metadata
dict
text
stringlengths
60
3.49M
{ "source": "joshuamarango/aws-mongo-cdc-kinesis", "score": 2 }
#### File: aws_mongo_cdc_kinesis/core/bookmark.py ```python import boto3 from botocore.client import BaseClient class StreamBookmark: def __init__(self): self.dynamo: BaseClient = boto3.client("dynamo") def save(self, resume_token: str) -> None: """Save resume_token to DynamoDB""" try: self.dynamo.insert_item(data=resume_token) except: print("error saving bookmark") ``` #### File: aws_mongo_cdc_kinesis/test/test_aws_dynamodb.py ```python import os import boto3 import pytest import moto @pytest.fixture(scope='function') def aws_credentials(): """Mocked AWS Credentials for moto.""" os.environ['AWS_ACCESS_KEY_ID'] = 'testing' os.environ['AWS_SECRET_ACCESS_KEY'] = 'testing' os.environ['AWS_SECURITY_TOKEN'] = '<PASSWORD>' os.environ['AWS_SESSION_TOKEN'] = '<PASSWORD>' @pytest.fixture(scope='function') def dynamodb(aws_credentials): with moto.mock_dynamodb2(): yield boto3.client("dynamodb", region_name='eu-west-1') def test_create_dynamodb_table(dynamodb): """Create Cloudwatch log group""" pass ```
{ "source": "JoshuaMarksberry/JarvisVirtualAssistant", "score": 3 }
#### File: JoshuaMarksberry/JarvisVirtualAssistant/main.py ```python import pyttsx3 #pip install pyttsx3 import speech_recognition as sr #pip install speechRecognition import datetime #pip install datetime import wikipedia #pip install wikipedia import webbrowser #pip install pipwin import os #pipwin install pyaudio import smtplib MASTER = "Sir" #print("Initiallizing Jarvis") engine = pyttsx3.init("sapi5") voices = engine.getProperty('voices') engine.setProperty('voice',voices[-0].id) #number in [] corresponds to speech settings voices # Voice Options [-3, -2, -2, -1, 0, -0, 1, 2] pick one # Speak function will speak the string which is passed def speak(text): engine.say(text) engine.runAndWait() #This function will wish you as per the current time def wishMe(): hour = int(datetime.datetime.now().hour) if hour>=0 and hour <12: speak("Good Morning" + MASTER) elif hour>=12 and hour<18: speak("Good Afternoon" + MASTER) else: speak("Good Evening" + MASTER) #speak("I am Jarvis. How may I help you sir?") #This function will take the command from microphone def takeCommand(): r =sr.Recognizer() with sr.Microphone() as source: print("Listening....") audio = r.listen(source) try : print("Recognizing...") query = r.recognize_google(audio, language = 'en-us' ) print(f"user said: {query}\n") except Exception: print("Say that again sir") query = None return query def sendEmail(to, content): server = smtplib.SMTP('smptp.gmail.com', 587) server.ehlo() server.starttls() server.login('<EMAIL>', '<PASSWORD>') server.sendmail("<EMAIL>", to, content) server.close #Main program starts here... def main(): #speak("Initializing Jarvis....") wishMe() query = takeCommand() #Logic for excuting tasks per the query if 'wikipedia' in query.lower(): speak('Searching wikipedia...') query = query.replace("wikipedia", "") results = wikipedia.summary(query, sentences = 2) #2 print(results) speak(results) #Make sure chrome.exe is in the correct directory elif 'open youtube' in query.lower(): webbrowser.open('http://youtube.com') elif 'open google' in query.lower(): webbrowser.open('http://google.com') #your own directory below navigate to your own music elif 'play music' in query.lower(): songs_dir = 'C:\\Users\\joshua\\Music\\Playlists\\' songs = os.listdir(songs_dir) os.startfile(os.path.join(songs_dir, songs[1])) elif 'the time' in query.lower(): strTime = datetime.datetime.now().strftime("%H:%M:%S") speak(f"{MASTER} the time is {strTime}") elif 'email to me' in query.lower(): try: speak("What should I send") content = takeCommand() to = "<EMAIL>" sendEmail(to,content) speak("Email has been sent") except Exception: print() main() ```
{ "source": "joshuaMarple/phase-vocoder", "score": 4 }
#### File: phase-vocoder/app/Duration.py ```python import subprocess import os from sys import platform as _platform from lib import pydub def changeDuration(filename,percent): """ Input: filename , tones filename (string): the path to the soundfile tones (integer): the number of semitones to change(from negative number to positive number) Outputs: pitchoutput.wav Description: This function will change the pitch of a soundfile """ tempochange = "-tempo="+str(percent) if _platform == "linux" or _platform == "linux2": fn = os.path.join(os.path.abspath(os.path.dirname(__file__)), 'soundpitch') elif _platform == "darwin": fn = os.path.join(os.path.abspath(os.path.dirname(__file__)), 'soundpitchmac') elif _platform == "win32": fn = os.path.join(os.path.abspath(os.path.dirname(__file__)), 'soundpitchwin32.exe') subprocess.call([fn,filename, "duroutput.wav","-speech", tempochange]) return "duroutput.wav" def changeGapDuration(filename,gaptime,gapduration,percentage): """ Input: filename , gaptime, gapduration , tones filename (string): the path to the soundfile gaptime (float): the time to begin changing the pitch gapduration (float): the amount of sound to be changed(from the gaptime start to the end of this length) tones (integer): the number of semitones to change(from negative number to positive number) Outputs: processefile.wav Description: This function will change the pitch of a soundfile """ file = pydub.AudioSegment.from_wav(filename) newdurationpart = file[int((gaptime* 1000)) : int(((gaptime+gapduration) * 1000))] first = file[:int(gaptime * 1000)] last = file[int((gaptime+gapduration) * 1000):] newdurationpart.export("durinput.wav", format="wav") changeDuration("durinput.wav",percentage) newdurationpart = pydub.AudioSegment.from_wav("duroutput.wav") newfile = first + newdurationpart + last newfile.export(filename, format="wav") os.remove("durinput.wav") os.remove("duroutput.wav") return newfile ``` #### File: lib/tgt/agreement.py ```python from __future__ import division, print_function import itertools import re import numpy as np from .core import IntervalTier, PointTier, Time # -------------- # Fleiss's kappa # -------------- def fleiss_observed_agreement(a): '''Return the observed agreement for the input array.''' def per_subject_agreement(row): '''Return the observed agreement for the i-th subject.''' number_of_objects = np.sum(row) return (np.sum(np.square(row)) - number_of_objects) / (number_of_objects * (number_of_objects - 1)) row_probabilities = np.apply_along_axis(per_subject_agreement, axis=1, arr=a) return np.mean(row_probabilities) def fleiss_chance_agreement(a): '''Returns the chance agreement for the input array.''' def per_category_probabilities(a): '''The proportion of all assignments which were to the j-th category.''' cat_sums = np.sum(a, axis=0) return cat_sums / np.sum(cat_sums) return np.sum(np.square(per_category_probabilities(a))) def fleiss_kappa(a): '''Calculates Fleiss's kappa for the input array (with categories in columns and items in rows).''' p = fleiss_observed_agreement(a) p_e = fleiss_chance_agreement(a) return (p - p_e) / (1 - p_e) # ------------- # Cohen's kappa # ------------- def cohen_kappa(a): '''Calculates Cohen's kappa for the input array.''' totsum = np.sum(a) colsums = np.sum(a, 0) rowsums = np.sum(a, 1) # Observed agreement. p = np.sum(np.diagonal(a)) / totsum # Chance agreement. p_e = np.sum((colsums * rowsums) / totsum ** 2) return (p - p_e) / (1 - p_e) # ---------- # Scott's pi # ---------- def scott_pi(a): '''Calculates Scott's Pi for the input array.''' totsum = np.sum(a) colsums = np.sum(a, 0) rowsums = np.sum(a, 1) # Observed agreement. p = np.sum(np.diagonal(a)) / totsum # Chance agreement. joint_marginal_props = (colsums + rowsums) / (2 * totsum) p_e = np.sum(joint_marginal_props ** 2) return (p - p_e) / (1 - p_e) # ---------------------------------------------------------- # Functions producing contingency tables from lists of labels # ---------------------------------------------------------- def align_labels(tiers_list, precision=None, regex=r'[^\s]+'): '''Create a list of lists for all time-aligned Interval or Point object in tiers_list, whose text matches regex. For example: [[label_1-tier_1, label_1-tier_2, label_1-tier_3], [label_2-tier_1, label_2-tier_2, label_2-tier_3], ... [label_n-tier_n, label_n-tier_n, label_n-tier_n]] The allowed mismatch between object's timestamps can be controlled via the precision parameter. ''' # If precision is supplied, temporarily change # the value of Time._precision if precision is not None: precision_old = Time._precision Time._precision = precision if len(tiers_list) < 2: raise Exception('At least two tiers need to be provided') # Check if all elements of tiers_list are either # either PointTiers or IntervalTiers. elif (not (all([isinstance(x, IntervalTier) for x in tiers_list]) or all([isinstance(x, PointTier) for x in tiers_list]))): raise TypeError('Only objects of types IntervalTier or PointTier can be aligned.') elif len(set([len(x) for x in tiers_list])) > 1: raise Exception('Input tiers differ in the number of objects.') labels_aligned = [] for intervals in zip(*[x for x in tiers_list]): start_times = [x.start_time for x in intervals] end_times = [x.end_time for x in intervals] labels = [x.text.strip() for x in intervals] if any([not re.search(regex, x) for x in labels]): # Only go on if labels of all intervals match the regular expression. continue # Check if start and end times match. elif start_times.count(start_times[0]) != len(start_times): raise Exception('Objects\' time stamps do not match: {0}'.format(start_times)) elif end_times.count(end_times[0]) != len(end_times): raise Exception('Objects\' time stamps do not match: {0}'.format(end_times)) else: labels_aligned.append(labels) # Reset Time._precision to its original value if precision is not None: Time._precision = precision_old return labels_aligned def cont_table(tiers_list, precision, regex): '''Produce a contingency table from annotations in tiers_list whose text matches regex, and whose time stamps are not misaligned by more than precision. ''' labels_aligned = align_labels(tiers_list, precision, regex) # List of unique labels from both lists. categories = list(set(itertools.chain(*labels_aligned))) # A 2-by-2 array if len(labels_aligned[0]) == 2: categories_product = itertools.product(categories, categories) table = np.array([labels_aligned.count(list(x)) for x in categories_product]) table.shape = (len(categories), len(categories)) # An n-by-m array else: table = np.array([x.count(y) for x in labels_aligned for y in categories]) table.shape = (len(labels_aligned), len(categories)) return table def agreement(tiers_list, method, precision=None, regex=r'[^\s]+'): _AGREEMENT_METHODS = {'cohen-kappa': cohen_kappa, 'fleiss-kappa': fleiss_kappa, 'scott-pi': scott_pi} if method not in _AGREEMENT_METHODS: available_methods = ', '.join(_AGREEMENT_METHODS.keys()) raise Exception('Unsupported method. Available options are {0}.'.format(available_methods)) elif len(tiers_list) < 2: raise Exception('At least two tiers need to be provided') elif len(tiers_list) == 2 and method in ['cohen-kappa', 'scott-pi']: agr = _AGREEMENT_METHODS[method](cont_table(tiers_list, precision, regex)) return [x.name for x in tiers_list] + [agr] elif len(tiers_list) > 2 and method == 'fleiss-kappa': agr = _AGREEMENT_METHODS[method](cont_table(tiers_list, precision, regex)) return [x.name for x in tiers_list] + [agr] else: tier_combinations = itertools.combinations(tiers_list, 2) agr = [] for tiers_pair in tier_combinations: agr_pair = _AGREEMENT_METHODS[method](cont_table(tiers_pair, precision, regex)) agr.append([x.name for x in tiers_pair] + [agr_pair]) return agr ``` #### File: lib/tgt/io.py ```python from __future__ import division, print_function import copy import codecs import datetime import collections from .core import TextGrid, IntervalTier, Interval, PointTier, Point, Time def read_textgrid(filename, encoding='utf-8', include_empty_intervals=False): '''Read a Praat TextGrid file and return a TextGrid object. If include_empty_intervals is False (the default), empty intervals are excluded. If True, they are included. Empty intervals from specific tiers can be also included by specifying tier names as a string (for one tier) or as a list.''' with codecs.open(filename, 'r', encoding) as f: # Read whole file into memory ignoring empty lines and lines consisting # solely of a single double quotes. stg = [line.strip() for line in f.readlines() if line.strip() not in ['', '"']] if stg[0] != 'File type = "ooTextFile"': raise Exception(filename) if stg[1] != 'Object class = "TextGrid"': raise Exception(filename) # Determine the TextGrid format. if stg[2].startswith('xmin'): return read_long_textgrid(filename, stg, include_empty_intervals) else: return read_short_textgrid(filename, stg, include_empty_intervals) def read_short_textgrid(filename, stg, include_empty_intervals=False): '''Read a Praat short TextGrid file and return a TextGrid object.''' def read_interval_tier(stg_extract): '''Read and return an IntervalTier from a short TextGrid.''' name = stg_extract[1].strip('"') # name w/o quotes start_time = Time(stg_extract[2]) end_time = Time(stg_extract[3]) include_empty_intervals_this_tier = include_empty_intervals_in_tier(name, include_empty_intervals) it = IntervalTier(start_time, end_time, name) i = 5 while i < len(stg_extract): text = stg_extract[i + 2].strip('"') # text w/o quotes if text.strip() != '' or include_empty_intervals_this_tier: it.add_annotation(Interval( Time(stg_extract[i]), # left bound Time(stg_extract[i + 1]), # right bound text)) i += 3 return it def read_point_tier(stg_extract): '''Read and return a PointTier (called TextTier) from a short TextGrid.''' name = stg_extract[1].strip('"') # name w/o quotes start_time = stg_extract[2] end_time = stg_extract[3] pt = PointTier(start_time, end_time, name) i = 5 while i < len(stg_extract): text = stg_extract[i + 1].strip('"') # text w/o quotes pt.add_annotation(Point( stg_extract[i], # time text)) i += 2 return pt tg = TextGrid(filename) read_start_time = stg[2] read_end_time = stg[3] if stg[4] != '<exists>': raise Exception(filename) read_no_of_tiers = stg[5] index = 6 while index < len(stg): num_obj = int(stg[index + 4]) if stg[index] == '"IntervalTier"': tg.add_tier(read_interval_tier(stg[index:index + 5 + num_obj * 3])) index += 5 + (num_obj * 3) elif stg[index] == '"TextTier"': tg.add_tier(read_point_tier(stg[index:index + 5 + num_obj * 2])) index += 5 + (num_obj * 2) else: raise Exception('Unknown tier type: {0}'.format(stg[index])) return tg def read_long_textgrid(filename, stg, include_empty_intervals=False): '''Read a Praat long TextGrid file and return a TextGrid object.''' def get_attr_val(x): '''Extract the attribute value from a long TextGrid line.''' return x.split(' = ')[1] def read_interval_tier(stg_extract): '''Read and return an IntervalTier from a long TextGrid.''' name = get_attr_val(stg_extract[2])[1:-1] # name w/o quotes start_time = get_attr_val(stg_extract[3]) end_time = get_attr_val(stg_extract[4]) include_empty_intervals_this_tier = include_empty_intervals_in_tier(name, include_empty_intervals) it = IntervalTier(start_time, end_time, name) i = 7 while i < len(stg_extract): text = get_attr_val(stg_extract[i + 2])[1:-1] # text w/o quotes if text.strip() != '' or include_empty_intervals_this_tier: it.add_annotation(Interval( Time(get_attr_val(stg_extract[i])), # left bound Time(get_attr_val(stg_extract[i + 1])), # right bound text)) i += 4 return it def read_point_tier(stg_extract): '''Read and return a PointTier (called TextTier) from a long TextGrid.''' name = get_attr_val(stg_extract[2])[1:-1] # name w/o quotes start_time = get_attr_val(stg_extract[3]) end_time = get_attr_val(stg_extract[4]) pt = PointTier(start_time, end_time, name) i = 7 while i < len(stg_extract): text = get_attr_val(stg_extract[i + 1])[1:-1] # text w/o quotes pt.add_annotation(Point( Time(get_attr_val(stg_extract[i])), # time text)) i += 3 return pt tg = TextGrid(filename) read_start_time = get_attr_val(stg[2]) read_end_time = get_attr_val(stg[3]) if stg[4].split()[1] != '<exists>': raise Exception(filename) read_no_of_tiers = get_attr_val(stg[5]) index = 7 while index < len(stg): num_obj = int(get_attr_val(stg[index + 5])) if get_attr_val(stg[index + 1]) == '"IntervalTier"': tg.add_tier(read_interval_tier(stg[index:index + 6 + num_obj * 4])) index += 6 + (num_obj * 4) elif get_attr_val(stg[index + 1]) == '"TextTier"': tg.add_tier(read_point_tier(stg[index:index + 6 + num_obj * 3])) index += 6 + (num_obj * 3) else: raise Exception('Unknown tier type: {0}'.format(stg[index])) return tg def include_empty_intervals_in_tier(tier_name, include_empty_intervals): """Check whether to include empty intervals for a particular tier""" if isinstance(include_empty_intervals, bool): return include_empty_intervals elif isinstance(include_empty_intervals, str): return tier_name == include_empty_intervals elif isinstance(include_empty_intervals, list): return tier_name in include_empty_intervals else: raise TypeError('Invalid type of include_empty_intervals: {0}.'.format(type(include_empty_intervals))) ## Functions for writing TextGrid files ##---------------------------------------------------------------------------- def correct_start_end_times_and_fill_gaps(textgrid): '''Correct the start/end times of all tiers and fill gaps. Returns a copy of a textgrid, where empty gaps between intervals are filled with empty intervals and where start and end times are unified with the start and end times of the whole textgrid. ''' textgrid_copy = copy.deepcopy(textgrid) for tier in textgrid_copy: if isinstance(tier, IntervalTier): tier_corrected = tier.get_copy_with_gaps_filled(textgrid.start_time, textgrid.end_time) position = textgrid_copy.tiers.index(tier) textgrid_copy.tiers[position] = tier_corrected return textgrid_copy def export_to_short_textgrid(textgrid): '''Convert a TextGrid object into a string of Praat short TextGrid format.''' result = ['File type = "ooTextFile"', 'Object class = "TextGrid"', '', textgrid.start_time, textgrid.end_time, '<exists>', len(textgrid)] textgrid_corrected = correct_start_end_times_and_fill_gaps(textgrid) for tier in textgrid_corrected: result += ['"' + tier.tier_type() + '"', '"' + tier.name + '"', tier.start_time, tier.end_time, len(tier)] if isinstance(tier, IntervalTier): result += [u'{0}\n{1}\n"{2}"'.format(obj.start_time, obj.end_time, obj.text) for obj in tier] elif isinstance(tier, PointTier): result += [u'{0}\n"{1}"'.format(obj.time, obj.text) for obj in tier] else: raise Exception('Unknown tier type: {0}'.format(tier.name)) return '\n'.join([unicode(x) for x in result]) def export_to_long_textgrid(textgrid): '''Convert a TextGrid object into a string of Praat long TextGrid format.''' result = ['File type = "ooTextFile"', 'Object class = "TextGrid"', '', 'xmin = ' + unicode(textgrid.start_time), 'xmax = ' + unicode(textgrid.end_time), 'tiers? <exists>', 'size = ' + unicode(len(textgrid)), 'item []:'] textgrid_corrected = correct_start_end_times_and_fill_gaps(textgrid) for i, tier in enumerate(textgrid_corrected): result += ['\titem [{0}]:'.format(i + 1), '\t\tclass = "{0}"'.format(tier.tier_type()), '\t\tname = "{0}"'.format(tier.name), '\t\txmin = ' + unicode(tier.start_time), '\t\txmax = ' + unicode(tier.end_time), '\t\tintervals: size = ' + unicode(len(tier))] if isinstance(tier, IntervalTier): for j, obj in enumerate(tier): result += ['\t\tintervals [{0}]:'.format(j + 1), '\t\t\txmin = ' + unicode(obj.start_time), '\t\t\txmax = ' + unicode(obj.end_time), '\t\t\ttext = "' + obj.text + '"'] elif isinstance(tier, PointTier): for j, obj in enumerate(tier): result += ['\t\tpoints [{0}]:'.format(j + 1), '\t\t\tnumber = ' + unicode(obj.time), '\t\t\tmark = "' + obj.text + '"'] else: raise Exception('Unknown tier type: {0}'.format(tier.name)) return '\n'.join([unicode(x) for x in result]) def export_to_elan(textgrid, encoding='utf-8', include_empty_intervals=False, include_point_tiers=True, point_tier_annotation_duration=0.04): '''Convert a TextGrid object into a string of ELAN eaf format.''' time_slots = collections.OrderedDict() def get_time_slot_id(time, ts_dict=time_slots): '''Returns (and possibly creates) the time slot id of time.''' time_in_ms = int(time * 1000) if time_in_ms not in ts_dict: ts_id = 'ts' + str(len(ts_dict) + 1) ts_dict[time_in_ms] = ts_id return ts_dict[time_in_ms] # Create ELAN header head = [ u'<?xml version="1.0" encoding="{0}"?>'.format(encoding.upper()), u'<ANNOTATION_DOCUMENT AUTHOR="TextGridTools" DATE="{0}" FORMAT="2.7" VERSION="2.7" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="http://www.mpi.nl/tools/elan/EAFv2.7.xsd">'.format(datetime.datetime.now().strftime('%Y-%m-%dT%H:%M:%S+00:00')), u'<HEADER MEDIA_FILE="" TIME_UNITS="milliseconds">', u'\t<PROPERTY NAME="lastUsedAnnotationId">0</PROPERTY>', u'</HEADER>'] # Create annotations annotation_id_count = 1 annotations = [] textgrid_copy = correct_start_end_times_and_fill_gaps(textgrid) if include_empty_intervals else textgrid for tier in textgrid_copy: annotations.append(u'<TIER DEFAULT_LOCALE="en" LINGUISTIC_TYPE_REF="default-lt" TIER_ID="{0}">'.format(tier.name)) if isinstance(tier, IntervalTier): for interval in tier: if include_empty_intervals or interval.text != '': continue annotations += [ u'<ANNOTATION>', u'\t<ALIGNABLE_ANNOTATION ANNOTATION_ID="{0}" TIME_SLOT_REF1="{1}" TIME_SLOT_REF2="{2}">'.format('a' + str(annotation_id_count), get_time_slot_id(interval.start_time), get_time_slot_id(interval.end_time)), u'\t\t<ANNOTATION_VALUE>{0}</ANNOTATION_VALUE>'.format(interval.text), u'\t</ALIGNABLE_ANNOTATION>', u'</ANNOTATION>'] annotation_id_count += 1 elif isinstance(tier, PointTier): if include_point_tiers: for point in tier.points: annotations += [ u'<ANNOTATION>', u'\t<ALIGNABLE_ANNOTATION ANNOTATION_ID="{0}" TIME_SLOT_REF1="{1}" TIME_SLOT_REF2="{2}">'.format('a' + str(annotation_id_count), get_time_slot_id(point.time), get_time_slot_id(point.time + point_tier_annotation_duration)), u'\t\t<ANNOTATION_VALUE>{0}</ANNOTATION_VALUE>'.format(point.text), u'\t</ALIGNABLE_ANNOTATION>', u'</ANNOTATION>'] annotation_id_count += 1 else: raise Exception('Unknown tier type: {0}'.format(tier.name)) annotations.append(u'</TIER>') # Create time stamp information time_info = [u'<TIME_ORDER>'] for time_value, time_slot_id in time_slots.items(): time_info.append(u'\t<TIME_SLOT TIME_SLOT_ID="{0}" TIME_VALUE="{1}"/>'.format(time_slot_id, str(time_value))) time_info.append(u'</TIME_ORDER>') # Create ELAN footer foot = [u'<LINGUISTIC_TYPE GRAPHIC_REFERENCES="false" LINGUISTIC_TYPE_ID="default-lt" TIME_ALIGNABLE="true"/>', u'<LOCALE COUNTRY_CODE="US" LANGUAGE_CODE="en"/>', u'</ANNOTATION_DOCUMENT>'] eaf = head + time_info + annotations + foot return '\n'.join([unicode(x) for x in eaf]) def export_to_table(textgrid, separator=','): '''Convert a TextGrid object into a table with fields delimited with the specified separator (comma by default).''' result = [separator.join(['tier_name', 'tier_type', 'start_time', 'end_time', 'text'])] for tier in textgrid: if isinstance(tier, IntervalTier): for obj in tier: if obj.text: result.append(separator.join([unicode(tier.name), unicode(tier.tier_type()), unicode(obj.start_time), unicode(obj.end_time), obj.text])) elif isinstance(tier, PointTier): for obj in tier: result.append(separator.join([unicode(tier.name), unicode(tier.tier_type()), unicode(obj.time), unicode(obj.time), obj.text])) else: raise Exception('Unknown tier type: {0}'.format(tier.name)) return '\n'.join([unicode(x) for x in result]) # Listing of currently supported export formats. _EXPORT_FORMATS = { # Export to Praat TextGrid in short format 'short': export_to_short_textgrid, # Export to Praat TextGrid in long (i.e., standard) format 'long': export_to_long_textgrid, # Export to ELAN .eaf format 'eaf': export_to_elan, # Export to a table 'table': export_to_table } def write_to_file(textgrid, filename, format='short', encoding='utf-8', **kwargs): '''Write a TextGrid object to a file in the specified format.''' with codecs.open(filename, 'w', encoding) as f: if format in _EXPORT_FORMATS: f.write(_EXPORT_FORMATS[format](textgrid, **kwargs)) else: raise Exception('Unknown output format: {0}'.format(format)) ``` #### File: lib/tgt/util.py ```python from __future__ import division import re from .core import TextGrid, IntervalTier, Interval ## High-level functions ##---------------------------------------------------------------------------- def shift_boundaries(tier, left, right): """ Return a copy of the tier with boundaries shifted by the specified amount of time (in seconds). Positive values expand the tier and negative values shrink it, i.e.: * positive value of left shifts the left boundary to the left * negative value of left shifts the left boundary to the right * positive value of right shifts the right boundary to the right * negative value of right shifts the right boundary to the left. """ tier_end_shifted = tier.end_time + left + right tier_shifted = IntervalTier(start_time=0, end_time=tier_end_shifted, name=tier.name) for i, interval in enumerate(tier.intervals): if interval.end_time <= left * -1: continue elif i > 0 and interval.start_time > left * -1: interval_start_shifted = interval.start_time + left else: interval_start_shifted = 0 interval_end_shifted = interval.end_time + left if (interval_start_shifted >= tier_end_shifted): break elif i == len(tier.intervals) - 1 or interval_end_shifted > tier_end_shifted: interval_end_shifted = tier_end_shifted tier_shifted.add_annotation(Interval(interval_start_shifted, interval_end_shifted, interval.text)) return tier_shifted def get_overlapping_intervals(tier1, tier2, regex=r'[^\s]+', overlap_label=None): '''Return a list of overlaps between intervals of tier1 and tier2. If no overlap_label is specified, concatenated labels of overlapping intervals are used as the resulting label. All nonempty intervals are included in the search by default. ''' if not isinstance(tier2, IntervalTier): raise TypeError('Argument is not an IntervalTier') intervals1 = tier1.intervals intervals2 = tier2.intervals overlaps = [] i, j = 0, 0 while i < len(tier1) and j < len(tier2): lo = max(intervals1[i].start_time, intervals2[j].start_time) hi = min(intervals1[i].end_time, intervals2[j].end_time) if (lo < hi and re.search(regex, intervals1[i].text) and re.search(regex, intervals2[j].text)): if overlap_label is None: text = '+'.join([intervals1[i].text, intervals2[j].text]) else: text = overlap_label overlaps.append(Interval(lo, hi, text)) if intervals1[i].end_time < intervals2[j].end_time: i += 1 else: j += 1 return overlaps def concatenate_textgrids(textgrids, ignore_nonmatching_tiers=False): '''Concatenate Tiers with matching names. TextGrids are concatenated in the order they are specified. If ignore_nonmatching_tiers is False, an exception is raised if the number and the names of tiers differ between TextGrids. ''' tier_names_intersection = set.intersection( *[set(tg.get_tier_names()) for tg in textgrids]) # Check whether the TextGrids have the same number of tiers # and whether tier names match. If they don't # and if ignore_nonmatching_tiers is False, raise an exception. if (not ignore_nonmatching_tiers and not all([len(tier_names_intersection) == len(tg) for tg in textgrids])): raise Exception('TextGrids have different numbers of tiers or tier names do not match.') tot_duration = 0 tiers = {} # tier_name : tgt.Tier() for textgrid in textgrids: for tier in textgrid: if tier.name not in tier_names_intersection: continue intervals = [] # If this is the first we see this tier, we just make a copy # of it as it is. if tier.name not in tiers.keys(): tiers[tier.name] = copy.deepcopy(tier) # Otherwise we update the start and end times of intervals # and append them to the first part. else: for interval in tier.intervals: interval.start_time += tot_duration interval.end_time += tot_duration intervals.append(interval) tiers[tier.name].add_annotations(intervals) tot_duration += textgrid.end_time # Create a new TextGrid and add the concatenated tiers textgrid_concatenated = TextGrid() # Add tiers in the order they're found in the first TextGrid. textgrid_concatenated.add_tiers( [tiers[x] for x in tier_names_intersection]) return textgrid_concatenated def merge_textgrids(textgrids, ignore_duplicates=True): '''Return a TextGrid object with tiers in all textgrids.p If ignore_duplicates is False, tiers with equal names are renamed by adding a path of the textgrid or a unique number incremented with each occurrence. ''' tg_merged = TextGrid() tier_duplicates_lookup = collections.defaultdict(int) for tg in textgrids: for tier in tg: tier_copy = copy.deepcopy(tier) if tg_merged.has_tier(tier.name): if not ignore_duplicates: if tg.filename.strip() != '': tier_copy.name += '_' + tg.filename else: tier_duplicates_lookup[tier.name] += 1 tier_copy.name += '_' + str(tier_duplicates_lookup[tier.name]) else: continue tg_merged.add_tier(tier_copy) return tg_merged ```
{ "source": "joshuamataaraya/auctionSystem", "score": 3 }
#### File: auctionSystem/pythonClient/sql.py ```python import pymssql from user import getPassword class SQLConnection: """Connecto to Microsoft SQL DB """ def __init__(self, userType=None, userName=None): self.server = "autionDB" if userType == "admin": self.user = userName self.password = getPassword(userName) elif userType == "agent": self.user = userName self.password = getPassword(userName) elif userType == "participant": self.user = "Participant" self.password = "<PASSWORD>" else: self.user = "App" self.password = "<PASSWORD>" def connect(self): return pymssql.connect(self.server, self.user,self.password,'<PASSWORD>') def close(self, con): con.close() ```
{ "source": "joshua-matt/Go-Variance", "score": 4 }
#### File: Go-Variance/src/board.py ```python import numpy as np # Matrix representation """ Board ----- Represents a Go board as a 19x19 matrix, with operations to be performed on it. Members: - board: the matrix representation of the board, where board[i,j]=1 indicates that row i, column j contains a black stone. 0 indicates an empty space, and -1 indicates a white stone. Methods: - place_b(x,y): Places a black stone at coordinate (x,y) and checks for capture - place_w(x,y): Places a white stone at coordinate (x,y) and checks for capture - check_capture(x,y): Checks if any groups adjacent to (x,y) have 0 liberties. If so, removes them. - get_neighbors(x,y): Returns the colors and coordinates of all squares adjacent to (x,y) - get_group(x,y): Returns all coordinates part of the group at (x,y) and the number of liberties the group has - remove_group(x,y): Sets all members of the group at (x,y) to empty """ class Board: def __init__(self): self.board = np.zeros((19,19)) def place_b(self,x,y): self.board[x,y] = 1 self.check_capture(x,y) def place_w(self,x,y): self.board[x,y] = -1 self.check_capture(x,y) def check_capture(self,x,y): neigh = self.get_neighbors(x, y) for n in neigh: ng = self.get_group(*n[1]) if n[0] != 0: # Don't count adjacent empty squares as a group if ng[1] == 0: # No liberties self.remove_group(*n[1]) def get_neighbors(self,x,y): neighbors = [] for n in [(x-1,y), (x+1,y), (x,y-1), (x,y+1)]: if n[0] < 0 or n[0] > 18: # Account for cells on the edge / corner continue elif n[1] < 0 or n[1] > 18: continue neighbors.append(n) return [(self.board[n[0],n[1]], n) for n in neighbors] def _get_group(self,x,y,g,libs): # Recursive helper procedure for get_group self_c = self.board[x, y] # Color of x,y neigh = self.get_neighbors(x, y) g.add((x, y)) for n in neigh: if n[0] == 0 and n[1] not in libs: # Add empty neighbor to liberties libs.add(n[1]) if n[0] == self_c and n[1] not in g: # Checks that nonempty neighbor is same color, not already counted self._get_group(n[1][0], n[1][1], g, libs) def get_group(self,x,y): if self.board[x,y] == 0: # Don't count contiguous empty cells as a group return set(), -1 group = set() liberties = set() self._get_group(x, y, group, liberties) return group, len(list(liberties)) def remove_group(self,x,y): group = list(self.get_group(x,y)[0]) for c in group: self.board[c[0],c[1]] = 0 ``` #### File: Go-Variance/src/preprocess.py ```python import pandas as pd # Export boards as CSV import os # Path management import re # Clean up sgf data import time # Benchmarking from board import * # Go engine from string import ascii_lowercase # Convenience from visualize import * # Visualize a Go board from its matrix letter_ind = {ascii_lowercase[i]:i for i in range(26)} # For converting from letters to coordinates """ convert_all_sgf --------------- Converts all .sgf files (containing the moves played in a Go game) in a folder to .csv files containing a matrix which represents the final board state. In a .csv file, a 1 indicates a black stone at that coordinate, a -1 indicates a white stone at that coordinate, and a 0 indicates an empty point at the coordinate. Parameters: - `folder`: a string designating the data folder containing the .sgf files to convert to .csv - `overwrite(=False)`: whether or not to overwrite existing .csv files that have the same name as an .sgf file Preconditions: - folder contains only .sgf files """ def convert_all_sgf(folder, overwrite=False): dir = os.getcwd() + "..\\data\\" + folder # Get the whole file path to the folder if not os.path.exists(dir + "_csv"): os.mkdir(dir + "_csv") # Make directory for new .csv files i = 0 # Keep track of conversion progress over = 0 # Files overwritten t1 = time.time() # Start time for fname in os.listdir(dir): # Loop through all files #print("PROCESSING FILE: " + fname) if i % 1000 == 0: print("%d files converted." % i) # Update on progress if os.path.exists(dir+"_csv\\"+fname[:-4]+".csv"): i += 1 if not overwrite: # Skip files that already exist continue else: over += 1 f = open(dir+"\\"+fname) # Open .sgf file f_data = re.sub('^\(;[^;]*;([BW])\[', "\\1[", f.read())[:-1] # Extract move data moves = [s[2:4] for s in f_data.split(";")] # Get individual moves board = get_final_board(moves) # Play out game (accounting for captures) to get final board state if np.array_equal(board, np.zeros((19,19))): continue # Throw away empty games board_frame = pd.DataFrame(board) board_frame.to_csv(dir + "_csv\\" + fname[:-4] + ".csv") # Write final board to .csv under the same name as the .sgf i += 1 print("Finished converting $d files in %f seconds. %d files overwritten." % (i, time.time()-t1, over)) """ mean_board_csv -------------- Calculates and writes the mean of a folder of .csv files. Used in calculating covariance between coordinates. Parameters: - `folder`: a string designating the data folder containing the .sgf files to convert to .csv Preconditions: - folder contains only 19x19 .csv files """ def mean_board_csv(folder): avg = np.zeros((19, 19)) # Accumulator for the mean board dir = os.getcwd() + "..\\data\\" + folder i = 0 t1 = time.time() for fname in os.listdir(dir): #print("PROCESSING FILE: " + fname) if i % 1000 == 0: print(i) board = pd.read_csv(dir + "\\" + fname).values[:,1:] avg += board i += 1 avg /= i # Divide by number of boards to get mean avg_frame = pd.DataFrame(avg) avg_frame.to_csv(dir + "\\avg.csv") print("Mean board of %s written to %s in %f seconds." % (folder, dir+"\\avg.csv", time.time()-t1)) """ get_final_board --------------- Executes the moves in a given game of Go to determine the final board position. Parameters: - `moves`: an array of two-character lowercase strings with characters from a-s. Strings specify board coordinates, with the origin 'aa' indicating the top-left of the board. The first character indicates the row, and the second the column. Preconditions: - moves contains only strings of the above format """ def get_final_board(moves): game_board = Board() black = True # Black plays first for move in moves: # Play each move try: x,y = letter_ind[move[0]],letter_ind[move[1]] # Coordinates of move if black: game_board.place_b(x, y) else: game_board.place_w(x, y) black = not black # Switch to other player except: # In event of error, return empty board return np.zeros((19,19)) return game_board.board """ mean_normalize -------------- Mean normalizes all games within each folder of a set of folders. A new folder `XXXX_norm` is created, containing the mean normalized games for a folder XXXX. Parameters: - `folders`: an array of folder names within the 'data' folder, indicates the collections of games to mean normalize Preconditions: - Every folder in folders contains an `avg.csv`, which is the mean of all .csv files in the folder. """ def mean_normalize(folders): for folder in folders: print(folder+"\n") dir = os.getcwd() + "..\\data\\" + folder if not os.path.exists(dir + "_norm"): os.mkdir(dir + "_norm") avg = pd.read_csv(dir+"\\avg.csv").values[:,1:] i = 1 t1 = time.time() for fname in os.listdir(dir): if i % 1000 == 0: print(i) if os.path.exists(dir+"_norm\\"+fname): # Skip pre-existing files continue board = pd.read_csv(dir+"\\"+fname).values[:,1:] mean_norm_b = pd.DataFrame(board - avg) mean_norm_b.to_csv(dir+"_norm\\"+fname) i += 1 print("Mean normalized %s in %f seconds." % (folder, time.time()-t1)) print("Mean normalization of %d folders complete." % (len(folders))) ```
{ "source": "joshua-matt/RL-Quarto", "score": 3 }
#### File: RL-Quarto/src/Board.py ```python import numpy as np class Board: def __init__(self): self.b = np.zeros((4,4),dtype=np.uintc) # Initialize board as empty self.open_squares = [(i,j) for i in range(4) for j in range(4)] def clear(self): self.b = np.zeros((4,4)) def has_victory(self): # Check if the binary representations of nums have the same bit in at least one place def all_overlap(nums): one_overlap = nums[0] zero_overlap = ~nums[0] for n in nums: if n == 0: return False one_overlap = one_overlap & n zero_overlap = zero_overlap & ~n return one_overlap > 0 or zero_overlap > 0 return any([all_overlap(pcs) for pcs in [list(self.b[i,:]) for i in range(4)] # Rows + [list(self.b[:,i]) for i in range(4)] # Columns + [[self.b[i,i] for i in range(4)], [self.b[i,3-i] for i in range(4)]]]) # Diagonals def place_piece(self, piece, coord): self.b[coord] = piece self.open_squares.remove(coord) def print_open(self): for i in range(4): for j in range(4): if self.b[i,j] == 0: print(4*j + i + 1, end=" ") else: print("X", end=" ") print() def to_string(self): st = "" for i in range(4): for j in range(4): if self.b[i,j] != 0: st += str(self.b[i,j]) + " " else: st += "_ " return st def print_board(self): for i in range(4): for j in range(4): if self.b[i,j] != 0: print(self.b[i,j], end=" ") else: print("_", end=" ") print() ```
{ "source": "joshuamckenty/chaos-scimmia", "score": 2 }
#### File: scimmia/tests/redis_test.py ```python import nose import redis import os def test_redis_timestamps(): host = os.getenv('REDIS_HOST', "localhost") port = os.getenv('REDIS_PORT', 6379) redis_db = redis.StrictRedis(host=host, port=port, db=0) (last, second) = redis_db.lrange('scimmia', 0, 1) assert (last - second) < 180 # Less than 3 minutes between timestamps ```
{ "source": "joshuamckenty/yolo-octo-wookie", "score": 2 }
#### File: joshuamckenty/yolo-octo-wookie/exercise_rsapi.py ```python import cloudservers class IdFake: def __init__(self, id): self.id = id # to get your access key: # from nova.auth import users # users.UserManger.instance().get_users()[0].access rscloud = cloudservers.CloudServers( 'admin', '6cca875e-5ab3-4c60-9852-abf5c5c60cc6' ) rscloud.client.AUTH_URL = 'http://localhost:8773/v1.0' rv = rscloud.servers.list() print "SERVERS: %s" % rv if len(rv) == 0: server = rscloud.servers.create( "test-server", IdFake("ami-tiny"), IdFake("m1.tiny") ) print "LAUNCH: %s" % server else: server = rv[0] print "Server to kill: %s" % server raw_input("press enter key to kill the server") server.delete() ``` #### File: nova/auth/signer.py ```python import logging import hashlib import hmac import urllib import base64 from nova.exception import Error class Signer(object): """ hacked up code from boto/connection.py """ def __init__(self, secret_key): self.hmac = hmac.new(secret_key, digestmod=hashlib.sha1) if hashlib.sha256: self.hmac_256 = hmac.new(secret_key, digestmod=hashlib.sha256) def generate(self, params, verb, server_string, path): if params['SignatureVersion'] == '0': return self._calc_signature_0(params) if params['SignatureVersion'] == '1': return self._calc_signature_1(params) if params['SignatureVersion'] == '2': return self._calc_signature_2(params, verb, server_string, path) raise Error('Unknown Signature Version: %s' % self.SignatureVersion) def _get_utf8_value(self, value): if not isinstance(value, str) and not isinstance(value, unicode): value = str(value) if isinstance(value, unicode): return value.encode('utf-8') else: return value def _calc_signature_0(self, params): s = params['Action'] + params['Timestamp'] self.hmac.update(s) keys = params.keys() keys.sort(cmp = lambda x, y: cmp(x.lower(), y.lower())) pairs = [] for key in keys: val = self._get_utf8_value(params[key]) pairs.append(key + '=' + urllib.quote(val)) return base64.b64encode(self.hmac.digest()) def _calc_signature_1(self, params): keys = params.keys() keys.sort(cmp = lambda x, y: cmp(x.lower(), y.lower())) pairs = [] for key in keys: self.hmac.update(key) val = self._get_utf8_value(params[key]) self.hmac.update(val) pairs.append(key + '=' + urllib.quote(val)) return base64.b64encode(self.hmac.digest()) def _calc_signature_2(self, params, verb, server_string, path): logging.debug('using _calc_signature_2') string_to_sign = '%s\n%s\n%s\n' % (verb, server_string, path) if self.hmac_256: hmac = self.hmac_256 params['SignatureMethod'] = 'HmacSHA256' else: hmac = self.hmac params['SignatureMethod'] = 'HmacSHA1' keys = params.keys() keys.sort() pairs = [] for key in keys: val = self._get_utf8_value(params[key]) pairs.append(urllib.quote(key, safe='') + '=' + urllib.quote(val, safe='-_~')) qs = '&'.join(pairs) logging.debug('query string: %s' % qs) string_to_sign += qs logging.debug('string_to_sign: %s' % string_to_sign) hmac.update(string_to_sign) b64 = base64.b64encode(hmac.digest()) logging.debug('len(b64)=%d' % len(b64)) logging.debug('base64 encoded digest: %s' % b64) return b64 if __name__ == '__main__': print Signer('foo').generate({"SignatureMethod": 'HmacSHA256', 'SignatureVersion': '2'}, "get", "server", "/foo") ``` #### File: yolo-octo-wookie/nova/crypto.py ```python import base64 import hashlib import logging import os import shutil import struct import tempfile import time import utils from nova import vendor import M2Crypto from nova import exception from nova import flags FLAGS = flags.FLAGS flags.DEFINE_string('ca_file', 'cacert.pem', 'Filename of root CA') flags.DEFINE_string('keys_path', utils.abspath('../keys'), 'Where we keep our keys') flags.DEFINE_string('ca_path', utils.abspath('../CA'), 'Where we keep our root CA') flags.DEFINE_boolean('use_intermediate_ca', False, 'Should we use intermediate CAs for each project?') def ca_path(project_id): if project_id: return "%s/INTER/%s/cacert.pem" % (FLAGS.ca_path, project_id) return "%s/cacert.pem" % (FLAGS.ca_path) def fetch_ca(project_id=None, chain=True): if not FLAGS.use_intermediate_ca: project_id = None buffer = "" if project_id: with open(ca_path(project_id),"r") as cafile: buffer += cafile.read() if not chain: return buffer with open(ca_path(None),"r") as cafile: buffer += cafile.read() return buffer def generate_key_pair(bits=1024): # what is the magic 65537? tmpdir = tempfile.mkdtemp() keyfile = os.path.join(tmpdir, 'temp') utils.execute('ssh-keygen -q -b %d -N "" -f %s' % (bits, keyfile)) (out, err) = utils.execute('ssh-keygen -q -l -f %s.pub' % (keyfile)) fingerprint = out.split(' ')[1] private_key = open(keyfile).read() public_key = open(keyfile + '.pub').read() shutil.rmtree(tmpdir) # code below returns public key in pem format # key = M2Crypto.RSA.gen_key(bits, 65537, callback=lambda: None) # private_key = key.as_pem(cipher=None) # bio = M2Crypto.BIO.MemoryBuffer() # key.save_pub_key_bio(bio) # public_key = bio.read() # public_key, err = execute('ssh-keygen -y -f /dev/stdin', private_key) return (private_key, public_key, fingerprint) def ssl_pub_to_ssh_pub(ssl_public_key, name='root', suffix='nova'): rsa_key = M2Crypto.RSA.load_pub_key_bio(M2Crypto.BIO.MemoryBuffer(ssl_public_key)) e, n = rsa_key.pub() key_type = 'ssh-rsa' key_data = struct.pack('>I', len(key_type)) key_data += key_type key_data += '%s%s' % (e,n) b64_blob = base64.b64encode(key_data) return '%s %s %s@%s\n' %(key_type, b64_blob, name, suffix) def generate_x509_cert(subject, bits=1024): tmpdir = tempfile.mkdtemp() keyfile = os.path.abspath(os.path.join(tmpdir, 'temp.key')) csrfile = os.path.join(tmpdir, 'temp.csr') logging.debug("openssl genrsa -out %s %s" % (keyfile, bits)) utils.runthis("Generating private key: %s", "openssl genrsa -out %s %s" % (keyfile, bits)) utils.runthis("Generating CSR: %s", "openssl req -new -key %s -out %s -batch -subj %s" % (keyfile, csrfile, subject)) private_key = open(keyfile).read() csr = open(csrfile).read() shutil.rmtree(tmpdir) return (private_key, csr) def sign_csr(csr_text, intermediate=None): if not FLAGS.use_intermediate_ca: intermediate = None if not intermediate: return _sign_csr(csr_text, FLAGS.ca_path) user_ca = "%s/INTER/%s" % (FLAGS.ca_path, intermediate) if not os.path.exists(user_ca): start = os.getcwd() os.chdir(FLAGS.ca_path) utils.runthis("Generating intermediate CA: %s", "sh geninter.sh %s" % (intermediate)) os.chdir(start) return _sign_csr(csr_text, user_ca) def _sign_csr(csr_text, ca_folder): tmpfolder = tempfile.mkdtemp() csrfile = open("%s/inbound.csr" % (tmpfolder), "w") csrfile.write(csr_text) csrfile.close() logging.debug("Flags path: %s" % ca_folder) start = os.getcwd() # Change working dir to CA os.chdir(ca_folder) utils.runthis("Signing cert: %s", "openssl ca -batch -out %s/outbound.crt -config ./openssl.cnf -infiles %s/inbound.csr" % (tmpfolder, tmpfolder)) os.chdir(start) with open("%s/outbound.crt" % (tmpfolder), "r") as crtfile: return crtfile.read() def mkreq(bits, subject="foo", ca=0): pk = M2Crypto.EVP.PKey() req = M2Crypto.X509.Request() rsa = M2Crypto.RSA.gen_key(bits, 65537, callback=lambda: None) pk.assign_rsa(rsa) rsa = None # should not be freed here req.set_pubkey(pk) req.set_subject(subject) req.sign(pk,'sha512') assert req.verify(pk) pk2 = req.get_pubkey() assert req.verify(pk2) return req, pk def mkcacert(subject='nova', years=1): req, pk = mkreq(2048, subject, ca=1) pkey = req.get_pubkey() sub = req.get_subject() cert = M2Crypto.X509.X509() cert.set_serial_number(1) cert.set_version(2) cert.set_subject(sub) # FIXME subject is not set in mkreq yet t = long(time.time()) + time.timezone now = M2Crypto.ASN1.ASN1_UTCTIME() now.set_time(t) nowPlusYear = M2Crypto.ASN1.ASN1_UTCTIME() nowPlusYear.set_time(t + (years * 60 * 60 * 24 * 365)) cert.set_not_before(now) cert.set_not_after(nowPlusYear) issuer = M2Crypto.X509.X509_Name() issuer.C = "US" issuer.CN = subject cert.set_issuer(issuer) cert.set_pubkey(pkey) ext = M2Crypto.X509.new_extension('basicConstraints', 'CA:TRUE') cert.add_ext(ext) cert.sign(pk, 'sha512') # print 'cert', dir(cert) print cert.as_pem() print pk.get_rsa().as_pem() return cert, pk, pkey # Copyright (c) 2006-2009 <NAME> http://garnaat.org/ # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, dis- # tribute, sublicense, and/or sell copies of the Software, and to permit # persons to whom the Software is furnished to do so, subject to the fol- # lowing conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABIL- # ITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT # SHALL THE AUTHOR BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, # WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. # http://code.google.com/p/boto def compute_md5(fp): """ @type fp: file @param fp: File pointer to the file to MD5 hash. The file pointer will be reset to the beginning of the file before the method returns. @rtype: tuple @return: the hex digest version of the MD5 hash """ m = hashlib.md5() fp.seek(0) s = fp.read(8192) while s: m.update(s) s = fp.read(8192) hex_md5 = m.hexdigest() # size = fp.tell() fp.seek(0) return hex_md5 ``` #### File: nova/endpoint/rackspace.py ```python import base64 import json import logging import multiprocessing import os import time from nova import vendor import tornado.web from twisted.internet import defer from nova import datastore from nova import flags from nova import rpc from nova import utils from nova import exception from nova.auth import users from nova.compute import model from nova.compute import network from nova.endpoint import wsgi from nova.endpoint import images from nova.volume import storage FLAGS = flags.FLAGS flags.DEFINE_string('cloud_topic', 'cloud', 'the topic clouds listen on') # TODO(todd): subclass Exception so we can bubble meaningful errors class Api(object): def __init__(self, rpc_mechanism): self.controllers = { "v1.0": RackspaceAuthenticationApi(), "servers": RackspaceCloudServerApi() } self.rpc_mechanism = rpc_mechanism def handler(self, environ, responder): environ['nova.context'] = self.build_context(environ) controller, path = wsgi.Util.route( environ['PATH_INFO'], self.controllers ) if not controller: # TODO(todd): Exception (404) raise Exception("Missing Controller") rv = controller.process(path, environ) if type(rv) is tuple: responder(rv[0], rv[1]) rv = rv[2] else: responder("200 OK", []) return rv def build_context(self, env): rv = {} if env.has_key("HTTP_X_AUTH_TOKEN"): rv['user'] = users.UserManager.instance().get_user_from_access_key( env['HTTP_X_AUTH_TOKEN'] ) if rv['user']: rv['project'] = users.UserManager.instance().get_project( rv['user'].name ) return rv class RackspaceApiEndpoint(object): def process(self, path, env): if not self.check_authentication(env): # TODO(todd): Exception (Unauthorized) raise Exception("Unable to authenticate") if len(path) == 0: return self.index(env) action = path.pop(0) if hasattr(self, action): method = getattr(self, action) return method(path, env) else: # TODO(todd): Exception (404) raise Exception("Missing method %s" % path[0]) def check_authentication(self, env): if hasattr(self, "process_without_authentication") \ and getattr(self, "process_without_authentication"): return True if not env['nova.context']['user']: return False return True class RackspaceAuthenticationApi(RackspaceApiEndpoint): def __init__(self): self.process_without_authentication = True # TODO(todd): make a actual session with a unique token # just pass the auth key back through for now def index(self, env): response = '204 No Content' headers = [ ('X-Server-Management-Url', 'http://%s' % env['HTTP_HOST']), ('X-Storage-Url', 'http://%s' % env['HTTP_HOST']), ('X-CDN-Managment-Url', 'http://%s' % env['HTTP_HOST']), ('X-Auth-Token', env['HTTP_X_AUTH_KEY']) ] body = "" return (response, headers, body) class RackspaceCloudServerApi(RackspaceApiEndpoint): def __init__(self): self.instdir = model.InstanceDirectory() self.network = network.PublicNetworkController() def index(self, env): if env['REQUEST_METHOD'] == 'GET': return self.detail(env) elif env['REQUEST_METHOD'] == 'POST': return self.launch_server(env) def detail(self, args, env): value = { "servers": [] } for inst in self.instdir.all: value["servers"].append(self.instance_details(inst)) return json.dumps(value) ## ## def launch_server(self, env): data = json.loads(env['wsgi.input'].read(int(env['CONTENT_LENGTH']))) inst = self.build_server_instance(data, env['nova.context']) self.schedule_launch_of_instance(inst) return json.dumps({"server": self.instance_details(inst)}) def instance_details(self, inst): return { "id": inst.get("instance_id", None), "imageId": inst.get("image_id", None), "flavorId": inst.get("instacne_type", None), "hostId": inst.get("node_name", None), "status": inst.get("state", "pending"), "addresses": { "public": [self.network.get_public_ip_for_instance( inst.get("instance_id", None) )], "private": [inst.get("private_dns_name", None)] }, # implemented only by Rackspace, not AWS "name": inst.get("name", "Not-Specified"), # not supported "progress": "Not-Supported", "metadata": { "Server Label": "Not-Supported", "Image Version": "Not-Supported" } } def build_server_instance(self, env, context): reservation = utils.generate_uid('r') ltime = time.strftime('%Y-%m-%dT%H:%M:%SZ', time.gmtime()) inst = self.instdir.new() inst['name'] = env['server']['name'] inst['image_id'] = env['server']['imageId'] inst['instance_type'] = env['server']['flavorId'] inst['user_id'] = context['user'].id inst['project_id'] = context['project'].id inst['reservation_id'] = reservation inst['launch_time'] = ltime inst['mac_address'] = utils.generate_mac() address = network.allocate_ip( inst['user_id'], inst['project_id'], mac=inst['mac_address'] ) inst['private_dns_name'] = str(address) inst['bridge_name'] = network.BridgedNetwork.get_network_for_project( inst['user_id'], inst['project_id'], 'default' # security group )['bridge_name'] # key_data, key_name, ami_launch_index # TODO(todd): key data or root password inst.save() return inst def schedule_launch_of_instance(self, inst): rpc.cast( FLAGS.compute_topic, { "method": "run_instance", "args": {"instance_id": inst.instance_id} } ) ``` #### File: yolo-octo-wookie/nova/rpc.py ```python import json import logging import sys import uuid from nova import vendor from carrot import connection from carrot import messaging from twisted.internet import defer from twisted.internet import reactor from twisted.internet import task from nova import exception from nova import fakerabbit from nova import flags FLAGS = flags.FLAGS _log = logging.getLogger('amqplib') _log.setLevel(logging.WARN) class Connection(connection.BrokerConnection): @classmethod def instance(cls): if not hasattr(cls, '_instance'): params = dict(hostname=FLAGS.rabbit_host, port=FLAGS.rabbit_port, userid=FLAGS.rabbit_userid, password=<PASSWORD>, virtual_host=FLAGS.rabbit_virtual_host) if FLAGS.fake_rabbit: params['backend_cls'] = fakerabbit.Backend cls._instance = cls(**params) return cls._instance @classmethod def recreate(cls): del cls._instance return cls.instance() class Consumer(messaging.Consumer): # TODO(termie): it would be nice to give these some way of automatically # cleaning up after themselves def attach_to_tornado(self, io_inst=None): from tornado import ioloop if io_inst is None: io_inst = ioloop.IOLoop.instance() injected = ioloop.PeriodicCallback( lambda: self.fetch(enable_callbacks=True), 100, io_loop=io_inst) injected.start() return injected attachToTornado = attach_to_tornado def fetch(self, *args, **kwargs): # TODO(vish): the logic for failed connections and logging should be # refactored into some sort of connection manager object try: if getattr(self, 'failed_connection', False): # attempt to reconnect self.conn = Connection.recreate() self.backend = self.conn.create_backend() super(Consumer, self).fetch(*args, **kwargs) if getattr(self, 'failed_connection', False): logging.error("Reconnected to queue") self.failed_connection = False except Exception, ex: if not getattr(self, 'failed_connection', False): logging.exception("Failed to fetch message from queue") self.failed_connection = True def attach_to_twisted(self): loop = task.LoopingCall(self.fetch, enable_callbacks=True) loop.start(interval=0.1) class Publisher(messaging.Publisher): pass class TopicConsumer(Consumer): exchange_type = "topic" def __init__(self, connection=None, topic="broadcast"): self.queue = topic self.routing_key = topic self.exchange = FLAGS.control_exchange super(TopicConsumer, self).__init__(connection=connection) class AdapterConsumer(TopicConsumer): def __init__(self, connection=None, topic="broadcast", proxy=None): _log.debug('Initing the Adapter Consumer for %s' % (topic)) self.proxy = proxy super(AdapterConsumer, self).__init__(connection=connection, topic=topic) @exception.wrap_exception def receive(self, message_data, message): _log.debug('received %s' % (message_data)) msg_id = message_data.pop('_msg_id', None) method = message_data.get('method') args = message_data.get('args', {}) message.ack() if not method: # NOTE(vish): we may not want to ack here, but that means that bad # messages stay in the queue indefinitely, so for now # we just log the message and send an error string # back to the caller _log.warn('no method for message: %s' % (message_data)) msg_reply(msg_id, 'No method for message: %s' % message_data) return node_func = getattr(self.proxy, str(method)) node_args = dict((str(k), v) for k, v in args.iteritems()) d = defer.maybeDeferred(node_func, **node_args) if msg_id: d.addCallback(lambda rval: msg_reply(msg_id, rval)) d.addErrback(lambda e: msg_reply(msg_id, str(e))) return class TopicPublisher(Publisher): exchange_type = "topic" def __init__(self, connection=None, topic="broadcast"): self.routing_key = topic self.exchange = FLAGS.control_exchange super(TopicPublisher, self).__init__(connection=connection) class DirectConsumer(Consumer): exchange_type = "direct" def __init__(self, connection=None, msg_id=None): self.queue = msg_id self.routing_key = msg_id self.exchange = msg_id self.auto_delete = True super(DirectConsumer, self).__init__(connection=connection) class DirectPublisher(Publisher): exchange_type = "direct" def __init__(self, connection=None, msg_id=None): self.routing_key = msg_id self.exchange = msg_id self.auto_delete = True super(DirectPublisher, self).__init__(connection=connection) def msg_reply(msg_id, reply): conn = Connection.instance() publisher = DirectPublisher(connection=conn, msg_id=msg_id) try: publisher.send({'result': reply}) except TypeError: publisher.send( {'result': dict((k, repr(v)) for k, v in reply.__dict__.iteritems()) }) publisher.close() def call(topic, msg): _log.debug("Making asynchronous call...") msg_id = uuid.uuid4().hex msg.update({'_msg_id': msg_id}) _log.debug("MSG_ID is %s" % (msg_id)) conn = Connection.instance() d = defer.Deferred() consumer = DirectConsumer(connection=conn, msg_id=msg_id) consumer.register_callback(lambda data, message: d.callback(data)) injected = consumer.attach_to_tornado() # clean up after the injected listened and return x d.addCallback(lambda x: injected.stop() and x or x) publisher = TopicPublisher(connection=conn, topic=topic) publisher.send(msg) publisher.close() return d def cast(topic, msg): _log.debug("Making asynchronous cast...") conn = Connection.instance() publisher = TopicPublisher(connection=conn, topic=topic) publisher.send(msg) publisher.close() def generic_response(message_data, message): _log.debug('response %s', message_data) message.ack() sys.exit(0) def send_message(topic, message, wait=True): msg_id = uuid.uuid4().hex message.update({'_msg_id': msg_id}) _log.debug('topic is %s', topic) _log.debug('message %s', message) if wait: consumer = messaging.Consumer(connection=Connection.instance(), queue=msg_id, exchange=msg_id, auto_delete=True, exchange_type="direct", routing_key=msg_id) consumer.register_callback(generic_response) publisher = messaging.Publisher(connection=Connection.instance(), exchange="nova", exchange_type="topic", routing_key=topic) publisher.send(message) publisher.close() if wait: consumer.wait() # TODO: Replace with a docstring test if __name__ == "__main__": send_message(sys.argv[1], json.loads(sys.argv[2])) ```
{ "source": "JoshuaMcroberts/DeliveryDilemmaLite", "score": 4 }
#### File: JoshuaMcroberts/DeliveryDilemmaLite/locker_room.py ```python from libraries import * from mmap import * from game import N_game def locker_room(game = N_game()): loop = True while loop: game.game_map.pre = game.game_map.player_enter((3,2),game.game_map.pre) clear_screen() print("") print_tab(pr_colour("l_blue","-- LOCKER ROOM --")+"\n") print_tab("The room is narrow and bordering three walls are a collection of storage lockers. ") print_tab("Ten full size " + pr_colour("l_blue","Lockers") + " are against the right-hand wall with a matching Ten opposite ") print_tab("them against the left-hand wall. The wall towards the back of the room is roughly ") print_tab("half the size of the other two walls and therefore has two rows of five half-sized ") print_tab("lockers which had been stacked to give in total an additional Ten lockers. ") print_tab("Each locker is sequentially numbered.") var = san_input() # Navigation IF if var == "lockers": print("") lockers(game) else: hint = "Don't lick icy lamp posts" loop = game.basic_game_func(var, hint) def lockers(game = N_game()): loop = True while loop: clear_screen() print("") print_tab(pr_colour("l_blue","-- LOCKERS --") + "\n") print_tab("Enter the locker number you wish to search:" ) print_tab("You may need a " + pr_colour("l_blue","Hint") + " to start your search.") var, num = item_input() if str(type(num)) != "<class 'int'>": var = san_text(var + str(num)) if var == "locker" and num > 0 and num < 31: clear_screen() print("") print_tab(pr_colour("l_blue","-- LOCKER " + str(num) + " --") + "\n") if num < 14: print_tab("You open " + pr_colour("l_blue","Locker " + str(num)) + " and find that it is empty.") elif num < 21: print_tab("You go to open " + pr_colour("l_blue","Locker " + str(num)) + " but it appears to be locked.") elif num == 21: locker_21(game) elif num < 24: print_tab("You go to open " + pr_colour("l_blue","Locker " + str(num)) + " but it appears to be locked.") elif num < 28: if game.get_key == False: print_tab("As you open " + pr_colour("l_blue","Locker " + str(num)) + " you hear someone else enter the room. You pretend to be retrieving ") print_tab("something from your non-existent bag in the empty locker. The person passes behind you and goes ") print_tab("further down your row. Out of the corner of your eye you see them take their pass from around ") print_tab("their neck and put it inside the locker. They then take out a lunch box and lock their locker behind ") print_tab("them. As they exit the room they slip their locker key into the pocket of their worn work coat. ") game.get_key = True game.set_new_ob("Follow the worker and find a way to get their locker key") else: print_tab("You open " + pr_colour("l_blue","Locker " + str(num)) + " and find that it is empty.") elif num < 31: print_tab("You go to open " + pr_colour("l_blue","Locker " + str(num)) + " but it appears to be locked.") pause() else: hint = "Type: Locker 1" loop = game.basic_game_func(var, hint) def locker_21(game = N_game()): bol = game.pc.check_inventory("Locker 21 - Key") if bol and game.locker_21_empty == False: print_tab("You slide the key for locker 21 into the lock and open it. Inside the locker is a black ") print_tab("backpack which is open and a security pass with the words '<NAME> - Warehouse Opts' ") print_tab("on it. You take the pass and relock the locker. ") game.locker_21_empty = True s_pause() game.completed_spec_ob("Open Locker 21") s_pause() game.set_new_ob("Enter the Warehouse") s_pause() game.pc.add_inventory("Warehouse - ID Card") elif bol and game.locker_21_empty: print_tab("You slide the key for locker 21 into the lock and open it. Inside the locker is a black ") print_tab("backpack which is open and seems to have had a box removed from it. Nothing useful here, ") print_tab("you close and relock the locker.") else: print_tab("You go to open " + pr_colour("l_blue","Locker 21") + " but it appears to be locked.") if __name__ == "__main__": game = N_game() game.pc.inventory = ["Locker 21 - Key"] locker_room(game) ``` #### File: JoshuaMcroberts/DeliveryDilemmaLite/start.py ```python from libraries import * from text import * from game import * from reception import recep # DISPLAY HELP TEXT def help_text(): clear_screen() print_tab("Help text will go here!") # DISPLAY ABOUT TEXT def cred_text(): clear_screen() print_tab(pr_colour("l_green","-- CREDITS --")) print_tab("Intro Story Reviewers - <NAME>, <NAME>, <NAME> ") print_tab("Receptionsist Name - <NAME>") print_tab("Alpha Testers - <NAME>, <NAME>, <NAME>") print_tab("Beta Testers - <NAME>, <NAME>") print_tab("User Testers - <NAME>, <NAME>") # DISPLAY ASCII ART def game_intro(): clear_screen() # ascii_del_dil() print(pr_colour("l_blue","\n\tWelcome to Delviery Dilemma")) s_pause() # DISPLAYS AME OVER ASCII ART def game_over(): ascii_game_over() # GAME FUNCTION def new_game(): clear_screen() game = N_game() game.enter_name() game.set_courier() game.create_char() pc = game.get_character() cour = game.get_courier() pause() act_1_intro(cour, pc) recep(game) game_over() def menu(): ext = False while not ext: clear_screen() print("") print_tab(pr_colour("l_blue","-- MAIN MENU --") + "\n") print_tab("[1] Start\n") print_tab("[2] Help\n") print_tab("[3] Credits\n") print_tab("[4] Exit\n") try: main_op = int(input("\tEnter Option: ")) except: main_op = 10 if main_op == 1: new_game() elif main_op == 2: help_text() pause() elif main_op == 3: cred_text() pause() elif main_op == 4: print("") print_tab(pr_colour("l_orange","Bye Bye\n")) ext = True else: print_tab("Select a Number from 1-4") pause() # MAIN FUNCTION def main(): game_intro() menu() if __name__ == "__main__": main() ``` #### File: JoshuaMcroberts/DeliveryDilemmaLite/warehouse.py ```python from libraries import * from game import N_game def warehouse(game = N_game()): loop = True while loop: if(game.game_over == False): game.game_map.pre = game.game_map.player_enter((2,1),game.game_map.pre) clear_screen() print("") print_tab(pr_colour("l_blue","-- WAREHOUSE --")+"\n") print_tab("The warehouse is a cavernous open space with concrete floors painted a pale blue colour.") print_tab("Red lines clearly mark out walk ways from fork lift drive paths. The warehouse appears to") print_tab("have been broken down into sections. To the front of the warehouse there are two plastic ") print_tab("sheeting, covered holes in the wall. The space behind them is clear, however after that on") print_tab("the wall can be found the word " + pr_colour("l_blue", "Sorting Area") + ". Looking to the opposite side of the room") print_tab("you can see six smaller gaps in the wall covered by the same plastic sheeting as the others.") print_tab("The wall beside this area reads " + pr_colour("l_blue", "Loading Bay") + ". Next to you there is a desk that has been") print_tab("labelled " + pr_colour("l_blue", "Parcel Repair") + ". This seems to be were damaged parcels go when they need fixing. ") print_tab("The last feature of the warehouse is a window surrounded " + pr_colour("l_blue", "Office") + " in the near right hand corner. ") var = san_input() # Navigation IF if var == "sortingarea": shelves(game) elif var == "parcelrepair": damaged_parcel_area(game) elif var == "loadingbay": loading_bay(game) elif var == "office": office(game) else: hint = "Look around for Uncle Jock's Parcel" loop = game.basic_game_func(var, hint) else: loop = False def shelves(game = N_game()): loop = True while loop: game.game_map.pre = game.game_map.player_enter((2,0),game.game_map.pre) clear_screen() print("") print_tab(pr_colour("l_blue","-- SORTING AREA --") + "\n") print_tab("The sorting area is broken down into postcodes and forwarding piles. Some to be shipped to ") print_tab("other distribution centres and others to be delivered to the local area. In the forwarding ") print_tab("section there are a number of parcels to be sent however only four of them match the size of ") print_tab("the parcel you are looking for. Have a look around at the parcels. You may need a " + pr_colour("l_blue","Hint") + " to ") print_tab("start your search.") var, num = item_input() if str(type(num)) != "<class 'int'>": var = san_text(var + str(num)) if var == "parcel" and num < 5 and num > 0: boxes(1 ,num, game) else: hint = "Type: Parcel 1 " loop = game.basic_game_func(var, hint) def damaged_parcel_area(game = N_game()): loop = True while loop: game.game_map.pre = game.game_map.player_enter((2,2),game.game_map.pre) clear_screen() print("") print_tab(pr_colour("l_blue","-- PARCEL REPAIR STATION --") + "\n") print_tab("On the desk sits two parcels that seem a little worst for wear. The " + pr_colour("l_blue", "Parcel 1") + " seems to have") print_tab("been dropped as one of the corners has the characteristic signs of landing face first. ") print_tab(pr_colour("l_blue", "Parcel 2") + " seems to have been crashed by another parcel significantly heavier then if could ") print_tab("withstand. All around its side are the wrinkles in the cardboard formed when it buckled") print_tab("under the weight which also seems to have caused the corners to spilt.") var = san_input() if var == "parcel1": clear_screen() print("") print_tab(pr_colour("l_blue","-- PARCEL 1 --") + "\n") print_tab("The address label on the parcel reads:\n") print_tab("\t┌────────────────────┐") print_tab("\t│ <NAME> │") print_tab("\t│ New Chester Road │") print_tab("\t│ Ellesmere Port │") print_tab("\t│ Cheshire │") print_tab("\t│ CH66 1QW │") print_tab("\t│ United Kingdom │") print_tab("\t└────────────────────┘\n") print_tab("Not Uncle Jock's Parcel, Lets keep looking") pause() game.set_boxes(1) office_empty(game) elif var == "parcel2": clear_screen() print("") print_tab(pr_colour("l_blue","-- PARCEL 2 --") + "\n") print_tab("The address on this label appears to be ripped:\n") print_tab("\t ─────────┐") print_tab("\t _\Roberts │") print_tab("\t /raney Road │") print_tab("\t __\derry │") print_tab("\t /rn │") print_tab("\t /JG │") print_tab("\t /ern Ireland │") print_tab("\t ─────────────────┘\n") print_tab("Not Uncle Jock's Parcel, Lets keep looking") pause() game.set_boxes(2) office_empty(game) else: hint = "Don't lick icy lamp posts" loop = game.basic_game_func(var, hint) def loading_bay(game = N_game()): loop = True while loop: game.game_map.pre = game.game_map.player_enter((1,3),game.game_map.pre) clear_screen() print("") print_tab(pr_colour("l_blue","-- LOADING BAY --") + "\n") print_tab("The loading bay has a fairly simple layout. A wheeled cage trolley can be easily wheeled from") print_tab("the sorting area to the smaller entrances which then allows for easy loading of the delivery") print_tab("vans when they are getting ready for their delivery runs. There is a single " + pr_colour("l_blue", "Roller Cage")) print_tab("sitting off to the side of one of the loading areas.") var = san_input() if var == "rollercage": rollercage(game) else: hint = "Don't lick icy lamp posts" loop = game.basic_game_func(var, hint) def rollercage(game = N_game()): loop = True while loop: clear_screen() print("") print_tab(pr_colour("l_blue","-- ROLLER CAGE --") + "\n") print_tab("Three parcel lie in an almost tower like structure in the bottom of the Roller Cage. Most of ") print_tab("the labels are obscured. You can take a closer look at each parcel to see its shipping label.") print_tab("You may need a " + pr_colour("l_blue","Hint") + " to start your search.") var, num = item_input() if str(type(num)) != "<class 'int'>": var = san_text(var + str(num)) if var == "parcel" and num <4 and num > 0: boxes( 2 ,num, game) else: hint = "Type: Parcel 1 " loop = game.basic_game_func(var, hint) def office(game = N_game()): loop = True while loop: if(game.game_over == False): game.game_map.pre = game.game_map.player_enter((0,3),game.game_map.pre) clear_screen() print("") print_tab(pr_colour("l_blue","-- WAREHOUSE OFFICE --") + "\n") if game.worker == True: print_tab("As you get closer to the office you see there is someone inside it. They would recognise ") print_tab("instantly that you weren't supposed to be here. You best search elsewhere until they leave. ") pause() loop = False else: print_tab("You enter the office and find cluttered space. On a table in the back of the room semi-ordered ") print_tab("stacks of paper climb the wall. Three of the four sides of the boxy room have glass windows ") print_tab("that span the length of the side. The bottom edges of the window frames are coated with a thin") print_tab("layer of dust which appears to have been disturbed in places where people have lent against it.") print_tab("On a table that faces into the warehouse sits a " + pr_colour("l_blue","Computer") + " with it password and username handily") print_tab("stored on a post-it note stuck to the top left-hand corner of the screen. ") var = san_input() if var == "computer": computer(game) else: hint = "Don't lick icy lamp posts" loop = game.basic_game_func(var, hint) else: loop = False def computer(game = N_game()): clear_screen() print("") print_tab(pr_colour("l_blue","-- COMPUTER --")+"\n") print_tab("You unlock the computer to find a parcel management system loaded on the screen. On the ") print_tab("display different numbers show how many parcels will be shipped to each of the surrounding ") print_tab("towns.") s_pause() print_tab("You select the search function and enter the tracking number of Uncle Jocks parcel.") s_pause() print_tab("An incorrect value error appears on the screen and then blinks out.") s_pause() print_tab("You try entering the parcel ID number and immediately an item record opens up.") s_pause() clear_screen() print("") print_tab(pr_colour("l_blue","-- PARCEL RECORD --") + "\n") print_tab("┌──────────────────────────────────────────────────────────────┐") print_tab("│ Parcel Number: B42 8472 3189 6439 10 │") print_tab("│ │") print_tab("│ Tracking Number: A2K6U9-2893-G2GU96 │") print_tab("│ │") print_tab("│ Delivery Address: Jock Thistlewaite Angus MacTavish III │") print_tab("│ 3 Pennyworth Rd │") print_tab("│ Aderfeldy │") print_tab("│ Perthshire │") print_tab("│ BXA2XW │") print_tab("│ │") print_tab("│ Delivery Date: Tomorrow - 24/12/2021 │") print_tab("│ │") print_tab("│ Current Location: In Vehicle for delivery │") print_tab("└──────────────────────────────────────────────────────────────┘") pause() clear_screen() print("") print_tab(pr_colour("l_blue","-- COMPUTER --")+"\n") print_tab("After skimming over the details you realise that the parcel in no longer in the warehouse ") print_tab("but instead in a vehicle waiting to be delivered.") s_pause() print_tab("You select the Current Location field and a vehicle record opens.") s_pause() clear_screen() print("") print_tab(pr_colour("l_blue","-- VEHICLE RECORD --") + "\n") print_tab("┌───────────────────────────────┐") print_tab("│ Vehicle ID: 00001372 │") # print_tab("│ │") print_tab("│ Driver Name: Sidney │") print_tab("│ Miles: 100,263 │") print_tab("│ │") print_tab("│ Serviced Last: 30/09/2021 │") print_tab("│ MOT due: 22/01/2022 │") print_tab("│ │") print_tab("│ REG: " + game.unformated_plate + " │") print_tab("└───────────────────────────────┘") pause() clear_screen() print("") print_tab(pr_colour("l_blue","-- COMPUTER --")+"\n") print_tab("You now have the vehicle information. "+ game.player_name +" it is up to you! ") s_pause() game.set_new_ob("Find Uncle Jock's Parcel in a Vehicle with REG: " + game.number_plate ) s_pause() loop = True while loop: clear_screen() print("") print_tab(pr_colour("l_blue","-- COMPUTER --")+"\n") print_tab("Did you find Uncle Jock's parcel in the delivery vehicle? Type YES to continue.") var = san_input() if var == "yes": loop = False elif var == "hint": print("") hint = "Call the game maker if you can't find the" print("\tHint -", end="") print_tab(hint) pause() else: print("") print_tab("Incorrect entry try again") pause() game.game_over = True def boxes( opt , num, game = N_game() ): if opt == 1: if num == 1 : clear_screen() print("") print_tab(pr_colour("l_blue","-- PARCEL "+ str(num) +" --") + "\n") print_tab("The address label on the parcel reads:\n") print_tab("\t┌────────────────────┐") print_tab("\t│ <NAME> │") print_tab("\t│ 25 Terrace Rd │") print_tab("\t│ Aberystwyth │") print_tab("\t│ Dyfed │") print_tab("\t│ SY23 1NP │") print_tab("\t│ United Kingdom │") print_tab("\t└────────────────────┘\n") print_tab("Not Uncle Jock's Parcel, Lets keep looking") pause() game.set_boxes(3) elif num == 2: clear_screen() print("") print_tab(pr_colour("l_blue","-- PARCEL "+ str(num) +" --") + "\n") print_tab("The address label on the parcel reads:\n") print_tab("\t┌────────────────────┐") print_tab("\t│ <NAME> │") print_tab("\t│ 8 Lynwood Close │") print_tab("\t│ Ashton-under-Lyne │") print_tab("\t│ Tameside │") print_tab("\t│ OL7 9SS │") print_tab("\t│ United Kingdom │") print_tab("\t└────────────────────┘\n") print_tab("Not Uncle Jock's Parcel, Lets keep looking") pause() game.set_boxes(4) elif num == 3: clear_screen() print("") print_tab(pr_colour("l_blue","-- PARCEL "+ str(num) +" --") + "\n") print_tab("The address label on the parcel reads:\n") print_tab("\t┌────────────────────┐") print_tab("\t│ <NAME> │") print_tab("\t│ College Green │") print_tab("\t│ Bristol │") print_tab("\t│ City of Bristol │") print_tab("\t│ BS1 5TA │") print_tab("\t│ United Kingdom │") print_tab("\t└────────────────────┘\n") print_tab("Not Uncle Jock's Parcel, Lets keep looking") pause() game.set_boxes(5) elif num == 4: clear_screen() print("") print_tab(pr_colour("l_blue","-- PARCEL "+ str(num) +" --") + "\n") print_tab("The address label on the parcel reads:\n") print_tab("\t┌────────────────────┐") print_tab("\t│ Bethany Hunt │") print_tab("\t│ 56 Hambro Hill │") print_tab("\t│ Rayleigh │") print_tab("\t│ Essex │") print_tab("\t│ SS6 8BW │") print_tab("\t│ United Kingdom │") print_tab("\t└────────────────────┘\n") print_tab("Not Uncle Jock's Parcel, Lets keep looking") pause() game.set_boxes(6) office_empty(game) else: if num == 1 : clear_screen() print("") print_tab(pr_colour("l_blue","-- PARCEL "+ str(num) +" --") + "\n") print_tab("The address label on the parcel reads:\n") print_tab("\t┌────────────────────┐") print_tab("\t│ <NAME> │") print_tab("\t│ 27 Manor Way │") print_tab("\t│ Borehamwood │") print_tab("\t│ Hertfordshire │") print_tab("\t│ WD6 1QJ │") print_tab("\t│ United Kingdom │") print_tab("\t└────────────────────┘\n") print_tab("Not Uncle Jock's Parcel, Lets keep looking") pause() game.set_boxes(7) elif num == 2: clear_screen() print("") print_tab(pr_colour("l_blue","-- PARCEL "+ str(num) +" --") + "\n") print_tab("The address label on the parcel reads:\n") print_tab("\t┌────────────────────┐") print_tab("\t│ Yvonne Price │") print_tab("\t│ 15-16 High St │") print_tab("\t│ Swansea │") print_tab("\t│ Glamorgan │") print_tab("\t│ SA1 1LF │") print_tab("\t│ United Kingdom │") print_tab("\t└────────────────────┘\n") print_tab("Not Uncle Jock's Parcel, Lets keep looking") pause() game.set_boxes(8) elif num == 3: clear_screen() print("") print_tab(pr_colour("l_blue","-- PARCEL "+ str(num) +" --") + "\n") print_tab("The address label on the parcel reads:\n") print_tab("\t┌────────────────────┐") print_tab("\t│ <NAME> │") print_tab("\t│ 14 St Thomas Rd │") print_tab("\t│ Brentwood │") print_tab("\t│ Essex │") print_tab("\t│ CM14 4DB │") print_tab("\t│ United Kingdom │") print_tab("\t└────────────────────┘\n") print_tab("Not Uncle Jock's Parcel, Lets keep looking") pause() game.set_boxes(9) office_empty(game) def office_empty(game = N_game()): empty = game.check_boxes() if empty == True: clear_screen() print("") print_tab(pr_colour("l_blue","-- SEARCHING --") + "\n") print_tab("As you set down the parcel you are looking at you glance across the warehouse to the office.") print_tab("You notice the worker that was in the office has left it and is heading out the door to the ") print_tab("main building. Now is your chance to have a look inside.") game.set_new_ob("Search the Office") game.worker = False pause() if __name__ == "__main__": game = N_game() game.set_num_plate(" KLZ 9890 ") computer(game) # warehouse(game) ```
{ "source": "joshuamegnauth54/aapor_scholars_2021", "score": 3 }
#### File: aapor_scholars_2021/steam_review_sentiments/cnn_model.py ```python import numpy as np import keras import spacy from sklearn.feature_extraction.text import CountVectorizer from sklearn.exceptions import NotFittedError from keras.models import Sequential from keras.layers import BatchNormalization, Conv1D, Dense, Embedding from keras.layers.pooling import GlobalMaxPooling1D from keras.initializers import Constant from utilities import null_preproc, transform_string,\ transform_all, tokenize_all # This class is badly designed. I wanted to leverage spaCy, but I combined # tools in a very poor way... class PadCounts: def __init__(self, nlp, pad_length=None): """Instantiate PadCounts. Parameters ---------- nlp : spacy.lang.en.English Trained spaCy language object. pad_length : int, optional Set a predefined length to pad data in transform(). Calculated from X_train during fit() if None. Returns ------- None. """ # Language object for embeddings. self.__nlp = nlp # Word embeddings array. self.__embeddings = None # Sklearn model for word counts. self.__vectorizer = None # Vocabulary size based on X_train. self.__vocab_size = None # Length of the pre-trained word embeddings vector (300 most likely) self.__vec_size = None # Max length of a training document (or a predefined max for padding) self.__pad_length = pad_length def __to_docs(self, X): # Convert X to a list of Doc if necessary if isinstance(X[0], str): return np.array([self.__nlp(text) for text in X]) else: return X def fit(self, X_train): """Fit PadCounts on X_train and transform into embeddings. Parameters ---------- X_train : np.ndarray[spacy.tokens.Doc or str] Array of spaCy Docs or strings (training). Raises ------ ValueError Raised if X_train isn't an array of spaCy Docs. Returns ------- None. """ if not isinstance(X_train, (np.ndarray, list)) or not len(X_train): raise ValueError("X_train needs to be an array of strs or Docs.") # Make sure X_train are Docs. X_train = self.__to_docs(X_train) # CountVectorizer counts each word/token, so I can use it to extract # ONLY the vectors present in my data from spaCy's pretrained # embeddings. self.__vectorizer = CountVectorizer(strip_accents="unicode", preprocessor=null_preproc, tokenizer=transform_string, token_pattern=None).fit(X_train) # The vocabulary size only consists of the terms that appear after # vectorizing. This is our first dimension. # 0 will be used as an indicator for missing words, so let's shift the # vocab by elements + 1. self.__vocab_size = len(self.__vectorizer.get_feature_names()) + 1 # Word vectors length (second dimension). self.__vec_size = self.__nlp.vocab.vectors_length # Remove stop words, et cetera. # And yeah, due to bad design I'm calling transform_string a lot. X_transformed = transform_all(X_train) if not self.__pad_length: self.__pad_length = len(max(X_transformed, key=len)) def embeddings(self): """Return subsetted embeddings for X_train. The returned vectors are a subset of the spaCy language object's vectors that only include words present in X_train. PadCounts should be fit() before calling embeddings(). Raises ------ NotFittedError Raised if PadCounts() is unfit. Returns ------- embeddings : np.ndarray[np.float32] Subsetted word embeddings. """ if self.__embeddings: return self.__embeddings elif not self.__vectorizer: raise NotFittedError("Call PadCounts.fit() first.") # Initialize a zero length ndarray with the vocab and vector sizes. self.__embeddings = np.zeros((self.__vocab_size, self.__vec_size), dtype=np.float32) # CountVectorizer.vocabulary_ is a dictionary matching word to index. # Thus: # index = vectorizer.vocabulary_["meow"] # value = vectorizer.get_feature_names()[index] # value == "meow" for word, i in self.__vectorizer.vocabulary_.items(): # Can't index with NumPy strings. # Also, shift the embeddings by 1. self.__embeddings[i + 1] = self.__nlp.vocab[str(word)].vector def transform(self, X, remove_junk=True): """Return tokenized X. Parameters ---------- X : np.ndarray[Doc or str] Array of Docs or str to tokenize. remove_junk : bool, optional Whether X needs to be transformed to remove stop words. The default is True. Raises ------ NotFittedError DESCRIPTION. ValueError DESCRIPTION. Returns ------- X_tokens : np.ndarray[np.int32] Word embeddings for X. """ if not self.__vectorizer or not self.__pad_length: raise NotFittedError("Call PadCounts.fit() first.") if not isinstance(X, (np.ndarray, list)) or not len(X): raise ValueError("X_train needs to be an array of strs or Docs.") # Make sure X is a list of Docs X = self.__to_docs(X) # Remove stop words et cetera if necessary. if remove_junk: X = transform_all(X) # Tokenize the training and test sets. 0 is the magic NaN value. return tokenize_all(X, self.__vectorizer, 0, True, self.__pad_length) def cnn_model(embeddings, max_length, ngrams=3, dropout_prob=.4): # Base model. Convert to class later(?!?). model = Sequential(name="cnn_steam_reviews_model") # Embedding layer to use our pretrained vectors. # https://keras.io/examples/nlp/pretrained_word_embeddings/ model.add(Embedding(embeddings.shape[0], embeddings.shape[1], embeddings_initializer=Constant(embeddings), # mask_zero=True, input_length=max_length, trainable=False)) # One dimension convulution layer model.add(Conv1D(max_length, ngrams, padding="same")) # Normalize inputs. model.add(BatchNormalization()) # Max pooling model.add(GlobalMaxPooling1D()) # Non-linearity and weight optimization model.add(Dense(128, activation="relu")) # Output model.add(BatchNormalization()) model.add(Dense(1, activation="sigmoid")) # Compile and return model.compile("adam", "binary_crossentropy", ["accuracy"]) return model def model_def_fit(model, X_train, y_train, epochs): return model.fit(X_train, y_train, batch_size=128, epochs=epochs, workers=6, use_multiprocessing=True, validation_split=.25) ```
{ "source": "JoshuaMeyers/guacamol_baselines", "score": 2 }
#### File: frag_gt/src/io.py ```python import logging import joblib from joblib import delayed, Parallel from rdkit import Chem from tqdm import tqdm from typing import List, Optional logger = logging.getLogger(__name__) def load_smiles_from_file(smi_file: str) -> List[str]: with open(smi_file) as f: smiles = [s.strip() for _, s in enumerate(f)] return smiles def _smi2mol(smi: str) -> Optional[Chem.rdchem.Mol]: return Chem.MolFromSmiles(smi) def valid_mols_from_smiles(smiles_list: List[str], n_jobs: int = -1) -> List[Chem.rdchem.Mol]: if n_jobs < 0: n_jobs = joblib.cpu_count() logger.info(f"found {n_jobs} cpus available") if n_jobs == 1: valid_mols = [] for s in tqdm(smiles_list): m = _smi2mol(s) if m is not None: valid_mols.append(m) else: with Parallel(n_jobs=n_jobs) as pool: parsed_mols = pool(delayed(_smi2mol)(s) for s in smiles_list) valid_mols = [m for m in parsed_mols if m is not None] logger.info(f"parsed {len(valid_mols)} valid mols from a possible {len(smiles_list)} smiles using rdkit") return valid_mols ``` #### File: frag_gt/src/mapelites.py ```python from abc import ABC, abstractmethod from rdkit.Chem import Descriptors from typing import List, Tuple, Union, Dict from frag_gt.src.fragmentors import fragmentor_factory from frag_gt.src.gene_type_utils import get_species from frag_gt.src.population import Molecule class MapElites(ABC): """ Place molecules in discretized map of the feature space, where only the fittest `self.n_elites` molecules are kept per cell. This ensures diversity in the population. """ def __init__(self, n_elites: int = 1): self.n_elites = n_elites def place_in_map(self, molecule_list: List[Molecule]) -> Tuple[List[Molecule], List[str]]: """ 1. Compute the feature descriptor of the solution to find the correct cell in the N-dimensional space 2. Check if the cell is empty or if the previous performance is worse, place new solution in the cell Args: molecule_list: list of molecule objects with fitness scores Returns: """ map: Dict[str, List[Molecule]] = {} for mol in molecule_list: # compute features and output a discrete cell id (str) f = self.compute_features(mol) # get existing molecule in that cell existing_m = map.get(f, []) # place the current mol in the map if its fitter than others in the cell if not len(existing_m) or (existing_m[-1].score < mol.score): existing_m.append(mol) existing_m = sorted(existing_m, key=lambda x: x.score, reverse=True)[:self.n_elites] map[f] = existing_m return [m for mollist in map.values() for m in mollist], list(map.keys()) @abstractmethod def compute_features(self, m: Molecule): pass class MWLogPMapElites(MapElites): """ map elites using two dimensions: molecular weight and log p """ def __init__(self, mw_step_size: float = 25., logp_step_size: float = 0.25, n_elites: int = 1): self.mw_step_size = mw_step_size self.logp_step_size = logp_step_size super().__init__(n_elites) def compute_features(self, m: Molecule) -> str: mw = Descriptors.MolWt(m.mol) log_p = Descriptors.MolLogP(m.mol) # discretize mw_cell_midpoint = round(mw / self.mw_step_size) * self.mw_step_size log_p_cell_midpoint = round(log_p / self.logp_step_size) * self.logp_step_size return f"mw-midpoint={mw_cell_midpoint},logp-midpoint{log_p_cell_midpoint}" class SpeciesMapElites(MapElites): """ map elites using a single dimension: species (constructed from the gene types of constituent fragment genes """ def __init__(self, fragmentor: str, n_elites: int = 1): self.fragmentor = fragmentor_factory(fragmentor) super().__init__(n_elites) def compute_features(self, m: Molecule) -> str: frags = self.fragmentor.get_frags(m.mol) return get_species(frags) def map_elites_factory(mapelites_str: str, fragmentation_scheme) -> Union[SpeciesMapElites, MWLogPMapElites]: if mapelites_str == "mwlogp": map_elites = MWLogPMapElites(mw_step_size=25, logp_step_size=0.5) elif mapelites_str == "species": map_elites = SpeciesMapElites(fragmentation_scheme) else: raise ValueError(f"unknown value for mapelites argument: {mapelites_str}") return map_elites ``` #### File: frag_gt/src/stereo.py ```python from rdkit import Chem from rdkit.Chem.EnumerateStereoisomers import EnumerateStereoisomers, StereoEnumerationOptions from rdkit.Chem.rdchem import StereoSpecified from typing import List STEREO_OPTIONS = StereoEnumerationOptions(tryEmbedding=True, unique=True, maxIsomers=8, rand=None) # todo explore fragment on chiral https://sourceforge.net/p/rdkit/mailman/message/35420297/ def mol_contains_unspecified_stereo(m: Chem.rdchem.Mol) -> bool: try: si = Chem.FindPotentialStereo(m) except ValueError as e: print(e) print(Chem.MolToSmiles(m)) return False if any([element.specified == StereoSpecified.Unspecified for element in si]): return True else: return False def enumerate_unspecified_stereocenters(m: Chem.rdchem.Mol) -> List[Chem.rdchem.Mol]: if mol_contains_unspecified_stereo(m): isomers = list(EnumerateStereoisomers(m, options=STEREO_OPTIONS)) else: isomers = [m] return isomers ``` #### File: tests/fragstore_scripts/test_generate_fragstore.py ```python import os from rdkit import Chem from frag_gt.fragstore_scripts.generate_fragstore import FragmentStoreCreator from frag_gt.src.fragstore import fragstore_factory from frag_gt.tests.utils import SAMPLE_SMILES_FILE def test_create_gene_table(tmp_path): # Given sample_smiles_file = SAMPLE_SMILES_FILE fragstore_output_dir = tmp_path / "output_dir" fragstore_output_dir.mkdir() fragstore_path = fragstore_output_dir / "temp_fragstore.pkl" # When db_creator = FragmentStoreCreator(frag_scheme="brics") db_creator.create_gene_table(smiles_file=str(sample_smiles_file)) db_creator.create_gene_type_table() db_creator.save_fragstore_to_disc(str(fragstore_path)) reloaded_db = fragstore_factory("in_memory", str(fragstore_path)) reloaded_db.load() # Then num_genes = db_creator.frag_db.get_records(query={}, collection='genes', return_count=True) assert num_genes == 516 assert os.path.exists(fragstore_path) assert len(reloaded_db.store["gene_types"]) def test_genes_from_parent_mol(): # Given parent_mol = Chem.MolFromSmiles("CCSc1nnc(NC(=O)CCCOc2ccc(C)cc2)s1") db_generator = FragmentStoreCreator(frag_scheme="brics") # When mol_genes = db_generator.genes_from_parent_mol(parent_mol, fragmentor=db_generator.fragmentor) # Then assert len(mol_genes) == 7 assert mol_genes[0] == { "gene_frag_smiles": "[4*]CC", "hap_frag_smiles": "CC", "parent_smiles": "CCSc1nnc(NC(=O)CCCOc2ccc(C)cc2)s1", "gene_type": "4" } assert len(set([x["parent_smiles"] for x in mol_genes])) == 1 def test_genes_from_parent_mol_multi(): # Given parent_smiles = ["CCSc1nnc(NC(=O)CCCOc2ccc(C)cc2)s1", "CCCC(=O)NNC(=O)Nc1ccccc1"] parent_mols = [Chem.MolFromSmiles(x) for x in parent_smiles] db_generator = FragmentStoreCreator(frag_scheme="brics") # When all_genes = [] for mol in parent_mols: mol_genes = db_generator.genes_from_parent_mol(mol, fragmentor=db_generator.fragmentor) all_genes.extend(mol_genes) # Then assert len(all_genes) == 10 assert all_genes[0] == { "gene_frag_smiles": "[4*]CC", "hap_frag_smiles": "CC", "parent_smiles": "CCSc1nnc(NC(=O)CCCOc2ccc(C)cc2)s1", "gene_type": "4" } assert len(set([x["parent_smiles"] for x in all_genes])) == 2 ``` #### File: tests/src/test_population.py ```python import numpy as np import random from frag_gt.src.fragstore import fragstore_factory from frag_gt.src.population import MolecularPopulationGenerator, Molecule from frag_gt.tests.utils import SAMPLE_FRAGSTORE_PATH, SAMPLE_SMILES_FILE from rdkit import Chem SAMPLE_FRAGSTORE = fragstore_factory("in_memory", SAMPLE_FRAGSTORE_PATH) SAMPLE_FRAGSTORE.load() # seed random functions as operators have stochastic behaviour np.random.seed(1337) random.seed(1337) def _scored_population(): """ read sample smiles and convert to mols as current_population """ with open(SAMPLE_SMILES_FILE, 'r') as f: smiles = [x.strip() for x in f] molecules = [Chem.MolFromSmiles(s) for s in smiles] dummy_scores = list(range(len(molecules))) current_pool = [Molecule(*m) for m in zip(dummy_scores, molecules)] return current_pool def test_population_generate(): # Given n_molecules_to_generate = 10 mol_generator = MolecularPopulationGenerator(fragstore_path=SAMPLE_FRAGSTORE_PATH, fragmentation_scheme="brics", n_molecules=n_molecules_to_generate, operators=None, allow_unspecified_stereo=True, selection_method="random") current_pool = _scored_population() # When new_pool = mol_generator.generate(current_pool) # Then # since crossover adds multiple, and stereo adds multiple, we do not guarantee that population size is exact # next tests shows a case where its possible to exactly generate a population by removing those factors assert len(new_pool) >= n_molecules_to_generate # this is now true, generate inputs population and outputs mol objects # assert isinstance(current_pool[0], type(new_pool[0])), "inputs and outputs have different types" def test_population_generate_custom_operators(): # Given n_molecules_to_generate = 10 mol_generator = MolecularPopulationGenerator(fragstore_path=SAMPLE_FRAGSTORE_PATH, fragmentation_scheme="brics", n_molecules=n_molecules_to_generate, operators=[("substitute_node_mutation", 1.)], allow_unspecified_stereo=True, selection_method='random') current_pool = _scored_population() # When new_pool = mol_generator.generate(current_pool) # Then assert len(new_pool) == n_molecules_to_generate def test_tournament_selection(): # Given np.random.seed(1337) random.seed(1337) current_pool = _scored_population() # When fittest = MolecularPopulationGenerator.tournament_selection(current_pool, k=5) # Then assert int(fittest.score) == 92 def test_population_generate_tournament_selection(): # Given n_molecules_to_generate = 10 mol_generator = MolecularPopulationGenerator(fragstore_path=SAMPLE_FRAGSTORE_PATH, fragmentation_scheme="brics", n_molecules=n_molecules_to_generate, operators=None, allow_unspecified_stereo=True, selection_method="tournament") current_pool = _scored_population() # When new_pool = mol_generator.generate(current_pool) # Then assert len(new_pool) >= n_molecules_to_generate def test_population_generate_fixed_substructure_pyrazole(): # Given baricitinib = "CCS(=O)(=O)N1CC(C1)(CC#N)N2C=C(C=N2)C3=C4C=CNC4=NC=N3" pyrazole = "c1cn[nH]c1" current_pool = [Molecule(1., Chem.MolFromSmiles(baricitinib))] n_molecules_to_generate = 10 # When mol_generator = MolecularPopulationGenerator(fragstore_path=SAMPLE_FRAGSTORE_PATH, fragmentation_scheme="brics", n_molecules=n_molecules_to_generate, operators=None, allow_unspecified_stereo=True, selection_method="tournament", fixed_substructure_smarts=pyrazole) new_pool = mol_generator.generate(current_pool) # Then patt = Chem.MolFromSmarts(pyrazole) assert all([m.HasSubstructMatch(patt) for m in new_pool]) def test_population_generate_fixed_substructure_impossible_pattern(): # Given baricitinib = "CCS(=O)(=O)N1CC(C1)(CC#N)N2C=C(C=N2)C3=C4C=CNC4=NC=N3" baricitinib_core_scaffold_smiles = "[N]1C=C(C=N1)C3=C2C=C[N]C2=NC=N3" current_pool = [Molecule(1., Chem.MolFromSmiles(baricitinib))] n_molecules_to_generate = 10 # When mol_generator = MolecularPopulationGenerator(fragstore_path=SAMPLE_FRAGSTORE_PATH, fragmentation_scheme="brics", n_molecules=n_molecules_to_generate, operators=None, allow_unspecified_stereo=True, selection_method="tournament", fixed_substructure_smarts=baricitinib_core_scaffold_smiles, patience=100) new_pool = mol_generator.generate(current_pool) # Then # generator is unable to generate molecules for this fixed scaffold given the limited size of the sample fragstore # this checks that when no molecules can be generated, we dont fall into an infinite loop assert new_pool == [] ```
{ "source": "JoshuaMeyers/ssbio", "score": 3 }
#### File: ssbio/core/complex.py ```python import os.path as op import logging import ssbio.utils from ssbio.core.object import Object from ssbio.core.protein import Protein from cobra.core import DictList log = logging.getLogger(__name__) class Complex(Object): """Store information about a protein complex, a generic representation of a 3D oligomeric complex composed of individual protein subunits. The main utilities of this class are to: * Allow as input a name for the complex and a dictionary of its subunit composition * Map each single subunit to its available experimental structures and homology models using methods in the :class:`~ssbio.core.protein.Protein` class * Map experimental structures and homology models to their available oliogmeric states * Select a single :attr:`~ssbio.core.complex.Complex.representative_complex` to which best represents the 3D oligomeric structure that best matches the defined subunit composition * Calculate, store, and access properties related to this complex * Provide summaries of available structures and selection details for the representative complex Args: ident (str): Unique identifier for this protein subunits (dict): Subunit composition defined as ``{protein_subunit_id: number_of_times_used_in_complex}`` description (str): Optional description for this complex root_dir (str): Path to where the folder named by this complex's ID will be created. Default is current working directory. pdb_file_type (str): ``pdb``, ``mmCif``, ``xml``, ``mmtf`` - file type for files downloaded from the PDB """ def __init__(self, ident, subunits, description=None, root_dir=None, pdb_file_type='mmtf'): Object.__init__(self, id=ident, description=description) self.subunit_dict = subunits """dict: Subunit composition defined as ``{protein_subunit_id: number_of_times_used_in_complex}``""" self._subunits = None self._oligomeric_state = None self.pdb_file_type = pdb_file_type """str: ``pdb``, ``pdb.gz``, ``mmcif``, ``cif``, ``cif.gz``, ``xml.gz``, ``mmtf``, ``mmtf.gz`` - choose a file type for files downloaded from the PDB""" # Create directories self._root_dir = None if root_dir: self.root_dir = root_dir @property def root_dir(self): """str: Path to where the folder named by this complex's ID will be created. Default is current working directory.""" return self._root_dir @root_dir.setter def root_dir(self, path): if not path: raise ValueError('No path specified') if not op.exists(path): raise ValueError('{}: folder does not exist'.format(path)) if self._root_dir: log.debug('Changing root directory of Complex "{}" from {} to {}'.format(self.id, self.root_dir, path)) if not op.exists(op.join(path, self.id)) and not op.exists(op.join(path, self.id) + '_complex'): raise IOError('Complex "{}" does not exist in folder {}'.format(self.id, path)) self._root_dir = path for d in [self.complex_dir]: ssbio.utils.make_dir(d) @property def complex_dir(self): """str: Complex folder""" if self.root_dir: # Add a _complex suffix to the folder if it has the same name as its root folder folder_name = self.id if folder_name == op.basename(self.root_dir): folder_name = self.id + '_complex' return op.join(self.root_dir, folder_name) else: log.warning('Root directory not set') return None @property def oligomeric_state(self): """Return the oligomeric state based on the contents of the :attr:`~ssbio.core.complex.Complex.subunit_dict` dictionary. Returns: str: Oligomeric state of the complex, currently can be ``monomer``, ``homomer``, or ``heteromer`` """ # TODO: [VizRecon] # Check the number of keys in the self.subunit_dict dictionary # Set as monomer if there is one key, and the value == 1 # Set as homomer if there is one key and value > 1 # Set as heteromer otherwise return None @property def subunits(self): """DictList: Subunits represented as a DictList of Protein objects""" # TODO: [VizRecon] # TODO: will need to adapt this to allow for input of previously created Protein objects subunits = DictList() for s in self.subunit_dict: subunits.append(Protein(ident=s, description='Subunit of complex {}'.format(self.id), root_dir=self.complex_dir, pdb_file_type=self.pdb_file_type)) return subunits def map_subunit_to_sequence_and_structures(self, subunit_id): """Run the sequence and structure mapping code for a specified protein subunit. This stores the mapping information directly inside the Protein subunit object itself Args: subunit_id (str): ID of protein subunit to run mapping code for """ # TODO: Nathan def set_representative_complex(self): """Set the representative 3D structure for this complex based on coverage of subunits. Args: Returns: """ # TODO: [VizRecon] if self.oligomeric_state == 'monomer': pass elif self.oligomeric_state == 'homomer': pass elif self.oligomeric_state == 'heteromer': pass def get_structure_stoichiometry(structure_file): """Parse a structure file and return a chain stoichiometry dictionary. Args: structure_file (str): Path to protein structure file (experimental or homology model Returns: dict: Dictionary of ``{chain_id: number_of_times_used}`` """ # TODO: [VizRecon] # TODO: most likely to be moved to another module, need to brainstorm pass ``` #### File: ssbio/databases/patric.py ```python import ftplib import os.path as op import logging import os log = logging.getLogger(__name__) def download_coding_sequences(patric_id, seqtype, outdir='', outfile='', force_rerun=False): """Download the entire set of DNA or protein sequences from protein-encoding genes in a genome from NCBI. Saves a FASTA file in the optional directory specified. Args: genome_accession_or_id (str): PATRIC ID seqtype (str): "dna" or "protein" - if you want the coding sequences in DNA or amino acid formats. outdir (str): optional output directory (default is the current directory) outfile (str): optional custom name for file force_rerun (bool): if you want to redownload existing files Returns: Path to downloaded FASTA file. """ if seqtype == 'dna': extension = 'ffn' elif seqtype == 'protein': extension = 'faa' else: raise ValueError('seqtype must be "dna" or "protein"') # TODO: use utils functions here # path and filename parsing if outfile: outfile = op.join(outdir, '{}.{}'.format(outfile, extension)) else: # if no outfile is specified, default is "$GI.PATRIC.faa" outfile = op.join(outdir, '{}.PATRIC.{}'.format(patric_id, extension)) if not force_rerun: # return the path to the file if it was already downloaded if op.exists(outfile) and os.stat(outfile).st_size != 0: log.debug('FASTA file already exists at {}'.format(outfile)) return outfile try: ftp = ftplib.FTP('ftp.patricbrc.org') ftp.login() ftp.cwd("/patric2/patric3/genomes/{0}/".format(patric_id)) with open(outfile, "wb") as gFile: ftp.retrbinary('RETR {0}.PATRIC.{1}'.format(patric_id, extension), gFile.write) ftp.quit() # TODO: check exceptions except: return None return outfile ``` #### File: ssbio/databases/pdbflex.py ```python import requests import ssbio.utils import os.path as op # #### PDB stats # Request flexibility data about one particular PDB. # # http://pdbflex.org/php/api/PDBStats.php?pdbID=1a50&chainID=A # # pdbID of structure you are interested in # chainID of chain you are interested in # # [{"pdbID":"1a50", # "chainID":"A", # "parentClusterID":"4hn4A", # "avgRMSD":"0.538", # "maxRMSD":"2.616", # "flexibilityLabel":"Low", # "otherClusterMembers":["4hn4A","4hpjA","4hpxA","4kkxA",...], # "PDBFlexLink":"http:\/\/pdbflex.org\/cluster.html#!\/4hn4A\/20987\/1a50A"}] # # Note: you can omit the chainID and PDBFlex will return information for all chains. # # #### RMSD profile # Request RMSD array used for local flexibility plots # # http://pdbflex.org/php/api/rmsdProfile.php?pdbID=1a50&chainID=A # # pdbID PDB ID of structure you are interested in # chainID Chain ID of chain you are interested in # # {"queryPDB":"1a50A", # "clusterName":"4hn4A", # "profile":"[0.616,0.624,0.624,0.624,0.624,0.624,0.029,0.013,0.016,0.023,0.025,0.028,0.030,0.034,0.035,0.035,0.035,0.035,0.036,0.033,0.027,0.023,0.017...]"} # # #### PDB representatives # Request representatives for a PDB's own cluster. Returns a list of chains that represent the most distinct structures in the cluster. # # http://pdbflex.org/php/api/representatives.php?pdbID=1a50&chainID=A # # pdbID PDB ID of structure you are interested in # chainID Chain ID of chain you are interested in # # ["2trsA","3pr2A","1kfjA"] def get_pdbflex_info(pdb_id, chain_id, outdir, force_rerun=False): outfile = '{}{}_pdbflex_stats.json'.format(pdb_id, chain_id) pdbflex_link = 'http://pdbflex.org/php/api/PDBStats.php?pdbID={}&chainID={}'.format(pdb_id, chain_id) infolist = ssbio.utils.request_json(link=pdbflex_link, outfile=outfile, outdir=outdir, force_rerun_flag=force_rerun) # TODO: will running with chain ID always return a single item list? assert len(infolist) == 1 newdict = {} for k, v in infolist[0].items(): if k == 'avgRMSD' and v: newdict[k] = float(v) elif k == 'maxRMSD' and v: newdict[k] = float(v) else: newdict[k] = v return newdict def get_pdbflex_rmsd_profile(pdb_id, chain_id, outdir, force_rerun=False): outfile = '{}{}_pdbflex_rmsdprofile.json'.format(pdb_id, chain_id) pdbflex_link = 'http://pdbflex.org/php/api/rmsdProfile.php?pdbID={}&chainID={}'.format(pdb_id, chain_id) infodict = ssbio.utils.request_json(link=pdbflex_link, outfile=outfile, outdir=outdir, force_rerun_flag=force_rerun) infodict['profile'] = [float(x) for x in infodict['profile'].strip('[]').split(',')] return infodict def get_pdbflex_representatives(pdb_id, chain_id, outdir, force_rerun=False): outfile = '{}{}_pdbflex_representatives.json'.format(pdb_id, chain_id) pdbflex_link = 'http://pdbflex.org/php/api/representatives.php?pdbID={}&chainID={}'.format(pdb_id, chain_id) infolist = ssbio.utils.request_json(link=pdbflex_link, outfile=outfile, outdir=outdir, force_rerun_flag=force_rerun) # infolist = [str(x) for x in infolist.strip('[]').split(',')] return infolist ``` #### File: ssbio/databases/pdb_seq.py ```python from os import path as op import requests from lxml import etree import ssbio.utils import logging log = logging.getLogger(__name__) def blast_pdb(seq, outfile='', outdir='', evalue=0.0001, seq_ident_cutoff=0.0, link=False, force_rerun=False): """Returns a list of BLAST hits of a sequence to available structures in the PDB. Args: seq (str): Your sequence, in string format outfile (str): Name of output file outdir (str, optional): Path to output directory. Default is the current directory. evalue (float, optional): Cutoff for the E-value - filters for significant hits. 0.001 is liberal, 0.0001 is stringent (default). seq_ident_cutoff (float, optional): Cutoff results based on percent coverage (in decimal form) link (bool, optional): Set to True if a link to the HTML results should be displayed force_rerun (bool, optional): If existing BLAST results should not be used, set to True. Default is False Returns: list: Rank ordered list of BLAST hits in dictionaries. """ if len(seq) < 12: raise ValueError('Sequence must be at least 12 residues long.') if link: page = 'PDB results page: http://www.rcsb.org/pdb/rest/getBlastPDB1?sequence={}&eCutOff={}&maskLowComplexity=yes&matrix=BLOSUM62&outputFormat=HTML'.format(seq, evalue) print(page) parser = etree.XMLParser(ns_clean=True) outfile = op.join(outdir, outfile) if ssbio.utils.force_rerun(force_rerun, outfile): # Load the BLAST XML results if force_rerun=True page = 'http://www.rcsb.org/pdb/rest/getBlastPDB1?sequence={}&eCutOff={}&maskLowComplexity=yes&matrix=BLOSUM62&outputFormat=XML'.format( seq, evalue) req = requests.get(page) if req.status_code == 200: response = req.text # Save the XML file if outfile: with open(outfile, 'w') as f: f.write(response) # Parse the XML string tree = etree.ElementTree(etree.fromstring(response, parser)) log.debug('Loaded BLAST results from REST server') else: log.error('BLAST request timed out') return [] else: tree = etree.parse(outfile, parser) log.debug('{}: Loaded existing BLAST XML results'.format(outfile)) # Get length of original sequence to calculate percentages len_orig = float(len(seq)) root = tree.getroot() hit_list = [] for hit in root.findall('BlastOutput_iterations/Iteration/Iteration_hits/Hit'): info = {} hitdef = hit.find('Hit_def') if hitdef is not None: info['hit_pdb'] = hitdef.text.split('|')[0].split(':')[0].lower() info['hit_pdb_chains'] = hitdef.text.split('|')[0].split(':')[2].split(',') # One PDB can align to different parts of the sequence # Will just choose the top hit for this single PDB hsp = hit.findall('Hit_hsps/Hsp')[0] # Number of identical residues hspi = hsp.find('Hsp_identity') if hspi is not None: info['hit_num_ident'] = int(hspi.text) info['hit_percent_ident'] = int(hspi.text)/len_orig if int(hspi.text)/len_orig < seq_ident_cutoff: log.debug('{}: does not meet sequence identity cutoff'.format(hitdef.text.split('|')[0].split(':')[0])) continue # Number of similar residues (positive hits) hspp = hsp.find('Hsp_positive') if hspp is not None: info['hit_num_similar'] = int(hspp.text) info['hit_percent_similar'] = int(hspp.text) / len_orig # Total number of gaps (unable to align in either query or subject) hspg = hsp.find('Hsp_gaps') if hspg is not None: info['hit_num_gaps'] = int(hspg.text) info['hit_percent_gaps'] = int(hspg.text) / len_orig # E-value of BLAST hspe = hsp.find('Hsp_evalue') if hspe is not None: info['hit_evalue'] = float(hspe.text) # Score of BLAST hsps = hsp.find('Hsp_score') if hsps is not None: info['hit_score'] = float(hsps.text) hit_list.append(info) log.debug("{}: Number of BLAST hits".format(len(hit_list))) return hit_list ``` #### File: ssbio/databases/pisa.py ```python import requests from collections import defaultdict from copy import deepcopy import ssbio.utils import os import os.path as op from lxml import etree import logging import glob log = logging.getLogger(__name__) def download_pisa_multimers_xml(pdb_ids, save_single_xml_files=True, outdir=None, force_rerun=False): """Download the PISA XML file for multimers. See: http://www.ebi.ac.uk/pdbe/pisa/pi_download.html for more info XML description of macromolecular assemblies: http://www.ebi.ac.uk/pdbe/pisa/cgi-bin/multimers.pisa?pdbcodelist where "pdbcodelist" is a comma-separated (strictly no spaces) list of PDB codes. The resulting file contain XML output of assembly data, equivalent to that displayed in PISA assembly pages, for each of the specified PDB entries. NOTE: If a mass-download is intended, please minimize the number of retrievals by specifying as many PDB codes in the URL as feasible (20-50 is a good range), and never send another URL request until the previous one has been completed (meaning that the multimers.pisa file has been downloaded). Excessive requests will silently die in the server queue. Args: pdb_ids (str, list): PDB ID or list of IDs save_single_xml_files (bool): If single XML files should be saved per PDB ID. If False, if multiple PDB IDs are provided, then a single, combined XML output file is downloaded outdir (str): Directory to output PISA XML files force_rerun (bool): Redownload files if they already exist Returns: list: of files downloaded """ if not outdir: outdir = os.getcwd() files = {} pdb_ids = ssbio.utils.force_lower_list(sorted(pdb_ids)) # If we want to save single PISA XML files per PDB ID... if save_single_xml_files: # Check for existing PISA XML files if not force_rerun: existing_files = [op.basename(x) for x in glob.glob(op.join(outdir, '*_multimers.pisa.xml'))] # Store the paths to these files to return files = {v.split('_')[0]: op.join(outdir, v) for v in existing_files} log.debug('Already downloaded PISA files for {}'.format(list(files.keys()))) else: existing_files = [] # Filter PDB IDs based on existing file pdb_ids = [x for x in pdb_ids if '{}_multimers.pisa.xml'.format(x) not in existing_files] # Split the list into 50 to limit requests split_list = ssbio.utils.split_list_by_n(pdb_ids, 40) # Download PISA files for l in split_list: pdbs = ','.join(l) all_pisa_link = 'http://www.ebi.ac.uk/pdbe/pisa/cgi-bin/multimers.pisa?{}'.format(pdbs) r = requests.get(all_pisa_link) # Parse PISA file and save individual XML files parser = etree.XMLParser(ns_clean=True) tree = etree.fromstring(r.text, parser) for pdb in tree.findall('pdb_entry'): filename = op.join(outdir, '{}_multimers.pisa.xml'.format(pdb.find('pdb_code').text)) add_root = etree.Element('pisa_multimers') add_root.append(pdb) with open(filename, 'wb') as f: f.write(etree.tostring(add_root)) files[pdb.find('pdb_code').text] = filename log.debug('{}: downloaded PISA results'.format(pdb)) else: split_list = ssbio.utils.split_list_by_n(pdb_ids, 40) for l in split_list: pdbs = ','.join(l) all_pisa_link = 'http://www.ebi.ac.uk/pdbe/pisa/cgi-bin/multimers.pisa?{}'.format(pdbs) filename = op.join(outdir, '{}_multimers.pisa.xml'.format(pdbs)) if ssbio.utils.force_rerun(flag=force_rerun, outfile=filename): r = requests.get(all_pisa_link) with open(filename, 'w') as f: f.write(r.text) log.debug('Downloaded PISA results') else: log.debug('PISA results already downloaded') for x in l: files[x] = filename return files def parse_pisa_multimers_xml(pisa_multimers_xml, download_structures=False, outdir=None, force_rerun=False): """Retrieve PISA information from an XML results file See: http://www.ebi.ac.uk/pdbe/pisa/pi_download.html for more info XML description of macromolecular assemblies: http://www.ebi.ac.uk/pdbe/pisa/cgi-bin/multimers.pisa?pdbcodelist where "pdbcodelist" is a comma-separated (strictly no spaces) list of PDB codes. The resulting file contain XML output of assembly data, equivalent to that displayed in PISA assembly pages, for each of the specified PDB entries. NOTE: If a mass-download is intended, please minimize the number of retrievals by specifying as many PDB codes in the URL as feasible (20-50 is a good range), and never send another URL request until the previous one has been completed (meaning that the multimers.pisa file has been downloaded). Excessive requests will silently die in the server queue. Args: pisa_multimers_xml (str): Path to PISA XML output file download_structures (bool): If assembly files should be downloaded outdir (str): Directory to output assembly files force_rerun (bool): Redownload files if they already exist Returns: dict: of parsed PISA information """ if not outdir: outdir = os.getcwd() parser = etree.XMLParser(ns_clean=True) tree = etree.parse(pisa_multimers_xml, parser) root = tree.getroot() pisa = defaultdict(dict) for pdb in root.findall('pdb_entry'): # Get the PDB ID pdb_id = pdb.find('pdb_code').text # Check the assembly status status = pdb.find('status').text errors = ['Entry not found', 'Overlapping structures', 'No symmetry operations'] if status in errors: pisa[pdb_id]['status'] = status continue # Check monomer status num_complexes = int(pdb.find('total_asm').text) if num_complexes == 0: pisa[pdb_id]['status'] = 'MONOMER' continue elif num_complexes > 0: # All "assembly sets" (see PISA sets for more info) sets = pdb.findall('asm_set') for s in sets: set_id = int(s.find('ser_no').text) # All assemblies assemblies = s.findall('assembly') for cplx in assemblies: ############################################################################################ # This part tells you the actual composition of the predicted complex (chains and ligands) parts = cplx.findall('molecule') chains = defaultdict(int) for part in parts: part_id = part.find('chain_id').text if part_id.startswith('['): part_id = 'LIG_' + part_id.split(']')[0].strip('[') chains[str(part_id)] += 1 ligands = {} for key in deepcopy(chains).keys(): if key.startswith('LIG_'): ligands[str(key.split('_')[1])] = chains.pop(key) ############################################################################################ adder = {} cplx_id = int(cplx.find('id').text) cplx_composition = str(cplx.find('composition').text) d_g_diss = float(cplx.find('diss_energy').text) d_g_int = float(cplx.find('int_energy').text) pdb_biomol = int(cplx.find('R350').text) if d_g_diss >= 0: stable = True else: stable = False adder['cplx_composition'] = cplx_composition.strip() adder['cplx_chains'] = chains adder['cplx_ligands'] = ligands adder['stable'] = stable adder['d_g_diss'] = d_g_diss adder['d_g_int'] = d_g_int adder['pdb_biomol'] = pdb_biomol pisa[pdb_id][(set_id, cplx_id)] = adder if download_structures: ident = '{}:{},{}'.format(pdb_id, set_id, cplx_id) filename = op.join(outdir, ident + '.pdb') if ssbio.utils.force_rerun(flag=force_rerun, outfile=filename): download_structure_link = 'http://www.ebi.ac.uk/pdbe/pisa/cgi-bin/multimer.pdb?{}'.format( ident) r = requests.get(download_structure_link) with open(filename, 'w') as f: f.write(r.text) log.debug('{}: downloaded structure file'.format(ident)) else: log.debug('{}: structure file already downloaded'.format(ident)) pisa[pdb_id][(set_id, cplx_id)]['structure_file'] = filename return pisa def pdb_chain_stoichiometry_biomolone(pdbid): """Get the stoichiometry of the chains in biological assembly 1 as a dictionary. Steps taken are: 1) Download PDB and parse header, make biomolecule if provided 2) Count how many times each chain appears in biomolecule #1 3) Convert chain id to uniprot id 4) Return final dictionary Args: pdbid (str): 4 character PDB ID Returns: dict: {(ChainID,UniProtID): # occurences} """ pass ``` #### File: ssbio/pipeline/atlas3.py ```python import json import os.path as op import pandas as pd import ssbio.utils import pickle from collections import defaultdict from tqdm import tqdm_notebook as tqdm filter_proteome = [False, ] filter_observations = ['A22.CCCP', 'A22.PYOCYANIN', 'CCCP.2', 'CHIR090.CCCP', 'DOXYCYCLINE.PARAQUAT', 'DOXYCYCLINE.PMS', 'DOXYCYCLINE.PYOCYANIN', 'FUMARATE.40C', 'FUMARATE.40MM', 'FUMARATE.A22', 'FUMARATE.CEFSULODIN', 'FUMARATE.PARAQUAT', 'FUMARATE.TOBRAMYCIN', 'NACL.PARAQUAT', 'NOSALT.FUMARATE', 'NOSALT.PARAQUAT', 'PARAQUAT.10UM', 'PH5.FUMARATE', 'PMS.PROCAINE', 'PYOCYANIN.0P2UM', 'PYOCYANIN.10', 'PYOCYANIN.1UM', 'TRIMETHOPRIM.PYOCYANIN', 'PYOCYANIN.10UM', 'pathotype_simple', 'ros_simulated', 'pathotype_simple2', 'pathotype_simple3'] #'isolation_source', 'pathotype', ] filter_ismem = [('vizrecon','membrane'), ('vizrecon','inner_membrane'), ('vizrecon','outer_membrane'),] #('tmhmm','membrane')] filter_notmem = [#('vizrecon','non_membrane'), ('vizrecon','periplasm'), ('vizrecon','cytosol'), ] #('vizrecon','extracellular'),] #('tmhmm','non_membrane')] filter_ismem_subseq = [['all', 'acc_3D', 'metal_2_5D', 'metal_3D', 'tm_2D', 'tm_3D', 'csa_2_5D', 'sites_2_5D'], ] # need the comma to treat it like one set filter_notmem_subseq = [['all', 'disorder_2D', 'ss_disorder_2D', 'disorder_3D', 'ss_disorder_3D', 'acc_2D', 'acc_3D', 'surface_3D', 'metal_2_5D', 'metal_3D', 'dna_2_5D', 'csa_2_5D', 'sites_2_5D'], ] filter_all_subseq = [['all', 'disorder_2D', 'ss_disorder_2D', 'disorder_3D', 'ss_disorder_3D', 'acc_2D', 'tm_2D', 'tm_3D', 'acc_3D', 'surface_3D', 'metal_2_5D', 'metal_3D', 'dna_2_5D', 'csa_2_5D', 'sites_2_5D'], ] filter_subseq_suffixes = {'all': ['aa_%_ord', 'aa_%_dis', 'aa_%_M', 'aa_%_C', 'aa_%_chrg', 'aa_%_carb', 'aa_%_poschrg', 'aa_%_negchrg', 'aa_%_Y'], 'disorder_2D': ['aa_%_ord', 'aa_%_dis'], 'disorder_3D': ['aa_%_ord', 'aa_%_dis'], 'ss_disorder_2D': ['aa_%_ord', 'aa_%_dis'], 'ss_disorder_3D': ['aa_%_ord', 'aa_%_dis'], 'acc_2D': ['aa_%_M', 'aa_%_C', 'aa_%_chrg', 'aa_%_carb', 'aa_%_poschrg', 'aa_%_negchrg', 'aa_%_Y'], 'acc_3D': ['aa_%_M', 'aa_%_C', 'aa_%_chrg', 'aa_%_carb', 'aa_%_poschrg', 'aa_%_negchrg', 'aa_%_Y'], 'surface_3D': ['aa_%_M', 'aa_%_C', 'aa_%_chrg', 'aa_%_carb', 'aa_%_poschrg', 'aa_%_negchrg', 'aa_%_Y'], 'metal_2_5D': ['aa_%_M', 'aa_%_bulk', 'aa_%_C', 'aa_%_chrg', 'aa_%_carb', 'aa_%_poschrg', 'aa_%_negchrg'], 'metal_3D': ['aa_%_M', 'aa_%_bulk', 'aa_%_C', 'aa_%_chrg', 'aa_%_carb', 'aa_%_poschrg', 'aa_%_negchrg'], 'tm_2D': ['aa_%_M', 'aa_%_tmstab', 'aa_%_tmunstab'], 'tm_3D': ['aa_%_M', 'aa_%_tmstab', 'aa_%_tmunstab'], 'dna_2_5D': ['aa_%_dis', 'aa_%_ord'], 'csa_2_5D': ['aa_%_chrg', 'aa_%_M', 'aa_%_C'], 'sites_2_5D': ['aa_%_chrg', 'aa_%_M', 'aa_%_C']} # filter_subseq_3D_suffixes = {'disorder_3D': ['aa_count_ord', 'aa_count_dis'], # 'ss_disorder_3D': ['aa_count_ord', 'aa_count_dis'], # 'acc_3D': ['aa_count_M', 'aa_count_C', 'aa_count_chrg', 'aa_count_carb', 'aa_count_poschrg', 'aa_count_negchrg'], # 'surface_3D': ['aa_count_M', 'aa_count_C', 'aa_count_chrg', 'aa_count_carb', 'aa_count_poschrg', 'aa_count_negchrg'], # 'metal_3D': ['aa_count_M', 'aa_count_bulk', 'aa_count_C', 'aa_count_chrg', 'aa_count_carb', 'aa_count_poschrg', 'aa_count_negchrg'], # 'tm_3D': ['aa_count_M', 'aa_count_tmstab', 'aa_count_tmunstab'], # 'dna_2_5D': ['aa_count_dis', 'aa_count_ord'], # 'csa_2_5D': ['aa_count_chrg', 'aa_count_M', 'aa_count_C'], # 'sites_2_5D': ['aa_count_chrg', 'aa_count_M', 'aa_count_C']} # # filter_subseq_2D_suffixes = {'disorder_2D': ['aa_count_ord', 'aa_count_dis'], # 'ss_disorder_2D': ['aa_count_ord', 'aa_count_dis'], # 'acc_2D': ['aa_count_M', 'aa_count_C', 'aa_count_chrg', 'aa_count_carb', 'aa_count_poschrg', 'aa_count_negchrg'], # 'metal_2_5D': ['aa_count_M', 'aa_count_bulk', 'aa_count_C', 'aa_count_chrg', 'aa_count_carb', 'aa_count_poschrg', 'aa_count_negchrg'], # 'tm_2D': ['aa_count_M', 'aa_count_tmstab', 'aa_count_tmunstab'], # 'dna_2_5D': ['aa_count_dis', 'aa_count_ord'], # 'csa_2_5D': ['aa_count_chrg', 'aa_count_M', 'aa_count_C'], # 'sites_2_5D': ['aa_count_chrg', 'aa_count_M', 'aa_count_C']} def get_protein_feather_paths(protgroup, memornot, protgroup_dict, protein_feathers_dir, core_only_genes=None): """ protgroup example: ('subsystem', 'cog_primary', 'H') memornot example: ('vizrecon', 'membrane') protgroup_dict example: {'databases': {'redoxdb': {'experimental_sensitive_cys': ['b2518','b3352','b2195','b4016'], ...}}} """ prots_memornot = protgroup_dict['localization'][memornot[0]][memornot[1]] if protgroup[0] == 'localization': if protgroup[2] != 'all': if memornot[1] in ['membrane', 'inner_membrane', 'outer_membrane'] and protgroup[2] not in ['membrane', 'inner_membrane', 'outer_membrane']: return [] if memornot[1] not in ['membrane', 'inner_membrane', 'outer_membrane'] and protgroup[2] in ['membrane', 'inner_membrane', 'outer_membrane']: return [] prots_group = protgroup_dict[protgroup[0]][protgroup[1]][protgroup[2]] prots_filtered = list(set(prots_group).intersection(prots_memornot)) if core_only_genes: prots_filtered = list(set(prots_filtered).intersection(core_only_genes)) return [op.join(protein_feathers_dir, '{}_protein_strain_properties.fthr'.format(x)) for x in prots_filtered if op.exists(op.join(protein_feathers_dir, '{}_protein_strain_properties.fthr'.format(x)))] def get_observed_strains_and_df(observation, observation_dict): """ observation example: 'ros_simulated' observation_dict example: {'ros_simulated': [['NT12204_755', 'wt'], ['NT12120_270', 'wt'], ...] ...} """ observed_df = pd.DataFrame.from_records(observation_dict[observation], columns=['strain','phenotype']).set_index('strain') observed_strains = observed_df.index.tolist() return observed_strains, observed_df def get_interested_subsequences(subsequences):#, subseqdim): """ subsequences example: ['disorder_2D', 'ss_disorder_2D', ...] filter_subseq_suffixes example: {'disorder_2D': ['aa_count_ord', 'aa_count_dis'], ... } -- defined above """ keep_indices = [] # if subseqdim == 'ALLD': # filter_subseq_suffixes = filter_subseq_suffixes # elif subseqdim == '3D': # filter_subseq_suffixes = filter_subseq_3D_suffixes # elif subseqdim == '2D': # filter_subseq_suffixes = filter_subseq_2D_suffixes # else: # raise ValueError('ALLD, 3D, or 2D only!') for subseq in subsequences: if subseq == 'all': keep_indices.extend([x for x in filter_subseq_suffixes[subseq]]) else: keep_indices.extend([subseq + '_' + x for x in filter_subseq_suffixes[subseq]]) return keep_indices def load_feather(protein_feather, length_filter_pid=None, copynum_scale=False, copynum_df=None): """Load a feather of amino acid counts for a protein. Args: protein_feather (str): path to feather file copynum_scale (bool): if counts should be multiplied by protein copy number copynum_df (DataFrame): DataFrame of copy numbers Returns: DataFrame: of counts with some aggregated together """ protein_df = pd.read_feather(protein_feather).set_index('index') # Combine counts for residue groups from ssbio.protein.sequence.properties.residues import _aa_property_dict_one, EXTENDED_AA_PROPERTY_DICT_ONE aggregators = { 'aa_count_bulk' : {'residues': EXTENDED_AA_PROPERTY_DICT_ONE['Bulky'], 'subseqs' : ['metal_2_5D', 'metal_3D']}, 'aa_count_carb' : {'residues': EXTENDED_AA_PROPERTY_DICT_ONE['Carbonylation susceptible'], 'subseqs' : ['metal_2_5D', 'metal_3D', 'acc_2D', 'acc_3D', 'surface_3D']}, 'aa_count_chrg' : {'residues': _aa_property_dict_one['Charged'], 'subseqs' : ['metal_2_5D', 'metal_3D', 'csa_2_5D', 'sites_2_5D', 'acc_2D', 'acc_3D', 'surface_3D']}, 'aa_count_poschrg' : {'residues': _aa_property_dict_one['Basic'], 'subseqs' : ['metal_2_5D', 'metal_3D', 'acc_2D', 'acc_3D', 'surface_3D']}, 'aa_count_negchrg' : {'residues': _aa_property_dict_one['Acidic'], 'subseqs' : ['metal_2_5D', 'metal_3D', 'acc_2D', 'acc_3D', 'surface_3D']}, 'aa_count_tmstab' : {'residues': EXTENDED_AA_PROPERTY_DICT_ONE['TM stabilizing'], 'subseqs' : ['tm_2D', 'tm_3D']}, 'aa_count_tmunstab': {'residues': EXTENDED_AA_PROPERTY_DICT_ONE['TM to Thr stabilizing'], 'subseqs' : ['tm_2D', 'tm_3D']}, 'aa_count_dis' : {'residues': EXTENDED_AA_PROPERTY_DICT_ONE['Disorder promoting'], 'subseqs' : ['disorder_2D', 'ss_disorder_2D', 'disorder_3D', 'ss_disorder_3D', 'dna_2_5D']}, 'aa_count_ord' : {'residues': EXTENDED_AA_PROPERTY_DICT_ONE['Order promoting'], 'subseqs' : ['disorder_2D', 'ss_disorder_2D', 'disorder_3D', 'ss_disorder_3D', 'dna_2_5D']}} # Do combination counts for all types of subsequences for suffix, info in aggregators.items(): agg_residues = info['residues'] for prefix in info['subseqs']: to_add_idxes = [] for agg_res in agg_residues: to_add_idx = prefix + '_aa_count_' + agg_res if to_add_idx in protein_df.index: to_add_idxes.append(to_add_idx) subseq_agged_col = protein_df.loc[to_add_idxes, :].sum() # Add each residue series protein_df.loc[prefix + '_' + suffix] = subseq_agged_col # Append to df ## REMOVE OTHER STRAINS WITH DELETIONS (use float -- length_filter_pid=0.8 to get only strains with >80% length ## alternative to atlas2.calculate_residue_counts_perstrain wt_pid_cutoff param -- works a little differently just considering length if length_filter_pid: keep_cols = protein_df.loc['aa_count_total'][protein_df.loc['aa_count_total'] > protein_df.at['aa_count_total', 'K12'] * length_filter_pid].index protein_df = protein_df[keep_cols] # Multiply by proteomics copy number? if copynum_scale: if not isinstance(copynum_df, pd.DataFrame): raise ValueError('Please supply copy numbers') protein_id = op.basename(protein_feather).split('_protein')[0] if protein_id in copynum_df.index: copynum = copynum_df.at[protein_id, 'copynum'] if copynum > 0: # TODO: currently keeping one copy of proteins with 0, is that ok? protein_df = protein_df * copynum return protein_df def get_proteome_counts_simple(prots_filtered_feathers, outpath, length_filter_pid=None, copynum_scale=False, copynum_df=None, force_rerun=False): if ssbio.utils.force_rerun(flag=force_rerun, outfile=outpath): big_strain_counts_df = pd.DataFrame() first = True for feather in prots_filtered_feathers: loaded = load_feather(protein_feather=feather, length_filter_pid=length_filter_pid, copynum_scale=copynum_scale, copynum_df=copynum_df) if first: big_strain_counts_df = pd.DataFrame(index=loaded.index, columns=loaded.columns) first = False big_strain_counts_df = big_strain_counts_df.add(loaded, fill_value=0) if len(big_strain_counts_df) > 0: big_strain_counts_df.astype(float).reset_index().to_feather(outpath) return big_strain_counts_df else: return pd.read_feather(outpath).set_index('index') # def get_proteome_counts_simple_sc(sc, prots_filtered_feathers, outpath, length_filter_pid=None, # copynum_scale=False, copynum_df=None, # force_rerun=False): # import ssbio.utils # if ssbio.utils.force_rerun(flag=force_rerun, outfile=outpath): # protein_feathers_final_rdd = sc.parallelize(prots_filtered_feathers) # mapper = protein_feathers_final_rdd.map(lambda x: load_feather(protein_feather=x, length_filter_pid=None, # copynum_scale=copynum_scale, # copynum_df=copynum_df)) # big_strain_counts_df = mapper.reduce(lambda df1, df2: df1.add(df2, fill_value=0)) # big_strain_counts_df.astype(float).reset_index().to_feather(outpath) # return big_strain_counts_df # else: # return pd.read_feather(outpath).set_index('index') def get_proteome_counts_impute_missing(prots_filtered_feathers, outpath, length_filter_pid=None, copynum_scale=False, copynum_df=None, force_rerun=False): """Get counts, uses the mean feature vector to fill in missing proteins for a strain""" if ssbio.utils.force_rerun(flag=force_rerun, outfile=outpath): big_strain_counts_df = pd.DataFrame() first = True for feather in prots_filtered_feathers: loaded = load_feather(protein_feather=feather, length_filter_pid=length_filter_pid, copynum_scale=copynum_scale, copynum_df=copynum_df) if first: big_strain_counts_df = pd.DataFrame(index=_all_counts, columns=loaded.columns) first = False new_columns = list(set(loaded.columns.tolist()).difference(big_strain_counts_df.columns)) if new_columns: for col in new_columns: big_strain_counts_df[col] = big_strain_counts_df.mean(axis=1) not_in_loaded = list(set(big_strain_counts_df.columns).difference(loaded.columns.tolist())) if not_in_loaded: for col in not_in_loaded: big_strain_counts_df[col] = big_strain_counts_df[col] + loaded.mean(axis=1) big_strain_counts_df = big_strain_counts_df.add(loaded, fill_value=0) if len(big_strain_counts_df) > 0: big_strain_counts_df.astype(float).reset_index().to_feather(outpath) return big_strain_counts_df else: return pd.read_feather(outpath).set_index('index') def get_proteome_percentages(counts_df, outpath, force_rerun=False): if ssbio.utils.force_rerun(flag=force_rerun, outfile=outpath): big_strain_percents_df = pd.DataFrame(columns=counts_df.columns) for strain in counts_df.columns: totals = list(filter(lambda x: x.endswith('total'), counts_df[strain].index)) for t in totals: counts = t.rsplit('_', 1)[0] aa_counts = list(filter(lambda x: (x.startswith(counts) and x not in totals), counts_df[strain].index)) for aa_count in aa_counts: big_strain_percents_df.at[aa_count.replace('count', '%'), strain] = counts_df[strain][aa_count]/counts_df[strain][t] big_strain_percents_df.astype(float).reset_index().to_feather(outpath) else: big_strain_percents_df = pd.read_feather(outpath).set_index('index') big_strain_percents_df.index.name = None return big_strain_percents_df def get_proteome_correct_percentages(prots_filtered_feathers, outpath, length_filter_pid=None, copynum_scale=False, copynum_df=None, force_rerun=False): """Get counts and normalize by number of proteins, providing percentages""" if ssbio.utils.force_rerun(flag=force_rerun, outfile=outpath): prot_tracker = defaultdict(int) big_strain_counts_df = pd.DataFrame() first = True for feather in prots_filtered_feathers: loaded = load_feather(protein_feather=feather, length_filter_pid=length_filter_pid, copynum_scale=copynum_scale, copynum_df=copynum_df) if first: big_strain_counts_df = pd.DataFrame(columns=loaded.columns) first = False tmp_df = pd.DataFrame(columns=loaded.columns) for strain in loaded.columns: prot_tracker[strain] += 1 totals = list(filter(lambda x: x.endswith('total'), loaded[strain].index)) for t in totals: counts = t.rsplit('_', 1)[0] aa_counts = list( filter(lambda x: (x.startswith(counts) and x not in totals), loaded[strain].index)) for aa_count in aa_counts: tmp_df.at[aa_count.replace('count', '%'), strain] = loaded[strain][aa_count] / \ loaded[strain][t] big_strain_counts_df = big_strain_counts_df.add(tmp_df, fill_value=0) for c, total in prot_tracker.items(): big_strain_counts_df.loc[:, c] /= total if len(big_strain_counts_df) > 0: big_strain_counts_df.astype(float).reset_index().to_feather(outpath) return big_strain_counts_df else: return pd.read_feather(outpath).set_index('index') def remove_correlated_feats(df): tmp = df.T # Remove columns with no variation nunique = tmp.apply(pd.Series.nunique) cols_to_drop = nunique[nunique == 1].index tmp.drop(cols_to_drop, axis=1, inplace=True) perc_spearman = scipy.stats.spearmanr(tmp) abs_corr = np.subtract(np.ones(shape=perc_spearman.correlation.shape), np.absolute(perc_spearman.correlation)) np.fill_diagonal(abs_corr, 0) abs_corr_clean = np.maximum(abs_corr, abs_corr.transpose()) # some floating point mismatches, just make symmetric clustering = linkage(squareform(abs_corr_clean), method='average') clusters = fcluster(clustering, .1, criterion='distance') names = tmp.columns.tolist() names_to_cluster = list(zip(names, clusters)) indices_to_keep = [] ### Extract models closest to cluster centroids for x in range(1, len(set(clusters)) + 1): # Create mask from the list of assignments for extracting submatrix of the cluster mask = np.array([1 if i == x else 0 for i in clusters], dtype=bool) # Take the index of the column with the smallest sum of distances from the submatrix idx = np.argmin(sum(abs_corr_clean[:, mask][mask, :])) # Extract names of cluster elements from names_to_cluster sublist = [name for (name, cluster) in names_to_cluster if cluster == x] # Element closest to centroid centroid = sublist[idx] indices_to_keep.append(centroid) return df.loc[df.index.isin(indices_to_keep)] def get_simple_sigdict(prots_filtered_feathers, subsequences, observation, observation_dict, remove_corr=True, force_rerun=False): sigdict = {'less': defaultdict(list), 'greater': defaultdict(list)} for p in prots_filtered_feathers: p_id = op.basename(p).split('_')[0] outpath = op.join(op.dirname(p), '{}_protein_strain_properties_percfilt.fthr'.format(p_id)) if ssbio.utils.force_rerun(flag=force_rerun, outfile=outpath): p_df = load_feather(protein_feather=p, length_filter_pid=0.8) p_perc_df = get_proteome_percentages(counts_df=p_df, outpath=outpath, force_rerun=force_rerun) else: p_perc_df = pd.read_feather(outpath).set_index('index') # Clean data first keep_subsequences = get_interested_subsequences(subsequences=subsequences) p_perc_df2 = p_perc_df.loc[p_perc_df.index.isin(keep_subsequences)] p_perc_df2 = p_perc_df2.astype(float).fillna(0) p_perc_df2 = p_perc_df2.loc[(p_perc_df2 > 0).any(axis=1)] if remove_corr: try: p_perc_df2 = remove_correlated_feats(p_perc_df2) except: continue all_features = p_perc_df2.index.tolist() # Add observations keep_strains, observations_df = get_observed_strains_and_df(observation=observation, observation_dict=observation_dict) feat_obs_df = p_perc_df2.T.join(observations_df, how='inner') # Split into 2 groups if observation == 'isolation_source': continue elif observation == 'ros_simulated': wt_df = feat_obs_df[feat_obs_df.phenotype == 'wt'] mut_df = feat_obs_df[feat_obs_df.phenotype != 'wt'] elif 'pathotype' in observation: wt_df = feat_obs_df[feat_obs_df.phenotype == 'Other'] mut_df = feat_obs_df[feat_obs_df.phenotype != 'Other'] else: wt_df = feat_obs_df[feat_obs_df.phenotype == 'No growth'] mut_df = feat_obs_df[feat_obs_df.phenotype == 'Growth'] if len(wt_df) == 0 or len(mut_df) == 0: continue # Mann-whitney test of each feature for alt in ['less', 'greater']: for feat in all_features: try: z_stat, p_val = mannwhitneyu(wt_df[feat], mut_df[feat], alternative=alt) except ValueError: continue if p_val < 0.01: # Store differentiating features for this protein in a dictionary sigdict[alt][p_id].append((feat, p_val)) return sigdict from scipy.cluster.hierarchy import linkage, fcluster import numpy as np import scipy.stats from scipy.spatial.distance import squareform from sklearn import preprocessing from sklearn.decomposition import PCA from scipy.stats import ks_2samp import itertools import seaborn as sns from matplotlib import pyplot as plt import numpy as np from scipy.spatial.distance import pdist # https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.pdist.html from itertools import combinations from sklearn.metrics.pairwise import euclidean_distances # http://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.euclidean_distances.html import scipy.stats.stats as st from scipy.stats import mannwhitneyu from numpy.random import choice plt.ioff() # Turn interactive plotting off sns.set(rc={'figure.figsize': (16, 8.5)}) sns.set_context('talk') sns.set_style('ticks') sns.set_palette('Set2') class PCAMultiROS(): def __init__(self, features_df, observations_df, plot_title, observation_colname='phenotype'): self.features_df = features_df self.observations_df = observations_df self.observation_colname = observation_colname self.plot_title = plot_title self.num_components = None self.pca = None self.pc_names_list = None self.pc_names_dict = None self.principal_df = None self.principal_observations_df = None self.markers = None def clean_data(self, keep_features=None, remove_correlated_feats=True): self.features_df = self.features_df.astype(float).fillna(0) self.features_df = self.features_df.loc[(self.features_df > 0).any(axis=1)] if keep_features: self.features_df = self.features_df.loc[self.features_df.index.isin(keep_features)] if remove_correlated_feats: tmp = self.features_df.T # Remove columns with no variation nunique = tmp.apply(pd.Series.nunique) cols_to_drop = nunique[nunique == 1].index tmp.drop(cols_to_drop, axis=1, inplace=True) perc_spearman = scipy.stats.spearmanr(tmp) abs_corr = np.subtract(np.ones(shape=perc_spearman.correlation.shape), np.absolute(perc_spearman.correlation)) np.fill_diagonal(abs_corr, 0) abs_corr_clean = np.maximum(abs_corr, abs_corr.transpose()) # some floating point mismatches, just make symmetric clustering = linkage(squareform(abs_corr_clean), method='average') clusters = fcluster(clustering, .1, criterion='distance') names = tmp.columns.tolist() names_to_cluster = list(zip(names, clusters)) indices_to_keep = [] ### Extract models closest to cluster centroids for x in range(1, len(set(clusters)) + 1): # Create mask from the list of assignments for extracting submatrix of the cluster mask = np.array([1 if i == x else 0 for i in clusters], dtype=bool) # Take the index of the column with the smallest sum of distances from the submatrix idx = np.argmin(sum(abs_corr_clean[:, mask][mask, :])) # Extract names of cluster elements from names_to_cluster sublist = [name for (name, cluster) in names_to_cluster if cluster == x] # Element closest to centroid centroid = sublist[idx] indices_to_keep.append(centroid) self.features_df = self.features_df.loc[self.features_df.index.isin(indices_to_keep)] def run_pca(self, whiten=True): # Normalize for_pca_df = self.features_df.T for_pca_df_scaled = pd.DataFrame(preprocessing.scale(for_pca_df), columns=for_pca_df.columns) # Run PCA self.num_components = min(len(for_pca_df.T.columns), len(for_pca_df.T.index)) pca = PCA(n_components=self.num_components, whiten=whiten) pca_fit = pca.fit_transform(for_pca_df_scaled) self.pc_names_list = ['PC{} ({:.0%})'.format(x + 1, pca.explained_variance_ratio_[x]) for x in range(self.num_components)] self.pc_names_dict = {k.split(' ')[0]: k for k in self.pc_names_list} principal_df = pd.DataFrame(data=pca_fit, columns=self.pc_names_list, index=for_pca_df.index) principal_df.index.name = 'strain' self.principal_df = principal_df self.pca = pca # self.principal_observations_df = self.principal_df.join(self.observations_df, how='inner') # # # Make iterable list of markers # mks = itertools.cycle(["<", "+", "o", 'D', 'x', '^', '*', '8', 's', 'p', 'v', 'X', '_', 'h']) # self.markers = [next(mks) for i in range(len(self.principal_observations_df[self.observation_colname].unique()))] def make_biplot(self, pc_x=1, pc_y=2, outpath=None, dpi=150, custom_markers=None, custom_order=None): if not custom_order: custom_order = sorted(self.observations_df[self.observation_colname].unique().tolist()) if not custom_markers: custom_markers = self.markers plot = sns.lmplot(data=self.principal_observations_df, x=self.principal_observations_df.columns[pc_x - 1], y=self.principal_observations_df.columns[pc_y - 1], hue=self.observation_colname, hue_order=custom_order, fit_reg=False, size=6, markers=custom_markers, scatter_kws={'alpha': 0.5}) plot = (plot.set(title='PC{} vs. PC{}'.format(pc_x, pc_y))) if outpath: plot.savefig(outpath, dpi=dpi) else: plt.show() plt.close() def make_pairplot(self, num_components_to_plot=4, outpath=None, dpi=150): # Get columns components_to_plot = [self.principal_observations_df.columns[x] for x in range(num_components_to_plot)] # Plot plot = sns.pairplot(data=self.principal_observations_df, hue=self.observation_colname, vars=components_to_plot, markers=self.markers, size=4) plt.subplots_adjust(top=.95) plt.suptitle(self.plot_title) if outpath: plot.fig.savefig(outpath, dpi=dpi) else: plt.show() plt.close() def make_3Dplot(self, outpath=None, dpi=150): import mpl_toolkits.mplot3d fig = plt.figure(1, figsize=(8, 6)) ax = mpl_toolkits.mplot3d.Axes3D(fig) for key, group in self.principal_observations_df.groupby(self.observation_colname): ax.plot(group[self.principal_observations_df.columns[0]], group[self.principal_observations_df.columns[1]], group[self.principal_observations_df.columns[2]], 'o', alpha=0.5, label=key) # Make simple, bare axis lines through space: xAxisLine = ((min(self.principal_observations_df[self.principal_observations_df.columns[0]]), max(self.principal_observations_df[self.principal_observations_df.columns[0]])), (0, 0), (0, 0)) ax.plot(xAxisLine[0], xAxisLine[1], xAxisLine[2], 'r', alpha=0.4) yAxisLine = ((0, 0), (min(self.principal_observations_df[self.principal_observations_df.columns[1]]), max(self.principal_observations_df[self.principal_observations_df.columns[1]])), (0, 0)) ax.plot(yAxisLine[0], yAxisLine[1], yAxisLine[2], 'r', alpha=0.4) zAxisLine = ((0, 0), (0, 0), (min(self.principal_observations_df[self.principal_observations_df.columns[2]]), max(self.principal_observations_df[self.principal_observations_df.columns[2]]))) ax.plot(zAxisLine[0], zAxisLine[1], zAxisLine[2], 'r', alpha=0.4) ax.set_title("PC1 vs. PC2 vs. PC3") ax.set_xlabel("PC1") ax.set_ylabel("PC2") ax.set_zlabel("PC3") ax.legend(loc='upper left', fontsize=15) if outpath: fig.savefig(outpath, dpi=dpi) else: plt.show() plt.close() def make_contribplot(self, pc_to_look_at=1, sigadder=0.01, outpath=None, dpi=150, return_top_contribs=False): """Make a plot showing contributions of properties to a PC""" cont = pd.DataFrame(self.pca.components_, columns=self.features_df.index, index=self.pc_names_list) tmp_df = pd.DataFrame(cont.iloc[pc_to_look_at - 1]).reset_index().rename(columns={'index': 'Property'}) tmp_df['Contribution'] = tmp_df.iloc[:, 1] ** 2 tmp_df = tmp_df[tmp_df['Contribution'] > 1 / len( cont.iloc[0]) + sigadder] # Alter sigadder to just plot more/less significant contributors tmp_df['Sign'] = np.where(tmp_df.iloc[:, 1] >= 0, 'Positive', 'Negative') tmp_df = tmp_df.sort_values(by='Contribution', ascending=False) fig, ax = plt.subplots(figsize=(30, 10)) sns.barplot(data=tmp_df, y='Property', x='Contribution', hue='Sign', dodge=False, ax=ax, hue_order=['Positive', 'Negative'], palette=sns.color_palette("coolwarm", 2)) # Random formatting crap self._change_height(ax, .6) # Make bars thinner ax.set_title('{} contributors'.format(self.pc_names_list[pc_to_look_at - 1])) legend = plt.legend(loc=8, bbox_to_anchor=(1.2, .8), ncol=1, title='Sign', fontsize=10) plt.setp(legend.get_title(), fontsize=12) plt.gcf().subplots_adjust(left=.5, right=.65) if outpath: fig.savefig(outpath, dpi=dpi) else: plt.show() plt.close() if return_top_contribs: return tmp_df.Property.values.tolist() def _change_height(self, ax, new_value): """Make bars in horizontal bar chart thinner""" for patch in ax.patches: current_height = patch.get_height() diff = current_height - new_value # we change the bar height patch.set_height(new_value) # we recenter the bar patch.set_y(patch.get_y() + diff * .5) def get_pca_ks_stats(self, maxrange=5): """Get a dictionary of PC#: K-S test stat for each """ pc_to_phenotype_pairs = {} num_components = self.principal_observations_df.shape[1] if num_components < maxrange: maxrange = num_components phenotypes = self.principal_observations_df.phenotype.unique().tolist() for i in range(0, maxrange): phenotype_pair_to_ks = {} for p1, p2 in combinations(phenotypes, 2): p1_pc = self.principal_observations_df[self.principal_observations_df.phenotype == p1].iloc[:,i].as_matrix() p2_pc = self.principal_observations_df[self.principal_observations_df.phenotype == p2].iloc[:,i].as_matrix() phenotype_pair_to_ks[(p1, p2)] = ks_2samp(p1_pc, p2_pc) pc_to_phenotype_pairs[i + 1] = phenotype_pair_to_ks return pc_to_phenotype_pairs def get_intra_inter_distances(feat_df, obs_df, normalize=False, plot=False): # Drop zero rows, transpose, set type to float, and fill any missing values feat_df = feat_df.loc[(feat_df != 0).any(axis=1)].T.astype(float).fillna(0) if normalize: feat_df = pd.DataFrame(preprocessing.scale(feat_df), columns=feat_df.columns, index=feat_df.index) feat_obs_df = feat_df.join(obs_df, how='inner') obs_intra_distances = {} obs_inter_distances = {} obs_feat_vectors = {} for phenotype in feat_obs_df.phenotype.unique(): feat_vectors = feat_obs_df[feat_obs_df.phenotype == phenotype].drop(columns=feat_obs_df.columns[-1]).as_matrix() obs_feat_vectors[phenotype] = feat_vectors # Intra-distances intra_distances_calc = pdist(feat_vectors) obs_intra_distances[phenotype] = intra_distances_calc # Inter-distances # Randomly sample from 1...? uncomment next 2 lines and use obs_feat_vector instead of obs_feat_vector_choice # if you want to try that # obs_shortest = min([x.shape[0] for x in obs_feat_vectors.values()]) # obs_feat_vector_choice = {k:(v[choice(v.shape[0], obs_shortest, replace=False), :] if v.shape[0]!