: return 1. x = np.cos(np.pi*np.arange(N+1)/N) D = np.zeros((N+1,N+1)) # j represents column index for j in range(0,N+1): for i in range(0,j)+range(j+1,N+1): D[i,j] = ((-1.)**(i+j))*p(i)/( p(j)*(x[i]- x[j]) ) # Values on the main diagonal for j in xrange(1,N): D[j,j] = -x[j]/(2.*(1-x[j]**2.)) D[0,0] = (1.+2.*N**2.)/6. D[N,N] = -(1.+2.*N**2.)/6. return D,x def cheb_vectorized(N): x = np.cos((np.pi/N)*np.linspace(0,N,N+1)) x.shape = (N+1,1) lin = np.linspace(0,N,N+1) lin.shape = (N+1,1) c = np.ones((N+1,1)) c[0], c[-1] = 2., 2. c = c*(-1.)**lin X = x*np.ones(N+1) # broadcast along 2nd dimension (columns) dX = X - X.T D = (c*(1./c).T)/(dX + np.eye(N+1)) D = D - np.diag(np.sum(D.T,axis=0)) x.shape = (N+1,) # Here we return the differentation matrix and the Chebychev points, # numbered from x_0 = 1 to x_N = -1 return D, x ```
{ "source": "JoshuaMaina/golclinics-dsa", "score": 4 }
#### File: golclinics-dsa/gol-assignments/stacks.py ```python def reverse_string(string): stack = [] for chr in string: stack.append(chr) new_string = "" while len(stack): new_string += stack.pop() return new_string def brackets_match(string_of_brackets): close_to_open = { '}': '{', ')': '(', '[': ']' } stack = [] for bracket in string_of_brackets: if bracket in close_to_open: if len(stack): opener = stack.pop() if opener != close_to_open[bracket]: return False else: return False else: stack.append(bracket) return not len(stack) ```
{ "source": "joshuamangiola/python-itunes-playlist-converter", "score": 3 }
#### File: joshuamangiola/python-itunes-playlist-converter/scraper.py ```python from urllib.request import urlopen from bs4 import BeautifulSoup import csv playlist_url = "PLAYLIST_URL_GOES_HERE" page = urlopen(playlist_url) soup = BeautifulSoup(page, "html.parser") playlist_title = soup.find("h1", class_="product-header__title").get_text() track_list = soup.find("ul", class_="tracklist") soup.find_all('tracklist-item__text__headline') class playlistItem: def __init__(self, title, artist): self.title = title self.artist = artist playlist = [] for pi in track_list.select('li.tracklist-item'): title = pi.find("span", class_="tracklist-item__text__headline").get_text()[2:-1] artist = pi.find("a", class_="table__row__link--inline").get_text() playlist.append(playlistItem(title, artist)) with open('output.csv', 'w') as csvfile: fieldnames = ['Title', 'Artist'] writer = csv.DictWriter(csvfile, fieldnames=fieldnames) writer.writeheader() for pi in playlist: writer.writerow({'Title': pi.title, 'Artist': pi.artist}) print(playlist_title) for pi in playlist: print('\nTitle: ' + pi.title + '\nArtist: ' + pi.artist) ```