metadata
dict
text
stringlengths
60
3.49M
{ "source": "JoshYuJump/django-rework", "score": 3 }
#### File: devops/tasks/deploy.py ```python import os from ..hosts import get_host_value, connect from ... import devops from ...utils import say class Deploy: def __init__(self, c): self.c = connect(c) self.host_value = get_host_value(c)[1] self.project = devops.PROJECT self.env = devops.ENV self.host = self.host_value.get('host') self.port = self.host_value.get('port', 22) self.password = self.host_value.get('password') # Should reload nginx when it's configurations file changed self._should_reload_nginx = False def __call__(self, *args, **kwargs): # supervisor service name service = f'{self.project}_{self.env}' if self.env == 'prod': env_root = f'/opt/projects/' branch = 'master' elif self.env == 'test': env_root = f'/opt/test-projects/' branch = 'test' elif self.env == 'dev': env_root = f'/opt/dev-projects/' branch = 'dev' else: raise Exception('Un-supported Environment to deploy.') root = f'{env_root}{self.project}-server/' say(f'Project root is: {root}') self.pull(branch, root) if kwargs.get('infrastructure'): self.setup_infrastructure(root) if kwargs.get('requirements_update'): self.update_requirement(root) self.migrate(root) self.collect_static(root) self.restart(service) def _copy_nginx(self, root): """Copy nginx files""" nginx_path = f'{root}.deploy/nginx/' origin = f'{nginx_path}{self.project}_{self.env}.conf' destination = f'/etc/nginx/conf.d/' self.c.run(f'cp {origin} {destination}') self._should_reload_nginx = True say('Copied nginx configuration successfully') def _copy_supervisor(self, root): """Copy supervisor files Compatible with Django-Rework ~0.2: supervisor file in django-rework <= 0.2: .deploy/supervisor/{self.project}_supervisor_{self.env}.conf supervisor file in django-rework >= 0.3: .deploy/supervisor/{self.project}_{self.env}.conf """ supervisor_path = f'.deploy/supervisor/' origin = f'{supervisor_path}{self.project}_{self.env}.conf' if not os.path.exists(origin): say(f'Supervisor file: {origin} not exists, try find another...') origin = f'{supervisor_path}{self.project}_supervisor_{self.env}.conf' origin = f'{root}{origin}' destination = f'/etc/supervisor/conf.d/' self.c.run(f'cp {origin} {destination}') say('Copied supervisor configuration successfully') def pull(self, branch, root): # Pull latest code say('Pull latest code from remote git') self.c.run(f'cd {root} && git checkout {branch} && git pull') def setup_infrastructure(self, root): say('Setup infrastructure') self._copy_supervisor(root) self._copy_nginx(root) def update_requirement(self, root): # Update requirements say('Install requirements') self.c.run(f'cd {root} && python3 -m pip install -r requirements.txt') def migrate(self, root): # Models migrate say('Migrate database') self.c.run( f'cd {root} && python3 manage.py migrate --settings={self.project}.settings.{self.env}' ) def collect_static(self, root): # Collect static say('Collect static') settings_suffix = f'--settings={self.project}.settings.{self.env}' self.c.run(f'cd {root} && python3 manage.py collectstatic {settings_suffix} --no-input') def restart(self, service): # Restart infrastructure say('Restart Supervisor and Nginx(if conf changed)') self.c.run(f'supervisorctl restart {service}') if self._should_reload_nginx: self.c.run(f'nginx -s reload') ``` #### File: devops/tasks/environment.py ```python from ... import devops class Environment: def __init__(self, c): self.c = c @staticmethod def set_env(env): devops.ENV = env ``` #### File: devops/tasks/setup_server.py ```python from ..hosts import hosts, get_host_value, connect from ...utils import say class SetupServer: def __init__(self, c): self.c = connect(c) self.host_value = get_host_value(c)[1] def __call__(self, *args, **kwargs): self.setup_python3() self.check_components('nginx') and self.setup_nginx() self.check_components('supervisor') and self.setup_supervisor() self.check_components('mysql') and self.setup_mysql() self.check_components('redis') and self.setup_redis() def check_components(self, component): return component not in self.host_value.get('exclude_components', []) def setup_python3(self): """Install python3 and uWSGI""" version = '3.7.9' major_version = version.rsplit('.', 1)[0] # Install Python self.c.run('yum -y update') self.c.run('yum groupinstall "Development tools"') try: self.c.run('yum -y install wget gcc make zlib-devel') except Exception as ex: print('ex', ex) self.c.run(f'wget https://www.python.org/ftp/python/{version}/Python-{version}.tgz') self.c.run(f'tar xzf Python-{version}.tgz') self.c.run( 'cd Python-{version} && ./configure --with-ssl --prefix=/usr/local && make altinstall' ) self.c.run(f'ln -s /usr/local/bin/python{major_version} /usr/bin/python3') self.c.run('python3 -V') say('Clean up Python setup files') self.c.run('rm -rf Python-{version}') # Install Gunicorn pypi_mirror_suffix = ' -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com' self.c.run(f'python3 -m pip install gunicorn {pypi_mirror_suffix}') def setup_nginx(self): # Install Nginx self.c.run('yum install -y nginx') def setup_supervisor(self): # Install Supervisor in Python 2 self.c.run('curl https://bootstrap.pypa.io/pip/2.7/get-pip.py -o get-pip.py -o get-pip.py') self.c.run('python get-pip.py') self.c.run('python -m pip install supervisor==4.1.0') self.c.run('supervisord -c /etc/supervisor/supervisord.conf') # launch supervisord def setup_mysql(self): download_url = 'https://dev.mysql.com/get/mysql80-community-release-el7-1.noarch.rpm' self.c.run(f'sudo rpm -Uvh {download_url}') self.c.run('sudo yum --enablerepo=mysql80-community install mysql-community-server') self.c.run('systemctl start mysqld.service') def setup_redis(self): version = '4.0.14' download_url = f'http://download.redis.io/releases/redis-{version}.tar.gz' self.c.run(f'curl -o redis-{version}.tar.gz {download_url}') self.c.run(f'tar -zxvf redis-{version}.tar.gz') self.c.run(f'cd redis-{version} & make') self.c.run(f'cd src && make install PREFIX=/usr/local/redis') self.c.run(f'mkdir -p /usr/local/redis/conf') self.c.run(f'cp redis-{version}/redis.conf /usr/local/redis/conf') # start redis self.c.run('cd /usr/local/redis && bin/redis-server ./conf/redis.conf') ``` #### File: core/management/app.py ```python import os import re import subprocess from .handlers.urls import UrlsHandle from .. import utils from ..utils import say def setup_auth_user_model(content): # Setup `AUTH_USER_MODEL` to `basic.User` if adding app is `users`, # and generate `basic` App result = subprocess.run(["django-admin", "startapp", "basic"]) if result.returncode != 0: say(f'Generate `basic` App failed!', icon='🌶 ', wrap='C') return content pattern = '# {!AUTH_USER_MODEL}' block = """AUTH_USER_MODEL = 'basic.User'""" content = content.replace(pattern, block) return content def add(params): """Add apps to project""" app = params[0].lower() say(f'Start adding app: {app}') # Add app name to base settings settings_file = os.path.join(utils.get_settings_path(), 'base', '__init__.py') with open(settings_file, 'r+') as file: # check where app in INSTALLED_APPS content = file.read() app_full_name = f'rework.contrib.{app}' installed_apps_pattern = r'INSTALLED_APPS\s*\=\s*\[[\s\S]*?\]' installed_apps_match = re.search(installed_apps_pattern, content) if not installed_apps_match: print('There is no `INSTALLED_APPS` block in your settings') return False installed_apps_block = installed_apps_match.group() for exist_app in re.findall(r"(?<=').*(?=')", installed_apps_block): if exist_app == app_full_name: say(f'[ERROR] App {app_full_name} is already exists') return False installed_apps_block = re.sub( r'\n]', f"\n '{app_full_name}',\n]", installed_apps_block, ) if app == 'users': installed_apps_block = re.sub( r'\n]', f"\n 'basic',\n]", installed_apps_block, ) say(f'installed_apps_block {installed_apps_block}') content = re.sub(installed_apps_pattern, installed_apps_block, content) if app == 'users': content = setup_auth_user_model(content) say(f'content {content}') file.seek(0) file.truncate() file.write(content) # Added include url to root urls urls_handler = UrlsHandle() urls_handler.add_include_urls(app) say('Added completely!') ``` #### File: core/management/deploy.py ```python import os from ..utils import say, copy_template_to_file, get_project_name from ..utils.command import BaseCommand from ... import core class DeployCommand(BaseCommand): def handle(self, params): if params == ['--init']: # template variables project = get_project_name() kwargs = { 'django_rework_version': core.__version__, 'project': project, } deploy_path = os.path.join(self.base_dir, 'deploy') copy_queues = [ ('.deploy/nginx/project_prod.conf', deploy_path), ('.deploy/nginx/project_test.conf', deploy_path), ('.deploy/supervisor/supervisord.conf', deploy_path), ('.deploy/supervisor/project_prod.conf', deploy_path), ('.deploy/supervisor/project_test.conf', deploy_path), ] for q in copy_queues: copy_template_to_file(q[0], self.base_dir, **kwargs) say('Deploy files copied successfully') else: say('Unknown command args!') def __call__(self, params): return self.handle(params) ``` #### File: management/handlers/settings.py ```python import os import re import shutil from rework import core from rework.core.utils import copy_template_to_file class SettingsHandle: """ Handle django settings files """ def __init__(self, project, path): self.base_dir = os.getcwd() self.project = project self.path = path # settings root path, generally is project name self.base_settings_file = None def _create_settings_package(self): # 1. Make a package named `settings` package = os.path.join(self.path, 'settings') base_settings_path = os.path.join(package, 'base') os.makedirs(base_settings_path) # 2. Move origin settings.py to settings/base/__init__.py origin_settings_file = os.path.join(self.path, 'settings.py') target_settings_file = os.path.join(base_settings_path, '__init__.py') shutil.move(origin_settings_file, target_settings_file) self.base_settings_file = target_settings_file def create_multi_envs(self): kwargs = { 'django_rework_version': core.__version__, 'project': self.project, } settings_tpl_path = 'project/settings/' envs = ['prod', 'test', 'dev', 'local'] for env in envs: copy_template_to_file(f'{settings_tpl_path}{env}.py', self.base_dir, **kwargs) @staticmethod def _save(f, content): f.seek(0) f.truncate() f.write(content) def _add_tags(self): with open(self.base_settings_file, 'r+') as f: content = f.read() # AUTH_USER_MODEL tag content = content.replace( '# Password validation', '\n'.join([ '# {!AUTH_USER_MODEL}', '', '# Password validation', ]) ) self._save(f, content) def _add_installed_apps(self): """Initialize apps pre-installed""" with open(self.base_settings_file, 'r+') as f: content = f.read() content = self._insert_app_to_content(content, 'rest_framework') content = self._insert_app_to_content(content, 'rest_framework_simplejwt') self._save(f, content) @staticmethod def _insert_app_to_content(content, app): installed_apps_pattern = r'INSTALLED_APPS\s*\=\s*\[[\s\S]*?\]' installed_apps_match = re.search(installed_apps_pattern, content) if not installed_apps_match: print('There is no `INSTALLED_APPS` block in your settings') return False installed_apps_block = installed_apps_match.group() for exist_app in re.findall(r"(?<=').*(?=')", installed_apps_block): if exist_app == app: return False installed_apps_block = re.sub( r'\n]', f"\n '{app}',\n]", installed_apps_block, ) content = re.sub(installed_apps_pattern, installed_apps_block, content) return content def _add_rest_framework_setting(self): with open(self.base_settings_file, 'r+') as f: content = f.read() content += """ REST_FRAMEWORK = { 'DEFAULT_AUTHENTICATION_CLASSES': ( 'rest_framework_simplejwt.authentication.JWTAuthentication', ) } """ self._save(f, content) def initialize(self): self._create_settings_package() # Added multi env setting files self.create_multi_envs() # Added template tag to base/__init__.py self._add_tags() self._add_installed_apps() self._add_rest_framework_setting() ``` #### File: core/management/project.py ```python import os import subprocess from .handlers.settings import SettingsHandle from ..utils import say, copy_template_to_file from ... import core def init(params): """Initialize django rework project""" project = params[0] base_dir = os.getcwd() project_dir = base_dir say(f'Initialing project: ``{project}`` using `django-admin` command') result = subprocess.run(["django-admin", "startproject", *params]) if result.returncode != 0: say(f'Initialized failed!', icon='🌶 ', wrap='C') return False # Changed the settings files to satisfy multi environments say(f'Changed the settings files to satisfy multi environments') settings_folder = os.path.join(project_dir, project) settings_handler = SettingsHandle(project=project, path=settings_folder) # template variables kwargs = { 'django_rework_version': core.__version__, 'project': project, } settings_handler.initialize() # fabric DevOps copy_template_to_file('fabfile.py', base_dir, **kwargs) # Others copy_template_to_file('.editorconfig', base_dir, **kwargs) copy_template_to_file('.gitignore', base_dir, **kwargs) copy_template_to_file('.style.yapf', base_dir, **kwargs) copy_template_to_file('requirements.txt', base_dir, **kwargs) say(f'Initialized completely!', icon='🎨', wrap='C') ```
{ "source": "JoshYuJump/grpc_client", "score": 3 }
#### File: grpc_client/grpc_client/base_client.py ```python import logging from typing import Callable, Optional, Any from .base_hook import BaseHook class BaseClient: """ Calls a gRPC endpoint to execute an action :param host: The host to use when connection. :type host: str :param port: The port to use when connection. :type port: str :param stub_class: The stub client to use for this gRPC call :type stub_class: gRPC stub class generated from proto file :param call_func: The client function name to call the gRPC endpoint :type call_func: gRPC client function name for the endpoint generated from proto file, str :param data: The data to pass to the rpc call :type data: A dict with key value pairs as kwargs of the call_func :param streaming: A flag to indicate if the call is a streaming call :type streaming: boolean :param response_callback: The callback function to process the response from gRPC call :type response_callback: A python function that process the response from gRPC call, takes in response object :param log_response: A flag to indicate if we need to log the response :type log_response: boolean """ def __init__(self, *, host: str, port: str, stub_class: Callable) -> None: self.host = host self.port = port self.stub_class = stub_class self.log = logging.getLogger(self.__class__.__module__ + '.' + self.__class__.__name__) def _get_grpc_hook(self) -> BaseHook: return BaseHook(self.host, self.port) def execute(self, call_func: str, data: Optional[dict] = None, streaming: bool = False, response_callback: Optional[Callable] = None, log_response: bool = False) -> Any: hook = self._get_grpc_hook() self.log.info("Calling gRPC service") # grpc hook always yield responses = hook.run(self.stub_class, call_func, streaming=streaming, data=data) for response in responses: if streaming: self._handle_response(response, log_response, response_callback) if response_callback: self._handle_response(response, log_response, response_callback) else: return response def _handle_response(self, response: Any, log_response, response_callback) -> None: if log_response: self.log.info(repr(response)) if response_callback: response_callback(response) ```
{ "source": "joshz123/tensorflow", "score": 2 }
#### File: compiler/tests/fused_batchnorm_test.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import parameterized import numpy as np from tensorflow.compiler.tests import test_utils from tensorflow.compiler.tests import xla_test from tensorflow.python.compat import compat from tensorflow.python.ops import array_ops from tensorflow.python.ops import gen_nn_ops from tensorflow.python.ops import gradient_checker from tensorflow.python.ops import nn from tensorflow.python.platform import test DATA_FORMATS = ( ("_data_format_NHWC", "NHWC"), ("_data_format_NCHW", "NCHW"), ) DATA_FORMATS_AND_AVG_FACTORS = ( ("_data_format_NHWC_no_averaging", "NHWC", 1.0), ("_data_format_NHWC_averaging", "NHWC", 0.6), ("_data_format_NCHW_no_averaging", "NCHW", 1.0), ("_data_format_NCHW_averaging", "NCHW", 0.6), ) class FusedBatchNormTest(xla_test.XLATestCase, parameterized.TestCase): def _reference_training(self, x, scale, offset, old_mean, old_var, epsilon, exponential_avg_factor, data_format): if data_format != "NHWC": raise ValueError("data_format must be NHWC, got %s." % data_format) x_square = x * x x_square_sum = np.sum(x_square, (0, 1, 2)) x_sum = np.sum(x, axis=(0, 1, 2)) element_count = np.size(x) / int(np.shape(x)[-1]) mean = x_sum / element_count var = x_square_sum / element_count - mean * mean factor = element_count / max(element_count - 1, 1) corrected_var = var * factor normalized = (x - mean) / np.sqrt(var + epsilon) if exponential_avg_factor != 1.0: mean = (1.0 - exponential_avg_factor) * old_mean + exponential_avg_factor * mean corrected_var = (1.0 - exponential_avg_factor ) * old_var + exponential_avg_factor * corrected_var return (normalized * scale + offset), mean, var, corrected_var def _reference_grad(self, x, grad_y, scale, mean, var, epsilon, data_format): # Use the following formulas to calculate gradients: # grad_scale = # sum(grad_y * (x - mean)) * rsqrt(var + epsilon) # # grad_offset = sum(output_y) # # grad_x = # 1/N * scale * rsqrt(var + epsilon) * (N * grad_y - sum(grad_y) - # (x - mean) * sum(grad_y * (x - mean)) / (var + epsilon)) if data_format != "NHWC": raise ValueError("data_format must be NHWC, got %s." % data_format) grad_x = scale * (grad_y - np.mean(grad_y, axis=(0, 1, 2)) - (x - mean) * np.mean(grad_y * (x - mean), axis=(0, 1, 2)) / (var + epsilon)) / np.sqrt(var + epsilon) grad_scale = np.sum( grad_y * (x - mean) / np.sqrt(var + epsilon), axis=(0, 1, 2)) grad_offset = np.sum(grad_y, axis=(0, 1, 2)) return grad_x, grad_scale, grad_offset @parameterized.named_parameters(*DATA_FORMATS) def testInference(self, data_format): channel = 3 x_shape = [2, 2, 6, channel] scale_shape = [channel] x_val = np.random.random_sample(x_shape).astype(np.float32) scale_val = np.random.random_sample(scale_shape).astype(np.float32) offset_val = np.random.random_sample(scale_shape).astype(np.float32) epsilon = 0.001 exponential_avg_factor = 1.0 data_format_src = "NHWC" y_ref, mean_ref, var_ref, _ = self._reference_training( x_val, scale_val, offset_val, None, None, epsilon, exponential_avg_factor, data_format_src) with self.session() as sess, self.test_scope(): # To avoid constant folding x_val_converted = test_utils.ConvertBetweenDataFormats( x_val, data_format_src, data_format) y_ref_converted = test_utils.ConvertBetweenDataFormats( y_ref, data_format_src, data_format) t_val = array_ops.placeholder( np.float32, shape=x_val_converted.shape, name="x") scale = array_ops.placeholder(np.float32, shape=scale_shape, name="scale") offset = array_ops.placeholder( np.float32, shape=scale_shape, name="offset") y, mean, variance = nn.fused_batch_norm( t_val, scale, offset, mean=mean_ref, variance=var_ref, epsilon=epsilon, data_format=data_format, is_training=False) y_val, _, _ = sess.run([y, mean, variance], { t_val: x_val_converted, scale: scale_val, offset: offset_val }) self.assertAllClose(y_val, y_ref_converted, atol=1e-3) def _testLearning(self, use_gradient_checker, data_format, exponential_avg_factor): if not compat.forward_compatible(2020, 3, 6) and exponential_avg_factor != 1.0: self.skipTest("running average not available.") channel = 3 x_shape = [2, 2, 6, channel] scale_shape = [channel] x_val = np.random.random_sample(x_shape).astype(np.float32) scale_val = np.random.random_sample(scale_shape).astype(np.float32) offset_val = np.random.random_sample(scale_shape).astype(np.float32) mean_val = np.random.random_sample(scale_shape).astype(np.float32) var_val_corr = np.random.random_sample(scale_shape).astype(np.float32) epsilon = 0.001 data_format_src = "NHWC" # When in training mode, fused_batchnorm applies an implicit Bessel's # correction. So we have to use the corrected variance here, as well. y_ref, mean_ref, _, var_ref_corr = self._reference_training( x_val, scale_val, offset_val, mean_val, var_val_corr, epsilon, exponential_avg_factor, data_format_src) with self.session() as sess, self.test_scope(): # To avoid constant folding x_val_converted = test_utils.ConvertBetweenDataFormats( x_val, data_format_src, data_format) y_ref_converted = test_utils.ConvertBetweenDataFormats( y_ref, data_format_src, data_format) t_val = array_ops.placeholder( np.float32, shape=x_val_converted.shape, name="x") scale = array_ops.placeholder(np.float32, shape=scale_shape, name="scale") offset = array_ops.placeholder( np.float32, shape=scale_shape, name="offset") if exponential_avg_factor == 1.0: old_mean = None old_var = None else: old_mean = array_ops.placeholder( np.float32, shape=scale_shape, name="old_mean") old_var = array_ops.placeholder( np.float32, shape=scale_shape, name="old_var") y, mean, var = nn.fused_batch_norm( t_val, scale, offset, mean=old_mean, variance=old_var, epsilon=epsilon, exponential_avg_factor=exponential_avg_factor, data_format=data_format, is_training=True) if exponential_avg_factor == 1.0: feed_dict = { t_val: x_val_converted, scale: scale_val, offset: offset_val, } else: feed_dict = { t_val: x_val_converted, scale: scale_val, offset: offset_val, old_mean: mean_val, old_var: var_val_corr } # Check gradient. if use_gradient_checker: err = gradient_checker.compute_gradient_error( t_val, x_val_converted.shape, y, x_val_converted.shape, extra_feed_dict=feed_dict) self.assertLess(err, 1e-3) y_tf, mean_tf, var_tf = sess.run([y, mean, var], feed_dict) self.assertAllClose(y_tf, y_ref_converted, atol=1e-3) self.assertAllClose(mean_tf, mean_ref, atol=1e-3) self.assertAllClose(var_tf, var_ref_corr, atol=1e-3) @parameterized.named_parameters(*DATA_FORMATS_AND_AVG_FACTORS) def testLearning(self, data_format, exponential_avg_factor): self._testLearning(False, data_format, exponential_avg_factor) @parameterized.named_parameters(*DATA_FORMATS_AND_AVG_FACTORS) def testLearningWithGradientChecker(self, data_format, exponential_avg_factor): self._testLearning(True, data_format, exponential_avg_factor) @parameterized.named_parameters(*DATA_FORMATS) def testGradientTraining(self, data_format): # TODO(b/64270657): Use gradient_checker here in addition to comparing with # this reference implementation. channel = 3 x_shape = [2, 2, 6, channel] scale_shape = [channel] grad_val = np.random.random_sample(x_shape).astype(np.float32) x_val = np.random.random_sample(x_shape).astype(np.float32) scale_val = np.random.random_sample(scale_shape).astype(np.float32) mean_val = np.random.random_sample(scale_shape).astype(np.float32) var_val = np.random.random_sample(scale_shape).astype(np.float32) epsilon = 0.001 # The TensorFlow FusedBatchNormGrad training operation takes two inputs with # implementation defined values. In theory the only correct value these # inputs are the corresponding reserve_space_{1|2} outputs from the # FusedBatchNorm training operation. However, in practice, we rely on the # first one being mean on {C|G}PU, and the second one being variance on CPU # and inverse(sqrt(variance + epsilon)) on GPU (we test this assumption # separately). reserve_space_1_val = mean_val if self.device == "XLA_GPU": reserve_space_2_val = np.reciprocal(np.sqrt(var_val + epsilon)) else: reserve_space_2_val = var_val data_format_src = "NHWC" grad_x_ref, grad_scale_ref, grad_offset_ref = self._reference_grad( x_val, grad_val, scale_val, mean_val, var_val, epsilon, data_format_src) with self.session() as sess, self.test_scope(): grad_val_converted = test_utils.ConvertBetweenDataFormats( grad_val, data_format_src, data_format) x_val_converted = test_utils.ConvertBetweenDataFormats( x_val, data_format_src, data_format) grad_x_ref_converted = test_utils.ConvertBetweenDataFormats( grad_x_ref, data_format_src, data_format) grad = array_ops.placeholder( np.float32, shape=x_val_converted.shape, name="grad") x = array_ops.placeholder( np.float32, shape=x_val_converted.shape, name="x") reserve_space_1 = array_ops.placeholder( np.float32, shape=scale_shape, name="reserve_space_1") reserve_space_2 = array_ops.placeholder( np.float32, shape=scale_shape, name="reserve_space_2") scale = array_ops.placeholder(np.float32, shape=scale_shape, name="scale") grad_x, grad_scale, grad_offset, _, _ = gen_nn_ops.fused_batch_norm_grad( grad, x, scale, reserve_space_1, reserve_space_2, data_format=data_format, is_training=True) grad_x_val, grad_scale_val, grad_offset_val = sess.run( [grad_x, grad_scale, grad_offset], { grad: grad_val_converted, x: x_val_converted, reserve_space_1: reserve_space_1_val, reserve_space_2: reserve_space_2_val, scale: scale_val }) self.assertAllClose(grad_x_val, grad_x_ref_converted, atol=1e-2) self.assertAllClose(grad_scale_val, grad_scale_ref, atol=1e-2) self.assertAllClose(grad_offset_val, grad_offset_ref, atol=1e-3) @parameterized.named_parameters(*DATA_FORMATS) def testGradientInference(self, data_format): # TODO(b/64270657): Use gradient_checker here in addition to comparing with # this reference implementation. channel = 3 x_shape = [2, 2, 6, channel] scale_shape = [channel] grad_val = np.random.random_sample(x_shape).astype(np.float32) x_val = np.random.random_sample(x_shape).astype(np.float32) scale_val = np.random.random_sample(scale_shape).astype(np.float32) mean_val = np.random.random_sample(scale_shape).astype(np.float32) var_val = np.random.random_sample(scale_shape).astype(np.float32) data_format_src = "NHWC" with self.session() as sess, self.test_scope(): grad_val_converted = test_utils.ConvertBetweenDataFormats( grad_val, data_format_src, data_format) x_val_converted = test_utils.ConvertBetweenDataFormats( x_val, data_format_src, data_format) grad = array_ops.placeholder( np.float32, shape=x_val_converted.shape, name="grad") x = array_ops.placeholder( np.float32, shape=x_val_converted.shape, name="x") mean = array_ops.placeholder(np.float32, shape=scale_shape, name="mean") var = array_ops.placeholder(np.float32, shape=scale_shape, name="var") scale = array_ops.placeholder(np.float32, shape=scale_shape, name="scale") with self.test_scope(): out = gen_nn_ops.fused_batch_norm_grad( grad, x, scale, mean, var, data_format=data_format, is_training=False) grad_x, grad_scale, grad_offset, _, _ = out ref_x, ref_scale, ref_offset, _, _ = gen_nn_ops.fused_batch_norm_grad( grad, x, scale, mean, var, data_format=data_format, is_training=False) grad_x_val, grad_scale_val, grad_offset_val, = sess.run( [grad_x, grad_scale, grad_offset], { grad: grad_val_converted, x: x_val_converted, mean: mean_val, var: var_val, scale: scale_val }) grad_x_ref, grad_scale_ref, grad_offset_ref, = sess.run( [ref_x, ref_scale, ref_offset], { grad: grad_val_converted, x: x_val_converted, mean: mean_val, var: var_val, scale: scale_val }) self.assertAllClose(grad_x_val, grad_x_ref, atol=1e-2) self.assertAllClose(grad_scale_val, grad_scale_ref, atol=1e-2) self.assertAllClose(grad_offset_val, grad_offset_ref, atol=1e-3) if __name__ == "__main__": test.main() ``` #### File: pyct/static_analysis/reaching_definitions_test.