=obs_shortest else v) for k,v in obs_feat_vectors.items()} for inter1, inter2 in combinations(obs_feat_vectors, 2): obs_inter_distances[(inter1, inter2)] = euclidean_distances(obs_feat_vectors[inter1], obs_feat_vectors[inter2]) if plot: df = pd.DataFrame() for k, v in obs_intra_distances.items(): ser = pd.Series(v) df[k] = ser for k, v in obs_inter_distances.items(): ser = pd.Series(v.flatten()) df[str(k)] = ser plotter = pd.melt(df, value_vars=df.columns.tolist()) plotter = plotter[pd.notnull(plotter.value)] sns.violinplot(data=plotter, x='variable', y='value') return obs_intra_distances, obs_inter_distances def compute_skew_stats(intra, inter): """Returns two dictionaries reporting (skew, skew_pval) for all groups""" # Intra (within a group) stats intra_skew = {} for k, v in intra.items(): skew = st.skew(v) try: skew_zstat, skew_pval = st.skewtest(v) except ValueError: # if sample size too small skew_zstat, skew_pval = (0, 1) intra_skew[k] = (skew, skew_zstat, skew_pval) # Inter (between groups) stats inter_skew = {} for k, v in inter.items(): # Inter skew stats skew_sep = st.skew(v.flatten()) try: skew_sep_zstat, skew_sep_pval = st.skewtest(v.flatten()) except ValueError: skew_sep_zstat, skew_sep_pval = (0, 1) inter_skew['-'.join(k)] = (skew_sep, skew_sep_zstat, skew_sep_pval) # Significance of difference between intra and inter distributions for intra_key in k: try: separation_zstat, separation_pval = mannwhitneyu(intra[intra_key], v.flatten(), alternative='less') except ValueError: # All numbers are identical in mannwhitneyu separation_zstat, separation_pval = (0, 1) inter_skew['{}<{}'.format(intra_key, '-'.join(k))] = (separation_zstat, separation_pval) return intra_skew, inter_skew def run_all(protgroup, memornot, subsequences, observation, proteomescale, base_outdir, protgroup_dict, protein_feathers_dir, observation_dict, copynum_df, date, errfile, subseqdim, statfile_duo, statfile_trio, cutoff_num_proteins=0, core_only_genes=None, impute_counts=True, length_filter_pid=.8, force_rerun_counts=False, sc=None, run_percentages=True, force_rerun_percentages=False, run_pca_and_stats=True, remove_correlated_feats=True, save_plots=False, force_rerun_pca=False): import ssbio.utils # Need to set multiprocessing limit for scipy/numpy stuff if parallelizing anything import os os.environ['OMP_NUM_THREADS'] = '1' # First, filter down the protein group to the membrane/nonmembrane definition prots_filtered_feathers = get_protein_feather_paths(protgroup=protgroup, memornot=memornot, protgroup_dict=protgroup_dict, protein_feathers_dir=protein_feathers_dir, core_only_genes=core_only_genes) num_proteins = len(prots_filtered_feathers) if num_proteins <= cutoff_num_proteins: return # Make output directories if proteomescale: protscale = 'proteome_scaled' else: protscale = 'proteome_unscaled' outdir_d0 = ssbio.utils.make_dir(op.join(base_outdir, protscale)) outdir_d1 = ssbio.utils.make_dir(op.join(outdir_d0, '-'.join(memornot))) outdir_final = ssbio.utils.make_dir(op.join(outdir_d1, '-'.join(protgroup))) outdir_observ = ssbio.utils.make_dir(op.join(outdir_final, observation)) outdir_observ_subseqdim = ssbio.utils.make_dir(op.join(outdir_observ, subseqdim)) # Then load the protein feathers and add them all together to represent a "proteome" # if sc: # big_strain_counts_df = get_proteome_counts_sc(sc=sc, prots_filtered_feathers=prots_filtered_feathers, # outpath=op.join(outdir_final, # '{}-subsequence_proteome.fthr'.format(date)), # copynum_scale=proteomescale, copynum_df=copynum_df, # force_rerun=force_rerun_counts) # else: # big_strain_counts_df = get_proteome_counts(prots_filtered_feathers=prots_filtered_feathers, # outpath=op.join(outdir_final, # '{}-subsequence_proteome.fthr'.format(date)), # copynum_scale=proteomescale, copynum_df=copynum_df, # force_rerun=force_rerun_counts) # if len(big_strain_counts_df) == 0: # with open(errfile, "a") as myfile: # myfile.write('COUNT ERR: ' + '-'.join(memornot) + '\t' + '-'.join(protgroup) + '\t' + str(observation) + '\t' + str(proteomescale) + '\t' + subseqdim + "\n") # return # Impute averages for missing counts if impute_counts: big_strain_counts_df = get_proteome_counts_impute_missing(prots_filtered_feathers=prots_filtered_feathers, outpath=op.join(outdir_final, '{}-subsequence_proteome_IMP.fthr'.format( date)), length_filter_pid=length_filter_pid, copynum_scale=proteomescale, copynum_df=copynum_df, force_rerun=force_rerun_counts) big_strain_percents_df = get_proteome_percentages(counts_df=big_strain_counts_df, outpath=op.join(outdir_final, '{}-subsequence_proteome_perc_IMP.fthr'.format( date)), force_rerun=force_rerun_percentages) # Divide by totals to get percentages in a new dataframe else: try: big_strain_percents_df = get_proteome_correct_percentages(prots_filtered_feathers=prots_filtered_feathers, outpath=op.join(outdir_final, '{}-subsequence_proteome_perc.fthr'.format( date)), length_filter_pid=length_filter_pid, force_rerun=force_rerun_percentages) except: with open(errfile, "a") as myfile: myfile.write('PERCENTAGES ERR: ' + '-'.join(memornot) + '\t' + '-'.join(protgroup) + '\t' + str( observation) + '\t' + str(proteomescale) + '\t' + subseqdim + "\n") return # Stop here if only percentages desired if not run_pca_and_stats: return pca_pickle = op.join(outdir_observ_subseqdim, '{}-subsequence_pca.pckl'.format(date)) if ssbio.utils.force_rerun(flag=force_rerun_pca, outfile=pca_pickle): # Then, get filters for the columns to available strains in an observation for percentage df keep_strains, observations_df = get_observed_strains_and_df(observation=observation, observation_dict=observation_dict) if keep_strains: big_strain_percents_df = big_strain_percents_df[big_strain_percents_df.columns[big_strain_percents_df.columns.isin(keep_strains)]] # Then, get filters for rows of the loaded feathers for interested subsequences keep_subsequences = get_interested_subsequences(subsequences=subsequences) # Some numbers: number of observations num_obs = observations_df.phenotype.value_counts().to_dict() if len(num_obs) < 2: # If only one observation, what are we trying to compare?? nothing really return observations_string = ';'.join('{}:{}'.format(key, val) for key, val in num_obs.items()) # Some numbers: number of features num_feats = len(big_strain_percents_df) # Make an unwieldy title big_title = 'LOC={0}; PROTGROUP={1}; PHENOTYPE={2}; PROTSCALE={3}; SUBSEQDIM={4};\n' \ 'NUMPROTS={5}; NUMFEATS={6}; NUMSTRAINS={7}'.format('-'.join(memornot), '-'.join(protgroup), str(observation), str(proteomescale), subseqdim, num_proteins, num_feats, observations_string) # Run PCA and make plots runner = PCAMultiROS(features_df=big_strain_percents_df, observations_df=observations_df, plot_title=big_title) try: runner.clean_data(keep_features=keep_subsequences, remove_correlated_feats=remove_correlated_feats) except: with open(errfile, "a") as myfile: myfile.write( 'CLEAN ERR: ' + '-'.join(memornot) + '\t' + '-'.join(protgroup) + '\t' + str(observation) + '\t' + str(proteomescale) + '\t' + subseqdim + "\n") return try: runner.run_pca() except: with open(errfile, "a") as myfile: myfile.write( 'PCA ERR: ' + '-'.join(memornot) + '\t' + '-'.join(protgroup) + '\t' + str(observation) + '\t' + str(proteomescale) + '\t' + subseqdim + "\n") return if save_plots: try: runner.make_biplot(pc_x=1, pc_y=2, outpath=op.join(outdir_observ_subseqdim, '{}-subsequence_biplot_1_2.png'.format(date))) except: with open(errfile, "a") as myfile: myfile.write( 'PCA BIPLOT ERR: ' + '-'.join(memornot) + '\t' + '-'.join(protgroup) + '\t' + str(observation) + '\t' + str(proteomescale) + '\t' + subseqdim + "\n") try: runner.make_pairplot(num_components_to_plot=4, outpath=op.join(outdir_observ_subseqdim, '{}-subsequence_pairplot.png'.format(date))) except: with open(errfile, "a") as myfile: myfile.write( 'PCA PAIRPLOT ERR: ' + '-'.join(memornot) + '\t' + '-'.join(protgroup) + '\t' + str(observation) + '\t' + str(proteomescale) + '\t' + subseqdim + "\n") try: runner.make_3Dplot(outpath=op.join(outdir_observ_subseqdim, '{}-subsequence_3Dplot.png'.format(date))) except: with open(errfile, "a") as myfile: myfile.write( 'PCA 3DPLOT ERR: ' + '-'.join(memornot) + '\t' + '-'.join(protgroup) + '\t' + str(observation) + '\t' + str(proteomescale) + '\t' + subseqdim + "\n") try: runner.make_contribplot(pc_to_look_at=1, sigadder=0.01, outpath=op.join(outdir_observ_subseqdim, '{}-subsequence_contribplot.png'.format(date))) except: with open(errfile, "a") as myfile: myfile.write( 'PCA CONTRIBPLOT ERR: ' + '-'.join(memornot) + '\t' + '-'.join(protgroup) + '\t' + str( observation) + '\t' + str(proteomescale) + '\t' + subseqdim + "\n") with open(pca_pickle, 'wb') as f: pickle.dump(runner, f) else: with open(pca_pickle, 'rb') as f: runner = pickle.load(f) # Get stats try: ks_stats = runner.get_pca_ks_stats() except: with open(errfile, "a") as myfile: myfile.write( 'STAT K-S ERR: ' + '-'.join(memornot) + '\t' + '-'.join(protgroup) + '\t' + str( observation) + '\t' + str(proteomescale) + '\t' + subseqdim + "\n") return try: # perc_intra, perc_inter = get_intra_inter_distances(feat_df=runner.features_df, # obs_df=runner.observations_df, # normalize=True, # plot=False) # perc_stats = compute_skew_stats(intra=perc_intra, inter=perc_inter) pca_intra, pca_inter = get_intra_inter_distances(feat_df=runner.principal_df.T, obs_df=runner.observations_df, normalize=False, plot=False) skew_stats = compute_skew_stats(intra=pca_intra, inter=pca_inter) except: with open(errfile, "a") as myfile: myfile.write('STAT DIST ERR: ' + '-'.join(memornot) + '\t' + '-'.join(protgroup) + '\t' + str( observation) + '\t' + str(proteomescale) + '\t' + subseqdim + "\n") return # with open(statfile, 'a') as statf: # statf.write('-'.join(memornot) + '\t' + '-'.join(protgroup) + '\t' + str(observation) + '\t' + str( # proteomescale) + '\t' + subseqdim + '\t' + str(num_proteins) + '\t' + str(num_feats) + '\t' + str( # num_obs) + '\t' + str(perc_stats) + '\t' + str(skew_stats) + '\t' + str(ks_stats) + '\n') skew_pval_significant = True skew_worst_pval = -1 ks_pval_significant = True ks_worst_pval = -1 # Search for clusters not close to WT if observation == 'ros_simulated': for k, v in skew_stats[1].items(): if 'wt' in k and '<' in k: pval = v[1] if pval > skew_worst_pval: skew_worst_pval = pval if pval > 0.05: skew_pval_significant = False for k, v in ks_stats[1].items(): if 'wt' in k: if v.pvalue > ks_worst_pval: ks_worst_pval = v.pvalue if v.pvalue > 0.05: ks_pval_significant = False # Combination stats if ks_pval_significant and skew_pval_significant: if ks_worst_pval != -1 and skew_worst_pval != -1: with open(statfile_trio, 'a') as f: f.write(str((protgroup, memornot, subsequences, observation, proteomescale)) + '\t' + str(ks_worst_pval) + '\t' + str(skew_worst_pval) + '\n') # Search for G/NG clusters and pathotype_simple ones else: for k, v in skew_stats[1].items(): if '<' in k: pval = v[1] if pval > skew_worst_pval: skew_worst_pval = pval if pval > 0.05: skew_pval_significant = False for k, v in ks_stats[1].items(): if v.pvalue > ks_worst_pval: ks_worst_pval = v.pvalue if v.pvalue > 0.05: ks_pval_significant = False # Combination stats if ks_pval_significant and skew_pval_significant: if ks_worst_pval != -1 and skew_worst_pval != -1: with open(statfile_duo, 'a') as f: f.write(str((protgroup, memornot, subsequences, observation, proteomescale)) + '\t' + str(ks_worst_pval) + '\t' + str(skew_worst_pval) + '\n') def run_all2(protgroup, memornot, subsequences, base_outdir, protgroup_dict, protein_feathers_dir, date, errfile, impute_counts=True, cutoff_num_proteins=0, core_only_genes=None, length_filter_pid=.8, remove_correlated_feats=True, force_rerun_counts=False, force_rerun_percentages=False, force_rerun_pca=False): """run_all but ignoring observations before pca""" import ssbio.utils # Need to set multiprocessing limit for scipy/numpy stuff if parallelizing anything import os os.environ['OMP_NUM_THREADS'] = '1' # First, filter down the protein group to the membrane/nonmembrane definition prots_filtered_feathers = get_protein_feather_paths(protgroup=protgroup, memornot=memornot, protgroup_dict=protgroup_dict, protein_feathers_dir=protein_feathers_dir, core_only_genes=core_only_genes) num_proteins = len(prots_filtered_feathers) if num_proteins <= cutoff_num_proteins: return # Make output directories protscale = 'proteome_unscaled' outdir_d0 = ssbio.utils.make_dir(op.join(base_outdir, protscale)) outdir_d1 = ssbio.utils.make_dir(op.join(outdir_d0, '-'.join(memornot))) outdir_final = ssbio.utils.make_dir(op.join(outdir_d1, '-'.join(protgroup))) if impute_counts: big_strain_counts_df = get_proteome_counts_impute_missing(prots_filtered_feathers=prots_filtered_feathers, outpath=op.join(outdir_final, '{}-subsequence_proteome_IMP.fthr'.format( date)), length_filter_pid=length_filter_pid, force_rerun=force_rerun_counts) big_strain_percents_df = get_proteome_percentages(counts_df=big_strain_counts_df, outpath=op.join(outdir_final, '{}-subsequence_proteome_perc_IMP.fthr'.format( date)), force_rerun=force_rerun_percentages) pca_pickle = op.join(outdir_final, '{}-subsequence_pca.pckl'.format(date)) # Divide by totals to get percentages in a new dataframe else: try: big_strain_percents_df = get_proteome_correct_percentages(prots_filtered_feathers=prots_filtered_feathers, outpath=op.join(outdir_final, '{}-subsequence_proteome_perc_AVG.fthr'.format( date)), length_filter_pid=length_filter_pid, force_rerun=force_rerun_percentages) pca_pickle = op.join(outdir_final, '{}-subsequence_pca_AVG.pckl'.format(date)) except: with open(errfile, "a") as myfile: myfile.write('PERCENTAGES ERR: ' + '-'.join(memornot) + '\t' + '-'.join(protgroup) + "\n") return if ssbio.utils.force_rerun(flag=force_rerun_pca, outfile=pca_pickle): # Then, get filters for rows of the loaded feathers for interested subsequences keep_subsequences = get_interested_subsequences(subsequences=subsequences) # Some numbers: number of features num_feats = len(big_strain_percents_df) # Make an unwieldy title big_title = 'LOC={0}; PROTGROUP={1};\n' \ 'NUMPROTS={2}; NUMFEATS={3}'.format('-'.join(memornot), '-'.join(protgroup), num_proteins, num_feats) # Run PCA and make plots runner = PCAMultiROS(features_df=big_strain_percents_df, observations_df=pd.DataFrame(), plot_title=big_title) try: runner.clean_data(keep_features=keep_subsequences, remove_correlated_feats=remove_correlated_feats) except: with open(errfile, "a") as myfile: myfile.write( 'CLEAN ERR: ' + '-'.join(memornot) + '\t' + '-'.join(protgroup) + "\n") return # try: runner.run_pca() # except: # with open(errfile, "a") as myfile: # myfile.write( # 'PCA ERR: ' + '-'.join(memornot) + '\t' + '-'.join(protgroup) + "\n") # return with open(pca_pickle, 'wb') as f: pickle.dump(runner, f) else: with open(pca_pickle, 'rb') as f: runner = pickle.load(f) def run_all_simple(protgroup, memornot, subsequences, observation, protgroup_dict, protein_feathers_dir, observation_dict, statfile, cutoff_num_proteins=0): # Need to set multiprocessing limit for scipy/numpy stuff if parallelizing anything import os os.environ['OMP_NUM_THREADS'] = '1' # First, filter down the protein group to the membrane/nonmembrane definition prots_filtered_feathers = get_protein_feather_paths(protgroup=protgroup, memornot=memornot, protgroup_dict=protgroup_dict, protein_feathers_dir=protein_feathers_dir) num_proteins = len(prots_filtered_feathers) if num_proteins <= cutoff_num_proteins: return # WT HAVE MORE OF THESE... sigdict = get_simple_sigdict(prots_filtered_feathers=prots_filtered_feathers, subsequences=subsequences, observation=observation, observation_dict=observation_dict) sig_predf = [] for protein, feat_and_pvals in sigdict['greater'].items(): for feat, pval in feat_and_pvals: sig_predf.append((protein, feat, pval)) sig_df1 = pd.DataFrame(sig_predf, columns=['protein', 'feature', 'pval']).sort_values(by='pval', ascending=True) if len(sig_df1) > 0: num_prots1 = len(sig_df1.protein.unique()) num_feats1 = len(sig_df1.feature.unique()) # Very signficant features sig_df2 = sig_df1[sig_df1.pval <= sig_df1.pval.quantile(.25)] num_prots2 = len(sig_df2.protein.unique()) num_feats2 = len(sig_df2.feature.unique()) # Very significant features that are explainable sig_df3 = sig_df2[sig_df2.feature.isin(expected_in_wt)] num_prots3 = len(sig_df3.protein.unique()) num_feats3 = len(sig_df3.feature.unique()) wt_perc_sig_feats = num_feats3 / num_feats2 wt_perc_sig_prots = num_prots3 / num_proteins else: wt_perc_sig_feats = 0 wt_perc_sig_prots = 0 # MUT HAVE MORE OF THESE... sig_predf = [] for protein, feat_and_pvals in sigdict['less'].items(): for feat, pval in feat_and_pvals: sig_predf.append((protein, feat, pval)) sig_df1 = pd.DataFrame(sig_predf, columns=['protein', 'feature', 'pval']).sort_values(by='pval', ascending=True) if len(sig_df1) > 0: num_prots1 = len(sig_df1.protein.unique()) num_feats1 = len(sig_df1.feature.unique()) # Very signficant features sig_df2 = sig_df1[sig_df1.pval <= sig_df1.pval.quantile(.25)] num_prots2 = len(sig_df2.protein.unique()) num_feats2 = len(sig_df2.feature.unique()) # Very significant features that are explainable sig_df3 = sig_df2[sig_df2.feature.isin(expected_in_mut)] num_prots3 = len(sig_df3.protein.unique()) num_feats3 = len(sig_df3.feature.unique()) mut_perc_sig_feats = num_feats3 / num_feats2 mut_perc_sig_prots = num_prots3 / num_proteins else: mut_perc_sig_feats = 0 mut_perc_sig_prots = 0 with open(statfile, 'a') as f: f.write(str((protgroup, memornot, observation)) + '\t' + str(wt_perc_sig_feats) + '\t' + str(wt_perc_sig_prots) + '\t' + str(mut_perc_sig_feats) + '\t' + str(mut_perc_sig_prots) + '\t' + str(num_proteins) + '\n') expected_in_wt = ['aa_%_dis', 'disorder_2D_aa_%_dis', 'ss_disorder_2D_aa_%_dis', 'disorder_3D_aa_%_dis', 'ss_disorder_3D_aa_%_dis', 'dna_2_5D_aa_%_ord', 'aa_%_C', 'acc_2D_aa_%_C', 'acc_3D_aa_%_C', 'surface_3D_aa_%_C', 'metal_2_5D_aa_%_C', 'metal_3D_aa_%_C', 'csa_2_5D_aa_%_C', 'sites_2_5D_aa_%_C', 'aa_%_carb', 'acc_2D_aa_%_carb', 'acc_3D_aa_%_carb', 'surface_3D_aa_%_carb', 'metal_2_5D_aa_%_carb', 'metal_3D_aa_%_carb', 'aa_%_chrg', 'acc_2D_aa_%_chrg', 'acc_3D_aa_%_chrg', 'surface_3D_aa_%_chrg', 'metal_2_5D_aa_%_chrg', 'metal_3D_aa_%_chrg', 'csa_2_5D_aa_%_chrg', 'sites_2_5D_aa_%_chrg', 'acc_2D_aa_%_poschrg', 'acc_3D_aa_%_poschrg', 'surface_3D_aa_%_poschrg', 'metal_2_5D_aa_%_poschrg', 'metal_3D_aa_%_poschrg', 'acc_2D_aa_%_negchrg', 'acc_3D_aa_%_negchrg', 'surface_3D_aa_%_negchrg', 'tm_2D_aa_%_tmunstab', 'tm_3D_aa_%_tmunstab', 'surface_3D_aa_%_Y','aa_%_Y','acc_3D_aa_%_Y','acc_2D_aa_%_Y'] expected_in_mut = ['aa_%_ord', 'disorder_2D_aa_%_ord', 'ss_disorder_2D_aa_%_ord', 'disorder_3D_aa_%_ord', 'ss_disorder_3D_aa_%_ord', 'dna_2_5D_aa_%_dis', 'aa_%_M', 'acc_2D_aa_%_M', 'acc_3D_aa_%_M', 'surface_3D_aa_%_M', 'metal_2_5D_aa_%_M', 'metal_3D_aa_%_M', 'csa_2_5D_aa_%_M', 'sites_2_5D_aa_%_M', 'metal_2_5D_aa_%_negchrg', 'metal_3D_aa_%_negchrg', 'metal_2_5D_aa_%_bulk', 'metal_3D_aa_%_bulk', 'tm_2D_aa_%_M', 'tm_3D_aa_%_M', 'tm_2D_aa_%_tmstab', 'tm_3D_aa_%_tmstab'] _all_counts = ['aa_count_A', 'aa_count_C', 'aa_count_D', 'aa_count_E', 'aa_count_F', 'aa_count_G', 'aa_count_H', 'aa_count_I', 'aa_count_K', 'aa_count_L', 'aa_count_M', 'aa_count_N', 'aa_count_P', 'aa_count_Q', 'aa_count_R', 'aa_count_S', 'aa_count_T', 'aa_count_V', 'aa_count_W', 'aa_count_Y', 'aa_count_total', 'acc_2D_aa_count_A', 'acc_2D_aa_count_C', 'acc_2D_aa_count_D', 'acc_2D_aa_count_E', 'acc_2D_aa_count_F', 'acc_2D_aa_count_G', 'acc_2D_aa_count_H', 'acc_2D_aa_count_I', 'acc_2D_aa_count_K', 'acc_2D_aa_count_L', 'acc_2D_aa_count_M', 'acc_2D_aa_count_N', 'acc_2D_aa_count_P', 'acc_2D_aa_count_Q', 'acc_2D_aa_count_R', 'acc_2D_aa_count_S', 'acc_2D_aa_count_T', 'acc_2D_aa_count_V', 'acc_2D_aa_count_W', 'acc_2D_aa_count_Y', 'acc_2D_aa_count_carb', 'acc_2D_aa_count_chrg', 'acc_2D_aa_count_negchrg', 'acc_2D_aa_count_poschrg', 'acc_2D_aa_count_total', 'acc_3D_aa_count_A', 'acc_3D_aa_count_C', 'acc_3D_aa_count_D', 'acc_3D_aa_count_E', 'acc_3D_aa_count_F', 'acc_3D_aa_count_G', 'acc_3D_aa_count_H', 'acc_3D_aa_count_I', 'acc_3D_aa_count_K', 'acc_3D_aa_count_L', 'acc_3D_aa_count_M', 'acc_3D_aa_count_N', 'acc_3D_aa_count_P', 'acc_3D_aa_count_Q', 'acc_3D_aa_count_R', 'acc_3D_aa_count_S', 'acc_3D_aa_count_T', 'acc_3D_aa_count_V', 'acc_3D_aa_count_W', 'acc_3D_aa_count_Y', 'acc_3D_aa_count_carb', 'acc_3D_aa_count_chrg', 'acc_3D_aa_count_negchrg', 'acc_3D_aa_count_poschrg', 'acc_3D_aa_count_total', 'csa_2_5D_aa_count_A', 'csa_2_5D_aa_count_C', 'csa_2_5D_aa_count_D', 'csa_2_5D_aa_count_E', 'csa_2_5D_aa_count_F', 'csa_2_5D_aa_count_G', 'csa_2_5D_aa_count_H', 'csa_2_5D_aa_count_I', 'csa_2_5D_aa_count_K', 'csa_2_5D_aa_count_L', 'csa_2_5D_aa_count_M', 'csa_2_5D_aa_count_N', 'csa_2_5D_aa_count_P', 'csa_2_5D_aa_count_Q', 'csa_2_5D_aa_count_R', 'csa_2_5D_aa_count_S', 'csa_2_5D_aa_count_T', 'csa_2_5D_aa_count_V', 'csa_2_5D_aa_count_W', 'csa_2_5D_aa_count_Y', 'csa_2_5D_aa_count_chrg', 'csa_2_5D_aa_count_total', 'disorder_2D_aa_count_A', 'disorder_2D_aa_count_C', 'disorder_2D_aa_count_D', 'disorder_2D_aa_count_E', 'disorder_2D_aa_count_F', 'disorder_2D_aa_count_G', 'disorder_2D_aa_count_H', 'disorder_2D_aa_count_I', 'disorder_2D_aa_count_K', 'disorder_2D_aa_count_L', 'disorder_2D_aa_count_M', 'disorder_2D_aa_count_N', 'disorder_2D_aa_count_P', 'disorder_2D_aa_count_Q', 'disorder_2D_aa_count_R', 'disorder_2D_aa_count_S', 'disorder_2D_aa_count_T', 'disorder_2D_aa_count_V', 'disorder_2D_aa_count_W', 'disorder_2D_aa_count_Y', 'disorder_2D_aa_count_dis', 'disorder_2D_aa_count_ord', 'disorder_2D_aa_count_total', 'disorder_3D_aa_count_A', 'disorder_3D_aa_count_C', 'disorder_3D_aa_count_D', 'disorder_3D_aa_count_E', 'disorder_3D_aa_count_F', 'disorder_3D_aa_count_G', 'disorder_3D_aa_count_H', 'disorder_3D_aa_count_I', 'disorder_3D_aa_count_K', 'disorder_3D_aa_count_L', 'disorder_3D_aa_count_M', 'disorder_3D_aa_count_N', 'disorder_3D_aa_count_P', 'disorder_3D_aa_count_Q', 'disorder_3D_aa_count_R', 'disorder_3D_aa_count_S', 'disorder_3D_aa_count_T', 'disorder_3D_aa_count_V', 'disorder_3D_aa_count_W', 'disorder_3D_aa_count_Y', 'disorder_3D_aa_count_dis', 'disorder_3D_aa_count_ord', 'disorder_3D_aa_count_total', 'dna_2_5D_aa_count_A', 'dna_2_5D_aa_count_C', 'dna_2_5D_aa_count_D', 'dna_2_5D_aa_count_E', 'dna_2_5D_aa_count_F', 'dna_2_5D_aa_count_G', 'dna_2_5D_aa_count_H', 'dna_2_5D_aa_count_I', 'dna_2_5D_aa_count_K', 'dna_2_5D_aa_count_L', 'dna_2_5D_aa_count_M', 'dna_2_5D_aa_count_N', 'dna_2_5D_aa_count_P', 'dna_2_5D_aa_count_Q', 'dna_2_5D_aa_count_R', 'dna_2_5D_aa_count_S', 'dna_2_5D_aa_count_T', 'dna_2_5D_aa_count_V', 'dna_2_5D_aa_count_W', 'dna_2_5D_aa_count_Y', 'dna_2_5D_aa_count_dis', 'dna_2_5D_aa_count_ord', 'dna_2_5D_aa_count_total', 'metal_2_5D_aa_count_A', 'metal_2_5D_aa_count_C', 'metal_2_5D_aa_count_D', 'metal_2_5D_aa_count_E', 'metal_2_5D_aa_count_F', 'metal_2_5D_aa_count_G', 'metal_2_5D_aa_count_H', 'metal_2_5D_aa_count_I', 'metal_2_5D_aa_count_K', 'metal_2_5D_aa_count_L', 'metal_2_5D_aa_count_M', 'metal_2_5D_aa_count_N', 'metal_2_5D_aa_count_P', 'metal_2_5D_aa_count_Q', 'metal_2_5D_aa_count_R', 'metal_2_5D_aa_count_S', 'metal_2_5D_aa_count_T', 'metal_2_5D_aa_count_V', 'metal_2_5D_aa_count_W', 'metal_2_5D_aa_count_Y', 'metal_2_5D_aa_count_bulk', 'metal_2_5D_aa_count_carb', 'metal_2_5D_aa_count_chrg', 'metal_2_5D_aa_count_negchrg', 'metal_2_5D_aa_count_poschrg', 'metal_2_5D_aa_count_total', 'metal_3D_aa_count_bulk', 'metal_3D_aa_count_carb', 'metal_3D_aa_count_chrg', 'metal_3D_aa_count_negchrg', 'metal_3D_aa_count_poschrg', 'notdeep_3D_aa_count_A', 'notdeep_3D_aa_count_C', 'notdeep_3D_aa_count_D', 'notdeep_3D_aa_count_E', 'notdeep_3D_aa_count_F', 'notdeep_3D_aa_count_G', 'notdeep_3D_aa_count_H', 'notdeep_3D_aa_count_I', 'notdeep_3D_aa_count_K', 'notdeep_3D_aa_count_L', 'notdeep_3D_aa_count_M', 'notdeep_3D_aa_count_N', 'notdeep_3D_aa_count_P', 'notdeep_3D_aa_count_Q', 'notdeep_3D_aa_count_R', 'notdeep_3D_aa_count_S', 'notdeep_3D_aa_count_T', 'notdeep_3D_aa_count_V', 'notdeep_3D_aa_count_W', 'notdeep_3D_aa_count_Y', 'notdeep_3D_aa_count_total', 'sites_2_5D_aa_count_A', 'sites_2_5D_aa_count_C', 'sites_2_5D_aa_count_D', 'sites_2_5D_aa_count_E', 'sites_2_5D_aa_count_F', 'sites_2_5D_aa_count_G', 'sites_2_5D_aa_count_H', 'sites_2_5D_aa_count_I', 'sites_2_5D_aa_count_K', 'sites_2_5D_aa_count_L', 'sites_2_5D_aa_count_M', 'sites_2_5D_aa_count_N', 'sites_2_5D_aa_count_P', 'sites_2_5D_aa_count_Q', 'sites_2_5D_aa_count_R', 'sites_2_5D_aa_count_S', 'sites_2_5D_aa_count_T', 'sites_2_5D_aa_count_V', 'sites_2_5D_aa_count_W', 'sites_2_5D_aa_count_Y', 'sites_2_5D_aa_count_chrg', 'sites_2_5D_aa_count_total', 'ss_disorder_2D_aa_count_A', 'ss_disorder_2D_aa_count_C', 'ss_disorder_2D_aa_count_D', 'ss_disorder_2D_aa_count_E', 'ss_disorder_2D_aa_count_F', 'ss_disorder_2D_aa_count_G', 'ss_disorder_2D_aa_count_H', 'ss_disorder_2D_aa_count_I', 'ss_disorder_2D_aa_count_K', 'ss_disorder_2D_aa_count_L', 'ss_disorder_2D_aa_count_M', 'ss_disorder_2D_aa_count_N', 'ss_disorder_2D_aa_count_P', 'ss_disorder_2D_aa_count_Q', 'ss_disorder_2D_aa_count_R', 'ss_disorder_2D_aa_count_S', 'ss_disorder_2D_aa_count_T', 'ss_disorder_2D_aa_count_V', 'ss_disorder_2D_aa_count_W', 'ss_disorder_2D_aa_count_Y', 'ss_disorder_2D_aa_count_dis', 'ss_disorder_2D_aa_count_ord', 'ss_disorder_2D_aa_count_total', 'ss_disorder_3D_aa_count_A', 'ss_disorder_3D_aa_count_C', 'ss_disorder_3D_aa_count_D', 'ss_disorder_3D_aa_count_E', 'ss_disorder_3D_aa_count_F', 'ss_disorder_3D_aa_count_G', 'ss_disorder_3D_aa_count_H', 'ss_disorder_3D_aa_count_I', 'ss_disorder_3D_aa_count_K', 'ss_disorder_3D_aa_count_L', 'ss_disorder_3D_aa_count_M', 'ss_disorder_3D_aa_count_N', 'ss_disorder_3D_aa_count_P', 'ss_disorder_3D_aa_count_Q', 'ss_disorder_3D_aa_count_R', 'ss_disorder_3D_aa_count_S', 'ss_disorder_3D_aa_count_T', 'ss_disorder_3D_aa_count_V', 'ss_disorder_3D_aa_count_W', 'ss_disorder_3D_aa_count_Y', 'ss_disorder_3D_aa_count_dis', 'ss_disorder_3D_aa_count_ord', 'ss_disorder_3D_aa_count_total', 'surface_3D_aa_count_A', 'surface_3D_aa_count_C', 'surface_3D_aa_count_D', 'surface_3D_aa_count_E', 'surface_3D_aa_count_F', 'surface_3D_aa_count_G', 'surface_3D_aa_count_H', 'surface_3D_aa_count_I', 'surface_3D_aa_count_K', 'surface_3D_aa_count_L', 'surface_3D_aa_count_M', 'surface_3D_aa_count_N', 'surface_3D_aa_count_P', 'surface_3D_aa_count_Q', 'surface_3D_aa_count_R', 'surface_3D_aa_count_S', 'surface_3D_aa_count_T', 'surface_3D_aa_count_V', 'surface_3D_aa_count_W', 'surface_3D_aa_count_Y', 'surface_3D_aa_count_carb', 'surface_3D_aa_count_chrg', 'surface_3D_aa_count_negchrg', 'surface_3D_aa_count_poschrg', 'surface_3D_aa_count_total', 'tm_2D_aa_count_tmstab', 'tm_2D_aa_count_tmunstab', 'tm_3D_aa_count_tmstab', 'tm_3D_aa_count_tmunstab'] ``` #### File: sequence/utils/alignment.py ```python import logging import os.path as op import subprocess import tempfile from collections import defaultdict from itertools import count, groupby import numpy as np import pandas as pd from Bio import AlignIO from Bio import pairwise2 from Bio.Align import MultipleSeqAlignment from Bio.SubsMat import MatrixInfo as matlist import ssbio.utils import ssbio.protein.sequence.utils # Quiet the SettingWithCopyWarning when converting dtypes in get_deletions/mutations methods pd.options.mode.chained_assignment = None log = logging.getLogger(__name__) def pairwise_sequence_alignment(a_seq, b_seq, engine, a_seq_id=None, b_seq_id=None, gapopen=10, gapextend=0.5, outfile=None, outdir=None, force_rerun=False): """Run a global pairwise sequence alignment between two sequence strings. Args: a_seq (str, Seq, SeqRecord, SeqProp): Reference sequence b_seq (str, Seq, SeqRecord, SeqProp): Sequence to be aligned to reference engine (str): `biopython` or `needle` - which pairwise alignment program to use a_seq_id (str): Reference sequence ID. If not set, is "a_seq" b_seq_id (str): Sequence to be aligned ID. If not set, is "b_seq" gapopen (int): Only for `needle` - Gap open penalty is the score taken away when a gap is created gapextend (float): Only for `needle` - Gap extension penalty is added to the standard gap penalty for each base or residue in the gap outfile (str): Only for `needle` - name of output file. If not set, is {id_a}_{id_b}_align.txt outdir (str): Only for `needle` - Path to output directory. Default is the current directory. force_rerun (bool): Only for `needle` - Default False, set to True if you want to rerun the alignment if outfile exists. Returns: MultipleSeqAlignment: Biopython object to represent an alignment """ engine = engine.lower() if engine not in ['biopython', 'needle']: raise ValueError('{}: invalid engine'.format(engine)) if not a_seq_id: a_seq_id = 'a_seq' if not b_seq_id: b_seq_id = 'b_seq' a_seq = ssbio.protein.sequence.utils.cast_to_str(a_seq) b_seq = ssbio.protein.sequence.utils.cast_to_str(b_seq) if engine == 'biopython': # TODO: allow different matrices? needle uses blosum62 by default, how to change that? # TODO: how to define gap open/extend when using matrix in biopython global alignment? log.warning('Gap penalties not implemented in Biopython yet') blosum62 = matlist.blosum62 alignments = pairwise2.align.globaldx(a_seq, b_seq, blosum62) # TODO: add gap penalties best_alignment = alignments[0] a = ssbio.protein.sequence.utils.cast_to_seq_record(best_alignment[0], id=a_seq_id) b = ssbio.protein.sequence.utils.cast_to_seq_record(best_alignment[1], id=b_seq_id) alignment = MultipleSeqAlignment([a, b], annotations={"score": best_alignment[2], "start": best_alignment[3], "end" : best_alignment[4]}) alignment.annotations['percent_identity'] = get_percent_identity(best_alignment[0], best_alignment[1]) * 100 return alignment if engine == 'needle': alignment_file = run_needle_alignment(seq_a=a_seq, seq_b=b_seq, gapopen=gapopen, gapextend=gapextend, write_outfile=True, # Has to be true, AlignIO parses files on disk outdir=outdir, outfile=outfile, force_rerun=force_rerun) log.debug('Needle alignment at {}'.format(alignment_file)) if not op.exists(alignment_file): raise ValueError('{}: needle alignment file does not exist'.format(alignment_file)) # Use AlignIO to parse the needle alignment, alignments[0] is the first alignment (the only one in pairwise) # alignments = list(AlignIO.parse(alignment_file, "emboss")) # alignment = alignments[0] alignment = needle_statistics_alignio(alignment_file) # Rename the sequence IDs alignment[0].id = a_seq_id alignment[1].id = b_seq_id # # Add needle statistics as annotations in the alignment object # stats = needle_statistics(alignment_file) # alignment_ids = list(stats.keys()) # if len(alignment_ids) > 1: # raise ValueError('Needle alignment file contains more than one pairwise alignment') # needle_id = alignment_ids[0] # alignment.annotations['percent_identity'] = stats[needle_id]['percent_identity'] # alignment.annotations['percent_similarity'] = stats[needle_id]['percent_similarity'] # alignment.annotations['percent_gaps'] = stats[needle_id]['percent_gaps'] # alignment.annotations['score'] = stats[needle_id]['score'] return alignment def run_needle_alignment(seq_a, seq_b, gapopen=10, gapextend=0.5, write_outfile=True, outdir=None, outfile=None, force_rerun=False): """Run the needle alignment program for two strings and return the raw alignment result. More info: EMBOSS needle: http://www.bioinformatics.nl/cgi-bin/emboss/help/needle Biopython wrapper: http://biopython.org/DIST/docs/tutorial/Tutorial.html#htoc84 Using strings as input: https://www.biostars.org/p/91124/ Args: id_a: ID of reference sequence seq_a (str, Seq, SeqRecord): Reference sequence id_b: ID of sequence to be aligned seq_b (str, Seq, SeqRecord): String representation of sequence to be aligned gapopen: Gap open penalty is the score taken away when a gap is created gapextend: Gap extension penalty is added to the standard gap penalty for each base or residue in the gap outdir (str, optional): Path to output directory. Default is the current directory. outfile (str, optional): Name of output file. If not set, is {id_a}_{id_b}_align.txt force_rerun (bool): Default False, set to True if you want to rerun the alignment if outfile exists. Returns: str: Raw alignment result of the needle alignment in srspair format. """ # TODO: check if needle is installed and raise error if not if not outdir: outdir = '' # TODO: rewrite using utils functions - does not report error if needle is not installed currently # TODO: rethink outdir/outfile, also if this should return the tempfile or just a file object or whatever if write_outfile: seq_a = ssbio.protein.sequence.utils.cast_to_str(seq_a) seq_b = ssbio.protein.sequence.utils.cast_to_str(seq_b) if not outfile: outfile = op.join(tempfile.gettempdir(), 'temp_alignment.needle') else: outfile = op.join(outdir, outfile) if ssbio.utils.force_rerun(flag=force_rerun, outfile=outfile): cmd = 'needle -outfile="{}" -asequence=asis::{} -bsequence=asis::{} -gapopen={} -gapextend={}'.format( outfile, seq_a, seq_b, gapopen, gapextend) command = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = command.communicate() return outfile else: seq_a = ssbio.protein.sequence.utils.cast_to_str(seq_a) seq_b = ssbio.protein.sequence.utils.cast_to_str(seq_b) cmd = 'needle -auto -stdout -asequence=asis::{} -bsequence=asis::{} -gapopen={} -gapextend={}'.format(seq_a, seq_b, gapopen, gapextend) command = subprocess.Popen(cmd, stdout=subprocess.PIPE, shell=True) stdout = command.stdout.read() return stdout def run_needle_alignment_on_files(id_a, faa_a, id_b, faa_b, gapopen=10, gapextend=0.5, outdir='', outfile='', force_rerun=False): """Run the needle alignment program for two fasta files and return the raw alignment result. More info: EMBOSS needle: http://www.bioinformatics.nl/cgi-bin/emboss/help/needle Biopython wrapper: http://biopython.org/DIST/docs/tutorial/Tutorial.html#htoc84 Args: id_a: ID of reference sequence faa_a: File path to reference sequence id_b: ID of sequence to be aligned faa_b: File path to sequence to be aligned gapopen: Gap open penalty is the score taken away when a gap is created gapextend: Gap extension penalty is added to the standard gap penalty for each base or residue in the gap outdir (str, optional): Path to output directory. Default is the current directory. outfile (str, optional): Name of output file. If not set, is {id_a}_{id_b}_align.txt force_rerun (bool): Default False, set to True if you want to rerun the alignment if outfile exists. Returns: str: Raw alignment result of the needle alignment in srspair format. """ # TODO: rewrite using utils functions so we can check for needle installation # # If you don't want to save the output file, just run the alignment and return the raw results # if not outfile and not outdir: # needle_cline = NeedleCommandline(asequence=faa_a, bsequence=faa_b, # gapopen=gapopen, gapextend=gapextend, # stdout=True, auto=True) # stdout, stderr = needle_cline() # raw_alignment_text = stdout.decode('utf-8') # Make a default name if no outfile is set if not outfile: outfile = op.join(outdir, '{}_{}.needle'.format(id_a, id_b)) else: outfile = op.join(outdir, outfile) # Check if the outfile already exists if op.exists(outfile) and not force_rerun: return outfile # If it doesn't exist, or force_rerun=True, run the alignment else: cmd = 'needle -outfile="{}" -asequence="{}" -bsequence="{}" -gapopen={} -gapextend={}'.format(outfile, faa_a, faa_b, gapopen, gapextend) command = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = command.communicate() return outfile def get_percent_identity(a_aln_seq, b_aln_seq): """Get the percent identity between two alignment strings""" if len(a_aln_seq) != len(b_aln_seq): raise ValueError('Sequence lengths not equal - was an alignment run?') count = 0 gaps = 0 for n in range(0, len(a_aln_seq)): if a_aln_seq[n] == b_aln_seq[n]: if a_aln_seq[n] != "-": count += 1 else: gaps += 1 return count / float((len(a_aln_seq) - gaps)) def get_alignment_df(a_aln_seq, b_aln_seq, a_seq_id=None, b_seq_id=None): """Summarize two alignment strings in a dataframe. Args: a_aln_seq (str): Aligned sequence string b_aln_seq (str): Aligned sequence string a_seq_id (str): Optional ID of a_seq b_seq_id (str): Optional ID of b_aln_seq Returns: DataFrame: a per-residue level annotation of the alignment """ if len(a_aln_seq) != len(b_aln_seq): raise ValueError('Sequence lengths not equal - was an alignment run?') if not a_seq_id: a_seq_id = 'a_seq' if not b_seq_id: b_seq_id = 'b_seq' a_aln_seq = ssbio.protein.sequence.utils.cast_to_str(a_aln_seq) b_aln_seq = ssbio.protein.sequence.utils.cast_to_str(b_aln_seq) a_idx = 1 b_idx = 1 appender = [] for i, (a,b) in enumerate(zip(a_aln_seq, b_aln_seq)): to_append = {} if a == b and a != '-' and b != '-': aa_flag = 'match' elif a != b and a == '-' and b != '-': aa_flag = 'insertion' elif a != b and a != '-' and b == '-': aa_flag = 'deletion' elif a != b and a != '-' and b == 'X': aa_flag = 'unresolved' elif a != b and b != '-' and a == 'X': aa_flag = 'unresolved' elif a != b and a != '-' and b != '-': aa_flag = 'mutation' to_append['id_a'] = a_seq_id to_append['id_b'] = b_seq_id to_append['type'] = aa_flag if aa_flag == 'match' or aa_flag == 'unresolved' or aa_flag == 'mutation': to_append['id_a_aa'] = a to_append['id_a_pos'] = int(a_idx) to_append['id_b_aa'] = b to_append['id_b_pos'] = int(b_idx) a_idx += 1 b_idx += 1 if aa_flag == 'deletion': to_append['id_a_aa'] = a to_append['id_a_pos'] = int(a_idx) a_idx += 1 if aa_flag == 'insertion': to_append['id_b_aa'] = b to_append['id_b_pos'] = int(b_idx) b_idx += 1 appender.append(to_append) cols = ['id_a', 'id_b', 'type', 'id_a_aa', 'id_a_pos', 'id_b_aa', 'id_b_pos'] alignment_df = pd.DataFrame.from_records(appender, columns=cols) alignment_df = alignment_df.fillna(value=np.nan) return alignment_df def get_alignment_df_from_file(alignment_file, a_seq_id=None, b_seq_id=None): """Get a Pandas DataFrame of the Needle alignment results. Contains all positions of the sequences. Args: alignment_file: a_seq_id: Optional specification of the ID of the reference sequence b_seq_id: Optional specification of the ID of the aligned sequence Returns: Pandas DataFrame: all positions in the alignment """ alignments = list(AlignIO.parse(alignment_file, "emboss")) alignment_df = pd.DataFrame(columns=['id_a', 'id_b', 'type', 'id_a_aa', 'id_a_pos', 'id_b_aa', 'id_b_pos']) for alignment in alignments: if not a_seq_id: a_seq_id = list(alignment)[0].id a_seq = str(list(alignment)[0].seq) if not b_seq_id: b_seq_id = list(alignment)[1].id b_seq = str(list(alignment)[1].seq) df = get_alignment_df(a_seq, b_seq, a_seq_id, b_seq_id) alignment_df = alignment_df.append(df).reset_index(drop=True) return alignment_df def get_mutations(aln_df): """Get a list of residue numbers (in the original sequence's numbering) that are mutated Args: aln_df (DataFrame): Alignment DataFrame just_resnums: If only the residue numbers should be returned, instead of a list of tuples of (original_residue, resnum, mutated_residue) Returns: list: Residue mutations """ mutation_df = aln_df[aln_df['type'] == 'mutation'] tuples = [] if not mutation_df.empty: subset = mutation_df[['id_a_aa', 'id_a_pos', 'id_b_aa']] subset['id_a_pos'] = subset['id_a_pos'].astype(int) tuples = [tuple(x) for x in subset.values] return tuples def get_unresolved(aln_df): """Get a list of residue numbers (in the original sequence's numbering) that are unresolved Args: aln_df (DataFrame): Alignment DataFrame Returns: list: Residue numbers that are mutated """ unresolved_df = aln_df[aln_df['type'] == 'unresolved'] unresolved = [] if not unresolved_df.empty: unresolved_df['id_a_pos'] = unresolved_df['id_a_pos'].astype(int) unresolved = unresolved_df.id_a_pos.tolist() return unresolved def get_deletions(aln_df): """Get a list of tuples indicating the first and last residues of a deletion region, as well as the length of the deletion. Examples: # Deletion of residues 1 to 4, length 4 >>> test = {'id_a': {0: 'a', 1: 'a', 2: 'a', 3: 'a'}, 'id_a_aa': {0: 'M', 1: 'G', 2: 'I', 3: 'T'}, 'id_a_pos': {0: 1.0, 1: 2.0, 2: 3.0, 3: 4.0}, 'id_b': {0: 'b', 1: 'b', 2: 'b', 3: 'b'}, 'id_b_aa': {0: np.nan, 1: np.nan, 2: np.nan, 3: np.nan}, 'id_b_pos': {0: np.nan, 1: np.nan, 2: np.nan, 3: np.nan}, 'type': {0: 'deletion', 1: 'deletion', 2: 'deletion', 3: 'deletion'}} >>> my_alignment = pd.DataFrame.from_dict(test) >>> get_deletions(my_alignment) [((1.0, 4.0), 4)] Args: aln_df (DataFrame): Alignment DataFrame Returns: list: A list of tuples with the format ((deletion_start_resnum, deletion_end_resnum), deletion_length) """ deletion_df = aln_df[aln_df['type'] == 'deletion'] if not deletion_df.empty: deletion_df['id_a_pos'] = deletion_df['id_a_pos'].astype(int) deletions = [] for k, g in groupby(deletion_df.index, key=lambda n, c=count(): n - next(c)): tmp = list(g) deletion_indices = (min(tmp), max(tmp)) deletion_start_ix = deletion_indices[0] deletion_end_ix = deletion_indices[1] deletion_length = deletion_end_ix - deletion_start_ix + 1 id_a_pos_deletion_start = aln_df.ix[deletion_start_ix].id_a_pos id_a_pos_deletion_end = aln_df.ix[deletion_end_ix].id_a_pos deletion_region = (id_a_pos_deletion_start, id_a_pos_deletion_end) # Logging where the insertion is log.debug('Deletion of length {} at residues {}'.format(deletion_length, deletion_region)) to_append = (deletion_region, deletion_length) deletions.append(to_append) return deletions def get_insertions(aln_df): """Get a list of tuples indicating the first and last residues of a insertion region, as well as the length of the insertion. If the first tuple is: (-1, 1) that means the insertion is at the beginning of the original protein (X, Inf) where X is the length of the original protein, that means the insertion is at the end of the protein Examples: # Insertion at beginning, length 3 >>> test = {'id_a': {0: 'a', 1: 'a', 2: 'a', 3: 'a'}, 'id_a_aa': {0: np.nan, 1: np.nan, 2: np.nan, 3: 'M'}, 'id_a_pos': {0: np.nan, 1: np.nan, 2: np.nan, 3: 1.0}, 'id_b': {0: 'b', 1: 'b', 2: 'b', 3: 'b'}, 'id_b_aa': {0: 'M', 1: 'M', 2: 'L', 3: 'M'}, 'id_b_pos': {0: 1, 1: 2, 2: 3, 3: 4}, 'type': {0: 'insertion', 1: 'insertion', 2: 'insertion', 3: 'match'}} >>> my_alignment = pd.DataFrame.from_dict(test) >>> get_insertions(my_alignment) [((-1, 1.0), 3)] Args: aln_df (DataFrame): Alignment DataFrame Returns: list: A list of tuples with the format ((insertion_start_resnum, insertion_end_resnum), insertion_length) """ insertion_df = aln_df[aln_df['type'] == 'insertion'] # if not insertion_df.empty: # don't need to do this for insertions # insertion_df['id_a_pos'] = insertion_df['id_a_pos'].astype(int) insertions = [] for k, g in groupby(insertion_df.index, key=lambda n, c=count(): n - next(c)): tmp = list(g) insertion_indices = (min(tmp), max(tmp)) insertion_start = insertion_indices[0] - 1 insertion_end = insertion_indices[1] + 1 # Checking if insertion is at the beginning or end if insertion_start < 0: insertion_start = insertion_indices[0] insertion_length = insertion_end - insertion_start elif insertion_end >= len(aln_df): insertion_end = insertion_indices[1] insertion_length = insertion_end - insertion_start else: insertion_length = insertion_end - insertion_start - 1 id_a_pos_insertion_start = aln_df.ix[insertion_start].id_a_pos id_a_pos_insertion_end = aln_df.ix[insertion_end].id_a_pos # Checking if insertion is at the beginning or end if np.isnan(id_a_pos_insertion_start) and id_a_pos_insertion_end == 1: insertion_region = (-1, id_a_pos_insertion_end) elif np.isnan(id_a_pos_insertion_end): insertion_region = (id_a_pos_insertion_start, float('Inf')) else: insertion_region = (id_a_pos_insertion_start, id_a_pos_insertion_end) # Logging where the insertion is if insertion_region[0] == -1: log.debug('Insertion of length {} at beginning'.format(insertion_length)) elif insertion_region[1] == float('Inf'): log.debug('Insertion of length {} at end'.format(insertion_length)) else: log.debug('Insertion of length {} at residues {}'.format(insertion_length, insertion_region)) to_append = (insertion_region, insertion_length) insertions.append(to_append) return insertions def map_resnum_a_to_resnum_b(resnums, a_aln, b_aln): """Map a residue number in a sequence to the corresponding residue number in an aligned sequence. Examples: >>> map_resnum_a_to_resnum_b([1,2,3], '--ABCDEF', 'XXABCDEF') {1: 3, 2: 4, 3: 5} >>> map_resnum_a_to_resnum_b(5, '--ABCDEF', 'XXABCDEF') {5: 7} >>> map_resnum_a_to_resnum_b(5, 'ABCDEF', 'ABCD--') {} >>> map_resnum_a_to_resnum_b(5, 'ABCDEF--', 'ABCD--GH') {} >>> map_resnum_a_to_resnum_b([9,10], '--MKCDLHRLE-E', 'VSNEYSFEGYKLD') {9: 11, 10: 13} Args: resnums (int, list): Residue number or numbers in the first aligned sequence a_aln (str, Seq, SeqRecord): Aligned sequence string b_aln (str, Seq, SeqRecord): Aligned sequence string Returns: int: Residue number in the second aligned sequence """ resnums = ssbio.utils.force_list(resnums) aln_df = get_alignment_df(a_aln, b_aln) maps = aln_df[aln_df.id_a_pos.isin(resnums)] able_to_map_to_b = maps[pd.notnull(maps.id_b_pos)] successful_map_from_a = able_to_map_to_b.id_a_pos.values.tolist() mapping = dict([(int(a), int(b)) for a,b in zip(able_to_map_to_b.id_a_pos, able_to_map_to_b.id_b_pos)]) cant_map = list(set(resnums).difference(successful_map_from_a)) if len(cant_map) > 0: log.warning('Unable to map residue numbers {} in first sequence to second'.format(cant_map)) return mapping def pairwise_alignment_stats(reference_seq_aln, other_seq_aln): """Get a report of a pairwise alignment. Args: reference_seq_aln (str, Seq, SeqRecord): Reference sequence, alignment form other_seq_aln (str, Seq, SeqRecord): Other sequence, alignment form Returns: dict: Dictionary of information on mutations, insertions, sequence identity, etc. """ if len(reference_seq_aln) != len(other_seq_aln): raise ValueError('Sequence lengths not equal - was an alignment run?') reference_seq_aln = ssbio.protein.sequence.utils.cast_to_str(reference_seq_aln) other_seq_aln = ssbio.protein.sequence.utils.cast_to_str(other_seq_aln) infodict = {} # Percent identity to the reference sequence stats_percent_ident = get_percent_identity(a_aln_seq=reference_seq_aln, b_aln_seq=other_seq_aln) infodict['percent_identity'] = stats_percent_ident # Other alignment results aln_df = get_alignment_df(a_aln_seq=reference_seq_aln, b_aln_seq=other_seq_aln) infodict['deletions'] = get_deletions(aln_df) infodict['insertions'] = get_insertions(aln_df) infodict['mutations'] = get_mutations(aln_df) infodict['unresolved'] = get_unresolved(aln_df) return infodict def needle_statistics(infile): """Reads in a needle alignment file and spits out statistics of the alignment. Args: infile (str): Alignment file name Returns: dict: alignment_properties - a dictionary telling you the number of gaps, identity, etc. """ alignments = list(AlignIO.parse(infile, "emboss")) alignment_properties = defaultdict(dict) with open(infile) as f: line = f.readline() for i in range(len(alignments)): while line.rstrip() != "#=======================================": line = f.readline() if not line: raise StopIteration while line[0] == "#": # Read in the rest of this alignment header, # try and discover the number of records expected and their length parts = line[1:].split(":", 1) key = parts[0].lower().strip() if key == '1': a_id = parts[1].strip() if key == '2': b_id = parts[1].strip() if key == 'identity': ident_parse = parts[1].strip().replace('(','').replace(')','').replace('%','').split() ident_num = int(ident_parse[0].split('/')[0]) ident_percent = float(ident_parse[1]) alignment_properties[a_id + '_' + b_id]['identity'] = ident_num alignment_properties[a_id + '_' + b_id]['percent_identity'] = ident_percent if key == 'similarity': sim_parse = parts[1].strip().replace('(','').replace(')','').replace('%','').split() sim_num = int(sim_parse[0].split('/')[0]) sim_percent = float(sim_parse[1]) alignment_properties[a_id + '_' + b_id]['similarity'] = sim_num alignment_properties[a_id + '_' + b_id]['percent_similarity'] = sim_percent if key == 'gaps': gap_parse = parts[1].strip().replace('(','').replace(')','').replace('%','').split() gap_num = int(gap_parse[0].split('/')[0]) gap_percent = float(gap_parse[1]) alignment_properties[a_id + '_' + b_id]['gaps'] = gap_num alignment_properties[a_id + '_' + b_id]['percent_gaps'] = gap_percent if key == 'score': score = float(parts[1].strip()) alignment_properties[a_id + '_' + b_id]['score'] = score # And read in another line... line = f.readline() return alignment_properties def needle_statistics_alignio(infile): """Reads in a needle alignment file and returns an AlignIO object with annotations Args: infile (str): Alignment file name Returns: AlignIO: annotated AlignIO object """ alignments = list(AlignIO.parse(infile, "emboss")) if len(alignments) > 1: raise ValueError('Alignment file contains more than one pairwise alignment') alignment = alignments[0] with open(infile) as f: line = f.readline() for i in range(len(alignments)): while line.rstrip() != "#=======================================": line = f.readline() if not line: raise StopIteration while line[0] == "#": # Read in the rest of this alignment header, # try and discover the number of records expected and their length parts = line[1:].split(":", 1) key = parts[0].lower().strip() if key == 'identity': ident_parse = parts[1].strip().replace('(','').replace(')','').replace('%','').split() ident_num = int(ident_parse[0].split('/')[0]) ident_percent = float(ident_parse[1]) alignment.annotations['identity'] = ident_num alignment.annotations['percent_identity'] = ident_percent if key == 'similarity': sim_parse = parts[1].strip().replace('(','').replace(')','').replace('%','').split() sim_num = int(sim_parse[0].split('/')[0]) sim_percent = float(sim_parse[1]) alignment.annotations['similarity'] = sim_num alignment.annotations['percent_similarity'] = sim_percent if key == 'gaps': gap_parse = parts[1].strip().replace('(','').replace(')','').replace('%','').split() gap_num = int(gap_parse[0].split('/')[0]) gap_percent = float(gap_parse[1]) alignment.annotations['gaps'] = gap_num alignment.annotations['percent_gaps'] = gap_percent if key == 'score': score = float(parts[1].strip()) alignment.annotations['score'] = score # And read in another line... line = f.readline() return alignment ``` #### File: sequence/utils/blast.py ```python import os import subprocess import pandas as pd import os.path as op from ssbio import utils import logging try: from IPython.display import clear_output have_ipython = True from tqdm import tqdm_notebook as tqdm except ImportError: have_ipython = False from tqdm import tqdm date = utils.Date() log = logging.getLogger(__name__) def run_makeblastdb(infile, dbtype, outdir=''): """Make the BLAST database for a genome file. Args: infile (str): path to genome FASTA file dbtype (str): "nucl" or "prot" - what format your genome files are in outdir (str): path to directory to output database files (default is original folder) Returns: Paths to BLAST databases. """ # TODO: add force_rerun option # TODO: rewrite using utils function command # Output location og_dir, name, ext = utils.split_folder_and_path(infile) if not outdir: outdir = og_dir outfile_basename = op.join(outdir, name) # Check if BLAST DB was already made if dbtype == 'nucl': outext = ['.nhr', '.nin', '.nsq'] elif dbtype == 'prot': outext = ['.phr', '.pin', '.psq'] else: raise ValueError('dbtype must be "nucl" or "prot"') outfile_all = [outfile_basename + x for x in outext] db_made = True for f in outfile_all: if not op.exists(f): db_made = False # Run makeblastdb if DB does not exist if db_made: log.debug('BLAST database already exists at {}'.format(outfile_basename)) return outfile_all else: retval = subprocess.call('makeblastdb -in {} -dbtype {} -out {}'.format(infile, dbtype, outfile_basename), shell=True) if retval == 0: log.debug('Made BLAST database at {}'.format(outfile_basename)) return outfile_all else: log.error('Error running makeblastdb, exit code {}'.format(retval)) def run_bidirectional_blast(reference, other_genome, dbtype, outdir=''): """BLAST a genome against another, and vice versa. This function requires BLAST to be installed, do so by running: sudo apt install ncbi-blast+ Args: reference (str): path to "reference" genome, aka your "base strain" other_genome (str): path to other genome which will be BLASTed to the reference dbtype (str): "nucl" or "prot" - what format your genome files are in outdir (str): path to folder where BLAST outputs should be placed Returns: Paths to BLAST output files. (reference_vs_othergenome.out, othergenome_vs_reference.out) """ # TODO: add force_rerun option if dbtype == 'nucl': command = 'blastn' elif dbtype == 'prot': command = 'blastp' else: raise ValueError('dbtype must be "nucl" or "prot"') r_folder, r_name, r_ext = utils.split_folder_and_path(reference) g_folder, g_name, g_ext = utils.split_folder_and_path(other_genome) # make sure BLAST DBs have been made run_makeblastdb(infile=reference, dbtype=dbtype, outdir=r_folder) run_makeblastdb(infile=other_genome, dbtype=dbtype, outdir=g_folder) # Reference vs genome r_vs_g = r_name + '_vs_' + g_name + '_blast.out' r_vs_g = op.join(outdir, r_vs_g) if op.exists(r_vs_g) and os.stat(r_vs_g).st_size != 0: log.debug('{} vs {} BLAST already run'.format(r_name, g_name)) else: cmd = '{} -query {} -db {} -outfmt 6 -out {}'.format(command, reference, op.join(g_folder, g_name), r_vs_g) log.debug('Running: {}'.format(cmd)) retval = subprocess.call(cmd, shell=True) if retval == 0: log.debug('BLASTed {} vs {}'.format(g_name, r_name)) else: log.error('Error running {}, exit code {}'.format(command, retval)) # Genome vs reference g_vs_r = g_name + '_vs_' + r_name + '_blast.out' g_vs_r = op.join(outdir, g_vs_r) if op.exists(g_vs_r) and os.stat(g_vs_r).st_size != 0: log.debug('{} vs {} BLAST already run'.format(g_name, r_name)) else: cmd = '{} -query {} -db {} -outfmt 6 -out {}'.format(command, other_genome, op.join(r_folder, r_name), g_vs_r) log.debug('Running: {}'.format(cmd)) retval = subprocess.call(cmd, shell=True) if retval == 0: log.debug('BLASTed {} vs {}'.format(g_name, r_name)) else: log.error('Error running {}, exit code {}'.format(command, retval)) return r_vs_g, g_vs_r def print_run_bidirectional_blast(reference, other_genome, dbtype, outdir): """Write torque submission files for running bidirectional blast on a server and print execution command. Args: reference (str): Path to "reference" genome, aka your "base strain" other_genome (str): Path to other genome which will be BLASTed to the reference dbtype (str): "nucl" or "prot" - what format your genome files are in outdir (str): Path to folder where Torque scripts should be placed """ # TODO: add force_rerun option if dbtype == 'nucl': command = 'blastn' elif dbtype == 'prot': command = 'blastp' else: raise ValueError('dbtype must be "nucl" or "prot"') r_folder, r_name, r_ext = utils.split_folder_and_path(reference) g_folder, g_name, g_ext = utils.split_folder_and_path(other_genome) # Reference vs genome r_vs_g_name = r_name + '_vs_' + g_name r_vs_g = r_vs_g_name + '_blast.out' if op.exists(op.join(outdir, r_vs_g)) and os.stat(op.join(outdir, r_vs_g)).st_size != 0: log.debug('{} vs {} BLAST already run'.format(r_name, g_name)) else: cmd = '{} -query {} -db {} -outfmt 6 -out {}'.format(command, reference, g_name, r_vs_g) utils.write_torque_script(command=cmd, err=r_vs_g_name, out=r_vs_g_name, name=r_vs_g_name, outfile=op.join(outdir, r_vs_g_name) + '.sh', walltime='00:15:00', queue='regular') # Genome vs reference g_vs_r_name = g_name + '_vs_' + r_name g_vs_r = g_vs_r_name + '_blast.out' if op.exists(op.join(outdir, g_vs_r)) and os.stat(op.join(outdir, g_vs_r)).st_size != 0: log.debug('{} vs {} BLAST already run'.format(g_name, r_name)) else: cmd = '{} -query {} -db {} -outfmt 6 -out {}'.format(command, other_genome, r_name, g_vs_r) utils.write_torque_script(command=cmd, err=g_vs_r_name, out=g_vs_r_name, name=g_vs_r_name, outfile=op.join(outdir, g_vs_r_name) + '.sh', walltime='00:15:00', queue='regular') def calculate_bbh(blast_results_1, blast_results_2, r_name=None, g_name=None, outdir=''): """Calculate the best bidirectional BLAST hits (BBH) and save a dataframe of results. Args: blast_results_1 (str): BLAST results for reference vs. other genome blast_results_2 (str): BLAST results for other vs. reference genome r_name: Name of reference genome g_name: Name of other genome outdir: Directory where BLAST results are stored. Returns: Path to Pandas DataFrame of the BBH results. """ # TODO: add force_rerun option cols = ['gene', 'subject', 'PID', 'alnLength', 'mismatchCount', 'gapOpenCount', 'queryStart', 'queryEnd', 'subjectStart', 'subjectEnd', 'eVal', 'bitScore'] if not r_name and not g_name: r_name = op.basename(blast_results_1).split('_vs_')[0] g_name = op.basename(blast_results_1).split('_vs_')[1].replace('_blast.out', '') r_name2 = op.basename(blast_results_2).split('_vs_')[1].replace('_blast.out', '') if r_name != r_name2: log.warning('{} != {}'.format(r_name, r_name2)) outfile = op.join(outdir, '{}_vs_{}_bbh.csv'.format(r_name, g_name)) if op.exists(outfile) and os.stat(outfile).st_size != 0: log.debug('{} vs {} BLAST BBHs already found at {}'.format(r_name, g_name, outfile)) return outfile bbh1 = pd.read_csv(blast_results_1, sep='\t', names=cols) bbh2 = pd.read_csv(blast_results_2, sep='\t', names=cols) out = pd.DataFrame() log.debug('Finding BBHs for {} vs. {}'.format(r_name, g_name)) for g in bbh1[pd.notnull(bbh1.gene)].gene.unique(): res = bbh1[bbh1.gene == g] if len(res) == 0: continue best_hit = res.ix[res.PID.idxmax()].copy() best_gene = best_hit.subject res2 = bbh2[bbh2.gene == best_gene] if len(res2) == 0: continue best_hit2 = res2.ix[res2.PID.idxmax()] best_gene2 = best_hit2.subject if g == best_gene2: best_hit['BBH'] = '<=>' else: best_hit['BBH'] = '->' out = pd.concat([out, pd.DataFrame(best_hit).transpose()]) out.to_csv(outfile) log.debug('{} vs {} BLAST BBHs saved at {}'.format(r_name, g_name, outfile)) return outfile def create_orthology_matrix(r_name, genome_to_bbh_files, pid_cutoff=None, bitscore_cutoff=None, evalue_cutoff=None, outname='', outdir='', force_rerun=False): """Create an orthology matrix using best bidirectional BLAST hits (BBH) outputs. Args: r_name (str): Name of the reference genome genome_to_bbh_files (dict): Mapping of genome names to the BBH csv output from the :func:`~ssbio.protein.sequence.utils.blast.calculate_bbh` method pid_cutoff (float): Minimum percent identity between BLAST hits to filter for in the range [0, 100] bitscore_cutoff (float): Minimum bitscore allowed between BLAST hits evalue_cutoff (float): Maximum E-value allowed between BLAST hits outname: Name of output file of orthology matrix outdir: Path to output directory force_rerun (bool): Force recreation of the orthology matrix even if the outfile exists Returns: str: Path to orthologous genes matrix. """ if outname: outfile = op.join(outdir, outname) else: outfile = op.join(outdir, '{}_orthology.csv'.format(r_name)) if op.exists(outfile) and os.stat(outfile).st_size != 0 and not force_rerun: log.info('{}: loaded existing orthology matrix'.format(outfile)) return outfile if not pid_cutoff and not bitscore_cutoff and not evalue_cutoff: log.warning('No cutoffs supplied, insignificant hits may be reported') if not pid_cutoff: pid_cutoff = 0 if not bitscore_cutoff: bitscore_cutoff = 0 if not evalue_cutoff: evalue_cutoff = float('Inf') out = pd.DataFrame() for g_name, bbh_path in genome_to_bbh_files.items(): df_bbh = pd.read_csv(bbh_path, index_col=0) bidirectional = df_bbh[df_bbh.BBH == '<=>'] data = bidirectional[(bidirectional.PID > pid_cutoff) & (bidirectional.eVal < evalue_cutoff) & (bidirectional.bitScore > bitscore_cutoff)] data.index = data.gene data2 = data[['subject']] if out.empty: out = data2 out = out.rename(columns={'subject': g_name}) else: out = pd.merge(out, data2, left_index=True, right_index=True, how='outer') out = out.rename(columns={'subject': g_name}) out.to_csv(outfile) log.debug('{} orthologous genes saved at {}'.format(r_name, outfile)) return outfile ``` #### File: protein/structure/chainprop.py ```python from ssbio.core.object import Object import logging log = logging.getLogger(__name__) from Bio.SeqFeature import FeatureLocation, CompoundLocation from more_itertools import locate import ssbio.utils from ssbio.protein.sequence.seqprop import SeqProp class ChainProp(Object): """Class for protein structural properties of a specific chain""" def __init__(self, ident, pdb_parent, seq_record=None, description=None): Object.__init__(self, id=ident, description=description) self.pdb_parent = pdb_parent self.seq_record = seq_record if not self.description: self.description = 'Chain {} from PDB parent {}'.format(self.id, self.pdb_parent) def reset_seq_record(self): self.seq_record = None def get_subsequence(self, resnums, new_id=None, copy_letter_annotations=True): """Get a subsequence as a new SeqProp object given a list of residue numbers""" # XTODO: documentation if not self.seq_record: raise ValueError('No chain sequence stored') biop_compound_list = [] for resnum in resnums: feat = FeatureLocation(resnum - 1, resnum) biop_compound_list.append(feat) if len(biop_compound_list) == 0: log.info('Zero length subsequences') return elif len(biop_compound_list) == 1: log.debug('Subsequence only one residue long') sub_feature_location = biop_compound_list[0] else: sub_feature_location = CompoundLocation(biop_compound_list) sub_feature = sub_feature_location.extract(self.seq_record) if not new_id: new_id = '{}_subseq'.format(self.id) new_sp = SeqProp(id=new_id, seq=sub_feature) if copy_letter_annotations: new_sp.letter_annotations = sub_feature.letter_annotations return new_sp def get_subsequence_from_property(self, property_key, property_value, condition, return_resnums=False, copy_letter_annotations=True): """Get a subsequence as a new SeqProp object given a certain property you want to find in this chain's letter_annotation See documentation for :func:`ssbio.protein.sequence.seqprop.SeqProp.get_subsequence_from_property` Args: property_key (str): Property key in the ``letter_annotations`` attribute that you want to filter using property_value (str): Property value that you want to filter by condition (str): ``<``, ``=``, ``>``, ``>=``, or ``<=`` to filter the values by return_resnums (bool): If resnums should be returned as well Returns: SeqProp: New SeqProp object that you can run computations on or just extract its properties """ if not self.seq_record: raise ValueError('No chain sequence stored') if property_key not in self.seq_record.letter_annotations: log.error(KeyError('{}: {} not contained in the letter annotations'.format(self.seq_record.id, property_key))) return if condition == 'in': subfeat_indices = list(locate(self.seq_record.letter_annotations[property_key], lambda x: x in property_value)) else: subfeat_indices = list(locate(self.seq_record.letter_annotations[property_key], lambda x: ssbio.utils.check_condition(x, condition, property_value))) subfeat_resnums = [x + 1 for x in subfeat_indices] new_sp = self.get_subsequence(resnums=subfeat_resnums, new_id='{}_{}_{}_{}_extracted'.format(self.pdb_parent, self.id, property_key, condition, property_value), copy_letter_annotations=copy_letter_annotations) if return_resnums: return new_sp, subfeat_resnums else: return new_sp ``` #### File: structure/properties/opm.py ```python import requests from bs4 import BeautifulSoup import ssbio.utils ### Server # http://opm.phar.umich.edu/server.php # # ### Definitions: # # Depth or hydrophobic thickness. This parameter indicates the calculated hydrophobic thickness # (for TM proteins) or maximal penetration depth of protein atoms into the lipid hydrocarbon core # (for peripheral/monotopic) proteins. The ± values for the depth and tilt angle show fluctuations of # the corresponding parameters within 1 kcal/mol around the global minimum of transfer energy. # # Tilt angle is calculated between membrane normal (Z axis) and protein axis. The protein axis is # calculated as the sum of TM secondary structure segment vectors (for TM proteins) or as the principal # inertia axis (for peripheral proteins). # # Transfer energy of the protein from water to lipid bilayer. This energy roughly corresponds to the # actual membrane binding energy for water-soluble peripheral proteins, unless: (a) some membrane-anchoring # elements are missing or disordered in the crystal structure; (b) there is strong specific binding of lipids # (e.g. in PH domains and other "lipid clamps"), or (c) membrane binding is coupled with significant structural # changes of the protein (e.g. helix-coil transition for amphiphilic α-helices). In situations (a) and (b), the # calculated membrane binding free energy is underestimated. In situation (c) it is usually overestimated. # # Table of membrane-embedded residues consists of two parts: (a) list of residues penetrating into the hydrocarbon # core of the lipid bilayer for each subunit (tilt angles of individual subunits in this part are calculated based # on the principal inertia axis), and (b) parts of transmembrane alpha-helices or beta-strands that are embedded # into the hydrocarbon core (the entire secondary structures can be longer; tilt angles of individual subunits # in this part are calculated as vector averages of TM secondary structure segment vectors). # # Output coordinate file for a protein positioned in the lipid bilayer. The origin of coordinates corresponds # to the center of lipid bilayer. Z axis coincides with membrane normal; atoms with the positive sign of Z coordinate # are arranged in the "outer" leaflet as defined by the user-specified topology. Positions of DUMMY atoms correspond # to locations of lipid carbonyl groups. # # Diagnostic messages. The server produces diagnostic messages in a separate window. Please report these messages to # developer if program aborts. ## SEE: https://structure.dynamic.ucsd.edu:9998/notebooks/projects_unsynced/sandbox/PPM_server_test.ipynb def run_ppm_server(pdb_file, outfile, force_rerun=False): """Run the PPM server from OPM to predict transmembrane residues. Args: pdb_file (str): Path to PDB file outfile (str): Path to output HTML results file force_rerun (bool): Flag to rerun PPM if HTML results file already exists Returns: dict: Dictionary of information from the PPM run, including a link to download the membrane protein file """ if ssbio.utils.force_rerun(outfile=outfile, flag=force_rerun): url = 'http://sunshine.phar.umich.edu/upload_file.php' files = {'userfile': open(pdb_file, 'rb')} r = requests.post(url, files=files) info = r.text # Save results in raw HTML format with open(outfile, 'w') as f: f.write(info) else: # Utilize existing saved results with open(outfile, 'r') as f: info = f.read() # Clean up the HTML stuff t = info.replace('\n', '') tt = t.replace('\r', '') ttt = tt.replace('\t', '') soup = BeautifulSoup(ttt, "lxml") # Find all tables in the HTML code tables = soup.find_all("table", attrs={"class": "data"}) info_dict = {} # There are multiple tables with information table_index = 0 for t in tables: data_index = 0 # "row1" contains data for data in t.find_all('tr', attrs={"class": "row1"}): data_list = list(data.strings) if table_index == 0: info_dict['Depth/Hydrophobic Thickness'] = data_list[0] info_dict['deltaG_transfer'] = data_list[2] info_dict['Tilt Angle'] = data_list[3] if table_index == 1 and data_index == 0: info_dict['Embedded_residues_Tilt'] = data_list[0] info_dict['Embedded_residues'] = data_list[1] if table_index == 1 and data_index == 1: info_dict['Transmembrane_secondary_structure_segments_Tilt'] = data_list[0] info_dict['Transmembrane_secondary_structure_segments'] = data_list[1] if table_index == 2: info_dict['Output Messages'] = data_list[1] if table_index == 3: baseurl = 'http://sunshine.phar.umich.edu/' a = data.find('a', href=True) download_url = baseurl + a['href'].replace('./', '') info_dict['Output file download link'] = download_url data_index += 1 table_index += 1 return info_dict ``` #### File: structure/utils/cleanpdb.py ```python import argparse import logging import os import os.path as op import textwrap from Bio import PDB from tqdm import tqdm import ssbio.utils from ssbio.protein.structure.utils.structureio import StructureIO log = logging.getLogger(__name__) class CleanPDB(PDB.Select): """Selection rules to clean a PDB entry. These rules aim to: - Add missing chain identifiers to a PDB file - Select a single chain if noted - Remove alternate atom locations - Add atom occupancies - Add B (temperature) factors (default Biopython behavior) """ def __init__(self, remove_atom_alt=True, keep_atom_alt_id='A', remove_atom_hydrogen=True, add_atom_occ=True, remove_res_hetero=True, keep_chemicals=None, keep_res_only=None, add_chain_id_if_empty='X', keep_chains=None): """Initialize the parameters which indicate what cleaning will occur Args: remove_atom_alt (bool): Remove alternate positions keep_atom_alt_id (str): If removing alternate positions, which alternate ID to keep remove_atom_hydrogen (bool): Remove hydrogen atoms add_atom_occ (bool): Add atom occupancy fields if not present remove_res_hetero (bool): Remove all HETATMs keep_chemicals (str, list): If removing HETATMs, keep specified chemical names keep_res_only (str, list): Keep ONLY specified resnames, deletes everything else! add_chain_id_if_empty (str): Add a chain ID if not present keep_chains (str, list): Keep only these chains """ self.remove_atom_alt = remove_atom_alt self.remove_atom_hydrogen = remove_atom_hydrogen self.keep_atom_alt_id = keep_atom_alt_id self.add_atom_occ = add_atom_occ self.remove_res_hetero = remove_res_hetero self.add_chain_id_if_empty = add_chain_id_if_empty if not keep_chains: self.keep_chains = [] else: self.keep_chains = ssbio.utils.force_list(keep_chains) if not keep_chemicals: self.keep_chemicals = [] else: self.keep_chemicals = ssbio.utils.force_list(keep_chemicals) if not keep_res_only: self.keep_res_only = [] else: self.keep_res_only = ssbio.utils.force_list(keep_res_only) def accept_chain(self, chain): # If the chain does not have an ID, add one to it and keep it # http://comments.gmane.org/gmane.comp.python.bio.devel/10639 if self.add_chain_id_if_empty and not chain.id.strip(): chain.id = self.add_chain_id_if_empty return True # If a chain is specified and the current chain equals that specified chain, keep it elif self.keep_chains and chain.id in self.keep_chains: return True # If a chain is specified but the current chain does not equal that specified chain, remove it elif self.keep_chains and chain.id not in self.keep_chains: return False # If no chain is specified, keep all chains else: return True def accept_residue(self, residue): hetfield, resseq, icode = residue.get_id() if hetfield == '': hetfield = ' ' if self.keep_res_only: if residue.resname.strip() in self.keep_res_only: return True else: return False # If you want to remove residues that are not normal, remove them if self.remove_res_hetero and hetfield[0] != ' ' and residue.resname.strip() not in self.keep_chemicals: return False else: return True def accept_atom(self, atom): # If the you want to remove hydrogens and the atom is a H, remove it if self.remove_atom_hydrogen and atom.element == 'H': return False # If you want to remove alternate locations, and the alt location isn't the one you want to keep, remove it elif self.remove_atom_alt and atom.is_disordered() and atom.get_altloc() != self.keep_atom_alt_id: return False else: # Add occupancies if there are none and you want to # http://comments.gmane.org/gmane.comp.python.bio.general/6289 if self.add_atom_occ and atom.occupancy is None: atom.set_occupancy(1) if self.remove_atom_alt: atom.set_altloc(' ') return True def clean_pdb(pdb_file, out_suffix='_clean', outdir=None, force_rerun=False, remove_atom_alt=True, keep_atom_alt_id='A', remove_atom_hydrogen=True, add_atom_occ=True, remove_res_hetero=True, keep_chemicals=None, keep_res_only=None, add_chain_id_if_empty='X', keep_chains=None): """Clean a PDB file. Args: pdb_file (str): Path to input PDB file out_suffix (str): Suffix to append to original filename outdir (str): Path to output directory force_rerun (bool): If structure should be re-cleaned if a clean file exists already remove_atom_alt (bool): Remove alternate positions keep_atom_alt_id (str): If removing alternate positions, which alternate ID to keep remove_atom_hydrogen (bool): Remove hydrogen atoms add_atom_occ (bool): Add atom occupancy fields if not present remove_res_hetero (bool): Remove all HETATMs keep_chemicals (str, list): If removing HETATMs, keep specified chemical names keep_res_only (str, list): Keep ONLY specified resnames, deletes everything else! add_chain_id_if_empty (str): Add a chain ID if not present keep_chains (str, list): Keep only these chains Returns: str: Path to cleaned PDB file """ outfile = ssbio.utils.outfile_maker(inname=pdb_file, append_to_name=out_suffix, outdir=outdir, outext='.pdb') if ssbio.utils.force_rerun(flag=force_rerun, outfile=outfile): my_pdb = StructureIO(pdb_file) my_cleaner = CleanPDB(remove_atom_alt=remove_atom_alt, remove_atom_hydrogen=remove_atom_hydrogen, keep_atom_alt_id=keep_atom_alt_id, add_atom_occ=add_atom_occ, remove_res_hetero=remove_res_hetero, keep_res_only=keep_res_only, add_chain_id_if_empty=add_chain_id_if_empty, keep_chains=keep_chains, keep_chemicals=keep_chemicals) my_clean_pdb = my_pdb.write_pdb(out_suffix=out_suffix, out_dir=outdir, custom_selection=my_cleaner, force_rerun=force_rerun) return my_clean_pdb else: return outfile if __name__ == '__main__': p = argparse.ArgumentParser(formatter_class=argparse.RawDescriptionHelpFormatter, description=textwrap.dedent("""\ Clean PDB files - cleanpdb.py ----------------------------- This script will automatically: * Add missing chains to a PDB file * Select a single chain or chains if noted * Remove alternate atom locations * Add atom occupancies * Add B (temperature) factors (default Biopython behavior) Cleaned PDBs will be in a clean_pdbs folder where the script is executed. Example: script help $ cleanpdb --help Example: clean one PDB file $ cleanpdb 1kf6.pdb Example: clean one PDB file and keep only chains A and B $ cleanpdb 1kf6.pdb --chain A,B Example: clean multiple PDB files $ cleanpdb *.pdb Example: clean a whole directory of PDB $ cleanpdb /path/to/pdb/files """)) p.add_argument('infile', help='PDB file or folder you want to clean', nargs='+', type=str) p.add_argument('--outsuffix', '-os', default='_clean', help='Suffix appended to PDB file') p.add_argument('--outdir', '-od', default='clean_pdbs', help='Directory to output clean PDBs') p.add_argument('--chain', '-c', default=None, help='Keep only specified chains') p.add_argument('--keephydro', '-hy', action='store_false', help='Keep hydrogen atoms (default is to remove)') p.add_argument('--keephetero', '-ht', action='store_false', help='Keep hetero atoms (default is to remove)') # TODO: if this flag is present, the alternate positions seem to switch line positions p.add_argument('--keepalt', '-ka', action='store_false', help='Keep alternate positions (default is to remove)') p.add_argument('--force', '-f', action='store_true', help='Force rerunning of cleaning even if the clean PDB exists') args = p.parse_args() if args.chain: args.chain = args.chain.split(',') if not op.isdir(args.outdir): os.mkdir(args.outdir) infiles = ssbio.utils.input_list_parser(args.infile) for pdb in tqdm(infiles): outfile = ssbio.utils.outfile_maker(inname=pdb, append_to_name=args.outsuffix, outdir=args.outdir, outext='.pdb') if ssbio.utils.force_rerun(flag=args.force, outfile=outfile): my_pdb = StructureIO(pdb) my_cleaner = CleanPDB(remove_atom_alt=args.keepalt, remove_atom_hydrogen=args.keephydro, keep_atom_alt_id='A', add_atom_occ=True, remove_res_hetero=args.keephetero, add_chain_id_if_empty='X', keep_chains=args.chain) my_clean_pdb = my_pdb.write_pdb(out_suffix=args.outsuffix, out_dir=args.outdir, custom_selection=my_cleaner, force_rerun=args.force) print('Clean PDBs at: {}'.format(args.outdir)) ``` #### File: structure/utils/dock.py ```python import os import pandas as pd import os.path as op import logging from ssbio.core.object import Object import ssbio.utils log = logging.getLogger(__name__) class DOCK(Object): """Class to prepare a structure file for docking with DOCK6. Attributes: """ def __init__(self, structure_id, pdb_file, amb_file, flex1_file, flex2_file, root_dir=None): """Initialize a DOCK6 project. Args: """ super(DOCK, self).__init__(id=structure_id, description='DOCK6 preparation') self._root_dir = None self.structure_path = pdb_file if root_dir: self.root_dir = root_dir else: self.root_dir = self.structure_dir self.dockprep_path = None self.receptormol2_path = None self.receptorpdb_path = None self.dms_path = None self.sphgen_path = None self.bindingsite_path = None self.sphsel_path = None self.box_path = None self.grid_path = None self.dock_flexible_outfile = None self.dock_flexible_scored_result = None self.dock_flexible_conformers_result = None self.amb_file = amb_file self.flex1_file = flex1_file self.flex2_file = flex2_file log.debug('{}: created DOCK6 project folder at {}'.format(structure_id, self.dock_dir)) @property def root_dir(self): """str: Directory where DOCK project folder is located""" return self._root_dir @root_dir.setter def root_dir(self, path): if not path: raise ValueError('No path specified') if not op.exists(path): raise ValueError('{}: folder does not exist'.format(path)) if self._root_dir: log.debug('Changing root directory of DOCK project for "{}" from {} to {}'.format(self.id, self.root_dir, path)) if not op.exists(op.join(path, self.id)): raise IOError('DOCK project "{}" does not exist in folder {}'.format(self.id, path)) self._root_dir = path for d in [self.dock_dir]: ssbio.utils.make_dir(d) @property def dock_dir(self): """str: DOCK folder""" if self.root_dir: return op.join(self.root_dir, self.id + '_DOCK') else: log.warning('Root directory not set') return None @property def structure_dir(self): if not self._structure_dir: raise OSError('No structure folder set') return self._structure_dir @structure_dir.setter def structure_dir(self, path): if path and not op.exists(path): raise OSError('{}: folder does not exist'.format(path)) self._structure_dir = path @property def structure_path(self): if not self.structure_file: raise OSError('Metadata file not loaded') path = op.join(self.structure_dir, self.structure_file) if not op.exists(path): raise OSError('{}: file does not exist'.format(path)) return path @structure_path.setter def structure_path(self, path): """Provide pointers to the paths of the structure file Args: path: Path to structure file """ if not path: self.structure_dir = None self.structure_file = None else: if not op.exists(path): raise OSError('{}: file does not exist!'.format(path)) if not op.dirname(path): self.structure_dir = '.' else: self.structure_dir = op.dirname(path) self.structure_file = op.basename(path) def dockprep(self, force_rerun=False): """Prepare a PDB file for docking by first converting it to mol2 format. Args: force_rerun (bool): If method should be rerun even if output file exists """ log.debug('{}: running dock preparation...'.format(self.id)) prep_mol2 = op.join(self.dock_dir, '{}_prep.mol2'.format(self.id)) prep_py = op.join(self.dock_dir, "prep.py") if ssbio.utils.force_rerun(flag=force_rerun, outfile=prep_mol2): with open(prep_py, "w") as f: f.write('import chimera\n') f.write('from DockPrep import prep\n') f.write('models = chimera.openModels.list(modelTypes=[chimera.Molecule])\n') f.write('prep(models)\n') f.write('from WriteMol2 import writeMol2\n') f.write('writeMol2(models, "{}")\n'.format(prep_mol2)) cmd = 'chimera --nogui {} {}'.format(self.structure_path, prep_py) os.system(cmd) os.remove(prep_py) os.remove('{}c'.format(prep_py)) if ssbio.utils.is_non_zero_file(prep_mol2): self.dockprep_path = prep_mol2 log.debug('{}: successful dockprep execution'.format(self.dockprep_path)) else: log.critical('{}: dockprep failed to run on PDB file'.format(self.structure_path)) def protein_only_and_noH(self, keep_ligands=None, force_rerun=False): """Isolate the receptor by stripping everything except protein and specified ligands. Args: keep_ligands (str, list): Ligand(s) to keep in PDB file force_rerun (bool): If method should be rerun even if output file exists """ log.debug('{}: running protein receptor isolation...'.format(self.id)) if not self.dockprep_path: return ValueError('Please run dockprep') receptor_mol2 = op.join(self.dock_dir, '{}_receptor.mol2'.format(self.id)) receptor_noh = op.join(self.dock_dir, '{}_receptor_noH.pdb'.format(self.id)) prly_com = op.join(self.dock_dir, "prly.com") if ssbio.utils.force_rerun(flag=force_rerun, outfile=receptor_noh): with open(prly_com, "w") as f: f.write('open {}\n'.format(self.dockprep_path)) keep_str = 'delete ~protein' if keep_ligands: keep_ligands = ssbio.utils.force_list(keep_ligands) for res in keep_ligands: keep_str += ' & ~:{} '.format(res) keep_str = keep_str.strip() + '\n' f.write(keep_str) f.write('write format mol2 0 {}\n'.format(receptor_mol2)) f.write('delete element.H\n') f.write('write format pdb 0 {}\n'.format(receptor_noh)) cmd = 'chimera --nogui {}'.format(prly_com) os.system(cmd) os.remove(prly_com) if ssbio.utils.is_non_zero_file(receptor_mol2) and ssbio.utils.is_non_zero_file(receptor_noh): self.receptormol2_path = receptor_mol2 self.receptorpdb_path = receptor_noh log.debug('{}: successful receptor isolation (mol2)'.format(self.receptormol2_path)) log.debug('{}: successful receptor isolation (pdb)'.format(self.receptorpdb_path)) else: log.critical('{}: protein_only_and_noH failed to run on dockprep file'.format(self.dockprep_path)) def dms_maker(self, force_rerun=False): """Create surface representation (dms file) of receptor Args: force_rerun (bool): If method should be rerun even if output file exists """ log.debug('{}: running surface representation maker...'.format(self.id)) if not self.receptorpdb_path: return ValueError('Please run protein_only_and_noH') dms = op.join(self.dock_dir, '{}_receptor.dms'.format(self.id)) if ssbio.utils.force_rerun(flag=force_rerun, outfile=dms): cmd = 'dms {} -n -w 1.4 -o {}'.format(self.receptorpdb_path, dms) os.system(cmd) self.dms_path = dms if ssbio.utils.is_non_zero_file(dms): self.dms_path = dms log.debug('{}: successful dms execution'.format(self.dms_path)) else: log.critical('{}: dms_maker failed to run on receptor file'.format(self.receptorpdb_path)) def sphgen(self, force_rerun=False): """Create sphere representation (sph file) of receptor from the surface representation Args: force_rerun (bool): If method should be rerun even if output file exists """ log.debug('{}: running sphere generation...'.format(self.id)) if not self.dms_path: return ValueError('Please run dms_maker') sph = op.join(self.dock_dir, '{}_receptor.sph'.format(self.id)) insph = op.join(self.dock_dir, 'INSPH') if ssbio.utils.force_rerun(flag=force_rerun, outfile=sph): with open(insph, "w") as f: f.write("{}\n".format(self.dms_path)) f.write("R\n") f.write("X\n") f.write("0.0\n") f.write("4.0\n") f.write("1.4\n") f.write("{}\n".format(sph)) os.chdir(self.dock_dir) cmd = "sphgen_cpp" os.system(cmd) os.remove(insph) if ssbio.utils.is_non_zero_file(sph): self.sphgen_path = sph log.debug('{}: successful sphgen execution'.format(self.sphgen_path)) else: log.critical('{}: sphgen_cpp failed to run on dms file'.format(self.dms_path)) def binding_site_mol2(self, residues, force_rerun=False): """Create mol2 of only binding site residues from the receptor This function will take in a .pdb file (preferably the _receptor_noH.pdb file) and a string of residues (eg: '144,170,199') and delete all other residues in the .pdb file. It then saves the coordinates of the selected residues as a .mol2 file. This is necessary for Chimera to select spheres within the radius of the binding site. Args: residues (str): Comma separated string of residues (eg: '144,170,199') force_rerun (bool): If method should be rerun even if output file exists """ log.debug('{}: running binding site isolation...'.format(self.id)) if not self.receptorpdb_path: return ValueError('Please run protein_only_and_noH') prefix = self.id + '_' + 'binding_residues' mol2maker = op.join(self.dock_dir, '{}_make_mol2.py'.format(prefix)) outfile = op.join(self.dock_dir, '{}.mol2'.format(prefix)) if ssbio.utils.force_rerun(flag=force_rerun, outfile=outfile): with open(mol2maker, 'w') as mol2_maker: mol2_maker.write('#! /usr/bin/env python\n') mol2_maker.write('from chimera import runCommand\n') mol2_maker.write('runCommand("open {}")\n'.format(self.receptorpdb_path)) mol2_maker.write('runCommand("delete ~:{}")\n'.format(residues)) mol2_maker.write('runCommand("write format mol2 resnum 0 {}")\n'.format(outfile)) mol2_maker.write('runCommand("close all")') cmd = 'chimera --nogui {}'.format(mol2maker) os.system(cmd) os.remove(mol2maker) os.remove('{}c'.format(mol2maker)) if ssbio.utils.is_non_zero_file(outfile): self.bindingsite_path = outfile log.debug('{}: successful binding site isolation'.format(self.bindingsite_path)) else: log.critical('{}: binding_site_mol2 failed to run on receptor file'.format(self.receptorpdb_path)) def sphere_selector_using_residues(self, radius, force_rerun=False): """Select spheres based on binding site residues Args: radius (int, float): Radius around binding residues to dock to force_rerun (bool): If method should be rerun even if output file exists """ log.debug('{}: running sphere selector...'.format(self.id)) if not self.sphgen_path or not self.bindingsite_path: return ValueError('Please run sphgen and binding_site_mol2') selsph = op.join(self.dock_dir, '{}_selsph_binding.sph'.format(self.id)) if ssbio.utils.force_rerun(flag=force_rerun, outfile=selsph): cmd = "sphere_selector {} {} {}".format(self.sphgen_path, self.bindingsite_path, radius) rename = "mv selected_spheres.sph {}".format(selsph) os.system(cmd) os.system(rename) if ssbio.utils.is_non_zero_file(selsph): self.sphsel_path = selsph log.debug('{}: successful sphere selection'.format(self.sphsel_path)) else: log.critical('{}: sphere_selector_using_residues failed to run on sph file'.format(self.sphgen_path)) # def split_sph(self, force_rerun=False): # """TODO: documentation? what was this used for""" # # selsph = op.join(self.dock_dir, '{}_selsph.sph'.format(self.id)) # # if ssbio.utils.force_rerun(flag=force_rerun, outfile=selsph): # with open(self.sphgen_path, "r") as f: # text = f.read() # f.seek(0) # lines = f.readlines() # paragraphs = re.split("cluster ... number of spheres in cluster ...\n", text) # # with open(selsph, "w") as f2: # f2.write(lines[1]) # f2.write(paragraphs[1]) # # return selsph def showbox(self, force_rerun=False): """Create the dummy PDB box around the selected spheres. Args: force_rerun (bool): If method should be rerun even if output file exists """ log.debug('{}: running box maker...'.format(self.id)) if not self.sphsel_path: return ValueError('Please run sphere_selector_using_residues') boxfile = op.join(self.dock_dir, "{}_box.pdb".format(self.id)) boxscript = op.join(self.dock_dir, "{}_box.in".format(self.id)) if ssbio.utils.force_rerun(flag=force_rerun, outfile=boxfile): with open(boxscript, "w") as f: f.write("Y\n") f.write("0\n") f.write("{}\n".format(op.basename(self.sphsel_path))) f.write("1\n") f.write("{}".format(op.basename(boxfile))) cmd = "showbox < {}".format(boxscript) os.chdir(self.dock_dir) os.system(cmd) if ssbio.utils.is_non_zero_file(boxfile): self.box_path = boxfile log.debug('{}: successful box creation'.format(self.box_path)) else: log.critical('{}: showbox failed to run on selected spheres file'.format(self.sphsel_path)) def grid(self, force_rerun=False): """Create the scoring grid within the dummy box. Args: force_rerun (bool): If method should be rerun even if output file exists """ log.debug('{}: running grid maker...'.format(self.id)) if not self.receptormol2_path or not self.box_path: return ValueError('Please run protein_only_and_noH and showbox') gridscript = op.join(self.dock_dir, "{}_grid.in".format(self.id)) out_name = op.join(self.dock_dir, "{}_grid.out".format(self.id)) if ssbio.utils.force_rerun(flag=force_rerun, outfile=out_name): with open(gridscript, "w") as f: grid_text = """compute_grids yes grid_spacing 0.3 output_molecule no contact_score yes contact_cutoff_distance 4.5 energy_score yes energy_cutoff_distance 9999 atom_model all attractive_exponent 6 repulsive_exponent 12 distance_dielectric yes dielectric_factor 4 bump_filter yes bump_overlap 0.75 receptor_file {} box_file {} vdw_definition_file {} score_grid_prefix {}_grid """.format(op.basename(self.receptormol2_path), op.basename(self.box_path), self.amb_file, self.id) f.write(grid_text) os.chdir(self.dock_dir) cmd = "grid -i {} -o {}".format(op.basename(gridscript), op.basename(out_name)) os.system(cmd) if ssbio.utils.is_non_zero_file(out_name): self.grid_path = out_name log.debug('{}: successful grid creation'.format(self.grid_path)) else: log.critical('{}: grid failed to run on receptor + box file'.format(self.box_path)) def do_dock6_flexible(self, ligand_path, force_rerun=False): """Dock a ligand to the protein. Args: ligand_path (str): Path to ligand (mol2 format) to dock to protein force_rerun (bool): If method should be rerun even if output file exists """ log.debug('{}: running DOCK6...'.format(self.id)) ligand_name = os.path.basename(ligand_path).split('.')[0] in_name = op.join(self.dock_dir, "{}_{}_flexdock.in".format(self.id, ligand_name)) out_name = op.join(self.dock_dir, "{}_{}_flexdock.out".format(self.id, ligand_name)) conformers_out = op.join(self.dock_dir, '{}_{}_flexdock_conformers.mol2'.format(self.id, ligand_name)) scored_out = op.join(self.dock_dir, '{}_{}_flexdock_scored.mol2'.format(self.id, ligand_name)) ranked_out = op.join(self.dock_dir, '{}_{}_flexdock_ranked.mol2'.format(self.id, ligand_name)) if ssbio.utils.force_rerun(flag=force_rerun, outfile=ranked_out): with open(in_name, "w") as f: dock_text = """ligand_atom_file {} limit_max_ligands no skip_molecule no read_mol_solvation no calculate_rmsd no use_database_filter no orient_ligand yes automated_matching yes receptor_site_file {} max_orientations 500 critical_points no chemical_matching no use_ligand_spheres no use_internal_energy yes internal_energy_rep_exp 12 flexible_ligand yes user_specified_anchor no limit_max_anchors no min_anchor_size 5 pruning_use_clustering yes pruning_max_orients 100 pruning_clustering_cutoff 100 pruning_conformer_score_cutoff 100 use_clash_overlap no write_growth_tree no bump_filter yes bump_grid_prefix {} score_molecules yes contact_score_primary no contact_score_secondary no grid_score_primary yes grid_score_secondary no grid_score_rep_rad_scale 1 grid_score_vdw_scale 1 grid_score_es_scale 1 grid_score_grid_prefix {} multigrid_score_secondary no dock3.5_score_secondary no continuous_score_secondary no descriptor_score_secondary no gbsa_zou_score_secondary no gbsa_hawkins_score_secondary no SASA_descriptor_score_secondary no amber_score_secondary no minimize_ligand yes minimize_anchor yes minimize_flexible_growth yes use_advanced_simplex_parameters no simplex_max_cycles 1 simplex_score_converge 0.1 simplex_cycle_converge 1.0 simplex_trans_step 1.0 simplex_rot_step 0.1 simplex_tors_step 10.0 simplex_anchor_max_iterations 500 simplex_grow_max_iterations 500 simplex_grow_tors_premin_iterations 0 simplex_random_seed 0 simplex_restraint_min yes simplex_coefficient_restraint 10.0 atom_model all vdw_defn_file {} flex_defn_file {} flex_drive_file {} ligand_outfile_prefix {}_{}_flexdock write_orientations no num_scored_conformers 20 write_conformations yes cluster_conformations yes rank_ligands yes """.format(ligand_path, op.basename(self.sphsel_path), op.splitext(op.basename(self.grid_path))[0], op.splitext(op.basename(self.grid_path))[0], self.amb_file, self.flex1_file, self.flex2_file, self.id, ligand_name) f.write(dock_text) os.chdir(self.dock_dir) cmd = "dock6 -i {} -o {} -v".format(in_name, out_name) os.system(cmd) if ssbio.utils.is_non_zero_file(ranked_out): self.dock_flexible_outfile = out_name self.dock_flexible_conformers_result = conformers_out self.dock_flexible_scored_result = scored_out log.debug('{}: successful docking!'.format(self.dock_flexible_outfile)) else: log.error('{}+{}: empty DOCK6 ranked file, execution error (or ligand failed to dock)'.format(self.id, op.basename(ligand_path))) def auto_flexdock(self, binding_residues, radius, ligand_path=None, force_rerun=False): """Run DOCK6 on a PDB file, given its binding residues and a radius around them. Provide a path to a ligand to dock a ligand to it. If no ligand is provided, DOCK6 preparations will be run on that structure file. Args: binding_residues (str): Comma separated string of residues (eg: '144,170,199') radius (int, float): Radius around binding residues to dock to ligand_path (str): Path to ligand (mol2 format) to dock to protein force_rerun (bool): If method should be rerun even if output files exist """ log.debug('\n{}: running DOCK6...\n' '\tBinding residues: {}\n' '\tBinding residues radius: {}\n' '\tLigand to dock: {}\n'.format(self.id, binding_residues, radius, op.basename(ligand_path))) self.dockprep(force_rerun=force_rerun) self.protein_only_and_noH(force_rerun=force_rerun) self.dms_maker(force_rerun=force_rerun) self.sphgen(force_rerun=force_rerun) self.binding_site_mol2(residues=binding_residues, force_rerun=force_rerun) self.sphere_selector_using_residues(radius=radius, force_rerun=force_rerun) self.showbox(force_rerun=force_rerun) self.grid(force_rerun=force_rerun) if ligand_path: self.do_dock6_flexible(ligand_path=ligand_path, force_rerun=force_rerun) def parse_results_mol2(mol2_outpath): """Parse a DOCK6 mol2 output file, return a Pandas DataFrame of the results. Args: mol2_outpath (str): Path to mol2 output file Returns: DataFrame: Pandas DataFrame of the results """ docked_ligands = pd.DataFrame() lines = [line.strip() for line in open(mol2_outpath, 'r')] props = {} for i, line in enumerate(lines): if line.startswith('########## Name:'): ligand = line.strip().strip('##########').replace(' ', '').replace('\t', '').split(':')[1] line = lines[i + 1] props = {} props['Ligand'] = ligand if line.startswith('##########'): splitter = line.strip().strip('##########').replace(' ', '').replace('\t', '').split(':') props[splitter[0]] = float(splitter[1]) if line.startswith('@<TRIPOS>MOLECULE'): if props: docked_ligands = docked_ligands.append(props, ignore_index=True) return docked_ligands # def do_dock6_rigid(self, ligand_path, force_rerun=False): # ligand_name = os.path.basename(args.ligand).split('.')[0] # in_name = op.join(self.dock_dir, "{}_{}_dock.in".format(self.id, ligand_name)) # out_name = op.join(self.dock_dir, "{}_{}_dock.out".format (self.id, ligand_name)) # # with open(in_name, "w") as f: # dock_text = """ligand_atom_file {} # limit_max_ligands no # skip_molecule no # read_mol_solvation no # calculate_rmsd no # use_database_filter no # orient_ligand yes # automated_matching yes # receptor_site_file {} # max_orientations 1000 # critical_points no # chemical_matching no # use_ligand_spheres no # use_internal_energy yes # internal_energy_rep_exp 12 # flexible_ligand no # bump_filter no # score_molecules yes # contact_score_primary no # contact_score_secondary no # grid_score_primary yes # grid_score_secondary no # grid_score_rep_rad_scale 1 # grid_score_vdw_scale 1 # grid_score_es_scale 1 # grid_score_grid_prefix {} # multigrid_score_secondary no # dock3.5_score_secondary no # continuous_score_secondary no # descriptor_score_secondary no # gbsa_zou_score_secondary no # gbsa_hawkins_score_secondary no # SASA_descriptor_score_secondary no # amber_score_secondary no # minimize_ligand yes # simplex_max_iterations 1000 # simplex_tors_premin_iterations 0 # simplex_max_cycles 1 # simplex_score_converge 0.1 # simplex_cycle_converge 1.0 # simplex_trans_step 1.0 # simplex_rot_step 0.1 # simplex_tors_step 10.0 # simplex_random_seed 0 # simplex_restraint_min yes # simplex_coefficient_restraint 10.0 # atom_model all # vdw_defn_file {} # flex_defn_file {} # flex_drive_file {} # ligand_outfile_prefix {}_{}_rigid # write_orientations yes # num_scored_conformers 20 # rank_ligands no # """.format(ligand_path, self.sphsel_path, self.grid_path.split('.')[0], # self.amb_file, self.flex1_file, self.flex2_file, self.id, ligand_name) # # f.write(dock_text) # # cmd = "dock6 -i {} -o {}".format(in_name, out_name) # os.system(cmd) # def do_dock6_amberscore(self, ligand_path, force_rerun=False): # """INCOMPLETE""" # ligand_name = os.path.basename(args.ligand).split('.')[0] # in_name = op.join(self.dock_dir, "{}_{}_amberscore.in".format(self.id, ligand_name)) # out_name = op.join(self.dock_dir, "{}_{}_amberscore.out".format(self.id, ligand_name)) # # with open(in_name, "w") as f: # dock_text = """ligand_atom_file {}.amber_score.mol2 # limit_max_ligands no # skip_molecule no # read_mol_solvation no # calculate_rmsd no # use_database_filter no # orient_ligand no # use_internal_energy no # flexible_ligand no # bump_filter no # score_molecules yes # contact_score_primary no # contact_score_secondary no # grid_score_primary no # grid_score_secondary no # multigrid_score_primary no # multigrid_score_secondary no # dock3.5_score_primary no # dock3.5_score_secondary no # continuous_score_primary no # continuous_score_secondary no # descriptor_score_primary no # descriptor_score_secondary no # gbsa_zou_score_primary no # gbsa_zou_score_secondary no # gbsa_hawkins_score_primary no # gbsa_hawkins_score_secondary no # SASA_descriptor_score_primary no # SASA_descriptor_score_secondary no # amber_score_primary yes # amber_score_secondary no # amber_score_receptor_file_prefix {} # amber_score_movable_region ligand # amber_score_minimization_rmsgrad 0.01 # amber_score_before_md_minimization_cycles 100 # amber_score_md_steps 3000 # amber_score_after_md_minimization_cycles 100 # amber_score_gb_model 5 # amber_score_nonbonded_cutoff 18.0 # amber_score_temperature 300.0 # amber_score_abort_on_unprepped_ligand yes # ligand_outfile_prefix output # write_orientations no # num_scored_conformers 1 # rank_ligands no # """.format() # # f.write(dock_text) # # cmd = "dock6 -i {} -o {} -v".format(in_name, out_name) # os.system(cmd) # if __name__ == '__main__': # # import glob # import argparse # import shlex # # # load inputs from command line # p = argparse.ArgumentParser( # description='Run the DOCK steps on a folder of structure files. To run in the background, execute using nohup: nohup dock.py $BASENAME $NUMFRAMES /path/to/structures/ /path/to/parameters/ --ligand /path/to/ligand.mol2 --cofactors $COFACTORS --residues $RESIDUES > /path/to/logs/$LOGNAME &') # p.add_argument('basename', help='base filename that you used to name your files') # p.add_argument('numframes', help='total number of frames from your trajectory', type=int) # p.add_argument('folder', help='path to folder with your structure files') # p.add_argument('params', help='path to folder with parameter files') # p.add_argument('--ligand', help='path to file of your ligand that you want to dock') # p.add_argument('--cofactors', # help='comma-separated string of cofactors that you want to keep while docking (e.g. SAM,DNC,WAT)') # p.add_argument('--residues', help='comma-separated string of the binding residues') # p.add_argument('--radius', help='radius around binding residues to dock to (default 9 A)', type=int, default=9) # p.add_argument('--redock', help='run DOCK again for the specified ligand, even if docking files exist', # default=False) # args = p.parse_args() # # # file paths for docking parameters # amb = os.path.join(args.params, 'vdw_AMBER_parm99.defn') # f1 = os.path.join(args.params, 'flex.defn') # f2 = os.path.join(args.params, 'flex_drive.tbl') # # print(args) # # loading current files # os.chdir(args.folder) # # pdbs = glob.glob('{}-*.pdb'.format(args.basename)) # current_files = os.listdir(os.getcwd()) # # # ligand name # if args.ligand: # ligandname = os.path.basename(args.ligand) # # # cofactors # if args.cofactors: # cofactors_list = shlex.split(args.cofactors) # else: # cofactors_list = [] # # print('***************PARAMETERS***************') # print('FULL LIST: {0}'.format(vars(args))) # if args.ligand: # print('LIGAND: {0}'.format(ligandname)) # if args.cofactors: # print('COFACTORS: {0}'.format(cofactors_list)) # if args.residues: # print('BINDING RESIDUES: {0}'.format(args.residues)) # print('RADIUS: {0}'.format(args.radius)) # # counter = 1 # for frame in range(1, args.numframes + 1): # # just a simple counter # print(str(counter) + '/' + str(args.numframes)) # counter += 1 # # # file_prefix = '{0}-{1:03d}'.format(args.basename, frame) # file_prefix = '{0}'.format(args.basename) # print(file_prefix) # # # DOCKPREP # # example: 3bwm-440_prep.mol2 # pdb = '{0}.pdb'.format(file_prefix) # prepped_check = '{}_prep.mol2'.format(file_prefix) # if prepped_check in current_files: # print('***DOCKPREP PREVIOUSLY RUN***') # prepped_file = prepped_check # else: # print('RUNNING: DOCKPREP') # prepped_file = dockprep(pdb, file_prefix) # # # ISOLATE RECEPTOR # # example: 3bwm-440_receptor.mol2, 3bwm-440_receptor_noH.pdb # receptor_check = '{}_receptor.mol2'.format(file_prefix) # receptor_noH_check = '{}_receptor_noH.pdb'.format(file_prefix) # if receptor_check in current_files and receptor_noH_check in current_files: # print('***RECEPTOR FILES PREVIOUSLY GENERATED***') # receptor, receptor_noH = receptor_check, receptor_noH_check # else: # print('RUNNING: ISOLATE RECEPTOR') # receptor, receptor_noH = protein_only_and_noH(prepped_file, cofactors_list, file_prefix) # # # DMS # # example: 3bwm-440_receptor.dms # dms_check = '{}_receptor.dms'.format(file_prefix) # if dms_check in current_files: # print('***SURFACE PREVIOUSLY GENERATED***') # dms = dms_check # else: # print('RUNNING: DMS') # dms = dms_maker(receptor_noH, file_prefix) # # # SPHGEN # # example: 3bwm-440_receptor.sph # sph_check = '{}_receptor.sph'.format(file_prefix) # if sph_check in current_files: # print('***SPHERES PREVIOUSLY GENERATED***') # sph = sph_check # else: # print('RUNNING: SPHGEN') # sph = sphgen(dms, file_prefix) # # # SPHERE_SELECTOR # # first choose binding site and save it as separate .mol2 # # example: 3BWY-418_binding_residues.mol2 # binding_site_mol2_file_check = '{}_binding_residues.mol2'.format(file_prefix) # if binding_site_mol2_file_check in current_files: # print('***BINDING SITE RESIDUES ALREADY DEFINED***') # binding_site_mol2_file = binding_site_mol2_file_check # else: # print('RUNNING: BINDING SITE MOL2') # binding_site_mol2_file = binding_site_mol2(receptor_noH, args.residues, file_prefix) # # # then select the spheres based on these binding residues # # example: 3bwm-440_selected_spheres_using_binding_residues.sph # sel_sph_check = '{}_selected_spheres_using_binding_residues.sph'.format(file_prefix) # if sel_sph_check in current_files: # print('***SPHERES ALREADY SELECTED***') # sel_sph = sel_sph_check # else: # print('RUNNING: SPHERE_SELECTOR') # sel_sph = sphere_selector_using_residues(sph, binding_site_mol2_file, args.radius, file_prefix) # # # SHOWBOX # # example: 3bwm-440_box.pdb # box_check = '{}_box.pdb'.format(file_prefix) # if box_check in current_files: # print('***BOX PREVIOUSLY MADE***') # box = box_check # else: # print('RUNNING: SHOWBOX') # box = showbox(sel_sph, file_prefix) # # # GRID # # example: 3bwm-440_grid.out # gr_check = '{}_grid.out'.format(file_prefix) # if gr_check in current_files: # print('***GRID PREVIOUSLY CALCULATED***') # gr = gr_check # else: # print('RUNNING: GRID') # gr = grid(receptor, box, amb, file_prefix) # # # DOCK # if args.ligand: # dock6_flexible_check = '{}_{}_flexible_scored.mol2'.format((file_prefix, ligandname.split('.')[0])) # if dock6_flexible_check in current_files and not args.redock: # print('***DOCK PREVIOUSLY RUN***') # else: # print('RUNNING: DOCK') # do_dock6_flexible(args.ligand, sel_sph, gr, amb, f1, f2, file_prefix) # # print('***DOCKING COMPLETE***') ``` #### File: structure/utils/foldx.py ```python import os import logging import shutil import ssbio.utils import os.path as op import pandas as pd from ssbio.core.object import Object log = logging.getLogger(__name__) class FoldX(Object): """Class to run various commands from the FoldX suite of tools on a protein structure file. Args: pdb_path (str): Path to PDB file (PDB file format only!) project_id (str): Name of your structure or this mini FoldX project description (str): Short description of the PDB file being run on, ie. describe the oligomeric state. rotabase_path (str): Path to the rotabase.txt file foldx_exec (str, optional): Path to the FoldX executable, if empty, tries to execute ``foldx`` from the shell root_dir (str, optional): Path to directory where a new directory named after ``project_id`` and ``description`` with "_foldx" appended to it will be created. Todo: - Need checks to ensure only PDB files are being used - STDOUT and STDERR logging in a file """ def __init__(self, pdb_path, project_id, description, rotabase_path, foldx_exec=None, root_dir=None): super(FoldX, self).__init__(id=project_id, description=description) # Create directories self._foldx_dirname = '{}_{}_foldx'.format(self.id, self.description) self._root_dir = None self.root_dir = root_dir # FoldX related self.foldx_exec = foldx_exec if not foldx_exec: self.foldx_exec = 'foldx' self.rotabase_path = rotabase_path # Copy PDB file self.pdb_path = shutil.copy2(pdb_path, self.foldx_dir) self.pdb_file = op.basename(self.pdb_path) # Copy rotabase.txt self.rotabase_path = shutil.copy2(self.rotabase_path, self.foldx_dir) # Output files self.repaired_pdb_outfile = None self.mutation_infile = None self.mutation_ddG_avg_outfile = None self.mutation_ddG_raw_outfile = None # To keep track of results self.mutation_index_to_group = {} @property def root_dir(self): """str: Path to where the folder named by this protein's ID will be created. Default is current working directory.""" return self._root_dir @root_dir.setter def root_dir(self, path): if not path: path = os.getcwd() if not op.exists(path): raise ValueError('{}: folder does not exist'.format(path)) if self._root_dir: log.debug('Changing root directory of FoldX {} from {} to {}'.format(self._foldx_dirname, self.root_dir, path)) if not op.exists(op.join(path, self.id)): raise IOError('FoldX {} does not exist in folder {}'.format(self._foldx_dirname, path)) self._root_dir = path for d in [self.foldx_dir]: ssbio.utils.make_dir(d) @property def foldx_dir(self): """str: FoldX folder""" if self.root_dir: return op.join(self.root_dir, self._foldx_dirname) else: log.warning('Root directory not set') return None @property def df_mutation_ddG_avg(self): return pd.read_csv(op.join(self.foldx_dir, self.mutation_ddG_avg_outfile), skiprows=8, sep='\t') @property def df_mutation_ddG_raw(self): return pd.read_csv(op.join(self.foldx_dir, self.mutation_ddG_raw_outfile), skiprows=8, sep='\t') def run_repair_pdb(self, silent=False, force_rerun=False): """Run FoldX RepairPDB on this PDB file. Original command:: foldx --command=RepairPDB --pdb=4bxi.pdb Args: silent (bool): If FoldX output should be silenced from printing to the shell. force_rerun (bool): If FoldX RepairPDB should be rerun even if a repaired file exists. """ # Create RepairPDB command foldx_repair_pdb = 'foldx --command=RepairPDB --pdb={}'.format(self.pdb_file) # Repaired PDB output file name foldx_repair_outfile = '{}_Repair.pdb'.format(op.splitext(self.pdb_file)[0]) # Run RepairPDB ssbio.utils.command_runner(shell_command=foldx_repair_pdb, force_rerun_flag=force_rerun, silent=silent, outfile_checker=foldx_repair_outfile, cwd=self.foldx_dir) # TODO: write stdout/stderr to log file somewhere! self.repaired_pdb_outfile = foldx_repair_outfile def create_mutation_file(self, list_of_tuples): """Create the FoldX file 'individual_list.txt' to run BuildModel upon. Args: list_of_tuples (list): A list of tuples indicating mutation groups to carry out BuildModel upon. Example:: [ (('N', 'A', 308, 'S'), ('S', 'A', 320, 'T'), ('S', 'A', 321, 'H')), # Mutation group 1 (('S', 'A', 321, 'R'), ('T', 'A', 345, 'S')) # Mutation group 2 ] """ self.mutation_infile = op.join(self.foldx_dir, 'individual_list.txt') idx = 1 with open(self.mutation_infile, 'w') as f: for mutant_group in list_of_tuples: # Write the mutation string to the file mutstring = ''.join(list(map(lambda x: '{}{}{}{};'.format(x[0], x[1], x[2], x[3]), mutant_group))) f.write(mutstring + '\n') # Also keep track of the index being used for this mutation self.mutation_index_to_group[idx] = mutant_group idx += 1 def create_random_mutation_file(self, list_of_tuples, original_sequence, randomize_resnums=False, randomize_resids=False, skip_resnums=None): """Create the FoldX file 'individual_list.txt', but randomize the mutation numbers or residues that were input. The randomize combinations can be a little confusing - this is what can happen: - randomize_resnums=False, randomize_resids=False: no change, original mutations are carried out - randomize_resnums=True, randomize_resids=False: mutations of resid X to resid Y will be carried out, but on a different residue number where resid X is found - randomize_resnums=False, randomize_resids=True: mutations of residue X# to a random residue will be carried out - randomize_resnums=True, randomize_resids=True: original mutations will be ignored, random mutation of any residue will be carried out Args: list_of_tuples (list): A list of tuples indicating mutation groups to be randomized. original_sequence (str, Seq, SeqRecord): Original amino acid sequence randomize_resnums (bool): If residue numbers should be randomized randomize_resids (bool): If residues themselves should be randomized skip_resnums (list): """ import random def find(s, ch): return [i for i, ltr in enumerate(s) if ltr == ch] def run_build_model(self, num_runs=5, silent=False, force_rerun=False): """Run FoldX BuildModel command with a mutant file input. Original command:: foldx --command=BuildModel --pdb=4bxi_Repair.pdb --mutant-file=individual_list.txt --numberOfRuns=5 Args: num_runs (int): silent (bool): If FoldX output should be silenced from printing to the shell. force_rerun (bool): If FoldX BuildModel should be rerun even if the results file exists. """ # BuildModel output files self.mutation_ddG_avg_outfile = 'Average_{}.fxout'.format(op.splitext(self.repaired_pdb_outfile)[0]) self.mutation_ddG_raw_outfile = 'Raw_{}.fxout'.format(op.splitext(self.repaired_pdb_outfile)[0]) # BuildModel command foldx_build_model = 'foldx --command=BuildModel --pdb={} --mutant-file={} --numberOfRuns={}'.format(self.repaired_pdb_outfile, op.basename(self.mutation_infile), num_runs) ssbio.utils.command_runner(shell_command=foldx_build_model, force_rerun_flag=force_rerun, silent=silent, outfile_checker=self.mutation_ddG_avg_outfile, cwd=self.foldx_dir) def get_ddG_results(self): """Parse the results from BuildModel and get the delta delta G's. A positive ddG means that the mutation(s) is destabilzing, negative means stabilizing. - highly stabilising (ΔΔG < −1.84 kcal/mol); - stabilising (−1.84 kcal/mol ≤ ΔΔG < −0.92 kcal/mol); - slightly stabilising (−0.92 kcal/mol ≤ ΔΔG < −0.46 kcal/mol); - neutral (−0.46 kcal/mol < ΔΔG ≤ +0.46 kcal/mol); - slightly destabilising (+0.46 kcal/mol < ΔΔG ≤ +0.92 kcal/mol); - destabilising (+0.92 kcal/mol < ΔΔG ≤ +1.84 kcal/mol); - highly destabilising (ΔΔG > +1.84 kcal/mol). Returns: dict: Dictionary of mutation group to predicted ddG. """ foldx_avg_df = self.df_mutation_ddG_avg foldx_avg_ddG = {} results = foldx_avg_df[['Pdb', 'total energy', 'SD']].T.to_dict().values() for r in results: ident = r['Pdb'].split('_')[-1] ddG = r['total energy'] ddG_sd = r['SD'] foldx_avg_ddG[self.mutation_index_to_group[int(ident)]] = (ddG, ddG_sd) return foldx_avg_ddG ``` #### File: structure/utils/mutatepdb.py ```python import argparse import tempfile from Bio import PDB from Bio.PDB.Polypeptide import aa1 from Bio.PDB.Polypeptide import aa3 from Bio.PDB.Polypeptide import one_to_three from ssbio.protein.structure.utils.cleanpdb import CleanPDB from ssbio.protein.structure.utils.structureio import StructureIO class MutatePDB(PDB.Select): """Selection rules to mutate a PDB file These rules aim to: - Mutate a specified residue number to a new amino acid """ keep_atom_list = ['N', 'C', 'O', 'CA'] def __init__(self, mutation_list): """Initialize the parameters which indicate what mutations will occur Args: chain: residue_number: mutate_to: """ self.mutation_list = [(i[0], int(i[1]), self._standard_resname(i[2])) for i in mutation_list] self.chains_and_residues = [(i[0], int(i[1])) for i in mutation_list] def _standard_resname(self, res): resname3 = res.upper() if resname3 not in list(aa3) and resname3 not in list(aa1): # TODO: mutation to selenocysteine (U;SEC) is not working raise ValueError("Unrecognised residue {}".format(res)) if len(resname3) == 1: resname3 = one_to_three(resname3) return resname3 def accept_residue(self, residue): hetfield, resseq, icode = residue.get_id() chain = residue.get_parent() chain_id = chain.get_id() if (chain_id,resseq) in self.chains_and_residues: prev_resname = residue.resname get_index = self.chains_and_residues.index((chain_id,resseq)) residue.resname = self.mutation_list[get_index][2] print("Mutated {0}.{1}.{2} to {0}.{1}.{3}".format(chain_id, resseq, prev_resname, residue.resname)) return True def accept_atom(self, atom): residue = atom.get_parent() hetfield, resseq, icode = residue.get_id() chain = residue.get_parent() chain_id = chain.get_id() if (chain_id,resseq) in self.chains_and_residues and atom.get_id() not in self.keep_atom_list: # print("Removing atom {}.{}.{}".format(chain_id, resseq, atom.get_id())) return False return True def parse_mutation_input(instr): init_split = instr.split(',') second_split = [tuple(i.split('.')) for i in init_split] return second_split if __name__ == '__main__': p = argparse.ArgumentParser(description='Mutates a PDB file') p.add_argument('infile', help='PDB file you want to mutate') p.add_argument('mutations', help='Mutations in the form of Chain1.ResNum1.Mutation1,Chain2.ResNum2.Mutation2. Example: A.4.TYR,B.4.TYR') p.add_argument('--outsuffix', '-o', default='_mutated', help='Suffix appended to PDB file') p.add_argument('--clean', '-c', action='store_true', help='Clean PDB and keep only chain with mutation') args = p.parse_args() mutations = parse_mutation_input(args.mutations) my_pdb = StructureIO(args.infile) if args.clean: my_cleaner = CleanPDB(keep_chains=[x[0] for x in mutations]) my_clean_pdb = my_pdb.write_pdb(out_suffix='_clean', out_dir=tempfile.gettempdir(), custom_selection=my_cleaner) my_pdb = StructureIO(my_clean_pdb) my_mutation = MutatePDB(mutations) my_mutated_pdb = my_pdb.write_pdb(out_suffix=args.outsuffix, out_dir='mutated_pdbs', custom_selection=my_mutation) print('Mutated PDB at: {}'.format(my_mutated_pdb)) ``` #### File: ssbio/test/test_databases_kegg.py ```python import pytest import os.path as op from Bio import SeqIO from Bio.Seq import Seq from Bio.SeqRecord import SeqRecord from Bio.Alphabet import IUPAC from BCBio import GFF from ssbio.databases.kegg import KEGGProp @pytest.fixture(scope='class') def seq_record_loaded_from_file_example(fasta_path): """Original SeqRecord loaded from sequence file""" return SeqIO.read(fasta_path, "fasta") @pytest.fixture(scope='module') def kegg_id(): return 'mtu:Rv0417' @pytest.fixture(scope='module') def fasta_file(): return 'mtu-Rv0417.faa' @pytest.fixture(scope='module') def txt_file(): return 'mtu-Rv0417.kegg' @pytest.fixture(scope='module') def fasta_path(test_files_sequences, fasta_file): return op.join(test_files_sequences, fasta_file) @pytest.fixture(scope='module') def txt_path(test_files_sequences, txt_file): return op.join(test_files_sequences, txt_file) @pytest.fixture(scope='class') def keggprop_with_i(kegg_id): return KEGGProp(id=kegg_id, seq=None) @pytest.fixture(scope='class') def keggprop_with_i_s_m_f(kegg_id, fasta_path, txt_path): return KEGGProp(id=kegg_id, seq=None, fasta_path=fasta_path, txt_path=txt_path) class TestKEGGPropWithId(): """Class to test a bare KEGGProp object with just an ID""" def test_init(self, keggprop_with_i, kegg_id): """Test initializing with just an ID""" assert keggprop_with_i.id == kegg_id # If just an ID initialized, everything should be empty assert keggprop_with_i.seq == None assert keggprop_with_i.name == '<unknown name>' assert keggprop_with_i.description == '<unknown description>' assert len(keggprop_with_i.annotations) == 0 assert len(keggprop_with_i.letter_annotations) == 0 assert len(keggprop_with_i.features) == 0 # Files should not exist and raise errors if accessed assert keggprop_with_i.sequence_file == None with pytest.raises(IOError): keggprop_with_i.sequence_dir with pytest.raises(IOError): keggprop_with_i.sequence_path assert keggprop_with_i.metadata_file == None with pytest.raises(IOError): keggprop_with_i.metadata_dir with pytest.raises(IOError): keggprop_with_i.metadata_path assert keggprop_with_i.feature_file == None with pytest.raises(IOError): keggprop_with_i.feature_dir with pytest.raises(IOError): keggprop_with_i.feature_path def test_set_sequence_path(self, keggprop_with_i, fasta_path, fasta_file, test_files_sequences): """Test setting the seq attribute with a sequence file""" keggprop_with_i.sequence_path = fasta_path # Test that file paths are correct assert keggprop_with_i.sequence_path == fasta_path assert keggprop_with_i.sequence_file == fasta_file assert keggprop_with_i.sequence_dir == test_files_sequences def test_set_feature_path(self, keggprop_with_i, features_loaded_from_file_example, gff_path, gff_file, test_files_sequences): """Test loading a feature file, and that old features are overwritten""" # Test that the existing feature set is not the same as the new one to be loaded assert len(keggprop_with_i.features) != len(features_loaded_from_file_example) keggprop_with_i.feature_path = gff_path # Test that file paths are correct assert keggprop_with_i.feature_path == gff_path assert keggprop_with_i.feature_file == gff_file assert keggprop_with_i.feature_dir == test_files_sequences # Test that features cannot be changed with pytest.raises(ValueError): keggprop_with_i.features = ['NOFEATURES'] # Test that number of features stored is same assert len(keggprop_with_i.features) == len(features_loaded_from_file_example) def test_set_metadata_path(self, keggprop_with_i, txt_path, txt_file, test_files_sequences, txt_record_loaded_from_file_example): keggprop_with_i.metadata_path = txt_path # Unset sequence and feature paths keggprop_with_i.sequence_path = None keggprop_with_i.feature_path = None # Test that file paths are correct assert keggprop_with_i.metadata_path == txt_path assert keggprop_with_i.metadata_file == txt_file assert keggprop_with_i.metadata_dir == test_files_sequences # Test loaded information assert keggprop_with_i.description == txt_record_loaded_from_file_example.description assert keggprop_with_i.bigg == None for k in ['ecj:JW4347', 'eco:b4384']: assert k in keggprop_with_i.kegg for r in ['NP_418801.1', 'WP_000224877.1']: assert r in keggprop_with_i.refseq assert keggprop_with_i.kegg == 'mtu:Rv0417' assert keggprop_with_i.gene_name == 'deoD' for p in ['1A69', '1ECP', '1K9S', '1OTX', '1OTY', '1OU4', '1OUM', '1OV6', '1OVG', '3ONV', '3OOE', '3OOH', '3OPV', '3UT6', '4TS3', '4TS9', '4TTA', '4TTI', '4TTJ', '5I3C', '5IU6']: assert p in keggprop_with_i.pdbs for g in ['GO:0004731', 'GO:0005829', 'GO:0006152', 'GO:0006974', 'GO:0016020', 'GO:0019686', 'GO:0042802']: assert g in keggprop_with_i.go assert keggprop_with_i.pfam == ['PF01048'] assert keggprop_with_i.ec_number == None ## TODO: parse assert keggprop_with_i.reviewed == False ## TODO: parse for u in ['Q2M5T3', 'P09743']: assert u in keggprop_with_i.alt_keggs assert keggprop_with_i.taxonomy == 'Escherichia coli (strain K12)' assert keggprop_with_i.seq_version == 2 assert keggprop_with_i.seq_date == '2007-01-23' assert keggprop_with_i.entry_version == 106 assert keggprop_with_i.entry_date == '2017-08-30' # Test that features are loaded directly from this metadata file assert len(keggprop_with_i.features) == len(txt_record_loaded_from_file_example.features) class TestKEGGPropWithIdAndFiles(): """Class to test a bare KEGGProp object with just an ID""" def test_init(self, keggprop_with_i_s_m_f, kegg_id, fasta_path, txt_path, gff_path, test_files_sequences, fasta_file, txt_file, gff_file, seq_record_loaded_from_file_example, features_loaded_from_file_example, txt_record_loaded_from_file_example): """Test initializing with assigned files""" assert keggprop_with_i_s_m_f.id == kegg_id assert keggprop_with_i_s_m_f.seq == seq_record_loaded_from_file_example.seq assert keggprop_with_i_s_m_f.name == seq_record_loaded_from_file_example.name assert keggprop_with_i_s_m_f.description == txt_record_loaded_from_file_example.description assert keggprop_with_i_s_m_f.annotations == {} # No annotations will be loaded from files assert keggprop_with_i_s_m_f.letter_annotations == txt_record_loaded_from_file_example.letter_annotations assert len(keggprop_with_i_s_m_f.features) == len(features_loaded_from_file_example) # Files should exist assert keggprop_with_i_s_m_f.sequence_file == fasta_file assert keggprop_with_i_s_m_f.sequence_dir == test_files_sequences assert keggprop_with_i_s_m_f.sequence_path == fasta_path assert keggprop_with_i_s_m_f.metadata_file == txt_file assert keggprop_with_i_s_m_f.metadata_dir == test_files_sequences assert keggprop_with_i_s_m_f.metadata_path == txt_path assert keggprop_with_i_s_m_f.feature_file == gff_file assert keggprop_with_i_s_m_f.feature_dir == test_files_sequences assert keggprop_with_i_s_m_f.feature_path == gff_path ``` #### File: ssbio/test/test_protein_seqprop.py ```python import pytest import os.path as op import ssbio.utils from Bio import SeqIO from BCBio import GFF from Bio.Seq import Seq from Bio.Alphabet import IUPAC from Bio.SeqRecord import SeqRecord from Bio.SeqFeature import SeqFeature, FeatureLocation from ssbio.protein.sequence.seqprop import SeqProp @pytest.fixture(scope='class') def seq_str_example(): """Dummy sequence string to load""" return "MKQHKAMIVALIVICITAVVAALVTRKDLCEVHIRTGQTEVAVF" @pytest.fixture(scope='class') def seq_record_example(): """Dummy SeqRecord to load""" return SeqRecord(Seq("MKQHKAMIVALIVICITAVVAALVTRKDLCEVHIRTGQTEVAVF", IUPAC.protein), id="YP_025292.1", name="HokC", description="toxic membrane protein, small", annotations={'hello':'world'}) @pytest.fixture(scope='class') def seq_record_loaded_from_file_example(sequence_path): """Original SeqRecord loaded from sequence file""" return SeqIO.read(sequence_path, "fasta") @pytest.fixture(scope='class') def features_loaded_from_file_example(feature_path): """Original list of features""" with open(feature_path) as handle: feats = list(GFF.parse(handle)) return feats[0].features @pytest.fixture(scope='module') def sequence_id(): return 'P0ABP8' @pytest.fixture(scope='module') def sequence_file(): return 'P0ABP8.fasta' @pytest.fixture(scope='module') def metadata_file(): return 'P0ABP8.txt' @pytest.fixture(scope='module') def feature_file(): return 'P0ABP8.gff' @pytest.fixture(scope='module') def sequence_path(test_files_sequences, sequence_file): """Path to the FASTA file""" return op.join(test_files_sequences, sequence_file) @pytest.fixture(scope='module') def metadata_path(test_files_sequences, metadata_file): """Path to the metadata file""" return op.join(test_files_sequences, metadata_file) @pytest.fixture(scope='module') def feature_path(test_files_sequences, feature_file): """Path to the GFF file""" return op.join(test_files_sequences, feature_file) @pytest.fixture(scope='class') def seqprop_with_i(sequence_id): """SeqProp with ID""" return SeqProp(id=sequence_id, seq=None) @pytest.fixture(scope='class') def seqprop_with_i_seq(sequence_id, seq_str_example): """SeqProp with ID and sequence string""" return SeqProp(id=sequence_id, seq=seq_str_example) @pytest.fixture(scope='class') def seqprop_with_i_s_m_f(sequence_id, sequence_path, metadata_path, feature_path): """SeqProp with ID + sequence file + metadata file + feature file""" return SeqProp(id=sequence_id, seq=None, sequence_path=sequence_path, metadata_path=metadata_path, feature_path=feature_path) class TestSeqPropWithId(): """Class to test a bare SeqProp object with just an ID""" def test_init(self, seqprop_with_i, sequence_id): """Test initializing with just an ID""" assert seqprop_with_i.id == sequence_id # If just an ID initialized, everything should be empty assert seqprop_with_i.seq == None assert seqprop_with_i.name == '<unknown name>' assert seqprop_with_i.description == '<unknown description>' assert len(seqprop_with_i.annotations) == 0 assert len(seqprop_with_i.letter_annotations) == 0 assert len(seqprop_with_i.features) == 0 # Files should not exist and raise errors if accessed assert seqprop_with_i.sequence_file == None with pytest.raises(IOError): seqprop_with_i.sequence_dir with pytest.raises(IOError): seqprop_with_i.sequence_path assert seqprop_with_i.metadata_file == None with pytest.raises(IOError): seqprop_with_i.metadata_dir with pytest.raises(IOError): seqprop_with_i.metadata_path assert seqprop_with_i.feature_file == None with pytest.raises(IOError): seqprop_with_i.feature_dir with pytest.raises(IOError): seqprop_with_i.feature_path def test_set_seq_with_str(self, seqprop_with_i, seq_str_example): """Test setting the seq attribute with a sequence string""" seqprop_with_i.seq = seq_str_example assert type(seqprop_with_i.seq) == Seq assert str(seqprop_with_i.seq) == seq_str_example def test_set_seq_with_seqrecord(self, seqprop_with_i, seq_record_example): """Test setting the seq attribute with a SeqRecord""" seqprop_with_i.seq = seq_record_example assert type(seqprop_with_i.seq) == Seq assert seqprop_with_i.seq == seq_record_example.seq assert seqprop_with_i.name == seq_record_example.name assert seqprop_with_i.description == seq_record_example.description assert seqprop_with_i.annotations == seq_record_example.annotations def test_get_emboss_pepstats_failure(self, seqprop_with_i): """Test that EMBOSS pepstats does not run when no file has been written""" with pytest.raises(IOError): seqprop_with_i.get_emboss_pepstats() def test_write_fasta_file(self, seqprop_with_i, tmpdir, test_files_outputs, seq_record_example): """Test that everything behaves properly when writing the SeqProp to a FASTA file""" # Add dummy annotations to the SeqProp - check to see if they stay in the SeqProp even after Seq is written seqprop_with_i.letter_annotations.update({'test_la_key': 'X' * len(seqprop_with_i.seq)}) seqprop_with_i.features.append(SeqFeature(FeatureLocation(1, 3))) # Write the Seq to a FASTA file outpath = tmpdir.join('test_seqprop_with_i_write_fasta_file.fasta').strpath seqprop_with_i.write_fasta_file(outfile=outpath, force_rerun=True) # Test that the file was written assert op.exists(outpath) assert op.getsize(outpath) > 0 # Test that file paths are correct assert seqprop_with_i.sequence_path == outpath assert seqprop_with_i.sequence_file == 'test_seqprop_with_i_write_fasta_file.fasta' assert seqprop_with_i.sequence_dir == tmpdir # Once a file is written, the annotations should not be lost, even though the sequence now # loads from the written file as a Seq assert seqprop_with_i.description == seq_record_example.description assert seqprop_with_i.annotations == seq_record_example.annotations assert seqprop_with_i.letter_annotations == {'test_la_key': 'X' * len(seq_record_example.seq)} assert len(seqprop_with_i.features) == 1 # Test that sequence cannot be changed with pytest.raises(ValueError): seqprop_with_i.seq = 'THISWILLNOTBETHESEQ' assert seqprop_with_i.seq == seq_record_example.seq def test_get_residue_annotations(self, seqprop_with_i): """Test retrieval of residue letter_annotations""" stuff = seqprop_with_i.get_residue_annotations(start_resnum=1, end_resnum=10) assert stuff == {'test_la_key': 'XXXXXXXXXX'} def test_get_biopython_pepstats(self, seqprop_with_i): """Test storing Biopython pepstats and consistency of results""" seqprop_with_i.get_biopython_pepstats() results = {'instability_index': 27.172727272727272, 'aromaticity': 0.022727272727272728, 'percent_turn_naive': 0.022727272727272728, 'percent_strand_naive': 0.2954545454545454, 'monoisotopic': False, 'isoelectric_point': 8.84234619140625, 'molecular_weight': 4820.8507, 'percent_helix_naive': 0.38636363636363635} for k, v in results.items(): assert seqprop_with_i.annotations[k] == pytest.approx(v) def test_get_emboss_pepstats_success(self, seqprop_with_i): """Test that EMBOSS pepstats does run when a file has been written""" if ssbio.utils.program_exists('pepstats'): seqprop_with_i.get_emboss_pepstats() assert 'percent_charged' in seqprop_with_i.annotations def test_set_metadata_path(self, seqprop_with_i, metadata_path, metadata_file, test_files_sequences): """Test setting the metadata file""" seqprop_with_i.metadata_path = metadata_path # Test that file paths are correct assert seqprop_with_i.metadata_path == metadata_path assert seqprop_with_i.metadata_file == metadata_file assert seqprop_with_i.metadata_dir == test_files_sequences def test_set_sequence_path(self, seqprop_with_i, seq_record_loaded_from_file_example, sequence_path, sequence_file, test_files_sequences): """Test setting the seq attribute with a sequence file, and that seq is now loaded from file""" seqprop_with_i.sequence_path = sequence_path # Test that file paths are correct assert seqprop_with_i.sequence_path == sequence_path assert seqprop_with_i.sequence_file == sequence_file assert seqprop_with_i.sequence_dir == test_files_sequences # Test that the loaded sequence is the same as the original sequence assert seqprop_with_i.seq == seq_record_loaded_from_file_example.seq # Test that sequence cannot be changed with pytest.raises(ValueError): seqprop_with_i.seq = 'THISWILLNOTBETHESEQ' def test_set_features(self, seqprop_with_i, features_loaded_from_file_example): """Test setting the features attribute in memory""" seqprop_with_i.features = features_loaded_from_file_example[:5] assert seqprop_with_i.features == features_loaded_from_file_example[:5] assert seqprop_with_i.feature_file == None def test_write_gff_file(self, seqprop_with_i, tmpdir): """Test writing the features, and that features are now loaded from a file""" outpath = tmpdir.join('test_seqprop_with_i_write_gff_file.gff').strpath seqprop_with_i.write_gff_file(outfile=outpath, force_rerun=True) # Test that the file was written assert op.exists(outpath) assert op.getsize(outpath) > 0 # Test that file paths are correct assert seqprop_with_i.feature_path == outpath assert seqprop_with_i.feature_file == 'test_seqprop_with_i_write_gff_file.gff' assert seqprop_with_i.feature_dir == tmpdir # Test that features cannot be changed with pytest.raises(ValueError): seqprop_with_i.features = ['NOFEATURES'] def test_set_feature_path(self, seqprop_with_i, features_loaded_from_file_example, feature_path, feature_file, test_files_sequences): """Test loading a feature file, and that old features are overwritten""" # Test that the existing feature set is not the same as the new one to be loaded assert len(seqprop_with_i.features) != len(features_loaded_from_file_example) seqprop_with_i.feature_path = feature_path # Test that file paths are correct assert seqprop_with_i.feature_path == feature_path assert seqprop_with_i.feature_file == feature_file assert seqprop_with_i.feature_dir == test_files_sequences # Test that features cannot be changed with pytest.raises(ValueError): seqprop_with_i.features = ['NOFEATURES'] # Test that number of features stored is same assert len(seqprop_with_i.features) == len(features_loaded_from_file_example) class TestSeqPropWithIdAndSeq(): """Class to test a bare SeqProp object with just an ID""" def test_init(self, seqprop_with_i_seq, sequence_id, seq_str_example): """Test initializing with an ID and sequence string""" assert seqprop_with_i_seq.id == sequence_id assert str(seqprop_with_i_seq.seq) == seq_str_example assert type(seqprop_with_i_seq.seq) == Seq # If just a sequence string initialized, everything should be empty assert seqprop_with_i_seq.name == '<unknown name>' assert seqprop_with_i_seq.description == '<unknown description>' assert len(seqprop_with_i_seq.annotations) == 0 assert len(seqprop_with_i_seq.letter_annotations) == 0 assert len(seqprop_with_i_seq.features) == 0 # Files should not exist and raise errors if accessed assert seqprop_with_i_seq.sequence_file == None with pytest.raises(IOError): seqprop_with_i_seq.sequence_dir with pytest.raises(IOError): seqprop_with_i_seq.sequence_path assert seqprop_with_i_seq.metadata_file == None with pytest.raises(IOError): seqprop_with_i_seq.metadata_dir with pytest.raises(IOError): seqprop_with_i_seq.metadata_path assert seqprop_with_i_seq.feature_file == None with pytest.raises(IOError): seqprop_with_i_seq.feature_dir with pytest.raises(IOError): seqprop_with_i_seq.feature_path class TestSeqPropWithIdAndFiles(): """Class to test a SeqProp object assigned files""" def test_init(self, seqprop_with_i_s_m_f, sequence_id, sequence_path, metadata_path, feature_path, test_files_sequences, sequence_file, metadata_file, feature_file, seq_record_loaded_from_file_example, features_loaded_from_file_example): """Test initializing with assigned files""" assert seqprop_with_i_s_m_f.id == sequence_id assert seqprop_with_i_s_m_f.seq == seq_record_loaded_from_file_example.seq assert seqprop_with_i_s_m_f.name == seq_record_loaded_from_file_example.name assert seqprop_with_i_s_m_f.description == seq_record_loaded_from_file_example.description assert seqprop_with_i_s_m_f.annotations == seq_record_loaded_from_file_example.annotations assert seqprop_with_i_s_m_f.letter_annotations == seq_record_loaded_from_file_example.letter_annotations assert len(seqprop_with_i_s_m_f.features) == len(features_loaded_from_file_example) # Files should exist assert seqprop_with_i_s_m_f.sequence_file == sequence_file assert seqprop_with_i_s_m_f.sequence_dir == test_files_sequences assert seqprop_with_i_s_m_f.sequence_path == sequence_path assert seqprop_with_i_s_m_f.metadata_file == metadata_file assert seqprop_with_i_s_m_f.metadata_dir == test_files_sequences assert seqprop_with_i_s_m_f.metadata_path == metadata_path assert seqprop_with_i_s_m_f.feature_file == feature_file assert seqprop_with_i_s_m_f.feature_dir == test_files_sequences assert seqprop_with_i_s_m_f.feature_path == feature_path def test_change_root_dir(self, seqprop_with_i_s_m_f, tmpdir): # Test changing the sequence, metadata and feature dirs t = tmpdir.strpath seqprop_with_i_s_m_f.sequence_dir = t seqprop_with_i_s_m_f.metadata_dir = t seqprop_with_i_s_m_f.feature_dir = t assert seqprop_with_i_s_m_f.sequence_dir == t with pytest.raises(OSError): # Sequence path should throw an error since the file was never moved there seqprop_with_i_s_m_f.sequence_path assert seqprop_with_i_s_m_f.metadata_dir == t with pytest.raises(OSError): # Metadata path should throw an error since the file was never moved there seqprop_with_i_s_m_f.metadata_path assert seqprop_with_i_s_m_f.feature_dir == t with pytest.raises(OSError): # Feature path should throw an error since the file was never moved there seqprop_with_i_s_m_f.feature_path ``` #### File: ssbio/test/test_protein_structure_properties_fatcat.py ```python import unittest import os.path as op import ssbio.protein.structure.properties.fatcat as fatcat class TestFATCAT(unittest.TestCase): """Unit tests for FATCAT""" def test_run_fatcat_all_by_all(self): OUT_DIR = op.join('test_files', 'out') FATCAT_SH = '/home/nathan/software/fatcat/runFATCAT.sh' structs = [op.join('test_files', 'structures', '12as-A_clean.pdb'), op.join('test_files', 'structures', '1af6-A_clean.pdb'), op.join('test_files', 'structures', '1a9x-A_clean.pdb')] tm_scores = fatcat.run_fatcat_all_by_all(structs, fatcat_sh=FATCAT_SH, outdir=OUT_DIR) ``` #### File: ssbio/viz/nglview.py ```python import logging import ssbio.utils import seaborn as sns log = logging.getLogger(__name__) def add_residues_highlight_to_nglview(view, structure_resnums, chain, res_color='red'): """Add a residue number or numbers to an NGLWidget view object. Args: view (NGLWidget): NGLWidget view object structure_resnums (int, list): Residue number(s) to highlight, structure numbering chain (str, list): Chain ID or IDs of which residues are a part of. If not provided, all chains in the mapped_chains attribute will be used. If that is also empty, and exception is raised. res_color (str): Color to highlight residues with """ chain = ssbio.utils.force_list(chain) if isinstance(structure_resnums, list): structure_resnums = list(set(structure_resnums)) elif isinstance(structure_resnums, int): structure_resnums = ssbio.utils.force_list(structure_resnums) else: raise ValueError('Input must either be a residue number of a list of residue numbers') to_show_chains = '( ' for c in chain: to_show_chains += ':{} or'.format(c) to_show_chains = to_show_chains.strip(' or ') to_show_chains += ' )' to_show_res = '( ' for m in structure_resnums: to_show_res += '{} or '.format(m) to_show_res = to_show_res.strip(' or ') to_show_res += ' )' log.info('Selection: {} and not hydrogen and {}'.format(to_show_chains, to_show_res)) view.add_ball_and_stick(selection='{} and not hydrogen and {}'.format(to_show_chains, to_show_res), color=res_color) def add_scaled_residues_highlight_to_nglview(view, structure_resnums, chain_id, color='red', unique_colors=False, opacity_range=(0.5,1), scale_range=(.7, 10)): """Add a list of residue numbers (which may contain repeating residues) to a view, or add a dictionary of residue numbers to counts. Size and opacity of added residues are scaled by counts. Args: view (NGLWidget): NGLWidget view object structure_resnums (int, list, dict): Residue number(s) to highlight, or a dictionary of residue number to frequency count chain_id (str, list): Chain ID or IDs of which residues are a part of. color (str): Color to highlight residues with unique_colors (bool): If each mutation should be colored uniquely (will override color argument) opacity_range (tuple): Min/max opacity values (residues that have higher frequency counts will be opaque) scale_range (tuple): Min/max size values (residues that have higher frequency counts will be bigger) """ # TODO: likely to move these functions to a separate nglview/utils folder since they are not coupled to the structure # TODO: add color by letter_annotations! chain_id = ssbio.utils.force_list(chain_id) if isinstance(structure_resnums, dict): opacity_dict = ssbio.utils.scale_calculator(opacity_range[0], structure_resnums, rescale=opacity_range) scale_dict = ssbio.utils.scale_calculator(scale_range[0], structure_resnums, rescale=scale_range) else: opacity_dict = {x: max(opacity_range) for x in ssbio.utils.force_list(structure_resnums)} scale_dict = {x: max(scale_range) for x in ssbio.utils.force_list(structure_resnums)} if isinstance(structure_resnums, list): structure_resnums = list(set(structure_resnums)) elif isinstance(structure_resnums, dict): structure_resnums = list(structure_resnums.keys()) elif isinstance(structure_resnums, int): structure_resnums = ssbio.utils.force_list(structure_resnums) else: raise ValueError('Input must either be a list of residue numbers or a dictionary of residue numbers ' 'and their frequency.') colors = sns.color_palette("hls", len(structure_resnums)).as_hex() to_show_chains = '( ' for c in chain_id: to_show_chains += ':{} or'.format(c) to_show_chains = to_show_chains.strip(' or ') to_show_chains += ' )' for i, x in enumerate(structure_resnums): if isinstance(x, tuple): to_show_res = '( ' for mut in x: to_show_res += '{} or '.format(mut) to_show_res = to_show_res.strip(' or ') to_show_res += ' )' else: to_show_res = x log.info('Selection: {} and not hydrogen and {}'.format(to_show_chains, to_show_res)) if unique_colors: view.add_ball_and_stick(selection='{} and not hydrogen and {}'.format(to_show_chains, to_show_res), color=colors[i], opacity=opacity_dict[x], scale=scale_dict[x]) else: view.add_ball_and_stick(selection='{} and not hydrogen and {}'.format(to_show_chains, to_show_res), color=color, opacity=opacity_dict[x], scale=scale_dict[x]) def add_features_to_nglview(view, structure_resnums, chain_id): """Add select features from the selected SeqProp object to an NGLWidget view object. Currently parsing for: * Single residue features (ie. metal binding sites) * Disulfide bonds Args: view (NGLWidget): NGLWidget view object seqprop (SeqProp): SeqProp object structprop (StructProp): StructProp object chain_id (str): ID of the structure's chain to get annotation from """ # Parse and store chain seq if not already stored if not structprop.chains.has_id(chain_id): structprop.parse_structure() if not structprop.chains.has_id(chain_id): raise ValueError('Chain {} not present in structure {}'.format(chain_id, structprop.id)) if not seqprop.features: log.warning('{}: no stored features'.format(seqprop.id)) # Loop through any stored features for f in seqprop.features: # Display disulfide bonds if f.type.lower() == 'disulfide bond': # TODO: double check if .start or .start + 1 disulfide = map_seqprop_resnums_to_structprop_resnums(resnums=[f.location.start + 1, f.location.end], seqprop=seqprop, structprop=structprop, chain_id=chain_id, use_representatives=False) to_view = [str(x)+'.CA' for x in list(disulfide.values())] view.add_distance(atom_pair=[to_view], color='black') log.info('Disulfide bridge at residues {} & {}'.format(f.location.start + 1, f.location.end)) # Display DNA-binding regions if f.type.lower() == 'dna-binding region' or f.type.lower() == 'nucleotide phosphate-binding region': impres = self.map_seqprop_resnums_to_structprop_resnums(resnums=[f.location.start + 1, f.location.end], seqprop=seqprop, structprop=structprop, chain_id=chain_id, use_representatives=use_representatives) # TODO: need to check if f.location.start was mapped and if not, try incrementing. or input the list # of resnums, not just the start and end if f.location.start + 1 in impres and f.location.end in impres: mapped_start = impres[f.location.start + 1] mapped_end = impres[f.location.end] view.add_ball_and_stick(selection=':{} and ( {}-{} )'.format(chain_id, mapped_start, mapped_end), color='black') log.info('{} at sequence region {}-{}, structure residues {}-{}'.format(f.type, f.location.start, f.location.end, mapped_start, mapped_end)) # Display other single residues if f.location.end - 1 == f.location.start: if f.type.lower() == 'sequence variant' or f.type.lower() == 'mutagenesis site': continue impres = self.map_seqprop_resnums_to_structprop_resnums(resnums=f.location.end, seqprop=seqprop, structprop=structprop, chain_id=chain_id, use_representatives=use_representatives) if f.location.end in impres: impres_mapped = impres[f.location.end] view.add_ball_and_stick(selection=str(impres_mapped), color='black') view.add_label(selection=':{} and {}'.format(chain_id, impres_mapped), label_type='res', color='black') log.info('{} at sequence residue {}, structure residue {}'.format(f.type, f.location.end, impres_mapped)) def add_mutations_to_nglview(self, view, alignment_type='seqalign', alignment_ids=None, seqprop=None, structprop=None, chain_id=None, use_representatives=False, grouped=False, color='red', unique_colors=True, opacity_range=(0.8,1), scale_range=(1,5)): """Add representations to an NGLWidget view object for residues that are mutated in the ``sequence_alignments`` attribute. Args: view (NGLWidget): NGLWidget view object alignment_type (str): Specified alignment type contained in the ``annotation`` field of an alignment object, ``seqalign`` or ``structalign`` are the current types. alignment_ids (str, list): Specified alignment ID or IDs to use seqprop (SeqProp): SeqProp object structprop (StructProp): StructProp object chain_id (str): ID of the structure's chain to get annotation from use_representatives (bool): If the representative sequence/structure/chain IDs should be used grouped (bool): If groups of mutations should be colored and sized together color (str): Color of the mutations (overridden if unique_colors=True) unique_colors (bool): If each mutation/mutation group should be colored uniquely opacity_range (tuple): Min/max opacity values (mutations that show up more will be opaque) scale_range (tuple): Min/max size values (mutations that show up more will be bigger) """ if use_representatives: if seqprop and structprop and chain_id: raise ValueError('Overriding sequence, structure, and chain IDs with representatives. ' 'Set use_representatives to False if custom IDs are to be used.') else: if not seqprop or not structprop or not chain_id: raise ValueError('Input sequence, structure, and chain to map between, or set use_representatives ' 'to True.') if use_representatives: seqprop = self.representative_sequence structprop = self.representative_structure chain_id = self.representative_chain log.debug('Using sequence: {}, structure: {}, chain: {}'.format(seqprop.id, structprop.id, chain_id)) # Get the summary of mutations single, fingerprint = self.sequence_mutation_summary(alignment_type=alignment_type, alignment_ids=alignment_ids) # Map residues from sequence to structure if not grouped: single_lens = {k: len(v) for k, v in single.items()} single_map_to_structure = {} for k, v in single_lens.items(): resnum = int(k[1]) resnum_to_structure = self.map_seqprop_resnums_to_structprop_resnums(resnums=resnum, seqprop=seqprop, structprop=structprop, chain_id=chain_id, use_representatives=use_representatives) if resnum not in resnum_to_structure: log.warning('{}: residue is not available in structure {}'.format(resnum, structprop.id)) continue new_key = resnum_to_structure[resnum] single_map_to_structure[new_key] = v structprop.add_scaled_residues_highlight_to_nglview(view=view, structure_resnums=single_map_to_structure, chain=chain_id, color=color, unique_colors=unique_colors, opacity_range=opacity_range, scale_range=scale_range) else: log.warning('Viewing mutation groups is currently in beta -- groups may overwrite each other') fingerprint_lens = {k: len(v) for k, v in fingerprint.items()} fingerprint_map_to_structure = {} for k, v in fingerprint_lens.items(): k_list = [int(x[1]) for x in k] resnums_to_structure = self.map_seqprop_resnums_to_structprop_resnums(resnums=k_list, seqprop=seqprop, structprop=structprop, chain_id=chain_id, use_representatives=use_representatives) new_key = tuple(y for y in resnums_to_structure.values()) fingerprint_map_to_structure[new_key] = v structprop.add_scaled_residues_highlight_to_nglview(view=view, structure_resnums=fingerprint_map_to_structure, chain=chain_id, color=color, unique_colors=unique_colors, opacity_range=opacity_range, scale_range=scale_range) def add_fingerprint_to_nglview(self, view, fingerprint, seqprop=None, structprop=None, chain_id=None, use_representatives=False, color='red', opacity_range=(0.8, 1), scale_range=(1, 5)): """Add representations to an NGLWidget view object for residues that are mutated in the ``sequence_alignments`` attribute. Args: view (NGLWidget): NGLWidget view object fingerprint (dict): Single mutation group from the ``sequence_mutation_summary`` function seqprop (SeqProp): SeqProp object structprop (StructProp): StructProp object chain_id (str): ID of the structure's chain to get annotation from use_representatives (bool): If the representative sequence/structure/chain IDs should be used color (str): Color of the mutations (overridden if unique_colors=True) opacity_range (tuple): Min/max opacity values (mutations that show up more will be opaque) scale_range (tuple): Min/max size values (mutations that show up more will be bigger) """ if use_representatives: if seqprop and structprop and chain_id: raise ValueError('Overriding sequence, structure, and chain IDs with representatives. ' 'Set use_representatives to False if custom IDs are to be used.') else: if not seqprop or not structprop or not chain_id: raise ValueError('Input sequence, structure, and chain to map between, or set use_representatives ' 'to True.') if use_representatives: seqprop = self.representative_sequence structprop = self.representative_structure chain_id = self.representative_chain log.debug('Using sequence: {}, structure: {}, chain: {}'.format(seqprop.id, structprop.id, chain_id)) fingerprint_lens = {k: len(v) for k, v in fingerprint.items()} fingerprint_map_to_structure = {} for k, v in fingerprint_lens.items(): k_list = [int(x[1]) for x in k] resnums_to_structure = self.map_seqprop_resnums_to_structprop_resnums(resnums=k_list, seqprop=seqprop, structprop=structprop, chain_id=chain_id, use_representatives=use_representatives) new_key = tuple(y for y in resnums_to_structure.values()) fingerprint_map_to_structure[new_key] = v structprop.add_scaled_residues_highlight_to_nglview(view=view, structure_resnums=fingerprint_map_to_structure, chain=chain_id, color=color, opacity_range=opacity_range, scale_range=scale_range) ```
{ "source": "JoshuaMeza/SupportBot", "score": 2 }
#### File: Controller/Commands/commandLogs.py ```python import discord from discord.ext import commands from Model.model import * class Logs(commands.Cog): def __init__(self, client, model: Model): self.client = client self.model = model def __verRole(self, roles): flag = False for role in roles: if role.name == self.model.getLockRoleName(): flag = True break return flag @commands.Cog.listener() async def on_ready(self): print('Command logs ready') @commands.command(name='logs', aliases=['LOGS'], ignore_extra=False) async def command_logs(self, ctx, arg: str): arg = arg.upper() desc = None if arg == 'ADD' or arg == 'DEL': # Role required if self.__verRole(ctx.author.roles): # Add if arg == 'ADD': if self.model.addSubjectToGuild(ctx.guild.id, ctx.channel.category.name): desc = 'Category successfully added as a subject.' else: desc = 'Category failed to be added as a subject.' # Delete else: if self.model.removeSubjectOfGuild(ctx.guild.id, ctx.channel.category.name): desc = 'Subject successfully deleted.' else: desc = 'Subject failed to be deleted.' else: raise commands.MissingRole(self.model.getLockRoleName()) elif arg == 'VFY': # Verify if self.model.containsSubject(ctx.guild.id, ctx.channel.category.name): desc = 'This category have been registered as a subject.' else: desc = 'This category haven\'t been registered as a subject yet.' else: raise commands.BadArgument() await ctx.send(embed=discord.Embed( title='Logs command', description=desc, colour=self.model.getDefaultColor() )) ``` #### File: Controller/Commands/commandUser.py ```python import discord from discord.ext import commands from Model.model import * class User(commands.Cog): def __init__(self, client, model: Model): self.client = client self.model = model def __verRole(self, roles): flag = False for role in roles: if role.name == self.model.getLockRoleName(): flag = True break return flag @commands.Cog.listener() async def on_ready(self): print('Command user ready') @commands.command(name='user', aliases=['USER'], ignore_extra=False) async def command_user(self, ctx, action: str, target: discord.Member): action = action.upper() desc = None def check(m): return m.author == ctx.author if action == 'ADD': if self.model.addStudentToSubjectFromGuild(ctx.guild.id, ctx.channel.category.name, target.id): if self.model.getStudentFromSubject(ctx.guild.id, ctx.channel.category.name, target.id, True).split(',')[0] == 'unknown': self.model.editStudentNamesFromGuild(ctx.guild.id, target.name, target.id) desc = 'Student successfully added to this subject.' else: desc = 'Student failed to be added to this subject.' elif action == 'MOD': options = ['NAME','LNAME','ID','EMAIL','NUMBER'] option = None data = None # Ask for option embed = discord.Embed( title='Notebook command', description='Send a message with an option:\n' '[name/lname/id/email/number]', colour=self.model.getDefaultColor() ) embed.set_footer(text='Timeout in 20 seconds!') await ctx.send(embed=embed) try: msg = await self.client.wait_for('message', timeout=20.0, check=check) option = msg.content.upper() if not option in options: raise Exception() except: # Timeout raise commands.BadArgument() # Ask for content embed = discord.Embed( title='Notebook command', description='Send a message with the new information.', colour=self.model.getDefaultColor() ) embed.set_footer(text='Timeout in 30 seconds!') await ctx.send(embed=embed) try: msg = await self.client.wait_for('message', timeout=30.0, check=check) data = msg.content except: # Timeout raise commands.BadArgument() # Output if option == options[0]: # Name if self.model.editStudentNamesFromGuild(ctx.guild.id, data, target.id): desc = 'Name successfully modified.' else: desc = 'Name failed to be modified.' elif option == options[1]: # Last name if self.model.editStudentLastNamesFromGuild(ctx.guild.id, data, target.id): desc = 'Last name successfully modified.' else: desc = 'Last name failed to be modified.' elif option == options[2]: # Id if not data.isdigit(): raise commands.BadArgument() else: data = int(data) if self.model.editStudentCollegeIdFromGuild(ctx.guild.id, data, target.id): desc = 'Id successfully modified.' else: desc = 'Id failed to be modified.' elif option == options[3]: # Email if self.model.editStudentEmailFromGuild(ctx.guild.id, data, target.id): desc = 'Email successfully modified.' else: desc = 'Email failed to be modified.' elif option == options[4]: # Number if not data.isdigit(): raise commands.BadArgument() else: data = int(data) if self.model.editStudentPhoneNumberFromGuild(ctx.guild.id, data, target.id): desc = 'Phone number successfully modified.' else: desc = 'Phone number failed to be modified.' else: raise commands.BadArgument() elif action == 'DEL': if self.__verRole(ctx.author.roles): if self.model.removeStudentOfSubjectFromGuild(ctx.guild.id, ctx.channel.category.name, target.id): desc = 'Student successfully deleted from this subject.' else: desc = 'Student failed to be deleted from this subject.' else: raise commands.MissingRole(self.model.getLockRoleName()) else: # Unknown action raise commands.BadArgument() await ctx.send(embed=discord.Embed( title='User command', description=desc, colour=self.model.getDefaultColor() )) ``` #### File: SupportBot/Model/guildNode.py ```python from Model.subject import * class GuildNode: def __init__(self, guildId: int): self.guildId = guildId self.subjects = [] self.noInfoAnswer = 'There\'s no information related' # Getters and setters def getGuildId(self) -> int: return self.guildId def setGuildId(self, guildId: int): self.getGuildId = guildId # Subjects management def __verifySubjectExistence(self, subjectName: str) -> bool: exists = False for subject in self.subjects: if subject.getName() == subjectName: exists = True break return exists def addSubject(self, subjectName: str) -> bool: flag = True try: if not self.__verifySubjectExistence(subjectName): s = Subject(subjectName) self.subjects.append(s) else: flag= False except: flag = False return flag def removeSubject(self, subjectName: str) -> bool: flag = False for subject in self.subjects: if subject.getName() == subjectName: self.subjects.remove(subject) flag = True break return flag def containsSubject(self, subjectName: str) -> bool: flag = False for subject in self.subjects: if subject.getName() == subjectName: flag = True break return flag # Students management def __studentSearcher(self, discordId) -> dict: output = {} for subject in self.subjects: data = subject.getStudentData(discordId) if data != {}: # An student with that id was found output = data break return output def addStudent(self, subjectName: str, discordId: int) -> bool: flag = False for subject in self.subjects: if subject.getName() == subjectName: # What if the student actually exists? data = self.__studentSearcher(discordId) if data == {}: # New student flag = subject.addStudent(discordId) else: # Existent student was found flag = subject.addStudentAndGenerate(data) break return flag def removeStudent(self, subjectName: str, discordId: int) -> bool: flag = False for subject in self.subjects: if subject.getName() == subjectName: flag = subject.removeStudent(discordId) break return flag def editStudentNames(self, names: str, discordId: int) -> bool: flag = False for subject in self.subjects: if subject.editStudentNames(names, discordId): flag = True return flag def editStudentLastNames(self, lastNames: str, discordId: int) -> bool: flag = False for subject in self.subjects: if subject.editStudentLastNames(lastNames, discordId): flag = True return flag def editStudentCollegeId(self, collegeId: int, discordId: int) -> bool: flag = False for subject in self.subjects: if subject.editStudentCollegeId(collegeId, discordId): flag = True return flag def editStudentEmail(self, email: str, discordId: int) -> bool: flag = False for subject in self.subjects: if subject.editStudentEmail(email, discordId): flag = True return flag def editStudentPhoneNumber(self, phoneNum: int, discordId: int) -> bool: flag = False for subject in self.subjects: if subject.editStudentPhoneNumber(phoneNum, discordId): flag = True return flag # Links management def addLink(self, subjectName: str, name: str, url: str) -> bool: flag = False for subject in self.subjects: if subject.getName() == subjectName: flag = subject.addLink(name, url) break return flag def removeLink(self, subjectName: str, index: int) -> bool: flag = False for subject in self.subjects: if subject.getName() == subjectName: flag = subject.removeLink(index) break return flag # Notes management def addNote(self, subjectName: str, name: str, text: str) -> bool: flag = False for subject in self.subjects: if subject.getName() == subjectName: flag = subject.addNote(name, text) break return flag def removeNote(self, subjectName: str, index: int) -> bool: flag = False for subject in self.subjects: if subject.getName() == subjectName: flag = subject.removeNote(index) break return flag # Printing data def getAllStudents(self) -> str: output = '' for subject in self.subjects: output = output + subject.getStudents() + '\n' if output != '': output = output[:-1] else: output = self.noInfoAnswer return output def getStudentsFromSubject(self, subjectName: str) -> str: output = '' for subject in self.subjects: if subject.getName() == subjectName: output = subject.getStudents() break if output == '': output = self.noInfoAnswer return output def getStudentFromSubject(self, subjectName: str, discordId: int, CSV: bool) -> str: output = '' for subject in self.subjects: if subject.getName() == subjectName: output = subject.getStudent(discordId, CSV) break if output == '': output = self.noInfoAnswer return output def getLinksFromSubject(self, subjectName: str) -> str: output = '' for subject in self.subjects: if subject.getName() == subjectName: output = subject.getLinks() break if output == '': output = self.noInfoAnswer return output def getNotesFromSubject(self, subjectName: str) -> str: output = '' for subject in self.subjects: if subject.getName() == subjectName: output = subject.getNotes() break if output == '': output = self.noInfoAnswer return output # Dictionary def toDict(self) -> dict: listDict = [] for subject in self.subjects: listDict.append(subject.toDict()) return { "GuildId" : self.guildId, "Subjects" : listDict } ``` #### File: SupportBot/Model/model.py ```python import discord from Model.fileHandler import * from Model.guildNode import * class Model: def __init__(self): self.errColor = discord.Colour.from_rgb(225, 7, 0) self.defColor = discord.Colour.from_rgb(0, 239, 134) self.prefix = '!' self.fileName = 'memory.json' self.noInfoAnswer = 'There\'s no information related' self.lockRoleName = 'BotManager' self.guilds = [] self.__buildGuilds() # Getters and setters def getPrefix(self) -> str: return self.prefix def getErrorColor(self) -> discord.Colour: return self.errColor def getDefaultColor(self) -> discord.Colour: return self.defColor def getLockRoleName(self) -> str: return self.lockRoleName # File management def __readData(self) -> dict: fileHandler = FileHandler() return fileHandler.readJSON(self.fileName) def __writeData(self, info: dict) -> bool: fileHandler = FileHandler() return fileHandler.writeJSON(self.fileName, info) def __updatePersistentData(self) -> bool: listDict = [] for guild in self.guilds: listDict.append(guild.toDict()) return self.__writeData({"Guilds" : listDict}) # Guilds management def __buildGuilds(self): info = self.__readData() index = 0 try: for guild in info['Guilds']: # Move through all guilds if self.addGuild(guild['GuildId'], False): # Avoid duplicates for subject in guild['Subjects']: # Move through all subjects subjectName = subject['SubjectName'] if self.guilds[index].addSubject(subjectName): # Avoid duplicates # Start adding the subject data ¬ for student in subject['Members']: # Move through all students discordId = student['DiscordId'] if self.guilds[index].addStudent(subjectName, discordId): #Adding aditional information of students if student['Names'] is not None: self.guilds[index].editStudentNames(student['Names'], discordId) if student['LastNames'] is not None: self.guilds[index].editStudentLastNames(student['LastNames'], discordId) if student['CollegeId'] is not None: self.guilds[index].editStudentCollegeId(student['CollegeId'], discordId) if student['Email'] is not None: self.guilds[index].editStudentEmail(student['Email'], discordId) if student['PhoneNumber'] is not None: self.guilds[index].editStudentPhoneNumber(student['PhoneNumber'], discordId) for link in subject['Links']: # Move through all links self.guilds[index].addLink(subjectName, link['Name'], link['URL']) for note in subject['Notes']: # Move through all notes self.guilds[index].addNote(subjectName, note['Name'], note['Text']) index += 1 except KeyError: print('Memory loading problem!') def __verifyGuildExistence(self, guildId) -> bool: exists = False for guild in self.guilds: if guild.getGuildId() == guildId: exists = True break return exists def addGuild(self, guildId: int, overwrite = True) -> bool: flag = True try: if not self.__verifyGuildExistence(guildId): g = GuildNode(guildId) self.guilds.append(g) else: flag = False except: flag = False if flag and overwrite: self.__updatePersistentData() return flag def removeGuild(self, guildId: int) -> bool: flag = False for guild in self.guilds: if guild.getGuildId() == guildId: self.guilds.remove(guild) flag = True break if flag: self.__updatePersistentData() return flag # Subjects management def addSubjectToGuild(self, guildId: int, subjectName: str) -> bool: flag = False for guild in self.guilds: if guild.getGuildId() == guildId: flag = guild.addSubject(subjectName) break if flag: self.__updatePersistentData() return flag def removeSubjectOfGuild(self, guildId: int, subjectName: str) -> bool: flag = False for guild in self.guilds: if guild.getGuildId() == guildId: flag = guild.removeSubject(subjectName) break if flag: self.__updatePersistentData() return flag def containsSubject(self, guildId: int, subjectName: str) -> bool: flag = False for guild in self.guilds: if guild.getGuildId() == guildId: flag = guild.containsSubject(subjectName) break return flag # Students management def addStudentToSubjectFromGuild(self, guildId: int, subjectName: str, discordId: int) -> bool: flag = False for guild in self.guilds: if guild.getGuildId() == guildId: flag = guild.addStudent(subjectName, discordId) break if flag: self.__updatePersistentData() return flag def removeStudentOfSubjectFromGuild(self, guildId: int, subjectName: str, discordId: int) -> bool: flag = False for guild in self.guilds: if guild.getGuildId() == guildId: flag = guild.removeStudent(subjectName, discordId) break if flag: self.__updatePersistentData() return flag def editStudentNamesFromGuild(self, guildId: int, names: str, discordId: int) -> bool: flag = False for guild in self.guilds: if guild.getGuildId() == guildId: flag = guild.editStudentNames(names, discordId) break if flag: self.__updatePersistentData() return flag def editStudentLastNamesFromGuild(self, guildId: int, lastNames: str, discordId: int) -> bool: flag = False for guild in self.guilds: if guild.getGuildId() == guildId: flag = guild.editStudentLastNames(lastNames, discordId) break if flag: self.__updatePersistentData() return flag def editStudentCollegeIdFromGuild(self, guildId: int, collegeId: int, discordId: int) -> bool: flag = False for guild in self.guilds: if guild.getGuildId() == guildId: flag = guild.editStudentCollegeId(collegeId, discordId) break if flag: self.__updatePersistentData() return flag def editStudentEmailFromGuild(self, guildId: int, email: str, discordId: int) -> bool: flag = False for guild in self.guilds: if guild.getGuildId() == guildId: flag = guild.editStudentEmail(email, discordId) break if flag: self.__updatePersistentData() return flag def editStudentPhoneNumberFromGuild(self, guildId: int, phoneNum: int, discordId: int) -> bool: flag = False for guild in self.guilds: if guild.getGuildId() == guildId: flag = guild.editStudentPhoneNumber(phoneNum, discordId) break if flag: self.__updatePersistentData() return flag # Links management def addLinkToSubjectFromGuild(self, guildId: int, subjectName: str, name: str, url: str) -> bool: flag = False for guild in self.guilds: if guild.getGuildId() == guildId: flag = guild.addLink(subjectName, name, url) break if flag: self.__updatePersistentData() return flag def removeLinkOfSubjectFromGuild(self, guildId: int, subjectName: str, index: int) -> bool: flag = False for guild in self.guilds: if guild.getGuildId() == guildId: flag = guild.removeLink(subjectName, index) break if flag: self.__updatePersistentData() return flag # Notes management def addNoteToSubjectFromGuild(self, guildId: int, subjectName: str, name: str, text: str) -> bool: flag = False for guild in self.guilds: if guild.getGuildId() == guildId: flag = guild.addNote(subjectName, name, text) break if flag: self.__updatePersistentData() return flag def removeNoteOfSubjectFromGuild(self, guildId: int, subjectName: str, index: int) -> bool: flag = False for guild in self.guilds: if guild.getGuildId() == guildId: flag = guild.removeNote(subjectName, index) break if flag: self.__updatePersistentData() return flag # Printing data def getStudentsFromSubject(self, guildId: int, subjectName: str) -> str: output = '' for guild in self.guilds: if guild.getGuildId() == guildId: output = guild.getStudentsFromSubject(subjectName) break if output == '': output = self.noInfoAnswer return output def getStudentFromSubject(self, guildId: int, subjectName: str, discordId: int, CSV: bool) -> str: output = '' for guild in self.guilds: if guild.getGuildId() == guildId: output = guild.getStudentFromSubject(subjectName, discordId, CSV) break if output == '': output = self.noInfoAnswer return output def getLinksFromSubject(self, guildId: int, subjectName: str) -> str: output = '' for guild in self.guilds: if guild.getGuildId() == guildId: output = guild.getLinksFromSubject(subjectName) break if output == '': output = self.noInfoAnswer return output def getNotesFromSubject(self, guildId: int, subjectName: str) -> str: output = '' for guild in self.guilds: if guild.getGuildId() == guildId: output = guild.getNotesFromSubject(subjectName) break if output == '': output = self.noInfoAnswer return output ``` #### File: SupportBot/Model/note.py ```python class Note: def __init__(self, index: int, name: str, text: str): self.index = index self.name = name self.text = text # Getters and setters def getIndex(self) -> int: return self.index def getName(self) -> str: return self.name def getText(self) -> str: return self.text def setIndex(self, index: int): self.index = index def setName(self, name: str): self.name = name def setText(self, text: str): self.text = text # Printing data def toString(self) -> str: return f'📝 Id: {self.index}, Name: {self.name},\nNote: {self.text}' # Dictionary def toDict(self) -> dict: return { "Name" : self.name, "Text" : self.text } ```
{ "source": "JoshuaMichaelKing/Stock-SentimentAnalysis", "score": 3 }
#### File: JoshuaMichaelKing/Stock-SentimentAnalysis/reviews_preprocessing.py ```python from __future__ import print_function from __future__ import division import os, sys, codecs, logging import jieba import random from math import log import datetime as dt import iohelper import stocktime as st reload(sys) sys.setdefaultencoding('utf-8') __version__ = '0.0.1' __license__ = 'MIT' __author__ = '<NAME> (<EMAIL>)' ''' Python : Reviews preprocessing. ''' def main(): FILE = os.curdir logging.basicConfig(filename=os.path.join(FILE,'log.txt'), level=logging.ERROR) # pos_neg_cut_test() # pos_or_neg_reviews2pkl() # 将手动标注的积极消极评论集转换为pkl存储 # pos_tk_lst = iohelper.read_pickle2objects('./Reviews/pos_reviews.pkl') # read training corpus to list[[,...], [,...], ...] # neg_tk_lst = iohelper.read_pickle2objects('./Reviews/neg_reviews.pkl') # same as above # print('POS_REVIEWS_LENGTH %d\tNEG_REVIEWS_LENGTH %d' % (len(pos_tk_lst), len(neg_tk_lst))) #------------------------------------------------------------------------------- def pos_or_neg_reviews2pkl(): ''' convert the neg_reviews and pos_reviews to list[[,...], [,...],...] save the list to pkl ''' neg_list = iohelper.read_file2list('neg') pos_list = iohelper.read_file2list('pos') neg_tk_lst = word_tokenization(neg_list) pos_tk_lst = word_tokenization(pos_list) # segmentation : [[,], [,], ...] iohelper.save_objects2pickle(neg_tk_lst, './Reviews/neg_reviews.pkl') iohelper.save_objects2pickle(pos_tk_lst, './Reviews/pos_reviews.pkl') def word_tokenization(tick_blog_list): ''' word tokenization by jieba to list return list : [[,], [,], ...] ''' count = 0 seg_list = [] try: for blog in tick_blog_list: count += 1 if blog != '': segments = jieba.cut(blog) tmp = [] for seg in segments: tmp.append(seg) seg_list.append(tmp) else: print('Line%d is empty!' % cnt) except IOError as e: logging.error('IOError %s' % e) finally: return seg_list #------------------------------------------------------------------------------- def pos_neg_cut_test(): ''' Based on the initial constructed stock-oriented lexicon, then seperate the whole reviews into pwo part automatically : pos and neg ''' # loading positive and negative sentiment lexicon pos_lexicon_dict, neg_lexicon_dict = load_sentiment_lexicon() # march + april + may = 40 (40*50=2000, 200 as test 1800 as train) date_of_march = ['20160329', '20160331'] date_of_april = ['20160405', '20160406', '20160407', '20160408', '20160411', '20160412', '20160413', '20160414', '20160415', '20160418', '20160419', '20160420', '20160421', '20160425', '20160426', '20160427', '20160429'] date_of_may = ['20160503', '20160504', '20160505', '20160506', '20160509', '20160510', '20160511', '20160512', '20160513', '20160516', '20160517', '20160518', '20160519', '20160520', '20160523', '20160524', '20160525', '20160526', '20160527', '20160530', '20160531'] review_list_day = [] review_list_day.extend(date_of_march) review_list_day.extend(date_of_april) review_list_day.extend(date_of_may) # review_list_day = ['20160329'] # just for test one day : correct pos_reviews and neg_reviews manually print('{0} {1}'.format(len(review_list_day), review_list_day)) opentime1 = st.opentime1 midclose = st.midclose opentime2 = st.opentime2 closetime = st.closetime tick_delta = dt.timedelta(minutes=5) for subdir in review_list_day: tick_now = opentime1 count = 0 pos_reviews = [] mid_reviews = [] neg_reviews = [] pos_scores = [] neg_scores = [] mid_scores = [] while True: if (tick_now >= opentime1 and tick_now <= midclose) or (tick_now >= opentime2 and tick_now <= closetime): hour = tick_now.hour minute = tick_now.minute fname = str(hour * 100 + minute) tick_blog_list = iohelper.read_txt2list(fname, subdir) # print(tick_blog_list[0]) # assert 0 == 1 count += len(tick_blog_list) for each_blog in tick_blog_list: if each_blog != '': segments = jieba.cut(each_blog) tmp = [] for seg in segments: if is_word_invalid(seg) is False: tmp.append(seg) result = sentiment_logarithm_estimation(pos_lexicon_dict, neg_lexicon_dict, tmp) if result == 0: mid_scores.append(result) mid_reviews.append(each_blog) elif result < 0: neg_scores.append(result) neg_reviews.append(each_blog) else: pos_scores.append(result) pos_reviews.append(each_blog) tick_now += tick_delta elif tick_now > midclose and tick_now < opentime2: tick_now = opentime2 elif tick_now > closetime: break print('{0}-{1}'.format(subdir, count)) mid_reviews = random.sample(mid_reviews, 200) iohelper.save_list2file(mid_reviews, './Data/' + subdir + '_mid_reviews') print('save_list2file new word[mid polarity] list successfully!') neg_reviews = random.sample(neg_reviews, 80) pos_reviews = random.sample(pos_reviews, 80) iohelper.save_list2file(neg_reviews, './Data/' + subdir + '_neg_reviews') iohelper.save_list2file(pos_reviews, './Data/' + subdir + '_pos_reviews') print('{0}-{1}-{2}'.format(len(neg_scores), len(mid_scores), len(pos_scores))) # ----------------------------------------------------------------------------- def load_sentiment_lexicon(): ''' 载入情感词典 ''' # loading positive and negative sentiment lexicon pos_lexicon_dict = {} neg_lexicon_dict = {} lexicon = iohelper.read_lexicon2dict('positive.txt', True) pos_lexicon_dict = dict(pos_lexicon_dict, **lexicon) lexicon = iohelper.read_lexicon2dict('hownet-positive.txt') pos_lexicon_dict = dict(pos_lexicon_dict, **lexicon) lexicon = iohelper.read_lexicon2dict('ntusd-positive.txt') pos_lexicon_dict = dict(pos_lexicon_dict, **lexicon) lexicon = iohelper.read_lexicon2dict('negative.txt', True) neg_lexicon_dict = dict(neg_lexicon_dict, **lexicon) lexicon = iohelper.read_lexicon2dict('hownet-negative.txt') neg_lexicon_dict = dict(neg_lexicon_dict, **lexicon) lexicon = iohelper.read_lexicon2dict('ntusd-negative.txt') neg_lexicon_dict = dict(neg_lexicon_dict, **lexicon) return pos_lexicon_dict, neg_lexicon_dict def sentiment_logarithm_estimation(pos_lexicon_dict, neg_lexicon_dict, sentence_blog_segments): ''' compute every preprocessed sentence's sentiment index using ln((1+sigma(pos))/(1+sigma(neg))) formula return float : sentiment value ''' pos_list = [] neg_list = [] tick_value_tmp = float(0) pos_count = 0 neg_count = 0 for word in sentence_blog_segments: if word in pos_lexicon_dict: pos_count += pos_lexicon_dict[word] elif word in neg_lexicon_dict: neg_count += neg_lexicon_dict[word] tick_value_tmp = log(float(1 + pos_count) / float(1 + neg_count)) return tick_value_tmp def is_word_invalid(word): ''' to judge the word is or not the chinese, if not return False, else return True. ''' if 'sh' in word or 'sz' in word or 'SH' in word or 'SZ' in word or 'IF' in word or word.isdigit(): return True if word[0] <= chr(127): return True # is english, invalid chinese isfloat = True try: fv = float(word) except Exception as e: isfloat = False return isfloat if __name__ == '__main__': main() ``` #### File: JoshuaMichaelKing/Stock-SentimentAnalysis/weibo.py ```python from __future__ import print_function from __future__ import division from snspy import APIClient, SinaWeiboMixin # using SinaWeibo from datetime import datetime import datetime as dt import stocktime as st import sys, os, time, json, logging, codecs reload(sys) sys.setdefaultencoding('utf-8') __version__ = '0.0.1' __license__ = 'MIT' __author__ = '<NAME> (<EMAIL>)' ''' Python get weibo for text mining. Require Python 2.6/2.7. ''' APP_KEY = '' # app key APP_SECRET = '' # app secret CALLBACK_URL = '' # callback url def main(): FILE = os.curdir logging.basicConfig(filename=os.path.join(FILE,'log.txt'), level=logging.INFO) config_init() print('APP_KEY:%s APP_SECRET:%s CALLBACK_URL:%s' % (APP_KEY, APP_SECRET, CALLBACK_URL)) client = APIClient(SinaWeiboMixin, app_key=APP_KEY, app_secret=APP_SECRET, redirect_uri=CALLBACK_URL) url = client.get_authorize_url() # redirect the user to 'url' print(url) # needGetCode = raw_input("Do you need to get code from callback in browser? Please input yes or no!") needGetCode = 'no' code = '' r = {} if needGetCode == 'yes': code = raw_input("Please input the returned code : ") # redirect to url and get code r = client.request_access_token(code) print(r.access_token) # access token,e.g., <KEY> print(r.expires) # token expires time, UNIX timestamp, e.g., 1384826449.252 (10:01 am, 19 Nov 2013, UTC+8:00) # 测试版本access_token的时间期限为1天,过期后再重新获取 access_token = '<KEY>' expires = 1622967755.0 client.set_access_token(access_token, expires) # After Initialize API Authorization... get_blog_and_process(client) print('get_blog_and_process is over...') # testing code # test_get_blog_and_save(client) # blogs = u'$上证指数 sh000001$ #聚焦2016年全国两会# 车易拍赶紧的' # bloglists = sentence_cut_list(list(blogs)) # print(''.join(bloglists)) def config_init(): filename = 'config.ini' f = open(filename, 'rb') #以只读的方式打开 contents = f.read() f.close() allconfigs = contents.split('\n') config = [] for cfg in allconfigs: if cfg == '': continue tmp = cfg.replace('\r', '') if '#' in tmp: continue config.append(tmp) global APP_KEY APP_KEY = config[0] global APP_SECRET APP_SECRET = config[1] global CALLBACK_URL CALLBACK_URL = config[2] def make_dir(filepath): if os.path.exists(str(filepath)): pass else: os.mkdir(str(filepath)) def save2Txt(weibodict, filename, dir): filepath = './Data/' + dir make_dir(filepath) filepath = filepath + '/' f = codecs.open(filepath + filename + '.txt', 'a', 'utf-8') for i in weibodict: f.write(weibodict[i] + '\n') f.close() logging.info('Weibo save2txt success at %s %s' % (datetime.now(), filename)) def get_all_userid_sina(client): ''' get all user ids from sina and backup to pickle ''' userid = get_users(client, 'gqmk21st') userdict = {} userdict = print_users_list(userid) userdict = read_file_dict() print(len(userdict)) for k in userdict: print('dict[%s] =' % k, userdict[k]) save_dict_file(userdict) return userdict def get_all_userid_pkl(): ''' get all user ids from pickle file ''' userdict = {} userdict = read_file_dict() print(len(userdict)) for k in userdict: print('dict[%s] =' % k, userdict[k]) return userdict def print_users_list(ul): ''' print all users info ''' index = 0 userdict = {} for user in ul: uid = user["id"] ugen = user["gender"] uname = user["screen_name"] # uloc = user["location"] # udesc = user["description"] # print('%-6d%-12d%-3s%s' % (index, uid, ugen, uname)) index += 1 userdict[uid] = uname return userdict def get_users(client, uname): ''' API : get all users info from sina api ''' fl = [] next_cursor = 0 while True: raw_fl = client.friendships.friends.get(screen_name=uname, cursor=next_cursor, count=200) fl.extend(raw_fl["users"]) next_cursor += 1 if next_cursor == 10: break time.sleep(1) return fl def get_newest_personalweibo(client, id): ''' API : this api is just limited for authorized user get designated following friends newest weibo by uid ''' i = 1 while i < 5: i += 1 jsdict = client.statuses.user_timeline.get(uid=id, page=i) for status in jsdict.statuses: # print(jsdict.statuses[m].user.id, jsdict.statuses[m]) print(status.created_at, status.user.id, status.user.name.encode("GBK", 'replace'), status.text.encode("GBK", 'replace')) time.sleep(1) def get_newest_publicweibo(client): ''' get newest friend microblog ''' jsdict = {} try: jsdict = client.statuses.friends_timeline.get(page=1, count=180) except Exception as e: logging.error('>>>>>>>>>>get_newest_publicweibo ERROR : %s %s' % (datetime.now(), e)) print('>>>>GET ERROR') del client time.sleep(10) config_init() client = APIClient(SinaWeiboMixin, app_key=APP_KEY, app_secret=APP_SECRET, redirect_uri=CALLBACK_URL) url = client.get_authorize_url() # redirect the user to 'url' access_token = '<PASSWORD>' expires = 1614584749.0 client.set_access_token(access_token, expires) jsdict = get_newest_publicweibo(client) logging.error('>>>>>>>>>> %s' % jsdict) finally: return jsdict def send_one_message(client): ''' API : send message or picture to sina weibo ''' content = 'Hello World! By Python SDK' client.statuses.update.post(status=content) # print(client.statuses.upload.post(status=u'test weibo with picture', pic=open('/Users/michael/test.png'))) def sentence_cut_list(sentencelists): ''' data clean process to filter some irrelevant signal to filter the sentence containing web link to filter the words begin with # or $ and ends with # or $ ''' cutlist = "[。,!……!《》<>\"'::??、/\|“”‘’;]★@{}(){}【】(){}():,.;、~——+%%`:“”'‘\n\r".decode('utf-8') l = [] length = len(sentencelists) i = 0 is_to_skip = False skip_to_num = 0 for wd in sentencelists: if is_to_skip: if i == skip_to_num: is_to_skip = False else: i += 1 continue if wd not in cutlist: # to filter some irrelevant signal if wd == '#': # filter # # cursor = i + 1 while cursor < length: if sentencelists[cursor] == '#': is_to_skip = True skip_to_num = cursor + 1 break else: cursor += 1 if cursor - i > 100: break i += 1 continue elif wd == '$': cursor = i + 1 while cursor < length: if sentencelists[cursor] == '$': is_to_skip = True skip_to_num = cursor + 1 break else: cursor += 1 if cursor - i > 100: break i += 1 continue elif wd == 'h': # filter the text containing web link http://... if (i + 3) < length: if sentencelists[i+1] == 't' and sentencelists[i+2] == 't' and sentencelists[i+3] == 'p': break l.append(wd) i += 1 return l def get_blog_and_process(client): # initialze time data todaydate = st.todaydate opentime1 = st.opentime1 # 建议在9:35之间启动 midclose = st.midclose opentime2 = st.opentime2 closetime = st.closetime tick_delta = dt.timedelta(minutes=5) # time minute delta, now condsider 5 minutes as a cycle tick_start = opentime1 - tick_delta tick_end = tick_start nowtime = datetime.now() if nowtime < opentime1: print('it is before trading day!') tick_end = opentime1 tick_start = tick_end - tick_delta * 3 elif nowtime > opentime1 and nowtime <= midclose: print('it is in the first trading day!') minute = nowtime.minute - nowtime.minute % 5 time_str = st.todaydate + ' ' + str(nowtime.hour) + ':' + str(minute) + ':00' tick_end = datetime.strptime(time_str, '%Y%m%d %H:%M:%S') tick_start = tick_end - tick_delta elif nowtime > midclose and nowtime < opentime2: print('it is in the mid time, not trading!') tick_end = opentime2 tick_start = tick_end - tick_delta * 3 elif nowtime > opentime2 and nowtime <= closetime: print('it is in the second trading day!') minute = nowtime.minute - nowtime.minute % 5 time_str = st.todaydate + ' ' + str(nowtime.hour) + ':' + str(minute) + ':00' tick_end = datetime.strptime(time_str, '%Y%m%d %H:%M:%S') tick_start = tick_end - tick_delta else: print('it is time after trading time!') return print('>>>>>>>>>>>>>>>Weibo collector begin! %s %s', (tick_start, tick_end)) counter = 0 counter_sina = 1 cache_weio_dict = {} is_set_again = False while True: now = datetime.now() if now > midclose and now < opentime2: mid_delta = dt.timedelta(minutes=6) # abvoid losing the last 5 minutes data persistance mid_later = midclose + mid_delta if now > mid_later: print('>>>>>>>>>>>>>>>Weibo collector middle end! %d', now.second) time.sleep(1) if is_set_again == False: tick_start = opentime2 - tick_delta * 3 tick_end = opentime2 is_set_again = True continue elif now > closetime: close_delta = dt.timedelta(minutes=6) # abvoid losing the last 5 minutes data close_later = closetime + close_delta if now > close_later: print('>>>>>>>>>>>>>>>Weibo collector end!') break # 后移一个tick持久化数据,考虑到新浪微博返回信息的滞后性 tmp = tick_end + tick_delta if now >= tmp: hour = tick_end.hour minute = tick_end.minute # flush the cache weibo text to txt file in disk filename = str(hour * 100 + minute) save2Txt(cache_weio_dict, filename, todaydate) cache_weio_dict.clear() # clear the cache for next saving dict print('>>>>>>>>>>>tick start and end! %s %s', (tick_start, tick_end)) tick_start = tick_end tick_end = tmp print('>>>>>>>>>>>tick start and end! %s %s', (tick_start, tick_end)) if counter_sina == 1: counter += 1 jsdict = get_newest_publicweibo(client) for status in jsdict.statuses: datetime_array = status.created_at.split(' ') current_str = todaydate + ' ' + datetime_array[3] current_time = datetime.strptime(current_str, '%Y%m%d %H:%M:%S') if current_time >= tick_start and current_time <= tick_end: cut_list = sentence_cut_list(list(status.text)) sentence = ('').join(cut_list) cache_weio_dict[status.id] = sentence counter_sina += 1 if counter_sina >= 90: counter_sina = 1 print('counter : %d %d %d' % (counter_sina, counter, len(cache_weio_dict))) time.sleep(1) def test_get_blog_and_save(client): ''' just testing ''' cache_weio_dict = {} tick_start = datetime.strptime(st.todaydate + ' 19:40:00', '%Y%m%d %H:%M:%S') tick_end = datetime.strptime(st.todaydate + ' 20:00:00', '%Y%m%d %H:%M:%S') jsdict = get_newest_publicweibo(client) for status in jsdict.statuses: datetime_array = status.created_at.split(' ') current_str = st.todaydate + ' ' + datetime_array[3] current_time = datetime.strptime(current_str, '%Y%m%d %H:%M:%S') if current_time >= tick_start and current_time <= tick_end: cut_list = sentence_cut_list(list(status.text)) sentence = ('').join(cut_list) cache_weio_dict[status.id] = sentence if len(cache_weio_dict) == 0: print('microblog zero') else: print(len(cache_weio_dict)) save2Txt(cache_weio_dict, 'text', st.todaydate) if __name__ == '__main__': main() ```
{ "source": "joshuaminwookang/mlrl_synthesis", "score": 2 }
#### File: mlrl_synthesis/analysis/plots.py ```python import numpy as np import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt import seaborn as sns import pandas as pd import glob, os.path, os, pickle #global params fig_dims = (12,8) axis_label = 12 legend_label = 12 axis_scale = 2.0 default_abc9_script="&scorr;&sweep;&dc2;&dch -f;&if -W 300 -K 6 -v;&mfs;" def load_data_pkl(pathname): filename=os.path.basename(pathname) tag=filename[filename.find('_') + 1 :filename.find('.pkl')] data = pd.read_pickle(pathname) data["Benchmark"] = tag return data, tag # Load the data as Pandas DataFrame def load_data(pathname): filename=os.path.basename(pathname) tag=filename[filename.find('_') + 1 :filename.find('.out.csv')] data = pd.read_csv(pathname, delimiter="\t") data["Benchmark"] = tag return data, tag def load_data_from_dir(search): dfs = [] search_path = os.path.normpath(os.path.join(os.getcwd(), search)) csvs = glob.glob(search_path) for f in csvs: data = pd.DataFrame(pd.read_pickle(f)).transpose() dfs.append(data) return dfs """ Plot a single (scatter/line/etc) plot for a benchmark @params: """ def plot_single (df, title, y_vars, plot_type="scatter-ratios"): sns.set_style("darkgrid") fig = plt.gcf() fig.set_size_inches(fig_dims) yosys_baseline = df.loc[df['Sequence'] == default_abc9_script+"\n"] with sns.plotting_context(font_scale=axis_scale): plt.axvline(yosys_baseline.iloc[0][y_vars[0]], ls='--', color='black', lw=0.7) plt.axhline(yosys_baseline.iloc[0][y_vars[1]], ls='--', color='black', lw=0.7) if (plot_type == "scatter-ratios"): df["Logic to Net Delay Ratio (%)"] = df["Logic_Delay_Percentage"] ax = sns.scatterplot(x=y_vars[0], y = y_vars[1], data=df, hue="Logic to Net Delay Ratio (%)", palette="coolwarm"); elif (plot_type == "scatter"): ax = sns.scatterplot(x=y_vars[0], y = y_vars[1], data=df); else : ax = sns.lineplot(x=y_vars[0], y = y_vars[1], data=df); ax.set_xlabel(y_vars[0], fontsize=axis_label, weight='bold') ax.set_ylabel(y_vars[1], fontsize=axis_label, weight='bold') #plt.legend(fontsize=legend_label,loc=1, prop={'weight': 'bold'}) plt.title(title+" (N={})".format(df[y_vars[1]].count()), fontsize=axis_label, weight='bold') plt.savefig(title+'_'+y_vars[0]+'_'+y_vars[1]+'.png', format='png', dpi=300) plt.close() """ From a list of DataFrames, plot inidividual plots for each DF """ def plot_singles(dfs, title, y_vars, plot_type): for df in dfs: bmark = df["Benchmark"][0] plot_single(df,title+"_"+bmark, y_vars, plot_type=plot_type) """ From a list of DataFrames, plot all data in a single plot (with legend) Goal: compare the results of different benchmarks (of y_vars[1]) over some predictor (y_vars[0]) """ def plot_stacked(dfs, y_vars, plot_type="scatter"): total_df = pd.DataFrame() min_size = np.amin([len(df.index) for df in dfs]) for df in dfs: relative_df = df.copy() relative_df[y_vars[1]] = df[y_vars[1]] / df[y_vars[1]].median() total_df = total_df.append(relative_df) total_df = total_df.pivot(index=y_vars[0], columns='Benchmark', values=y_vars[1]) fig = plt.gcf() fig.set_size_inches(fig_dims) sns.set_style("darkgrid") with sns.plotting_context(font_scale=axis_scale): if (plot_type == "scatter"): ax = sns.scatterplot(data=total_df.iloc[100:200]) else : ax = sns.lineplot(data=total_df.iloc[100:400]) ax.set_xlabel(y_vars[0]+' (Random Synthesis Flow)', fontsize=axis_label, weight='bold') ax.set_ylabel('Relative '+y_vars[1]+' (Normalized to Median)', fontsize=axis_label, weight='bold') plt.legend(fontsize=legend_label,loc=1, prop={'weight': 'bold'}) plt.savefig(y_vars[0]+'_'+y_vars[1]+'.png', format='png', dpi=300) plt.close() def main(): # Generate scatterplots for random runs # dfs = load_data_from_dir("results/random*.csv") # plot_singles(dfs, "random", ['Slice_LUTs', 'Path_Delay'], plot_type="scatter-ratios") # Stacked plot to compare QoRs of same scripts on different benchmarks # plot_stacked(dfs, ['Index', 'Path_Delay'], plot_type="scatter") # plot_stacked(dfs, ['Index', 'Slice_LUTs'], plot_type="scatter") # for df in dfs: # if df.iloc[0]['Benchmark'] == "or1200": # plot_single(df, "Vivado_vs_ABC", ['ABC_Delay', 'Path_Delay'], plot_type="scatter") # plot_single(df, "Vivado_vs_ABC", ['ABC_Area', 'Slice_LUTs'], plot_type="scatter") exh = load_data_from_dir("test*.pkl") print(exh[0]) # plot_single(exh[0], "VTR_bgm", ['ABC_Delay', 'Path_Delay'], plot_type="scatter") # plot_single(exh[0], "VTR_bgm", ['ABC_Area', 'Slice_LUTs'], plot_type="scatter") # plot_single(exh[0], "Exhaustive_bgm", ['Slice_LUTs','Path_Delay'], plot_type="scatter-ratios") if __name__ == "__main__": main() ``` #### File: mlrl_synthesis/dataset/circuit_graphs.py ```python import networkx as nx import json import argparse import glob, os.path, os import subprocess def run_yosys(verilog_path, output, ip, graph_type, cwd=os.getcwd(), stdout=None, stderr=None): try: if graph_type == "gl": p = subprocess.check_call(['yosys', '-p', "read_verilog {}; proc; memory; opt; techmap; opt; gml -o {}/{}.gml".format(str(verilog_path), str(output),ip)], \ cwd=cwd, stdout=stdout, stderr=stderr) else : p = subprocess.check_call(['yosys', '-p', "read_verilog {}; opt; gml -o {}/{}.rtl.gml".format(str(verilog_path), str(output),ip)], \ cwd=cwd, stdout=stdout, stderr=stderr) return True except: return False def run_yosys_from_dir(load_dir_path,output_path,graph_type): verilogs = glob.glob(os.path.normpath(os.path.join(os.getcwd(), load_dir_path+"/*.v"))) for verilog_file in verilogs: ip = verilog_file[verilog_file.rindex('/')+1:verilog_file.find('.v')] run_yosys(verilog_file, output_path, ip, graph_type) if graph_type == "gl": M = nx.read_gml("{}/{}.gml".format(output_path,ip)) G = nx.Graph(M) nx.write_gml(G, "{}/{}.gml".format(output_path,ip)) else: M = nx.read_gml("{}/{}.rtl.gml".format(output_path,ip)) G = nx.Graph(M) nx.write_gml(G, "{}/{}.rtl.gml".format(output_path,ip)) def summary(result_dir): filename = os.path.basename(os.path.dirname(result_dir)) gmls = glob.glob(os.path.normpath(os.path.join(result_dir,"*.gml"))) gmls.sort() print(gmls) results = {} for gml_file in gmls: ip = gml_file[gml_file.rindex('/')+1:gml_file.find('.gml')] G = nx.read_gml(gml_file) results[ip] = (len(G.nodes), len(G.edges)) json_file = filename+'_summary.json' with open(json_file, 'w') as outfile: json.dump(results, outfile) def main(): parser = argparse.ArgumentParser() parser.add_argument('-i','--input', type=str, required=True, help="verilog file path") parser.add_argument('-o','--output', type=str, required=True, help="verilog file path") parser.add_argument('--graph_type', type=str, default="gl", help="gl or rtl") parser.add_argument('-s','--summary', action='store_true') args = parser.parse_args() input_dir = args.input output_dir = args.output graph_type = args.graph_type if args.summary: summary(input_dir) else: run_yosys_from_dir(input_dir,output_dir,graph_type) summary(output_dir) if __name__ == "__main__": main() ```
{ "source": "joshuamitchell192/DLS_Project", "score": 3 }
#### File: DLS_Project/GUI/app.py ```python import configparser import os import sys import threading from PyQt5.QtCore import Qt from PyQt5.QtWidgets import QApplication from Controllers.controller import Controller from Models.instructions import Instructions from Models.sampleData import SampleData from Services.serialConnection import SerialConnection from Views.mainView import View class App (QApplication): def __init__(self, sys_argv): super(App, self).__init__(sys_argv) self.absoluteInstallationPath = os.path.dirname(os.path.abspath(__file__)) self.sampleData = SampleData() port = self.loadConfigComPort() self.serialConnection = SerialConnection(port) self.controller = Controller(self.serialConnection, Instructions, self.sampleData) self.view = View(self.serialConnection, self.controller, self.sampleData) self.view.show() thread = threading.Thread(target=self.controller.readLoop, args=()) # probably should use an signalling mechanism like an Event to stop gracefully thread.daemon = True thread.start() self.loadConfig() self.view.calculateExpectedDuration() def loadConfigComPort(self): config = configparser.ConfigParser() config.read(self.absoluteInstallationPath + '/settings.ini') if ('Default' in config): if ('Port' in config['Default']): return config['Default']['Port'] return "" def loadConfig(self): config = configparser.ConfigParser() config.read(self.absoluteInstallationPath + '/settings.ini') if ('Default' in config): defaultSettings = config['Default'] if ("SampleDuration" in defaultSettings): self.view.SmpDuration_SpinBox.setValue(float(defaultSettings['SampleDuration'])) else: print("Failed to load 'SampleDuration' from 'Default' section from settings") if ("mmBetweenSamples" in defaultSettings): self.view.StepLength_LineEdit.setValue(float(defaultSettings['mmBetweenSamples'])) if ("StartPosition" in defaultSettings): self.view.P1_Slider.setValue(int(defaultSettings["StartPosition"])) self.view.P1_SpinBox.setValue(int(defaultSettings["StartPosition"])) if ("EndPosition" in defaultSettings): self.view.P2_Slider.setValue(int(defaultSettings["EndPosition"])) self.view.P2_SpinBox.setValue(int(defaultSettings["EndPosition"])) if ("AverageInterval" in defaultSettings): self.view.AvgInterval_SpinBox.setValue(int(defaultSettings["AverageInterval"])) if __name__ == '__main__': if hasattr(Qt, 'AA_EnableHighDpiScaling'): QApplication.setAttribute(Qt.AA_EnableHighDpiScaling, True) QApplication.setAttribute(Qt.AA_DisableWindowContextHelpButton) QApplication.setAttribute(Qt.AA_UseStyleSheetPropagationInWidgetStyles, True) app = App(sys.argv) dirname = os.path.dirname(os.path.abspath(__file__)) ssFile = os.path.join(dirname, "stylesheet.qss") dropDownPath = os.path.join(dirname, "Assets/baseline_arrow_drop_down_black_18dp.png").replace('\\', '/') with open(ssFile) as fh: styleSheet = fh.read() styleSheet += """ QComboBox::down-arrow { image: url(""" + dropDownPath + """); } """ app.setStyleSheet(styleSheet) sys.exit(app.exec_()) ``` #### File: GUI/Controllers/controller.py ```python import struct from enum import Enum import pycrc.algorithms from Services.settings import Settings class State(Enum): Idle = 0 ScanBetween = 1 StationarySample = 2 Calibration = 3 class Controller: def __init__(self): pass def __init__(self, serialConnection, Instructions, sampleData): self.serialConnection = serialConnection self.Instructions = Instructions self.pause = False self.stepsPerMM = 0.018 self.isSampling = False self.crc = pycrc.algorithms.Crc(width=16, poly=0x8005, reflect_in=True, xor_in= 0x0000, reflect_out=True, xor_out = 0x0000) self.state = State.Idle self.sampleData = sampleData self.settings = Settings() self.settings.loadSettings() def handleCalibrate(self): self.isSampling = False self.serialConnection.sendInstruction(self.Instructions.Calibrate) def handleScanBetween(self, P1, P2, sampleDuration, mmBetweenSamples, stepMode): self.isSampling = False self.serialConnection.sendInstruction(self.Instructions.Pause) self.serialConnection.sendInstruction(self.Instructions.StartProgram) self.serialConnection.sendInstruction(self.Instructions.RapidPosition, [P1]) self.serialConnection.sendInstruction(self.Instructions.SampleDuration, [sampleDuration]) self.serialConnection.sendInstruction(self.Instructions.TurnOnAdc) self.serialConnection.sendInstruction(self.Instructions.mmBetweenSamples, [mmBetweenSamples]) self.serialConnection.sendInstruction(self.Instructions.StepMode, [stepMode]) self.serialConnection.sendInstruction(self.Instructions.LinearPosition, [P2]) self.serialConnection.sendInstruction(self.Instructions.TurnOffAdc) self.serialConnection.sendInstruction(self.Instructions.EndProgram) self.serialConnection.sendInstruction(self.Instructions.Resume) def handlePause(self): """ Sets the pause boolean to true so that we cease reading samples. """ if (self.pause): self.pause = False self.serialConnection.sendInstruction(self.Instructions.Resume) else: self.pause = True # Write to tiva to pause sampling on GUI self.isSampling = False self.serialConnection.sendInstruction(self.Instructions.Pause) def handleGoToPoint(self, position): """ sends the Rapid Position instruction to move to the given position """ self.isSampling = False self.serialConnection.sendInstruction(self.Instructions.Pause) self.serialConnection.sendInstruction(self.Instructions.TurnOffAdc) self.serialConnection.sendInstruction(self.Instructions.RapidPosition, [position]) self.serialConnection.sendInstruction(self.Instructions.Resume) def handleStartSample(self, averageInterval): self.isSampling = False self.serialConnection.sendInstruction(self.Instructions.Pause) self.serialConnection.sendInstruction(self.Instructions.StartProgram) self.serialConnection.sendInstruction(self.Instructions.AverageInterval, [averageInterval]) self.serialConnection.sendInstruction(self.Instructions.TurnOnAdc) self.serialConnection.sendInstruction(self.Instructions.SampleAtPosition) self.serialConnection.sendInstruction(self.Instructions.TurnOffAdc) self.serialConnection.sendInstruction(self.Instructions.EndProgram) self.serialConnection.sendInstruction(self.Instructions.Resume) def readLoop(self): while True: messageType = self.serialConnection.ser.read(2) if messageType == b'\xff\xff': if (self.state != State.ScanBetween): self.sampleData.linePlotData.addLine() self.state = State.ScanBetween self.readSampleData() elif messageType == b'\xff\xfe': self.state = State.Idle elif messageType == b'\xff\xfd': self.state = State.StationarySample self.readSampleData() elif(messageType == b'\xff\xfc'): self.state = State.Calibration stepsPerMMBytes = self.serialConnection.readInt() stageCalibrationStepsPerMM = struct.unpack('h', stepsPerMMBytes)[0] self.stepsPerMM = 1/stageCalibrationStepsPerMM self.settings.saveSetting("Calibration", "stepspermm", str(stageCalibrationStepsPerMM)) def readSampleData(self): sampleBytes = self.serialConnection.readInt() remainder = self.readCrc(sampleBytes) if (remainder != 0): print("---------- TRANMISSION ERROR OCCURED ----------") timeBytes = self.serialConnection.readFloat() remainder = self.readCrc(timeBytes) if (remainder != 0): print("---------- TRANMISSION ERROR OCCURED ----------") positionBytes = self.serialConnection.readFloat() remainder = self.readCrc(positionBytes) if (remainder != 0): print("---------- TRANMISSION ERROR OCCURED ----------") sample = struct.unpack('h', sampleBytes)[0] time = struct.unpack('f', timeBytes)[0] position = struct.unpack('f', positionBytes)[0] #time = self.secondsToRTC(time) if (self.state == State.ScanBetween): self.sampleData.linePlotData.samples[self.sampleData.linePlotData.getLineIndex()].append(round(sample, 4)) self.sampleData.linePlotData.times[self.sampleData.linePlotData.getLineIndex()].append(time) self.sampleData.linePlotData.positions[self.sampleData.linePlotData.getLineIndex()].append(round(position, 4)) elif (self.state == State.StationarySample): self.sampleData.scatterPlotData.samples.append(round(sample, 4)) self.sampleData.scatterPlotData.times.append(round(time, 4)) self.sampleData.scatterPlotData.positions.append(round(position, 4)) def secondsToRTC(self, time): minutes = time // 60 seconds = round(time - (minutes * 60), 4) #milliSeconds = round(seconds // ) #hours = minutes // 60 return f'{int(minutes)} m : {seconds} s'#:{milliSeconds} ms' def readCrc(self, data): crc = self.serialConnection.ser.read(2) return self.crc.table_driven(data + crc) def handleClearQueue(self): self.isSampling = False self.serialConnection.sendInstruction(self.Instructions.Pause) self.serialConnection.sendInstruction(self.Instructions.Clear) self.serialConnection.sendInstruction(self.Instructions.Resume) ``` #### File: GUI/Views/dynamicCanvas.py ```python import random import matplotlib import numpy as np from PyQt5 import QtCore, QtWidgets from PyQt5.QtWidgets import QVBoxLayout # Make sure that we are using QT5Agg matplotlib.use('Qt5Agg') import matplotlib.colors as mcolors from matplotlib import cm, figure from matplotlib.backends.backend_qt5agg import \ FigureCanvasQTAgg as FigureCanvas from numpy import linspace from Models.sampleData import SampleData class MplCanvas(FigureCanvas): """ Creates the matplotlib canvas to setup the basic figure base class so that it can be extended to be either static or dynamic. """ def __init__(self, parent=None, width=5, height=4, dpi=90): """ Creates a matplot lib figure, subplot and links the data samples list. """ self.fig = figure.Figure(figsize=(width, height), dpi=dpi) self.ax = self.fig.add_subplot(111) self.setCanvasAxes() self.noColours = 40 self.noColourRepitions = 3 self.maxLineCount = self.noColours * self.noColourRepitions FigureCanvas.__init__(self, self.fig) self.createColourMap() self.setParent(parent) FigureCanvas.setSizePolicy(self, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Expanding) FigureCanvas.updateGeometry(self) def setCanvasAxes(self): self.ax.set_xlim((0, 10)) self.ax.set_ylim(0, 10) self.ax.grid(color='darkgrey', linestyle='dashed', axis='both', linewidth=1) self.ax.set_xlabel("Position") self.ax.set_ylabel ("Sensor Value") self.fig.canvas.draw() def createColourMap(self): cm_subsection = linspace(0.0, 1.0, self.noColours) tabbMap = [ cm.tab20b(x) for x in cm_subsection ] tabcMap = [ cm.tab20c(x) for x in cm_subsection ] colours = (tabbMap + tabcMap) random.shuffle(colours) self.colourMap = colours for i in range(self.noColourRepitions): random.shuffle(colours) self.colourMap += colours class DynamicMplCanvas(QtWidgets.QWidget): """ Creates a dynamic canvas that updates based on the timers' frequency, changing if there's new data within the samples list. """ def __init__(self, sampleData, parent=None, width=5, height=4, dpi=90): """ Initialises the basic canvas from the super class and setups of the timer for updating the graph """ QtWidgets.QMainWindow.__init__(self) vbox = QVBoxLayout() self.canvas = MplCanvas(parent=parent, width=width, height=height, dpi=dpi) self.sampleData = sampleData self.xAxisRange = AxisRange() self.yAxisRange = AxisRange() vbox.addWidget(self.canvas) self.setLayout(vbox) self.lines = [self.canvas.ax.plot(0, 0, color=self.canvas.colourMap[i % self.canvas.noColours], label="Line")[0] for i in range(self.canvas.maxLineCount)] self.scatterPlot = self.canvas.ax.plot(-10, -10, color='black', linestyle = 'None', marker='o', markersize=5)[0] self.startTimer() self.dataExists = False def startTimer(self): timer = QtCore.QTimer(self) timer.timeout. connect(self.callback) timer.start(64) def callback(self): try: if (self.sampleData.linePlotData.getLineIndex() >= 0): self.dataExists = True self.lines[self.sampleData.linePlotData.getLineIndex()].set_data(self.sampleData.linePlotData.positions[self.sampleData.linePlotData.getLineIndex()], self.sampleData.linePlotData.samples[self.sampleData.linePlotData.getLineIndex()]) if (self.sampleData.scatterPlotData.getSampleCount() > 0): self.dataExists = True self.scatterPlot.set_data(self.sampleData.scatterPlotData.positions, self.sampleData.scatterPlotData.samples) if (self.dataExists): self.canvas.draw() self.computeXAxisLimits() self.computeYAxisLimits() except: pass def computeXAxisLimits(self): if (self.sampleData.scatterPlotData.getSampleCount() > 0): latestScatterPosition = self.sampleData.scatterPlotData.positions[-1] if (latestScatterPosition < self.xAxisRange.minValue): self.xAxisRange.setMinValue(latestScatterPosition - 2) lastRowMin = np.amin(self.sampleData.linePlotData.positions[-1]) if (lastRowMin < self.xAxisRange.minValue): self.xAxisRange.setMinValue(lastRowMin - 2) if (self.sampleData.scatterPlotData.getSampleCount() > 0): latestScatterPosition = self.sampleData.scatterPlotData.positions[-1] if (latestScatterPosition > self.xAxisRange.maxValue): self.xAxisRange.maxValue = latestScatterPosition lastRowMax = np.amax(self.sampleData.linePlotData.positions[-1]) if (lastRowMax > self.xAxisRange.maxValue): self.xAxisRange.maxValue = lastRowMax self.canvas.ax.set_xlim(self.xAxisRange.minValue, self.xAxisRange.maxValue + 2) def computeYAxisLimits(self): if (self.sampleData.scatterPlotData.getSampleCount() > 0): latestScatterSample = self.sampleData.scatterPlotData.samples[-1] if (latestScatterSample < self.yAxisRange.minValue): self.yAxisRange.setMinValue(latestScatterSample - 10) lastRowMin = np.amin(self.sampleData.linePlotData.samples[-1]) if (lastRowMin < self.yAxisRange.minValue): self.yAxisRange.setMinValue(lastRowMin - 10) if (self.sampleData.scatterPlotData.getSampleCount() > 0): latestScatterSample = self.sampleData.scatterPlotData.samples[-1] if (latestScatterSample > self.yAxisRange.maxValue): self.yAxisRange.maxValue = latestScatterSample lastRowMax = np.amax(self.sampleData.linePlotData.samples[-1]) if (lastRowMax > self.yAxisRange.maxValue): self.yAxisRange.maxValue = lastRowMax self.canvas.ax.set_ylim(self.yAxisRange.minValue, self.yAxisRange.maxValue + 10) def resetCanvas(self): """ Relinks the samples list for when the user clicks the clear samples button :param: newSamples - the samples list after it's been reinitialised to an empty list. """ self.canvas.ax.clear() self.canvas.setCanvasAxes() self.lines = [self.canvas.ax.plot(0,0, color=self.canvas.colourMap[i % self.canvas.noColours], label="Line")[0] for i in range(self.canvas.maxLineCount)] self.scatterPlot = self.canvas.ax.plot(0, 0, color='black', linestyle = 'None', marker='o', markersize=5)[0] self.canvas.createColourMap() class AxisRange: def __init__(self): self.minValue = 5000 self.maxValue = 0 def setMinValue(self, value): if (value < 0): self.minValue = 0 else: self.minValue = value ```
{ "source": "JoshuaMitton/InvariantGraphNetworks", "score": 2 }
#### File: InvariantGraphNetworks/main_scripts/main_10fold_experiment.py ```python import os from data_loader.data_generator import DataGenerator from models.invariant_basic import invariant_basic from trainers.trainer import Trainer from utils.config import process_config from utils.dirs import create_dirs from utils import doc_utils from utils.utils import get_args def main(): # capture the config path from the run arguments # then process the json configuration file try: args = get_args() config = process_config(args.config) except Exception as e: print("missing or invalid arguments %s" % e) exit(0) os.environ["CUDA_VISIBLE_DEVICES"] = config.gpu import tensorflow as tf import numpy as np tf.set_random_seed(100) np.random.seed(100) print("lr = {0}".format(config.learning_rate)) print("decay = {0}".format(config.decay_rate)) print(config.architecture) # create the experiments dirs create_dirs([config.summary_dir, config.checkpoint_dir]) for exp in range(1, config.num_exp+1): for fold in range(1, 11): print("Experiment num = {0}\nFold num = {1}".format(exp, fold)) # create your data generator config.num_fold = fold data = DataGenerator(config) gpuconfig = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False) gpuconfig.gpu_options.visible_device_list = config.gpus_list gpuconfig.gpu_options.allow_growth = True sess = tf.Session(config=gpuconfig) # create an instance of the model you want model = invariant_basic(config, data) # create trainer and pass all the previous components to it trainer = Trainer(sess, model, data, config) # here you train your model acc, loss = trainer.train() doc_utils.doc_results(acc, loss, exp, fold, config.summary_dir) sess.close() tf.reset_default_graph() doc_utils.summary_10fold_results(config.summary_dir) if __name__ == '__main__': main() ```
{ "source": "JoshuaMitton/Rotation-Equivariant-Deforestation-Segmentation", "score": 2 }
#### File: Rotation-Equivariant-Deforestation-Segmentation/roteqseg/dataloader.py ```python import os import torch import pandas as pd from skimage import io, transform import numpy as np from rasterio.features import rasterize from shapely.ops import cascaded_union from shapely.geometry import Polygon from torch.utils.data import Dataset import pickle class ForestDataset(Dataset): """Forest dataset.""" def __init__(self, csv_file, root_dir='/home/josh/Documents/Equivariance/ForestNet/ForestNetDataset/', transform=None): """ Args: csv_file (string): Path to the csv file with annotations. root_dir (string): Directory with all the images. transform (callable, optional): Optional transform to be applied on a sample. """ self.csv = pd.read_csv(csv_file) self.root_dir = root_dir self.transform = transform self.label_to_int = {'Grassland shrubland':1, 'Other':2, 'Plantation':3, 'Smallholder agriculture':4} def __len__(self): return len(self.csv) def poly_from_utm(self, polygon): poly_pts = [] poly = cascaded_union(polygon) for i in np.array(poly.exterior.coords): poly_pts.append(tuple(i)) new_poly = Polygon(poly_pts) return new_poly def __getitem__(self, idx): if torch.is_tensor(idx): idx = idx.tolist() label = self.csv.iloc[idx, 0] merged_label = self.csv.iloc[idx, 1] lat = self.csv.iloc[idx, 2] long = self.csv.iloc[idx, 3] year = self.csv.iloc[idx, 4] folder = self.csv.iloc[idx, 5] ## load the image image = io.imread(f'{self.root_dir}/{folder}/images/visible/composite.png') ## Get the segmentation map with open(f'{self.root_dir}/{folder}/forest_loss_region.pkl', 'rb') as f: data = pickle.load(f) nx, ny = 332, 332 xy_array = np.empty((0,2)) if data.geom_type == 'Polygon': data = [data] elif data.geom_type == 'Multipolygon': data = list(data) poly_shp = [] for poly_verts in data: poly_shp.append(self.poly_from_utm(poly_verts)) mask = rasterize(shapes=poly_shp, out_shape=(332,332)) seg = np.array(mask) image = torch.from_numpy(image).type(torch.float) image = image.permute(2, 0, 1) seg = torch.from_numpy(seg).type(torch.uint8) merged_label = self.label_to_int[merged_label] image = image[:, 86:246, 86:246] seg = seg[86:246, 86:246] return image, seg, merged_label ```
{ "source": "joshuamoore-procore/spectrify", "score": 2 }
#### File: spectrify/spectrify/export.py ```python from __future__ import absolute_import, division, print_function, unicode_literals from future.standard_library import install_aliases install_aliases() # noqa import boto3 import click class RedshiftDataExporter: UNLOAD_QUERY = """ UNLOAD ('select * from {}') to %(s3_path)s CREDENTIALS %(credentials)s ESCAPE MANIFEST GZIP ALLOWOVERWRITE MAXFILESIZE 256 mb; """ def __init__(self, sa_engine, s3_config): self.sa_engine = sa_engine self.s3_config = s3_config def export_to_csv(self, table_name): s3_path = self.s3_config.get_csv_dir() creds_str = self.get_credentials() query = self.get_query(table_name) with self.sa_engine.connect() as cursor: click.echo('Exporting table to CSV...') sql = (query % { 's3_path': s3_path, 'credentials': creds_str, }) print("Export query is:\n{}".format(sql)) cursor.execute(sql) click.echo('Done.') def get_query(self, table_name): return self.UNLOAD_QUERY.format(table_name) def get_credentials(self): if self.iam_role: return 'aws_iam_role={}'.format(self.iam_role) else: session = boto3.Session() credentials = session.get_credentials() return 'aws_access_key_id={};aws_secret_access_key={}'.format( credentials.access_key, credentials.secret_key, ) ```
{ "source": "joshuamorton/jml", "score": 3 }
#### File: experiments/utils/point.py ```python import random from typing import Tuple import numpy as np def random_point(width: int, height: int) -> Tuple[np.ndarray, Tuple[int, int]]: img = np.zeros((width, height)) p = random.randint(0, width - 1), random.randint(0, height - 1) img[p[0], p[1]] = 1 return img, p def point( width: int, height: int, x: int, y: int ) -> Tuple[np.ndarray, Tuple[int, int]]: img = np.zeros((width, height)) img[x, y] = 1 return img, (x, y) ```
{ "source": "joshuamorton/PyMagic", "score": 4 }
#### File: PyMagic/test/test_color.py ```python import unittest from color import Color class TestColor(unittest.TestCase): """ In Magic, the 5 colors can be considered ordered, given that there is an order in which they always appear, in other words because white always comes before blue, white is less than blue, this is useful for programmatically representing mana costs later """ def test_color_comparison(self): self.assertTrue(Color.white < Color.blue < Color.black < Color.red < Color.green) def test_le(self): self.assertTrue(Color.white <= Color.white) def test_ge(self): self.assertTrue(Color.green >= Color.green >= Color.red >= Color.black) def test_gt(self): self.assertTrue(Color.green > Color.red > Color.black > Color.blue > Color.white) def test_str(self): self.assertEqual("Color red", str(Color.red)) ```
{ "source": "joshuamorton/turnt-octo-tyrion", "score": 3 }
#### File: turnt-octo-tyrion/db/Database.py ```python from contextlib import contextmanager import sqlalchemy import sqlalchemy.orm from . import Tables from db.Tables import Student __author__ = 'Josh' class Database: def __init__(self, engine='sqlite:///', name='ClassRank.db', folder='data'): self.account = Tables.Account self.student = Tables.Student self.rating = Tables.Rating self.course = Tables.Course self.section = Tables.Section self.faculty = Tables.Faculty self.school = Tables.School self.engine = sqlalchemy.create_engine(engine + folder + "/" + name) self.base = Tables.Base self.metadata = self.base.metadata self.metadata.create_all(self.engine) self.Session = sqlalchemy.orm.sessionmaker(bind=self.engine) self.session = None @property @contextmanager def scope(self): """ The sort of general magical sessionmanager for the database scope, allows a very clean usage with `with Database.scope as session:` do things :return: a session object """ session = self.Session() self.session = session try: yield session session.commit() except: session.rollback() raise finally: session.close() self.session = None def query_rating(self, user, course, attr) -> float: """ for use within a sessionmanager object """ ratings = self.session.query(self.rating).join(self.section).\ filter(self.rating.student == user, self.section.course == course).all() return sum(rating.__getattribute__(attr) for rating in ratings) / len(ratings) def student_with_id(self, user_id) -> Student: return self.session.query(self.student).filter(self.student.uid == user_id).one() def student_with_name(self, user_name) -> Student: return self.session.query(self.account).filter(self.account.username == user_name).one().student ``` #### File: turnt-octo-tyrion/db/Tables.py ```python from sqlalchemy.orm import relationship from sqlalchemy import Column, Integer, String, ForeignKey from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm.session import Session __author__ = 'Josh' Base = declarative_base() class Account(Base): __tablename__ = "account" # basic (required) signup information uid = Column(Integer, primary_key=True) username = Column(String(32), nullable=False, unique=True) email_address = Column(String(64), nullable=False, unique=True) password_hash = Column(String(128), nullable=False) password_salt = Column(String(16), nullable=False) # An account could be both a student and a teacher, as in the case of a grad student # that TAs or teaches an undergraduate class student = relationship("Student", backref="account", uselist=False) # joins to student faculty = relationship("Faculty", backref="account", uselist=False) # joins to faculty class Rating(Base): __tablename__ = "rating" student_id = Column(Integer, ForeignKey('student.uid'), primary_key=True) section_id = Column(Integer, ForeignKey('section.uid'), primary_key=True) rating = Column(Integer, nullable=True) section = relationship('Section', backref='ratings') student = relationship('Student', backref='ratings') @property def course(self): """ returns the course that this rating is for (as in parent of the section) :return: Course object """ return self.section.course def __repr__(self): return "<Rating of " + str(self.rating) + ">" class Student(Base): __tablename__ = "student" uid = Column(Integer, primary_key=True) school_id = Column(Integer, ForeignKey("school.uid")) # joins to school user_id = Column(Integer, ForeignKey("account.uid")) # joins to account sections = relationship('Section', secondary='rating', backref='student') @property def courses(self): session = Session.object_session(self) return session.query(Course).join(Section).filter(Section.uid.in_( section.uid for section in self.sections)).all() class Faculty(Base): __tablename__ = "faculty" uid = Column(Integer, primary_key=True) school_id = Column(Integer, ForeignKey("school.uid")) # joins to school user_id = Column(Integer, ForeignKey("account.uid"), nullable=True) # joins to account sections = relationship("Section", backref="professor") @property def ratings(self): """ queries the database for all ratings for the professor/faculty member :return: Iterable[Rating] """ session = Session.object_session(self) return session.query(Rating).join(Section).filter(Section.professor == self).all() class School(Base): __tablename__ = "school" uid = Column(Integer, primary_key=True) name = Column(String(64), nullable=False, unique=True) abbreviation = Column(String(16), nullable=False, unique=True) students = relationship("Student", backref="school") # 1-m joins to faculty faculty = relationship("Faculty", backref="school") # 1-m joins to student courses = relationship("Course", backref="school") # 1-m joins to course @property def sections(self): session = Session.object_session(self) return session.query(Section).join(Course).filter(Course.school == self).all() class Course(Base): __tablename__ = "course" uid = Column(Integer, primary_key=True) school_id = Column(Integer, ForeignKey("school.uid"), nullable=False) name = Column(String(64), nullable=False) description = Column(String(2000), nullable=True) abbreviation = Column(String(8), nullable=False) sections = relationship("Section", backref="course") @property def professors(self): session = Session.object_session(self) return session.query(Faculty).join(Section).filter(Section.course == self).all() class Section(Base): __tablename__ = "section" uid = Column(Integer, primary_key=True) professor_id = Column(Integer, ForeignKey("faculty.uid")) course_id = Column(Integer, ForeignKey('course.uid')) semester = Column(Integer, nullable=False) year = Column(Integer, nullable=False) ```
{ "source": "joshuamorton/zing", "score": 3 }
#### File: zing/parser/peg.py ```python import re class Node: def __init__(self, t, parser): self.parser = parser self.type = t self._string = None self.children = [] @property def string(self): return self.__repr__() # "complex" recursive thing def __repr__(self): return self.type + ":" + str(self.children) def __getitem__(self, i): return self.children[i] def __len__(self): return len(self.children) def __iter__(self): return iter(self.children) def handle(self, vals): return self.__getattribute__(self.type)(self, vals) class PEGNode(Node): def expression(self, node): for i in range(0, len(node), 2): self.handle(node(i)) def seqence(self, node): print(node) def prefix(self, node): pass def suffix(self, node): pass class Terminal(Node): def __init__(self, t, parser, string): super().__init__(t, parser) self.parser = parser self.type = t self._string = string self.children = None @property def string(self): return self._string def __repr__(self): if self.type == "space" or self.type == "eof": return "" return "Terminal:" + '"' + self.string + '"' def __str__(self): return self._string class PEGTerminal(Terminal): pass class GrammarError(Exception): pass class TerminalError(GrammarError): pass class SlashError(GrammarError): pass class NotError(GrammarError): pass class P: def __init__(self, grammar): self.functions = dict() self.grammar = grammar self.syntax_tree, _ = self._grammar(grammar) self.syntax_tree = self.syntax_tree[0] def parse(self, string): return self._parse(string, self.syntax_tree) def _parse(self, string, node): """ recursively parse nodes from the syntax """ print(node.type) # for bootstrapping the PEG parse tree # these methods each are in the form # function(String a) -> Tuple[Subtring, Node] # where Substring is some substring of a, from an index x (can be 0) # to the end # and Node is a Node object that essentially represents part of the AST of # the parser itself def _grammar(self, grammar): """ all _x are of the form str -> ([Node], str) Grammar <- Spacing Definition+ EndOfFile """ gram = Node("grammar", self) spacing, rest = self._spacing(grammar) children = spacing definitions, rest = self._some(self._definition)(rest) children += definitions eof, rest = self._EOF(rest) children += eof gram.children = children return [gram], rest # rest will be empty here def _definition(self, rest): """ Definition <- Identifier LEFTARROW Expression """ defn = Node("definition", self) ident, rest = self._IDENTIFIER(rest) arrow, rest = self._LEFTARROW(rest) exp, rest = self._expression(rest) defn.children = ident + arrow + exp self.functions[defn.children[0].string] = defn.children[4] return [defn], rest def _expression(self, rest): """ Expression <- Sequence (SLASH Sequence)* """ expr = Node("expression", self) seq, rest = self._sequence(rest) nodes, rest = self._maybe(self._some(self._paren(self._SLASH, self._sequence)))(rest) expr.children = seq + nodes return [expr], rest def _sequence(self, rest): """ Sequence <- Prefix* """ seq = Node("sequence", self) nodes, rest = self._maybe(self._some(self._prefix))(rest) seq.children = nodes return [seq], rest def _prefix(self, rest): """ Prefix <- (AND / NOT)? Suffix """ prefix = Node("prefix", self) nodes, rest = self._maybe(self._slashed(self._AND, self._NOT))(rest) suffix, rest = self._suffix(rest) prefix.children = nodes + suffix return [prefix], rest def _suffix(self, rest): """ Suffix <- Primary (QUESTION / STAR / PLUS)? """ suffix = Node("suffix", self) prim, rest = self._primary(rest) nodes, rest = self._maybe(self._slashed(self._QUESTION, self._STAR, self._PLUS))(rest) suffix.children = prim + nodes return [suffix], rest def _primary(self, rest): """ Primary <- Identifier (!LEFTARROW) / (OPEN Expression CLOSE) / Literal / Class / DOT """ prim = Node("primary", self) nodes, rest = self._slashed(self._paren(self._IDENTIFIER, self._not(self._LEFTARROW)), self._paren(self._OPEN, self._expression,self._CLOSE), self._literal, self._class, self._DOT)(rest) prim.children = nodes return [prim], rest def _IDENTIFIER(self, rest): """ Identifier <- IdentStart IdentCont* Spacing IdentStart <- [a-zA-Z_] IdentCont <- IdentStart / [0-9] """ return self._terminal(r'[a-zA-Z_][a-zA-Z0-9_]*', "identifier")(rest) def _literal(self, rest): """ Literal <- ['] (!['] Char)* ['] Spacing / ["] (!["] Char)* ["] Spacing """ try: if rest[0] == "'": return self._terminal(r"""\'([^']|\n|\r|\r\n)*?\'""", "literal")(rest) else: return self._terminal(r"""\"([^"]|\n|\r|\r\n)*?\"""", "literal")(rest) except: raise GrammarError def _class(self, rest): """ Class <- '[' (!']' Range)* ']' Spacing """ return self._terminal(r'\[(.(-.)?)*\]', "range")(rest) def _terminal(self, terminal, name): """ terminal: the raw string to match name: the name of the node """ def inner(rest): try: pos = re.match(terminal, rest).end() node = [Terminal(name, self, rest[:pos])] rest = rest[pos:] except: raise TerminalError("Expected a {} at '".format(name) + rest[:min(10, len(rest))] + "'") spacing, rest = self._spacing(rest) return node + spacing, rest return inner def _LEFTARROW(self, rest): """ LEFTARROW <- '<-' Spacing """ return self._terminal(r'<-', "LEFTARROW")(rest) def _SLASH(self, rest): """ SLASH <- '/' Spacing """ return self._terminal(r'/', "SLASH")(rest) def _AND(self, rest): """ AND <- '&' Spacing """ return self._terminal(r'&', "AND")(rest) def _NOT(self, rest): """ NOT <- '!' Spacing """ return self._terminal(r'!', "NOT")(rest) def _QUESTION(self, rest): """ QUESTION <- '?' Spacing """ return self._terminal(r'\?', "QUESTION")(rest) def _STAR(self, rest): """ STAR <- '*' Spacing """ return self._terminal(r'\*', "STAR")(rest) def _PLUS(self, rest): """ PLUS <- '+' Spacing """ return self._terminal(r'\+', "PLUS")(rest) def _OPEN(self, rest): """ OPEN <- '(' Spacing """ return self._terminal(r'\(', "OPEN")(rest) def _CLOSE(self, rest): """ CLOSE <- ')' Spacing """ return self._terminal(r'\)', "CLOSE")(rest) def _DOT(self, rest): """ DOT <- '.' Spacing """ return self._terminal(r'\.', "DOT")(rest) def _spacing(self, rest): """ Spacing <- (Space / Comment)* """ spacing = Node("spacing", self) nodes, rest = self._maybe(self._some(self._paren(self._slashed(self._SPACE, self._COMMENT))))(rest) spacing.children = nodes return [spacing], rest def _COMMENT(self, rest): try: pos = re.match(r"#.*?(\n|\r|\r\n|$)", rest).end() return [Terminal("comment", self, rest[:pos])], rest[pos:] except: raise TerminalError("Expected a comment at '" + rest[:min(10, len(rest))] + "'") def _SPACE(self, rest): try: pos = re.match(r"( |\t|\r\n|\n|\r)+", rest).end() return [Terminal("space", self, rest[:pos])], rest[pos:] except: raise TerminalError("Expected a space at '" + rest[:min(10, len(rest))] + "'") def _EOF(self, rest): if rest != "": raise TerminalError("Expected an end of file at '" + rest[:min(10, len(rest))] + "'") else: return [Terminal("eof", self, None)], None @staticmethod def _some(parser): """ parses at least one of the passed in parser """ def inner(rest): node, rest = parser(rest) nodes = node while True: try: node, rest = parser(rest) nodes += node except GrammarError: break return nodes, rest return inner @staticmethod def _maybe(parser): """ parses an optional item """ def inner(rest): try: node, rest = parser(rest) except GrammarError: node, rest = [], rest return node, rest return inner @staticmethod def _paren(*parsers): """ parses a parenthetical """ def inner(rest): nodes = [] for parser in parsers: node, rest = parser(rest) nodes += node return nodes, rest return inner @staticmethod def _slashed(*parsers): """ parses slash seperated values """ def inner(rest): for parser in parsers: try: node, rest = parser(rest) return node, rest except GrammarError: pass raise SlashError return inner @staticmethod def _not(parser): """ parses a not lookahead """ def inner(rest): try: parser(rest) except GrammarError: return [], rest raise GrammarError return inner ```
{ "source": "joshuamosesb/gramex", "score": 3 }
#### File: guide/auth/authutil.py ```python import os import json import random import tornado import datetime import sqlalchemy import pandas as pd from gramex.config import str_utf8, CustomJSONEncoder from passlib.hash import sha256_crypt from six.moves.urllib.parse import urlencode def create_user_database(url, table, user, password, salt, excel): # Connect to the SQLAlchemy engine specified at url. # For example, this could be sqlite:///auth.db engine = sqlalchemy.create_engine(url, encoding=str_utf8) # In the Gramex guide, we're using an sqlite3 database and Excel file. # If the target folder doesn't exist, make sure we create it. for path in (engine.url.database, excel): folder = os.path.dirname(os.path.abspath(path)) if not os.path.exists(folder): os.makedirs(folder) # This method re-creates the user table each time. # The table must have: # a column for the username (typically called user) # a column for the password (typically called password) # and any other optional columns (here, we're adding email and role) # We're using sha256_crypt as the password hash. # Email IDs used are <EMAIL>, <EMAIL>, etc email = '<EMAIL>' data = pd.DataFrame([ ['alpha', sha256_crypt.encrypt('alpha', salt=salt), email % 'alpha', 'admin manager'], ['beta', sha256_crypt.encrypt('beta', salt=salt), email % 'beta', 'manager employee'], ['gamma', sha256_crypt.encrypt('gamma', salt=salt), email % 'gamma', 'employee'], ['delta', sha256_crypt.encrypt('delta', salt=salt), email % 'delta', None], ], columns=[user, password, 'email', 'role']) data.to_sql(table, engine, index=False, if_exists='replace') data.to_excel(excel, index=False) # noqa - encoding not required def store_value(handler): handler.session.setdefault('randkey', random.randint(0, 1000)) return json.dumps(handler.session, indent=4, cls=CustomJSONEncoder) async_http_client = tornado.httpclient.AsyncHTTPClient() @tornado.gen.coroutine def contacts(handler): days = int(handler.get_argument('days', '30')) start = (datetime.datetime.today() - datetime.timedelta(days=days)) result = yield async_http_client.fetch( 'https://www.google.com/m8/feeds/contacts/default/full?' + urlencode({ 'updated-min': start.strftime('%Y-%m-%dT%H:%M:%S'), 'max-results': 500, 'alt': 'json', }), headers={'Authorization': 'Bearer ' + handler.session.get('google_access_token', '')}, ) try: contacts = json.loads(result.body)['feed'] data = {'contacts': contacts.get('entry', [])} except Exception as e: data = {'error': repr(e)} raise tornado.gen.Return(json.dumps(data, indent=4)) def signup_validate(handler, args): # TODO Nikhil: Provide Sample validation # What if user return dict/list/tuple? return False ``` #### File: guide/handlers/handlerutil.py ```python from collections import Counter from gramex.handlers import BaseHandler class CustomHandler(BaseHandler): def get(self): self.write('This is a custom handler') class SetupHandler(BaseHandler): @classmethod def setup(cls, **kwargs): super(SetupHandler, cls).setup(**kwargs) # You MUST call the BaseHandler setup cls.name = kwargs.get('name', 'NA') # Perform any one-time setup here cls.count = Counter() def initialize(self, **kwargs): # initialize() is called with same kwargs super(SetupHandler, self).initialize(**kwargs) # You MUST call the BaseHandler initialize self.count[self.name] += 1 # Perform any recurring operations here def get(self): self.write('Name %s was called %d times' % (self.name, self.count[self.name])) ``` #### File: guide/uicomponents/guide_ui_app.py ```python from __future__ import unicode_literals import os from gramex.config import variables from tornado.escape import xhtml_escape folder = os.path.dirname(os.path.abspath(__file__)) config_file = os.path.join(folder, 'config.yaml') ui_config_file = os.path.join(variables['GRAMEXPATH'], 'apps', 'ui', 'config.yaml') def view_source(html): '''Return the HTML with an escaped view source block appended to it''' s = html.decode('utf-8') return ('<div class="viewsource-wrapper">' + s + '<pre class="viewsource"><code class="language-html">' + xhtml_escape(s.strip()) + '</code></pre></div>') def only_source(html): '''Return only the escaped view source block''' s = html.decode('utf-8') return ('<pre class="viewsource"><code class="language-html">' + xhtml_escape(s.strip()) + '</code></pre>') ``` #### File: gramex/handlers/functionhandler.py ```python import json import tornado.web import tornado.gen from types import GeneratorType from gramex.transforms import build_transform from gramex.config import app_log, CustomJSONEncoder from .basehandler import BaseHandler from tornado.util import unicode_type class FunctionHandler(BaseHandler): ''' Renders the output of a function when the URL is called via GET or POST. It accepts these parameters when initialized: :arg string function: a string that resolves into any Python function or method (e.g. ``str.lower``). By default, it is called as ``function(handler)`` where handler is this RequestHandler, but you can override ``args`` and ``kwargs`` below to replace it with other parameters. The result is rendered as-is (and hence must be a string, or a Future that resolves to a string.) You can also yield one or more results. These are written immediately, in order. :arg list args: positional arguments to be passed to the function. :arg dict kwargs: keyword arguments to be passed to the function. :arg dict headers: HTTP headers to set on the response. :arg list methods: List of HTTP methods to allow. Defaults to `['GET', 'POST']`. :arg string redirect: URL to redirect to when the result is done. Used to trigger calculations without displaying any output. ''' @classmethod def setup(cls, headers={}, methods=['GET', 'POST'], **kwargs): super(FunctionHandler, cls).setup(**kwargs) # Don't use cls.info.function = build_transform(...) -- Python treats it as a method cls.info = {} cls.info['function'] = build_transform(kwargs, vars={'handler': None}, filename='url: %s' % cls.name) cls.headers = headers for method in (methods if isinstance(methods, (tuple, list)) else [methods]): setattr(cls, method.lower(), cls._get) @tornado.gen.coroutine def _get(self, *path_args): if self.redirects: self.save_redirect_page() if 'function' not in self.info: raise ValueError('Invalid function definition in url:%s' % self.name) result = self.info['function'](handler=self) for header_name, header_value in self.headers.items(): self.set_header(header_name, header_value) # Use multipart to check if the respose has multiple parts. Don't # flush unless it's multipart. Flushing disables Etag multipart = isinstance(result, GeneratorType) or len(result) > 1 # build_transform results are iterable. Loop through each item for item in result: # Resolve futures and write the result immediately if tornado.concurrent.is_future(item): item = yield item if isinstance(item, (bytes, unicode_type, dict)): self.write(json.dumps(item, separators=(',', ':'), ensure_ascii=True, cls=CustomJSONEncoder) if isinstance(item, dict) else item) if multipart: self.flush() else: app_log.warning('url:%s: FunctionHandler can write strings/dict, not %s', self.name, repr(item)) if self.redirects: self.redirect_next() ``` #### File: gramex/handlers/socialhandler.py ```python import os import six import json import gramex import tornado.gen from oauthlib import oauth1 from orderedattrdict import AttrDict from tornado.web import HTTPError from tornado.auth import TwitterMixin, FacebookGraphMixin from tornado.httputil import url_concat, responses from .basehandler import BaseHandler from gramex.http import OK, BAD_REQUEST, CLIENT_TIMEOUT custom_responses = { CLIENT_TIMEOUT: 'Client Timeout' } store_cache = {} class SocialMixin(object): @classmethod def setup_social(cls, user_info, transform={}, methods=['get', 'post'], **kwargs): # Session key that stores the user info cls.user_info = user_info # Set up methods if not isinstance(methods, list): methods = [methods] methods = set(method.lower().strip() for method in methods) for method in ('get', 'post', 'put', 'patch'): if method in methods: setattr(cls, method, cls.run) @tornado.gen.coroutine def social_response(self, response): # Set response headers if response.code in responses: self.set_status(response.code) else: self.set_status(response.code, custom_responses.get(response.code)) for header, header_value in response.headers.items(): # We're OK with anything that starts with X- # Also set MIME type and last modified date if header.startswith('X-') or header in {'Content-Type', 'Last-Modified'}: self.set_header(header, header_value) # Set user's headers for header, header_value in self.kwargs.get('headers', {}).items(): self.set_header(header, header_value) # Transform content content = response.body if content and response.code == OK: content = yield gramex.service.threadpool.submit(self.run_transforms, content=content) # Convert to JSON if required if not isinstance(content, (six.binary_type, six.text_type)): content = json.dumps(content, ensure_ascii=True, separators=(',', ':')) raise tornado.gen.Return(content) def run_transforms(self, content): result = json.loads(content.decode('utf-8')) for name, transform in self.transform.items(): for value in transform['function'](result): result = value for header, header_value in transform.get('headers', {}).items(): self.set_header(header, header_value) return result def write_error(self, status_code, **kwargs): '''Write error responses in JSON''' self.set_header('Content-Type', 'application/json; charset=UTF-8') self.finish(json.dumps({'errors': [{ 'code': status_code, 'message': self._reason, }]})) def _get_store_key(self): ''' Allows social mixins to store information in a single global JSONStore. Keys are "$YAMLPATH: url-key". Any value may be stored against it. ''' if 'store' not in store_cache: store_path = os.path.join(gramex.config.variables['GRAMEXDATA'], 'socialstore.json') store_cache['store'] = gramex.handlers.basehandler.JSONStore(store_path, flush=60) base_key = '{}: {}'.format(os.getcwd(), self.name) return store_cache['store'], base_key def read_store(self): ''' Read from this URL handler's social store. Typically returns a dict ''' cache, key = self._get_store_key() return cache.load(key, {}) def write_store(self, value): ''' Write to this URL handler's social store. Typically stores a dict ''' cache, key = self._get_store_key() cache.dump(key, value) def get_token(self, key, fetch=lambda info, key, val: info.get(key, val)): ''' Returns an access token / key / secret with the following priority: 1. If YAML config specifies "persist" for the token, get it from the last stored value. If none is stored, save and use the current session's token 2. If YAML config specifies a token, use it 3. If YAML config does NOT specify a token, use current sessions' token If after all of this, we don't have a token, raise an exception. ''' info = self.session.get(self.user_info, {}) token = self.kwargs.get(key, None) # Get from config session_token = fetch(info, key, None) if token == 'persist': # nosec token = self.read_store().get(key, None) # If persist, use store if token is None and session_token: # Or persist from session self.write_store(info) if token is None: token = session_token # Use session token if token is None: # Ensure token is present raise HTTPError(BAD_REQUEST, reason='token %s missing' % key) return token class TwitterRESTHandler(SocialMixin, BaseHandler, TwitterMixin): ''' Proxy for the Twitter 1.1 REST API via these ``kwargs``:: pattern: /twitter/(.*) handler: TwitterRESTHandler kwargs: key: your-consumer-key secret: your-consumer-secret access_key: your-access-key # Optional -- picked up from session access_secret: your-access-token # Optional -- picked up from session methods: [get, post] # HTTP methods to use for the API path: /search/tweets.json # Freeze Twitter API request Now ``POST /twitter/search/tweets.json?q=gramener`` returns the same response as the Twitter REST API ``/search/tweets.json``. If you only want to expose a specific API, specify a ``path:``. It overrides the URL path. The query parameters will still work. By default, ``methods`` is POST, and GET logs the user in, storing the access token in the session for future use. But you can specify the ``access_...`` values and set ``methods`` to ``[get, post]`` to use both GET and POST requests to proxy the API. ''' @staticmethod def get_from_token(info, key, val): return info.get('access_token', {}).get(key.replace('access_', ''), val) @classmethod def setup(cls, **kwargs): super(TwitterRESTHandler, cls).setup(**kwargs) cls.setup_social('user.twitter', **kwargs) @tornado.gen.coroutine def run(self, path=None): path = self.kwargs.get('path', path) if not path and self.request.method == 'GET': yield self.login() raise tornado.gen.Return() args = {key: val[0] for key, val in self.args.items()} params = AttrDict(self.kwargs) params['access_key'] = self.get_token('access_key', self.get_from_token) params['access_secret'] = self.get_token('access_secret', self.get_from_token) client = oauth1.Client( client_key=params['key'], client_secret=params['secret'], resource_owner_key=params['access_key'], resource_owner_secret=params['access_secret']) endpoint = params.get('endpoint', 'https://api.twitter.com/1.1/') path = params.get('path', path) uri, headers, body = client.sign(url_concat(endpoint + path, args)) http = self.get_auth_http_client() response = yield http.fetch(uri, headers=headers, raise_error=False) result = yield self.social_response(response) self.set_header('Content-Type', 'application/json; charset=UTF-8') self.write(result) @tornado.gen.coroutine def login(self): if self.get_argument('oauth_token', None): info = self.session[self.user_info] = yield self.get_authenticated_user() if (any(self.kwargs.get(key, None) == 'persist' for key in ('access_key', 'access_secret'))): self.write_store(info) self.redirect_next() else: self.save_redirect_page() yield self.authorize_redirect(callback_uri=self.request.protocol + "://" + self.request.host + self.request.uri) def _oauth_consumer_token(self): return dict(key=self.kwargs['key'], secret=self.kwargs['secret']) class FacebookGraphHandler(SocialMixin, BaseHandler, FacebookGraphMixin): ''' Proxy for the Facebook Graph API via these ``kwargs``:: pattern: /facebook/(.*) handler: FacebookGraphHandler kwargs: key: your-consumer-key secret: your-consumer-secret access_token: your-access-token # Optional -- picked up from session methods: [get, post] # HTTP methods to use for the API scope: user_posts,user_photos # Permissions requested for the user path: /me/feed # Freeze Facebook Graph API request Now ``POST /facebook/me`` returns the same response as the Facebook Graph API ``/me``. To request specific access rights, specify the ``scope`` based on `permissions`_ required by the `Graph API`_. If you only want to expose a specific API, specify a ``path:``. It overrides the URL path. The query parameters will still work. By default, ``methods`` is POST, and GET logs the user in, storing the access token in the session for future use. But you can specify the ``access_token`` values and set ``methods`` to ``[get, post]`` to use both GET and POST requests to proxy the API. .. _permissions: https://developers.facebook.com/docs/facebook-login/permissions .. _Graph API: https://developers.facebook.com/docs/graph-api/reference ''' @classmethod def setup(cls, **kwargs): super(FacebookGraphHandler, cls).setup(**kwargs) cls.setup_social('user.facebook', **kwargs) @tornado.gen.coroutine def run(self, path=None): path = self.kwargs.get('path', path) if not path and self.request.method == 'GET': yield self.login() raise tornado.gen.Return() args = {key: val[0] for key, val in self.args.items()} args['access_token'] = self.get_token('access_token') uri = url_concat(self._FACEBOOK_BASE_URL + '/' + self.kwargs.get('path', path), args) http = self.get_auth_http_client() response = yield http.fetch(uri, raise_error=False) result = yield self.social_response(response) self.set_header('Content-Type', 'application/json; charset=UTF-8') self.write(result) @tornado.gen.coroutine def login(self): redirect_uri = self.request.protocol + "://" + self.request.host + self.request.uri if self.get_argument('code', False): info = self.session[self.user_info] = yield self.get_authenticated_user( redirect_uri=redirect_uri, client_id=self.kwargs['key'], client_secret=self.kwargs['secret'], code=self.get_argument('code')) if self.kwargs.get('access_token', None) == 'persist': self.write_store(info) self.redirect_next() else: self.save_redirect_page() scope = self.kwargs.get('scope', 'user_posts,read_insights') yield self.authorize_redirect( redirect_uri=redirect_uri, client_id=self.kwargs['key'], extra_params={'scope': scope}) ``` #### File: gramex/testlib/test_app_formhandler.py ```python import unittest from nose.tools import eq_ from gramex.apps.formhandler.formhandler_utils import URLUpdate, SET, ADD, POP, XOR class TestURLUpdate(unittest.TestCase): def test_url(self): u = URLUpdate('') eq_(u(), '') # Default test eq_(u(SET, 'x', '1'), 'x=1') # SET value eq_(u(SET, 'x', '1', SET, 'y', '2'), 'x=1&y=2') # SET multiple values eq_(u(SET, 'x', '1', SET, 'x', None), '') # SET None clears eq_(u(ADD, 'x', '1'), 'x=1') # ADD new value eq_(u(SET, 'x', '1', ADD, 'x', '2'), 'x=1&x=2') # ADD to existing value eq_(u(ADD, 'x', '1', ADD, 'x', '2'), 'x=1&x=2') # ADD multiple values eq_(u(SET, 'x', '1', POP, 'x'), '') # POP None removes all values eq_(u(SET, 'x', '1', POP, 'x', None), '') # POP None removes all values eq_(u(SET, 'x', '1', POP, 'x', '1'), '') # POP removes value eq_(u(SET, 'x', '1', POP, 'x', '0'), 'x=1') # POP ignores missing vals eq_(u(XOR, 'x', '1'), 'x=1') # XOR sets missing eq_(u(SET, 'x', '1', XOR, 'x', '1'), '') # XOR clears existing u = URLUpdate('?x=1&x=2&y=3') eq_(u(), 'x=1&x=2&y=3') eq_(u(SET, 'x', '1'), 'x=1&y=3') # SET value eq_(u(SET, 'x', '1', SET, 'y', '2'), 'x=1&y=2') # SET multiple values eq_(u(SET, 'x', '1', SET, 'x', None), 'y=3') # SET None clears eq_(u(ADD, 'x', '1'), 'x=1&x=2&y=3') # ADD new value eq_(u(SET, 'x', '1', ADD, 'x', '2'), 'x=1&x=2&y=3') # ADD to existing value eq_(u(ADD, 'x', '1', ADD, 'x', '2'), 'x=1&x=2&y=3') # ADD multiple values eq_(u(SET, 'x', '1', POP, 'x', '1'), 'y=3') # POP removes value eq_(u(SET, 'x', '1', POP, 'x', '0'), 'x=1&y=3') # POP ignores missing vals eq_(u(POP, 'x'), 'y=3') # POP removes all values eq_(u(POP, 'x', None), 'y=3') # POP None removes all values eq_(u(POP, 'x', '1'), 'x=2&y=3') # POP removes part value eq_(u(POP, 'x', '2', POP, 'y', '3'), 'x=1') # POP multiple values eq_(u(POP, 'x', ADD, 'y', '4'), 'y=3&y=4') # POP in middle removes values eq_(u(POP, 'y', SET, 'x', '1'), 'x=1') # POP in middle removes values eq_(u(XOR, 'x', '1'), 'x=2&y=3') # XOR sets missing eq_(u(XOR, 'x', '2', XOR, 'y', '4'), 'x=1&y=3&y=4') # XOR clears existing ``` #### File: gramex/testlib/test_ml.py ```python import os import unittest import pandas as pd from sklearn.svm import SVC from sklearn.naive_bayes import BernoulliNB import gramex.ml import gramex.cache from nose.tools import eq_, ok_ from pandas.util.testing import assert_frame_equal as afe from . import folder class TestClassifier(unittest.TestCase): model_path = os.path.join(folder, 'model.pkl') def test_01_train(self): path = os.path.join(folder, 'iris.csv') data = pd.read_csv(path, encoding='utf-8') # Model can be trained without specifying a model class, input or output model1 = gramex.ml.Classifier() model1.train(data) ok_(isinstance(model1.model, BernoulliNB)) eq_(model1.input, data.columns[:4].tolist()) eq_(model1.output, data.columns[-1]) # Train accepts explicit model_class, model_kwargs, input and output inputs = ['petal_length', 'petal_width', 'sepal_length', 'sepal_width'] model2 = gramex.ml.Classifier( model_class='sklearn.svm.SVC', # Any sklearn model # Optional model parameters model_kwargs={'kernel': 'sigmoid'}, input=inputs, output='species') model2.train(data) # DataFrame with input & output columns eq_(model2.input, inputs) eq_(model2.output, model1.output) ok_(isinstance(model2.model, SVC)) eq_(model2.model.kernel, 'sigmoid') # Test predictions. Note: this is manually crafted. If it fails, change the test case result = model1.predict([ {'sepal_length': 5, 'sepal_width': 3, 'petal_length': 1.5, 'petal_width': 0}, {'sepal_length': 5, 'sepal_width': 2, 'petal_length': 5.0, 'petal_width': 1}, {'sepal_length': 6, 'sepal_width': 3, 'petal_length': 4.8, 'petal_width': 2}, ]) eq_(result.tolist(), ['setosa', 'versicolor', 'virginica']) # Test saving expected = model1.predict(data[model1.input]) if os.path.exists(self.model_path): os.remove(self.model_path) model1.save(self.model_path) actuals = gramex.ml.load(self.model_path).predict(data[model1.input]) eq_(actuals.tolist(), expected.tolist()) def test_02_load(self): model = gramex.ml.load(self.model_path) result = model.predict([{ 'sepal_length': 5.7, 'sepal_width': 4.4, 'petal_length': 1.5, 'petal_width': 0.4, }]) eq_(result.tolist(), ['setosa']) # def test_linear_model_with_controlled_data(self): # ... @classmethod def tearDownClass(cls): if os.path.exists(cls.model_path): os.remove(cls.model_path) class TestAutolyse(unittest.TestCase): path = os.path.join(folder, 'auto_test.csv') df = gramex.cache.open(path, encoding='utf-8') def base(self, groups, numbers, check_string): eq_(gramex.ml.groupmeans(self.df, groups, numbers).to_json(), check_string) def test_groupmeans_unicode_col_names(self): '''Unicode column names and categorical column values. ''' autolysis_string = ''.join([ '{"group":{"0":"A\\u00e4"},"number":{"0":"Xfloat\\u00e9"},"biggies":{', '"0":{"A0":0.5147290217,"A1":0.43041003,"A10":0.4747865202,"A11":0.4814285354,', '"A12":0.4106736393,"A13":0.6440158478,"A14":0.4499212197,"A15":0.5564064238,', '"A16":0.5736623215,"A17":0.4890015995,"A18":0.6202282336,"A2":0.4501432661,', '"A3":0.4593324615,"A4":0.4611977511,"A5":0.4260692432,"A6":0.410675212,', '"A7":0.560958454,"A8":0.4463740271,"A9":0.4476561046}},"gain":{"0":0.3144803738},', '"means":{"0":{"Xfloat\\u00e9":{"A12":0.4106736393,"A6":0.410675212,', '"A5":0.4260692432,', '"A1":0.43041003,"A8":0.4463740271,"A9":0.4476561046,"A14":0.4499212197,', '"A2":0.4501432661,"A3":0.4593324615,"A4":0.4611977511,"A10":0.4747865202,', '"A11":0.4814285354,"A17":0.4890015995,"A0":0.5147290217,"A15":0.5564064238,', '"A7":0.560958454,"A16":0.5736623215,"A18":0.6202282336,"A13":0.6440158478},', '"#":{"A12":21,"A6":21,"A5":21,"A1":21,"A8":21,"A9":21,"A14":21,"A2":21,', '"A3":21,"A4":21,"A10":21,"A11":21,"A17":21,"A0":22,"A15":21,"A7":21,"A16":21,', '"A18":21,"A13":21}}},"prob":{"0":0.0046080226}}' ]) self.base([u'Aä'], [u'Xfloaté'], autolysis_string) def test_numbers_sparse(self): autolysis_string = ''.join([ '{"group":{"0":"R\\u00e9gions"},"number":{"0":"`Numbers1"},"biggies":{"0":{', '"IL":2.0,"NO":2.3333333333,"CE":1.6666666667,"Bretagne":2.5,', '"\\u00cele-de-France":2.5833333333,"Aquitaine":2.75,"Picardie":1.75,', '"PR":2.3333333333,"Bourgogne":1.5,"HA":3.5,"BR":3.0,"PA":1.1666666667,', '"Nord-Pas-de-Calais":3.0,"Pays de la Loire":5.0,', '"Provence-Alpes-C\\u00f4te d\'Azur":4.5}},"gain":{"0":0.9157088123},', '"means":{"0":{"`Numbers1":{"BO":0.0,"Lorraine":0.0,"PI":0.0,"PO":0.0,', '"BA":0.0,"Centre":1.0,"PA":1.1666666667,"CH":1.5,"Bourgogne":1.5,', '"CE":1.6666666667,"Picardie":1.75,"IL":2.0,"LO":2.0,"NO":2.3333333333,', '"PR":2.3333333333,"AU":2.5,"Poitou-Charentes":2.5,"Bretagne":2.5,', '"\\u00cele-de-France":2.5833333333,"Aquitaine":2.75,"Nord-Pas-de-Calais":3.0,', '"BR":3.0,"HA":3.5,"AL":4.0,"Provence-Alpes-C\\u00f4te d\'Azur":4.5,', '"Pays de la Loire":5.0,"Haute-Normandie":5.0,"Languedoc-Roussillon":6.0,', '"MI":6.0,"AQ":6.5,"Alsace":8.0},"#":{"BO":4,"Lorraine":8,"PI":4,"PO":4,"BA":4,', '"Centre":8,"PA":24,"CH":8,"Bourgogne":16,"CE":12,"Picardie":16,"IL":36,"LO":4,', '"NO":24,"PR":24,"AU":8,"Poitou-Charentes":8,"Bretagne":16,"\\u00cele-de-France":48,', '"Aquitaine":16,"Nord-Pas-de-Calais":12,"BR":16,"HA":16,"AL":4,', '"Provence-Alpes-C\\u00f4te d\'Azur":16,"Pays de la Loire":12,"Haute-Normandie":8,', '"Languedoc-Roussillon":8,"MI":4,"AQ":8,"Alsace":4}}},"prob":{"0":0.0004737537}}' ]) self.base([u'Régions'], [u'`Numbers1'], autolysis_string) def test_non_normal_dist(self): self.base(['GroupWith1Name'], [u'Xfloaté', u'Yfloaté', u'Zfloaté', u'Numbérs', u'`Numbers'], '{"index":{}}') def test_only_ints(self): autolysis_string = ''.join([ '{"group":{"0":"IntCats"},"number":{"0":"`Numbers"},"biggies":{"0":{"1":5.40625,', '"3":5.625,"4":4.4722222222}},"gain":{"0":0.0943579767},"means":{"0":{', '"`Numbers":{"4":4.4722222222,"1":5.40625,"3":5.625},"#":{"4":144,"1":128,', '"3":128}}},"prob":{"0":0.0002885852}}' ]) self.base(['IntCats'], ['`Numbers'], autolysis_string) def test_col_only_dates(self): self.base([u'Dätes'], [u'Numbérs'], '{"index":{}}') def test_floats_col_sparse(self): autolysis_string = ''.join([ '{"group":{"0":"R\\u00e9gions"},"number":{"0":"FloatsWithZero"},"biggies":{"0":{', '"IL":0.012747739,"NO":-0.0352614186,"CE":0.0,"Bretagne":0.0058930111,', '"\\u00cele-de-France":0.0109352419,"Aquitaine":0.1169812762,', '"Picardie":-0.0470094696,"PR":0.0432100751,"Bourgogne":0.0563597848,', '"HA":0.005033869,"BR":0.072658035,"PA":0.0747856489,', '"Nord-Pas-de-Calais":0.0547388023,"Pays de la Loire":0.035744271,', '"Provence-Alpes-C\\u00f4te d\'Azur":-0.1231877406}},"gain":{"0":10.4323598287},', '"means":{"0":{"FloatsWithZero":{"PO":-0.2453796284,"Haute-Normandie":-0.2237780122,', '"BA":-0.1698339283,"AU":-0.1614843193,', '"Provence-Alpes-C\\u00f4te d\'Azur":-0.1231877406,"Centre":-0.0720992128,', '"AQ":-0.0665866815,"Picardie":-0.0470094696,"NO":-0.0352614186,"LO":0.0,', '"PI":0.0,"CE":0.0,"AL":0.0,"MI":0.0,"HA":0.005033869,"Bretagne":0.0058930111,', '"\\u00cele-de-France":0.0109352419,"IL":0.012747739,"Pays de la Loire":0.035744271,', '"CH":0.0377686544,"PR":0.0432100751,"Nord-Pas-de-Calais":0.0547388023,', '"Bourgogne":0.0563597848,"Languedoc-Roussillon":0.0726263707,"BR":0.072658035,', '"PA":0.0747856489,"Lorraine":0.115573334,"Aquitaine":0.1169812762,', '"Poitou-Charentes":0.150149774,"Alsace":0.1766370569,"BO":0.1967609903},', '"#":{"PO":4,"Haute-Normandie":8,"BA":4,"AU":8,', '"Provence-Alpes-C\\u00f4te d\'Azur":16,"Centre":8,"AQ":8,"Picardie":16,"NO":24,', '"LO":4,"PI":4,"CE":12,"AL":4,"MI":4,"HA":16,"Bretagne":16,"\\u00cele-de-France":48,', '"IL":36,"Pays de la Loire":12,"CH":8,"PR":24,"Nord-Pas-de-Calais":12,', '"Bourgogne":16,"Languedoc-Roussillon":8,"BR":16,"PA":24,"Lorraine":8,', '"Aquitaine":16,"Poitou-Charentes":8,"Alsace":4,"BO":4}}},"prob":{"0":0.0000015713}}' ]) self.base([u'Régions'], ['FloatsWithZero'], autolysis_string) # Map (q, source, target) -> (detected source, translation) _translate = { ('Apple', None, 'nl'): ('en', 'appel'), ('Orange', None, 'nl'): ('en', 'Oranje'), ('Apple', 'en', 'nl'): ('en', 'appel'), ('Orange', 'en', 'nl'): ('en', 'Oranje'), ('Apple', 'en', 'de'): ('en', 'Apfel'), ('Orange', 'en', 'de'): ('en', 'Orange'), ('apfel', '', 'en'): ('de', 'apple'), # used by tests/test_translater } _translate_count = [] def translate_mock(q, source, target, key='...'): '''Mock the Google Translate API results''' _translate_count.append(1) vals = [_translate[item, source, target] for item in q] return { 'source': [v[0] for v in vals], 'target': [target] * len(q), 'q': q, 't': [v[1] for v in vals], } class TestTranslate(unittest.TestCase): @classmethod def setUpClass(cls): cls.cache = os.path.join(folder, 'translate.xlsx') gramex.ml.translate_api['mock'] = translate_mock def test_translate(self): def check(q, result, **kwargs): kwargs['api'] = 'mock' actual = gramex.ml.translate(*q, **kwargs) expected = pd.DataFrame([ {'source': item[0], 'target': item[1], 'q': item[2], 't': item[3]} for item in result ]) actual.index = expected.index afe(actual, expected, check_like=True) check(['Apple'], [ ['en', 'nl', 'Apple', 'appel'] ], target='nl') check(['Apple', 'Orange'], [ ['en', 'nl', 'Apple', 'appel'], ['en', 'nl', 'Orange', 'Oranje'] ], target='nl') check(['Apple', 'Orange'], [ ['en', 'de', 'Apple', 'Apfel'], ['en', 'de', 'Orange', 'Orange'] ], source='en', target='de') check(['Orange', 'Apple'], [ ['en', 'de', 'Orange', 'Orange'], ['en', 'de', 'Apple', 'Apfel'], ], source='en', target='de') if os.path.exists(self.cache): os.remove(self.cache) cache = {'url': self.cache} count = len(_translate_count) check(['Apple'], [['en', 'nl', 'Apple', 'appel']], target='nl', cache=cache) eq_(len(_translate_count), count + 1) check(['Apple'], [['en', 'nl', 'Apple', 'appel']], target='nl', cache=cache) eq_(len(_translate_count), count + 1) check(['Apple'], [['en', 'de', 'Apple', 'Apfel']], source='en', target='de', cache=cache) eq_(len(_translate_count), count + 2) check(['Apple'], [['en', 'de', 'Apple', 'Apfel']], source='en', target='de', cache=cache) eq_(len(_translate_count), count + 2) @classmethod def tearDownClass(cls): if os.path.exists(cls.cache): os.remove(cls.cache) ``` #### File: gramex/tests/test_proxyhandler.py ```python import requests from gramex.http import METHOD_NOT_ALLOWED from . import TestGramex class TestProxyHandler(TestGramex): def test_proxyhandler(self): session = requests.Session() r = self.check('/auth/session', session=session) session_id = r.json()['id'] r = self.check('/xsrf', session=session) xsrf_token = r.cookies['_xsrf'] for method in ['get', 'post', 'put']: request_headers = {} if method != 'get': request_headers['X-Xsrftoken'] = xsrf_token r = self.check( '/proxy/httpbin/?a=1&z=5', session=session, method=method, request_headers=request_headers, headers={ # modify: adds the request method as a header 'X-Modify': method.upper(), # headers: adds a custom HTTP header 'X-Proxy-Custom': 'custom-header', }) # ProxyHandler returns the actual URL mapped self.assertIn('X-Proxy-Url', r.headers) result = r.json() self.assertDictContainsSubset({ # request_headers: true translates to the passed value 'User-Agent': 'python-requests/' + requests.__version__, # request_headers: value passed to the target 'X-From': 'ProxyHandler', # request_headers: value formatted with handler 'Session': 'Session ' + session_id, # prepare: adds HTTP headers 'X-Prepare': method.upper(), }, result['headers'], ) self.assertEquals({ # default: keys are passed as args 'y': ['1', '2'], # URL arguments are also applied 'x': ['1', '2'], # Proxy request args are passed 'a': ['1'], # Proxy request args over-rides default: value and URL value 'z': ['5'], # prepare: can modify request arguments 'b': ['1'], }, result['args']) # PATCH method does not work because /httpbin does not support it r = self.check('/proxy/httpbin/', session=session, method='patch', request_headers={'X-Xsrftoken': xsrf_token}, code=METHOD_NOT_ALLOWED, headers={ 'X-Proxy-Url': True, 'X-Proxy-Custom': 'custom-header', 'X-Modify': 'PATCH', }) # DELETE method does not work because /proxy/httpbin/ does not support it r = self.check('/proxy/httpbin/', method='delete', session=session, request_headers={'X-Xsrftoken': xsrf_token}, code=METHOD_NOT_ALLOWED, headers={ 'X-Proxy-Url': False, 'X-Proxy-Custom': False, 'X-Modify': False, }) # URL pattern wildcards result = self.check('/proxy/httpbinprefix/suffix', session=session).json() self.assertEquals({ 'pre': ['prefix'], # path_args from the url requested 'post': ['suffix'], # path_args from the url requested 'y': ['1', '2'], # from default: 'x': ['1', '2'], # from url: 'z': ['1'], # from url: 'b': ['1'], # from prepare: }, result['args']) ```
{ "source": "joshuamsalazar/micromagnetic-computations-fun-uw", "score": 3 }
#### File: joshuamsalazar/micromagnetic-computations-fun-uw/streamlit_app.py ```python import streamlit as st # To make things easier later, we're also importing numpy and pandas for # working with sample data. import numpy as np import pandas as pd from scipy.integrate import * import scipy.optimize import matplotlib.pyplot as plt from functools import partial import os, sys st.sidebar.markdown("## Parameters used in the simulation") st.sidebar.markdown("Enter your own custom values to run the model") je = float(st.sidebar.text_input('Current density j_e [10^10 A/m^2]', 10)) periSampl = 1000 # class Parameters: gamma = 2.2128e5 alpha = float(st.sidebar.text_input('Gilbert damping constant', 1)) K1 = float(st.sidebar.text_input('Anisotropy constant K_1 [J/m^3]', 1.5 * 9100)) Js = float(st.sidebar.text_input('Saturation magnetization Js [T]', 0.65)) RAHE = float(st.sidebar.text_input('Anomalous Hall effect coefficient', 0.65)) d = float(st.sidebar.text_input('FM layer thickness [nm]', (0.6+1.2+1.1) * 1e-9)) frequency = float(st.sidebar.text_input('AC frequency [Hz]', 0.1e9)) currentd = je * 1e10 hbar = 1.054571e-34 e = 1.602176634e-19 mu0 = 4 * 3.1415927 * 1e-7 easy_axis = np.array([0,0,1]) p_axis = np.array([0,-1,0]) etadamp = float(st.sidebar.text_input('Damping like torque term coefficient', 0.084)) etafield = float(st.sidebar.text_input('Field like torque term', 0.008)) # etafield/etadamp=eta eta = etafield/etadamp hext = np.array([1.0 * K1/Js,0,0]) def lockin(sig, t, f, ph): ref = np.cos(2 * 2*np.pi*f*t + ph/180.0*np.pi) #ref = np.sin(2*np.pi*f*t + ph/180.0*np.pi) comp = np.multiply(sig,ref) #print(t[-1]) #plot real part fft return comp.mean()*2 def fft(sig, t, f): sample_dt = np.mean(np.diff(t)) N = len(t) yfft = np.fft.rfft(sig) yfft_abs = np.abs(yfft) #!!! xfft = np.array(np.fft.rfftfreq(N, d=sample_dt)) stride =max(int(2*f*0.1*sample_dt),2) idxF = np.argmin(np.abs(xfft-2*f)) tmpmax = 0 tmpj = 0 for j in range(-stride, stride+1): if yfft_abs[idxF+j] > tmpmax: tmpmax = yfft_abs[idxF+j] tmpj = j idxF = idxF+tmpj return 2./N*(yfft.real[idxF]) def fields(t,m,p): #Get the H^{DL} at (t, m, p) Hk = 2 * p.K1/p.Js Hd = p.etadamp * p.currentd * p.hbar/(2*p.e*p.Js*p.d) return (Hk, Hd) def f(t, m, p): j = p.currentd * np.cos(2 * 3.1415927 * p.frequency * t) prefactorpol = j * p.hbar/(2 * p.e * p.Js * p.d) hani = 2 * p.K1/p.Js * p.easy_axis * np.dot(p.easy_axis,m) h = p.hext+hani H = - prefactorpol * (p.etadamp * np.cross(p.p_axis,m) + p.etafield * p.p_axis) mxh = np.cross( m, h-prefactorpol*( p.etadamp * np.cross(p.p_axis,m) + p.etafield * p.p_axis ) ) #Corrected from Dieter mxmxh = np.cross( m, mxh) rhs = - p.gamma/(1+p.alpha**2) * mxh-p.gamma * p.alpha/(1+p.alpha**2) * mxmxh p.result.append([t,m[0],m[1],m[2],H[0],H[1],H[2]]) return [rhs] def calc_equilibrium(m0_,t0_,t1_,dt_,paramters_): t0 = t0_ m0 = m0_ dt = dt_ r = ode(f).set_integrator('vode', method='bdf',atol=1e-14,nsteps =500000) r.set_initial_value(m0_, t0_).set_f_params(paramters_).set_jac_params(2.0) t1 = t1_ #Creating a counter and an array to store the magnetization directions count = 0 magList = [[],[],[],[]] testSignal = [] while r.successful() and r.t < t1: # and count < (periSampl + 1): #OLD: XXX #To make sure the steps are equally spaced #Hayashi et al. (2014), after eqn 45, suggests to divide one period into # 200 time steps to get accurate temporal variation of Hall voltages mag=r.integrate(r.t+dt) magList[0].append(r.t) magList[1].append(mag[0]) magList[2].append(mag[1]) magList[3].append(mag[2]) #testSignal.append( 23 * np.cos(2 * 2 * np.pi * paramters_.frequency * r.t) ) #Computing the H^{DL} at each time step Hs = fields(r.t,mag,paramters_) count += 1 #if count%100 == 0: print(count) magList = np.array(magList) #print(magList[0][0], magList[0][-1] ) return(r.t,magList,Hs, testSignal) def calc_w1andw2(m0_,t0_,t1_,dt_,paramters_): paramters_.result = [] t1,magList, Hs, testSignal = calc_equilibrium(m0_,t0_,t1_,dt_,paramters_) npresults = np.array(paramters_.result) time = np.array( magList[0] ) sinwt = np.sin( 2 * 3.1415927 * paramters_.frequency * time) cos2wt = np.cos( 2 * 2 * 3.1415927 * paramters_.frequency * time) current = paramters_.currentd * np.cos(2 * 3.1415927 * paramters_.frequency * time) # time steps array creation z=0 dt=[] dt.append(time[1]-time[0]) for i in time: if z>0: dt.append(time[z]-time[z-1]) z=z+1 dt=np.array(dt) #Computing the voltage from R_{AHE} voltage = current * magList[3] * paramters_.RAHE * (2e-6 * 6e-9) voltage = voltage[periSampl:] current = current[periSampl:] time = time[periSampl:] sinwt = sinwt[periSampl:] cos2wt = cos2wt[periSampl:] dt = dt[periSampl:] #nR2w = np.sum(voltage/paramters_.currentd * cos2wt * dt)*(2/time[-1]) R1w = np.sum(voltage * sinwt * dt)*(2 / (time[-1]*(3/4)) ) R2w = np.sum(voltage * cos2wt * dt)*(2 / (time[-1]*(3/4)) ) #R2w = np.sum(testSignal[periSampl:] * cos2wt * dt)*(2 / (time[-1]*(3/4)) ) #R1w = np.dot( voltage * dt,sinwt )/( np.dot(sinwt * dt,sinwt) * paramters_.currentd) #nR2w = np.dot( voltage * dt,cos2wt )/( np.dot(cos2wt * dt, cos2wt) * paramters_.currentd) fR2w = fft( voltage, magList[0][periSampl:], paramters_.frequency) lR2w = lockin( voltage, magList[0][periSampl:], paramters_.frequency, 0) #nR2w = np.fft.fft(magList[3], 2)/2 nR2w = lockin( voltage/paramters_.currentd, magList[0][periSampl:], paramters_.frequency, 90) #Checking the magnetization time evolution at each external field value: #plt.plot(time, magList[1], label = 'mx') #plt.plot(time, magList[2], label = 'my') #plt.plot(time, magList[3][periSampl:], label = 'mz tree periods') #plt.plot(magList[0], magList[3], label = 'mz_full period') #plt.title("H_x = " + str(paramters_.hext[0]*paramters_.mu0) + "[T]" ) #plt.legend() #plt.show() #plt.plot(time, mzlowfield(time, paramters_), label = 'test') #plt.plot(time, np.full(time.shape, sum(magList[1]) / len(magList[1]) ), label = 'mx') #plt.plot(time, np.full(time.shape, sum(magList[2]) / len(magList[2]) ), label = 'my') #plt.plot(time, np.full(time.shape, sum(magList[3]) / len(magList[3]) ), label = 'mz') #plt.plot(time, testSignal, label = 'cos(X)') #plt.plot(time, voltage, label = 'cos(X)') #Checking the current-induced fields time evolution at each external field value: #plt.plot(time, npresults[:,4], label = 'Hx') #plt.plot(time, npresults[:,5], label = 'Hy') #plt.plot(time, npresults[:,6], label = 'Hz') #plt.legend() #plt.show() #Final value of the current-induced field #H_eff = print(npresults[-1,4],npresults[-1,5],npresults[-1,6]) #return(R1w,R2w,npresults[-1,4],npresults[-1,5],npresults[-1,6],npresults[-1,1],npresults[-1,2],npresults[-1,3], Hs, nR2w, lR2w, fR2w) return(R1w,R2w, magList[0], # ZZZ re-write function to save memory (duplicated time array) npresults[:,4],npresults[:,5],npresults[:,6], magList[1], magList[2], magList[3], Hs, nR2w, lR2w, fR2w) paramters = Parameters() n = 21 phirange = np.linspace(-np.pi/2, np.pi*3/2, num=n) signalw = [] signal2w = [] nsignal2w = [] lsignal2w = [] fsignal2w = [] timeEvol = [] Hx,Hy,Hz = [[],[],[]] Mx,My,Mz = [[],[],[]] m_eqx, m_eqy, m_eqz = [[],[],[]] aheList, amrList = [[],[]] fieldrangeT =[] phirangeRad=[] orgdensity = paramters.currentd longitudinalSweep = True rotationalSweep = False if longitudinalSweep: name = "_HSweep" fieldrange = np.linspace(-0.1/paramters.mu0, 0.1/paramters.mu0, num = n ) for i in fieldrange: paramters.currentd = orgdensity paramters.hext = np.array([i,0,0]) initm=[0,0,1] initm=np.array(initm)/np.linalg.norm(initm) R1w,R2w, t,hx,hy,hz, mx,my,mz, Hs, nR2w, lR2w, fR2w = calc_w1andw2(m0_=initm, t0_=0, t1_=4/paramters.frequency, dt_=1/(periSampl * paramters.frequency), paramters_=paramters) #Storing each current-induced field and magnetization state for each ext field value timeEvol.append(t) Hx.append(hx) Hy.append(hy) Hz.append(hz) Mx.append(mx) My.append(my) Mz.append(mz) m_eqx.append(mx[-1]) m_eqy.append(my[-1]) m_eqz.append(mz[-1]) fieldrangeT.append(i * paramters.mu0) signalw.append(R1w) signal2w.append(R2w) nsignal2w.append(nR2w) lsignal2w.append(lR2w) fsignal2w.append(fR2w) phirangeRad.append(0) #AHE & AMR paramters.currentd = -paramters.currentd it1,imagList, iHs, itestSignal = calc_equilibrium(m0_=initm,t0_=0,t1_=4/paramters.frequency,dt_=1/(periSampl * paramters.frequency), paramters_=paramters) aheList.append(mz[-1]-imagList[3][-1]) amrList.append(mx[-1]*mx[-1]) #Live prompt #print(i, R1w, R2w, '\tHk,Hd', round(Hs[0]), round(Hs[1]), mx[-1], my[-1], mz[-1]) if rotationalSweep: name = "_HconsRotat" fieldrange = np.linspace(0, 0.8/paramters.mu0, num= int((n-1)/10) ) for h in fieldrange: ipMagnitude = 0.05/paramters.mu0 # 0.05/paramters.mu0 # in Tesla for i in phirange: paramters.currentd = orgdensity paramters.hext = np.array([ np.cos(i) * ipMagnitude , np.sin(i) * ipMagnitude , h]) initm=[0,0,-1] initm=np.array(initm)/np.linalg.norm(initm) R1w,R2w,hx,hy,hz,mx,my,mz, Hs, nR2w = calc_w1andw2(m0_=initm,t0_=0,t1_=1/paramters.frequency,dt_=1/(periSampl * paramters.frequency), paramters_=paramters) #Storing each current-induced field and magnetization state for each ext field value Hx.append(hx) Hy.append(hy) Hz.append(hz) Mx.append(mx) My.append(my) Mz.append(mz) phirangeRad.append(i*180/np.pi) fieldrangeT.append(h) signalw.append(R1w) signal2w.append(R2w) nsignal2w.append(nR2w) #Live prompt print( h, R1w, R2w, 'Pi:'+str(i%(2*np.pi)), '\tHk,Hd', round(Hs[0]), round(Hs[1]), mx, my, mz) def savedata(p, sig, fieldrangeT, name): #Storing the data into a dat file with the following strcture: #Delta denotes current-induced fields # ` denotes equilibium # Current | H_ext | R2w | \Delta H_x | \Delta H_y | \Delta H_z | 7mz` | my` | mz` | Rw | 11 phi rad with open( "v2o_" + str(name) + "_j" + str(p.currentd/1e10) + "e10.dat", "w") as f: i = 0 for sig in signal2w: f.write( str(p.currentd) + "\t" + str(fieldrangeT[i]) + "\t" + str(sig) + "\t" + str(Hx[i]) + "\t" + str(Hy[i]) + "\t" + str(Hz[i]) +'\t' + str(Mx[i]) + "\t" + str(My[i]) + "\t" + str(Mz[i]) + '\t' + str(signalw[i]) + "\t" + str(phirangeRad[i]) + "\n") i += 1 f.write("Hk\tHdamp\teta(f/d)\t t\t freq\n") f.write( str(Hs[0]) + '\t' + str(Hs[1]) + "\t" + str(p.etafield/p.etadamp) + "\t" + str(p.d) + '\t' + str(p.frequency) + '\n') f.close() def graph(x, y, xlab, ylab, pltlabel, plthead): fig, ax = plt.subplots() plt.plot(x, y, label = pltlabel) ax.set(xlabel = xlab, ylabel = ylab) plt.title(plthead) plt.legend() return fig def graphm(t, mx, my, mz, xlab, ylab, plthead): fig, ax = plt.subplots() plt.plot(t, mx, label = r'$x$') plt.plot(t, my, label = r'$y$') plt.plot(t, mz, label = r'$z$') ax.set(xlabel = xlab, ylabel = ylab) plt.title(plthead) plt.legend() return fig st.title('Magnetization dynamics for FM/HM interfaces, a single-spin model') st.header('Online LLG integrator') st.caption("<NAME>, <NAME>, <NAME>, <NAME>") st.caption("Physics of Functional Materials") st.caption("University of Vienna") st.write('The following page describes the details to consider to efficiently simulate a FM/HM interface. This model is based on the Landau-Lifshitz-Gilbert equation, and the equation is integrated using _scipy_ python libraries. Hence, the magnetization dynamics is computed with this model, which also contains routines to calculate the first and second harmonics of the Anomalous Hall Voltage (from AH Effect). This interactve tool is designed to allow quick computations and detailed understanding of the considerations made to simulate such FM/HM interfaces. ') st.write('The parameters used in the computation for the live plot results can be freely manipulated using the left sidebar (_available clicking in the arrowhead on the top left of this web app_). Feel free to perform computations with the desired values. ') st.subheader('Theoretical description') st.write('The system described by the model is a typical FM/HM interface. In our specific case, a Hall cross with a thin ferromagnetic layer displaying an out of plane magnetization (fig. 1). ') st.image("https://journals.aps.org/prb/article/10.1103/PhysRevB.89.144425/figures/1/medium", caption = "*Fig. 1* Hall bar structure. Adapted from Phys. Rev. B 89, 144425 (2014)", width = 400 ) #($\eta_\text{DL}$ and $\eta_\text{FL}$) st.write(r'The LLG equation employed in the model is in explicit form and takes the Slonczewsky spin-orbit-torque coefficients as input. It goes as follows:') st.latex(r''' \frac{\partial \vec{m}}{\partial t} = - \frac{\gamma}{1+\alpha^2} (\vec{m} \times \vec{H}_{\text{eff}}) - \frac{\gamma \alpha}{1+\alpha^2} \:\vec{m} \times (\vec{m} \times \vec{H}_{\text{eff}})''') st.write(r'Where $m$ represents the mgnetization unit vector, $\alpha$ the Gilbert damping constant, $\gamma$ the gyromagnetic ratio, and $\vec{H}_{\text{eff}}$ is the effective magnetic field. The effective magnetic field contains contributions of the applied external field, the effective anisotropy field, and the current induced fields via spin orbit torque effects. It reads as follows:') st.latex(r''' \vec{ H }_{\text{eff}} = \vec{ H }_{\text{ext}} + \vec{ H }_{\text{k}} + \vec{ H }^{\text{SOT}}_{\text{FL}} + \vec{ H }^{\text{SOT}}_{\text{DL}} \\ \:\\ \:\\ \vec{ H }_{\text{k}} = \frac{2\vec{K}_1}{Js} \\ \:\\ \vec{ H }^{\text{SOT}}_{\text{FL}} = \eta_\text{FL} \frac{ j_e \hbar }{ 2 e t \mu_0 M_s }\:\vec{m} \times (\vec{m} \times \vec{p}) \\ \:\\ \vec{ H }^{\text{SOT}}_{\text{DL}} = \eta_\text{DL} \frac{ j_e \hbar }{ 2 e t \mu_0 M_s }\:(\vec{m} \times \vec{p}) ''') st.write(r"The $\vec{p}$ vector represents the spin polarization of electrons. For a current flowing along the x direction, the vector is $(0,-1,0)$. As the here simulated system presents out of plane magnetization along the +z axis, the $\vec{K}_1$ anisotropy constant is represented by $(0,0,K_1)$") st.write("Therefore, this simplified model just describes out-of-plane systems with negligible Planar Hall Effect, compared to the Anomalous Hall Effect. It will get improved soon.") st.caption("Performing the integration") st.write("In order to accurately compute the first and second harmonic components of the Anomalous Hall Voltage, the period is, at least, split in 1000 equidistand time steps. This will ensure an accurate description of the time variation of the voltage induced by the AC current. Additionaly, it will improve the computation of the numerical Fourier integrals for getting the harmonic responses.") st.write("Under AC, the voltage is made up by the following harmonics:") st.latex(r''' V_{xy}(t) = V^{xy}_0 + V^{xy}_\omega\sin(\omega t) + V^{xy}_{2\omega}\cos(2\omega t) + ...''') st.write("Those harmonic components can be isolated by applying the Fourier series coefficient integral definition, integrating over one full period.") st.latex(r''' V^{xy}_{\omega}=\frac{2}{T}\int_{T} V(t)\sin(\omega t)\text{dt} \\ \: \\ V^{xy}_{2\omega}=\frac{2}{T}\int_{T} V(t)\cos(2\omega t)\text{dt} ''') st.write(r"As the system starts fully pointing in the z direction, it is important to simulate the electric current with a cosine wave $J_x=j_e \cos(\omega t)$. ") if st.checkbox("Show relaxation of magnetization", True): selected_field = st.select_slider('Slide the bar to check the trajectories for an specific field value [A/m]', options = fieldrange.tolist()) st.write("Field value equivalent to", str( round(selected_field*paramters.mu0, 3) ), "[T]") s_index = fieldrange.tolist().index(selected_field) figtraj = graphm(timeEvol[s_index], Mx[s_index], My[s_index], Mz[s_index], "time [ns]", r'$m_i$', "Evolution at " + str( round(selected_field*paramters.mu0, 3) ) + "[T]") st.pyplot(figtraj) st.write(r"As can be noted in the magnetization dynamics for a given external field value, the system quickly gets its magnetization direction according to the applied AC current. However, if we just employ a single period for the time integration, the result of the Fourier integral may differ from the actual coefficient, as the first time steps do not have a pure wave behavior.") st.caption("Computing the harmonics") st.write(r"Therefore, in order to accurately compute the integral, each time integration of the LLG equation, for each $H_{\text{ext,x}}$ value, is performed over 4 complete periods $t_f=4/f$. Then, for computing the Fourier integral, the initial period of the time integration of the LLG equation is ommited from the computation. Furthermore, to improve the accuracy of the calculated harmonic component of the voltage, the remaining three periods are integrated and the normalization factor of the Fourier integral is adjusted accordingly. Finally, the integral is numerically approximated by the following sum:") st.latex(r''' V^{xy}_{ \omega} \approx \frac{2}{t_f(3/4)} \sum^{4000}_{i=1000} ({J_x}_i {m_z}_i R_{ \text{AHE} }) \sin(\omega t_i) (\Delta t)_i \\ \: \\ V^{xy}_{2\omega} \approx \frac{2}{t_f(3/4)} \sum^{4000}_{i=1000} ({J_x}_i {m_z}_i R_{ \text{AHE} }) \cos(2\omega t_i) (\Delta t)_i ''') st.write(r'Where $i$ represents an index of the elements of the lists containing the values of each step of the simulation (_Note that one period has been split into 1000 equidistant steps_). Inside the simulation the voltage is computed as $V^{xy}(t)=J_x(t) m_z(t) R_{AHE} \sigma$, where $\sigma$ is the cross section area of the conducting element. In our case $\sigma=(2 \mu m \times 6 \text{nm})$ ') st.write("Lastly, the resulting transfer curves using the Fourier series integral definition are: ") figv2w = graph(fieldrangeT, signal2w, r'$\mu_0 H_x$ (T)', r'$V_{2w} [V]$ ', "V2w", "Second harmonic voltage" ) figv1w = graph(fieldrangeT, signalw, r'$\mu_0 H_x$ (T)', r'$V_{w} [V]$ ', "Vw", "First harmonic voltage" ) figamr = graph(fieldrangeT, amrList, r'$\mu_0 H_x$ (T)', r'$m_x^2$', r'$m_x^2$','AMR effect') figahe = graph(fieldrangeT, aheList, r'$\mu_0 H_x$ (T)', r'$m_{z,+j_e}-m_{z,-j_e}$', r'$m_{z,+j_e}-m_{z,ij_e}$','AHE effect') figmag = graphm(fieldrangeT, m_eqx, m_eqy, m_eqz, r'$\mu_0 H_x$ (T)', r'$m_i$', "Equilibrium direction of m") #index denotes field sweep step ##plt.plot(fieldrangeT, lsignal2w, label = 'lock in r2w') ##plt.plot(fieldrangeT, fsignal2w, label = 'fft r2w') ##plt.plot(fieldrangeT, H,'r') ##ax.set(xlabel=r'$\phi$ [grad]',ylabel = r'$m_{i}$ ') st.pyplot(figv1w) st.pyplot(figv2w) st.write('If we just take in consideration the magnetization components to describe the AMR and AHE effects, the transfer curves are:') st.pyplot(figahe) st.pyplot(figamr) st.write("It is important to highligh that by inducing an AC there is no an exact static point for equilibrium magnetization. However, when the system reaches equilibrium with respect to the AC current, the magnetization direction of the last time step of each period may be regarded as equilibrium magnetization (check ref. [X] Phys. Rev. B 89, 144425 (2014))") st.pyplot(figmag) #Pending code sections #if st.checkbox("Show fields evolution", False): # figfields = graphm(timeEvol[s_index], Hx[s_index], Hy[s_index], Hz[s_index], # "time [ns]", r'$m_i$', # "Current induced fields at H_ext:" + str( round(selected_field*paramters.mu0, 3) ) + "[T]") # # st.pyplot(figfields) ```
{ "source": "joshuamschmidt/set_perm", "score": 2 }
#### File: set_perm/set_perm/set_perm.py ```python import pandas as pd import pyranges as pr import numpy as np import concurrent.futures as cf from itertools import repeat from scipy.stats import rankdata from scipy.sparse import csr_matrix import time from random import sample # --- global functions def permutation_fset_intersect(args): permutation_array = args[0] function_array = args[1] max_z = max(permutation_array.max(), function_array.max()) + 1 def csr_sparse(a, z): m, n = a.shape indptr = np.arange(0, m * n + 1, n) data = np.ones(m * n, dtype=np.uint16) return csr_matrix((data, a.ravel(), indptr), shape=(m, z)) intersection = csr_sparse(permutation_array, max_z) * csr_sparse(function_array, max_z).T intersection = intersection.todense() return np.squeeze(np.asarray(intersection)) def listnp_to_padded_nparray(listnp): max_width = np.max([np.size(sublist) for sublist in listnp]) padded_array = np.asarray( [np.pad(sublist, (0, max_width - np.size(sublist)), mode='constant', constant_values=(0, 0)) for sublist in listnp]) return padded_array.astype('uint16') def annotation_sets_to_array(annotation, features, min_size=3): sets = annotation.join(features.set_index('feature'), on='feature').groupby('id')['idx'].apply(list) set_array = [s for s in sets if len(s) >= min_size] set_array = np.sort(listnp_to_padded_nparray(set_array)) set_names = [i for i, s in enumerate(sets) if len(s) >= min_size] set_names = sets.index[set_names] return set_array, set_names def sample_from_feature_list(feature_list, n_total, sample_ratio): out = pd.unique([item for sublist in sample(feature_list, int(round(n_total*sample_ratio,0))) for item in sublist]) while len(out) < n_total: out = np.append(out, pd.unique([item for sublist in sample(feature_list, n_total) for item in sublist])) out = pd.unique(out) out = out[:n_total] #out = np.sort(out) return out.astype('uint16') def array_of_resamples_tup(args): feature_list, n_total, n_reps = args[0], args[1], args[2] out = np.ndarray((n_reps, n_total), dtype='uint16') for i in range(n_reps): out[i] = sample_from_feature_list(feature_list, n_total, 1.4) return out def n_jobs_core_list(n_reps, n_cores): quotient, remainder = divmod(n_reps, n_cores) n_per_core = [quotient] * n_cores for i in range(remainder): n_per_core[i] = n_per_core[i] + 1 return n_per_core def multicore_resample(n_features, n_reps, n_cores, feature_list): n_per_core = n_jobs_core_list(n_reps, n_cores) with cf.ProcessPoolExecutor(max_workers=n_cores) as executor: results = executor.map(array_of_resamples_tup, zip(repeat(feature_list), repeat(n_features), n_per_core)) results = list(results) return np.concatenate(results) def multicore_intersect(permutation_array, functionalset_array, n_cores): split_permutation_array = np.array_split(permutation_array, n_cores) with cf.ProcessPoolExecutor(max_workers=n_cores) as executor: results = executor.map(permutation_fset_intersect, zip(split_permutation_array, repeat(functionalset_array))) results = list(results) return np.concatenate(results) def calculate_p_values(c_set_n, p_set_n): p_e = [] p_d = [] n_perm = p_set_n.shape[0] if n_perm == 1: #p_e.append((np.size(np.where(p_set_n >= c_set_n)) + 1) / (n_perm + 1)) #p_d.append((np.size(np.where(p_set_n <= c_set_n)) + 1) / (n_perm + 1)) raise ValueError("can only calculate p-val;ues if there is more than one permutation!") else: if(len(p_set_n.shape)>1): for i in range(p_set_n.shape[1]): p_e.append((np.size(np.where(p_set_n[:, i] >= c_set_n[i])) + 1) / (n_perm + 1)) p_d.append((np.size(np.where(p_set_n[:, i] <= c_set_n[i])) + 1) / (n_perm + 1)) if(len(p_set_n.shape)==1): p_e.append( (np.size(np.where(p_set_n >= c_set_n)) + 1) / (n_perm + 1) ) p_d.append( (np.size(np.where(p_set_n <= c_set_n)) + 1) / (n_perm + 1) ) return p_e, p_d def make_results_table(test_obj, function_obj, set_perm_obj, annotation_obj): out = function_obj.function_sets.groupby('Id', as_index=False).agg({'FunctionName': pd.Series.unique}) out = out[out['Id'].isin(function_obj.function_array2d_ids)] out['obs_n'] = test_obj.n_candidate_per_function out['perm_mean_n'] = set_perm_obj.mean_per_set sem=set_perm_obj.sd_per_set / np.sqrt(set_perm_obj.n_permutations) out['perm_sem'] = sem e_array = np.asarray(out['obs_n'] / out['perm_mean_n'].values) sem_array = e_array * np.sqrt(np.square(2*sem/set_perm_obj.mean_per_set)) log_e = np.log2(e_array, out=np.empty((np.shape(e_array)[0],)) * np.nan, where=(e_array!=0)) out['enrich(log2)'] = log_e out['u_95%(CI)'] = np.log2(e_array+sem_array, out=np.empty((np.shape(sem_array)[0],)) * np.nan, where=(e_array+sem_array!=0)) out['l_95%(CI)'] = np.log2(e_array-sem_array, out=np.empty((np.shape(sem_array)[0],)) * np.nan, where=(e_array-sem_array!=0)) out['p_enrich'] = set_perm_obj.p_enrichment out['fdr_enrich'] = fdr_from_p_matrix(set_perm_obj.set_n_per_perm, out['p_enrich'], method='enrichment') out['BHfdr_enrich'] = p_adjust_bh(out['p_enrich']) out['p_deplete'] = set_perm_obj.p_depletion out['fdr_deplete'] = fdr_from_p_matrix(set_perm_obj.set_n_per_perm, out['p_deplete'], method='depletion') out['BHfdr_deplete'] = p_adjust_bh(out['p_deplete']) #out_genes = candidates_per_set(test_obj, function_obj, annotation_obj) out = pd.merge(out, test_obj.candidates_in_functions_df, on='Id', how='outer') out = out.sort_values('p_enrich') return out def make_nested_results_table(test_obj, function_obj, set_perm_obj, annotation_obj): out = function_obj.function_sets.groupby('Id', as_index=False).agg({'FunctionName': pd.Series.unique}) out = out[out['Id'].isin(function_obj.function_array2d_ids)] out['obs_n'] = test_obj.n_candidate_per_function out['perm_mean_n'] = set_perm_obj.mean_per_set sem=set_perm_obj.sd_per_set / np.sqrt(set_perm_obj.n_permutations) out['perm_sem'] = sem e_array = np.asarray(out['obs_n'] / out['perm_mean_n'].values) sem_array = e_array * np.sqrt(np.square(2*sem/set_perm_obj.mean_per_set)) log_e = np.log2(e_array, out=np.empty((np.shape(e_array)[0],)) * np.nan, where=(e_array!=0)) out['enrich(log2)'] = log_e #out['u_95%(CI)'] = np.log2(e_array+sem_array, out=np.empty((np.shape(sem_array)[0],)) * np.nan, where=(e_array+sem_array!=0)) #out['l_95%(CI)'] = np.log2(e_array-sem_array, out=np.empty((np.shape(sem_array)[0],)) * np.nan, where=(e_array-sem_array!=0)) out['p_enrich'] = set_perm_obj.p_enrichment out['within_fdr_enrich'] = fdr_from_p_matrix(set_perm_obj.set_n_per_perm, out['p_enrich'], method='enrichment') out['within_BHfdr_enrich'] = p_adjust_bh(out['p_enrich']) out['p_deplete'] = set_perm_obj.p_depletion out['within_fdr_deplete'] = fdr_from_p_matrix(set_perm_obj.set_n_per_perm, out['p_deplete'], method='depletion') out['within_BHfdr_deplete'] = p_adjust_bh(out['p_deplete']) #out_genes = candidates_per_set(test_obj, function_obj, annotation_obj) out = pd.merge(out, test_obj.candidates_in_functions_df, on='Id', how='outer') return out def combine_nested_results_table(results_list, per_set_list, nested_names, index_by_list_size, ): mod_tables = [None] * len(nested_names) set_n_per_perm_list = [None] * len(nested_names) for i, size_index in enumerate(index_by_list_size): this_name=nested_names[size_index] this_table=results_list[i] this_table['Label']=this_name mod_tables[i]=this_table this_per_set=per_set_list[i] set_n_per_perm_list[i]=this_per_set.set_n_per_perm merged_results=pd.concat(mod_tables) merged_set_n_per_perm=np.concatenate(set_n_per_perm_list, axis=0) merged_results['all_fdr_enrich'] = fdr_from_p_matrix(merged_set_n_per_perm, merged_results['p_enrich'], method='enrichment') merged_results['all_BHfdr_enrich'] = p_adjust_bh(merged_results['p_enrich']) merged_results['all_fdr_deplete'] = fdr_from_p_matrix(merged_set_n_per_perm, merged_results['p_deplete'], method='depletion') merged_results['all_BHfdr_deplete'] = p_adjust_bh(merged_results['p_deplete']) # reorganiase col order merged_results=merged_results[['Label','Id','FunctionName','obs_n','perm_mean_n','enrich(log2)','p_enrich','within_fdr_enrich','within_BHfdr_enrich','all_fdr_enrich','all_BHfdr_enrich','p_deplete','within_fdr_deplete','within_BHfdr_deplete','all_fdr_deplete','all_BHfdr_deplete','Genes']] merged_results = merged_results.sort_values('p_enrich') return merged_results def fdr_from_p_matrix(perm_n_per_set, obs_p, method='enrichment'): p_matrix = perm_p_matrix(perm_n_per_set, method) obs_p_arr = np.asarray(obs_p) n_perm = p_matrix.shape[0] fdr_p = np.empty(len(obs_p), dtype='float64') obs_order = np.argsort(obs_p_arr) p_val, p_counts = np.unique(p_matrix, return_counts=True) current_max_fdr = 0 for i, p_idx in enumerate(obs_order): if current_max_fdr == 1: fdr_p[p_idx] = 1 else: obs = np.size(np.where(obs_p_arr <= obs_p_arr[p_idx])) exp = np.sum(p_counts[np.where(p_val <= obs_p_arr[p_idx])]) / n_perm i_fdr = exp / obs if current_max_fdr <= i_fdr < 1: fdr_p[p_idx] = i_fdr current_max_fdr = i_fdr elif current_max_fdr > i_fdr and i_fdr < 1: fdr_p[p_idx] = current_max_fdr else: fdr_p[p_idx] = 1 current_max_fdr = 1 return fdr_p def p_adjust_bh(p): """Benjamini-Hochberg p-value correction for multiple hypothesis testing.""" p = np.asfarray(p) by_descend = p.argsort()[::-1] by_orig = by_descend.argsort() steps = float(len(p)) / np.arange(len(p), 0, -1) q = np.minimum(1, np.minimum.accumulate(steps * p[by_descend])) return q[by_orig] def load_variants(variant_file): variants = None cols = ["Chromosome", "Start", "End"] possible_chr = ["CHR","CHROMOSOME","chr","chromosome","Chromosome"] variant_header= pd.read_table(variant_file, header=None, nrows=1) ncols=len(variant_header.columns) dtype_dict = {"Chromosome": str, "Start": int, "End": int} if(ncols < 2 or ncols > 3): raise ValueError("variant inputs nust have 2 or 3 columns only!") has_header=0 if(variant_header.iloc[0][0] not in possible_chr): has_header='infer' try: variants = pd.read_table( variant_file, header=has_header, names=cols[:ncols], dtype={col: dtype_dict[col] for col in cols[:ncols]} ) except pd.errors.ParserError: print(f'The file: {variant_file} does not exist. Please correct and try again.') return pr.PyRanges(variants.drop_duplicates()) # wrapper for results table writing def results_writer(results_df, name_str, function_name_str, user_prefix): if(user_prefix==""): outfile_name = name_str + "-" + function_name_str + ".set_perm.txt" else: outfile_name = user_prefix + "-" + name_str + "-" + function_name_str + ".set_perm.txt" results_df.to_csv(path_or_buf=outfile_name, sep='\t',header=True, index=False, float_format='%.8f',mode='w+') return None # global functions used in class constructors/__init__ def load_annotation_table(annotation_file): annotation_table = pd.read_table( annotation_file, header=0, names=['Chromosome', "Start", "End", "Annotation"], dtype={"Chromosome": str, "Start": int, "End": int, "Annotation": str} ) annotation_table['Idx'] = np.arange(len(annotation_table))+1 return annotation_table def modify_annotation_table(annotation_table, range_modification): annotation_table['Start'] = annotation_table['Start'] - range_modification annotation_table['End'] = annotation_table['End'] + range_modification return annotation_table def load_function_sets(function_set_file): function_sets = pd.read_table( function_set_file, header=0, names=['Id', "Annotation", "FunctionName"], dtype={"Id": str, "Annotation": str, "FunctionName": str} ) return function_sets def function_sets_to_array(function_sets, min_set_size, annotation_obj): sets = function_sets.join(annotation_obj.annotation_table.set_index('Annotation'), on='Annotation').groupby('Id')[ 'Idx'].apply(list) set_array = [s for s in sets if len(s) >= min_set_size] set_names = [i for i, s in enumerate(sets) if len(s) >= min_set_size] function_array = np.sort(listnp_to_padded_nparray(set_array)) function_array_ids = sets.index[set_names] return function_array, function_array_ids # function to combine candidate gene by function lists form two or more objects def make_combined_candidate_by_function_df(df_list): zip_gene_lists = list(zip(*[df['Genes'].values for df in df_list])) collapsed_lists=["; ".join(g_list) for g_list in zip_gene_lists ] ids=df_list[0]['Id'].values combined = {'Id':ids, 'Genes': collapsed_lists} combined_df = pd.DataFrame(data=combined) return combined_df # --- classes class AnnotationSet: # constructor def __init__(self, annotation_file='', range_modification=None): self.annotation_file = annotation_file self.range_modification = range_modification self.annotation_table = load_annotation_table(self.annotation_file) if range_modification is None: return self.annotation_table = modify_annotation_table(self.annotation_table, self.range_modification) self.num_annotations = self.annotation_table.shape[0] class FunctionSets: # constructor def __init__(self, function_set_file='', min_set_size=0, annotation_obj=None): self.function_set_file = function_set_file self.min_set_size = min_set_size self.n_genes_with_variant = None self.function_sets = load_function_sets(self.function_set_file) self.function_array2d, self.function_array2d_ids = function_sets_to_array(self.function_sets, self.min_set_size, annotation_obj) self.n_per_set = np.asarray([np.size(np.where(function_array != 0)) for function_array in self.function_array2d], dtype='uint16') def update_from_gene_list(self, gene_list=None, annotation_obj=None): self.function_sets = self.function_sets[self.function_sets['Annotation'].isin(gene_list)] self.function_array2d, self.function_array2d_ids = function_sets_to_array(self.function_sets, self.min_set_size, annotation_obj) self.n_per_set = np.asarray([np.size(np.where(function_array != 0)) for function_array in self.function_array2d], dtype='uint16') @classmethod def background_refined(cls, base_fs_obj, annotation_obj, variant_obj): obj = cls.__new__(cls) obj.function_set_file = base_fs_obj.function_set_file obj.min_set_size = base_fs_obj.min_set_size obj.n_genes_with_variant = np.size(np.unique(variant_obj.annotated_variants['Idx'].values)) obj.function_sets = base_fs_obj.function_sets return obj class Variants: # constructor def __init__(self, variant_file=''): self.variant_file = variant_file self.variants = load_variants(self.variant_file) self.num_variants = self.variants.df.shape[0] self.annotated_variants = None def annotate_variants(self, annotation_obj): self.annotated_variants = self.variants.join(pr.PyRanges(annotation_obj.annotation_table)).df self.annotated_variants['Id'] = self.annotated_variants.Chromosome.astype(str).str.cat( self.annotated_variants.Start.astype(str), sep='_') def is_subset_of(self, other): #return pd.merge(self.variants, other.variants).equals(self.variants) return self.variants.df.shape[0]==self.variants.intersect(other.variants).df.shape[0] def annotation_with_variant(self): return self.annotated_variants['Annotation'].unique() def multicore_make_id_idx_map_list(annotated_variants, n_cores): split_annotated_variant_tables = np.array_split(annotated_variants, n_cores) with cf.ProcessPoolExecutor(max_workers=n_cores) as executor: results = executor.map(make_id_idx_map_list, split_annotated_variant_tables) results = list(results) flat_results = [item for sublist in results for item in sublist] return flat_results def make_id_idx_map_list(annotated_variants): # should make this a multiprocess function! map_list = annotated_variants.groupby('Id')['Idx'].apply(list).tolist() return map_list def get_idx_array(annotated_variants): """returns array with shape, enables compatibility with permutation_fset_intersect""" tmp_idx_array = np.asarray(np.unique(annotated_variants['Idx'])) idx_array = np.ndarray((1, np.size(tmp_idx_array)), dtype='uint16') idx_array[0] = tmp_idx_array return idx_array.astype('uint16') def n_candidates_per_set(annotation_obj, function_obj): candidate_set = set(annotation_obj.annotation_table['Annotation'].values) candidates_in_function_sets = function_obj.function_sets.groupby('Id')['Annotation'].apply( lambda x: np.unique(list(set(x).intersection(candidate_set)))) candidates_in_function_sets = pd.DataFrame(candidates_in_function_sets[pd.Index(function_obj.function_array2d_ids)]) candidates_in_function_sets = candidates_in_function_sets.reset_index(level=['Id']) candidates_in_function_sets.columns = ['Id', 'CandidateAnnotations'] candidates_in_function_sets['n_CandidatesInSet'] = candidates_in_function_sets['CandidateAnnotations'].apply( lambda x: len(x)) return candidates_in_function_sets def candidates_per_set(candidate_array, function_obj, annotation_obj): candidate_idx_in_function_set = [np.intersect1d(i, candidate_array) if len(np.intersect1d(i, candidate_array)) > 0 else np.asarray(-9) for i in function_obj.function_array2d] candidate_genes_in_function_set = [np.sort(annotation_obj.annotation_table.loc[annotation_obj.annotation_table['Idx'].isin(candidate_idxs)]['Annotation'].values) if np.all(candidate_idxs!=-9) else np.asarray(None) for candidate_idxs in candidate_idx_in_function_set] candidate_genes_collapsed = [np.array2string(f_set,separator=", ", max_line_width=10e6, threshold=10e6) for f_set in candidate_genes_in_function_set] d = {'Id': function_obj.function_array2d_ids, 'Genes': candidate_genes_collapsed} df = pd.DataFrame(data=d) return df class TestObject: # constructor def __init__(self, candidate_obj, background_obj, function_set_obj, annotation_obj, n_cores=1): if not candidate_obj.is_subset_of(background_obj): print("error: candidate set is not a subset of the background") return self.background_id_idx_map = multicore_make_id_idx_map_list(background_obj.annotated_variants, n_cores) self.candidate_array = get_idx_array(candidate_obj.annotated_variants) self.n_candidates = np.size(self.candidate_array) self.n_candidate_per_function = permutation_fset_intersect( (self.candidate_array, function_set_obj.function_array2d)) self.candidates_in_functions_df = candidates_per_set(self.candidate_array, function_set_obj, annotation_obj) @classmethod def add_objects(cls, *args): obj = cls.__new__(cls) obj.background_id_idx_map = None obj.candidate_array = [ obj.candidate_array[0] for obj in args ] obj.n_candidates = sum([ obj.n_candidates for obj in args]) obj.n_candidate_per_function = sum([ obj.n_candidate_per_function for obj in args]) obj.candidates_in_functions_df = make_combined_candidate_by_function_df([obj.candidates_in_functions_df for obj in args]) return obj @classmethod def nested_test(cls, cand_obj, function_set_obj, annotation_obj): obj = cls.__new__(cls) obj.background_id_idx_map = None obj.candidate_array = get_idx_array(cand_obj.annotated_variants) obj.n_candidates = np.size(obj.candidate_array) obj.n_candidate_per_function = permutation_fset_intersect( (obj.candidate_array, function_set_obj.function_array2d)) obj.candidates_in_functions_df = candidates_per_set(obj.candidate_array, function_set_obj, annotation_obj) return obj @classmethod def union_of_objects(cls, a_obj, b_obj): obj = cls.__new__(cls) obj.candidate_file = [a_obj.candidate_file, b_obj.candidate_file] obj.background_file = [a_obj.background_file, b_obj.background_file] return obj class Permutation: # constructor def __init__(self, test_obj, n_permutations, n_cores): self.n_permutations = n_permutations self.permutations = multicore_resample(test_obj.n_candidates, self.n_permutations, n_cores, test_obj.background_id_idx_map) @classmethod def nested_perm(cls, perm_obj, n_genes): """Return a new Permutation object, taking the first n_genes from each permutation""" obj = cls.__new__(cls) obj.n_permutations = perm_obj.n_permutations obj.permutations = perm_obj.permutations[:,:n_genes] return obj class SetPerPerm: # constructor def __init__(self, permutation_obj, function_set_obj, test_obj, n_cores): self.set_n_per_perm = multicore_intersect(permutation_obj.permutations, function_set_obj.function_array2d, n_cores) self.mean_per_set = np.array(np.mean(self.set_n_per_perm, axis=0)) self.sd_per_set = np.array(np.std(self.set_n_per_perm, axis=0)) # var is additive. helps with joins.... self.var_per_set = np.array(np.std(self.set_n_per_perm, axis=0)) self.p_enrichment, self.p_depletion = calculate_p_values(test_obj.n_candidate_per_function, self.set_n_per_perm) self.n_candidate_per_function = test_obj.n_candidate_per_function self.n_permutations = permutation_obj.n_permutations @classmethod def join_objects(cls, *args): """Return a new SetPerPerm object, equivalent to a + b. Used because addition is too complex for default __init__""" obj = cls.__new__(cls) # objects should have same number of permutations! n_perm_list= [ obj.n_permutations for obj in args ] if(n_perm_list.count(n_perm_list[0]) == len(n_perm_list)): obj.n_permutations=n_perm_list[0] obj.set_n_per_perm = sum([ obj.set_n_per_perm for obj in args]) obj.mean_per_set = sum([ obj.mean_per_set for obj in args]) obj.var_per_set = sum([ obj.var_per_set for obj in args]) obj.sd_per_set = np.sqrt(obj.var_per_set) obj.n_candidate_per_function = sum([ obj.n_candidate_per_function for obj in args]) obj.p_enrichment, obj.p_depletion = calculate_p_values(obj.n_candidate_per_function, obj.set_n_per_perm) return obj else: raise ValueError("Objects must have the same number of permutations!") # --- redundant and/or not used anymore def perm_p_matrix(perm_n_per_set, method='enrichment'): if(len(perm_n_per_set.shape)>1): n_perms, n_sets = perm_n_per_set.shape else: n_perms = perm_n_per_set.size n_sets = 1 out = np.ndarray((n_perms, n_sets), dtype='float64') method_int = 1 if method == 'enrichment': method_int = -1 if(len(perm_n_per_set.shape)>1): for i in range(n_sets): out[:, i] = rankdata(method_int * perm_n_per_set[:, i], method='max') /n_perms else: out=rankdata(method_int * perm_n_per_set, method='max')/n_perms return out def array_of_resamples(feature_list, n_total, n_reps): out = np.ndarray((n_reps, n_total), dtype='uint16') for i in range(n_reps): out[i] = sample_from_feature_list(feature_list, n_total, 1.4) return out def random_check_intersection(n_per_set, perms, sets, check_n): check_idxs = [] n_perms = np.shape(perms)[0] n_sets = np.shape(sets)[0] for i in range(check_n): j = sample(range(0, n_perms - 1), 1)[0] k = sample(range(0, n_sets - 1), 1)[0] check_idxs.append(len(set(perms[j]).intersection(set(sets[k]))) == n_per_set[j][k]) return check_idxs # scratch def contiguous_feature_coordinates(feature_table): out_df = pd.DataFrame({'Chromosome': [], 'Start': [], 'End': [], 'idx': []}) for c in feature_table['Chromosome'].unique(): sub_starts = feature_table[feature_table['Chromosome'] == c]['Start'].values sub_ends = feature_table[feature_table['Chromosome'] == c]['End'].values sub_lengths = sub_ends - sub_starts for i in range(len(sub_starts)): if i == 0: sub_starts = sub_starts - sub_starts[i] + 1 sub_ends[i] = sub_starts[i] + sub_lengths[i] elif i > 0: sub_starts[i] = sub_ends[i - 1] + 1 sub_ends[i] = sub_starts[i] + sub_lengths[i] c_df = pd.DataFrame( zip(repeat(c), sub_starts, sub_ends, feature_table[feature_table['Chromosome'] == c]['idx'].values), columns=['Chromosome', 'Start', "End", "idx"]) out_df = pd.concat([out_df, c_df]) return out_df ```
{ "source": "joshuanazareth97/popviz", "score": 3 }