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import six from tensorflow.python.autograph.pyct import anno from tensorflow.python.autograph.pyct import cfg from tensorflow.python.autograph.pyct import naming from tensorflow.python.autograph.pyct import parser from tensorflow.python.autograph.pyct import qual_names from tensorflow.python.autograph.pyct import transformer from tensorflow.python.autograph.pyct.static_analysis import activity from tensorflow.python.autograph.pyct.static_analysis import reaching_definitions from tensorflow.python.platform import test global_a = 7 global_b = 17 class ReachingDefinitionsAnalyzerTestBase(test.TestCase): def _parse_and_analyze(self, test_fn): # TODO(mdan): Use a custom FunctionTransformer here. node, source = parser.parse_entity(test_fn, future_features=()) entity_info = transformer.EntityInfo( name=test_fn.__name__, source_code=source, source_file=None, future_features=(), namespace={}) node = qual_names.resolve(node) namer = naming.Namer({}) ctx = transformer.Context(entity_info, namer, None) node = activity.resolve(node, ctx) graphs = cfg.build(node) node = reaching_definitions.resolve(node, ctx, graphs, reaching_definitions.Definition) return node def assertHasDefs(self, node, num): defs = anno.getanno(node, anno.Static.DEFINITIONS) self.assertEqual(len(defs), num) for r in defs: self.assertIsInstance(r, reaching_definitions.Definition) def assertHasDefinedIn(self, node, expected): defined_in = anno.getanno(node, anno.Static.DEFINED_VARS_IN) defined_in_str = set(str(v) for v in defined_in) if not expected: expected = () if not isinstance(expected, tuple): expected = (expected,) self.assertSetEqual(defined_in_str, set(expected)) def assertSameDef(self, first, second): self.assertHasDefs(first, 1) self.assertHasDefs(second, 1) self.assertIs( anno.getanno(first, anno.Static.DEFINITIONS)[0], anno.getanno(second, anno.Static.DEFINITIONS)[0]) def assertNotSameDef(self, first, second): self.assertHasDefs(first, 1) self.assertHasDefs(second, 1) self.assertIsNot( anno.getanno(first, anno.Static.DEFINITIONS)[0], anno.getanno(second, anno.Static.DEFINITIONS)[0]) class ReachingDefinitionsAnalyzerTest(ReachingDefinitionsAnalyzerTestBase): def test_conditional(self): def test_fn(a, b): a = [] if b: a = [] return a node = self._parse_and_analyze(test_fn) fn_body = node.body self.assertHasDefs(fn_body[0].targets[0], 1) self.assertHasDefs(fn_body[1].test, 1) self.assertHasDefs(fn_body[1].body[0].targets[0], 1) self.assertHasDefs(fn_body[2].value, 2) self.assertHasDefinedIn(fn_body[1], ('a', 'b')) def test_try_in_conditional(self): def test_fn(a, b): # pylint:disable=unused-argument a = [] if b: try: pass except: # pylint:disable=bare-except pass return a node = self._parse_and_analyze(test_fn) fn_body = node.body self.assertHasDefinedIn(fn_body[1], ('a', 'b')) self.assertHasDefinedIn(fn_body[1].body[0], ('a', 'b')) def test_conditional_in_try_in_conditional(self): def test_fn(a, b): a = [] if b: try: if b: a = [] except TestException: # pylint:disable=undefined-variable,unused-variable pass return a node = self._parse_and_analyze(test_fn) fn_body = node.body self.assertHasDefinedIn(fn_body[1], ('a', 'b')) self.assertHasDefinedIn(fn_body[1].body[0], ('a', 'b')) # Note: `TestException` and `e` are not tracked. self.assertHasDefinedIn(fn_body[1].body[0].body[0], ('a', 'b')) def test_conditional_in_except_in_conditional(self): def test_fn(a, b): a = [] if b: try: pass except TestException as e: # pylint:disable=undefined-variable,unused-variable if b: a = [] return a node = self._parse_and_analyze(test_fn) fn_body = node.body self.assertHasDefinedIn(fn_body[1], ('a', 'b')) self.assertHasDefinedIn(fn_body[1].body[0], ('a', 'b')) # Note: `TestException` and `e` are not tracked. self.assertHasDefinedIn(fn_body[1].body[0].handlers[0].body[0], ('a', 'b')) def test_while(self): def test_fn(a): max(a) while True: a = a a = a return a node = self._parse_and_analyze(test_fn) fn_body = node.body self.assertHasDefs(fn_body[0].value.args[0], 1) self.assertHasDefs(fn_body[1].body[0].targets[0], 1) self.assertHasDefs(fn_body[1].body[1].targets[0], 1) self.assertHasDefs(fn_body[1].body[1].value, 1) # The loop does have an invariant test, but the CFG doesn't know that. self.assertHasDefs(fn_body[1].body[0].value, 2) self.assertHasDefs(fn_body[2].value, 2) def test_while_else(self): def test_fn(x, i): y = 0 while x: x += i if i: break else: y = 1 return x, y node = self._parse_and_analyze(test_fn) fn_body = node.body self.assertHasDefs(fn_body[0].targets[0], 1) self.assertHasDefs(fn_body[1].test, 2) self.assertHasDefs(fn_body[1].body[0].target, 1) self.assertHasDefs(fn_body[1].body[1].test, 1) self.assertHasDefs(fn_body[1].orelse[0].targets[0], 1) self.assertHasDefs(fn_body[2].value.elts[0], 2) self.assertHasDefs(fn_body[2].value.elts[1], 2) def test_for_else(self): def test_fn(x, i): y = 0 for i in x: x += i if i: break else: continue else: y = 1 return x, y node = self._parse_and_analyze(test_fn) fn_body = node.body self.assertHasDefs(fn_body[0].targets[0], 1) self.assertHasDefs(fn_body[1].target, 1) self.assertHasDefs(fn_body[1].body[0].target, 1) self.assertHasDefs(fn_body[1].body[1].test, 1) self.assertHasDefs(fn_body[1].orelse[0].targets[0], 1) self.assertHasDefs(fn_body[2].value.elts[0], 2) self.assertHasDefs(fn_body[2].value.elts[1], 2) def test_nested_functions(self): def test_fn(a, b): a = [] if b: a = [] def foo(): return a foo() return a node = self._parse_and_analyze(test_fn) fn_body = node.body def_of_a_in_if = fn_body[1].body[0].targets[0] self.assertHasDefs(fn_body[0].targets[0], 1) self.assertHasDefs(fn_body[1].test, 1) self.assertHasDefs(def_of_a_in_if, 1) self.assertHasDefs(fn_body[2].value, 2) inner_fn_body = fn_body[1].body[1].body def_of_a_in_foo = inner_fn_body[0].value self.assertHasDefs(def_of_a_in_foo, 0) def test_nested_functions_isolation(self): def test_fn(a): a = 0 def child(): a = 1 return a child() return a node = self._parse_and_analyze(test_fn) fn_body = node.body parent_return = fn_body[3] child_return = fn_body[1].body[1] # The assignment `a = 1` makes `a` local to `child`. self.assertNotSameDef(parent_return.value, child_return.value) def test_function_call_in_with(self): def foo(_): pass def test_fn(a): with foo(a): return a node = self._parse_and_analyze(test_fn) fn_body = node.body self.assertHasDefs(fn_body[0].items[0].context_expr.func, 0) self.assertHasDefs(fn_body[0].items[0].context_expr.args[0], 1) def test_mutation_subscript(self): def test_fn(a): l = [] l[0] = a return l node = self._parse_and_analyze(test_fn) fn_body = node.body creation = fn_body[0].targets[0] mutation = fn_body[1].targets[0].value use = fn_body[2].value self.assertSameDef(creation, mutation) self.assertSameDef(creation, use) def test_deletion_partial(self): def test_fn(a): a = 0 if a: del a else: a = 1 return a node = self._parse_and_analyze(test_fn) fn_body = node.body first_def = fn_body[0].targets[0] second_def = fn_body[1].orelse[0].targets[0] use = fn_body[2].value self.assertNotSameDef(use, first_def) self.assertSameDef(use, second_def) def test_deletion_total(self): def test_fn(a): if a: a = 0 else: a = 1 del a return a node = self._parse_and_analyze(test_fn) fn_body = node.body use = fn_body[2].value self.assertHasDefs(use, 0) def test_replacement(self): def foo(a): return a def test_fn(a): a = foo(a) return a node = self._parse_and_analyze(test_fn) fn_body = node.body param = node.args.args[0] source = fn_body[0].value.args[0] target = fn_body[0].targets[0] retval = fn_body[1].value self.assertSameDef(param, source) self.assertNotSameDef(source, target) self.assertSameDef(target, retval) def test_comprehension_leaking(self): def test_fn(a): _ = [x for x in a] return x # pylint:disable=undefined-loop-variable node = self._parse_and_analyze(test_fn) fn_body = node.body listcomp_target = fn_body[0].value.generators[0].target retval = fn_body[1].value # Python2 leaks list comprehension symbols. Python3 doesn't. # For details, see: # https://stackoverflow.com/questions/4198906/list-comprehension-rebinds-names-even-after-scope-of-comprehension-is-this-righ if six.PY2: self.assertSameDef(retval, listcomp_target) else: self.assertHasDefs(retval, 0) def test_function_definition(self): def test_fn(): def a(): pass if a: # pylint:disable=using-constant-test a = None return a node = self._parse_and_analyze(test_fn) fn_body = node.body self.assertHasDefs(fn_body[1].test, 1) self.assertHasDefs(fn_body[1].body[0].targets[0], 1) self.assertHasDefs(fn_body[2].value, 2) self.assertHasDefinedIn(fn_body[1], ('a',)) def test_global(self): def test_fn(): global global_a global global_b if global_a: global_b = [] return global_a, global_b node = self._parse_and_analyze(test_fn) fn_body = node.body self.assertHasDefs(fn_body[2].test, 1) self.assertHasDefs(fn_body[2].body[0].targets[0], 1) self.assertHasDefs(fn_body[3].value.elts[0], 1) self.assertHasDefs(fn_body[3].value.elts[1], 2) self.assertSameDef(fn_body[2].test, fn_body[3].value.elts[0]) self.assertHasDefinedIn(fn_body[2], ('global_a', 'global_b')) if __name__ == '__main__': test.main() ``` #### File: data/service/server_lib.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function # pylint: disable=invalid-import-order,g-bad-import-order, unused-import from tensorflow.python import pywrap_tensorflow from tensorflow.python.data.service import _pywrap_server_lib class MasterServer(object): """An in-process tf.data service master, for use in testing.""" def __init__(self, protocol): """Creates and starts a new tf.data master server. The server will choose an available port. Use `target()` to get the string for connecting to the server. Args: protocol: A string representing the type of protocol to use when creating channels. For no security, use "grpc". For local credentials, use "grpc+local", and make sure your binary links in `data/service:local_credentials`. """ self._protocol = protocol self._server = _pywrap_server_lib.TF_DATA_NewMasterServer(0, protocol) self._running = True @property def target(self): """Returns the target for connecting to this server. The returned string will be in the form protocol://address:port, e.g. "grpc://localhost:1000". """ port = _pywrap_server_lib.TF_DATA_MasterServerBoundPort(self._server) return "{0}://localhost:{1}".format(self._protocol, port) def num_tasks(self): """Returns the number of tasks on the master.""" return _pywrap_server_lib.TF_DATA_MasterServerNumTasks(self._server) def stop(self): """Shuts down and deletes the server. This method will block until all outstanding rpcs have completed and the server has been shut down. """ if self._running: self._running = False _pywrap_server_lib.TF_DATA_DeleteMasterServer(self._server) def __del__(self): self.stop() class WorkerServer(object): """An in-process tf.data service worker, for use in testing.""" def __init__(self, protocol, master_address, port=0): """Creates and starts a new tf.data worker server. The server will choose an available port. Use `target()` to get the string for connecting to the server. Args: protocol: A string representing the type of protocol to use when creating channels. For no security, use "grpc". For local credentials, use "grpc+local", and make sure your binary links in `data/service:local_credentials`. master_address: The address of the tf.data master server to register with. port: The port to bind to. """ self._protocol = protocol self._server = _pywrap_server_lib.TF_DATA_NewWorkerServer( port, protocol, master_address, "localhost:%port%") self._running = True @property def target(self): """Returns the target for connecting to this server. The returned string will be in the form protocol://address:port, e.g. "grpc://localhost:1000". """ port = _pywrap_server_lib.TF_DATA_WorkerServerBoundPort(self._server) return "{0}://localhost:{1}".format(self._protocol, port) def stop(self): """Shuts down and deletes the server. This method will block until all outstanding rpcs have completed and the server has been shut down. """ if self._running: self._running = False _pywrap_server_lib.TF_DATA_DeleteWorkerServer(self._server) def __del__(self): self.stop() ``` #### File: debug/lib/dumping_callback_test_lib.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import shutil import tempfile from tensorflow.python.debug.lib import check_numerics_callback from tensorflow.python.debug.lib import debug_events_reader from tensorflow.python.debug.lib import dumping_callback from tensorflow.python.framework import test_util from tensorflow.python.framework import versions class DumpingCallbackTestBase(test_util.TensorFlowTestCase): """Base test-case class for tfdbg v2 callbacks.""" def setUp(self): super(DumpingCallbackTestBase, self).setUp() self.dump_root = tempfile.mkdtemp() def tearDown(self): if os.path.isdir(self.dump_root): shutil.rmtree(self.dump_root, ignore_errors=True) check_numerics_callback.disable_check_numerics() dumping_callback.disable_dump_debug_info() super(DumpingCallbackTestBase, self).tearDown() def _readAndCheckMetadataFile(self): """Read and check the .metadata debug-events file.""" with debug_events_reader.DebugEventsReader(self.dump_root) as reader: metadata_iter = reader.metadata_iterator() metadata = next(metadata_iter).debug_event.debug_metadata self.assertEqual(metadata.tensorflow_version, versions.__version__) self.assertTrue(metadata.file_version.startswith("debug.Event")) ``` #### File: python/distribute/multi_worker_util_test.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.core.protobuf import cluster_pb2 from tensorflow.python.distribute import multi_worker_util from tensorflow.python.eager import test from tensorflow.python.training import server_lib class NormalizeClusterSpecTest(test.TestCase): def assert_same_cluster(self, lhs, rhs): self.assertEqual( server_lib.ClusterSpec(lhs).as_dict(), server_lib.ClusterSpec(rhs).as_dict()) def testDictAsInput(self): cluster_spec = { "chief": ["127.0.0.1:1234"], "worker": ["127.0.0.1:8964", "127.0.0.1:2333"], "ps": ["127.0.0.1:1926", "127.0.0.1:3141"] } self.assert_same_cluster( cluster_spec, multi_worker_util.normalize_cluster_spec(cluster_spec)) def testClusterDefAsInput(self): cluster_def = cluster_pb2.ClusterDef() job = cluster_def.job.add() job.name = "chief" job.tasks[0] = "127.0.0.1:1234" job = cluster_def.job.add() job.name = "worker" job.tasks[0] = "127.0.0.1:8964" job.tasks[1] = "127.0.0.1:2333" job = cluster_def.job.add() job.name = "ps" job.tasks[0] = "127.0.0.1:1926" job.tasks[1] = "127.0.0.1:3141" self.assert_same_cluster( cluster_def, multi_worker_util.normalize_cluster_spec(cluster_def)) def testClusterSpecAsInput(self): cluster_spec = server_lib.ClusterSpec({ "chief": ["127.0.0.1:1234"], "worker": ["127.0.0.1:8964", "127.0.0.1:2333"], "ps": ["127.0.0.1:1926", "127.0.0.1:3141"] }) self.assert_same_cluster( cluster_spec, multi_worker_util.normalize_cluster_spec(cluster_spec)) def testUnexpectedInput(self): cluster_spec = ["127.0.0.1:8964", "127.0.0.1:2333"] with self.assertRaisesRegexp( ValueError, "`cluster_spec' should be dict or a `tf.train.ClusterSpec` or a " "`tf.train.ClusterDef` object"): multi_worker_util.normalize_cluster_spec(cluster_spec) class IsChiefTest(test.TestCase): def testClusterWithChief(self): cluster_spec = { "chief": ["127.0.0.1:1234"], "worker": ["127.0.0.1:8964", "127.0.0.1:2333"], "ps": ["127.0.0.1:1926", "127.0.0.1:3141"] } self.assertTrue(multi_worker_util.is_chief(cluster_spec, "chief", 0)) self.assertFalse(multi_worker_util.is_chief(cluster_spec, "worker", 0)) def testClusterWithoutChief(self): cluster_spec = {"worker": ["127.0.0.1:8964", "127.0.0.1:2333"]} self.assertTrue(multi_worker_util.is_chief(cluster_spec, "worker", 0)) self.assertFalse(multi_worker_util.is_chief(cluster_spec, "worker", 1)) with self.assertRaisesRegexp( ValueError, "`task_type` 'chief' not found in cluster_spec."): multi_worker_util.is_chief(cluster_spec, "chief", 0) with self.assertRaisesRegexp( ValueError, "The `task_id` 2 exceeds the maximum id of worker."): multi_worker_util.is_chief(cluster_spec, "worker", 2) def testEvaluatorIsChief(self): cluster_spec = { "chief": ["127.0.0.1:1234"], "worker": ["127.0.0.1:8964", "127.0.0.1:2333"], "evaluator": ["127.0.0.1:2019"] } self.assertTrue(multi_worker_util.is_chief(cluster_spec, "evaluator", 0)) class NumWorkersTest(test.TestCase): def testCountWorker(self): cluster_spec = { "chief": ["127.0.0.1:1234"], "worker": ["127.0.0.1:8964", "127.0.0.1:2333"], "ps": ["127.0.0.1:1926", "127.0.0.1:3141"] } self.assertEqual( multi_worker_util.worker_count(cluster_spec, task_type="chief"), 3) self.assertEqual( multi_worker_util.worker_count(cluster_spec, task_type="worker"), 3) def testCountEvaluator(self): cluster_spec = { "chief": ["127.0.0.1:1234"], "worker": ["127.0.0.1:8964", "127.0.0.1:2333"], "evaluator": ["127.0.0.1:7566"] } self.assertEqual( multi_worker_util.worker_count(cluster_spec, task_type="evaluator"), 1) def testTaskTypeNotFound(self): cluster_spec = {} with self.assertRaisesRegexp( ValueError, "`task_type` 'worker' not found in cluster_spec."): multi_worker_util.worker_count(cluster_spec, task_type="worker") def testCountPs(self): cluster_spec = { "chief": ["127.0.0.1:1234"], "ps": ["127.0.0.1:1926", "127.0.0.1:3141"] } # A "ps" job shouldn't call this method. with self.assertRaisesRegexp(ValueError, "Unexpected `task_type` 'ps'"): multi_worker_util.worker_count(cluster_spec, task_type="ps") class IdInClusterTest(test.TestCase): def testChiefId(self): cluster_spec = { "chief": ["127.0.0.1:1234"], "worker": ["127.0.0.1:8964", "127.0.0.1:2333"], "ps": ["127.0.0.1:1926", "127.0.0.1:3141"] } self.assertEqual( multi_worker_util.id_in_cluster(cluster_spec, "chief", 0), 0) def testWorkerId(self): cluster_spec = { "chief": ["127.0.0.1:1234"], "worker": ["127.0.0.1:8964", "127.0.0.1:2333"], "ps": ["127.0.0.1:1926", "127.0.0.1:3141"] } self.assertEqual( multi_worker_util.id_in_cluster(cluster_spec, "worker", 1), 2) cluster_spec = { "worker": ["127.0.0.1:8964", "127.0.0.1:2333"], "ps": ["127.0.0.1:1926", "127.0.0.1:3141"] } self.assertEqual( multi_worker_util.id_in_cluster(cluster_spec, "worker", 1), 1) def testEvaluatorId(self): cluster_spec = { "chief": ["127.0.0.1:1234"], "worker": ["127.0.0.1:8964", "127.0.0.1:2333"], "evaluator": ["127.0.0.1:7566"] } self.assertEqual( multi_worker_util.id_in_cluster(cluster_spec, "evaluator", 0), 0) def testPsId(self): cluster_spec = {"chief": ["127.0.0.1:1234"], "ps": ["127.0.0.1:7566"]} with self.assertRaisesRegexp(ValueError, "There is no id for task_type 'ps'"): multi_worker_util.id_in_cluster(cluster_spec, "ps", 0) def testMultipleChiefs(self): cluster_spec = { "chief": ["127.0.0.1:8258", "127.0.0.1:7566"], } with self.assertRaisesRegexp(ValueError, "There must be at most one 'chief' job."): multi_worker_util.id_in_cluster(cluster_spec, "chief", 0) class CollectiveLeaderTest(test.TestCase): def testChiefAsLeader(self): cluster_spec = { "chief": ["127.0.0.1:1234"], "worker": ["127.0.0.1:8964", "127.0.0.1:2333"], "ps": ["127.0.0.1:1926", "127.0.0.1:3141"] } self.assertEqual( multi_worker_util.collective_leader(cluster_spec, "worker", 0), "/job:chief/replica:0/task:0") def testWorkerAsLeader(self): cluster_spec = { "worker": ["127.0.0.1:8964", "127.0.0.1:2333"], "ps": ["127.0.0.1:1926", "127.0.0.1:3141"] } self.assertEqual( multi_worker_util.collective_leader(cluster_spec, "worker", 1), "/job:worker/replica:0/task:0") def testLeaderForEvaluator(self): cluster_spec = { "chief": ["127.0.0.1:1234"], "worker": ["127.0.0.1:8964", "127.0.0.1:2333"], "ps": ["127.0.0.1:1926", "127.0.0.1:3141"], "evaluator": ["127.0.0.1:2019"] } self.assertEqual( multi_worker_util.collective_leader(cluster_spec, "evaluator", 0), "") def testLocalLeader(self): cluster_spec = {} self.assertEqual( multi_worker_util.collective_leader(cluster_spec, None, 0), "") # Most of the validation logic is tested by above tests except for some. class ClusterSpecValidationTest(test.TestCase): def testEvaluatorNotInCluster(self): cluster_spec = { "chief": ["127.0.0.1:1234"], "worker": ["127.0.0.1:8964", "127.0.0.1:2333"], "ps": ["127.0.0.1:1926", "127.0.0.1:3141"] } multi_worker_util._validate_cluster_spec(cluster_spec, "chief", 0) multi_worker_util._validate_cluster_spec(cluster_spec, "worker", 0) multi_worker_util._validate_cluster_spec(cluster_spec, "ps", 0) multi_worker_util._validate_cluster_spec(cluster_spec, "evaluator", 0) def testWorkerNotInCluster(self): cluster_spec = { "chief": ["127.0.0.1:1234"], "ps": ["127.0.0.1:1926", "127.0.0.1:3141"] } multi_worker_util._validate_cluster_spec(cluster_spec, "evaluator", 0) with self.assertRaisesRegexp( ValueError, "`task_type` 'worker' not found in cluster_spec."): multi_worker_util._validate_cluster_spec(cluster_spec, "worker", 0) if __name__ == "__main__": test.main() ``` #### File: python/eager/forwardprop.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import threading from tensorflow.python import pywrap_tfe from tensorflow.python.eager import backprop from tensorflow.python.eager import backprop_util from tensorflow.python.eager import def_function from tensorflow.python.eager import execute from tensorflow.python.eager import forwardprop_util from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops.unconnected_gradients import UnconnectedGradients from tensorflow.python.platform import tf_logging as logging from tensorflow.python.util import nest from tensorflow.python.util.tf_export import tf_export # Dictionary mapping from op names to special-cased jvp functions. Otherwise # backward functions are transposed on the tape. _SPECIAL_CASES = {} def _identity_jvp(attr_tuple, inputs, outputs, tangents): # Special-cased mostly for resource handles, where creating ones Tensors from # handle data for transposing the backward function on the tape is error-prone # (even if we get good handle data, partially defined shapes are an issue). del attr_tuple, inputs, outputs return [array_ops.identity(t) for t in tangents] _SPECIAL_CASES["Identity"] = _identity_jvp def _read_variable_jvp(attr_tuple, inputs, outputs, tangents): # Like for Identity, this special case means we don't need to create # variable-shaped Tensors from resource handles. del attr_tuple, inputs, outputs return [array_ops.identity(t) for t in tangents] _SPECIAL_CASES["ReadVariableOp"] = _read_variable_jvp _TRACE_COUNT_CONSISTENCY_LOCK = threading.Lock() # Map from op names to number of traces of _jvp_helper. Used to cap the number # of traces due to shape differences while still specializing where possible. _TRACE_COUNT = {} def _jvp_helper(op_name, attr_tuple, inputs, outputs, tangents): """Computes a Jacobian-vector product for an op. Note that this function would be wasteful if executed eagerly. It runs the backward gradient function and throws away the result just to record its operations on a GradientTape. These unused ops are pruned away when this function is traced. Args: op_name: A string, the type of operation being executed. attr_tuple: Attributes of the operation. inputs: A flat list of input Tensors to the operation. outputs: A flat list of output Tensors from the operation. tangents: A flat list of Tensors, same shape as `inputs`. Returns: A flat list of tangents corresponding to `outputs`. """ with _TRACE_COUNT_CONSISTENCY_LOCK: # Just make sure writes don't clobber each other's increments; reads in # _jvp_dispatch do not lock. _TRACE_COUNT[op_name] = _TRACE_COUNT.get(op_name, 0) + 1 special_case = _SPECIAL_CASES.get(op_name, None) if special_case is not None: return special_case(attr_tuple, inputs, outputs, tangents) if not outputs: # tape.gradients([], inputs) doesn't make much sense return [] # Generally inner GradientTapes won't function while outer accumulators are # recording. We temporarily reset forwardprop state to allow GradientTapes to # function here. with forwardprop_util.push_forwardprop_state(): trainable_inputs = [] trainable_indices = [] nontrivial_tangents = [] for input_index, tensor in enumerate(inputs): if backprop_util.IsTrainable(tensor): trainable_inputs.append(tensor) trainable_indices.append(input_index) nontrivial_tangents.append(tangents[input_index]) with backprop.GradientTape() as transpose_tape: with backprop.GradientTape() as backfunc_tape: backfunc_tape.watch(trainable_inputs) execute.record_gradient(op_name, inputs, attr_tuple, outputs) forwardprop_aids = [] trainable_outputs = [] nontrivial_output_indices = [] for output_index, output in enumerate(outputs): if backprop_util.IsTrainable(output): forwardprop_aids.append( array_ops.ones_like(output, name="unused_forwardprop_aid")) trainable_outputs.append(output) nontrivial_output_indices.append(output_index) transpose_tape.watch(forwardprop_aids) grads = backfunc_tape.gradient( trainable_outputs, trainable_inputs, forwardprop_aids, unconnected_gradients=UnconnectedGradients.ZERO) nontrivial_output_tangents = transpose_tape.gradient( grads, forwardprop_aids, output_gradients=nontrivial_tangents) output_tangents = [None] * len(outputs) for index, tangent in zip(nontrivial_output_indices, nontrivial_output_tangents): output_tangents[index] = tangent return output_tangents # TODO(allenl): experimental_relax_shapes for gradients which rely on static # shape information are underspecialized. We may want hand-written forward # implementations, or a more satisfying story about how we re-specialize # gradients which were traced with relaxed shapes (e.g. use conds instead of # trace-time Python logic). _jvp_relaxed_shapes = def_function.function( _jvp_helper, experimental_relax_shapes=True) _jvp_exact_shapes = def_function.function( _jvp_helper, experimental_relax_shapes=False) # The maximum number of exact-shape traces to perform for a single op before # switching to shape relaxation. _TRACE_COUNT_LIMIT = 32 def _jvp_dispatch(op_name, attr_tuple, inputs, outputs, tangents): """Determine which forwardprop function to call.""" # Note that this _TRACE_COUNT read races with writes. That's fine, it just # means we may trace a few more exact shapes before moving on to relaxation. if _TRACE_COUNT.get(op_name, 0) < _TRACE_COUNT_LIMIT: return _jvp_exact_shapes( op_name, attr_tuple, inputs, outputs, tangents) else: return _jvp_relaxed_shapes( op_name, attr_tuple, inputs, outputs, tangents) pywrap_tfe.TFE_Py_RegisterJVPFunction(_jvp_dispatch) @tf_export("autodiff.ForwardAccumulator", v1=[]) class ForwardAccumulator(object): """Computes Jacobian-vector products ("JVP"s) using forward-mode autodiff. Compare to `tf.GradientTape` which computes vector-Jacobian products ("VJP"s) using reverse-mode autodiff (backprop). Reverse mode is more attractive when computing gradients of a scalar-valued function with respect to many inputs (e.g. a neural network with many parameters and a scalar loss). Forward mode works best on functions with many outputs and few inputs. Since it does not hold on to intermediate activations, it is much more memory efficient than backprop where it is applicable. Consider a simple linear regression: >>> x = tf.constant([[2.0, 3.0], [1.0, 4.0]]) >>> dense = tf.keras.layers.Dense(1) >>> dense.build([None, 2]) >>> with tf.autodiff.ForwardAccumulator( ... primals=dense.kernel, ... tangents=tf.constant([[1.], [0.]])) as acc: ... loss = tf.reduce_sum((dense(x) - tf.constant([1., -1.])) ** 2.) >>> acc.jvp(loss) <tf.Tensor: shape=(), dtype=float32, numpy=...