#### File: popviz/cli/__main__.py ```python import sys import argparse from scraper import IMDBScraper from search import search_imdb from reports import TVReport def get_results_from_imdb(query): results = search_imdb(query)[:10] if not results: print("No results found! Check the search term.") sys.exit(1) elif len(results) == 1: chosen = results[0] print( f"Found a single result: {chosen['showname']} ({chosen['year']}) with ID {chosen['id']}" ) input("Continue?") print() else: for num, result in enumerate(results): name = result["showname"] cat = result["category"] date = result["year"] print(f"{num+1}. {name}\t({date})\t[{cat}]") print() while True: choice = input("Choose one of the above shows (Or enter 0 to exit) > ") try: choice = int(choice) - 1 except ValueError: print("Please enter a valid (numerical) choice.\n") continue if choice == -1: # User input 0, which gets saved as -1 print("Exiting app. Bye bye!") sys.exit(0) try: chosen = results[choice] except IndexError: print("Please enter a number present in the list above.\n") continue break print(f"You have chosen {chosen['showname']} with ID: {chosen['id']}\n") return chosen def main(): print() parser = argparse.ArgumentParser( description="Generate beautiful reports of IMDb ratings data." ) input_term_group = parser.add_mutually_exclusive_group() input_term_group.add_argument( "-s", "--search", help="Search for a television show." ) # TODO: Add test to check if ID format is correct. input_term_group.add_argument( "-i", "--id", help="Directly provide the IMDb ID of a television show." ) parser.add_argument( "-o", "--output", help="Specify a filename for the output. Defaults to the name of the show.", default=None, ) parser.add_argument( "-c", "--colorscheme", help="Set the heatmap colorscheme. Defaults to blue.", choices=["red", "blue"], default="blue", ) args = parser.parse_args() if not args.id: if not args.search: query = input("Enter a search term for a television show > ") print() else: query = args.search.strip() print(f'Searching for "{query}" on IMDb...') chosen = get_results_from_imdb(query) chosen_id = chosen["id"] else: chosen_id = args.id print("Retrieving show data...") scraper = IMDBScraper(chosen_id) reporter = TVReport(data_provider=scraper) print("\nGenerating report...") reporter.heatmap(color=args.colorscheme) file = reporter.save_file(output_dir="./data", filename=args.output) print(f"Report saved to {file.absolute()}.") if __name__ == "__main__": main() ``` #### File: popviz/reports/tv_report_gen.py ```python from pathlib import Path import math import numpy as np import seaborn as sns from matplotlib import gridspec, offsetbox, pyplot as plt from reports.utils import pad_nan, wrap_text, format_filename class TVReport: def __init__(self, data_provider): sns.set(font_scale=0.7) self.data = data_provider.seasons self.show_metadata = data_provider.show_metadata self.ratings = self._get_2d_array() self.mean = math.floor(np.nanmean(self.ratings)) self.median = math.floor(np.nanmedian(self.ratings)) self.n_seasons, self.n_episodes = self.ratings.shape self.inverted = False axis = 1 average_shape = (self.n_seasons, 1) # Always ensure that the matrix is more or less landscape if self.n_seasons > self.n_episodes and not self.is_square: # Put seasons make seasons rows self.inverted = True axis = 0 self.ratings = self.ratings.transpose() average_shape = (1, self.n_seasons) self.season_averages = np.nanmean(self.ratings, axis=axis).reshape( average_shape ) @property def is_square(self): return 1 <= max(self.ratings.shape) / min(self.ratings.shape) < 1.3 def _get_2d_array(self): ratings = [] for season in self.data: episodes = [ np.float(episode["rating"]) for episode in season["episodes"] if episode["rating"] ] ratings.append(episodes) return pad_nan(np.array(ratings)) def _setup_page_layout(self, size="A4"): size_map = {"A4": (11.69, 8.27), "A3": (16.53, 11.69)} # (width, height) assert size in size_map page_width, page_height = size_map[size] relative_heights = [2, 5.5, 1, 2.5] title_params = dict( xy=(0.5, 0.9), xycoords="axes fraction", va="center", ha="center", size=28 ) subtitle_params = dict( xy=(0.5, 0.65), xycoords="axes fraction", va="center", ha="center", size=14 ) metadata_params = dict(xycoords="axes fraction", va="center", size=12,) if self.is_square: # Change orientation to portrait page_height, page_width = page_width, page_height subtitle_params["size"] = 18 relative_heights = [2.5, 5.5, 0.5, 2] fig = plt.figure( figsize=(page_width, page_height), dpi=300, constrained_layout=True ) fig.set_size_inches(page_width, page_height) spec = gridspec.GridSpec( figure=fig, ncols=1, nrows=4, height_ratios=relative_heights ) if self.is_square: ep_info = gridspec.GridSpecFromSubplotSpec(1, 5, subplot_spec=spec[3, :]) else: ep_info = gridspec.GridSpecFromSubplotSpec(1, 5, subplot_spec=spec[2:, :]) with sns.axes_style("white"): title_ax = fig.add_subplot(spec[0, :]) spacer_ax = fig.add_subplot(spec[2, :]) misc = fig.add_subplot(ep_info[:, 2]) best_ep_ax = fig.add_subplot(ep_info[:, :2]) worst_ep_ax = fig.add_subplot(ep_info[:, 3:]) for ax in [title_ax, best_ep_ax, worst_ep_ax, spacer_ax, misc]: sns.despine(ax=ax, bottom=True, left=True) # , top=True, right=True) ax.axes.xaxis.set_ticks([]) ax.axes.yaxis.set_ticks([]) title_ax.annotate(f"{self.show_metadata['title']}", **title_params) running_date = self.show_metadata.get( "running_date", "" ) # running date can be blank if running_date: title_ax.annotate(f"({running_date})", **subtitle_params) plot = wrap_text(self.show_metadata["plot_summary"], 110) # title_ax.annotate( # "\n".join(plot), xy=(0.5, 0.55), style="italic", **metadata_params # ) metadata_params["ha"] = "left" # vertical_dist = 0.5 - 0.05 * len(plot) vertical_dist = 0.5 writers = self.show_metadata.get("creators") if writers: writers = ", ".join(writers) title_ax.annotate( f"Writer(s): {writers}", xy=(0, vertical_dist), **metadata_params ) vertical_dist -= 0.2 cast = self.show_metadata.get("stars")[:-1] if cast: cast = ", ".join(cast) title_ax.annotate(f"Cast: {cast}", xy=(0, vertical_dist), **metadata_params) vertical_dist -= 0.2 genres = self.show_metadata.get("tags") if genres: genres = ", ".join(genres) title_ax.annotate( f"Genre(s): {genres}", xy=(0, vertical_dist), **metadata_params ) self._fill_episode_info(best_ep_ax, cat="best") self._fill_episode_info(worst_ep_ax, cat="worst") self.page = { "fig": fig, "axes": [title_ax, best_ep_ax, worst_ep_ax], "gridspec": spec, } def _fill_episode_info(self, ax, cat="best"): best = cat == "best" info_params = dict( xycoords="axes fraction", va="center", ha="left" if best else "right", ) ep_list = self._get_episode(cat=cat) horizontal_margin = 0.02 if best else 0.98 rating = ep_list[0]["rating"] rating_box_params = dict() rating_color = "#27ae60" if best else "#e74c3c" # at.patch.set_boxstyle("round,pad=0.,rounding_size=0.2") # at.patch.set_edgecolor(rating_color) # at.patch.set_facecolor(rating_color) # ax.add_artist(at) title = ax.annotate( f"{cat.title()} rated episode(s)", xy=(horizontal_margin, 0.8), color="#2980b9", size=16, **info_params, ) title_box = title.get_window_extent( renderer=title.get_figure().canvas.get_renderer() ) rating_loc = (title_box.width + 50, 0) if best else (-title_box.width - 50, 0) rating = ax.annotate( rating, xy=(horizontal_margin, 0.8), size=14, color="w", xytext=rating_loc, textcoords="offset pixels", bbox=dict(boxstyle="round", fc=rating_color), **info_params, ) vertical = 0.6 info_params.update( { # "ha": "left" if cat == "best" else "right", "size": 12, } ) vertical_dist = 0.2 if self.is_square else 0.1 for ep in ep_list: title = ep["title"] s = ep["season"] e = int(ep["episode_number"]) column_width = 40 if self.is_square else 45 plot = wrap_text(ep["plot"], column_width) ax.annotate( f"S{s:02d}E{e:02d} - {title}", xy=(horizontal_margin, vertical), **info_params, ) vertical -= vertical_dist if len(ep_list) == 1: info_params["size"] = 11 info_params["va"] = "top" ep_plot = ax.annotate( "\n".join(plot), xy=(horizontal_margin, vertical), style="italic", **info_params, ) info_params["size"] = 12 vertical -= 0.05 * len(plot) # vertical -= 0.05 # Episode differentiation buffer if vertical < 0: break def _get_episode(self, cat="best"): criteria = np.nanmax if cat == "best" else np.nanmin result = np.where( self.ratings == criteria(self.ratings) ) # two tuples, with row, column indices respectively episode_list = [] for season, episode in zip(*result): if self.inverted: episode, season = season, episode # season will be across columns episode_data = self.data[season]["episodes"][episode] episode_data["season"] = int(season) + 1 episode_list.append(episode_data) return episode_list def heatmap( self, color="red", ): colormap = { "red": sns.color_palette("YlOrRd", 10), "blue": sns.color_palette("YlGnBu", 10), } height, width = self.ratings.shape yticks = np.arange(1, height + 1) y_label = "Season" xticks = np.arange(1, width + 1) x_label = "Episode" # Setting up matplotlib and seaborn self._setup_page_layout() fig = self.page["fig"] # Set up heatmap specific layout title_ax, best_ep_ax, worst_ep_ax = self.page["axes"] if self.inverted: main_section = gridspec.GridSpecFromSubplotSpec( 2, 2, height_ratios=[height, 1], width_ratios=[width, 0.1], subplot_spec=self.page["gridspec"][1, :], ) main_ax = fig.add_subplot(main_section[0, 0]) average_ax = fig.add_subplot(main_section[1, 0]) cbar_ax = fig.add_subplot(main_section[:, 1]) else: main_section = gridspec.GridSpecFromSubplotSpec( 1, 3, width_ratios=[width, 1, 0.5], subplot_spec=self.page["gridspec"][1, :], ) main_ax = fig.add_subplot(main_section[:, 0]) average_ax = fig.add_subplot(main_section[:, 1]) cbar_ax = fig.add_subplot(main_section[:, 2]) main_ax.xaxis.set_ticks_position("top") main_ax.xaxis.set_label_position("top") average_ax.xaxis.set_ticks_position("top") opts = { "vmax": 10, # min(10, median + 3), "vmin": math.floor(np.nanmin(self.ratings)), # max(0, median - 3), "cmap": colormap[ color ], # sns.cubehelix_palette(8, start=2, rot=0, dark=0, light=.95, reverse=True, as_cmap=True),#sns.color_palette("cubehelix_r", 10), "mask": (self.ratings == 0), "annot": True, "square": True, "linewidths": 1, "xticklabels": xticks, "yticklabels": yticks, "ax": main_ax, "cbar": False # "cbar_ax": cbar } average_opts = opts.copy() average_opts.update( {"yticklabels": False, "xticklabels": ["Average"], "ax": average_ax} ) if self.inverted: y_label, x_label = x_label, y_label average_opts.update( {"yticklabels": ["Average"], "xticklabels": False,} ) average_opts.pop("mask") sns.heatmap(self.ratings, **opts) sns.heatmap(self.season_averages, **average_opts) sm = plt.cm.ScalarMappable(cmap="YlOrRd", norm=plt.Normalize(vmin=0, vmax=1)) fig.colorbar(main_ax.collections[0], cax=cbar_ax) main_ax.set_xlabel(x_label) main_ax.set_ylabel(y_label) # plt.show() self.fig = fig def save_file(self, filename=None, output_dir=".", file_format="png"): if not self.fig: print( "Could not find a figure. Ensure that you have called the heatmap function." ) if filename is None: filename = format_filename(self.show_metadata["title"]) filename = f"{filename}.{file_format}" output_dir = Path(output_dir) if not Path.exists(output_dir): Path.mkdir(output_dir, parents=True) output_file = output_dir / filename self.fig.savefig(output_file, dpi=300, bbox_inches="tight", pad_inches=0.2) plt.close(self.fig) return output_file ``` #### File: popviz/reports/utils.py ```python import numpy as np from regex import regex as re def pad_nan(matrix): """ Take a jagged matrix, and convert it into square by filling all rows smaller than the longest with zeros. """ lens = np.array(list(map(len, matrix))) mask = np.arange(lens.max()) < lens[:, np.newaxis] output = np.empty(mask.shape, dtype=np.float) output.fill(np.nan) output[mask] = np.concatenate(matrix) return output def wrap_text(text, column_width=60): char_count = 0 lines = [] line = "" for word in text.split(" "): char_count += len(word) line += word + " " if char_count >= column_width: char_count = 0 lines.append(line) line = "" if line: lines.append(line) return lines def format_filename(string): string = string.lower() filename = re.sub(r"[<>:\'\"\/\|?.*]", "", string) filename = filename.replace(" ", "_") return filename ```
{ "source": "joshuanunn/algorithms_unlocked", "score": 4 }
#### File: algorithms_unlocked/algorithms/chapter3.py ```python import sys INF_INTEGER = sys.maxsize def binary_search(array, search_term): """ Binary search algorithm for finding an int in an array. Returns index of first instance of search_term or None. """ p = 0 r = len(array) - 1 while p <= r: q = (p + r) // 2 value = array[q] if value == search_term: return q elif value > search_term: r = q - 1 else: # value < search_term p = q + 1 return None def recursive_binary_search(array, search_term, p=0, r=None): """ Binary search algorithm for finding an int in an array, using recursion. Returns index of first instance of search_term or None. """ if r == None: r = len(array) - 1 if p > r: return None else: q = (p + r) // 2 value = array[q] if value == search_term: return q elif value > search_term: return recursive_binary_search(array, search_term, p, q - 1) else: # value < search_term return recursive_binary_search(array, search_term, q + 1, r) def selection_sort(array): """ Selection sort algorithm for sorting an array of ints. Returns sorted array. Running time = O(n2) to O(n2) """ A = array.copy() n = len(array) # Loop over the first to penultimate elements in array for i in range(0, n - 1): # Find smallest element in subarray smallest = i for j in range(i + 1, n): if A[j] < A[smallest]: smallest = j # Swap current element with smallest in subarray A[i], A[smallest] = A[smallest], A[i] return A def insertion_sort(array): """ Insertion sort algorithm for sorting an array of ints. Returns sorted array. Running time = O(n2) to O(n) """ A = array.copy() n = len(array) # Loop over the first to penultimate elements in array for i in range(1, n): # Find smallest element in subarray key = A[i] j = i - 1 while j >= 0 and A[j] > key: A[j + 1] = A[j] j -= 1 A[j + 1] = key return A def merge_sort(array, p=0, r=None): """ Merge sort algorithm for sorting an array of ints. Returns sorted array. Running time = O(n.lgn) """ if r is None: array = array.copy() r = len(array) if r - p <= 1: return q = (p + r + 1) // 2 merge_sort(array, p, q) merge_sort(array, q, r) merge(array, p, q, r) return array def merge(A, p, q, r): """ Merge sort supporting algorithm. """ # Using sort key of largest system integer to represent infinity B = A[p:q].copy() + [INF_INTEGER] C = A[q:r].copy() + [INF_INTEGER] i = 0 j = 0 for k in range(p, r): if B[i] <= C[j]: A[k] = B[i] i += 1 else: # B[i] > C[j] A[k] = C[j] j += 1 def quicksort(array, p=0, r=None): """ Quicksort algorithm for sorting an array of ints. Regular / deterministic algorithm. Running time = O(n2) to O(n.lgn) """ if r is None: array = array.copy() r = len(array) if r - p <= 1: return q = partition(array, p, r - 1) quicksort(array, p, q) quicksort(array, q + 1, r) return array def partition(A, p, r): """ Quicksort supporting algorithm. """ q = p for u in range(p, r): if A[u] <= A[r]: A[q],A[u] = A[u],A[q] q += 1 A[q],A[r] = A[r],A[q] return q ```
{ "source": "joshuanunn/python-ffi-demo", "score": 2 }
#### File: ffi_demo_ctypes/core/interface.py ```python import ctypes import numpy as np from ctypes import byref, POINTER, Structure from ctypes import c_char, c_double, c_int, c_ubyte from pathlib import Path MODULE_ROOT = Path(__file__).parent.resolve() C_UCHAR_SS = POINTER(POINTER(c_ubyte)) C_DOUBLE_SS = POINTER(POINTER(c_double)) PGCATS = {'A': 0, 'B': 1, 'C': 2, 'D': 3, 'E': 4, 'F': 5, 'G': 6} RESOLUTION = {'LOW': 0, 'MEDIUM': 1, 'HIGH': 2, 'EXTREME': 3} GRIDTYPE = {'PLAN': 0, 'SECTION': 1} ROUGHNESS = {'urban': 0, 'rural': 1} class MetHour(Structure): _fields_ = [ ('hours', c_int), ('wspd', c_double), ('wdir', c_double), #('temp', c_double), ('pgcat', c_int), ] class Domain(Structure): _fields_ = [ ('xr_min', c_int), ('xr_max', c_int), ('yr_min', c_int), ('yr_max', c_int), ('xh_min', c_int), ('xh_max', c_int), ('zh_min', c_int), ('zh_max', c_int), ('xr_spacing', c_int), ('yr_spacing', c_int), ('xh_spacing', c_int), ('zh_spacing', c_int), ('xr_points', c_int), ('yr_points', c_int), ('xh_points', c_int), ('zh_points', c_int) ] class Source(Structure): _fields_ = [ ('x', c_double), ('y', c_double), ('height', c_double), ('diameter', c_double), ('velocity', c_double), ('temp', c_double), ('emission', c_double) ] # Import compiled c code using ctypes try: _disperse = ctypes.CDLL(MODULE_ROOT / 'disperse.so') except: raise ValueError('C shared object file [disperse.so] is missing, complete module setup to compile.') ### Setup ctypes functions ### # double get_sigma_y(char pgcat, double x) _disperse.get_sigma_y.argtypes = [c_char, c_double] _disperse.get_sigma_y.restype = c_double # double get_sigma_z(char pgcat, double x) _disperse.get_sigma_z.argtypes = [c_char, c_double] _disperse.get_sigma_z.restype = c_double # double calc_uz(double uz_ref, double z, double z_ref, char pgcat, char roughness) _disperse.calc_uz.argtypes = [c_double, c_double, c_double, c_char, c_char] _disperse.calc_uz.restype = c_double # void plume_rise(double* dH, double* Xf, double us, double vs, double ds, double Ts, double Ta, char pgcat) _disperse.plume_rise.argtypes = [POINTER(c_double), POINTER(c_double), c_double, c_double, c_double, c_double, c_double, c_char] _disperse.plume_rise.restype = None # double conc(double x, double y, double z, double u_z, double Q, double H, double s_y, double s_z) _disperse.conc.argtypes = [c_double, c_double, c_double, c_double, c_double, c_double, c_double, c_double] _disperse.conc.restype = c_double # void iter_disp(double* rgrid, double* hgrid, Domain* domain, Source* source, MetHour* met) _disperse.iter_disp.argtypes = [C_DOUBLE_SS, C_DOUBLE_SS, POINTER(Domain), POINTER(Source), POINTER(MetHour)] _disperse.iter_disp.restype = None # void create_image(unsigned char* destgrid, double* grid, Domain* domain, bool vertical) _disperse.create_image.argtypes = [C_UCHAR_SS, C_DOUBLE_SS, POINTER(Domain), c_int] _disperse.create_image.restype = None # MetHour new_methour() _disperse.new_methour.argtypes = None _disperse.new_methour.restype = MetHour # Domain new_domain(int resolution) _disperse.new_domain.argtypes = [c_int] _disperse.new_domain.restype = Domain # Source new_source() _disperse.new_source.argtypes = None _disperse.new_source.restype = Source def get_sigma_y(pgcat, x): return _disperse.get_sigma_y(c_char(PGCATS[pgcat]), c_double(x)) def get_sigma_z(pgcat, x): return _disperse.get_sigma_z(c_char(PGCATS[pgcat]), c_double(x)) def calc_uz(uzref, z, zref, pgcat, roughness): return _disperse.calc_uz(c_double(uzref), c_double(z), c_double(zref), c_char(PGCATS[pgcat]), c_char(ROUGHNESS[roughness])) def wind_components(wind_components, e_r, n_r, e_s, n_s, sin_phi, cos_phi): return _disperse.wind_components(wind_components, c_double(e_r), c_double(n_r), c_double(e_s), c_double(n_s), c_double(sin_phi), c_double(cos_phi)) def plume_rise(dH, Xf, us, vs, ds, Ts, Ta, pgcat): return _disperse.plume_rise(dH, Xf, c_double(us), c_double(vs), c_double(ds), c_double(Ts), c_double(Ta), c_char(PGCATS[pgcat])) def conc(x, y, z, u_z, Q, H, s_y, s_z): return _disperse.conc(c_double(x), c_double(y), c_double(z), c_double(u_z), c_double(Q), c_double(H), c_double(s_y), c_double(s_z)) def new_methour(): return _disperse.new_methour() def new_domain(resolution): return _disperse.new_domain(c_int(RESOLUTION[resolution])) def new_source(): return _disperse.new_source() def iter_disp(r_grid_np, h_grid_np, domain, source, methour): return _disperse.iter_disp(r_grid_np.ctypes.data_as(C_DOUBLE_SS), h_grid_np.ctypes.data_as(C_DOUBLE_SS), byref(domain), byref(source), byref(methour)) def create_image(png_grid_np, grid_np, domain, gridtype): return _disperse.create_image(png_grid_np.ctypes.data_as(C_UCHAR_SS), grid_np.ctypes.data_as(C_DOUBLE_SS), byref(domain), c_int(GRIDTYPE[gridtype])) def new_grids(domain): r_grid = np.zeros((domain.xr_points * domain.yr_points), dtype=np.float64) h_grid = np.zeros((domain.xh_points * domain.zh_points), dtype=np.float64) return r_grid, h_grid def new_images(domain): r_image = np.zeros((domain.xr_points * domain.yr_points), dtype=np.uint8) h_image = np.zeros((domain.xh_points * domain.zh_points), dtype=np.uint8) return r_image, h_image ``` #### File: ffi_demo_ctypes/tests/runtests.py ```python import math import unittest from ..core import * class TestSigmaY(unittest.TestCase): """ Range of testcases for get_sigma_y function. """ def test_1(self): # stability class D, 0.5km downwind, example from: # http://faculty.washington.edu/markbenj/CEE357/CEE%20357%20air%20dispersion%20models.pdf self.assertAlmostEqual(get_sigma_y('D', 0.5), 36.146193496038) def test_2(self): # stability class A, 0.997km downwind self.assertAlmostEqual(get_sigma_y('A', 0.997), 208.157523627706) def test_3(self): # stability class B, 12.345m downwind self.assertAlmostEqual(get_sigma_y('B', 0.012345), 2.835970876943) def test_4(self): # stability class C, 27.85km downwind self.assertAlmostEqual(get_sigma_y('C', 27.85), 2025.696103458910) def test_5(self): # stability class D, 5.78m upwind self.assertTrue(math.isnan(get_sigma_y('D', -0.00578))) def test_6(self): # stability class E, 445m downwind self.assertAlmostEqual(get_sigma_y('E', 0.445), 24.275915684479) def test_7(self): # stability class F, 7.5558km downwind self.assertAlmostEqual(get_sigma_y('F', 7.5558), 210.931775211803) class TestSigmaZ(unittest.TestCase): """ Range of testcases for get_sigma_z function. """ def test_1(self): # stability class D, 0.5km downwind, example from: # http://faculty.washington.edu/markbenj/CEE357/CEE%20357%20air%20dispersion%20models.pdf self.assertAlmostEqual(get_sigma_z('D', 0.5), 18.296892641654) def test_2(self): # stability class D, 5.78m upwind self.assertTrue(math.isnan(get_sigma_z('D', -0.00578))) def test_3(self): # stability class A, 50m downwind self.assertAlmostEqual(get_sigma_z('A', 0.05), 7.246283645973) def test_4(self): # stability class A, 270m downwind self.assertAlmostEqual(get_sigma_z('A', 0.27), 41.523682287423) def test_5(self): # stability class A, 2.86km downwind self.assertAlmostEqual(get_sigma_z('A', 2.86), 4196.204889704382) def test_6(self): # stability class A, 54km downwind self.assertAlmostEqual(get_sigma_z('A', 54.0), 5000.0) def test_7(self): # stability class B, 50m downwind self.assertAlmostEqual(get_sigma_z('B', 0.05), 5.558326444834) def test_8(self): # stability class B, 270m downwind self.assertAlmostEqual(get_sigma_z('B', 0.27), 27.177523893054) def test_9(self): # stability class B, 2.86km downwind self.assertAlmostEqual(get_sigma_z('B', 2.86), 346.177898273921) def test_10(self): # stability class B, 54km downwind self.assertAlmostEqual(get_sigma_z('B', 54.0), 5000.0) def test_11(self): # stability class C, 50m downwind self.assertAlmostEqual(get_sigma_z('C', 0.05), 3.947711911749) def test_12(self): # stability class C, 270m downwind self.assertAlmostEqual(get_sigma_z('C', 0.27), 18.459902569036) def test_13(self): # stability class C, 2.86km downwind self.assertAlmostEqual(get_sigma_z('C', 2.86), 159.862915743170) def test_14(self): # stability class C, 54km downwind self.assertAlmostEqual(get_sigma_z('C', 54.0), 2348.910612301645) def test_15(self): # stability class D, 50m downwind self.assertAlmostEqual(get_sigma_z('D', 0.05), 2.545334368597) def test_16(self): # stability class D, 270m downwind self.assertAlmostEqual(get_sigma_z('D', 0.27), 11.034101898944) def test_17(self): # stability class D, 2.86km downwind self.assertAlmostEqual(get_sigma_z('D', 2.86), 63.142784897226) def test_18(self): # stability class D, 54km downwind self.assertAlmostEqual(get_sigma_z('D', 54.0), 339.310493995667) def test_19(self): # stability class E, 50m downwind self.assertAlmostEqual(get_sigma_z('E', 0.05), 1.979015073784) def test_20(self): # stability class E, 270m downwind self.assertAlmostEqual(get_sigma_z('E', 0.27), 7.978143439122) def test_21(self): # stability class E, 2.86km downwind self.assertAlmostEqual(get_sigma_z('E', 2.86), 41.083717338729) def test_22(self): # stability class E, 54km downwind self.assertAlmostEqual(get_sigma_z('E', 54.0), 155.031915174584) def test_23(self): # stability class F, 50m downwind self.assertAlmostEqual(get_sigma_z('F', 0.05), 1.321315762922) def test_24(self): # stability class F, 270m downwind self.assertAlmostEqual(get_sigma_z('F', 0.27), 5.178781257565) def test_25(self): # stability class F, 2.86km downwind self.assertAlmostEqual(get_sigma_z('F', 2.86), 26.282658227590) def test_26(self): # stability class F, 54km downwind self.assertAlmostEqual(get_sigma_z('F', 54.0), 80.882017663045) class TestCalcUz(unittest.TestCase): """ Testcase for calc_uz function. """ def test_1(self): uzref = 3.5 z = 100.0 zref = 10.0 pgcat = 'D' roughness = 'rural' u_adj = calc_uz(uzref, z, zref, pgcat, roughness) self.assertAlmostEqual(u_adj, 4.943881406180) uzref = 10.0 z = 50.0 zref = 45.0 pgcat = 'A' roughness = 'urban' u_adj = calc_uz(uzref, z, zref, pgcat, roughness) self.assertAlmostEqual(u_adj, 10.159296222811) class TestPlumeRise(unittest.TestCase): """ Testcase for plume_rise function. """ def test_1(self): # Example from: # https://ceprofs.civil.tamu.edu/qying/cven301_fall2014_arch/lecture7_c.pdf vs = 20.0 # m/s ds = 5.0 # m U = 6.0 # m/s Ts = 400.0 # K Ta = 280.0 # K pgcat = 'D' dH = c_double(0.0) Xf = c_double(0.0) plume_rise(byref(dH), byref(Xf), U, vs, ds, Ts, Ta, pgcat) self.assertAlmostEqual(dH.value, 223.352113600373) self.assertAlmostEqual(Xf.value, 1264.034881130080) class TestConc(unittest.TestCase): """ Testcase for conc function. """ def test_1(self): # Example from: # http://faculty.washington.edu/markbenj/CEE357/CEE%20357%20air%20dispersion%20models.pdf x = 0.5 # 500 m downwind y = 0.0 # along plume centreline z = 0.0 # ground level u_z = 6.0 # 6 m/s wind speed at height of 50 m pgcat = 'D' # Neutral stability # Source centred on (0,0), height 50 m, 10 g/s mass emission rate Q = 10.0 # source.emission H = 50.0 # source.height # Calculate concentration at (x,y,z) == 19.2 ug/m3 s_y = get_sigma_y(pgcat, x) s_z = get_sigma_z(pgcat, x) test_conc = conc(x, y, z, u_z, Q, H, s_y, s_z) self.assertAlmostEqual(test_conc, 1.917230120488e-05) class TestIterDisp(unittest.TestCase): """ Testcase for iter_disp function. """ def test_1(self): domain = new_domain('MEDIUM') source = new_source() methour = new_methour() source.height = 10.0 source.temp = 100.0 source.emission = 1.0 source.velocity = 10.0 source.diameter = 0.5 methour.hours = 1 methour.wspd = 2.0 methour.wdir = 130.0 * math.pi / 180.0 methour.pgcat = PGCATS['A'] r_grid, h_grid = new_grids(domain) iter_disp(r_grid, h_grid, domain, source, methour) self.assertAlmostEqual(r_grid[23 * 250 + 14], 6.366502967443e-08) self.assertAlmostEqual(h_grid[41 * 250 + 181], 3.963714618520e-07) class TestCreateImage(unittest.TestCase): """ Testcase for create_image function. """ def test_1(self): domain = new_domain('MEDIUM') source = new_source() methour = new_methour() source.height = 10.0 source.temp = 100.0 source.emission = 1.0 source.velocity = 10.0 source.diameter = 0.5 methour.hours = 1 methour.wspd = 2.0 methour.wdir = 130.0 * math.pi / 180.0 methour.pgcat = PGCATS['A'] r_grid, h_grid = new_grids(domain) iter_disp(r_grid, h_grid, domain, source, methour) r_grid_image, h_grid_image = new_images(domain) create_image(r_grid_image, r_grid, domain, 'PLAN') create_image(h_grid_image, h_grid, domain, 'SECTION') self.assertAlmostEqual(r_grid_image[48 * 250 + 17], 6) self.assertAlmostEqual(r_grid_image[87 * 250 + 80], 8) if __name__ == '__main__': unittest.main() ```
{ "source": "joshuanwalker/VRM_IMPORTER_for_Blender2_8", "score": 2 }
#### File: VRM_IMPORTER_for_Blender2_8/importer/binaly_loader.py ```python import struct from ..gl_const import GL_CONSTANS class Binaly_Reader: def __init__(self, data: bytes)->None: self.data = data self.pos = 0 def set_pos(self, pos): self.pos = pos def read_str(self, size): result = self.data[self.pos: self.pos + size] self.pos += size return result.decode("utf-8") def read_binaly(self, size): result = self.data[self.pos: self.pos + size] self.pos += size return result def read_uint(self): #unpackは内容の個数に関わらずタプルで返すので[0]が必要 result = struct.unpack('<I',self.data[self.pos:self.pos + 4])[0] self.pos += 4 return result def read_int(self): result = struct.unpack('<i', self.data[self.pos:self.pos + 4])[0] self.pos += 4 return result def read_ushort(self): result = struct.unpack('<H', self.data[self.pos:self.pos + 2])[0] self.pos += 2 return result def read_short(self): result = struct.unpack('<h', self.data[self.pos:self.pos + 2])[0] self.pos += 2 return result def read_float(self): result = struct.unpack('<f', self.data[self.pos:self.pos + 4])[0] self.pos += 4 return result def read_ubyte(self): result = struct.unpack('<B', self.data[self.pos:self.pos + 1])[0] self.pos += 1 return result def read_as_dataType(self,dataType:GL_CONSTANS): if dataType == GL_CONSTANS.UNSIGNED_INT: return self.read_uint() elif dataType == GL_CONSTANS.INT: return self.read_int() elif dataType == GL_CONSTANS.UNSIGNED_SHORT: return self.read_ushort() elif dataType == GL_CONSTANS.SHORT: return self.read_short() elif dataType == GL_CONSTANS.FLOAT: return self.read_float() elif dataType == GL_CONSTANS.UNSIGNED_BYTE: return self.read_ubyte() else: print("unsuppoted type : {}".format(dataType)) raise Exception if "__main__" == __name__: Binaly_Reader(None) ``` #### File: VRM_IMPORTER_for_Blender2_8/misc/armature_maker.py ```python import bpy from mathutils import Matrix from math import radians,sqrt import json class ICYP_OT_MAKE_ARAMATURE(bpy.types.Operator): bl_idname = "icyp.make_basic_armature" bl_label = "(WIP)basic armature" bl_description = "make armature and simple setup for VRM export" bl_options = {'REGISTER', 'UNDO'} #身長 at meter tall: bpy.props.FloatProperty(default=1.70, min=0.3, step=0.001) #頭身 head_ratio: bpy.props.FloatProperty(default=8.0, min=4, step=0.05) #足-胴比率:0:子供、1:大人 に近くなる(低等身で有効) aging_ratio: bpy.props.FloatProperty(default=0.5, min=0, max=1, step=0.1) #目の奥み eye_depth: bpy.props.FloatProperty(default=-0.03, min=-0.1, max=0, step=0.005) #肩幅 shoulder_in_width: bpy.props.FloatProperty(default=0.2125, min=0.01, step=0.005) shoulder_width: bpy.props.FloatProperty(default=0.08, min=0.01, step=0.005) #腕長さ率 arm_length_ratio : bpy.props.FloatProperty(default=1, min=0.5, step=0.01) #手 hand_size :bpy.props.FloatProperty(default=0.18, min=0.01, step=0.005) finger_1_2_ratio :bpy.props.FloatProperty(default=0.75, min=0.5,max=1, step=0.005) finger_2_3_ratio :bpy.props.FloatProperty(default=0.75, min=0.5,max=1, step=0.005) #足 leg_length_ratio : bpy.props.FloatProperty(default=0.5, min=0.3, max=0.6,step=0.01) leg_width: bpy.props.FloatProperty(default=0.1, min=0.01, step=0.005) leg_size: bpy.props.FloatProperty(default=0.26, min=0.05, step=0.005) def execute(self, context): armature,compare_dict = self.make_armature(context) self.setup_as_vrm(armature,compare_dict) return {"FINISHED"} def make_armature(self, context): bpy.ops.object.add(type='ARMATURE', enter_editmode=True, location=(0,0,0)) armature = context.object armature.name = "skelton" armature.show_in_front = True bone_dic = {} def bone_add(name, head_pos, tail_pos, parent_bone=None): added_bone = armature.data.edit_bones.new(name) added_bone.head = head_pos added_bone.tail = tail_pos if parent_bone is not None: added_bone.parent = parent_bone bone_dic.update({name:added_bone}) return added_bone def x_mirror_bones_add(base_name, right_head_pos, right_tail_pos, parent_bones): left_bone = bone_add(base_name + "_L", right_head_pos, right_tail_pos, parent_bones[0]) right_bone = bone_add(base_name + "_R", [pos*axis for pos, axis in zip(right_head_pos, (-1, 1, 1))], [pos*axis for pos, axis in zip(right_tail_pos, (-1, 1, 1))], parent_bones[1] ) return left_bone,right_bone def x_add(posA, add_x): pos = [pA + _add for pA, _add in zip(posA, [add_x, 0, 0])] return pos def y_add(posA, add_y): pos = [pA + _add for pA, _add in zip(posA, [0, add_y, 0])] return pos def z_add(posA, add_z): pos = [pA+_add for pA,_add in zip(posA,[0,0,add_z])] return pos root = bone_add("root", (0, 0, 0), (0, 0,0.3)) head_size = self.tall / self.head_ratio #down side (前は8頭身の時の股上/股下の股下側割合、後ろは4頭身のときの〃を年齢具合で線形補完)(股上高めにすると破綻する) eight_upside_ratio, four_upside_ratio = 1-self.leg_length_ratio, (2.5/4)*(1-self.aging_ratio)+(1-self.leg_length_ratio)*self.aging_ratio hip_up_down_ratio = eight_upside_ratio * (1 - (8 - self.head_ratio) / 4) + four_upside_ratio * (8 - self.head_ratio) / 4 #チェスト下とチェスト~首の割合 upper_chest_neck_ratio = (1-(8-self.head_ratio)/4)*(1/3) + ((8-self.head_ratio)/4)*0.1 #体幹 neck_len = (1-upper_chest_neck_ratio)*(self.tall*(1-hip_up_down_ratio)/2)/3 upper_chest_len = (self.tall*hip_up_down_ratio - head_size - neck_len)/3 chest_len = upper_chest_len spine_len = chest_len Hips = bone_add("Hips", (0,0, self.tall*(1-hip_up_down_ratio) ), (0,0.1,self.tall*(1-hip_up_down_ratio)),root) Spine = bone_add("Spine",Hips.head,z_add(Hips.head,spine_len),Hips) Chest = bone_add("Chest", Spine.tail, z_add(Spine.tail,chest_len), Spine) upperChest = bone_add("upperChest", Chest.tail, z_add(Chest.tail,upper_chest_len), Chest) Neck = bone_add("Neck", upperChest.tail, z_add(upperChest.tail,neck_len), upperChest) Head = bone_add("Head", (0,0, self.tall-head_size), (0,0, self.tall), Neck) #目 eye_depth = self.eye_depth eyes = x_mirror_bones_add("eye", (head_size / 5, 0, Head.head[2] + head_size / 2), (head_size / 5, eye_depth, Head.head[2] + head_size / 2), (Head, Head)) #足 leg_width = self.leg_width leg_size = self.leg_size leg_bone_lengh =( self.tall*(1-hip_up_down_ratio) - self.tall*0.05 )/2 upside_legs = x_mirror_bones_add("Upper_Leg", x_add(Hips.head, leg_width), z_add(x_add(Hips.head, leg_width), -leg_bone_lengh), (Hips, Hips) ) lower_legs = x_mirror_bones_add("Lower_Leg", upside_legs[0].tail, (leg_width,0,self.tall*0.05), upside_legs ) Foots = x_mirror_bones_add("Foot", lower_legs[0].tail, (leg_width,-leg_size*(2/3),0), lower_legs ) Toes = x_mirror_bones_add("Toes", Foots[0].tail, (leg_width,-leg_size,0), Foots ) #肩~指 shoulder_in_pos = self.shoulder_in_width / 2 shoulders = x_mirror_bones_add("shoulder", x_add(upperChest.tail, shoulder_in_pos), x_add(upperChest.tail, shoulder_in_pos + self.shoulder_width), (upperChest,upperChest)) arm_lengh = head_size * (1*(1-(self.head_ratio-6)/2)+1.5*((self.head_ratio-6)/2)) * self.arm_length_ratio arms = x_mirror_bones_add("Arm", shoulders[0].tail, x_add(shoulders[0].tail,arm_lengh), shoulders) hand_size = self.hand_size forearms = x_mirror_bones_add("forearm", arms[0].tail, #グーにするとパーの半分くらいになる、グーのとき手を含む下腕の長さと上腕の長さが概ね一緒 x_add(arms[0].tail,arm_lengh - hand_size/2), arms) hands = x_mirror_bones_add("hand", forearms[0].tail, x_add(forearms[0].tail,hand_size/2), forearms ) def fingers(finger_name,proximal_pos,finger_len_sum): finger_normalize = 1/(self.finger_1_2_ratio*self.finger_2_3_ratio+self.finger_1_2_ratio+1) proximal_finger_len = finger_len_sum*finger_normalize intermediate_finger_len = finger_len_sum*finger_normalize*self.finger_1_2_ratio distal_finger_len = finger_len_sum*finger_normalize*self.finger_1_2_ratio*self.finger_2_3_ratio proximal_bones = x_mirror_bones_add(f"{finger_name}_proximal",proximal_pos,x_add(proximal_pos,proximal_finger_len),hands) intermediate_bones = x_mirror_bones_add(f"{finger_name}_intermidiate",proximal_bones[0].tail,x_add(proximal_bones[0].tail,intermediate_finger_len),proximal_bones) distal_bones = x_mirror_bones_add(f"{finger_name}_distal",intermediate_bones[0].tail,x_add(intermediate_bones[0].tail,distal_finger_len),intermediate_bones) return proximal_bones,intermediate_bones,distal_bones finger_y_offset = -hand_size/10 thumbs = fingers( "finger_thumbs", y_add(hands[0].head,finger_y_offset - hand_size/5), hand_size/2 ) mats = [thumbs[0][i].matrix.translation for i in [0,1]] mats = [Matrix.Translation(mat) for mat in mats] for j in range(3): for n,angle in enumerate([-45,45]): thumbs[j][n].transform( mats[n].inverted() ) thumbs[j][n].transform( Matrix.Rotation(radians(angle),4,"Z") ) thumbs[j][n].transform( mats[n] ) index_fingers = fingers( "finger_index", y_add(hands[0].tail,-hand_size/5 +finger_y_offset), (hand_size/2)-(1/2.3125)*(hand_size/2)/3 ) middle_fingers = fingers( "finger_middle", y_add(hands[0].tail,finger_y_offset), hand_size/2 ) ring_fingers = fingers( "finger_ring", y_add(hands[0].tail,hand_size/5 +finger_y_offset), (hand_size/2)-(1/2.3125)*(hand_size/2)/3 ) little_fingers = fingers( "finger_little", y_add(hands[0].tail,2*hand_size/5 +finger_y_offset), ((hand_size/2)-(1/2.3125)*(hand_size/2)/3) * ((1/2.3125)+(1/2.3125)*0.75) ) #'s is left,right tupple body_dict = { "hips":Hips.name, "spine":Spine.name, "chest":Chest.name, "upperChest":upperChest.name, "neck":Neck.name, "head":Head.name } left_right_body_dict = { f"{left_right}{bone_name}":bones[lr].name for bone_name,bones in { "Eye":eyes, "UpperLeg":upside_legs, "LowerLeg":lower_legs, "Foot":Foots, "Toes":Toes, "Shoulder":shoulders, "UpperArm":arms, "LowerArm":forearms, "Hand":hands }.items() for lr,left_right in enumerate(["left","right"]) } #VRM finger like name key fingers_dict={ f"{left_right}{finger_name}{position}":finger[i][lr].name for finger_name,finger in zip(["Thumb","Index","Middle","Ring","Little"],[thumbs,index_fingers,middle_fingers,ring_fingers,little_fingers]) for i,position in enumerate(["Proximal","Intermediate","Distal"]) for lr,left_right in enumerate(["left","right"]) } #VRM bone name : blender bone name bone_name_all_dict = {} bone_name_all_dict.update(body_dict) bone_name_all_dict.update(left_right_body_dict) bone_name_all_dict.update(fingers_dict) context.scene.update() bpy.ops.object.mode_set(mode='OBJECT') return armature,bone_name_all_dict def setup_as_vrm(self,armature,compaire_dict): for vrm_bone_name,blender_bone_name in compaire_dict.items(): armature.data.bones[blender_bone_name]["humanBone"] = vrm_bone_name def write_textblock_and_assgin_to_armature(block_name,value): text_block = bpy.data.texts.new(name=f"{armature.name}_{block_name}.json") text_block.write(json.dumps(value,indent = 4)) armature[f"{block_name}"] = text_block.name #param_dicts are below of this method write_textblock_and_assgin_to_armature("humanoid_params",self.humanoid_params) write_textblock_and_assgin_to_armature("firstPerson_params",self.firstPerson_params) write_textblock_and_assgin_to_armature("blendshape_group",self.blendshape_group) write_textblock_and_assgin_to_armature("spring_bone",[]) vrm_metas = [ "version",#model version (not VRMspec etc) "author", "contactInformation", "reference", "title", "otherPermissionUrl", "otherLicenseUrl" ] for v in vrm_metas: armature[v] = "" required_vrm_metas = { "allowedUserName":"Disallow", "violentUssageName":"Disallow", "sexualUssageName":"Disallow", "commercialUssageName":"Disallow", "licenseName":"Redistribution_Prohibited", } for k,v in required_vrm_metas.items(): armature[k] = v return humanoid_params = { "armStretch": 0.05, "legStretch": 0.05, "upperArmTwist": 0.5, "lowerArmTwist": 0.5, "upperLegTwist": 0.5, "lowerLegTwist": 0.5, "feetSpacing": 0, "hasTranslationDoF": False } firstPerson_params = { "firstPersonBone": "Head", "firstPersonBoneOffset": { "x": 0, "y": 0, "z": 0 }, "meshAnnotations": [], "lookAtTypeName": "Bone", "lookAtHorizontalInner": { "curve": [ 0,0,0,1, 1,1,1,0 ], "xRange": 90, "yRange": 8 }, "lookAtHorizontalOuter": { "curve": [ 0,0,0,1, 1,1,1,0 ], "xRange": 90, "yRange": 12 }, "lookAtVerticalDown": { "curve": [ 0,0,0,1, 1,1,1,0 ], "xRange": 90, "yRange": 10 }, "lookAtVerticalUp": { "curve": [ 0,0,0,1, 1,1,1,0 ], "xRange": 90, "yRange": 10 } } blendshape_group = [ { "name": "Neutral", "presetName": "neutral", "binds": [], "materialValues": [] }, { "name": "A", "presetName": "a", "binds": [], "materialValues": [] } ] #TODO spring_bone sample ```
{ "source": "joshuaochia/Django-API-eComemrce", "score": 2 }
#### File: api_project/core/models.py ```python from django.db import models from django.contrib.auth.models import ( AbstractBaseUser, BaseUserManager, PermissionsMixin ) from django.utils.text import slugify from django.dispatch import receiver from django.db.models.signals import post_save from django.conf import settings from django_countries.fields import CountryField from products.models import ProductVariant # from colorfield import fields class UserManager(BaseUserManager): """ Creates and save a User with the given email, username, firstname, lastname, and password. """ # Create User def create_user( self, username, email, first_name, last_name, password=None ): # check if there's username and email if not email and username: raise ValueError('User must have an email and username') # Create a user using the params of create_user user = self.model( username=username, email=self.normalize_email(email), first_name=first_name, last_name=last_name, ) # set password then hash it and saving the new model user.set_password(password) user.save(using=self._db) return user # Create super user def create_superuser( self, username, email, first_name, last_name, password ): # using the create_user function to create new user user = self.create_user( username, email, first_name, last_name, password ) # setting the new user to admin and superuser user.is_admin = True user.is_superuser = True user.is_staff = True # saving the changes and returning it user.save(using=self._db) return User class User(AbstractBaseUser, PermissionsMixin): """ Custom User """ email = models.EmailField( verbose_name='email address', max_length=255, unique=True ) username = models.CharField(max_length=55, unique=True) first_name = models.CharField(max_length=255) last_name = models.CharField(max_length=255) is_active = models.BooleanField(default=True) is_admin = models.BooleanField(default=False) is_superuser = models.BooleanField(default=False) is_staff = models.BooleanField(default=False) """ Fields """ USERNAME_FIELD = 'username' REQUIRED_FIELDS = ['email', 'first_name', 'last_name'] """ Creating user Handler """ objects = UserManager() def __str__(self): # string representation for DB return f'{self.username}' def has_perm(self, perm, obj=None): # User permission return True def has_module_perms(self, app_label): # User permission to view the ap modules return True class Profile(models.Model): """ Separate Profile for security """ profile = models.ImageField(upload_to='profile_pics/') slug = models.SlugField() user = models.OneToOneField( settings.AUTH_USER_MODEL, on_delete=models.CASCADE, related_name='profiles' ) full_name = models.CharField(max_length=256) first_name = models.CharField(max_length=256) last_name = models.CharField(max_length=256) cart_cost = models.IntegerField(null=True) def save(self, *args, **kwargs): self.full_name = f'{self.user.first_name} {self.user.last_name}' self.slug = slugify(self.user.username) return super().save(*args, **kwargs) def __str__(self): return f'{self.first_name} {self.last_name}' class ProfileCartManager(models.Manager): """ Managing cart item when created""" def create(self, profile, product, quantity, cost,): # Add the new cost to user current cart cost. money = cost * quantity profile.cart_cost += money # create the cart cart = self.model( profile=profile, product=product, quantity=quantity, cost=cost ) # saving both changes profile.save() cart.save(using=self._db) return cart class ProfileProductCart(models.Model): """ Creating a cart item specific for one product """ profile = models.ForeignKey( Profile, on_delete=models.CASCADE, ) product = models.ForeignKey( ProductVariant, on_delete=models.CASCADE, related_name='cart_p', null=True ) quantity = models.PositiveSmallIntegerField() cost = models.PositiveSmallIntegerField() objects = ProfileCartManager() # Create a profile instance after the user is created @receiver(post_save, sender=User) def after_user_created(sender, instance, created, **kwargs): profile = Profile() profile.user = instance profile.slug = instance.username profile.first_name = instance.first_name profile.last_name = instance.last_name profile.save() class Address(models.Model): """ Address connected to single user """ # Different address may apply for buying products user = models.ForeignKey( settings.AUTH_USER_MODEL, on_delete=models.CASCADE, related_name='user_address' ) street_address = models.CharField(max_length=255) apartment_address = models.CharField(max_length=255) country = CountryField() zip_code = models.IntegerField() default = models.BooleanField(default=True) def __str__(self): return f'{self.user} Address' ```
{ "source": "joshuaochia/School-Management-API", "score": 2 }
#### File: finance/test/test_check_signals.py ```python from school.test.test_api_school_department import department_sample from django.contrib.auth import get_user_model from django.test import Client from django.test import TestCase from django.urls import reverse from rest_framework import status from .. import models from students.models import Students from school.models import ( Courses, School, Schedule, Section, TeacherSubject, Subjects, Employees ) from faker import Faker import random fake = Faker() def sched_sample(): days = [ ('Monday', 'Monday'), ('Tuesday', 'Tuesday'), ('Wednesday', 'Wednesday'), ('Thursday', 'Thursday'), ('Friday', 'Friday'), ('Saturday', 'Saturday'), ('Sunday', 'Sunday'), ] sched = Schedule.objects.create( start=fake.time(), end=fake.time(), day=random.choice(days)[0] ) return sched def section_sample(): return Section.objects.create(name='Sample', code='Sample') def subject_sample(sample_course, school): sub = Subjects.objects.create( name='TEST SUB', course=sample_course, unit=0, lab=0, cost = 200, school = school ) return sub def teacher_sub_sample(subject, schedule, section): teach_sub = TeacherSubject.objects.create( subject=subject, schedule=schedule, section=section ) return teach_sub def sample_students(school, course): user = get_user_model().objects.create_user( email='<EMAIL>', password='<PASSWORD>', first_name='Test', last_name='User', middle_name='Test', ) student = Students.objects.create( user=user, school=school, course=course, ) return student def school_sample(): school = School.objects.create( name='Test School', vision='Test Vision', mission='Test Mission', street='Test Street', city='Test City', zip_code='900' ) return school def course_sample(school_sample): course = Courses.objects.create( school=school_sample, course='Bachelor of Science in Business', major='Marketing' ) return course class StudentBalanceTest(TestCase): def setUp(self) -> None: self.client = Client() self.school = school_sample() self.course = course_sample(self.school) self.student = sample_students(self.school, self.course) self.sub = subject_sample(self.course, self.school) self.sched = sched_sample() self.section = section_sample() self.teach_sub = teacher_sub_sample( subject=self.sub, schedule=self.sched, section=self.section ) def test_student_signal(self): all_balance = models.StudentBalance.objects.all() self.assertEqual(len(all_balance), 1) self.assertIn(self.student.bal, all_balance) def test_student_payment(self): self.student.bal.balance = 3000 self.student.bal.save() payment= models.StudentPayment.objects.create( balance = self.student.bal, money = 200 ) all_payments = models.StudentPayment.objects.all() self.student.bal.refresh_from_db() self.assertEqual(len(all_payments), 1) self.assertEqual(self.student.bal.balance, 2800) def test_student_add_sub(self): self.student.bal.balance = 0 self.student.bal.save() student_sub = models.StudentSubject.objects.create( student = self.student, subject = self.teach_sub ) self.student.bal.refresh_from_db() self.assertEqual(self.student.bal.balance, 200) class EmployeeSalaryTest(TestCase): def setUp(self): self.user = get_user_model().objects.create_user( email='<EMAIL>', first_name='Normal', last_name='User', middle_name='placeholder', password='<PASSWORD>' ) self.created_by = get_user_model().objects.create_superuser( email='<EMAIL>', first_name='created', last_name='User', middle_name='By', password='<PASSWORD>' ) self.school = school_sample() self.department = department_sample(self.school) self.employee = Employees.objects.create( created_by=self.created_by, user=self.user, school=self.school, department=self.department, rate=365, days_week=5, salary=5000 ) def test_employee_leave(self): emp_ot = models.EmployeeOT.objects.create( salary=self.employee, hrs=2, day=fake.date() ) all_ot = models.EmployeeOT.objects.all() self.assertEqual(len(all_ot), 1) emp_ot.salary.refresh_from_db() total = int(5000 + (365/8) * 2) # emp = Employees.refresh_from_db() self.assertEqual(self.employee.salary, total) def test_employee_ot(self): emp_leave = models.EmployeeLeave.objects.create( salary=self.employee, day=fake.date() ) emp_leave.salary.refresh_from_db() self.assertEqual(self.employee.salary, 4635) ``` #### File: school/api/serializers.py ```python from rest_framework import serializers from .. import models from django.contrib.auth import get_user_model from django_countries.serializers import CountryFieldMixin class OwnProfileSerializer(serializers.ModelSerializer): """ Serializer for editing your own profile as an employee """ school = serializers.StringRelatedField(read_only=True) class Meta: model = models.Employees fields = ( 'id', 'bday', 'city', 'zip_code', 'sex', 'civil_status', 'department', 'school', 'user', 'slug' ) read_only_fields = ('id', 'school', 'user', 'department') class EmployeesSerializer(serializers.ModelSerializer): """ Only For Creating New Employees and Listing all of them """ password = serializers.CharField( style={"input_type": "password"}, write_only=True ) email = serializers.EmailField(write_only=True) first_name = serializers.CharField(max_length=99, write_only=True) last_name = serializers.CharField(max_length=99, write_only=True) middle_name = serializers.CharField(max_length=99, write_only=True) class Meta: model = models.Employees fields = '__all__' read_only_fields = ( 'id','school', 'slug', 'created_by', 'user', 'is_hr', 'is_employee', 'is_teacher' ) def create(self, validated_data): email = validated_data.pop('email') f_name = validated_data.pop('first_name') l_name = validated_data.pop('last_name') m_name = validated_data.pop('middle_name') password = validated_data.pop('password') user = get_user_model().objects.create_user( email=email, first_name=f_name, last_name=l_name, password=password, middle_name=m_name ) validated_data['user'] = user position = validated_data.get('position') if position == 'Teacher': validated_data['is_teacher'] = True if position == 'HR': validated_data['is_hr'] = True return super().create(validated_data) class CoursesSerializer(serializers.ModelSerializer): """ Serializer for Courses model - for editing, adding, and deleting. """ class Meta: model = models.Courses fields = '__all__' read_only_fields = ('id', 'school') class DepartmentSerializer(serializers.ModelSerializer): """ Serializer for department model - for editing, adding, and deleting. """ class Meta: model = models.Department fields = '__all__' read_only_fields = ('id', 'school') class PoliciesSerializer(serializers.ModelSerializer): """ Serializer for policies model - for editing, adding, and deleting. """ class Meta: model = models.Policies fields = '__all__' read_only_fields = ('id', 'school') class SchoolSerializer(CountryFieldMixin, serializers.ModelSerializer): """ Serialzier for the school """ policies = PoliciesSerializer(many=True, read_only=True) departments = DepartmentSerializer(many=True, read_only=True) courses = CoursesSerializer(many=True, read_only=True) class Meta: model = models.School fields = ( 'id', 'name', 'vision', 'mission', 'country', 'street', 'city', 'zip_code', 'date_funded', 'policies', 'departments', 'courses', 'employees', ) read_only_fields = ('id', ) class SectionSerializer(serializers.ModelSerializer): """ Save new student.models.section or edit existing one """ class Meta: model = models.Section fields = '__all__' read_only_fields = ('id',) class ScheduleSerializer(serializers.ModelSerializer): """ Save new student.models.Schedule or edit existing one """ class Meta: model = models.Schedule fields = '__all__' read_only_fields = ('id',) class SubjectSerializer(serializers.ModelSerializer): """ Create new subject for the school. Also: Nested serializer for StudentSubjectSerializer for reading """ schedule = serializers.StringRelatedField(read_only=True) section = serializers.StringRelatedField(read_only=True) class Meta: model = models.Subjects fields = '__all__' read_only_fields = ('id',) class TeacherAddSubject(serializers.ModelSerializer): section = serializers.StringRelatedField(read_only=True) subject = serializers.StringRelatedField(read_only=True) schedule = serializers.StringRelatedField(read_only=True) section_id = serializers.PrimaryKeyRelatedField( queryset=models.Section.objects.all(), write_only=True ) subject_id = serializers.PrimaryKeyRelatedField( queryset=models.Subjects.objects.all(), write_only=True ) schedule_id = serializers.PrimaryKeyRelatedField( queryset=models.Schedule.objects.all(), write_only=True ) class Meta: model = models.TeacherSubject fields = '__all__' read_only_fields = ('id', 'teacher') def create(self, validated_data): section_id = validated_data.pop('section_id') schedule_id = validated_data.pop('schedule_id') subject_id = validated_data.pop('subject_id') validated_data['subject'] = subject_id validated_data['section'] = section_id validated_data['schedule'] = schedule_id q = models.TeacherSubject.objects.create(**validated_data) return q ``` #### File: management/commands/policies.py ```python from django.core.management.base import BaseCommand from django.shortcuts import get_object_or_404 from school.models import Policies, School from faker import Faker fake = Faker() class Command(BaseCommand): help = 'Populate fake Policies data' def add_arguments(self, parser): parser.add_argument('first', type=int, help='A number less than 100') def handle(self, *args, **options): school = get_object_or_404(School, pk=1) success = 0 for _ in range(options['first']): policy = Policies.objects.get_or_create( policy=fake.text(), school=school ) if policy[1]: policy[0].save() self.stdout.write(self.style.SUCCESS('Creating data....')) success += 1 else: self.stdout.write( self.style.WARNING('Duplicated data found..') ) self.stdout.write( self.style.SUCCESS(f'Success, created {success} fake data') ) ``` #### File: school/test/test_api_school_policy.py ```python from django.contrib.auth import get_user_model from rest_framework.test import APIClient from django.test import TestCase from django.urls import reverse from rest_framework import status from .. import models from school.api import serializers def detail_url(school_id): return reverse('api_school:institution-detail', args=[school_id]) def school_sample(): school = models.School.objects.create( name='Test School', vision='Test Vision', mission='Test Mission', street='Test Street', city='Test City', zip_code='900' ) return school def policy_sample(school_sample): policy = models.Policies.objects.create( school=school_sample, policy='Sample' ) return policy def school_policy_url(school_id): return reverse('api_school:institution-policies', args=[school_id]) class PoliciesPublicAPI(TestCase): """ TDD for end point institution-policies and institution-detail """ def setUp(self) -> None: self.client = APIClient() def test_school_detail(self): """ *Check for getting a detail view with no authentication Expected result: 200 """ school = school_sample() url = detail_url(school.id) res = self.client.get(url) self.assertEqual(res.status_code, status.HTTP_200_OK) def test_school_policies_get_post(self): """ * Check for getting the API if not authorized Expected result: 200 * Check for posting with no authentication Expected result: 401 * Check if the data posted is not created Excpected result: False """ school = school_sample() policy_sample(school) data = { 'school': school, 'policy': 'sample' } url = school_policy_url(school.id) res = self.client.get(url) res2 = self.client.post(url, data) object = models.Policies.objects.filter(**data).exists() self.assertEqual(res2.status_code, status.HTTP_401_UNAUTHORIZED) self.assertEqual(res.status_code, status.HTTP_200_OK) self.assertFalse(object) class PoliciesPrivateAPI(TestCase): def setUp(self) -> None: self.user = get_user_model().objects.create_user( email='<EMAIL>', first_name='Normal', last_name='User', middle_name='placeholder', password='<PASSWORD>' ) self.client = APIClient() self.client.force_authenticate(self.user) def test_policy_user_post_get(self): """ *Check if the get method is avail if user authenticated Expected result: 200 *Check if the status code for posting with authenticated user Expected result: 403 *Check if the model is created after posting Expected result: False """ school = school_sample() data = { 'school': school, 'policy': 'sample' } url = school_policy_url(school.id) res = self.client.get(url) res2 = self.client.post(url, data) object = models.Policies.objects.filter(**data).exists() self.assertEqual(res.status_code, status.HTTP_200_OK) self.assertEqual(res2.status_code, status.HTTP_403_FORBIDDEN) self.assertFalse(object) class PolicySuperuserAPI(TestCase): """ TDD for end point institution-policies if superuser """ def setUp(self) -> None: self.user = get_user_model().objects.create_superuser( email='<EMAIL>', first_name='Super', last_name='User', middle_name='placeholder', password='<PASSWORD>' ) self.client = APIClient() self.client.force_authenticate(self.user) def test_policy_superuser_get_post(self): """ *Check the get method Expected result: 200 *Check the post status code if superuser Expected result: 200 *Check if the data existed after posting Expected result: True or 1 == 1 *Check the filter 'id' and if it's get the equal data Expected result: True """ school = school_sample() data = { 'school': school, 'policy': 'sample' } url = school_policy_url(school.id) res = self.client.get(url) res2 = self.client.post(url, data) object = models.Policies.objects.get(**data) res3 = self.client.get(url, {'id': f'{object.id}'}) query = models.Policies.objects.all() serializer = serializers.PoliciesSerializer(object) self.assertEqual(res.status_code, status.HTTP_200_OK) self.assertEqual(res2.status_code, status.HTTP_200_OK) self.assertIn(object, query) self.assertEqual(len(query), 1) self.assertEqual(serializer.data, res3.data) ``` #### File: SchoolManagement_API/students/models.py ```python from django.db import models from django.conf import settings from school.models import School, Courses, TeacherSubject from school.conf import sex, status from django_countries.fields import CountryField from django.utils.translation import ugettext_lazy as _ from django.utils.text import slugify from django.utils import timezone # Create your models here. sem = [ ('First', 'First'), ('Second', 'Second') ] grade_status = [ ('Passed', 'Passed'), ('Completed', 'Completed'), ('Failed', 'Failed'), ('INC', 'INC') ] class Students(models.Model): user = models.ForeignKey( settings.AUTH_USER_MODEL, on_delete=models.CASCADE, related_name='student', null=True ) pic = models.ImageField( upload_to='student_pic', null=True, blank=True ) school = models.ForeignKey( School, on_delete=models.CASCADE, related_name='students' ) course = models.ForeignKey( Courses, on_delete=models.CASCADE, related_name='students' ) bday = models.DateField(null=True, verbose_name='Birth Day') country = CountryField(default='PH') city = models.CharField(max_length=255, null=True) zip_code = models.PositiveSmallIntegerField( verbose_name='Zip Code', null=True ) sex = models.CharField(max_length=55, choices=sex, null=True) civil_status = models.CharField( max_length=55, choices=status, verbose_name='Civil Status', null=True ) subjects = models.ManyToManyField(TeacherSubject, through='StudentSubject') school_yr = models.CharField(default='2012', max_length=255) sem = models.CharField(choices=sem, max_length=55) slug = models.SlugField(null=True) class Meta: verbose_name = _('Student') verbose_name_plural = _('Students') def save(self, *args, **kwargs): self.slug = slugify(self.user.first_name + '' + self.user.last_name) return super().save(*args, **kwargs) @property def get_year(self): date = timezone.datetime.strptime('%Y', self.school_yr) return date def __str__(self): return f"{self.user}" class StudentSubject(models.Model): student = models.ForeignKey( Students, on_delete=models.CASCADE, related_name='student_sub' ) subject = models.ForeignKey( TeacherSubject, on_delete=models.CASCADE, related_name='student' ) period_1 = models.IntegerField(default=0) abs_1 = models.IntegerField(default=0) period_2 = models.IntegerField(default=0) abs_2 = models.IntegerField(default=0) period_3 = models.IntegerField(default=0) abs_3 = models.IntegerField(default=0) avg = models.IntegerField(default=0) status = models.CharField(max_length=255, choices=grade_status) def __str__(self): return f'{self.student}' class Project(models.Model): subject = models.ForeignKey( TeacherSubject, on_delete=models.CASCADE, related_name='projects' ) title = models.CharField(max_length=255) dead_line = models.DateTimeField(verbose_name='Dead Line') description = models.TextField(max_length=5006) assign = models.ManyToManyField( StudentSubject, related_name='my_project', verbose_name='Members' ) sample = models.FileField( upload_to='project/', null=True ) files = models.ManyToManyField( StudentSubject, through='FileProject', blank=True ) class Assignment(models.Model): subject = models.ForeignKey( TeacherSubject, on_delete=models.CASCADE, related_name='assignment' ) title = models.CharField(max_length=255) dead_line = models.DateTimeField(verbose_name='Dead Line') description = models.TextField(max_length=5006) assign = models.ManyToManyField( StudentSubject, related_name='my_assignment', verbose_name='Members', blank=True ) sample = models.FileField( upload_to='assignment/', null=True ) files = models.ManyToManyField( StudentSubject, through='FileAssignment', blank=True ) class FileAssignment(models.Model): student = models.ForeignKey( StudentSubject, on_delete=models.CASCADE, related_name='assignment_file', null=True ) assignment = models.ForeignKey( Assignment, on_delete=models.CASCADE, related_name='assignment_files', null=True ) file = models.FileField(upload_to='assignment/') class FileProject(models.Model): student = models.ForeignKey( StudentSubject, on_delete=models.CASCADE, related_name='project_file', null=True ) project = models.ForeignKey( Project, on_delete=models.CASCADE, related_name='project_files', null=True ) file = models.FileField(upload_to='project/') ```
{ "source": "JoshuaOkafor/powerapps-docstring", "score": 3 }
#### File: powerapps-docstring/powerapps_docstring/parser.py ```python import os import json import yaml class Parser(): def __init__(self, source) -> None: self.source_path = source def get_connections(self) -> dict: """Read existing connections """ connections = {} # create empty dict connections_file = os.path.join(self.source_path, "Connections", "Connections.json") if os.path.isfile(connections_file): with open(connections_file, "r") as file: connections = json.load(file) return connections def _get_screen_content(self, screen_name): screen_path = os.path.join(self.source_path, "Src", screen_name) screen_content = {} with open(screen_path, "r", encoding='utf8') as file: screen_content = yaml.load(file, Loader=yaml.BaseLoader) return screen_content def get_screen_objects(self, screen_name) -> tuple: screen_content = self._get_screen_content(screen_name) # print(screen_content) screen_name = screen_name.replace(".fx.yaml", "") return screen_name, screen_content def get_canvas_manifest(self): # get name from CanvasManifest.json manifest_file = os.path.join(self.source_path, "CanvasManifest.json") if os.path.isfile(manifest_file): with open(manifest_file, "r", encoding="utf-8") as file: canvas_manifest = json.load(file) return canvas_manifest ``` #### File: powerapps-docstring/powerapps_docstring/powerapp.py ```python import os class UnknownSourceException(Exception): pass class CanvasManifestNotFoundInSourceException(Exception): pass class PowerApp(): def __init__(self, source) -> None: self.source = os.path.normpath(source) self.source_type = self._check_source_type() def get_pa_src_path(self): source_path = None if self.source_type == "directory": source_path = self.source elif self.source_type == "zip": # TODO: unzip and unpack msssap to retrieve src folder pass elif self.source_type == "msapp": # TODO: unpack msssap to retrieve src folder pass return source_path def _check_source_type(self) -> str: if os.path.isdir(self.source): if not os.path.isfile(os.path.join(self.source, "CanvasManifest.json")): path_to_canvas_manifest = self.find("CanvasManifest.json", self.source) if path_to_canvas_manifest != None: print(f"CanvasManifest.json could not be found in provided source path: {self.source}") print(f"did you ment: {path_to_canvas_manifest}") raise CanvasManifestNotFoundInSourceException() return "directory" elif os.path.isfile(self.source) and self.source.endswith(".zip"): return "zip" elif os.path.isfile(self.source) and self.source.endswith(".msapp"): return "msapp" else: raise UnknownSourceException def _unpack_zip(self): pass def _unpack_mssap(self): pass def find(self, name, path): for root, dirs, files in os.walk(path): if name in files: return root ``` #### File: powerapps_docstring/tests/test_parser.py ```python import pytest SOURCE_PATH = "example/src/meetingcapturedemo/" def test_instantiate_parser(): from powerapps_docstring.parser import Parser p = Parser(SOURCE_PATH) assert isinstance(p, Parser), ("Should be an instance of parser object") assert p.source_path == SOURCE_PATH def test_get_connections(): from powerapps_docstring.parser import Parser p = Parser(SOURCE_PATH) connections = p.get_connections() # spot check on some values in connection for con in connections.items(): assert "connectionInstanceId" in con[1].keys() assert "connectionParameters" in con[1].keys() assert "connectionRef" in con[1].keys() def test_get_screen_objects(): from powerapps_docstring.parser import Parser p = Parser(SOURCE_PATH) result = p.get_screen_objects("WelcomeScreen.fx.yaml") assert result[0] == "WelcomeScreen", "Should return on index 0 the name of the screen" assert isinstance(result[1], dict), "Shall return on index 1 the screen contents as dict" def test_get_canvas_manifest(): from powerapps_docstring.parser import Parser p = Parser(SOURCE_PATH) result = p.get_canvas_manifest() assert isinstance(result, dict), "Shall return a dict with CanvasManifest content" ```
{ "source": "Joshua-Oladeji/Automate-the-boring-stuff", "score": 4 }
#### File: Automate-the-boring-stuff/Chapter_5-Dictionaries/answers.py ```python import pprint import copy inventory = { 'rope': 1, 'torch': 6, 'gold coin': 42, 'dagger': 1, 'arrow': 12 } def displayInventory(listing): total = 0 print('\nInventory: ') for k, v in listing.items(): print(f'{v} {k}') total += v print(f'Total number of items: {total}') displayInventory(inventory) # List to Dictionary Function for Fantasy Game Inventory dragonLoot = ['gold coin', 'dagger', 'gold coin', 'gold coin', 'ruby'] def addToInventory(weapons, loot): # prevents the original inventory from being modified new_inventory = copy.copy(weapons) for item in loot: new_inventory.setdefault(item, 0) new_inventory[item] += 1 return new_inventory displayInventory(addToInventory(inventory, dragonLoot)) ```
{ "source": "JoshuaOloton/FLASKAPP", "score": 2 }
#### File: app/api/posts.py ```python from flask import jsonify, current_app, url_for, g, request from flask_login import current_user from app.api.errors import forbidden from app.models import Permission, Post, User from app.api import api from app.api.decorators import permission_required from app import db @api.route('/posts/<int:id>') def get_post(id): post = Post.query.get_or_404(id) return jsonify(post.to_json()) @api.route('/posts/') def get_posts(): page = request.args.get('page',1,type=int) pagination = Post.query.paginate( page,per_page=current_app.config['POSTS_PER_PAGE'],error_out=False) posts = pagination.items prev = None if pagination.has_prev: prev = url_for('api.get_posts',page=page-1) next = None if pagination.has_next: next = url_for('api.get_posts',page=page+1) return jsonify({ 'posts': [post.to_json() for post in posts], 'prev_url': prev, 'next_url': next, 'count': pagination.total }) @api.route('/posts/',methods=['POST']) @permission_required(Permission.WRITE) def new_post(): post = Post.from_json(request.json) post.author = g.current_user db.session.add(post) db.session.commit() return jsonify(post.to_json()), 201, \ {'location':url_for('api.get_post',id=post.id)} @api.route('/posts/<int:id>',methods=['PUT']) @permission_required(Permission.WRITE) def edit_post(id): post = Post.query.get_or_404(id) if g.current_user != post.author and not g.current_user.can(Permission.ADMIN): return forbidden('Insufficient permissions!') post.body = request.json.get('body',post.body) db.session.commit() return jsonify(post.to_json()) @api.route('/posts/<int:id>',methods=['DELETE']) @permission_required(Permission.WRITE) def delete_post(id): post = Post.query.get_or_404(id) if post.author != g.current_user and not g.current_user.can(Permission.ADMIN): return forbidden('Insufficient permissions') db.session.delete(post) db.session.commit() return jsonify({'message':'post successfully deleted'}) ``` #### File: FLASKAPP/app/email.py ```python from flask import current_app, render_template, url_for import requests, os def send_reset_email(token,email): return requests.post( f"https://api.mailgun.net/v3/{os.environ.get('SANDBOX_DOMAIN_NAME')}/messages", auth=("api", f"{os.environ.get('API_KEY')}"), data={"from": f"Flask App <<EMAIL>('SANDBOX_DOMAIN_NAME')}>", "to": [f"{email}"], "subject": "Reset your Password", "text": f""" Please follow this link to reset your account {url_for("auth.password_reset",token=token)} Please ignore this mail if you did not make the following request."""}) def send_confirmation_email(token,email): return requests.post( f"https://api.mailgun.net/v3/{os.environ.get('SANDBOX_DOMAIN_NAME')}/messages", auth=("api", f"{os.environ.get('API_KEY')}"), data={"from": f"Flask App <<EMAIL>('SANDBOX_DOMAIN_<EMAIL>')}>", "to": [f"{email}"], "subject": "Confirm Your Account", "text": f""" Please follow this link to verify your account {url_for("auth.confirm",_external=True,token=token)} Please ignore this mail if you did not make the following request."""}) ``` #### File: FLASKAPP/app/generate_post_comments.py ```python from random import randint from sqlalchemy.exc import IntegrityError from faker import Faker from app import db from app.models import User, Post, Comment def post_comments(): fake = Faker() user_count = User.query.count() post_count = Post.query.count() for i in range(1,post_count+1): p = Post.query.get(i) for i in range(randint(10,15)): u = User.query.offset(randint(0, user_count - 1)).first() comment = Comment( body=fake.text(), date_created=fake.past_date(), author=u, post=p) db.session.add(comment) db.session.commit() ```
{ "source": "JoshuaOndieki/cohort-19-day2", "score": 4 }
#### File: JoshuaOndieki/cohort-19-day2/data_types_lab.py ```python def data_type(inputs): type_of_input = type(inputs) if type_of_input == str: return len(inputs) elif type_of_input == bool: return inputs elif type_of_input == int: if inputs < 100: return "less than 100" elif inputs == 100: return "equal to 100" else: return "more than 100" elif type_of_input == list: if len(inputs) < 3: return None else: return inputs[2] else: return "no value" ```
{ "source": "JoshuaOndieki/cohort-19-day4", "score": 4 }
#### File: JoshuaOndieki/cohort-19-day4/binary_search_lab.py ```python class BinarySearch(list): def __init__(self, a, b): self.length = a self.append(b) list_len = 1 while list_len < a: #Loop to generate the list self.append(self[list_len - 1] + b) list_len += 1 def search(self, query): first = 0 last = self.length - 1 found = False result = {'count': 0, 'index': -1} if query == self[first]: result['index'] = 0 return result elif query == self[last]: result['index'] = last return result while first<=last and not found: midpoint = (first + last)//2 if self[midpoint] == query: result['count'] += 1 result['index'] = midpoint found = True else: if query < self[midpoint]: last = midpoint-1 else: first = midpoint+1 return result ``` #### File: JoshuaOndieki/cohort-19-day4/missing_number_lab.py ```python def find_missing(array1,array2): #if given arrays are both null return 0 if len(array1)==0 and len(array2)==0: return 0 # if array1 is longer than array2 loop to see which value is missing in array2 elif len(array1)>len(array2): for i in array1: if i in array2: pass else: return i #return the missing value #if array2 is longer than array1 loop to see which value is missing in array1 elif len(array2)>len(array1): for i in array2: if i in array1: pass else: return i #return the missing value #else the arrays are equal then just like the null arrays, return 0 else: return 0 ```
{ "source": "JoshuaOndieki/contacts", "score": 3 }
#### File: contacts/tests/test_contact_model.py ```python import unittest from models.contact import Contact class TestCreateContact(unittest.TestCase): def test_creates_contact_instance(self): self.contact = Contact('Joshua', 'Ondieki', 254700009999) self.assertTrue('Joshua' == self.contact.firstname, msg="Should get first name") self.assertTrue('Ondieki' == self.contact.surname, msg="Should get last name") self.assertTrue(254700009999 == self.contact.number, msg="Phone number should be saved with accuracy") if __name__ == '__main__': unittest.main() ``` #### File: JoshuaOndieki/contacts/ui.py ```python from termcolor import colored from prettytable import PrettyTable def success(text): """Returns a green colored text """ return(colored(text, 'green', attrs=['blink', 'bold'])) def magenta(text): """Returns a magenta colored text """ return(colored(text, 'magenta', attrs=['blink', 'bold'])) def error(text): """Returns a red colored text """ return(colored(text, 'red', attrs=['blink', 'bold'])) def table(data): """Generates and returns a table """ x = PrettyTable() name = colored("Name", 'blue') phone_number = colored("Phone Number", 'blue') x.field_names = [name, phone_number] for contact in data: contact_name = data[contact][0] + " " + data[contact][1] x.add_row([contact_name, contact]) x.sortby = name return(x) ```
{ "source": "JoshuaOndieki/full-contact", "score": 3 }
#### File: JoshuaOndieki/full-contact/app.py ```python from docopt import docopt,DocoptExit from functions import FullContact import cmd, os, sys from termcolor import colored,cprint from prettytable import * def docopt_cmd(func): """ This decorator is used to simplify the try/except block and pass the result of the docopt parsing to the called action """ def fn(self, arg): try: opt = docopt(fn.__doc__, arg) except DocoptExit as e: # The DocoptExit is thrown when the args do not match # We print a message to the user and the usage block print('Invalid Command!') print(e) return except SystemExit: # The SystemExit exception prints the usage for --help # We do not need to do the print here return return func(self, opt) fn.__name__ = func.__name__ fn.__doc__ = func.__doc__ fn.__dict__.update(func.__dict__) return fn def intro(): os.system('cls' if os.name == 'nt' else 'clear') print(__doc__) def whois(criteria,args): if criteria == 'email': data = FullContact.whois(email = args["<query>"]) elif criteria == 'phone': data = FullContact.whois(phone = args["<query>"]) elif criteria == 'twitter': data = FullContact.whois(twitter = args["<query>"]) if isinstance(data, str): print(colored(data,'red', attrs = ['bold'])) else: if data["status"] is not 200 : print(colored('\t\t\t\t'+data["message"], 'red', attrs=['bold'])) print(colored('\t\t\t\t\t\t\tSTATUS: '+str(data["status"]), 'red', attrs=['bold'])) else: print(colored('\t\t\t\tID: '+data["requestId"], 'green', attrs=['bold'])) print(colored('\t\t\t\t\t\t\tSTATUS: '+str(data["status"]), 'green', attrs=['bold'])) datasheet = PrettyTable(['#','Info']) try: datasheet.add_row(['Full Name',data['contactInfo']['fullName']]) except KeyError: pass try: datasheet.add_row(['Given Name',data['contactInfo']['givenName']]) except KeyError: pass try: datasheet.add_row(['Location',data['demographics']['locationDeduced']['normalizedLocation']]) except KeyError: pass try: datasheet.add_row(['Gender',data['demographics']['gender']]) except KeyError: pass social = PrettyTable(['Social Network','url','usermname','id']) for profile in data['socialProfiles']: social.add_row([profile['typeName'], profile['url'],profile['username'],profile['id']]) print(datasheet) print(social) class FContact(cmd.Cmd): text = colored('FullContact$$$', 'green', attrs=['blink']) prompt = text @docopt_cmd def do_mail(self,args): """Usage: mail <query>""" whois('email', args = args) @docopt_cmd def do_phone(self,args): """Usage: phone <query>""" whois('phone',args) @docopt_cmd def do_twitter(self,args): """Usage: twitter <query>""" whois('twitter',args) @docopt_cmd def do_quit(self, arg): """Usage: quit""" os.system('cls' if os.name == 'nt' else 'clear') print ('Full Contact has quit') exit() if __name__ == "__main__": try: intro() FContact().cmdloop() except KeyboardInterrupt: os.system('cls' if os.name == 'nt' else 'clear') print('Full Contact has quit') ```
{ "source": "JoshuaOndieki/google-search-cli", "score": 3 }
#### File: JoshuaOndieki/google-search-cli/app.py ```python from docopt import docopt,DocoptExit from functions import GoogleSearchApi as gsa import cmd import os from termcolor import colored,cprint from prettytable import * def docopt_cmd(func): """ This decorator is used to simplify the try/except block and pass the result of the docopt parsing to the called action """ def fn(self, arg): try: opt = docopt(fn.__doc__, arg) except DocoptExit as e: # The DocoptExit is thrown when the args do not match # We print a message to the user and the usage block print('Invalid Command!') print(e) return except SystemExit: # The SystemExit exception prints the usage for --help # We do not need to do the print here return return func(self, opt) fn.__name__ = func.__name__ fn.__doc__ = func.__doc__ fn.__dict__.update(func.__dict__) return fn def intro(): os.system("clear") print(__doc__) class GSA(cmd.Cmd): text = colored('GSA$$$', 'green', attrs=['blink']) prompt = text @docopt_cmd def do_search(self, arg): """Usage: search <your_query>""" search_term=arg['<your_query>'] search_data=gsa.search(search_term) if isinstance(search_data,str): print(search_data) exit() kind_data=search_data['kind'] queries_data=search_data['queries'] search_info=search_data['searchInformation'] items_data=search_data['items'] heading=PrettyTable(['Heading']) heading.add_row([kind_data]) heading.add_row(['Total Results : '+queries_data['request'][0]['totalResults']]) print(heading) print() for item in items_data: item_title=item['title'] data_table=PrettyTable([item_title]) data_table.add_row([item['kind']]) data_table.add_row([item['snippet']]) data_table.add_row([item['link']]) print(data_table) print() @docopt_cmd def do_quit(self, arg): """Usage: quit""" os.system('clear') print ('GSA has quit') exit() if __name__ == "__main__": try: intro() GSA().cmdloop() except KeyboardInterrupt: os.system("clear") print('GSA has quit') ```
{ "source": "JoshuaOndieki/joshua-ondieki-bootcamp-17", "score": 4 }
#### File: Day 1/prime_numbers/TestCases.py ```python import unittest from prime import prime_numbers class PrimeTest(unittest.TestCase): def test_returns_prime_numbers(self): self.assertListEqual(prime_numbers(6), [2,3,5], msg="Range of 0-6 should return [2,3,5] as the prime numbers") def test_input_is_a_number(self): with self.assertRaises(TypeError, msg="Should raise type error if a string is passed as argument"): prime_numbers("String") def test_return_value_is_list(self): self.assertTrue(isinstance(prime_numbers(10), list), msg="The function should return a list") def test_returns_0_for_negative_input(self): self.assertEqual(prime_numbers(-30),"No prime numbers within that range! All prime numbers are positive",msg="There are no negative primes") def test_does_not_return_negative_primes(self): self.assertGreater(min(prime_numbers(50)),0) def test_does_not_include_non_primes(self): self.assertNotIn([0,1,4,6],prime_numbers(6)) if __name__=='__main__': unittest.main() ``` #### File: Day 1/tdd/TestCases.py ```python import unittest from loan_calculator import loan_calculator class Loan(unittest.TestCase): def test_month_is_not_greater_than_twelve(self): self.assertEquals(loan_calculator(100000, 11, 13), "Invalid Number of months!") def test_it_works(self): self.assertEquals(loan_calculator(100000, 12, 1), 112000) def test_loan_is_a_float(self): loan = loan_calculator(100000, 12, 1) self.assertIsInstance(loan, float, "The returned loan should be a float") def test_amount_is_not_negative(self): self.assertEquals(loan_calculator(-895, 12, 1), "Invalid amount!", "Loan amount should not be negative!") def test_rate_is_not_greater_than_hundred(self): self.assertEquals(loan_calculator(100000, 101, 13), "Invalid rate!") if __name__=='__main__': unittest.main() ```
{ "source": "JoshuaOndieki/mordor", "score": 2 }
#### File: JoshuaOndieki/mordor/functions.py ```python class Mordor(): skills={} def skills_import(skills): return skills def add_skill(): pass def complete_skill(): pass def view_skills(): pass def progress(skills): pass ```
{ "source": "JoshuaOndieki/oneforma-fashion-attribute", "score": 3 }
#### File: static/src/srcjpy.py ```python import json def restructure_category_data(): with open('categoryimages.json', 'r') as jfile: new_data = json.load(jfile) with open('category.json') as jfile: data = json.load(jfile) with open('category.json', 'w') as jfile: for item in data: item['IMAGES'] = new_data[item['NAME']] json.dump(data, jfile, sort_keys=True, indent=4) def restructure_part_data(): with open('partimages.json', 'r') as jfile: new_data = json.load(jfile) with open('part.json') as jfile: data = json.load(jfile) with open('part.json', 'w') as jfile: for item in data: item['IMAGES'] = new_data[item['PART']] json.dump(data, jfile, sort_keys=True, indent=4) def restructure_texture_data(): with open('textureimages.json', 'r') as jfile: new_data = json.load(jfile) with open('texture.json') as jfile: data = json.load(jfile) with open('texture.json', 'w') as jfile: for item in data: item['IMAGES'] = new_data[item['TEXTURE']] json.dump(data, jfile, sort_keys=True, indent=4) restructure_category_data() restructure_part_data() restructure_texture_data() ```
{ "source": "JoshuaOndieki/ridemyway-api", "score": 3 }
#### File: ridemyway/controllers/ride_controller.py ```python from datetime import datetime from flask import current_app as app from ridemyway.models.ride import Ride from ridemyway.utils.response import Response from ridemyway.utils.validators import date_has_passed class RideController(): """ Controls all CRUD operations of the Ride object. """ def create_ride(self, **kwargs): """ Creates and adds a ride to the app database. Returns: A success status if success adding ride, failed status otherwise. """ ride_ids = [x for x in app.database['Rides']] if ride_ids: ride_id = max(ride_ids) + 1 else: ride_id = 1 date_offered = datetime.now().strftime('%b %d %Y %H:%M%p') self.new_ride = Ride( ride_id=ride_id, departure=kwargs['departure'], origin=kwargs['origin'], destination=kwargs['destination'], vehicle_number_plate=kwargs['vehicle_number_plate'], capacity=kwargs['capacity'], cost=kwargs['cost'], date_offered=date_offered, availability='available') ride = self.new_ride.__dict__ app.database['Rides'][self.new_ride.ride_id] = ride message = 'Ride created successfully' attributes = { 'location': '/rides/' + str(ride['ride_id']), 'repr': self.new_ride.__repr__() } return Response.success(message=message, attributes=attributes) def fetch_one(self, ride_id): """ Fetches a single ride from the app database. Returns: The requested ride, failed status if no such ride exists. """ try: self.ride = app.database['Rides'][ride_id] message = 'Ride fetched successfully' return Response.success(message=message, data=self.ride), 200 except KeyError: meta = {'errors': 1, 'source': '/rides/' + str(ride_id)} message = 'NOT FOUND' info = 'That ride does not exist' response = Response.failed(meta=meta, message=message, info=info) return response, 404 def fetch_all(self): """ Fetches all available rides from the app database. Returns: All available rides, """ rides_count = 0 self.fetched_rides = {} message = 'Rides fetched successfully' for key, value in app.database['Rides'].items(): if date_has_passed(value['departure']): continue rides_count += 1 self.fetched_rides[key] = value response = Response.success(message=message, data=self.fetched_rides, meta={'rides': rides_count}) return response ``` #### File: ridemyway/controllers/ride_request_controller.py ```python from flask import current_app as app from ridemyway.models.request import Request from ridemyway.utils.response import Response class RequestController(): """ Controls all CRUD operations of the Request object. """ def create_request(self, **kwargs): """ Creates and adds a request to the app database. Returns: A success status if success adding ride, failed status otherwise. """ if kwargs['ride_id'] in app.database['Rides']: request_ids = [x for x in app.database['Requests']] if request_ids: request_id = max(request_ids) + 1 else: request_id = 1 self.new_request = Request( request_id=request_id, ride_id=kwargs['ride_id'], status='available' ) request = self.new_request.__dict__ app.database['Requests'][request_id] = request message = 'Ride request created successfully' attributes = { 'location': '/api/v1/rides/' + str(request_id) + '/requests' } response = Response.success(message=message, attributes=attributes) return response, 201 meta = {'errors': 1, 'source': '/' + str(kwargs['ride_id']) + '/requests'} message = 'NOT FOUND' return Response.failed(meta=meta, message='NOT FOUND', info='The ride requested does not exist'), 404 ``` #### File: ridemyway/models/request.py ```python class Request(): """ Creates Request objects. **kwargs: ride_id: A unique identifier of the ride the request is being made to. request_id: A unique identifier for the request. status: Status of the request. """ def __init__(self, **kwargs): """ Request object initializer. Returns: Object """ self.request_id = kwargs['request_id'] self.ride_id = kwargs['ride_id'] self.status = kwargs['status'] ``` #### File: ridemyway/tests/__init__.py ```python import unittest from ridemyway import create_app class BaseTest(unittest.TestCase): """ Base class for testing """ def setUp(self): """ Set up tests """ self.app = create_app(config_name='testing') self.client = self.app.test_client self.headers = {'content-type': 'application/json'} self.context = self.app.app_context() self.context.push() def tearDown(self): """ Teardown all test files and instances created """ self.context.pop() # TEST DATA VALID_RIDE_DATASET = { 'departure': 'Jun 25 2050 1:30PM', 'origin': 'Nairobi', 'destination': 'Garissa', 'cost': 350, 'vehicle_number_plate': 'KBC-A21', 'capacity': 3} VALID_RIDE_DATASET_1 = { 'departure': 'Jun 28 2050 7:00AM', 'origin': 'Garissa', 'destination': 'Nairobi', 'cost': 500, 'vehicle_number_plate': 'KBC-A21', 'capacity': 3} INVALID_DATE_DATASET = { 'departure': 'Not a date', 'origin': 'Nairobi', 'destination': 'Garissa', 'cost': 350, 'vehicle_number_plate': 'KBC-A21', 'capacity': 3 } PAST_DATE_DATASET = { 'departure': 'Jun 25 1901 1:30PM', 'origin': 'Nairobi', 'destination': 'Garissa', 'cost': 350, 'vehicle_number_plate': 'KBC-A21', 'capacity': 3 } INVALID_COST_DATASET = { 'departure': 'Jun 25 2018 1:30PM', 'origin': 'Nairobi', 'destination': 'Garissa', 'cost': '%^$', 'vehicle_number_plate': 'KBC-A21', 'capacity': 3 } INVALID_CAPACITY_DATASET = { 'departure': 'Jun 25 2018 1:30PM', 'origin': 'Nairobi', 'destination': 'Garissa', 'cost': 350, 'vehicle_number_plate': 'KBC-A21', 'capacity': 3.5 } INVALID_VEHICLE_NUMBER_PLATE = { 'departure': 'Jun 25 2018 1:30PM', 'origin': 'Nairobi', 'destination': 'Garissa', 'cost': 350, 'vehicle_number_plate': 2121, 'capacity': 3 } ```
{ "source": "JoshuaOxley/test2", "score": 3 }
#### File: JoshuaOxley/test2/test.py ```python import unittest import calculator class Test(unittest.TestCase): def test_add(self): self.assertEqual(calculator.add(2, 3), 5) def test_sub(self): self.assertEqual(calculator.sub(2, 3) -1) def test_mult(self): self.assertEqual(calculator.mult(2, 3), 6) def test_div(self): self.assertEqual(calculator.div(2, 3), 2) if __name__== '__main___': unittest.main() ```
{ "source": "joshua-paperspace/ResNet-Streamlit-App", "score": 2 }
#### File: joshua-paperspace/ResNet-Streamlit-App/app-flask.py ```python from flask import Flask, request, render_template, redirect, url_for from resnet import resnet18 from preprocess import imgToTensor import torch from PIL import Image classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') MODEL_PATH = './models/resnet18-epochs-5.pth' app = Flask(__name__) @app.route('/') def home_page(): return render_template('index.html') @app.route('/', methods=['POST']) def predict_img(): image = Image.open(request.form['img']) filename = 'static/uploads/uploaded_image.png' image.save(filename) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = resnet18(3, 10) model.load_state_dict(torch.load(MODEL_PATH, map_location=device)) tensor = imgToTensor(image) output = model(tensor) _, predicted = torch.max(output.data, 1) print(predicted) prediction = classes[predicted] return render_template('result.html', prediction=prediction) if __name__ == '__main__': app.run(debug=True, host='0.0.0.0', port='8000') ```
{ "source": "joshua-paperspace/sentiment-analysis-flask", "score": 2 }
#### File: joshua-paperspace/sentiment-analysis-flask/app.py ```python from flask import Flask from sentiment-analysis import sentiment_analysis app = Flask(__name__) @app.route('/') def hello_world(): phrase = request.data return sentiment_analysis(phrase) # return 'Hey, we have Flask in a Docker container!' if __name__ == '__main__': app.run(debug=True, host='0.0.0.0', port='8000') ```
{ "source": "joshuapatel/PewDiePie", "score": 3 }
#### File: src/cogs/economy_phrases.py ```python import discord from discord.ext import commands class EconomyPhrases(commands.Cog): def __init__(self, bot): self.bot = bot async def update_shovel(self): self.bot.econ["pos"] = await self.bot.pool.fetch("SELECT name, id FROM shovel WHERE fate = true") self.bot.econ["neg"] = await self.bot.pool.fetch("SELECT name, id FROM shovel WHERE fate = false") async def update_crime(self): self.bot.econ["crime"]["pos"] = await self.bot.pool.fetch("SELECT name, id FROM crime WHERE fate = true") self.bot.econ["crime"]["neg"] = await self.bot.pool.fetch("SELECT name, id FROM crime WHERE fate = false") @commands.group(invoke_without_command = True) async def phrase(self, ctx, pid: int, u: str = "shovel"): if "crime" in u: table = "crime" else: table = "shovel" pcheck = await self.bot.pool.fetchrow(f"SELECT name, fate FROM {table} WHERE id = $1", pid) if pcheck == None: em = discord.Embed(color = discord.Color.dark_teal()) em.add_field(name = "Phrase Not Found", value = f"Phrase #{pid} could not be found") await ctx.send(embed = em) return fate = pcheck["fate"] p = pcheck["name"] if fate: em = discord.Embed(color = discord.Color.green()) else: em = discord.Embed(color = discord.Color.red()) em.add_field(name = "Raw Phrase", value = p) em.set_footer(text = f"Phrase #{pid}") await ctx.send(embed = em) @phrase.command() @commands.is_owner() async def add(self, ctx, fate: bool, *, phrase: str): if phrase.startswith("<-- ADD CRIME -->"): phrase = phrase.replace("<-- ADD CRIME -->", "") table = "crime" else: table = "shovel" await self.bot.pool.execute(f"INSERT INTO {table} VALUES ($1, $2)", phrase, fate) pid = await self.bot.pool.fetchval(f"SELECT id FROM {table} WHERE name = $1 AND fate = $2", phrase, fate) if fate: em = discord.Embed(color = discord.Color.green()) else: em = discord.Embed(color = discord.Color.red()) em.add_field(name = "Added Phrase", value = f"The phrase has been added to the {table} command. Fate: {fate}") em.set_footer(text = f"Phrase #{pid}") await ctx.send(embed = em) if table == "shovel": await self.update_shovel() else: await self.update_crime() @phrase.command() @commands.is_owner() async def edit(self, ctx, pid: int, *, phrase: str): if phrase.startswith("<-- EDIT CRIME -->"): phrase = phrase.replace("<-- EDIT CRIME -->", "") table = "crime" else: table = "shovel" pcheck = await self.bot.pool.fetchrow(f"SELECT * FROM {table} WHERE id = $1", pid) if pcheck == None: em = discord.Embed(color = discord.Color.dark_teal()) em.add_field(name = "Phrase Not Found", value = f"Phrase #{pid} could not be found") await ctx.send(embed = em) return await self.bot.pool.execute(f"UPDATE {table} SET name = $1 WHERE id = $2", phrase, pid) em = discord.Embed(color = discord.Color.dark_red()) em.add_field(name = "Phrase Updated", value = f"Phrase #{pid} has been updated") await ctx.send(embed = em) if table == "shovel": await self.update_shovel() else: await self.update_crime() @phrase.command(aliases = ["remove"]) @commands.is_owner() async def delete(self, ctx, pid: int, crime: bool = False): if crime: table = "crime" else: table = "shovel" pcheck = await self.bot.pool.fetchrow(f"SELECT * FROM {table} WHERE id = $1", pid) if pcheck == None: em = discord.Embed(color = discord.Color.dark_teal()) em.add_field(name = "Phrase Not Found", value = f"Phrase #{pid} could not be found") await ctx.send(embed = em) return await self.bot.pool.execute(f"DELETE FROM {table} WHERE id = $1", pid) em = discord.Embed(color = discord.Color.dark_red()) em.add_field(name = "Phrase Removed", value = f"Phrase #{pid} has been removed") await ctx.send(embed = em) if table == "shovel": await self.update_shovel() else: await self.update_crime() @commands.group(invoke_without_command = True) async def crimephrase(self, ctx, pid: int): await ctx.invoke(self.bot.get_command("phrase"), pid = pid, u = "crime") @crimephrase.command(name = "add") @commands.is_owner() async def crime_add(self, ctx, fate: bool, *, phrase: str): phrase = "<-- ADD CRIME -->" + phrase await ctx.invoke(self.bot.get_command("phrase add"), fate = fate, phrase = phrase) @crimephrase.command(name = "edit") @commands.is_owner() async def crime_edit(self, ctx, pid: int, *, phrase: str): phrase = "<-- EDIT CRIME -->" + phrase await ctx.invoke(self.bot.get_command("phrase edit"), pid = pid, phrase = phrase) @crimephrase.command(name = "delete", aliases = ["remove"]) @commands.is_owner() async def crime_delete(self, ctx, pid: int): await ctx.invoke(self.bot.get_command("phrase delete"), pid = pid, crime = True) def setup(bot): bot.add_cog(EconomyPhrases(bot)) ``` #### File: src/cogs/economy_shop.py ```python import discord from discord.ext import commands import datetime class AmountConverter(commands.Converter): async def convert(self, ctx, argument): try: return int(argument) except: pass if "all" in argument: coins = await ctx.bot.pool.fetchval("SELECT coins FROM econ WHERE userid = $1 AND guildid = $2", ctx.author.id, ctx.guild.id) if ctx.command.name == "transfer": coins = round(coins * 0.5) return coins elif "," in argument: return int(argument.replace(",", "")) else: return 0 class EconomyShop(commands.Cog): def __init__(self, bot): self.bot = bot self.tcoinimage = "<:bro_coin:541363630189576193>" async def cad_user(ctx): # pylint: disable=E0213 dbcheck = await ctx.bot.pool.fetchrow("SELECT * FROM econ WHERE userid = $1 AND guildid = $2", ctx.author.id, ctx.guild.id) # pylint: disable=E1101 if dbcheck == None or dbcheck == []: await ctx.bot.pool.execute("INSERT INTO econ VALUES ($1, $2, $3)", 0, ctx.author.id, ctx.guild.id) # pylint: disable=E1101 return True else: return True return False @commands.group(invoke_without_command = True) async def shop(self, ctx): roles = await self.bot.pool.fetch(""" SELECT * FROM econshop WHERE guildid = $1 ORDER BY reqamount DESC """, ctx.guild.id) em = discord.Embed(color = discord.Color.dark_red()) em.set_thumbnail(url = ctx.guild.icon_url) em.set_author(name = f"{ctx.guild.name}'s Shop") for r in roles: role = ctx.guild.get_role(r["roleid"]) if role == None: await self.bot.pool.execute("DELETE FROM econshop WHERE roleid = $1", r["roleid"]) continue em.add_field(name = f"Role: {role.name}", value = f"Required amount: {r['reqamount']:,d} {self.tcoinimage}", inline = False) if len(em.fields) == 0: em.set_author(name = "") em.add_field(name = "No Roles", value = f"No roles have been found for {ctx.guild.name}") await ctx.send(embed = em) @shop.command(aliases = ["role", "make"]) @commands.bot_has_permissions(manage_roles = True) @commands.has_permissions(manage_roles = True) async def add(self, ctx, req_amount: AmountConverter, *, role: discord.Role): rolecheck = await self.bot.pool.fetchrow("SELECT * FROM econshop WHERE roleid = $1 AND guildid = $2", role.id, ctx.guild.id) if rolecheck != None: em = discord.Embed(color = discord.Color.dark_teal()) em.add_field(name = "Role Found", value = "This role is already in the shop. Use the `shop edit` command to edit it") await ctx.send(embed = em) return if 0 >= req_amount: em = discord.Embed(color = discord.Color.dark_teal()) em.add_field(name = "Too Small", value = f"You cannot set the amount at 0 or below") await ctx.send(embed = em) return await self.bot.pool.execute("INSERT INTO econshop VALUES ($1, $2, $3)", role.id, ctx.guild.id, req_amount) em = discord.Embed(color = discord.Color.dark_red()) em.add_field(name = "Role Added", value = f"`{role.name}` has been added to the shop and requires {req_amount:,d} {self.tcoinimage} to purchase") await ctx.send(embed = em) @shop.command(aliases = ["purchase", "spend", "get"]) @commands.bot_has_permissions(manage_roles = True) @commands.check(cad_user) async def buy(self, ctx, *, role: discord.Role): if role in ctx.author.roles: em = discord.Embed(color = discord.Color.dark_teal()) em.add_field(name = "Role in Possession", value = f"You already have the `{role.name}` role therefore you cannot buy it") await ctx.send(embed = em) return req_amount = await self.bot.pool.fetchval("SELECT reqamount FROM econshop WHERE roleid = $1 AND guildid = $2", role.id, ctx.guild.id) if req_amount == None: em = discord.Embed(color = discord.Color.dark_teal()) em.add_field(name = "Role Not Found", value = "This role has not been added to this shop. Use the `shop add` command to add it") await ctx.send(embed = em) return user_amount = await self.bot.pool.fetchval("SELECT coins FROM econ WHERE userid = $1 AND guildid = $2", ctx.author.id, ctx.guild.id) if user_amount >= req_amount: try: await ctx.author.add_roles(role, reason = f"Purchased from the shop costing {req_amount:,d} Bro Coins") except: em = discord.Embed(color = discord.Color.dark_teal()) em.add_field(name = "Forbidden", value = f""" It looks like I am not able to give the user this role. Please check that my role is **above** the role you are trying to give. """) await ctx.send(embed = em) return await self.bot.pool.execute("UPDATE econ SET coins = coins - $1 WHERE userid = $2 AND guildid = $3", req_amount, ctx.author.id, ctx.guild.id) em = discord.Embed(color = discord.Color.dark_red()) em.add_field(name = "Purchased Role", value = f"{ctx.author.mention} bought the `{role.name}` role costing {req_amount:,d} {self.tcoinimage}") em.timestamp = datetime.datetime.utcnow() await ctx.send(embed = em) else: em = discord.Embed(color = discord.Color.dark_teal()) em.add_field(name = "Not Enough", value = f""" You need {req_amount - user_amount:,d} more {self.tcoinimage} to buy the `{role.name}` role. """) await ctx.send(embed = em) @shop.command(aliases = ["change", "adjust"]) @commands.has_permissions(manage_roles = True) async def edit(self, ctx, req_amount: AmountConverter, *, role: discord.Role): rolecheck = await self.bot.pool.fetchrow("SELECT * FROM econshop WHERE roleid = $1 AND guildid = $2", role.id, ctx.guild.id) if rolecheck == None: em = discord.Embed(color = discord.Color.dark_teal()) em.add_field(name = "Role Not Found", value = "This role could not be found in the shop. You can create on using the `shop add` command") await ctx.send(embed = em) return if 0 >= req_amount: em = discord.Embed(color = discord.Color.dark_teal()) em.add_field(name = "Too Small", value = f"You cannot set the amount at 0 or below") await ctx.send(embed = em) return await self.bot.pool.execute("UPDATE econshop SET reqamount = $1 WHERE roleid = $2 AND guildid = $3", req_amount, role.id, ctx.guild.id) em = discord.Embed(color = discord.Color.dark_red()) em.add_field(name = "Role Updated", value = f"`{role.name}`'s required amount to purchase has been changed to {req_amount:,d} {self.tcoinimage}") await ctx.send(embed = em) @shop.command(aliases = ["remove"]) @commands.has_permissions(manage_roles = True) async def delete(self, ctx, *, role: discord.Role): rolecheck = await self.bot.pool.fetchrow("SELECT * FROM econshop WHERE roleid = $1 AND guildid = $2", role.id, ctx.guild.id) if rolecheck == None: em = discord.Embed(color = discord.Color.dark_teal()) em.add_field(name = "Role Not Found", value = "This role could not be found in the shop. You can create on using the `shop add` command") await ctx.send(embed = em) return await self.bot.pool.execute("DELETE FROM econshop WHERE roleid = $1 AND guildid = $2", role.id, ctx.guild.id) em = discord.Embed(color = discord.Color.dark_red()) em.add_field(name = "Role Deleted", value = f"`{role.name}` has been removed from the shop") await ctx.send(embed = em) def setup(bot): bot.add_cog(EconomyShop(bot)) ``` #### File: src/cogs/events.py ```python import discord from discord.ext import commands, tasks # -> Miscellaneous import datetime # -> Loop import aiohttp import asyncio # -> Configuration import sys sys.path.append("../") import config class Events(commands.Cog): def __init__(self, bot): self.bot = bot self.JOIN_LEAVE_LOG = 501089724421767178 self.autostatus.start() def cog_unload(self): self.autostatus.cancel() @commands.Cog.listener() async def on_command_completion(self, ctx): prefix = self.bot.prefixes.get(ctx.guild.id, None) or "p." print() print(f"COMPLETED COMMAND: {ctx.command.name}. Invoked by: {ctx.author.name}#{ctx.author.discriminator}") print(f"GUILD: {ctx.guild.name} | GUILD ID: {ctx.guild.id}\nUSER ID: {ctx.author.id} | CHANNEL ID: {ctx.channel.id}") await ctx.send(f"The bot is going away. Read more in the announcements channel in the Discord server (run `{prefix}info` to get the invite).") @commands.Cog.listener() async def on_guild_join(self, guild): print(f"Joined guild named '{guild.name}' with {guild.member_count} members") logchannel = self.bot.get_channel(self.JOIN_LEAVE_LOG) em = discord.Embed(title = "Joined Guild", color = discord.Color.teal()) bot_count = len([b for b in guild.members if b.bot]) em.set_thumbnail(url = guild.icon_url) em.add_field(name = "Name", value = guild.name) em.add_field(name = "ID", value = str(guild.id)) em.add_field(name = "Owner", value = str(guild.owner)) em.add_field(name = "Member Count", value = f"{guild.member_count:,d}") em.add_field(name = "Bot Count", value = format(bot_count, ",d")) em.add_field(name = "Human Count", value = format(guild.member_count - bot_count, ",d")) em.add_field(name = "Verification Level", value = str(guild.verification_level)) em.add_field(name = "Channel Count", value = f"{len(guild.channels):,d}") em.add_field(name = "Creation Time", value = guild.created_at) em.timestamp = datetime.datetime.utcnow() await logchannel.send(embed = em) @commands.Cog.listener() async def on_guild_remove(self, guild): print(f"Left guild named '{guild.name}' that had {guild.member_count} members") logchannel = self.bot.get_channel(self.JOIN_LEAVE_LOG) em = discord.Embed(title = "Left Guild", color = discord.Color.purple()) bot_count = len([b for b in guild.members if b.bot]) em.set_thumbnail(url = guild.icon_url) em.add_field(name = "Name", value = guild.name) em.add_field(name = "ID", value = str(guild.id)) em.add_field(name = "Owner", value = str(guild.owner)) em.add_field(name = "Member Count", value = f"{guild.member_count:,d}") em.add_field(name = "Bot Count", value = format(bot_count, ",d")) em.add_field(name = "Human Count", value = format(guild.member_count - bot_count, ",d")) em.add_field(name = "Verification Level", value = str(guild.verification_level)) em.add_field(name = "Channel Count", value = f"{len(guild.channels):,d}") em.add_field(name = "Creation Time", value = guild.created_at) em.timestamp = datetime.datetime.utcnow() await logchannel.send(embed = em) @tasks.loop(seconds = 30) async def autostatus(self): watching = "The bot is going away" await self.bot.change_presence(activity = discord.Activity(type = discord.ActivityType.watching, name = watching)) @autostatus.before_loop async def before_autostatus(self): await self.bot.wait_until_ready() def setup(bot): bot.add_cog(Events(bot)) ``` #### File: PewDiePie/src/pewdiepie.py ```python import discord from discord.ext import commands # -> Configuration import config # -> Miscellaneous import random import datetime # -> Database import asyncpg # -> Loop import asyncio import sys import os # Supports asyncio subprocesses for Windows (Python 3.7+) if sys.platform == "win32": asyncio.set_event_loop_policy(asyncio.WindowsProactorEventLoopPolicy()) async def custom_prefix(bot, message): await bot.wait_until_ready() try: prefix = bot.prefixes.get(message.guild.id) except AttributeError: return str(random.random()) if prefix is None: return commands.when_mentioned_or(*bot.default_prefixes)(bot, message) else: return commands.when_mentioned_or(prefix)(bot, message) extensions = ["jishaku", "cogs.functions"] for f in os.listdir("cogs"): if f.endswith(".py") and not f"cogs.{f[:-3]}" in extensions: extensions.append("cogs." + f[:-3]) class PewDiePie(commands.AutoShardedBot): def __init__(self): super().__init__( command_prefix = custom_prefix, case_insensitive = True, max_messages = 500, fetch_offline_members = False, reconnect = True ) self.pool = None self.prefixes = {} self.owner_role = config.owner self.owners = set() async def on_ready(self): # Owners if len(self.owner_role) == 2: guild = self.get_guild(self.owner_role[0]) role = guild.get_role(self.owner_role[1]) self.owners.update(r.id for r in role.members) else: app = await self.application_info() self.owners.add(app.owner.id) if not hasattr(self, "uptime"): self.uptime = datetime.datetime.utcnow() print(f"{self.user.name} is ready!") async def is_owner(self, user): return user.id in self.owners async def on_connect(self): # Database pool_creds = { "user": config.db_user, "password": <PASSWORD>_password, "port": 5432, "host": "localhost", "database": "tseries" } try: self.pool = await asyncpg.create_pool(**pool_creds) except Exception as error: print("There was a problem") print("\n" + str(error)) await super().logout() with open("../schema.sql", "r") as schema: await self.pool.execute(schema.read()) # Prefixes self.default_prefixes = [ "p.", "P.", "p!", "P!", "t.", "t!", "ts!", "ts.", "Ts!", "tS!", "TS!", "T.", "T!", "Ts.", "tS.", "TS." ] self.prefixes = dict(await self.pool.fetch("SELECT * FROM prefixes")) self.prepare_extensions() def prepare_extensions(self): for extension in extensions: try: self.load_extension(extension) except Exception as error: print(f"There was a problem loading in the {extension} extension") print("\n" + str(error)) async def start(self): await self.login(config.pubtoken) # pylint: disable=no-member try: await self.connect() except KeyboardInterrupt: await self.stop() async def stop(self): await self.pool.close() await super().logout() def run(self): loop = self.loop try: loop.run_until_complete(self.start()) except KeyboardInterrupt: loop.run_until_complete(self.stop()) if __name__ == "__main__": PewDiePie().run() ```
{ "source": "joshuap-cfy/frontier-versa-sdwan-poc-0117", "score": 2 }
#### File: tests/integration/test_cgnat.py ```python import unittest import requests from versa_plugin.versaclient import VersaClient import versa_plugin.cgnat from versa_plugin.cgnat import AddressRange import configuration requests.packages.urllib3.disable_warnings() class CgnatTestCase(unittest.TestCase): def setUp(self): self.config = configuration.data def notest_get_pools(self): with VersaClient(self.config) as client: app = 'mytestapp' org = 'mytestorg' print versa_plugin.cgnat.get_list_nat_pools(client, app, org) def notest_get_rules(self): with VersaClient(self.config) as client: app = 'mytestapp' org = 'mytestorg' print versa_plugin.cgnat.get_list_nat_rules(client, app, org) def notest_create_pool(self): with VersaClient(self.config) as client: app = 'testapp' org = 'child' pool_name = "testpool" routing = "vr", provider = "mytestorg" addr_range = [AddressRange("range", "172.16.17.32", "172.16.58.3")] versa_plugin.cgnat.create_pool(client, app, org, pool_name, addr_range, routing, provider) def notest_delete_pool(self): with VersaClient(self.config) as client: app = 'testapp' org = 'child' pool_name = "testpool" versa_plugin.cgnat.delete_pool(client, app, org, pool_name) def notest_create_rule(self): with VersaClient(self.config) as client: app = 'testapp' org = 'child' pool_name = "testpool" rule_name = "testrule" source_addr = ["1.2.3.0/24"] versa_plugin.cgnat.create_rule(client, app, org, rule_name, source_addr, pool_name) def test_delete_rule(self): with VersaClient(self.config) as client: app = 'testapp' org = 'child' rule_name = "testrule" versa_plugin.cgnat.delete_rule(client, app, org, rule_name) ``` #### File: tests/integration/test_vpn.py ```python import base import requests import unittest import versa_plugin.operations import versa_plugin.vpn import test_networking import get_configuration as get_conf requests.packages.urllib3.disable_warnings() router = """ use_existing: false appliance_name: $appliance_name router: name: $name instance-type: virtual-router interfaces: - $interface """ limits = """ appliance_name: $appliance_name org_name: $org_name routes: - $router interfaces: - $interface """ vpn_profile = """ appliance_name: $appliance_name org_name: $org_name profile: name: $name vpn-type: site-to-site tunnel-initiate: automatic hardware-accelerator: any tunnel-routing-instance: $router tunnel-interface: $interface local-auth-info: auth-type: psk id-string: 1.2.3.4 id-type: ip key: 1 peer-auth-info: auth-type: psk id-type: ip key: 1 id-string: 1.2.3.5 ipsec: fragmentation: pre-fragmentation force-nat-t: disable mode: tunnel pfs-group: mod-none anti-replay: disable transform: esp-aes128-sha1 keepalive-timeout: 10 ike: version: v2 group: mod2 transform: aes128-sha1 lifetime: 28800 dpd-timeout: 30 local: inet: 172.16.58.3 peer: inet: 172.16.17.32 """ class ApplianceTestCase(base.BaseTest): def add_vpn_profile(self, name, **kwargs): """ Add VPN profile """ self.assertFalse(get_conf.vpn_profile(self.appliance, self.org, name)) versa_plugin.operations.create_vpn_profile() self.assertTrue(get_conf.vpn_profile(self.appliance, self.org, name)) def delete_vpn_profile(self, name, **kwargs): """ Delete VPN profile """ self.assertTrue(get_conf.vpn_profile(self.appliance, self.org, name)) versa_plugin.operations.delete_vpn_profile() self.assertFalse(get_conf.vpn_profile(self.appliance, self.org, name)) def test_vpn_profile(self): interface = 'tvi-0/9' unit = '.0' router_name = self.gen_name('router') name = self.gen_name('vpn-profile') networking = test_networking.Operations(self.appliance) self.add_to_sequence(networking.add_interface, networking.delete_interface, test_networking.tvi_interface_with_address, name=interface) self.add_to_sequence(networking.add_router, networking.delete_router, router, name=router_name, interface=interface+unit) self.add_to_sequence(networking.add_limits, networking.delete_limits, limits, router=router_name, interface=interface+unit) self.add_to_sequence(self.add_vpn_profile, self.delete_vpn_profile, vpn_profile, name=name, router=router_name, interface=interface+unit) self.run_sequence() ``` #### File: frontier-versa-sdwan-poc-0117/versa_plugin/networking.py ```python import json from versa_plugin.versaclient import JSON from versa_plugin import find_by_name from requests import codes def create_interface(client, appliance, interface): url = '/api/config/devices/device/{}/config/interfaces'.format(appliance) itype = interface['name'].split('-')[0] data = {itype: interface} client.post(url, json.dumps(data), JSON, codes.created) def delete_interface(client, appliance, name): itype = name.split('-')[0] url = '/api/config/devices/device/{}'\ '/config/interfaces/{}/%22{}%22'.format(appliance, itype, name) client.delete(url, codes.no_content) def create_network(client, appliance, network): url = '/api/config/devices/device/{}/config/networks'.format(appliance) data = {"network": network} client.post(url, json.dumps(data), JSON, codes.created) def delete_network(client, appliance, name): url = '/api/config/devices/device/{}'\ '/config/networks/network/{}'.format(appliance, name) client.delete(url, codes.no_content) def is_network_exists(client, appliance, name): url = '/api/config/devices/device/{}/config/networks/network?deep'.\ format(appliance) result = client.get(url, None, None, codes.ok, JSON) return find_by_name(result, 'network', name) def create_virtual_router(context, router): url = '/api/config/devices/device/{}'\ '/config/routing-instances'.format(context.appliance) data = {"routing-instance": [router]} context.client.post(url, json.dumps(data), JSON, codes.created) def delete_virtual_router(context, name): url = '/api/config/devices/device/{}'\ '/config/routing-instances'\ '/routing-instance/{}'.format(context.appliance, name) context.client.delete(url, codes.no_content) def is_router_exists(context, name): url = '/api/config/devices/device/{}'\ '/config/routing-instances/routing-instance?deep'.\ format(context.appliance) result = context.client.get(url, None, None, codes.ok, JSON) return find_by_name(result, 'routing-instance', name) def add_network_to_router(context, name, network): url = '/api/config/devices/device/{}'\ '/config/routing-instances/'\ 'routing-instance/{}'.format(context.appliance, name) result = context.client.get(url, None, None, codes.ok, JSON) result["routing-instance"]["networks"].append(network) context.client.put(url, json.dumps(result), JSON, codes.no_content) def delete_network_from_router(context, name, network): url = '/api/config/devices/device/{}'\ '/config/routing-instances/'\ 'routing-instance/{}'.format(context.appliance, name) result = context.client.get(url, None, None, codes.ok, JSON) result["routing-instance"]["networks"].remove(network) context.client.put(url, json.dumps(result), JSON, codes.no_content) def update_zone(client, appliance, org, zone): url = '/api/config/devices/device/{}'\ '/config/orgs/org-services/{}'\ '/objects/zones/zone/{}'.format(appliance, org, zone['name']) data = { "zone": zone} client.put(url, json.dumps(data), JSON, codes.ok) def get_zone(client, appliance, org, zone_name): url = '/api/config/devices/device/{}'\ '/config/orgs/org-services/{}'\ '/objects/zones/zone'.format(appliance, org) result = client.get(url, None, None, codes.ok, JSON) for zone in result['zone']: if zone['name'] == zone_name: return zone return None def create_zone(client, appliance, org, zone): url = '/api/config/devices/device/{}'\ '/config/orgs/org-services/{}/objects/zones'.format(appliance, org) data = {"zone": zone} client.post(url, json.dumps(data), JSON, codes.created) def delete_zone(client, appliance, org, zone_name): url = '/api/config/devices/device/{}'\ '/config/orgs/org-services/{}'\ '/objects/zones/zone/{}'.format(appliance, org, zone_name) client.delete(url) ``` #### File: frontier-versa-sdwan-poc-0117/versa_plugin/operations.py ```python from cloudify import ctx from cloudify import exceptions as cfy_exc from cloudify.decorators import operation import versa_plugin from copy import deepcopy from versa_plugin import with_versa_client from versa_plugin import get_mandatory import versa_plugin.appliance import versa_plugin.cgnat import versa_plugin.connectors import versa_plugin.dhcp import versa_plugin.firewall import versa_plugin.networking import versa_plugin.tasks import versa_plugin.vpn import versa_plugin.limits from versa_plugin.cgnat import AddressRange from collections import namedtuple ApplianceContext = namedtuple("ApplianceContext", "client, appliance, organization") def is_use_existing(): return ctx.node.properties.get('use_existing') def reqursive_update(d, u): for k, v in u.iteritems(): if isinstance(v, dict): r = reqursive_update(d.get(k, {}), v) d[k] = r elif isinstance(v, list): if isinstance(u[k], list): d[k] = d.setdefault(k, []) + u[k] else: d[k] = d.setdefault(k, []) + [u[k]] else: d[k] = u[k] return d def _get_node_configuration(key, kwargs): value = ctx.node.properties.get(key, {}) value.update(kwargs.get(key, {})) if value: return value else: raise cfy_exc.NonRecoverableError( "Configuration parameter {0} is absent".format(key)) def _get_context(client): appliance = get_mandatory(ctx.node.properties, 'appliance_name') org = ctx.node.properties.get('org_name', None) return ApplianceContext(client, appliance, org) @operation @with_versa_client def create_resource_pool(versa_client, **kwargs): if is_use_existing(): return instance = _get_node_configuration('instance', kwargs) versa_plugin.connectors.add_resource_pool(versa_client, instance) @operation @with_versa_client def delete_resource_pool(versa_client, **kwargs): if is_use_existing(): return instance = _get_node_configuration('instance', kwargs) name = get_mandatory(instance, 'name') versa_plugin.connectors.delete_resource_pool(versa_client, name) @operation @with_versa_client def create_cms_local_organization(versa_client, **kwargs): if is_use_existing(): return organization = _get_node_configuration('organization', kwargs) versa_plugin.connectors.add_organization(versa_client, organization) @operation @with_versa_client def delete_cms_local_organization(versa_client, **kwargs): if is_use_existing(): return organization = _get_node_configuration('organization', kwargs) name = get_mandatory(organization, 'name') versa_plugin.connectors.delete_organization(versa_client, name) @operation @with_versa_client def create_organization(versa_client, **kwargs): if is_use_existing(): return organization = _get_node_configuration('organization', kwargs) versa_plugin.appliance.add_organization(versa_client, organization) @operation @with_versa_client def delete_organization(versa_client, **kwargs): if is_use_existing(): return organization = _get_node_configuration('organization', kwargs) name = get_mandatory(organization, 'name') versa_plugin.appliance.delete_organization(versa_client, name) @operation @with_versa_client def create_appliance(versa_client, **kwargs): if is_use_existing(): return device = _get_node_configuration('device', kwargs) management_ip = get_mandatory(device, 'mgmt-ip') versa_plugin.appliance.wait_for_device(versa_client, management_ip, ctx) task = versa_plugin.appliance.add_appliance(versa_client, device) versa_plugin.tasks.wait_for_task(versa_client, task, ctx) @operation @with_versa_client def delete_appliance(versa_client, **kwargs): if is_use_existing(): return device = _get_node_configuration('device', kwargs) name = get_mandatory(device, 'name') task = versa_plugin.appliance.delete_appliance(versa_client, name) versa_plugin.tasks.wait_for_task(versa_client, task, ctx) @operation @with_versa_client def associate_organization(versa_client, **kwargs): if is_use_existing(): return organization = _get_node_configuration('organization', kwargs) appliance = get_mandatory(organization, 'appliance') net_info = get_mandatory(organization, 'networking-info') for net in net_info: interface_name = get_mandatory(get_mandatory(net, 'network-info'), 'parent-interface') interface = {"name": interface_name, "enable": True, "promiscuous": False} versa_plugin.networking.create_interface(versa_client, appliance, interface) task = versa_plugin.appliance.associate_organization(versa_client, organization) versa_plugin.tasks.wait_for_task(versa_client, task, ctx) @operation @with_versa_client def create_router(versa_client, **kwargs): if is_use_existing(): return context = _get_context(versa_client) router = _get_node_configuration('router', kwargs) if versa_plugin.networking.is_router_exists(context, router): raise cfy_exc.NonRecoverableError("Router exists") versa_plugin.networking.create_virtual_router(context, router) @operation @with_versa_client def delete_router(versa_client, **kwargs): if is_use_existing(): return context = _get_context(versa_client) router = _get_node_configuration('router', kwargs) router_name = router['name'] if versa_plugin.networking.is_router_exists(context, router_name): versa_plugin.networking.delete_virtual_router(context, router_name) @operation @with_versa_client def insert_to_router(versa_client, **kwargs): if is_use_existing(): return context = _get_context(versa_client) router = _get_node_configuration('router', kwargs) router_name = router['name'] networks = ctx.node.properties.get('networks', []) for name in networks: versa_plugin.networking.add_network_to_router( context, router_name, name) @operation @with_versa_client def delete_from_router(versa_client, **kwargs): if is_use_existing(): return context = _get_context(versa_client) networks = ctx.node.properties.get('networks', []) router_name = ctx.node.properties['name'] for name in networks: versa_plugin.networking.delete_network_from_router( context, router_name, name) @operation @with_versa_client def create_cgnat(versa_client, **kwargs): if is_use_existing(): return appliance_name = ctx.node.properties['appliance_name'] org_name = ctx.node.properties['org_name'] pool = ctx.node.properties['pool'] pool_name = pool['name'] ranges = [AddressRange(r['name'], r['low'], r['hight']) for r in pool['ranges']] routing_instance = pool['routing_instance'] provider_org = pool['provider_org'] versa_plugin.cgnat.create_pool(versa_client, appliance_name, org_name, pool_name, ranges, routing_instance, provider_org) rule = ctx.node.properties['rule'] rule_name = rule['name'] source_addresses = rule['addresses'] versa_plugin.cgnat.create_rule(versa_client, appliance_name, org_name, rule_name, source_addresses, pool_name) @operation @with_versa_client def delete_cgnat(versa_client, **kwargs): if is_use_existing(): return appliance_name = ctx.node.properties['appliance_name'] org_name = ctx.node.properties['org_name'] pool = ctx.node.properties['pool'] pool_name = pool['name'] rule = ctx.node.properties['rule'] rule_name = rule['name'] versa_plugin.cgnat.delete_rule(versa_client, appliance_name, org_name, rule_name) versa_plugin.cgnat.delete_pool(versa_client, appliance_name, org_name, pool_name) @operation @with_versa_client def create_zone(versa_client, **kwargs): if is_use_existing(): return appliance_name = ctx.node.properties['appliance_name'] org_name = ctx.node.properties['org_name'] zone = ctx.node.properties['zone'] zone_name = zone['name'] zone_exsists = versa_plugin.networking.get_zone(versa_client, appliance_name, org_name, zone_name) if zone_exsists: raise cfy_exc.NonRecoverableError( "Zone '{}' exsists".format(zone_name)) versa_plugin.networking.create_zone(versa_client, appliance_name, org_name, zone) @operation @with_versa_client def insert_to_zone(versa_client, **kwargs): if is_use_existing(): return appliance_name = ctx.node.properties['appliance_name'] org_name = ctx.node.properties['org_name'] zone = ctx.node.properties['zone'] zone_name = zone['name'] zone_exsists = versa_plugin.networking.get_zone(versa_client, appliance_name, org_name, zone_name) if zone_exsists: ctx.instance.runtime_properties[zone_name] = deepcopy(zone_exsists) new_zone = reqursive_update(zone_exsists, zone) versa_plugin.networking.update_zone(versa_client, appliance_name, org_name, new_zone) @operation @with_versa_client def delete_zone(versa_client, **kwargs): if is_use_existing(): return appliance_name = ctx.node.properties['appliance_name'] org_name = ctx.node.properties['org_name'] zone = ctx.node.properties['zone'] zone_name = zone['name'] versa_plugin.networking.delete_zone(versa_client, appliance_name, org_name, zone_name) @operation @with_versa_client def delete_from_zone(versa_client, **kwargs): if is_use_existing(): return appliance_name = ctx.node.properties['appliance_name'] org_name = ctx.node.properties['org_name'] zone = ctx.node.properties['zone'] zone_name = zone['name'] old_zone = ctx.instance.runtime_properties.get(zone_name, None) if old_zone: versa_plugin.networking.update_zone(versa_client, appliance_name, org_name, old_zone) @operation @with_versa_client def create_firewall_policy(versa_client, **kwargs): if is_use_existing(): return appliance_name = ctx.node.properties['appliance_name'] org_name = ctx.node.properties['org_name'] policy = ctx.node.properties['policy'] versa_plugin.firewall.add_policy(versa_client, appliance_name, org_name, policy) @operation @with_versa_client def delete_firewall_policy(versa_client, **kwargs): if is_use_existing(): return appliance_name = ctx.node.properties['appliance_name'] org_name = ctx.node.properties['org_name'] policy = ctx.node.properties['policy'] versa_plugin.firewall.delete_policy(versa_client, appliance_name, org_name, policy['name']) @operation @with_versa_client def create_firewall_rule(versa_client, **kwargs): if is_use_existing(): return appliance_name = ctx.node.properties['appliance_name'] org_name = ctx.node.properties['org_name'] policy_name = ctx.node.properties['policy_name'] rule = ctx.node.properties['rule'] ctx.instance.runtime_properties['rules'] = {} ctx.instance.runtime_properties['appliance'] = appliance_name ctx.instance.runtime_properties['org'] = org_name ctx.instance.runtime_properties['policy'] = policy_name name = rule['name'] ctx.instance.runtime_properties['rules'][name] = rule versa_plugin.firewall.add_rule(versa_client, appliance_name, org_name, policy_name, rule) if ctx.node.properties['on_top']: all_rules = versa_plugin.firewall.get_all_rules(versa_client, appliance_name, org_name, policy_name) sorted_list = [] for rule in all_rules: if rule['name'] == name: sorted_list.insert(0, rule) else: sorted_list.append(rule) versa_plugin.firewall.reorder_rules(versa_client, appliance_name, org_name, policy_name, sorted_list) @operation @with_versa_client def update_firewall_rule(versa_client, **kwargs): rule = kwargs.get('rule') if not rule: return name = rule.get('name') if not name: ctx.logger.info("Key 'name' in rule is absent.") return old_rule = ctx.instance.runtime_properties['rules'].get(name) if not old_rule: ctx.logger.info("Rule: '{}' not found.".format(name)) return reqursive_update(rule, old_rule) appliance_name = ctx.instance.runtime_properties['appliance'] org_name = ctx.instance.runtime_properties['org'] policy_name = ctx.instance.runtime_properties['policy'] versa_plugin.firewall.update_rule(versa_client, appliance_name, org_name, policy_name, rule) @operation @with_versa_client def get_firewall_rule(versa_client, **kwargs): name = kwargs.get('name') if not name: ctx.logger.info("Key 'name' is absent.") return appliance_name = ctx.instance.runtime_properties['appliance'] org_name = ctx.instance.runtime_properties['org'] policy_name = ctx.instance.runtime_properties['policy'] rule = versa_plugin.firewall.get_rule(versa_client, appliance_name, org_name, policy_name, name) ctx.logger.info("Rule '{} is: {}".format(name, rule)) @operation @with_versa_client def delete_firewall_rule(versa_client, **kwargs): if is_use_existing(): return appliance_name = ctx.node.properties['appliance_name'] org_name = ctx.node.properties['org_name'] policy_name = ctx.node.properties['policy_name'] rule = ctx.node.properties['rule'] versa_plugin.firewall.delete_rule(versa_client, appliance_name, org_name, policy_name, rule['name']) @operation @with_versa_client def create_url_filters(versa_client, **kwargs): appliance_name = ctx.node.properties['appliance_name'] org_name = ctx.node.properties['org_name'] url_filters = ctx.node.properties['filters'] for url_filter in url_filters: ctx.logger.info("Filter: {}".format(url_filter)) versa_plugin.firewall.add_url_filter(versa_client, appliance_name, org_name, url_filter) @operation @with_versa_client def delete_url_filters(versa_client, **kwargs): appliance_name = ctx.node.properties['appliance_name'] org_name = ctx.node.properties['org_name'] url_filters = ctx.node.properties['filters'] for url_filter in url_filters: ctx.logger.info("Filter: {}".format(url_filter)) versa_plugin.firewall.delete_url_filter(versa_client, appliance_name, org_name, url_filter) @operation @with_versa_client def create_dhcp_profile(versa_client, **kwargs): if is_use_existing(): return appliance_name = ctx.node.properties['appliance_name'] profile_name = ctx.node.properties['profile_name'] if versa_plugin.limits.is_dhcp_profile_exists(versa_client, appliance_name, profile_name): raise cfy_exc.NonRecoverableError("Dhcp profile exists") versa_plugin.limits.create_dhcp_profile(versa_client, appliance_name, profile_name) @operation @with_versa_client def delete_dhcp_profile(versa_client, **kwargs): if is_use_existing(): return appliance_name = ctx.node.properties['appliance_name'] profile_name = ctx.node.properties['profile_name'] if versa_plugin.limits.is_dhcp_profile_exists(versa_client, appliance_name, profile_name): versa_plugin.limits.delete_dhcp_profile(versa_client, appliance_name, profile_name) @operation @with_versa_client def create_dhcp_lease_profile(versa_client, **kwargs): if is_use_existing(): return appliance_name = ctx.node.properties['appliance_name'] org_name = ctx.node.properties['org_name'] lease_name = ctx.node.properties['lease_profile'] versa_plugin.dhcp.create_lease_profile(versa_client, appliance_name, org_name, lease_name) @operation @with_versa_client def delete_dhcp_lease_profile(versa_client, **kwargs): if is_use_existing(): return appliance_name = ctx.node.properties['appliance_name'] org_name = ctx.node.properties['org_name'] lease_name = ctx.node.properties['lease_profile'] if versa_plugin.dhcp.is_lease_profile_exsists(versa_client, appliance_name, org_name, lease_name): versa_plugin.dhcp.delete_lease_profile(versa_client, appliance_name, org_name, lease_name) @operation @with_versa_client def create_dhcp_options_profile(versa_client, **kwargs): if is_use_existing(): return appliance_name = ctx.node.properties['appliance_name'] org_name = ctx.node.properties['org_name'] options_name = ctx.node.properties['name'] domain = ctx.node.properties['domain'] servers = ctx.node.properties['servers'] versa_plugin.dhcp.create_options_profile(versa_client, appliance_name, org_name, options_name, domain, servers) @operation @with_versa_client def delete_dhcp_options_profile(versa_client, **kwargs): if is_use_existing(): return appliance_name = ctx.node.properties['appliance_name'] org_name = ctx.node.properties['org_name'] options_name = ctx.node.properties['name'] if versa_plugin.dhcp.is_dhcp_profile_exists(versa_client, appliance_name, org_name, options_name): versa_plugin.dhcp.delete_options_profile(versa_client, appliance_name, org_name, options_name) @operation @with_versa_client def create_dhcp_global_configuration(versa_client, **kwargs): if is_use_existing(): return appliance_name = ctx.node.properties['appliance_name'] org_name = ctx.node.properties['org_name'] lease_profile = ctx.node.properties['lease_profile'] options_profile = ctx.node.properties['options_profile'] versa_plugin.dhcp.update_global_configuration(versa_client, appliance_name, org_name, lease_profile, options_profile) @operation @with_versa_client def delete_dhcp_global_configuration(versa_client, **kwargs): if is_use_existing(): return appliance_name = ctx.node.properties['appliance_name'] org_name = ctx.node.properties['org_name'] lease_profile = [] options_profile = [] versa_plugin.dhcp.update_global_configuration(versa_client, appliance_name, org_name, lease_profile, options_profile) @operation @with_versa_client def create_dhcp_pool(versa_client, **kwargs): if is_use_existing(): return appliance_name = ctx.node.properties['appliance_name'] org_name = ctx.node.properties['org_name'] lease_profile = ctx.node.properties['lease_profile'] options_profile = ctx.node.properties['options_profile'] pool_name = ctx.node.properties['name'] mask = ctx.node.properties['mask'] range_name = ctx.node.properties['range_name'] begin_address = ctx.node.properties['begin_address'] end_address = ctx.node.properties['end_address'] versa_plugin.dhcp.create_pool(versa_client, appliance_name, org_name, pool_name, mask, lease_profile, options_profile, range_name, begin_address, end_address) @operation @with_versa_client def delete_dhcp_pool(versa_client, **kwargs): if is_use_existing(): return appliance_name = ctx.node.properties['appliance_name'] org_name = ctx.node.properties['org_name'] pool_name = ctx.node.properties['name'] if versa_plugin.dhcp.is_pool_exists(versa_client, appliance_name, org_name, pool_name): versa_plugin.dhcp.delete_pool(versa_client, appliance_name, org_name, pool_name) @operation @with_versa_client def create_dhcp_server(versa_client, **kwargs): if is_use_existing(): return appliance_name = ctx.node.properties['appliance_name'] org_name = ctx.node.properties['org_name'] lease_profile = ctx.node.properties['lease_profile'] options_profile = ctx.node.properties['options_profile'] pool_name = ctx.node.properties['pool_name'] server_name = ctx.node.properties['name'] networks = ctx.node.properties['networks'] versa_plugin.dhcp.create_server(versa_client, appliance_name, org_name, server_name, lease_profile, options_profile, networks, pool_name) @operation @with_versa_client def delete_dhcp_server(versa_client, **kwargs): if is_use_existing(): return appliance_name = ctx.node.properties['appliance_name'] org_name = ctx.node.properties['org_name'] server_name = ctx.node.properties['name'] if versa_plugin.dhcp.is_server_exists(versa_client, appliance_name, org_name, server_name): versa_plugin.dhcp.delete_server(versa_client, appliance_name, org_name, server_name) @operation @with_versa_client def create_interface(versa_client, **kwargs): if is_use_existing(): return appliance_name = ctx.node.properties['appliance_name'] interface = _get_node_configuration('interface', kwargs) versa_plugin.networking.create_interface(versa_client, appliance_name, interface) @operation @with_versa_client def delete_interface(versa_client, **kwargs): if is_use_existing(): return appliance_name = ctx.node.properties['appliance_name'] interface = _get_node_configuration('interface', kwargs) name = interface['name'] versa_plugin.networking.delete_interface(versa_client, appliance_name, name) @operation @with_versa_client def create_network(versa_client, **kwargs): if is_use_existing(): return appliance_name = ctx.node.properties['appliance_name'] network = _get_node_configuration('network', kwargs) if versa_plugin.networking.is_network_exists(versa_client, appliance_name, network): raise cfy_exc.NonRecoverableError("Network exists") versa_plugin.networking.create_network(versa_client, appliance_name, network) @operation @with_versa_client def delete_network(versa_client, **kwargs): if is_use_existing(): return appliance_name = ctx.node.properties['appliance_name'] network = _get_node_configuration('network', kwargs) name = network['name'] if versa_plugin.networking.is_network_exists(versa_client, appliance_name, name): versa_plugin.networking.delete_network(versa_client, appliance_name, name) @operation @with_versa_client def insert_to_limits(versa_client, **kwargs): if is_use_existing(): return appliance_name = ctx.node.properties['appliance_name'] org_name = ctx.node.properties['org_name'] dhcp_profile = ctx.node.properties.get('dhcp_profile') routes = ctx.node.properties.get('routes', []) networks = ctx.node.properties.get('networks', []) interfaces = ctx.node.properties.get('interfaces', []) provider_orgs = ctx.node.properties.get('provider_orgs', []) if dhcp_profile: versa_plugin.limits.insert_dhcp_profile_to_limits(versa_client, appliance_name, org_name, dhcp_profile) for name in routes: versa_plugin.limits.add_routing_instance(versa_client, appliance_name, org_name, name) for name in networks: versa_plugin.limits.add_traffic_identification_networks( versa_client, appliance_name, org_name, name, 'using-networks') for name in interfaces: versa_plugin.limits.add_traffic_identification_networks( versa_client, appliance_name, org_name, name, 'using') for name in provider_orgs: versa_plugin.limits.add_provider_organization(versa_client, appliance_name, org_name, name) @operation @with_versa_client def delete_from_limits(versa_client, **kwargs): if is_use_existing(): return appliance_name = ctx.node.properties['appliance_name'] org_name = ctx.node.properties['org_name'] dhcp_profile = ctx.node.properties.get('dhcp_profile') routes = ctx.node.properties.get('routes', []) networks = ctx.node.properties.get('networks', []) interfaces = ctx.node.properties.get('interfaces', []) provider_orgs = ctx.node.properties.get('provider_orgs', []) for name in routes: versa_plugin.limits.delete_routing_instance(versa_client, appliance_name, org_name, name) for name in networks: versa_plugin.limits.delete_traffic_identification_networks( versa_client, appliance_name, org_name, name, 'using-networks') for name in interfaces: versa_plugin.limits.delete_traffic_identification_networks( versa_client, appliance_name, org_name, name, 'using') for name in provider_orgs: versa_plugin.limits.delete_provider_organization(versa_client, appliance_name, org_name, name) if dhcp_profile: versa_plugin.limits.delete_dhcp_profile_from_limits(versa_client, appliance_name, org_name, dhcp_profile) @operation @with_versa_client def create_vpn_profile(versa_client, **kwargs): if is_use_existing(): return appliance_name = ctx.node.properties['appliance_name'] org_name = ctx.node.properties['org_name'] profile = _get_node_configuration('profile', kwargs) name = profile['name'] if versa_plugin.vpn.is_profile_exists(versa_client, appliance_name, org_name, name): raise cfy_exc.NonRecoverableError("VPN profile exists") versa_plugin.vpn.create_profile(versa_client, appliance_name, org_name, profile) @operation @with_versa_client def delete_vpn_profile(versa_client, **kwargs): if is_use_existing(): return appliance_name = ctx.node.properties['appliance_name'] org_name = ctx.node.properties['org_name'] profile = _get_node_configuration('profile', kwargs) name = profile['name'] if versa_plugin.vpn.is_profile_exists(versa_client, appliance_name, org_name, name): versa_plugin.vpn.delete_profile(versa_client, appliance_name, org_name, name) @operation @with_versa_client def insert_captive_portal(versa_client, **kwargs): if is_use_existing(): return appliance_name = ctx.node.properties['appliance_name'] org_name = ctx.node.properties['org_name'] portal = _get_node_configuration('captive_portal', kwargs) versa_plugin.firewall.update_captive_portal(versa_client, appliance_name, org_name, portal) @operation @with_versa_client def clean_captove_portal(versa_client, **kwargs): if is_use_existing(): return appliance_name = ctx.node.properties['appliance_name'] org_name = ctx.node.properties['org_name'] portal = {"port": "0", "track-by-host": False, "expiration-time": "30", "custom-pages": {}} versa_plugin.firewall.update_captive_portal(versa_client, appliance_name, org_name, portal) ``` #### File: frontier-versa-sdwan-poc-0117/versa_plugin/versaclient.py ```python import requests import json import os from os import chmod from xml.dom.minidom import parseString from requests.packages.urllib3.exceptions import InsecureRequestWarning from cloudify import exceptions as cfy_exc from cloudify import ctx requests.packages.urllib3.disable_warnings(InsecureRequestWarning) JSON = 'json' XML = 'xml' def _save_key_file(path, value): path = os.path.expanduser(path) with open(path, 'w') as content_file: chmod(path, 0600) content_file.write(value) def _check_response(response, return_code, accept): if response.status_code == requests.codes.no_content: return None if response.status_code != return_code: raise cfy_exc.HttpException(response.url, response.status_code, response.content) if response.content: if accept == JSON: return json.loads(response.content) else: return parseString(response.content) else: return None class VersaClient(): def __init__(self, config, key_file): self.versa_url = config["versa_url"] self.client_id = config["client_id"] self.client_secret = config["client_secret"] self.username = config["username"] self.password = config["password"] self.access_token = None self.verify = False self.key_file = key_file def __enter__(self): self.get_token() return self def __exit__(self, type, value, traceback): # self.revoke_token() pass def read_tokens_form_file(self): if os.path.isfile(self.key_file): with open(self.key_file) as file: self.access_token = file.readline().rstrip() return True return False def save_token_to_file(self): with open(self.key_file, "w") as file: file.write(self.access_token) def get_token(self): if self.read_tokens_form_file(): return data = { "client_id": self.client_id, "client_secret": self.client_secret, "username": self.username, "password": self.password, "grant_type": "password"} headers = self._get_headers(JSON, JSON) result = requests.post(self.versa_url + "/auth/token", headers=headers, data=json.dumps(data), verify=self.verify) try: result = json.loads(result.content) self.access_token = result['access_token'] self.save_token_to_file() except (KeyError, TypeError, ValueError): raise cfy_exc.NonRecoverableError( "Incorrect reply: {}".format(result)) def revoke_token(self): headers = {"Authorization": "Bearer {}".format(self.access_token)} requests.post(self.versa_url + "/auth/revoke", headers=headers, verify=self.verify) if os.path.isfile(self.key_file): os.remove(self.key_file) self.access_token = None def get(self, path, data, content_type, return_code=200, accept=JSON): return self._request(requests.get, path, data, content_type, return_code, accept) def post(self, path, data, content_type, return_code=201, accept=JSON): return self._request(requests.post, path, data, content_type, return_code, accept) def put(self, path, data, content_type, return_code=204, accept=JSON): return self._request(requests.put, path, data, content_type, return_code, accept) def delete(self, path, return_code=204, accept=JSON): return self._request(requests.delete, path, None, None, return_code, accept) def _request(self, request_type, path, data, content_type, return_code, accept): retry = 0 ctx.logger.debug("Sending {0} request to {1} with data {2}".format( request_type.__name__, self.versa_url+path, str(data))) while True: headers = self._get_headers(content_type, accept) response = request_type( self.versa_url + path, headers=headers, data=data, verify=self.verify) if response.status_code == 401: if retry == 1: break retry += 1 self.revoke_token() self.get_token() else: response_str = _check_response(response, return_code, accept) ctx.logger.debug("respose code: {0} string:{1}".format( return_code, response_str)) return response_str def _get_headers(self, content_type, accept): content_dict = {'json': 'application/json', 'xml': 'application/xml'} headers = {} if content_type: try: headers['Content-type'] = content_dict[content_type] except KeyError: raise cfy_exc.NonRecoverableError( "Unknown content-type: {}".format(content_type)) if self.access_token: headers["Authorization"] = "Bearer {}".format(self.access_token) headers['Accept'] = content_dict[accept] return headers ``` #### File: frontier-versa-sdwan-poc-0117/versa_plugin/vpn.py ```python import json from versa_plugin.versaclient import JSON from versa_plugin import find_by_name from requests import codes def create_profile(client, appliance, org, profile): url = '/api/config/devices/device/{}'\ '/config/orgs/org-services/{}/ipsec'.format(appliance, org) data = {"vpn-profile": profile} client.post(url, json.dumps(data), JSON, codes.created) def delete_profile(client, appliance, org, name): url = '/api/config/devices/device/{}'\ '/config/orgs/org-services/{}'\ '/ipsec/vpn-profile/{}'.format(appliance, org, name) client.delete(url) def is_profile_exists(client, appliance, org, name): url = '/api/config/devices/device/{}'\ '/config/orgs/org-services/{}'\ '/ipsec/vpn-profile?deep'.format(appliance, org) result = client.get(url, None, None, codes.ok) return find_by_name(result, "vpn-profile", name) ```
{ "source": "JoshuaPiinRueyPan/StatoilCompetition", "score": 2 }