> The example has two variables containing parameters, `dense.kernel` (2 parameters) and `dense.bias` (1 parameter). Considering the training data `x` as a constant, this means the Jacobian matrix for the function mapping from parameters to loss has one row and three columns. With forwardprop, we specify a length-three vector in advance which multiplies the Jacobian. The `primals` constructor argument is the parameter (a `tf.Tensor` or `tf.Variable`) we're specifying a vector for, and the `tangents` argument is the "vector" in Jacobian-vector product. If our goal is to compute the entire Jacobian matrix, forwardprop computes one column at a time while backprop computes one row at a time. Since the Jacobian in the linear regression example has only one row, backprop requires fewer invocations: >>> x = tf.constant([[2.0, 3.0], [1.0, 4.0]]) >>> dense = tf.keras.layers.Dense(1) >>> dense.build([None, 2]) >>> loss_fn = lambda: tf.reduce_sum((dense(x) - tf.constant([1., -1.])) ** 2.) >>> kernel_fprop = [] >>> with tf.autodiff.ForwardAccumulator( ... dense.kernel, tf.constant([[1.], [0.]])) as acc: ... kernel_fprop.append(acc.jvp(loss_fn())) >>> with tf.autodiff.ForwardAccumulator( ... dense.kernel, tf.constant([[0.], [1.]])) as acc: ... kernel_fprop.append(acc.jvp(loss_fn())) >>> with tf.autodiff.ForwardAccumulator(dense.bias, tf.constant([1.])) as acc: ... bias_fprop = acc.jvp(loss_fn()) >>> with tf.GradientTape() as tape: ... loss = loss_fn() >>> kernel_grad, bias_grad = tape.gradient(loss, (dense.kernel, dense.bias)) >>> np.testing.assert_allclose( ... kernel_grad, tf.stack(kernel_fprop)[:, tf.newaxis]) >>> np.testing.assert_allclose(bias_grad, bias_fprop[tf.newaxis]) Implicit in the `tape.gradient` call is a length-one vector which left-multiplies the Jacobian, a vector-Jacobian product. `ForwardAccumulator` maintains JVPs corresponding primal tensors it is watching, derived from the original `primals` specified in the constructor. As soon as a primal tensor is deleted, `ForwardAccumulator` deletes the corresponding JVP. `acc.jvp(x)` retrieves `acc`'s JVP corresponding to the primal tensor `x`. It does not perform any computation. `acc.jvp` calls can be repeated as long as `acc` is accessible, whether the context manager is active or not. New JVPs are only computed while the context manager is active. Note that `ForwardAccumulator`s are always applied in the order their context managers were entered, so inner accumulators will not see JVP computation from outer accumulators. Take higher-order JVPs from outer accumulators: >>> primal = tf.constant(1.1) >>> with tf.autodiff.ForwardAccumulator(primal, tf.constant(1.)) as outer: ... with tf.autodiff.ForwardAccumulator(primal, tf.constant(1.)) as inner: ... primal_out = primal ** tf.constant(3.5) >>> inner_jvp = inner.jvp(primal_out) >>> inner_jvp # 3.5 * 1.1 ** 2.5 <tf.Tensor: shape=(), dtype=float32, numpy=4.4417057> >>> outer.jvp(inner_jvp) # 3.5 * 2.5 * 1.1 ** 1.5 <tf.Tensor: shape=(), dtype=float32, numpy=10.094786> Reversing the collection in the last line to instead retrieve `inner.jvp(outer.jvp(primal_out))` will not work. Strict nesting also applies to combinations of `ForwardAccumulator` and `tf.GradientTape`. More deeply nested `GradientTape` objects will ignore the products of outer `ForwardAccumulator` objects. This allows (for example) memory-efficient forward-over-backward computation of Hessian-vector products, where the inner `GradientTape` would otherwise hold on to all intermediate JVPs: >>> v = tf.Variable([1., 2.]) >>> with tf.autodiff.ForwardAccumulator( ... v, ... # The "vector" in Hessian-vector product. ... tf.constant([1., 0.])) as acc: ... with tf.GradientTape() as tape: ... y = tf.reduce_sum(v ** 3.) ... backward = tape.gradient(y, v) >>> backward # gradient from backprop <tf.Tensor: shape=(2,), dtype=float32, numpy=array([ 3., 12.], dtype=float32)> >>> acc.jvp(backward) # forward-over-backward Hessian-vector product <tf.Tensor: shape=(2,), dtype=float32, numpy=array([6., 0.], dtype=float32)> """ def __init__(self, primals, tangents): """Specify tensors to watch and their Jacobian-vector products. Mathematically, `tangents` is a vector right-multiplying the Jacobian matrix (a Jacobian-vector product) for the function computed while this accumulator is active. Since JVPs are computed in forward mode as the computation happens, this vector must be supplied in advance. Listing a single tensor multiple times in `primals` raises an exception. Excluding a tensor from `primals` is equivalent to watching it with a tangent tensor of zeros. Args: primals: A tensor or nested structure of tensors to watch. tangents: A tensor or nested structure of tensors, with the same nesting structure as `primals`, with each element being a vector with the same size as the corresponding primal element. Raises: ValueError: If the same tensor or variable is specified multiple times in `primals`. """ self._accumulator = pywrap_tfe.TFE_Py_ForwardAccumulatorNew() self._recording = False primal_ids = set() for primal in nest.flatten(primals): if id(primal) in primal_ids: raise ValueError( "Tensor {} was specified as a primal multiple times. This may " "indicate an error. If it was intended, please sum the " "corresponding tangents.") primal_ids.add(id(primal)) self._watch(primals, tangents) def __enter__(self): self._push_accumulator() return self def __exit__(self, typ, value, traceback): if self._recording: self._pop_accumulator() def _push_accumulator(self): if self._recording: raise ValueError("Accumulator is already recording.") pywrap_tfe.TFE_Py_ForwardAccumulatorSetAdd(self._accumulator) self._recording = True def _pop_accumulator(self): if not self._recording: raise ValueError("Accumulator is not recording.") pywrap_tfe.TFE_Py_ForwardAccumulatorSetRemove(self._accumulator) self._recording = False def _watch(self, primals, tangents): """Ensures that `primals` are being traced by this accumulator. Mathematically, `tangents` is a vector right-multiplying the Jacobian matrix (a Jacobian-vector product) for the function computed while this accumulator is active. Since JVPs are computed in forward mode as the computation happens, this vector must be supplied in advance. Watching a single tensor multiple times sums each of its `tangents`. Any un-watched tensor has zeros for its tangent vector. Args: primals: A Tensor or list of Tensors. tangents: A Tensor or list of Tensors matching `primals`. """ nest.assert_same_structure(primals, tangents) for t, g in zip(nest.flatten(primals), nest.flatten(tangents)): if not t.dtype.is_floating: logging.log_first_n( logging.WARN, "The dtype of the watched primal must be " "floating (e.g. tf.float32), got %r", 5, t.dtype) g = ops.convert_to_tensor(g, dtype=t.dtype) if hasattr(t, "handle"): # Run convert_to_tensor to get the captured handle from whichever # function we're running if necessary. t = ops.convert_to_tensor(t.handle) pywrap_tfe.TFE_Py_ForwardAccumulatorWatch(self._accumulator, t, g) def jvp(self, primals, unconnected_gradients=UnconnectedGradients.NONE): """Fetches the Jacobian-vector product computed for `primals`. Note that this method performs no computation, and simply looks up a JVP that was already computed (unlike backprop using a `tf.GradientTape`, where the computation happens on the call to `tape.gradient`). Args: primals: A watched Tensor or structure of Tensors to fetch the JVPs for. unconnected_gradients: A value which can either hold 'none' or 'zero' and alters the value which will be returned if no JVP was computed for `primals`. The possible values and effects are detailed in 'tf.UnconnectedGradients' and it defaults to 'none'. Returns: Tensors with the same shapes and dtypes as `primals`, or None if no JVP is available. """ unconnected_gradients = UnconnectedGradients(unconnected_gradients) if self._accumulator is None: raise ValueError("Called jvp() without first tracing anything.") def _fetch_jvp(tensor): if hasattr(tensor, "handle"): tensor = ops.convert_to_tensor(tensor.handle) result = pywrap_tfe.TFE_Py_ForwardAccumulatorJVP(self._accumulator, tensor) if result is None and unconnected_gradients == UnconnectedGradients.ZERO: return array_ops.zeros_like(tensor) return result return nest.map_structure(_fetch_jvp, primals) ``` #### File: python/feature_column/dense_features_test.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.client import session from tensorflow.python.eager import backprop from tensorflow.python.eager import context from tensorflow.python.feature_column import dense_features as df from tensorflow.python.feature_column import feature_column_v2 as fc from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import lookup_ops from tensorflow.python.ops import partitioned_variables from tensorflow.python.ops import variables as variables_lib from tensorflow.python.platform import test def _initialized_session(config=None): sess = session.Session(config=config) sess.run(variables_lib.global_variables_initializer()) sess.run(lookup_ops.tables_initializer()) return sess class DenseFeaturesTest(test.TestCase): @test_util.run_in_graph_and_eager_modes() def test_retrieving_input(self): features = {'a': [0.]} dense_features = df.DenseFeatures(fc.numeric_column('a')) inputs = self.evaluate(dense_features(features)) self.assertAllClose([[0.]], inputs) def test_reuses_variables(self): with context.eager_mode(): sparse_input = sparse_tensor.SparseTensor( indices=((0, 0), (1, 0), (2, 0)), values=(0, 1, 2), dense_shape=(3, 3)) # Create feature columns (categorical and embedding). categorical_column = fc.categorical_column_with_identity( key='a', num_buckets=3) embedding_dimension = 2 def _embedding_column_initializer(shape, dtype, partition_info=None): del shape # unused del dtype # unused del partition_info # unused embedding_values = ( (1, 0), # id 0 (0, 1), # id 1 (1, 1)) # id 2 return embedding_values embedding_column = fc.embedding_column( categorical_column, dimension=embedding_dimension, initializer=_embedding_column_initializer) dense_features = df.DenseFeatures([embedding_column]) features = {'a': sparse_input} inputs = dense_features(features) variables = dense_features.variables # Sanity check: test that the inputs are correct. self.assertAllEqual([[1, 0], [0, 1], [1, 1]], inputs) # Check that only one variable was created. self.assertEqual(1, len(variables)) # Check that invoking dense_features on the same features does not create # additional variables _ = dense_features(features) self.assertEqual(1, len(variables)) self.assertIs(variables[0], dense_features.variables[0]) def test_dense_feature_with_partitioner(self): with context.eager_mode(): sparse_input = sparse_tensor.SparseTensor( indices=((0, 0), (1, 0), (2, 0), (3, 0)), values=(0, 1, 3, 2), dense_shape=(4, 4)) # Create feature columns (categorical and embedding). categorical_column = fc.categorical_column_with_identity( key='a', num_buckets=4) embedding_dimension = 2 def _embedding_column_initializer(shape, dtype, partition_info=None): offset = partition_info._var_offset[0] del shape # unused del dtype # unused if offset == 0: embedding_values = ( (1, 0), # id 0 (0, 1)) # id 1 else: embedding_values = ( (1, 1), # id 2 (2, 2)) # id 3 return embedding_values embedding_column = fc.embedding_column( categorical_column, dimension=embedding_dimension, initializer=_embedding_column_initializer) dense_features = df.DenseFeatures( [embedding_column], partitioner=partitioned_variables.fixed_size_partitioner(2)) features = {'a': sparse_input} inputs = dense_features(features) variables = dense_features.variables # Sanity check: test that the inputs are correct. self.assertAllEqual([[1, 0], [0, 1], [2, 2], [1, 1]], inputs) # Check that only one variable was created. self.assertEqual(2, len(variables)) # Check that invoking dense_features on the same features does not create # additional variables _ = dense_features(features) self.assertEqual(2, len(variables)) self.assertIs(variables[0], dense_features.variables[0]) self.assertIs(variables[1], dense_features.variables[1]) def test_feature_column_dense_features_gradient(self): with context.eager_mode(): sparse_input = sparse_tensor.SparseTensor( indices=((0, 0), (1, 0), (2, 0)), values=(0, 1, 2), dense_shape=(3, 3)) # Create feature columns (categorical and embedding). categorical_column = fc.categorical_column_with_identity( key='a', num_buckets=3) embedding_dimension = 2 def _embedding_column_initializer(shape, dtype, partition_info=None): del shape # unused del dtype # unused del partition_info # unused embedding_values = ( (1, 0), # id 0 (0, 1), # id 1 (1, 1)) # id 2 return embedding_values embedding_column = fc.embedding_column( categorical_column, dimension=embedding_dimension, initializer=_embedding_column_initializer) dense_features = df.DenseFeatures([embedding_column]) features = {'a': sparse_input} def scale_matrix(): matrix = dense_features(features) return 2 * matrix # Sanity check: Verify that scale_matrix returns the correct output. self.assertAllEqual([[2, 0], [0, 2], [2, 2]], scale_matrix()) # Check that the returned gradient is correct. grad_function = backprop.implicit_grad(scale_matrix) grads_and_vars = grad_function() indexed_slice = grads_and_vars[0][0] gradient = grads_and_vars[0][0].values self.assertAllEqual([0, 1, 2], indexed_slice.indices) self.assertAllEqual([[2, 2], [2, 2], [2, 2]], gradient) def test_raises_if_empty_feature_columns(self): with self.assertRaisesRegexp(ValueError, 'feature_columns must not be empty'): df.DenseFeatures(feature_columns=[])(features={}) def test_should_be_dense_column(self): with self.assertRaisesRegexp(ValueError, 'must be a .*DenseColumn'): df.DenseFeatures(feature_columns=[ fc.categorical_column_with_hash_bucket('wire_cast', 4) ])( features={ 'a': [[0]] }) def test_does_not_support_dict_columns(self): with self.assertRaisesRegexp( ValueError, 'Expected feature_columns to be iterable, found dict.'): df.DenseFeatures(feature_columns={'a': fc.numeric_column('a')})( features={ 'a': [[0]] }) def test_bare_column(self): with ops.Graph().as_default(): features = features = {'a': [0.]} net = df.DenseFeatures(fc.numeric_column('a'))(features) self.evaluate(variables_lib.global_variables_initializer()) self.evaluate(lookup_ops.tables_initializer()) self.assertAllClose([[0.]], self.evaluate(net)) def test_column_generator(self): with ops.Graph().as_default(): features = features = {'a': [0.], 'b': [1.]} columns = (fc.numeric_column(key) for key in features) net = df.DenseFeatures(columns)(features) self.evaluate(variables_lib.global_variables_initializer()) self.evaluate(lookup_ops.tables_initializer()) self.assertAllClose([[0., 1.]], self.evaluate(net)) def test_raises_if_duplicate_name(self): with self.assertRaisesRegexp( ValueError, 'Duplicate feature column name found for columns'): df.DenseFeatures( feature_columns=[fc.numeric_column('a'), fc.numeric_column('a')])( features={ 'a': [[0]] }) def test_one_column(self): price = fc.numeric_column('price') with ops.Graph().as_default(): features = {'price': [[1.], [5.]]} net = df.DenseFeatures([price])(features) self.evaluate(variables_lib.global_variables_initializer()) self.evaluate(lookup_ops.tables_initializer()) self.assertAllClose([[1.], [5.]], self.evaluate(net)) def test_multi_dimension(self): price = fc.numeric_column('price', shape=2) with ops.Graph().as_default(): features = {'price': [[1., 2.], [5., 6.]]} net = df.DenseFeatures([price])(features) self.evaluate(variables_lib.global_variables_initializer()) self.evaluate(lookup_ops.tables_initializer()) self.assertAllClose([[1., 2.], [5., 6.]], self.evaluate(net)) def test_compute_output_shape(self): price1 = fc.numeric_column('price1', shape=2) price2 = fc.numeric_column('price2', shape=4) with ops.Graph().as_default(): features = { 'price1': [[1., 2.], [5., 6.]], 'price2': [[3., 4., 5., 6.], [7., 8., 9., 10.]] } dense_features = df.DenseFeatures([price1, price2]) self.assertEqual((None, 6), dense_features.compute_output_shape((None,))) net = dense_features(features) self.evaluate(variables_lib.global_variables_initializer()) self.evaluate(lookup_ops.tables_initializer()) self.assertAllClose([[1., 2., 3., 4., 5., 6.], [5., 6., 7., 8., 9., 10.]], self.evaluate(net)) def test_raises_if_shape_mismatch(self): price = fc.numeric_column('price', shape=2) with ops.Graph().as_default(): features = {'price': [[1.], [5.]]} with self.assertRaisesRegexp( Exception, r'Cannot reshape a tensor with 2 elements to shape \[2,2\]'): df.DenseFeatures([price])(features) def test_reshaping(self): price = fc.numeric_column('price', shape=[1, 2]) with ops.Graph().as_default(): features = {'price': [[[1., 2.]], [[5., 6.]]]} net = df.DenseFeatures([price])(features) self.evaluate(variables_lib.global_variables_initializer()) self.evaluate(lookup_ops.tables_initializer()) self.assertAllClose([[1., 2.], [5., 6.]], self.evaluate(net)) def test_multi_column(self): price1 = fc.numeric_column('price1', shape=2) price2 = fc.numeric_column('price2') with ops.Graph().as_default(): features = {'price1': [[1., 2.], [5., 6.]], 'price2': [[3.], [4.]]} net = df.DenseFeatures([price1, price2])(features) self.evaluate(variables_lib.global_variables_initializer()) self.evaluate(lookup_ops.tables_initializer()) self.assertAllClose([[1., 2., 3.], [5., 6., 4.]], self.evaluate(net)) def test_cols_to_output_tensors(self): price1 = fc.numeric_column('price1', shape=2) price2 = fc.numeric_column('price2') with ops.Graph().as_default(): cols_dict = {} features = {'price1': [[1., 2.], [5., 6.]], 'price2': [[3.], [4.]]} dense_features = df.DenseFeatures([price1, price2]) net = dense_features(features, cols_dict) self.evaluate(variables_lib.global_variables_initializer()) self.evaluate(lookup_ops.tables_initializer()) self.assertAllClose([[1., 2.], [5., 6.]], self.evaluate(cols_dict[price1])) self.assertAllClose([[3.], [4.]], self.evaluate(cols_dict[price2])) self.assertAllClose([[1., 2., 3.], [5., 6., 4.]], self.evaluate(net)) def test_column_order(self): price_a = fc.numeric_column('price_a') price_b = fc.numeric_column('price_b') with ops.Graph().as_default(): features = { 'price_a': [[1.]], 'price_b': [[3.]], } net1 = df.DenseFeatures([price_a, price_b])(features) net2 = df.DenseFeatures([price_b, price_a])(features) self.evaluate(variables_lib.global_variables_initializer()) self.evaluate(lookup_ops.tables_initializer()) self.assertAllClose([[1., 3.]], self.evaluate(net1)) self.assertAllClose([[1., 3.]], self.evaluate(net2)) def test_fails_for_categorical_column(self): animal = fc.categorical_column_with_identity('animal', num_buckets=4) with ops.Graph().as_default(): features = { 'animal': sparse_tensor.SparseTensor( indices=[[0, 0], [0, 1]], values=[1, 2], dense_shape=[1, 2]) } with self.assertRaisesRegexp(Exception, 'must be a .*DenseColumn'): df.DenseFeatures([animal])(features) def test_static_batch_size_mismatch(self): price1 = fc.numeric_column('price1') price2 = fc.numeric_column('price2') with ops.Graph().as_default(): features = { 'price1': [[1.], [5.], [7.]], # batchsize = 3 'price2': [[3.], [4.]] # batchsize = 2 } with self.assertRaisesRegexp( ValueError, r'Batch size \(first dimension\) of each feature must be same.'): # pylint: disable=anomalous-backslash-in-string df.DenseFeatures([price1, price2])(features) def test_subset_of_static_batch_size_mismatch(self): price1 = fc.numeric_column('price1') price2 = fc.numeric_column('price2') price3 = fc.numeric_column('price3') with ops.Graph().as_default(): features = { 'price1': array_ops.placeholder(dtype=dtypes.int64), # batchsize = 3 'price2': [[3.], [4.]], # batchsize = 2 'price3': [[3.], [4.], [5.]] # batchsize = 3 } with self.assertRaisesRegexp( ValueError, r'Batch size \(first dimension\) of each feature must be same.'): # pylint: disable=anomalous-backslash-in-string df.DenseFeatures([price1, price2, price3])(features) def test_runtime_batch_size_mismatch(self): price1 = fc.numeric_column('price1') price2 = fc.numeric_column('price2') with ops.Graph().as_default(): features = { 'price1': array_ops.placeholder(dtype=dtypes.int64), # batchsize = 3 'price2': [[3.], [4.]] # batchsize = 2 } net = df.DenseFeatures([price1, price2])(features) with _initialized_session() as sess: with self.assertRaisesRegexp(errors.OpError, 'Dimensions of inputs should match'): sess.run(net, feed_dict={features['price1']: [[1.], [5.], [7.]]}) def test_runtime_batch_size_matches(self): price1 = fc.numeric_column('price1') price2 = fc.numeric_column('price2') with ops.Graph().as_default(): features = { 'price1': array_ops.placeholder(dtype=dtypes.int64), # batchsize = 2 'price2': array_ops.placeholder(dtype=dtypes.int64), # batchsize = 2 } net = df.DenseFeatures([price1, price2])(features) with _initialized_session() as sess: sess.run( net, feed_dict={ features['price1']: [[1.], [5.]], features['price2']: [[1.], [5.]], }) def test_multiple_layers_with_same_embedding_column(self): some_sparse_column = fc.categorical_column_with_hash_bucket( 'sparse_feature', hash_bucket_size=5) some_embedding_column = fc.embedding_column( some_sparse_column, dimension=10) with ops.Graph().as_default(): features = { 'sparse_feature': [['a'], ['x']], } all_cols = [some_embedding_column] df.DenseFeatures(all_cols)(features) df.DenseFeatures(all_cols)(features) # Make sure that 2 variables get created in this case. self.assertEqual(2, len(ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES))) expected_var_names = [ 'dense_features/sparse_feature_embedding/embedding_weights:0', 'dense_features_1/sparse_feature_embedding/embedding_weights:0' ] self.assertItemsEqual( expected_var_names, [v.name for v in ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES)]) @test_util.run_deprecated_v1 def test_multiple_layers_with_same_shared_embedding_column(self): categorical_column_a = fc.categorical_column_with_identity( key='aaa', num_buckets=3) categorical_column_b = fc.categorical_column_with_identity( key='bbb', num_buckets=3) embedding_dimension = 2 embedding_column_b, embedding_column_a = fc.shared_embedding_columns_v2( [categorical_column_b, categorical_column_a], dimension=embedding_dimension) with ops.Graph().as_default(): features = { 'aaa': sparse_tensor.SparseTensor( indices=((0, 0), (1, 0), (1, 1)), values=(0, 1, 0), dense_shape=(2, 2)), 'bbb': sparse_tensor.SparseTensor( indices=((0, 0), (1, 0), (1, 1)), values=(1, 2, 1), dense_shape=(2, 2)), } all_cols = [embedding_column_a, embedding_column_b] df.DenseFeatures(all_cols)(features) df.DenseFeatures(all_cols)(features) # Make sure that only 1 variable gets created in this case. self.assertEqual(1, len(ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES))) self.assertItemsEqual( ['aaa_bbb_shared_embedding:0'], [v.name for v in ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES)]) @test_util.run_deprecated_v1 def test_multiple_layers_with_same_shared_embedding_column_diff_graphs(self): categorical_column_a = fc.categorical_column_with_identity( key='aaa', num_buckets=3) categorical_column_b = fc.categorical_column_with_identity( key='bbb', num_buckets=3) embedding_dimension = 2 embedding_column_b, embedding_column_a = fc.shared_embedding_columns_v2( [categorical_column_b, categorical_column_a], dimension=embedding_dimension) all_cols = [embedding_column_a, embedding_column_b] with ops.Graph().as_default(): features = { 'aaa': sparse_tensor.SparseTensor( indices=((0, 0), (1, 0), (1, 1)), values=(0, 1, 0), dense_shape=(2, 2)), 'bbb': sparse_tensor.SparseTensor( indices=((0, 0), (1, 0), (1, 1)), values=(1, 2, 1), dense_shape=(2, 2)), } df.DenseFeatures(all_cols)(features) # Make sure that only 1 variable gets created in this case. self.assertEqual(1, len(ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES))) with ops.Graph().as_default(): features1 = { 'aaa': sparse_tensor.SparseTensor( indices=((0, 0), (1, 0), (1, 1)), values=(0, 1, 0), dense_shape=(2, 2)), 'bbb': sparse_tensor.SparseTensor( indices=((0, 0), (1, 0), (1, 1)), values=(1, 2, 1), dense_shape=(2, 2)), } df.DenseFeatures(all_cols)(features1) # Make sure that only 1 variable gets created in this case. self.assertEqual(1, len(ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES))) self.assertItemsEqual( ['aaa_bbb_shared_embedding:0'], [v.name for v in ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES)]) @test_util.run_deprecated_v1 def test_with_1d_sparse_tensor(self): embedding_values = ( (1., 2., 3., 4., 5.), # id 0 (6., 7., 8., 9., 10.), # id 1 (11., 12., 13., 14., 15.) # id 2 ) def _initializer(shape, dtype, partition_info=None): del shape, dtype, partition_info return embedding_values # price has 1 dimension in dense_features price = fc.numeric_column('price') # one_hot_body_style has 3 dims in dense_features. body_style = fc.categorical_column_with_vocabulary_list( 'body-style', vocabulary_list=['hardtop', 'wagon', 'sedan']) one_hot_body_style = fc.indicator_column(body_style) # embedded_body_style has 5 dims in dense_features. country = fc.categorical_column_with_vocabulary_list( 'country', vocabulary_list=['US', 'JP', 'CA']) embedded_country = fc.embedding_column( country, dimension=5, initializer=_initializer) # Provides 1-dim tensor and dense tensor. features = { 'price': constant_op.constant([ 11., 12., ]), 'body-style': sparse_tensor.SparseTensor( indices=((0,), (1,)), values=('sedan', 'hardtop'), dense_shape=(2,)), # This is dense tensor for the categorical_column. 'country': constant_op.constant(['CA', 'US']), } self.assertEqual(1, features['price'].shape.ndims) self.assertEqual(1, features['body-style'].dense_shape.get_shape()[0]) self.assertEqual(1, features['country'].shape.ndims) net = df.DenseFeatures([price, one_hot_body_style, embedded_country])( features) self.assertEqual(1 + 3 + 5, net.shape[1]) with _initialized_session() as sess: # Each row is formed by concatenating `embedded_body_style`, # `one_hot_body_style`, and `price` in order. self.assertAllEqual([[0., 0., 1., 11., 12., 13., 14., 15., 11.], [1., 0., 0., 1., 2., 3., 4., 5., 12.]], sess.run(net)) @test_util.run_deprecated_v1 def test_with_1d_unknown_shape_sparse_tensor(self): embedding_values = ( (1., 2.), # id 0 (6., 7.), # id 1 (11., 12.) # id 2 ) def _initializer(shape, dtype, partition_info=None): del shape, dtype, partition_info return embedding_values # price has 1 dimension in dense_features price = fc.numeric_column('price') # one_hot_body_style has 3 dims in dense_features. body_style = fc.categorical_column_with_vocabulary_list( 'body-style', vocabulary_list=['hardtop', 'wagon', 'sedan']) one_hot_body_style = fc.indicator_column(body_style) # embedded_body_style has 5 dims in dense_features. country = fc.categorical_column_with_vocabulary_list( 'country', vocabulary_list=['US', 'JP', 'CA']) embedded_country = fc.embedding_column( country, dimension=2, initializer=_initializer) # Provides 1-dim tensor and dense tensor. features = { 'price': array_ops.placeholder(dtypes.float32), 'body-style': array_ops.sparse_placeholder(dtypes.string), # This is dense tensor for the categorical_column. 'country': array_ops.placeholder(dtypes.string), } self.assertIsNone(features['price'].shape.ndims) self.assertIsNone(features['body-style'].get_shape().ndims) self.assertIsNone(features['country'].shape.ndims) price_data = np.array([11., 12.]) body_style_data = sparse_tensor.SparseTensorValue( indices=((0,), (1,)), values=('sedan', 'hardtop'), dense_shape=(2,)) country_data = np.array([['US'], ['CA']]) net = df.DenseFeatures([price, one_hot_body_style, embedded_country])( features) self.assertEqual(1 + 3 + 2, net.shape[1]) with _initialized_session() as sess: # Each row is formed by concatenating `embedded_body_style`, # `one_hot_body_style`, and `price` in order. self.assertAllEqual( [[0., 0., 1., 1., 2., 11.], [1., 0., 0., 11., 12., 12.]], sess.run( net, feed_dict={ features['price']: price_data, features['body-style']: body_style_data, features['country']: country_data })) @test_util.run_deprecated_v1 def test_with_rank_0_feature(self): # price has 1 dimension in dense_features price = fc.numeric_column('price') features = { 'price': constant_op.constant(0), } self.assertEqual(0, features['price'].shape.ndims) # Static rank 0 should fail with self.assertRaisesRegexp(ValueError, 'Feature .* cannot have rank 0'): df.DenseFeatures([price])(features) # Dynamic rank 0 should fail features = { 'price': array_ops.placeholder(dtypes.float32), } net = df.DenseFeatures([price])(features) self.assertEqual(1, net.shape[1]) with _initialized_session() as sess: with self.assertRaisesOpError('Feature .* cannot have rank 0'): sess.run(net, feed_dict={features['price']: np.array(1)}) if __name__ == '__main__': test.main() ``` #### File: python/training/quantize_training_test.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from tensorflow.python.client import session from tensorflow.python.framework import constant_op from tensorflow.python.framework import importer from tensorflow.python.framework import ops from tensorflow.python.framework import test_util from tensorflow.python.ops import math_ops from tensorflow.python.ops import variables from tensorflow.python.platform import test from tensorflow.python.training import quantize_training from tensorflow.python.training import saver as saver_module class PywrapQuantizeTrainingTest(test.TestCase): # Mainly to verify the python interface is working. # More tests for this function can be found in the related c++ tests. def testQuantizeTraining(self): with session.Session() as sess: a = constant_op.constant(6.0, shape=[1, 1]) b = constant_op.constant(7.0, shape=[1, 1]) c = math_ops.matmul(a, b, name='matmul') self.assertEquals(c.eval(), 42.0) self.assertEquals(len(sess.graph_def.node), 3) result = quantize_training.do_quantize_training_on_graphdef( sess.graph_def, 8) # We just want to guarantee that some rewrite happened. self.assertGreater(len(result.node), 3) # Test that save/restoring works for EMA variables generated in the # quantized training rewrite. @test_util.run_v1_only('b/120545219') def testQuantizedSaveRestore(self): save_path = os.path.join(self.get_temp_dir(), 'quantized_save_restore') g = ops.Graph() with session.Session(graph=g) as sess: a = constant_op.constant(6.0, shape=[1, 1], name='a') b = variables.VariableV1( constant_op.constant(7.0, shape=[1, 1]), name='b') c = math_ops.matmul(a, b, name='matmul') init_op = variables.global_variables_initializer() saver = saver_module.Saver({'b': b}) result = quantize_training.do_quantize_training_on_graphdef( sess.graph_def, 8) with ops.Graph().as_default() as g, session.Session(graph=g) as sess: _ = importer.import_graph_def(result, name='') # Initialize the variable. self.evaluate(g.get_operation_by_name(init_op.name)) # Run the graph for one step to assign values to the quantization min/max # variables. self.evaluate(g.get_tensor_by_name(c.name)) saver.save(sess, save_path) with ops.Graph().as_default() as g, session.Session(graph=g) as sess: _ = importer.import_graph_def(result, name='') # When we restore the saved variabled, the quantization variables should # be restored as well. saver.restore(sess, save_path) self.assertEquals(7.0, sess.run(g.get_tensor_by_name('b:0'))) self.assertEquals(6.0, sess.run(g.get_tensor_by_name('a/Min/Variable:0'))) self.assertEquals(6.0, sess.run(g.get_tensor_by_name('a/Max/Variable:0'))) self.assertEquals(7.0, sess.run(g.get_tensor_by_name('b/read/Min/Variable:0'))) self.assertEquals(7.0, sess.run(g.get_tensor_by_name('b/read/Max/Variable:0'))) if __name__ == '__main__': test.main() ```
{ "source": "joshzarrabi/covid-publishing-api", "score": 3 }
#### File: joshzarrabi/covid-publishing-api/config.py ```python from app.utils.logging import file_logger, client_logger from decouple import config as env_conf import logging # To use this config, set up a local Postgres server on 127.0.0.1 port 5432, make a database # called "data", and create a user named "postgres" with no password and all privileges. class LocalPSQLConfig: @property def SQLALCHEMY_DATABASE_URI(self): DB_USER = 'postgres' DB_PASSWORD = '' DB_HOST = '127.0.0.1' DB_PORT = '5432' DB_NAME = 'data' return 'postgresql+psycopg2://{}:{}@{}:{}/{}'.\ format(DB_USER, DB_PASSWORD, DB_HOST, DB_PORT, DB_NAME) SQLALCHEMY_TRACK_MODIFICATIONS = False SQLALCHEMY_RECORD_QUERIES = True SECRET_KEY = env_conf("SECRET_KEY", cast=str, default="12345") # by default, access tokens do not expire JWT_ACCESS_TOKEN_EXPIRES = env_conf('JWT_ACCESS_TOKEN_EXPIRES', cast=int, default=False) API_WEBHOOK_URL = env_conf('API_WEBHOOK_URL', cast=str, default='') SLACK_API_TOKEN = env_conf('SLACK_API_TOKEN', cast=str, default='') SLACK_CHANNEL = env_conf('SLACK_CHANNEL', cast=str, default='') @staticmethod def init_app(app): # The default Flask logger level is set at ERROR, so if you want to see # INFO level or DEBUG level logs, you need to lower the main loggers # level first. app.logger.setLevel(logging.DEBUG) app.logger.addHandler(file_logger) app.logger.addHandler(client_logger) class Production: @property def SQLALCHEMY_DATABASE_URI(self): DB_USER = env_conf('DATABASE_USER') DB_PASSWORD = env_conf('DATABASE_PASS') DB_HOST = env_conf('DATABASE_HOST') DB_PORT = env_conf('DATABASE_PORT') DB_NAME = env_conf('DATABASE_NAME') return 'postgresql+psycopg2://{}:{}@{}:{}/{}'.\ format(DB_USER, DB_PASSWORD, DB_HOST, DB_PORT, DB_NAME) SQLALCHEMY_TRACK_MODIFICATIONS = False SQLALCHEMY_RECORD_QUERIES = True SECRET_KEY = env_conf("SECRET_KEY", cast=str, default="12345") # by default, access tokens do not expire JWT_ACCESS_TOKEN_EXPIRES = env_conf('JWT_ACCESS_TOKEN_EXPIRES', cast=int, default=False) API_WEBHOOK_URL = env_conf('API_WEBHOOK_URL', cast=str, default='') SLACK_API_TOKEN = env_conf('SLACK_API_TOKEN', cast=str, default='') SLACK_CHANNEL = env_conf('SLACK_CHANNEL', cast=str, default='') @staticmethod def init_app(app): # The default Flask logger level is set at ERROR, so if you want to see # INFO level or DEBUG level logs, you need to lower the main loggers # level first. app.logger.setLevel(logging.DEBUG) app.logger.addHandler(file_logger) app.logger.addHandler(client_logger) class Testing: """Configuration for running the test suite""" TESTING = True DEBUG = True @property def SQLALCHEMY_DATABASE_URI(self): DB_USER = env_conf('DATABASE_USER') DB_PASSWORD = env_conf('DATABASE_PASS') DB_HOST = env_conf('DATABASE_HOST') DB_PORT = env_conf('DATABASE_PORT') DB_NAME = env_conf('DATABASE_NAME') return 'postgresql+psycopg2://{}:{}@{}:{}/{}'.\ format(DB_USER, DB_PASSWORD, DB_HOST, DB_PORT, DB_NAME) SQLALCHEMY_TRACK_MODIFICATIONS = False SQLALCHEMY_RECORD_QUERIES = True SECRET_KEY = env_conf("SECRET_KEY", cast=str, default="12345") # by default, access tokens do not expire JWT_ACCESS_TOKEN_EXPIRES = env_conf('JWT_ACCESS_TOKEN_EXPIRES', cast=int, default=False) API_WEBHOOK_URL = env_conf('API_WEBHOOK_URL', cast=str, default='') SLACK_API_TOKEN = env_conf('SLACK_API_TOKEN', cast=str, default='') SLACK_CHANNEL = env_conf('SLACK_CHANNEL', cast=str, default='') @staticmethod def init_app(app): # The default Flask logger level is set at ERROR, so if you want to see # INFO level or DEBUG level logs, you need to lower the main loggers # level first. app.logger.setLevel(logging.DEBUG) app.logger.addHandler(file_logger) app.logger.addHandler(client_logger) class Develop: """Development config geared towards docker.""" @property def SQLALCHEMY_DATABASE_URI(self): DB_USER = "deploy" DB_PASSWORD = "<PASSWORD>" DB_HOST = "db" DB_PORT = "5432" DB_NAME = "stories" return 'postgresql+psycopg2://{}:{}@{}:{}/{}'.\ format(DB_USER, DB_PASSWORD, DB_HOST, DB_PORT, DB_NAME) SQLALCHEMY_TRACK_MODIFICATIONS = False SQLALCHEMY_RECORD_QUERIES = True API_WEBHOOK_URL = env_conf('API_WEBHOOK_URL', cast=str, default='') SLACK_API_TOKEN = env_conf('SLACK_API_TOKEN', cast=str, default='') SLACK_CHANNEL = env_conf('SLACK_CHANNEL', cast=str, default='') # DEBUG = True # API configurations SECRET_KEY = env_conf("SECRET_KEY", cast=str, default="12345") # by default, access tokens do not expire JWT_ACCESS_TOKEN_EXPIRES = env_conf('JWT_ACCESS_TOKEN_EXPIRES', cast=int, default=False) @staticmethod def init_app(app): """Initiates application.""" app.logger.setLevel(logging.DEBUG) app.logger.addHandler(client_logger) app.logger.addHandler(file_logger) ``` #### File: migrations/versions/cc91b057d1ee_renaming_states_tab_2_columns.py ```python from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '<KEY>' down_revision = '<KEY>' branch_labels = None depends_on = None # Manually written to do a rename instead of the Alembic-autogenerated drop/add def upgrade(): op.alter_column('states', 'totalTestResultsColumns', new_column_name='covidTrackingProjectPreferredTotalTestField') op.alter_column('states', 'totalTestResultsUnits', new_column_name='covidTrackingProjectPreferredTotalTestUnits') def downgrade(): op.alter_column('states', 'covidTrackingProjectPreferredTotalTestField', new_column_name='totalTestResultsColumns') op.alter_column('states', 'covidTrackingProjectPreferredTotalTestUnits', new_column_name='totalTestResultsUnits') ``` #### File: migrations/versions/da977436076c_rename_date_to_datadate.py ```python from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = 'da977436076c' down_revision = '0d412b93<PASSWORD>' branch_labels = None depends_on = None def upgrade(): op.alter_column('coreData', 'date', nullable=False, new_column_name='dataDate') def downgrade(): op.alter_column('coreData', 'dataDate', nullable=False, new_column_name='date') ``` #### File: tests/app/editdiff_test.py ```python from datetime import datetime import pytz from app import db from app.models.data import Batch, State, CoreData from app.utils.editdiff import EditDiff, ChangedValue, ChangedRow def test_editdiff(app): with app.app_context(): changed_values = [ChangedValue(field="positive", old=123, new=456), ChangedValue(field="negative", old=555, new=666)] changed_rows = [ChangedRow(date="20200903", state="CA", changed_values=changed_values)] ed = EditDiff(changed_rows, None) output = ed.plain_text_format() assert "Rows edited: 1" in output assert "CA 20200903" in output assert "positive: 456 (was 123)" in output assert "New rows" not in output assert not output.startswith("\n") # ensure no leading newlines nys = State(state='NY', totalTestResultsFieldDbColumn="posNeg") bat = Batch(batchNote='test', createdAt=datetime.now(), isPublished=False, isRevision=False) db.session.add(bat) db.session.add(nys) db.session.flush() date1 = datetime(2020, 5, 4, 20, 3, tzinfo=pytz.UTC) core_data_row = CoreData( lastUpdateIsoUtc=date1.isoformat(), dateChecked=date1.isoformat(), date=date1, state='NY', batchId=bat.batchId, positive=20, negative=5) date2 = datetime(2020, 5, 5, 20, 3, tzinfo=pytz.UTC) core_data_row2 = CoreData( lastUpdateIsoUtc=date2.isoformat(), dateChecked=date2.isoformat(), date=date2, state='NY', batchId=bat.batchId, positive=25, negative=5) new_rows = [core_data_row, core_data_row2] ed = EditDiff(changed_rows, new_rows) output = ed.plain_text_format() assert "Rows edited: 1" in output assert "New rows: 2" in output assert f"NY {date1.strftime('%Y-%m-%d')}\nNY {date2.strftime('%Y-%m-%d')}" in output ``` #### File: tests/app/edit_test.py ```python from flask import json, jsonify from app import db from app.api.data import any_existing_rows from app.models.data import * from common import * import datetime def test_edit_state_metadata(app, headers, requests_mock): client = app.test_client() # write some initial data example_filename = os.path.join(os.path.dirname(__file__), 'data.json') with open(example_filename) as f: payload_json_str = f.read() resp = client.post( "/api/v1/batches", data=payload_json_str, content_type='application/json', headers=headers) assert resp.status_code == 201 # we should've written 56 states, 4 core data rows, 1 batch resp = client.get('/api/v1/public/states/info') assert len(resp.json) == 56 assert resp.json[0]['state'] == "AK" assert resp.json[0]['twitter'] == "@Alaska_DHSS" # make a states metadata edit request updating the twitter account for AK state_data = { 'states': [{ 'state': 'AK', 'twitter': 'AlaskaNewTwitter' }] } # ensure the webhook is called on edit webhook_url = 'http://example.com/web/hook' app.config['API_WEBHOOK_URL'] = webhook_url requests_mock.get(webhook_url, json={'it': 'worked'}) resp = client.post( "/api/v1/states/edit", data=json.dumps(state_data), content_type='application/json', headers=headers) assert resp.status_code == 201 assert len(resp.json['states']) == 1 assert resp.json['states'][0]['state'] == "AK" assert resp.json['states'][0]['twitter'] == "AlaskaNewTwitter" assert requests_mock.call_count == 1 def test_edit_core_data(app, headers, slack_mock, requests_mock): client = app.test_client() # Write a batch containing the above data, two days for NY and WA, publish it resp = client.post( "/api/v1/batches", data=json.dumps(daily_push_ny_wa_two_days()), content_type='application/json', headers=headers) assert resp.status_code == 201 batch_id = resp.json['batch']['batchId'] assert slack_mock.chat_postMessage.call_count == 1 # Publish the new batch resp = client.post("/api/v1/batches/{}/publish".format(batch_id), headers=headers) assert resp.status_code == 201 assert slack_mock.chat_postMessage.call_count == 2 # make an edit batch for NY for yesterday # ensure the webhook is called on edit webhook_url = 'http://example.com/web/hook' app.config['API_WEBHOOK_URL'] = webhook_url requests_mock.get(webhook_url, json={'it': 'worked'}) resp = client.post( "/api/v1/batches/edit", data=json.dumps(edit_push_ny_yesterday()), content_type='application/json', headers=headers) assert resp.status_code == 201 assert slack_mock.chat_postMessage.call_count == 3 assert requests_mock.call_count == 1 batch_id = resp.json['batch']['batchId'] assert resp.json['batch']['user'] == 'testing' # test that getting the states daily for NY has the UNEDITED data for yesterday resp = client.get("/api/v1/public/states/NY/daily") assert len(resp.json) == 2 unedited = resp.json for day_data in resp.json: assert day_data['date'] in ['2020-05-25', '2020-05-24'] if day_data['date'] == '2020-05-25': assert day_data['positive'] == 20 assert day_data['negative'] == 5 elif day_data['date'] == '2020-05-24': assert day_data['positive'] == 15 assert day_data['negative'] == 4 # Publish the edit batch resp = client.post("/api/v1/batches/{}/publish".format(batch_id), headers=headers) assert resp.status_code == 201 # test that getting the states daily for NY has the edited data for yesterday resp = client.get("/api/v1/public/states/NY/daily") assert len(resp.json) == 2 for day_data in resp.json: assert day_data['date'] in ['2020-05-25', '2020-05-24'] if day_data['date'] == '2020-05-25': assert day_data['positive'] == 20 assert day_data['negative'] == 5 elif day_data['date'] == '2020-05-24': assert day_data['positive'] == 16 assert day_data['negative'] == 4 def test_edit_core_data_from_states_daily_empty(app, headers, slack_mock, requests_mock): client = app.test_client() # Write a batch containing the above data, two days for NY and WA, publish it resp = client.post( "/api/v1/batches", data=json.dumps(daily_push_ny_wa_two_days()), content_type='application/json', headers=headers) assert resp.status_code == 201 batch_id = resp.json['batch']['batchId'] assert slack_mock.chat_postMessage.call_count == 1 # Publish the new batch resp = client.post("/api/v1/batches/{}/publish".format(batch_id), headers=headers) assert resp.status_code == 201 assert slack_mock.chat_postMessage.call_count == 2 # make an empty edit batch for NY for yesterday containing no edits # ensure the webhook is not called because the edit fails webhook_url = 'http://example.com/web/hook' app.config['API_WEBHOOK_URL'] = webhook_url requests_mock.get(webhook_url, json={'it': 'worked'}) resp = client.post( "/api/v1/batches/edit_states_daily", data=json.dumps(edit_push_ny_today_empty()), content_type='application/json', headers=headers) assert resp.status_code == 400 assert slack_mock.chat_postMessage.call_count == 2 # logging unchanged edit to Slack assert requests_mock.call_count == 0 # should not call the webhook assert "no edits detected" in resp.data.decode("utf-8") def test_edit_core_data_from_states_daily(app, headers, slack_mock, requests_mock): client = app.test_client() # Write a batch containing the above data, two days for NY and WA, publish it resp = client.post( "/api/v1/batches", data=json.dumps(daily_push_ny_wa_two_days()), content_type='application/json', headers=headers) assert resp.status_code == 201 batch_id = resp.json['batch']['batchId'] assert slack_mock.chat_postMessage.call_count == 1 # Publish the new batch resp = client.post("/api/v1/batches/{}/publish".format(batch_id), headers=headers) assert resp.status_code == 201 assert slack_mock.chat_postMessage.call_count == 2 assert slack_mock.files_upload.call_count == 0 # make an edit batch for NY for yesterday, and leave today alone # ensure the webhook is not called because the edit fails webhook_url = 'http://example.com/web/hook' app.config['API_WEBHOOK_URL'] = webhook_url requests_mock.get(webhook_url, json={'it': 'worked'}) resp = client.post( "/api/v1/batches/edit_states_daily", data=json.dumps(edit_push_ny_yesterday_unchanged_today()), content_type='application/json', headers=headers) assert resp.status_code == 201 assert slack_mock.chat_postMessage.call_count == 3 assert slack_mock.files_upload.call_count == 1 assert requests_mock.call_count == 1 assert "state: NY" in slack_mock.chat_postMessage.call_args[1]['text'] assert "Rows edited: 1" in slack_mock.files_upload.call_args[1]['content'] assert "NY 2020-05-24" in slack_mock.files_upload.call_args[1]['content'] assert "positive: 16 (was 15)" in slack_mock.files_upload.call_args[1]['content'] assert "inIcuCurrently: None (was 37)" in slack_mock.files_upload.call_args[1]['content'] batch_id = resp.json['batch']['batchId'] assert resp.json['batch']['user'] == 'testing' # we've changed positive and removed inIcuCurrently, so both should count as changed assert len(resp.json['changedFields']) == 2 assert 'positive' in resp.json['changedFields'] assert 'inIcuCurrently' in resp.json['changedFields'] assert resp.json['changedDates'] == '5/24/20' # confirm that the edit batch only contains one row with yesterday's data with app.app_context(): batch_obj = Batch.query.get(batch_id) assert len(batch_obj.coreData) == 1 assert batch_obj.coreData[0].date == datetime.date(2020,5,24) assert batch_obj.coreData[0].state == 'NY' assert batch_obj.link == 'https://example.com' assert batch_obj.user == 'testing' assert batch_obj.logCategory == 'State Updates' # make sure metadata got saved correctly also. This should match the above test cases # in the returned JSON assert 'positive' in batch_obj.changedFields assert 'inIcuCurrently' in batch_obj.changedFields assert batch_obj.changedDatesMin == datetime.date(2020,5,24) assert batch_obj.changedDatesMax == datetime.date(2020,5,24) assert batch_obj.numRowsEdited == 1 # getting the states daily for NY has the edited data for yesterday and unchanged for today, # and the last batch should've been published as part of the "edit from states daily" endpoint resp = client.get("/api/v1/public/states/NY/daily") assert len(resp.json) == 2 for day_data in resp.json: assert day_data['date'] in ['2020-05-25', '2020-05-24'] if day_data['date'] == '2020-05-25': assert day_data['positive'] == 20 assert day_data['negative'] == 5 assert day_data['inIcuCurrently'] == 33 elif day_data['date'] == '2020-05-24': assert day_data['positive'] == 16 assert day_data['negative'] == 4 # this value was blanked out in the edit, so it should be removed now assert 'inIcuCurrently' not in day_data # test editing 2 non-consecutive dates resp = client.post( "/api/v1/batches/edit_states_daily", data=json.dumps(edit_push_ny_today_and_before_yesterday()), content_type='application/json', headers=headers) assert resp.json['changedFields'] == ['inIcuCurrently'] assert resp.json['changedDates'] == '5/20/20 - 5/25/20' assert resp.json['numRowsEdited'] == 2 assert resp.json['user'] == 'testing' # check to see if the row for the new date (BEFORE_YESTERDAY) was added resp = client.get("/api/v1/public/states/NY/daily") found_new_date = False for day_data in resp.json: if day_data['date'] == '2020-05-20': found_new_date = True assert day_data['positive'] == 10 assert day_data['negative'] == 2 assert found_new_date is True # the slack notification should note the addition of the new row assert "New rows: 1" in slack_mock.files_upload.call_args[1]['content'] assert "NY 2020-05-20" in slack_mock.files_upload.call_args[1]['content'] # test that sending an edit batch with multiple states fails resp = client.post( "/api/v1/batches/edit_states_daily", data=json.dumps(edit_push_multiple_states()), content_type='application/json', headers=headers) assert resp.status_code == 400 # test that sending an edit batch with no CoreData rows fails bad_data = edit_push_multiple_states() bad_data['coreData'] = [] resp = client.post( "/api/v1/batches/edit_states_daily", data=json.dumps(bad_data), content_type='application/json', headers=headers) assert resp.status_code == 400 def test_edit_core_data_from_states_daily_timestamps_only(app, headers, slack_mock): client = app.test_client() # Write a batch containing the above data, two days for NY and WA, publish it resp = client.post( "/api/v1/batches", data=json.dumps(daily_push_ny_wa_two_days()), content_type='application/json', headers=headers) assert resp.status_code == 201 batch_id = resp.json['batch']['batchId'] assert slack_mock.chat_postMessage.call_count == 1 # Publish the new batch resp = client.post("/api/v1/batches/{}/publish".format(batch_id), headers=headers) assert resp.status_code == 201 assert slack_mock.chat_postMessage.call_count == 2 # make an edit batch for NY for yesterday, and leave today alone resp = client.post( "/api/v1/batches/edit_states_daily", data=json.dumps(edit_push_ny_yesterday_change_only_timestamp()), content_type='application/json', headers=headers) assert resp.status_code == 201 assert slack_mock.chat_postMessage.call_count == 3 assert "state: NY" in slack_mock.chat_postMessage.call_args[1]['text'] batch_id = resp.json['batch']['batchId'] assert resp.json['batch']['user'] == 'testing' # we've changed only lastUpdateIsoUtc, which is lastUpdateTime on output assert len(resp.json['changedFields']) == 1 assert 'lastUpdateTime' in resp.json['changedFields'] def test_edit_core_data_from_states_daily_partial_update(app, headers, slack_mock): ''' Verify that when sending only part of the fileds, then these fields are updated, and the other are set with the most recent published batch values ''' # setup client = app.test_client() # prep # Write a batch containing the above data, two days for NY and WA, publish it resp = client.post( "/api/v1/batches", data=json.dumps(daily_push_ny_wa_two_days()), content_type='application/json', headers=headers) assert resp.status_code == 201 batch_id = resp.json['batch']['batchId'] assert slack_mock.chat_postMessage.call_count == 1 # Publish the new batch resp = client.post("/api/v1/batches/{}/publish".format(batch_id), headers=headers) assert resp.status_code == 201 assert slack_mock.chat_postMessage.call_count == 2 # test # make an edit batch for NY for yesterday, and leave today alone resp = client.post( "/api/v1/batches/edit_states_daily", data=json.dumps(edit_push_ny_yesterday_change_only_positive()), content_type='application/json', headers=headers) # verify assert resp.status_code == 201 assert slack_mock.chat_postMessage.call_count == 3 assert "state: NY" in slack_mock.chat_postMessage.call_args[1]['text'] batch_id = resp.json['batch']['batchId'] assert resp.json['batch']['user'] == 'testing' # submitted a single field, and that's the only field that should change assert len(resp.json['changedFields']) == 1 assert 'positive' in resp.json['changedFields'] # test that getting the states daily for NY has the UNEDITED data for yesterday resp = client.get("/api/v1/public/states/NY/daily") assert len(resp.json) == 2 yesterday = resp.json[1] assert yesterday['date'] == '2020-05-24' assert yesterday['positive'] == 16 assert yesterday['negative'] == 4 assert yesterday['inIcuCurrently'] == 37 # test # make exactly the same edit resp = client.post( "/api/v1/batches/edit_states_daily", data=json.dumps(edit_push_ny_yesterday_change_only_positive()), content_type='application/json', headers=headers) # verify assert resp.status_code == 400 assert slack_mock.chat_postMessage.call_count == 3 assert "no edits detected" in resp.data.decode("utf-8") def test_edit_with_valid_and_unknown_fields(app, headers, slack_mock): ''' Verify that when sending edit (or insert) requests without any fields that are part of the object the edit requests is rejected ''' # setup client = app.test_client() # prep # Write a batch containing data for NY, WA for 2 days resp = client.post( "/api/v1/batches", data=json.dumps(daily_push_ny_wa_two_days()), content_type='application/json', headers=headers) assert resp.status_code == 201 batch_id = resp.json['batch']['batchId'] assert slack_mock.chat_postMessage.call_count == 1 # Publish the new batch resp = client.post("/api/v1/batches/{}/publish".format(batch_id), headers=headers) assert resp.status_code == 201 assert slack_mock.chat_postMessage.call_count == 2 # test # make an edit batch without any significant field resp = client.post( "/api/v1/batches/edit_states_daily", data=json.dumps(edit_unknown_fields()), content_type='application/json', headers=headers) # verify: nothing was edited assert resp.status_code == 400 assert slack_mock.chat_postMessage.call_count == 2 assert "no edits detected" in resp.data.decode("utf-8") ```
{ "source": "JoshZastrow/personality-analysis", "score": 3 }