#### File: StatoilCompetition/src/Classifier.py ```python import tensorflow as tf import src.RadarImage as RadarImage import settings.OutputSettings as outSettings from settings.SubnetSettings import SubnetFactory import settings.TrainSettings as trainSettings class Classifier: def __init__(self): self.isTraining = tf.placeholder(tf.bool) self.trainingStep = tf.placeholder(tf.int64) self.inputImage = tf.placeholder(tf.float32, [None, RadarImage.DATA_WIDTH, RadarImage.DATA_HEIGHT, RadarImage.DATA_CHANNELS]) self.inputAngle = tf.placeholder(tf.float32, [None, 1]) self.groundTruth = tf.placeholder(tf.float32, [None, outSettings.NUMBER_OF_CATEGORIES]) self.net = SubnetFactory(self.isTraining, self.trainingStep, self.inputImage, self.inputAngle, self.groundTruth) def Build(self): self.logits, updateSubnetOperation = self.net.Build() self.predictions = tf.nn.softmax(self.logits, name="tf.nn.softmax") with tf.name_scope("calculateLoss"): crossEntropy = tf.nn.softmax_cross_entropy_with_logits(logits=self.logits, labels=self.groundTruth, name="tf.nn.softmax_cross_entropy_with_logits") loss = tf.reduce_mean(crossEntropy, name="tf.reduce_mean") accuracy = self.calculateAccuracy(self.predictions, self.groundTruth) return loss, accuracy, updateSubnetOperation def calculateAccuracy(self, predictions_, groundTruth_): with tf.name_scope("calculateAccuracy"): correctPredictions = tf.equal(tf.argmax(predictions_, 1), tf.argmax(groundTruth_, 1), name="tf.equal") accuracy = tf.reduce_mean(tf.cast(correctPredictions, tf.float32), name="tf.reduce_mean") return accuracy ``` #### File: src/net/AlexnetBatchNorm.py ```python import tensorflow as tf from src.net.SubnetBase import SubnetBase from src.layers.BasicLayers import * import settings.OutputSettings as outSettings class AlexnetBatchNorm(SubnetBase): def __init__(self, isTraining_, trainingStep_, inputImage_, inputAngle_, groundTruth_): self.isTraining = isTraining_ self.trainingStep = trainingStep_ self.inputImage = inputImage_ self.inputAngle = inputAngle_ self.groundTruth = groundTruth_ self.dropoutValue = 0.5 def Build(self): net = ConvLayer('Conv1', self.inputImage, 3, 8, stride_=1, padding_='SAME') net, updateVariablesOp1 = BatchNormalization('BN1', net, isConvLayer_=True, isTraining_=self.isTraining, currentStep_=self.trainingStep) net = tf.nn.relu(net) net = MaxPoolLayer('Pool1', net, kernelSize_=2) net = ConvLayer('Conv2', net, 3, 16, stride_=1, padding_='SAME') net, updateVariablesOp2 = BatchNormalization('BN2', net, isConvLayer_=True, isTraining_=self.isTraining, currentStep_=self.trainingStep) net = tf.nn.relu(net) net = MaxPoolLayer('Pool2', net, kernelSize_=2) net = ConvLayer('Conv3', net, 3, 16, stride_=1, padding_='SAME') net, updateVariablesOp3 = BatchNormalization('BN3', net, isConvLayer_=True, isTraining_=self.isTraining, currentStep_=self.trainingStep) net = tf.nn.relu(net) net = MaxPoolLayer('Pool3', net, kernelSize_=2) net = ConvLayer('Conv4', net, 3, 16, stride_=1, padding_='SAME') net, updateVariablesOp4 = BatchNormalization('BN4', net, isConvLayer_=True, isTraining_=self.isTraining, currentStep_=self.trainingStep) net = tf.nn.relu(net) net = MaxPoolLayer('Pool4', net, kernelSize_=2) net = FullyConnectedLayer('Fc1', net, numberOfOutputs_=128) net, updateVariablesOp1 = BatchNormalization('BN5', net, isConvLayer_=False, isTraining_=self.isTraining, currentStep_=self.trainingStep) net = LeakyRELU('LeakyRELU1', net) net = tf.cond(self.isTraining, lambda: tf.nn.dropout(net, self.dropoutValue), lambda: net) net = FullyConnectedLayer('Fc2', net, numberOfOutputs_=128) net, updateVariablesOp2 = BatchNormalization('BN6', net, isConvLayer_=False, isTraining_=self.isTraining, currentStep_=self.trainingStep) net = LeakyRELU('LeakyRELU2', net) net = tf.cond(self.isTraining, lambda: tf.nn.dropout(net, self.dropoutValue), lambda: net) net = FullyConnectedLayer('Fc3', net, numberOfOutputs_=outSettings.NUMBER_OF_CATEGORIES) updateVariablesOperations = tf.group(updateVariablesOp1, updateVariablesOp2) return net, updateVariablesOperations ``` #### File: src/net/ResnetFat.py ```python import tensorflow as tf from src.net.SubnetBase import SubnetBase from src.layers.BasicLayers import * from src.layers.ResidualLayers import * import settings.OutputSettings as outSettings class ResnetFat(SubnetBase): def __init__(self, isTraining_, trainingStep_, inputImage_, inputAngle_, groundTruth_): self.isTraining = isTraining_ self.trainingStep = trainingStep_ self.inputImage = inputImage_ self.inputAngle = inputAngle_ self.groundTruth = groundTruth_ def Build(self): with tf.name_scope('Layer1'): ''' Conv1st (5x5, 16) is the best result. (5x5, 8) is also good. ''' net = ConvLayer('Conv1', self.inputImage, filterSize_=5, numberOfFilters_=16, stride_=1, padding_='SAME') net, updateOp1 = BatchNormalization('BN_1', net, isConvLayer_=True, isTraining_=self.isTraining, currentStep_=self.trainingStep) net = LeakyRELU('LeakyRELU', net) net = MaxPoolLayer('MaxPool1', net, kernelSize=2) # Layer 2 net, updateOp2 = ResidualLayer( "ResLayer2", net, numberOfResidualBlocks_=3, listOfConvFilterSize_=[8, 8, 32], isTraining_=self.isTraining, trainingStep_=self.trainingStep, activationType_="RELU") # Layer 3 net, updateOp3 = ResidualLayer( "ResLayer3", net, numberOfResidualBlocks_=4, listOfConvFilterSize_=[16, 16, 64], isTraining_=self.isTraining, trainingStep_=self.trainingStep, activationType_="RELU") ''' MaxPool seems a little improve (lower the loss). ''' #net = AvgPoolLayer("AveragePool", net, kernelSize=38, padding_='VALID') net = AvgPoolLayer("AveragePool", net, kernelSize=7, padding_='SAME') #net = MaxPoolLayer("MaxPool", net, kernelSize=38, padding_='VALID') #net = MaxPoolLayer("MaxPool", net, kernelSize=7, padding_='SAME') net = FullyConnectedLayer('Fc', net, numberOfOutputs_=outSettings.NUMBER_OF_CATEGORIES) updateOperations = tf.group(updateOp1, updateOp2, updateOp3, name="groupUpdateOps") return net, updateOperations ``` #### File: JoshuaPiinRueyPan/StatoilCompetition/Train.py ```python import os import tensorflow as tf import numpy as np import src.RadarImage from src.DataManager import TrainingDataManager from src.Classifier import * import settings.TrainSettings as trainSettings import src.layers.LayerHelper as LayerHelper class Solver: def __init__(self): # Data Manager self.dataManager = TrainingDataManager(trainSettings.TRAINING_SET_PATH_NAME, trainSettings.VALIDATION_RATIO) self.validation_x, self.validation_x_angle, self.validation_y = self.dataManager.GetValidationSet() # Net self.net = Classifier() self.lossOp, self.accuracyOp, self.updateNetOp = self.net.Build() # Optimizer self.learningRate = tf.placeholder(tf.float32, shape=[]) try: # If there's other losses (e.g. Regularization Loss) otherLossOp = tf.losses.get_total_loss(add_regularization_losses=True) totalLossOp = self.lossOp + otherLossOp except: # If there's no other loss op totalLossOp = self.lossOp #self.optimzeOp = tf.train.AdamOptimizer(learning_rate=self.learningRate).minimize(totalLossOp) optimizer = tf.train.AdamOptimizer(learning_rate=self.learningRate) gradients = optimizer.compute_gradients(totalLossOp) self.drawGradients(gradients) self.optimzeOp = optimizer.apply_gradients(gradients) # Summary self.trainSumWriter = tf.summary.FileWriter(trainSettings.PATH_TO_SAVE_MODEL+"/train") self.validaSumWriter = tf.summary.FileWriter(trainSettings.PATH_TO_SAVE_MODEL+"/valid") self.saver = tf.train.Saver(max_to_keep=trainSettings.MAX_TRAINING_SAVE_MODEL) self.summaryOp = tf.summary.merge_all() def Run(self): init = tf.initialize_all_variables() with tf.Session() as sess: sess.run(init) self.validaSumWriter.add_graph(sess.graph) self.recoverFromPretrainModelIfRequired(sess) # Calculate Validation before Training print("Validation before Training ======================================") self.CalculateValidation(sess, shouldSaveSummary=False) while self.dataManager.epoch < trainSettings.MAX_TRAINING_EPOCH: batch_x, batch_x_angle, batch_y = self.dataManager.GetTrainingBatch(trainSettings.BATCH_SIZE) self.trainIceNet(sess, batch_x, batch_x_angle, batch_y) self.updateIceNet(sess, batch_x, batch_x_angle, batch_y) if self.dataManager.isNewEpoch: print("Epoch: " + str(self.dataManager.epoch)+" ======================================") self.CalculateTrainingLoss(sess, batch_x, batch_x_angle, batch_y) self.CalculateValidation(sess, shouldSaveSummary=True) if self.dataManager.epoch >= trainSettings.EPOCHS_TO_START_SAVE_MODEL: self.saveCheckpoint(sess) print("Optimization finished!") def recoverFromPretrainModelIfRequired(self, session): if trainSettings.PRETRAIN_MODEL_PATH_NAME != "": print("Load Pretrain model from: " + trainSettings.PRETRAIN_MODEL_PATH_NAME) listOfAllVariables = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES) variablesToBeRecovered = [ eachVariable for eachVariable in listOfAllVariables \ if eachVariable.name.split('/')[0] not in \ trainSettings.NAME_SCOPES_NOT_TO_RECOVER_FROM_CHECKPOINT ] modelLoader = tf.train.Saver(variablesToBeRecovered) modelLoader.restore(session, trainSettings.PRETRAIN_MODEL_PATH_NAME) def trainIceNet(self, session, batch_x, batch_x_angle, batch_y): currentLearningRate = trainSettings.GetLearningRate(self.dataManager.epoch) session.run( self.optimzeOp, feed_dict={self.net.isTraining : True, self.net.trainingStep : self.dataManager.step, self.net.inputImage : batch_x, self.net.inputAngle : batch_x_angle, self.net.groundTruth : batch_y, self.learningRate : currentLearningRate}) def updateIceNet(self, session, batch_x, batch_x_angle, batch_y): ''' Some Network has variables that need to be updated after training (e.g. the net with batch normalization). After training, following code update such variables. ''' session.run( self.updateNetOp, feed_dict={self.net.isTraining : False, self.net.trainingStep : self.dataManager.step, self.net.inputImage : batch_x, self.net.inputAngle : batch_x_angle, self.net.groundTruth : batch_y}) def CalculateTrainingLoss(self, session, batch_x, batch_x_angle, batch_y): summaryValue, lossValue, accuValue = session.run( [self.summaryOp, self.lossOp, self.accuracyOp], feed_dict={ self.net.isTraining : False, self.net.trainingStep : self.dataManager.step, self.net.inputImage : batch_x, self.net.inputAngle : batch_x_angle, self.net.groundTruth : batch_y}) summary = tf.Summary() summary.ParseFromString(summaryValue) summary.value.add(tag='loss', simple_value=lossValue) summary.value.add(tag='accuracy', simple_value=accuValue) self.trainSumWriter.add_summary(summary, self.dataManager.epoch) print(" train:") print(" loss: " + str(lossValue) + ", accuracy: " + str(accuValue) + "\n") def CalculateValidation(self, session, shouldSaveSummary): if trainSettings.NUMBER_OF_VALIDATION_DATA <= trainSettings.BATCH_SIZE: self.calculateValidationBywholeBatch(session, shouldSaveSummary) else: self.calculateValidationOneByOne(session, shouldSaveSummary) def calculateValidationBywholeBatch(self, session, shouldSaveSummary): summaryValue, lossValue, accuValue = session.run( [self.summaryOp, self.lossOp, self.accuracyOp], feed_dict={ self.net.isTraining : False, self.net.trainingStep : self.dataManager.step, self.net.inputImage : self.validation_x, self.net.inputAngle : self.validation_x_angle, self.net.groundTruth : self.validation_y}) if shouldSaveSummary: summary = tf.Summary() summary.ParseFromString(summaryValue) summary.value.add(tag='loss', simple_value=lossValue) summary.value.add(tag='accuracy', simple_value=accuValue) self.validaSumWriter.add_summary(summary, self.dataManager.epoch) print(" validation:") print(" loss: " + str(lossValue) + ", accuracy: " + str(accuValue) + "\n") def calculateValidationOneByOne(self, session, shouldSaveSummary): ''' When deal with a Large Model, stuff all validation set into a batch is not possible. Therefore, following stuff each validation data at a time ''' arrayOfValidaLoss = np.zeros( (trainSettings.NUMBER_OF_VALIDATION_DATA) ) arrayOfValidaAccu = np.zeros( (trainSettings.NUMBER_OF_VALIDATION_DATA) ) for i in range(trainSettings.NUMBER_OF_VALIDATION_DATA): validaImage = self.validation_x[i] validaImage = np.reshape(validaImage, [1, RadarImage.DATA_WIDTH, RadarImage.DATA_HEIGHT, RadarImage.DATA_CHANNELS]) validaAngle = self.validation_x_angle[i] validaAngle = np.reshape(validaAngle, [1, 1]) validaLabel = self.validation_y[i] validaLabel = np.reshape(validaLabel, [1, 2]) lossValue, accuValue = session.run( [ self.lossOp, self.accuracyOp], feed_dict={ self.net.isTraining : False, self.net.trainingStep : self.dataManager.step, self.net.inputImage : validaImage, self.net.inputAngle : validaAngle, self.net.groundTruth : validaLabel}) arrayOfValidaLoss[i] = lossValue arrayOfValidaAccu[i] = accuValue meanLoss = np.mean(arrayOfValidaLoss) meanAccu = np.mean(arrayOfValidaAccu) if shouldSaveSummary: summary = tf.Summary() summary.value.add(tag='loss', simple_value=meanLoss) summary.value.add(tag='accuracy', simple_value=meanAccu) self.validaSumWriter.add_summary(summary, self.dataManager.epoch) print(" validation:") print(" loss: " + str(meanLoss) + ", accuracy: " + str(meanAccu) + "\n") def saveCheckpoint(self, tf_session): pathToSaveCheckpoint = os.path.join(trainSettings.PATH_TO_SAVE_MODEL, "save_epoch_" + str(self.dataManager.epoch) ) checkpointPathFileName = os.path.join(pathToSaveCheckpoint, "IceNet.ckpt") self.saver.save(tf_session, checkpointPathFileName) def drawGradients(self, gradientsInfo_): for eachGradient, eachVariable in gradientsInfo_: if eachGradient is not None: tf.summary.histogram(eachVariable.op.name + '/gradient', eachGradient) if __name__ == "__main__": solver = Solver() solver.Run() ```
{ "source": "JoshuaPK/atomicdb", "score": 2 }
#### File: patroni-docker/scripts/callback_role.py ```python import json import logging import requests import requests.exceptions import os import sys import time TOKEN_FILENAME = '/var/run/secrets/kubernetes.io/serviceaccount/token' CA_CERT_FILENAME = '/var/run/secrets/kubernetes.io/serviceaccount/ca.crt' API_URL = 'https://kubernetes.default.svc.cluster.local/api/v1/namespaces/{0}/pods/{1}' logger = logging.getLogger(__name__) NUM_ATTEMPTS = 10 LABEL = 'patroni-role' def change_host_role_label(new_role): try: with open(TOKEN_FILENAME, "r") as f: token = f.read() except IOError: sys.exit("Unable to read K8S authorization token") headers = {'Authorization': 'Bearer {0}'.format(token)} headers['Content-Type'] = 'application/json-patch+json' url = API_URL.format(os.environ.get('POD_NAMESPACE', 'default'), os.environ['HOSTNAME']) data = [{'op': 'add', 'path': '/metadata/labels/{0}'.format(LABEL), 'value': new_role}] for i in range(NUM_ATTEMPTS): try: r = requests.patch(url, headers=headers, data=json.dumps(data), verify=CA_CERT_FILENAME) if r.status_code >= 300: logger.warning("Unable to change the role label to {0}: {1}".format(new_role, r.text)) else: break except requests.exceptions.RequestException as e: logger.warning("Exception when executing POST on {0}: {1}".format(url, e)) time.sleep(1) else: logger.warning("Unable to set the label after {0} attempts".format(NUM_ATTEMPTS)) def record_role_change(action, new_role): # on stop always sets the label to the replica, the load balancer # should not direct connections to the hosts with the stopped DB. if action == 'on_stop': new_role = 'replica' change_host_role_label(new_role) logger.debug("Changing the host's role to {0}".format(new_role)) def main(): logging.basicConfig(format='%(asctime)s %(levelname)s: %(message)s', level=logging.INFO) if len(sys.argv) == 4 and sys.argv[1] in ('on_start', 'on_stop', 'on_role_change', 'on_restart'): record_role_change(action=sys.argv[1], new_role=sys.argv[2]) else: sys.exit("Usage: {0} action role name".format(sys.argv[0])) return 0 if __name__ == '__main__': main() ```
{ "source": "JoshuaPMallory/lambdata-JoshuaPMallory", "score": 3 }
#### File: lambdata-JoshuaPMallory/lambdata_joshuapmallory/test.py ```python import unittest import numpy as np from utility_functions import google_drive_useable class function_tester(unittest.TestCase): '''Obligatory docstring, test square root functions!''' def test_google_drive_useable(self): '''docstring''' self.assertEqual(google_drive_useable('https://drive.google.com/open?id=1pEOgqOZcgxwu7gA4GnFuMwO_wVBLQ7cf') ,'https://drive.google.com/uc?id=1pEOgqOZcgxwu7gA4GnFuMwO_wVBLQ7cf' ) if __name__ == '__main__': unittest.main() ```
{ "source": "joshuapouliot27/Land-Drone", "score": 3 }
#### File: joshuapouliot27/Land-Drone/Drone_Server.py ```python import json import logging import math import time import Math import RPi.GPIO as GPIO from websocket_server import WebsocketServer from Background_Thread import Background_Thread moving_left = False moving_right = False moving_forward = False moving_backward = False # Current Value Variables current_latitude: float = None current_longitude: float = None current_direction_degrees: float = None current_distance_ahead: float = 25 #current_distance_ahead: float = 0 dir_left = False dir_right = False dir_forward = False dir_backward = False stop_everything = False gps_lat_points = set() gps_lon_points = set() direction_points = set() sonar_points = set() current_pwm = [0, 0] # Pin Number Variables left_motor_direction_pin = 15 right_motor_direction_pin = 16 left_motor_pwm_speed_pin = 11 right_motor_pwm_speed_pin = 12 sonar_trig_pin = 18 sonar_echo_pin = 22 # GPIO variables left_motor_pwm: GPIO.PWM = None right_motor_pwm: GPIO.PWM = None # Frequency variables main_loop_frequency = 5000 gps_frequency = 5000 sonar_frequency = 5000 # Averaging variables sonar_points_num_averaging = 5 gps_points_num_averaging = 5 # Misc Variables trace = True trace_loop = False all_stop = False less_turn_percent = 0.4 # what percent less should a motor turn while in auto mated to turn while moving forward right_motor_less_pwm_percent = 0.9 # change to make motors go at same speed, right motor turns at (1-right_motor_less_pwm_percent)% of left motor max_left_pwm = 1000 max_right_pwm = 250 max_left_turn_pwm = 1500 max_right_turn_pwm = 1500 # Automated Variables time_last_turn_start = 0 turn_min_time = 3.5 # minimum time before changing turning automated_mode = False was_automated = False sonar_min_distance = 4 gps_target = [0, 0] direction_target = 0 gps_tolerance = 4 # in meters direction_tolerance = 5 # in degrees current_gps_index = -1 field_gps_points = [ [44.9063300, -68.6683193], [44.9063243, -68.6682348], [44.9062683, -68.6681932], [44.9062256, -68.6680524], [44.9062740, -68.6679786], [44.9063576, -68.6679491], [44.9068411, -68.6680645], [44.9069075, -68.6681315], [44.9069505, -68.6683270], [44.9069161, -68.6687002], [44.9068230, -68.6688034], [44.9066948, -68.6688343], [44.9062085, -68.6687592], [44.9061610, -68.6657136], [44.9061610, -68.6686090], [44.9062142, -68.6685312], [44.9062977, -68.6684856], [44.9063224, -68.6683971] ] # [[lat, lon], [lat, lon]...] house_gps_points = [ [44.924718, -68.646828] ] # 4 points along streets near house # gps_points = field_gps_points gps_points = house_gps_points finished = False def web_socket_handler(client, server, message): if "return" in message: json_data = get_json_string() server.send_message(client, json_data) else: set_json_variables(message) return None def get_json_string(): data = { "moving_left": moving_left, "moving_right": moving_right, "moving_forward": moving_forward, "moving_backward": moving_backward, "stop_everything": stop_everything, "automated": automated_mode } return json.dumps(data) def set_json_variables(json_string): global moving_forward, moving_backward, moving_left, moving_right, stop_everything, automated_mode json_data = json.loads(json_string) moving_forward = bool(json_data["moving_forward"]) moving_backward = bool(json_data["moving_backward"]) moving_right = bool(json_data["moving_right"]) moving_left = bool(json_data["moving_left"]) stop_everything = bool(json_data["stop_everything"]) automated_mode = bool(json_data["automated"]) # def get_position(): # global current_latitude, current_longitude, current_direction_degrees # gps_packet = gpsd.get_current() # if gps_packet.mode > 1: # if len(gps_lat_points) >= gps_points_num_averaging: # for point in gps_lat_points: # gps_lat_points.remove(point) # break # if len(gps_lon_points) >= gps_points_num_averaging: # for point in gps_lon_points: # gps_lon_points.remove(point) # break # if len(direction_points) >= gps_points_num_averaging: # for point in direction_points: # direction_points.remove(point) # break # gps_lat_points.add(gps_packet.lat) # gps_lon_points.add(gps_packet.lon) # direction_points.add(gps_packet.track) # current_direction_degrees = math.fsum(direction_points) / len(direction_points) # current_longitude = math.fsum(gps_lon_points) / len(gps_lon_points) # current_latitude = math.fsum(gps_lat_points) / len(gps_lat_points) # logging.debug("Current Position: Latitude: {0:.2}; Longitude: {1:.2}; direction: {2:.2}" # .format(current_latitude, current_longitude, current_direction_degrees)) def get_sonar_distance(): time_start = 0 time_end = 0 GPIO.output(sonar_trig_pin, False) time.sleep(.05) GPIO.output(sonar_trig_pin, True) time.sleep(.000001) GPIO.output(sonar_trig_pin, False) while GPIO.input(sonar_echo_pin) == 0: time_start = time.time() while GPIO.input(sonar_echo_pin) == 1: time_end = time.time() total_time = time_end - time_start distance = (total_time / 2) * 1125.33 # Calculated in ft/s logging.debug("Sonar distance: {0:.2} ft".format(distance)) return distance def setup_sonar(): GPIO.setup(sonar_echo_pin, GPIO.IN) GPIO.setup(sonar_trig_pin, GPIO.OUT) GPIO.output(sonar_trig_pin, False) logging.info("Sonar setup!") def setup_motor_drivers(): global left_motor_pwm, right_motor_pwm # Left GPIO.setup(left_motor_direction_pin, GPIO.OUT) GPIO.output(left_motor_direction_pin, False) GPIO.setup(right_motor_direction_pin, GPIO.OUT) GPIO.output(right_motor_direction_pin, False) GPIO.setup(left_motor_pwm_speed_pin, GPIO.OUT) left_motor_pwm = GPIO.PWM(left_motor_pwm_speed_pin, 1) # Right GPIO.output(left_motor_direction_pin, False) GPIO.setup(right_motor_direction_pin, GPIO.OUT) GPIO.output(right_motor_direction_pin, False) GPIO.setup(right_motor_pwm_speed_pin, GPIO.OUT) right_motor_pwm = GPIO.PWM(right_motor_pwm_speed_pin, 1) set_motor_direction(True, True) set_motor_direction(True, True) logging.info("Motor drivers setup!") def setup(): setup_logging() GPIO.setmode(GPIO.BOARD) # GPS #setup_gps() # Sonar #setup_sonar() # Motor Drivers setup_motor_drivers() logging.info("Setup complete!") # def setup_gps(): # gpsd.connect() # packet = gpsd.get_current() # if packet.mode < 2: # logging.warning("GPS does not have a fix!") # counter = 0 # while packet.mode < 2: # if counter > 150: # logging.error("GPS cannot get a fix!") # return # packet = gpsd.get_current() # logging.warning("GPS still does not have a fix.") # counter += 1 # time.sleep(.2) # logging.info("GPS has fix.") def setup_logging(): logging.basicConfig(format='%(asctime)s; %(levelname)s: %(message)s', datefmt='%m/%d/%Y %I:%M:%S %p', filename="drone.log", level=logging.DEBUG) def ramp_pwm(end, is_left): global current_pwm print("left: " + str(is_left) + ", set pwm to " + str(end)) if is_left: beginning = current_pwm[0] else: beginning = current_pwm[1] if beginning is end: return step_max = 1000 step_freq = (step_max / 10000) if beginning > end: steps = math.fabs((beginning - end) // step_max) left_over = math.fabs((beginning - end)) - steps * step_max new_pwm = 0 for x in range(0, int(steps)): if is_left: new_pwm = current_pwm[0] - step_max else: new_pwm = current_pwm[1] - step_max set_pwm_freq(is_left, new_pwm) time.sleep(step_freq) if left_over > 0: if is_left: new_pwm = current_pwm[0] - left_over else: new_pwm = current_pwm[1] - left_over set_pwm_freq(is_left, new_pwm) else: steps = math.fabs((beginning - end) // step_max) left_over = math.fabs((beginning - end)) - steps * step_max new_pwm = 0 for x in range(0, int(steps)): if is_left: new_pwm = current_pwm[0] + step_max else: new_pwm = current_pwm[1] + step_max set_pwm_freq(is_left, new_pwm) time.sleep(step_freq) if left_over > 0: if is_left: new_pwm = current_pwm[0] + left_over else: new_pwm = current_pwm[1] + left_over set_pwm_freq(is_left, new_pwm) def set_pwm_freq(is_left, freq): print("current pwm: "+str(freq)+", left?: "+str(is_left)) global current_pwm if is_left: if freq is current_pwm[0]: return else: if freq is current_pwm[1]: return if is_left: if (freq <= 0) and current_pwm[0] > 0: left_motor_pwm.stop() current_pwm[0] = 0 elif 100 <= freq <= 20000 and current_pwm[0] > 0: left_motor_pwm.ChangeFrequency(freq) current_pwm[0] = freq elif 100 <= freq <= 20000 and current_pwm[0] <= 0: left_motor_pwm.start(50) left_motor_pwm.ChangeFrequency(freq) current_pwm[0] = freq else: if (freq <= 0) and current_pwm[1] > 0: right_motor_pwm.stop() current_pwm[1] = 0 elif 100 <= freq <= 20000 and current_pwm[1] > 0: right_motor_pwm.ChangeFrequency(freq) current_pwm[1] = freq elif 100 <= freq <= 20000 and current_pwm[1] <= 0: right_motor_pwm.start(50) right_motor_pwm.ChangeFrequency(freq) current_pwm[1] = freq def set_motor_speed(percent, emergency=False, is_left=None): print(time.strftime('{%Y-%m-%d %H:%M:%S} ') + "Set motor speed to " + str(percent*100) + "%, emergency: "+str(emergency)+" isleft: "+str(is_left)) if emergency and is_left is None: if not dir_left and not dir_right: set_pwm_freq(False, percent * max_right_pwm) set_pwm_freq(True, percent * max_left_pwm) else: set_pwm_freq(False, percent * max_right_turn_pwm) set_pwm_freq(True, percent * max_left_turn_pwm) elif is_left is None: if not dir_left and not dir_right: set_pwm_freq(True, percent * max_left_pwm) set_pwm_freq(False, percent * max_right_pwm) else: set_pwm_freq(True, percent * max_left_turn_pwm) set_pwm_freq(False, percent * max_right_turn_pwm) else: if is_left: end_freq = percent * max_left_pwm else: end_freq = percent * max_right_pwm thread = Background_Thread(set_pwm_freq, (is_left, end_freq)) def set_motor_direction(is_left, forward): if is_left: GPIO.output(left_motor_direction_pin, forward) else: GPIO.output(right_motor_direction_pin, forward) def set_proper_direction(): global dir_left, dir_backward, dir_forward, dir_right if moving_forward and not dir_forward: (time.strftime('{%Y-%m-%d %H:%M:%S} ') + "set direction to forward!") set_motor_direction(True, True) set_motor_direction(False, True) dir_forward = True dir_left = False dir_right = False dir_backward = False if moving_left and not dir_left: print(time.strftime('{%Y-%m-%d %H:%M:%S} ') + "set direction to left!") set_motor_direction(True, False) set_motor_direction(False, True) dir_left = True dir_forward = False dir_right = False dir_backward = False if moving_right and not dir_right: print(time.strftime('{%Y-%m-%d %H:%M:%S} ') + "set direction to right!") set_motor_direction(True, True) set_motor_direction(False, False) dir_right = True dir_left = False dir_forward = False dir_backward = False if moving_backward and not dir_backward: print(time.strftime('{%Y-%m-%d %H:%M:%S} ') + "set direction to backward!") set_motor_direction(True, False) set_motor_direction(False, False) dir_backward = True dir_left = False dir_right = False dir_forward = False def is_proper_direction(): if moving_forward and not dir_forward: return False if moving_left and not dir_left: return False if moving_right and not dir_right: return False if moving_backward and not dir_backward: return False return True def only_positive_numbers(number: float): if number > 0: return number else: return 0 def sonar_loop(): while True: if all_stop: break if trace_loop: print("sonar loop") global current_distance_ahead if len(sonar_points) >= sonar_points_num_averaging: for point in sonar_points: sonar_points.remove(point) break sonar_points.add(get_sonar_distance()) current_distance_ahead = math.fsum(sonar_points) / len(sonar_points) time.sleep(1 / sonar_frequency) # def gps_loop(): # while True: # if all_stop: # break # if trace_loop: # print("gps loop") # get_position() # time.sleep(1 / gps_frequency) def web_socket_loop(): server = WebsocketServer(8181, host='0.0.0.0') server.set_fn_message_received(web_socket_handler) server.run_forever() def correct_automated_direction(): if math.fabs(current_direction_degrees - direction_target) < direction_tolerance: return True else: return False def pos_degree(number): if number >= 360: new_num = number - 360 elif number < 0: new_num = number + 360 else: new_num = number return new_num def should_turn_left(): right_turn_degrees = pos_degree(direction_target - current_direction_degrees) left_turn_degrees = pos_degree(360 - right_turn_degrees) if left_turn_degrees <= right_turn_degrees: return True else: return False def is_moving(): if current_pwm[0] > 0 or current_pwm[1] > 0: return True else: return False def reset_gps_target(): global current_gps_index current_gps_index = -1 def get_next_gps_target(): global current_gps_index current_gps_index += 1 if current_gps_index >= len(gps_points): return None else: return gps_points[current_gps_index] def main_loop(): global was_automated, automated_mode, gps_target, direction_target, finished, time_last_turn_start, \ dir_right, dir_left, dir_backward, dir_forward while True: if trace_loop: print("Main loop") if all_stop: break # Distance Sensor if (stop_everything or current_distance_ahead <= sonar_min_distance) and is_moving(): print(time.strftime('{%Y-%m-%d %H:%M:%S} ') + "obstacle in the way or stop pressed("+str(current_distance_ahead)+" ft), emergency stopping") set_motor_speed(0, True) # if direction isn't proper, then stop moving change direction and start moving if not is_proper_direction() and not stop_everything: print(time.strftime('{%Y-%m-%d %H:%M:%S} ') + "changing proper direction") if is_moving(): set_motor_speed(0) set_proper_direction() time.sleep(.1) set_motor_speed(1) if (stop_everything or current_distance_ahead <= sonar_min_distance) and is_moving(): print(time.strftime('{%Y-%m-%d %H:%M:%S} ') + "obstacle in the way or stop pressed, emergency stopping") set_motor_speed(0, True) # If distance is fine and remote button isn't pressed and not moving, then start moving if current_distance_ahead > sonar_min_distance and not is_moving() \ and (moving_right or moving_left or moving_forward or moving_backward) and not stop_everything: print(time.strftime('{%Y-%m-%d %H:%M:%S} ') + "starting motors...") set_motor_speed(1) if (stop_everything or current_distance_ahead <= sonar_min_distance) and is_moving(): print(time.strftime('{%Y-%m-%d %H:%M:%S} ') + "obstacle in the way or stop pressed, emergency stopping") set_motor_speed(0, True) # if not supposed to be moving, but is moving then stop moving if ((not moving_backward and not moving_forward and not moving_left and not moving_right) or stop_everything) \ and is_moving(): print(time.strftime('{%Y-%m-%d %H:%M:%S} ') + "stopping motion") set_motor_speed(0) time.sleep(1 / main_loop_frequency) try: setup() print("Setup complete!") thread = Background_Thread(web_socket_loop) #thread3 = Background_Thread(sonar_loop) #thread2 = Background_Thread(gps_loop) thread4 = Background_Thread(main_loop) while True: time.sleep(.01) except Exception as error: set_pwm_freq(False, 0) set_pwm_freq(True, 0) print("ERROR: " + str(error)) all_stop = True GPIO.cleanup() print("cleaned up!") ``` #### File: joshuapouliot27/Land-Drone/Math.py ```python import math def two_bytes_to_number(byte_high, byte_low): number_result = 256 * byte_high + byte_low if number_result >= 32768: number_result -= 65536 return number_result def distance_between_points(lat1, lat2, lon1, lon2): earth_radius = 6371e3 # in meters theta_1 = math.radians(lat1) theta_2 = math.radians(lat2) change_theta = math.radians(lat2 - lat1) change_lambda = math.radians(lon2 - lon1) square_half_chord_length = (math.sin(change_theta / 2) ** 2) \ + ((math.cos(theta_1) * math.cos(theta_2)) * (math.sin(change_lambda / 2) ** 2)) angular_distance = 2 * math.atan2(math.sqrt(square_half_chord_length), math.sqrt(1 - square_half_chord_length)) distance = earth_radius * angular_distance return distance def heading_between_points(lat1, lat2, lon1, lon2): y = math.sin(lon2 - lon1) * math.cos(lat2) x = (math.cos(lat1) * math.sin(lat2)) - (math.sin(lat1) * math.cos(lat2) * math.cos(lon2 - lon1)) bearing = math.degrees(math.atan2(y, x)) normalized_bearing = (bearing + 360) % 360 return normalized_bearing ```
{ "source": "joshuapouliot27/minimu-9v5_python", "score": 4 }
#### File: joshuapouliot27/minimu-9v5_python/calibrate.py ```python import sys, signal, os import time import math from LIS3MDL import LIS3MDL import datetime def handle_ctrl_c(signal, frame): os.system("clear") print("magXmin = ", magXmin) print("magYmin = ", magYmin) print("magZmin = ", magZmin) print("magXmax = ", magXmax) print("magYmax = ", magYmax) print("magZmax = ", magZmax) sys.exit(130) # 130 is standard exit code for ctrl-c magnetometer = LIS3MDL() # This will capture exit when using Ctrl-C signal.signal(signal.SIGINT, handle_ctrl_c) a = datetime.datetime.now() # Preload the variables used to keep track of the minimum and maximum values magXmin = 9999999 magYmin = 9999999 magZmin = 9999999 magXmax = -9999999 magYmax = -9999999 magZmax = -9999999 try: while True: # Read magnetometer values MAGx = magnetometer.get_magnetometer_data().x MAGy = magnetometer.get_magnetometer_data().y MAGz = magnetometer.get_magnetometer_data().z if MAGx > magXmax: magXmax = MAGx if MAGy > magYmax: magYmax = MAGy if MAGz > magZmax: magZmax = MAGz if MAGx < magXmin: magXmin = MAGx if MAGy < magYmin: magYmin = MAGy if MAGz < magZmin: magZmin = MAGz os.system("clear") print("X: {:5} to {:5}".format(magXmin, magXmax)) print("Y: {:5} to {:5}".format(magYmin, magYmax)) print("Z: {:5} to {:5}".format(magZmin, magZmax)) # slow program down a bit, makes the output more readable time.sleep(1/10) except: os.system("clear") print("X: {:5} to {:5}".format(magXmin, magXmax)) print("Y: {:5} to {:5}".format(magYmin, magYmax)) print("Z: {:5} to {:5}".format(magZmin, magZmax)) ```
{ "source": "joshuaprewitt/update-package-repository", "score": 2 }
#### File: joshuaprewitt/update-package-repository/update-package-repository.py ```python import json import random import requests import sys import systemlink.clientconfig import time import urllib3 # disable https warnings urllib3.disable_warnings() # load SystemLink HTTP configuration configuration = systemlink.clientconfig.get_configuration('nirepo') host = configuration.host def dc(): # disable cache to prevent getting stale data return '?_dc='+str(random.randrange(10000000)) def job_status(job_id): # poll for the job to complete for i in range(10): job_url = host+'/v1/jobs'+dc()+'&id='+job_id response = requests.get(job_url, headers=configuration.api_key, verify=False) status = json.loads(response.text)["jobs"][0]["status"] if status == "SUCCEEDED": break if status == "FAILED": break print(status) time.sleep(1) return response def check_for_updates(feed_id): check_url = host+'/v1/feeds/'+feed_id+'/update-check' response = requests.post(check_url, headers=configuration.api_key, verify=False) job_id = json.loads(response.text)["jobId"] print("JOB ID = ",job_id) status = job_status(job_id) return status def get_updates(update_id): update_url = host+'/v1/updates/'+update_id+dc() response = requests.get(update_url, headers=configuration.api_key, verify=False) updates = response.text return updates def update_feed(feed_id, updates): update_url = host+'/v1/feeds/'+feed_id+'/update-apply?ignoreImportErrors=false&shouldOverwrite=false' headers = {'Content-type': 'application/json'} headers.update(configuration.api_key) response = requests.post(update_url, verify=False, data=updates, headers=headers) job_id = json.loads(response.text)["jobId"] status = job_status(job_id) return status def main(): # updates all of the feeds in the package repository based on the feeds they were replicated from # get feed ids feeds_url = host+"/v1/feeds" response = requests.get(feeds_url, headers=configuration.api_key, verify=False) feeds = json.loads(response.text) feed_ids = [] for feed in feeds["feeds"]: feed_ids.append(feed["id"]) print("FEED IDS = ",feed_ids) # check for updates # todo: hard code feed ID for now, but will utlimately iterate over every feed feed_id = '5f518c1ba9460dbc70490640' status = check_for_updates(feed_id) print('CHECK STATUS = ', status.text) update_id = json.loads(status.text)["jobs"][0]["resourceId"] # todo: continue if there are no updates or the job failed # get list of updates updates = get_updates(update_id) print('UPDATES = ', updates) # apply updates status = update_feed(feed_id,updates) print('APPLY STATUS = ', status.text) if __name__ == "__main__": main() ```
{ "source": "joshuaprince/ecs193", "score": 3 }
#### File: contrail/crawler/crawler.py ```python import asyncio import datetime import logging import sys from typing import List from contrail.crawler.providers import BaseProvider, REGISTERED_PROVIDER_CLASSES, import_provider_directory logger = logging.getLogger('contrail.crawler') providers = [] # type: List[BaseProvider] async def _crawl_loop(provider: BaseProvider): """ Endlessly crawls over a single provider, yielding between successive crawls. :param provider: :return: """ while True: # noinspection PyBroadException try: time_wait = provider.crawl() # type: datetime.timedelta except Exception: # If a crawl attempt had an error, print error and try again in 2 minutes logger.exception("Caught exception while crawling {provider}".format(provider=provider.provider_name())) logger.info("Cooling down for 2 minutes before retry.") time_wait = datetime.timedelta(minutes=2) await asyncio.sleep(time_wait.total_seconds()) async def _dummy_loop(): # A task to keep the event loop doing something even when it has nothing else to do, so that keyboard interrupts # don't appear to hang until something comes through the loop. # TODO fix this workaround while True: await asyncio.sleep(1) async def _main(): """ Main async loop for the crawler. """ provider_tasks = [_crawl_loop(p) for p in providers] provider_tasks.append(_dummy_loop()) await asyncio.gather(*provider_tasks) def create_providers(): """ Imports all providers in the crawler/providers directory, and loads them into `providers` """ import_provider_directory() for provider_class in REGISTERED_PROVIDER_CLASSES: providers.extend(provider_class.create_providers()) def crawl(): """ Runs the crawler until a keyboard interrupt is received. """ logging.basicConfig( level=logging.INFO, handlers=[ logging.StreamHandler(sys.stdout) ] ) logger.info("Starting crawler.") create_providers() logger.info("Loaded {} providers from {} provider classes.".format(len(providers), len(REGISTERED_PROVIDER_CLASSES))) loop = asyncio.get_event_loop() try: loop.run_until_complete(_main()) except KeyboardInterrupt: print("Crawler is shutting down.") if __name__ == '__main__': crawl() ``` #### File: crawler/providers/azure.py ```python import datetime import json import logging from typing import List, Dict import requests import time from urllib.parse import urlencode from urllib.request import Request, urlopen from contrail.configuration import config from contrail.crawler.providers import BaseProvider, register_provider logger = logging.getLogger('contrail.crawler.azure') URL_TOKEN_REQUEST = 'https://login.microsoftonline.com/{tenant}/oauth2/token' """ URL queried to obtain an Azure management access token. Replaces {tenant} with a tenant (directory) ID. """ URL_RATECARD_REQUEST = "https://management.azure.com:443/subscriptions/{subscriptionId}/providers/" \ "Microsoft.Commerce/RateCard?api-version=2016-08-31-preview&$filter=" \ "OfferDurableId eq 'MS-AZR-0003P' and Currency eq 'USD' " \ "and Locale eq 'en-US' and RegionInfo eq 'US'" """ URL queried to list prices. Replaces {subscriptionId}. """ URL_CAPABILITIES_REQUEST = "https://management.azure.com/subscriptions/{subscriptionId}/" \ "providers/Microsoft.Compute/skus?api-version=2017-09-01" """ URL queried to get instance capabilities (mapping from size to vcpus, memory, etc). Replaces {subscriptionId}. """ @register_provider class Azure(BaseProvider): def __init__(self): super().__init__() self._access_token = '' self._access_token_expire = 0 @classmethod def create_providers(cls) -> List['Azure']: return [cls()] def crawl(self) -> datetime.timedelta: ratecard = self.request_ratecard() ratecard['Capabilities'] = self.request_capabilities() self.store_provider_data(region='US', data=ratecard) return datetime.timedelta(minutes=60) def request_ratecard(self): url = URL_RATECARD_REQUEST.format(subscriptionId=config['AZURE']['subscription_id']) response = requests.get(url, allow_redirects=False, headers={'Authorization': 'Bearer {}'.format(self.access_token())}) # Initial request forces a redirect. Look at response headers to get the redirect URL redirect_url = response.headers['Location'] # Get the ratecard content by making another call to go the redirect URL rate_card = requests.get(redirect_url) return json.loads(rate_card.content.decode('utf-8')) def request_capabilities(self) -> Dict[str, Dict]: """ Get a mapping from instance sizes to parameters such as vcpus, memory, etc. """ url = URL_CAPABILITIES_REQUEST.format(subscriptionId=config['AZURE']['subscription_id']) response = requests.get(url, allow_redirects=False, headers={'Authorization': 'Bearer {}'.format(self.access_token())}) resp_dict = json.loads(response.content.decode('utf-8')) capabilities = {} for instance in resp_dict['value']: if instance.get('resourceType') != 'virtualMachines': continue if instance.get('size') in capabilities: # Response contains each instance size multiple times, so don't load if we've already loaded this size continue size = instance['size'].replace('_', ' ') # Response lists capabilities like this: [{"name": "vCPUS", "value": 2}, {"name": "memory", "value": 8}...] # Convert it to a more pythonic form, like {"vCPUS": 2, "memory": 8...} capabilities[size] = {} for capability in instance['capabilities']: capabilities[size][capability['name']] = capability['value'] return capabilities def _renew_access_token(self): """ Retrieve an access token needed to pull pricing data. :return: The access token. """ logger.info("Renewing access token.") post_data = { 'client_id': config['AZURE']['client_id'], 'grant_type': 'client_credentials', 'client_secret': config['AZURE']['client_secret'], 'resource': 'https://management.azure.com/' } request = Request(URL_TOKEN_REQUEST.format(tenant=config['AZURE']['tenant_id']), urlencode(post_data).encode()) response = urlopen(request).read().decode() resp_json = json.loads(response) self._access_token = resp_json['access_token'] self._access_token_expire = int(resp_json['expires_on']) def access_token(self) -> str: """ Get a current Access token, renewing it if it is due to expire soon. :return: """ # Renew access token 1 minute before the current one expires if self._access_token_expire < time.time() + 60: self._renew_access_token() return self._access_token ``` #### File: contrail/crawler/s3upload.py ```python import gzip import json import logging import shutil import urllib.request import boto3 from contrail.configuration import config logger = logging.getLogger('contrail.crawler') class S3Client: _session = boto3.Session( aws_access_key_id=config['AWS']['access_key_id'], aws_secret_access_key=config['AWS']['secret'] ) _client = _session.client('s3') def upload_file_from_url(self, url: str, destination: str): """ Pulls data from a certain URL, compresses it, and uploads it to S3. :param url: URL to pull data from. :param destination: Path within S3 to store data :return: """ logger.info("Uploading file {} to {}".format(url, destination)) tmpfile = "tmp.json" zipfile = tmpfile + ".gz" urllib.request.urlretrieve(url, tmpfile) # source: https://docs.python.org/3/library/gzip.html with open(tmpfile, 'rb') as f_in: with gzip.open(zipfile, 'wb') as f_out: shutil.copyfileobj(f_in, f_out) self._client.upload_file(zipfile, config['AWS']['bucket_name'], destination + ".gz") def upload_file_from_variable(self, data: dict, destination: str): """ Takes data formatted as a Python dictionary, serializes it to JSON, compresses this JSON file, and uploads it to S3. :param data: The dictionary/list/object to serialize to JSON. :param destination: Path within S3 to store data. """ logger.info("Uploading raw data to {}".format(destination)) tmpfile = "tmp-rawdata.json" zipfile = tmpfile + ".gz" # source: https://stackoverflow.com/questions/49534901/is-there-a-way-to-use-json-dump-with-gzip with gzip.open(zipfile, 'wt', encoding='ascii') as f_out: json.dump(data, f_out, indent=2) self._client.upload_file(zipfile, config['AWS']['bucket_name'], destination + ".gz") ``` #### File: apps/contrailsite/views.py ```python from django.http import HttpRequest from django.shortcuts import render from django.urls import reverse from django.utils.http import urlencode from django.views.generic.base import TemplateView from contrail.frontend.apps.contrailsite.forms import PriceForm from contrail.frontend.field_info import FIELD_INFO from contrail.frontend.query import * class HomeView(TemplateView): """ Render Home page """ template_name = "home.html" def price_view(request): """ Render Price page """ context = {'form': PriceForm({ 'amazon_web_services': True, 'microsoft_azure': True, 'on_demand': True, 'reserved': True, 'spot': True, }), 'aws_regions': list_regions('aws'), 'azure_regions': list_regions('azure')} instance_filters = {} if request.method == 'POST': form = PriceForm(request.POST) if form.is_valid(): context['form'] = form instance_filters = {'provider__in': [], 'priceType__in': []} if form.cleaned_data['amazon_web_services']: instance_filters['provider__in'].append('AmazonEC2') if form.cleaned_data['microsoft_azure']: instance_filters['provider__in'].append('Azure') if form.cleaned_data['on_demand']: instance_filters['priceType__in'].append('On Demand') if form.cleaned_data['reserved']: instance_filters['priceType__in'].append('Reserved') if form.cleaned_data['spot']: instance_filters['priceType__in'].append('Spot') if form.cleaned_data['operating_system']: instance_filters['operatingSystem'] = form.cleaned_data['operating_system'] regions = [] if form.cleaned_data['aws_region']: regions.extend(form.cleaned_data['aws_region']) if form.cleaned_data['azure_region']: regions.extend(form.cleaned_data['azure_region']) if len(regions) > 0: instance_filters['region__in'] = regions if form.cleaned_data['memory_from']: instance_filters['memory__gte'] = form.cleaned_data['memory_from'] if form.cleaned_data['memory_to']: instance_filters['memory__lte'] = form.cleaned_data['memory_to'] if form.cleaned_data['vcpu_from']: instance_filters['vcpu__gte'] = form.cleaned_data['vcpu_from'] if form.cleaned_data['vcpu_to']: instance_filters['vcpu__lte'] = form.cleaned_data['vcpu_to'] if form.cleaned_data['pricehr_from']: instance_filters['pricePerHour__gte'] = form.cleaned_data['pricehr_from'] if form.cleaned_data['pricehr_to']: instance_filters['pricePerHour__lte'] = form.cleaned_data['pricehr_to'] if [] in instance_filters.values(): instances = [] else: instances = list_instances(page=1, **instance_filters) # TODO properly paginate for instance in instances: instance['url'] = reverse('instance') + '?' + urlencode(generate_detail_link_dict(instance)) context['instances'] = instances return render(request, 'list.html', context) def instance_view(request: HttpRequest): """ Render Instance Detail page """ filter_parameters = dict(request.GET.items()) try: check_instance_detail_filters(**filter_parameters) except (AttributeError, AmbiguousTimeSeries) as e: return render(request, 'error.html', {'error': str(e)}, status=400) except InstanceNotFound as e: return render(request, 'error.html', {'error': '404: ' + str(e)}, status=404) instance_details = get_instance_details(**filter_parameters) # raw instance details from database displayed_instance_details = [] # formatted instance details for key, value in instance_details.items(): field_info = FIELD_INFO.get(key) if field_info and field_info.get('exclude'): continue if field_info: displayed_instance_details.append({ 'key': key, 'name': field_info.get('friendlyName') or key, 'value': value, 'unit': field_info.get('unit') or '', 'hint': field_info.get('hint') or '', 'link': field_info.get('link') or '' }) else: displayed_instance_details.append({'key': key, 'name': key, 'value': value}) # Sort details by their order in FIELD_INFO, with fields that are not defined in FIELD_INFO last. displayed_instance_details.sort(key=lambda detail: list(FIELD_INFO.keys()).index(detail['key']) if detail['key'] in FIELD_INFO.keys() else 999) context = { 'rawInstanceDetails': instance_details, 'instanceDetails': displayed_instance_details, 'currentPrices': get_instance_current_prices(**filter_parameters) } return render(request, 'instance.html', context) def history_graph_view(request: HttpRequest): """ Render price history graph asynchronously """ filter_parameters = dict(request.GET.items()) try: check_instance_detail_filters(**filter_parameters) except (AttributeError, AmbiguousTimeSeries) as e: return render(request, 'error.html', {'error': str(e)}, status=400) except InstanceNotFound as e: return render(request, 'error.html', {'error': '404: ' + str(e)}, status=404) context = { 'priceHistory': get_instance_price_history(**filter_parameters) } return render(request, 'history_graph.html', context) class HelpView(TemplateView): """ Render Help page """ template_name = "help.html" def storage_view(request: HttpRequest): all_instances = list_storage() for instance_dict in all_instances: instance_dict['header'] = instance_dict.get('storageMedia') + ' ' + instance_dict.get('volumeType') all_instances.sort(key=lambda i: (i['region'], i['header'])) headers = [] for inst in all_instances: if inst['header'] not in headers: headers.append(inst['header']) context = { 'headers': headers, 'allInstances': all_instances, } return render(request, 'storage/storage.html', context) class AboutUs(TemplateView): """ Render About Us page """ template_name = "about.html" ``` #### File: contrail/frontend/query.py ```python from typing import Dict, List from cachetools import cached, TTLCache from infi.clickhouse_orm.database import Database from contrail.configuration import config from contrail.loader.warehouse import InstanceData, InstanceDataLastPointView, InstanceDataLastPointViewAllReserved, InstanceDataHourlyPriceView, InstanceDataDailyPriceView, InstanceDataMonthlyPriceView db = Database(config['CLICKHOUSE']['db_name'], db_url=config['CLICKHOUSE']['db_url'], readonly=True) LIST_QUERY_SIZE = 1000 """Number of instances to list on a single page""" DISCRIMINATORS = { 'AmazonEC2': [ 'provider', 'instanceType', 'region', 'operatingSystem' ], 'Azure': [ 'provider', 'instanceType', 'region', 'operatingSystem' ] } """ A Dict that maps each provider to the set of fields needed to uniquely identify an instance of that provider. For example, Amazon instances have dimensions of instance type, region, and operating system, so uniquely identifying a time series requires that we filter by at least those fields. """ PRICE_HISTORY_PARAMS = ['crawlTime', 'priceType', 'pricePerHour', 'priceUpfront', 'leaseContractLength', 'purchaseOption'] """ The set of fields that vary over an instance's time series, and therefore should be included in price history data and excluded from instance details. """ def generate_detail_link_dict(instance: Dict) -> Dict: """ Generate a dictionary that consists of this instance's provider discriminators, so that we can convert it to a link to the instance detail page. :param instance: A dict representing an instance, that contains `provider` keys and keys for all discriminators of that provider. :return: e.g. { 'provider': 'AmazonEC2', 'instanceType': 'c4.xlarge', 'operatingSystem': 'Linux', 'region': 'apeast1' } """ provider = instance['provider'] details = {discriminator: instance[discriminator] for discriminator in DISCRIMINATORS[provider]} return details @cached(cache=TTLCache(maxsize=10, ttl=86400)) def list_regions(provider) -> List[str]: """ List all regions found in the `region` column of InstanceDataLastPointView. """ if provider == 'aws': return list(map(lambda i: i.region, InstanceData.objects_in(db).filter(provider='AmazonEC2').distinct().only('region').order_by('region'))) else: return list(map(lambda i: i.region, InstanceData.objects_in(db).filter(provider='Azure').distinct().only('region').order_by('region'))) def list_instances(page, **kwargs) -> List[Dict]: """ List known instances satisfying the filter provided. :param kwargs: A set of filters to search for instances. These should follow Infi ORM query parameters: https://github.com/Infinidat/infi.clickhouse_orm/blob/develop/docs/querysets.md#filtering :return: List of instance dicts """ # Only query for the fields we need on an instance list fields = ['crawlTime', 'provider', 'instanceType', 'region', 'operatingSystem', 'vcpu', 'memory', 'priceType', 'pricePerHour', 'priceUpfront', 'gpu', 'location'] instances = InstanceDataLastPointView.objects_in(db).filter(productFamily='VM', **kwargs).only(*fields).paginate(page, LIST_QUERY_SIZE)[0] return [{k: v for k, v in instance.to_dict().items() if v} for instance in instances] def get_instance_details(**kwargs) -> Dict: """ Get details about a single instance described by `kwargs`. :param kwargs: A set of filters used to identify the desired instance. Must at least consist of the fields specified by this provider's DISCRIMINATORS. :return: All known, most up-to-date details about the instance being queried. """ query = InstanceDataLastPointView.objects_in(db).distinct().filter(**kwargs) instance_details = {} # Collect all details from all versions of this instance, because the "On Demand" record might know more details # than the "Spot" record, for example. for record in query: for k, v in record.to_dict().items(): # Filter out null fields and price-related fields from the instance dict if k not in PRICE_HISTORY_PARAMS and bool(v): instance_details[k] = v return instance_details def get_instance_current_prices(**kwargs) -> Dict[str, Dict]: """ Get a dict of current pricing modes for this instance. :param kwargs: A set of filters used to identify the desired instance. Must at least consist of the fields specified by this provider's DISCRIMINATORS. :return: A dict mapping a pricing mode (i.e. 'onDemand' or 'reserved1yrFullUpfront') to a price dict that consists of crawlTime and pricePerHour, and priceUpfront if nonzero. """ query = InstanceDataLastPointViewAllReserved.objects_in(db).filter(**kwargs)\ .distinct().only(*PRICE_HISTORY_PARAMS).order_by('crawlTime') price_modes = {} for record in query: # type: InstanceData price_dict = {'crawlTime': record.crawlTime, 'pricePerHour': record.pricePerHour} if record.priceType == 'On Demand': price_modes['onDemand'] = price_dict elif record.priceType == 'Spot': price_modes['spot'] = price_dict else: # Reserved price if record.purchaseOption == 'All Upfront': price_dict['priceUpfront'] = record.priceUpfront price_modes['reserved{}FullUpfront'.format(record.leaseContractLength)] = price_dict elif record.purchaseOption == 'Partial Upfront': price_dict['priceUpfront'] = record.priceUpfront price_modes['reserved{}PartialUpfront'.format(record.leaseContractLength)] = price_dict elif record.purchaseOption == 'No Upfront': price_dict['priceUpfront'] = record.priceUpfront price_modes['reserved{}NoUpfront'.format(record.leaseContractLength)] = price_dict return price_modes def get_instance_price_history(record_count=100, **kwargs) -> Dict[str, List[Dict]]: """ Get a set of time series, each containing price history points for a given instance and its pricing mode. :param record_count: Number of history points to retrieve per pricing mode. :param kwargs: A set of filters used to identify the desired instance. Must at least consist of the fields specified by this provider's DISCRIMINATORS. :return: A dict mapping a pricing mode (i.e. 'onDemand' or 'reserved1yrFullUpfront') to a List of "history points", where each history point is a dictionary consisting of crawlTime, priceType, and optionally pricePerHour, priceUpfront, and leaseContractLength. """ # hourly_base_query = InstanceDataHourlyPriceView.objects_in(db).filter(**kwargs).only(*PRICE_HISTORY_PARAMS).order_by('-crawlTime') daily_base_query = InstanceDataDailyPriceView.objects_in(db).filter(**kwargs).only(*PRICE_HISTORY_PARAMS).order_by('-crawlTime') monthly_base_query = InstanceDataMonthlyPriceView.objects_in(db).filter(**kwargs).only(*PRICE_HISTORY_PARAMS).order_by('-crawlTime') # base_query = InstanceData.objects_in(db).filter(**kwargs).distinct().only(*PRICE_HISTORY_PARAMS).order_by('-crawlTime') # Get a time series from the last several entries in the database that match this filter price_history = { # 'hourlyOnDemand': list(hourly_base_query.filter(priceType='On Demand')[:record_count]), # 'hourlySpot': list(hourly_base_query.filter(priceType='Spot')[:record_count]), # 'hourlyReserved1yrNoUpfront': list(hourly_base_query.filter(priceType='Reserved', offeringClass='standard', leaseContractLength='1yr', purchaseOption='No Upfront')[:record_count]), 'dailyOnDemand': list(daily_base_query.filter(priceType='On Demand')[:record_count]), 'dailySpot': list(daily_base_query.filter(priceType='Spot')[:record_count]), 'dailyReserved1yrNoUpfront': list(daily_base_query.filter(priceType='Reserved', offeringClass='standard', leaseContractLength='1yr', purchaseOption='No Upfront')[:record_count]), 'monthlyOnDemand': list(monthly_base_query.filter(priceType='On Demand')[:record_count]), 'monthlySpot': list(monthly_base_query.filter(priceType='Spot')[:record_count]), 'monthlyReserved1yrNoUpfront': list(monthly_base_query.filter(priceType='Reserved', offeringClass='standard', leaseContractLength='1yr', purchaseOption='No Upfront')[:record_count]), } # Build our own list of "price history point" dicts, since we don't want to include null or zero fields price_history_points = {k: [] for k, v in price_history.items() if v} for price_mode in price_history.keys(): for inst in price_history[price_mode]: current_inst = {} for param in PRICE_HISTORY_PARAMS: if getattr(inst, param) is not None: current_inst[param] = getattr(inst, param) price_history_points[price_mode].append(current_inst) return price_history_points def check_instance_detail_filters(**kwargs): """ Ensure that the filters used to query a single instance return **exactly one unique instance**, raising an exception otherwise. :param kwargs: Set of filters used to identify the desired instance. :except AttributeError: if a provided field does not exist in the instance data. :except AmbiguousTimeSeries: if the filters provided are not enough to distinctly identify one instance. :except InstanceNotFound: if there are no instances in the database that match the provided filters. """ if 'provider' not in kwargs.keys(): raise AmbiguousTimeSeries("provider must be specified") if kwargs['provider'] not in DISCRIMINATORS.keys(): raise InstanceNotFound("Unknown provider: " + kwargs['provider']) # Queries must specify all discriminators, else returned price history will be ambiguous. for discriminator in DISCRIMINATORS[kwargs['provider']]: if discriminator not in kwargs.keys(): raise AmbiguousTimeSeries("Missing discriminator: " + discriminator) try: InstanceDataLastPointView.objects_in(db).filter(**kwargs).order_by('-crawlTime')[0] except AttributeError: raise except StopIteration: raise InstanceNotFound("No instance found matching query.") class AmbiguousTimeSeries(LookupError): """ Error raised if attempting to query a single instance, but the filters provided may return two or more instances. """ pass class InstanceNotFound(LookupError): """ Error raised if attempting to query a single instance, but no such instance exists. """ pass def list_storage(): """ List all current storage options and their prices. :return: """ fields = ['crawlTime', 'provider', 'region', 'pricePerHour', 'maxThroughputVolume', 'storageMedia', 'volumeType'] instances = InstanceDataLastPointView.objects_in(db).filter(productFamily='Storage').only(*fields).distinct() instance_dicts = [] for instance in instances: instance_dict = {} for k, v in instance.to_dict().items(): if k == 'pricePerHour': k = 'pricePerGbMonth' if v: instance_dict[k] = v instance_dicts.append(instance_dict) return instance_dicts ``` #### File: loader/loaders/aws_ec2_spot.py ```python import collections import logging from infi.clickhouse_orm.database import Database from contrail.crawler.providers.aws_ec2_spot import AmazonEC2Spot from contrail.loader.warehouse import InstanceData from contrail.loader.loaders import BaseLoader, register_loader from contrail.loader.normalizers import normalizeData logger = logging.getLogger('contrail.loader.aws_ec2') def nested_dict_iter(nested): lower = lambda s: s[:1].lower() + s[1:] if s else '' for key, value in nested.items(): if isinstance(value, collections.abc.Mapping): yield from nested_dict_iter(value) else: yield lower(key), value def getSpotData(d, last_modified, region): attributes = [] data = [] for instance in d: values = [] for key, value in dict(nested_dict_iter(instance)).items(): try: try: if normalizeData(key, value) == None: pass else: key, value = normalizeData(key, value) except(ValueError): values.extend(normalizeData(key, value)) pass if isinstance(value, tuple): values.extend((key, value)) else: values.append((key, value)) except(KeyError, AttributeError): pass k, v = normalizeData('region', region) values += [('priceType', 'Spot'), (k, v), ['provider', 'AmazonEC2']] instanceType = [val for val in values if val[0] == 'instanceType'][0][1] data.append(values) return data @register_loader(provider=AmazonEC2Spot) class AmazonEC2SpotLoader(BaseLoader): @classmethod def load(cls, filename: str, json: dict, last_modified: str, db: Database): logger.info("Loading {} into ClickHouse.".format(filename.split('/')[-1])) region = "{}".format(filename.split('/')[1]) spot_data = getSpotData(json, last_modified, region) instances = [] for item in spot_data: instance = InstanceData() for i in item: setattr(instance, i[0], i[1]) instances.append(instance) insertables = [instances[i * 1000:(i + 1) * 1000] for i in range((len(instances) + 1000 - 1) // 1000 )] for inst in insertables: db.insert(inst) ``` #### File: ecs193/contrail/main.py ```python import argparse import os import sys from contrail.configuration import config, CFG_FILE def check_config(*required_sections): for section in required_sections: for key in config[section]: if not config[section][key]: print("Couldn't find required configuration setting '{}'. Please set one in {}".format(key, CFG_FILE)) exit(1) def run_crawler(args): check_config('AWS', 'AZURE') from contrail.crawler import crawler crawler.crawl() def run_loader(args): check_config('AWS', 'CLICKHOUSE') from contrail.loader import loader loader.load() def run_initdb(args): from contrail.loader.warehouse import create_contrail_table create_contrail_table(True) def run_fixdb(args): from contrail.loader.warehouse import fix_aggregated_data fix_aggregated_data() def run_frontend(args): check_config('CLICKHOUSE', 'WEBSITE') os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'contrail.frontend.settings.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv[1:]) def run_tests(args): import unittest suite = unittest.TestLoader().discover('test', top_level_dir='.') unittest.TextTestRunner().run(suite) def main(): print("Starting CONTRAIL with configuration file {}".format(CFG_FILE)) parser = argparse.ArgumentParser(description='Run one of Contrail\'s components.') subparsers = parser.add_subparsers(dest="component") subparsers.required = True parser_crawler = subparsers.add_parser('crawler', aliases=['c']) parser_crawler.set_defaults(func=run_crawler) parser_loader = subparsers.add_parser('loader', aliases=['l']) parser_loader.set_defaults(func=run_loader) parser_frontend = subparsers.add_parser('frontend', aliases=['f', 'manage.py', 'manage', 'm']) parser_frontend.set_defaults(func=run_frontend) parser_test = subparsers.add_parser('test', aliases=['t']) parser_test.set_defaults(func=run_tests) parser_init = subparsers.add_parser('initdb') parser_init.set_defaults(func=run_initdb) parser_fix = subparsers.add_parser('fixdb') parser_fix.set_defaults(func=run_fixdb) args, unknown = parser.parse_known_args() args.func(args) if __name__ == '__main__': main() ``` #### File: crawler/providers/test_aws_ec2.py ```python import json import unittest import requests from contrail.crawler.providers.aws_ec2 import AmazonEC2, URL_REGION_VERSION class AmazonEC2TestCase(unittest.TestCase): def setUp(self): self.instance = AmazonEC2.create_providers()[0] def test_load_regions(self): """ Check that the EC2 loader has correctly loaded AWS regions. """ self.instance.load_regions() # Check for a well-known region to be in the region queue self.assertIn('us-west-1', self.instance.region_queue, "Couldn't find us-west-1 region.") # Check that get_next_region() returns at least one region before the region queue is empty. loaded_region = self.instance.get_next_region() self.assertIsNotNone(loaded_region, "No regions were loaded into AmazonEC2.regions.") # Loop over all regions in queue and check that currentVersionUrl is a JSON URL. while loaded_region is not None: self.assertRegex( loaded_region['currentVersionUrl'], r'^/.*\.json$', "Region {} had an invalid currentVersionUrl.".format(loaded_region) ) loaded_region = self.instance.get_next_region() def test_file_structure(self): """ Check several structural components of the raw data to ensure it is in the proper format to be loaded. """ try: self.instance.load_regions() # Get the us-west-1 region to test on region = self.instance.get_next_region() while region['regionCode'] != 'us-west-1': self.assertTrue(self.instance.region_queued(), "Couldn't find region 'us-west-1'.") region = self.instance.get_next_region() region_url_postfix = region['currentVersionUrl'] response_obj = requests.get(URL_REGION_VERSION.format(currentVersionUrl=region_url_postfix)) response_json = response_obj.content.decode('utf-8') response_dict = json.loads(response_json) self.assertEqual(response_dict['formatVersion'], 'v1.0', "formatVersion mismatch: at /formatVersion") self.assertEqual(response_dict['offerCode'], 'AmazonEC2', "offerCode mismatch: at /offerCode") self.assertIn('version', response_dict, "version missing: at /version") self.assertIn('products', response_dict, "products list missing: at /products/") for name, product in response_dict['products'].items(): if product['productFamily'] == 'Data Transfer': # For now, ignore data transfer products, which are not compute instances and don't match format continue self.assertIn('sku', product, "sku missing: at /products/{0}/sku".format(name)) self.assertIn('attributes', product, "attributes missing: at /products/{0}/attributes/".format(name)) self.assertIn('location', product['attributes'], "location missing: at /products/{0}/attributes/location".format(name)) self.assertIn('terms', response_dict, "terms missing: at /terms/") for paymentType in ('OnDemand', 'Reserved'): self.assertIn(paymentType, response_dict['terms'], "{0} missing: at /terms/{0}/".format(paymentType)) for name, product in response_dict['terms'][paymentType].items(): offer = list(product.values())[0] self.assertIn('offerTermCode', offer, "offerTermCode missing: at /terms/{0}/{1}/offerTermCode/".format(paymentType, name)) except AssertionError: with open('ec2_erroneous.json', 'w') as outfile: json.dump(response_dict, outfile, indent=2) print("Encountered a structural error with the JSON retrieved from AWS.") print("Writing the erroneous data to 'ec2_erroneous.json'") print("The location of the error within the JSON hierarchy can be found in the error message below.") raise ``` #### File: crawler/providers/test_aws_ec2_spot.py ```python import unittest import unittest.mock import copyingmock from contrail.crawler.providers.aws_ec2_spot import AmazonEC2Spot class AmazonEC2SpotTestCase(unittest.TestCase): def setUp(self): self.instances = AmazonEC2Spot.create_providers() def test_crawl(self): """ Check that some number of crawl iterations result in uploading data to S3. """ mocked_instance = self.instances[0] mocked_instance.store_provider_data = copyingmock.CopyingMock() # The crawl procedure may take several iterations before attempting to upload data. # Continue calling crawl() until it does call store_provider_data(). while not mocked_instance.store_provider_data.called: mocked_instance.crawl() uploaded_data = mocked_instance.store_provider_data.call_args[1]['data'] # Check that at least one instance was found self.assertGreater(len(uploaded_data), 0) # Check for common fields on each instance for instance in uploaded_data: self.assertIn('InstanceType', instance) self.assertIn('SpotPrice', instance) self.assertIn('vcpu', instance) self.assertIn('memory', instance) self.assertIn('Timestamp', instance) def test_load_instance_type_details(self): """ Ensure that we can load details about instance types (i.e. a mapping between 't2.xlarge' -> 2 vcpus, etc.) """ instance_types = AmazonEC2Spot.get_instance_type_details() # Make sure that one (arbitrarily selected) instance type can be indexed in this details dict self.assertIn('m3.large', instance_types) # Make sure that each instance type's value contains some general information about that instance type for instance_type in iter(instance_types.values()): self.assertIn('instanceType', instance_type) self.assertIn('vcpu', instance_type) self.assertIn('memory', instance_type) self.assertIn('storage', instance_type) ``` #### File: crawler/providers/test_base_provider.py ```python import datetime import unittest from contrail.crawler.providers import REGISTERED_PROVIDER_CLASSES, import_provider_directory, BaseProvider, register_provider class BaseProviderTestCase(unittest.TestCase): def setUp(self): pass def test_register_provider(self): """ Test the @register_provider decorator. """ @register_provider class TestProvider(BaseProvider): @classmethod def create_providers(cls): return [cls()] @classmethod def provider_name(cls): return "Test Provider" def crawl(self): return datetime.timedelta(seconds=5) self.assertIn(TestProvider, REGISTERED_PROVIDER_CLASSES, "@register_provider failed to add a class to REGISTERED_PROVIDER_CLASSES.") def test_import_provider_directory(self): """ Test that we can import the provider directory, and that it discovers at least one provider. """ import_provider_directory() self.assertTrue(len(REGISTERED_PROVIDER_CLASSES) > 0, "Failed to register any provider classes. The crawler won't do anything.") def test_all_providers_extend_base(self): """ Test that all registered providers extend from BaseProvider. """ import_provider_directory() for provider in REGISTERED_PROVIDER_CLASSES: self.assertTrue(issubclass(provider, BaseProvider), "All classes decorated with @register_provider must inherit from BaseProvider.") ``` #### File: loaders/aws_ec2/test_load_aws_ec2.py ```python import json import unittest from typing import List from infi.clickhouse_orm.database import Database from contrail.configuration import config from contrail.loader.loaders.aws_ec2 import AmazonEC2Loader from contrail.loader.warehouse import InstanceData class LoadAmazonEC2TestCase(unittest.TestCase): def setUp(self): self.test_db = Database(db_name='contrail_test', db_url=config['CLICKHOUSE']['db_url']) # Make sure we have a clean database to test on if self.test_db.db_exists: self.test_db.drop_database() self.test_db.create_database() self.test_db.create_table(InstanceData) def tearDown(self): self.test_db.drop_database() pass def test_load_file(self): """ Basic tests loading the sample file. Sample file is formatted to the following specs: - 1 product ('VG6Z') with no instanceSKU - 2 On Demand terms; one for G5FF, one for VG6Z - 12 Reserved terms for VG6Z - All instances share the same hardware and software configurations """ with open('test/loader/loaders/aws_ec2/ec2_limited.json', 'r') as js_file: data_dict = json.load(js_file) AmazonEC2Loader.load( filename="AmazonEC2/ap-northeast-1/2019-04-15T03:55:18.174709.json.gz", json=data_dict, last_modified="2019-04-15T03:55:18.174709", db=self.test_db ) instances = list(InstanceData.objects_in(self.test_db)) # type: List[InstanceData] self.assertEqual(len(instances), 13) # 1 on demand + 12 reserved # Check for correct hardware/software parameters common to all offers for inst in instances: self.assertEqual(inst.instanceType, 'c4.4xlarge') self.assertEqual(inst.operatingSystem, 'Linux') self.assertEqual(inst.vcpu, 16) self.assertEqual(inst.clockSpeed, 2.9) self.assertEqual(inst.memory, 30) # Check for several different pricing types to be loaded correctly # On Demand price self.assertTrue(any(inst.pricePerHour == 2.928 for inst in instances)) # Reserved price: all up front self.assertTrue(any(inst.priceUpfront == 63106 and inst.leaseContractLength == '3yr' for inst in instances)) self.assertTrue(any(inst.priceUpfront == 22726 and inst.leaseContractLength == '1yr' for inst in instances)) # Reserved price: half up front/half hourly self.assertTrue(any(inst.priceUpfront == 32966 and inst.pricePerHour == 1.254 for inst in instances)) # Reserved price: all hourly self.assertTrue(any(inst.pricePerHour == 2.751 for inst in instances)) ```
{ "source": "joshuapwalton/cloud-reset", "score": 2 }
#### File: lib/modules/aws_ec2.py ```python from ..BaseResource import BaseResource import boto3 class Resource(BaseResource): name = 'aws_ec2' type = 'ec2' client = None dry_run = True ids = [] resources = [] def __init__(self): self.client = boto3.client(self.type) def get_resources(self): client = self.client paginator = client.get_paginator('describe_instances') for page in paginator.paginate(): for reservation in page['Reservations']: for instance in reservation["Instances"]: if instance.get('InstanceId'): self.ids.append(instance['InstanceId']) self.resources.append({ "Id": instance['InstanceId'], "Tags": instance.get('Tags'), }) return self.ids def list_resources(self): self.get_resources() pprint(self.ids) pass def delete_resources(self, ids): """ delete resources specified by ids list""" client = self.client if self.dry_run: print('dry_run flag set') try: response = client.terminate_instances( InstanceIds=ids, DryRun=self.dry_run ) return True except Exception as error: if error.response.get('Error').get('Code') == 'DryRunOperation': pass else: raise ```
{ "source": "JoshuaQChurch/EarthSim", "score": 3 }
#### File: EarthSim/earthsim/io.py ```python import numpy as np import pandas as pd import fiona import geoviews as gv import dask.dataframe as dd import xarray as xr import cartopy.crs as ccrs from osgeo import gdal, osr def get_sampling(bounds, shape): """ Generates x/y coordinates from bounds and shape. Parameters ---------- bounds - tuple(float, float, float, float) north, south, east, west shape - tuple(int, int) rows, cols """ rows, cols = shape y1, y0, x1, x0 = bounds xunit = (x1-x0)/cols/2. yunit = (y1-y0)/rows/2. xs = np.linspace(x0+xunit, x1-xunit, cols) ys = np.linspace(y0+yunit, y1-yunit, rows) return xs, ys def open_gssha(filename): """ Reads various filetypes produced by GSSHA """ # Read metadata ftype = filename.split('.')[-1] if ftype in ['fgd', 'asc']: f = open(filename, 'r') c, r, xlc, ylc, gsize, nanval = [ t(f.readline().split(' ')[-1].split('\n')[0]) for t in [int, int, float, float, float, float] ] xs = np.linspace(xlc+gsize/2., xlc+c*gsize-gsize/2., c+1) ys = np.linspace(ylc+gsize/2., ylc+r*gsize-gsize/2., r) else: header_df = pd.read_table(filename, engine='python', names=['meta_key', 'meta_val'], sep=' ', nrows=6) bounds = header_df.loc[:3, 'meta_val'].values.astype(float) r, c = header_df.loc[4:6, 'meta_val'].values.astype(int) xs, ys = get_sampling(bounds, (r, c)) # Read data using dask ddf = dd.read_csv(filename, skiprows=6, header=None, sep=' ') darr = ddf.values.compute() if ftype == 'fgd': darr[darr==nanval] = np.NaN return xr.DataArray(darr[::-1], coords={'x': xs, 'y': ys}, name='z', dims=['y', 'x']) def get_ccrs(filename): """ Loads WKT projection string from file and return cartopy coordinate reference system. """ inproj = osr.SpatialReference() proj = open(filename, 'r').readline() inproj.ImportFromWkt(proj) projcs = inproj.GetAuthorityCode('PROJCS') return ccrs.epsg(projcs) def read_3dm_mesh(fpath, skiprows=1): """ Reads a 3DM mesh file and returns the simplices and vertices as dataframes Parameters ---------- fpath: str Path to 3dm file Returns ------- tris: DataFrame Simplexes of the mesh verts: DataFrame Vertices of the mesh """ all_df = pd.read_table(fpath, delim_whitespace=True, header=None, skiprows=skiprows, names=('row_type', 'cmp1', 'cmp2', 'cmp3', 'val'), index_col=1) conns = all_df[all_df['row_type'].str.lower() == 'e3t'][['cmp1', 'cmp2', 'cmp3']].values.astype(int) - 1 pts = all_df[all_df['row_type'].str.lower() == 'nd'][['cmp1', 'cmp2', 'cmp3']].values.astype(float) pts[:, 2] *= -1 verts = pd.DataFrame(pts, columns=['x', 'y', 'z']) tris = pd.DataFrame(conns, columns=['v0', 'v1', 'v2']) return tris, verts def read_mesh2d(fpath): """ Loads a .dat file containing mesh2d data corresponding to a 3dm mesh. Parameters ---------- fpath: str Path to .dat file Returns ------- dfs: dict(int: DataFrame) A dictionary of dataframes indexed by time. """ attrs = {} with open(fpath, 'r') as f: dataset = f.readline() if not dataset.startswith('DATASET'): raise ValueError('Expected DATASET file, cannot read data.') objtype = f.readline() if not objtype.startswith('OBJTYPE "mesh2d"'): raise ValueError('Expected "mesh2d" OBJTYPE, cannot read data.') _ = f.readline() nd, nc = f.readline(), f.readline() name = f.readline()[6:-2] unit = f.readline() df = pd.read_table(fpath, delim_whitespace=True, header=None, skiprows=7, names=[0, 1, 2]).iloc[:-1] ts_index = np.where(df[0]=='TS')[0] indexes = [df.iloc[idx, 2] for idx in ts_index] dfs = {} for time, tdf in zip(indexes, np.split(df, ts_index)[1:]): tdf = tdf.iloc[1:].astype(np.float64).dropna(axis=1, how='all') if len(tdf.columns) == 1: tdf.columns = [name] else: tdf.columns = [name+'_%d' % c for c in range(len(tdf.columns))] dfs[time] = tdf.reset_index(drop=True) return dfs def save_shapefile(cdsdata, path, template): """ Accepts bokeh ColumnDataSource data and saves it as a shapefile, using an existing template to determine the required schema. """ collection = fiona.open(template) arrays = [np.column_stack([xs, ys]) for xs, ys in zip(cdsdata['xs'], cdsdata['ys'])] polys = gv.Polygons(arrays, crs=ccrs.GOOGLE_MERCATOR) projected = gv.operation.project_path(polys, projection=ccrs.PlateCarree()) data = [list(map(tuple, arr)) for arr in projected.split(datatype='array')] shape_data = list(collection.items())[0][1] shape_data['geometry']['coordinates'] = data with fiona.open(path, 'w', collection.driver, collection.schema, collection.crs) as c: c.write(shape_data) ```
{ "source": "joshuar500/poem-scraper", "score": 3 }
#### File: poem-scraper/poemcrawler/models.py ```python from sqlalchemy import create_engine, Column, Integer, String, Text from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import relationship from sqlalchemy.engine.url import URL import settings DeclarativeBase = declarative_base() def db_connect(): """ Performs database connection using database settings from settings.py. Returns sqlalchemy engine instance """ return create_engine(URL(**settings.DATABASE)) def create_poetry_table(engine): DeclarativeBase.metadata.create_all(engine) class Poem(DeclarativeBase): __tablename__ = "poem" title = Column(String(250), nullable=False) id = Column(Integer, primary_key=True) poem = Column(Text(), nullable=False) author = Column(String(250), nullable=False) url = Column(String(350), nullable=False) # Some stuff for PostgreSQL # insert into Authors (author) # select distinct author # from Poems; # ALTER TABLE poem # ADD COLUMN author_id integer, # ADD FOREIGN KEY (author_id) REFERENCES author (id); # update poem # set author_id = author.id # from author # where author.name = poem.author; ``` #### File: poemcrawler/spiders/poem_spider.py ```python from scrapy.contrib.spiders import CrawlSpider, Rule from scrapy.contrib.linkextractors import LinkExtractor from poemcrawler.items import PoemItem class PoetrySpider(CrawlSpider): name = "poemhunter" allowed_domains = ["poemhunter.com"] start_urls = [ "http://www.poemhunter.com/classics/" ] rules = ( Rule(LinkExtractor( allow="classics/(.*?)", # We never want any 'members' profiles deny=["members", "poets"], restrict_xpaths="//div[contains(@class, 'pagination')]/ul/li[contains(@class, 'next')]"), follow=True), Rule(LinkExtractor( deny=["members", "poets"], restrict_xpaths="//a[contains(@class, 'name')]"), follow=True), Rule(LinkExtractor( # After first follow, exclude anything that doesn't contain "poems" allow="(.*?)/poems", deny=["members", "/(.*?)/"], restrict_xpaths="//a[contains(@class, 'name')]/poems"), follow=True), Rule(LinkExtractor( allow="/poem/(.*?)", deny=["members", "/(.*?)/poems", "/(.*?)/comments"], restrict_xpaths=["//a",]), callback='parse_item', follow=True), ) # These are the exact XPath's to the required text. def parse_item(self, response): for sel in response.xpath("//body"): item = PoemItem() item['author'] = sel.xpath("//div/div[contains(@id, 'content')]/h2/text()").extract()[0].strip() item['title'] = sel.xpath("///div/div/div/div/div/div/div/div/a/span[contains(@itemprop, 'title')]/text()").extract()[0].strip() item['poem'] = [x.strip() for x in sel.xpath("//div[contains(@class, 'poem-detail')]/div/div[contains(@class, 'KonaBody')]/p/text()").extract() if x.strip()] item['url'] = response.request.url yield item ```
{ "source": "joshuar500/swiss-tournament-db", "score": 3 }
#### File: vagrant/tournament/tournament.py ```python import psycopg2 import bleach def connect(): """Connect to the PostgreSQL database. Returns a database connection.""" try: return psycopg2.connect("dbname=tournament") except Exception, e: raise e def commitAndCloseConnect(c): c.commit() c.close() def deleteMatches(): """Remove all the match records from the database.""" connection = connect() c = connection.cursor() c.execute("DELETE FROM result;") c.execute("DELETE FROM match;") commitAndCloseConnect(connection) def deletePlayers(): """Remove all the player records from the database.""" connection = connect() c = connection.cursor() c.execute("DELETE FROM player;") commitAndCloseConnect(connection) def deleteTournaments(): """Remove all tournament records from the database.""" connection = connect() c = connection.cursor() c.execute("DELETE FROM tournament;") commitAndCloseConnect(connection) def countPlayers(): """Returns the number of players currently registered.""" connection = connect() c = connection.cursor() c.execute("SELECT COUNT(*) from player;") players = c.fetchone()[0] connection.close() return players def registerPlayer(name): """Adds a player to the tournament database. The database assigns a unique serial id number for the player. (This should be handled by your SQL database schema, not in your Python code.) Args: name: the player's full name (need not be unique). """ connection = connect() c = connection.cursor() c.execute("INSERT INTO player (name) values (%s);", (bleach.clean(name),)) commitAndCloseConnect(connection) def createTournament(name): """Adds a tournament to the tournament database. The database assigns a unique serial id number for the tournament. Args: name: the name of the tournament (need not be unique) Return: ID of the created tournament """ connection = connect() cursor = connection.cursor() cursor.execute("""insert into tournament (name) values(%s) returning id;""", (bleach.clean(name),)) tournament_id = cursor.fetchone()[0] commitAndCloseConnect(connection) return tournament_id def playerStandings(tournament): """Returns a list of the players and their win records, sorted by wins. The first entry in the list should be the player in first place, or a player tied for first place if there is currently a tie. Args: tournament: the id of the tournament Returns: A list of tuples, each of which contains (id, name, wins, matches): id: the player's unique id (assigned by the database) name: the player's full name (as registered) wins: the number of matches the player has won matches: the number of matches the player has played """ connection = connect() c = connection.cursor() c.execute("""SELECT player_id, player_name, wins, ties, matches FROM standings where tournament_id=%s""", (bleach.clean(tournament),)) standings = c.fetchall() connection.close() return standings def reportMatch(t, p1, p2, w): """Records the outcome of a single match between two players. Args: t: the id of the tournament p1: the id of player1 p2: the id of player2 w: the id number of the player who won """ connection = connect() c = connection.cursor() c.execute( """ insert into match (tournament_id, player1, player2) values(%(tournament)s, %(player1)s, %(player2)s) returning id; """, {'tournament': bleach.clean(t), 'player1': bleach.clean(p1), 'player2': bleach.clean(p2)}) match_id = c.fetchone()[0] if w: c.execute(""" insert into result (match_id, winner) values(%(match_id)s, %(winner)s); """, {'match_id': bleach.clean(match_id), 'winner': bleach.clean(w)}) commitAndCloseConnect(connection) def swissPairings(tournament): """Returns a list of pairs of players for the next round of a match. Assuming that there are an even number of players registered, each player appears exactly once in the pairings. Each player is paired with another player with an equal or nearly-equal win record, that is, a player adjacent to him or her in the standings. Args: tournament: the id of the tournament Returns: A list of tuples, each of which contains (id1, name1, id2, name2) id1: the first player's unique id name1: the first player's name id2: the second player's unique id name2: the second player's name """ connection = connect() c = connection.cursor() # # Get player id, player name, and player byes # from player standings and opponent standings # where tournament is referenced in both # player standings and opponent standings # and player id is equal to opponent id # store into a variable 'standings' c.execute( """ select p.player_id, p.player_name, p.byes from standings p, opponent_standings o where p.tournament_id=%s and p.tournament_id=o.tournament_id and p.player_id=o.player_id order by p.wins, p.losses desc, o.wins, o.losses desc """, (tournament,)) standings = c.fetchall() match = () matches = [] # if the length of standings is divisble # by 2 and not equal to zero, then # no bye is needed at this time bye_needed = len(standings) % 2 != 0 for player in standings: if bye_needed and player[2] == 0: matches.append(player[0:2] + (None, None)) else: match = match + player[0:2] if len(match) == 4: matches.append(match) match = () connection.close() return list(set(matches)) ```
{ "source": "Joshua-Ren/better_supervisory_signal", "score": 2 }
#### File: Joshua-Ren/better_supervisory_signal/main_gen_teacher.py ```python import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F import torch.backends.cudnn as cudnn import torch.utils.data as Data import torchvision import torchvision.transforms as T import pandas as pd import numpy as np import os import copy import argparse import random from utils import * save_list = [4, 50, 78, 118, 158, 178, 199] def parse(): parser = argparse.ArgumentParser(description='Generate learning path for CIFAR10/100') parser.add_argument('--lr', default=0.1, type=float, help='learning rate') parser.add_argument('--scheduler',default='cosine',type=str,help='cosine or multi') parser.add_argument('--epochs', default=200, type=int) parser.add_argument('--net',default='resnet18',type=str, help='resnet18, resnet50, efficientb3 (with pre-train), mobile, vgg') parser.add_argument('--dataset', default='cifar10', type=str, help='cifar10, cifar100') parser.add_argument('--ny_ratio', default=0.,type=float) parser.add_argument('--batch_size',default=250, type=int) parser.add_argument('--seed',default=10086,type=int) parser.add_argument('--proj_name',default='Gen_teacher', type=str) parser.add_argument('--run_name',default=None, type=str) parser.add_argument('--num_work',default=4, type=int) parser.add_argument('--smoothing',default=0.05, type=float,help='smoothing factor in FilterBAN') parser.add_argument('--filt_tau',default=1., type=float,help='temperature in FilterBAN') args = parser.parse_args() if args.dataset=='cifar10': args.k_clas = 10 elif args.dataset=='cifar100': args.k_clas = 100 return args # =========== Record the paths ================ def _Update_Teach_Table(store_table, pred_batch, idx_batch): pred_items = pred_batch.cpu().detach() batch_size = idx_batch.shape[0] for i in range(batch_size): idx_key = idx_batch[i].item() tmp_pred = pred_items[i] if store_table[idx_key, :].sum()==0: store_table[idx_key, :] = tmp_pred else: store_table[idx_key, :] = (1-args.smoothing)*store_table[idx_key, :] + args.smoothing*tmp_pred def get_validation(model, data_loader): model.eval() b_cnt, correct = 0, 0 valid_loss, pb_table, tf_table = [],[],[] batch_size = data_loader.batch_size for x, _, ny, idx in data_loader: b_cnt += 1 x,ny = x.float().cuda(), ny.long().cuda() with torch.no_grad(): hid = model(x) loss = nn.CrossEntropyLoss()(hid, ny.squeeze()) valid_loss.append(loss.item()) hid = hid.detach() pred_idx = hid.data.max(1, keepdim=True)[1] prob = torch.gather(nn.Softmax(1)(hid),dim=1, index=pred_idx) pb_table.append(prob) tf_table.append(pred_idx.eq(ny.data.view_as(pred_idx))) model.train() pb_table = torch.stack(pb_table).reshape(-1,1) tf_table = torch.stack(tf_table).reshape(-1,1) ECE = cal_ECE(pb_table, tf_table) B_NUM = batch_size*b_cnt correct = tf_table.sum() return correct/B_NUM, np.mean(valid_loss), ECE def train(model, optimizer, scheduler, loss_type='from_oht', teacher=None, teach_table=None, tau=1): results = {'tacc':[], 'vacc':[], 'tloss':[],'vloss':[],'tECE':[],'vECE':[], 'bestg_ac':[],'bestg_lo':[]} store_table = torch.zeros((50000, args.k_clas)) update_cnt = 0 vacc_max, vloss_min = 0, 50 bestg_ac, bestg_lo = 0, 0 ES_Model = copy.deepcopy(model) if teach_table is not None: teach_table = teach_table.cuda() for g in range(args.epochs): for x, _, ny, idx in train_loader: model.train() x,ny = x.float().cuda(), ny.long().cuda() optimizer.zero_grad() hid = model(x) pred_batch = F.softmax(hid/tau, 1) _Update_Teach_Table(store_table, pred_batch, idx) if teacher!=None: teacher.eval() hid_teach = teacher(x) hid_teach = hid_teach.detach() if loss_type=='from_oht': loss = nn.CrossEntropyLoss()(hid, ny.squeeze()) elif loss_type=='normal_kd': loss = distil_loss(hid, ny, hid_teach, T=tau, alpha=1) elif loss_type=='from_teach_table': teacher_score = teach_table[idx] loss = nn.KLDivLoss(reduction='batchmean')(F.log_softmax(hid/tau, 1), teacher_score)*(tau*tau * 2.0) loss.backward() optimizer.step() wandb.log({'loss':loss.item()}) # ----- At the end of each epoch -------- scheduler.step() wandb.log({'learning_rate':optimizer.param_groups[0]['lr']}) tacc, tloss, tECE = get_validation(model, data_loader=train_loader) vacc, vloss, vECE = get_validation(model, data_loader=valid_loader) if vloss<vloss_min: vloss_min = vloss bestg_lo = g file_name = 'best_loss' save_checkpoint(model,save_path,file_name) save_storetable(store_table,save_path,file_name) if vacc>vacc_max: vacc_max = vacc bestg_ac = g file_name = 'best_acc' save_checkpoint(model,save_path,file_name) save_storetable(store_table,save_path,file_name) if g in save_list: file_name = 'epoch_'+str(g) save_checkpoint(model,save_path,file_name) save_storetable(store_table,save_path,file_name) results['tacc'].append(tacc.item()) results['vacc'].append(vacc.item()) results['tloss'].append(tloss) results['vloss'].append(vloss) results['tECE'].append(tECE) results['vECE'].append(vECE) results['bestg_ac'].append(bestg_ac) results['bestg_lo'].append(bestg_lo) wandb_record_results(results, g) def main(): global args, device, train_loader, valid_loader, BATCH_X global PATH_TRAIN_COARSE, PATH_BATCH_COARSE, PATH_BATCH_FINE global save_path device = 'cuda' if torch.cuda.is_available() else 'cpu' args = parse() rnd_seed(args.seed) # -------- Initialize wandb run_name = wandb_init(proj_name=args.proj_name, run_name=args.run_name, config_args=args) #run_name = 'add' save_path = './results/'+args.proj_name+'/'+args.net+run_name if not os.path.exists(save_path): os.makedirs(save_path) # -------- Prepare loader, model, optimizer, etc. train_loader, valid_loader = data_gen(args, valid_split=False) net = get_init_net(args, args.net) net = net.to(device) optimizer = optim.SGD(net.parameters(), lr=args.lr,momentum=0.9, weight_decay=5e-4) if args.scheduler=='cosine': scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=args.epochs, eta_min=1e-5) elif args.scheduler=='multi': scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[80, 120, 160, 180], gamma=0.1) # -------- Train the model and record the path train(net,optimizer,scheduler,'from_oht') if __name__ == '__main__': main() ```
{ "source": "Joshua-Ren/IL_for_SSL", "score": 2 }
#### File: Joshua-Ren/IL_for_SSL/data_loader_DALI.py ```python import os import time import math import torch import torch.nn as nn import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.distributed as dist import torch.optim import torch.utils.data import torch.utils.data.distributed import torchvision.transforms as transforms import torchvision.datasets as datasets import torchvision.models as models import numpy as np from nvidia.dali.plugin.pytorch import DALIClassificationIterator, LastBatchPolicy from nvidia.dali.pipeline import pipeline_def import nvidia.dali.types as types import nvidia.dali.fn as fn import warnings warnings.filterwarnings('ignore') #LOCAL_PATH = 'E:\DATASET\tiny-imagenet-200' @pipeline_def def create_dali_pipeline(dataset, crop, size, shard_id, num_shards, dali_cpu=False, is_training=True): if dataset.lower()=='imagenet': DATA_PATH = '/home/sg955/rds/rds-nlp-cdt-VR7brx3H4V8/datasets/ImageNet/' if is_training: data_dir = os.path.join(DATA_PATH, 'train_caffe') else: data_dir = os.path.join(DATA_PATH, 'val_caffe') images, labels = fn.readers.caffe(path=data_dir, shard_id=shard_id, num_shards=num_shards, pad_last_batch=True, name="Reader") elif dataset.lower()=='tiny': DATA_PATH = '/home/sg955/rds/hpc-work/tiny-imagenet-200/' if is_training: data_dir = os.path.join(DATA_PATH, 'train') else: data_dir = os.path.join(DATA_PATH, 'val') images, labels = fn.readers.file(file_root=data_dir, shard_id=shard_id, num_shards=num_shards, random_shuffle=is_training, pad_last_batch=True, name="Reader") dali_device = 'cpu' if dali_cpu else 'gpu' decoder_device = 'cpu' if dali_cpu else 'mixed' if is_training: #images = fn.decoders.image_random_crop(images, device=decoder_device, output_type=types.RGB, random_aspect_ratio=[0.8, 1.25], # random_area=[0.1, 1.0], num_attempts=100) images = fn.decoders.image(images, device=decoder_device, output_type=types.RGB) images = fn.resize(images, device=dali_device, resize_x=crop, resize_y=crop, interp_type=types.INTERP_TRIANGULAR) mirror = fn.random.coin_flip(probability=0.5) else: images = fn.decoders.image(images, device=decoder_device, output_type=types.RGB) images = fn.resize(images, device=dali_device, resize_x=crop, resize_y=crop, mode="not_smaller", interp_type=types.INTERP_TRIANGULAR) #images = fn.resize(images, device=dali_device, size=size, mode="not_smaller", interp_type=types.INTERP_TRIANGULAR) mirror = False images = fn.crop_mirror_normalize(images.gpu(), dtype=types.FLOAT, output_layout="CHW", crop=(crop, crop),mean=[0.485 * 255,0.456 * 255,0.406 * 255], std=[0.229 * 255,0.224 * 255,0.225 * 255], mirror=mirror) labels = labels.gpu() return images, labels if __name__ == '__main__': # iteration of PyTorch dataloader transform_train = transforms.Compose([ transforms.RandomResizedCrop(224, scale=(0.08, 1.25)), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) train_dst = datasets.ImageFolder(IMG_DIR, transform_train) train_loader = torch.utils.data.DataLoader(train_dst, batch_size=2048, shuffle=True, pin_memory=True, num_workers=8) transform_val = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) val_dst = datasets.ImageFolder(IMG_DIR, transform_val) val_loader = torch.utils.data.DataLoader(val_dst, batch_size=2000, shuffle=False, pin_memory=True, num_workers=8) print('[PyTorch] start iterate test dataloader') start = time.time() for i, (x,y) in enumerate(train_loader): if i%5==0: print(i,end='-') images = x.cuda(non_blocking=True) labels = y.cuda(non_blocking=True) end = time.time() test_time = end-start print('[PyTorch] end test dataloader iteration') # print('[PyTorch] iteration time: %fs [train], %fs [test]' % (train_time, test_time)) print('[PyTorch] iteration time: %fs [test]' % (test_time)) pipe = create_dali_pipeline(batch_size=2048, num_threads=8, device_id=0, seed=12, data_dir=IMG_DIR, crop=224, size=256, dali_cpu=False, shard_id=0, num_shards=1, is_training=True) pipe.build() train_loader = DALIClassificationIterator(pipe, reader_name="Reader", last_batch_policy=LastBatchPolicy.PARTIAL) pipe = create_dali_pipeline(batch_size=2000, num_threads=8, device_id=0, seed=12, data_dir=IMG_DIR, crop=256, size=256, dali_cpu=True, shard_id=0, num_shards=1, is_training=False) pipe.build() val_loader = DALIClassificationIterator(pipe, reader_name="Reader", last_batch_policy=LastBatchPolicy.PARTIAL) print('[DALI-GPU] start iterate train dataloader') start = time.time() for i, data in enumerate(train_loader): if i%5==0: print(i,end='-') images = data[0]['data'].cuda() labels = data[0]['label'].cuda() end = time.time() test_time = end-start print('[DALI-GPU] iteration time: %fs [test]' % (test_time)) print('[DALI-cpu] start iterate val dataloader') start = time.time() for i, data in enumerate(val_loader): if i%5==0: print(i,end='-') images = data[0]['data'].cuda() labels = data[0]['label'].cuda() end = time.time() test_time = end-start print('[DALI-cpu] iteration time: %fs [test]' % (test_time)) ``` #### File: Joshua-Ren/IL_for_SSL/ImgNet_finetune_multiGPU.py ```python import warnings warnings.filterwarnings('ignore') import matplotlib.pyplot as plt import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F import torch.backends.cudnn as cudnn import torch.distributed as dist import torch.utils.data as Data import torchvision import torchvision.transforms as T import pandas as pd import numpy as np from data_loader_lmdb import ImageFolderLMDB import os import argparse import random from utils import * import copy from vit_pytorch import ViT from my_MAE import my_MAE from einops import rearrange, repeat import torch.distributed as dist def parse(): parser = argparse.ArgumentParser(description='ImageNet-Finetune') parser.add_argument('--scratch',action='store_true',help='train from scratch') parser.add_argument('--lr', default=1e-3, type=float, help='learning rate') parser.add_argument('--weight_decay', default=0.05, type=float) parser.add_argument('--batch_size',default=256, type=int) parser.add_argument('--seed',default=10086,type=int) parser.add_argument('--proj_path',default='Finetune_ImgNet', type=str) parser.add_argument('--epochs',default=100, type=int) parser.add_argument('--accfreq',default=10, type=int, help='every xx iteration, update acc') parser.add_argument('--run_name',default=None,type=str) parser.add_argument('--enable_amp',action='store_true') parser.add_argument('--sync_bn', action='store_true') parser.add_argument('--local_rank', default=0, type=int) parser.add_argument('--workers',default=4, type=int) parser.add_argument('--dataset',type=str,default='tiny',help='can be imagenet, tiny') parser.add_argument('--modelsize',type=str,default='tiny',help='ViT model size, must be tiny, small or base') parser.add_argument('--loadrun',type=str,default='basetry_4GPU_1kbs') parser.add_argument('--loadep',type=str,default='ep0') args = parser.parse_args() #/home/sg955/GitWS/IL_for_SSL/results/Interact_MAE/base/basetry_4GPU_1kbs/checkpoint # For example ../Interact_MAE/tiny/tinytry_4GPU/checkpoint/encoder_ep0.pt base_folder = '/home/sg955/GitWS/IL_for_SSL/' base_path = base_folder + 'results/Interact_MAE/' base_file = 'encoder_'+args.loadep+'.pt' args.load_ckpt_path = os.path.join(base_path, args.modelsize.lower(), args.loadrun,'checkpoint', base_file) args.run_name = args.dataset+'_'+args.modelsize+'_'+ args.loadep+'__'+args.run_name if args.modelsize.lower()=='tiny': enc_params = [192, 12, 3, 512] # dim, depth, heads, mlp_dim dec_params = [512, 6] # dec_dim, dec_depth elif args.modelsize.lower()=='small': enc_params = [384, 12, 6, 1024] # dim, depth, heads, mlp_dim dec_params = [512, 6] #[1024, 2] # dec_dim, dec_depth elif args.modelsize.lower()=='base': enc_params = [768, 12, 12, 2048] # dim, depth, heads, mlp_dim dec_params = [512, 6] #[2048, 4] # dec_dim, dec_depth else: print('ViT model size must be tiny, small, or base') [args.enc_dim, args.enc_depth, args.enc_heads, args.enc_mlp] = enc_params [args.dec_dim, args.dec_depth] = dec_params if args.dataset.lower()=='imagenet': tmp_kfp=[1000, 256, 256, 16, 4] # k_clas, fill_size, fig_size, patch_size, ds_ratio elif args.dataset.lower()=='tiny': tmp_kfp=[200, 64, 64, 8, 1] else: print('dataset must be imagenet or tiny') [args.k_clas, args.fill_size, args.fig_size, args.patch_size, args.ds_ratio] = tmp_kfp args.patch_num=int(args.fig_size/args.patch_size) return args # =================== Some utils functions ========================== def reduce_tensor(tensor): rt = tensor.clone() dist.all_reduce(rt, op=dist.reduce_op.SUM) rt /= args.world_size return rt def adjust_learning_rate(args, optimizer, epoch): """ warm up (linearly to lr) 5-10 epoch, then cosine decay to lr_min """ warmup_ep = 5 lr_min = 1e-6 lr_start = args.lr if epoch<warmup_ep: lr_current = lr_min+(lr_start-lr_min)*(epoch)/warmup_ep else: degree = (epoch-warmup_ep)/(args.epochs-warmup_ep)*np.pi lr_current = lr_min+0.5*(lr_start-lr_min)*(1+np.cos(degree)) for param_group in optimizer.param_groups: param_group['lr'] = lr_current return lr_current # ======================== Main and Train ========================== def main(): global args args = parse() rnd_seed(args.seed) # ================= Prepare for distributed training ===== args.distributed = False if 'WORLD_SIZE' in os.environ: args.distributed = int(os.environ['WORLD_SIZE']) > 1 if args.enable_amp or args.distributed or args.sync_bn: global DDP, amp, optimizers, parallel from apex.parallel import DistributedDataParallel as DDP from apex import amp, optimizers, parallel cudnn.benchmark = True args.gpu = 0 args.world_size = 1 if args.distributed: args.gpu = args.local_rank torch.cuda.set_device(args.gpu) torch.distributed.init_process_group(backend='nccl', init_method='env://') args.world_size = torch.distributed.get_world_size() args.total_batch_size = args.world_size * args.batch_size assert torch.backends.cudnn.enabled, "Amp requires cudnn backend to be enabled." # ================== Create the model: mae ================== # Here we create mae and only use encoder to make finetune (as checkpoint is saved as mae) encoder = ViT(image_size=args.fig_size, patch_size=args.patch_size, num_classes=args.k_clas, dim=args.enc_dim, depth=args.enc_depth, heads=args.enc_heads, mlp_dim=args.enc_mlp) mae = my_MAE(encoder=encoder, masking_ratio=0.75, decoder_dim=args.dec_dim, decoder_depth=args.dec_depth) if args.sync_bn: print("using apex synced BN") mae = parallel.convert_syncbn_model(mae) if not args.scratch: ckp = ckp_converter(torch.load(args.load_ckpt_path)) mae.load_state_dict(ckp) # Scale learning rate based on global batch size encoder.cuda() args.lr = args.lr*float(args.batch_size*args.world_size)/256. optimizer = optim.AdamW(encoder.parameters(), lr=args.lr, betas=(0.9, 0.95), weight_decay=args.weight_decay) if args.enable_amp: encoder, optimizer = amp.initialize(encoder, optimizer, opt_level="O1") if args.distributed: encoder = DDP(encoder, delay_allreduce=True) # ================== Prepare for the dataloader =============== normalize = T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) traindir = os.path.join('/home/sg955/rds/rds-nlp-cdt-VR7brx3H4V8/datasets/ImageNet/', 'train.lmdb') valdir = os.path.join('/home/sg955/rds/rds-nlp-cdt-VR7brx3H4V8/datasets/ImageNet/', 'val.lmdb') train_set = ImageFolderLMDB( traindir, T.Compose([T.RandomResizedCrop(args.fig_size), T.RandomHorizontalFlip(), T.ToTensor(), normalize, ])) val_set = ImageFolderLMDB( valdir, T.Compose([ T.Resize(args.fill_size), T.CenterCrop(args.fig_size), T.ToTensor(),normalize, ])) train_sampler = torch.utils.data.distributed.DistributedSampler(train_set) train_loader = torch.utils.data.DataLoader( train_set, batch_size=args.batch_size, shuffle=(train_sampler is None), num_workers=args.workers, pin_memory=True, sampler=train_sampler) val_loader = torch.utils.data.DataLoader( val_set, batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True) # =================== Initialize wandb ======================== if args.local_rank==0: run_name = wandb_init(proj_name=args.proj_path, run_name=args.run_name, config_args=args) #run_name = 'add' save_path = base_folder+'results/'+args.proj_path+'/'+run_name if not os.path.exists(save_path): os.makedirs(save_path) # ================= Train the model =========================== for g in range(args.epochs): train(train_loader, encoder, optimizer, g) _accuracy_validate(val_loader, encoder) torch.cuda.synchronize() # If also use val_loader, open this, but in interact, no need def train(train_loader, encoder, optimizer, g): losses = AverageMeter() top1 = AverageMeter() top5 = AverageMeter() encoder.train() for i, (x, y) in enumerate(train_loader): x = x.cuda(non_blocking=True) y = y.cuda(non_blocking=True) # compute output, for encoder, we need cls token to get hid hid = encoder(x) loss = nn.CrossEntropyLoss()(hid, y) optimizer.zero_grad() if args.enable_amp: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() optimizer.step() if i%args.accfreq == 0: prec1, prec5 = accuracy(hid.data, y, topk=(1, 5)) if args.distributed: reduced_loss = reduce_tensor(loss.data) prec1 = reduce_tensor(prec1) prec5 = reduce_tensor(prec5) else: reduced_loss = loss.data losses.update(reduced_loss.item(), x.size(0)) top1.update(prec1.item(), x.size(0)) top5.update(prec5.item(), x.size(0)) torch.cuda.synchronize() if args.local_rank==0: wandb.log({'loss':loss.item()}) if args.local_rank==0: curr_lr = adjust_learning_rate(args, optimizer, g) wandb.log({'epoch':g}) wandb.log({'train_loss':losses.avg}) wandb.log({'train_top1':top1.avg}) wandb.log({'train_top5':top5.avg}) wandb.log({'learn_rate':curr_lr}) def _accuracy_validate(val_loader, encoder): ''' Calculate validation accuracy, support multi-GPU ''' losses = AverageMeter() top1 = AverageMeter() top5 = AverageMeter() # switch to evaluate mode encoder.eval() for i, (x, y) in enumerate(val_loader): x = x.cuda(args.gpu, non_blocking=True) y = y.cuda(args.gpu, non_blocking=True) # compute output with torch.no_grad(): hid = encoder(x) loss = nn.CrossEntropyLoss()(hid, y) # measure accuracy and record loss prec1, prec5 = accuracy(hid.data, y, topk=(1, 5)) if args.distributed: reduced_loss = reduce_tensor(loss.data) prec1 = reduce_tensor(prec1) prec5 = reduce_tensor(prec5) else: reduced_loss = loss.data losses.update(reduced_loss.item(), x.size(0)) top1.update(prec1.item(), x.size(0)) top5.update(prec5.item(), x.size(0)) if args.local_rank==0: wandb.log({'valid_loss':losses.avg}) wandb.log({'valid_top1':top1.avg}) wandb.log({'valid_top5':top5.avg}) if __name__ == '__main__': main() ```
{ "source": "Joshua-Ren/maddpg-again", "score": 3 }
#### File: maddpg-again/utils/networks.py ```python import torch.nn as nn import torch.nn.functional as F class MLPNetwork(nn.Module): """ MLP network (can be used as value or policy) """ def __init__(self, input_dim, out_dim, hidden_dim=64, nonlin=F.relu, constrain_out=False, norm_in=True, discrete_action=True): """ Inputs: input_dim (int): Number of dimensions in input out_dim (int): Number of dimensions in output hidden_dim (int): Number of hidden dimensions nonlin (PyTorch function): Nonlinearity to apply to hidden layers """ super(MLPNetwork, self).__init__() if norm_in: # normalize inputs self.in_fn = nn.BatchNorm1d(input_dim) self.in_fn.weight.data.fill_(1) self.in_fn.bias.data.fill_(0) else: self.in_fn = lambda x: x self.fc1 = nn.Linear(input_dim, hidden_dim) self.fc2 = nn.Linear(hidden_dim, hidden_dim) self.fc3 = nn.Linear(hidden_dim, out_dim) self.nonlin = nonlin if constrain_out and not discrete_action: # initialize small to prevent saturation self.fc3.weight.data.uniform_(-3e-3, 3e-3) self.out_fn = nn.Tanh() else: # logits for discrete action (will softmax later) self.out_fn = lambda x: x def forward(self, X): """ Inputs: X (PyTorch Matrix): Batch of observations Outputs: out (PyTorch Matrix): Output of network (actions, values, etc) """ h1 = self.nonlin(self.fc1(self.in_fn(X))) h2 = self.nonlin(self.fc2(h1)) out = self.out_fn(self.fc3(h2)) return out ```
{ "source": "Joshua-Ren/Neural_Iterated_Learning", "score": 3 }
#### File: Neural_Iterated_Learning/utils/data_gen.py ```python import sys sys.path.append("..") import numpy as np from utils.conf import * def valid_list_gen(low, high, num): ''' Randomly generate distinct numbers, range in (low, high), with size. ''' s = [] while(len(s)<num): x = np.random.randint(low, high) if x not in s: s.append(x) return s def gen_distinct_candidates(tgt_list, sel_list, candi_size = SEL_CANDID): ''' tgt_list may contain part of elements in sel_list output the (data_candidates, sel_idx) ''' batch_size = len(tgt_list) data_candidates = np.zeros((batch_size, candi_size)) sel_idx = [] for i in range(batch_size): tmp_idx = np.random.randint(0, candi_size) sel_idx.append(tmp_idx) for j in range(candi_size): if j == 0: data_candidates[i,j]=tgt_list[i] continue rand_candi = random.choice(sel_list) while (rand_candi in data_candidates[i,:]): rand_candi = random.choice(sel_list) data_candidates[i, j] = rand_candi data_candidates[i, 0] = data_candidates[i, tmp_idx] data_candidates[i, tmp_idx] = tgt_list[i] return data_candidates, np.asarray(sel_idx) def gen_candidates(low, high, valid_list, batch = BATCH_SIZE, candi = SEL_CANDID, train=True): if train == True: s = [] num = batch*candi while (len(s)<num): x = np.random.randint(low, high) while (x in valid_list): x = np.random.randint(low, high) s.append(x) return np.asarray(s).reshape((batch, candi)) elif train == False: s = [] valid_num = len(valid_list) while (len(s)<valid_num*candi): x = np.random.randint(0,valid_num) s.append(valid_list[x]) return np.asarray(s).reshape((valid_num, candi)) def valid_data_gen(): sel_idx_val = np.random.randint(0,SEL_CANDID, (len(valid_list),)) valid_candidates = gen_candidates(0, NUM_SYSTEM**ATTRI_SIZE, valid_list, train=False) valid_full = np.zeros((valid_num,)) for i in range(valid_num): valid_full[i] = valid_candidates[i, sel_idx_val[i]] return valid_full, valid_candidates, sel_idx_val def batch_data_gen(): num_batches = int(len(all_list)/BATCH_SIZE) # Here we assume batch size=x*100 first random.shuffle(all_list) batch_list = [] for i in range(num_batches): one_batch = {} tmp_list = all_list[i*BATCH_SIZE:(i+1)*BATCH_SIZE] train_candidates, sel_idx_train = gen_distinct_candidates(tmp_list, all_list) for i in range(BATCH_SIZE): train_candidates[i,sel_idx_train[i]] = tmp_list[i] one_batch['sel_idx'] = sel_idx_train one_batch['candidates'] = train_candidates one_batch['data'] = np.asarray(tmp_list) batch_list.append(one_batch) return batch_list def batch_data_gen_valid(train_list, valid_list): ''' Only one batch in batch_list ''' train_batch_list = [] valid_batch_list = [] train_batch = {} valid_batch = {} random.shuffle(train_list) random.shuffle(valid_list) train_candidates, sel_idx_train = gen_distinct_candidates(train_list, train_list) valid_candidates, sel_idx_valid = gen_distinct_candidates(valid_list, all_list) for i in range(len(train_list)): train_candidates[i,sel_idx_train[i]] = train_list[i] for j in range(len(valid_list)): valid_candidates[j,sel_idx_valid[j]] = valid_list[j] train_batch['sel_idx'] = sel_idx_train train_batch['candidates'] = train_candidates train_batch['data'] = np.asarray(train_list) valid_batch['sel_idx'] = sel_idx_valid valid_batch['candidates'] = valid_candidates valid_batch['data'] = np.asarray(valid_list) train_batch_list.append(train_batch) valid_batch_list.append(valid_batch) return train_batch_list, valid_batch_list ''' tl,vl = batch_data_gen_valid(train_list, valid_list) for i in range(56): for j in range(15): if tl[0]['candidates'][i,j] in valid_list: print('@@@@') ''' def shuffle_batch(batch_list): ''' Shuffle the order of data in the same batch. ''' shuf_batch_list = [] for j in range(len(batch_list)): tmp_batch = {} train_batch, train_candidates, sel_idx_train = batch_list[j]['data'], batch_list[j]['candidates'], batch_list[j]['sel_idx'] train_batch tmp = np.concatenate((train_batch.reshape((-1,1)), train_candidates, sel_idx_train.reshape((-1,1))),axis=1) np.random.shuffle(tmp) tmp_batch['data'] = tmp[:,0] tmp_batch['candidates'] = tmp[:,1:-1] tmp_batch['sel_idx'] = tmp[:,-1] shuf_batch_list.append(tmp_batch) return shuf_batch_list def pair_gen(data_list, phA_rnds = 100, degnerate='none', sub_batch_size = 1): ''' Given the list of x-y pairs generated by speaker(t), we shuffle the mappings and yield a pair set of number degnerate could be 'none', 'mix', 'full' ''' all_data = [] all_msgs = [] cnt_samples = 0 for i in range(len(data_list)): for j in range(data_list[i]['data'].shape[0]): cnt_samples += 1 all_data.append(data_list[i]['data'][j]) if degnerate=='full': all_msgs.append(data_list[0]['msg'].transpose(0,1)[0]) elif degnerate=='mix': all_msgs.append(data_list[i]['msg'].transpose(0,1)[j]) all_data.append(data_list[i]['data'][j]) all_msgs.append(data_list[0]['msg'].transpose(0,1)[0]) else: all_msgs.append(data_list[i]['msg'].transpose(0,1)[j]) phA_data_list = [] for i in range(phA_rnds): phA_data_for_spk = {} phA_data = [] phA_msgs = [] for j in range(sub_batch_size): ridx = np.random.randint(0, cnt_samples) phA_data.append(all_data[ridx]) phA_msgs.append(all_msgs[ridx]) phA_data_for_spk['data'] = np.asarray(phA_data) phA_data_for_spk['msg'] = torch.stack(phA_msgs).transpose(0,1) phA_data_list.append(phA_data_for_spk) return phA_data_list valid_num = VALID_NUM train_num = NUM_SYSTEM**ATTRI_SIZE - VALID_NUM all_list = [i for i in range(NUM_SYSTEM**ATTRI_SIZE)] valid_list = valid_list_gen(0, NUM_SYSTEM**ATTRI_SIZE, valid_num) train_list = list(set([i for i in range(NUM_SYSTEM**ATTRI_SIZE)]) ^ set(valid_list)) ''' batch_list = batch_data_gen() shuf_batch_list = shuffle_batch(batch_list) batch_list = batch_data_gen() ''' ``` #### File: Neural_Iterated_Learning/utils/manual_language_gen.py ```python import sys sys.path.append("..") import numpy as np from utils.conf import * from utils.data_gen import * from utils.result_record import * import matplotlib.pyplot as plt vocab_table_full = [chr(97+int(v)) for v in range(26)] char_mapping = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z', 'A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z', '1','2','3','4','5','6','7','8','9','0','~','!','@','#','$','%','^','&','*','(',')','_','+','<','>','?'] #random.shuffle(char_mapping) def value_to_onehot(value, char_mapping): ''' Map value to one-hot tensor. Shape is [ATTRI_SIZE, MSG_VOCSIZE] ''' msg_onehot = torch.zeros((ATTRI_SIZE, MSG_VOCSIZE)) tmp_idx = 0 for i in range(len(value)): tmp_idx = char_mapping.index(value[i]) msg_onehot[i,tmp_idx] = 1 return msg_onehot def key_to_value(key, char_mapping,comp = True): ''' Generate value based on key. Now only for NUM_SYSTEM=10, ATTRI_SIZE=2 ''' key[0] tmp = ''.join([s for s in key]) int_key = int(tmp) dig_0 = int(key[0]) dig_1 = int(key[1]) #dig_2 = np.mod(int(int_key/NUM_SYSTEM**2), NUM_SYSTEM) value = [] if comp == True: #value.append(char_mapping[dig_2]) value.append(char_mapping[dig_1]) value.append(char_mapping[dig_0]) else: #value.append(char_mapping[np.random.randint(0,len(char_mapping))]) value.append(char_mapping[np.random.randint(0,len(char_mapping))]) value.append(char_mapping[np.random.randint(0,len(char_mapping))]) return ''.join(value) # ========== Degenerate language =================== deg_all = {} deg_train = {} deg_valid = {} deg_spk_train = {} # Data for spk training, 'data' should be dicimal, 'msg' one hot data_list = [] msg_list = [] for i in range(NUM_SYSTEM**ATTRI_SIZE): # ===== For dictionary version key = num_to_tup(i) value = 'aa' deg_all[key] = value if i in valid_list: deg_valid[key] = value elif i in all_list: deg_train[key] = value # ==== For spk training version msg_list.append(value_to_onehot(value, char_mapping)) data_list.append(i) deg_spk_train['data'] = np.asarray(data_list) deg_spk_train['msg'] = torch.stack(msg_list).transpose(0,1) #compos_cal(deg_all) # Should be approximate 0 # ========== Compositional language =================== comp_all = {} comp_spk_train = {} # Data for spk training, 'data' should be dicimal, 'msg' one hot data_list = [] msg_list = [] for i in range(NUM_SYSTEM**ATTRI_SIZE): # ===== For dictionary version key = num_to_tup(i) value = key_to_value(key, char_mapping, True) comp_all[key] = value # ==== For spk training version msg_list.append(value_to_onehot(value, char_mapping)) data_list.append(i) comp_spk_train['data'] = np.asarray(data_list) comp_spk_train['msg'] = torch.stack(msg_list).transpose(0,1) print('Comp comp is: '+ str(compos_cal(comp_all))) #compos_cal(comp_all) # Should approximate 1. # ========== Holistic language =================== holi_spk_train = {} new_idx = torch.randperm(64) holi_spk_train['data'] = comp_spk_train['data'] holi_spk_train['msg'] = comp_spk_train['msg'][:,new_idx,:] comp, _, _ = compos_cal_inner(holi_spk_train['msg'],holi_spk_train['data']) print('Holi comp is: '+ str(comp)) # ========== Holistic language2 =================== PERM2 = 20#50 holi_spk_train2 = {} new_idx2 = comp_spk_train['data'] perm = torch.randperm(PERM2) new_idx2 = torch.cat((perm, torch.tensor(new_idx2[PERM2:])),0) holi_spk_train2['data'] = comp_spk_train['data'] holi_spk_train2['msg'] = comp_spk_train['msg'][:,new_idx2,:] comp, _, _ = compos_cal_inner(holi_spk_train2['msg'],holi_spk_train2['data']) print('Holi2 comp is: '+ str(comp)) # ========== Holistic language3 =================== PERM3 = 10#35 holi_spk_train3 = {} new_idx3 = comp_spk_train['data'] perm = torch.randperm(PERM3) new_idx3 = torch.cat((perm, torch.tensor(new_idx3[PERM3:])),0) holi_spk_train3['data'] = comp_spk_train['data'] holi_spk_train3['msg'] = comp_spk_train['msg'][:,new_idx3,:] comp, _, _ = compos_cal_inner(holi_spk_train3['msg'],holi_spk_train3['data']) print('Holi3 comp is: '+ str(comp)) ''' # ========== Read language from txt =================== path = 'exp_results/test_both_spk_and_lis/msg_all.txt' read_spk_train = {} cnt = 0 all_messages = [] msg_list = [] with open(path,'r') as f: for lines in f: for i in range(8): cnt += 1 if cnt > 8: #all_messages.append(lines.split()[i+1]) msg_list.append(value_to_onehot(lines.split()[i+1], char_mapping)) read_spk_train['data'] = comp_spk_train['data'] read_spk_train['msg'] = torch.stack(msg_list).transpose(0,1) comp, _, _ = compos_cal_inner(read_spk_train['msg'],read_spk_train['data']) print('Txt comp is: '+ str(comp)) ''' # =================== Manual Language For the listener ======================== def get_lis_curve_msg(lis_curve_batch_ls, language_train): ''' Input is lis_curve_batch [N_B,1]. language should use the *_train version Output has the same structure with *_train The function only add lis_train['msg'] part ''' lis_train = lis_curve_batch_ls[0] tmp_data = lis_train['data'] msg_table = language_train['msg'].transpose(0,1) msg_list = [] for i in range(tmp_data.shape[0]): tmp_msg = msg_table[tmp_data[i]] msg_list.append(tmp_msg) lis_train['msg'] = torch.stack(msg_list).transpose(0,1) return lis_train #comp_p,_, all_msg = compos_cal_inner(comp_spk_train['msg'],comp_spk_train['data']) ''' test_msg = {} for i in range(100): tmp = [] key = num_to_tup(i,2) dig_0 = np.mod(i, 10) dig_1 = np.mod(int(i*0.1),10) tmp = [char_mapping[dig_0], char_mapping[dig_1]] value = ''.join(tmp) test_msg[key] = value compos_cal(test_msg) simple_msg = {} simple_msg['0','0'] = 'aa' simple_msg['0','1'] = 'ab' simple_msg['1','0'] = 'ba' simple_msg['1','1'] = 'bb' compos_cal(simple_msg) msg = {} msg['green','box'] = 'aa' msg['blue','box'] = 'ba' msg['green','circle'] = 'ab' msg['blue','circle'] = 'bb' compos_cal(msg) ''' ```
{ "source": "joshuar/ha_arpansa_uv", "score": 2 }
#### File: custom_components/arpansa_uv/__init__.py ```python from __future__ import annotations from datetime import timedelta import logging import async_timeout import asyncio from homeassistant.config_entries import ConfigEntry from homeassistant.helpers.aiohttp_client import async_get_clientsession from homeassistant.core import Config, HomeAssistant from homeassistant.helpers.update_coordinator import DataUpdateCoordinator, UpdateFailed from homeassistant.exceptions import ConfigEntryNotReady from custom_components.arpansa_uv.pyarpansa import Arpansa, ApiError from .const import ( DOMAIN, PLATFORMS, DEFAULT_SCAN_INTERVAL, STARTUP_MESSAGE ) SCAN_INTERVAL = timedelta(minutes=DEFAULT_SCAN_INTERVAL) _LOGGER: logging.Logger = logging.getLogger(__package__) async def async_setup(hass: HomeAssistant, config: Config): """Set up this integration using YAML is not supported.""" return True async def async_setup_entry(hass: HomeAssistant, entry: ConfigEntry) -> bool: """Set up this integration using UI.""" if hass.data.get(DOMAIN) is None: hass.data.setdefault(DOMAIN, {}) _LOGGER.info(STARTUP_MESSAGE) session = async_get_clientsession(hass) client = Arpansa(session) coordinator = ArpansaDataUpdateCoordinator(hass, client=client) await coordinator.async_refresh() if not coordinator.last_update_success: raise ConfigEntryNotReady hass.data[DOMAIN][entry.entry_id] = coordinator for platform in PLATFORMS: if entry.options.get(platform, True): coordinator.platforms.append(platform) hass.async_add_job( hass.config_entries.async_forward_entry_setup(entry, platform) ) entry.async_on_unload(entry.add_update_listener(async_reload_entry)) return True class ArpansaDataUpdateCoordinator(DataUpdateCoordinator): """Class to manage fetching data from the API.""" def __init__( self, hass: HomeAssistant, client: Arpansa ) -> None: """Initialize.""" self.api = client self.platforms = [] super().__init__(hass, _LOGGER, name=DOMAIN, update_interval=SCAN_INTERVAL) async def _async_update_data(self): """Update data via library.""" try: # Note: asyncio.TimeoutError and aiohttp.ClientError are already # handled by the data update coordinator. async with async_timeout.timeout(10): await self.api.fetchLatestMeasurements() return self.api except ApiError as err: raise UpdateFailed from err async def async_unload_entry(hass: HomeAssistant, entry: ConfigEntry) -> bool: """Unload a config entry.""" coordinator = hass.data[DOMAIN][entry.entry_id] unloaded = all( await asyncio.gather( *[ hass.config_entries.async_forward_entry_unload(entry, platform) for platform in PLATFORMS if platform in coordinator.platforms ] ) ) if unloaded: hass.data[DOMAIN].pop(entry.entry_id) return unloaded async def async_reload_entry(hass: HomeAssistant, entry: ConfigEntry) -> None: """Reload config entry.""" await async_unload_entry(hass, entry) locations = entry.data.get("locations") _LOGGER.debug(f"Reloading config with options {locations}") await async_setup_entry(hass, entry) ```
{ "source": "JoshuaRiddell/botslib", "score": 2 }
#### File: machine/flash/main.py ```python import sys import networking def main(wlan): global calibrate_ws global controller_ws # init the bot bot = bots.Bot(use_cbots=True) bot.set_wlan(wlan) # don't go any further if the user button is pressed # use this if you locked up the device using subsequent code if bot.user_sw.pressed(): return None, None # init spider controller sp = spider.Spider(bot, use_cspider=True) # setup web server calibrate_ws = socket_handlers.Calibrate(bot) controller_ws = socket_handlers.Controller(sp) networking.setup_web_server(accept_socket_cb) # stand up sp.xyz(0, 0, 40) return [bot, sp] def accept_socket_cb(webSocket, httpClient): global calibrate_ws global controller_ws if (httpClient.GetRequestPath() == "/calibrate"): webSocket.RecvTextCallback = calibrate_ws.socket_text_recv_cb if (httpClient.GetRequestPath() == "/controller"): webSocket.RecvTextCallback = controller_ws.socket_text_recv_cb if __name__ == '__main__': wlan = networking.setup_wlan() # do all of this inside a try except # in this way if there are errors then the ftp server doesn't crash try: import bots import spider import socket_handlers [bot, sp] = main(wlan) except Exception as e: sys.print_exception(e) bot.deinit() ```
{ "source": "JoshuaRiddell/traffic_lights_workshop", "score": 4 }
#### File: traffic_lights_workshop/examples/02_single_light_function.py ```python import RPi.GPIO as GPIO import time GPIO.setmode(GPIO.BCM) GPIO.setwarnings(False) # define some functions to be used later def red_light_on(): # turn the light on GPIO.output(light_red, True) def red_light_off(): # turn the light off GPIO.output(light_red, False) # setup the light pin light_red = 26 GPIO.setup(light_red, GPIO.OUT) # use our functions red_light_on() time.sleep(3) red_light_off() ``` #### File: traffic_lights_workshop/examples/04_light_change.py ```python import RPi.GPIO as GPIO import time GPIO.setmode(GPIO.BCM) GPIO.setwarnings(False) def red_light_on(): # turn the light on GPIO.output(light_red, True) def red_light_off(): # turn the light off GPIO.output(light_red, False) def yellow_light_on(): # turn the light on GPIO.output(light_yellow, True) def yellow_light_off(): # turn the light off GPIO.output(light_yellow, False) def green_light_on(): # turn the light on GPIO.output(light_green, True) def green_light_off(): # turn the light off GPIO.output(light_green, False) # set which pin number we used for the lights light_red = 26 light_yellow = 19 light_green = 13 # setup the pins as an output GPIO.setup(light_red, GPIO.OUT) GPIO.setup(light_yellow, GPIO.OUT) GPIO.setup(light_green, GPIO.OUT) # turn on the green light for go red_light_off() yellow_light_off() green_light_on() # wait for 3 seconds time.sleep(3) # switch to amber light red_light_off() yellow_light_on() green_light_off() # wait for 3 seconds time.sleep(3) # switch to red light for stop red_light_on() yellow_light_off() green_light_off() # wait for 5 seconds time.sleep(5) ```
{ "source": "JoshuaRiddell/uqrobotics-drc", "score": 3 }
#### File: computer/imaging/unityCamera.py ```python import socket import numpy as np import cv2 import struct from pathFinder import * IP_ADDR = '127.0.0.1' PORT = 8000 BUFFER_SIZE = 600000 MESSAGE = "hi" STX = "QUTQUT" ETX = "BBLBBL" telemetryStruct = struct.Struct('<ffff') class UnityCamera(object): def __init__(self): self.sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.sock.connect((IP_ADDR, PORT)) self.sock.send(MESSAGE) self.imageReceived = False self.buffer = "" self.imageString = "" def receive(self): try: data = self.sock.recv(BUFFER_SIZE) self.buffer += data except: print "Connection closed by remote host" exit() #check if there is an STX AND ETX in the buffer stxPos = self.buffer.find(STX) etxPos = self.buffer.find(ETX) if (stxPos != -1 and etxPos != -1 and stxPos < etxPos): self.imageString = self.buffer[stxPos+len(STX):etxPos] self.buffer = self.buffer[etxPos+len(ETX):] self.imageReceived = True def recv_image(self): self.imageReceived = False telemData = self.imageString[0:16] imageData = self.imageString[16:] telemetry = telemetryStruct.unpack(telemData) imageArray = np.fromstring(imageData, np.uint8) img = cv2.imdecode(imageArray, cv2.IMREAD_COLOR) return img, telemetry def close(self): self.sock.close() if __name__ == "__main__": # Save images from unity SAVE_IMAGES = True cam = UnityCamera() directoryStr = "unityTestImages2\\" baseImageStr = directoryStr + "img_%04d.jpg" # telemetryFile = open(directoryStr + "telmetry.csv", "w") # telemetryFile.write("i, Theta, X, Y, Z\n") i = 0 while(1): cam.receive() if cam.imageReceived: img, telem = cam.recv_image() # cv2.imshow('image', img) # print telem # if cv2.waitKey(1) & 0xFF == ord('q'): # break radius, image = find_path(img) # image = perspecitve_warp(image, True) cv2.namedWindow('Image1', cv2.WINDOW_NORMAL) cv2.imshow('Image1', image) if cv2.waitKey(1) & 0xFF == ord('q'): break exit() ``` #### File: car/computer/main.py ```python USE_SERVER = False import vision as vi import hardware as hi from threading import Thread, Lock from time import sleep from math import pi if USE_SERVER: import server class Main(Thread): """Main control thread. """ def __init__(self): """Initialise the vision interface and hardware interface (arduino and camera). """ super(Main, self).__init__() self.daemon = not USE_SERVER self.vision = vi.VisionInterface() self.hardware = hi.HardwareInterface() def run(self): """Main control loop. """ ON = 8 OFF = 5 while True: if self.hardware.get_state() == hi.AUTO: angle = self.vision.read_frame() if angle != 0: angle = angle - pi/2 self.hardware.add_to_pwm_queue(hi.SERVO, angle * 80) self.hardware.add_to_pwm_queue(hi.THROT, ON) print "frame processed {}".format(angle) if __name__ == "__main__": # make the main thread and start it main = Main() if USE_SERVER: # make the frame streaming server. This gets main control flow. main.start() server.register_vision(main.vision) server = server.WebServer(('0.0.0.0', 5000), server.CamHandler) server.serve_forever() else: main.run() ``` #### File: car/computer/server.py ```python import cv2 import Image import threading from BaseHTTPServer import BaseHTTPRequestHandler,HTTPServer from SocketServer import ThreadingMixIn import StringIO import time # vision interface obeject # TODO get rid of this dirty global vision = None # maximum dimension of sent frame (smaller is faster) MAX_DIM = 400 class CamHandler(BaseHTTPRequestHandler): """Handles http request for camera frames. """ def do_GET(self): """Http get request callback. Replies with the relevant frame if a frame was requested. """ # if it ends in a digit then we'll reply with a frame if self.path[-1].isdigit(): # send a header self.send_response(200) self.send_header('Content-type','multipart/x-mixed-replace; boundary=--jpgboundary') self.end_headers() # video loop while True: try: # get a frame from the vision stream img = vision.get_frame(int(self.path[-1])) if img is None: continue try: # scale the frame to save memory scale = MAX_DIM / float(max([img.shape[0], img.shape[1]])) img = cv2.resize(img, (int(img.shape[1]*scale), int(img.shape[0]*scale)), interpolation=cv2.cv.CV_INTER_AREA) if not (img[0][0][0] == img[0][0][1] == img[0][0][2]): # try converting to rgb, won't work for grayscale images img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB) except: pass if img is None: continue # make a jpeg and send it jpg = Image.fromarray(img) tmpFile = StringIO.StringIO() jpg.save(tmpFile,'JPEG') self.wfile.write("--jpgboundary") self.send_header('Content-type','image/jpeg') self.send_header('Content-length',str(tmpFile.len)) self.end_headers() jpg.save(self.wfile,'JPEG') # small delay so we have reasonable frame rate time.sleep(0.1) except KeyboardInterrupt: # I think this is suppose to let me keyboard interrupt # from terminal - doesn't seem to work. break return class WebServer(ThreadingMixIn, HTTPServer): """Make a threaded http server. """ pass def register_vision(vision_interface): """Register a the vision interface object in the library. """ global vision vision = vision_interface ``` #### File: QUTDroidRacing/PythonTesting/constuctMap.py ```python import cv2 import numpy as np from imageManipulation import * import csv MAP_SIZE = (1000, 1000) def construct_map(im1, courseMap, theta, xCentre, yCentre): rows, cols, channels = im1.shape #xCentre += 500/2 #yCentre += 300/2 print "theta, x , y: ", theta, xCentre, yCentre angleToCentre = np.rad2deg(np.arctan((rows/2)*1.0/(cols/2))) #angle from corner to centre of image radius = np.sqrt(cols*cols/4 + rows * rows / 4) # radius from corner to centre of image tX = xCentre - radius * np.cos(np.deg2rad(-theta + angleToCentre)) #coords of top left corner tY = yCentre - radius * np.sin(np.deg2rad(-theta + angleToCentre)) M = cv2.getRotationMatrix2D((cols/2,rows/2),theta, 1) # rotation point, rotation angle, scale X_OFFSET = 300 Y_OFFSET = 550 M[0,2] = tX + X_OFFSET M[1,2] = tY + Y_OFFSET print M transformedImage = cv2.warpAffine(im1,M,dsize = MAP_SIZE) registeredImage = transformedImage.astype('float32') # alpha = 0.5 # beta = ( 1.0 - alpha ); # imgToShow = cv2.addWeighted( registeredImage, alpha, courseMap, beta, 0.0) courseMapNew = courseMap + registeredImage courseMapNew[np.logical_and(registeredImage != 0, courseMap != 0)] /= 2 return courseMapNew if __name__ == "__main__": courseMap = np.zeros( (MAP_SIZE[0], MAP_SIZE[1], 3)) with open('ImageTransformResultsLong2.csv', 'rb') as csvfile: reader = csv.reader(csvfile, delimiter=',', quotechar='|') lastTheta = 0 lastX = 0 lastY = 0 mapInit = 0 for row in reader: imageNumber = int(row[0]) if mapInit == 0: im1Path = 'unityTestImages/img_%04d.jpg' % (imageNumber - 1) img = cv2.imread(im1Path, cv2.IMREAD_COLOR).astype('float32') img = perspecitve_warp(img) courseMap = construct_map(img/255, courseMap, 0, 500/2, 300/2) mapInit = 1 im1Path = 'unityTestImages/img_%04d.jpg' % (imageNumber) img = cv2.imread(im1Path, cv2.IMREAD_COLOR).astype('float32') img = perspecitve_warp(img) theta = -float(row[1]) + lastTheta# + 12 xCentre = -float(row[2]) + lastX# + 12 yCentre = -float(row[3]) + lastY# - 42 courseMap = construct_map(img/255, courseMap, theta, xCentre + 500/2, yCentre + 300/2) lastX = xCentre lastY = yCentre lastTheta = theta # cv2.namedWindow('RegisteredImages', cv2.WINDOW_NORMAL) cv2.imshow('RegisteredImages', courseMap) cv2.waitKey(0) cv2.destroyAllWindows() ``` #### File: QUTDroidRacing/PythonTesting/imageManipulation.py ```python import cv2 import numpy as np from matplotlib import pyplot as plt from unityCamera import UnityCamera sigma = 0.001 SHOW_FINAL = True LOG_RESULTS = True RUN_OPTIMIZATION = True SHOW_ALL_PLOTS = False SHOW_DIFF = True SHOW_THRESHOLDED_IMAGES = False def evaluate_estimate(theta, xCentre, yCentre, newImage, targetImage): rows, cols, channels = newImage.shape angleToCentre = np.rad2deg(np.arctan((rows/2)*1.0/(cols/2))) #angle from corner to centre of image radius = np.sqrt(cols*cols/4 + rows * rows / 4) # radius from corner to centre of image tX = xCentre - radius * np.cos(np.deg2rad(-theta + angleToCentre)) #coords of top left corner tY = yCentre - radius * np.sin(np.deg2rad(-theta + angleToCentre)) M = cv2.getRotationMatrix2D((cols/2,rows/2),theta, 1) # rotation point, rotation angle, scale M[0,2] = tX M[1,2] = tY transformedImage = cv2.warpAffine(newImage,M,dsize = (cols,rows)) registeredImage = transformedImage.astype('float32') # cv2.namedWindow('RegisteredImages', cv2.WINDOW_NORMAL) # cv2.imshow('RegisteredImages',registeredImage) # cv2.namedWindow('target', cv2.WINDOW_NORMAL) # cv2.imshow('target',targetImage) diffBig = np.abs(targetImage/255.0 - registeredImage/255.0) # TODO: Work out a way to ignore the black bits that come from the transformation. This will have all channels == 0 # print np.sum(diffBig == 0) + np.sum(diffBig == 1) # cv2.namedWindow('diff', cv2.WINDOW_NORMAL) # cv2.imshow('diff',diffBig) pdf = np.exp(-diffBig / (2*sigma*sigma)) pdf = np.ones(pdf.shape) pdf[transformedImage == 0] = 0 # THIS COULD BE A SOLUTION, BUT THIS DOES IT FOR EACH CHANNEL. WANT TO ONLY 0 WHEN ALL CHANNELS ARE 0 pdf[targetImage == 0] = 0 # THIS COULD BE A SOLUTION, BUT THIS DOES IT FOR EACH CHANNEL. WANT TO ONLY 0 WHEN ALL CHANNELS ARE 0 total = np.sum(pdf) # print total # cv2.namedWindow('pdf', cv2.WINDOW_NORMAL) # cv2.imshow('pdf', pdf) # cv2.waitKey(0) # cv2.destroyAllWindows() # exit() return total, registeredImage, pdf def estimate_pose(newImage, targetImage): thetaStart = 0 xCentreStart = 0 yCentreStart = 0 if LOG_RESULTS: logFile = open("ResultsUnity2.csv", "w") # logFile.write("Theta, X, Y, Score\n") bestTheta = None bestX = None bestY = None bestScore = None nThetaTrials = 10 nXTrials = 10 nYTrials = 10 thetaLimits = (-10,10) xLimits = (-50, 50) yLimits = (-50, 50) for dTheta in np.linspace(thetaLimits[0],thetaLimits[1],nThetaTrials): print dTheta for dX in np.linspace(xLimits[0], xLimits[1],nXTrials):#range(-20, 20, 5): for dY in np.linspace(yLimits[0], yLimits[1],nYTrials):#range(-40, 40, 3): theta = thetaStart + dTheta xCentre = cols/2 + xCentreStart + dX yCentre = rows/2 + yCentreStart + dY total, a, b = evaluate_estimate(theta, xCentre, yCentre, newImage, targetImage) if bestScore is None or total > bestScore: bestTheta = theta bestX = xCentre bestY = yCentre bestScore = total results = "%f, %f, %f, %f\n" % (theta, xCentre, yCentre, total) if LOG_RESULTS: logFile.write(results) # print results theta = bestTheta xCentre = bestX yCentre = bestY print "theta: ", theta dX = xCentre - cols/2 print "dX: ", dX dY = yCentre - rows/2 print "dY: ", dY print "Optimal probability of %f with theta = %f, X = %f, Y = %f\n" % (bestScore, theta, xCentre, yCentre) return bestTheta, dX, dY, bestScore def estimate_pose_2(newImage, targetImage): sz = newImage.shape im1_gray = cv2.cvtColor(newImage,cv2.COLOR_BGR2GRAY) im2_gray = cv2.cvtColor(targetImage,cv2.COLOR_BGR2GRAY) # cv2.imshow("Image 1r", newImage[:,:,0]) # cv2.imshow("Image 1g", newImage[:,:,1]) # cv2.imshow("Image 1b", newImage[:,:,2]) # cv2.imshow("Image 2", im2_gray) # cv2.waitKey(0) # Define the motion model warp_mode = cv2.MOTION_EUCLIDEAN warp_matrix = np.eye(2, 3, dtype=np.float32) # Specify the number of iterations. number_of_iterations = 500; # Specify the threshold of the increment # in the correlation coefficient between two iterations termination_eps = 1e-10; # Define termination criteria criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, number_of_iterations, termination_eps) # Run the ECC algorithm. The results are stored in warp_matrix. (cc, warp_matrix) = cv2.findTransformECC (im1_gray,im2_gray,warp_matrix, warp_mode, criteria) im2_aligned = cv2.warpAffine(targetImage, warp_matrix, (sz[1],sz[0]), flags=cv2.INTER_LINEAR + cv2.WARP_INVERSE_MAP); # cv2.imshow("Image 1", newImage) # cv2.imshow("Image 2", targetImage) # im2_aligned += newImage # im2_aligned /= 2 # cv2.imshow("Aligned Image 2", im2_aligned) # cv2.waitKey(0) return warp_matrix def perspecitve_warp(image): # pts0 = np.float32([[367, 864], [1585, 864], [1234, 592], [700, 592]]) pts0 = np.float32([[145, 703], [1773, 703], [1258, 499], [660, 499]]) #square with side length 10 in unity cX = 250 cY = 270 L = 70 / 2 # Therefore 40 pixels = 10 unity units. Conversing from pixels to unity is / 4 pts1 = np.float32([[cX - L , cY + L], [cX + L, cY + L], [cX + L, cY - L], [cX - L, cY - L]]) M = cv2.getPerspectiveTransform(pts0,pts1) return cv2.warpPerspective(image,M, (500, 300)) def stitch_images(im1, courseMap, theta, xCentre, yCentre): rows, cols, channels = im1.shape print "Theta, x, y, :", theta, xCentre, yCentre angleToCentre = np.rad2deg(np.arctan((rows/2)*1.0/(cols/2))) #angle from corner to centre of image radius = np.sqrt(cols*cols/4 + rows * rows / 4) # radius from corner to centre of image tX = xCentre - radius * np.cos(np.deg2rad(-theta + angleToCentre)) #coords of top left corner tY = yCentre - radius * np.sin(np.deg2rad(-theta + angleToCentre)) M = cv2.getRotationMatrix2D((cols/2,rows/2),theta, 1) # rotation point, rotation angle, scale X_OFFSET = 500 Y_OFFSET = 500 OUTPUT_SIZE = (1000,1000) M[0,2] = tX + X_OFFSET M[1,2] = tY + Y_OFFSET print M transformedImage = cv2.warpAffine(im1,M,dsize = OUTPUT_SIZE) registeredImage = transformedImage.astype('float32') # alpha = 0.5 # beta = ( 1.0 - alpha ); # imgToShow = cv2.addWeighted( registeredImage, alpha, courseMap, beta, 0.0) courseMap = courseMap + registeredImage courseMap[registeredImage != 0] /= 2 imgToShow = courseMap cv2.namedWindow('RegisteredImages', cv2.WINDOW_NORMAL) cv2.imshow('RegisteredImages',imgToShow) cv2.waitKey(0) cv2.destroyAllWindows() # exit() if __name__ == "__main__": resultsFile = open("ImageTransformResultsLong2.csv", "w", 0) # resultsFile.write("Image, theta, x, y, score\n") for imageCounter in range(48, 66): #img = cv2.imread('star20_100_100.jpg', cv2.IMREAD_COLOR) im1Path = 'unityTestImages/img_%04d.jpg' % (imageCounter) im2Path = 'unityTestImages/img_%04d.jpg' % (imageCounter + 1) print im1Path img = cv2.imread(im1Path, cv2.IMREAD_COLOR) # img = cv2.resize(img, (0,0), fx=0.2, fy=0.2) # img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) img = perspecitve_warp(img) imgOrig = img.copy().astype('float32') # cv2.imwrite('afterHomography.jpg', img) # cv2.namedWindow('Image 1', cv2.WINDOW_NORMAL) # cv2.imshow('Image 1', img) # cv2.waitKey(0) # cv2.destroyAllWindows() # exit() # a, img = cv2.threshold(img[:,:,0],110,255,cv2.THRESH_BINARY) redChan = img[:,:,0] blueChan = img[:,:,1] greenChan = img[:,:,2] greenChan[greenChan < 200] = 0 #passed by reference so shoudl auto update img blueChan[blueChan < 200] = 0 redChan[redChan < 200] = 0 # img = redChan if SHOW_THRESHOLDED_IMAGES: cv2.namedWindow('Image 1', cv2.WINDOW_NORMAL) cv2.imshow('Image 1', img) img = img.astype('float32') rows,cols,chans = img.shape # img2 = cv2.imread('star.jpg', cv2.IMREAD_COLOR) img2 = cv2.imread(im2Path, cv2.IMREAD_COLOR) # img = cv2.resize(img, (0,0), fx=0.2, fy=0.2) # img2 = cv2.cvtColor(img2, cv2.COLOR_BGR2HSV) img2 = perspecitve_warp(img2) img2Orig = img2.copy().astype('float32') redChan = img2[:,:,0] blueChan = img2[:,:,1] greenChan = img2[:,:,2] greenChan[greenChan < 200] = 0 #passed by reference so shoudl auto update img blueChan[blueChan < 200] = 0 redChan[redChan < 200] = 0 # cv2.imwrite('afterHomography.jpg', img) a, img2 = cv2.threshold(img2,100,150,cv2.THRESH_BINARY) if SHOW_THRESHOLDED_IMAGES: cv2.namedWindow('Image 2', cv2.WINDOW_NORMAL) cv2.imshow('Image 2', img2) cv2.waitKey(0) cv2.destroyAllWindows() exit() img2 = img2.astype('float32') try: warp_matrix = estimate_pose_2(img, img2) except: print "Error: could not converge" continue print warp_matrix targetImage = img2Orig/255 registeredImage = cv2.warpAffine(imgOrig/255,warp_matrix,dsize = (cols,rows)) cv2.namedWindow('Image reg', cv2.WINDOW_NORMAL) cv2.imshow('Image reg', registeredImage) cv2.namedWindow('Image un', cv2.WINDOW_NORMAL) cv2.imshow('Image un', targetImage) combined = targetImage.copy() combined = (combined + registeredImage) / 2 cv2.namedWindow('Image com', cv2.WINDOW_NORMAL) cv2.imshow('Image com', combined) cv2.waitKey(0) cv2.destroyAllWindows() tX = warp_matrix[0][2] - 500 tY = warp_matrix[1][2] - 500 theta = -np.rad2deg(np.arccos(warp_matrix[0][0])) rows, cols, channels = combined.shape angleToCentre = np.rad2deg(np.arctan((rows/2)*1.0/(cols/2))) #angle from corner to centre of image radius = np.sqrt(cols*cols/4 + rows * rows / 4) # radius from corner to centre of image xCentre = tX + radius * np.cos(np.deg2rad(-theta + angleToCentre)) #coords of top left corner yCentre = tY + radius * np.sin(np.deg2rad(-theta + angleToCentre)) score = 0 print "theta, x, y, ", theta, xCentre, yCentre resultsFile.write("%d, %f, %f, %f, %f\n" % (imageCounter + 1, theta, xCentre, yCentre, score)) # continue # exit() # print img.shape # if RUN_OPTIMIZATION: # theta, xCentre, yCentre, score = estimate_pose(img, img2) # resultsFile.write("%d, %f, %f, %f, %f\n" % (imageCounter + 1, theta, xCentre, yCentre, score)) # continue # else: # theta = -3.33 # xCentre = cols/2 + 5.555 # yCentre = rows/2 + 38.8888 if SHOW_FINAL: # # total, dst, diff = evaluate_estimate(theta, xCentre - cols/2, yCentre - rows/2, imgOrig/255, img2Orig/255) # # total, b, diff = evaluate_estimate(theta, xCentre-cols/2, yCentre-rows/2, img, img2) # print "Score: ", total print rows, cols courseMap = np.zeros((1000,1000,3)) M2 = cv2.getRotationMatrix2D((cols/2,rows/2),0, 1) M2[0,2] = 0 + 500 M2[1,2] = 0 + 500 courseMap += cv2.warpAffine(img2Orig/255,M2,dsize =(1000,1000)) stitch_images(imgOrig/255, courseMap, theta, xCentre + cols/2, yCentre+rows/2) continue # needed_multi_channel_img = np.zeros((img.shape[0], img.shape[1], 3)) # needed_multi_channel_img [:,:,0] = (dst[:,:,0]*1.0/255/3 + dst[:,:,1]*1.0/255/3 + dst[:,:,2]*1.0/255/3) # needed_multi_channel_img [:,:,2] = (img2[:,:,0]*1.0/255/3 + img2[:,:,1]*1.0/255/3 + img2[:,:,2]*1.0/255/3) # imgToShow = needed_multi_channel_img alpha = 0.5 beta = ( 1.0 - alpha ); imgToShow = cv2.addWeighted( dst, alpha, img2Orig/255, beta, 0.0) if SHOW_ALL_PLOTS: plt.subplot(131),plt.imshow(img2.astype('uint8'),'gray'),plt.title('Target') plt.axis('off') plt.subplot(132),plt.imshow(img.astype('uint8'),'gray'),plt.title('New') plt.axis('off') plt.subplot(133),plt.imshow(imgToShow,'gray'),plt.title('Registered') plt.axis('off') plt.tight_layout() plt.show() elif SHOW_DIFF: cv2.namedWindow('Diff', cv2.WINDOW_NORMAL) cv2.imshow('Diff',diff) # cv2.waitKey(0) # cv2.destroyAllWindows() cv2.namedWindow('Orig1', cv2.WINDOW_NORMAL) cv2.imshow('Orig1', imgOrig/255) cv2.namedWindow('Orig2', cv2.WINDOW_NORMAL) cv2.imshow('Orig2', img2Orig/255) cv2.namedWindow('RegisteredImages', cv2.WINDOW_NORMAL) cv2.imshow('RegisteredImages',imgToShow) cv2.waitKey(0) cv2.destroyAllWindows() # cv2.namedWindow('newImage', cv2.WINDOW_NORMAL) # cv2.imshow('newImage',img.astype('uint8')) # cv2.namedWindow('targetImage', cv2.WINDOW_NORMAL) # cv2.imshow('targetImage',img2.astype('uint8')) ```
{ "source": "joshuariveramnltech/projectIE", "score": 2 }