#### File: JoshZastrow/personality-analysis/main.py ```python import streamlit as st import numpy as np import pandas as pd import altair as alt import matplotlib.pyplot as plt from typing import NamedTuple from collections import namedtuple as nt from dataclasses import dataclass from wordcloud import WordCloud from components.wordcloud import GroupedColorFunc @dataclass class SourceData: assessments: pd.DataFrame traits: pd.DataFrame users: pd.DataFrame """ assessments: assessment_id <int> domain <str> facet <str> asessee_id <int> assessor_id <int> assessee_name <str> assessor_name <str> rank <float> score <float> traits: trait_id <int> domain <str> facet <str> score <str> description <str> users: user_id <int> first_name <str> last_name <str> """ st.header("Personality Analysis") @st.cache def load_data() -> SourceData: ASSESSMENT_FPATH = "assets/big_5_data - assessments.csv" TRAITS_FPATH = "assets/big_5_data - traits.csv" USERS_FPATH = "assets/big_5_data - users.csv" assessments = pd.read_csv(ASSESSMENT_FPATH, index_col="assessment_id") traits = pd.read_csv(TRAITS_FPATH) users = pd.read_csv(USERS_FPATH, index_col="user_id") return SourceData(assessments, traits, users) data = load_data() users = data.users assessments = data.assessments traits = data.traits del data person_1 = st.selectbox("Select Candidate", users["first_name"].values) person_2 = st.selectbox("Select Observer", users["first_name"].values) col1, col2 = st.columns(2) def build_wordcloud(assessments: pd.DataFrame, person: str): domains = assessments.domain.unique() facets = ( assessments.drop_duplicates(subset=["facet"]) .loc[lambda d: d.domain != d.facet] .loc[:, ["domain", "facet"]] ) colors = ["steelblue", "orange", "silver", "red", "yellow"] color_to_words = { c: facets.loc[lambda x: x.domain == d, "facet"].to_list() for c, d in zip(colors, domains) } default_color = "grey" data = assessments.loc[lambda d: d.domain != d.facet].loc[ lambda d: d.assessee_name == person ] word_list = [] for _, row in data.iterrows(): word_list.extend([row.facet] * row["rank"]) np.random.shuffle(word_list) text = " ".join(word_list) wordcloud = WordCloud().generate(text) colorizer = GroupedColorFunc(color_to_words, default_color) wordcloud.recolor(color_func=colorizer) fig, ax = plt.subplots(figsize=(10, 5)) ax.imshow(wordcloud, interpolation="bilinear") ax.axis("off") return fig with col1: fig = build_wordcloud(assessments, person_1) st.markdown(f"### {person_1}") st.write(fig) with col2: fig = build_wordcloud(assessments, person_2) st.markdown(f"### {person_2}") st.write(fig) def define_metrics(assessments, person, columns) -> None: source_data = assessments.loc[lambda d: d.domain == d.facet].pivot( index="domain", columns=["assessee_name", "assessor_name"], values="rank", ) for idx, row in enumerate(source_data.iterrows()): domain = idx domain, data = row self_review = int( data[ (data.index.get_level_values(0) == person) & (data.index.get_level_values(1) == person) ].mean() ) peer_review = int( data[ (data.index.get_level_values(0) == person) & (data.index.get_level_values(1) != person) ].mean() ) delta = self_review - peer_review columns[idx].metric(domain, self_review, f"{delta} ({peer_review})") st.header(f"{person_1}'s Traits") columns = st.columns(5) define_metrics(assessments, person_1, columns) st.header(f"{person_2}'s Traits") columns = st.columns(5) define_metrics(assessments, person_2, columns) # st.markdown( # """ # There are three things to look at with these metrics. The first being # how we see ourselves, the second is how we are seen by our other, and the # third is how personalities influence our assessments. # ### Under Estimating Each Others Extraversion and Open Mindedness # One thing that is interesting is that while we both have high levels of # extraversion, we both gave ourselves higher scores than what we gave each other. # My own score is in the top 1%, 12% points higher than your assessment (87th percentile). # Meanwhile, your self-assessment came in at at 78, 40 points higher than my assessment (38). # One hypothesis is that we are less extroverted when we are around each other, even though we # both feel more extroverted. This dynamic plays out in the Openness to Experience as well. We are both # more open to experiences than we give each other credit for. # ### How Agreeable and Conscientious we see each other # In both traits, I gave higher marks to myself than you did, and I gave you # higher marks than you gave yourself. I pegged you at the top 2% of the most # agreeable people--16 points higher than your own assessment, and I scored you # 15 points higher on your own rating of conscientiousness. I scored myself higher # in both these areas as well. # Perhaps you hold a more realistic perspective on these traits for # both you and I. Low morality scores may indicate this perspective could be withheld, # leaving me with a higher sense of optimism. Then again, I do have an inherent sense # of optimism, a high level of trust combined with dominant extraversion may affect # my perception of agreeablness for both of us. # """ # ) # ## MOST UNIQUE CHARACTERISTICS ########################### # most_diff = ( # combined.sort_values("diff") # .loc[lambda d: ~(d.domain == d.facet)] # .tail(5) # .loc[ # :, # ["domain", "facet", "rank_josh", "rank_allie", "description"], # ] # ) # st.table(most_diff) # ######################################################## # lollipop_data = assessments.merge(traits, on=["domain", "facet", "score"]) # lollipop = alt.layer(data=lollipop_data).transform_filter( # filter={"field": "assessee_name", "oneOf": [person_1, person_2]} # ) # st.table(lollipop_data.head(1)) # for name, group in lollipop_data.groupby(['domain']): # lollipop += ( # alt.Chart() # .mark_line(color="grey") # .encode( # x="rank:Q", # y=alt.Y( # "facet", # sort=combined.sort_values("rank_josh", ascending=True).facet.values, # ), # detail="facet:N", # tooltip=["description"], # ) # ) # # Add points for life expectancy in 1955 & 2000 # lollipop += ( # alt.Chart() # .mark_point(size=100, opacity=1, filled=True) # .properties(width=800) # .encode( # x="rank", # y=alt.Y( # "facet", # sort=combined.sort_values("rank_josh", ascending=True).facet.values, # ), # color=alt.Color( # "name", # scale=alt.Scale( # domain=["Josh", "Allie"], range=["skyblue", "maroon"] # ), # ), # tooltip=["description"], # ) # .interactive() # ) # # st.table(assessments.head()) # st.altair_chart(lollipop) # ### RADAR CHARTS ######################################## import plotly.graph_objects as go domains = assessments.domain.drop_duplicates().to_list() domain_selection = st.radio("Select Domain:", options=domains) def build_radar_charts(assessments, person_1, person_2, domain, style="radar"): source_data = assessments.loc[lambda d: d.domain == domain] # Josh's perspective of Josh comp_1 = source_data.loc[ lambda d: (d.assessee_name == person_1) & (d.assessor_name == person_1) ].assign(analysis="{person_1} self review") # Allie's perspective of Josh comp_2 = source_data.loc[ lambda d: (d.assessee_name == person_1) & (d.assessor_name == person_2) ].assign(analysis="{person_2} peer review") # Allie's perspective of Allie comp_3 = source_data.loc[ lambda d: (d.assessee_name == person_2) & (d.assessor_name == person_2) ].assign(analysis="{person_2} self review") # Josh's perspective of Allie comp_4 = source_data.loc[ lambda d: (d.assessee_name == person_2) & (d.assessor_name == person_1) ].assign(analysis="{person_1} peer review") comp_1 = comp_1.groupby(["facet"]).mean()["rank"].reset_index() comp_2 = comp_2.groupby(["facet"]).mean()["rank"].reset_index() comp_3 = comp_3.groupby(["facet"]).mean()["rank"].reset_index() comp_4 = comp_4.groupby(["facet"]).mean()["rank"].reset_index() if style == "radar": fig1 = go.Figure() # Perpective of Josh fig1.add_trace( go.Scatterpolar( r=comp_1["rank"], theta=comp_1["facet"], fill="toself", name=f"{person_1}'s review ", ) ) fig1.add_trace( go.Scatterpolar( r=comp_3["rank"], theta=comp_3["facet"], fill="toself", name=f"{person_2}'s review", ) ) fig1.update_layout( title=dict(text=f"How We See Ourselves"), polar=dict(radialaxis=dict(visible=True, range=[0, 100])), showlegend=False, ) fig2 = go.Figure() fig2.add_trace( go.Scatterpolar( r=comp_2["rank"], theta=comp_2["facet"], fill="toself", name=f"{person_1}", ) ) fig2.add_trace( go.Scatterpolar( r=comp_4["rank"], theta=comp_4["facet"], fill="toself", name=f"{person_2}", ) ) fig2.update_layout( title=dict(text=f"How We See Each other"), polar=dict(radialaxis=dict(visible=True, range=[0, 100])), showlegend=False, ) fig3 = go.Figure() fig3.add_trace( go.Scatterpolar( r=comp_1["rank"], theta=comp_1["facet"], fill="toself", name=f"{person_1}", ) ) fig3.add_trace( go.Scatterpolar( r=comp_4["rank"], theta=comp_4["facet"], fill="toself", name=f"{person_2}", ) ) fig3.update_layout( title=dict(text=f"How {person_1} sees us"), polar=dict(radialaxis=dict(visible=True, range=[0, 100])), showlegend=False, ) fig4 = go.Figure() fig4.add_trace( go.Scatterpolar( r=comp_2["rank"], theta=comp_2["facet"], fill="toself", name=f"{person_1}", ) ) fig4.add_trace( go.Scatterpolar( r=comp_3["rank"], theta=comp_3["facet"], fill="toself", name=f"{person_2}", ) ) fig4.update_layout( title=dict(text=f"How {person_2} sees us"), polar=dict(radialaxis=dict(visible=True, range=[0, 100])), showlegend=False, ) fig5 = go.Figure() fig5.add_trace( go.Scatterpolar( r=comp_1["rank"], theta=comp_1["facet"], fill="toself", name=f"{person_1}", ) ) fig5.add_trace( go.Scatterpolar( r=comp_2["rank"], theta=comp_2["facet"], fill="toself", name=f"{person_2}", ) ) fig5.update_layout( title=dict(text=f"Who knows {person_1} best?"), polar=dict(radialaxis=dict(visible=True, range=[0, 100])), showlegend=False, ) fig6 = go.Figure() fig6.add_trace( go.Scatterpolar( r=comp_3["rank"], theta=comp_3["facet"], fill="toself", name=f"{person_1}", ) ) fig6.add_trace( go.Scatterpolar( r=comp_4["rank"], theta=comp_4["facet"], fill="toself", name=f"{person_2}", ) ) fig6.update_layout( title=dict(text=f"Who knows {person_2} best?"), polar=dict(radialaxis=dict(visible=True, range=[0, 100])), showlegend=False, ) return fig1, fig2, fig3, fig4, fig5, fig6 fig1, fig2, fig3, fig4, fig5, fig6 = build_radar_charts( assessments, person_1, person_2, domain_selection ) col1, col2 = st.columns(2) with col1: st.plotly_chart(fig1, use_container_width=True) with col2: st.plotly_chart(fig2, use_container_width=True) col3, col4 = st.columns(2) with col3: st.plotly_chart(fig3, use_container_width=True) with col4: st.plotly_chart(fig4, use_container_width=True) col5, col6 = st.columns(2) with col3: st.plotly_chart(fig5, use_container_width=True) with col4: st.plotly_chart(fig6, use_container_width=True) def build_comp_table(assessments, person_1, person_2) -> None: source_data = ( assessments.loc[lambda d: d.domain != d.facet] .loc[lambda d: d.assessee_name == d.assessor_name] .pivot( index="facet", columns=["assessee_name"], values="rank", ) .assign(diff=lambda x: abs(x[person_1] - x[person_2])) .sort_values("diff", ascending=False) .reset_index() # .drop(["diff"], axis=1) ) return source_data data = assessments.loc[lambda d: d.domain != d.facet].loc[ lambda d: d.assessee_name == d.assessor_name ] comp = build_comp_table(assessments, person_1, person_2) for name, group in assessments.groupby("domain"): source = group.loc[lambda d: d.assessor_name == person_2].loc[ :, ["assessee_name", "facet", "rank"] ] # st.table(source) bars = ( alt.Chart(source) .mark_bar() .encode( y="sum(rank):Q", x=alt.X("assessee_name:O", title="name"), color=alt.Color("assessee_name:N", title="test"), column=alt.Row("facet:N", sort="descending"), ) .configure_axisX(labelColor="white", tickColor="white") .configure_header( titleColor="white", titleFontSize=14, labelColor="white", labelFontSize=10, ) ) st.altair_chart(bars) ```
{ "source": "JoshZastrow/PromiseDate", "score": 3 }
#### File: PromiseDate/utils/print_functions.py ```python def print_columns(cols, selected): for c in range(0, len(cols) - 4, 4): for i in range(4): if cols[c + i] in selected: print('\x1b[1;31m{:30}\x1b[0m'.format(cols[c + i]), end='') else: print('{:30}'.format(cols[c + i]), end='') print() ```
{ "source": "JoshZero87/site", "score": 2 }
#### File: bsd/templatetags/bsd_tags.py ```python from __future__ import unicode_literals from django import template from bsd.models import get_bsd_event_url register = template.Library() @register.simple_tag def bsd_event_url(event_id_obfuscated): return get_bsd_event_url(event_id_obfuscated) ``` #### File: site/calls/signals.py ```python from __future__ import unicode_literals from django.db import transaction from django.db.models.signals import post_save from django.dispatch import receiver from django.utils import timezone from contacts.models import add_phone_opt_out, OptOutType from .models import CallAnswer, CallQuestion, CallResponse import logging logger = logging.getLogger(__name__) @receiver(post_save, sender=CallResponse) def call_response_post_save_handler(instance, **kwargs): call_response = instance """ Check if Call Response indicates Contact wants to Opt Out, or Contact phone is Wrong Number """ if ( call_response.question == CallQuestion.opt_out.value[0] and ( call_response.answer == CallAnswer.yes.value[0] ) ) or ( call_response.question == CallQuestion.talk_to_contact_why_not.value[0] and ( call_response.answer == CallAnswer.wrong_number.value[0] ) ): """Add Phone Opt Out for Contact phone number""" call = call_response.call contact = call.contact if contact.phone_number is not None: timestamp = timezone.now().strftime("%Y%m%d%H%M%S") source = 'Call Response: %s | Contact: %s | %s' % ( str(call_response.id), str(contact.id), timestamp, ) transaction.on_commit( lambda: add_phone_opt_out( contact.phone_number, OptOutType.calling, source, ) ) ``` #### File: endorsements/migrations/0008_auto_20170118_1803.py ```python from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion def create_election(apps, schema_editor): Election = apps.get_model('endorsements', 'Election') Election.objects.create(title='General Election 2016', is_active=False) Election.objects.create(title='Primary Election 2017', is_active=True) class Migration(migrations.Migration): dependencies = [ ('endorsements', '0007_auto_20161025_0022'), ] operations = [ migrations.CreateModel( name='Election', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=128)), ('is_active', models.BooleanField(default=False)), ], ), migrations.RunPython(create_election, reverse_code=migrations.RunPython.noop), migrations.AddField( model_name='candidate', name='election', field=models.ForeignKey(default=1, on_delete=django.db.models.deletion.CASCADE, to='endorsements.Election'), preserve_default=False, ), migrations.AddField( model_name='initiative', name='election', field=models.ForeignKey(default=1, on_delete=django.db.models.deletion.CASCADE, to='endorsements.Election'), preserve_default=False, ), ] ``` #### File: site/local_groups/admin_views.py ```python from django.contrib.auth.mixins import PermissionRequiredMixin from django.contrib.auth.models import User from django.db.models.signals import post_save from django.http import HttpResponseRedirect from django.urls import reverse_lazy from django.views.generic import FormView from .forms import GroupLeaderSyncForm import logging logger = logging.getLogger(__name__) class GroupLeaderSyncView(PermissionRequiredMixin, FormView): """Sync all Users to update their Group Leader affiliations""" ''' TODO: need to set request.current_app to self.admin_site.name? https://docs.djangoproject.com/en/1.10/ref/contrib/admin/#adding-views-to-admin-sites ''' form_class = GroupLeaderSyncForm login_url = reverse_lazy( 'admin:local_groups_localgroupaffiliation_changelist' ) permission_required = 'local_groups.add_localgroupaffiliation' success_url = reverse_lazy( 'admin:local_groups_localgroupaffiliation_changelist' ) template_name = 'admin/group_leader_sync.html' def form_valid(self, form): """Trigger post-save signal for all users to sync group leader roles""" users = User.objects.all() for user in users: post_save.send(User, instance=user) return HttpResponseRedirect(self.get_success_url()) ``` #### File: local_groups/migrations/0054_auto_20170829_1740.py ```python from __future__ import unicode_literals from django.db import migrations, models def set_signed_mou_version(apps, schema_editor): GroupsModel = apps.get_model('local_groups', 'Group') for group in GroupsModel.objects.all(): if group.status == 'approved' or group.status == 'signed-mou' and group.signed_mou_version == 'none': print group group.signed_mou_version = '1.0' group.save() def unset_signed_mou_version(apps, schema_editor): GroupsModel = apps.get_model('local_groups', 'Group') for group in GroupsModel.objects.all(): if group.status == 'approved' or group.status == 'signed-mou' and group.signed_mou_version == '1.0': group.signed_mou_version = 'none' group.save() class Migration(migrations.Migration): dependencies = [ ('local_groups', '0053_auto_20170829_1740'), ] operations = [ migrations.RunPython(set_signed_mou_version, reverse_code=unset_signed_mou_version) ] ``` #### File: nominations/migrations/0067_application_staff_20171218_2135.py ```python from __future__ import unicode_literals from django.db import migrations, models # Update all legacy data to fit new format def update_application_staff_data(apps, schema_editor): Application = apps.get_model('nominations', 'Application') for application in Application.objects.all(): if application.staff == "1": application.staff = "<NAME>" application.save() class Migration(migrations.Migration): dependencies = [ ('nominations', '0066_auto_20171212_1747'), ] operations = [ migrations.AlterField( model_name='application', name='staff', field=models.CharField(blank=True, max_length=64, null=True), ), migrations.RunPython(update_application_staff_data), ] ``` #### File: site/nominations/models.py ```python from __future__ import unicode_literals from ckeditor.fields import RichTextField from collections import defaultdict from django.conf import settings from django.contrib.auth.models import User from django.db import models from django.utils.encoding import python_2_unicode_compatible from enum import Enum, unique from localflavor.us.models import USStateField from local_groups.models import Group from pages.models import AlertLevels from phonenumber_field.modelfields import PhoneNumberField from wagtail.wagtailadmin.edit_handlers import FieldPanel from wagtail.wagtailcore.fields import RichTextField as WagtailRichTextField from wagtail.wagtailsnippets.models import register_snippet import datetime import logging logger = logging.getLogger(__name__) class Nomination(models.Model): """ A nomination form is filled out by the group with basic information about the group and what it will do to help the candidate. """ # TODO: move this into application model group_nomination_process = models.TextField( max_length=500, blank=False, null=True, verbose_name="Briefly describe your group's nomination process" ) STATUSES = ( ('incomplete', 'Incomplete'), ('complete', 'Complete'), ) status = models.CharField( max_length=16, choices=STATUSES, default='incomplete', blank=True ) def __unicode__(self): try: return self.application.candidate_first_name + ' ' + self.application.candidate_last_name + ' - ' + ' Nomination' except: return 'Nomination ' + str(self.pk) def save(self, *args, **kwargs): super(Nomination, self).save(*args, **kwargs) ''' Save the application to update statuses and do other conditional logic if the nomination has an application, save that application ''' if hasattr(self, 'application'): self.application.save() if self.nominationresponse_set.count() == 0: for q in NominationQuestion.objects.all(): self.nominationresponse_set.create(question=q) class NominationQuestion(models.Model): text = models.TextField() def __unicode__(self): return self.text class NominationResponse(models.Model): nomination = models.ForeignKey(Nomination) question = models.ForeignKey(NominationQuestion) response = models.TextField(max_length=1000) def __unicode__(self): return unicode(self.question) @register_snippet @python_2_unicode_compatible # provide equivalent __unicode__ and __str__ methods on Python 2 class NominationsPlatformAlert(models.Model): content = WagtailRichTextField() show = models.BooleanField( default=False, help_text='Show alert on nominations platform pages.' ) alert_level = models.IntegerField( choices=[x.value for x in AlertLevels], default=AlertLevels.warning.value[0], blank=False, null=False, help_text=""" Set the alert style corresponding to Bootstrap 3 alert levels. See: https://getbootstrap.com/docs/3.3/components/#alerts-dismissible """ ) panels = [ FieldPanel('content'), FieldPanel('show'), FieldPanel('alert_level') ] def __str__(self): return self.content class Questionnaire(models.Model): """ A platform questionnaire is filled out by the candidate with basic information and in-depth policy positions. """ STATUSES = ( ('incomplete', 'Incomplete'), ('complete', 'Complete'), ('sent', 'Sent to Candidate'), ) status = models.CharField(max_length=16, choices=STATUSES, default='incomplete', blank=True) # Candidate Information and Social Media candidate_first_name = models.CharField(max_length=255, null=True, blank=False, verbose_name="Candidate First Name") candidate_last_name = models.CharField(max_length=255, null=True, blank=False, verbose_name="Candidate Last Name") candidate_bio = models.TextField(max_length=1000, blank=False, null=False, verbose_name = "Candidate Bio") candidate_email = models.EmailField(null=True, blank=False, verbose_name="Candidate Email", max_length=255) candidate_phone = PhoneNumberField(null=True, blank=True, verbose_name="Candidate Phone Number") candidate_office = models.CharField(null=True, max_length=255, blank=False, verbose_name="Candidate Office") candidate_district = models.CharField(null=True, max_length=255, blank=True, verbose_name="Candidate District") candidate_party = models.CharField(null=True, max_length=255, blank=False, verbose_name="Candidate Party Affiliation") candidate_held_office = models.NullBooleanField( verbose_name="Has the candidate ever held public office?" ) candidate_is_member = models.NullBooleanField( verbose_name="Is candidate a member of Our Revolution?" ) candidate_city = models.CharField(null=True, max_length=255, blank=True, verbose_name="Candidate City") candidate_state = USStateField(max_length=2, null=True, blank=False, verbose_name="Candidate State") general_election_date = models.DateField(verbose_name = 'General Election Date', null = True, blank = False) primary_election_date = models.DateField(verbose_name = 'Primary Election Date', null = True, blank = True) candidate_website_url = models.URLField(null=True, blank=True, verbose_name="Candidate Website URL", max_length=255) candidate_volunteer_url = models.URLField(null=True, blank=True, verbose_name="Candidate Volunteer URL", max_length=255) candidate_donate_url = models.URLField(null=True, blank=True, verbose_name="Candidate Donate URL", max_length=255) candidate_facebook_url = models.URLField(null=True, blank=True, verbose_name="Candidate Facebook URL", max_length=255) candidate_twitter_url = models.URLField(null=True, blank=True, verbose_name="Candidate Twitter URL", max_length=255) candidate_instagram_url = models.URLField(null=True, blank=True, verbose_name="Candidate Instagram URL", max_length=255) candidate_youtube_url = models.URLField(null=True, blank=True, verbose_name="Candidate YouTube URL", max_length=255) completed_by_candidate = models.NullBooleanField(null=True, blank=True) def __unicode__(self): return '%s %s | %s | %s [%s]' % ( self.candidate_first_name, self.candidate_last_name, self.candidate_office, self.general_election_date, self.id, ) """Get