#### File: projectIE/account/views.py ```python from django.shortcuts import render, reverse from django.contrib.auth.decorators import login_required from django.contrib.auth.views import PasswordChangeForm from django.contrib import messages from django.http import HttpResponseRedirect from django.contrib.auth import update_session_auth_hash from .forms import PersonalFacultyForm, PersonalStaffForm, PersonalUserForm, PersonalStudentForm # Create your views here. @login_required def dashboard(request): return render(request, 'dashboard.html', {}) @login_required def change_password(request): context = {} if request.method == 'GET': change_password_form = PasswordChangeForm(user=request.user) elif request.method == 'POST': change_password_form = PasswordChangeForm( user=request.user, data=request.POST) if change_password_form.is_valid(): new_password = change_password_form.save() update_session_auth_hash(request, new_password.user) messages.success(request, 'Password Change Successful!') return HttpResponseRedirect(reverse('account:change_password')) context['change_password_form'] = change_password_form return render(request, 'change_password.html', context) @login_required def view_update_profile(request): context = {'request': request} if request.method == 'GET': user_form = PersonalUserForm(instance=request.user) if request.user.is_faculty: personal_profile_form = PersonalFacultyForm( instance=request.user.faculty_profile) elif request.user.is_staff: personal_profile_form = PersonalStaffForm( instance=request.user.staff_profile) elif request.user.is_student: personal_profile_form = PersonalStudentForm( instance=request.user.student_profile) elif request.method == 'POST': user_form = PersonalUserForm( data=request.POST, files=request.FILES, instance=request.user) if request.user.is_faculty: personal_profile_form = PersonalFacultyForm( data=request.POST, instance=request.user.faculty_profile) elif request.user.is_staff: personal_profile_form = PersonalStaffForm( data=request.POST, instance=request.user.staff_profile) elif request.user.is_student: personal_profile_form = PersonalStudentForm( data=request.POST, instance=request.user.student_profile) if user_form.is_valid() and personal_profile_form.is_valid(): user_form.save() personal_profile_form.save() messages.success(request, 'Profile Updated Successfully.') return HttpResponseRedirect(reverse('account:view_update_profile')) context.update( {'user_form': user_form, 'personal_profile_form': personal_profile_form}) return render(request, 'view_update_profile.html', context) ``` #### File: projectIE/grading_system/views.py ```python from django.shortcuts import render, reverse from .models import SubjectInstance, SubjectGrade from django.db.models import Q from django.contrib.auth.decorators import login_required from django.core.paginator import Paginator, EmptyPage, PageNotAnInteger from django.core.exceptions import PermissionDenied from .models import SemesterFinalGrade from .forms import UpdateSubjectGrade from django.contrib import messages from django.http import HttpResponseRedirect, HttpResponse from datetime import datetime from django.contrib.auth import get_user_model from django.template.loader import render_to_string import weasyprint from django.conf import settings # Create your views here. User = get_user_model() # student only @login_required def view_all_grades(request): if not request.user.is_student: raise PermissionDenied grades = SemesterFinalGrade.objects.filter( student=request.user.student_profile ).order_by('-school_year', '-semester', '-date_created') context = {'grades': grades} return render(request, 'view_all_grades.html', context) # student only @login_required def view_schedule_student(request): if not request.user.is_student: raise PermissionDenied latest_semester_grade = SemesterFinalGrade.objects.all().order_by( '-school_year', '-semester', '-date_created' ).first() if latest_semester_grade: # checks if there's a result in the prior query latest_semester_grade = latest_semester_grade.subject_grades.all() context = {'latest_semester_grade': latest_semester_grade} return render(request, 'view_schedule_student.html', context) # faculty view @login_required def view_assigned_subjects(request): if not request.user.is_faculty: raise PermissionDenied context = {} assigned_subject_list = SubjectInstance.objects.filter( instructor=request.user.faculty_profile).order_by('-date_created') assigned_subject_query = request.GET.get('assigned_subject_query') if assigned_subject_query: assigned_subject_list = assigned_subject_list.filter( Q(subject__subject_code__icontains=assigned_subject_query) | Q(subject__description__icontains=assigned_subject_query) | Q(school_year__icontains=assigned_subject_query) ).distinct() assigned_subject_paginator = Paginator(assigned_subject_list, 10) assigned_subject_page = request.GET.get('assigned_subject_page') try: assigned_subjects = assigned_subject_paginator.page( assigned_subject_page) except PageNotAnInteger: assigned_subjects = assigned_subject_paginator.page(1) except EmptyPage: assigned_subjects = assigned_subject_paginator.page( assigned_subject_paginator.num_pages) context['assigned_subjects'] = assigned_subjects return render(request, 'view_assigned_subjects.html', context) # for faculty only @login_required def view_students_per_subject(request, subject_instance_id, subject_code): if not request.user.is_faculty: raise PermissionDenied context = {} subject_instance = SubjectInstance.objects.get(id=subject_instance_id) subject_grades = SubjectGrade.objects.filter( subject_instance=subject_instance) context.update({'subject_grades': subject_grades, 'subject_instance': subject_instance}) return render(request, 'view_students_per_subject.html', context) # for faculty only @login_required def view_update_grade(request, subject_grade_id): if not request.user.is_faculty: raise PermissionDenied subject_grade = SubjectGrade.objects.get(id=subject_grade_id) if subject_grade.is_finalized: return render(request, 'request_error.html', {}) if request.method == 'GET': update_subject_grade_form = UpdateSubjectGrade(instance=subject_grade) elif request.method == 'POST': update_subject_grade_form = UpdateSubjectGrade( instance=subject_grade, data=request.POST) if update_subject_grade_form.is_valid(): instance = update_subject_grade_form.save(commit=False) update_subject_grade_form.save() messages.success(request, 'Grade Updated Successfully') if instance.is_finalized: return HttpResponseRedirect( reverse( 'grading_system:view_students_per_subject', args=[subject_grade.subject_instance.id, subject_grade.subject_instance.subject.subject_code] ) ) return HttpResponseRedirect(reverse('grading_system:view_update_grade', args=[subject_grade_id, ])) context = {'subject_grade': subject_grade, 'update_subject_grade_form': update_subject_grade_form } return render(request, 'view_update_grade.html', context) # student only @login_required def student_registration(request): if not request.user.is_student: raise PermissionDenied current = SubjectInstance.objects.all().values( 'school_year', 'semester').distinct().order_by('-semester', '-school_year').first() subject_list = SubjectInstance.objects.filter( year_and_section=request.user.student_profile.year_and_section, school_year=current['school_year'], semester=current['semester'] ).order_by('-semester') enrolled_subjects = SubjectGrade.objects.filter( student=request.user.student_profile, school_year=current['school_year'], semester=current['semester'] ).order_by('-subject_instance__semester') if request.method == "POST": selected_subjects = request.POST.getlist('selected_subjects') if selected_subjects: for each in selected_subjects: subject = SubjectInstance.objects.get(id=int(each)) SubjectGrade.objects.create( student=request.user.student_profile, subject_instance=subject, semester=subject.semester, school_year=subject.school_year, ) # create subject grade instance subject_grade = SubjectGrade.objects.get( student=request.user.student_profile, subject_instance=subject, semester=subject.semester, school_year=subject.school_year, ) # retrieve created subject grade instance try: semester_grade = SemesterFinalGrade.objects.get( student=request.user.student_profile, semester=subject.semester, school_year=subject.school_year, ) # retrive semester final grade instance except SemesterFinalGrade.DoesNotExist: SemesterFinalGrade.objects.create( student=request.user.student_profile, semester=subject.semester, school_year=subject.school_year, ) # create semester final grade instance semester_grade = SemesterFinalGrade.objects.get( student=request.user.student_profile, semester=subject.semester, school_year=subject.school_year, ) # retrieve semester grade instance semester_grade.subject_grades.add(subject_grade) return HttpResponseRedirect(reverse('grading_system:student_registration')) context = {'subject_list': subject_list, 'enrolled_subjects': enrolled_subjects, 'current_semester' : current['semester'], 'current_school_year': current['school_year']} return render(request, 'student_registration.html', context) # for chairperson only @login_required def view_all_students_chairperson(request): if not request.user.faculty_profile.is_chairperson: raise PermissionDenied student_list = User.objects.filter( is_student=True, ).order_by('-date_joined') if request.user.faculty_profile.department == "Department of Industrial Engineering": student_list = student_list.filter(student_profile__course='BSIE') student_query = request.GET.get('student_query') if student_query: student_list = student_list.filter( Q(first_name__icontains=student_query) | Q(last_name__icontains=student_query) | Q(username__icontains=student_query) | Q(email__icontains=student_query) ).distinct() student_paginator = Paginator(student_list, 20) student_page = request.GET.get('student_page') try: students = student_paginator.page(student_page) except PageNotAnInteger: students = student_paginator.page(1) except EmptyPage: students = student_paginator.page(student_paginator.num_pages) context = {'students': students} return render(request, 'view_all_students_chairperson.html', context) # chairperson only @login_required def student_tagging(request, student_id, student_username): if not request.user.faculty_profile.is_chairperson: raise PermissionDenied student = User.objects.get(id=student_id) current = SubjectInstance.objects.all().values( 'school_year', 'semester').distinct().order_by('-semester', '-school_year').first() student_subject_list = SubjectGrade.objects.filter( student=student.student_profile).order_by('-semester', '-school_year', '-date_created') subject_list = SubjectInstance.objects.filter( school_year=current['school_year'], semester=current['semester'] ).order_by('-date_created') subject_query = request.GET.get('subject_query') record_query = request.GET.get('record_query') if subject_query: subject_list = subject_list.filter( Q(subject__subject_code__icontains=subject_query) | Q(subject__description__icontains=subject_query) | Q(school_year__icontains=subject_query) | Q(semester__icontains=subject_query) ).distinct() if record_query: student_subject_list = student_subject_list.filter( Q(subject_instance__subject__subject_code__icontains=record_query) | Q(subject_instance__subject__description__icontains=record_query) | Q(subject_instance__school_year__icontains=record_query) | Q(subject_instance__semester__icontains=record_query) ).distinct() subject_paginator = Paginator(subject_list, 10) subject_page = request.GET.get('subject_page') try: subjects = subject_paginator.page(subject_page) except PageNotAnInteger: subjects = subject_paginator.page(1) except EmptyPage: subjects = subject_paginator.page(subject_paginator.num_pages) student_subject_paginator = Paginator(student_subject_list, 10) student_subject_page = request.GET.get('student_subject_page') try: student_subjects = student_subject_paginator.page(student_subject_page) except PageNotAnInteger: student_subjects = student_subject_paginator.page(1) except EmptyPage: student_subjects = student_subject_paginator.page( student_subject_paginator.num_pages) if request.method == "POST": sub_list = request.POST.getlist('selected_subjects') for each in sub_list: subject = SubjectInstance.objects.get(id=int(each)) SubjectGrade.objects.create( student=student.student_profile, subject_instance=subject, semester=subject.semester, school_year=subject.school_year, ) # create subject grade instance subject_grade = SubjectGrade.objects.get( student=student.student_profile, subject_instance=subject, semester=subject.semester, school_year=subject.school_year, ) # retrieve created subject grade instance try: semester_grade = SemesterFinalGrade.objects.get( student=student.student_profile, semester=subject.semester, school_year=subject.school_year, ) except SemesterFinalGrade.DoesNotExist: SemesterFinalGrade.objects.create( student=student.student_profile, semester=subject.semester, school_year=subject.school_year, ) semester_grade = SemesterFinalGrade.objects.get( student=student.student_profile, semester=subject.semester, school_year=subject.school_year, ) semester_grade.subject_grades.add(subject_grade) return HttpResponseRedirect(reverse('grading_system:student_tagging', args=[student_id, student_username])) context = {'student': student, 'subjects': subjects, 'student_subjects': student_subjects} return render(request, 'student_tagging.html', context) # for chairperson only @login_required def remove_subject_chairperson(request, subject_grade_id, student_id, student_username): if not request.user.faculty_profile.is_chairperson: raise PermissionDenied instance = SubjectGrade.objects.get(id=subject_grade_id) instance.delete() return HttpResponseRedirect(reverse('grading_system:student_tagging', args=[student_id, student_username])) # for faculty only @login_required def class_list_pdf(request, subject_instance_id, subject_code): if not request.user.is_faculty: raise PermissionDenied current_date_time = str(datetime.now().strftime('%h %d %Y %H:%M')) subject_instance = SubjectInstance.objects.get(id=subject_instance_id) protocol = request.build_absolute_uri().split(':')[0] subject_students = User.objects.filter( student_profile__student_grade__subject_instance=subject_instance) context = { 'subject_instance': subject_instance, 'protocol': protocol, 'subject_students': subject_students, 'current_date_time': current_date_time } html = render_to_string('class_list_pdf.html', context) response = HttpResponse(content_type='application/pdf') response["Content-Disposition"] = "filename='class_list{}_{}.pdf'".format( subject_instance.subject.description, subject_instance.year_and_section) weasyprint.HTML(string=html).write_pdf(response, stylesheets=[ weasyprint.CSS(settings.STATIC_ROOT + '/main.css'), ]) return response # for faculty only @login_required def print_schedule_pdf(request): if not request.user.is_faculty: raise PermissionDenied current_date_time = str(datetime.now().strftime('%h %d %Y %H:%M')) current = SubjectInstance.objects.all().values( 'school_year', 'semester').distinct().order_by('-semester', '-school_year').first() assigned_subjects_per_year = SubjectInstance.objects.filter( instructor=request.user.faculty_profile, school_year=current['school_year'], semester=current['semester'] ).order_by('-semester', '-date_created') context = {'assigned_subjects_per_year': assigned_subjects_per_year, 'current_date_time': current_date_time, 'current_school_year': current['school_year']} html = render_to_string('print_schedule_pdf.html', context) response = HttpResponse(content_type='application/pdf') response['Content-Disposition'] = "filename='schedule_{}.pdf'".format( current['school_year']) weasyprint.HTML(string=html).write_pdf(response, stylesheets=[ weasyprint.CSS(settings.STATIC_ROOT + '/main.css'), ]) return response ```
{ "source": "joshuarli/get", "score": 3 }
#### File: get/src/util.py ```python import re import unicodedata _chunk = re.compile(r"([0-9]+)") _sub1 = re.compile(r"[^\w\s-]") _sub2 = re.compile(r"[-\s]+") # Based on <NAME>'s simplification of <NAME>'s alphanum algorithm, # but I'm not sure if this is 100% correct. # isdigit is faster than branching off handling a ValueError. def alphanum_key(s: str): return [int(chunk) if chunk.isdigit() else chunk for chunk in _chunk.split(s)] # Adapted from Django. def slugify(value: str, allow_unicode=False): """ Convert to ASCII if 'allow_unicode' is False. Convert spaces or repeated dashes to single dashes. Remove characters that aren't alphanumerics, underscores, or hyphens. Convert to lowercase. Also strip leading and trailing whitespace, dashes, and underscores. """ if allow_unicode: value = unicodedata.normalize("NFKC", value) else: value = ( unicodedata.normalize("NFKD", value) .encode("ascii", "ignore") .decode("ascii") ) return _sub2.sub("-", _sub1.sub("", value.lower())).strip("-_") ```
{ "source": "JoshuaRM/ImPyParser", "score": 2 }
#### File: ImPyParser/src/file.py ```python import twelve from two import four from .hello import world def randomFunction(): x = 27 ``` #### File: ImPyParser/src/relative.py ```python from pylint.interfaces import IRawChecker from pylint.checkers import BaseChecker class MyRawChecker(BaseChecker): #check for lines with absolute imports and warns __implements__ = IRawChecker name = 'relative-checker' msgs = {'W0043': ( 'Use only relative imports for keras classes and functions', 'absolute-import', 'Refer to relative versus absolute imports' ), } options = () def process_module(self, node): """process a module the module's content is accessible via node.stream() function """ ignore = ['__future__', 'collections', 'random', 'six', 'cPickle', 'scipy', 'hashlib', 'io', 'contextlib', 'unittest', 'types', 'h5py', 'inspect', 'tarfile', 'yaml', 'copy', 'marshal', 'requests', 'functools', 'gzip', 're', 'Queue', 'queue', 'os', 'pickle', 'importlib', 'mock', 'threading', 'codecs', 'tempfile', 'time', 'binascii', 'pydot', 'zipfile', 'json', 'shutil', 'abc', 'sys', 'csv', 'cntk', 'warnings', 'numpy', 'skimage', 'multiprocessing', 'distutils', 'tensorflow', 'theano', 'keras_applications', "keras_preprocessing"] comment = False with node.stream() as stream: for (lineno, line) in enumerate(stream): line = line.decode("utf-8").strip() #Ingore lines withing multi line comments if '\"\"\"' in line: comment = not comment #Empty line or comment line if line == "" or comment == True or '#' in line: continue else: split_line = line.split() #Import if split_line[0] == 'import': module_split = split_line[1].split('.') #Check if module is an ignored library if module_split[0] in ignore: continue else: self.add_message('W0043', line=lineno) #ImportFrom elif split_line[0] == 'from' and len(split_line) >= 3: #Check if module is an ignored library or line doesnt contain import if split_line[1] in ignore or split_line[2] != 'import': continue #Check if import is absolute or relative elif split_line[1].startswith('.'): pass else: module_split = split_line[1].split('.') if module_split[0] in ignore: continue else: self.add_message('W0043', line=lineno) else: continue def register(linter): """required method to auto register this checker""" linter.register_checker(MyRawChecker(linter)) ```
{ "source": "JoshuaRM/keras-bot", "score": 3 }
#### File: enforce_codeowners/keras_bot/pull_requests.py ```python import os import github codeowners_url = ('https://raw.githubusercontent.com/' 'keras-team/keras-contrib/master/CODEOWNERS') repo_id = 'keras-team/keras-contrib' import urllib.request def parse_codeowners(): response = urllib.request.urlopen(codeowners_url) data = response.read() text = data.decode('utf-8') map_path_owner = [] for line in text.splitlines(): line = line.strip() if line.startswith('#') or line == '': continue x = line.split(' ') path = x[0] owner = x[-1] owner = owner[1:] # removes '@' map_path_owner.append((path, owner)) if not path.startswith('examples'): # examples don't have tests. map_path_owner.append(('tests/' + path, owner)) return map_path_owner def send_message(pull_request, owner, files_changed): message = """Hello, I'm a bot! I can make mistakes, notify gabrieldemarmiesse if I made one. I see that you modified the following file{plural}: {files_changed} The owner of those file is @{owner} @{owner} could you please take a look at it whenever you have the time and add a review? Thank you in advance for the help. """ files_changed_formatted = '\n'.join(f'* `{x}`' for x in files_changed) plural = 's' if len(files_changed) > 1 else '' message = message.format(files_changed=files_changed_formatted, owner=owner, plural=plural) print(f'Would send message to PR {pull_request.title}:\n') print(message) print('-----------------------------------------------------') if os.environ.get('DRY_RUN', '1') == '0': pull_request.create_issue_comment(message) print('Sent.') def already_notified_owner(pull_request): for comment in pull_request.get_issue_comments(): if comment.user.login != 'bot-of-gabrieldemarmiesse': continue if 'owner' in comment.body and 'review' in comment.body: print(f'Already notified owner in {pull_request.title}') return True return False def examine_single_pull_request(pull_request, map_path_owner): if 'adam' in pull_request.title: pass owners_to_notify = [] for file_changed in pull_request.get_files(): for file_owned, owner in map_path_owner: if file_changed.filename == file_owned and owner != pull_request.user.login: owners_to_notify.append((file_changed.filename, owner)) if len(set(x[1] for x in owners_to_notify)) > 1: # let's not notify multiple people, otherwise it's going to turn into # a mess for big PRs with multiple files. return # let's avoid sending a message if we already sent one. if already_notified_owner(pull_request): return if owners_to_notify: owner_to_notify = owners_to_notify[0][1] files_changed = [x[0] for x in owners_to_notify] send_message(pull_request, owner_to_notify, files_changed) def examine_pull_requests(): map_path_owner = parse_codeowners() client = github.Github(os.environ['GITHUB_TOKEN']) repo = client.get_repo(repo_id) for pull_request in repo.get_pulls(): examine_single_pull_request(pull_request, map_path_owner) if __name__ == '__main__': examine_pull_requests() ```
{ "source": "josh-ua/Robinhood", "score": 2 }
#### File: Robinhood/tests/test_getdata.py ```python from os import path from datetime import datetime import six import pytest from flaky import flaky import requests from Robinhood import Robinhood import helpers if six.PY2: from Robinhood import RH_exception HERE = path.abspath(path.dirname(__file__)) ROOT = path.dirname(HERE) CONFIG_FILENAME = path.join(HERE, 'test_config.cfg') CONFIG = helpers.get_config(CONFIG_FILENAME) TEST_QUOTE = {} TESTABLE_KEYS = [ 'previous_close_date', 'symbol', 'trading_halted', 'previous_close', 'last_trade_price_source', 'instrument' ] @pytest.mark.incremental class TestQuoteHelpers: """wrapper to test quote architecture in order""" test_ticker = CONFIG.get('FETCH', 'test_ticker') fake_ticker = CONFIG.get('FETCH', 'fake_ticker') rh_obj = Robinhood() def test_quote_endpoint(self, config=CONFIG): """get raw data from Robinhood to test against""" global TEST_QUOTE TEST_QUOTE = helpers.fetch_REST_directly( 'quotes', self.test_ticker, config ) def test_validate_quote(self): """validate fetcher""" data = self.rh_obj.quote_data(self.test_ticker) if data['updated_at'] == TEST_QUOTE['updated_at']: assert data == TEST_QUOTE else: for key in data.keys(): #SKIP PRICE DATA if key in TESTABLE_KEYS: assert data[key] == TEST_QUOTE[key] def test_validate_fail_quote(self): """validate bad-path exception""" with pytest.raises(NameError): data = self.rh_obj.quote_data(self.fake_ticker) def test_validate_get_quote(self): """validate `get_quote` call""" data = self.rh_obj.get_quote(self.test_ticker) assert data == TEST_QUOTE['symbol'] @flaky def test_validate_ask_price(self): """validate `ask_price` call""" data = self.rh_obj.ask_price(self.test_ticker) quote = self.rh_obj.quote_data(self.test_ticker) assert data == quote['ask_price'] @flaky def test_validate_ask_size(self): """validate `ask_size` call""" data = self.rh_obj.ask_size(self.test_ticker) quote = self.rh_obj.quote_data(self.test_ticker) assert data == quote['ask_size'] @flaky def test_validate_bid_price(self): """validate `bid_price` call""" data = self.rh_obj.bid_price(self.test_ticker) quote = self.rh_obj.quote_data(self.test_ticker) assert data == quote['bid_price'] @flaky def test_validate_bid_size(self): """validate `bid_size` call""" data = self.rh_obj.bid_size(self.test_ticker) quote = self.rh_obj.quote_data(self.test_ticker) assert data == quote['bid_size'] @flaky def test_validate_last_trade_price(self): """validate `last_trade_price` call""" data = self.rh_obj.last_trade_price(self.test_ticker) quote = self.rh_obj.quote_data(self.test_ticker) assert data == quote['last_trade_price'] def test_validate_previous_close(self): """validate `previous_close` call""" data = self.rh_obj.previous_close(self.test_ticker) assert data == TEST_QUOTE['previous_close'] def test_validate_previous_close_date(self): """validate `previous_close_date` call""" data = self.rh_obj.previous_close_date(self.test_ticker) assert data == TEST_QUOTE['previous_close_date'] def test_validate_adjusted_previous_close(self): """validate `adjusted_previous_close` call""" data = self.rh_obj.adjusted_previous_close(self.test_ticker) assert data == TEST_QUOTE['adjusted_previous_close'] def test_validate_symbol(self): """validate `symbol` call""" data = self.rh_obj.symbol(self.test_ticker) assert data == TEST_QUOTE['symbol'] @flaky def test_validate_last_updated_at(self): """validate `last_updated_at` call""" data = self.rh_obj.last_updated_at(self.test_ticker) quote = self.rh_obj.quote_data(self.test_ticker) assert data == quote['updated_at'] TEST_FUNDAMENTAL = {} @pytest.mark.incremental class TestFundamentalsHelpers: """wrapper to test fundamental architecture in order""" test_ticker = CONFIG.get('FETCH', 'test_ticker') fake_ticker = CONFIG.get('FETCH', 'fake_ticker') rh_obj = Robinhood() def test_fundamental_endpoint(self, config=CONFIG): """get raw data from Robinhood to test against""" global TEST_FUNDAMENTAL TEST_FUNDAMENTAL = helpers.fetch_REST_directly( 'fundamentals', self.test_ticker, config ) TEST_FUNDAMENTAL['volume'] = 'OVERWRITE' #flaky value @flaky def test_validate_fundamental(self): """validate fetcher""" data = self.rh_obj.get_fundamentals(self.test_ticker) data['volume'] = 'OVERWRITE' #flaky value assert data == TEST_FUNDAMENTAL def test_validate_fail_fundamental(self): """validate bad-path exception""" with pytest.raises(NameError): data = self.rh_obj.get_fundamentals(self.fake_ticker) @flaky def test_validate_fundamental_wrapper(self): main_data = self.rh_obj.fundamentals(self.test_ticker) wrapped_data = self.rh_obj.fundamentals(self.test_ticker) main_data['volume'] = 'OVERWRITE' #flaky value wrapped_data['volume'] = 'OVERWRITE' #flaky value assert wrapped_data == main_data assert wrapped_data == TEST_FUNDAMENTAL TEST_URL_RESULT = {} @pytest.mark.incremental class TestURLWrapper: """make sure get_url returns expected behavior""" base_url = 'https://api.robinhood.com/' rh_obj = Robinhood() def test_url_endpoint(self): """fetch url directly""" global TEST_URL_RESULT req = requests.get(self.base_url) req.raise_for_status() TEST_URL_RESULT = req.json() def test_get_url(self): """fetch url with get_url""" data = self.rh_obj.get_url(self.base_url) assert data == TEST_URL_RESULT def test_get_news(config=CONFIG): """test `get_news` endpoint""" test_ticker = CONFIG.get('FETCH', 'test_ticker') raw_news = helpers.fetch_REST_directly( 'news', test_ticker, config ) get_news = Robinhood().get_news(test_ticker) assert get_news == raw_news def test_intstruments(config=CONFIG): """test `instruments` endpoint""" #TODO: this test is bad, just repeat of code inside endpoint params = { 'query': CONFIG.get('FETCH', 'test_ticker') } headers = { 'User-Agent': CONFIG.get('FETCH', 'user_agent') } address = Robinhood().endpoints['instruments'] res = requests.get( address, headers=headers, params=params ) res.raise_for_status() hard_data = res.json()['results'] data = Robinhood().instruments(CONFIG.get('FETCH', 'test_ticker')) assert data == hard_data ```
{ "source": "Joshua-Robison/NNFS", "score": 4 }
#### File: NNFS/src/helper.py ```python import numpy as np def shuffle(X, y): """This function shuffles the input features (X) and labels (y).""" perm = np.random.permutation(X.shape[0]) return X[perm], y[perm] def mae(y_true, y_pred): """This function computes the mean absolute error for a neural network.""" return np.mean(np.abs(y_true - y_pred)) def rmse(y_true, y_pred): """This function computes the root mean squared error for a neural network.""" return np.sqrt(np.mean(np.power(y_true - y_pred, 2))) def evaluate(model, X_test, y_test): """This function computes the mae and rmse for a neural network.""" preds = model.forward(X_test) preds = preds.reshape(-1, 1) print('Mean absolute error: {:.2f}'.format(mae(preds, y_test))) print('Root mean squared error: {:.2f}\n'.format(rmse(preds, y_test))) if __name__ == '__main__': pass ``` #### File: NNFS/src/neuralnetwork.py ```python import numpy as np from typing import List from block import Layer, Dense from linear import Linear from loss import Loss, MeanSquaredError class NeuralNetwork: """This class defines a neural network.""" def __init__(self, layers: List[Layer], loss: Loss, seed: int=1): self.layers = layers self.loss = loss self.seed = seed if seed: for layer in self.layers: setattr(layer, "seed", self.seed) def forward(self, x_batch: np.ndarray) -> np.ndarray: out = x_batch for layer in self.layers: out = layer.forward(out) return out def backward(self, loss_grad: np.ndarray): grad = loss_grad for layer in reversed(self.layers): grad = layer.backward(grad) def train_batch(self, x_batch: np.ndarray, y_batch: np.ndarray) -> float: predictions = self.forward(x_batch) loss = self.loss.forward(predictions, y_batch) self.backward(self.loss.backward()) return loss def params(self): for layer in self.layers: yield from layer.params def param_grads(self): for layer in self.layers: yield from layer.param_grads if __name__ == '__main__': pass ``` #### File: NNFS/src/weights.py ```python import numpy as np from operation import ParamOperation class WeightMultiply(ParamOperation): """This class defines a weight multiplication operation for a neural network.""" def __init__(self, W: np.ndarray): super().__init__(W) def _output(self) -> np.ndarray: return np.dot(self.input_, self.param) def _input_grad(self, output_grad: np.ndarray) -> np.ndarray: return np.dot(output_grad, np.transpose(self.param, (1, 0))) def _param_grad(self, output_grad: np.ndarray) -> np.ndarray: return np.dot(np.transpose(self.input_, (1, 0)), output_grad) if __name__ == '__main__': pass ```
{ "source": "Joshua-Robison/SupervisedLearning", "score": 4 }
#### File: SupervisedLearning/src/perceptron.py ```python import numpy as np class Perceptron(object): def __init__(self, lr: float = 0.01, max_iters: int = 1000) -> None: self.lr = lr self.iters = max_iters def fit(self, X: np.ndarray, y: np.ndarray) -> None: D = X.shape[1] self.w = np.random.randn(D) self.b = 0 N = len(y) costs = [] for _ in range(self.iters): y_hat = self.predict(X) errors = np.nonzero(y != y_hat)[0] if len(errors) == 0: break i = np.random.choice(errors) self.w += self.lr * y[i] * X[i] self.b += self.lr * y[i] c = len(errors) / N costs.append(c) def predict(self, X: np.ndarray) -> np.ndarray: return np.sign(X.dot(self.w) + self.b) def score(self, X: np.ndarray, y: np.ndarray) -> float: p = self.predict(X) return np.mean(p == y) if __name__ == "__main__": pass ```
{ "source": "joshuaroot/chaostoolkit-lib", "score": 3 }
#### File: chaostoolkit-lib/chaoslib/rollback.py ```python from concurrent.futures import ThreadPoolExecutor from typing import Iterator from logzero import logger from chaoslib.activity import execute_activity from chaoslib.types import Configuration, Experiment, Run, Secrets __all__ = ["run_rollbacks"] def run_rollbacks(experiment: Experiment, configuration: Configuration, secrets: Secrets, pool: ThreadPoolExecutor, dry: bool = False) -> Iterator[Run]: """ Run all rollbacks declared in the experiment in their order. Wait for each rollback activity to complete before to the next unless the activity is declared with the `background` flag. """ rollbacks = experiment.get("rollbacks", []) if not rollbacks: logger.info("No declared rollbacks, let's move on.") for activity in rollbacks: logger.info("Rollback: {t}".format(t=activity.get("name"))) if activity.get("background"): logger.debug("rollback activity will run in the background") yield pool.submit(execute_activity, experiment=experiment, activity=activity, configuration=configuration, secrets=secrets, dry=dry) else: yield execute_activity(experiment, activity, configuration=configuration, secrets=secrets, dry=dry) ``` #### File: fixtures/controls/dummy_with_secrets.py ```python from typing import Any, Dict, List from chaoslib.types import Activity, Configuration, \ Experiment, Hypothesis, Journal, Run, Secrets, Settings def configure_control(experiment: Experiment, configuration: Configuration, secrets: Secrets, settings: Settings): experiment["configure_control_secrets"] = secrets def cleanup_control(): pass def before_experiment_control(context: Experiment, secrets: Secrets, **kwargs): context["before_experiment_control_secrets"] = secrets def after_experiment_control(context: Experiment, state: Journal, secrets: Secrets, **kwargs): context["after_experiment_control_secrets"] = secrets def before_hypothesis_control(context: Hypothesis, experiment: Experiment, secrets: Secrets, **kwargs): experiment["before_hypothesis_control_secrets"] = secrets def after_hypothesis_control(context: Hypothesis, experiment: Experiment, state: Dict[str, Any], secrets: Secrets, **kwargs): experiment["after_hypothesis_control_secrets"] = secrets def before_method_control(context: Experiment, secrets: Secrets, **kwargs): context["before_method_control_secrets"] = secrets def after_method_control(context: Experiment, state: List[Run], secrets: Secrets, **kwargs): context["after_method_control_secrets"] = secrets def before_rollback_control(context: Experiment, secrets: Secrets, **kwargs): context["before_rollback_control_secrets"] = secrets def after_rollback_control(context: Experiment, state: List[Run], secrets: Secrets, **kwargs): context["after_rollback_control_secrets"] = secrets def before_activity_control(context: Activity, experiment: Experiment, secrets: Secrets, **kwargs): experiment["before_activity_control_secrets"] = secrets def after_activity_control(context: Activity, experiment: Experiment, state: Run, secrets: Secrets, **kwargs): experiment["after_activity_control_secrets"] = secrets ``` #### File: fixtures/controls/interrupter.py ```python from chaoslib.exceptions import InterruptExecution from chaoslib.types import Activity, Run def before_activity_control(context: Activity, **kwargs): raise InterruptExecution("let's blow this up") ``` #### File: chaostoolkit-lib/tests/test_action.py ```python import sys import pytest import requests_mock from chaoslib.exceptions import InvalidActivity from chaoslib.activity import ensure_activity_is_valid from chaoslib.types import Action from fixtures import actions def test_empty_action_is_invalid(): with pytest.raises(InvalidActivity) as exc: ensure_activity_is_valid(actions.EmptyAction) assert "empty activity is no activity" in str(exc.value) ``` #### File: chaostoolkit-lib/tests/test_extension.py ```python import pytest from chaoslib.exceptions import InvalidExperiment from chaoslib.extension import get_extension, has_extension, merge_extension, \ remove_extension, set_extension, validate_extensions from fixtures import experiments def test_extensions_must_have_name(): with pytest.raises(InvalidExperiment): exp = experiments.Experiment.copy() set_extension(exp, {"somekey": "blah"}) validate_extensions(exp) def test_get_extension_returns_nothing_when_not_extensions_block(): assert get_extension(experiments.Experiment, "myext") is None def test_get_extension_returns_nothing_when_missing(): ext = experiments.Experiment.copy() set_extension(ext, { "name": "myotherext", "somekey": "blah" }) assert get_extension(ext, "myext") is None def test_get_extension(): exp = experiments.Experiment.copy() set_extension(exp, { "name": "myext", "somekey": "blah" }) ext = get_extension(exp, "myext") assert ext is not None assert ext["somekey"] == "blah" def test_remove_extension(): exp = experiments.Experiment.copy() set_extension(exp, { "name": "myext", "somekey": "blah" }) assert get_extension(exp, "myext") is not None remove_extension(exp, "myext") assert get_extension(exp, "myext") is None def test_merge_extension(): exp = experiments.Experiment.copy() set_extension(exp, { "name": "myext", "somekey": "blah" }) ext = get_extension(exp, "myext") assert ext is not None assert ext["somekey"] == "blah" merge_extension(exp, { "name": "myext", "somekey": "burp", "otherkey": "oneday" }) ext = get_extension(exp, "myext") assert ext is not None assert ext["somekey"] == "burp" assert ext["otherkey"] == "oneday" ```
{ "source": "joshua-r/touch-test", "score": 3 }
#### File: joshua-r/touch-test/touch.py ```python import argparse import datetime import evdev REQUIRED_MULTITOUCH_CODES = [ evdev.ecodes.ABS_MT_SLOT, evdev.ecodes.ABS_MT_POSITION_X, evdev.ecodes.ABS_MT_POSITION_Y, evdev.ecodes.ABS_MT_TRACKING_ID ] class TouchPoint: def __init__(self, id): self.id = id self.start_time = datetime.datetime.now() self.end_time = None self.x = None self.y = None def update_x(self, x): self.x = x def update_y(self, y): self.y = y def finish(self): self.end_time = datetime.datetime.now() def is_multitouch_device(device): capabilities = device.capabilities() if not evdev.ecodes.EV_ABS in capabilities: return False abs_codes = [cap[0] for cap in capabilities[evdev.ecodes.EV_ABS]] return all([code in abs_codes for code in REQUIRED_MULTITOUCH_CODES]) def get_abs_value_range(device, code): for caps_code, abs_info in device.capabilities()[evdev.ecodes.EV_ABS]: if caps_code == code: return (abs_info.min, abs_info.max) return None def main(): parser = argparse.ArgumentParser(description="Test touch input.") parser.add_argument("--device", type=str) args = parser.parse_args() device = evdev.InputDevice(args.device) if not is_multitouch_device(device): raise RuntimeError("Device '{}' is not a multitouch device!".format( device.path)) x_min, x_max = get_abs_value_range(device, evdev.ecodes.ABS_MT_POSITION_X) x_range = x_max - x_min y_min, y_max = get_abs_value_range(device, evdev.ecodes.ABS_MT_POSITION_Y) y_range = y_max - y_min finished_touch_points = [] touch_points = [None] * 100 slot = 0 now = datetime.datetime.now() with open("log-{}.csv".format(now.isoformat()), "w") as log_file: for event in device.read_loop(): if event.code == evdev.ecodes.ABS_MT_SLOT: slot = event.value elif event.code == evdev.ecodes.ABS_MT_TRACKING_ID: if event.value >= 0: # new touch point touch_points[slot] = TouchPoint(id=event.value) else: # touch contact was lifted touch_point = touch_points[slot] touch_point.finish() finished_touch_points.append(touch_point) touch_points[slot] = None duration_ms = (touch_point.end_time - touch_point.start_time).microseconds / 1000 print("{id},{x},{y},{time},{duration}".format( id=touch_point.id, x=touch_point.x, y=touch_point.y, time=datetime.datetime.now(), duration=duration_ms), file=log_file) elif event.code == evdev.ecodes.ABS_MT_POSITION_X: touch_points[slot].update_x(x=(event.value - x_min) / x_range) elif event.code == evdev.ecodes.ABS_MT_POSITION_Y: touch_points[slot].update_y(y=(event.value - y_min) / y_range) if __name__ == "__main__": main() ```
{ "source": "JoshuaS3/s3-bsync", "score": 2 }
#### File: src/classes/sync_managed_bucket.py ```python from . import sync_directory_map, sync_fileobject __all__ = ["sync_managed_bucket"] class sync_managed_bucket: bucket_name = "" directory_maps = [] fileobjects = [] def __init__(self, bucket_name): self.bucket_name = bucket_name def create_dirmap( local_path, s3_prefix, gz_compress=0, recursive=True, gpg_enabled=False, gpg_email="", ): dirmap = classes.sync_dirmap() dirmap.local_path = "" dirmap.s3_prefix = "" dirmap.gz_compress = 0 dirmap.recursive = True dirmap.gpg_enabled = False dirmap.gpg_email = "" self.directory_maps.append(dirmap) def create_fileobject(key, modified, etag, size): fileobject = classes.sync_fileobject() fileobject.key = None fileobject.modified = 0 fileobject.etag = None fileobject.size = 0 self.fileobjects.append(fileobject) ``` #### File: s3-bsync/src/__main__.py ```python import sys import logging import pprint from . import * logger = logging.getLogger(__name__) def main(): args = command_parse.command_parse(sys.argv[1:]) logLevel = logging.INFO if args.debug: logLevel = logging.DEBUG logging.basicConfig( format="\x1b[0;37m[ \x1b[0;35m%(relativeCreated)04d \x1b[0;37m/ \x1b[0;33m%(name)s\x1b[0;37m:\x1b[1;36m%(funcName)s \x1b[0;37m/ \x1b[0;34m%(levelname)s \x1b[0;37m] \x1b[0m%(message)s", datefmt="%H:%M:%S", level=logLevel, ) logger.debug(f"Parsed input arguments:\n{pprint.pformat(vars(args))}") logger.debug("Sanitizing input arguments") settings = command_parse.sanitize_arguments(args) logger.debug(f"Interpreted settings:\n{pprint.pformat(vars(settings))}") run(settings) return 0 if __name__ == "__main__": sys.exit(main() or 0) ```
{ "source": "Joshua-Samjaya/elmo-oie", "score": 3 }
#### File: elmo-oie/src/utils.py ```python import re import random import numpy as np import nltk from nltk.tree import Tree import sys, os def get_vocab_datum(data, threshold=1, log=False): vocab = {} for datum in data: words = datum['text'].split() for word in words: vocab[word] = vocab.get(word, 0)+1 selected = set() for word in vocab.keys(): if vocab[word] >= threshold: selected.add(word) if log: print(len(vocab)-len(selected), 'words were filtered out because their counts are less than', threshold) return selected def filter_data_by_vocab(data, vocab, token='<unk>'): vocab.add(token) for datum in data: datum['text'] = ' '.join([i if i in vocab else token for i in datum['text'].split()]) return data def wordvec_add_unknown_vocab(wordvec, vocab, var=1, length=50): words = wordvec.keys() word = next(iter(words)) length = len(wordvec[word]) count = 0 f = open('log.txt', 'w') for i in vocab: if i not in words: f.write(i+'\n') count += 1 wordvec[i] = np.random.uniform(-var, var, length) f.close() print(count,"words are not in trained embeddings") return wordvec def get_lookup(wordvec): # get the lookup table from word vector words = list(wordvec.keys()) element = words[0] dim = len(wordvec[element]) print("Embedding dim = "+str(dim)) word_map = {} W = np.zeros((len(words)+1, dim), dtype=np.float32) for i in range(len(words)): word = words[i] W[i+1] = wordvec[word] word_map[word] = i+1 return W, word_map def get_label_map(data): y_map = set() for datum in data: y_map.add(datum['y']) label_map = {} for i, y in enumerate(y_map): label_map[y] = i return label_map def get_maxlen(data_list): maxlen = 0 for i in data_list: maxleni = max(map(lambda x: x['num_words'], i)) maxlen = max(maxlen, maxleni) return maxlen def sample_from_data(data, ratio=0.1): num_samples = int(ratio*len(data)) sample = np.random.choice(data, num_samples, replace=False) return sample def sample_from_numpy(X, y, ratio=0.1): num_samples = int(ratio*X.shape[0]) sample = np.random.choice(X.shape[0], num_samples, replace=False) return X[sample], y[sample] def consolidate_labels(labels): """ Return a consolidated list of labels, e.g., O-A1 -> O, A1-I -> A """ return map(consolidate_label , labels) def consolidate_label(label): """ Return a consolidated label, e.g., O-A1 -> O, A1-I -> A """ return label.split("-")[0] if label.startswith("O") else label ```
{ "source": "JoshuaSBrown/InterMol", "score": 4 }
#### File: InterMol/intermol/atom.py ```python class Atom(object): """ """ def __init__(self, index, name=None, residue_index=-1, residue_name=None): """Create an Atom object Args: index (int): index of atom in the molecule name (str): name of the atom (eg., N, CH) residue_index (int): index of residue in the molecule residue_name (str): name of the residue (eg., THR, CYS) """ self.index = index self.name = name self.residue_index = residue_index self.residue_name = residue_name self._position = list() self._velocity = list() self._force = list() self._atomtype = dict() self.bondingtype = None self.atomic_number = None self.cgnr = None self._mass = dict() self._charge = dict() self.ptype = "A" self._sigma = dict() self._epsilon = dict() @property def atomtype(self): return self._atomtype @atomtype.setter def atomtype(self, index_atomtype): """Sets the atomtype Args: index_atomtype (tuple): A or B state and atomtype """ try: idx, val = index_atomtype except ValueError: raise ValueError("Pass an iterable with two items.") else: self._atomtype[idx] = val @property def sigma(self): return self._sigma @sigma.setter def sigma(self, index_sigma): """Sets the sigma Args: index_sigma (tuple): A or B state and sigma """ try: idx, val = index_sigma except ValueError: raise ValueError("Pass an iterable with two items.") else: self._sigma[idx] = val @property def epsilon(self): return self._epsilon @epsilon.setter def epsilon(self, index_epsilon): """Sets the epsilon Args: index_epsilon (tuple): A or B state and epsilon """ try: idx, val = index_epsilon except ValueError: raise ValueError("Pass an iterable with two items.") else: self._epsilon[idx] = val @property def mass(self): return self._mass @mass.setter def mass(self, index_mass): """Sets the mass Args: index_mass (tuple): A or B state and mass """ try: idx, val = index_mass except ValueError: raise ValueError("Pass an iterable with two items.") else: self._mass[idx] = val @property def charge(self): return self._charge @charge.setter def charge(self, index_charge): """Sets the charge Args: index_charge (tuple): A or B state and charge """ try: idx, val = index_charge except ValueError: raise ValueError("Pass an iterable with two items.") else: self._charge[idx] = val @property def position(self): """Return the cartesian coordinates of the atom """ return self._position @position.setter def position(self, xyz): """Sets the position of the atom Args: xyz (list, float): x, y and z coordinates """ self._position = xyz @property def velocity(self): """Return the velocity of the atom""" return self._velocity @velocity.setter def velocity(self, vxyz): """Sets the velocity of the atom Args: vxyz (list, float): x-, y- and z-directed velocity """ self._velocity = vxyz @property def force(self): """Return the force on the atom """ return self._force @force.setter def force(self, fxyz): """Sets the force on the atom Args: fxyz (list, float): x-, y- and z-directed force """ self._force = fxyz def __repr__(self): return 'Atom{0}({1}, {2})'.format(id(self), self.index, self.name) def __str__(self): return 'Atom({0}, {1})'.format(self.index, self.name) ``` #### File: intermol/desmond/desmond_parser.py ```python import logging from warnings import warn import math import numpy as np import parmed.unit as units from intermol.atom import Atom from intermol.forces import * import intermol.forces.forcefunctions as ff from intermol.exceptions import (UnimplementedFunctional, UnsupportedFunctional, UnimplementedSetting, UnsupportedSetting, DesmondError, InterMolError) from intermol.molecule import Molecule from intermol.moleculetype import MoleculeType from intermol.system import System from intermol.desmond import cmap_parameters #MRS for old desmond functionality import re import copy logger = logging.getLogger('InterMolLog') ENGINE = 'desmond' # driver helper functions def load(cms_file): """Load a DESMOND input file into a 'System' Args: cms_file: include_dir: Returns: system: """ parser = DesmondParser(cms_file) return parser.read() def save(cms_file, system): """Unpacks a 'System' into a DESMOND input file Args: cms_file: system: """ parser = DesmondParser(cms_file, system) return parser.write() # parser helper functions def end_header_section(blank_section, header, header_lines): if blank_section: header_lines = list() header_lines.append(header) header_lines.append(' :::\n') else: header_lines[0] = header return header_lines def split_with_quotes(line): line = list(line) in_quotes = False for i, char in enumerate(line): if char == '"': in_quotes = not in_quotes if char == ' ' and in_quotes: line[i] = '_' space_split = "".join(line).split() for i, sub in enumerate(space_split): sub = sub.replace('"', '') space_split[i] = sub.replace('_', ' ') return space_split def create_lookup(forward_dict): return dict((v, k) for k, v in forward_dict.items()) def create_type(forward_dict): return dict((k, eval(v.__name__ + 'Type')) for k, v in forward_dict.items()) class DesmondParser(object): """ A class containing methods required to read in a Desmond CMS File """ # 'lookup_*' is the inverse dictionary typically used for writing desmond_combination_rules = {'1': 'Multiply-C6C12', '2': 'Lorentz-Berthelot', '3': 'Multiply-Sigeps' } lookup_desmond_combination_rules = create_lookup(desmond_combination_rules) desmond_pairs = {'LJ12_6_SIG_EPSILON': LjSigepsPair, 'LJ': LjDefaultPair, 'COULOMB': LjDefaultPair } lookup_desmond_pairs = create_lookup(desmond_pairs) # not unique desmond_pair_types = create_type(desmond_pairs) desmond_bonds = {'HARM_CONSTRAINED': HarmonicBond, 'HARM': HarmonicBond } lookup_desmond_bonds = create_lookup(desmond_bonds) # not unique desmond_bond_types = create_type(desmond_bonds) def canonical_bond(self, bond, params, direction='into', name=None): if direction == 'into': canonical_force_scale = self.canonical_force_scale_into phase = 'Read' else: try: name = self.lookup_desmond_bonds[bond.__class__] # check to make sure this OK given the c except: raise UnsupportedFunctional(bond, ENGINE) canonical_force_scale = self.canonical_force_scale_from phase = 'Write' names = [] paramlists = [] if bond.__class__ in [HarmonicBond, HarmonicPotentialBond]: if direction == 'into': bond.k *= canonical_force_scale if name == 'HARM_CONSTRAINED': bond.c = True elif name == 'HARM': bond.c = False else: warn("ReadError: Found unsupported bond in Desmond %s" % name) return bond else: params['k'] *= canonical_force_scale # harmonic potentials in Gromacs should be constrained (??: check what this means) name = 'HARM' if hasattr(bond,'c'): if getattr(bond,'c') and not isinstance(bond, HarmonicPotentialBond): name = 'HARM_CONSTRAINED' names.append(name) paramlists.append(params) return names, paramlists desmond_angles = {'HARM_CONSTRAINED': HarmonicAngle, 'HARM': HarmonicAngle, 'UB': UreyBradleyNoharmAngle } lookup_desmond_angles = create_lookup(desmond_angles) desmond_angle_types = create_type(desmond_angles) def canonical_angle(self, angle, params, direction='into', name=None, molecule_type=None): """ Args: name: kwds: angle: direction: 'into' means into the canonical form, 'from' means from the canonical form into Desmond current molecule type (would like to be able to get rid of this, but need it to search angles for now Returns: modified list of keywords and names """ if direction == 'into': canonical_force_scale = self.canonical_force_scale_into else: # we'd like to automate this, but currently have to state explicitly. if angle.__class__ not in [HarmonicAngle, UreyBradleyAngle]: raise UnsupportedFunctional(angle, ENGINE) canonical_force_scale = self.canonical_force_scale_from phase = 'Write' names = [] paramlists = [] if angle.__class__ in [HarmonicAngle, UreyBradleyAngle, UreyBradleyNoharmAngle]: if direction == 'into': if angle.__class__ in [UreyBradleyAngle, UreyBradleyNoharmAngle]: angle.kUB *= canonical_force_scale if angle.__class__ in [UreyBradleyAngle, HarmonicAngle]: angle.k *= canonical_force_scale if name == 'HARM_CONSTRAINED': # this needs to go first because HARM is a substring angle.c = True elif name == 'HARM': angle.c = False else: params['k'] = canonical_force_scale * params['k'] name = 'HARM' if hasattr(angle,'c'): if getattr(angle,'c'): name = 'HARM_CONSTRAINED' if direction == 'into' and angle.__class__ in [UreyBradleyNoharmAngle,HarmonicAngle]: if angle.__class__ == UreyBradleyNoharmAngle: # Urey-Bradley is implemented in DESMOND differently, with the # terms implemented in a new angle term independent of the harmonic term. # Instead, we will add everything together afterwards into a single term angle = self.create_forcetype(UreyBradleyAngle,[angle.atom1,angle.atom2,angle.atom3], [0,0,angle.r._value,angle.kUB._value]) # this seems kludgy # next, find if we already have this angle somewhere matched_angle = molecule_type.match_angles(angle) if matched_angle: # we found one, if false, we haven't seen it yet, we'll add later if matched_angle.__class__ == HarmonicAngle: angle.k = matched_angle.k angle.theta = matched_angle.theta molecule_type.angle_forces.remove(matched_angle) elif angle.__class__ == HarmonicAngle: matched_angle = molecule_type.match_angles(angle) if matched_angle and matched_angle.__class__ == UreyBradleyAngle: # just copy over the information into the old angle. matched_angle.k = angle.k matched_angle.theta = angle.theta angle = None elif direction == 'from' and angle.__class__ in [UreyBradleyAngle]: params_harmpart = {k:v for (k,v) in params.items() if k in ['theta','k','c'] } names.append(name) paramlists.append(params_harmpart) name = 'UB' params['kUB'] *= canonical_force_scale params_ubpart = {k:v for (k,v) in params.items() if k in ['r','kUB'] } names.append(name) paramlists.append(params_ubpart) else: if direction == 'from': names.append(name) paramlists.append(params) if direction == 'into': return angle elif direction == 'from': return names, paramlists else: raise UnsupportedFunctional(angle, ENGINE) desmond_dihedrals = {'IMPROPER_HARM': ImproperHarmonicDihedral, 'PROPER_TRIG': TrigDihedral, 'IMPROPER_TRIG': TrigDihedral, 'OPLS_PROPER': TrigDihedral, 'OPLS_IMPROPER': TrigDihedral } lookup_desmond_dihedrals = {TrigDihedral: 'PROPER_TRIG', ImproperHarmonicDihedral: 'IMPROPER_HARM' } lookup_desmond_dihedral = create_lookup(desmond_dihedrals) desmond_dihedral_types = create_type(desmond_dihedrals) def canonical_dihedral(self, dihedral, params, direction = 'into', name = None, molecule_type = None): if direction == 'into': canonical_force_scale = self.canonical_force_scale_into phase = 'Read' else: try: name = self.lookup_desmond_dihedrals[dihedral.__class__] except: raise UnsupportedFunctional(dihedral, ENGINE) canonical_force_scale = self.canonical_force_scale_from phase = 'Write' if dihedral.__class__ in [ImproperHarmonicDihedral, TrigDihedral]: if direction == 'into': #Improper Diehdral 2 ---NOT SURE ABOUT MULTIPLICITY if name == "IMPROPER_HARM": dihedral.improper = True elif name == "PROPER_TRIG" or name == "IMPROPER_TRIG": if name == "IMPROPER_TRIG": dihedral.improper = True else: dihedral.improper = False elif name == "OPLS_PROPER" or name == "OPLS_IMPROPER": # OPLS_IMPROPER actually isn't any different from OPLS_PROPER dihedral.improper = False try: # we can have multiple parameters with DESMOND, and append if we do dihedralmatch = molecule_type.match_dihedrals(dihedral) # this will fail if it's the wrong type of dihedral if dihedralmatch: dihedralmatch.sum_parameters(dihedral) except Exception as e: logger.exception(e) return dihedral else: names = [] paramlists = [] if dihedral.__class__ in [ImproperHarmonicDihedral]: params['k'] = params['k'] * canonical_force_scale name = 'IMPROPER_HARM' elif dihedral.__class__ in [TrigDihedral]: name = 'PROPER_TRIG' if hasattr(dihedral,'improper'): if getattr(dihedral,'improper'): name = 'IMPROPER_TRIG' names.append(name) paramlists.append(params) return names, paramlists def __init__(self, cms_file, system=None): """ Initializes a DesmondParse object which serves to read in a CMS file into the abstract representation. Args: """ self.cms_file = cms_file if not system: system = System() self.system = system self.vdwtypes = [] self.vdwtypeskeys = [] self.viparr = 1 self.fmct_blockpos = [] self.atom_blockpos = [] self.bond_blockpos = [] self.ffio_blockpos = [] self.paramlist = ff.build_paramlist('desmond') self.unitvars = ff.build_unitvars('desmond', self.paramlist) self.canonical_force_scale_into = 2.0 self.canonical_force_scale_from = 0.5 self.atom_col_vars = ['i_m_mmod_type', 'r_m_x_coord', 'r_m_y_coord', 'r_m_z_coord', 'i_m_residue_number', 's_m_pdb_residue_name', 'i_m_atomic_number', 's_m_pdb_atom_name', 's_m_atom_name', 'r_ffio_x_vel', 'r_ffio_y_vel', 'r_ffio_z_vel' ] self.atom_box_vars = ['r_chorus_box_ax', 'r_chorus_box_ay', 'r_chorus_box_az', 'r_chorus_box_bx', 'r_chorus_box_by', 'r_chorus_box_bz', 'r_chorus_box_cx', 'r_chorus_box_cy', 'r_chorus_box_cz' ] def get_parameter_list_from_kwds(self, force, kwds): return ff.get_parameter_list_from_kwds(force, kwds, self.paramlist) def get_parameter_list_from_force(self, force): return ff.get_parameter_list_from_force(force, self.paramlist) def get_parameter_kwds_from_force(self, force): return ff.get_parameter_kwds_from_force(force, self.get_parameter_list_from_force, self.paramlist) def create_kwd_dict(self, forcetype_object, values, optvalues = None): kwd = ff.create_kwd_dict(self.unitvars, self.paramlist, forcetype_object, values, optvalues = optvalues) return kwd def create_forcetype(self, forcetype_object, paramlist, values, optvalues = None): return forcetype_object(*paramlist, **self.create_kwd_dict(forcetype_object, values, optvalues)) #LOAD FFIO BLOCKS IN FIRST (CONTAINS TOPOLOGY) def parse_ffio_block(self,start,end): # read in a ffio_block that isn't ffio_ff and split it into the # commands and the values. # lots of room for additional error checking here, such as whether # each entry has the correct number of data values, whether they are the correct type, etc. # scroll to the next ffio entry while not 'ffio_' in self.lines[start]: # this is not an ffio block! or, we have reached the end of the file if ('ffio_' not in self.lines[start]): start+=1 if start >= end: return 'Done with ffio', 0, 0, 0, start self.lines[start].split()[1] components = re.split('\W', self.lines[start].split()[0]) # get rid of whitespace, split on nonword ff_type = components[0] ff_number = int(components[1]) i = start+1 entry_data = [] while not ':::' in self.lines[i]: entry_data.append(self.lines[i].split()[0]) i+=1 i+=1 # skip the separator we just found entry_values = [] while not ':::' in self.lines[i]: if self.lines[i].strip(): # skip the blank spaces. entry_values.append(self.lines[i]) i+=1 while '}' not in self.lines[i]: # wait until we hit an end to the block i+=1 i+=1 # step past the end of the block return ff_type,ff_number,entry_data,entry_values,i def store_ffio_data(self, ff_type, ff_number, entry_data, entry_values): self.stored_ffio_data[ff_type] = dict() self.stored_ffio_data[ff_type]['ff_type'] = ff_type self.stored_ffio_data[ff_type]['ff_number'] = ff_number self.stored_ffio_data[ff_type]['entry_data'] = entry_data self.stored_ffio_data[ff_type]['entry_values'] = entry_values def retrive_ffio_data(self, ff_type): return [self.stored_ffio_data[ff_type]['ff_number'], self.stored_ffio_data[ff_type]['entry_data'], self.stored_ffio_data[ff_type]['entry_values'] ] def parse_vdwtypes(self, type, current_molecule_type): ff_number, entry_data, entry_values = self.retrive_ffio_data(type) # molecule name is at sites, but vdwtypes come # before sites. So we store info in vdwtypes and # edit it later at sites. Eventually, we should # probably move to a model where we store sections # we can't use yet, and then process them in the # order we want. logger.debug("Parsing [ vdwtypes ] ...") for j in range(ff_number): self.vdwtypes.append(entry_values[j].split()[3:]) #THIS IS ASSUMING ALL VDWTYPES ARE STORED AS LJ12_6_SIG_EPSILON self.vdwtypeskeys.append(entry_values[j].split()[1]) def parse_sites(self, type, molname, i, start): ff_number, entry_data, entry_values = self.retrive_ffio_data(type) #correlate with atomtypes and atoms in GROMACS logger.debug("Parsing [ sites ] ...") #set indices to avoid continually calling list functions. ivdwtype = entry_data.index('s_ffio_vdwtype')+1 icharge = entry_data.index('r_ffio_charge')+1 imass = entry_data.index('r_ffio_mass')+1 stemp = None etemp = None if 'i_ffio_resnr' in entry_data: iresnum = entry_data.index('i_ffio_resnr')+1 iresidue = entry_data.index('s_ffio_residue')+1 cgnr = 0 # create the atom type container for the datax current_molecule_type = MoleculeType(name=molname) current_molecule_type.nrexcl = 0 #PLACEHOLDER FOR NREXCL...WE NEED TO FIND OUT WHERE IT IS #MRS: basically, we have to figure out the furthest number of bonds out # to exclude OR explicitly set gromacs exclusions. Either should work. # for now, we'll go with the latter self.system.add_molecule_type(current_molecule_type) current_molecule = Molecule(name=molname) # should this be the same molname several as lines up? for j in range(ff_number): split = entry_values[j].split() if split[1] == "atom": if ('i_ffio_resnr' in entry_data): atom = Atom(int(split[0]), split[ivdwtype], int(split[iresnum]), split[iresidue]) else: # No residuenr, means we will have identical atoms sharing this. atom = Atom(int(split[0]), split[ivdwtype]) atom.atomtype = (0, split[ivdwtype]) atom.charge = (0, float(split[icharge])*units.elementary_charge) atom.mass = (0, float(split[imass]) * units.amu) stemp = float(self.vdwtypes[self.vdwtypeskeys.index(split[ivdwtype])][0]) * units.angstroms #was in angstroms etemp = float(self.vdwtypes[self.vdwtypeskeys.index(split[ivdwtype])][1]) * units.kilocalorie_per_mole #was in kilocal per mol atom.sigma = (0, stemp) atom.epsilon = (0, etemp) atom.cgnr = cgnr cgnr+=1 newAtomType = None current_molecule.add_atom(atom) if not self.system._atomtypes.get(AbstractAtomType(atom.atomtype.get(0))): #if atomtype not in self.system, add it if self.system.combination_rule == 'Multiply-C6C12': sigma = (etemp/stemp)**(1/6) epsilon = (stemp)/(4*sigma**6) newAtomType = AtomCType(split[ivdwtypes], #atomtype/name split[ivdwtype], #bondtype -1, #atomic_number float(split[imass]) * units.amu, #mass float(split[icharge]) * units.elementary_charge, #charge--NEED TO CONVERT TO ACTUAL UNIT 'A', #pcharge...saw this in top--NEED TO CONVERT TO ACTUAL UNITS sigma * units.kilocalorie_per_mole * angstroms**(6), epsilon * units.kilocalorie_per_mole * unit.angstro,s**(12)) elif (self.system.combination_rule == 'Lorentz-Berthelot') or (self.system.combination_rule == 'Multiply-Sigeps'): newAtomType = AtomSigepsType(split[ivdwtype], #atomtype/name split[ivdwtype], #bondtype -1, #atomic_number float(split[imass]) * units.amu, #mass--NEED TO CONVERT TO ACTUAL UNITS float(split[icharge]) * units.elementary_charge, #charge--NEED TO CONVERT TO ACTUAL UNIT 'A', #pcharge...saw this in top--NEED TO CONVERT TO ACTUAL UNITS stemp, etemp) self.system.add_atomtype(newAtomType) if len(self.atom_blockpos) > 1: #LOADING M_ATOMS if self.atom_blockpos[0] < start: # generate the new molecules for this block; the number of molecules depends on # The number of molecules depends on the number of entries in ffio_sites (ff_number) new_molecules = self.loadMAtoms(self.lines, self.atom_blockpos[0], i, current_molecule, ff_number) self.atom_blockpos.pop(0) index = 0 for molecule in new_molecules: self.system.add_molecule(molecule) # now construct an atomlist with all the atoms for atom in molecule.atoms: # does this need to be a deep copy? # tmpatom = copy.deepcopy(atom) # tmpatom.index = index self.atomlist.append(atom) index +=1 return self.system._molecule_types[molname] def parse_bonds(self, type, current_molecule_type, i, start): ff_number, entry_data, entry_values = self.retrive_ffio_data(type) if len(self.bond_blockpos) > 1: #LOADING M_BONDS if self.bond_blockpos[0] < start: for molecule in iter(current_molecule_type.molecules): npermol = len(molecule.atoms) break # of the parsers, this is the only one that uses 'lines'. Can we remove? current_molecule_type.bond_forces = self.loadMBonds(self.lines, self.bond_blockpos[0], i, npermol) self.bond_blockpos.pop(0) logger.debug("Parsing [ bonds ]...") for j in range(ff_number): entries = entry_values[j].split() key = entries[3].upper() atoms = [int(x) for x in entries[1:3]] bondingtypes = [self.atomlist[atom-1].name for atom in atoms] atoms.extend(bondingtypes) params = [float(x) for x in entries[4:6]] new_bond = self.create_forcetype(self.desmond_bonds[key], atoms, params) kwds = self.get_parameter_kwds_from_force(new_bond) new_bond = self.canonical_bond(new_bond, kwds, direction = 'into', name = key) # removing the placeholder from matoms (should be a better way to do this?) if new_bond: old_bond = current_molecule_type.match_bonds(new_bond) if old_bond: new_bond.order = old_bond.order current_molecule_type.bond_forces.remove(old_bond) current_molecule_type.bond_forces.add(new_bond) def parse_pairs(self, type, current_molecule_type): ff_number, entry_data, entry_values = self.retrive_ffio_data(type) logger.debug("Parsing [ pairs ] ...") for j in range(ff_number): ljcorr = False coulcorr = False new_pair = None split = entry_values[j].split() atoms = [int(x) for x in split[1:3]] bondingtypes = [self.atomlist[atom-1].name for atom in atoms] params = atoms + bondingtypes key = split[3].upper() if key == "LJ12_6_SIG_EPSILON": new_pair = self.create_forcetype(LjSigepsPair, params, [float(x) for x in split[4:6]]) elif key == "LJ" or key == "COULOMB": # I think we just need LjSigepsPair, not LjPair? new_pair = self.create_forcetype(LjDefaultPair, params, [0, 0]) if key == "LJ": ljcorr = float(split[4]) new_pair.scaleLJ = ljcorr elif key == "COULOMB": coulcorr = float(split[4]) new_pair.scaleQQ = coulcorr else: warn("ReadError: didn't recognize type %s in line %s", split[3], entry_values[j]) # now, we catch the matches and read them into a single potential pair_match = current_molecule_type.match_pairs(new_pair) if pair_match: # we found a pair with the same atoms; let's insert or delete information as needed. remove_old = False remove_new = False if isinstance(new_pair, LjSigepsPair) and isinstance(pair_match, LjDefaultPair) and pair_match.scaleQQ: #Need to add old scaleQQ to this new pair new_pair.scaleQQ = pair_match.scaleQQ remove_old = True elif isinstance(pair_match, LjSigepsPair) and isinstance(new_pair, LjDefaultPair) and new_pair.scaleQQ: #Need to add the scaleQQ to the old pair pair_match.scaleQQ = new_pair.scaleQQ remove_new = True elif isinstance(new_pair,LjDefaultPair) and isinstance(pair_match,LjDefaultPair): if pair_match.scaleQQ and not new_pair.scaleQQ: new_pair.scaleQQ = pair_match.scaleQQ remove_old = True elif not pair_match.scaleQQ and new_pair.scaleQQ: pair_match.scaleQQ = new_pair.scaleQQ remove_new = True if pair_match.scaleLJ and not new_pair.scaleLJ: new_pair.scaleLJ = pair_match.scaleLJ remove_new = True elif not pair_match.scaleLJ and new_pair.scaleLJ: pair_match.scaleLJ = new_pair.scaleLJ remove_old = True if remove_old: current_molecule_type.pair_forces.remove(pair_match) if remove_new: new_pair = None if coulcorr: self.system.coulomb_correction = coulcorr # need this for gromacs to have the global declared #If we have difference between global and local, catch in gromacs. if ljcorr: self.system.lj_correction = ljcorr # need this for gromacs to have the global declared #If we have difference between global and local, catch in gromacs. if new_pair: current_molecule_type.pair_forces.add(new_pair) # IMPORTANT: we are going to assume that all pairs are both LJ and COUL. # if COUL is not included, then it is because the charges are zero, and they will give the # same energy. This could eventually be improved by checking versus the sites. def parse_angles(self, type, current_molecule_type): ff_number, entry_data, entry_values = self.retrive_ffio_data(type) logger.debug("Parsing [ angles ] ...") for j in range(ff_number): split = entry_values[j].split() key = split[4].upper() atoms = [int(x) for x in split[1:4]] bondingtypes = [self.atomlist[atom-1].name for atom in atoms] atoms.extend(bondingtypes) kwds = [float(x) for x in split[5:7]] new_angle = self.create_forcetype(self.desmond_angles[key], atoms, kwds) kwds = self.get_parameter_kwds_from_force(new_angle) new_angle = self.canonical_angle(new_angle, kwds, direction = 'into', name = key, molecule_type = current_molecule_type) if new_angle: current_molecule_type.angle_forces.add(new_angle) def parse_dihedrals(self, type, current_molecule_type): ff_number, entry_data, entry_values = self.retrive_ffio_data(type) logger.debug("Parsing [ dihedrals ] ...") for j in range(ff_number): split = entry_values[j].split() new_dihedral = None dihedral_type = None atoms = [int(x) for x in split[1:5]] bondingtypes = [self.atomlist[atom-1].name for atom in atoms] key = split[5].upper() atoms.extend(bondingtypes) # not sure how to put the following lines in canonical, since it expects keywords, # not strings of variable length. will have to fix later. if key == "IMPROPER_HARM": kwds = [float(split[6]), 2*float(split[7])] elif key == "PROPER_TRIG" or key == "IMPROPER_TRIG": kwds = [float(x) for x in split[6:14]] elif key == "OPLS_PROPER" or key == "OPLS_IMPROPER": # next 3 lines definitely not the right way to do it. opls_kwds = {key: value for key, value in zip("c1 c2 c3 c4".split(), [units.kilocalorie_per_mole * float(s) for s in split[7:11]])} opls_kwds = convert_dihedral_from_fourier_to_trig(opls_kwds) kwds = np.zeros(8) # will fill this in later. new_dihedral = self.create_forcetype(self.desmond_dihedrals[key], atoms, kwds) # really should be some way to get rid of this code below if key == "OPLS_PROPER" or key == "OPLS_IMPROPER": for key in opls_kwds.keys(): setattr(new_dihedral,key,opls_kwds[key]) # really should be some way to get rid of this code above kwds = self.get_parameter_kwds_from_force(new_dihedral) new_dihedral = self.canonical_dihedral(new_dihedral, kwds, direction = 'into', name = key, molecule_type = current_molecule_type) if new_dihedral: current_molecule_type.dihedral_forces.add(new_dihedral) def parse_torsion_torsion(self, type, current_molecule_type): ff_number, entry_data, entry_values = self.retrive_ffio_data(type) logger.debug("Parsing [ torsion-torsion ] ...") for j in range(ff_number): split = entry_values[j].split() new_torsiontorsion = None key = split[9].upper() if key == "CMAP": # we shouldn't need to try/accept because there are no units. new_torsiontorsion = TorsionTorsionCMAP(int(split[1]), int(split[2]), int(split[3]), int(split[4]), int(split[5]), int(split[6]), int(split[7]), int(split[8]), 'cmap', int(split[10])) else: warn("ReadError: found unsupported torsion-torsion type in: %s" % str(line[i])) if new_torsiontorsion: current_molecule_type.torsiontorsion_forces.add(new_torsiontorsion) def parse_exclusions(self, type, current_molecule_type): ff_number, entry_data, entry_values = self.retrive_ffio_data(type) logger.debug("Parsing [ exclusions ] ...") for j in range(ff_number): temp = entry_values[j].split() temp.remove(temp[0]) current_molecule_type.exclusions.add(tuple([int(x) for x in temp])) def parse_restraints(self, type, current_molecule_type): ff_number, entry_data, entry_values = self.retrive_ffio_data(type) logger.debug("Warning: Parsing [ restraints] not yet implemented") def parse_constraints(self, type, current_molecule_type): ff_number, entry_data, entry_values = self.retrive_ffio_data(type) logger.debug("Parsing [ constraints ] ...") ctype = 1 funct_pos = 0 atompos = [] #position of atoms in constraints; spread all over the place lenpos = [] #position of atom length; spread all over the place tempatom = [] templength = [] templen = 0 for j in range(len(entry_data)): if entry_data[j] == 's_ffio_funct': funct_pos = ctype elif 'i_ffio' in entry_data[j]: atompos.append(ctype) elif 'r_ffio' in entry_data[j]: lenpos.append(ctype) ctype+=1 for j in range(ff_number): # water constraints actually get written to rigidwater (i.e. settles) constraints. if 'HOH' in entry_values[j] or 'AH' in entry_values[j]: split = entry_values[j].split() tempatom = [] templength = [] for a in atompos: if not '<>' in split[a]: tempatom.append(int(split[a])) else: tempatom.append(None) for l in lenpos: if not '<>' in split[l]: if 'AH' in entry_values[j]: templength.append(float(split[l])*units.angstroms) # Check units? else: templength.append(None*units.angstroms) constr_type = split[funct_pos] if 'HOH' in constr_type: dOH = float(split[lenpos[1]]) if dOH != float(split[lenpos[2]]): logger.debug("Warning: second length in a rigid water specification (%s) is not the same as the first (%s)" % (split[lenpos[1]],split[lenpos[2]])) angle = float(split[lenpos[0]])/(180/math.pi) dHH = 2*dOH*math.sin(angle/2) params = [atompos[0], atompos[1], atompos[2], dOH*units.angstroms, dHH*units.angstroms] new_rigidwater = RigidWater(*params) if new_rigidwater: current_molecule_type.rigidwaters.add(new_rigidwater) elif 'AH' in constr_type: templen = int(list(constr_type)[-1]) params = [tempatom[0], tempatom[1], templength[0], constr_type] for t in range(2,templen+1): params.extend([tempatom[t],templength[t-1]]) new_constraint = Constraint(*params) if new_constraint: current_molecule_type.constraints.add(new_constraint) else: warn("ReadError: found unsupported constraint type %s" % (entry_values[j])) def load_ffio_block(self, molname, start, end): # Loading in ffio blocks from Desmond format # Args: # molname: name of current molecule # start: beginning of where ffio_ff starts for each molecule # end: ending of where ffio_ff ends for each molecule i = start j = start self.stored_ffio_types = [] # a list of stored ffio_type to keep track # of the ordering later self.stored_ffio_data = {} # dictionary of stored ffio_entries split = [] constraints = [] temp = [] current_molecule_type = None #There are several sections which require sites information to #process. We keep a flag for this so that we are aware when #we have seen the sites bPreambleRead = False namecol = 0 combrcol = 0 vdwtypercol = 0 #DEFAULT VALUES WHEN CONVERTING TO GROMACS self.system.nonbonded_function = 1 self.system.genpairs = 'yes' logger.debug('Parsing [ molecule %s ]'%(molname)) logger.debug('Parsing [ ffio ]') while i < end: if not bPreambleRead: # read the first section for the forces field info while not (':::' in self.lines[i]): if 's_ffio_name' in self.lines[i]: namecol = i-start-1 elif 's_ffio_comb_rule' in self.lines[i]: combrcol = i-start-1 elif 's_ffio_vdw_func' in self.lines[i]: vdwtypercol = i-start-1 i+=1 i+=1 # skip the ':::' # figure out combination rule combrule = self.lines[i+combrcol].upper() if "ARITHMETIC/GEOMETRIC" in combrule: self.system.combination_rule = 'Lorentz-Berthelot' elif "GEOMETRIC" in combrule: self.system.combination_rule = 'Multiply-Sigeps' elif "LJ12_6_C6C12" in combrule: self.system.combination_rule = 'Multiply-C6C12' if (vdwtypercol > 0): vdwrule = self.lines[i+vdwtypercol] # MISSING: need to identify vdw rule here -- currently assuming LJ12_6_sig_epsilon! # skip to the next ffio entry while not ("ffio" in self.lines[i]): i+=1 bPreambleRead = True ff_type, ff_number, entry_data, entry_values, i = self.parse_ffio_block(i, end) self.stored_ffio_types.append(ff_type) self.store_ffio_data(ff_type,ff_number, entry_data, entry_values) # Reorder so 'vdwtypes' is first, then 'sites'. Could eventually get some simplification # by putting sites first, but too much rewriting for now. self.stored_ffio_types.insert(0, self.stored_ffio_types.pop(self.stored_ffio_types.index('ffio_sites'))) self.stored_ffio_types.insert(0, self.stored_ffio_types.pop(self.stored_ffio_types.index('ffio_vdwtypes'))) # now process all the data for type in self.stored_ffio_types: if type in self.sysDirective: params = [type] if type == 'ffio_sites': params += [molname, i, start] else: params += [current_molecule_type] if type == 'ffio_bonds': params += [i, start] if type == 'ffio_sites': current_molecule_type = self.sysDirective[type](*params) else: self.sysDirective[type](*params) elif type == 'Done with ffio': continue else: while '}' not in self.lines[i]: i+=1 # not the most robust if there is nesting in a particular pattern def loadMBonds(self, lines, start, end, npermol): #adds new bonds for each molecule in System # Loading in m_bonds in Desmond format # Args: # lines: list of all data in CMS format # start: beginning of where m_bonds starts for each molecule # end: ending of where m_bondsends for each molecule logger.debug("Parsing [ m_bonds ] ...") bg = False newbond_force = None split = [] i = start bonds = set() while i < end: if ':::' in lines[i]: if bg: break else: bg = True i+=1 if bg: split = lines[i].split() atomi = int(split[1]) atomj = int(split[2]) bondingtypei = self.atomlist[atomi-1].name bondingtypej = self.atomlist[atomj-1].name params = [atomi, atomj, bondingtypei, bondingtypej] if atomi > npermol: # we've collected the number of atoms per molecule. Exit. break order = int(split[3]) kwd = [0, 0] optkwd = {'order': order, 'c': False} new_bond = self.create_forcetype(HarmonicBond, params, kwd, optkwd) bonds.add(new_bond) i+=1 return bonds def loadMAtoms(self, lines, start, end, currentMolecule, slength): #adds positions and such to atoms in each molecule in System # Loading in m_atoms from Desmond format # Args: # lines: list of all data in CMS format # start: beginning of where m_atoms starts for each molecule # end: ending of where m_atoms ends for each molecule # currentMolecule # slength: number of unique atoms in m_atoms, used to calculate repetitions logger.debug("Parsing [ m_atom ] ...") i = start bg = False pdbaname = "" aname = "" mult = int(re.split('\W',lines[start].split()[0])[1])/slength cols = dict() while i < end: if ':::' in lines[i]: i+=1 break else: if 'First column' in lines[i]: start += 1 for c in self.atom_col_vars: if c in lines[i]: logger.debug(" Parsing [ %s ] ..." % c) cols[c] = i - start break i+=1 atom = None newMoleculeAtoms = [] j = 0 logger.debug(" Parsing atoms...") molecules = [] while j < mult: newMolecule = copy.deepcopy(currentMolecule) for atom in newMolecule.atoms: if ':::' in lines[i]: break else: aline = split_with_quotes(lines[i]) atom.residue_index = int(aline[cols['i_m_residue_number']]) atom.residue_name = aline[cols['s_m_pdb_residue_name']].strip() try: atom.atomic_number = int(aline[cols['i_m_atomic_number']]) except Exception as e: logger.exception(e) # EDZ: just pass statement before, now exception is recorded, but supressed atom.position = [float(aline[cols['r_m_x_coord']]) * units.angstroms, float(aline[cols['r_m_y_coord']]) * units.angstroms, float(aline[cols['r_m_z_coord']]) * units.angstroms] atom.velocity = [0.0 * units.angstroms * units.picoseconds**(-1), 0.0 * units.angstroms * units.picoseconds**(-1), 0.0 * units.angstroms * units.picoseconds**(-1)] if 'r_ffio_x_vel' in cols: atom.velocity[0] = float(aline[cols['r_ffio_x_vel']]) * units.angstroms * units.picoseconds**(-1) if 'r_ffio_y_vel' in cols: atom.velocity[1] = float(aline[cols['r_ffio_y_vel']]) * units.angstroms * units.picoseconds**(-1) if 'r_ffio_z_vel' in cols: atom.velocity[2] = float(aline[cols['r_ffio_z_vel']]) * units.angstroms * units.picoseconds**(-1) if 's_m_pdb_atom_name' in cols: pdbaname = aline[cols['s_m_pdb_atom_name']].strip() if 's_m_atom_name' in cols: aname = aline[cols['s_m_atom_name']].strip() if re.match('$^',pdbaname) and not re.match('$^',aname): atom.name = aname elif re.match('$^',aname) and not re.match('$^',pdbaname): atom.name = pdbaname elif re.search("\d+",pdbaname) and not re.search("\d+",aname): if re.search("\D+",pdbaname) and re.search("\w+",pdbaname): atom.name = pdbaname else: atom.name = aname elif re.search("\d+",aname) and not re.search("\d+",pdbaname): if re.search("\D+",aname) and re.search("\w+",aname): atom.name = aname else: atom.name = pdbaname elif re.match('$^',pdbaname) and re.match('$^',aname): atom.name = "None" else: atom.name = aname #doesn't matter which we choose, so we'll go with atom name instead of pdb i+=1 molecules.append(newMolecule) j+=1 return molecules def load_box_vector(self, lines, start, end): # Loading Box Vector # Create a Box Vector to load into the System # Args: # lines: all the lines of the file stored in an array # start: starting position # end: ending position v = np.zeros([3, 3]) * units.angstroms for i, line in enumerate(lines[start:end]): if self.atom_box_vars[0] in line: startboxlabel = i if ':::' in line: endlabel = i + start break startbox = startboxlabel + endlabel for nvec, line in enumerate(lines[startbox:startbox + 9]): j = nvec // 3 k = nvec % 3 v[j, k] = float(line.strip()) * units.angstrom self.system.box_vector = v def read(self): # Load in data from file # Read data in Desmond format # Args: molnames = [] with open(self.cms_file, 'r') as fl: self.lines = list(fl) i=0 j=0 self.atomtypes = dict() self.atomlist = [] # figure out on which lines the different blocks begin and end. for line in self.lines: if 'f_m_ct' in line: if j > 0: self.fmct_blockpos.append(i) j+=1 if 'm_atom' in line and not (('i_m' in line) or ('s_m' in line)): if j > 1: self.atom_blockpos.append(i) j+=1 if 'm_bond' in line: if j > 2: self.bond_blockpos.append(i) j+=1 if 'ffio_ff' in line: if j > 2: self.ffio_blockpos.append(i) j+=1 i+=1 i-=1 self.fmct_blockpos.append(i) self.atom_blockpos.append(i) self.bond_blockpos.append(i) self.ffio_blockpos.append(i) self.sysDirective = {'ffio_vdwtypes': self.parse_vdwtypes, 'ffio_sites': self.parse_sites, 'ffio_bonds': self.parse_bonds, 'ffio_pairs': self.parse_pairs, 'ffio_angles': self.parse_angles, 'ffio_dihedrals': self.parse_dihedrals, 'ffio_torsion_torsion': self.parse_torsion_torsion, 'ffio_constraints': self.parse_constraints, 'ffio_exclusions': self.parse_exclusions, 'ffio_restraints': self.parse_restraints } #LOADING Ffio blocks logger.debug("Reading ffio block...") #MRS: warning -- currently no check to avoid duplicated molecule names. Investigate. i = 0 j = 0 while i < (len(self.ffio_blockpos)-1): j = self.fmct_blockpos[i] while ':::' not in self.lines[j]: j+=1 # make sure we have reasonable molecular names. molname = self.lines[j+1].strip() molname = molname.replace("\"","") # get rid of quotation marks so we can find unique names if molname == "": molname = "Molecule_"+str(len(molnames)+1) molnames.append(molname) self.load_ffio_block(molname, self.ffio_blockpos[i], self.fmct_blockpos[i+1]-1) i+=1 i = 0 #LOAD RAW BOX VECTOR-Same throughout cms logger.debug("Reading Box Vector...") self.load_box_vector(self.lines, self.fmct_blockpos[0], self.atom_blockpos[0]) return self.system def write_vdwtypes_and_sites(self, molecule): #-ADDING VDWTYPES AND SITES i = 0 sites = [] vdwtypes = [] sig = None ep = None stemp = None etemp = None combrule = self.system.combination_rule for atom in molecule.atoms: i+=1 if atom.residue_index: sites.append(' %3d %5s %9.8f %9.8f %2s %1d %4s\n' % ( i, 'atom', atom._charge[0].value_in_unit(units.elementary_charge), atom._mass[0].value_in_unit(units.atomic_mass_unit), atom.atomtype[0], atom.residue_index, atom.residue_name)) else: sites.append(' %3d %5s %9.8f %9.8f %2s\n' % ( i, 'atom', atom._charge[0].value_in_unit(units.elementary_charge), atom._mass[0].value_in_unit(units.atomic_mass_unit), atom.atomtype[0])) sig = float(atom.sigma[0].value_in_unit(units.angstroms)) ep = float(atom.epsilon[0].value_in_unit(units.kilocalorie_per_mole)) if combrule == 'Multiply-C6C12': #MRS: seems like this should be automated more? stemp = ep * (4 * (sig**6)) etemp = stemp * (sig**6) elif combrule in ['Lorentz-Berthelot','Multiply-Sigeps']: stemp = sig etemp = ep if ' %2s %18s %8.8f %8.8f\n' % (atom.atomtype[0], "LJ12_6_sig_epsilon", float(stemp), float(etemp)) not in vdwtypes: vdwtypes.append(' %2s %18s %8.8f %8.8f\n' % (atom.atomtype[0], "LJ12_6_sig_epsilon", float(stemp), float(etemp))) lines = [] logger.debug(" -Writing vdwtypes...") lines.append(" ffio_vdwtypes[%d] {\n"%(len(vdwtypes))) lines.append(" s_ffio_name\n") lines.append(" s_ffio_funct\n") lines.append(" r_ffio_c1\n") lines.append(" r_ffio_c2\n") lines.append(" :::\n") i = 0 for v in vdwtypes: i+=1 lines.append(' %d%2s'%(i,v)) lines.append(" :::\n") lines.append(" }\n") logger.debug(" -Writing sites...") lines.append(" ffio_sites[%d] {\n"%(len(sites))) lines.append(" s_ffio_type\n") lines.append(" r_ffio_charge\n") lines.append(" r_ffio_mass\n") lines.append(" s_ffio_vdwtype\n") if len(sites[0].split()) > 5: # fix this to explicitly ask if resnr is in here rather than length lines.append(" i_ffio_resnr\n") lines.append(" s_ffio_residue\n") lines.append(" :::\n") for s in sites: lines.append(' %s'%(s)) lines.append(" :::\n") lines.append(" }\n") return lines def write_bonds(self, moleculetype): #-ADDING BONDS logger.debug(" -Writing bonds...") dlines = list() hlines = list() hlines.append('ffio_bonds_placeholder\n') hlines.append(" i_ffio_ai\n") hlines.append(" i_ffio_aj\n") hlines.append(" s_ffio_funct\n") hlines.append(" r_ffio_c1\n") hlines.append(" r_ffio_c2\n") hlines.append(" :::\n") i = 0 bondlist = sorted(list(moleculetype.bond_forces), key=lambda x: (x.atom1, x.atom2)) for bond in bondlist: atoms = [bond.atom1,bond.atom2] kwds = self.get_parameter_kwds_from_force(bond) names, paramlists = self.canonical_bond(bond, kwds, direction = 'from') # could in general return multiple types and paramlists for nbond, name in enumerate(names): i += 1 converted_bond = self.desmond_bonds[name](*atoms, **paramlists[nbond]) line = ' %d %d %d %s' %(i, atoms[0], atoms[1], name) bond_params = self.get_parameter_list_from_force(converted_bond) param_units = self.unitvars[converted_bond.__class__.__name__] for param, param_unit in zip(bond_params, param_units): line += " %15.8f" % (param.value_in_unit(param_unit)) line += '\n' dlines.append(line) header = " ffio_bonds[%d] {\n" % (i) hlines = end_header_section(i==0,header,hlines) dlines.append(" :::\n") dlines.append(" }\n") hlines.extend(dlines) return hlines def write_angles(self, moleculetype): #-ADDING ANGLES logger.debug(" -Writing angles...") dlines = list() hlines = list() hlines.append(" ffio_angles_placeholder\n") hlines.append(" i_ffio_ai\n") hlines.append(" i_ffio_aj\n") hlines.append(" i_ffio_ak\n") hlines.append(" s_ffio_funct\n") hlines.append(" r_ffio_c1\n") hlines.append(" r_ffio_c2\n") hlines.append(" :::\n") i = 0 anglelist = sorted(list(moleculetype.angle_forces), key=lambda x: (x.atom1,x.atom2,x.atom3)) for angle in anglelist: atoms = [angle.atom1,angle.atom2,angle.atom3] kwds = self.get_parameter_kwds_from_force(angle) names, paramlists = self.canonical_angle(angle, kwds, direction = 'from') # could return multiple names and kwd lists for nangle, name in enumerate(names): i+=1 converted_angle = self.desmond_angles[name](*atoms, **paramlists[nangle]) line = ' %d %d %d %d %s' % (i, atoms[0], atoms[1], atoms[2], name) angle_params = self.get_parameter_list_from_force(converted_angle) param_units = self.unitvars[converted_angle.__class__.__name__] for param, param_unit in zip(angle_params, param_units): line += " %15.8f" % (param.value_in_unit(param_unit)) line += '\n' dlines.append(line) header = " ffio_angles[%d] {\n" % (i) hlines = end_header_section(i==0,header,hlines) dlines.append(" :::\n") dlines.append(" }\n") hlines.extend(dlines) return hlines def write_dihedrals(self, moleculetype): #-ADDING DIHEDRALS logger.debug(" -Writing dihedrals...") dlines = list() hlines = list() hlines.append(" ffio_dihedrals_placeholder\n") hlines.append(" i_ffio_ai\n") hlines.append(" i_ffio_aj\n") hlines.append(" i_ffio_ak\n") hlines.append(" i_ffio_al\n") hlines.append(" s_ffio_funct\n") # we assume the maximum number of dihedral terms hmax = 8 # assume the maximum number of dihedral terms (8) to simplify things for now for ih in range(hmax): hlines.append(" r_ffio_c%d\n" %(ih)) hlines.append(" :::\n") i = 0 #sorting by first index dihedrallist = sorted(list(moleculetype.dihedral_forces), key=lambda x: (x.atom1, x.atom2, x.atom3, x.atom4)) # first, identify the number of terms we will print for dihedral in dihedrallist: atoms = [dihedral.atom1,dihedral.atom2,dihedral.atom3,dihedral.atom4] kwds = self.get_parameter_kwds_from_force(dihedral) names, paramlists = self.canonical_dihedral(dihedral, kwds, direction = 'from') for ndihedrals, name in enumerate(names): i+=1 line = ' %d %d %d %d %d %s' %(i, atoms[0], atoms[1], atoms[2], atoms[3], name) converted_dihedral= self.desmond_dihedrals[name](*atoms,**paramlists[ndihedrals]) dihedral_params = self.get_parameter_list_from_force(converted_dihedral) param_units = self.unitvars[converted_dihedral.__class__.__name__] for param, param_unit in zip(dihedral_params, param_units): line += " %15.8f" % (param.value_in_unit(param_unit)) for j in range(8-len(dihedral_params)): line += " %6.3f" % (0.0) line += '\n' dlines.append(line) header = " ffio_dihedrals[%d] {\n" % (i) hlines = end_header_section(i==0,header,hlines) dlines.append(" :::\n") dlines.append(" }\n") hlines.extend(dlines) return hlines def write_torsion_torsion(self, moleculetype): # adding TORSION-TORSION terms logger.debug(" -Writing torsion-torsions...") hlines = list() dlines = list() hlines.append(" ffio_torsion_torsion_placeholder\n") hlines.append(" i_ffio_ai\n") hlines.append(" i_ffio_aj\n") hlines.append(" i_ffio_ak\n") hlines.append(" i_ffio_al\n") hlines.append(" i_ffio_am\n") hlines.append(" i_ffio_an\n") hlines.append(" i_ffio_ao\n") hlines.append(" i_ffio_ap\n") hlines.append(" s_ffio_func\n") hlines.append(" i_ffio_c1\n") hlines.append(" :::\n") i = 0 for torsiontorsion in moleculetype.torsiontorsion_forces: i+=1 # only type of torsion/torsion is CMAP currently dlines.append(' %d %d %d %d %d %d %d %d %d %s %d\n' % ( i, int(torsiontorsion.atom1), int(torsiontorsion.atom2), int(torsiontorsion.atom3), int(torsiontorsion.atom4), int(torsiontorsion.atom5), int(torsiontorsion.atom6), int(torsiontorsion.atom7), int(torsiontorsion.atom8), 'cmap', torsiontorsion.chart)) header = " ffio_torsion_torsion[%d] {\n"%(i) hlines = end_header_section(i==0,header,hlines) dlines.append(" :::\n") dlines.append(" }\n") hlines.extend(dlines) dlines = list() # write out the cmap terms: for now, write out all the # charts. Later, we can scan through and only print out the ones we use # and only include the relevant charts if (i > 0): # only include cmap_charts if we need to cmap_charts = cmap_parameters.get_cmap_charts() for chart in cmap_charts: chartlines = chart.split('\n') for line in chartlines: dlines.append(line + '\n') hlines.extend(dlines) return hlines def write_exclusions(self, moleculetype): #ADDING EXCLUSIONS i = 0 logger.debug(" -Writing exclusions...") hlines = list() dlines = list() hlines.append(" ffio_exclusions_placeholder\n") hlines.append(" i_ffio_ai\n") hlines.append(" i_ffio_aj\n") hlines.append(" :::\n") if moleculetype.nrexcl == 0: # Should probably be determined entirely by the bonds, # since settles now adds bonds. For now, leave this in # for Desmond to Desmond conversion, where nrexcl is not # determined. Probably should switch eventually. exclusionlist = sorted(list(moleculetype.exclusions), key=lambda x: (x[0], x[1])) for exclusion in moleculetype.exclusions: i+=1 dlines.append(' %d %d %d\n'%(i, int(exclusion[0]), int(exclusion[1]))) else: if moleculetype.nrexcl > 4: warn("Can't handle more than excluding 1-4 interactions right now!") fullbondlist = [] fullbondlist = sorted(list(moleculetype.bond_forces), key=lambda x: (x.atom1, x.atom2)) # exclude HarmonicPotential types, which do not have exclusions. bondlist = [bond for bond in fullbondlist if (not isinstance(bond, HarmonicPotentialBond))] # first, figure out the first appearance of each atom in the bondlist currentatom = 0 atompos = [] bondindex = 0 for molecule in moleculetype.molecules: nsize = len(molecule.atoms)+1 break # only need the first atombonds = np.zeros([nsize,8],int) # assume max of 8 for now natombonds = np.zeros(nsize,int) for bond in bondlist: atombonds[bond.atom1,natombonds[bond.atom1]] = bond.atom2 natombonds[bond.atom1] += 1 atombonds[bond.atom2,natombonds[bond.atom2]] = bond.atom1 natombonds[bond.atom2] += 1 for atom in range(1,nsize): atomexclude = set() # will be a unique set # need to make this recursive! And there must be a better algorithm for j1 in range(natombonds[atom]): toatom1 = atombonds[atom,j1]; atomexclude.add(toatom1) if moleculetype.nrexcl > 1: for j2 in range(natombonds[toatom1]): toatom2 = atombonds[toatom1,j2] atomexclude.add(toatom2) if moleculetype.nrexcl > 2: for j3 in range(natombonds[toatom2]): toatom3 = atombonds[toatom2,j3] atomexclude.add(toatom3) if moleculetype.nrexcl > 3: for j4 in range(natombonds[toatom3]): toatom4 = atombonds[toatom1,j4] atomexclude.add(toatom4) uniqueexclude = set(atomexclude) for a in atomexclude: if (a > atom): i+=1 dlines.append(' %d %d %d\n' % (i, atom, a)) header = " ffio_exclusions[%d] {\n"%(i) hlines = end_header_section(i==0,header,hlines) dlines.append(" :::\n") dlines.append(" }\n") hlines.extend(dlines) return hlines def write_pairs(self, moleculetype): #-ADDING PAIRS logger.debug(" -Writing pairs...") dlines = list() hlines = list() hlines.append("ffio_pairs_placeholder\n") hlines.append(" i_ffio_ai\n") hlines.append(" i_ffio_aj\n") hlines.append(" s_ffio_funct\n") hlines.append(" r_ffio_c1\n") hlines.append(" r_ffio_c2\n") hlines.append(" :::\n") i = 0 for pair in sorted(list(moleculetype.pair_forces), key=lambda x: (x.atom1, x.atom2)): atoms = ' %d %d ' % (pair.atom1, pair.atom2) # first, the COUL part. if pair.__class__ in (LjDefaultPair, LjqDefaultPair, LjSigepsPair, LjCPair): # the first two appear to be duplicates: consider merging. if pair.scaleQQ: scaleQQ = pair.scaleQQ else: scaleQQ = self.system.coulomb_correction i += 1 dlines += ' %d %s Coulomb %10.8f <>\n' % (i, atoms, scaleQQ) elif pair._class in (LjqSigepsPair, LjqCPair): warn("Desmond does not support pairtype %s!",pair.__class__.__name__ ) # may not be true? else: warn("Unknown pair type %s!",pair.__class__.__name__ ) # now the LJ part. if pair.__class__ in (LjDefaultPair,LjqDefaultPair): if pair.scaleLJ: scaleLJ = pair.scaleLJ else: scaleLJ = self.system.lj_correction i += 1 dlines += ' %d %s LJ %10.8f <>\n' % (i, atoms, scaleLJ) elif pair.__class__ in (LjSigepsPair, LjqSigepsPair, LjCPair, LjqCPair): # Check logic here -- not clear that we can correctly determine which type it is. # Basically, I think it's whether scaleLJ is defined or not. if pair.__class__ in (LjCPair, LjqCPair): epsilon = 0.25 * (pair.C6**2) / pair.C12 # (16*eps^2*sig^12 / 4 eps*sig^12) = 4 eps sigma = (0.25 * pair.C6 / epsilon)**(1.0/6.0) # (0.25 * 4 eps sig^6 / eps)^(1/6) elif pair.__class__ in (LjSigepsPair, LjqCPair): epsilon = pair.epsilon sigma = pair.sigma i += 1 dlines += ' %d %s LJ12_6_sig_epsilon %10.8f %10.8f\n' % (i, atoms, sigma.value_in_unit(units.angstroms), epsilon.value_in_unit(units.kilocalorie_per_mole)) else: warn("Unknown pair type %s!",pair.__class__.__name__ ) header = " ffio_pairs[%d] {\n"%(i) hlines = end_header_section(i==0,header,hlines) dlines.append(" :::\n") dlines.append(" }\n") hlines.extend(dlines) return hlines def write_constraints(self, moleculetype): #ADDING CONSTRAINTS logger.debug(" -Writing constraints...") isHOH = False if len(moleculetype.rigidwaters) > 0: alen = 3 clen = 3 else: alen = 0 clen = 0 alen_max = alen clen_max = clen for constraint in moleculetype.constraints: if constraint.type[0:2] == 'AH': alen = constraint.n+1 clen = alen-1 if alen_max < alen: alen_max = alen clen_max = clen # we now know the maximum length of all constraint types # not sure we need to sort these, but makes it easier to debug i = 0 constraintlist = sorted(list(moleculetype.constraints),key=lambda x: x.atom1) dlines = list() hlines = list() for constraint in constraintlist: #calculate the max number of atoms in constraint i+=1 if constraint.type == 'HOH': cline = ' %d %d %d %d ' % (i,int(constraint.atom1),int(constraint.atom2),int(constraint.atom3)) for j in range(alen_max-3): cline += '0 ' cline += constraint.type cline += ' %10.8f' % (float(constraint.length1.value_in_unit(units.degrees))) cline += ' %10.8f' % (float(constraint.length2.value_in_unit(units.angstroms))) cline += ' %10.8f' % (float(constraint.length2.value_in_unit(units.angstroms))) for j in range(clen_max-3): cline += ' <>' elif constraint.type[0:2] == 'AH': alen = constraint.n+1 clen = alen-1 catoms = [constraint.atom1] clengths = [] for j in range(1,alen+1): atomname = 'atom'+str(j+1) lengthname = 'length'+str(j) if hasattr(constraint,atomname): catoms.append(getattr(constraint,atomname)) clengths.append(getattr(constraint,lengthname)) cline = ' %d ' % i for j in range(alen): cline += ' %d ' % int(catoms[j]) for j in range(alen,alen_max): cline += ' <> ' cline += constraint.type for j in range(clen): cline += ' %10.8f' % (float(clengths[j].value_in_unit(units.angstroms))) for j in range(clen,clen_max): cline += ' <>' cline += '\n' dlines.append(cline) # now need to add the constraints specified through settles. Only one settles per molecule for rigidwater in moleculetype.rigidwaters: i += 1 # Assumes the water arrangement O, H, H, which might not always be the case. Consider adding detection. cline = ' %d %d %d %d ' % (i, rigidwater.atom1, rigidwater.atom2, rigidwater.atom3) for j in range(alen_max-3): cline += '0 ' cline += ' HOH ' dOH = rigidwater.dOH.value_in_unit(units.angstroms) dHH = rigidwater.dHH.value_in_unit(units.angstroms) angle = 2.0*math.asin(0.5*dHH/dOH)*(180/math.pi) # could automate conversion. . . cline += " %.8f %.8f %.8f" % (angle,dOH,dOH) cline += '\n' for j in range(alen,alen_max): cline += ' 0.0' dlines.append(cline) hlines.append(" ffio_constraints[%d] {\n"%(i)) if (i==0): hlines.append(" :::\n") else: letters = ['i','j','k','l','m','n','o','p','q'] for j in range(alen_max): hlines.append(' i_ffio_a%s\n'%letters[j]) hlines.append(' s_ffio_funct\n') for j in range(clen_max): hlines.append(' r_ffio_c%d\n' %(j+1)) hlines.append(" :::\n") dlines.append(" :::\n") dlines.append(" }\n") hlines.extend(dlines) return hlines def write(self): # Write this topology to file # Write out this topology in Desmond format # Args: # filename: the name of the file to write out to lines = list() pos = 0 name = '' logger.warning("MacroModel atom type is not defined in other files, is set to 1 for all cases as it must be validly defined for desmond files to run. However, it does not affect the energies.") # for all CMS files lines.append('{\n') lines.append(' s_m_m2io_version\n') lines.append(' :::\n') lines.append(' 2.0.0\n') lines.append('}\n') #FIRST F_M_CT BLOCK logger.debug("Writing first f_m_ct...") lines.append('f_m_ct {\n') lines.append(' s_m_title\n') for c in self.atom_box_vars: lines.append(' %s\n' % c) lines.append(' s_ffio_ct_type\n') lines.append(' :::\n') #box vector bv = self.system.box_vector lines.append(' "Desmond file converted by InterMol"\n') for bi in range(3): for bj in range(3): lines.append('%22s\n' % float(bv[bi][bj].value_in_unit(units.angstroms))) lines.append(' full_system\n') #M_ATOM apos = len(lines) #pos of where m_atom will be; will need to overwite later based on the number of atoms lines.append('m_atom\n') lines.append(' # First column is atom index #\n') for vars in self.atom_col_vars: if '_pdb_atom' not in vars: lines.append(' %s\n' % vars) lines.append(' :::\n') i = 0 nmol = 0 totalatoms = [] totalatoms.append(0) for moleculetype in self.system._molecule_types.values(): for molecule in moleculetype.molecules: for atom in molecule.atoms: i += 1 line = ' %d %d' % (i,1) #HAVE TO PUT THE 1 HERE OR ELSE DESMOND DIES, EVEN THOUGH IT DOESN'T USE IT for j in range(3): line += " %10.8f" % (float(atom._position[j].value_in_unit(units.angstroms))) line += " %2d %4s %2d %2s" % ( atom.residue_index, '"%s"'%atom.residue_name, atom.atomic_number, '"%s"'%atom.name) if np.any(atom._velocity): for j in range(3): line += " %10.8f" % (float(atom._velocity[j].value_in_unit(units.angstroms / units.picoseconds))) else: for j in range(3): line += " %10.8f" % (0) lines.append(line + '\n') totalatoms.append(i) lines[apos] = ' m_atom[%d] {\n'%(i) lines.append(' :::\n') lines.append(' }\n') bpos = len(lines) i = 0 #M_BOND hlines = list() dlines = list() hlines.append(' m_bond_placeholder\n') hlines.append(' i_m_from\n') hlines.append(' i_m_to\n') hlines.append(' i_m_order\n') hlines.append(' i_m_from_rep\n') hlines.append(' i_m_to_rep\n') hlines.append(' :::\n') i = 0 nonecnt = 0 for moleculetype in self.system._molecule_types.values(): # sort the bondlist because Desmond requires the first time a bond is listed to have # the atoms in ascending order repeatmol = len(moleculetype.molecules) #MRS: need to be fixed; gromacs loads in one set of bonds per molecue; desmond loads in all # OrderedSet isn't indexable so get the first molecule by iterating. for molecule in moleculetype.molecules: atoms_per_molecule = len(molecule.atoms) # all should have the same, once we have info from one, break. break bondlist = sorted(list(moleculetype.bond_forces), key=lambda x: (x.atom1,x.atom2)) for n in range(repeatmol): for bond in bondlist: if bond and bond.order: i += 1 dlines.append(' %d %d %d %d %d %d\n' %(i, bond.atom1 + n*atoms_per_molecule + totalatoms[nmol], bond.atom2 + n*atoms_per_molecule + totalatoms[nmol], int(bond.order), 1, 1)) elif not bond: nonecnt+=1 if nonecnt > 0: logger.debug('FOUND %d BONDS THAT DO NOT EXIST' % nonecnt) nmol +=1 hlines[0] = ' m_bond[%d] {\n' % i if (i > 0): lines.extend(hlines) lines.extend(dlines) lines.append(' :::\n') lines.append(' }\n') lines.append('}\n') #WRITE OUT ALL FFIO AND F_M_CT BLOCKS for molecule_name, moleculetype in self.system.molecule_types.items(): logger.debug('Writing molecule block %s...' % (molecule_name)) #BEGINNING BLOCK logger.debug(" Writing f_m_ct...") lines.append('f_m_ct {\n') lines.append(' s_m_title\n') for c in self.atom_box_vars: lines.append(' %s\n' % c) lines.append(' s_ffio_ct_type\n') lines.append(' :::\n') lines.append(' "' + molecule_name + '"\n') for bi in range(3): for bj in range(3): lines.append('%22s\n' % float(bv[bi][bj].value_in_unit(units.angstroms))) lines.append(' solute\n') #M_ATOMS logger.debug(" Writing m_atoms...") apos = len(lines) #pos of where m_atom will be; will need to overwite later based on the number of atoms lines.append('m_atom\n') lines.append(' # First column is atom index #\n') for vars in self.atom_col_vars: if '_pdb_atom' not in vars: # kludge, have better filter lines.append(' %s\n' % vars) lines.append(' :::\n') i = 0 for molecule in moleculetype.molecules: for atom in molecule.atoms: i += 1 #NOT SURE WHAT TO PUT FOR MMOD TYPE; 1 is currently used. #This can't be determined currently from the information provided, # unless it is stored previous, nor is it used by desmond line = ' %d %d' % (i,1) for j in range(3): line += " %10.8f" % (float(atom._position[j].value_in_unit(units.angstroms))) line += " %2d %4s %2d %2s" % ( atom.residue_index, '"%s"'%atom.residue_name, atom.atomic_number, '"%s"'%atom.name) if np.any(atom._velocity): for j in range(3): line += " %10.8f" % (float(atom._velocity[j].value_in_unit(units.angstroms / units.picoseconds))) else: for j in range(3): line += " %10.8f" % (0) lines.append(line + '\n') lines[apos] = ' m_atom[%d] {\n'%(i) lines.append(' :::\n') lines.append(' }\n') #M_BONDS logger.debug(" Writing m_bonds...") hlines = list() dlines = list() hlines.append('m_bond_placeholder\n') hlines.append(' i_m_from\n') hlines.append(' i_m_to\n') hlines.append(' i_m_order\n') hlines.append(' i_m_from_rep\n') hlines.append(' i_m_to_rep\n') hlines.append(' :::\n') i = 0 nonecnt = 0 repeatmol = len(moleculetype.molecules) for molecule in moleculetype.molecules: atoms_per_molecule = len(molecule.atoms) break bondlist = sorted(list(moleculetype.bond_forces), key=lambda x: x.atom1) for n in range(repeatmol): for bond in bondlist: if bond and bond.order: i += 1 dlines.append(' %d %d %d %d %d %d\n' %(i, bond.atom1 + n*atoms_per_molecule, bond.atom2 + n*atoms_per_molecule, int(bond.order), 1, 1)) else: nonecnt+=1 if nonecnt > 0: logger.debug('FOUND %d BONDS THAT DO NOT EXIST' % nonecnt) header = ' m_bond[%d] {\n'%i if (i>0): hlines = end_header_section(False,header,hlines) lines.extend(hlines) lines.extend(dlines) lines.append(' :::\n') lines.append(' }\n') #FFIO # only need the first molecule molecule = next(iter(moleculetype.molecules)) logger.debug(" Writing ffio...") lines.append(' ffio_ff {\n') lines.append(' s_ffio_name\n') lines.append(' s_ffio_comb_rule\n') lines.append(' i_ffio_version\n') lines.append(' :::\n') #Adding Molecule Name if "Viparr" in molecule_name: lines.append(' Generated by Viparr\n') else: lines.append(' "%s"\n' % molecule_name) #Adding Combination Rule if self.system.combination_rule == 'Multiply-C6C12': lines.append(' C6C12\n') # this may not exist in DESMOND, or if so, need to be corrected elif self.system.combination_rule == 'Lorentz-Berthelot': lines.append(' ARITHMETIC/GEOMETRIC\n') elif self.system.combination_rule == 'Multiply-Sigeps': lines.append(' GEOMETRIC\n') #Adding Version lines.append(' 1.0.0\n') #All files had this, check if version is 1.0.0 lines += self.write_vdwtypes_and_sites(molecule) lines += self.write_bonds(moleculetype) lines += self.write_angles(moleculetype) lines += self.write_dihedrals(moleculetype) lines += self.write_torsion_torsion(moleculetype) lines += self.write_exclusions(moleculetype) lines += self.write_pairs(moleculetype) lines += self.write_constraints(moleculetype) #STILL NEED TO ADD RESTRAINTS lines.append(" }\n") lines.append("}\n") with open(self.cms_file, 'w') as fout: for line in lines: fout.write(line) ``` #### File: intermol/forces/abstract_type.py ```python class AbstractType(object): def __repr__(self): """Print the object and all of its non-magic attributes. """ attributes = ["{0}={1}".format(x, getattr(self, x)) for x in dir(self) if not (x.startswith('__') or x.endswith('__'))] printable_attributes = ', '.join(attributes) return "{0}({1})".format(self.__class__.__name__, printable_attributes) ``` #### File: intermol/forces/bending_torsion_dihedral_type.py ```python import parmed.unit as units from intermol.decorators import accepts_compatible_units from intermol.forces.abstract_dihedral_type import AbstractDihedralType class BendingTorsionDihedralType(AbstractDihedralType): __slots__ = ['a0', 'a1', 'a2', 'a3', 'a4', 'improper'] @accepts_compatible_units(None, None, None, None, a0=units.kilojoules_per_mole, a1=units.kilojoules_per_mole, a2=units.kilojoules_per_mole, a3=units.kilojoules_per_mole, a4=units.kilojoules_per_mole, improper=None) def __init__(self, bondingtype1, bondingtype2, bondingtype3, bondingtype4, a0=0.0 * units.kilojoules_per_mole, a1=0.0 * units.kilojoules_per_mole, a2=0.0 * units.kilojoules_per_mole, a3=0.0 * units.kilojoules_per_mole, a4=0.0 * units.kilojoules_per_mole, improper=False): AbstractDihedralType.__init__(self, bondingtype1, bondingtype2, bondingtype3, bondingtype4, improper) self.a0 = a0 self.a1 = a1 self.a2 = a2 self.a3 = a3 self.a4 = a4 class BendingTorsionDihedral(BendingTorsionDihedralType): """ stub documentation """ def __init__(self, atom1, atom2, atom3, atom4, bondingtype1=None, bondingtype2=None, bondingtype3=None, bondingtype4=None, a0=0.0 * units.kilojoules_per_mole, a1=0.0 * units.kilojoules_per_mole, a2=0.0 * units.kilojoules_per_mole, a3=0.0 * units.kilojoules_per_mole, a4=0.0 * units.kilojoules_per_mole, improper=False): self.atom1 = atom1 self.atom2 = atom2 self.atom3 = atom3 self.atom4 = atom4 BendingTorsionDihedralType.__init__(self, bondingtype1, bondingtype2, bondingtype3, bondingtype4, a0=a0, a1=a1, a2=a2, a3=a3, a4=a4, improper=improper) ``` #### File: intermol/forces/connection_bond_type.py ```python import parmed.unit as units from intermol.decorators import accepts_compatible_units from intermol.forces.abstract_bond_type import AbstractBondType class ConnectionBondType(AbstractBondType): __slots__ = ['order', 'c'] @accepts_compatible_units(None, None, order=None, c=None) def __init__(self, bondingtype1, bondingtype2, order=1, c=False): AbstractBondType.__init__(self, bondingtype1, bondingtype2, order, c) class ConnectionBond(ConnectionBondType): """ stub documentation """ def __init__(self, atom1, atom2, bondingtype1=None, bondingtype2=None, order=1, c=False): self.atom1 = atom1 self.atom2 = atom2 ConnectionBondType.__init__(self, bondingtype1, bondingtype2, order=order, c=c) ``` #### File: intermol/lammps/__init__.py ```python from collections import OrderedDict import logging import os from subprocess import Popen, PIPE import warnings import parmed.unit as units from intermol.utils import run_subprocess, which from intermol.lammps.lammps_parser import load, save # Python 2/3 compatibility. try: FileNotFoundError except NameError: FileNotFoundError = OSError logger = logging.getLogger('InterMolLog') to_canonical = { 'Bond': ['bond'], 'Angle': ['angle'], 'Proper Dih.': ['dihedral', 'proper'], 'Improper': ['dihedral', 'improper'], 'Dispersive': ['vdw total'], 'Disper. corr.': ['vdw total', 'vdw (LR)'], 'Electrostatic': ['coulomb total'], 'Coul.recip.': ['coulomb total','coulomb (LR)'], 'Non-bonded': ['nonbonded'], 'Potential': ['potential'] } for exe in ['lammps', 'lmp_mpi', 'lmp_serial', 'lmp_openmpi', 'lmp_mac_mpi', '/home/mish4610/software/lammps/src/lmp_serial']: if which(exe): LMP_PATH = exe break else: LMP_PATH = None def energies(input_file, lmp_path=None): """Evaluate energies of LAMMPS files Args: input_file = path to input file (expects data file in same folder) lmp_path = path to LAMMPS binaries """ if lmp_path is None and LMP_PATH is not None: lmp_path = LMP_PATH elif LMP_PATH is None: raise IOError('Unable to find LAMMPS executables.') logger.info('Evaluating energy of {0}'.format(input_file)) directory, input_file = os.path.split(os.path.abspath(input_file)) stdout_path = os.path.join(directory, 'lammps_stdout.txt') stderr_path = os.path.join(directory, 'lammps_stderr.txt') # TODO: Read energy info from stdout in memory instead of from log files. try: os.remove(stdout_path) except FileNotFoundError: pass try: os.remove(stderr_path) except FileNotFoundError: pass # Step into the directory. saved_path = os.getcwd() os.chdir(directory) cmd = [lmp_path, '-in', input_file] proc = run_subprocess(cmd, 'lammps', stdout_path, stderr_path) if proc.returncode != 0: logger.error('LAMMPS failed. See %s/lammps_stderr.txt' % directory) # Step back out. os.chdir(saved_path) return _group_energy_terms(stdout_path) def _group_energy_terms(stdout_path): """Parse LAMMPS stdout to extract and group the energy terms in a dict. """ proc = Popen(["awk '/E_bond/{getline; print}' %s" % stdout_path], stdout=PIPE, shell=True) energies, err = proc.communicate() if not energies: raise Exception('Unable to read LAMMPS energy output') energy_values = [float(x) * units.kilocalories_per_mole for x in energies.split()] energy_types = ['Bond', 'Angle', 'Proper Dih.', 'Improper', 'Non-bonded', 'Dispersive', 'Electrostatic', 'Coul. recip.', 'Disper. corr.', 'Potential'] e_out = OrderedDict(zip(energy_types, energy_values)) return e_out, stdout_path ```
{ "source": "JoshuaSBrown/PyCGADExample2", "score": 3 }
#### File: PyCGADExample2/bin/upload_download.py ```python import argparse from uploaddownload.upload_download_app import UploadDownloadApp def main(**kwargs): app = UploadDownloadApp(kwargs["verbose"]) app.initialize(pem_file=kwargs["permissions"]) if __name__ == "__main__": message = "Example implementation of Py-CGAD, is authenticated to upload" message += " and download files to the repository and its wiki" parser = argparse.ArgumentParser(message) desc = "Permissions file, allows us to interact with the github repository" parser.add_argument( "--permissions", "-p", type=str, nargs=1, required=True, help=desc ) desc = "Vebosity of output." parser.add_argument("--verbose", "-v", type=int, nargs=1, default=0, help=desc) args = parser.parse_args() main(**vars(args)) ``` #### File: PyCGADExample2/tests/test_upload_download.py ```python import pytest import os import json import sys from uploaddownload.upload_download_app import UploadDownloadApp @pytest.fixture def test_app(): """Sets up a class with authentication to the PyCGADExample2 repository.""" app = UploadDownloadApp() current_path, _ = os.path.split(os.path.abspath(__file__)) repo_path = os.path.normpath(os.path.join(current_path, "../")) for file_name in os.listdir(repo_path): if file_name.lower().endswith(".pem"): if "uploaddownloadapp" in file_name: print("Found pem file {}".format(file_name)) pem_file_path = os.path.join(repo_path, file_name) break app.initialize(pem_file=pem_file_path, path_to_repo=app.generateCandidateRepoPath()) return app def test_branches(test_app): branches = test_app.branches found_master = False for branch in branches: if branch == "master": found_master = True break assert found_master def test_get_branch_tree(test_app): branch_tree = test_app.getBranchTree("master") assert branch_tree.exists("bin") assert branch_tree.exists("README.md") assert branch_tree.type("bin") == "dir" assert branch_tree.type("README.md") == "file" rel_paths = branch_tree.getRelativePaths("test_upload_download.py") assert len(rel_paths) == 1 assert rel_paths[0] == "./tests/test_upload_download.py" def test_get_contents(test_app): branch_content = test_app.getContents("master") assert "./bin" in branch_content assert "./README.md" in branch_content def test_upload_remove_file(test_app): test_branch = "test_upload_remove_file_python" test_branch += str(sys.version_info[0]) + "_" + str(sys.version_info[1]) print("Test branch is {}".format(test_branch)) # Check that test_upload_remove_file branch exists branches = test_app.branches found_test_branch = False default_branch = None for branch in branches: print("Cycling existing branches {}".format(branch)) if branch == test_branch: print("Found branch {}".format(test_branch)) found_test_branch = True elif branch == "master": print("Found master branch setting default to master") default_branch = "master" elif branch == "main": print("Found main branch setting default to main") default_branch = "main" # If it doesn't exist create a new branch by splitting off of whatever # default is available "master | main" if not found_test_branch: test_app.createBranch(test_branch, default_branch) # Next check to see if a sample test file exists on the branch sample_file = "sample_file.txt" sample_file_path = "./" + sample_file branch_tree = test_app.getBranchTree(test_branch) # If for some reason the file exists we will delete it if branch_tree.exists(sample_file_path): test_app.remove(sample_file_path, test_branch) # Now we are going to verify that the file no longer exists on the github # repository, we will update our branch tree cache in our app test_app.refreshBranchTreeCache(test_branch) # Refresh the actual branch tree object branch_tree = test_app.getBranchTree(test_branch) # At this point the sample file should not exist assert branch_tree.exists(sample_file_path) == False # Now we are going to create the sample file at the top of our repo local_repo_path = test_app.generateCandidateRepoPath() local_sample_file_path = local_repo_path + "/" + sample_file f = open(local_sample_file_path, "w") f.write("This is a sample file!") f.close() # Now we want to try to upload the file to the test branch test_app.upload(local_sample_file_path, test_branch) # At this point the file should have been uploaded to the github repository # on the specified test branch, so we will once again refresh our local # branch tree to synchronize the contents test_app.refreshBranchTreeCache(test_branch) branch_tree = test_app.getBranchTree(test_branch) # Now we should be able to verify that the file has been uploaded assert branch_tree.exists(sample_file_path) ``` #### File: PyCGADExample2/uploaddownload/upload_download_app.py ```python from py_cgad.githubapp import GitHubApp import os class UploadDownloadApp(GitHubApp): def __init__(self, verbosity_in=0): """Upload Download app can upload and download files from repo and its wiki.""" if isinstance(verbosity_in, list): verbosity_in = verbosity_in[0] super().__init__( 120492, "UploadDownloadApp", "JoshuaSBrown", "PyCGADExample2", os.path.abspath(__file__), verbosity=verbosity_in, ) ```
{ "source": "JoshuaSBrown/Py-CGAD_Example", "score": 2 }
#### File: Py-CGAD_Example/status/status_app.py ```python from py_cgad.githubapp import GitHubApp import os class StatusApp(GitHubApp): def __init__(self, verbosity_in=0): """Status app uploads, status for a commit, can also retrieve""" if isinstance(verbosity_in, list): verbosity_in = verbosity_in[0] super().__init__( 117711, "StatusApp", "JoshuaSBrown", "PyCGADExample", os.path.abspath(__file__), verbosity=verbosity_in, ) ```
{ "source": "joshuaschoep/crosswalk-sim", "score": 3 }
#### File: joshuaschoep/crosswalk-sim/main.py ```python from events.event_queue import EventQueue from events.event import Event, EventType from variates import exponential_u, uniform_ab import pedestrians as peds import signal_state_machine as ssm event_queue = EventQueue() autos_left = 0 peds_left = 0 traffic_signal = ssm.TrafficSignal(event_queue) autos_generator = None peds_generator = None button_generator = None def start( N: int, autos_g, pedestrians_g, button_g ): global event_queue, autos_left, peds_left global autos_generator, peds_generator, button_generator #Begin end conditons autos_left = N - 1 peds_left = N - 1 #Init all generators autos_generator = autos_g peds_generator = pedestrians_g button_generator = button_g #Initialize all beginning arrival events event_queue.push(Event( EventType.PED_ARRIVAL, exponential_u(float(next(peds_generator)), 20), { "Index": 0, "Direction": "EAST", "Speed": uniform_ab(next(peds_generator), 2.6, 4.1) } )) '''event_queue.push( Event(EventType.PED_ARRIVAL, exponential_1(float(next(peds_generator))), { "Index": 1, "Direction": "WEST", "Speed": uniform_ab(next(peds_generator), 2.6, 4.1) } ))''' #event_queue.push(Event(EventType.AUTO_ARRIVAL, exponential_1(float(next(autos_generator))), {"Direction": "EAST"})) #event_queue.push(Event(EventType.AUTO_ARRIVAL, exponential_1(float(next(autos_generator))), {"Direction": "WEST"})) #EVENT LOOP while not event_queue.empty(): nextEvent = next(event_queue) processEvent(nextEvent) def processEvent(event: Event): print(event) if event.type == EventType.PED_ARRIVAL: handlePedArrival(event) elif event.type == EventType.PED_AT_BUTTON: handlePedAtButton(event) elif event.type == EventType.PED_IMPATIENT: handlePedImpatient(event) elif event.type == EventType.AUTO_ARRIVAL: handleCarArrival(event) elif event.type == EventType.GREEN_EXPIRES: traffic_signal.handle_event(event) elif event.type == EventType.YELLOW_EXPIRES: walk() traffic_signal.handle_event(event) elif event.type == EventType.RED_EXPIRES: traffic_signal.handle_event(event) ## PEDESTRIAN HELPERS def ped_at_crosswalk(ped: Event): print(peds.crosswalk_peds) for element in peds.crosswalk_peds: if ped.metadata["Index"] == element.metadata["Index"]: return True return False def can_walk(ped: Event): if traffic_signal.current_state != ssm.SignalState.RED: return False elif traffic_signal.red_expire < (46 / ped.metadata["Speed"]) + ped.at: return False return True def walk(): n = 20 i = 0 while n > 0 and len(peds.crosswalk_peds) > i: if can_walk(peds.crosswalk_peds[i]): n -= 1 print("PEDESTRIAN", peds.crosswalk_peds[i].__repr__(), "WALKS") peds.crosswalk_peds.pop(i) else: i += 1 ##EVENT PROCESSING def handlePedArrival(event: Event): global peds_left if peds_left > 0: at = exponential_u(float(next(peds_generator)), 20) + event.at direction = event.metadata["Direction"] meta = { "Index": event.metadata["Index"] + 2, "Direction": direction, "Speed": uniform_ab(next(peds_generator), 2.6, 4.1) } newPed = Event(EventType.PED_ARRIVAL, at, meta) event_queue.push(newPed) peds_left -= 1 ##Pedestrian gets to crosswalk arrivalAtCrosswalk = Event( EventType.PED_AT_BUTTON, event.at + peds.DISTANCE_TO_CROSSWALK / event.metadata["Speed"], event.metadata ) event_queue.push(arrivalAtCrosswalk) def handlePedAtButton(event: Event): if len(peds.crosswalk_peds) == 0: if float(next(button_generator)) < (15/16): traffic_signal.press_button(event.at) elif float(next(button_generator)) < 1 / (len(peds.crosswalk_peds) + 1): traffic_signal.press_button(event.at) peds.crosswalk_peds.append(event) ## PED_IMPATIENT handles whether the ped would actually press the button, so we don't have to here ## If they don't walk immediately, they plan to press the button in a minute. if traffic_signal.current_state != ssm.SignalState.RED: event_queue.push(Event( EventType.PED_IMPATIENT, event.at + 60, event.metadata )) def handlePedImpatient(event: Event): if not ped_at_crosswalk(event): print("PEDESTRIAN NO LONGER AT CROSSWALK: EVENT DROPPED") return else: traffic_signal.press_button(event.at) def handleCarArrival(event: Event): global autos_left if autos_left > 0: at = exponential_1(float(next(autos_generator))) + event.at direction = event.metadata["Direction"] newAuto = Event(EventType.AUTO_ARRIVAL, at, {"Direction": direction}) event_queue.push(newAuto) autos_left -= 1 ```
{ "source": "Joshua-Schroijen/deepproblog", "score": 2 }
#### File: Joshua-Schroijen/deepproblog/generate_seeds.py ```python import fire import os def generate_seeds(no_seeds): for _ in range(no_seeds): print(int.from_bytes(os.urandom(32), 'big')) if __name__ == "__main__": fire.Fire(generate_seeds) ``` #### File: examples/CLUTRR/clutrr.py ```python import fire import sys from json import dumps from deepproblog.engines import ApproximateEngine, ExactEngine from deepproblog.evaluate import get_confusion_matrix from deepproblog.network import Network from deepproblog.calibrated_network import TemperatureScalingNetwork, NetworkECECollector from deepproblog.model import Model from deepproblog.dataset import DataLoader from deepproblog.examples.CLUTRR.architecture import Encoder, RelNet, GenderNet from deepproblog.examples.CLUTRR.data import CLUTRR, dataset_names from deepproblog.heuristics import * from deepproblog.train import TrainObject from deepproblog.utils import get_configuration, config_to_string, format_time_precise, split_dataset from deepproblog.utils.stop_condition import Threshold, StopOnPlateau def main( i = 0, calibrate = False, calibrate_after_each_train_iteration = False, logging = False ): dsets = ["sys_gen_{}".format(i) for i in range(3)] + ["noise_{}".format(i) for i in range(4)] configurations = {"method": ["gm"], "dataset": dsets, "run": range(5)} configuration = get_configuration(configurations, i) name = "clutrr_" + config_to_string(configuration) + "_" + format_time_precise() print(name) torch.manual_seed(configuration["run"]) clutrr = CLUTRR(configuration["dataset"]) dataset = clutrr.get_dataset(".*train", gender = True, type = "split") train_dataset, val_dataset = split_dataset(dataset) test_datasets = clutrr.get_dataset(".*test", gender = True, type = "split", separate = True) print(dataset_names[configuration["dataset"]]) loader = DataLoader(train_dataset, 4) val_loader = DataLoader(val_dataset, 4) embed_size = 32 lstm = Encoder(clutrr.get_vocabulary(), embed_size, p_drop = 0.0) networks_evolution_collectors = {} if calibrate == True: lstm_net = TemperatureScalingNetwork( lstm, "encoder", val_loader, optimizer = torch.optim.Adam(lstm.parameters(), lr = 1e-2) ) rel_net = Network(RelNet(embed_size, 2 * embed_size), "rel_extract", val_loader) gender_net = GenderNet(clutrr.get_vocabulary(), embed_size) gender_net = Network( gender_net, "gender_net", val_loader, optimizer = torch.optim.Adam(gender_net.parameters(), lr = 1e-2), ) networks_evolution_collectors["calibration_collector"] = NetworkECECollector() else: lstm_net = Network( lstm, "encoder", optimizer = torch.optim.Adam(lstm.parameters(), lr = 1e-2) ) rel_net = Network(RelNet(embed_size, 2 * embed_size), "rel_extract") gender_net = GenderNet(clutrr.get_vocabulary(), embed_size) gender_net = Network( gender_net, "gender_net", optimizer=torch.optim.Adam(gender_net.parameters(), lr=1e-2), ) rel_net.optimizer = torch.optim.Adam(rel_net.parameters(), lr = 1e-2) model_filename = "model_forward.pl" model = Model(model_filename, [rel_net, lstm_net, gender_net]) heuristic = GeometricMean() if configuration["method"] == "exact": raise Exception('The CLUTRR experiment is currently not supported in the Exact Engine') # model.set_engine(ExactEngine(model)) elif configuration["method"] == "gm": model.set_engine(ApproximateEngine(model, 1, heuristic, exploration = True)) train_log = TrainObject(model) train_log.train( loader, Threshold("Accuracy", 1.0) + StopOnPlateau("Accuracy", patience=5, warm_up = 10), initial_test = False, test = lambda x: [ ( "Accuracy", get_confusion_matrix(x, val_dataset, verbose = 0).accuracy(), ) ], log_iter = 50, test_iter = 250, ) model.save_state("models/" + name + ".pth") for dataset in test_datasets: cm = get_confusion_matrix(model, test_datasets[dataset], verbose = 0) final_acc = cm.accuracy() if logging == True: train_log.logger.comment("{}\t{}".format(dataset, final_acc)) if logging == True: train_log.logger.comment(dumps(model.get_hyperparameters())) train_log.write_to_file("log/" + name) if __name__ == "__main__": fire.Fire(main) ``` #### File: examples/Coins/coins.py ```python import fire import torch from torch.utils.data import DataLoader as TorchDataLoader from deepproblog.dataset import DataLoader from deepproblog.engines import ExactEngine from deepproblog.evaluate import get_confusion_matrix from deepproblog.examples.Coins.data.dataset import train_dataset, test_dataset, RawCoinsNet1ValidationDataset, RawCoinsNet2ValidationDataset from deepproblog.model import Model from deepproblog.network import Network from deepproblog.calibrated_network import TemperatureScalingNetwork, NetworkECECollector from deepproblog.train import train_model from deepproblog.utils import split_dataset from deepproblog.utils.standard_networks import smallnet from deepproblog.utils.stop_condition import Threshold, StopOnPlateau def main( calibrate = False, calibrate_after_each_train_iteration = False ): batch_size = 5 if calibrate == True: rest_train_set, validation_set = split_dataset(train_dataset) train_loader = DataLoader(rest_train_set, batch_size) calibration_net1_valid_loader = TorchDataLoader(RawCoinsNet1ValidationDataset(validation_set), batch_size) calibration_net2_valid_loader = TorchDataLoader(RawCoinsNet2ValidationDataset(validation_set), batch_size) else: train_loader = DataLoader(train_dataset, batch_size) lr = 1e-4 networks_evolution_collectors = {} coin_network1 = smallnet(num_classes = 2, pretrained = True) coin_network2 = smallnet(num_classes = 2, pretrained = True) if calibrate == True: coin_net1 = TemperatureScalingNetwork(coin_network1, "net1", calibration_net1_valid_loader, batching = True, calibrate_after_each_train_iteration = calibrate_after_each_train_iteration) coin_net2 = TemperatureScalingNetwork(coin_network2, "net2", calibration_net2_valid_loader, batching = True, calibrate_after_each_train_iteration = calibrate_after_each_train_iteration) networks_evolution_collectors["calibration_collector"] = NetworkECECollector() else: coin_net1 = Network(coin_network1, "net1", batching = True) coin_net2 = Network(coin_network2, "net2", batching = True) coin_net1.optimizer = torch.optim.Adam(coin_network1.parameters(), lr = lr) coin_net2.optimizer = torch.optim.Adam(coin_network2.parameters(), lr = lr) model = Model("model.pl", [coin_net1, coin_net2]) if calibrate == True: model.add_tensor_source("train", rest_train_set) else: model.add_tensor_source("train", train_dataset) model.add_tensor_source("test", test_dataset) model.set_engine(ExactEngine(model), cache = True) train_obj = train_model( model, train_loader, StopOnPlateau("Accuracy", warm_up = 10, patience = 10) | Threshold("Accuracy", 1.0, duration = 2), networks_evolution_collectors, log_iter = 100 // batch_size, test_iter = 100 // batch_size, test = lambda x: [("Accuracy", get_confusion_matrix(x, test_dataset).accuracy())], infoloss = 0.25 ) if calibrate: coin_net1.calibrate() coin_net2.calibrate() return [train_obj, get_confusion_matrix(model, test_dataset, verbose = 0)] if __name__ == "__main__": fire.Fire(main) ``` #### File: Add/data/for_calibration.py ```python from abc import ABC, abstractmethod import ast from pathlib import Path import sqlite3 import torch import torch.nn.functional as F from torch.utils.data import Dataset class RawAddDatasetDatabase: def initialize(self): self.connection = sqlite3.connect(Path(__file__).parent / 'raw_add_dataset.sqlite') self.cursor = self.connection.cursor() if not self._is_add_samples_db_ready(): self.cursor.execute("CREATE TABLE add_neural1_raw_data ( I1 integer, I2 integer, Carry integer, O integer)") self.cursor.execute("CREATE TABLE add_neural2_raw_data ( I1 integer, I2 integer, Carry integer, NewCarry integer)") self.cursor.execute("CREATE TABLE add_raw_data_lengths ( predicate text, length integer )") with open(Path(__file__).parent / "neural1.txt", "r") as neural1_file: neural1 = [ast.literal_eval(s.strip()) for s in neural1_file.readlines()] with open(Path(__file__).parent / "neural2.txt", "r") as neural2_file: neural2 = [ast.literal_eval(s.strip()) for s in neural2_file.readlines()] with self.connection: for sample in neural1: I1, I2, Carry = sample O = self._get_neural1_label(I1, I2, Carry) self.cursor.execute("INSERT INTO add_neural1_raw_data VALUES (:I1, :I2, :Carry, :O)", {'I1': I1, 'I2': I2, 'Carry': Carry, 'O': 0}) for sample in neural2: I1, I2, Carry = sample NewCarry = self._get_neural2_label(I1, I2, Carry) self.cursor.execute("INSERT INTO add_neural2_raw_data VALUES (:I1, :I2, :Carry, :NewCarry)", {'I1': I1, 'I2': I2, 'Carry': Carry, 'NewCarry': NewCarry}) self.cursor.execute("INSERT INTO add_raw_data_lengths VALUES (:predicate, :length)", {'predicate': 'neural1', 'length': len(neural1)}) self.cursor.execute("INSERT INTO add_raw_data_lengths VALUES (:predicate, :length)", {'predicate': 'neural2', 'length': len(neural2)}) def get_neural1_sample(self, i): self.cursor.execute(f"SELECT * FROM add_neural1_raw_data LIMIT 1 OFFSET {i};") result = self.cursor.fetchone() if result != []: return (*result,) else: return None def get_neural2_sample(self, i): self.cursor.execute(f"SELECT * FROM add_neural2_raw_data LIMIT 1 OFFSET {i};") result = self.cursor.fetchone() if result != []: return (*result,) else: return None def get_length_neural1(self): self.cursor.execute("SELECT length FROM add_raw_data_lengths WHERE predicate = 'neural1'") result = self.cursor.fetchone() if result != []: return result[0] else: return None def get_length_neural2(self): self.cursor.execute("SELECT length FROM add_raw_data_lengths WHERE predicate = 'neural2'") result = self.cursor.fetchone() if result != []: return result[0] else: return None def _is_add_samples_db_ready(self): self.cursor.execute("SELECT * FROM sqlite_master WHERE type = 'table' AND tbl_name = 'add_neural1_raw_data';") add_neural1_raw_data_table_exists = (self.cursor.fetchall() != []) self.cursor.execute("SELECT * FROM sqlite_master WHERE type = 'table' AND tbl_name = 'add_neural2_raw_data';") add_neural2_raw_data_table_exists = (self.cursor.fetchall() != []) self.cursor.execute("SELECT * FROM sqlite_master WHERE type = 'table' AND tbl_name = 'add_raw_data_lengths';") add_raw_data_lengths_table_exists = (self.cursor.fetchall() != []) return (add_neural1_raw_data_table_exists and \ add_neural2_raw_data_table_exists and \ add_raw_data_lengths_table_exists) def _get_neural1_label(self, I1, I2, Carry): return ((I1 + I2 + Carry) % 10) def _get_neural2_label(self, I1, I2, Carry): return ((I1 + I2 + Carry) // 10) class RawAddValidationDataset(Dataset, ABC): def __init__(self): super(Dataset, self).__init__() self.dataset_db = RawAddDatasetDatabase() self.dataset_db.initialize() @abstractmethod def __len__(self): pass @abstractmethod def __getitem__(self, idx): pass class RawAddNeural1ValidationDataset(RawAddValidationDataset): def __init__(self): super().__init__() def __len__(self): return self.dataset_db.get_length_neural1() def __getitem__(self, idx): I1, I2, Carry, O = self.dataset_db.get_neural1_sample(idx) return (I1, I2, Carry), self._encode_label(O) def _encode_label(self, label): return F.one_hot(torch.tensor(label), num_classes = 10).type(torch.FloatTensor) class RawAddNeural2ValidationDataset(RawAddValidationDataset): def __init__(self): super().__init__() def __len__(self): return self.dataset_db.get_length_neural2() def __getitem__(self, idx): I1, I2, Carry, NewCarry = self.dataset_db.get_neural2_sample(idx) return (I1, I2, Carry), NewCarry def _encode_label(self, label): return F.one_hot(torch.tensor(label), num_classes = 2).type(torch.FloatTensor) ``` #### File: WAP/data/for_calibration.py ```python from abc import ABC, abstractmethod import ast import csv from enum import Enum import math from pathlib import Path import random import re import sqlite3 import torch import torch.nn.functional as F from torch.utils.data import Dataset import problog.logic from deepproblog.utils import bytes_to_tensor, tensor_to_bytes class RawWAPDatasetDatabase: def initialize(self): self.connection = sqlite3.connect(Path(__file__).parent / 'raw_wap_dataset.sqlite', detect_types = sqlite3.PARSE_DECLTYPES) sqlite3.register_adapter(bool, int) sqlite3.register_converter("BOOLEAN", lambda v: bool(int(v))) self.cursor = self.connection.cursor() if not self._is_WAP_samples_db_ready(): self.cursor.execute("CREATE TABLE wap_op1_raw_data ( WAP text, embedding blob, operator integer )") self.cursor.execute("CREATE TABLE wap_op2_raw_data ( WAP text, embedding blob, operator integer )") self.cursor.execute("CREATE TABLE wap_permute_raw_data ( WAP text, embedding blob, permutation integer )") self.cursor.execute("CREATE TABLE wap_swap_raw_data ( WAP text, embedding blob, swap boolean )") samples = self._read_samples_from_file() with self.connection: for sample in samples: zeros_embedding = tensor_to_bytes(torch.zeros(4096)) WAP, op1, op2, permutation, swapped = sample self.cursor.execute("INSERT INTO wap_op1_raw_data VALUES (:WAP, :embedding, :operator)", {'WAP': WAP, 'embedding': zeros_embedding, 'operator': op1}) self.cursor.execute("INSERT INTO wap_op2_raw_data VALUES (:WAP, :embedding, :operator)", {'WAP': WAP, 'embedding': zeros_embedding, 'operator': op2}) self.cursor.execute("INSERT INTO wap_permute_raw_data VALUES (:WAP, :embedding, :permutation)", {'WAP': WAP, 'embedding': zeros_embedding, 'permutation': permutation}) self.cursor.execute("INSERT INTO wap_swap_raw_data VALUES (:WAP, :embedding, :swap)", {'WAP': WAP, 'embedding': zeros_embedding, 'swap': swapped}) def get_sample_op1(self, i): self.cursor.execute(f"SELECT * FROM wap_op1_raw_data LIMIT 1 OFFSET {i};") result = self.cursor.fetchone() if result != []: return (*result,) else: return None def get_sample_op2(self, i): self.cursor.execute(f"SELECT * FROM wap_op2_raw_data LIMIT 1 OFFSET {i};") result = self.cursor.fetchone() if result != []: return (*result,) else: return None def get_sample_permute(self, i): self.cursor.execute(f"SELECT * FROM wap_permute_raw_data LIMIT 1 OFFSET {i};") result = self.cursor.fetchone() if result != []: return (*result,) else: return None def get_sample_swap(self, i): self.cursor.execute(f"SELECT * FROM wap_swap_raw_data LIMIT 1 OFFSET {i};") result = self.cursor.fetchone() if result != []: return (*result,) else: return None def get_length_op1(self): self.cursor.execute("SELECT COUNT(*) FROM wap_op1_raw_data") result = self.cursor.fetchone() if result != []: return result[0] else: return None def get_length_op2(self): self.cursor.execute("SELECT COUNT(*) FROM wap_op2_raw_data") result = self.cursor.fetchone() if result != []: return result[0] else: return None def get_length_permute(self): self.cursor.execute("SELECT COUNT(*) FROM wap_permute_raw_data") result = self.cursor.fetchone() if result != []: return result[0] else: return None def get_length_swap(self): self.cursor.execute("SELECT COUNT(*) FROM wap_swap_raw_data") result = self.cursor.fetchone() if result != []: return result[0] else: return None def update_embedding_op1(self, WAP, rnn): new_embedding = tensor_to_bytes(rnn.forward(problog.logic.Constant(WAP))) with self.connection: self.cursor.execute("UPDATE wap_op1_raw_data SET embedding = ? WHERE WAP = ?;", [new_embedding, WAP]) def update_embeddings_op1(self, rnn): self.cursor.execute(f"SELECT WAP FROM wap_op1_raw_data;") results = self.cursor.fetchall() for result in results: WAP, = result self.update_embedding_op1(WAP, rnn) def update_embedding_op2(self, WAP, rnn): new_embedding = tensor_to_bytes(rnn.forward(problog.logic.Constant(WAP))) with self.connection: self.cursor.execute("UPDATE wap_op2_raw_data SET embedding = ? WHERE WAP = ?;", [new_embedding, WAP]) def update_embeddings_op2(self, rnn): self.cursor.execute(f"SELECT WAP FROM wap_op2_raw_data;") results = self.cursor.fetchall() for result in results: WAP, = result self.update_embedding_op2(WAP, rnn) def update_embedding_permute(self, WAP, rnn): new_embedding = tensor_to_bytes(rnn.forward(problog.logic.Constant(WAP))) with self.connection: self.cursor.execute("UPDATE wap_permute_raw_data SET embedding = ? WHERE WAP = ?;", [new_embedding, WAP]) def update_embeddings_permute(self, rnn): self.cursor.execute(f"SELECT WAP FROM wap_permute_raw_data;") results = self.cursor.fetchall() for result in results: WAP, = result self.update_embedding_permute(WAP, rnn) def update_embedding_swap(self, WAP, rnn): new_embedding = tensor_to_bytes(rnn.forward(problog.logic.Constant(WAP))) with self.connection: self.cursor.execute("UPDATE wap_swap_raw_data SET embedding = ? WHERE WAP = ?;", [new_embedding, WAP]) def update_embeddings_swap(self, rnn): self.cursor.execute(f"SELECT WAP FROM wap_swap_raw_data;") results = self.cursor.fetchall() for result in results: WAP, = result self.update_embedding_swap(WAP, rnn) def _is_WAP_samples_db_ready(self): self.cursor.execute("SELECT * FROM sqlite_master WHERE type = 'table' AND tbl_name = 'wap_op1_raw_data';") wap_op1_raw_data_table_exists = (self.cursor.fetchall() != []) self.cursor.execute("SELECT * FROM sqlite_master WHERE type = 'table' AND tbl_name = 'wap_op2_raw_data';") wap_op2_raw_data_table_exists = (self.cursor.fetchall() != []) self.cursor.execute("SELECT * FROM sqlite_master WHERE type = 'table' AND tbl_name = 'wap_permute_raw_data';") wap_permute_raw_data_table_exists = (self.cursor.fetchall() != []) self.cursor.execute("SELECT * FROM sqlite_master WHERE type = 'table' AND tbl_name = 'wap_swap_raw_data';") wap_swap_raw_data_table_exists = (self.cursor.fetchall() != []) return (wap_op1_raw_data_table_exists and \ wap_op2_raw_data_table_exists and \ wap_permute_raw_data_table_exists and wap_swap_raw_data_table_exists) def _read_samples_from_file(self): inputs = [] with open(Path(__file__).parent / 'dev_formulas.csv', 'r') as dev_formulas_file: dev_formulas_rows = list(csv.reader(dev_formulas_file, delimiter = ',')) for dev_formulas_row in dev_formulas_rows: WAP, formula, _ = dev_formulas_row formula = formula.strip() operators = re.findall("([\+\-\*/])", formula) numbers = self._get_numbers(WAP) numbers_permuted = self._get_numbers(formula) permutation = self._get_permutation(numbers, numbers_permuted) swapped = self._get_swapped(formula) inputs.append([WAP, *operators, permutation, swapped]) return inputs def _get_numbers(self, s): return [int(r) for r in re.findall(r"\b(\d+)\b", s)] def _get_permutation(self, numbers, permutation): if numbers[0] == permutation[0] and \ numbers[1] == permutation[1]: return 0 elif numbers[0] == permutation[0] and \ numbers[1] == permutation[2]: return 1 elif numbers[0] == permutation[1] and \ numbers[1] == permutation[0]: return 2 elif numbers[0] == permutation[2] and \ numbers[1] == permutation[0]: return 3 elif numbers[0] == permutation[1] and \ numbers[1] == permutation[2]: return 4 elif numbers[0] == permutation[2] and \ numbers[1] == permutation[1]: return 5 def _get_swapped(self, formula): return re.match(".*[\+\-\*/]\(.*", formula) != None class RawWAPValidationDataset(Dataset, ABC): def __init__(self): super(Dataset, self).__init__() self.dataset_db = RawWAPDatasetDatabase() self.dataset_db.initialize() @abstractmethod def __len__(self): pass @abstractmethod def __getitem__(self, idx): pass @abstractmethod def update_embedding(self, WAP, rnn): pass @abstractmethod def update_embeddings(self, rnn): pass class RawWAPOpValidationDataset(RawWAPValidationDataset): mapping = { "+": 0, "-": 1, "*": 2, "/": 3 } def __init__(self): super().__init__() def _encode_operator(self, operator): return F.one_hot(torch.tensor(self.mapping[operator]), num_classes = 4).type(torch.FloatTensor) class RawWAPOp1ValidationDataset(RawWAPOpValidationDataset): def __init__(self): super().__init__() def __len__(self): return self.dataset_db.get_length_op1() def __getitem__(self, idx): _, embedding, operator = self.dataset_db.get_sample_op1(idx) return bytes_to_tensor(embedding), self._encode_operator(operator) def update_embedding(self, WAP, rnn): self.dataset_db.update_embedding_op1(WAP, rnn) def update_embeddings(self, rnn): self.dataset_db.update_embeddings_op1(rnn) class RawWAPOp2ValidationDataset(RawWAPOpValidationDataset): def __init__(self): super().__init__() def __len__(self): return self.dataset_db.get_length_op2() def __getitem__(self, idx): _, embedding, operator = self.dataset_db.get_sample_op2(idx) return bytes_to_tensor(embedding), self._encode_operator(operator) def update_embedding(self, WAP, rnn): self.dataset_db.update_embedding_op2(WAP, rnn) def update_embeddings(self, rnn): self.dataset_db.update_embeddings_op2(rnn) class RawWAPPermuteValidationDataset(RawWAPValidationDataset): def __init__(self): super().__init__() def __len__(self): return self.dataset_db.get_length_permute() def __getitem__(self, idx): _, embedding, permutation = self.dataset_db.get_sample_permute(idx) return bytes_to_tensor(embedding), self._encode_permutation(permutation) def update_embedding(self, WAP, rnn): self.dataset_db.update_embedding_permute(WAP, rnn) def update_embeddings(self, rnn): self.dataset_db.update_embeddings_permute(rnn) def _encode_permutation(self, permutation_number): return F.one_hot(torch.tensor(permutation_number), num_classes = 6).type(torch.FloatTensor) class RawWAPSwapValidationDataset(RawWAPValidationDataset): def __init__(self): super().__init__() def __len__(self): return self.dataset_db.get_length_swap() def __getitem__(self, idx): _, embedding, swap = self.dataset_db.get_sample_swap(idx) return bytes_to_tensor(embedding), self._encode_swap(swap) def update_embedding(self, WAP, rnn): self.dataset_db.update_embedding_swap(WAP, rnn) def update_embeddings(self, rnn): self.dataset_db.update_embeddings_swap(rnn) def _encode_swap(self, swapped): return F.one_hot(torch.tensor(int(swapped)), num_classes = 2).type(torch.FloatTensor) ``` #### File: examples/HWF/hwf.py ```python import fire from json import dumps from sys import argv from torch.optim import Adam from torch.utils.data import DataLoader as TorchDataLoader from deepproblog.engines import ApproximateEngine, ExactEngine from deepproblog.evaluate import get_confusion_matrix from deepproblog.model import Model from deepproblog.network import Network from deepproblog.calibrated_network import TemperatureScalingNetwork, NetworkECECollector from deepproblog.dataset import DataLoader from deepproblog.train import train_model from deepproblog.examples.HWF.data import HWFDataset, hwf_images from deepproblog.examples.HWF.data.for_calibration import RawHWFDatasetDatabase, RawHWFNumbersValidationDataset, RawHWFOperatorsValidationDataset from deepproblog.examples.HWF.network import SymbolEncoder, SymbolClassifier from deepproblog.heuristics import * from deepproblog.utils import format_time_precise, get_configuration, config_to_string def main( i = 0, calibrate = False, calibrate_after_each_train_iteration = False, logging = False ): configurations = { "method": ["exact"], "curriculum": [False], "N": [1, 3], "run": range(5), } configuration = get_configuration(configurations, i) name = "hwf_" + config_to_string(configuration) + "_" + format_time_precise() torch.manual_seed(configuration["run"]) N = configuration["N"] if configuration["method"] == "exact": if N > 3: exit() curriculum = configuration["curriculum"] print("Training HWF with N={} and curriculum={}".format(N, curriculum)) if curriculum: dataset_filter = lambda x: x <= N dataset = HWFDataset("train2", dataset_filter) val_dataset = HWFDataset("val", dataset_filter) test_dataset = HWFDataset("test", dataset_filter) else: dataset_filter = lambda x: x == N dataset = HWFDataset("train2", dataset_filter) val_dataset = HWFDataset("val", dataset_filter) test_dataset = HWFDataset("test", dataset_filter) loader = DataLoader(dataset, 32, shuffle = True) encoder = SymbolEncoder() network1 = SymbolClassifier(encoder, 10) network2 = SymbolClassifier(encoder, 4) networks_evolution_collectors = {} if calibrate == True: raw_hwf_dataset_database = RawHWFDatasetDatabase() raw_hwf_dataset_database.initialize(dataset_filter) raw_hwf_numbers_validation_dataset = RawHWFNumbersValidationDataset() raw_hwf_operators_validation_dataset = RawHWFOperatorsValidationDataset() net1_valid_loader = TorchDataLoader(raw_hwf_numbers_validation_dataset, 32, shuffle = True) net2_valid_loader = TorchDataLoader(raw_hwf_operators_validation_dataset, 32, shuffle = True) net1 = TemperatureScalingNetwork(network1, "net1", net1_valid_loader, Adam(network1.parameters(), lr = 3e-3), batching = True, calibrate_after_each_train_iteration = calibrate_after_each_train_iteration) net2 = TemperatureScalingNetwork(network2, "net2", net2_valid_loader, Adam(network2.parameters(), lr = 3e-3), batching = True, calibrate_after_each_train_iteration = calibrate_after_each_train_iteration) networks_evolution_collectors["calibration_collector"] = NetworkECECollector() else: net1 = Network(network1, "net1", Adam(network1.parameters(), lr = 3e-3), batching = True) net2 = Network(network2, "net2", Adam(network2.parameters(), lr = 3e-3), batching = True) model = Model("model.pl", [net1, net2]) model.add_tensor_source("hwf", hwf_images) heuristic = GeometricMean() if configuration["method"] == "exact": model.set_engine(ExactEngine(model), cache = True) elif configuration["method"] == "approximate": model.set_engine( ApproximateEngine( model, 1, heuristic, timeout = 30, ignore_timeout = True, exploration = True ) ) print("Training on size {}".format(N)) train_log = train_model( model, loader, 50, networks_evolution_collectors, log_iter = 50, inital_test = False, test_iter = 100, test = lambda x: [ ("Val_accuracy", get_confusion_matrix(x, val_dataset, eps = 1e-6).accuracy()), ("Test_accuracy", get_confusion_matrix(x, test_dataset, eps = 1e-6).accuracy()), ], ) if calibrate == True: net1.calibrate() net2.calibrate() model.save_state("models/" + name + ".pth") cm = get_confusion_matrix(model, test_dataset, eps = 1e-6, verbose = 0) final_acc = cm.accuracy() if logging == True: train_log.logger.comment("Accuracy {}".format(final_acc)) train_log.logger.comment(dumps(model.get_hyperparameters())) train_log.write_to_file("log/" + name) return [train_log, cm] if __name__ == "__main__": fire.Fire(main) ``` #### File: src/deepproblog/train.py ```python import signal import time from typing import Dict, List, Callable, Union from deepproblog.dataset import DataLoader from deepproblog.model import Model from deepproblog.query import Query from deepproblog.utils import load_list from deepproblog.utils.logger import Logger from deepproblog.utils.stop_condition import EpochStop from deepproblog.utils.stop_condition import StopCondition from .networks_evolution_collector import NetworksEvolutionCollector class TrainObject(object): """ An object that performs the training of the model and keeps track of the state of the training. """ def __init__(self, model: Model, networks_evolution_collectors: Dict[str, NetworksEvolutionCollector] = {}): self.model = model self.networks_evolution_collectors = networks_evolution_collectors self.logger = Logger() self.accumulated_loss = 0 self.i = 1 self.start = 0 self.loss_history = [] self.prev_iter_time = 0 self.epoch = 0 self.previous_handler = None self.interrupt = False self.hooks = [] self.timing = [0, 0, 0] def get_loss(self, batch: List[Query], backpropagate_loss: Callable) -> float: """ Calculates and propagates the loss for a given batch of queries and loss function. :param batch: The batch of queries. :param backpropagate_loss: The loss function. It should also perform the backpropagation. :return: The average loss over the batch """ total_loss = 0 result = self.model.solve(batch) for r in result: self.timing[0] += r.ground_time / len(batch) self.timing[1] += r.compile_time / len(batch) self.timing[2] += r.eval_time / len(batch) result = [ (result[i], batch[i]) for i in range(len(batch)) if len(result[i]) > 0 ] for r, q in result: total_loss += backpropagate_loss( r, q.p, weight=1 / len(result), q=q.substitute().query ) return total_loss def get_loss_with_negatives( self, batch: List[Query], backpropagate_loss: Callable ) -> float: """ Calculates and propagates the loss for a given batch of queries and loss function. This includes negative examples. Negative examples are found by using the query.replace_var method. :param batch: The batch of queries. :param backpropagate_loss: The loss function. It should also perform the backpropagation. :return: The average loss over the batch """ total_loss = 0 result = self.model.solve([q.variable_output() for q in batch]) result = [(result[i], batch[i]) for i in range(len(batch))] for r, q in result: expected = q.substitute().query try: total_loss += backpropagate_loss( r, q.p, weight=1 / len(result), q=expected ) except KeyError: self.get_loss([q], backpropagate_loss) neg_proofs = [x for x in r if x != expected] for neg in neg_proofs: # print('penalizing wrong answer {} vs {}'.format(q.substitute().query, k)) total_loss += backpropagate_loss( r, 0, weight=1 / (len(result) * len(neg_proofs)), q=neg ) return total_loss def train( self, loader: DataLoader, stop_criterion: Union[int, StopCondition], verbose: int = 1, loss_function_name: str = "cross_entropy", with_negatives: bool = False, log_iter: int = 100, initial_test: bool = True, **kwargs ) -> Logger: self.previous_handler = signal.getsignal(signal.SIGINT) loss_function = getattr(self.model.solver.semiring, loss_function_name) for networks_evolution_collector in self.networks_evolution_collectors.values(): networks_evolution_collector.collect_before_training(self.model.networks) self.accumulated_loss = 0 self.timing = [0, 0, 0] self.epoch = 0 self.start = time.time() self.prev_iter_time = time.time() epoch_size = len(loader) if "test" in kwargs and initial_test: value = kwargs["test"](self.model) self.logger.log_list(self.i, value) print("Test: ", value) if type(stop_criterion) is int: stop_criterion = EpochStop(stop_criterion) print("Training ", stop_criterion) while not (stop_criterion.is_stop(self) or self.interrupt): for networks_evolution_collector in self.networks_evolution_collectors.values(): networks_evolution_collector.collect_before_epoch(self.model.networks) epoch_start = time.time() self.model.optimizer.step_epoch() if verbose and epoch_size > log_iter: print("Epoch", self.epoch + 1) index_loader = load_list(loader.indices, loader.batch_size) for batch in loader: batch_indices = next(index_loader) if self.interrupt: break self.i += 1 for networks_evolution_collector in self.networks_evolution_collectors.values(): networks_evolution_collector.collect_before_iteration(self.model.networks) self.model.train() self.model.optimizer.zero_grad() if with_negatives: loss = self.get_loss_with_negatives(batch, loss_function) else: loss = self.get_loss(batch, loss_function) if self.i % log_iter == 0: self.loss_history.append(loss) self.accumulated_loss += loss self.model.optimizer.step() for networks_evolution_collector in self.networks_evolution_collectors.values(): networks_evolution_collector.collect_after_iteration(self.model.networks) self.log(verbose=verbose, log_iter=log_iter, **kwargs) for j, hook in self.hooks: if self.i % j == 0: hook(self) if stop_criterion.is_stop(self): break if verbose and epoch_size > log_iter: print("Epoch time: ", time.time() - epoch_start) self.epoch += 1 for networks_evolution_collector in self.networks_evolution_collectors.values(): networks_evolution_collector.collect_after_epoch(self.model.networks) if "snapshot_name" in kwargs: filename = "{}_final.mdl".format(kwargs["snapshot_name"]) print("Writing snapshot to " + filename) self.model.save_state(filename) for networks_evolution_collector in self.networks_evolution_collectors.values(): networks_evolution_collector.collect_after_training(self.model.networks) signal.signal(signal.SIGINT, self.previous_handler) return self.logger def log( self, snapshot_iter=None, log_iter=100, test_iter=1000, verbose=1, **kwargs ): iter_time = time.time() if ( "snapshot_name" in kwargs and snapshot_iter is not None and self.i % snapshot_iter == 0 ): filename = "{}_iter_{}.mdl".format(kwargs["snapshot_name"], self.i) print("Writing snapshot to " + filename) self.model.save_state(filename) if verbose and self.i % log_iter == 0: print( "Iteration: ", self.i, "\ts:%.4f" % (iter_time - self.prev_iter_time), "\tAverage Loss: ", self.accumulated_loss / log_iter, ) if len(self.model.parameters): print("\t".join(str(parameter) for parameter in self.model.parameters)) self.logger.log("time", self.i, iter_time - self.start) self.logger.log("loss", self.i, self.accumulated_loss / log_iter) self.logger.log("ground_time", self.i, self.timing[0] / log_iter) self.logger.log("compile_time", self.i, self.timing[1] / log_iter) self.logger.log("eval_time", self.i, self.timing[2] / log_iter) # for k in self.model.parameters: # self.logger.log(str(k), self.i, self.model.parameters[k]) # print(str(k), self.model.parameters[k]) self.accumulated_loss = 0 self.timing = [0, 0, 0] self.prev_iter_time = iter_time if "test" in kwargs and self.i % test_iter == 0: value = kwargs["test"](self.model) self.logger.log_list(self.i, value) print("Test: ", value) def write_to_file(self, *args, **kwargs): self.logger.write_to_file(*args, **kwargs) def train_model( model: Model, loader: DataLoader, stop_condition: Union[int, StopCondition], networks_evolution_collectors: Dict[str, NetworksEvolutionCollector] = {}, **kwargs ) -> TrainObject: train_object = TrainObject(model, networks_evolution_collectors) train_object.train(loader, stop_condition, **kwargs) return train_object ``` #### File: deepproblog/utils/__init__.py ```python import io import os import random import sys from configparser import ConfigParser from datetime import datetime from itertools import islice from pathlib import Path from statistics import mean, stdev from time import strftime from typing import Union, Any, Dict, List import torch from torch.utils.data import Dataset import problog from problog.logic import Term parser = problog.parser.PrologParser(problog.program.ExtendedPrologFactory()) cred = "\033[91m" cend = "\033[0m" cgreen = "\033[92m" def log_exists(location: Union[str, os.PathLike], name: str): return Path(location).glob(name + "*") def check_path(path: Union[str, os.PathLike]): path_dir = os.path.dirname(str(path)) if not os.path.exists(path_dir): os.makedirs(path_dir) def get_top_path(pattern: str, reverse=True): paths = sorted(Path(".").glob(pattern), reverse=reverse) if len(paths) > 0: return paths[0] return None def split(text: str, splitchar: str, lb="(", rb=")"): depth = 0 splits = [""] for c in text: if c in splitchar and depth == 0: splits.append("") continue if c in lb: depth += 1 if c in rb: depth -= 1 splits[-1] += c return splits def count_parameters(model): return sum(p.numel() for p in model.parameters() if p.requires_grad) def nth(iterable, n, default=None): """Returns the nth item or a default value""" return next(islice(iterable, n, None), default) def get_configuration(parameters: dict, i: int) -> dict: config = dict() for k in parameters: l = len(parameters[k]) j, i = i % l, i // l config[k] = parameters[k][j] return config def parse(string: str) -> Term: parsed = parser.parseString(string) for term in parsed: return term class Table(object): class Dimension(object): def __init__(self, name): self.name = name self.type = "categorical" self.categories = set() def add_value(self, val): self.categories.add(val) def __repr__(self): return self.name def __init__(self, *dimensions): self.data = [] self.dimensions = [Table.Dimension(d) for d in dimensions] def store(self, *args, **kwargs): if len(args) == 0: data = tuple(kwargs[str(d)] for d in self.dimensions) else: if len(args) != len(self.dimensions): raise ValueError( "Data dimensions {} not equal to table dimensions {}".format( len(args), len(self.dimensions) ) ) data = args self.data.append(data) for i, d in enumerate(self.dimensions): d.add_value(data[i]) def get_dimension_index(self, dim): for i, d in enumerate(self.dimensions): if hash(dim) == hash(d): return i raise ValueError("{} not in dimensions".format(dim)) def aggregate(self, l): if l is None or len(l) == 0: return "" mu, sig = mean(l), stdev(l) return "{:.5f} ± {:.5f}".format(mu, sig) def format(self, x, y, val, **kwargs): categories = tuple(kwargs.items()) categories = tuple((self.get_dimension_index(c[0]), c[1]) for c in categories) x = self.get_dimension_index(x) y = self.get_dimension_index(y) val = self.get_dimension_index(val) x_cats = list(self.dimensions[x].categories) y_cats = list(self.dimensions[y].categories) data = [[None] * len(x_cats) for _ in y_cats] for d in self.data: j = x_cats.index(d[x]) i = y_cats.index(d[y]) correct_categories = True for k, v in categories: if d[k] != v: correct_categories = False break if correct_categories: if data[i][j] is None: data[i][j] = [] data[i][j].append(d[val]) data = [[self.aggregate(d) for d in row] for row in data] return TabularFormatter.format(data, x_cats, y_cats) class TabularFormatter(object): @staticmethod def format(data, x=None, y=None): if y is not None: data = [[y[i]] + data[i] for i in range(len(data))] if x is not None: data = [[""] + x] + data else: if x is not None: data = x + data nr_columns = len(data[0]) column_widths = [0] * nr_columns for row in data: for i, value in enumerate(row): column_widths[i] = max(column_widths[i], len(str(value))) padded_rows = [ "\t".join( [ " " * (column_widths[i] - len(str(v))) + str(v) for i, v in enumerate(row) ] ) for row in data ] return "\n".join(padded_rows) def format_time(): return strftime("_%y%m%d_%H%M") def format_time_precise(): return datetime.utcnow().strftime("%y%m%d_%H%M%S%f") class NoConfigException(Exception): def __str__(self): return "No config file specified as an argument." def load_config(filename: str = None): """ Loads a config file. :param filename: Filename of configuration file to load. If None, it uses the first commandline argument as filename. :return: None """ try: if filename is None: filename = sys.argv[1] config = ConfigParser() config.read(filename) return config["Default"] except IndexError: raise NoConfigException() def term2list2(term: Term): result = [] while ( not problog.logic.is_variable(term) and term.functor == "." and term.arity == 2 ): result.append(term.args[0]) term = term.args[1] if not term == problog.logic.Term("[]"): raise ValueError("Expected fixed list.") return result def config_to_string(configuration: Dict[str, Any]) -> str: return "_".join( "{}_{}".format(parameter, configuration[parameter]) for parameter in configuration ) def tensor_to_bytes(tensor): buffer = io.BytesIO() torch.save(tensor, buffer) buffer.seek(0) return buffer.read() def bytes_to_tensor(blob): buffer = io.BytesIO() buffer.write(blob) buffer.seek(0) return torch.load(buffer) class MutatingRawDataset(Dataset): def __init__(self, inner_raw_dataset, mutator, p, seed = None): super(Dataset, self).__init__() self.inner_raw_dataset = inner_raw_dataset self.mutator = mutator self.p = p if seed is None: seed = random.SystemRandom().randint(0, 2 ** 64) self.seed = seed def __len__(self): return len(self.inner_raw_dataset) def __getitem__(self, idx): rng = random.Random(self.seed ^ idx) if rng.random() < self.p: return self.mutator(idx, self.inner_raw_dataset[idx]) else: return self.inner_raw_dataset[idx] def split_dataset(dataset: Dataset, split_ratio: float = 0.8): dataset_length = len(dataset) dataset_part_1 = dataset.subset(round(split_ratio * dataset_length)) dataset_part_2 = dataset.subset(round(split_ratio * dataset_length), dataset_length) return [dataset_part_1, dataset_part_2] def load_list(the_list: List[Any], batch_size: int): if batch_size < 1: return [] start = 0 end = batch_size while start < len(the_list): yield the_list[start:end] start += batch_size end += batch_size ``` #### File: deepproblog/src/test.py ```python import fire def main(infile_name): with open(infile_name, "r") as f: for l in f: print(l) if __name__ == "__main__": fire.Fire(main) ``` #### File: deepproblog/tests/test_dataset.py ```python import copy from deepproblog.dataset import ( DataLoader, QueryDataset, MutatingDataset, NumericIncorrectOutputMutator, NoiseMutatorDecorator, ) from deepproblog.query import Query from deepproblog.utils import parse from problog.logic import Term, Constant def test_query_dataset(tmpdir): with tmpdir.join("queries.txt").open(mode="wt") as tmpfile: tmpfile.write( "a(2,3,5).\nsubs(a(3,3,b),[[b,123]]).\n0.5 :: subs(a(3,3,c),[[c,123]]).\n0.7 :: b(1,2,3)." ) dataset_file = QueryDataset(tmpdir.join("queries.txt")) dataset_list = QueryDataset( [ Query(parse("a(2,3,5).")), Query(parse("a(3,3,b)."), substitution={Term("b"): Constant(123)}), Query(parse("a(3,3,c)."), substitution={Term("c"): Constant(123)}, p=0.5), Query(parse("b(1,2,3)."), p=0.7), ] ) assert len(dataset_file) == 4 assert len(dataset_list) == 4 assert dataset_file.queries == dataset_list.queries assert dataset_list.to_queries() == dataset_list.queries def test_dataset_write_to_file(tmpdir): dataset_list = QueryDataset( [ Query(parse("a(2,3,5).")), Query(parse("a(3,3,b)."), substitution={Term("b"): Constant(123)}), ] ) with tmpdir.join("queries_out.txt").open(mode="wt") as tmpfile: dataset_list.write_to_file(tmpfile) # Test that we can reload it. dataset_reloaded = QueryDataset(tmpdir.join("queries_out.txt")) assert dataset_reloaded.queries == dataset_list.queries def test_subset(): dataset = QueryDataset( [ Query(parse("a(2,3,5).")), Query(parse("a(3,3,b)."), substitution={Term("b"): Constant(123)}), ] ) assert dataset.subset(1).to_queries() == [dataset.queries[0]] def test_extension(): dataset1 = QueryDataset( [ Query(parse("a(2,3,5).")), Query(parse("a(3,3,b)."), substitution={Term("b"): Constant(123)}), ] ) dataset2 = QueryDataset([Query(parse("a(1,2,3)."))]) assert (dataset1 + dataset2).to_queries() == dataset1.queries + dataset2.queries def test_mutating_dataset(): dataset1 = QueryDataset( [ Query(parse("a(2,3,5).")), Query(parse("a(3,3,b)."), substitution={Term("b"): Constant(123)}), ] ) def mutator(i: int, q: Query): q2 = copy.copy(q) q2.visited = True return q2 mutated = MutatingDataset(dataset1, mutator) assert all(hasattr(e, "visited") for e in mutated.to_queries()) def test_noise_mutator(): """Test that the noise is approximately correct""" hit_count = 0 def inner_mutator(i: int, q: Query): nonlocal hit_count hit_count += 1 return q mutator = NoiseMutatorDecorator(p=0.75, inner_mutator=inner_mutator, seed=123) total_count = 2000 for i in range(total_count): mutator(i, Query(Term("dummy"))) assert 0.7 < hit_count / total_count < 0.8 # Check we get the same result twice hit_count1 = hit_count hit_count = 0 for i in range(total_count): mutator(i, Query(Term("dummy"))) assert hit_count == hit_count1 def test_numeric_incorrect_output_mutator(): mutator = NumericIncorrectOutputMutator(domain=list(range(10)), seed=123) r1 = mutator(1, Query(parse("a(1,2,3)."))) r2 = mutator(1, Query(parse("a(1,2,3)."))) r3 = mutator(2, Query(parse("a(1,2,3)."))) r4 = mutator(2, Query(parse("a(1,2,3)."))) assert r1 == r2 assert r3 == r4 assert r1 != r3 assert r1.query.args[-1].value != 3 assert r3.query.args[-1].value != 3 def test_dataloader(): dataset = QueryDataset( [ Query(parse("a(2,3,5).")), Query(parse("a(1,2,3).")), Query(parse("a(3,3,b)."), substitution={Term("b"): Constant(123)}), ] ) loader = DataLoader(dataset, 2, False) one_epoch = list(loader) assert one_epoch[0] + one_epoch[1] == dataset.queries ``` #### File: deepproblog/tests/test_engine_utils.py ```python import pytest import deepproblog.engines.engine import deepproblog.engines.utils from deepproblog.engines import ApproximateEngine from deepproblog.engines.prolog_engine.swi_program import SWIProgram from deepproblog.heuristics import geometric_mean from deepproblog.model import Model from deepproblog.query import Query from deepproblog.utils import parse initial_program = """ parent(ann,steve). parent(ann,amy). parent(amy,amelia). """ def _create_model() -> Model: """Setup code: Load a program minimally""" model = Model(initial_program, [], load=False) engine = ApproximateEngine(model, 1, geometric_mean) model.set_engine(engine) return model def test_with_terms(): """Test to ensure the context manager correctly registers and un-registers clauses""" model = _create_model() program: SWIProgram = model.solver.program pl_query_term = parse("a(2,2).") pl_query_term2 = parse("b(2,3).") def _verify_not_registered(): """Test to verify that the atoms were not registered""" assert len(program.query("fa(_,_,a(2,2),none).")) == 0 assert len(program.query("cl(_,b(_,_),_).")) == 0 r = model.solve([Query(pl_query_term), Query(pl_query_term2)]) assert len(r) == 2 assert len(r[0].result) == 0 assert len(r[1].result) == 0 _verify_not_registered() with deepproblog.engines.utils.with_terms( model, [parse("a(2, 2)."), parse("b(X, Y) :- Y is X + 1.")] ): assert len(program.query("fa(_,_,a(2,2),none).")) == 1 assert len(program.query("cl(_,b(_,_),_).")) == 1 r = model.solve([Query(pl_query_term), Query(pl_query_term2)]) assert len(r) == 2 assert len(r[0].result) == 1 assert pytest.approx(1.0) == r[0].result[pl_query_term] assert len(r[1].result) == 1 assert pytest.approx(1.0) == r[0].result[pl_query_term] _verify_not_registered() def test_with_terms_grandparent(): model = _create_model() program: SWIProgram = model.solver.program # The first statement is provable, the second is not. pl_query_term = parse("grandparent(ann,amelia).") pl_query_term2 = parse("grandparent(ann,steve).") def _verify_not_registered(): """Test to verify that the atoms were not registered""" assert len(program.query("cl(_,grandparent(_,_),_).")) == 0 r = model.solve([Query(pl_query_term), Query(pl_query_term2)]) assert len(r) == 2 assert len(r[0].result) == 0 assert len(r[1].result) == 0 _verify_not_registered() with deepproblog.engines.utils.with_terms( model, [parse("grandparent(X, Y) :- parent(X,Z), parent(Z,Y).")] ): assert len(program.query("cl(_,grandparent(_,_),_).")) == 1 r = model.solve([Query(pl_query_term), Query(pl_query_term2)]) assert len(r) == 2 assert len(r[0].result) == 1 assert pytest.approx(1.0) == r[0].result[pl_query_term] assert len(r[1].result) == 0 _verify_not_registered() ```
{ "source": "joshua-s/django-channels-handlers", "score": 2 }