response to question about issues, or None""" def _campaign_issues(self, *args, **kwargs): response = self.response_set.filter( question_id=settings.NOMINATIONS_QUESTION_ISSUES_ID, ).first() position = response.position if response else None return position campaign_issues = property(_campaign_issues) def save(self, skip_application_save=False, *args, **kwargs): super(Questionnaire, self).save(*args, **kwargs) if self.response_set.count() == 0: for q in Question.objects.all(): self.response_set.create(question=q) ''' Save the application(s) attached to a questionnaire when the questionnaire is saved. ''' if not skip_application_save: for app in self.application_set.all(): app.save() class Question(models.Model): text = models.TextField(verbose_name="Question Text") include_multi_choice = models.BooleanField(default=True, verbose_name="Include Multiple Choice Selection") def __unicode__(self): return self.text class Response(models.Model): QUESTIONNAIRE_CHOICES = ( ('a', 'Strongly Agree'), ('c', 'Somewhat Agree'), ('d', 'Somewhat Disagree'), ('b', 'Strongly Disagree'), ) questionnaire = models.ForeignKey(Questionnaire) question = models.ForeignKey(Question) response = models.CharField(max_length=1, blank=False, null=False, choices=QUESTIONNAIRE_CHOICES) position = models.TextField(max_length=1000, blank=True, null=True,verbose_name="Candidate's position on this issue:") def __unicode__(self): return unicode(self.question) @unique class ApplicationType(Enum): basic = (1, 'Basic Support') priority = (2, 'Priority Support') class Application(models.Model): """ An application is a single submission for an endorsement. Each application consists of a group nomination and a candidate questionnaire, and has a many-to-one relationship with a group. """ # See http://www.ncsl.org/research/elections-and-campaigns/primary-types.aspx primary_election_type_choices = ( (1, 'Closed Primary'), (2, 'Partially Closed Primary'), (3, 'Partially Open Primary'), (4, 'Open to Unaffiliated Voters Primary'), (5, 'Open Primary'), (6, 'Top-Two Primary'), (7, 'Presidential Primary'), (99, 'Other'), ) staff_recommendation_choices = ( (1, 'Recommend to Endorse'), (2, 'Recommend Not to Endorse'), (3, 'No Recommendation'), ) application_type = models.IntegerField( blank=True, choices=[x.value for x in ApplicationType], null=True, ) """Django User to use instead of legacy auth0 user""" auth_user = models.ForeignKey( User, blank=True, null=True, ) fundraising_date_of_filing = models.DateField( blank=True, null=True, verbose_name='Filing Date for Fundraising Report' ) fundraising_date_accessed = models.DateField( blank=True, null=True, verbose_name='Date fundraising information was accessed' ) fundraising_source_url = models.URLField( blank=True, max_length=255, null=True, verbose_name='Fundraising Source URL' ) """Legacy field for auth0 user id""" user_id = models.CharField(max_length=255, null=True, blank=True) create_dt = models.DateTimeField(auto_now_add=True) submitted_dt = models.DateTimeField( null=True, blank=True, verbose_name='Submitted at' ) nomination = models.OneToOneField( Nomination, on_delete=models.CASCADE, primary_key=False, null=True, blank=True, related_name='application', verbose_name='Group Nomination Form:', ) primary_election_type = models.IntegerField( blank=True, choices=primary_election_type_choices, null=True, ) questionnaire = models.ForeignKey( Questionnaire, on_delete=models.SET_NULL, null=True, blank=True ) group = models.ForeignKey(Group, to_field="group_id") rep_email = models.EmailField( null=True, blank=False, verbose_name="Contact Email", max_length=254 ) rep_first_name = models.CharField( max_length=35, null=True, blank=False, verbose_name="First Name" ) rep_last_name = models.CharField( max_length=35, null=True, blank=False, verbose_name="Last Name" ) rep_phone = PhoneNumberField( null=True, blank=True, verbose_name="Phone Number" ) # TODO: change to foreign key and create new object for each new candidate, # implement autocomplete to minimize duplicate candidates candidate_first_name = models.CharField( max_length=255, null=True, blank=False, verbose_name="Candidate First Name" ) candidate_last_name = models.CharField( max_length=255, null=True, blank=False, verbose_name="Candidate Last Name" ) candidate_office = models.CharField( null=True, max_length=255, blank=False, verbose_name="Candidate Office" ) candidate_district = models.CharField( null=True, max_length=255, blank=True, verbose_name="Candidate District" ) candidate_city = models.CharField( null=True, max_length=255, blank=True, verbose_name="Candidate City" ) candidate_state = USStateField(max_length=2, null=True, blank=False) authorized_email = models.EmailField( null=True, blank=True, verbose_name="Authorized Email", max_length=254 ) # TODO TECH-840 convert statuses to integer fields STATUSES = ( ( 'needs-group-form-and-questionnaire', 'Needs Group Form and Questionnaire' ), ('needs-questionnaire', 'Needs Questionnaire'), ('needs-group-form', 'Needs Group Form'), # Deprecated as of 2019-01-08 # ('incomplete', 'Needs Submission'), ('submitted', 'Submitted'), ('needs-research', 'Needs Research'), ('needs-staff-review', 'Needs Staff Review'), ('under-review', 'Under Review'), ('approved', 'Endorsed'), ('removed', 'Not Endorsed'), ('expired', 'Expired'), ('hold', 'Hold'), ) # Statuses that signify whether a group can still edit an application EDITABLE_STATUSES = [ 'needs-group-form-and-questionnaire', 'needs-questionnaire', 'needs-group-form', ] status = models.CharField( max_length=64, choices=STATUSES, default='needs-group-form-and-questionnaire' ) # Volunteer Data Entry vol_incumbent = models.NullBooleanField( null=True, blank=True, verbose_name='Incumbent?' ) vol_dem_challenger = models.NullBooleanField( null=True, blank=True, verbose_name='If primary, who are the Democratic challengers?' ) # TODO: rename to vol_other_candidates and remove old field from code # and db after a/b deploy issues are resolved # legacy field vol_other_progressives = models.TextField( null=True, blank=True, max_length=500, verbose_name='Other candidates running:', help_text='Please indicate party affiliation and other progressives. Max length 500 characters.' ) vol_polling = models.TextField( null=True, blank=True, max_length=500, verbose_name='Polling:' ) vol_endorsements = models.TextField( null=True, blank=True, max_length=500, verbose_name='Endorsements:' ) vol_advantage = models.CharField( null=True, blank=True, max_length=50, verbose_name='Previous Election D% or R% Advantage:' ) vol_turnout = models.CharField( null=True, blank=True, max_length=10, verbose_name='Previous Election Year Turnout:' ) vol_win_number = models.IntegerField( null=True, blank=True, verbose_name='Win Number:' ) vol_fundraising = models.IntegerField( null=True, blank=True, verbose_name='How much money fundraised?' ) #legacy field vol_opponent_fundraising = models.IntegerField( null=True, blank=True, verbose_name='How much competitors have fundraised?' ) vol_crimes = models.TextField( null=True, blank=True, max_length=500, verbose_name='Crimes or Scandals (please add links to source):' ) vol_notes = models.TextField( null=True, blank=True, max_length=1000, verbose_name='Volunteer Notes:', help_text='Max length 1000 characters.' ) # Staff only research fields CLASSIFICATIONS = ( ('1', 'I'), ('2', 'II'), ('3', 'III'), ) VET_STATUSES = ( ('0', 'Pending'), ('1', 'Passed'), ('2', 'Failed'), ('3', 'Not Submitted'), ) """TODO: remove?""" RECOMMENDATIONS = ( ('1', 'Endorse'), ('2', 'Do Not Endorse') ) classification_level = models.CharField( max_length=64, choices=CLASSIFICATIONS, default='1' ) staff = models.CharField( max_length=64, blank=True, null=True, ) """TODO: remove?""" recommendation = models.CharField( max_length=64, choices=RECOMMENDATIONS, default='1' ) staff_bio = RichTextField( null=True, blank=True, verbose_name='Candidate Bio:', help_text='This will prepopulate from the candidate questionnaire if left blank.' ) staff_recommendation = models.IntegerField( blank=True, choices=staff_recommendation_choices, null=True, ) stand_out_information = RichTextField( blank=True, null=True, ) state_of_the_race = RichTextField( null=True, blank=True, verbose_name='State of the Race:', ) local_group_info = RichTextField( null=True, blank=True, verbose_name='OR Local Group Info:', help_text='This will prepopulate from the local group\'s endorsement process if left blank.' ) staff_notes = RichTextField( null=True, blank=True, verbose_name='Staff Notes or Flags:', help_text='This will prepopulate from volunteer notes if left blank.' ) vet_status = models.CharField( max_length=64, choices=VET_STATUSES, default='0' ) vet = RichTextField( null=True, blank=True, verbose_name='Vet Details:', ) local_support = RichTextField( null=True, blank=True, verbose_name='Local Support:', help_text='This will prepopulate from the local group\'s support question if left blank.' ) def __unicode__(self): return unicode(self.group) + ' - ' + self.candidate_first_name + ' ' + self.candidate_last_name def _candidate_name(self): return self.candidate_first_name + ' ' + self.candidate_last_name candidate_name = property(_candidate_name) ''' Group candidates by party and return list ''' def _candidates_by_party(self): candidates = defaultdict(list) for application_candidate in self.applicationcandidate_set.order_by( 'party', 'first_name', 'last_name' ): candidates[application_candidate.party].append( application_candidate ) return candidates.items candidates_by_party = property(_candidates_by_party) def auto_populate_research_fields(self): """Auto-populate staff write-up fields from already present info""" if self.questionnaire: if self.questionnaire.candidate_bio and not self.staff_bio: self.staff_bio = self.questionnaire.candidate_bio if self.nomination: if self.nomination.group_nomination_process and not self.local_group_info: self.local_group_info = self.nomination.group_nomination_process # question ID 8 is "What actions will the group take # and how many people have agreed to volunteer/support? question = self.nomination.nominationresponse_set.filter( question_id=8 ).first() if question and not self.local_support: self.local_support = question.response.encode('utf-8') if self.vol_notes and not self.staff_notes: self.staff_notes = self.vol_notes def create_related_objects(self): """Create related nomination and questionnaire for application.""" if not self.nomination: self.nomination = Nomination.objects.create() if not self.questionnaire: self.questionnaire = Questionnaire.objects.create() def generate_application_status(self): """ Returns a generated status based on completion of various items. Nomination is filled out by the group with basic information about the group and what it will do to help the candidate. Questionnaire is filled out by the candidate with basic information and in-depth policy positions. """ if self.status in self.EDITABLE_STATUSES: if self.nomination.status == 'incomplete': if self.questionnaire.status == 'complete': status = 'needs-group-form' else: status = 'needs-group-form-and-questionnaire' else: # nomination complete if self.questionnaire.status == 'complete': # questionnaire complete """ Set as submitted if nomination + questionnaire are complete """ status = 'submitted' else: # needs questionaire status = 'needs-questionnaire' else: status = self.status return status def is_editable(self): """Returns whether a group can edit this application.""" if self.status in self.EDITABLE_STATUSES: return True else: return False def save(self, *args, **kwargs): if not self.nomination or not self.questionnaire: self.create_related_objects() self.auto_populate_research_fields() self.status = self.generate_application_status() if self.status == 'submitted' and self.submitted_dt is None: self.submitted_dt = datetime.datetime.now() super(Application, self).save(*args, **kwargs) class Meta: permissions = ( ( "bulk_change_application_status", "Can bulk change status of applications" ), ( "export_pdf_application", "Can export to pdf" ), ( "admin_application", "Can admin override application data" ), ) verbose_name = 'Candidate Application' class ApplicationCandidate(models.Model): ''' Information about candidates in a race related to an application ''' party_choices = ( (1, 'Democratic Party'), (2, 'Green Party'), (3, 'Independent/No Party Affiliation'), (4, 'Republican Party'), (5, 'Libertarian Party'), (6, 'Vermont Progressive Party'), (99, 'Other'), ) application = models.ForeignKey(Application, on_delete=models.CASCADE) description = models.CharField( blank=True, max_length=500, null=True, ) first_name = models.CharField( blank=True, max_length=255, null=True, ) fundraising = models.IntegerField( blank=True, null=True, verbose_name='Cash on Hand' ) last_name = models.CharField( blank=True, max_length=255, null=True, ) party = models.IntegerField( blank=True, choices=party_choices, null=True, ) website_url = models.URLField( blank=True, max_length=255, null=True, ) def _name(self): if self.first_name and self.last_name: return self.first_name + ' ' + self.last_name elif self.first_name: return self.first_name elif self.last_name: return self.last_name else: return None name = property(_name) def __unicode__(self): return str(self.id) + (' ' + self.name if self.name else '') class InitiativeApplication(models.Model): """Django User to use instead of legacy auth0 user""" auth_user = models.ForeignKey( User, blank=True, null=True, ) """Legacy Auth0 user id""" user_id = models.CharField(max_length=255, null=True, blank=True) create_dt = models.DateTimeField(auto_now_add=True) submitted_dt = models.DateTimeField(null=True, blank=True, verbose_name = 'Submitted at') group = models.ForeignKey(Group, to_field="group_id") rep_email = models.EmailField(null=True, blank=False, verbose_name="Contact Email", max_length=254) rep_first_name = models.CharField(max_length=35, null=True, blank=False, verbose_name="First Name") rep_last_name = models.CharField(max_length=35, null=True, blank=False, verbose_name="<NAME>") rep_phone = PhoneNumberField(null=True, blank=True, verbose_name="Phone Number") name = models.CharField(max_length=254,null=True,blank=False, verbose_name =" Initiative Name") election_date = models.DateField(verbose_name = 'Election Date', null = True, blank = False) website_url = models.URLField(null=True, blank=False, verbose_name="Initiative Website URL", max_length=255) volunteer_url = models.URLField(null=True, blank=True, verbose_name="Volunteer URL", max_length=255) donate_url = models.URLField(null=True, blank=True, verbose_name="Donate URL", max_length=255) city = models.CharField(max_length=254,null=True,blank=True) county = models.CharField(max_length=254,null=True,blank=True) state = USStateField(max_length=2, null=True, blank=False, verbose_name="State") description = models.TextField(max_length=500, blank=False, null=True, verbose_name = "What would the initiative do?") question = models.TextField(max_length=500, blank=True, null=True, verbose_name = "How will the question appear on the ballot?") vote = models.NullBooleanField(null=True, blank=True, verbose_name='How to vote:') additional_info = models.TextField(max_length=500, blank=True, null=True, verbose_name = "Any additional information you want to share?") LOCALITIES = ( ('city', 'Citywide'), ('county', 'Countywide'), ('state', 'Statewide'), ) locality = models.CharField(max_length=16, choices=LOCALITIES, default='state', verbose_name='Is this initiative:') STATUSES = ( ('incomplete', 'Incomplete'), ('submitted', 'Submitted'), ('needs-research','Needs Research'), ('needs-staff-review', 'Needs Staff Review'), ('approved', 'Endorsed'), ('removed', 'Not Endorsed') ) status = models.CharField(max_length=64, choices=STATUSES, default='submitted') def __unicode__(self): return unicode(self.group) + ' - ' + self.name def save(self, *args, **kwargs): if self.status == 'submitted' and self.submitted_dt is None: self.submitted_dt = datetime.datetime.now() super(InitiativeApplication, self).save(*args, **kwargs) class Meta: verbose_name = 'Ballot Initiative Application' ``` #### File: site/nominations/tests.py ```python from django.test import TestCase from models import Application from local_groups.models import Group class ApplicationTestCase(TestCase): def setUp(self): # create group group = Group.objects.create( name='Test Group', group_id=9999 ) # create application Application.objects.create( group=group, rep_email='<EMAIL>', rep_first_name='John', rep_last_name='Doe', rep_phone='6155555555', candidate_first_name='Test', candidate_last_name='Candidate', candidate_office='Governor', candidate_state='TN' ) def test_generate_application_status(self): """ The status of the Application should be properly set based on the status of the nomination form (nomination) and the questionnaire. """ app = Application.objects.get( candidate_first_name='Test', candidate_last_name='Candidate' ) # nomination form incomplete, questionnaire complete app.nomination.status = 'incomplete' app.questionnaire.status = 'incomplete' app.status = app.generate_application_status() self.assertEqual(app.status, 'needs-group-form-and-questionnaire') # nomination form complete, questionnaire incomplete app.nomination.status = 'complete' app.questionnaire.status = 'incomplete' app.status = app.generate_application_status() self.assertEqual(app.status, 'needs-questionnaire') # nomination form and questionnare completed app.nomination.status = 'complete' app.questionnaire.status = 'complete' app.status = app.generate_application_status() self.assertEqual(app.status, 'incomplete') # nomination form incomplete, questionnaire complete app.nomination.status = 'incomplete' app.questionnaire.status = 'complete' app.status = app.generate_application_status() self.assertEqual(app.status, 'needs-group-form') # if application isn't editable, status shouldn't change app.status = 'submitted' app.status = app.generate_application_status() self.assertEqual(app.status, 'submitted') def test_save(self): """When an Application is saved, related objects should be created if necessary, status should be set properly, research fields should be auto-populated and submissions datetime should be set if necessary.""" app = Application.objects.get( candidate_first_name='Test', candidate_last_name='Candidate' ) # check for related objects nomination form (nomination) # and questionnaire self.assertNotEqual(app.nomination, None) self.assertNotEqual(app.questionnaire, None) # check that they are properly related to the application self.assertEqual(app, app.nomination.application) self.assertEqual(app, app.questionnaire.application_set.first()) # check that their individual default statuses are properly set self.assertEqual(app.nomination.status, 'incomplete') self.assertEqual(app.questionnaire.status, 'incomplete') # check that generate_application_status is called after # nomination is saved app.nomination.status = 'complete' app.nomination.save() self.assertEqual(app.nomination.status, 'complete') self.assertEqual(app.status, 'needs-questionnaire') # check that generate_application_status is called after # questionnaire is saved app.questionnaire.status = 'complete' app.questionnaire.save() self.assertEqual(app.questionnaire.status, 'complete') # this works self.assertEqual(app.questionnaire.application_set.first(), app) # but this doesn't? # self.assertEqual(app.status, 'incomplete') ``` #### File: pages/migrations/0010_populate_news_index.py ```python from __future__ import unicode_literals from django.db import migrations def populate_news_index(apps, schema_editor): from pages.models import IndexPage, NewsIndex # Home Page home_page = IndexPage.objects.get(title='Our Revolution') # Our Candidates news_index = NewsIndex(title='News', slug='press') home_page.add_child(instance=news_index) def remove_news_index(apps, schema_editor): from wagtail.wagtailcore.models import Page news_index = Page.objects.get(title='News') news_index.delete() class Migration(migrations.Migration): dependencies = [ ('pages', '0009_auto_20161024_1818'), ] operations = [ migrations.RunPython(populate_news_index, reverse_code=remove_news_index) ] ``` #### File: pages/migrations/0015_create_redirects.py ```python from __future__ import unicode_literals from django.db import migrations REDIRECTS = { "/candidates/martin-quezeda": "martin-quezada", "/candidates/elizabeth-thompson": "elizabeth-thomson", "/stop-the-tpp": "stop-tpp-now", "/volunteer-signup": "action", "/signup": "/", "/candidate-questionnaire": "candidates", "/august-30-primary-candidates": "candidates", "/tpp": "https://go.berniesanders.com/page/s/stop-the-TPP?source=webslashtpp", "/act": "https://go.berniesanders.com/page/s/volunteer-our-revolution?source=webslashact" } def populate_redirects(apps, schema_editor): from wagtail.wagtailcore.models import Page, Site from wagtail.wagtailredirects.models import Redirect for source, target in REDIRECTS.iteritems(): print "Trying %s / %s ..." % (source, target) data = { 'old_path': source, 'site': Site.objects.get(is_default_site=True), 'is_permanent': True, } if '/' in target: data['redirect_link'] = target else: data['redirect_page'] = Page.objects.get(slug=target) Redirect.objects.create(**data) def remove_redirects(apps, schema_editor): from wagtail.wagtailredirects.models import Redirect Redirect.objects.all().delete() class Migration(migrations.Migration): dependencies = [ ('pages', '0014_create_stop_tpp_page'), ] operations = [ migrations.RunPython(populate_redirects, reverse_code=remove_redirects) ] ``` #### File: site/social_redirects/models.py ```python from django.contrib.sites.models import Site from django.db import models class Redirect(models.Model): title = models.CharField(max_length=200) description = models.CharField(max_length=1024, blank=True, null=True) social_image = models.ImageField(null=True, blank=True) old_path = models.CharField(max_length=200, db_index=True, verbose_name="Redirect From", help_text="This should be an absolute path, excluding the domain name. Example: '/events/search/'.") new_path = models.CharField(max_length=200, blank=True, verbose_name="Redirect To", help_text="This can be either an absolute path (as above) or a full URL starting with 'http://'.") site = models.ForeignKey(Site, models.CASCADE) class Meta: unique_together = (('site', 'old_path'),) ordering = ('old_path',) def __str__(self): return "%s ---> %s" % (self.old_path, self.new_path) ```
{ "source": "joshzwiebel/PencilLearningTest", "score": 3 }
#### File: joshzwiebel/PencilLearningTest/application.py ```python from flask import Flask, render_template, request from text_generation import generate_next_word from text_generation import initialize app = Flask(__name__) app.secret_key = "<KEY>" @app.route('/') def index(): return render_template('template.html', generated_text="your text will appear here") @app.route('/', methods=['POST']) def my_form_post(): text = request.form['text'] texty = generate_next_word(str(text)) return render_template('template.html', generated_text=texty) @app.before_first_request def initiate(): initialize() if __name__ == '__main__': app.debug = True app.run() ```
{ "source": "joshzyj/pull_facebook_data_for_good", "score": 2 }
#### File: joshzyj/pull_facebook_data_for_good/pull_mobility.py ```python import sys from utils import download_data, move_most_recent_files, get_update_date, remove_empty_files from mobility import get_file_dates, get_urls from itertools import compress def pull_mobility(outdir, keys, country, dl_variables, update, movement_type): ''' Parameters ---------- outdir : str Output directory. keys : list user credentials [username, password]. country : str Country name - must match .config file exactly (names with spaces must replace ' ' with '_'). dl_variables : dict download specific variables in a dict, 'id' = dataset id, 'origin' = dataset origin datetime.datetime object. update : boolean Whether an existing dataset is being updated. Returns ------- None. ''' country_output = outdir + "/" + country + '_' + movement_type base_url = 'https://www.facebook.com/geoinsights-portal/downloads/vector/?id=' + str(dl_variables['id']) + '&ds=' earliest_date = dl_variables['origin'] data_dates = get_file_dates(earliest_date) if update: data_dates = list(compress(data_dates, [x > get_update_date(country_output) for x in data_dates])) if len(data_dates) == 0: sys.exit('No datasets to download. Exiting.') urls = get_urls(base_url, data_dates) start_time = download_data(urls, keys) move_most_recent_files(country_output, urls, start_time) remove_empty_files(country_output) print('Success.') ```
{ "source": "joshzzl/POMDPy", "score": 3 }
#### File: pomdpy/pomdp/observation_pool.py ```python from future.utils import with_metaclass import abc class ObservationPool(with_metaclass(abc.ABCMeta, object)): """ Defines the ObservationPool interface, which allows customization of how the mapping for each * individual action node is set up. * * Using a single class in this way allows certain aspects of the mappings to be stored globally, * e.g. to keep statistics that are shared across all of the mappings rather than stored on * a per-mapping basis. """ @abc.abstractmethod def create_observation_mapping(self, action_node): """ Creates an observation mapping for the given action node. :param action_node: :return: ObservationMapping """ ```
{ "source": "josiah14/linear-algebra", "score": 4 }