#### File: django-channels-handlers/channels_handlers/consumers.py ```python import json class ConsumerHandlerMixin: """ Integrates one or more handlers with a Django Channels JsonWebsocketConsumer """ handler_classes = [] models = [] def __init__(self, *args, **kwargs): self._initialize_handlers() super().__init__(*args, **kwargs) def _initialize_handlers(self): """ Instantiates any provided handlers with the proper context """ self.handlers = [handler(self) for handler in self.handler_classes] def handle_message(self, message): for handler in self.handlers: handler.handle_message(message) def serialize_message(self, message): return message.json() def deserialize_message(self, pickled_message): return json.loads(pickled_message) @classmethod def encode_json(cls, content): try: return content.json() except AttributeError: return super().encode_json(content) class AsyncConsumerHandlerMixin(ConsumerHandlerMixin): """ Asynchronous version of ConsumerHandlerMixin for usage with AsyncJsonWebsocketConsumer """ async def handle_message(self, message): for handler in self.handlers: await handler.handle_message(message) @classmethod async def encode_json(cls, content): try: return content.json() except AttributeError: return await super().encode_json(content) ``` #### File: django-channels-handlers/channels_handlers/handlers.py ```python import pydantic class MessageHandler: """ Executes different actions based on message type """ namespace = "request" handled_types = {} models = {} def __init__(self, consumer): self.consumer = consumer def _get_handler_function(self, message): # Check for type if "type" not in message: raise ValueError("Message must have a type") # Get handler function name try: # Check if a custom handler is defined func_name = self.handled_types[message["type"]] except KeyError: message_namespace, message_function = message.type.split(".") if message_namespace == self.namespace and callable( getattr(self, message_function, None) ): # We can automatically determine the name func_name = message_function else: # Silently exit if the handler does not recognize the message type return return getattr(self, func_name) def _run_message_validation(self, message): try: return self.construct_message(message.pop("type"), message) except KeyError: return message def construct_message(self, message_type, data): model_class = self.models.get(message_type) return model_class(**data) def handle_message(self, message): """ Handles the given message :param message: The message to handle :returns: The results of the handling function or None if the handler does not recognize the message type """ # Get handler function handler_function = self._get_handler_function(message) # Validate message message = self.validate_message(message) # Fire handler actions return handler_function(message) def receive_json(self, json): # Execute any parent logic first super().receive_json(json) # Handle message self.handle_message(json) def validate_message(self, message): try: return self._run_message_validation(message) except pydantic.ValidationError as e: self.consumer.send_json( content={ "type": f"{self.namespace}.invalid_message", "errors": e.errors(), }, close=4002, ) class AsyncMessageHandler(MessageHandler): async def handle_message(self, message): """ Handles the given message :param message: The message to handle :returns: The results of the handling function or None if the handler does not recognize the message type """ # Get handler function handler_function = self._get_handler_function(message) # Validate message message = await self.validate_message(message) # Fire handler actions return await handler_function(message) async def receive_json(self, json): # Execute any parent logic first await super().receive_json(json) # Handle message await self.handle_message(json) async def validate_message(self, message): try: return self._run_message_validation(message) except pydantic.ValidationError as e: await self.consumer.send_json( content={ "type": f"{self.namespace}.invalid_message", "errors": e.errors(), }, close=4002, ) ```
{ "source": "joshua-s/fjord", "score": 2 }
#### File: fjord/analytics/views.py ```python import json from datetime import datetime, timedelta from django.http import HttpResponse from django.shortcuts import get_object_or_404, render from elasticutils.contrib.django import F, es_required_or_50x from funfactory.urlresolvers import reverse from mobility.decorators import mobile_template from tower import ugettext as _ from fjord.analytics.tools import ( JSONDatetimeEncoder, generate_query_parsed, counts_to_options, zero_fill) from fjord.base.helpers import locale_name from fjord.base.util import ( check_new_user, smart_int, smart_date, Atom1FeedWithRelatedLinks) from fjord.feedback.models import Response, ResponseMappingType @check_new_user @mobile_template('analytics/{mobile/}response.html') def response_view(request, responseid, template): response = get_object_or_404(Response, id=responseid) # We don't pass the response directly to the template and instead # do some data tweaks here to make it more palatable for viewing. return render(request, template, { 'response': response, }) def generate_json_feed(request, search): """Generates JSON feed for first 100 results""" search_query = request.GET.get('q', None) responses = search.values_dict()[:100] json_data = { 'total': len(responses), 'results': list(responses), 'query': search_query } return HttpResponse( json.dumps(json_data, cls=JSONDatetimeEncoder), mimetype='application/json') def generate_atom_feed(request, search): """Generates ATOM feed for first 100 results""" search_query = request.GET.get('q', None) if search_query: title = _(u'Firefox Input: {query}').format(query=search_query) else: title = _(u'Firefox Input') # Build the non-atom dashboard url and maintain all the # querystring stuff we have dashboard_url = request.build_absolute_uri() dashboard_url = dashboard_url.replace('format=atom', '') dashboard_url = dashboard_url.replace('&&', '&') if dashboard_url.endswith(('?', '&')): dashboard_url = dashboard_url[:-1] feed = Atom1FeedWithRelatedLinks( title=title, link=dashboard_url, description=_('Search Results From Firefox Input'), author_name=_('Firefox Input'), ) for response in search[:100]: categories = { 'sentiment': _('Happy') if response.happy else _('Sad'), 'platform': response.platform, 'locale': response.locale } categories = (':'.join(item) for item in categories.items()) link_url = reverse('response_view', args=(response.id,)) link_url = request.build_absolute_uri(link_url) feed.add_item( title=_('Response id: {id}').format(id=response.id), description=response.description, link=link_url, pubdate=response.created, categories=categories, link_related=response.url_domain, ) return HttpResponse( feed.writeString('utf-8'), mimetype='application/atom+xml') def generate_dashboard_url(request, output_format='atom', viewname='dashboard'): """For a given request, generates the dashboard url for the given format""" qd = request.GET.copy() # Remove anything from the querystring that isn't good for a feed: # page, start_date, end_date, etc. for mem in qd.keys(): if mem not in ('happy', 'locale', 'platform', 'product', 'version', 'q'): del qd[mem] qd['format'] = output_format return reverse(viewname) + '?' + qd.urlencode() @check_new_user @es_required_or_50x(error_template='analytics/es_down.html') def dashboard(request): template = 'analytics/dashboard.html' output_format = request.GET.get('format', None) page = smart_int(request.GET.get('page', 1), 1) # Note: If we add additional querystring fields, we need to add # them to generate_dashboard_url. search_happy = request.GET.get('happy', None) search_platform = request.GET.get('platform', None) search_locale = request.GET.get('locale', None) search_product = request.GET.get('product', None) search_version = request.GET.get('version', None) search_query = request.GET.get('q', None) search_date_start = smart_date( request.GET.get('date_start', None), fallback=None) search_date_end = smart_date( request.GET.get('date_end', None), fallback=None) search_bigram = request.GET.get('bigram', None) selected = request.GET.get('selected', None) filter_data = [] current_search = {'page': page} search = ResponseMappingType.search() f = F() # If search happy is '0' or '1', set it to False or True, respectively. search_happy = {'0': False, '1': True}.get(search_happy, None) if search_happy in [False, True]: f &= F(happy=search_happy) current_search['happy'] = int(search_happy) def unknown_to_empty(text): """Convert "Unknown" to "" to support old links""" return u'' if text.lower() == u'unknown' else text if search_platform is not None: f &= F(platform=unknown_to_empty(search_platform)) current_search['platform'] = search_platform if search_locale is not None: f &= F(locale=unknown_to_empty(search_locale)) current_search['locale'] = search_locale if search_product is not None: f &= F(product=unknown_to_empty(search_product)) current_search['product'] = search_product if search_version is not None: # Note: We only filter on version if we're filtering on # product. f &= F(version=unknown_to_empty(search_version)) current_search['version'] = search_version if search_date_start is None and search_date_end is None: selected = '7d' if search_date_end is None: search_date_end = datetime.now() if search_date_start is None: search_date_start = search_date_end - timedelta(days=7) current_search['date_end'] = search_date_end.strftime('%Y-%m-%d') # Add one day, so that the search range includes the entire day. end = search_date_end + timedelta(days=1) # Note 'less than', not 'less than or equal', because of the added # day above. f &= F(created__lt=end) current_search['date_start'] = search_date_start.strftime('%Y-%m-%d') f &= F(created__gte=search_date_start) if search_query: current_search['q'] = search_query es_query = generate_query_parsed('description', search_query) search = search.query_raw(es_query) if search_bigram is not None: f &= F(description_bigrams=search_bigram) filter_data.append({ 'display': _('Bigram'), 'name': 'bigram', 'options': [{ 'count': 'all', 'name': search_bigram, 'display': search_bigram, 'value': search_bigram, 'checked': True }] }) search = search.filter(f).order_by('-created') # If the user asked for a feed, give him/her a feed! if output_format == 'atom': return generate_atom_feed(request, search) elif output_format == 'json': return generate_json_feed(request, search) # Search results and pagination if page < 1: page = 1 page_count = 20 start = page_count * (page - 1) end = start + page_count search_count = search.count() opinion_page = search[start:end] # Navigation facet data facets = search.facet( 'happy', 'platform', 'locale', 'product', 'version', filtered=bool(search._process_filters(f.filters))) # This loop does two things. First it maps 'T' -> True and 'F' -> # False. This is probably something EU should be doing for # us. Second, it restructures the data into a more convenient # form. counts = { 'happy': {}, 'platform': {}, 'locale': {}, 'product': {}, 'version': {} } for param, terms in facets.facet_counts().items(): for term in terms: name = term['term'] if name == 'T': name = True elif name == 'F': name = False counts[param][name] = term['count'] def empty_to_unknown(text): return _('Unknown') if text == u'' else text filter_data.extend([ counts_to_options( counts['happy'].items(), name='happy', display=_('Sentiment'), display_map={True: _('Happy'), False: _('Sad')}, value_map={True: 1, False: 0}, checked=search_happy), counts_to_options( counts['product'].items(), name='product', display=_('Product'), display_map=empty_to_unknown, checked=search_product) ]) # Only show the version if we're showing a specific # product. if search_product: filter_data.append( counts_to_options( counts['version'].items(), name='version', display=_('Version'), display_map=empty_to_unknown, checked=search_version) ) filter_data.extend( [ counts_to_options( counts['platform'].items(), name='platform', display=_('Platform'), display_map=empty_to_unknown, checked=search_platform), counts_to_options( counts['locale'].items(), name='locale', display=_('Locale'), checked=search_locale, display_map=locale_name), ] ) # Histogram data happy_data = [] sad_data = [] happy_f = f & F(happy=True) sad_f = f & F(happy=False) histograms = search.facet_raw( happy={ 'date_histogram': {'interval': 'day', 'field': 'created'}, 'facet_filter': search._process_filters(happy_f.filters) }, sad={ 'date_histogram': {'interval': 'day', 'field': 'created'}, 'facet_filter': search._process_filters(sad_f.filters) }, ).facet_counts() # p['time'] is number of milliseconds since the epoch. Which is # convenient, because that is what the front end wants. happy_data = dict((p['time'], p['count']) for p in histograms['happy']) sad_data = dict((p['time'], p['count']) for p in histograms['sad']) zero_fill(search_date_start, search_date_end, [happy_data, sad_data]) histogram = [ {'label': _('Happy'), 'name': 'happy', 'data': sorted(happy_data.items())}, {'label': _('Sad'), 'name': 'sad', 'data': sorted(sad_data.items())}, ] return render(request, template, { 'opinions': opinion_page, 'opinion_count': search_count, 'filter_data': filter_data, 'histogram': histogram, 'page': page, 'prev_page': page - 1 if start > 0 else None, 'next_page': page + 1 if end < search_count else None, 'current_search': current_search, 'selected': selected, 'atom_url': generate_dashboard_url(request), }) ``` #### File: fjord/base/util.py ```python from functools import wraps import datetime import time from django.contrib.auth.decorators import permission_required from django.http import HttpResponseRedirect from django.utils.dateparse import parse_date from django.utils.feedgenerator import Atom1Feed from funfactory.urlresolvers import reverse from product_details import product_details from rest_framework.throttling import AnonRateThrottle from statsd import statsd def translate_country_name(current_language, country_code, country_name, country_name_l10n): """Translates country name from product details or gettext It might seem a bit weird we're not doing the _lazy gettext translation here, but if we did, then we'd be translating a variable value rather than a string and then it wouldn't get picked up by extract script. :arg current_language: the language of the user viewing the page :arg country_code: the iso 3166 two-letter country code :arg country_name: the country name :arg country_name_l10n: the country name wrapped in a lazy gettext call :returns: translated country name """ # FIXME: this is a lousy way to alleviate the problem where we # have a "locale" and we really need a "language". language_fix = { 'es': 'es-ES', } current_language = language_fix.get(current_language, current_language) # If the country name has been translated, then use that if unicode(country_name) != unicode(country_name_l10n): return country_name_l10n current_language = current_language.split('-') current_language[0] = current_language[0].lower() if len(current_language) > 1: current_language[1] = current_language[1].upper() current_language = '-'.join(current_language) country_code = country_code.lower() try: countries = product_details.get_regions(current_language) except IOError: return country_name return countries.get(country_code, country_name) def smart_truncate(content, length=100, suffix='...'): """Truncate text at space before length bound. :arg content: string to truncate :arg length: length to truncate at :arg suffix: text to append to truncated content :returns: string Example: >>> smart_truncate('abcde fghij', length=8) 'abcde...' >>> smart_truncate('abcde fghij', length=100) 'abcde fghij' """ if len(content) <= length: return content else: return content[:length].rsplit(' ', 1)[0] + suffix def smart_str(s, fallback=u''): """Returns the string or the fallback if it's not a string""" if isinstance(s, basestring): return s return fallback def smart_int(s, fallback=0): """Convert a string to int, with fallback for invalid strings or types.""" try: return int(float(s)) except (ValueError, TypeError, OverflowError): return fallback def smart_date(s, fallback=None): """Convert a string to a datetime.date with a fallback for invalid input. :arg s: The string to convert to a date. :arg fallback: Value to use in case of an error. Default: ``None``. """ if isinstance(s, datetime.date): return s try: dt = parse_date(s) # The strftime functions require a year >= 1900, so if this # has a year before that, then we treat it as an invalid date so # later processing doesn't get hosed. if dt and dt.year >= 1900: return dt except (ValueError, TypeError): pass return fallback def smart_bool(s, fallback=False): """Convert a string that has a semantic boolean value to a real boolean. Note that this is not the same as ``s`` being "truthy". The string ``'False'`` will be returned as False, even though it is Truthy, and non- boolean values like ``'apple'`` would return the fallback parameter, since it doesn't represent a boolean value. """ try: s = s.lower() if s in ['true', 't', 'yes', 'y', '1']: return True elif s in ['false', 'f', 'no', 'n', '0']: return False except AttributeError: pass return fallback def epoch_milliseconds(d): """Convert a datetime to a number of milliseconds since the epoch.""" return time.mktime(d.timetuple()) * 1000 class FakeLogger(object): """Fake logger that we can pretend is a Python Logger Why? Well, because Django has logging settings that prevent me from setting up a logger here that uses the stdout that the Django BaseCommand has. At some point p while fiddling with it, I figured, 'screw it--I'll just write my own' and did. The minor ramification is that this isn't a complete implementation so if it's missing stuff, we'll have to add it. """ def __init__(self, stdout): self.stdout = stdout def _out(self, level, msg, *args): msg = msg % args self.stdout.write('%s %-8s: %s\n' % ( time.strftime('%H:%M:%S'), level, msg)) def info(self, msg, *args): self._out('INFO', msg, *args) def error(self, msg, *args): self._out('ERROR', msg, *args) class Atom1FeedWithRelatedLinks(Atom1Feed): """Atom1Feed with related links This adds a "link_related" item as:: <link rel="related">url</link> """ def add_item_elements(self, handler, item): super(Atom1FeedWithRelatedLinks, self).add_item_elements(handler, item) if item.get('link_related'): handler.addQuickElement( 'link', attrs={'href': item['link_related'], 'rel': 'related'}) class MeasuredAnonRateThrottle(AnonRateThrottle): """On throttle failure, does a statsd call""" def throttle_failure(self): statsd.incr('api.throttle.failure') def check_new_user(fun): @wraps(fun) def _wrapped_view(request, *args, **kwargs): # Do this here to avoid circular imports from fjord.base.models import Profile try: request.user.profile except AttributeError: pass except Profile.DoesNotExist: url = reverse('new-user-view') + '?next=' + request.path return HttpResponseRedirect(url) return fun(request, *args, **kwargs) return _wrapped_view analyzer_required = permission_required( 'analytics.can_view_dashboard', raise_exception=True) ``` #### File: feedback/migrations/0009_backfill_again.py ```python import os from south.v2 import DataMigration from django.conf import settings # Does a second pass on the data migration to catch the responses that # were being created when the migration was happening and thus didn't # get updated. class Migration(DataMigration): def forwards(self, orm): working_set = orm.Response.objects.filter(product='') if not getattr(settings, 'TEST'): print os.path.basename(__file__), '{0} responses to update'.format(len(working_set)) for resp in working_set: # This replicates the logic in Response.infer_product. if resp.platform == u'Unknown': resp.product = u'Unknown' resp.channel = u'Unknown' resp.version = u'Unknown' else: if resp.platform == u'FirefoxOS': resp.product = u'Firefox OS' elif resp.platform == u'Android': resp.product = u'Firefox for Android' else: resp.product = u'Firefox' resp.channel = u'stable' resp.version = resp.browser_version resp.save() def backwards(self, orm): pass models = { 'feedback.response': { 'Meta': {'ordering': "['-created']", 'object_name': 'Response'}, 'browser': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'browser_version': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'channel': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'description': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'device': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}), 'happy': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'locale': ('django.db.models.fields.CharField', [], {'max_length': '8', 'blank': 'True'}), 'manufacturer': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}), 'platform': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'prodchan': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'product': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'translated_description': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'url': ('django.db.models.fields.URLField', [], {'max_length': '200', 'blank': 'True'}), 'user_agent': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}), 'version': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}) }, 'feedback.responseemail': { 'Meta': {'object_name': 'ResponseEmail'}, 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'opinion': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['feedback.Response']"}) } } complete_apps = ['feedback'] symmetrical = True ``` #### File: feedback/migrations/0018_strip_whitespace.py ```python import os from south.v2 import DataMigration from django.conf import settings class Migration(DataMigration): def forwards(self, orm): affected_count = 0 working_set = orm.Response.objects.all() for resp in working_set: resp_stripped = resp.description.strip() if resp.description != resp_stripped: resp.description = resp_stripped resp.save() affected_count += 1 if not getattr(settings, 'TEST'): print os.path.basename(__file__), 'Stripped {0} descriptions'.format(affected_count) def backwards(self, orm): raise RuntimeError("Cannot reverse this migration.") models = { 'feedback.response': { 'Meta': {'ordering': "['-created']", 'object_name': 'Response'}, 'browser': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'browser_version': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'channel': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'country': ('django.db.models.fields.CharField', [], {'default': "u''", 'max_length': '4', 'null': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'description': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'device': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}), 'happy': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'locale': ('django.db.models.fields.CharField', [], {'max_length': '8', 'blank': 'True'}), 'manufacturer': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}), 'platform': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'prodchan': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'product': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'translated_description': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'url': ('django.db.models.fields.URLField', [], {'max_length': '200', 'blank': 'True'}), 'user_agent': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}), 'version': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}) }, 'feedback.responseemail': { 'Meta': {'object_name': 'ResponseEmail'}, 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'opinion': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['feedback.Response']"}) } } complete_apps = ['feedback'] symmetrical = True ``` #### File: feedback/migrations/0020_add_initial_products.py ```python import datetime from south.db import db from south.v2 import DataMigration from django.db import models class Migration(DataMigration): def forwards(self, orm): Product = orm['feedback.Product'] p = Product( enabled=True, notes=u'', display_name=u'Firefox', db_name=u'Firefox', slug=u'firefox', on_dashboard=True ) p.save() p = Product( enabled=True, notes=u'', display_name=u'Firefox for Android', db_name=u'Firefox for Android', slug=u'android', on_dashboard=True ) p.save() p = Product( enabled=True, notes=u'', display_name=u'Firefox OS', db_name=u'Firefox OS', slug=u'fxos', on_dashboard=True ) p.save() p = Product( enabled=True, notes=u'', display_name=u'Firefox Metro', db_name=u'Firefox Metro', slug=u'metrofirefox', on_dashboard=False ) p.save() def backwards(self, orm): Product = orm['feedback.Product'] Product.objects.all().delete() models = { u'feedback.product': { 'Meta': {'object_name': 'Product'}, 'db_name': ('django.db.models.fields.CharField', [], {'max_length': '20'}), 'display_name': ('django.db.models.fields.CharField', [], {'max_length': '20'}), 'enabled': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'notes': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'on_dashboard': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'slug': ('django.db.models.fields.CharField', [], {'max_length': '20'}) }, u'feedback.response': { 'Meta': {'ordering': "['-created']", 'object_name': 'Response'}, 'browser': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'browser_version': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'channel': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'country': ('django.db.models.fields.CharField', [], {'default': "u''", 'max_length': '4', 'null': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'description': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'device': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}), 'happy': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'locale': ('django.db.models.fields.CharField', [], {'max_length': '8', 'blank': 'True'}), 'manufacturer': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}), 'platform': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'prodchan': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'product': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'translated_description': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'url': ('django.db.models.fields.URLField', [], {'max_length': '200', 'blank': 'True'}), 'user_agent': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}), 'version': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}) }, u'feedback.responseemail': { 'Meta': {'object_name': 'ResponseEmail'}, 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'opinion': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['feedback.Response']"}) } } complete_apps = ['feedback'] symmetrical = True ``` #### File: fjord/feedback/models.py ```python from datetime import datetime import urlparse from django.core.cache import cache from django.core.exceptions import ValidationError from django.db import models from elasticutils.contrib.django import Indexable from rest_framework import serializers from tower import ugettext_lazy as _ from product_details import product_details from fjord.base.domain import get_domain from fjord.base.models import ModelBase from fjord.base.util import smart_truncate from fjord.feedback.config import CODE_TO_COUNTRY from fjord.feedback.utils import compute_grams from fjord.search.index import ( register_mapping_type, FjordMappingType, boolean_type, date_type, integer_type, keyword_type, terms_type, text_type) from fjord.search.tasks import register_live_index from fjord.translations.models import get_translation_system_choices from fjord.translations.tasks import register_auto_translation from fjord.translations.utils import compose_key # This defines the number of characters the description can have. We # do this in code rather than in the db since it makes it easier to # tweak the value. TRUNCATE_LENGTH = 10000 class Product(ModelBase): """Represents a product we capture feedback for""" # Whether or not this product is enabled enabled = models.BooleanField(default=True) # Used internally for notes to make it easier to manage products notes = models.CharField(max_length=255, blank=True, default=u'') # This is the name we display everywhere display_name = models.CharField(max_length=20) # We're not using foreign keys, so when we save something to the # database, we use this name db_name = models.CharField(max_length=20) # This is the slug used in the feedback product urls; we don't use # the SlugField because we don't require slugs be unique slug = models.CharField(max_length=20) # Whether or not this product shows up on the dashboard on_dashboard = models.BooleanField(default=True) # System slated for automatic translation, or null if none; # See translation app for details. translation_system = models.CharField( choices=get_translation_system_choices(), null=True, blank=True, max_length=20, ) @classmethod def get_product_map(cls): """Returns map of product slug -> db_name""" products = cls.objects.values_list('slug', 'db_name') return dict(prod for prod in products) @register_auto_translation @register_live_index class Response(ModelBase): """Basic feedback response This consists of a bunch of information some of which is inferred and some of which comes from the source. Some fields are "sacrosanct" and should never be edited after the response was created: * happy * url * description * user_agent * manufacturer * device * created """ # This is the product/channel. # e.g. "firefox.desktop.stable", "firefox.mobile.aurora", etc. prodchan = models.CharField(max_length=255) # Data coming from the user happy = models.BooleanField(default=True) url = models.URLField(blank=True) description = models.TextField(blank=True) # Translation into English of the description translated_description = models.TextField(blank=True) # Data inferred from urls or explicitly stated by the thing saving # the data (webform, client of the api, etc) product = models.CharField(max_length=30, blank=True) channel = models.CharField(max_length=30, blank=True) version = models.CharField(max_length=30, blank=True) locale = models.CharField(max_length=8, blank=True) country = models.CharField(max_length=4, blank=True, null=True, default=u'') manufacturer = models.CharField(max_length=255, blank=True) device = models.CharField(max_length=255, blank=True) # User agent and inferred data from the user agent user_agent = models.CharField(max_length=255, blank=True) browser = models.CharField(max_length=30, blank=True) browser_version = models.CharField(max_length=30, blank=True) platform = models.CharField(max_length=30, blank=True) source = models.CharField(max_length=100, blank=True, null=True, default=u'') campaign = models.CharField(max_length=100, blank=True, null=True, default=u'') created = models.DateTimeField(default=datetime.now) class Meta: ordering = ['-created'] def __unicode__(self): return u'(%s) %s' % (self.sentiment, self.truncated_description) def __repr__(self): return self.__unicode__().encode('ascii', 'ignore') def generate_translation_jobs(self): """Returns a list of tuples, one for each translation job If the locale of this response is English, then we just copy over the description and we're done. If the product of this response isn't set up for auto-translation, then we're done. If we already have a response with this text that's translated, we copy the most recent translation over. Otherwise we generate a list of jobs to be done. .. Note:: This happens in a celery task, so feel free to do what you need to do here. """ # If the text is in English, we copy it over and we're # done. We do this regardless of whether auto-translation is # enabled or not for this product. if self.locale == 'en-US': self.translated_description = self.description self.save() return [] try: prod = Product.objects.get(db_name=self.product) system = prod.translation_system except Product.DoesNotExist: # If the product doesn't exist, then I don't know what's # going on, but we shouldn't create any translation jobs return [] if not system: # If this product isn't set up for translation, don't # translate it. return [] try: # See if this text has been translated already--if so, use # the most recent translation. existing_obj = ( Response.objects .filter(description=self.description) .exclude(translated_description__isnull=True) .exclude(translated_description=u'') .latest('id')) self.translated_description = existing_obj.translated_description self.save() return [] except Response.DoesNotExist: pass return [ # key, system, src language, src field, dst language, dst field (compose_key(self), system, self.locale, 'description', u'en-US', 'translated_description') ] @classmethod def get_export_keys(cls, confidential=False): """Returns set of keys that are interesting for export Some parts of the Response aren't very interesting. This lets us explicitly state what is available for export. Note: This returns the name of *properties* of Response which aren't all database fields. Some of them are finessed. :arg confidential: Whether or not to include confidential data """ keys = [ 'id', 'created', 'sentiment', 'description', 'translated_description', 'product', 'channel', 'version', 'locale_name', 'manufacturer', 'device', 'platform', ] if confidential: keys.extend([ 'url', 'country_name', 'user_email', ]) return keys def save(self, *args, **kwargs): self.description = self.description.strip()[:TRUNCATE_LENGTH] super(Response, self).save(*args, **kwargs) @property def url_domain(self): """Returns the domain part of a url""" return get_domain(self.url) @property def user_email(self): """Associated email address or u''""" if self.responseemail_set.count() > 0: return self.responseemail_set.all()[0].email return u'' @property def sentiment(self): if self.happy: return _(u'Happy') return _(u'Sad') @property def truncated_description(self): """Shorten feedback for list display etc.""" return smart_truncate(self.description, length=70) @property def locale_name(self, native=False): """Convert a locale code into a human readable locale name""" locale = self.locale if locale in product_details.languages: display_locale = 'native' if native else 'English' return product_details.languages[locale][display_locale] return locale @property def country_name(self, native=False): """Convert a country code into a human readable country name""" country = self.country if country in CODE_TO_COUNTRY: display_locale = 'native' if native else 'English' return CODE_TO_COUNTRY[country][display_locale] return country @classmethod def get_mapping_type(self): return ResponseMappingType @classmethod def infer_product(cls, platform): if platform == u'Firefox OS': return u'Firefox OS' elif platform == u'Android': return u'Firefox for Android' elif platform in (u'', u'Unknown'): return u'' return u'Firefox' @register_mapping_type class ResponseMappingType(FjordMappingType, Indexable): @classmethod def get_model(cls): return Response @classmethod def get_mapping(cls): return { 'id': integer_type(), 'prodchan': keyword_type(), 'happy': boolean_type(), 'url': keyword_type(), 'url_domain': keyword_type(), 'has_email': boolean_type(), 'description': text_type(), 'description_bigrams': keyword_type(), 'description_terms': terms_type(), 'user_agent': keyword_type(), 'product': keyword_type(), 'channel': keyword_type(), 'version': keyword_type(), 'browser': keyword_type(), 'browser_version': keyword_type(), 'platform': keyword_type(), 'locale': keyword_type(), 'country': keyword_type(), 'device': keyword_type(), 'manufacturer': keyword_type(), 'created': date_type() } @classmethod def extract_document(cls, obj_id, obj=None): if obj is None: obj = cls.get_model().objects.get(pk=obj_id) def empty_to_unknown(text): return u'Unknown' if text == u'' else text doc = { 'id': obj.id, 'prodchan': obj.prodchan, 'happy': obj.happy, 'url': obj.url, 'url_domain': obj.url_domain, 'has_email': bool(obj.user_email), 'description': obj.description, 'description_terms': obj.description, 'user_agent': obj.user_agent, 'product': obj.product, 'channel': obj.channel, 'version': obj.version, 'browser': obj.browser, 'browser_version': obj.browser_version, 'platform': obj.platform, 'locale': obj.locale, 'country': obj.country, 'device': obj.device, 'manufacturer': obj.manufacturer, 'created': obj.created, } # We only compute bigrams for english because the analysis # uses English stopwords, stemmers, ... if obj.locale.startswith(u'en') and obj.description: bigrams = compute_grams(obj.description) doc['description_bigrams'] = bigrams return doc @property def truncated_description(self): """Shorten feedback for dashboard view.""" return smart_truncate(self.description, length=500) @classmethod def get_products(cls): """Returns a list of all products This is cached. """ key = 'feedback:response_products1' products = cache.get(key) if products is not None: return products facet = cls.search().facet('product').facet_counts() products = [prod['term'] for prod in facet['product']] cache.add(key, products) return products @classmethod def get_indexable(cls): return super(ResponseMappingType, cls).get_indexable().reverse() class ResponseEmail(ModelBase): """Holds email addresses related to Responses.""" opinion = models.ForeignKey(Response) email = models.EmailField() class NoNullsCharField(serializers.CharField): """Further restricts CharField so it doesn't accept nulls DRF lets CharFields take nulls which is not what I want. This raises a ValidationError if the value is a null. """ def from_native(self, value): if value is None: raise ValidationError('Value cannot be null') return super(NoNullsCharField, self).from_native(value) class ResponseSerializer(serializers.Serializer): """This handles incoming feedback This handles responses as well as the additional data for response emails. """ happy = serializers.BooleanField(required=True) url = serializers.URLField(required=False, default=u'') description = serializers.CharField(required=True) # Note: API clients don't provide a user_agent, so we skip that and # browser since those don't make sense. # product, channel, version, locale, platform product = NoNullsCharField(max_length=20, required=True) channel = NoNullsCharField(max_length=30, required=False, default=u'') version = NoNullsCharField(max_length=30, required=False, default=u'') locale = NoNullsCharField(max_length=8, required=False, default=u'') platform = NoNullsCharField(max_length=30, required=False, default=u'') country = NoNullsCharField(max_length=4, required=False, default=u'') # device information manufacturer = NoNullsCharField(required=False, default=u'') device = NoNullsCharField(required=False, default=u'') # user's email address email = serializers.EmailField(required=False) def validate_product(self, attrs, source): """Validates the product against Product model""" value = attrs[source] # This looks goofy, but it makes it more likely we have a # cache hit. products = Product.objects.values_list('display_name', flat=True) if value not in products: raise serializers.ValidationError( '{0} is not a valid product'.format(value)) return attrs def restore_object(self, attrs, instance=None): # Note: instance should never be anything except None here # since we only accept POST and not PUT/PATCH. # prodchan is composed of product + channel. This is a little # goofy, but we can fix it later if we bump into issues with # the contents. prodchan = u'.'.join([ attrs['product'].lower().replace(' ', '') or 'unknown', attrs['channel'].lower().replace(' ', '') or 'unknown']) opinion = Response( prodchan=prodchan, happy=attrs['happy'], url=attrs['url'].strip(), description=attrs['description'].strip(), user_agent=u'api', # Hard-coded product=attrs['product'].strip(), channel=attrs['channel'].strip(), version=attrs['version'].strip(), platform=attrs['platform'].strip(), locale=attrs['locale'].strip(), manufacturer=attrs['manufacturer'].strip(), device=attrs['device'].strip(), country=attrs['country'].strip() ) # If there is an email address, stash it on this instance so # we can save it later in .save() and so it gets returned # correctly in the response. This doesn't otherwise affect the # Response model instance. opinion.email = attrs.get('email', '').strip() return opinion def save_object(self, obj, **kwargs): obj.save(**kwargs) if obj.email: opinion_email = ResponseEmail( email=obj.email, opinion=obj ) opinion_email.save(**kwargs) return obj ``` #### File: feedback/tests/test_models.py ```python from nose.tools import eq_ from fjord.base.tests import TestCase from fjord.feedback.models import Product, Response from fjord.feedback.tests import response from fjord.feedback.utils import compute_grams from fjord.search.tests import ElasticTestCase class TestResponseModel(TestCase): def test_description_truncate_on_save(self): # Extra 10 characters get lopped off on save. resp = response(description=('a' * 10010), save=True) eq_(resp.description, 'a' * 10000) def test_description_strip_on_save(self): # Nix leading and trailing whitespace. resp = response(description=u' \n\tou812\t\n ', save=True) eq_(resp.description, u'ou812') def test_url_domain(self): # Test a "normal domain" resp = response(url=u'http://foo.example.com.br/blah') eq_(resp.url_domain, u'example.com.br') assert isinstance(resp.url_domain, unicode) # Test a unicode domain resp = response( url=u'http://\u30c9\u30e9\u30af\u30a810.jp/dq10_skillpoint.html', save=True) eq_(resp.url_domain, u'\u30c9\u30e9\u30af\u30a810.jp') assert isinstance(resp.url_domain, unicode) class TestAutoTranslation(TestCase): def setUp(self): # Wipe out translation system for all products. # FIXME - might be better to save the state and restore it in tearDown # rather than stomp in both cases. But stomping works for now. Product.objects.update(translation_system=u'') super(TestAutoTranslation, self).setUp() def tearDown(self): # Wipe out translation system for all products. Product.objects.update(translation_system=u'') super(TestAutoTranslation, self).tearDown() def test_auto_translation(self): prod = Product.uncached.get(db_name='firefox') prod.translation_system = u'dennis' prod.save() resp = response( locale=u'es', product=u'firefox', description=u'hola', save=True ) # Fetch it from the db again resp = Response.uncached.get(id=resp.id) eq_(resp.translated_description, u'\xabHOLA\xbb') class TestGenerateTranslationJobs(TestCase): def setUp(self): # Wipe out translation system for all products. # FIXME - might be better to save the state and restore it in tearDown # rather than stomp in both cases. But stomping works for now. Product.objects.update(translation_system=u'') super(TestGenerateTranslationJobs, self).setUp() def tearDown(self): # Wipe out translation system for all products. Product.objects.update(translation_system=u'') super(TestGenerateTranslationJobs, self).tearDown() def test_english_no_translation(self): """English descriptions should get copied over""" resp = response( locale=u'en-US', description=u'hello', translated_description=u'', save=True ) # No new jobs should be generated eq_(len(resp.generate_translation_jobs()), 0) # Re-fetch from the db and make sure the description was copied over resp = Response.uncached.get(id=resp.id) eq_(resp.description, resp.translated_description) def test_english_with_dennis(self): """English descriptions should get copied over""" resp = response( locale=u'en-US', product=u'firefox', description=u'hello', translated_description=u'', save=True ) # Set the product up for translation *after* creating the response # so that it doesn't get auto-translated because Response is set up # for auto-translation. prod = Product.uncached.get(db_name='firefox') prod.translation_system = u'dennis' prod.save() # No new jobs should be generated eq_(len(resp.generate_translation_jobs()), 0) # Re-fetch from the db and make sure the description was copied over resp = Response.uncached.get(id=resp.id) eq_(resp.description, resp.translated_description) def test_spanish_no_translation(self): """Spanish should not get translated""" resp = response( locale=u'es', product=u'firefox', description=u'hola', translated_description=u'', save=True ) # No jobs should be translated eq_(len(resp.generate_translation_jobs()), 0) # Nothing should be translated eq_(resp.translated_description, u'') def test_spanish_with_dennis(self): """Spanish should get translated""" resp = response( locale=u'es', product=u'firefox', description=u'hola', translated_description=u'', save=True ) # Set the product up for translation *after* creating the response # so that it doesn't get auto-translated because Response is set up # for auto-translation. prod = Product.uncached.get(db_name='firefox') prod.translation_system = u'dennis' prod.save() # One job should be generated jobs = resp.generate_translation_jobs() eq_(len(jobs), 1) job = jobs[0] eq_(job[1:], (u'dennis', u'es', u'description', u'en-US', 'translated_description')) eq_(resp.translated_description, u'') def test_spanish_with_dennis_and_existing_translations(self): """Response should pick up existing translation""" existing_resp = response( locale=u'es', product=u'firefox', description=u'hola', translated_description=u'DUDE!', save=True ) resp = response( locale=u'es', product=u'firefox', description=u'hola', translated_description=u'', save=True ) # Set the product up for translation *after* creating the response # so that it doesn't get auto-translated because Response is set up # for auto-translation. prod = Product.uncached.get(db_name='firefox') prod.translation_system = u'dennis' prod.save() # No jobs should be translated eq_(len(resp.generate_translation_jobs()), 0) eq_(resp.translated_description, existing_resp.translated_description) class TestComputeGrams(ElasticTestCase): def test_empty(self): eq_(compute_grams(u''), []) def test_parsing(self): # stop words are removed eq_(compute_grams(u'i me him her'), []) # capital letters don't matter eq_(compute_grams(u'I ME HIM HER'), []) # punctuation nixed eq_(compute_grams(u'i, me, him, her'), []) def test_bigrams(self): # Note: Tokens look weird after being analyzed probably due to # the stemmer. We could write a bunch of code to "undo" some # of the excessive stemming, but it's probably an exercise in # futility. Ergo the tests look a little odd. e.g. "youtub" # One word a bigram does not make eq_(compute_grams(u'youtube'), []) # Two words is the minimum number to create a bigram eq_(sorted(compute_grams(u'youtube crash')), ['crash youtub']) # Three words creates two bigrams eq_(sorted(compute_grams(u'youtube crash flash')), ['crash flash', 'crash youtub']) # Four words creates three bigrams eq_(sorted(compute_grams(u'youtube crash flash bridge')), ['bridg flash', 'crash flash', 'crash youtub']) # Nix duplicate bigrams eq_(sorted(compute_grams(u'youtube crash youtube flash')), ['crash youtub', 'flash youtub']) ``` #### File: fjord/feedback/views.py ```python from functools import wraps from django.http import HttpResponseRedirect from django.shortcuts import render from django.utils import translation from django.views.decorators.cache import never_cache from django.views.decorators.csrf import csrf_exempt, csrf_protect from django.views.decorators.http import require_POST from funfactory.urlresolvers import reverse from mobility.decorators import mobile_template from rest_framework import generics from fjord.base.browsers import UNKNOWN from fjord.base.util import smart_str, translate_country_name from fjord.feedback import config from fjord.feedback import models from fjord.feedback.forms import ResponseForm from fjord.feedback.utils import actual_ip_plus_desc, clean_url, ratelimit def happy_redirect(request): # TODO: Remove this when the addon gets fixed and is pointing to # the correct urls. return HttpResponseRedirect(reverse('feedback') + '#happy') def sad_redirect(request): # TODO: Remove this when the addon gets fixed and is pointing to # the correct urls. return HttpResponseRedirect(reverse('feedback') + '#sad') @mobile_template('feedback/{mobile/}download_firefox.html') def download_firefox(request, template): return render(request, template) @mobile_template('feedback/{mobile/}thanks.html') def thanks(request, template): return render(request, template) def requires_firefox(func): """Redirects to "download firefox" page if not Firefox. If it isn't a Firefox browser, then we don't want to deal with it. This is a temporary solution. See bug #848568. """ @wraps(func) def _requires_firefox(request, *args, **kwargs): # Note: This is sort of a lie. What's going on here is that # parse_ua only parses Firefox-y browsers. So if it's UNKNOWN # at this point, then it's not Firefox-y. If parse_ua ever # changes, then this will cease to be true. if request.BROWSER.browser == UNKNOWN: return HttpResponseRedirect(reverse('download-firefox')) return func(request, *args, **kwargs) return _requires_firefox @ratelimit(rulename='doublesubmit_1pm', keyfun=actual_ip_plus_desc, rate='1/m') @ratelimit(rulename='100ph', rate='100/h') def _handle_feedback_post(request, locale=None, product=None, version=None, channel=None): if getattr(request, 'limited', False): # If we're throttled, then return the thanks page, but don't # add the response to the db. return HttpResponseRedirect(reverse('thanks')) # Get the form and run is_valid() so it goes through the # validation and cleaning machinery. We don't really care if it's # valid, though, since we will take what we got and do the best we # can with it. Error validation is now in JS. form = ResponseForm(request.POST) form.is_valid() data = form.cleaned_data description = data.get('description', u'').strip() if not description: # If there's no description, then there's nothing to do here, # so thank the user and move on. return HttpResponseRedirect(reverse('thanks')) # Do some data validation of product, channel and version # coming from the url. product = models.Product.get_product_map().get(smart_str(product), u'') # FIXME - validate these better channel = smart_str(channel).lower() version = smart_str(version) # src, then source, then utm_source source = request.GET.get('src', u'') if not source: source = request.GET.get('utm_source', u'') campaign = request.GET.get('utm_campaign', u'') # Most platforms aren't different enough between versions to care. # Windows is. platform = request.BROWSER.platform if platform == 'Windows': platform += ' ' + request.BROWSER.platform_version opinion = models.Response( # Data coming from the user happy=data['happy'], url=clean_url(data.get('url', u'')), description=data['description'].strip(), # Inferred data from user agent prodchan=_get_prodchan(request, product, channel), user_agent=request.META.get('HTTP_USER_AGENT', ''), browser=request.BROWSER.browser, browser_version=request.BROWSER.browser_version, platform=platform, # Pulled from the form data or the url locale=data.get('locale', locale), # Data from mobile devices which is probably only # applicable to mobile devices manufacturer=data.get('manufacturer', ''), device=data.get('device', ''), ) if source: opinion.source = source[:100] if campaign: opinion.campaign = campaign[:100] if product: # If we picked up the product from the url, we use url # bits for everything. product = product or u'' version = version or u'' channel = channel or u'' elif opinion.browser != UNKNOWN: # If we didn't pick up a product from the url, then we # infer as much as we can from the user agent. product = data.get( 'product', models.Response.infer_product(platform)) version = data.get( 'version', request.BROWSER.browser_version) # Assume everything we don't know about is stable channel. channel = u'stable' else: product = channel = version = u'' opinion.product = product or u'' opinion.version = version or u'' opinion.channel = channel or u'' opinion.save() # If there was an email address, save that separately. if data.get('email_ok') and data.get('email'): e = models.ResponseEmail(email=data['email'], opinion=opinion) e.save() return HttpResponseRedirect(reverse('thanks')) def _get_prodchan(request, product=None, channel=None): # FIXME - redo this to handle product/channel meta = request.BROWSER product = '' platform = '' channel = 'stable' if meta.browser == 'Firefox': product = 'firefox' else: product = 'unknown' if meta.platform == 'Android': platform = 'android' elif meta.platform == 'Firefox OS': platform = 'fxos' elif product == 'firefox': platform = 'desktop' else: platform = 'unknown' return '{0}.{1}.{2}'.format(product, platform, channel) @csrf_protect def generic_feedback(request, locale=None, product=None, version=None, channel=None): """Generic feedback form for desktop and mobile""" form = ResponseForm() if request.method == 'POST': return _handle_feedback_post(request, locale, product, version, channel) return render(request, 'feedback/generic_feedback.html', { 'form': form, }) @requires_firefox @csrf_exempt def firefox_os_stable_feedback(request, locale=None, product=None, version=None, channel=None): # Localized country names are in region files in product # details. We try really hard to use localized country names, so # we use gettext and if that's not available, use whatever is in # product details. countries = [ (code, translate_country_name(translation.get_language(), code, name, name_l10n)) for code, name, name_l10n in config.FIREFOX_OS_COUNTRIES ] return render(request, 'feedback/mobile/fxos_feedback.html', { 'countries': countries, 'devices': config.FIREFOX_OS_DEVICES, }) @csrf_exempt @require_POST def android_about_feedback(request, locale=None, product=None, version=None, channel=None): """A view specifically for Firefox for Android. Firefox for Android has a feedback form built in that generates POSTS directly to Input, and is always sad or ideas. Since Input no longer supports idea feedbacks, everything is Sad. FIXME - measure usage of this and nix it when we can. See bug #964292. """ # Firefox for Android only sends up sad and idea responses, but it # uses the old `_type` variable from old Input. Tweak the data to do # what FfA means, not what it says. # Make `request.POST` mutable. request.POST = request.POST.copy() # For _type, 1 is happy, 2 is sad, 3 is idea. We convert that so # that _type = 1 -> happy = 1 and everything else -> happy = 0. if request.POST.get('_type') == '1': happy = 1 else: happy = 0 request.POST['happy'] = happy # Note: product, version and channel are always None in this view # since this is to handle backwards-compatibility. So we don't # bother passing them along. # We always return Thanks! now and ignore errors. return _handle_feedback_post(request, locale) @csrf_exempt @never_cache def feedback_router(request, product=None, version=None, channel=None, *args, **kwargs): """Determine a view to use, and call it. If product is given, reference `product_routes` to look up a view. If `product` is not passed, or isn't found in `product_routes`, asssume the user is either a stable desktop Firefox or a stable mobile Firefox based on the parsed UA, and serve them the appropriate page. This is to handle the old formname way of doing things. At some point P, we should measure usage of the old formnames and deprecate them. This also handles backwards-compatability with the old Firefox for Android form which can't have a CSRF token. Note: We never want to cache this view. """ if '_type' in request.POST: # Checks to see if `_type` is in the POST data and if so this # is coming from Firefox for Android which doesn't know # anything about csrf tokens. If that's the case, we send it # to a view specifically for FfA Otherwise we pass it to one # of the normal views, which enforces CSRF. Also, nix the # product just in case we're crossing the streams and # confusing new-style product urls with old-style backwards # compatability for the Android form. # # FIXME: Remove this hairbrained monstrosity when we don't need to # support the method that Firefox for Android currently uses to # post feedback which worked with the old input.mozilla.org. view = android_about_feedback product = None else: if product: # If they passed in a product and we don't know about it, stop # here. if product not in models.Product.get_product_map(): return render(request, 'feedback/unknownproduct.html', { 'product': product }) if product == 'fxos' or request.BROWSER.browser == 'Firefox OS': # Firefox OS gets shunted to a different form which has # different Firefox OS specific questions. view = firefox_os_stable_feedback else: view = generic_feedback return view(request, request.locale, product, version, channel, *args, **kwargs) def cyoa(request): template = 'feedback/cyoa.html' products = models.Product.objects.all() return render(request, template, { 'products': products }) class PostFeedbackAPI(generics.CreateAPIView): serializer_class = models.ResponseSerializer ``` #### File: management/commands/esstatus.py ```python from django.core.management.base import BaseCommand from fjord.base.util import FakeLogger from fjord.search.index import es_status_cmd class Command(BaseCommand): help = 'Shows elastic search index status.' def handle(self, *args, **options): es_status_cmd(log=FakeLogger(self.stdout)) ``` #### File: fjord/translations/models.py ```python from dennis.translator import Translator _translation_systems = {} def get_translation_systems(): """Returns translation systems map """ return _translation_systems def get_translation_system_choices(): """Returns a tuple of (value, display-name) tuples for Choices field This inserts a "no choice" choice at the beginning, too, the value of which is the empty string. """ choices = [(key, key) for key in _translation_systems.keys()] choices.insert(0, (u'', u'None')) return tuple(choices) class TranslationSystemMeta(type): """Metaclass to register TranslationSystem subclasses""" def __new__(cls, name, bases, attrs): new_cls = super(TranslationSystemMeta, cls).__new__( cls, name, bases, attrs) if new_cls.name: _translation_systems[new_cls.name] = new_cls return new_cls class TranslationSystem(object): """Translation system base class All translation system plugins should subclass this. They should additionally do the following: 1. set the name property to something unique 2. implement translate method See FakeTranslator and DennisTranslator for sample implementations. """ __metaclass__ = TranslationSystemMeta # Name of this translation system name = '' def translate(self, instance, src_lang, src_field, dst_lang, dst_field): """Implement this to translation fields on an instance This translates in-place. If this is an asynchronous system, then this can either push the text to be translated now or queue the text to be pushed later in a batch of things to be translated. """ raise NotImplementedError() def push_translations(self): """Implement this to do any work required to push translations This is for asynchronous systems that take a batch of translations, perform some work, and then return results some time later. Print any status text to stdout. """ raise NotImplementedError() def pull_translations(self): """Implement this to do any work required to pull translations This is for asynchronous systems that take a batch of translations, perform some work, and then return results some time later. Print any status text to stdout. """ raise NotImplementedError() # --------------------------------------------------------- # Fake translation system # --------------------------------------------------------- class FakeTranslator(TranslationSystem): """Translates by uppercasing text""" name = 'fake' def translate(self, instance, src_lang, src_field, dst_lang, dst_field): setattr(instance, dst_field, getattr(instance, src_field).upper()) instance.save() def pull_translations(self): # This is a no-op for testing purposes. pass def push_translations(self): # This is a no-op for testing purposes. pass # --------------------------------------------------------- # Dennis translation system # --------------------------------------------------------- class DennisTranslator(TranslationSystem): """Translates using shouty and anglequote""" name = 'dennis' def translate(self, instance, src_lang, src_field, dst_lang, dst_field): text = getattr(instance, src_field) if text: pipeline = ['shouty', 'anglequote'] translated = Translator([], pipeline).translate_string(text) setattr(instance, dst_field, translated) instance.save() ``` #### File: fjord/translations/tasks.py ```python from django.db.models.signals import post_save from celery import task from .utils import ( compose_key, decompose_key, translate ) @task() def translate_task(instance_key): """Celery task to kick off translation :arg instance_key: The key for the instance we're translating """ instance = decompose_key(instance_key) jobs = instance.generate_translation_jobs() if not jobs: return # Handle each job for key, system, src_lang, src_field, dst_lang, dst_field in jobs: instance = decompose_key(key) translate(instance, system, src_lang, src_field, dst_lang, dst_field) def translate_handler(sender, instance=None, created=False, **kwargs): """Handles possible translation This asks the instance to generate translation jobs. If there are translation jobs to do, then this throws them into a celery task. """ if not created or instance is None: return translate_task.delay(compose_key(instance)) def register_auto_translation(model_cls): """Decorator that Registers model class for automatic translation The model class has to have a ``generate_translation_jobs`` method that takes an instance and generates a list of translation jobs that need to be performed. A translation job is a tuple in the form:: (key, system, src_lang, src_field, dst_lang, dst_field) The key is some string that uniquely identifies the instance so that we can save the data back to the instance later. """ uid = str(model_cls) + 'translation' post_save.connect(translate_handler, model_cls, dispatch_uid=uid) return model_cls ``` #### File: translations/tests/test__utils.py ```python from unittest import TestCase from nose.tools import eq_ from . import fakeinstance from ..utils import compose_key, decompose_key, translate _foo_cache = {} class FakeModelManager(object): def get(self, **kwargs): return _foo_cache[kwargs['id']] class FakeModel(object): def __init__(self, id_): self.id = id_ _foo_cache[id_] = self objects = FakeModelManager() class TestKeys(TestCase): def tearDown(self): _foo_cache.clear() def test_compose_key(self): foo = FakeModel(15) eq_(compose_key(foo), 'fjord.translations.tests.test__utils:FakeModel:15') def test_decompose_key(self): foo = FakeModel(15) key = 'fjord.translations.tests.test__utils:FakeModel:15' eq_(decompose_key(key), foo) class TestTranslate(TestCase): def test_translate_fake(self): obj = fakeinstance( fields={'desc': 'trans_desc'}, translate_with=lambda x: 'fake', desc=u'This is a test string' ) eq_(getattr(obj, 'trans_desc', None), None) translate(obj, 'fake', 'br', 'desc', 'en-US', 'trans_desc') eq_(getattr(obj, 'trans_desc', None), u'THIS IS A TEST STRING') def test_translate_dennis(self): obj = fakeinstance( fields={'desc': 'trans_desc'}, translate_with=lambda x: 'dennis', desc=u'This is a test string' ) eq_(getattr(obj, 'trans_desc', None), None) translate(obj, 'dennis', 'br', 'desc', 'en-US', 'trans_desc') eq_(getattr(obj, 'trans_desc', None), u'\xabTHIS IS A TEST STRING\xbb') ```
{ "source": "joshuashort/doodba-copier-template", "score": 2 }
#### File: joshuashort/doodba-copier-template/migrations.py ```python import shutil from pathlib import Path from invoke import task @task def from_doodba_scaffolding_to_copier(c): print("Removing remaining garbage from doodba-scaffolding.") shutil.rmtree(Path(".vscode", "doodba"), ignore_errors=True) garbage = ( Path(".travis.yml"), Path(".vscode", "doodbasetup.py"), Path("odoo", "custom", "src", "private", ".empty"), ) for path in garbage: try: path.unlink() except FileNotFoundError: pass # When using Copier >= 3.0.5, this file didn't get properly migrated editorconfig_file = Path(".editorconfig") editorconfig_contents = editorconfig_file.read_text() editorconfig_contents = editorconfig_contents.replace( "[*.yml]", "[*.{code-snippets,code-workspace,json,md,yaml,yml}{,.jinja}]", 1 ) editorconfig_file.write_text(editorconfig_contents) @task def remove_odoo_auto_folder(c): """This folder makes no more sense for us. The `invoke develop` task now handles its creation, which is done with host user UID and GID to avoid problems. There's no need to have it in our code tree anymore. """ shutil.rmtree(Path("odoo", "auto"), ignore_errors=True) ``` #### File: doodba-copier-template/tests/test_nitpicking.py ```python import json from pathlib import Path from textwrap import dedent import pytest import yaml from copier.main import copy from plumbum import local from plumbum.cmd import diff, git, invoke, pre_commit WHITESPACE_PREFIXED_LICENSES = ( "AGPL-3.0-or-later", "Apache-2.0", "LGPL-3.0-or-later", ) @pytest.mark.parametrize("project_license", WHITESPACE_PREFIXED_LICENSES) def test_license_whitespace_prefix( tmp_path: Path, cloned_template: Path, project_license ): dst = tmp_path / "dst" copy( str(cloned_template), str(dst), vcs_ref="test", force=True, data={"project_license": project_license}, ) assert (dst / "LICENSE").read_text().startswith(" ") def test_no_vscode_in_private(tmp_path: Path): """Make sure .vscode folders are git-ignored in private folder.""" copy(".", str(tmp_path), vcs_ref="HEAD", force=True) with local.cwd(tmp_path): git("add", ".") git("commit", "--no-verify", "-am", "hello world") vscode = tmp_path / "odoo" / "custom" / "src" / "private" / ".vscode" vscode.mkdir() (vscode / "something").touch() assert not git("status", "--porcelain") def test_mqt_configs_synced( tmp_path: Path, cloned_template: Path, supported_odoo_version: float ): """Make sure configs from MQT are in sync.""" copy( str(cloned_template), str(tmp_path), vcs_ref="test", force=True, data={"odoo_version": supported_odoo_version}, ) mqt = Path("vendor", "maintainer-quality-tools", "sample_files", "pre-commit-13.0") good_diffs = Path("tests", "samples", "mqt-diffs") for conf in (".pylintrc", ".pylintrc-mandatory"): good = (good_diffs / f"{conf}.diff").read_text() tested = diff(tmp_path / conf, mqt / conf, retcode=1) assert good == tested def test_gitlab_badges(tmp_path: Path): """Gitlab badges are properly formatted in README.""" copy( ".", str(tmp_path), vcs_ref="HEAD", force=True, data={"gitlab_url": "https://gitlab.example.com/Tecnativa/my-badged-odoo"}, ) expected_badges = dedent( """ [![pipeline status](https://gitlab.example.com/Tecnativa/my-badged-odoo/badges/13.0/pipeline.svg)](https://gitlab.example.com/Tecnativa/my-badged-odoo/commits/13.0) [![coverage report](https://gitlab.example.com/Tecnativa/my-badged-odoo/badges/13.0/coverage.svg)](https://gitlab.example.com/Tecnativa/my-badged-odoo/commits/13.0) """ ) assert expected_badges.strip() in (tmp_path / "README.md").read_text() def test_alt_domains_rules(tmp_path: Path, cloned_template: Path): """Make sure alt domains redirections are good for Traefik.""" copy( str(cloned_template), str(tmp_path), vcs_ref="HEAD", force=True, data={ "domain_prod": "www.example.com", "domain_prod_alternatives": [ "old.example.com", "example.com", "example.org", "www.example.org", ], }, ) with local.cwd(tmp_path): git("add", "prod.yaml") pre_commit("run", "-a", retcode=1) expected = Path("tests", "samples", "alt-domains", "prod.yaml").read_text() generated = (tmp_path / "prod.yaml").read_text() generated_scalar = yaml.safe_load(generated) # Any of these characters in a traefik label is an error almost for sure error_chars = ("\n", "'", '"') for service in generated_scalar["services"].values(): for key, value in service.get("labels", {}).items(): if not key.startswith("traefik."): continue for char in error_chars: assert char not in key assert char not in str(value) assert generated == expected def test_cidr_whitelist_rules(tmp_path: Path, cloned_template: Path): """Make sure CIDR whitelist redirections are good for Traefik.""" copy( str(cloned_template), str(tmp_path), vcs_ref="HEAD", force=True, data={"cidr_whitelist": ["192.168.3.11/24", "456.456.456.456"]}, ) with local.cwd(tmp_path): git("add", "prod.yaml", "test.yaml") pre_commit("run", "-a", retcode=1) expected = Path("tests", "samples", "cidr-whitelist") assert (tmp_path / "prod.yaml").read_text() == (expected / "prod.yaml").read_text() assert (tmp_path / "test.yaml").read_text() == (expected / "test.yaml").read_text() def test_code_workspace_file(tmp_path: Path, cloned_template: Path): """The file is generated as expected.""" copy( str(cloned_template), str(tmp_path), vcs_ref="HEAD", force=True, ) assert (tmp_path / f"doodba.{tmp_path.name}.code-workspace").is_file() (tmp_path / f"doodba.{tmp_path.name}.code-workspace").rename( tmp_path / "doodba.other1.code-workspace" ) with local.cwd(tmp_path): invoke("write-code-workspace-file") assert (tmp_path / "doodba.other1.code-workspace").is_file() assert not (tmp_path / f"doodba.{tmp_path.name}.code-workspace").is_file() # Do a stupid and dirty git clone to check it's sorted fine git("clone", cloned_template, Path("odoo", "custom", "src", "zzz")) invoke("write-code-workspace-file", "-c", "doodba.other2.code-workspace") assert not (tmp_path / f"doodba.{tmp_path.name}.code-workspace").is_file() assert (tmp_path / "doodba.other1.code-workspace").is_file() assert (tmp_path / "doodba.other2.code-workspace").is_file() with (tmp_path / "doodba.other2.code-workspace").open() as fp: workspace_definition = json.load(fp) assert workspace_definition == { "folders": [ {"path": "odoo/custom/src/zzz"}, {"path": "odoo/custom/src/private"}, {"path": "."}, ] } def test_dotdocker_ignore_content(tmp_path: Path, cloned_template: Path): """Everything inside .docker must be ignored.""" copy( str(cloned_template), str(tmp_path), vcs_ref="HEAD", force=True, ) with local.cwd(tmp_path): git("add", ".") git("commit", "-am", "hello", retcode=1) git("commit", "-am", "hello") (tmp_path / ".docker" / "some-file").touch() assert not git("status", "--porcelain") def test_template_update_badge(tmp_path: Path, cloned_template: Path): """Test that the template update badge is properly formatted.""" tag = "v99999.0.0-99999-bye-bye" with local.cwd(cloned_template): git("tag", "--delete", "test") git("tag", "--force", tag) copy(str(cloned_template), str(tmp_path), vcs_ref=tag, force=True) expected = "[![Last template update](https://img.shields.io/badge/last%20template%20update-v99999.0.0--99999--bye--bye-informational)](https://github.com/Tecnativa/doodba-copier-template/tree/v99999.0.0-99999-bye-bye)" assert expected in (tmp_path / "README.md").read_text() def test_pre_commit_config( tmp_path: Path, cloned_template: Path, supported_odoo_version: float ): """Test that .pre-commit-config.yaml has some specific settings fine.""" copy( str(cloned_template), str(tmp_path), vcs_ref="HEAD", force=True, data={"odoo_version": supported_odoo_version}, ) pre_commit_config = yaml.safe_load( (tmp_path / ".pre-commit-config.yaml").read_text() ) is_py3 = supported_odoo_version >= 11 found = 0 should_find = 1 for repo in pre_commit_config["repos"]: if repo["repo"] == "https://github.com/pre-commit/pre-commit-hooks": found += 1 if is_py3: assert {"id": "debug-statements"} in repo["hooks"] assert {"id": "fix-encoding-pragma", "args": ["--remove"]} in repo[ "hooks" ] else: assert {"id": "debug-statements"} not in repo["hooks"] assert {"id": "fix-encoding-pragma", "args": ["--remove"]} not in repo[ "hooks" ] assert {"id": "fix-encoding-pragma"} in repo["hooks"] assert found == should_find def test_no_python_write_bytecode_in_devel( tmp_path: Path, cloned_template: Path, supported_odoo_version: float ): copy( str(cloned_template), str(tmp_path), vcs_ref="HEAD", force=True, data={"odoo_version": supported_odoo_version}, ) devel = yaml.safe_load((tmp_path / "devel.yaml").read_text()) assert devel["services"]["odoo"]["environment"]["PYTHONDONTWRITEBYTECODE"] == 1 ``` #### File: doodba-copier-template/tests/test_tasks_downstream.py ```python import os from pathlib import Path import pytest from copier import copy from plumbum import ProcessExecutionError, local from plumbum.cmd import docker_compose, invoke def _install_status(module, dbname="devel"): return docker_compose( "run", "--rm", "-e", "LOG_LEVEL=WARNING", "-e", f"PGDATABASE={dbname}", "odoo", "psql", "-tc", f"select state from ir_module_module where name='{module}'", ).strip() @pytest.mark.skipif( os.environ.get("DOCKER_TEST") != "1", reason="Missing DOCKER_TEST=1 env variable" ) def test_resetdb(tmp_path: Path, cloned_template: Path, supported_odoo_version: float): """Test the dropdb task. On this test flow, other downsream tasks are also tested: - img-build - git-aggregate - stop --purge """ try: with local.cwd(tmp_path): copy( src_path=str(cloned_template), vcs_ref="HEAD", force=True, data={"odoo_version": supported_odoo_version}, ) # Imagine the user is in the src subfolder for these tasks with local.cwd(tmp_path / "odoo" / "custom" / "src"): invoke("img-build") invoke("git-aggregate") # No ir_module_module table exists yet with pytest.raises(ProcessExecutionError): _install_status("base") # Imagine the user is in the odoo subrepo for these tasks with local.cwd(tmp_path / "odoo" / "custom" / "src" / "odoo"): # This should install just "base stdout = invoke("resetdb") assert "Creating database cache" in stdout assert "from template devel" in stdout assert _install_status("base") == "installed" assert _install_status("purchase") == "uninstalled" assert _install_status("sale") == "uninstalled" # Install "purchase" stdout = invoke("resetdb", "-m", "purchase") assert "Creating database cache" in stdout assert "from template devel" in stdout assert _install_status("base") == "installed" assert _install_status("purchase") == "installed" assert _install_status("sale") == "uninstalled" # Install "sale" in a separate database stdout = invoke("resetdb", "-m", "sale", "-d", "sale_only") assert "Creating database cache" in stdout assert "from template sale_only" in stdout assert _install_status("base") == "installed" assert _install_status("purchase") == "installed" assert _install_status("sale") == "uninstalled" assert _install_status("base", "sale_only") == "installed" assert _install_status("purchase", "sale_only") == "uninstalled" assert _install_status("sale", "sale_only") == "installed" # Install "sale" in main database stdout = invoke("resetdb", "-m", "sale") assert "Creating database devel from template cache" in stdout assert "Found matching database template" in stdout assert _install_status("base") == "installed" assert _install_status("purchase") == "uninstalled" assert _install_status("sale") == "installed" finally: # Imagine the user is in the odoo subrepo for this command with local.cwd(tmp_path / "odoo" / "custom" / "src" / "odoo"): invoke("stop", "--purge") ```
{ "source": "joshuashzha/snewpy", "score": 2 }
#### File: snewpy/tests/test_xforms.py ```python from snewpy.flavor_transformation \ import MassHierarchy, MixingParameters, \ NoTransformation, AdiabaticMSW, NonAdiabaticMSW, \ TwoFlavorDecoherence, ThreeFlavorDecoherence, NeutrinoDecay from astropy import units as u from astropy import constants as c import numpy as np from numpy import sin, cos, exp, abs # Dummy time and energy arrays, with proper dimensions. t = np.arange(10) * u.s E = np.linspace(1,100,21) * u.MeV # Dummy mixing angles. theta12 = 33 * u.deg theta13 = 9 * u.deg theta23 = 49 * u.deg # Dummy neutrino decay parameters; see arXiv:1910.01127. mass3 = 0.5 * u.eV/c.c**2 lifetime = 1 * u.day distance = 10 * u.kpc def test_noxform(): # No transformations. xform = NoTransformation() assert(xform.prob_ee(t, E) == 1) assert(xform.prob_ex(t, E) == 0) assert(xform.prob_xx(t, E) == 1) assert(xform.prob_xe(t, E) == 0) assert(xform.prob_eebar(t, E) == 1) assert(xform.prob_exbar(t, E) == 0) assert(xform.prob_xxbar(t, E) == 1) assert(xform.prob_xebar(t, E) == 0) def test_adiabaticmsw_nmo(): # Adiabatic MSW: normal mass ordering; override default mixing angles. xform = AdiabaticMSW(mix_angles=(theta12, theta13, theta23), mh=MassHierarchy.NORMAL) assert(xform.prob_ee(t, E) == sin(theta13)**2) assert(xform.prob_ex(t, E) == 1. - sin(theta13)**2) assert(xform.prob_xx(t, E) == 0.5*(1. + sin(theta13)**2)) assert(xform.prob_xe(t, E) == 0.5*(1. - sin(theta13)**2)) assert(xform.prob_eebar(t, E) == (cos(theta12)*cos(theta13))**2) assert(xform.prob_exbar(t, E) == 1. - (cos(theta12)*cos(theta13))**2) assert(xform.prob_xxbar(t, E) == 0.5*(1. + (cos(theta12)*cos(theta13))**2)) assert(xform.prob_xebar(t, E) == 0.5*(1. - (cos(theta12)*cos(theta13))**2)) # Test interface using default mixing angles defined in the submodule. mixpars = MixingParameters(MassHierarchy.NORMAL) th12, th13, th23 = mixpars.get_mixing_angles() xform = AdiabaticMSW() assert(xform.prob_ee(t, E) == sin(th13)**2) assert(xform.prob_ex(t, E) == 1. - sin(th13)**2) assert(xform.prob_xx(t, E) == 0.5*(1. + sin(th13)**2)) assert(xform.prob_xe(t, E) == 0.5*(1. - sin(th13)**2)) assert(xform.prob_eebar(t, E) == (cos(th12)*cos(th13))**2) assert(xform.prob_exbar(t, E) == 1. - (cos(th12)*cos(th13))**2) assert(xform.prob_xxbar(t, E) == 0.5*(1. + (cos(th12)*cos(th13))**2)) assert(xform.prob_xebar(t, E) == 0.5*(1. - (cos(th12)*cos(th13))**2)) def test_adiabaticmsw_imo(): # Adiabatic MSW: inverted mass ordering; override default mixing angles. xform = AdiabaticMSW(mix_angles=(theta12, theta13, theta23), mh=MassHierarchy.INVERTED) assert(xform.prob_ee(t, E) == (sin(theta12)*cos(theta13))**2) assert(xform.prob_ex(t, E) == 1. - (sin(theta12)*cos(theta13))**2) assert(xform.prob_xx(t, E) == 0.5*(1. + (sin(theta12)*cos(theta13))**2)) assert(xform.prob_xe(t, E) == 0.5*(1. - (sin(theta12)*cos(theta13))**2)) assert(xform.prob_eebar(t, E) == sin(theta13)**2) assert(xform.prob_exbar(t, E) == 1. - sin(theta13)**2) assert(xform.prob_xxbar(t, E) == 0.5*(1. + sin(theta13)**2)) assert(xform.prob_xebar(t, E) == 0.5*(1. - sin(theta13)**2)) # Test interface using default mixing angles defined in the submodule. mixpars = MixingParameters(MassHierarchy.INVERTED) th12, th13, th23 = mixpars.get_mixing_angles() xform = AdiabaticMSW(mh=MassHierarchy.INVERTED) assert(xform.prob_ee(t, E) == (sin(th12)*cos(th13))**2) assert(xform.prob_ex(t, E) == 1. - (sin(th12)*cos(th13))**2) assert(xform.prob_xx(t, E) == 0.5*(1. + (sin(th12)*cos(th13))**2)) assert(xform.prob_xe(t, E) == 0.5*(1. - (sin(th12)*cos(th13))**2)) assert(xform.prob_eebar(t, E) == sin(th13)**2) assert(xform.prob_exbar(t, E) == 1. - sin(th13)**2) assert(xform.prob_xxbar(t, E) == 0.5*(1. + sin(th13)**2)) assert(xform.prob_xebar(t, E) == 0.5*(1. - sin(th13)**2)) def test_nonadiabaticmsw_nmo(): # Adiabatic MSW: normal mass ordering; override the default mixing angles. xform = NonAdiabaticMSW(mix_angles=(theta12, theta13, theta23), mh=MassHierarchy.NORMAL) assert(xform.prob_ee(t, E) == (sin(theta12)*cos(theta13))**2) assert(xform.prob_ex(t, E) == 1. - (sin(theta12)*cos(theta13))**2) assert(xform.prob_xx(t, E) == 0.5*(1. + (sin(theta12)*cos(theta13))**2)) assert(xform.prob_xe(t, E) == 0.5*(1. - (sin(theta12)*cos(theta13))**2)) assert(xform.prob_eebar(t, E) == (cos(theta12)*cos(theta13))**2) assert(xform.prob_exbar(t, E) == 1. - (cos(theta12)*cos(theta13))**2) assert(xform.prob_xxbar(t, E) == 0.5*(1. + (cos(theta12)*cos(theta13))**2)) assert(xform.prob_xebar(t, E) == 0.5*(1. - (cos(theta12)*cos(theta13))**2)) # Test interface using default mixing angles defined in the submodule. mixpars = MixingParameters(MassHierarchy.NORMAL) th12, th13, th23 = mixpars.get_mixing_angles() xform = NonAdiabaticMSW() assert(xform.prob_ee(t, E) == (sin(th12)*cos(th13))**2) assert(xform.prob_ex(t, E) == 1. - (sin(th12)*cos(th13))**2) assert(xform.prob_xx(t, E) == 0.5*(1. + (sin(th12)*cos(th13))**2)) assert(xform.prob_xe(t, E) == 0.5*(1. - (sin(th12)*cos(th13))**2)) assert(xform.prob_eebar(t, E) == (cos(th12)*cos(th13))**2) assert(xform.prob_exbar(t, E) == 1. - (cos(th12)*cos(th13))**2) assert(xform.prob_xxbar(t, E) == 0.5*(1. + (cos(th12)*cos(th13))**2)) assert(xform.prob_xebar(t, E) == 0.5*(1. - (cos(th12)*cos(th13))**2)) def test_nonadiabaticmsw_imo(): # Adiabatic MSW: inverted mass ordering; override default mixing angles. xform = NonAdiabaticMSW(mix_angles=(theta12, theta13, theta23), mh=MassHierarchy.NORMAL) assert(xform.prob_ee(t, E) == (sin(theta12)*cos(theta13))**2) assert(xform.prob_ex(t, E) == 1. - (sin(theta12)*cos(theta13))**2) assert(xform.prob_xx(t, E) == 0.5*(1. + (sin(theta12)*cos(theta13))**2)) assert(xform.prob_xe(t, E) == 0.5*(1. - (sin(theta12)*cos(theta13))**2)) assert(xform.prob_eebar(t, E) == (cos(theta12)*cos(theta13))**2) assert(xform.prob_exbar(t, E) == 1. - (cos(theta12)*cos(theta13))**2) assert(xform.prob_xxbar(t, E) == 0.5*(1. + (cos(theta12)*cos(theta13))**2)) assert(xform.prob_xebar(t, E) == 0.5*(1. - (cos(theta12)*cos(theta13))**2)) # Test interface using default mixing angles defined in the submodule. mixpars = MixingParameters(MassHierarchy.INVERTED) th12, th13, th23 = mixpars.get_mixing_angles() xform = NonAdiabaticMSW(mh=MassHierarchy.INVERTED) assert(xform.prob_ee(t, E) == (sin(th12)*cos(th13))**2) assert(xform.prob_ex(t, E) == 1. - (sin(th12)*cos(th13))**2) assert(xform.prob_xx(t, E) == 0.5*(1. + (sin(th12)*cos(th13))**2)) assert(xform.prob_xe(t, E) == 0.5*(1. - (sin(th12)*cos(th13))**2)) assert(xform.prob_eebar(t, E) == (cos(th12)*cos(th13))**2) assert(xform.prob_exbar(t, E) == 1. - (cos(th12)*cos(th13))**2) assert(xform.prob_xxbar(t, E) == 0.5*(1. + (cos(th12)*cos(th13))**2)) assert(xform.prob_xebar(t, E) == 0.5*(1. - (cos(th12)*cos(th13))**2)) def test_2fd(): # Two-flavor decoherence. xform = TwoFlavorDecoherence() assert(xform.prob_ee(t, E) == 0.5) assert(xform.prob_ex(t, E) == 0.5) assert(xform.prob_xx(t, E) == 0.75) assert(xform.prob_xe(t, E) == 0.25) assert(xform.prob_eebar(t, E) == 0.5) assert(xform.prob_exbar(t, E) == 0.5) assert(xform.prob_xxbar(t, E) == 0.75) assert(xform.prob_xebar(t, E) == 0.25) def test_3fd(): # Three-flavor decoherence. xform = ThreeFlavorDecoherence() assert(xform.prob_ee(t, E) == 1./3) assert(abs(xform.prob_ex(t, E) - 2./3) < 1e-12) assert(abs(xform.prob_xx(t, E) - 2./3) < 1e-12) assert(abs(xform.prob_xe(t, E) - 1./3) < 1e-12) assert(xform.prob_eebar(t, E) == 1./3) assert(abs(xform.prob_exbar(t, E) - 2./3) < 1e-12) assert(abs(xform.prob_xxbar(t, E) - 2./3) < 1e-12) assert(abs(xform.prob_xebar(t, E) - 1./3) < 1e-12) def test_nudecay_nmo(): # Neutrino decay with NMO, overriding the default mixing angles. xform = NeutrinoDecay(mix_angles=(theta12, theta13, theta23), mass=mass3, tau=lifetime, dist=distance, mh=MassHierarchy.NORMAL) # Test computation of the decay length. _E = 10*u.MeV assert(xform.gamma(_E) == mass3*c.c / (_E*lifetime)) De1 = (cos(theta12) * cos(theta13))**2 De2 = (sin(theta12) * cos(theta13))**2 De3 = sin(theta13)**2 # Check transition probabilities. prob_ee = np.asarray([De1*(1.-exp(-xform.gamma(_E)*distance)) + De3*exp(-xform.gamma(_E)*distance) for _E in E]) assert(np.array_equal(xform.prob_ee(t, E), prob_ee)) assert(xform.prob_ex(t, E) == De1 + De3) assert(xform.prob_xx(t, E) == 1 - 0.5*(De1 + De3)) assert(np.array_equal(xform.prob_xe(t, E), 0.5*(1 - prob_ee))) prob_exbar = np.asarray([De1*(1.-exp(-xform.gamma(_E)*distance)) + De2 + De3*exp(-xform.gamma(_E)*distance) for _E in E]) assert(xform.prob_eebar(t, E) == De3) assert(np.array_equal(xform.prob_exbar(t, E), prob_exbar)) assert(np.array_equal(xform.prob_xxbar(t, E), 1. - 0.5*prob_exbar)) assert(xform.prob_xebar(t, E) == 0.5*(1. - De3)) def test_nudecay_nmo_default_mixing(): # Test interface using default mixing angles defined in the submodule. xform = NeutrinoDecay(mass=mass3, tau=lifetime, dist=distance) # Check transition probabilities (normal hierarchy is default). mixpars = MixingParameters() th12, th13, th23 = mixpars.get_mixing_angles() De1 = (cos(th12) * cos(th13))**2 De2 = (sin(th12) * cos(th13))**2 De3 = sin(th13)**2 prob_ee = np.asarray([De1*(1.-exp(-xform.gamma(_E)*distance)) + De3*exp(-xform.gamma(_E)*distance) for _E in E]) assert(np.array_equal(xform.prob_ee(t, E), prob_ee)) assert(xform.prob_ex(t, E) == De1 + De3) assert(xform.prob_xx(t, E) == 1 - 0.5*(De1 + De3)) assert(np.array_equal(xform.prob_xe(t, E), 0.5*(1 - prob_ee))) prob_exbar = np.asarray([De1*(1.-exp(-xform.gamma(_E)*distance)) + De2 + De3*exp(-xform.gamma(_E)*distance) for _E in E]) assert(xform.prob_eebar(t, E) == De3) assert(np.array_equal(xform.prob_exbar(t, E), prob_exbar)) assert(np.array_equal(xform.prob_xxbar(t, E), 1. - 0.5*prob_exbar)) assert(xform.prob_xebar(t, E) == 0.5*(1. - De3)) def test_nudecay_imo(): # Neutrino decay with IMO, overriding the default mixing angles. xform = NeutrinoDecay(mix_angles=(theta12, theta13, theta23), mass=mass3, tau=lifetime, dist=distance, mh=MassHierarchy.INVERTED) De1 = (cos(theta12) * cos(theta13))**2 De2 = (sin(theta12) * cos(theta13))**2 De3 = sin(theta13)**2 # Check transition probabilities. prob_ee = np.asarray([De2*exp(-xform.gamma(_E)*distance) + De3*(1.-exp(-xform.gamma(_E)*distance)) for _E in E]) assert(np.array_equal(xform.prob_ee(t, E), prob_ee)) assert(xform.prob_ex(t, E) == De1 + De2) assert(xform.prob_xx(t, E) == 1 - 0.5*(De1 + De2)) assert(np.array_equal(xform.prob_xe(t, E), 0.5*(1 - prob_ee))) prob_exbar = np.asarray([De1 + De2*np.exp(-xform.gamma(_E)*distance) + De3*(1-np.exp(-xform.gamma(_E)*distance)) for _E in E]) assert(xform.prob_eebar(t, E) == De3) assert(np.array_equal(xform.prob_exbar(t, E), prob_exbar)) assert(np.array_equal(xform.prob_xxbar(t, E), 1. - 0.5*prob_exbar)) assert(xform.prob_xebar(t, E) == 0.5*(1. - De3)) def test_nudecay_imo_default_mixing(): # Test interface using default mixing angles defined in the submodule. xform = NeutrinoDecay(mass=mass3, tau=lifetime, dist=distance, mh=MassHierarchy.INVERTED) # Check transition probabilities. mixpars = MixingParameters(MassHierarchy.INVERTED) th12, th13, th23 = mixpars.get_mixing_angles() De1 = (cos(th12) * cos(th13))**2 De2 = (sin(th12) * cos(th13))**2 De3 = sin(th13)**2 prob_ee = np.asarray([De2*exp(-xform.gamma(_E)*distance) + De3*(1.-exp(-xform.gamma(_E)*distance)) for _E in E]) assert(np.array_equal(xform.prob_ee(t, E), prob_ee)) assert(xform.prob_ex(t, E) == De1 + De2) assert(xform.prob_xx(t, E) == 1 - 0.5*(De1 + De2)) assert(np.array_equal(xform.prob_xe(t, E), 0.5*(1 - prob_ee))) prob_exbar = np.asarray([De1 + De2*np.exp(-xform.gamma(_E)*distance) + De3*(1-np.exp(-xform.gamma(_E)*distance)) for _E in E]) assert(xform.prob_eebar(t, E) == De3) assert(np.array_equal(xform.prob_exbar(t, E), prob_exbar)) assert(np.array_equal(xform.prob_xxbar(t, E), 1. - 0.5*prob_exbar)) assert(xform.prob_xebar(t, E) == 0.5*(1. - De3)) ```
{ "source": "JoshuaSimon/Machine-Learning", "score": 4 }
#### File: Machine-Learning/Search Algorithms/bfs_dfs.py ```python from data import init_routes, create_child_node_list def bfs(target, node_list, data): for node in node_list: if node == target: print("Solution found.") return new_nodes = create_child_node_list(node_list, data) print("Layer:", new_nodes) if new_nodes: bfs(target, new_nodes, data) else: print("There is no solution.") def dfs(target, node, data, seen_nodes=[]): seen_nodes.append(node) if node == target: print("Solution found.") return True new_nodes = create_child_node_list([node], data) new_nodes = list(new_nodes - set(seen_nodes)) print("Layer:", new_nodes) while new_nodes: result = dfs(target, new_nodes[0], data, seen_nodes) if result: print("Solution found.") return True new_nodes = new_nodes[1:] print("There is no solution.") return False if __name__ == "__main__": # Get the test data. routes = init_routes() # The city you want to start and end at. start = "Linz" target = "Ulm" bfs(target, [start], routes) dfs(target, start, routes) ``` #### File: Machine-Learning/Simple Perceptron Model/perceptron_example.py ```python import matplotlib.pyplot as plt import numpy as np import unittest class Perceptron_Model_Test(unittest.TestCase): def test_prediction_1(self): x_1 = np.array([6,7,8,9,8,8,9,9]) x_2 = np.array([1,3,2,0,4,6,2,5]) x_class = np.array([0,0,0,0,1,1,1,1]) training_inputs = [] for x1, x2 in zip(x_1, x_2): training_inputs.append(np.array([x1,x2])) # Initialize and train the model. perceptron = Perceptron(2, 1000) perceptron.train(training_inputs, x_class) inputs = np.array([7.5, 0.7]) prediction = perceptron.predict(inputs) self.assertEqual(prediction, 0, 'Should be class 0.') inputs = np.array([6, 6]) prediction = perceptron.predict(inputs) self.assertEqual(prediction, 1, 'Should be class 1.') inputs = np.array([0, 0]) prediction = perceptron.predict(inputs) self.assertEqual(prediction, 0, 'Should be class 0.') inputs = np.array([-5.5, -10.7]) prediction = perceptron.predict(inputs) self.assertEqual(prediction, 0, 'Should be class 0.') class Perceptron: def __init__(self, no_of_inputs, threshold=100, learning_rate=0.01): self.threshold = threshold self.learning_rate = learning_rate self.weights = np.zeros(no_of_inputs + 1) def predict(self, inputs): summation = np.dot(inputs, self.weights[1:]) + self.weights[0] if summation > 0: activation = 1 else: activation = 0 return activation def train(self, training_inputs, labels): for _ in range(self.threshold): for inputs, label in zip(training_inputs, labels): prediction = self.predict(inputs) self.weights[1:] += self.learning_rate * (label - prediction) * inputs self.weights[0] += self.learning_rate * (label - prediction) def get_weights(self): return self.weights if __name__ == "__main__": #unittest.main() # Example data. x_1 = np.array([6,7,8,9,8,8,9,9]) x_2 = np.array([1,3,2,0,4,6,2,5]) x_class = np.array([0,0,0,0,1,1,1,1]) training_inputs = [] for x1, x2 in zip(x_1, x_2): training_inputs.append(np.array([x1,x2])) # Initialize and train the model. perceptron = Perceptron(2, 1000) perceptron.train(training_inputs, x_class) # Calculated final weights and linear separator. # Hyperplane for linear separation: w0 + w1 * x1 + w2 * x2 = 0 # ==> x2 = (-w0 - w1 * x1) / w2 weights = perceptron.get_weights() bias = weights[0] weights = weights[1:] slope = -weights[0] / weights[1] intercept = -bias / weights[1] # Plot the data to verify, that the data poinrs # are linearly separable. plt.plot(x_1[0:4], x_2[0:4], 'o', label='Class 0') plt.plot(x_1[4:], x_2[4:], 'o', label='Class 1') plt.axline((0, intercept), slope=slope, linestyle='--', color='r', label='Separator') plt.xlim(5, 10) plt.ylim(-1, 10) plt.legend() plt.show() ```
{ "source": "JoshuaSimon/N-Body-Problem", "score": 4 }
#### File: N-Body-Problem/Python/old_N_Body_Problem.py ```python from math import sqrt import matplotlib.pyplot as plt import operator from functools import reduce from itertools import cycle import random class Vector(): """ n-dimensional Vector """ def __init__(self, *components): self._components = list(components) def __str__(self): return f"Vector{self._components}" __repr__ = __str__ def two_vector_elementwise(self, other, func): if len(self) != len(other): raise ValueError("Dimensions of vectors are different") return Vector(*[func(s, o) for (s, o) in zip(self._components, other._components)]) def elementwise(self, func): return Vector(*[func(x) for x in self._components]) def __sub__(self, other): return self.two_vector_elementwise(other, operator.sub) def __add__(self, other): return self.two_vector_elementwise(other, operator.add) def __mul__(self, other): if type(other) is self.__class__: raise NotImplementedError("Vector multiplication isn't implemented") else: return self.elementwise(lambda x: x * other) @property def norm(self): return sqrt(sum(x**2 for x in self._components)) __abs__ = norm def __getitem__(self, index): return self._components[index] def __setitem__(self, index, value): self._components[index] = value def __len__(self): return len(self._components) dim = __len__ def euler (delta_t, i, v_i, R, m, G): """ Euler method to solve ODEs """ def new_r(component): return R[i][-1][component] + v_i[-1][component] * delta_t def new_v(component): return v_i[-1][component] + a[component] * delta_t a = a_nd(R, G, m, i) v_i_new = Vector(*[new_v(component) for component in range(len(v_i[0]))]) r_new = Vector(*[new_r(component) for component in range(len(R[0][0]))]) return v_i_new, r_new def euler_cormer (delta_t, i, v_i, R, m, G): """ Euler-Cormer method to solve ODEs """ def new_r(component): return R[i][-1][component] + 0.5 * (v_i[-1][component] + v_i_new[component])* delta_t def new_v(component): return v_i[-1][component] + a[component] * delta_t a = a_nd(R, G, m, i) v_i_new = Vector(*[new_v(component) for component in range(len(v_i[0]))]) r_new = Vector(*[new_r(component) for component in range(len(R[0][0]))]) return v_i_new, r_new def verlet (t, delta_t, i, v_i, R, m, G): """ Verlet algorithm """ def new_r(component): if t == 0: r_help = R[i][-1][component] - v_i[-1][component] * delta_t + a[component]/2 * delta_t**2 return 2 * R[i][-1][component] - r_help + a[component] * delta_t**2 else: return 2 * R[i][-1][component] - R[i][-2][component] + a[component] * delta_t**2 def new_v(component): if t == 0: r_help = R[i][-1][component] - v_i[-1][component] * delta_t + a[component]/2 * delta_t**2 return (r_new[component] - r_help) / (2 * delta_t) else: return (r_new[component] - R[i][-2][component]) / (2 * delta_t) a = a_nd(R, G, m, i) r_new = Vector(*[new_r(component) for component in range(len(R[0][0]))]) v_i_new = Vector(*[new_v(component) for component in range(len(v_i[0]))]) return v_i_new, r_new def rk4 (delta_t, i, v_i, R, m, G): """ Forth-order Runge Kutta method """ def a_rk(R, G, m, i, weight, r_tilde): """ Special acceleration for Runge Kutta method """ a_new = [] for j in range(len(R)): if i == j: continue r_i = R[i][-1] r_j = R[j][-1] r_ij = r_j - r_i r_ij[0] = r_ij[0] + weight * r_tilde[0] r_ij[1] = r_ij[1] + weight * r_tilde[1] a_i = r_ij.elementwise(lambda x_n: G * m[j] * x_n / r_ij.norm**3) a_new.append(a_i) a = reduce(lambda v1, v2: v1 + v2, a_new) return a def v_tilde1(component): return a_1[component] * delta_t def r_tilde1(component): return v_i[-1][component] * delta_t def v_tilde2(component): return a_2[component] * delta_t def r_tilde2(component): return (v_i[-1][component] + 0.5 * v_tilde1_new[component]) * delta_t def v_tilde3(component): return a_3[component] * delta_t def r_tilde3(component): return (v_i[-1][component] + 0.5 * v_tilde2_new[component]) * delta_t def v_tilde4(component): return a_4[component] * delta_t def r_tilde4(component): return (v_i[-1][component] + 0.5 * v_tilde3_new[component]) * delta_t def new_v(component): return v_i[-1][component] + 1/6 * v_tilde1_new[component] \ + 1/3 * v_tilde2_new[component] \ + 1/3 * v_tilde3_new[component] \ + 1/6 * v_tilde4_new[component] def new_r(component): return R[i][-1][component] + 1/6 * r_tilde1_new[component] \ + 1/3 * r_tilde2_new[component] \ + 1/3 * r_tilde3_new[component] \ + 1/6 * r_tilde4_new[component] a_1 = a_nd(R, G, m, i) v_tilde1_new = Vector(*[v_tilde1(component) for component in range(len(v_i[0]))]) r_tilde1_new = Vector(*[r_tilde1(component) for component in range(len(v_i[0]))]) a_2 = a_rk(R, G, m, i, 0.5, r_tilde1_new) v_tilde2_new = Vector(*[v_tilde2(component) for component in range(len(v_i[0]))]) r_tilde2_new = Vector(*[r_tilde2(component) for component in range(len(v_i[0]))]) a_3 = a_rk(R, G, m, i, 0.5, r_tilde2_new) v_tilde3_new = Vector(*[v_tilde3(component) for component in range(len(v_i[0]))]) r_tilde3_new = Vector(*[r_tilde3(component) for component in range(len(v_i[0]))]) a_4 = a_rk(R, G, m, i, 1, r_tilde3_new) v_tilde4_new = Vector(*[v_tilde4(component) for component in range(len(v_i[0]))]) r_tilde4_new = Vector(*[r_tilde4(component) for component in range(len(v_i[0]))]) v_new = Vector(*[new_v(component) for component in range(len(v_i[0]))]) r_new = Vector(*[new_r(component) for component in range(len(v_i[0]))]) return v_new, r_new def a_nd(R, G, m, i): """ Acceleration of next timestep for 1 body in a system of n bodies Acceleration as x and y components Params: R: Vector of vector of position tuples of elements G: Gravitational constant m: Vector of masses """ a_new = [] for j in range(len(R)): if i == j: continue r_i = R[i][-1] r_j = R[j][-1] r_ij = r_j - r_i a_i = r_ij.elementwise(lambda x_n: G * m[j] * x_n / r_ij.norm**3) a_new.append(a_i) a = reduce(lambda v1, v2: v1 + v2, a_new) return a def prod(lst): return reduce(lambda a,b: a * b, lst) # 1 Input Data # --------------- # Number of bodys n = 3 # Maximum integration time t_max = 250.0 # Time step length delta_t = 0.100 # Mass m = [ 0.999, 0.0005, 0.0005, ] M = sum(m) # my = prod(m) / M # only for two body problem # Initial position r and velocity v of the two bodys r1_start = Vector(0, 0) v1_start = Vector(0.25, 0) r2_start = Vector(1, 0) v2_start = Vector(0, 1) r3_start = Vector(2, 0) v3_start = Vector(0, 0.7) r_start = [[r1_start], [r2_start], [r3_start]] v_start = [[v1_start], [v2_start], [v3_start]] # Gravity G = 1.0 # 2 Calculation # ------------- R = r_start V = v_start # Loop over time steps (start at 0, end at t_max, step = delta_t) for t in range(0, int(t_max//delta_t)): for i in range(n): # v_i_new, r_i_new = euler(delta_t, i, V[i], R, m, G) # v_i_new, r_i_new = euler_cormer(delta_t, i, V[i], R, m, G) v_i_new, r_i_new = verlet(t, delta_t, i, V[i], R, m, G) #v_i_new, r_i_new = rk4(delta_t, i, V[i], R, m, G) R[i].append(r_i_new) V[i].append(v_i_new) plt.axis([-5, 50, -5, 5]) colors = ["blue", "green", "red", "yellow", "purple", "black", "cyan"] random.shuffle(colors) # adds the related color to each coordinate pair a = (((coords, color) for (coords, color) in zip(body, cycle([color]))) for (body, color) in zip(R, cycle(colors))) # zip coordinate pairs for each timestep together b = iter(zip(*a)) previous_timestep = next(b) for timestep in b: plt.cla() plt.axis([-5, 20, -5, 5]) for body in zip(previous_timestep, timestep): (old_coords, _), (coords, body_color) = body plt.plot(*zip(old_coords), "o", color=body_color) plt.pause(0.0001) previous_timestep = timestep plt.show() ```
{ "source": "joshuasimon-taulia/spectacles", "score": 2 }
#### File: spectacles/tests/conftest.py ```python from typing import Iterable import os import vcr import pytest from spectacles.client import LookerClient from spectacles.exceptions import SqlError from spectacles.lookml import Project, Model, Explore, Dimension from tests.utils import load_resource @pytest.fixture(scope="session") def vcr_config(): return {"filter_headers": ["Authorization"]} @pytest.fixture(scope="session") def looker_client(record_mode) -> Iterable[LookerClient]: with vcr.use_cassette( "tests/cassettes/init_client.yaml", filter_post_data_parameters=["client_id", "client_secret"], filter_headers=["Authorization"], record_mode=record_mode, ): client = LookerClient( base_url="https://spectacles.looker.com", client_id=os.environ.get("LOOKER_CLIENT_ID", ""), client_secret=os.environ.get("LOOKER_CLIENT_SECRET", ""), ) client.update_workspace(project="eye_exam", workspace="production") yield client @pytest.fixture def dimension(): return Dimension( name="age", model_name="eye_exam", explore_name="users", type="number", sql='${TABLE}."AGE"', url="/projects/eye_exam/files/views%2Fusers.view.lkml?line=6", ) @pytest.fixture def explore(): return Explore(name="users", model_name="eye_exam") @pytest.fixture def model(): return Model(name="eye_exam", project_name="eye_exam", explores=[]) @pytest.fixture def project(): return Project(name="eye_exam", models=[]) @pytest.fixture def sql_error(): return SqlError( dimension="users.age", explore="users", model="eye_exam", sql="SELECT age FROM users WHERE 1=2 LIMIT 1", message="An error occurred.", explore_url="https://spectacles.looker.com/x/qCJsodAZ2Y22QZLbmD0Gvy", ) @pytest.fixture def schema(): return load_resource("validation_schema.json") ```
{ "source": "JoshuaSimon/University-Projects", "score": 3 }
#### File: University-Projects/Cluster Analysis/k_means.py ```python Analysis/k_means.py import numpy as np from copy import deepcopy from sklearn.cluster import KMeans class KMeansClustering: def __init__(self, num_culsters) -> None: self.num_culsters = num_culsters self.labels_ = None self.cluster_centers_ = None def fit(self, data): # Number of training data. self.num_observations = data.shape[0] # Number of features in the data. self.num_features = data.shape[1] # Generate random centers for initialization. mean = np.mean(data, axis = 0) std = np.std(data, axis = 0) centers = np.random.randn(self.num_culsters, self.num_features) * std + mean # Setting up shape for containers. centers_old = np.zeros(centers.shape) centers_new = deepcopy(centers) clusters = np.zeros(self.num_observations) distances = np.zeros((self.num_observations, self.num_culsters)) error = np.linalg.norm(centers_new - centers_old) # When, after an update, the estimate of that center stays the same, exit loop. while error != 0: # Measure the distance to every center. for i in range(self.num_culsters): distances[:,i] = np.linalg.norm(data - centers[i], axis=1) # Assign all training data to closest center. clusters = np.argmin(distances, axis = 1) centers_old = deepcopy(centers_new) # Calculate mean for every cluster and update the center. for i in range(self.num_culsters): centers_new[i] = np.mean(data[clusters == i], axis=0) error = np.linalg.norm(centers_new - centers_old) self.cluster_centers_ = centers_new self.labels_ = clusters if __name__ == "__main__": regions = ["Munster", "Bielefeld", "Duisburg", "Bonn", "Rhein-Main", "Dusseldorf"] data = np.array([ [1524.8, 265.4, 272, 79, 24, 223.5], [1596.9, 323.6, 285, 87, 23, 333.9], [2299.7, 610.3, 241, 45, 9, 632.1], [864.1, 303.9, 220, 53, 11, 484.7], [2669.9, 645.5, 202, 61, 15, 438.6], [2985.2, 571.2, 226, 45, 16, 1103.9] ]) names = ["<NAME>", "Own implementaion of KMeans"] models = [ KMeans(n_clusters=2, random_state=42), KMeansClustering(num_culsters=2) ] for name, model in zip(names, models): print(f"Model: {name}") model.fit(data) for region, label in zip(regions, model.labels_): print(f"Region: {region.ljust(15)} Label: {label}") print("\n") ```
{ "source": "JoshuaSimon/Vorausberechnung-Studierende-in-Bayern", "score": 4 }
#### File: JoshuaSimon/Vorausberechnung-Studierende-in-Bayern/normalize.py ```python import numpy as np from math import sqrt from sklearn.preprocessing import minmax_scale def normalize_l2 (x): """ Rerturns a normalized copy of an array x. Uses L2 vector norm for normalization. """ l2 = sqrt(sum(i**2 for i in x)) return [i/l2 for i in x] def de_normalize_l2 (x_norm, x): """ Transforms a normalized vector back to its un-normalized form. """ l2 = sqrt(sum(i**2 for i in x)) return [i*l2 for i in x_norm] def max_scaling(x): """ Scaling the values of an array x with respect to the maximum value of x. """ return [i/max(x) for i in x] def normalize_minmax(x, min_r, max_r): """ Normalizing and scaling given data in an array x to the range of min_r to max_r. """ x_s = [(i - min(x))/(max(x) - min(x)) for i in x] return [i * (max_r - min_r) + min_r for i in x_s] def de_normalize_minmax(x_scale, x, min_r, max_r): """ Transforms a min-max normalized and scaled vector back to its un-normalized form. """ x_t = [((i - min_r)/(max_r - min_r)) for i in x_scale] x_inv = [(i*(max(x) - min(x)) + min(x)) for i in x_t] return x_inv # Test data x = [2000, 2001, 2003] # Exampels: # L2 normalization print(normalize_l2(x)) print(de_normalize_l2(normalize_l2(x), x)) # Max scaling print(max_scaling(x)) # Min-Max scaling print(normalize_minmax(x, 0, 10)) print(de_normalize_minmax(normalize_minmax(x, 0, 10), x, 0, 10)) # sklearn data scaling print(minmax_scale(x, feature_range=(0, 1), axis=0, copy=False)) ```
{ "source": "joshua-s-jensen/random_fun_projects", "score": 3 }
#### File: atari_reinforcement_learning/old/preprocess.py ```python import numpy as np def preprocess_obs(obs): # crop & resize img = obs[1:176:2, ::2] # greyscale img = img.mean(axis=2) # increase contrast color = np.array([210, 164, 74]).mean() img[img==color] = 0 # normalize img = ((img - 128) / 128) - 1 # reshape img = img.reshape(88,80) return img ```
{ "source": "joshuaskelly/1000-blades", "score": 3 }
#### File: joshuaskelly/1000-blades/generate.py ```python import errno import glob import json import os import random import numpy import tracery from tracery.modifiers import base_english from PIL import Image from extended_english import extended_english def calculate_image_possibilities(): """Computes the total possible combinations for sword pieces Returns: The total number of unique combinations of sword pieces """ # Reordering the color ramps in the palette yields 3! combinations palette_reorder_possibilities = 6 return len(palettes) * palette_reorder_possibilities * len(grips) * len(pommels) * len(crossguards) * len(blades) def print_possibility_space(): """Displays the total combinations of various proc gen items.""" print("Possibility space:") print(" {} unique sword images".format(calculate_image_possibilities())) def generate_sword_image(): """Generates a sword image from pieces Returns: A PIL Image object. """ # Chose a random set of pieces palette = Image.open(random.choice(palettes), 'r') grip = Image.open(random.choice(grips), 'r') pommel = Image.open(random.choice(pommels), 'r') crossguard = Image.open(random.choice(crossguards), 'r') blade = Image.open(random.choice(blades), 'r') # Small chance to reorder palette primary_palette = palette.palette.palette[0:15] secondary_palette = palette.palette.palette[15:30] accent_palette = palette.palette.palette[30:45] transparency = palette.palette.palette[45:] p = primary_palette + secondary_palette + accent_palette + transparency if random.random() > 0.95: reordered_palettes = [ primary_palette + accent_palette + secondary_palette + transparency, secondary_palette + primary_palette + accent_palette + transparency, secondary_palette + accent_palette + primary_palette + transparency, accent_palette + primary_palette + secondary_palette + transparency, accent_palette + secondary_palette + primary_palette + transparency ] p = random.choice(reordered_palettes) # Apply palette for image in (grip, pommel, crossguard, blade): image.putpalette(p) composite = Image.new('RGBA', (32, 32)) # Paste with mask needs to be RGBA data. Convert() is used to accomplish this. composite.paste(grip) composite.paste(pommel, (0, 0), pommel.convert()) composite.paste(blade, (0, 0), blade.convert()) composite.paste(crossguard, (0, 0), crossguard.convert()) return composite damage_type_color = { 'MAGIC': {"x": 0.6172, "y": 0.0937, "z": 0.7695}, 'FIRE': {"x": 1.0, "y": 0.0, "z": 0.0}, 'ICE': {"x": 0.0, "y": 0.0, "z": 1.0}, 'LIGHTNING': {"x": 1.0, "y": 1.0, "z": 1.0}, 'POISON': {"x": 0.1529, "y": 1.0, "z": 0.3333}, 'HEALING': {"x": 0.0, "y": 1.0, "z": 1.0}, 'PARALYZE': {"x": 0.9294, "y": 0.7882, "z": 0.1921}, 'VAMPIRE': {"x": 0.13, "y": 0.1, "z": 0.15} } def generate_sword_data(index): """Generates sword JSON data Returns: Sword data as dict """ with open('./json/sword.json') as file: sword_data = json.loads(file.read()) with open('./json/names.json') as file: name_rules = json.loads(file.read()) name_grammar = tracery.Grammar(name_rules) name_grammar.add_modifiers(base_english) name_grammar.add_modifiers(extended_english) sword_data['name'] = f'Blade {index + 1}:\n{name_grammar.flatten("#root#")}' sword_data['tex'] = index sword_data['brokenTex'] = index sword_data['spriteAtlas'] = 'blades' sword_data['baseDamage'] = int(numpy.random.normal(10, 4)) sword_data['randDamage'] = int(numpy.random.normal(10, 4)) sword_data['durability'] = int(numpy.random.normal(100, 40)) sword_data['knockback'] = numpy.random.normal(0.15, 0.025) sword_data['reach'] = numpy.random.normal(0.5, 0.125) + 0.25 sword_data['speed'] = ((1 - (sword_data['baseDamage'] + sword_data['randDamage']) / 44) * 2.0) + 0.25 sword_data['damageType'] = numpy.random.choice( [ 'PHYSICAL', 'MAGIC', 'FIRE', 'ICE', 'LIGHTNING', 'POISON', 'HEALING', 'PARALYZE', 'VAMPIRE' ], p=[ 0.5, 0.1, 0.1, 0.1, 0.1, 0.04, 0.0, 0.03, 0.03 ] ) sword_data['shader'] = { 'PHYSICAL': None, 'MAGIC': 'magic-item-purple', 'FIRE': 'magic-item-red', 'ICE': 'magic-item', 'LIGHTNING': 'magic-item-white', 'POISON': 'magic-item-green', 'HEALING': 'magic-item', 'PARALYZE': 'magic-item', 'VAMPIRE': 'magic-item-red' }[sword_data['damageType']] sword_data['attackAnimation'] = numpy.random.choice( [ 'swordAttack', 'swordAttackSlow', 'daggerAttack', 'maceAttack' ], p=[ 0.4, 0.2, 0.35, 0.05 ] ) sword_data['attackStrongAnimation'] = numpy.random.choice( [ 'swordAttackStrong', 'thrustAttack', 'daggerAttackStrong', 'maceAttackStrong' ], p=[ 0.4, 0.2, 0.35, 0.05 ] ) sword_data['chargeAnimation'] = numpy.random.choice( [ 'swordCharge', 'thrustCharge', 'daggerCharge', 'maceCharge' ], p=[ 0.35, 0.2, 0.35, 0.1 ] ) # Add a light? if (sword_data['damageType'] != 'PHYSICAL' and random.random() < 0.125): with open('./json/light.json') as file: light_data = json.loads(file.read()) light_data['lightColor'] = damage_type_color[sword_data['damageType']] sword_data['attached'].append(light_data) return sword_data def create_directory_structure(): """Generates the output mod directory structure Raises: If fails to create directory """ def ensure_directory(path): try: os.makedirs(path) except OSError as e: if e.errno != errno.EEXIST: raise ensure_directory('./out/textures') ensure_directory('./out/data') if __name__ == "__main__": print("Generating blades...") # Create mod directory structure create_directory_structure() # Set the random seed to have deterministic results. random.seed('teddybear') numpy.random.seed(8888888) # Load up individual pieces palettes = [os.path.normpath(g) for g in glob.glob('./images/palettes/*.png')] grips = [os.path.normpath(g) for g in glob.glob('./images/grips/*.png')] pommels = [os.path.normpath(g) for g in glob.glob('./images/pommels/*.png')] crossguards = [os.path.normpath(g) for g in glob.glob('./images/crossguards/*.png')] blades = [os.path.normpath(g) for g in glob.glob('./images/blades/*.png')] print_possibility_space() sheet_size = 32 * 16, 32 * 64 sprite_sheet = Image.new('RGBA', sheet_size) with open('./json/items.json') as file: sword_definitions = json.loads(file.read()) # Build the sprite sheet for y in range(0, sheet_size[1], 32): for x in range(0, sheet_size[0], 32): index = y // 32 * sheet_size[0] // 32 + x // 32 image = generate_sword_image() sprite_sheet.paste(image, (x, y)) s = generate_sword_data(index) sword_definitions['unique'].append(s) # Save the sprite sheet to file sprite_sheet.save('./out/textures/blades.png') # Save the item definitions to file with open('./out/data/items.dat', 'w') as file: file.write(json.dumps(sword_definitions, indent=4)) # Save the sprite sheet definition with open('./out/data/spritesheets.dat', 'w') as file, open('./json/spritesheets.json') as json_data: data = json.loads(json_data.read()) data[0]['columns'] = sheet_size[0] / 32 file.write(json.dumps(data, indent=4)) print("Done!") ```
{ "source": "joshuaskelly/game-tools", "score": 3 }