#### File: the-vector-problems/Python/The_Vector_problems.py ```python import vector from math import trunc, sqrt import GF2 # version code ef5291f09f60+ coursera = 1 # Please fill out this stencil and submit using the provided submission script. # Some of the GF2 problems require use of the value GF2.one so the stencil imports it. from GF2 import one ## 1: (Problem 1) Vector Addition Practice 1 #Please express each answer as a list of numbers p1_v = [-1, 3] p1_u = [0, 4] p1_v_plus_u = vector.add(p1_v, p1_u) p1_v_minus_u = vector.minus(p1_v, p1_u) p1_three_v_minus_two_u = vector.minus(vector.scalar_mult(3, p1_v), vector.scalar_mult(2, p1_u)) ## 2: (Problem 2) Vector Addition Practice 2 p2_u = [-1, 1, 1] p2_v = [ 2, -1, 5] p2_v_plus_u = vector.add(p2_v, p2_u) p2_v_minus_u = vector.minus(p2_v, p2_u) p2_two_v_minus_u = vector.minus(vector.scalar_mult(2, p2_v), p2_u) p2_v_plus_two_u = vector.add(p2_v, vector.scalar_mult(2, p2_u)) ## 3: (Problem 3) Vector Addition Practice 3 p3_v = [GF2.zero, GF2.one, GF2.one] p3_u = [GF2.one, GF2.one, GF2.one] p3_vector_sum_1 = vector.add(p3_v, p3_u) p3_vector_sum_2 = vector.add(p3_v, p3_u, p3_u) ## 4: (Problem 4) GF2 Vector Addition A # Please express your solution as a subset of the letters {'a','b','c','d','e','f'}. # For example, {'a','b','c'} is the subset consisting of: # a (1100000), b (0110000), and c (0011000). # The answer should be an empty set, written set(), if the given vector u cannot # be written as the sum of any subset of the vectors a, b, c, d, e, and f. p4_vectors = { 'a': [GF2.one, GF2.one, GF2.zero, GF2.zero, GF2.zero, GF2.zero, GF2.zero], 'b': [GF2.zero, GF2.one, GF2.one, GF2.zero, GF2.zero, GF2.zero, GF2.zero], 'c': [GF2.zero, GF2.zero, GF2.one, GF2.one, GF2.zero, GF2.zero, GF2.zero], 'd': [GF2.zero, GF2.zero, GF2.zero, GF2.one, GF2.one, GF2.zero, GF2.zero], 'e': [GF2.zero, GF2.zero, GF2.zero, GF2.zero, GF2.one, GF2.one, GF2.zero], 'f': [GF2.zero, GF2.zero, GF2.zero, GF2.zero, GF2.zero, GF2.one, GF2.one] } def match_vector_sums_to(vector_dict, v): return set( vector.flatten2( [ x for x in vector.permutations_unordered_no_repeat(list(vector_dict)) if vector.add(vector_dict[x[0]], vector_dict[x[1]]) == v ] ) ) u0 = [GF2.zero, GF2.zero, GF2.one, GF2.zero, GF2.zero, GF2.one, GF2.zero] u_0010010 = match_vector_sums_to(p4_vectors, u0) u1 = [GF2.zero, GF2.one, GF2.zero, GF2.zero, GF2.zero, GF2.one, GF2.zero] u_0100010 = match_vector_sums_to(p4_vectors, u1) ## 5: (Problem 5) GF2 Vector Addition B # Use the same format as the previous problem p5_vectors = { 'a': [GF2.one, GF2.one, GF2.one, GF2.zero, GF2.zero, GF2.zero, GF2.zero], 'b': [GF2.zero, GF2.one, GF2.one, GF2.one, GF2.zero, GF2.zero, GF2.zero], 'c': [GF2.zero, GF2.zero, GF2.one, GF2.one, GF2.one, GF2.zero, GF2.zero], 'd': [GF2.zero, GF2.zero, GF2.zero, GF2.one, GF2.one, GF2.one, GF2.zero], 'e': [GF2.zero, GF2.zero, GF2.zero, GF2.zero, GF2.one, GF2.one, GF2.one], 'f': [GF2.zero, GF2.zero, GF2.zero, GF2.zero, GF2.zero, GF2.one, GF2.one] } v0 = [GF2.zero, GF2.zero, GF2.one, GF2.zero, GF2.zero, GF2.one, GF2.zero] v_0010010 = match_vector_sums_to(p5_vectors, v0) p5_v1 = [GF2.zero, GF2.one, GF2.zero, GF2.zero, GF2.zero, GF2.one, GF2.zero] v_0100010 = match_vector_sums_to(p5_vectors, p5_v1) ## 6: (Problem 6) Solving Linear Equations over GF(2) #You should be able to solve this without using a computer. a = [GF2.one, GF2.one, GF2.zero, GF2.zero] b = [GF2.one, GF2.zero, GF2.one, GF2.zero] c = [GF2.one, GF2.one, GF2.one, GF2.one] x_gf2 = [GF2.one, GF2.zero, GF2.zero, GF2.zero] x_gf2_comp = vector.GF2_solve_dot_prod_sys(one, a, b, c) ## 7: (Problem 7) Formulating Equations using Dot-Product #Please provide each answer as a list of numbers v1 = [2, 3, -4, 1] v2 = [1, -5, 2, 0] v3 = [4, 1, -1, -1] ## 8: (Problem 8) Practice with Dot-Product uv_a = vector.dot_prod([1, 0], [5, 4321]) uv_b = vector.dot_prod([0, 1], [12345, 6]) uv_c = vector.dot_prod([-1, 3], [5, 7]) uv_d = trunc( vector.dot_prod( [-(sqrt(2) / 2.0), sqrt(2) / 2.0], [sqrt(2) / 2.0, -(sqrt(2) / 2.0)] ) ) ```
{ "source": "JosiahBradley/mod2win", "score": 3 }
#### File: mod2win/levels/level_02.py ```python import arcade from mod2win.levels.BaseLevel import BaseLevel from mod2win.mods.level2 import Mod import time class L2(BaseLevel): def __init__(self, speed, title): super().__init__(speed=speed, title=title) self.exit = None self.gate = None self.start = time.time() self.duration = 30 def draw_map(self): super().draw_map() # Exit Door door = self.tile_sprite('signExit') door.center_x = 14 * self.conf.TILE_RADIUS door.center_y = 185 self.assets["statics"].append(door) self.exit = door # Gate self.gate = [] for y in range(2 * self.conf.TILE_RADIUS, 10 * self.conf.TILE_RADIUS, 2 * self.conf.TILE_RADIUS): g = self.tile_sprite('stoneCenter_rounded') g.center_x = 10 * self.conf.TILE_RADIUS g.center_y = y self.assets["block"].append(g) self.gate.append(g) def update(self, delta_time): super().update(delta_time=delta_time) if self.is_game_over: return # Need game over condition, probabaly time based if time.time() > self.start + self.duration: self.game_over() if self.player.center_x > self.exit.center_x: self.win() try: Mod.lift_gate(self.gate) except AttributeError: pass for g in self.gate: if g.center_y > self.conf.TILE_RADIUS * 8: g.center_y = self.conf.TILE_RADIUS * 8 if g.center_x > self.conf.TILE_RADIUS * 16: g.center_x = self.conf.TILE_RADIUS * 16 def on_draw(self): super().on_draw() if self.is_game_over: arcade.draw_text( "YOU WIN", self.view_left + self.get_size()[0] * .5, self.view_bottom + self.get_size()[1] * .5, arcade.csscolor.ORANGE_RED, 32 ) def win(self): super().win() self.audio("gameover1") self.score += 1000 def main(): """ Main method """ window = L2(speed=1.7, title="LEVEL 2: GATE") window.setup() arcade.run() if __name__ == "__main__": main() ``` #### File: mod2win/levels/level_launcher.py ```python from mod2win.tools import obf import sys from os import path, name as os_name import subprocess mod_path = path.dirname(path.dirname(path.abspath(obf.__file__))) def launch(): try: if os_name.lower() != 'nt': subprocess.run(["python", path.abspath(mod_path + f"/levels/level_0{sys.argv[1]}.pyc")], shell=False) else: subprocess.run(["./venv/Scripts/python", path.abspath(mod_path + f"/levels/level_0{sys.argv[1]}.pyc")], shell=False) except FileNotFoundError as e: print(f"No level found {e.filename}") except Exception as e: pass def scrub(): for i in range(1, 4): in_file = path.abspath(mod_path + f"/levels/level_0{i}.py") out_file = path.abspath(mod_path + f"/levels/level_0{i}.b64") o = obf.Obf(input_file=in_file, output_file=out_file) o.hide() def restore(): for i in range(1, 4): in_file = path.abspath(mod_path + f"/levels/level_0{i}.b64") out_file = path.abspath(mod_path + f"/levels/level_0{i}.py") o = obf.Obf(input_file=in_file, output_file=out_file) o.unhide() def _compile(): for i in range(1, 4): in_file = path.abspath(mod_path + f"/levels/level_0{i}.py") out_file = path.abspath(mod_path + f"/levels/level_0{i}.pyc") o = obf.Obf(input_file=in_file, output_file=out_file) o.obf() ```
{ "source": "josiah-co/bigquery_fdw", "score": 2 }
#### File: bigquery_fdw/src/fdw.py ```python from collections import OrderedDict, namedtuple, defaultdict from multicorn import ColumnDefinition, ForeignDataWrapper, TableDefinition from multicorn.utils import log_to_postgres, ERROR, WARNING, INFO, DEBUG from .bqclient import BqClient DEFAULT_MAPPINGS = { "STRING": "TEXT", "INT64": "BIGINT", "INTEGER": "BIGINT", "DATE": "DATE", "FLOAT64": "DOUBLE PRECISION", "BOOL": "BOOLEAN", "TIMESTAMP": "TIMESTAMP WITHOUT TIME ZONE", # note: untested, so commented out # "BYTES": "BYTES", # "STRUCT": "STRING", } class FDWImportError(Exception): "raised if 'import foreign schema' ran into an error condition" class ConstantForeignDataWrapper(ForeignDataWrapper): # Default vars client = None # BqClient instance partitionPseudoColumn = 'partition_date' # Name of the partition pseudo column # Pseudo column to fetch `count(*)` when using the remote counting and grouping feature countPseudoColumn = '_fdw_count' castingRules = None # Dict of casting rules when using the `fdw_casting` option def __init__(self, options, columns): """ Initialize instance, set class level vars """ super(ConstantForeignDataWrapper, self).__init__(options, columns) # Set options self.setOptions(options) # Set table columns self.columns = columns # Set data types and conversion rules mapping self.setDatatypes() self.setConversionRules() def setOptions(self, options): """ Set table options at class level """ # Set options at class scope self.dataset = options.get('fdw_dataset') or options.get('schema') self.table = options.get('fdw_table') or options.get('tablename') self.convertToTz = options.get('fdw_convert_tz') # Set verbose option self.setOptionVerbose(options.get('fdw_verbose')) # Set SQL dialect self.setOptionSqlDialect(options.get('fdw_sql_dialect')) # Set grouping option self.setOptionGroupBy(options.get('fdw_group')) # Set casting rules self.setOptionCasting(options.get('fdw_casting')) # Set what to do if imported table has too many columns self.tooManyColumns = options.get("fdw_colcount") or "error" if self.tooManyColumns not in ("error", "trim", "skip"): log_to_postgres("fdw_colcount must be one of 'error', 'trim', 'skip', if provided", ERROR) self.tooManyColumns = "error" # Set what to do if imported table columns share a 63 # character prefix self.sharedPrefix = options.get("fdw_colnames") or "error" if self.sharedPrefix not in ("error", "skip", "trim"): log_to_postgres("fdw_colnames must be one of 'error', 'trim', 'skip', if provided", ERROR) self.sharedPrefix = "error" def setDatatypes(self): """ Set data types mapping """ # Create a named tuple datatype = namedtuple('datatype', 'postgres bq_standard bq_legacy') datatypes = [ datatype('text', 'STRING', 'STRING'), # datatype('bytea', 'BYTES', 'BYTES'), # Not supported, need testing for support datatype('bigint', 'INT64', 'INTEGER'), datatype('double precision', 'FLOAT64', 'FLOAT'), datatype('boolean', 'BOOL', 'BOOLEAN'), datatype('timestamp without time zone', 'TIMESTAMP', 'TIMESTAMP'), datatype('date', 'DATE', 'DATE'), datatype('time without time zone', 'TIME', 'TIME'), datatype('timestamp without time zone', 'DATETIME', 'DATETIME'), ] self.datatypes = {dtype.postgres: dtype for dtype in datatypes} def setConversionRules(self): """ Set list of allowed conversion rules """ # Create a named tuple conversionRule = namedtuple( 'conversionRule', 'bq_standard_from bq_standard_to') conversionRules = [ conversionRule('INT64', ['BOOL', 'FLOAT64', 'INT64', 'STRING']), conversionRule('FLOAT64', ['FLOAT64', 'INT64', 'STRING']), conversionRule('BOOL', ['BOOL', 'INT64', 'STRING']), conversionRule('STRING', ['BOOL', 'BYTES', 'DATE', 'DATETIME', 'FLOAT64', 'INT64', 'STRING', 'TIME', 'TIMESTAMP']), conversionRule('BYTES', ['BYTES', 'STRING']), conversionRule('DATE', ['DATE', 'DATETIME', 'STRING', 'TIMESTAMP']), conversionRule( 'DATETIME', ['DATE', 'DATETIME', 'STRING', 'TIME', 'TIMESTAMP']), conversionRule('TIME', ['STRING', 'TIME']), conversionRule( 'TIMESTAMP', ['DATE', 'DATETIME', 'STRING', 'TIME', 'TIMESTAMP']), conversionRule('ARRAY', ['ARRAY']), conversionRule('STRUCT', ['STRUCT']), ] self.conversionRules = { rule.bq_standard_from: rule for rule in conversionRules } def setOptionSqlDialect(self, standard_sql=None): """ Set a flag for the SQL dialect. It can be `standard` or `legacy`. `standard` will be the default """ self.dialect = 'standard' if standard_sql == 'legacy': self.dialect = 'legacy' # Verbose log if self.verbose: log_to_postgres("Set SQL dialect to `" + self.dialect + "`", INFO) def setOptionGroupBy(self, group): """ Set a flag `self.groupBy` as `True` if `group` contains the string 'true' Otherwise, set it as `False` """ if group == 'true': self.groupBy = True return self.groupBy = False def setOptionVerbose(self, verbose): """ Set a flag `self.verbose` as `True` if `verbose` contains the string 'true' Otherwise, set it as `False` """ if verbose == 'true': self.verbose = True return self.verbose = False def setOptionCasting(self, castingRules): """ Conversion rules are received as a string, for example: '{"key": "FLOAT64", "datetime": "DATE"}' The string will be converted to a dict """ if castingRules: # Cast string as a dict try: import ast self.castingRules = ast.literal_eval(castingRules) except Exception as e: log_to_postgres( "fdw_casting conversion failed: `" + str(e) + "`", ERROR) # For security reasons, ensure that the string was correctly casted as a dict try: if type(self.castingRules) is not dict: raise ValueError('fdw_casting format is incorrect.') except Exception as e: log_to_postgres( "fdw_casting conversion failed: `" + str(e) + "`", ERROR) def getClient(self): """ Manage a pool of instances of BqClient If the user uses different private keys in different tables, this method will return the correct instance of BqClient class associated to the table private key """ # Returns an existing instance if self.client: return self.client # Or create a new instance return self.setClient() def setClient(self): """ Attempt to connect to BigQuery client """ try: # Attempt connection bq = BqClient() bq.setClient() # Verbose log if self.verbose: log_to_postgres( "Connection to BigQuery client with BqClient instance ID " + str(id(bq)), INFO) # Add to pool self.client = bq return bq except RuntimeError: log_to_postgres( "Connection to BigQuery client failed", ERROR) def execute(self, quals, columns): """ Executes a query """ # # Verbose log # if self.verbose: # log_to_postgres('Quals...', INFO) # log_to_postgres(quals, INFO) # log_to_postgres('Columns...', INFO) # log_to_postgres(columns, INFO) # Returns instance of BqClient client = self.getClient() # Prepare query query, parameters = self.buildQuery(quals, columns) # Run query client.runQuery(query, parameters, self.dialect) # Return query output for row in client.readResult(): # Create an ordered dict with the column name and value # Example: `OrderedDict([('column1', 'value1'), ('column2', value2)])` line = OrderedDict() for column in columns: line[column] = row[column] yield line def buildQuery(self, quals, columns): """ Builds a BigQuery query """ # Set query var query = '' # Add SELECT clause query += 'SELECT ' + self.buildColumnList(columns) # Add FROM clause query += " FROM `" + self.dataset + "." + self.table + "` " # Add WHERE clause clause, parameters = self.buildWhereClause(quals) query += clause # Add group by if self.groupBy: groupByColumns = self.buildColumnList(columns, 'GROUP_BY') if groupByColumns: query += ' GROUP BY ' + \ self.buildColumnList(columns, 'GROUP_BY') # Verbose log if self.verbose: log_to_postgres("Prepared query: `" + query + "`", INFO) return query, parameters def buildColumnList(self, columns, usage='SELECT'): """ Build the SELECT clause of the SQL query """ clause = '' # Disable aliases for Group By useAliases = True if usage == 'GROUP_BY': useAliases = False if columns: # If we have columns for column in columns: if column == self.countPseudoColumn: # Pseudo column to count grouped rows if usage == 'SELECT': clause += "count(*) " + \ self.addColumnAlias(column, useAliases) + ", " elif column == self.partitionPseudoColumn: # Partition pseudo column clause += "_PARTITIONTIME " + \ self.addColumnAlias(column, useAliases) + ", " else: # Any other column # Get column data type dataType = self.getBigQueryDatatype(column) # Save column original name columnOriginalName = column # If the data type is a date or a timestamp if dataType in ['DATE', 'TIMESTAMP']: column = self.setTimeZone(column, dataType) # Data type casting column = self.castColumn( column, columnOriginalName, dataType) clause += column + " " + \ self.addColumnAlias( columnOriginalName, useAliases) + ", " # Remove final `, ` clause = clause.strip(', ') elif usage == 'SELECT': # Otherwise fetch all clause += "*" return clause def setTimeZone(self, column, dataType): """ If the option `fdw_convert_tz` is used, convert the time zone automatically from UTC to the desired time zone """ # Option is set if self.convertToTz: if dataType == 'DATE': # BigQuery column type is `DATE` return 'DATE(' + column + ', "' + self.convertToTz + '") ' else: # BigQuery column type is `TIMESTAMP` return 'DATETIME(' + column + ', "' + self.convertToTz + '") ' # Option is not set return column def castColumn(self, column, columnOriginalName, dataType): """ If the option `fdw_casting` is used, this method will attempt to cast the column to the new type """ if self.castingRules and columnOriginalName in self.castingRules: # If we have casting rule for this column # Get desired casting castTo = self.castingRules[columnOriginalName] # Find if we have a matching rule rule = self.conversionRules.get(dataType.upper()) if rule: # Check if casting from the original data type to the new one is supported if castTo.upper() in rule.bq_standard_to: return 'CAST(' + column + ' as ' + castTo.upper() + ')' else: log_to_postgres("Casting from the data type `" + dataType.upper( ) + "` to the data type `" + castTo.upper() + "` is not permitted.", ERROR) else: log_to_postgres( "Casting from the data type `" + dataType.upper() + "` is not permitted.", ERROR) # Option is not set return column def addColumnAlias(self, alias, useAliases=True): """ Returns a string "as `alias`" if `useAliases` is `True` """ if useAliases: return " as " + alias return '' def buildWhereClause(self, quals): """ Build the WHERE clause of the SQL query """ clause = '' parameters = [] # Add WHERE clause # `quals` example: `[Qual('test', '=', 'test 2'), Qual('test', '~~', '3')]` if quals: clause += "WHERE " for qual in quals: if qual.field_name == self.partitionPseudoColumn: clause += "_PARTITIONTIME " + \ str(self.getOperator(qual.operator)) + " ?" # Format date as a timestamp value = qual.value.strftime("%Y-%m-%d 00:00:00") # Force data type to `TIMESTAMP` parameters.append(self.setParameter( qual.field_name, 'TIMESTAMP', value)) else: clause += str(qual.field_name) + " " + \ str(self.getOperator(qual.operator)) + " ?" parameters.append(self.setParameter( qual.field_name, self.getBigQueryDatatype(qual.field_name), qual.value)) # Add ` AND ` clause += " AND " # Remove final ` AND ` clause = clause.strip(' AND ') return (clause, parameters) def getOperator(self, operator): """ Validate operator """ # List of BigQuery operators supported # Exhaustive list: https://cloud.google.com/bigquery/docs/reference/standard-sql/functions-and-operators#operators # Non listed operators may or may not work operators = ['=', '<', '>', '<=', '>=', '!=', '<>', 'LIKE', 'NOT LIKE'] # Mapping between multicorn operators and BigQuery operators mapping = {} mapping['~~'] = 'LIKE' mapping['!~~'] = 'NOT LIKE' if operator in operators: # Operator is natively supported return operator elif operator in mapping: # Multicorn operator has a BigQuery equivalent return mapping[operator] else: # Operator is not supported log_to_postgres( "Operator `" + operator + "` is not currently supported", ERROR) def getBigQueryDatatype(self, column, dialect='standard'): """ Returns the BigQuery standard SQL data type of a PostgreSQL column Example: `column1` has the PostgreSQL type `bigint` which is called `INT64` in BigQuery standard SQL """ # Get PostgreSQL column type # Example: `timestamp without time zone` pgDatatype = self.columns[column].base_type_name datatype = self.datatypes.get(pgDatatype) if datatype: if dialect == 'legacy': return datatype.bq_legacy else: return datatype.bq_standard # Return a default data type in an attempt to save the day return 'STRING' def setParameter(self, column, type_, value): """ Set a parameter in BigQuery client """ # Verbose log if self.verbose: log_to_postgres( "Add query parameter `" + self.client.varToString(value) + "` for column `" + column + "` with the type `" + type_ + "`", INFO) return self.client.setParameter(type_, value) @classmethod def import_schema( cls, schema, srv_options, options, restriction_type, restricts=None ): return cls(srv_options, []).import_schema_bigquery_fdw( schema, srv_options, options, restriction_type, restricts ) def import_schema_bigquery_fdw( self, schema, srv_options, options, restriction_type, restricts=None ): """ Pulls in the remote schema. """ if restriction_type == 'limit': only = lambda t: t in restricts elif restriction_type == 'except': only = lambda t: t not in restricts else: only = None client = self.getClient() query = f''' SELECT table_schema, table_name, column_name, data_type FROM `{schema}.INFORMATION_SCHEMA.COLUMNS` ORDER BY ordinal_position; ''' schemas = set() client.runQuery(query, (), self.dialect) tables = defaultdict(list) for row in client.readResult(): if only and not only(row.table_name): # doesn't match required fields continue schemas.add(row.table_schema) tables[row.table_schema, row.table_name].append( (row.column_name, row.data_type) ) to_insert = [] for (_schema, table), columns in tables.items(): if _schema.lower() != schema.lower(): # wrong schema, we'll skip continue # Let's make sure the table is sane-ish with respect to # column names and counts. try: if not self._check_table(table, columns): # for "skip" in fdw_colcount and "skip_table" in fdw_colnames continue except FDWImportError: # for "error" cases in fdw_colnames and fdw_colcount return [] # for non-error, trim, and trim_columns ftable = TableDefinition(table) ftable.options['schema'] = schema ftable.options['tablename'] = table for col, typ in columns: typ = DEFAULT_MAPPINGS.get(typ, "TEXT") ftable.columns.append(ColumnDefinition(col, type_name=typ)) to_insert.append(ftable) if self.verbose: log_to_postgres("fdw importing table `" + schema + "." + table + "`", WARNING) return to_insert def _check_table(self, table, columns): # column names are going to be truncated, let's make sure that we # don't have any shared prefixes shortened = defaultdict(set) for i, (name, typ) in enumerate(columns): shortened[name[:63]].add(name) if len(shortened) != len(columns): bad_cols = set() for prefix, dupes in shortened.items(): if len(dupes) > 1: if self.sharedPrefix == "error": log_to_postgres( "fdw not importing table `" + table \ + "` with identical 63-character prefix `" + prefix \ + "` columns: " + str(list(dupes)), ERROR) raise FDWImportError("matching column prefix: " + prefix) elif self.sharedPrefix == "skip": if self.verbose: log_to_postgres( "fdw not importing table `" + table \ + "` with identical 63-character prefix `" + prefix \ + "` columns: " + str(list(dupes)), WARNING) return False else: #if self.sharedPrefix == "trim" if self.verbose: log_to_postgres( "fdw not importing columns in table `" + table \ + "` with identical 63-character prefix `" + prefix \ + "` columns: " + str(list(dupes)), WARNING) # make note of our bad columns bad_cols.update(dupes) # remove bad columns from our list columns[:] = [col for col in columns if col[0] not in bad_cols] if not columns: # trimmed to 0 due to duplicate column prefixes, that is amazing if self.verbose: log_to_postgres( "fdw not importing table `" + table \ + "` because all columns share some 63 character prefix with another" \ + str(list(dupes)), WARNING) return False # bigquery can have many columns, let's make sure we're not trying # to load a table with too many columns. if len(columns) > 1600: if self.tooManyColumns == "error": log_to_postgres( "fdw not importing table `" + table + "` with " \ + str(len(columns)) + " columns", ERROR) raise FDWImportError("too many columns: " + str(len(columns))) elif self.tooManyColumns == "trim": if self.verbose: log_to_postgres( "fdw trimming " + str(len(columns) - 1600) \ + " columns from table `" + table + "` on import", WARNING) del columns[1600:] else: # skip if self.verbose: log_to_postgres( "fdw skipping table `" + table + "` with " \ + str(len(columns)) + " columns", WARNING) return False return True ```
{ "source": "JosiahCraw/Is-the-Build-Done-Yet", "score": 2 }
#### File: Is-the-Build-Done-Yet/is_the_build_done_yet/is_the_build_done_yet.py ```python import requests import argparse import json import subprocess import os from pyfiglet import Figlet from PyInquirer import style_from_dict, Token, prompt f = Figlet(font='slant') def create_settings(url, user, light_ids, fail_colour, success_colour): data = { "api_user": user, "url": url, "lights" : { "ids": light_ids, "fail_colour": fail_colour, "success_colour": success_colour } } home_dir = os.path.expanduser("~") try: os.mkdir('{}/.is-my-build-done'.format(home_dir)) except FileExistsError as e: pass with open('{}/.is-my-build-done/settings.json'.format(home_dir), 'w+') as settings: json.dump(data, settings) def get_settings(): home_dir = os.path.expanduser("~") with open('{}/.is-my-build-done/settings.json'.format(home_dir), 'r') as settings: data = json.load(settings) return data def check_settings(): return os.path.exists('{}/.is-my-build-done/settings.json'.format(os.path.expanduser("~"))) def rgb_to_cie(r, g, b): r = int(r) g = int(g) b = int(b) X = 0.4124*r + 0.3576*g + 0.1805*b Y = 0.2126*r + 0.7152*g + 0.0722*b Z = 0.0193*r + 0.1192*g + 0.9505*b x = X / 256 y = Y / 256 return [round(x, 4), round(y, 4)] def list_lights(url, user): resp = requests.get('{}/api/{}/lights'.format(url, user)) lights = resp.json() light_names = list() for light in lights: light_data = (lights[light]["name"], light) light_names.append(light_data) return light_names def get_current_colour(url, user, light_id): light_states = {"ids": []} for light in light_id: resp = requests.get('{}/api/{}/lights/{}'.format(url, user, light)) resp = resp.json() data = resp["state"] ids = light_states["ids"] ids.append(light) light_states[light] = data return light_states def set_light_state(url, user, states): ids = states["ids"] for light_id in ids: request_url = '{}/api/{}/lights/{}/state'.format(url, user, light_id) resp = requests.put(request_url, json=states[light_id]) def set_light(url, user, lights, colour, brightness=255): cie_colour = rgb_to_cie(colour["r"], colour["g"], colour["b"]) for light in lights: data = { "on": True, "bri": brightness, "xy": cie_colour, } request_url = '{}/api/{}/lights/{}/state'.format(url, user, light) resp = requests.put(request_url, json=data) def build_finished(failed): data = get_settings() url = data["url"] user = data["api_user"] lights = data["lights"]["ids"] if failed: set_light(url, user, lights, data["lights"]["fail_colour"]) else: set_light(url, user, lights, data["lights"]["success_colour"]) def run_setup(): style = style_from_dict({ Token.Separator: '#cc5454', Token.QuestionMark: '#673ab7 bold', Token.Selected: '#cc5454', # default Token.Pointer: '#673ab7 bold', Token.Instruction: '', # default Token.Answer: '#<PASSWORD> bold', Token.Question: '', }) questions = [ { 'type': 'input', 'name': 'url', 'message': 'Enter Hue Bridge URL (include http://)' }, { 'type': 'input', 'name': 'api_user', 'message': 'Enter your API user code' }, { 'type': 'input', 'name': 'fail_colour', 'message': 'Enter Fail Colour of the form <r,g,b>' }, { 'type': 'input', 'name': 'success_colour', 'message': 'Enter Success Colour of the form <r,g,b>' } ] answers = prompt(questions, style=style) url = answers['url'] user = answers['api_user'] fail_colours = answers["fail_colour"].split(',') success_colours = answers["success_colour"].split(',') fail_colour = { "r": int(fail_colours[0]), "g": int(fail_colours[1]), "b": int(fail_colours[2]) } success_colour = { "r": int(success_colours[0]), "g": int(success_colours[1]), "b": int(success_colours[2]) } lights = list_lights(url, user) light_choices = list() for light in lights: light_choices.append({'name': light[0]}) questions = [ { 'type': 'checkbox', 'message': 'Select Lights', 'name': 'selected_lights', 'choices': light_choices } ] answers = prompt(questions, style=style) light_ids = list() for light in answers["selected_lights"]: for item in lights: if light == item[0]: light_ids.append(item[1]) create_settings(url, user, light_ids, fail_colour, success_colour) def main(): parser = argparse.ArgumentParser(description='Utility for use hue bulbs to set the outcome of a bash command') parser.add_argument('-r', '--run', nargs='+', help='Accepts command to be run') parser.add_argument('-s', '--setup', action='store_true', help='Runs utility setup', required=False) args = parser.parse_args() if (args.setup): run_setup() elif (args.run): if(not check_settings()): print("No settings found please use '--setup' to create some") exit(0) settings = get_settings() url = settings["url"] user = settings["api_user"] lights = settings["lights"]["ids"] state = get_current_colour(url, user, lights) process = subprocess.run(args.run) if process.returncode == 0: print(f.renderText('Passed')) build_finished(False) else: print(f.renderText('Failed')) build_finished(True) input("Press Any Key to Terminate... ") set_light_state(url, user, state) else: parser.print_help() if __name__ == "__main__": main() ```
{ "source": "josiahdavis/python_data_analysis", "score": 3 }