#### File: vgio/_core/__init__.py ```python import io import os import shutil import stat try: import threading except ImportError: import dummy_threading as threading from types import SimpleNamespace __all__ = ['ReadWriteFile', 'ArchiveInfo', 'ArchiveFile'] class ReadWriteFile: """ReadWriteFile serves as base class for serializing/deserialing binary data. Attributes: fp: The handle to the open file. Will be None if file closed. mode: File mode. Is one of 'r', 'w', or 'a'. """ def __init__(self): """Initializes a ReadWriteFile object. Derving classes must call this.""" self.fp = None self.mode = None self._did_modify = False @classmethod def open(cls, file, mode='r'): """Open a ReadWriteFile object where file can be a path to a file (a string), or a file-like object. The mode parameter should be ‘r’ to read an existing file, ‘w’ to truncate and write a new file, or ‘a’ to append to an existing file. open() is also a context manager and supports the with statement:: with ReadWriteFile.open('file.ext') as file: file.save('file2.ext') Args: file: Either the path to the file, a file-like object, or bytes. mode: An optional string that indicates which mode to open the file Returns: An ReadWriteFile object constructed from the information read from the file-like object. Raises: ValueError: If an invalid file mode is given. TypeError: If attempting to write to a bytes object. OSError: If the file argument is not a file-like object. """ if mode not in ('r', 'w', 'a'): raise ValueError(f"invalid mode: '{mode}'") filemode = {'r': 'rb', 'w': 'w+b', 'a': 'r+b'}[mode] if isinstance(file, str): file = io.open(file, filemode) elif isinstance(file, bytes): if mode != 'r': raise TypeError('Unable to write to bytes object') file = io.BytesIO(file) elif not hasattr(file, 'read'): raise OSError('Bad file descriptor') # Read if mode == 'r': read_file = cls._read_file(file, mode) read_file.fp = file read_file.mode = 'r' return read_file # Write elif mode == 'w': write_file = cls() write_file.fp = file write_file.mode = 'w' write_file._did_modify = True return write_file # Append else: append_file = cls._read_file(file, mode) append_file.fp = file append_file.mode = 'a' append_file._did_modify = True return append_file @staticmethod def _read_file(file, mode): raise NotImplementedError @staticmethod def _write_file(file, object_): raise NotImplementedError def save(self, file): """Writes data to file. Args: file: Either the path to the file, or a file-like object. Raises: OSError: If file argument is not a file-like object. """ should_close = False if isinstance(file, str): file = io.open(file, 'r+b') should_close = True elif not hasattr(file, 'write'): raise OSError('Bad file descriptor') self.__class__._write_file(file, self) if should_close: file.close() def __enter__(self): return self def __exit__(self, type_, value, traceback): self.close() def close(self): """Closes the file pointer if possible. If mode is 'w' or 'a', the file will be written to. """ if self.fp: if self.mode in ('w', 'a') and self._did_modify: self.fp.seek(0) self.__class__._write_file(self.fp, self) self.fp.truncate() file_object = self.fp self.fp = None file_object.close() class ArchiveInfo: """ArchiveInfo objects store information about a single entry in the ArchiveFile archive. Instances of the ArchiveInfo class are returned by the getinfo() and infolist() methods of ArchiveFile objects. Attributes: filename: Name of file. file_offset: Offset of file in bytes. file_size: Size of the file in bytes. """ __slots__ = ( 'filename', 'file_offset', 'file_size' ) def __init__(self, filename, file_offset=0, file_size=0): raise NotImplementedError @classmethod def from_file(cls, filename): """Construct an ArchiveInfo instance for a file on the filesystem, in preparation for adding it to an archive file. filename should be the path to a file or directory on the filesystem. Args: filename: A path to a file or directory. Returns: An ArchiveInfo object. """ raise NotImplementedError class _SharedFile: def __init__(self, file, position, size, close, lock, writing): self._file = file self._position = position self._start = position self._end = position + size self._close = close self._lock = lock self._writing = writing def seek(self, offset, whence=0): with self._lock: if self._writing(): raise ValueError( "Can't reposition in the archive file while there is an " "open writing handle on it. Close the writing handle " "before trying to read." ) self._file.seek(offset, whence) self._position = self._file.tell() def read(self, n=-1): with self._lock: self._file.seek(self._position) if n < 0 or n > self._end: n = self._end - self._position data = self._file.read(n) self._position = self._file.tell() return data def tell(self): return self._file.tell() def close(self): if self._file is not None: file_object = self._file self._file = None self._close(file_object) class ArchiveExtFile(io.BufferedIOBase): """A file-like object for reading an entry. It is returned by ArchiveFile.open() """ MAX_N = 1 << 31 - 1 MIN_READ_SIZE = 4096 MAX_SEEK_READ = 1 << 24 def __init__(self, file_object, mode, archive_info, close_file_object=False): self._file_object = file_object self._close_file_object = close_file_object self._bytes_left = archive_info.file_size self._original_size = archive_info.file_size self._original_start = file_object.tell() self._eof = False self._readbuffer = b'' self._offset = 0 self._size = archive_info.file_size self.mode = mode self.name = archive_info.filename def read(self, n=-1): """Read and return up to n bytes. If the argument n is omitted, None, or negative, data will be read until EOF. """ if n is None or n < 0: buffer = self._readbuffer[self._offset:] self._readbuffer = b'' self._offset = 0 while not self._eof: buffer += self._read_internal(self.MAX_N) return buffer end = n + self._offset if end < len(self._readbuffer): buffer = self._readbuffer[self._offset:end] self._offset = end return buffer n = end - len(self._readbuffer) buffer = self._readbuffer[self._offset:] self._readbuffer = b'' self._offset = 0 while n > 0 and not self._eof: data = self._read_internal(n) if n < len(data): self._readbuffer = data self._offset = n buffer += data[:n] break buffer += data n -= len(data) return buffer def _read_internal(self, n): """Read up to n bytes with at most one read() system call""" if self._eof or n <= 0: return b'' # Read from file. n = max(n, self.MIN_READ_SIZE) data = self._file_object.read(n) if not data: raise EOFError data = data[:self._bytes_left] self._bytes_left -= len(data) if self._bytes_left <= 0: self._eof = True return data def peek(self, n=1): """Returns buffered bytes without advancing the position.""" if n > len(self._readbuffer) - self._offset: chunk = self.read(n) if len(chunk) > self._offset: self._readbuffer = chunk + self._readbuffer[self._offset:] self._offset = 0 else: self._offset -= len(chunk) # Return up to 512 bytes to reduce allocation overhead for tight loops. return self._readbuffer[self._offset: self._offset + 512] def seek(self, offset, whence=0): current_position = self.tell() if whence == 0: new_position = offset elif whence == 1: new_position = current_position + offset elif whence == 2: new_position = self._original_size + offset else: raise ValueError("whence must be os.SEEK_SET (0), os.SEEK_CUR (1), or os.SEEK_END (2)") if new_position > self._original_size: new_position = self._original_size if new_position < 0: new_position = 0 read_offset = new_position - current_position buff_offset = read_offset + self._offset if buff_offset >= 0 and buff_offset < len(self._readbuffer): self._offset = buff_offset read_offset = 0 elif read_offset < 0: self._file_object.seek(self._original_start) self._bytes_left = self._original_size self._readbuffer = b'' self._offset = 0 self._eof = False read_offset = new_position while read_offset > 0: read_length = min(self.MAX_SEEK_READ, read_offset) self.read(read_length) read_offset -= read_length def tell(self): filepos = self._original_size - self._bytes_left - len(self._readbuffer) + self._offset return filepos def close(self): try: if self._close_file_object: self._file_object.close() finally: super().close() class _ArchiveWriteFile(io.BufferedIOBase): def __init__(self, archive_file, archive_info): self._archive_info = archive_info self._archive_file = archive_file self._file_size = 0 self._start_of_file = self._fileobj.tell() @property def _fileobj(self): return self._archive_file.fp def writable(self): return True def write(self, data): number_of_bytes = len(data) relative_offset = self.tell() self._file_size = max(self._file_size, relative_offset + number_of_bytes) self._fileobj.write(data) return number_of_bytes def peek(self, n=1): return self._fileobj.peek(n) def seek(self, offset, whence=0): self._fileobj.seek(offset + self._start_of_file, whence) def tell(self): return self._fileobj.tell() - self._start_of_file def close(self): super().close() self._archive_info.file_size = self._file_size self._archive_file.end_of_data = self._fileobj.tell() self._archive_file._writing = False self._archive_file.file_list.append(self._archive_info) self._archive_file.NameToInfo[self._archive_info.filename] = self._archive_info class ArchiveFile: """ArchiveFile serves as base class for working with binary archive data. Attributes: file: Either the path to the file, or a file-like object. If it is a path, the file will be opened and closed by ArchiveFile. mode: File mode. Is one of 'r', 'w', or 'a'. """ fp = None _windows_illegal_name_trans_table = None class factory: ArchiveExtFile = ArchiveExtFile ArchiveInfo = ArchiveInfo ArchiveWriteFile = _ArchiveWriteFile SharedFile = _SharedFile def __init__(self, file, mode='r'): if mode not in ('r', 'w', 'a'): raise RuntimeError("ArchiveFile requires mode 'r', 'w', or 'a'") self.NameToInfo = {} self.file_list = [] self.mode = mode self._did_modify = False self._file_reference_count = 1 self._lock = threading.RLock() self._writing = False filemode = {'r': 'rb', 'w': 'w+b', 'a': 'r+b'}[mode] if isinstance(file, str): self.filename = file self.fp = io.open(file, filemode) self._file_passed = 0 else: self.fp = file self.filename = getattr(file, 'name', None) self._file_passed = 1 try: if mode == 'r': self._read_file(mode) elif mode == 'w': self._did_modify = True self._write_directory() self.end_of_data = self.fp.tell() elif mode == 'a': self._read_file(mode) self.fp.seek(self.end_of_data) else: raise ValueError("Mode must be 'r', 'w', or 'a'") except Exception as e: fp = self.fp self.fp = None self._fpclose(fp) raise e def __enter__(self): return self def __exit__(self, type, value, traceback): self.close() def _read_file(self, mode='r'): raise NotImplementedError def _write_directory(self): raise NotImplementedError def namelist(self): """Return a list of archive members by name. Returns: A sequence of filenames. """ return [data.filename for data in self.file_list] def infolist(self): """Return a list containing an ArchiveInfo object for each member of the archive. The objects are in the same order as their entries in the actual archive file on disk if an existing archive was opened. Returns: A sequence of ArchiveInfo objects. """ return self.file_list def getinfo(self, name): """Return a ArchiveInfo object with information about the archive member name. Calling getinfo() for a name not currently contained in the archive will raise a KeyError. Args: name: AchiveInfo name. Returns: An ArchiveInfo object. Raises: KeyError: If no archive item exists for the given name. """ info = self.NameToInfo.get(name) if info is None: raise KeyError('There is no item named %r in the archive file' % name) return info def read(self, name): """Return the bytes of the file name in the archive. name is the name of the file in the archive, or a ArchiveInfo object. The archive must be open for read or append. Args: name: ArchiveInfo name. Returns: File as bytes. """ info = self.getinfo(name) with self.open(name, 'r') as fp: return fp.read(info.file_size) def open(self, name, mode='r'): """Access a member of the archive as a binary file-like object. name can be either the name of a file within the archive or an ArchiveInfo object. The mode parameter, if included, must be 'r' (the default) or 'w'. open() is also a context manager and supports the with statement:: with ArchiveFile('archive.file') as archive_file: with archive_file.open('entry') as entry_file: print(entry_file.read()) Args: name: Name or ArchiveInfo object. mode: File mode to open object. Returns: A binary file-like object. Raises: ValueError: If mode isn't 'r' or 'w'. RuntimeError: If file was already closed. """ if mode not in ('r', 'w'): raise ValueError("open() requires mode 'r' or 'w'") if not self.fp: raise RuntimeError('Attempt to read archive that was already closed') if isinstance(name, self.factory.ArchiveInfo): info = name elif mode == 'w': info = self.factory.ArchiveInfo(name) info.file_offset = self.fp.tell() else: info = self.getinfo(name) if mode == 'w': return self._open_to_write(info) self._file_reference_count += 1 shared_file = self.factory.SharedFile( self.fp, info.file_offset, info.file_size, self._fpclose, self._lock, lambda: self._writing ) try: return self.factory.ArchiveExtFile(shared_file, mode, info, True) except: shared_file.close() raise def _open_to_write(self, archive_info): if self._writing: raise ValueError("Can't write to the archive file while there is " "another write handle open on it. Close the first" " handle before opening another.") self._write_check(archive_info) self._did_modify = True self._writing = True return self.factory.ArchiveWriteFile(self, archive_info) def extract(self, member, path=None): """Extract a member from the archive to the current working directory; member must be its full name or a ArchiveInfo object. Its file information is extracted as accurately as possible. path specifies a different directory to extract to. member can be a filename or an ArchiveInfo object. Args: member: Either the name of the member to extract or a ArchiveInfo instance. path: The directory to extract to. The current working directory will be used if None. Returns: Path to extracted file. """ if not isinstance(member, self.factory.ArchiveInfo): member = self.getinfo(member) if path is None: path = os.getcwd() return self._extract_member(member, path) def extractall(self, path=None, members=None): """Extract all members from the archive to the current working directory. path specifies a different directory to extract to. members is optional and must be a subset of the list returned by namelist(). Args: path: The directory to extract to. The current working directory will be used if None. members: The names of the members to extract. This must be a subset of the list returned by namelist(). All members will be extracted if None. """ if members is None: members = self.namelist() for archiveinfo in members: self.extract(archiveinfo, path) @classmethod def _sanitize_windows_name(cls, archive_name, path_separator): """Replace bad characters and remove trailing dots from parts.""" table = cls._windows_illegal_name_trans_table if not table: illegal = ':<>|"?*' table = str.maketrans(illegal, '_' * len(illegal)) cls._windows_illegal_name_trans_table = table archive_name = archive_name.translate(table) # Remove trailing dots archive_name = (x.rstrip('.') for x in archive_name.split(path_separator)) # Rejoin, removing empty parts. archive_name = path_separator.join(x for x in archive_name if x) return archive_name def _extract_member(self, member, target_path): """Extract the ArchiveInfo object 'member' to a physical file on the path target_path. """ # Build the destination pathname, replacing forward slashes to # platform specific separators. archive_name = member.filename.replace('/', os.path.sep) if os.path.altsep: archive_name = archive_name.replace(os.path.altsep, os.path.sep) # Interpret absolute pathname as relative, remove drive letter or # UNC path, redundant separators, "." and ".." components. archive_name = os.path.splitdrive(archive_name)[1] invalid_path_parts = ('', os.path.curdir, os.path.pardir) archive_name = os.path.sep.join(x for x in archive_name.split(os.path.sep) if x not in invalid_path_parts) if os.path.sep == '\\': # Filter illegal characters on Windows archive_name = self._sanitize_windows_name(archive_name, os.path.sep) target_path = os.path.join(target_path, archive_name) target_path = os.path.normpath(target_path) # Create all upper directories if necessary. upperdirs = os.path.dirname(target_path) if upperdirs and not os.path.exists(upperdirs): os.makedirs(upperdirs) if member.filename[-1] == '/': if not os.path.isdir(target_path): os.mkdir(target_path) return target_path with self.open(member) as source, open(target_path, "wb") as target: shutil.copyfileobj(source, target) return target_path def _write_check(self, archive_info): if self.mode not in ('w', 'x', 'a'): raise ValueError("write() requires mode 'w', 'x', or 'a'") if not self.fp: raise ValueError('Attempting to write to archive that was already closed') def write(self, filename, arcname=None): """Write the file named filename to the archive, giving it the archive name arcname (by default, this will be the same as filename, but without a drive letter and with leading path separators removed). The archive must be open with mode 'w', or 'a'. Args: filename: arcname: Optional. Name of the info object. If omitted filename will be used. """ if not self.fp: raise ValueError('Attempting to write to archive that was' ' already closed') if self._writing: raise ValueError("Can't write to archive while an open writing" " handle exists") info = self.factory.ArchiveInfo.from_file(filename) info.file_offset = self.fp.tell() if arcname: info.filename = arcname if filename[-1] == '/': raise RuntimeError('ArchiveFile expects a file, got a directory') else: with open(filename, 'rb') as src, self.open(info, 'w') as dest: shutil.copyfileobj(src, dest, 8*1024) def writestr(self, info_or_arcname, data): """Write a file into the archive. The contents is data, which may be either a string or a bytes instance; if it is a string, it is encoded as UTF-8 first. info_or_arcname is either the file name it will be given in the archive, or a ArchiveInfo instance. If it’s an instance, at least the filename must be given. The archive must be opened with mode 'w' or 'a'. Args: info_or_arcname: data: Data to be written. Either a string or bytes. """ if not self.fp: raise ValueError('Attempting to write to archive that was' ' already closed') if self._writing: raise ValueError("Can't write to archive while an open writing" " handle exists") if not isinstance(info_or_arcname, self.factory.ArchiveInfo): info = self.factory.ArchiveInfo(info_or_arcname) else: info = info_or_arcname info.file_offset = self.fp.tell() if not info.file_size: info.file_size = len(data) should_close = False if isinstance(data, str): data = data.encode('ascii') if isinstance(data, bytes): data = io.BytesIO(data) should_close = True if not hasattr(data, 'read'): raise TypeError('Invalid data type. ArchiveFile.writestr expects a string or bytes') with data as src, self.open(info, 'w') as dest: shutil.copyfileobj(src, dest, 8*1024) if should_close: data.close() def close(self): """Close the archive file. You must call close() before exiting your program or essential records will not be written. Raises: ValueError: If open writing handles exist. """ if self.fp is None: return if self._writing: raise ValueError("Can't close archive file while there is an open" "writing handle on it. Close the writing handle" "before closing the archive.") try: if self.mode in ('w', 'x', 'a') and self._did_modify and hasattr(self, 'end_of_data'): with self._lock: self.fp.seek(self.end_of_data) self._write_directory() finally: fp = self.fp self.fp = None self._fpclose(fp) def _fpclose(self, fp): assert self._file_reference_count > 0 self._file_reference_count -= 1 if not self._file_reference_count and not self._file_passed: fp.close() ``` #### File: vgio/devildaggers/hxshader.py ```python import struct from vgio._core import ReadWriteFile class Header: """Class for representing a HxShader file header Attributes: name_size: Length of shader name. vertex_shader_size: Length of the vertex shader. frag_shader_size: Length of the fragment shader. """ format = '<3i' size = struct.calcsize(format) __slots__ = ( 'name_size', 'vertex_shader_size', 'frag_shader_size' ) def __init__(self, name_size, vertex_shader_size, frag_shader_size): self.name_size = name_size self.vertex_shader_size = vertex_shader_size self.frag_shader_size = frag_shader_size @classmethod def write(cls, file, header): header_data = struct.pack(cls.format, header.name_size, header.vertex_shader_size, header.frag_shader_size) file.write(header_data) @classmethod def read(cls, file): header_data = file.read(cls.size) header_struct = struct.unpack(cls.format, header_data) return Header(*header_struct) class HxShader(ReadWriteFile): """Class for working with HxShaders Attributes: name: Shader name. vertex_shader: Vertex shader code. fragment_shader: Fragment shader code. """ def __init__(self): """Constructs an HxShader object.""" super().__init__() self.name = '' self.vertex_shader = '' self.fragment_shader = '' @classmethod def _read_file(cls, file, mode): hs = HxShader() hs.fp = file hs.mode = mode def read_string(size): string_format = f'<{size}s' string_data = struct.unpack(string_format, file.read(struct.calcsize(string_format)))[0] return string_data.decode('ascii') header = Header.read(file) hs.name = read_string(header.name_size) hs.vertex_shader = read_string(header.vertex_shader_size) hs.fragment_shader = read_string(header.frag_shader_size) return hs @classmethod def _write_file(cls, file, shader): header = Header( len(shader.name), len(shader.vertex_shader), len(shader.fragment_shader) ) Header.write(file, header) file.write(shader.name.encode()) file.write(shader.vertex_shader.encode()) file.write(shader.fragment_shader.encode()) ``` #### File: vgio/devildaggers/hxtexture.py ```python import struct from vgio._core import ReadWriteFile class Header: """Class for representing a HxTexture file header. Attributes: texture_format: Texture format. Should be 0x4011 width: Width of the texture at mip level 0. height: Height of the texture at mip level 0. mip_level_count: Number of mip levels. """ format = '<h2iB' size = struct.calcsize(format) __slots__ = ( 'texture_format', 'width', 'height', 'mip_level_count' ) def __init__(self, texture_format, width, height, mip_level_count): self.texture_format = texture_format self.width = width self.height = height self.mip_level_count = mip_level_count @classmethod def write(cls, file, header): header_data = struct.pack( cls.format, header.texture_format, header.width, header.height, header.mip_level_count ) file.write(header_data) @classmethod def read(cls, file): header_data = file.read(cls.size) header_struct = struct.unpack(cls.format, header_data) return Header(*header_struct) class HxTexture(ReadWriteFile): """Class for working with HxTextures. Attributes: texture_format: Likely a texture format? width: Texture width at mip level 0. height: Texture height at mip level 0. mip_level_count: Number of mip levels pixels: An unstructured sequence of interleaved RGBA data as bytes. """ def __init__(self): """Constructs an HxTexture object.""" super().__init__() self.texture_format = 0x4011 self.width = 0 self.height = 0 self.mip_level_count = 0 self.pixels = None @classmethod def _read_file(cls, file, mode): ht = HxTexture() ht.fp = file ht.mode = mode header = Header.read(file) ht.texture_format = header.texture_format ht.width = header.width ht.height = header.height ht.mip_level_count = header.mip_level_count ht.pixels = file.read() return ht @classmethod def _write_file(cls, file, hxtex): header = Header( hxtex.texture_format, hxtex.width, hxtex.height, hxtex.mip_level_count ) Header.write(file, header) file.write(hxtex.pixels) ``` #### File: devildaggers/tests/test_hxtexture.py ```python import io import unittest from vgio.devildaggers import hxtexture class TestHxtextureReadWrite(unittest.TestCase): def setUp(self): self.buff = io.BytesIO() def test_header(self): texture_format = 0x4011 width = 64 height = 64 mip_level_count = 8 expected = hxtexture.Header( texture_format, width, height, mip_level_count ) hxtexture.Header.write(self.buff, expected) self.buff.seek(0) actual = hxtexture.Header.read(self.buff) self.assertEqual(expected.texture_format, actual.texture_format, 'Format values should be equal') self.assertEqual(expected.width, actual.width, 'Width values should be equal') self.assertEqual(expected.height, actual.height, 'Height values should be equal') self.assertEqual(expected.mip_level_count, actual.mip_level_count, 'Mip_level_count values should be equal') self.assertEqual(self.buff.read(), b'', 'Buffer should be fully consumed') def test_hxtexture(self): h0 = hxtexture.HxTexture() h0.width = 4 h0.height = 4 h0.mip_level_count = 1 h0.pixels = b'\x7f\x7f\x7f\xff' * 16 h0.save(self.buff) self.buff.seek(0) h1 = hxtexture.HxTexture.open(self.buff) self.assertEqual(h0.texture_format, h1.texture_format, 'Texture formats should be equal') self.assertEqual(h0.width, h1.width, 'Widths should be equal') self.assertEqual(h0.height, h1.height, 'Heights should be equal') self.assertEqual(h0.mip_level_count, h1.mip_level_count, 'Mip level counts should be equal') self.assertEqual(h0.pixels, h1.pixels, 'Pixels should be equal') self.assertEqual(self.buff.read(), b'', 'Buffer should be fully consumed') if __name__ == '__main__': unittest.main() ``` #### File: vgio/quake2/dm2.py ```python from vgio._core import ReadWriteFile from . import protocol __all__ = ['Dm2'] class Dm2(ReadWriteFile): """Class for working with Dm2 files Example: Basic usage:: from vgio.quake2.dm2 import Dm2 d = Dm2.open(file) Attributes: message_blocks: A sequence of MessageBlock objects """ def __init__(self): super().__init__() self.message_blocks = [] @staticmethod def _read_file(file, mode): dm2 = Dm2() dm2.mode = mode dm2.fp = file # Message Blocks while file.peek(4)[:4] != b'': message_block = protocol.MessageBlock.read(file) dm2.message_blocks.append(message_block) return dm2 @staticmethod def _write_file(file, dm2): for message_block in dm2.message_blocks: protocol.MessageBlock.write(file, message_block) ``` #### File: quake2/tests/test_protocol.py ```python import io import unittest from vgio.quake2.tests.basecase import TestCase from vgio.quake2 import protocol significant_digits = 5 angle_resolution = 360 / 256 class TestProtocolReadWrite(TestCase): def test_bad_message(self): protocol.Bad.write(self.buff) self.buff.seek(0) protocol.Bad.read(self.buff) def test_muzzle_flash(self): entity = 0 weapon = 4 mf0 = protocol.MuzzleFlash(entity, weapon) protocol.MuzzleFlash.write(self.buff, mf0) self.buff.seek(0) mf1 = protocol.MuzzleFlash.read(self.buff) self.assertEqual(mf0.entity, mf1.entity, 'Entity should be equal') self.assertEqual(mf0.weapon, mf1.weapon, 'Weapon should be equal') def test_muzzle_flash2(self): entity = 128 flash_number = 64 mf0 = protocol.MuzzleFlash2(entity, flash_number) protocol.MuzzleFlash2.write(self.buff, mf0) self.buff.seek(0) mf1 = protocol.MuzzleFlash2.read(self.buff) self.assertEqual(mf0.entity, mf1.entity, 'Entity should be equal') self.assertEqual(mf0.flash_number, mf1.flash_number, 'Flash number should be equal') def test_temp_entity_particles(self): type = protocol.TE_BLOOD position = 0, 0, 0 direction = 16 te0 = protocol.TempEntity(type, position, direction) protocol.TempEntity.write(self.buff, te0) self.buff.seek(0) te1 = protocol.TempEntity.read(self.buff) self.assertEqual(te0.position, te1.position, 'Position should be equal') self.assertEqual(te0.direction, te1.direction, 'Direction should be equal') def test_temp_entity_splashes(self): type = protocol.TE_SPLASH count = 8 position = -16, 255, 0 direction = 16 te0 = protocol.TempEntity(type, count, position, direction) protocol.TempEntity.write(self.buff, te0) self.buff.seek(0) te1 = protocol.TempEntity.read(self.buff) self.assertEqual(te0.count, te1.count, 'Count should be equal') self.assertEqual(te0.position, te1.position, 'Position should be equal') self.assertEqual(te0.direction, te1.direction, 'Direction should be equal') def test_temp_entity_blue_hyperblaster(self): type = protocol.TE_BLUEHYPERBLASTER position = 0, 0, 0 direction = -0.5, 0.0, 0.75 te0 = protocol.TempEntity(type, position, direction) protocol.TempEntity.write(self.buff, te0) self.buff.seek(0) te1 = protocol.TempEntity.read(self.buff) self.assertEqual(te0.position, te1.position, 'Position should be equal') self.assertEqual(te0.direction, te1.direction, 'Direction should be equal') def test_temp_entity_trails(self): type = protocol.TE_RAILTRAIL position = 0, 0, 0 position2 = 16, -128, 255 te0 = protocol.TempEntity(type, position, position2) protocol.TempEntity.write(self.buff, te0) self.buff.seek(0) te1 = protocol.TempEntity.read(self.buff) self.assertEqual(te0.position, te1.position, 'Position should be equal') self.assertEqual(te0.position2, te1.position2, 'Position2 should be equal') def test_temp_entity_explosions(self): type = protocol.TE_EXPLOSION1 position = 0, 0, 0 te0 = protocol.TempEntity(type, position) protocol.TempEntity.write(self.buff, te0) self.buff.seek(0) te1 = protocol.TempEntity.read(self.buff) self.assertEqual(te0.position, te1.position, 'Position should be equal') def test_temp_entity_raise(self): with self.assertRaises(TypeError, msg='Should raise if __init__ called with too few args'): protocol.TempEntity(protocol.TE_BLOOD) with self.assertRaises(TypeError, msg='Should raise if __init__ called with too many args'): position = 0, 0, 0 bad_arg = 16 protocol.TempEntity(protocol.TE_EXPLOSION1, position, bad_arg) def test_layout(self): text = 'xv 32 yv 8 picn help' l0 = protocol.Layout(text) protocol.Layout.write(self.buff, l0) self.buff.seek(0) l1 = protocol.Layout.read(self.buff) self.assertEqual(l0.text, l1.text, 'Text should be equal') def test_inventory(self): inventory = [i << 7 for i in range(256)] i0 = protocol.Inventory(inventory) protocol.Inventory.write(self.buff, i0) self.buff.seek(0) i1 = protocol.Inventory.read(self.buff) self.assertEqual(tuple(i0.inventory), tuple(i1.inventory), 'Inventories should be equal') def test_nop_message(self): protocol.Nop.write(self.buff) self.buff.seek(0) protocol.Nop.read(self.buff) def test_disconnect_message(self): protocol.Disconnect.write(self.buff) self.buff.seek(0) protocol.Disconnect.read(self.buff) def test_reconnect_message(self): protocol.Reconnect.write(self.buff) self.buff.seek(0) protocol.Reconnect.read(self.buff) def test_sound_no_optional_args(self): flags = 0 sound_number = 64 s0 = protocol.Sound(flags, sound_number) protocol.Sound.write(self.buff, s0) self.buff.seek(0) s1 = protocol.Sound.read(self.buff) self.assertEqual(s0.flags, s1.flags, 'Flags should be equal') self.assertEqual(s0.sound_number, s1.sound_number, 'Sound_number should be equal') self.assertEqual(s0.volume, s1.volume, 'Volume should be equal') self.assertEqual(s0.attenuation, s1.attenuation, 'Attenuation should be equal') self.assertEqual(s0.offset, s1.offset, 'Offset should be equal') self.assertEqual(s0.channel, s1.channel, 'Channel should be equal') self.assertEqual(s0.entity, s1.entity, 'Entity should be equal') self.assertEqual(s0.position, s1.position, 'Position should be equal') def test_sound_all_optional_args(self): flags = 31 sound_number = 0 volume = 127 / 255 attenuation = 2 offset = 0 channel = 7 entity = 127 position = 128, -128, 0 s0 = protocol.Sound(flags, sound_number, volume, attenuation, offset, channel, entity, position) protocol.Sound.write(self.buff, s0) self.buff.seek(0) s1 = protocol.Sound.read(self.buff) self.assertEqual(s0.flags, s1.flags, 'Flags should be equal') self.assertEqual(s0.sound_number, s1.sound_number, 'Sound_number should be equal') self.assertAlmostEqual(s0.volume, s1.volume, significant_digits, 'Volume should be equal') self.assertEqual(s0.attenuation, s1.attenuation, 'Attenuation should be equal') self.assertEqual(s0.offset, s1.offset, 'Offset should be equal') self.assertEqual(s0.channel, s1.channel, 'Channel should be equal') self.assertEqual(s0.entity, s1.entity, 'Entity should be equal') self.assertEqual(s0.position, s1.position, 'Position should be equal') def test_print(self): level = 3 text = 'This is a test message!' p0 = protocol.Print(level, text) protocol.Print.write(self.buff, p0) self.buff.seek(0) p1 = protocol.Print.read(self.buff) self.assertEqual(p0.level, p1.level, 'Level should be the same') self.assertEqual(p0.text, p1.text, 'Text should be the same') def test_stuff_text(self): text = '+forward' t0 = protocol.StuffText(text) protocol.StuffText.write(self.buff, t0) self.buff.seek(0) t1 = protocol.StuffText.read(self.buff) self.assertEqual(t0.text, t1.text, 'Text should be equal') def test_server_data(self): protocol_version = 25 server_count = 1 attract_loop = 0 game_directory = '' player_number = 1 map_name = 'base1.bsp' sd0 = protocol.ServerData(protocol_version, server_count, attract_loop, game_directory, player_number, map_name) protocol.ServerData.write(self.buff, sd0) self.buff.seek(0) sd1 = protocol.ServerData.read(self.buff) self.assertEqual(sd0.protocol_version, sd1.protocol_version, 'Protocol_version should be equal') self.assertEqual(sd0.server_count, sd1.server_count, 'Server_count should be equal') self.assertEqual(sd0.attract_loop, sd1.attract_loop, 'Attract_loop should be equal') self.assertEqual(sd0.game_directory, sd1.game_directory, 'Game_directory should be equal') self.assertEqual(sd0.player_number, sd1.player_number, 'Player_number should be equal') self.assertEqual(sd0.map_name, sd1.map_name, 'Map_name should be equal') def test_config_string(self): index = 0 text = 'Test text' cs0 = protocol.ConfigString(index, text) protocol.ConfigString.write(self.buff, cs0) self.buff.seek(0) cs1 = protocol.ConfigString.read(self.buff) self.assertEqual(cs0.index, cs1.index, 'Index should be equal') self.assertEqual(cs0.text, cs1.text, 'Text should be equal') def test_spawn_baseline_no_optional_data(self): number = 16 origin_x = 0.0 origin_y = 22.5 angle_y = -45.0 angle_z = 12.125 frame = 4 event = 1 sb0 = protocol.SpawnBaseline(number=number, origin_x=origin_x, origin_y=origin_y, angles_y=angle_y, angles_z=angle_z, frame=frame, event=event) protocol.SpawnBaseline.write(self.buff, sb0) self.buff.seek(0) sb1 = protocol.SpawnBaseline.read(self.buff) self.assertEqual(sb0.number, sb1.number, 'Number should be equal') self.assertEqual(sb0.origin, sb1.origin, 'origin_x should be equal') angle_error_y = abs(sb0.angles[1] - sb1.angles[1]) self.assertLessEqual(angle_error_y, angle_resolution, 'Angles should be within %s degrees of error' % angle_resolution) angle_error_z = abs(sb0.angles[2] - sb1.angles[2]) self.assertLessEqual(angle_error_z, angle_resolution, 'Angles should be within %s degrees of error' % angle_resolution) self.assertEqual(sb0.frame, sb1.frame, 'frame should be equal') self.assertEqual(sb0.event, sb1.event, 'event should be equal') def test_spawn_baseline_morebits1_optional_data(self): number = 300 origin_z = 12.5 angle_x = 6.25 model_index = 1 render_fx = 4 effects = 2 sb0 = protocol.SpawnBaseline(number=number, origin_z=origin_z, angles_x=angle_x, model_index=model_index, render_fx=render_fx, effects=effects) protocol.SpawnBaseline.write(self.buff, sb0) self.buff.seek(0) sb1 = protocol.SpawnBaseline.read(self.buff) self.assertEqual(sb0.number, sb1.number, 'Number should be equal') self.assertEqual(sb0.origin, sb1.origin, 'Origins should be equal') angle_error_x = abs(sb0.angles[0] - sb1.angles[0]) self.assertLessEqual(angle_error_x, angle_resolution, 'Angles should be within %s degrees of error' % angle_resolution) self.assertEqual(sb0.model_index, sb1.model_index, 'Model indices should be equal') self.assertEqual(sb0.render_fx, sb1.render_fx, 'Render FX values should be equal') self.assertEqual(sb0.effects, sb1.effects, 'Effect values should be equal') def test_spawn_baseline_morebits2_optional_data(self): skin = 16 frame = 276 render_fx = 315 model_index_2 = 1 model_index_3 = 2 model_index_4 = 4 sb0 = protocol.SpawnBaseline(skin_number=skin, frame=frame, render_fx=render_fx, model_index_2=model_index_2, model_index_3=model_index_3, model_index_4=model_index_4) protocol.SpawnBaseline.write(self.buff, sb0) self.buff.seek(0) sb1 = protocol.SpawnBaseline.read(self.buff) self.assertEqual(sb0.skin_number, sb1.skin_number, 'Skin_number should be equal') self.assertEqual(sb0.frame, sb1.frame, 'Frame should be equal') self.assertEqual(sb0.render_fx, sb1.render_fx, 'Render_fx should be equal') self.assertEqual(sb0.model_index_2, sb1.model_index_2, 'Model_index_2 should be equal') self.assertEqual(sb0.model_index_3, sb1.model_index_3, 'Model_index_3 should be equal') self.assertEqual(sb0.model_index_4, sb1.model_index_4, 'Model_index_4 should be equal') def test_spawn_baseline_morebits3_optional_data(self): old_origin_x, old_origin_y, old_origin_z = 0.0, 12.25, -265 skin = 315 sound = 1 solid = 9250 sb0 = protocol.SpawnBaseline(old_origin_x=old_origin_x, old_origin_y=old_origin_y, old_origin_z=old_origin_z, skin_number=skin, sound=sound, solid=solid) protocol.SpawnBaseline.write(self.buff, sb0) self.buff.seek(0) sb1 = protocol.SpawnBaseline.read(self.buff) self.assertEqual(sb0.old_origin[0], sb1.old_origin[0], 'Old_origin_x should be equal') self.assertEqual(sb0.old_origin[1], sb1.old_origin[1], 'Old_origin_y should be equal') self.assertEqual(sb0.old_origin[2], sb1.old_origin[2], 'Old_origin_z should be equal') self.assertEqual(sb0.skin_number, sb1.skin_number, 'Skin should be equal') self.assertEqual(sb0.sound, sb1.sound, 'Sound should be equal') self.assertEqual(sb0.solid, sb1.solid, 'Solid should be equal') def test_centerprint(self): text = "Crouch here" cp0 = protocol.CenterPrint(text) protocol.CenterPrint.write(self.buff, cp0) self.buff.seek(0) cp1 = protocol.CenterPrint.read(self.buff) self.assertEqual(cp0.text, cp1.text, 'Text should be the same') def test_frame(self): server_frame = 100 delta_frame = 2 areas = [1, 2, 3, 4] f0 = protocol.Frame(server_frame, delta_frame, areas) protocol.Frame.write(self.buff, f0) self.buff.seek(0) f1 = protocol.Frame.read(self.buff) self.assertEqual(f0.server_frame, f1.server_frame, 'Server frame should be equal') self.assertEqual(f0.delta_frame, f1.delta_frame, 'Delta frame should be equal') self.assertEqual(f0.areas, f1.areas, 'Areas should be equal') if __name__ == '__main__': unittest.main() ``` #### File: vgio/quake/protocol.py ```python import io import struct __all__ = ['Bad', 'Nop', 'Disconnect', 'UpdateStat', 'Version', 'SetView', 'Sound', 'Time', 'Print', 'StuffText', 'SetAngle', 'ServerInfo', 'LightStyle', 'UpdateName', 'UpdateFrags', 'ClientData', 'StopSound', 'UpdateColors', 'Particle', 'Damage', 'SpawnStatic', 'SpawnBinary', 'SpawnBaseline', 'TempEntity', 'SetPause', 'SignOnNum', 'CenterPrint', 'KilledMonster', 'FoundSecret', 'SpawnStaticSound', 'Intermission', 'Finale', 'CdTrack', 'SellScreen', 'CutScene', 'UpdateEntity', 'MessageBlock'] class _IO: """Simple namespace for protocol IO""" @staticmethod def _read(fmt, file): return struct.unpack(fmt, file.read(struct.calcsize(fmt)))[0] class read: """Read IO namespace""" @staticmethod def char(file): return int(_IO._read('<b', file)) @staticmethod def byte(file): return int(_IO._read('<B', file)) @staticmethod def short(file): return int(_IO._read('<h', file)) @staticmethod def long(file): return int(_IO._read('<l', file)) @staticmethod def float(file): return float(_IO._read('<f', file)) @staticmethod def coord(file): return _IO.read.short(file) * 0.125 @staticmethod def position(file): return _IO.read.coord(file), _IO.read.coord(file), _IO.read.coord(file) @staticmethod def angle(file): return _IO.read.char(file) * 360 / 256 @staticmethod def angles(file): return _IO.read.angle(file), _IO.read.angle(file), _IO.read.angle(file) @staticmethod def string(file, terminal_byte=b'\x00'): string = b'' char = _IO._read('<s', file) while char != terminal_byte: string += char char = _IO._read('<s', file) return string.decode('ascii') @staticmethod def _write(fmt, file, value): data = struct.pack(fmt, value) file.write(data) class write: """Write IO namespace""" @staticmethod def char(file, value): _IO._write('<b', file, int(value)) @staticmethod def byte(file, value): _IO._write('<B', file, int(value)) @staticmethod def short(file, value): _IO._write('<h', file, int(value)) @staticmethod def long(file, value): _IO._write('<l', file, int(value)) @staticmethod def float(file, value): _IO._write('<f', file, float(value)) @staticmethod def coord(file, value): _IO.write.short(file, value / 0.125) @staticmethod def position(file, values): _IO.write.coord(file, values[0]), _IO.write.coord(file, values[1]), _IO.write.coord(file, values[2]) @staticmethod def angle(file, value): _IO.write.char(file, int(value * 256 / 360)) @staticmethod def angles(file, values): _IO.write.angle(file, values[0]), _IO.write.angle(file, values[1]), _IO.write.angle(file, values[2]) @staticmethod def string(file, value, terminal_byte=b'\x00'): value = value[:2048] size = len(value) format = '<%is' % (size + 1) v = value.encode('ascii') + terminal_byte data = struct.pack(format, v) file.write(data) class BadMessage(Exception): pass SVC_BAD = 0 SVC_NOP = 1 SVC_DISCONNECT = 2 SVC_UPDATESTAT = 3 SVC_VERSION = 4 SVC_SETVIEW = 5 SVC_SOUND = 6 SVC_TIME = 7 SVC_PRINT = 8 SVC_STUFFTEXT = 9 SVC_SETANGLE = 10 SVC_SERVERINFO = 11 SVC_LIGHTSTYLE = 12 SVC_UPDATENAME = 13 SVC_UPDATEFRAGS = 14 SVC_CLIENTDATA = 15 SVC_STOPSOUND = 16 SVC_UPDATECOLORS = 17 SVC_PARTICLE = 18 SVC_DAMAGE = 19 SVC_SPAWNSTATIC = 20 SVC_SPAWNBINARY = 21 SVC_SPAWNBASELINE = 22 SVC_TEMP_ENTITY = 23 SVC_SETPAUSE = 24 SVC_SIGNONNUM = 25 SVC_CENTERPRINT = 26 SVC_KILLEDMONSTER = 27 SVC_FOUNDSECRET = 28 SVC_SPAWNSTATICSOUND = 29 SVC_INTERMISSION = 30 SVC_FINALE = 31 SVC_CDTRACK = 32 SVC_SELLSCREEN = 33 SVC_CUTSCENE = 34 class Bad: """Class for representing a Bad message This is an error message and should not appear. """ __slots__ = () @staticmethod def write(file, bad=None): _IO.write.byte(file, SVC_BAD) @staticmethod def read(file): assert _IO.read.byte(file) == SVC_BAD return Bad() class Nop: """Class for representing a Nop message""" __slots__ = () @staticmethod def write(file, nop=None): _IO.write.byte(file, SVC_NOP) @staticmethod def read(file): assert _IO.read.byte(file) == SVC_NOP return Nop() class Disconnect: """Class for representing a Disconnect message Disconnect from the server and end the game. Typically this the last message of a demo. """ __slots__ = () @staticmethod def write(file, disconnect=None): _IO.write.byte(file, SVC_DISCONNECT) @staticmethod def read(file): assert _IO.read.byte(file) == SVC_DISCONNECT return Disconnect() class UpdateStat: """Class for representing UpdateStat messages Updates a player state value. Attributes: index: The index to update in the player state array. value: The new value to set. """ __slots__ = ( 'index', 'value' ) def __init__(self): self.index = None self.value = None @staticmethod def write(file, update_stat): _IO.write.byte(file, SVC_UPDATESTAT) _IO.write.byte(file, update_stat.index) _IO.write.long(file, update_stat.value) @staticmethod def read(file): assert _IO.read.byte(file) == SVC_UPDATESTAT update_stat = UpdateStat() update_stat.index = _IO.read.byte(file) update_stat.value = _IO.read.long(file) return update_stat class Version: """Class for representing Version messages Attributes: protocol_version: Protocol version of the server. Quake uses 15. """ __slots__ = ( 'protocol_version' ) def __init__(self): self.protocol_version = None @staticmethod def write(file, version): _IO.write.byte(file, SVC_VERSION) _IO.write.long(file, version.protocol_version) @staticmethod def read(file): assert _IO.read.byte(file) == SVC_VERSION version = Version() version.protocol_version = _IO.read.long(file) return version class SetView: """Class for representing SetView messages Sets the camera position to the given entity. Attributes: entity: The entity number """ __slots__ = ( 'entity' ) def __init__(self): self.entity = None @staticmethod def write(file, set_view): _IO.write.byte(file, SVC_SETVIEW) _IO.write.short(file, set_view.entity) @staticmethod def read(file): assert _IO.read.byte(file) == SVC_SETVIEW set_view = SetView() set_view.entity = _IO.read.short(file) return set_view SND_VOLUME = 0b0001 SND_ATTENUATION = 0b0010 SND_LOOPING = 0b0100 class Sound: """Class for representing Sound messages Plays a sound on a channel at a position. Attributes: entity: The entity that caused the sound. bit_mask: A bit field indicating what data is sent. volume: Optional. The sound volume or None. attenuation: Optional. The sound attenuation or None. channel: The sound channel, maximum of eight. sound_number: The number of the sound in the sound table. origin: The position of the sound. """ __slots__ = ( 'entity', 'bit_mask', 'volume', 'attenuation', 'channel', 'sound_number', 'origin' ) def __init__(self): self.entity = None self.bit_mask = 0b0000 self.volume = 255 self.attenuation = 1.0 self.channel = None self.sound_number = None self.origin = None, None, None @staticmethod def write(file, sound): _IO.write.byte(file, SVC_SOUND) _IO.write.byte(file, sound.bit_mask) if sound.bit_mask & SND_VOLUME: _IO.write.byte(file, sound.volume) if sound.bit_mask & SND_ATTENUATION: _IO.write.byte(file, sound.attenuation * 64) channel = sound.entity << 3 channel |= sound.channel _IO.write.short(file, channel) _IO.write.byte(file, sound.sound_number) _IO.write.position(file, sound.origin) @staticmethod def read(file): assert _IO.read.byte(file) == SVC_SOUND sound = Sound() sound.bit_mask = _IO.read.byte(file) if sound.bit_mask & SND_VOLUME: sound.volume = _IO.read.byte(file) if sound.bit_mask & SND_ATTENUATION: sound.attenuation = _IO.read.byte(file) / 64 sound.channel = _IO.read.short(file) sound.entity = sound.channel >> 3 sound.channel &= 7 sound.sound_number = _IO.read.byte(file) sound.origin = _IO.read.position(file) return sound class Time: """Class for representing Time messages A time stamp that should appear in each block of messages. Attributes: time: The amount of elapsed time(in seconds) since the start of the game. """ __slots__ = ( 'time' ) def __init__(self): self.time = None @staticmethod def write(file, time): _IO.write.byte(file, SVC_TIME) _IO.write.float(file, time.time) @staticmethod def read(file): assert _IO.read.byte(file) == SVC_TIME time = Time() time.time = _IO.read.float(file) return time class Print: """Class for representing Print messages Prints text in the top left corner of the screen and console. Attributes: text: The text to be shown. """ __slots__ = ( 'text' ) def __init__(self): self.text = None @staticmethod def write(file, _print): _IO.write.byte(file, SVC_PRINT) _IO.write.string(file, _print.text) @staticmethod def read(file): assert _IO.read.byte(file) == SVC_PRINT _print = Print() _print.text = _IO.read.string(file) return _print class StuffText: """Class for representing StuffText messages Text sent to the client console and ran. Attributes: text: The text to send to the client console. Note: This string is terminated with the newline character. """ __slots__ = ( 'text' ) def __init__(self): self.text = None @staticmethod def write(file, stuff_text): _IO.write.byte(file, SVC_STUFFTEXT) _IO.write.string(file, stuff_text.text, b'\n') @staticmethod def read(file): assert _IO.read.byte(file) == SVC_STUFFTEXT stuff_text = StuffText() stuff_text.text = _IO.read.string(file, b'\n') return stuff_text class SetAngle: """Class for representing SetAngle messages Sets the camera's orientation. Attributes: angles: The new angles for the camera. """ __slots__ = ( 'angles' ) def __init__(self): self.angles = None @staticmethod def write(file, set_angle): _IO.write.byte(file, SVC_SETANGLE) _IO.write.angles(file, set_angle.angles) @staticmethod def read(file): assert _IO.read.byte(file) == SVC_SETANGLE set_angle = SetAngle() set_angle.angles = _IO.read.angles(file) return set_angle class ServerInfo: """Class for representing ServerInfo messages Handles the loading of assets. Usually first message sent after a level change. Attributes: protocol_version: Protocol version of the server. Quake uses 15. max_clients: Number of clients. multi: Multiplayer flag. Set to 0 for single-player and 1 for multiplayer. map_name: The name of the level. models: The model table as as sequence of strings. sounds: The sound table as a sequence of strings. """ __slots__ = ( 'protocol_version', 'max_clients', 'multi', 'map_name', 'models', 'sounds' ) def __init__(self): self.protocol_version = 15 self.max_clients = 0 self.multi = 0 self.map_name = '' self.models = [] self.sounds = [] @staticmethod def write(file, server_data): _IO.write.byte(file, SVC_SERVERINFO) _IO.write.long(file, server_data.protocol_version) _IO.write.byte(file, server_data.max_clients) _IO.write.byte(file, server_data.multi) _IO.write.string(file, server_data.map_name) for model in server_data.models: _IO.write.string(file, model) _IO.write.byte(file, 0) for sound in server_data.sounds: _IO.write.string(file, sound) _IO.write.byte(file, 0) @staticmethod def read(file): assert _IO.read.byte(file) == SVC_SERVERINFO server_data = ServerInfo() server_data.protocol_version = _IO.read.long(file) server_data.max_clients = _IO.read.byte(file) server_data.multi = _IO.read.byte(file) server_data.map_name = _IO.read.string(file) model = _IO.read.string(file) while model: server_data.models.append(model) model = _IO.read.string(file) server_data.models = tuple(server_data.models) sound = _IO.read.string(file) while sound: server_data.sounds.append(sound) sound = _IO.read.string(file) server_data.sounds = tuple(server_data.sounds) return server_data class LightStyle: """Class for representing a LightStyle message Defines the style of a light. Usually happens shortly after level change. Attributes: style: The light style number. string: A string of arbitrary length representing the brightness of the light. The brightness is mapped to the characters 'a' to 'z', with 'a' being black and 'z' being pure white. Example: # Flickering light light_style_message = LightStyle() light_style.style = 0 light_style.string = 'aaazaazaaaaaz' """ __slots__ = ( 'style', 'string' ) def __init__(self): self.style = None self.string = None @staticmethod def write(file, light_style): _IO.write.byte(file, SVC_LIGHTSTYLE) _IO.write.byte(file, light_style.style) _IO.write.string(file, light_style.string) @staticmethod def read(file): assert _IO.read.byte(file) == SVC_LIGHTSTYLE light_style = LightStyle() light_style.style = _IO.read.byte(file) light_style.string = _IO.read.string(file) return light_style class UpdateName: """Class for representing UpdateName messages Sets the player's name. Attributes: player: The player number to update. name: The new name as a string. """ __slots__ = ( 'player', 'name' ) def __init__(self): self.player = None self.name = None @staticmethod def write(file, update_name): _IO.write.byte(file, SVC_UPDATENAME) _IO.write.byte(file, update_name.player) _IO.write.string(file, update_name.name) @staticmethod def read(file): assert _IO.read.byte(file) == SVC_UPDATENAME update_name = UpdateName() update_name.player = _IO.read.byte(file) update_name.name = _IO.read.string(file) return update_name class UpdateFrags: """Class for representing UpdateFrags messages Sets the player's frag count. Attributes: player: The player to update. frags: The new frag count. """ __slots__ = ( 'player', 'frags' ) def __init__(self): self.player = None self.frags = None @staticmethod def write(file, update_frags): _IO.write.byte(file, SVC_UPDATEFRAGS) _IO.write.byte(file, update_frags.player) _IO.write.short(file, update_frags.frags) @staticmethod def read(file): assert _IO.read.byte(file) == SVC_UPDATEFRAGS update_frags = UpdateFrags() update_frags.player = _IO.read.byte(file) update_frags.frags = _IO.read.short(file) return update_frags # Client Data bit mask SU_VIEWHEIGHT = 0b0000000000000001 SU_IDEALPITCH = 0b0000000000000010 SU_PUNCH1 = 0b0000000000000100 SU_PUNCH2 = 0b0000000000001000 SU_PUNCH3 = 0b0000000000010000 SU_VELOCITY1 = 0b0000000000100000 SU_VELOCITY2 = 0b0000000001000000 SU_VELOCITY3 = 0b0000000010000000 SU_ITEMS = 0b0000001000000000 SU_ONGROUND = 0b0000010000000000 SU_INWATER = 0b0000100000000000 SU_WEAPONFRAME = 0b0001000000000000 SU_ARMOR = 0b0010000000000000 SU_WEAPON = 0b0100000000000000 class ClientData: """Class for representing ClientData messages Server information about this client. Attributes: bit_mask: A bit field indicating what data is sent. view_height: Optional. The view offset from the origin along the z-axis. ideal_pitch: Optional. The calculated angle for looking up/down slopes. punch_angle: Optional. A triple representing camera shake. velocity: Optional. Player velocity. item_bit_mask: A bit field for player inventory. on_ground: Flag indicating if player is on the ground. in_water: Flag indicating if player is in a water volume. weapon_frame: Optional. The animation frame of the weapon. armor: Optional. The current armor value. weapon: Optional. The model number in the model table. health: The current health value. active_ammo: The amount count for the active weapon. ammo: The current ammo counts as a quadruple. active_weapon: The actively held weapon. """ __slots__ = ( 'bit_mask', 'view_height', 'ideal_pitch', 'punch_angle', 'velocity', 'item_bit_mask', 'on_ground', 'in_water', 'weapon_frame', 'armor', 'weapon', 'health', 'active_ammo', 'ammo', 'active_weapon' ) def __init__(self): self.bit_mask = 0b0000000000000000 self.view_height = 22 self.ideal_pitch = 0 self.punch_angle = 0, 0, 0 self.velocity = 0, 0, 0 self.item_bit_mask = 0b0000 self.on_ground = False self.in_water = False self.weapon_frame = 0 self.armor = 0 self.weapon = None self.health = None self.active_ammo = None self.ammo = None self.active_weapon = None @staticmethod def write(file, client_data): _IO.write.byte(file, SVC_CLIENTDATA) if client_data.on_ground: client_data.bit_mask |= SU_ONGROUND if client_data.in_water: client_data.bit_mask |= SU_INWATER _IO.write.short(file, client_data.bit_mask) if client_data.bit_mask & SU_VIEWHEIGHT: _IO.write.char(file, client_data.view_height) if client_data.bit_mask & SU_IDEALPITCH: _IO.write.char(file, client_data.ideal_pitch) if client_data.bit_mask & SU_PUNCH1: pa = client_data.punch_angle _IO.write.angle(file, pa[0]) if client_data.bit_mask & SU_VELOCITY1: ve = client_data.velocity _IO.write.char(file, ve[0] // 16) if client_data.bit_mask & SU_PUNCH2: pa = client_data.punch_angle _IO.write.angle(file, pa[1]) if client_data.bit_mask & SU_VELOCITY2: ve = client_data.velocity _IO.write.char(file, ve[1] // 16) if client_data.bit_mask & SU_PUNCH3: pa = client_data.punch_angle _IO.write.angle(file, pa[2]) if client_data.bit_mask & SU_VELOCITY3: ve = client_data.velocity _IO.write.char(file, ve[2] // 16) _IO.write.long(file, client_data.item_bit_mask) if client_data.bit_mask & SU_WEAPONFRAME: _IO.write.byte(file, client_data.weapon_frame) if client_data.bit_mask & SU_ARMOR: _IO.write.byte(file, client_data.armor) if client_data.bit_mask & SU_WEAPON: _IO.write.byte(file, client_data.weapon) _IO.write.short(file, client_data.health) _IO.write.byte(file, client_data.active_ammo) _IO.write.byte(file, client_data.ammo[0]) _IO.write.byte(file, client_data.ammo[1]) _IO.write.byte(file, client_data.ammo[2]) _IO.write.byte(file, client_data.ammo[3]) _IO.write.byte(file, client_data.active_weapon) @staticmethod def read(file): assert _IO.read.byte(file) == SVC_CLIENTDATA client_data = ClientData() client_data.bit_mask = _IO.read.short(file) client_data.on_ground = client_data.bit_mask & SU_ONGROUND != 0 client_data.in_water = client_data.bit_mask & SU_INWATER != 0 if client_data.bit_mask & SU_VIEWHEIGHT: client_data.view_height = _IO.read.char(file) if client_data.bit_mask & SU_IDEALPITCH: client_data.ideal_pitch = _IO.read.char(file) if client_data.bit_mask & SU_PUNCH1: pa = client_data.punch_angle client_data.punch_angle = _IO.read.angle(file), pa[1], pa[2] if client_data.bit_mask & SU_VELOCITY1: ve = client_data.velocity client_data.velocity = _IO.read.char(file) * 16, ve[1], ve[2] if client_data.bit_mask & SU_PUNCH2: pa = client_data.punch_angle client_data.punch_angle = pa[0], _IO.read.angle(file), pa[2] if client_data.bit_mask & SU_VELOCITY2: ve = client_data.velocity client_data.velocity = ve[0], _IO.read.char(file) * 16, ve[2] if client_data.bit_mask & SU_PUNCH3: pa = client_data.punch_angle client_data.punch_angle = pa[0], pa[1], _IO.read.angle(file) if client_data.bit_mask & SU_VELOCITY3: ve = client_data.velocity client_data.velocity = ve[0], ve[1], _IO.read.char(file) * 16 client_data.item_bit_mask = _IO.read.long(file) if client_data.bit_mask & SU_WEAPONFRAME: client_data.weapon_frame = _IO.read.byte(file) if client_data.bit_mask & SU_ARMOR: client_data.armor = _IO.read.byte(file) if client_data.bit_mask & SU_WEAPON: client_data.weapon = _IO.read.byte(file) client_data.health = _IO.read.short(file) client_data.active_ammo = _IO.read.byte(file) client_data.ammo = _IO.read.byte(file), _IO.read.byte(file), _IO.read.byte(file), _IO.read.byte(file) client_data.active_weapon = _IO.read.byte(file) return client_data class StopSound: """Class for representing StopSound messages Stops a playing sound. Attributes: channel: The channel on which the sound is playing. entity: The entity that caused the sound. """ __slots__ = ( 'channel', 'entity' ) def __init__(self): self.channel = None @staticmethod def write(file, stop_sound): _IO.write.byte(file, SVC_STOPSOUND) data = stop_sound.entity << 3 | (stop_sound.channel & 0x07) _IO.write.short(file, data) @staticmethod def read(file): assert _IO.read.byte(file) == SVC_STOPSOUND stop_sound = StopSound() data = _IO.read.short(file) stop_sound.channel = data & 0x07 stop_sound.entity = data >> 3 return stop_sound class UpdateColors: """Class for representing UpdateColors messages Sets the player's colors. Attributes: player: The player to update. colors: The combined shirt/pant color. """ __slots__ = ( 'player', 'colors' ) def __init__(self): self.player = None self.colors = None @staticmethod def write(file, update_colors): _IO.write.byte(file, SVC_UPDATECOLORS) _IO.write.byte(file, update_colors.player) _IO.write.byte(file, update_colors.colors) @staticmethod def read(file): assert _IO.read.byte(file) == SVC_UPDATECOLORS update_colors = UpdateColors() update_colors.player = _IO.read.byte(file) update_colors.colors = _IO.read.byte(file) return update_colors class Particle: """Class for representing Particle messages Creates particle effects Attributes: origin: The origin position of the particles. direction: The velocity of the particles represented as a triple. count: The number of particles. color: The color index of the particle. """ __slots__ = ( 'origin', 'direction', 'count', 'color' ) def __init__(self): self.origin = None self.direction = None self.count = None self.color = None @staticmethod def write(file, particle): _IO.write.byte(file, SVC_PARTICLE) _IO.write.position(file, particle.origin) _IO.write.char(file, particle.direction[0] * 16) _IO.write.char(file, particle.direction[1] * 16) _IO.write.char(file, particle.direction[2] * 16) _IO.write.byte(file, particle.count) _IO.write.byte(file, particle.color) @staticmethod def read(file): assert _IO.read.byte(file) == SVC_PARTICLE particle = Particle() particle.origin = _IO.read.position(file) particle.direction = _IO.read.char(file) / 16, _IO.read.char(file) / 16, _IO.read.char(file) / 16, particle.count = _IO.read.byte(file) particle.color = _IO.read.byte(file) return particle class Damage: """Class for representing Damage messages Damage information Attributes: armor: The damage amount to be deducted from player armor. blood: The damage amount to be deducted from player health. origin: The position of the entity that inflicted the damage. """ __slots__ = ( 'armor', 'blood', 'origin' ) def __init__(self): self.armor = None self.blood = None self.origin = None @staticmethod def write(file, damage): _IO.write.byte(file, SVC_DAMAGE) _IO.write.byte(file, damage.armor) _IO.write.byte(file, damage.blood) _IO.write.position(file, damage.origin) @staticmethod def read(file): assert _IO.read.byte(file) == SVC_DAMAGE damage = Damage() damage.armor = _IO.read.byte(file) damage.blood = _IO.read.byte(file) damage.origin = _IO.read.position(file) return damage class SpawnStatic: """Class for representing SpawnStatic messages Creates a static entity Attributes: model_index: The model number in the model table. frame: The frame number of the model. color_map: The color map used to display the model. skin: The skin number of the model. origin: The position of the entity. angles: The orientation of the entity. """ __slots__ = ( 'model_index', 'frame', 'color_map', 'skin', 'origin', 'angles' ) def __init__(self): self.model_index = None self.frame = None self.color_map = None self.skin = None self.origin = None self.angles = None @staticmethod def write(file, spawn_static): _IO.write.byte(file, SVC_SPAWNSTATIC) _IO.write.byte(file, spawn_static.model_index) _IO.write.byte(file, spawn_static.frame) _IO.write.byte(file, spawn_static.color_map) _IO.write.byte(file, spawn_static.skin) _IO.write.position(file, spawn_static.origin) _IO.write.angles(file, spawn_static.angles) @staticmethod def read(file): assert _IO.read.byte(file) == SVC_SPAWNSTATIC spawn_static = SpawnStatic() spawn_static.model_index = _IO.read.byte(file) spawn_static.frame = _IO.read.byte(file) spawn_static.color_map = _IO.read.byte(file) spawn_static.skin = _IO.read.byte(file) spawn_static.origin = _IO.read.position(file) spawn_static.angles = _IO.read.angles(file) return spawn_static class SpawnBinary: """Class for representing SpawnBinary messages This is a deprecated message. """ __slots__ = () @staticmethod def write(file): raise BadMessage('SpawnBinary message obsolete') @staticmethod def read(file): raise BadMessage('SpawnBinary message obsolete') class SpawnBaseline: """Class for representing SpawnBaseline messages Creates a dynamic entity Attributes: entity: The number of the entity. model_index: The number of the model in the model table. frame: The frame number of the model. color_map: The color map used to display the model. skin: The skin number of the model. origin: The position of the entity. angles: The orientation of the entity. """ __slots__ = ( 'entity', 'model_index', 'frame', 'color_map', 'skin', 'origin', 'angles' ) def __init__(self): self.entity = None self.model_index = None self.frame = None self.color_map = None self.skin = None self.origin = None self.angles = None @staticmethod def write(file, spawn_baseline): _IO.write.byte(file, SVC_SPAWNBASELINE) _IO.write.short(file, spawn_baseline.entity) _IO.write.byte(file, spawn_baseline.model_index) _IO.write.byte(file, spawn_baseline.frame) _IO.write.byte(file, spawn_baseline.color_map) _IO.write.byte(file, spawn_baseline.skin) _IO.write.position(file, spawn_baseline.origin) _IO.write.angles(file, spawn_baseline.angles) @staticmethod def read(file): assert _IO.read.byte(file) == SVC_SPAWNBASELINE spawn_baseline = SpawnBaseline() spawn_baseline.entity = _IO.read.short(file) spawn_baseline.model_index = _IO.read.byte(file) spawn_baseline.frame = _IO.read.byte(file) spawn_baseline.color_map = _IO.read.byte(file) spawn_baseline.skin = _IO.read.byte(file) spawn_baseline.origin = _IO.read.position(file) spawn_baseline.angles = _IO.read.angles(file) return spawn_baseline TE_SPIKE = 0 TE_SUPERSPIKE = 1 TE_GUNSHOT = 2 TE_EXPLOSION = 3 TE_TAREXPLOSION = 4 TE_LIGHTNING1 = 5 TE_LIGHTNING2 = 6 TE_WIZSPIKE = 7 TE_KNIGHTSPIKE = 8 TE_LIGHTNING3 = 9 TE_LAVASPLASH = 10 TE_TELEPORT = 11 TE_EXPLOSION2 = 12 TE_BEAM = 13 class TempEntity: """Class for representing TempEntity messages Creates a temporary entity. The attributes of the message depend on the type of entity being created. Attributes: type: The type of the temporary entity. """ def __init__(self): self.type = None @staticmethod def write(file, temp_entity): _IO.write.byte(file, SVC_TEMP_ENTITY) _IO.write.byte(file, temp_entity.type) if temp_entity.type == TE_WIZSPIKE or \ temp_entity.type == TE_KNIGHTSPIKE or \ temp_entity.type == TE_SPIKE or \ temp_entity.type == TE_SUPERSPIKE or \ temp_entity.type == TE_GUNSHOT or \ temp_entity.type == TE_EXPLOSION or \ temp_entity.type == TE_TAREXPLOSION or \ temp_entity.type == TE_LAVASPLASH or \ temp_entity.type == TE_TELEPORT: _IO.write.position(file, temp_entity.origin) elif temp_entity.type == TE_LIGHTNING1 or \ temp_entity.type == TE_LIGHTNING2 or \ temp_entity.type == TE_LIGHTNING3 or \ temp_entity.type == TE_BEAM: _IO.write.short(file, temp_entity.entity) _IO.write.position(file, temp_entity.start) _IO.write.position(file, temp_entity.end) elif temp_entity.type == TE_EXPLOSION2: _IO.write.position(file, temp_entity.origin) _IO.write.byte(file, temp_entity.color_start) _IO.write.byte(file, temp_entity.color_length) else: raise BadMessage('Invalid Temporary Entity type: %r' % temp_entity.type) @staticmethod def read(file): assert _IO.read.byte(file) == SVC_TEMP_ENTITY temp_entity = TempEntity() temp_entity.type = _IO.read.byte(file) if temp_entity.type == TE_WIZSPIKE or \ temp_entity.type == TE_KNIGHTSPIKE or \ temp_entity.type == TE_SPIKE or \ temp_entity.type == TE_SUPERSPIKE or \ temp_entity.type == TE_GUNSHOT or \ temp_entity.type == TE_EXPLOSION or \ temp_entity.type == TE_TAREXPLOSION or \ temp_entity.type == TE_LAVASPLASH or \ temp_entity.type == TE_TELEPORT: temp_entity.origin = _IO.read.position(file) elif temp_entity.type == TE_LIGHTNING1 or \ temp_entity.type == TE_LIGHTNING2 or \ temp_entity.type == TE_LIGHTNING3 or \ temp_entity.type == TE_BEAM: temp_entity.entity = _IO.read.short(file) temp_entity.start = _IO.read.position(file) temp_entity.end = _IO.read.position(file) elif temp_entity.type == TE_EXPLOSION2: temp_entity.origin = _IO.read.position(file) temp_entity.color_start = _IO.read.byte(file) temp_entity.color_length = _IO.read.byte(file) else: raise BadMessage(f'Invalid Temporary Entity type: {temp_entity.type}') return temp_entity class SetPause: """Class for representing SetPause messages Sets the pause state Attributes: paused: The pause state. 1 for paused, 0 otherwise. """ __slots__ = ( 'paused' ) def __init__(self): self.paused = None @staticmethod def write(file, set_pause): _IO.write.byte(file, SVC_SETPAUSE) _IO.write.byte(file, set_pause.paused) @staticmethod def read(file): assert _IO.read.byte(file) == SVC_SETPAUSE set_pause = SetPause() set_pause.paused = _IO.read.byte(file) return set_pause class SignOnNum: """Class for representing SignOnNum messages This message represents the client state. Attributes: sign_on: The client state. """ __slots__ = ( 'sign_on' ) def __init__(self): self.sign_on = None @staticmethod def write(file, sign_on_num): _IO.write.byte(file, SVC_SIGNONNUM) _IO.write.byte(file, sign_on_num.sign_on) @staticmethod def read(file): assert _IO.read.byte(file) == SVC_SIGNONNUM sign_on_num = SignOnNum() sign_on_num.sign_on = _IO.read.byte(file) return sign_on_num class CenterPrint: """Class for representing CenterPrint messages Prints text in the center of the screen. Attributes: text: The text to be shown. """ __slots__ = ( 'text' ) def __init__(self): self.text = None @staticmethod def write(file, center_print): _IO.write.byte(file, SVC_CENTERPRINT) _IO.write.string(file, center_print.text) @staticmethod def read(file): assert _IO.read.byte(file) == SVC_CENTERPRINT center_print = CenterPrint() center_print.text = _IO.read.string(file) return center_print class KilledMonster: """Class for representing KilledMonster messages Indicates the death of a monster. """ __slots__ = () @staticmethod def write(file, killed_monster=None): _IO.write.byte(file, SVC_KILLEDMONSTER) @staticmethod def read(file): assert _IO.read.byte(file) == SVC_KILLEDMONSTER return KilledMonster() class FoundSecret: """Class for representing FoundSecret messages Indicates a secret has been found. """ __slots__ = () @staticmethod def write(file, found_secret=None): _IO.write.byte(file, SVC_FOUNDSECRET) @staticmethod def read(file): assert _IO.read.byte(file) == SVC_FOUNDSECRET return FoundSecret() class SpawnStaticSound: """Class for representing SpawnStaticSound messages Creates a static sound Attributes: origin: The position of the sound. sound_number: The sound number in the sound table. volume: The sound volume. attenuation: The sound attenuation. """ __slots__ = ( 'origin', 'sound_number', 'volume', 'attenuation' ) def __init__(self): self.origin = None self.sound_number = None self.volume = None self.attenuation = None @staticmethod def write(file, spawn_static_sound): _IO.write.byte(file, SVC_SPAWNSTATICSOUND) _IO.write.position(file, spawn_static_sound.origin) _IO.write.byte(file, spawn_static_sound.sound_number) _IO.write.byte(file, spawn_static_sound.volume * 256) _IO.write.byte(file, spawn_static_sound.attenuation * 64) @staticmethod def read(file): assert _IO.read.byte(file) == SVC_SPAWNSTATICSOUND spawn_static_sound = SpawnStaticSound() spawn_static_sound.origin = _IO.read.position(file) spawn_static_sound.sound_number = _IO.read.byte(file) spawn_static_sound.volume = _IO.read.byte(file) / 256 spawn_static_sound.attenuation = _IO.read.byte(file) / 64 return spawn_static_sound class Intermission: """Class for representing Intermission messages Displays the level end screen. """ __slots__ = () @staticmethod def write(file, intermission=None): _IO.write.byte(file, SVC_INTERMISSION) @staticmethod def read(file): assert _IO.read.byte(file) == SVC_INTERMISSION return Intermission() class Finale: """Class for representing Finale messages Displays the episode end screen. Attributes: text: The text to show. """ __slots__ = ( 'text' ) def __init__(self): self.text = None @staticmethod def write(file, finale): _IO.write.byte(file, SVC_FINALE) _IO.write.string(file, finale.text) @staticmethod def read(file): assert _IO.read.byte(file) == SVC_FINALE finale = Finale() finale.text = _IO.read.string(file) return finale class CdTrack: """Class for representing CdTrack messages Selects the cd track Attributes: from_track: The start track. to_track: The end track. """ __slots__ = ( 'from_track', 'to_track' ) def __init__(self): self.from_track = None self.to_track = None @staticmethod def write(file, cd_track): _IO.write.byte(file, SVC_CDTRACK) _IO.write.byte(file, cd_track.from_track) _IO.write.byte(file, cd_track.to_track) @staticmethod def read(file): assert _IO.read.byte(file) == SVC_CDTRACK cd_track = CdTrack() cd_track.from_track = _IO.read.byte(file) cd_track.to_track = _IO.read.byte(file) return cd_track class SellScreen: """Class for representing SellScreen messages Displays the help and sell screen. """ __slots__ = () @staticmethod def write(file, sell_screen=None): _IO.write.byte(file, SVC_SELLSCREEN) @staticmethod def read(file): assert _IO.read.byte(file) == SVC_SELLSCREEN return SellScreen() class CutScene: """Class for representing CutScene messages Displays end screen and text. Attributes: text: The text to be shown. """ __slots__ = ( 'text' ) def __init__(self): self.text = None @staticmethod def write(file, cut_scene): _IO.write.byte(file, SVC_CUTSCENE) _IO.write.string(file, cut_scene.text) @staticmethod def read(file): assert _IO.read.byte(file) == SVC_CUTSCENE cut_scene = CutScene() cut_scene.text = _IO.read.string(file) return cut_scene _messages = [Bad, Nop, Disconnect, UpdateStat, Version, SetView, Sound, Time, Print, StuffText, SetAngle, ServerInfo, LightStyle, UpdateName, UpdateFrags, ClientData, StopSound, UpdateColors, Particle, Damage, SpawnStatic, SpawnBinary, SpawnBaseline, TempEntity, SetPause, SignOnNum, CenterPrint, KilledMonster, FoundSecret, SpawnStaticSound, Intermission, Finale, CdTrack, SellScreen, CutScene] U_MOREBITS = 0b0000000000000001 U_ORIGIN1 = 0b0000000000000010 U_ORIGIN2 = 0b0000000000000100 U_ORIGIN3 = 0b0000000000001000 U_ANGLE2 = 0b0000000000010000 U_NOLERP = 0b0000000000100000 U_FRAME = 0b0000000001000000 U_SIGNAL = 0b0000000010000000 U_ANGLE1 = 0b0000000100000000 U_ANGLE3 = 0b0000001000000000 U_MODEL = 0b0000010000000000 U_COLORMAP = 0b0000100000000000 U_SKIN = 0b0001000000000000 U_EFFECTS = 0b0010000000000000 U_LONGENTITY = 0b0100000000000000 class UpdateEntity: """Class for representing UpdateEntity messages Updates an entity. Attributes: bit_mask: A bit field indicating what data is sent. entity: The number of the entity. model_index: The number of the model in the model table. frame: The frame number of the model. color_map: The color map used to display the model. skin: The skin number of the model. effects: A bit field indicating special effects. origin: The position of the entity. angles: The orientation of the entity. """ __slots__ = ( 'bit_mask', 'entity', 'model_index', 'frame', 'colormap', 'skin', 'effects', 'origin', 'angles' ) def __init__(self): self.bit_mask = 0b0000000000000000 self.entity = None self.model_index = None self.frame = None self.colormap = None self.skin = None self.effects = None self.origin = None, None, None self.angles = None, None, None @staticmethod def write(file, update_entity): _IO.write.byte(file, update_entity.bit_mask & 0xFF | 0x80) if update_entity.bit_mask & U_MOREBITS: _IO.write.byte(file, update_entity.bit_mask >> 8 & 0xFF) if update_entity.bit_mask & U_LONGENTITY: _IO.write.short(file, update_entity.entity) else: _IO.write.byte(file, update_entity.entity) if update_entity.bit_mask & U_MODEL: _IO.write.byte(file, update_entity.model_index) if update_entity.bit_mask & U_FRAME: _IO.write.byte(file, update_entity.frame) if update_entity.bit_mask & U_COLORMAP: _IO.write.byte(file, update_entity.colormap) if update_entity.bit_mask & U_SKIN: _IO.write.byte(file, update_entity.skin) if update_entity.bit_mask & U_EFFECTS: _IO.write.byte(file, update_entity.effects) if update_entity.bit_mask & U_ORIGIN1: _IO.write.coord(file, update_entity.origin[0]) if update_entity.bit_mask & U_ANGLE1: _IO.write.angle(file, update_entity.angles[0]) if update_entity.bit_mask & U_ORIGIN2: _IO.write.coord(file, update_entity.origin[1]) if update_entity.bit_mask & U_ANGLE2: _IO.write.angle(file, update_entity.angles[1]) if update_entity.bit_mask & U_ORIGIN3: _IO.write.coord(file, update_entity.origin[2]) if update_entity.bit_mask & U_ANGLE3: _IO.write.angle(file, update_entity.angles[2]) @staticmethod def read(file): update_entity = UpdateEntity() b = _IO.read.byte(file) update_entity.bit_mask = b & 0x7F if update_entity.bit_mask & U_MOREBITS: update_entity.bit_mask |= _IO.read.byte(file) << 8 if update_entity.bit_mask & U_LONGENTITY: update_entity.entity = _IO.read.short(file) else: update_entity.entity = _IO.read.byte(file) if update_entity.bit_mask & U_MODEL: update_entity.model_index = _IO.read.byte(file) if update_entity.bit_mask & U_FRAME: update_entity.frame = _IO.read.byte(file) if update_entity.bit_mask & U_COLORMAP: update_entity.colormap = _IO.read.byte(file) if update_entity.bit_mask & U_SKIN: update_entity.skin = _IO.read.byte(file) if update_entity.bit_mask & U_EFFECTS: update_entity.effects = _IO.read.byte(file) if update_entity.bit_mask & U_ORIGIN1: update_entity.origin = _IO.read.coord(file), update_entity.origin[1], update_entity.origin[2] if update_entity.bit_mask & U_ANGLE1: update_entity.angles = _IO.read.angle(file), update_entity.angles[1], update_entity.angles[2] if update_entity.bit_mask & U_ORIGIN2: update_entity.origin = update_entity.origin[0], _IO.read.coord(file), update_entity.origin[2] if update_entity.bit_mask & U_ANGLE2: update_entity.angles = update_entity.angles[0], _IO.read.angle(file), update_entity.angles[2] if update_entity.bit_mask & U_ORIGIN3: update_entity.origin = update_entity.origin[0], update_entity.origin[1], _IO.read.coord(file) if update_entity.bit_mask & U_ANGLE3: update_entity.angles = update_entity.angles[0], update_entity.angles[1], _IO.read.angle(file) return update_entity class MessageBlock: """Class for representing a message block Attributes: view_angles: The client view angles. messages: A sequence of messages. """ __slots__ = ( 'view_angles', 'messages' ) def __init__(self): self.view_angles = None self.messages = [] @staticmethod def write(file, message_block): start_of_block = file.tell() _IO.write.long(file, 0) _IO.write.float(file, message_block.view_angles[0]) _IO.write.float(file, message_block.view_angles[1]) _IO.write.float(file, message_block.view_angles[2]) start_of_messages = file.tell() for message in message_block.messages: message.__class__.write(file, message) end_of_messages = file.tell() block_size = end_of_messages - start_of_messages file.seek(start_of_block) _IO.write.long(file, block_size) file.seek(end_of_messages ) @staticmethod def read(file): message_block = MessageBlock() blocksize = _IO.read.long(file) message_block.view_angles = _IO.read.float(file), _IO.read.float(file), _IO.read.float(file) message_block_data = file.read(blocksize) buff = io.BufferedReader(io.BytesIO(message_block_data)) message_id = buff.peek(1)[:1] while message_id != b'': message_id = struct.unpack('<B', message_id)[0] if message_id < 128: message = _messages[message_id].read(buff) else: message = UpdateEntity.read(buff) if message: message_block.messages.append(message) message_id = buff.peek(1)[:1] buff.close() return message_block ``` #### File: quake/tests/test_protocol.py ```python import unittest from vgio.quake.tests.basecase import TestCase from vgio.quake import protocol class TestProtocolReadWrite(TestCase): def test_bad_message(self): protocol.Bad.write(self.buff) self.buff.seek(0) protocol.Bad.read(self.buff) def test_nop_message(self): protocol.Nop.write(self.buff) self.buff.seek(0) protocol.Nop.read(self.buff) def test_disconnect_message(self): protocol.Disconnect.write(self.buff) self.buff.seek(0) protocol.Disconnect.read(self.buff) def test_update_stat_message(self): u0 = protocol.UpdateStat() u0.index = 0 u0.value = 75 protocol.UpdateStat.write(self.buff, u0) self.buff.seek(0) u1 = protocol.UpdateStat.read(self.buff) self.assertEqual(u0.index, u1.index, 'Update stat indexes should be equal') self.assertEqual(u0.value, u1.value, 'Update stat values should be equal') def test_version_message(self): v0 = protocol.Version() v0.protocol_version = 15 protocol.Version.write(self.buff, v0) self.buff.seek(0) v1 = protocol.Version.read(self.buff) self.assertEqual(v0.protocol_version, v1.protocol_version, 'Protocol versions should be equal') def test_set_view_message(self): s0 = protocol.SetView() s0.entity = 16 protocol.SetView.write(self.buff, s0) self.buff.seek(0) s1 = protocol.SetView.read(self.buff) self.assertEqual(s0.entity, s1.entity, 'Entities should be equal') def test_sound_message(self): # No optional arguments s0 = protocol.Sound() s0.entity = 16 s0.channel = 2 s0.sound_number = 4 s0.origin = -512, 256, 2048 protocol.Sound.write(self.buff, s0) self.buff.seek(0) s1 = protocol.Sound.read(self.buff) self.assertEqual(s0.entity, s1.entity, 'Entity should be equal') self.assertEqual(s0.channel, s1.channel, 'Channel should be equal') self.assertEqual(s0.sound_number, s1.sound_number, 'Sound number should be equal') self.assertEqual(s0.origin, s1.origin, 'Origin should be equal') self.clear_buffer() # Both optional arguments s0 = protocol.Sound() s0.entity = 16 s0.channel = 2 s0.sound_number = 4 s0.origin = -512, 256, 2048 s0.attenuation = 0.5 s0.volume = 64 s0.bit_mask |= protocol.SND_ATTENUATION | protocol.SND_VOLUME protocol.Sound.write(self.buff, s0) self.buff.seek(0) s1 = protocol.Sound.read(self.buff) self.assertEqual(s0.entity, s1.entity, 'Entities should be equal') self.assertEqual(s0.channel, s1.channel, 'Channels should be equal') self.assertEqual(s0.sound_number, s1.sound_number, 'Sound numbers should be equal') self.assertEqual(s0.origin, s1.origin, 'Origins should be equal') self.assertEqual(s0.attenuation, s1.attenuation, 'Attenuations should be equal') self.assertEqual(s0.volume, s1.volume, 'Volumes should be equal') protocol.Sound.write(self.buff, s0) self.buff.seek(0) def test_time_message(self): t0 = protocol.Time() t0.time = 4.125 protocol.Time.write(self.buff, t0) self.buff.seek(0) t1 = protocol.Time.read(self.buff) self.assertEqual(t0.time, t1.time, 'Should be equal') def test_print_message(self): p0 = protocol.Print() p0.text = "This hall selects EASY skill" protocol.Print.write(self.buff, p0) self.buff.seek(0) p1 = protocol.Print.read(self.buff) self.assertEqual(p0.text, p1.text, 'Text values should be equal') def test_stuff_text_message(self): s0 = protocol.StuffText() s0.text = "This hall selects NORMAL skill" protocol.StuffText.write(self.buff, s0) self.buff.seek(0) s1 = protocol.StuffText.read(self.buff) self.assertEqual(s0.text, s1.text, 'Text values should be equal') def test_set_angle_message(self): s0 = protocol.SetAngle() s0.angles = 0, -90, 22.5 protocol.SetAngle.write(self.buff, s0) self.buff.seek(0) s1 = protocol.SetAngle.read(self.buff) self.assertEqual(s0.angles, s1.angles, 'Angles should be equal') def test_server_info_message(self): s0 = protocol.ServerInfo() s0.protocol_version = 15 s0.max_clients = 1 s0.multi = 0 s0.map_name = 'the Necropolis' s0.models = 'maps/e1m3.bsp', 'progs/player.mdl' s0.sounds = 'weapons/ric1.wav', 'weapons/ric2.wav' protocol.ServerInfo.write(self.buff, s0) self.buff.seek(0) s1 = protocol.ServerInfo.read(self.buff) self.assertEqual(s0.protocol_version, s1.protocol_version, 'Protocol versions should be equal') self.assertEqual(s0.max_clients, s1.max_clients, 'Max clients should be equal') self.assertEqual(s0.multi, s1.multi, 'Multi values should be equal') self.assertEqual(s0.map_name, s1.map_name, 'Map names Should be equal') self.assertEqual(s0.models, s1.models, 'Models should be equal') self.assertEqual(s0.sounds, s1.sounds, 'Sounds should be equal') def test_light_style_message(self): l0 = protocol.LightStyle() l0.style = 15 l0.string = 'azazaaazzz' protocol.LightStyle.write(self.buff, l0) self.buff.seek(0) l1 = protocol.LightStyle.read(self.buff) self.assertEqual(l0.style, l1.style, 'Styles should be equal') self.assertEqual(l0.string, l1.string, 'Strings should be equal') def test_update_name_message(self): u0 = protocol.UpdateName() u0.player = 0 u0.name = "Player" protocol.UpdateName.write(self.buff, u0) self.buff.seek(0) u1 = protocol.UpdateName.read(self.buff) self.assertEqual(u0.player, u1.player, 'Player values should be equal') self.assertEqual(u0.name, u1.name, 'Names should be equal') def test_update_frags_message(self): u0 = protocol.UpdateFrags() u0.player = 1 u0.frags = 100 protocol.UpdateFrags.write(self.buff, u0) self.buff.seek(0) u1 = protocol.UpdateFrags.read(self.buff) self.assertEqual(u0.player, u1.player, 'Player values should be equal') self.assertEqual(u0.frags, u1.frags, 'Frags should be equal') def test_client_data_message(self): c0 = protocol.ClientData() c0.on_ground = True c0.in_water = False c0.health = 75 c0.active_ammo = 1 c0.ammo = 25, 0, 0, 0 c0.active_weapon = 16 protocol.ClientData.write(self.buff, c0) self.buff.seek(0) c1 = protocol.ClientData.read(self.buff) self.assertEqual(c0.on_ground, c1.on_ground, 'On ground flags should be equal') self.assertEqual(c0.in_water, c1.in_water, 'In water flags should be equal') self.assertEqual(c0.health, c1.health, 'Health values should be equal') self.assertEqual(c0.active_ammo, c1.active_ammo, 'Active ammo values should be equal') self.assertEqual(c0.ammo, c1.ammo, 'Ammo counts should be equal') self.assertEqual(c0.active_weapon, c1.active_weapon, 'Active weapons should be equal') self.clear_buffer() c0 = protocol.ClientData() c0.bit_mask = 0b0111111111111111 c0.view_height = 18 c0.ideal_pitch = 45 c0.punch_angle = -22.5, 0, 90 c0.velocity = 0, 16, -32 c0.item_bit_mask = 0b01111111111111111111111111111111 c0.on_ground = True c0.in_water = True c0.weapon_frame = 8 c0.armor = 2 c0.weapon = 32 c0.health = 99 c0.active_ammo = 1 c0.ammo = 25, 0, 0, 0 c0.active_weapon = 16 protocol.ClientData.write(self.buff, c0) self.buff.seek(0) c1 = protocol.ClientData.read(self.buff) self.assertEqual(c0.bit_mask, c1.bit_mask, 'Bit masks should be equal') self.assertEqual(c0.view_height, c1.view_height, 'View heights should be equal') self.assertEqual(c0.ideal_pitch, c1.ideal_pitch, 'Ideal pitches should be equal') self.assertEqual(c0.punch_angle, c1.punch_angle, 'Punch angles should be equal') self.assertEqual(c0.velocity, c1.velocity, 'Velocities should be equal') self.assertEqual(c0.item_bit_mask, c1.item_bit_mask, 'Item bit masks should be equal') self.assertEqual(c0.on_ground, c1.on_ground, 'On ground flags should be equal') self.assertEqual(c0.in_water, c1.in_water, 'In water flags should be equal') self.assertEqual(c0.weapon_frame, c1.weapon_frame, 'Weapon frames should be equal') self.assertEqual(c0.armor, c1.armor, 'Armor values should be equal') self.assertEqual(c0.weapon, c1.weapon, 'Weapon values should be equal') self.assertEqual(c0.health, c1.health, 'Health values should be equal') self.assertEqual(c0.active_ammo, c1.active_ammo, 'Active ammo values should be equal') self.assertEqual(c0.ammo, c1.ammo, 'Ammo values should be equal') self.assertEqual(c0.active_weapon, c1.active_weapon, 'Active weapon values should be equal') def test_stop_sound_message(self): s0 = protocol.StopSound() s0.channel = 2 s0.entity = 64 protocol.StopSound.write(self.buff, s0) self.buff.seek(0) s1 = protocol.StopSound.read(self.buff) self.assertEqual(s0.channel, s1.channel, 'Channels should be equal') self.assertEqual(s0.entity, s1.entity, 'Entities should be equal') def test_update_colors_message(self): u0 = protocol.UpdateColors() u0.player = 1 u0.colors = 0b00010001 protocol.UpdateColors.write(self.buff, u0) self.buff.seek(0) u1 = protocol.UpdateColors.read(self.buff) self.assertEqual(u0.player, u1.player, 'Player values should be equal') self.assertEqual(u0.colors, u1.colors, 'Colors values should be equal') def test_particle_message(self): p0 = protocol.Particle() p0.origin = 0, 16, -1024 p0.direction = 0, 1, 2 p0.count = 8 p0.color = 73 protocol.Particle.write(self.buff, p0) self.buff.seek(0) p1 = protocol.Particle.read(self.buff) self.assertEqual(p0.origin, p1.origin, 'Origin should be equal') self.assertEqual(p0.direction, p1.direction, 'Direction should be equal') self.assertEqual(p0.count, p1.count, 'Count should be equal') self.assertEqual(p0.color, p1.color, 'Color should be equal') def test_damage_message(self): d0 = protocol.Damage() d0.armor = 8 d0.blood = 4 d0.origin = 0, 16, -512 protocol.Damage.write(self.buff, d0) self.buff.seek(0) d1 = protocol.Damage.read(self.buff) self.assertEqual(d0.armor, d1.armor, 'Armor values should be equal') self.assertEqual(d0.blood, d1.blood, 'Blood values should be equal') self.assertEqual(d0.origin, d1.origin, 'Origins should be equal') def test_spawn_static_message(self): s0 = protocol.SpawnStatic() s0.model_index = 127 s0.frame = 8 s0.color_map = 1 s0.skin = 2 s0.origin = 0, -32, 1600 s0.angles = 22.5, 0, -45 protocol.SpawnStatic.write(self.buff, s0) self.buff.seek(0) s1 = protocol.SpawnStatic.read(self.buff) self.assertEqual(s0.model_index, s1.model_index, 'Model indices should be equal') self.assertEqual(s0.frame, s1.frame, 'Frames should be equal') self.assertEqual(s0.color_map, s1.color_map, 'Color maps should be equal') self.assertEqual(s0.skin, s1.skin, 'Skins should be equal') self.assertEqual(s0.origin, s1.origin, 'Origins should be equal') self.assertEqual(s0.angles, s1.angles, 'Angles should be equal') def test_spawn_binary_message(self): with self.assertRaises(protocol.BadMessage): protocol.SpawnBinary.write(self.buff) with self.assertRaises(protocol.BadMessage): protocol.SpawnBinary.read(self.buff) def test_spawn_baseline_message(self): s0 = protocol.SpawnBaseline() s0.entity = 10 s0.model_index = 127 s0.frame = 8 s0.color_map = 1 s0.skin = 2 s0.origin = 0, -32, 1600 s0.angles = 22.5, 0, -45 protocol.SpawnBaseline.write(self.buff, s0) self.buff.seek(0) s1 = protocol.SpawnBaseline.read(self.buff) self.assertEqual(s0.entity, s1.entity, 'Entities should be equal') self.assertEqual(s0.model_index, s1.model_index, 'Model indices should be equal') self.assertEqual(s0.frame, s1.frame, 'Frames should be equal') self.assertEqual(s0.color_map, s1.color_map, 'Color maps should be equal') self.assertEqual(s0.skin, s1.skin, 'Skins should be equal') self.assertEqual(s0.origin, s1.origin, 'Origins should be equal') self.assertEqual(s0.angles, s1.angles, 'Angles should be equal') def test_temp_entity_message(self): t0 = protocol.TempEntity() t0.type = protocol.TE_WIZSPIKE t0.origin = 0, 128, -768 protocol.TempEntity.write(self.buff, t0) self.buff.seek(0) t1 = protocol.TempEntity.read(self.buff) self.assertEqual(t0.type, t1.type, 'Types should be equal') self.assertEqual(t0.origin, t1.origin, 'Origins should be equal') self.clear_buffer() t0 = protocol.TempEntity() t0.type = protocol.TE_LIGHTNING1 t0.entity = 8 t0.start = 0, 0, 0 t0.end = 16, -96, 2048 protocol.TempEntity.write(self.buff, t0) self.buff.seek(0) t1 = protocol.TempEntity.read(self.buff) self.assertEqual(t0.type, t1.type, 'Types should be equal') self.assertEqual(t0.entity, t1.entity, 'Entity values should be equal') self.assertEqual(t0.start, t1.start, 'Start vectors should be equal') self.assertEqual(t0.end, t1.end, 'End vectors should be equal') self.clear_buffer() t0 = protocol.TempEntity() t0.type = protocol.TE_EXPLOSION2 t0.origin = 0, 128, -768 t0.color_start = 0 t0.color_length = 16 protocol.TempEntity.write(self.buff, t0) self.buff.seek(0) t1 = protocol.TempEntity.read(self.buff) self.assertEqual(t0.type, t1.type, 'Types should be equal') self.assertEqual(t0.origin, t1.origin, 'Origins should be equal') self.assertEqual(t0.color_start, t1.color_start, 'Color start values should be equal') self.assertEqual(t0.color_length, t1.color_length, 'Color length values should be equal') self.clear_buffer() with self.assertRaises(protocol.BadMessage): t0 = protocol.TempEntity() t0.type = 14 protocol.TempEntity.write(self.buff, t0) self.clear_buffer() with self.assertRaises(protocol.BadMessage): self.buff.write(b'\x17\x0e') self.buff.seek(0) protocol.TempEntity.read(self.buff) def test_set_pause_message(self): s0 = protocol.SetPause() s0.paused = 1 protocol.SetPause.write(self.buff, s0) self.buff.seek(0) s1 = protocol.SetPause.read(self.buff) self.assertEqual(s0.paused, s1.paused, 'Paused values should be equal') def test_sign_on_num_message(self): s0 = protocol.SignOnNum() s0.sign_on = 1 protocol.SignOnNum.write(self.buff, s0) self.buff.seek(0) s1 = protocol.SignOnNum.read(self.buff) self.assertEqual(s0.sign_on, s1.sign_on, 'Sign on values should be equal') def test_center_print_message(self): c0 = protocol.CenterPrint() c0.text = 'This hall selects HARD skill' protocol.CenterPrint.write(self.buff, c0) self.buff.seek(0) c1 = protocol.CenterPrint.read(self.buff) self.assertEqual(c0.text, c1.text, 'Text values should be equal') def test_killed_monster_message(self): protocol.KilledMonster.write(self.buff) self.buff.seek(0) protocol.KilledMonster.read(self.buff) def test_found_secret_message(self): protocol.FoundSecret.write(self.buff) self.buff.seek(0) protocol.FoundSecret.read(self.buff) def test_spawn_static_sound_message(self): s0 = protocol.SpawnStaticSound() s0.origin = 0, -32, 1096 s0.sound_number = 2 s0.volume = 0.5 s0.attenuation = 0.25 protocol.SpawnStaticSound.write(self.buff, s0) self.buff.seek(0) s1 = protocol.SpawnStaticSound.read(self.buff) self.assertEqual(s0.origin, s1.origin, 'Origins should be equal') self.assertEqual(s0.sound_number, s1.sound_number, 'Sound numbers should be equal') self.assertEqual(s0.volume, s1.volume, 'Volume values should be equal') self.assertEqual(s0.attenuation, s1.attenuation, 'Attenuation values should be equal') def test_intermission_message(self): protocol.Intermission.write(self.buff) self.buff.seek(0) protocol.Intermission.read(self.buff) def test_finale_message(self): f0 = protocol.Finale() f0.text = 'Game Over' protocol.Finale.write(self.buff, f0) self.buff.seek(0) f1 = protocol.Finale.read(self.buff) self.assertEqual(f0.text, f1.text, 'Should be equal') def test_cd_track_message(self): c0 = protocol.CdTrack() c0.from_track = 2 c0.to_track = 3 protocol.CdTrack.write(self.buff, c0) self.buff.seek(0) c1 = protocol.CdTrack.read(self.buff) self.assertEqual(c0.from_track, c1.from_track, 'From track values should be equal') self.assertEqual(c0.to_track, c1.to_track, 'To track should be equal') def test_sell_screen_message(self): protocol.SellScreen.write(self.buff) self.buff.seek(0) protocol.SellScreen.read(self.buff) def test_cut_scene_message(self): c0 = protocol.CutScene() c0.text = 'Cut scene' protocol.CutScene.write(self.buff, c0) self.buff.seek(0) c1 = protocol.CutScene.read(self.buff) self.assertEqual(c0.text, c1.text, 'Text values should be equal') def test_update_entity_message(self): # Quick update u0 = protocol.UpdateEntity() u0.bit_mask |= protocol.U_ORIGIN1 | protocol.U_ORIGIN2 | protocol.U_ORIGIN3 | protocol.U_ANGLE2 | protocol.U_FRAME u0.entity = 4 u0.origin = u0.origin = 128.5, 250, -980 u0.angles = None, 90, None u0.frame = 1 protocol.UpdateEntity.write(self.buff, u0) self.buff.seek(0) u1 = protocol.UpdateEntity.read(self.buff) self.assertEqual(u0.bit_mask, u1.bit_mask, 'Bit masks should be equal') self.assertEqual(u0.entity, u1.entity, 'Entities should be equal') self.assertEqual(u0.origin, u1.origin, 'Origins should be equal') self.assertEqual(u0.angles, u1.angles, 'Angles should be equal') self.assertEqual(u0.frame, u1.frame, 'Frames should be equal') self.clear_buffer() # Full update u0 = protocol.UpdateEntity() u0.bit_mask |= 0x7F7F u0.entity = 4 u0.model_index = 8 u0.frame = 0 u0.colormap = 1 u0.skin = 2 u0.effects = 3 u0.origin = 128.5, 250, -980 u0.angles = 22.5, 0, -90 protocol.UpdateEntity.write(self.buff, u0) self.buff.seek(0) u1 = protocol.UpdateEntity.read(self.buff) self.assertEqual(u0.bit_mask, u1.bit_mask, 'Bit masks should be equal') self.assertEqual(u0.entity, u1.entity, 'Entities should be equal') self.assertEqual(u0.model_index, u1.model_index, 'Models should be equal') self.assertEqual(u0.frame, u1.frame, 'Frames should be equal') self.assertEqual(u0.colormap, u1.colormap, 'Colormaps should be equal') self.assertEqual(u0.skin, u1.skin, 'Skins should be equal') self.assertEqual(u0.effects, u1.effects, 'Effects should be equal') self.assertEqual(u0.origin, u1.origin, 'Origins should be equal') self.assertEqual(u0.angles, u1.angles, 'Angles should be equal') if __name__ == '__main__': unittest.main() ``` #### File: quake/tests/test_wad.py ```python import io import unittest from vgio.quake.tests.basecase import TestCase from vgio.quake import wad class TestWadReadWrite(TestCase): def test_check_file_type(self): self.assertFalse(wad.is_wadfile('./test_data/test.bsp')) self.assertFalse(wad.is_wadfile('./test_data/test.lmp')) self.assertFalse(wad.is_wadfile('./test_data/test.map')) self.assertFalse(wad.is_wadfile('./test_data/test.mdl')) self.assertFalse(wad.is_wadfile('./test_data/test.pak')) self.assertFalse(wad.is_wadfile('./test_data/test.spr')) self.assertTrue(wad.is_wadfile('./test_data/test.wad')) def test_read(self): wad_file = wad.WadFile('./test_data/test.wad', 'r') self.assertFalse(wad_file.fp.closed, 'File should be open') info = wad_file.getinfo('test') self.assertIsNotNone(info, 'FileInfo should not be None') self.assertEqual(info.filename, 'test') self.assertEqual(info.file_size, 5480, 'FileInfo size of test file should be 5480') self.assertEqual(info.file_offset, 12, 'FileInfo offset of test file should be 12') self.assertEqual(info.type, wad.LumpType.MIPTEX, 'FileInfo type of test file should be MIPTEX') file = wad_file.open('test') self.assertIsNotNone(file, 'File should not be None') file.close() fp = wad_file.fp wad_file.close() self.assertTrue(fp.closed, 'File should be closed') self.assertIsNone(wad_file.fp, 'File pointer should be cleaned up') def test_read_file(self): wad_file = wad.WadFile('./test_data/test.wad', 'r') self.assertFalse(wad_file.fp.closed, 'File should be open') info = wad_file.infolist()[0] read_file = wad_file.open(info) self.assertEqual(read_file.mode, 'r', 'File mode should be "r"') wad_file.close() def test_read_file_raises_on_write(self): with self.assertRaises(ValueError): with wad.WadFile('./test_data/test.wad', 'r') as wad_file: wad_file.open('new_file', 'w') def test_write(self): wad_file = wad.WadFile(self.buff, 'w') self.assertFalse(wad_file.fp.closed, 'File should be open') wad_file.write('./test_data/test.mdl') wad_file.write('./test_data/test.bsp', 'e1m1.bsp') self.assertTrue('test.mdl' in wad_file.namelist(), 'Mdl file should be in Wad file') self.assertTrue('e1m1.bsp' in wad_file.namelist(), 'Bsp file should be in Wad file') fp = wad_file.fp wad_file.close() self.assertFalse(fp.closed, 'File should be open') self.assertIsNone(wad_file.fp, 'File pointer should be cleaned up') self.buff.close() def test_write_string(self): w0 = wad.WadFile(self.buff, 'w') w0.writestr('test.cfg', b'bind ALT +strafe') w0.writestr(wad.WadInfo('readme.txt'), 'test') info = wad.WadInfo('bytes') info.file_size = len(b'bytes') info.type = wad.LumpType.LUMP w0.writestr(info, io.BytesIO(b'bytes')) w0.close() self.buff.seek(0) w1 = wad.WadFile(self.buff, 'r') self.assertTrue('test.cfg' in w1.namelist(), 'Cfg file should be in Wad file') self.assertTrue('readme.txt' in w1.namelist(), 'Txt file should be in Wad file') self.assertTrue('bytes' in w1.namelist(), 'Bytes should be in Wad file') self.assertEqual(w1.read('test.cfg'), b'bind ALT +strafe', 'Cfg file content should not change') self.assertEqual(w1.read('readme.txt').decode('ascii'), 'test', 'Txt file content should not change') self.assertEqual(w1.read('bytes'), b'bytes', 'Bytes content should not change') w1.close() self.buff.close() def test_write_file(self): wad_file = wad.WadFile(self.buff, 'w') self.assertFalse(wad_file.fp.closed, 'File should be open') from vgio.quake.bsp.bsp29 import Bsp bsp_file = Bsp.open('./test_data/test.bsp') bsp_file.close() # Write with an ArchiveWriteFile object write_file = wad_file.open('test.bsp', 'w') self.assertTrue(wad_file._writing, 'Wad file should be flagged as being written to') bsp_file.save(write_file) write_file.close() self.assertFalse(wad_file._writing, 'Wad file should no longer be flagged as being written to') self.assertTrue('test.bsp' in wad_file.namelist(), 'Written file should be in Wad file') fp = wad_file.fp wad_file.close() self.assertFalse(fp.closed, 'File should be open') self.assertIsNone(wad_file.fp, 'File pointer should be cleaned up') info = wad_file.infolist()[0] self.assertEqual('test.bsp', info.filename, 'Filename should be "test.bsp"') self.assertEqual(12, info.file_offset, 'Offset should be 12') self.assertEqual(58422, info.file_size, 'File size should be 58428') def test_append(self): f = open('./test_data/test.wad', 'rb') buff = io.BytesIO(f.read(-1)) f.close() wad_file = wad.WadFile(buff, 'a') wad_file.write('./test_data/test.bsp') wad_file.close() buff.seek(0) wad_file = wad.WadFile(buff, 'r') self.assertTrue('test.bsp' in wad_file.namelist(), 'Appended file should be in Wad file') fp = wad_file.fp wad_file.close() self.assertFalse(buff.closed, 'Wad file should not close passed file-like object') buff.close() def test_context_manager(self): with wad.WadFile('./test_data/test.wad', 'r') as wad_file: self.assertFalse(wad_file.fp.closed, 'File should be open') self.assertEqual(wad_file.mode, 'r', 'File mode should be \'r\'') fp = wad_file.fp wad_file._did_modify = False self.assertTrue(fp.closed, 'File should be closed') self.assertIsNone(wad_file.fp, 'File pointer should be cleaned up') def test_empty_pak_file(self): with wad.WadFile(self.buff, 'w'): pass self.buff.seek(0) with wad.WadFile(self.buff, 'r') as wad_file: self.assertEqual(len(wad_file.namelist()), 0, 'Wad file should have not entries') self.assertEqual(wad_file.end_of_data, 12, 'Directory should start immediately after header') def test_zero_byte_file(self): with wad.WadFile(self.buff, 'w') as wad_file: wad_file.writestr('zero.txt', b'') self.buff.seek(0) with wad.WadFile(self.buff) as wad_file: info = wad_file.getinfo('zero.txt') self.assertEqual(info.file_offset, 12, 'File Info offset of test file should be 12') self.assertEqual(info.file_size, 0, 'File Info size of test file should be 0') data = wad_file.read('zero.txt') self.assertEqual(len(data), 0, 'Length of bytes read should be zero.') if __name__ == '__main__': unittest.main() ```
{ "source": "joshuaskelly/hrot-cli-tools", "score": 3 }
#### File: hcli/unpak/cli.py ```python import argparse import os import sys from tabulate import tabulate from vgio.hrot import pak import hcli from hcli.common import Parser, ResolvePathAction def main(): parser = Parser( prog='unpak', description='Default action is to extract files to xdir.', epilog='example: unpak PAK0.PAK -d ./out => extract all files to ./out' ) parser.add_argument( 'file', metavar='file.pak', action=ResolvePathAction ) parser.add_argument( '-l', '--list', action='store_true', help='list files' ) parser.add_argument( '-d', metavar='xdir', dest='dest', default=os.getcwd(), action=ResolvePathAction, help='extract files into xdir' ) parser.add_argument( '-q', dest='quiet', action='store_true', help='quiet mode' ) parser.add_argument( '-v', '--version', dest='version', action='version', help=argparse.SUPPRESS, version=f'{parser.prog} version {hcli.__version__}' ) args = parser.parse_args() if not pak.is_pakfile(args.file): print(f'{parser.prog}: cannot find or open {args.file}', file=sys.stderr) sys.exit(1) if args.list: with pak.PakFile(args.file) as pak_file: info_list = sorted(pak_file.infolist(), key=lambda i: i.filename) headers = ['Length', 'Name'] table = [[i.file_size, i.filename] for i in info_list] length = sum([i.file_size for i in info_list]) count = len(info_list) table.append([length, f'{count} file{"s" if count == 1 else ""}']) separator = [] for i in range(len(headers)): t = max(len(str(length)), len(headers[i]) + 2) separator.append('-' * t) table.insert(-1, separator) print(f'Archive: {os.path.basename(args.file)}') print(tabulate(table, headers=headers)) sys.exit(0) with pak.PakFile(args.file) as pak_file: info_list = pak_file.infolist() for item in sorted(info_list, key=lambda i: i.filename): filename = item.filename fullpath = os.path.join(args.dest, filename) if not args.quiet: print(f' extracting: {fullpath}') try: pak_file.extract(filename, args.dest) except: print(f'{parser.prog}: error: {sys.exc_info()[0]}', file=sys.stderr) sys.exit(0) if __name__ == '__main__': main() ```
{ "source": "joshuaskelly/io_mesh_md2", "score": 3 }
#### File: io_mesh_md2/io_mesh_md2/perfmon.py ```python import sys import time from contextlib import contextmanager class PerformanceMonitor: """Simple class for timing addon performance. Adapted from the official Blender FBX addon. Example: pmon = PerformanceMonitor('Demo') pmon.push_scope('Starting') with pmon.scope(): for i in range(4): pmon.progress('Doing work:', i, 4) pmon.pop_scope('Finished') """ def __init__(self, identifier=''): self.level = -1 self.reference_time = [] self.identifier = identifier def push_scope(self, message=''): self.level += 1 self.reference_time.append(time.process_time()) self.log(message) def pop_scope(self, message=''): if not self.reference_time: self.log(message) return reference_time = self.reference_time[self.level] delta = time.process_time() - reference_time if reference_time else 0 print(f'{" " * (self.level)}Done ({delta} sec)\n') self.log(message) del self.reference_time[self.level] self.level -= 1 @contextmanager def scope(self, message=''): self.push_scope(message) yield self.pop_scope() def progress(self, message='', current=None, maximum=None): p = '' if current: p = f' {current + 1}' if maximum: p = f' {current + 1} of {maximum}' if current + 1 == maximum: p += '\n' sys.stdout.write(f'\r{" " * self.level}[{self.identifier}] {message}{p}') sys.stdout.flush() def log(self, message=''): if message: print(f'{" " * self.level}[{self.identifier}] {message}') def __del__(self): while self.level >= 0: self.pop_scope() ```
{ "source": "joshuaskelly/Toast", "score": 2 }
#### File: examples/emitter/emitter_performance_test.py ```python from toast.scene_graph import Component, Scene from toast.sprite import Sprite from toast.animation import Animation from toast.image_sheet import ImageSheet from toast.resource_loader import ResourceLoader from toast.emitter import Emitter from toast.math.vector import Vector2D from toast.gradient import Gradient from toast.timer import Timer import random import pygame from examples.demo_game import DemoGame class EndGameAfter(Component): def __init__(self, milliseconds=0): super(EndGameAfter, self).__init__() self.__life_timer = Timer(milliseconds) def update(self, milliseconds=0): super(EndGameAfter, self).update(milliseconds) if self.__life_timer.is_time_up(): pygame.event.post(pygame.event.Event(pygame.locals.QUIT)) class Particle(Sprite): def __init__(self, image, lifetime): super(Particle, self).__init__(image) self.lifetime = Timer(int(lifetime)) self.__velocity = Vector2D.from_angle(random.randrange(80.0, 100.0)) * -1.65 sheet = ImageSheet(ResourceLoader.load('data//puffs.png'), (32, 32)) puff = [(sheet[0], int(lifetime * 0.1)), (sheet[1], int(lifetime * 0.15)), (sheet[2], int(lifetime * 0.3)), (sheet[3], int(lifetime * 2.0))] self.animation = Animation('puff', puff) self.add(self.animation) def update(self, milliseconds=0): super(Particle, self).update(milliseconds) self.position += self.__velocity * (milliseconds / 1000.0) * 60 if self.lifetime.is_time_up(): self.lifetime.reset() self.remove() class EmitterPerformanceTest(Scene): def __init__(self): super(EmitterPerformanceTest, self).__init__() bg = Gradient.createVerticalGradient((20, 15), (255,255,255), (228, 139, 165), (111,86,117)) bg = pygame.transform.scale(bg, (320, 240)) self.add(Sprite(bg, (160, 120))) num_emitters = 8 for i in range(num_emitters): e = Emitter(Particle, (ImageSheet(ResourceLoader.load('data//puffs.png'), (32, 32))[0], 1000), 40, self.onCreate) e.position = 40 + (i * (256 / (num_emitters - 1))), 216 self.add(e) self.add(EndGameAfter(1000 * 30)) def onCreate(self, emitter, particle): particle.position = Vector2D(emitter.position) particle.position += (random.random() - 0.5) * 2.0 * 8, (random.random() - 0.5) * 2.0 * 16 particle.animation.play('puff', 0) if (random.random() < 0.3): particle.lifetime = Timer(random.randint(1000, 1800)) game = DemoGame((640, 480), EmitterPerformanceTest) game.run() ``` #### File: examples/quadtree/quadtree_demo_pick.py ```python import pygame import random from toast.quadtree import QuadTree from toast.scene_graph import GameObject, Scene from toast.camera import Camera from toast.event_manager import EventManager from examples.demo_game import DemoGame class QuadTreeVisualizer(GameObject): def __init__(self, quadtree): super(QuadTreeVisualizer, self).__init__() self.quadtree = quadtree def render(self, surface, offset=(0,0)): self.render_quadtree(surface, self.quadtree) def render_quadtree(self, surface, quadtree): pygame.draw.rect(surface, (255,0,0), quadtree.quadrant, 1) if quadtree.bucket is not []: for item in quadtree.bucket: item.render(surface) if quadtree.northwest_tree is not None: self.render_quadtree(surface, quadtree.northwest_tree) if quadtree.northeast_tree is not None: self.render_quadtree(surface, quadtree.northeast_tree) if quadtree.southwest_tree is not None: self.render_quadtree(surface, quadtree.southwest_tree) if quadtree.southeast_tree is not None: self.render_quadtree(surface, quadtree.southeast_tree) class RectComponent(GameObject): def __init__(self, left, top, width, height): super(RectComponent, self).__init__() self.left = left self.top = top self.width = width self.height = height self.__index = 0 self.color = 255, 255, 255 def __iter__(self): return self def next(self): if self.__index >= 4: self.__index = 0 raise StopIteration self.__index += 1 return self[self.__index - 1] def __getitem__(self, index): if index == 0: return self.left if index == 1: return self.top if index == 2: return self.width if index == 3: return self.height def render(self, surface, offset=(0,0)): rect = self.left, self.top, self.width, self.height pygame.draw.rect(surface, self.color, rect, 1) class NewScene(Scene): def __init__(self): super(NewScene, self).__init__() EventManager.subscribe(self, 'onMouseMotion') EventManager.subscribe(self, 'onMouseDown') Camera.current_camera.viewport = 512, 512 Camera.current_camera.position = 256, 256 Camera.current_camera.clear_color = 0, 0, 0 w = h = 2**9 self.region = (0,0,w,h) self.last_hits = [] self.items = [] self.use_quadtree_collision = True for _ in range(250): x = random.randint(0, 480) y = random.randint(0, 480) w = random.randint(4, 32) h = random.randint(4, 32) r = RectComponent(x,y,w,h) self.items.append(r) self.quadtree_visualizer = QuadTreeVisualizer(QuadTree(self.items, self.region)) self.add(self.quadtree_visualizer) def update(self, milliseconds=0): super(NewScene, self).update(milliseconds) self.quadtree_visualizer.quadtree = QuadTree(self.items, self.region) def onMouseDown(self, event): self.use_quadtree_collision = not self.use_quadtree_collision if self.use_quadtree_collision: print('Using QuadTree Collision Detection') else: print('Using PyGame Rect Collision') def onMouseMotion(self, event): p = DemoGame.camera_to_world(event.pos) if self.use_quadtree_collision: r = (p[0], p[1], 8, 8) current_hits = self.quadtree_visualizer.quadtree.hit(r) else: r = pygame.Rect(p[0], p[1], 8, 8) current_hits = [] indexes = r.collidelistall([pygame.Rect(r[0], r[1], r[2], r[3]) for r in self.items]) for index in indexes: current_hits.append(self.items[index]) for rect in self.last_hits: rect.color = 255, 255, 255 for rect in current_hits: rect.color = 0, 255, 0 self.last_hits = current_hits game = DemoGame((512, 512), NewScene) game.run() ``` #### File: examples/scene/scene_test.py ```python from toast.scene_graph import Scene from examples.demo_game import DemoGame class NewScene(Scene): def __init__(self): super(NewScene, self).__init__() game = DemoGame((640, 480), NewScene) game.run() ``` #### File: toast/decorators/__init__.py ```python class call_if(object): def __init__(self, cond): self.condition = cond def __call__(self, func): def inner(*args, **kwargs): if getattr(args[0], self.condition): return func(*args, **kwargs) else: return None return inner ``` #### File: Toast/toast/emitter.py ```python from toast.game_object_pool import GameObjectPool from toast.math.vector import Vector2D class Emitter(GameObjectPool): def __init__(self, particle_class_name, default_args=(), frequency=0, on_particle_create=None): super(Emitter, self).__init__(particle_class_name, default_args) self.__frequency = frequency self.__counter = 0 self.__on_particle_create = on_particle_create self.position = Vector2D(0, 0) self.is_emitting = True def update(self, milliseconds=0): super(Emitter, self).update(milliseconds) if self.is_emitting: self.__counter += milliseconds if self.__counter >= self.__frequency: self.__counter = 0 particle = self.getNextAvailable() if self.__on_particle_create is not None: self.__on_particle_create(self, particle) ``` #### File: Toast/toast/image_sheet.py ```python import pygame blank_pixel = pygame.Color(0, 255, 255, 255) empty_pixel = pygame.Color(0, 0, 0, 0) class ImageSheet(object): """ " * ImageSheet " * """ def __init__(self, surface, dimension, keys = None): """Class Constructor surface: A surface to be partitioned into sub-images. dimension: A tuple of the form (width, height). keys: A list of string identifiers for each sub-image. If none is provided, defaults to filename + index. """ # Set the surface. self.__image_sheet = surface self.__dimension = dimension # Create a dictionary to hold the sub-images. self.__image_dict = {} self.__empty_dict = {} if keys != None: self.__frame_list = keys else: self.__frame_list = [] # Determine number of steps needed height = self.__image_sheet.get_height() // self.__dimension[1] width = self.__image_sheet.get_width() // self.__dimension[0] # Build the dictionary for y in range(height): for x in range(width): i = x * dimension[0] j = y * dimension[1] frame_ID = "" index = ((y * width) + x) try: frame_ID = self.__frame_list[index] except: frame_ID = 'FRAME_' + str(index) self.__frame_list.append(frame_ID) self.__image_dict[frame_ID] = \ self.__image_sheet.subsurface((i, j, self.__dimension[0], self.__dimension[1])).copy() bounding_rect = self.__image_dict[frame_ID].get_bounding_rect() self.__empty_dict[frame_ID] = bounding_rect.width == 0 or bounding_rect.height == 0 def __getitem__(self, key): try: return self.__image_dict[key] except: return self.__image_dict[self.__frame_list[key]] def is_blank(self, frame): try: return self.__empty_dict[frame] except: return self.__empty_dict[self.__frame_list[frame]] def get_dimension(self): return self.__dimension ``` #### File: Toast/toast/sprite.py ```python import pygame from toast.scene_graph import GameObject from toast.fast_transform import Transform from toast.math.vector import Vector2D class Sprite(GameObject): def __init__(self, image_or_animation, position=(0,0)): super(Sprite, self).__init__() self.add(Transform()) self.transform.position = position self.flip_x = False self.flip_y = False self.__image = None self.__animation = None self.__visibility = True if hasattr(image_or_animation, 'add_animation'): self.__animation = image_or_animation self.add(image_or_animation) self.image = self.__animation.image else: self.image = image_or_animation @property def animation(self): return self.__animation @animation.setter def animation(self, new_anim): self.__animation = new_anim @property def transform(self): return self.get_component('Transform') def change_transform_type(self, new_type): x, y = self.transform.position self.remove(self.transform) t = new_type() t.position = x, y self.add(t) @property def position(self): return self.transform.position @position.setter def position(self, value): self.transform.position = value @property def visible(self): return self.__visibility @visible.setter def visible(self, value): self.__visibility = value @property def image(self): return self.__image @image.setter def image(self, image): self.__image = image def render(self, surface, offset=(0,0)): # If not visible, don't draw if not self.visible: return image = self.image w, h = image.get_size() # Handle scaling if needed if self.transform.scale != (1, 1): sx, sy = self.transform.scale sw = abs(sx) * w sh = abs(sy) * h image = pygame.transform.scale(image, (int(sw), int(sh))) image = pygame.transform.flip(image, self.flip_x, self.flip_y) # Handle rotation if needed if self.transform.rotation: image = pygame.transform.rotate(image, int(-self.transform.rotation)) # Calculate center hw, hh = image.get_size() hw = hw / 2 hh = hh / 2 pos = Vector2D(int(self.transform.position[0]), int(self.transform.position[1])) # Draw image to surface surface.blit(image, pos - (hw, hh) - offset) # Draw children for child in [c for c in self.children if hasattr(c, 'render')]: child.render(surface, offset) ``` #### File: toast/text_effects/shaky_text.py ```python from toast.text_effects import wrapper import random class ShakyText(wrapper.Wrapper): def __init__(self, internal): wrapper.Wrapper.__init__(self, internal) self.scale = 0.1 random.seed() def update(self, time = 16): self.internal._update_chars(time) self.char_list = self.internal.char_list for (_, rect) in self.char_list: rect.top += rect.height * random.random() * self.scale rect.left += rect.width * random.random() * self.scale ``` #### File: toast/text_effects/wavy_text.py ```python import math from toast.text_effects import wrapper class WavyText(wrapper.Wrapper): def __init__(self, internal): wrapper.Wrapper.__init__(self, internal) self.amplitude = self.internal.char_list[0][1].height / 2 self.frequency = 1 self.phaseStep = 1 def update(self, time=16): """A simple harmonic motion function. :param time: The amount of time lapsed since the last call to update. """ self.internal._update_chars(time) self.char_list = self.internal.char_list phase = 0 for (_, rect) in self.char_list: rect.top += self.displacement(self.amplitude, self.frequency, self.internal.time / 1000.0, phase) phase -= self.phaseStep def displacement(self, amplitude, frequency, time, phase): """A simple harmonic motion function. :returns: Vertical displacement """ return amplitude * math.cos((2 * math.pi * frequency * time) + phase) ``` #### File: Toast/toast/transform.py ```python from toast.math.vector import Vector2D from toast.math.matrix import MatrixHelper from toast.scene_graph import Component class Transform(Component): def __init__(self): super(Transform, self).__init__() self.__local_matrix = None self.global_matrix = None self.__position = Vector2D.Zero() self.__rotation = 0 self.__scale = Vector2D(1.0, 1.0) @property def matrix(self): if self.__local_matrix == None: t = MatrixHelper.translation_matrix(int(self.__position[0]), int(self.__position[1])) r = MatrixHelper.rotation_matrix(self.__rotation) s = MatrixHelper.scale_matrix(self.__scale[0], self.__scale[1]) self.__local_matrix = t * r * s if self.global_matrix == None: if hasattr(self.game_object.parent, 'transform'): p = self.game_object.parent.transform.matrix self.global_matrix = p * self.__local_matrix else: return self.__local_matrix return self.global_matrix def mark_dirty(self): if not self.game_object: return self.global_matrix = None self.__local_matrix = None for child_transform in [c.transform for c in self.game_object.children]: child_transform.mark_dirty() @property def position(self): return Vector2D(self.matrix[0][2], self.matrix[1][2]) @position.setter def position(self, other): self.__position.x = other[0] self.__position.y = other[1] self.mark_dirty() @property def rotation(self): a = self.matrix * (1, 0) b = self.position return (a - b).angle @rotation.setter def rotation(self, rotation): self.__rotation = rotation * 0.0174532925 self.mark_dirty() @property def scale(self): sx = (self.matrix * (1, 0)) - self.position sy = (self.matrix * (0, 1)) - self.position return Vector2D(sx.magnitude, sy.magnitude) @scale.setter def scale(self, scale): self.__scale = scale self.mark_dirty() @property def forward(self): f = Vector2D.from_angle(self.rotation) return f @property def right(self): r = Vector2D.from_angle(self.rotation - 90.0) r[1] = -r[1] return r @property def offset(self): return self.__offset def look_at(self, pos): angle = (pos - self.position).angle self.rotation = -angle ``` #### File: Toast/toast/util.py ```python from xml.etree import ElementTree class XMLDict(dict): """ A helper class that facilitates working with xml documents in a read-only manner. Mostly lifted from: http://code.activestate.com/recipes/573463-converting-xml-to-dictionary-and-back/ >>> doc = dict_from_xml('file.xml') >>> doc.root.children[0] >>> doc['root']['children'][0] """ def __init__(self, initial_dict=None): if initial_dict is None: initial_dict = {} dict.__init__(self, initial_dict) def __getattr__(self, item): return self.__getitem__(item) def __setattr(self, item, value): self.__setitem__(item, value) def __str__(self): if self.has_key('_text'): return self.__getitem__('_text') else: return '' def __convert(node): node_dict = XMLDict() if len(node.items()) > 0: node_dict.update(dict(node.items())) for child in node: new_node_dict = __convert(child) if child.tag in node_dict: if type(node_dict[child.tag]) is type([]): node_dict[child.tag].append(new_node_dict) else: node_dict[child.tag] = [node_dict[child.tag], new_node_dict] else: node_dict[child.tag] = new_node_dict if node.text is None: text = '' else: text = node.text.strip() if len(node_dict) > 0: if len(text) > 0: node_dict['_text'] = text else: node_dict = text return node_dict def dict_from_xml(root): """ Builds and returns an XMLDict representing the given xml document. >>> doc = dict_from_xml('file.xml') >>> resolution = doc.config.display.resolution """ if type(root) == type(''): root = ElementTree.parse(root).getroot() elif not isinstance(root, ElementTree.Element): raise(TypeError, 'blah') return XMLDict({root.tag : __convert(root)}) ```
{ "source": "JoshuaSkelly/TroubleInCloudLand", "score": 3 }
#### File: TroubleInCloudLand/core/actor.py ```python import pygame from core import animation from utils import vector from utils.settings import * class Actor(pygame.sprite.Sprite): """The Generic Actor Class""" def __init__(self): pygame.sprite.Sprite.__init__(self) self.actor_type = ACTOR_NONE self.can_collide = False self.active = False self.hitrect = pygame.Rect(0, 0, 0, 0) self.hitrect_offset_x = 0 self.hitrect_offset_y = 0 self.object_collided_with = self self.bound_style = None self.animation_list = animation.Animation() self.image = None self.position = vector.Vector2d(0, 0) self.bounds = 0, 0, 0, 0 def actor_update(self): pass def update(self): try: self.animation_list.update() self.image = self.animation_list.image except: pass self.position += self.velocity self.check_bounds() self.rect.center = (self.position.x, self.position.y) self.hitrect.center = (self.position.x + self.hitrect_offset_x, self.position.y + self.hitrect_offset_y) self.actor_update() def check_collision(self, group_checked): for object_checked in group_checked: if self.hitrect.colliderect(object_checked.hitrect): if self.active and object_checked.active: self.object_collided_with = object_checked object_checked.object_collided_with = self self.collide() object_checked.collide() def collide(self): pass def check_bounds(self): current_x = self.position.x current_y = self.position.y if current_x < self.bounds[LEFT] or current_x > self.bounds[RIGHT] or current_y < self.bounds[TOP] or current_y > self.bounds[BOTTOM]: self.out_of_bounds() def die(self): self.kill() del self def out_of_bounds(self): if self.bound_style == BOUND_STYLE_CLAMP: if self.position.x < self.bounds[LEFT]: self.position = vector.Vector2d(self.bounds[LEFT], self.position.y) elif self.position.x > self.bounds[RIGHT]: self.position = vector.Vector2d(self.bounds[RIGHT], self.position.y) if self.position.y < self.bounds[TOP]: self.position = vector.Vector2d(self.position.x, self.bounds[TOP]) elif self.position.y > self.bounds[BOTTOM]: self.position = vector.Vector2d(self.position.x, self.bounds[BOTTOM]) elif self.bound_style == BOUND_STYLE_WRAP: if self.position.x < self.bounds[LEFT]: self.position = vector.Vector2d(self.bounds[RIGHT], self.position.y) elif self.position.x > self.bounds[RIGHT]: self.position = (self.bounds[LEFT],self.position.y) if self.position.y < self.bounds[TOP]: self.position = (self.position.x, self.bounds[BOTTOM]) elif self.position.y > self.bounds[BOTTOM]: self.position = (self.position.x, self.bounds[TOP]) elif self.bound_style == BOUND_STYLE_REFLECT: if self.position.x < self.bounds[LEFT]: self.position = vector.Vector2d(self.bounds[LEFT], self.position.y) self.velocity *= -1.0, 1.0 elif self.position.x > self.bounds[RIGHT]: self.position = vector.Vector2d(self.bounds[RIGHT], self.position.y) self.velocity *= -1.0, 1.0 if self.position.y < self.bounds[TOP]: self.position = vector.Vector2d(self.position.x, self.bounds[TOP]) self.velocity *= 1.0, -1.0 elif self.position.y > self.bounds[BOTTOM]: self.position = vector.Vector2d(self.position.x, self.bounds[BOTTOM]) self.velocity *= 1.0, -1.0 elif self.bound_style == BOUND_STYLE_KILL: self.kill() elif self.bound_style == BOUND_STYLE_CUSTOM: self.custom_bounds() def custom_bounds(self): pass ``` #### File: TroubleInCloudLand/core/animation.py ```python from utils import utility class Animation(object): def __init__(self): self.sequence_dict = {} self.current_sequence = 0 self.frame_dict = {} self.current_frame = 0 self.is_playing = True self.image = None self.parent = None def __repr__(self): return '<Animation({0} Sequences): {1}>'.format(self.length, self.keys) def __len__(self): return len(self.sequence_dict) @property def length(self): return len(self.sequence_dict) @property def keys(self): return self.sequence_dict.keys() def set_parent(self, parent): self.parent = parent self.parent.image = self.sequence_dict[self.current_sequence][self.current_frame] def update(self): if self.is_playing: self.current_frame += 1 if self.current_frame > len(self.sequence_dict[self.current_sequence]) - 1: self.current_frame = 0 self.image = self.sequence_dict[self.current_sequence][self.current_frame] def play(self, sequence_id, frame_id=0): self.is_playing = True if self.current_sequence != sequence_id: self.current_sequence = sequence_id self.current_frame = frame_id def stop(self, sequence_id=None, frame_id=0): self.is_playing = False if sequence_id: self.current_sequence = sequence_id if frame_id: self.current_frame = frame_id def build_animation(self, sequence_id, frames): self.sequence_dict[sequence_id] = [] if not self.current_sequence: self.current_sequence = sequence_id try: for frame in frames: try: self.sequence_dict[sequence_id].append(self.frame_dict[frame]) except: self.frame_dict[frame] = (utility.load_image(frame)) self.sequence_dict[sequence_id].append(self.frame_dict[frame]) except: try: self.sequence_dict[sequence_id].append(self.frame_dict[frames]) except: self.frame_dict[frames] = (utility.load_image(frames)) self.sequence_dict[sequence_id].append(self.frame_dict[frames]) self.image = self.sequence_dict[self.current_sequence][self.current_frame] ``` #### File: TroubleInCloudLand/core/game.py ```python from core import player, world from scenes import credits, scene, tutorial from ui import icon, menu, text from utils import prettyprint, utility, vector from utils.utility import * pause_menu_dictionary = { RESUME_GAME: ['Resume','Continue Playing'], OPTION_MENU: ['Options','Change Sound and Video Options'], EXIT_GAME: ['Exit','Exit to the Main Menu'] } class Game(object): def __init__(self, screen, world_to_start, music_list): self.screen = screen pygame.mouse.set_visible(False) self.done = False self.world_done = False self.high_score = 0 self.bullet_group = pygame.sprite.Group() self.player_group = pygame.sprite.Group() self.powerup_group = pygame.sprite.Group() self.boss_group = pygame.sprite.Group() self.enemy_group = pygame.sprite.Group() self.text_group = pygame.sprite.Group() self.effects_group = pygame.sprite.Group() self.mouse_last_move = MOUSE_DEFAULT_POSITION self.group_list = [ self.powerup_group, self.enemy_group, self.boss_group, self.text_group, self.effects_group ] self.score_board = text.Text(FONT_PATH, 36, FONT_COLOR) self.temp_life_board = text.Text(FONT_PATH, 36, FONT_COLOR) self.temp_life_board.position = vector.Vector2d(48, 40) self.life_board = self.temp_life_board self.life_icon = icon.Icon('life') self.player = player.Player(self.bullet_group, self.effects_group, self.life_board, self.score_board) self.player_group.add(self.player) self.text_group.add(self.score_board) self.text_group.add(self.temp_life_board) self.text_group.add(self.life_icon) self.music_list = music_list self.timer = pygame.time.Clock() # Get rid of the first mouse delta pygame.mouse.get_rel() world1_level0 = [ [0, ACTOR_MOONO, 45, 0], [1, ACTOR_MOONO, 120, 0], [2, ACTOR_MOONO, 240, 0], [3, ACTOR_BAAKE, -1 ,1], [4, ACTOR_BOSS_TUT, -1, 1], [4, ACTOR_MOONO, 35, 0] ] world1_level1 = [ [0, ACTOR_MOONO, 40, 0], [1, ACTOR_MOONO, 85, 0], [2, ACTOR_MOONO, 110, 0], [3, ACTOR_BAAKE, -1 ,2], [4, ACTOR_BOSS_TUT, -1, 1], [4, ACTOR_MOONO, 30, 0] ] world1_level2 = [ [0, ACTOR_MOONO, 30, 0], [1, ACTOR_BAAKE, -1, 1], [0, ACTOR_MOONO, 70, 0], [2, ACTOR_BAAKE, -1, 1], [0, ACTOR_MOONO, 130, 0], [3, ACTOR_BAAKE, -1, 1], [0, ACTOR_MOONO, 300, 0], [4, ACTOR_BOSS_TUT, -1, 1], [4, ACTOR_MOONO, 25, 0] ] world1_level3 = [ [0, ACTOR_MOONO, 25, 0], [1, ACTOR_BAAKE, -1, 1], [1, ACTOR_MOONO, 50, 0], [2, ACTOR_BAAKE, -1, 2], [2, ACTOR_MOONO, 110, 0], [3, ACTOR_BAAKE, -1, 2], [3, ACTOR_MOONO, 210, 0], [4, ACTOR_BOSS_TUT, -1, 1], [4, ACTOR_MOONO, 20, 0] ] world2_level0 = [ [0, ACTOR_MOONO, 45, 0], [0, ACTOR_HAOYA, 65, 0], [1, ACTOR_BAAKE, -1, 1], [1, ACTOR_MOONO, 70, 0], [2, ACTOR_HAOYA, 75, 0], [3, ACTOR_MOONO, 85, 0], [4, ACTOR_BAAKE_BOSS, -1, 1], [4, ACTOR_HAOYA, 30, 0] ] world2_level1 = [ [0, ACTOR_BAAKE, -1, 2], [0, ACTOR_BATTO, 150 ,0], [0, ACTOR_MOONO, 55, 0], [1, ACTOR_HAOYA, 60, 0], [2, ACTOR_MOONO, 100 ,0], [3, ACTOR_BAAKE, -1, 1], [3, ACTOR_BATTO, 280, 0], [4, ACTOR_BAAKE_BOSS, -1, 1], [4, ACTOR_BATTO, 70, 0] ] world2_level2 = [ [0, ACTOR_ROKUBI, 60, 0], [0, ACTOR_MOONO, 50, 0], [0, ACTOR_BAAKE, -1, 2], [1, ACTOR_BAAKE, -1, 1], [1, ACTOR_BATTO, 160, 0], [2, ACTOR_HAOYA, 60, 0], [3, ACTOR_MOONO, 80, 0], [4, ACTOR_BAAKE_BOSS, -1, 1], [4, ACTOR_ROKUBI, 30, 0] ] world2_level3 = [ [0, ACTOR_HAOYA, 60, 0], [0, ACTOR_BATTO, 170, 0], [0, ACTOR_ROKUBI, 75, 0], [0, ACTOR_BAAKE, -1, 1], [1, ACTOR_MOONO, 70, 0], [1, ACTOR_BAAKE, -1, 1], [2, ACTOR_BAAKE, -1, 1], [2, ACTOR_ROKUBI, 180, 1], [3, ACTOR_MOONO, 200, 0], [4, ACTOR_BAAKE_BOSS, -1, 1], [4, ACTOR_HAOYA, 100, 0], [4, ACTOR_BATTO, 240, 0], [4, ACTOR_ROKUBI, 90, 0], [4, ACTOR_BAAKE, -1, 1] ] world3_level0 = [ [0, ACTOR_HAKTA, 35, 0], [0, ACTOR_HAOYA, 65, 0], [1, ACTOR_BOKKO, -1, 1], [2, ACTOR_BOKKO, -1, 1], [2, ACTOR_HAKTA, 75, 0], [3, ACTOR_BOKKO, -1, 1], [4, ACTOR_MOONO_BOSS, -1, 1], [4, ACTOR_HAKTA, 30, 0] ] world3_level1 = [ [0, ACTOR_RAAYU, 45, 0], [0, ACTOR_HAKTA, 50, 0], [1, ACTOR_BOKKO, -1, 1], [2, ACTOR_RAAYU, 60, 0], [3, ACTOR_BOKKO, -1, 1], [3, ACTOR_ROKUBI, 80, 0], [4, ACTOR_MOONO_BOSS, -1, 1], [4, ACTOR_RAAYU, 25, 0] ] world3_level2 = [ [0, ACTOR_PAAJO, 95, 0], [0, ACTOR_HAKTA, 40, 0], [1, ACTOR_BOKKO, -1, 2], [2, ACTOR_RAAYU, 80, 0], [3, ACTOR_BOKKO, -1, 1], [4, ACTOR_MOONO_BOSS, -1, 1], [4, ACTOR_PAAJO, 70, 0] ] world3_level3 = [ [0, ACTOR_HAKTA, 55, 0], [0, ACTOR_RAAYU, 75, 0], [0, ACTOR_PAAJO, 160, 0], [1, ACTOR_BOKKO, -1, 2], [1, ACTOR_ROKUBI, 50, 0], [2, ACTOR_HAOYA, 120, 0], [3, ACTOR_BOKKO, -1, 1], [4, ACTOR_MOONO_BOSS, -1, 1], [4, ACTOR_HAKTA, 60, 0], [4, ACTOR_RAAYU, 50, 0], [4, ACTOR_PAAJO, 110, 0], [4, ACTOR_BOKKO, -1, 1] ] tutorial_world = ['Tutorial', self.player, self.group_list] temp_world_1 = ['Cloudopolis', self.player, self.group_list, [world1_level0, world1_level1, world1_level2, world1_level3]] temp_world_2 = ['Nightmaria', self.player, self.group_list, [world2_level0, world2_level1, world2_level2, world2_level3]] temp_world_3 = ['Opulent Dream', self.player, self.group_list, [world3_level0, world3_level1, world3_level2, world3_level3]] self.world_list = [ tutorial_world, temp_world_1, temp_world_2, temp_world_3 ] self.world_number = world_to_start if self.world_number == 0: self.current_world = tutorial.Tutorial(self.world_list[self.world_number]) else: self.current_world = world.World(self.world_list[self.world_number], self.music_list[self.world_number]) self.current_world.load() if self.world_number == 0: self.new_scene = scene.TutorialScene() self.player.lives = 99 self.life_board.set_text('x' + str(self.player.lives)) elif self.world_number == 1: self.new_scene = scene.ForestScene() elif self.world_number == 2: self.new_scene = scene.RockyScene() elif self.world_number == 3: self.new_scene = scene.PinkScene() def run(self): while not self.done: if self.world_done: if self.world_number < MAX_WORLD: self.world_beat() # Resetting player lives so that it isn't in their best # interest to play easier worlds just to have extra lives. self.player.lives = 3 self.player.life_board.set_text('x' + str(self.player.lives)) self.player.score = 0 self.player.next_bonus = 50000 # Loading the new world self.world_number += 1 if self.world_number == 0: self.new_scene = scene.TutorialScene() elif self.world_number == 1: self.new_scene = scene.ForestScene() elif self.world_number == 2: self.new_scene = scene.RockyScene() elif self.world_number == 3: self.new_scene = scene.PinkScene() if self.world_number > settings_list[WORLD_UNLOCKED]: settings_list[WORLD_UNLOCKED] = self.world_number utility.play_music(self.music_list[self.world_number], True) self.current_world = world.World(self.world_list[self.world_number], self.music_list[self.world_number]) self.current_world.load() self.world_done = False else: self.game_beat() self.check_collision() self.update() self.draw() self.handle_events() pygame.mouse.set_pos(MOUSE_DEFAULT_POSITION) pygame.mouse.get_rel() self.mouse_last_move = pygame.mouse.get_pos() self.timer.tick(FRAMES_PER_SECOND) if self.player.dead: high_score = read_high_scores() if self.player.score < high_score[self.world_number]: end_game_dictionary = { HIGH_SCORE: ['High Score For This World: ' + str(high_score[self.world_number]), 'You would need to score ' + str(high_score[self.world_number] - self.player.score) + ' more to beat it!'], NEXT_WORLD: ['Exit', 'Return To The Menu'] } elif self.player.score == high_score[self.world_number]: end_game_dictionary = { HIGH_SCORE: ['High Score For This World: ' + str(high_score[self.world_number]), 'You Tied the High Score!'], NEXT_WORLD: ['Exit', 'Return To The Menu'] } else: end_game_dictionary = { HIGH_SCORE: ['High Score For This World: ' + str(high_score[self.world_number]), 'You Beat the High Score!'], NEXT_WORLD: ['Exit', 'Return To The Menu'] } high_score[self.world_number] = self.player.score write_high_scores(high_score) utility.dim(128, FILL_COLOR) end_game_menu = menu.Menu(self.screen, self.music_list[self.world_number], self.screen.convert(), [0, SCREEN_HEIGHT / 3, SCREEN_WIDTH, SCREEN_HEIGHT], ['Game Over', 128, SCREEN_WIDTH / 2, SCREEN_HEIGHT / 4], end_game_dictionary) end_game_menu.show() self.done = True utility.fade_music() utility.play_music(self.music_list[MENU_MUSIC], True) def handle_events(self): for event in pygame.event.get(): if (event.type == pygame.KEYDOWN and event.key == pygame.K_ESCAPE) or (event.type == pygame.MOUSEBUTTONDOWN and event.button == 3) or (event.type == pygame.ACTIVEEVENT and event.gain == 0): utility.dim(128, FILL_COLOR) # Grab a copy of the screen to show behind the menu screen_grab = self.screen.copy() pause_menu_running = True while pause_menu_running: pause_menu = menu.Menu(self.screen, self.music_list[self.world_number], screen_grab, [0, SCREEN_HEIGHT / 3, SCREEN_WIDTH, SCREEN_HEIGHT], ['Pause', 128, SCREEN_WIDTH / 2, SCREEN_HEIGHT / 4], pause_menu_dictionary) menu_result = pause_menu.show() if menu_result == OPTION_MENU: option_result = True last_highlighted = 0 while option_result: option_menu_dictionary = { SOUND_MENU: ['Sound Options', 'Change Sound Options'], DISPLAY_MENU: ['Video Options', 'Change Video Options'], CHANGE_SENSITIVITY: ['Mouse Sensitivity: ' + prettyprint.mouse_sensitivity(settings_list[SENSITIVITY]), 'Change Mouse Sensitivity'], EXIT_OPTIONS: ['Back', 'Go Back to the Main Menu'] } sensitivity_menu_dictionary = { 0: ['Very Low', 'Change Sensitivity to Very Low'], 1: ['Low', 'Change Sensitivity to Low'], 2: ['Normal', 'Change Sensitivity to Normal'], 3: ['High', 'Change Sensitivity to High'], 4: ['Very High', 'Change Sensitivity to Very High'] } sound_menu_dictionary = { TOGGLE_SFX: ['Sound Effects: ' + prettyprint.on(settings_list[SFX]), 'Turn ' + prettyprint.on(not settings_list[SFX]) + ' Sound Effects'], TOGGLE_MUSIC: ['Music: ' + prettyprint.on(settings_list[MUSIC]), 'Turn ' + prettyprint.on(not settings_list[MUSIC]) + ' Music'], EXIT_OPTIONS: ['Back', 'Go Back to the Option Menu'] } display_menu_dictionary = { TOGGLE_PARTICLES: ['Particles: ' + prettyprint.able(settings_list[PARTICLES]), 'Turn ' + prettyprint.on(not settings_list[PARTICLES]) + ' Particle Effects'], TOGGLE_FULLSCREEN: ['Video Mode: ' + prettyprint.screen_mode(settings_list[SETTING_FULLSCREEN]), 'Switch To ' + prettyprint.screen_mode(not settings_list[SETTING_FULLSCREEN]) + ' Mode'], EXIT_OPTIONS: ['Back', 'Go Back to the Main Menu'] } option_result = menu.Menu(self.screen, self.music_list[self.world_number], screen_grab, [0, SCREEN_HEIGHT / 3, SCREEN_WIDTH, SCREEN_HEIGHT], ['Options', 96,SCREEN_WIDTH / 2, SCREEN_HEIGHT / 4], option_menu_dictionary, last_highlighted).show() if option_result == SOUND_MENU: sound_result = True last_highlighted = 0 while sound_result: sound_menu = menu.Menu(self.screen, self.music_list[self.world_number], screen_grab, [0, SCREEN_HEIGHT / 3, SCREEN_WIDTH, SCREEN_HEIGHT], ['Sound Options', 96,SCREEN_WIDTH / 2, SCREEN_HEIGHT / 4], sound_menu_dictionary, last_highlighted) sound_result = sound_menu.show() if sound_result == TOGGLE_SFX: settings_list[SFX] = not settings_list[SFX] last_highlighted = 0 elif sound_result == TOGGLE_MUSIC: settings_list[MUSIC] = not settings_list[MUSIC] if not settings_list[MUSIC]: pygame.mixer.Channel(MUSIC_CHANNEL).stop() last_highlighted = 1 elif sound_result == EXIT_OPTIONS: sound_result = False sound_menu_dictionary = { TOGGLE_SFX: ['Sound Effects: ' + prettyprint.on(settings_list[SFX]), 'Turn ' + prettyprint.on(not settings_list[SFX]) + ' Sound Effects'], TOGGLE_MUSIC: ['Music: ' + prettyprint.on(settings_list[MUSIC]), 'Turn ' + prettyprint.on(not settings_list[MUSIC]) + ' Music'], EXIT_OPTIONS: ['Back', 'Go Back to the Option Menu'] } if option_result == DISPLAY_MENU: display_result = True last_highlighted = 0 while display_result: display_menu = menu.Menu(self.screen, self.music_list[self.world_number], screen_grab, [0, SCREEN_HEIGHT / 3, SCREEN_WIDTH, SCREEN_HEIGHT], ['Video Options', 96,SCREEN_WIDTH / 2, SCREEN_HEIGHT / 4], display_menu_dictionary, last_highlighted) display_result = display_menu.show() if display_result == TOGGLE_PARTICLES: settings_list[PARTICLES] = not settings_list[PARTICLES] last_highlighted = 0 elif display_result == TOGGLE_FULLSCREEN: settings_list[SETTING_FULLSCREEN] = not settings_list[SETTING_FULLSCREEN] last_highlighted = 1 pygame.mixer.quit() pygame.mixer.init() if settings_list[SETTING_FULLSCREEN]: utility.set_fullscreen() else: utility.set_fullscreen(False) pygame.mouse.set_visible(False) elif display_result == EXIT_OPTIONS: display_result = False display_menu_dictionary = { TOGGLE_PARTICLES: ['Particles: ' + prettyprint.able(settings_list[PARTICLES]), 'Turn ' + prettyprint.on(not settings_list[PARTICLES]) + ' Particle Effects'], TOGGLE_FULLSCREEN: ['Video Mode: ' + prettyprint.screen_mode(settings_list[SETTING_FULLSCREEN]), 'Switch To ' + prettyprint.screen_mode(not settings_list[SETTING_FULLSCREEN]) + ' Mode'], EXIT_OPTIONS: ['Back', 'Go Back to the Main Menu'] } elif option_result == EXIT_OPTIONS: option_result = False elif option_result == CHANGE_SENSITIVITY: sensitivity_result = True last_highlighted = 0 while sensitivity_result: sensitivity_menu = menu.Menu(self.screen, self.music_list[self.world_number], screen_grab, [0, SCREEN_HEIGHT / 3, SCREEN_WIDTH, SCREEN_HEIGHT], ['Mouse Sensitivity', 96,SCREEN_WIDTH / 2, SCREEN_HEIGHT / 4], sensitivity_menu_dictionary, last_highlighted) sensitivity_result = sensitivity_menu.show() mouse_sensitivities = [0.5, 0.75, 1, 1.25, 1.5] settings_list[SENSITIVITY] = mouse_sensitivities[sensitivity_result] if sensitivity_result > 0: sensitivity_result = False elif menu_result == RESUME_GAME or menu_result == False: pause_menu_running = False pygame.mouse.get_rel() elif menu_result == EXIT_GAME: utility.fade_music() utility.play_music(self.music_list[MENU_MUSIC], True) self.done = True pause_menu_running = False elif event.type == pygame.MOUSEMOTION and self.player.lives: mouse_input = [pygame.mouse.get_pos()[0] - 512.0, pygame.mouse.get_pos()[1] - 384.0] if mouse_input[0] != 0 and mouse_input[1] != 0: self.player.fire() self.player.velocity = (self.player.velocity + mouse_input) / 1.5 * settings_list[SENSITIVITY] def draw(self): self.screen.fill(FILL_COLOR) self.new_scene.draw(self.screen) self.effects_group.draw(self.screen) self.player_group.draw(self.screen) self.bullet_group.draw(self.screen) self.powerup_group.draw(self.screen) self.enemy_group.draw(self.screen) self.boss_group.draw(self.screen) self.text_group.draw(self.screen) pygame.display.flip() def update(self): self.world_done = self.current_world.update() self.enemy_group.update() self.player_group.update() self.bullet_group.update() self.powerup_group.update() self.boss_group.update() self.text_group.update() self.effects_group.update() def check_collision(self): if self.player.active: self.player.check_collision(self.powerup_group) self.player.check_collision(self.enemy_group) self.player.check_collision(self.boss_group) for boss in self.boss_group: if boss.active: boss.check_collision(self.bullet_group) for enemy in self.enemy_group: if enemy.active: enemy.check_collision(self.powerup_group) enemy.check_collision(self.bullet_group) def world_beat(self): high_score = read_high_scores() if self.player.score < high_score[self.world_number]: world_end_dictionary = { HIGH_SCORE: ['High Score For This World: ' + str(high_score[self.world_number]), 'You would need to score ' + str(high_score[self.world_number] - self.player.score) + ' more to beat it!'], NEXT_WORLD: ['Continue', 'On to the Next World!'] } elif self.player.score == high_score[self.world_number]: world_end_dictionary = { HIGH_SCORE: ['High Score For This World: ' + str(high_score[self.world_number]), 'You Tied the High Score!'], NEXT_WORLD: ['Continue', 'On to the Next World!'] } else: world_end_dictionary = { HIGH_SCORE: ['High Score For This World: ' + str(high_score[self.world_number]), 'You Beat the High Score!'], NEXT_WORLD: ['Continue', 'On to the Next World!'] } high_score[self.world_number] = self.player.score write_high_scores(high_score) utility.dim(128, FILL_COLOR) # Show world defeated menu menu.Menu(self.screen, self.music_list[self.world_number], self.screen.convert(), [0, SCREEN_HEIGHT / 3, SCREEN_WIDTH, SCREEN_HEIGHT], ['World Defeated!', 64, SCREEN_WIDTH / 2, SCREEN_HEIGHT / 4], world_end_dictionary).show() utility.fade_music() def game_beat(self): high_score = read_high_scores() if self.player.score < high_score[self.world_number]: world_end_dictionary = { HIGH_SCORE: ['High Score For This World: ' + str(high_score[self.world_number]), 'You would need to score ' + str(high_score[self.world_number] - self.player.score) + ' more to beat it!'], NEXT_WORLD: ['Credits', 'On to the Credits!'] } elif self.player.score == high_score[self.world_number]: world_end_dictionary = { HIGH_SCORE: ['High Score For This World: ' + str(high_score[self.world_number]), 'You Tied the High Score!'], NEXT_WORLD: ['Credits', 'On to the Credits!'] } else: world_end_dictionary = { HIGH_SCORE: ['High Score For This World: ' + str(high_score[self.world_number]), 'You Beat the High Score!'], NEXT_WORLD: ['Credits', 'On to the Credits!'] } high_score[self.world_number] = self.player.score write_high_scores(high_score) utility.dim(128, FILL_COLOR) world_end_menu = menu.Menu(self.screen, self.music_list[self.world_number], self.screen.convert(), [0, SCREEN_HEIGHT / 3, SCREEN_WIDTH, SCREEN_HEIGHT], ['Congratulations!', 64, SCREEN_WIDTH / 2, SCREEN_HEIGHT / 4], world_end_dictionary) world_end_menu.show() utility.fade_music() credits.Credits(self.screen, self.music_list[MENU_MUSIC]) self.done = True ``` #### File: TroubleInCloudLand/core/world.py ```python import pygame import enemies from ui import text, infobubble from utils import utility, vector from utils.settings import * def load_data(): World.bonus_tally_sound = utility.load_sound('bonusTally') World.boss_fight_music = utility.load_sound('bossMusic') World.get_ready_sound = utility.load_sound('getReady') """ Not a dictionary but rather a list of lists. World.levelList = {level0 = [[stageSpawned, actor-type, maxSpawn_rate, defaultSpawn],[...],...] level1[[...],[...]...} stageSpawned == in which stage of the level does the actor start spawning actorType == the actor type that is going to be added to the spawn list for this stage. maxSpawn_rate == the least number of frames possible between spawning. Set to -1 to not allow any new spawning. defaultSpawn == how many of this actor type spawn at the beginning of that stage. """ WORLD_NAME = 0 PLAYER = 1 GROUP_LIST = 2 LEVEL_LIST = 3 class World(object): def __init__(self, world_tuple, music): self.world_name = world_tuple[WORLD_NAME] self.player = world_tuple[PLAYER] self.music = music self.group_list = world_tuple[GROUP_LIST] self.powerup_group = self.group_list[POWERUP_GROUP] self.enemy_group = self.group_list[ENEMY_GROUP] self.boss_group = self.group_list[BOSS_GROUP] self.text_group = self.group_list[TEXT_GROUP] self.effects_group = self.group_list[EFFECTS_GROUP] self.stage_score = 0 self.level_list = world_tuple[LEVEL_LIST] self.level = 0 self.stage = 0 self.done = False self.enemy_list = [] self.defeat_stage = None # ROKUBI VARIABLES self.rokubi_group = pygame.sprite.Group() # BOSS FIGHT VARIABLES self.pause_spawning = 0 self.boss_fight = False self.force_drop = 0 self.bonus_text = None self.bonus_amount = None self.bonus = -1 self.after_bonus_pause = 0 def load(self): self.load_level() self.player.increment_score_no_text(0) def load_level(self): if self.done: return utility.fade_music() utility.play_music(self.music, True) self.stage = 0 self.pause_spawning = 3 * FRAMES_PER_SECOND self.player.bullet_bonus = 0 self.player.reflect_bonus = 0 self.powerup_group.empty() self.enemy_group.empty() self.effects_group.empty() # Display Level text display_name = text.Text(FONT_PATH, 64, FONT_COLOR, self.world_name, 90) display_name.set_alignment(CENTER_MIDDLE) display_name.position = vector.Vector2d((SCREEN_WIDTH / 2, SCREEN_HEIGHT / 2)) self.group_list[TEXT_GROUP].add(display_name) display_level = text.Text(FONT_PATH, 32, FONT_COLOR, 'Level ' + str(self.level + 1), 90) display_level.position = vector.Vector2d((SCREEN_WIDTH / 2, SCREEN_HEIGHT * (2.0 / 3.0))) display_level.set_alignment(CENTER_MIDDLE) self.group_list[TEXT_GROUP].add(display_level) # Reset all information for the new level self.enemy_list = [] self.load_stage() utility.play_sound(self.get_ready_sound, OW_CHANNEL) temp_image = text.TextSurface(FONT_PATH, 36, FONT_COLOR, 'Get Ready...').image help_bubble = infobubble.InfoBubble(temp_image, self.player, 2 * FRAMES_PER_SECOND) help_bubble.offset = vector.Vector2d(0.0, -100.0) self.effects_group.add(help_bubble) def load_boss(self): self.enemy_list = [] for enemy in self.level_list[self.level]: if enemy[STAGE_SPAWNED] == self.stage: while enemy[DEFAULT_SPAWN]: enemy[DEFAULT_SPAWN] -= 1 self.create_actor(enemy[ACTOR_TYPE]) if enemy[STAGE_SPAWNED] == self.stage: # Time until spawn, actor type, spawn rate self.enemy_list.append([0, enemy[ACTOR_TYPE], enemy[SPAWN_RATE]]) def give_bonus(self): increment_bonus = self.player.lives * 50 if self.bonus == -1: self.boss_fight = False self.bonus = 0 self.bonus_text = text.Text(FONT_PATH, 64, FONT_COLOR, 'Bonus Points!') self.bonus_text.position = vector.Vector2d((SCREEN_WIDTH / 2, SCREEN_HEIGHT / 2 - 50)) self.bonus_text.set_alignment(CENTER_MIDDLE) self.text_group.add(self.bonus_text) self.bonus_amount = text.Text(FONT_PATH, 48, FONT_COLOR) self.bonus_amount.position = vector.Vector2d((SCREEN_WIDTH / 2, SCREEN_HEIGHT / 2 + 50)) self.bonus_amount.set_alignment(CENTER_MIDDLE) self.text_group.add(self.bonus_amount) if self.bonus < self.player.lives * 5000 - increment_bonus: self.bonus += increment_bonus self.bonus_amount.set_text(self.bonus) else: self.bonus_amount.set_text(self.player.lives * 5000) if self.level < MAX_LEVEL: self.bonus_text.set_timer(FRAMES_PER_SECOND) self.bonus_amount.set_timer(FRAMES_PER_SECOND) self.bonus = -1 self.after_bonus_pause = 1.1 * FRAMES_PER_SECOND if self.level < MAX_LEVEL: self.level += 1 self.boss_fight = False utility.fade_music() utility.play_music(self.music, True) utility.play_sound(self.bonus_tally_sound, BAAKE_CHANNEL) self.player.increment_score_no_text(increment_bonus) self.pause_spawning = 1.5 * FRAMES_PER_SECOND def boss_text(self): utility.fade_music() utility.play_music(self.boss_fight_music, True) # Display boss text display_stage = text.Text(FONT_PATH, 64, FONT_COLOR, 'Boss Fight!', 90) display_stage.position = vector.Vector2d((SCREEN_WIDTH / 2, SCREEN_HEIGHT / 2)) display_stage.set_alignment(CENTER_MIDDLE) self.text_group.add(display_stage) def load_stage(self): # Get player's current score self.defeat_stage = DEFEAT_STAGE # Display stage text if self.stage != 0: display_stage = text.Text(FONT_PATH, 32, FONT_COLOR, 'Stage ' + str(self.stage + 1), 90) display_stage.position = vector.Vector2d(SCREEN_WIDTH / 2, SCREEN_HEIGHT / 2) display_stage.set_alignment(CENTER_MIDDLE) self.group_list[TEXT_GROUP].add(display_stage) # Enemies spawned here will appear during a level's warm up for enemy in self.level_list[self.level]: if enemy[STAGE_SPAWNED] == self.stage: while enemy[DEFAULT_SPAWN]: enemy[DEFAULT_SPAWN] -= 1 self.create_actor(enemy[ACTOR_TYPE]) if enemy[STAGE_SPAWNED] == self.stage: # Time until spawn, actor type, spawn rate self.enemy_list.append([0, enemy[ACTOR_TYPE], enemy[SPAWN_RATE]]) def warmup(self): self.pause_spawning -= 1 if not self.pause_spawning: if self.boss_fight: self.load_boss() return True return False def update(self): if not self.boss_fight: utility.play_music(self.music) if self.after_bonus_pause >= 1: self.after_bonus_pause -= 1 if self.after_bonus_pause < 1: if self.level >= MAX_LEVEL: self.bonus_text.kill() self.bonus_amount.kill() self.done = True else: self.load_level() if self.done: return self.done if self.bonus != -1: self.give_bonus() if self.pause_spawning: live = self.warmup() if not live: return if not self.boss_fight: self.defeat_stage -= 1 if not self.defeat_stage: if self.stage < MAX_STAGE: self.stage += 1 self.load_stage() else: for enemy in self.enemy_group: if enemy.actor_type == ACTOR_TYPE_BAAKE: enemy.leave_screen = True self.boss_fight = True self.stage += 1 self.pause_spawning = 3 * FRAMES_PER_SECOND self.boss_text() for enemy in self.enemy_list: if enemy[SPAWN_RATE] != -1: if not enemy[TIME_TO_SPAWN]: self.create_actor(enemy[ACTOR_TYPE]) enemy[TIME_TO_SPAWN] = enemy[SPAWN_RATE] enemy[TIME_TO_SPAWN] -= 1 def create_actor(self, actor_type): if actor_type == ACTOR_MOONO: new_moono = enemies.moono.Moono(self.player, self.group_list) if self.boss_fight: self.force_drop += 1 new_moono.boss_fight = True if self.force_drop > 10: new_moono.drop_item = True self.force_drop = 0 self.enemy_group.add(new_moono) elif actor_type == ACTOR_ROKUBI: spawn = False if len(self.rokubi_group) <= 5 and not self.boss_fight: spawn = True elif len(self.rokubi_group) <= 10 and self.boss_fight: spawn = True if spawn: new_rokubi = enemies.rokubi.Rokubi(self.player, self.group_list) self.rokubi_group.add(new_rokubi) if self.boss_fight: self.force_drop += 1 new_rokubi.boss_fight = True if self.force_drop > 10: new_rokubi.drop_item = True self.force_drop = 0 self.enemy_group.add(new_rokubi) elif actor_type == ACTOR_HAOYA: new_haoya = enemies.haoya.Haoya(self.player, self.group_list) if self.boss_fight: self.force_drop += 1 new_haoya.boss_fight = True if self.force_drop > 10: new_haoya.drop_item = True self.force_drop = 0 self.enemy_group.add(new_haoya) elif actor_type == ACTOR_BATTO: batto_spawn = 5 last_batto = None while batto_spawn: new_batto = enemies.batto.Batto(self.group_list, last_batto) batto_spawn -= 1 last_batto = new_batto if self.boss_fight: self.force_drop += 1 new_batto.boss_fight = True if self.force_drop > 19: new_batto.drop_item = True self.force_drop = 0 self.enemy_group.add(new_batto) elif actor_type == ACTOR_YUREI: self.enemy_group.add(enemies.yurei.Yurei(self.group_list)) elif actor_type == ACTOR_HAKTA: new_hakta = enemies.hakta.Hakta(self.player, self.group_list) if self.boss_fight: self.force_drop += 1 new_hakta.boss_fight = True if self.force_drop > 10: new_hakta.drop_item = True self.force_drop = 0 self.enemy_group.add(new_hakta) elif actor_type == ACTOR_RAAYU: new_raayu = enemies.raayu.Raayu(self.player, self.group_list) if self.boss_fight: self.force_drop += 1 new_raayu.boss_fight = True if self.force_drop > 10: new_raayu.drop_item = True self.force_drop = 0 self.enemy_group.add(new_raayu) elif actor_type == ACTOR_PAAJO: paajo_spawn = 5 paajo_group = [] while paajo_spawn: new_paajo = enemies.paajo.Paajo(self.group_list, paajo_spawn) paajo_group.append(new_paajo) paajo_spawn -= 1 if self.boss_fight: self.force_drop += 1 new_paajo.boss_fight = True if self.force_drop > 19: new_paajo.drop_item = True self.force_drop = 0 for member in paajo_group: member.set_group(paajo_group) self.enemy_group.add(paajo_group) elif actor_type == ACTOR_BAAKE: self.enemy_group.add(enemies.baake.Baake()) elif actor_type == ACTOR_BOKKO: self.enemy_group.add(enemies.bokko.Bokko()) elif actor_type == ACTOR_BOSS_TUT: self.boss_group.add( enemies.boss.BossTut(self, self.player, self.group_list)) elif actor_type == ACTOR_BAAKE_BOSS: self.boss_group.add( enemies.boss.BaakeBoss(self, self.player, self.group_list)) elif actor_type == ACTOR_MOONO_BOSS: self.boss_group.add( enemies.boss.MoonoBoss(self, self.player, self.group_list)) ``` #### File: TroubleInCloudLand/enemies/baake.py ```python import copy from core import actor from core.actor import * from utils import aitools, utility def load_data(): Baake.bullet_sound = utility.load_sound('baakeHit') Baake.master_animation_list.build_animation('Idle', ['baake']) class Baake(actor.Actor): master_animation_list = animation.Animation() def __init__(self): # COMMON VARIABLES actor.Actor.__init__(self) self.actor_type = ACTOR_TYPE_BAAKE self.animation_list = copy.copy(self.master_animation_list) self.animation_list.set_parent(self) self.animation_list.play('Idle') self.rect = self.image.get_rect() self.bound_style = BOUND_STYLE_REFLECT self.bounds = 32, 32, SCREEN_WIDTH - 32, SCREEN_HEIGHT - 32 self.can_collide = True self.hitrect = pygame.Rect(0,0,108,88) self.position = vector.Vector2d(SCREEN_WIDTH / 2, SCREEN_HEIGHT / 2) self.velocity = vector.Vector2d(5.0, 0.0) # UNIQUE VARIABLES self.speed = 5.0 self.change_direction = 0 # BOSS FIGHT self.leave_screen = False aitools.spawn_on_screen(self) def actor_update(self): if not self.leave_screen: self.process_ai() else: self.bound_style = BOUND_STYLE_KILL if not self.active: self.active = True def process_ai(self): if not self.change_direction: self.change_direction = 2 * FRAMES_PER_SECOND aitools.cardinal_direction(self) self.change_direction -= 1 def collide(self): if self.object_collided_with.actor_type == ACTOR_BULLET: utility.play_sound(Baake.bullet_sound, BAAKE_CHANNEL) elif self.object_collided_with.actor_type == ACTOR_PLAYER: if self.object_collided_with.position.x < self.position.x - 64: self.object_collided_with.position = vector.Vector2d((self.position.x - 94), self.object_collided_with.position.y) if self.object_collided_with.velocity: self.object_collided_with.velocity *= -1.0, 1.0 elif self.object_collided_with.position.x > self.position.x + 64: self.object_collided_with.position = vector.Vector2d((self.position.x + 94), self.object_collided_with.position.y) if self.object_collided_with.velocity: self.object_collided_with.velocity *= -1.0, 1.0 if self.object_collided_with.position.y < self.position.y - 32: self.object_collided_with.position = vector.Vector2d(self.object_collided_with.position.x, self.position.y - 76) if self.object_collided_with.velocity: self.object_collided_with.velocity *= 1.0, -1.0 elif self.object_collided_with.position.y > self.position.y + 32: self.object_collided_with.position = vector.Vector2d(self.object_collided_with.position.x, self.position.y + 108) if self.object_collided_with.velocity: self.object_collided_with.velocity *= 1.0, -1.0 ``` #### File: TroubleInCloudLand/enemies/batto.py ```python import copy import random from core import enemy from core.actor import * from utils import aitools, utility def load_data(): Batto.last_spawn = 0, 0 Batto.death_sound = utility.load_sound('pop') Batto.master_animation_list.build_animation('Idle', ['batto']) class Batto(enemy.Enemy): death_sound = None master_animation_list = animation.Animation() def __init__(self, group_list, leader=None): # COMMON VARIABLES enemy.Enemy.__init__(self) self.actor_type = ACTOR_TYPE_ENEMY self.animation_list = copy.copy(self.master_animation_list) self.animation_list.set_parent(self) self.animation_list.play('Idle') self.rect = self.image.get_rect() self.bound_style = BOUND_STYLE_CUSTOM self.bounds = -32, -32, (SCREEN_WIDTH + 32), (SCREEN_HEIGHT + 32) self.can_collide = True self.hitrect = pygame.Rect(0,0,80,66) self.position = vector.Vector2d.zero self.velocity = vector.Vector2d.zero # UNIQUE VARIABLES self.speed = 10 self.change_direction = 0 self.target = 0, 0 self.powerup_group = group_list[POWERUP_GROUP] self.text_group = group_list[TEXT_GROUP] self.effects_group = group_list[EFFECTS_GROUP] self.health = 1 self.boss_fight = False self.drop_item = False # EXIT GAME VARIABLES self.on_screen = 0 self.dead = False if not leader: self.leader = self aitools.spawn_off_screen(self, 128) Batto.last_spawn = self.position else: self.leader = leader aitools.spawn_at_point(self, Batto.last_spawn) def actor_update(self): if self.active: if self.health <= 0: self.die() self.on_screen += 1 self.process_ai() if not self.leader.active: self.leader = self else: self.active = True def process_ai(self): if self.leader.dead: pass elif self.leader.active and self.leader != self: temp_velocity = vector.Vector2d(self.leader.velocity[0], self.leader.velocity[1]) target_point = self.leader.position - (temp_velocity.make_normal()) * vector.Vector2d(150, 150) aitools.go_to_point(self, target_point) else: if not self.change_direction: self.target = vector.Vector2d((random.random() * (SCREEN_WIDTH + 200)) - 100, (random.random() * (SCREEN_HEIGHT + 200)) - 100) self.change_direction = 30 self.change_direction -= 1 aitools.arc_to_point(self, self.target) def custom_bounds(self): if self.on_screen > FRAMES_PER_SECOND: self.active = False self.dead = True self.on_screen = 0 if self.dead: self.kill() def collide(self): if self.object_collided_with.actor_type == ACTOR_PLAYER: self.object_collided_with.hurt(1) ``` #### File: TroubleInCloudLand/enemies/haoya.py ```python import copy import pygame from core import animation, enemy, particle from utils import aitools, utility, vector from utils.settings import * def load_data(): Haoya.death_sound = utility.load_sound('pop') Haoya.master_animation_list.build_animation('Idle', ['haoya']) class Haoya(enemy.Enemy): death_sound = None master_animation_list = animation.Animation() def __init__(self, target_object, group_list): enemy.Enemy.__init__(self) # COMMON VARIABLES self.actor_type = ACTOR_TYPE_ENEMY self.animation_list = copy.copy(self.master_animation_list) self.animation_list.set_parent(self) self.animation_list.play('Idle') self.rect = self.image.get_rect() self.bound_style = BOUND_STYLE_CUSTOM self.bounds = 32, 32, SCREEN_WIDTH - 32, SCREEN_HEIGHT - 32 self.can_collide = True self.hitrect = pygame.Rect(0, 0, 54, 58) self.hitrect_offset_y = 6 self.velocity = vector.Vector2d.zero # UNIQUE VARIABLES self.speed = 2 self.target = target_object self.powerup_group = group_list[POWERUP_GROUP] self.text_group = group_list[TEXT_GROUP] self.effects_group = group_list[EFFECTS_GROUP] self.health = 3 self.boss_fight = False self.drop_item = False self.death_emitter = particle.ParticleEmitter(vector.Vector2d.zero, self.effects_group, ['puff'], 0.0, 360.0, 5.0, 0.0, 1.0, 4.0, -1.0) self.death_emitter.mount_to(self) # LEAVE SCREEN VARIABLES self.life_timer = 10 * FRAMES_PER_SECOND self.leave_screen = False aitools.spawn_off_screen(self) def process_ai(self): if self.leave_screen: pass elif self.active: # Find the distance to the player magnitude = self.target.position - self.position if magnitude.get_magnitude() < 250: # If the player is within x distance then charge the player. self.speed = 7 else: self.speed = 2 aitools.go_to_target(self, self.target) def actor_update(self): self.life_timer -= 1 if not self.life_timer: self.leave_screen = True self.speed = 7 aitools.go_to_point(self, aitools.point_off_screen()) if self.active and self.health <= 0: self.active = False self.die() if not self.active and self.health: self.active = True self.process_ai() def custom_bounds(self): if self.leave_screen: self.kill() def collide(self): if self.object_collided_with.actor_type == ACTOR_PLAYER: self.object_collided_with.hurt(1) ``` #### File: TroubleInCloudLand/scenes/credits.py ```python from scenes import scene from ui import text from utils import utility from utils.utility import * class Credits(object): def __init__(self, screen, music_list): self.music_list = music_list self.screen = screen self.new_scene = scene.ForestScene() self.finished = False self.scroll_rate = -1 self.rolling_credits = True self.roll_credits() def roll_credits(self): credit_group = pygame.sprite.Group() # Create Text Labels title_credit = text.Text(FONT_PATH, 48, FONT_COLOR, 'Credits') title_credit.set_position((SCREEN_WIDTH / 2, SCREEN_HEIGHT)) big_jony = text.Text(FONT_PATH, 36, FONT_COLOR, '<NAME>') big_jony.set_position((SCREEN_WIDTH / 2, SCREEN_HEIGHT + 100)) jony_credit0 = text.Text(FONT_PATH, 24, FONT_COLOR, 'Game Programming') jony_credit0.set_position((SCREEN_WIDTH / 2, SCREEN_HEIGHT + 150)) jony_credit1 = text.Text(FONT_PATH, 24, FONT_COLOR, 'Sound Design') jony_credit1.set_position((SCREEN_WIDTH / 2, SCREEN_HEIGHT + 200)) jony_credit2 = text.Text(FONT_PATH, 24, FONT_COLOR, 'Voice Acting') jony_credit2.set_position((SCREEN_WIDTH / 2, SCREEN_HEIGHT + 250)) big_josh = text.Text(FONT_PATH, 36, FONT_COLOR, '<NAME>') big_josh.set_position((SCREEN_WIDTH / 2, SCREEN_HEIGHT + 350)) josh_credit0 = text.Text(FONT_PATH, 24, FONT_COLOR, 'Game Programming') josh_credit0.set_position((SCREEN_WIDTH / 2, SCREEN_HEIGHT + 400)) josh_credit1 = text.Text(FONT_PATH, 24, FONT_COLOR, ' Graphic Design') josh_credit1.set_position((SCREEN_WIDTH / 2, SCREEN_HEIGHT + 450)) big_special = text.Text(FONT_PATH, 36, FONT_COLOR, 'Special Thanks To:') big_special.set_position((SCREEN_WIDTH / 2, SCREEN_HEIGHT + 550)) special_credit0 = text.Text(FONT_PATH, 24, FONT_COLOR, 'Python Software Foundation') special_credit0.set_position((SCREEN_WIDTH / 2, SCREEN_HEIGHT + 600)) special_credit1 = text.Text(FONT_PATH, 24, FONT_COLOR, 'PyGame') special_credit1.set_position((SCREEN_WIDTH / 2, SCREEN_HEIGHT + 650)) special_credit2 = text.Text(FONT_PATH, 24, FONT_COLOR, 'ShyFonts Type Foundry') special_credit2.set_position((SCREEN_WIDTH / 2, SCREEN_HEIGHT + 700)) thank_you = text.Text(FONT_PATH, 64, FONT_COLOR, 'Thank You For Playing!') thank_you.set_position((SCREEN_WIDTH / 2, SCREEN_HEIGHT + 800)) # Add Labels to Group credit_group.add(title_credit) credit_group.add(big_jony) credit_group.add(jony_credit0) credit_group.add(jony_credit1) credit_group.add(jony_credit2) credit_group.add(big_josh) credit_group.add(josh_credit0) credit_group.add(josh_credit1) credit_group.add(big_special) credit_group.add(special_credit0) credit_group.add(special_credit1) credit_group.add(special_credit2) credit_group.add(thank_you) timer = 5 * FRAMES_PER_SECOND for credit in credit_group: credit.set_alignment(CENTER_MIDDLE) while self.rolling_credits: utility.play_music(self.music_list) for credit in credit_group: credit_position = credit.get_position() credit.set_position((credit_position[0], credit_position[1] + self.scroll_rate)) credit_group.update() self.new_scene.draw(self.screen) credit_group.draw(self.screen) pygame.display.flip() self.handle_events() if special_credit2.get_position()[1] < 0: if self.finished: self.rolling_credits = False if thank_you.get_position()[1] < (SCREEN_HEIGHT / 2): thank_you.set_position((SCREEN_WIDTH / 2, SCREEN_HEIGHT / 2)) def handle_events(self): for event in pygame.event.get(): if (event.type == pygame.KEYDOWN and event.key == pygame.K_ESCAPE) or (event.type == pygame.MOUSEBUTTONDOWN): self.scroll_rate = -10 self.finished = True ``` #### File: TroubleInCloudLand/utils/prettyprint.py ```python def able(value): return 'Enabled' if value else 'Disabled' def on(value): return 'On' if value else 'Off' def mouse_sensitivity(value): if value == .5: return 'Very Low' elif value == .75: return 'Low' elif value == 1: return 'Normal' elif value == 1.25: return 'High' elif value == 1.5: return 'Very High' def screen_mode(value): return 'Fullscreen' if value else 'Windowed' ```