#### File: josiahdavis/python_data_analysis/python_data_analysis.py ```python import pandas as pd # Import an already installed python package import numpy as np # Running this next line of code assumes that your console working directory is set up correctly # To set up your working directory # 1) Put the data and the script in the same working directory # 2) Select the options buttom in the upper right hand cornder of the editor # 3) Select "Set console working directory" # Read a the csv file from your computer (after setting working directory) ufo = pd.read_csv('ufo_sightings.csv') # Alternatively, specify the file path ufo = pd.read_csv('C:/Users/josdavis/Documents/Personal/GitHub/python_data_analysis/ufo_sightings.csv') # Alterntively read in the file from the internet ufo = pd.read_csv('https://raw.githubusercontent.com/josiahdavis/python_data_analysis/master/ufo_sightings.csv') # Finding help on a function help(pd.read_csv) # Summarize the data that was just read in ufo.head(10) # Look at the top x observations ufo.tail() # Bottom x observations (defaults to 5) ufo.describe() # describe any numeric columns (unless all columns are non-numeric) ufo.index # "the index" (aka "the labels") ufo.columns # column names (which is "an index") ufo.dtypes # data types of each column ufo.values # underlying numpy array ufo.info() # concise summary # Select a single column (a series) ufo['State'] ufo.State # This is equivalent # Select multiple columns (a dataframe) ufo[['State', 'City','Shape Reported']] my_cols = ['State', 'City', 'Shape Reported'] ufo[my_cols] # This is equivalent ''' Filtering and Sorting Data ''' # Logical filtering ufo[ufo.State == 'TX'] ufo[~(ufo.State == 'TX')] # Select everything where the test fails ufo[ufo.State != 'TX'] # Same thing ufo.City[ufo.State == 'TX'] ufo[ufo.State == 'TX'].City # Same thing ufo[(ufo.State == 'CA') | (ufo.State =='TX')] ufo_dallas = ufo[(ufo.City == 'Dallas') & (ufo.State =='TX')] ufo[ufo.City.isin(['Austin','Dallas', 'Houston'])] # Sorting ufo.State.order() # only works for a Series ufo.sort_index(ascending=False) # sort rows by row labels ufo.sort_index(ascending=False, inplace=True) # Sort rows inplace ufo.sort_values(by='State') # sort rows by specific column ufo.sort_values(by=['State', 'Shape Reported']) # sort by multiple columns ufo.sort_values(by=['State', 'Shape Reported'], ascending=[False, True], inplace=True) # specify sort order ''' Modifying Columns ''' # Add a new column as a function of existing columns ufo['Location'] = ufo['City'] + ', ' + ufo['State'] ufo.head() # Rename columns ufo.rename(columns={'Colors Reported':'Colors', 'Shape Reported':'Shape'}, inplace=True) # Hide a column (temporarily) ufo.drop(['Location'], axis=1) # Delete a column (permanently) del ufo['Location'] ''' Handling Missing Values ''' # Missing values are often just excluded ufo.describe() # Excludes missing values ufo.Shape.value_counts() # Excludes missing values ufo.Shape.value_counts(dropna=False) # Includes missing values # Find missing values in a Series ufo.Shape.isnull() # True if NaN, False otherwise ufo.Shape.notnull() # False if NaN, True otherwise ufo.Shape.isnull().sum() # Count the missing values # Find missing values in a DataFrame ufo.isnull() ufo.isnull().sum() ufo[(ufo.Shape.notnull()) & (ufo.Colors.notnull())] # Drop missing values ufo.dropna() # Drop a row if ANY values are missing ufo.dropna(how='all') # Drop a row only if ALL values are missing # Fill in missing values ufo.Colors.fillna(value='Unknown', inplace=True) ufo.fillna('Unknown') ''' EXERCISE: Working with drinks data ''' # Read drinks.csv (in the drinks_data folder) into a DataFrame called 'drinks' # Print the first 10 rows # Examine the data types of all columns # Print the 'beer_servings' Series # Calculate the average 'beer_servings' for the entire dataset # Print all columns, but only show rows where the country is in Europe # Calculate the average 'beer_servings' for all of Europe # Only show European countries with 'wine_servings' greater than 300 # Determine which 10 countries have the highest 'total_litres_of_pure_alcohol' # Determine which country has the highest value for 'beer_servings' # Count the number of occurrences of each 'continent' value and see if it looks correct # Determine which countries do not have continent designations # Determine the number of countries per continent. Does it look right? ''' SOLUTIONS: Working with drinks data ''' # Read drinks.csv (in the drinks_data folder) into a DataFrame called 'drinks' drinks = pd.read_csv('drinks_data/drinks.csv') # Print the first 10 rows drinks.head(10) # Examine the data types of all columns drinks.dtypes drinks.info() # Print the 'beer_servings' Series drinks.beer_servings drinks['beer_servings'] # Calculate the average 'beer_servings' for the entire dataset drinks.describe() # summarize all numeric columns drinks.beer_servings.describe() # summarize only the 'beer_servings' Series drinks.beer_servings.mean() # only calculate the mean # Print all columns, but only show rows where the country is in Europe drinks[drinks.continent=='EU'] # Calculate the average 'beer_servings' for all of Europe drinks[drinks.continent=='EU'].beer_servings.mean() # Only show European countries with 'wine_servings' greater than 300 drinks[(drinks.continent=='EU') & (drinks.wine_servings > 300)] # Determine which 10 countries have the highest 'total_litres_of_pure_alcohol' drinks.sort_index(by='total_litres_of_pure_alcohol').tail(10) # Determine which country has the highest value for 'beer_servings' drinks[drinks.beer_servings==drinks.beer_servings.max()].country drinks[['country', 'beer_servings']].sort_index(by='beer_servings', ascending=False).head(5) # Count the number of occurrences of each 'continent' value and see if it looks correct drinks.continent.value_counts() # Determine which countries do not have continent designations drinks[drinks.continent.isnull()].country # Due to "na_filter = True" default within pd.read_csv() help(pd.read_csv) ''' Indexing and Slicing Data ''' # Create a new index ufo.set_index('State', inplace=True) ufo.index ufo.index.is_unique ufo.sort_index(inplace=True) ufo.head(25) # loc: filter rows by LABEL, and select columns by LABEL ufo.loc['FL',:] # row with label FL ufo.loc[:'FL',:] # rows with labels 'FL' through '' ufo.loc['FL':'HI', 'City':'Shape'] # rows FL, columns 'City' through 'Shape Reported' ufo.loc[:, 'City':'Shape'] # all rows, columns 'City' through 'Shape Reported' ufo.loc[['FL', 'TX'], ['City','Shape']] # rows FL and TX, columns 'City' and 'Shape Reported' # iloc: filter rows by POSITION, and select columns by POSITION ufo.iloc[0,:] # row with 0th position (first row) ufo.iloc[0:3,:] # rows with positions 0 through 2 (not 3) ufo.iloc[0:3, 0:3] # rows and columns with positions 0 through 2 ufo.iloc[:, 0:3] # all rows, columns with positions 0 through 2 ufo.iloc[[0,2], [0,1]] # 1st and 3rd row, 1st and 2nd column # Add another level to the index ufo.set_index('City', inplace=True, append=True) # Adds to existing index ufo.sort_index(inplace=True) ufo.head(25) # Slice using the multi-index ufo.loc[['ND', 'WY'],:] ufo.loc['ND':'WY',:] ufo.loc[('ND', 'Bismarck'),:] ufo.loc[('ND', 'Bismarck'):('ND','Casselton'),:] # Reset the index ufo.reset_index(level='City', inplace=True) # Remove a certain label from the index ufo.reset_index(inplace=True) # Remove all labels from the index ''' Analyzing across time ''' # Reset the index ufo.reset_index(inplace=True) # Convert Time column to date-time format (defined in Pandas) # transforming to time # Formatting Time: https://docs.python.org/2/library/time.html#time.strftime ufo.dtypes ufo['Time'] = pd.to_datetime(ufo['Time'], format="%m/%d/%Y %H:%M") ufo.dtypes # Compute date range ufo.Time.min() ufo.Time.max() # Slice using time ufo[ufo.Time > pd.datetime(1995, 1, 1)] ufo[(ufo.Time > pd.datetime(1995, 1, 1)) & (ufo.State =='TX')] # Set the index to time ufo.set_index('Time', inplace=True) ufo.sort_index(inplace=True) ufo.head() # Access particular times/ranges ufo.loc['1995',:] ufo.loc['1995-01',:] ufo.loc['1995-01-01',:] # Access range of times/ranges ufo.loc['1995':,:] ufo.loc['1995':'1996',:] ufo.loc['1995-12-01':'1996-01',:] # Access elements of the timestamp # Date Componenets: http://pandas.pydata.org/pandas-docs/stable/timeseries.html#time-date-components ufo.index.year ufo.index.month ufo.index.weekday ufo.index.day ufo.index.time ufo.index.hour # Create a new variable with time element ufo['Year'] = ufo.index.year ufo['Month'] = ufo.index.month ufo['Day'] = ufo.index.day ufo['Weekday'] = ufo.index.weekday ufo['Hour'] = ufo.index.hour ''' Split-Apply-Combine ''' # for each year, calculate the count of sightings ufo.groupby('Year').size() ufo.Year.value_counts() # Same as before # for each Shape, calculate the first sighting, last sighting, and range of sightings. ufo.groupby('Shape').Year.min() ufo.groupby('Shape').Year.max() # Specify the variable outside of the apply statement ufo.groupby('Shape').Year.apply(lambda x: x.max()) # Specifiy the variable within the apply statement ufo.groupby('Shape').apply(lambda x: x.Year.max() - x.Year.min()) # Specify a custom function to use in the apply statement def get_max_year(df): try: return df.Year.max() except: return '' ufo.groupby('Shape').apply(lambda x: get_max_year(x)) # Split/combine can occur on multiple columns at the same time # For each Weekday / Hour combination, determine a count of sightings ufo.groupby(['Weekday','Hour']).size() ''' Merging data ''' # Read in population data pop = pd.read_csv('population.csv') pop.head() ufo.head() # Merge the data together ufo = pd.merge(ufo, pop, on='State', how = 'left') # Specify keys if columns have different names ufo = pd.merge(ufo, pop, left_on='State', right_on='State', how = 'left') # Observe the new Population column ufo.head() # Check for values that didn't make it (length) ufo.Population.isnull().sum() # Check for values that didn't make it (values) ufo[ufo.Population.isnull()] # Change the records that didn't match up using np.where command ufo['State'] = np.where(ufo['State'] == 'Fl', 'FL', ufo['State']) # Alternatively, change the state using native python string functionality ufo['State'] = ufo['State'].str.upper() # Merge again, this time get all of the records ufo = pd.merge(ufo, pop, on='State', how = 'left') ''' Writing Data ''' ufo.to_csv('ufo_new.csv') ufo.to_csv('ufo_new.csv', index=False) # Index is not included in the csv ''' Other useful features ''' # Detect duplicate rows ufo.duplicated() # Series of logicals ufo.duplicated().sum() # count of duplicates ufo[ufo.duplicated(['State','Time'])] # only show duplicates ufo[ufo.duplicated()==False] # only show unique rows ufo_unique = ufo[~ufo.duplicated()] # only show unique rows ufo.duplicated(['State','Time']).sum() # columns for identifying duplicates # Replace all instances of a value (supports 'inplace=True' argument) ufo.Shape.replace('DELTA', 'TRIANGLE') # replace values in a Series ufo.replace('PYRAMID', 'TRIANGLE') # replace values throughout a DataFrame # Replace with a dictionary ufo['Weekday'] = ufo.Weekday.replace({ 0:'Mon', 1:'Tue', 2:'Wed', 3:'Thu', 4:'Fri', 5:'Sat', 6:'Sun'}) # Pivot rows to columns ufo.groupby(['Weekday','Hour']).size() ufo.groupby(['Weekday','Hour']).size().unstack(0) # Make first row level a column ufo.groupby(['Weekday','Hour']).size().unstack(1) # Make second row level a column # Note: .stack transforms columns to rows # Randomly sample a DataFrame idxs = np.random.rand(len(ufo)) < 0.66 # create a Series of booleans train = ufo[idxs] # will contain about 66% of the rows test = ufo[~idxs] # will contain the remaining rows ''' Advanced Examples (w/Plotting) ''' # Plot the number of sightings over time ufo.groupby('Year').size().plot(kind='line', color='r', linewidth=2, title='UFO Sightings by year') # Plot the number of sightings over the day of week and time of day ufo.groupby(['Weekday','Hour']).size().unstack(0).plot( kind='line', linewidth=2, title='UFO Sightings by Time of Day') # Plot the sightings in in July 2014 ufo[(ufo.Year == 2014) & (ufo.Month == 7)].groupby(['Day']).size().plot( kind='bar', color='b', title='UFO Sightings in July 2014') # Plot multiple plots on the same plot (plots neeed to be in column format) ufo_fourth = ufo[(ufo.Year.isin([2011, 2012, 2013, 2014])) & (ufo.Month == 7)] ufo_fourth.groupby(['Year', 'Day']).City.count().unstack(0).plot( kind = 'bar', subplots=True, figsize=(7,9)) ```
{ "source": "josiahdavis/pytorch-reference-lm", "score": 2 }
#### File: josiahdavis/pytorch-reference-lm/language-model.py ```python import argparse import time import math import os from io import open # import data # import model import torch import torch.nn as nn import torch.nn.functional as F import torch.cuda.profiler as profiler import torch.optim as optim from apex import pyprof # pyprof.nvtx.init() class Dictionary(object): def __init__(self): self.word2idx = {} self.idx2word = [] def add_word(self, word): if word not in self.word2idx: self.idx2word.append(word) self.word2idx[word] = len(self.idx2word) - 1 return self.word2idx[word] def __len__(self): return len(self.idx2word) class Corpus(object): def __init__(self, path): self.dictionary = Dictionary() self.train = self.tokenize(os.path.join(path, "train.txt")) self.valid = self.tokenize(os.path.join(path, "valid.txt")) self.test = self.tokenize(os.path.join(path, "test.txt")) def tokenize(self, path): """Tokenizes a text file.""" assert os.path.exists(path) # Add words to the dictionary with open(path, "r", encoding="utf8") as f: for line in f: words = line.split() + ["<eos>"] for word in words: self.dictionary.add_word(word) # Tokenize file content with open(path, "r", encoding="utf8") as f: idss = [] for line in f: words = line.split() + ["<eos>"] ids = [] for word in words: ids.append(self.dictionary.word2idx[word]) idss.append(torch.tensor(ids).type(torch.int64)) ids = torch.cat(idss) return ids class TransformerModel(nn.Module): def __init__(self, ntoken, ninp, nhead, nhid, nlayers, seq_len, dropout=0.5): super(TransformerModel, self).__init__() self.src_mask = None encoder_layers = nn.TransformerEncoderLayer(ninp, nhead, nhid, dropout) self.transformer_encoder = nn.TransformerEncoder(encoder_layers, nlayers) self.position_embeddings = nn.Embedding(seq_len, ninp) self.word_embeddings = nn.Embedding(ntoken, ninp) self.ninp = ninp self.decoder = nn.Linear(ninp, ntoken) self.init_weights() position = torch.arange(0, seq_len).unsqueeze(1) self.register_buffer("position", position) self.dropout = nn.Dropout(p=dropout) def _generate_square_subsequent_mask(self, sz): mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1) mask = ( mask.float() .masked_fill(mask == 0, float("-inf")) .masked_fill(mask == 1, float(0.0)) ) return mask def init_weights(self): initrange = 0.1 self.word_embeddings.weight.data.uniform_(-initrange, initrange) self.position_embeddings.weight.data.uniform_(-initrange, initrange) self.decoder.bias.data.zero_() self.decoder.weight.data.uniform_(-initrange, initrange) def forward(self, src, has_mask=True): if has_mask: device = src.device if self.src_mask is None or self.src_mask.size(0) != len(src): mask = self._generate_square_subsequent_mask(len(src)).to(device) self.src_mask = mask else: self.src_mask = None word_embeddings = self.word_embeddings(src) * math.sqrt(self.ninp) position = self.position[: src.size(0), :] position_embeddings = self.position_embeddings(position) src = self.dropout(word_embeddings + position_embeddings) output = self.transformer_encoder(src, self.src_mask) output = self.decoder(output) return F.log_softmax(output, dim=-1) def batchify(data, bsz, device): # Work out how cleanly we can divide the dataset into bsz parts. nbatch = data.size(0) // bsz # Trim off any extra elements that wouldn't cleanly fit (remainders). data = data.narrow(0, 0, nbatch * bsz) # Evenly divide the data across the bsz batches. data = data.view(bsz, -1).t().contiguous() return data.to(device) def get_batch(source, i, args): seq_len = min(args.bptt, len(source) - 1 - i) data = source[i : i + seq_len] target = source[i + 1 : i + 1 + seq_len].view(-1) return data, target def evaluate(model, data_source, corpus, criterion, args): # Turn on evaluation mode which disables dropout. model.eval() total_loss = 0.0 ntokens = len(corpus.dictionary) with torch.no_grad(): for i in range(0, data_source.size(0) - 1, args.bptt): data, targets = get_batch(data_source, i, args) output = model(data) output_flat = output.view(-1, ntokens) total_loss += len(data) * criterion(output_flat, targets).item() return total_loss / (len(data_source) - 1) parser = argparse.ArgumentParser( description="PyTorch Wikitext-2 Transformer Language Model" ) parser.add_argument( "--data", type=str, default="./data/wikitext-2", help="location of the data corpus" ) parser.add_argument( "--emsize", type=int, default=200, help="size of word embeddings (also, d_model)", ) parser.add_argument( "--nhid", type=int, default=200, help="number of hidden units per layer (e.g., dim_feedforward)", ) parser.add_argument("--nlayers", type=int, default=1, help="number of layers") parser.add_argument("--lr", type=float, default=20, help="initial learning rate") parser.add_argument("--clip", type=float, default=0.25, help="gradient clipping") parser.add_argument("--epochs", type=int, default=1, help="upper epoch limit") parser.add_argument( "--batch_size", type=int, default=20, metavar="N", help="batch size" ) parser.add_argument("--bptt", type=int, default=35, help="sequence length") parser.add_argument( "--dropout", type=float, default=0.2, help="dropout applied to layers (0 = no dropout)", ) parser.add_argument( "--tied", action="store_true", help="tie the word embedding and softmax weights" ) parser.add_argument("--seed", type=int, default=1111, help="random seed") parser.add_argument("--cuda", action="store_true", help="use CUDA") parser.add_argument( "--log-interval", type=int, default=200, metavar="N", help="report interval" ) parser.add_argument( "--save", type=str, default="model.pt", help="path to save the final model" ) parser.add_argument( "--nhead", type=int, default=1, help="the number of heads in the encoder of the transformer model", ) def main(): args = parser.parse_args() pyprof.nvtx.init() # Set the random seed manually for reproducibility. torch.manual_seed(args.seed) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"Running on device {device}") corpus = Corpus(args.data) eval_batch_size = 10 train_data = batchify(corpus.train, args.batch_size, device) val_data = batchify(corpus.valid, eval_batch_size, device) test_data = batchify(corpus.test, eval_batch_size, device) print(f"train_data.shape={train_data.shape}") print(f"val_data.shape={val_data.shape}") print(f"test_data.shape={test_data.shape}") ntokens = len(corpus.dictionary) print(f"ntokens={ntokens}") # model = model.TransformerModel( model = TransformerModel( ntokens, args.emsize, args.nhead, args.nhid, args.nlayers, args.bptt, args.dropout, ).cuda() # ).to(device) print(model) criterion = nn.CrossEntropyLoss() print(criterion) print(f"Using tokens={ntokens}, emsize={args.emsize}, nhid={args.emsize}") print( f"""ntokens={ntokens}, emsize={args.emsize}, nhead={args.nhead}, nhid={args.nhid}, nlayers={args.nlayers}, bpttt={args.bptt}, dropout={args.dropout} """ ) iter_to_capture = 1 # Loop over epochs. lr = args.lr best_val_loss = None # At any point you can hit Ctrl + C to break out of training early. with torch.autograd.profiler.emit_nvtx(): for epoch in range(1, args.epochs + 1): epoch_start_time = time.time() model.train() total_loss = 0.0 start_time = time.time() ntokens = len(corpus.dictionary) for batch, i in enumerate(range(0, train_data.size(0) - 1, args.bptt)): data, targets = get_batch(train_data, i, args) # TODO: Use language modelling abstraction with torchtext model.zero_grad() if (epoch == 1) and (batch == iter_to_capture): profiler.start() output = model(data) loss = criterion(output.view(-1, ntokens), targets) loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip) for p in model.parameters(): p.data.add_(-lr, p.grad.data) # TODO: Use an optimizer if (epoch == 1) and (batch == iter_to_capture): profiler.stop() total_loss += loss.item() if batch % args.log_interval == 0 and batch > 0: cur_loss = total_loss / args.log_interval elapsed = time.time() - start_time print( "| epoch {:3d} | {:5d}/{:5d} batches | lr {:02.2f} | ms/batch {:5.2f} | " "loss {:5.2f} | ppl {:8.2f}".format( epoch, batch, len(train_data) // args.bptt, lr, elapsed * 1000 / args.log_interval, cur_loss, math.exp(cur_loss), ) ) total_loss = 0 start_time = time.time() val_loss = evaluate(model, val_data, corpus, criterion, args) print("-" * 89) print( "| end of epoch {:3d} | time: {:5.2f}s | valid loss {:5.2f} | " "valid ppl {:8.2f}".format( epoch, (time.time() - epoch_start_time), val_loss, math.exp(val_loss), ) ) print("-" * 89) # Save the model if the validation loss is the best we've seen so far. if not best_val_loss or val_loss < best_val_loss: best_val_loss = val_loss else: # Anneal the learning rate if no improvement has been seen in the validation dataset. lr /= 4.0 # Run on test data. test_loss = evaluate(model, test_data, corpus, criterion, args) print("=" * 89) print( "| End of training | test loss {:5.2f} | test ppl {:8.2f}".format( test_loss, math.exp(test_loss) ) ) print("=" * 89) if __name__ == "__main__": main() ```
{ "source": "josiah-d/job_applications", "score": 4 }
#### File: josiah-d/job_applications/update_record.py ```python import datetime as dt import psycopg2 # db global variables HOST = 'localhost' USER = 'postgres' PASSWORD = '<PASSWORD>' DATABASE = 'job_apps' print('Initiating database connections.') # db connection conn = psycopg2.connect(host=HOST, database=DATABASE, user=USER, password=PASSWORD) print('Database connected.') class UpdateRecord(): """Updates a job entry to add to the database""" def __init__(self, last_contact=False): if last_contact: self.company = self.get_company() else: self.company = self.get_company() self.column = self.get_column() self.value = self.get_value() def get_company(self): return input('enter the company name to update:\n> ') def get_column(self): return input('enter to column name to update:\n> ') def get_value(self): return input(f'input the new value for {self.column}:\n> ') if __name__ == '__main__': print('Please provide inputs.\n') # get inputs contact_date = input('Update last contact date? (y/n)\n> ') if contact_date.lower() == 'y': record = UpdateRecord(last_contact=True) query = f'''UPDATE jobs SET last_contact = '{dt.date.today()}' WHERE company = '{record.company}' ''' print(f'{record.company} record updated: last_contact {dt.date.today()}.') else: record = UpdateRecord() query = f'''UPDATE jobs SET {record.column} = '{record.value}', last_contact = '{dt.date.today()}' WHERE company = '{record.company}' ''' print(f'{record.company} record updated: {record.column} == {record.value}.') # push data to the database with conn.cursor() as c: c.execute(query) conn.commit() ```
{ "source": "JosiahDub/LittleFreePiBerry", "score": 2 }
#### File: LittleFreePiBerry/app/views.py ```python from app import app from flask import render_template, jsonify import os from instagram_auth import INSTAGRAM_PASSWORD, INSTAGRAM_USERNAME from instagram import InstagramSession # For testing outside of the Pi if os.uname()[4][:3] == 'arm': from config import camera def _upload_to_instagram(): insta = InstagramSession() if insta.login(INSTAGRAM_USERNAME, INSTAGRAM_PASSWORD): print("good job") # Example # filepath = "/tmp/square.jpg" # print "Uploading " + filepath # insta = InstagramSession() # if insta.login(USERNAME, PASSWORD): # media_id = insta.upload_photo("/tmp/small.jpg") # print media_id # if media_id is not None: # insta.configure_photo(media_id, "") @app.route('/_take_pic') def take_pic(): _upload_to_instagram() return jsonify(success=1) @app.route('/') @app.route('/index') def index(): return render_template('index.html', title='Home') ```
{ "source": "josiahfmccoy/scholasterion", "score": 3 }
#### File: josiahfmccoy/scholasterion/dev.py ```python import os import subprocess import sys import time def print_header(msg): print(f"\n######################## {msg} ########################") def run_flask(name, runner, port, expose=False): print_header(f'Starting {name}') webapp_command = f'pipenv run python -m {runner} -p {port}' if expose: webapp_command += ' --expose' proc = subprocess.Popen( webapp_command, # shell=True, stdout=sys.stdout, stderr=sys.stderr ) wait_for_output(proc, 10) return proc def run_webapp(): return run_flask( 'WebApp', 'src.run_webapp', os.getenv('APP_PORT', 5000), expose=os.getenv('EXPOSE_APP', False) ) def wait_for_output(subproc, timeout=2): while True: try: outs, errs = subproc.communicate(timeout=timeout) if not outs and not errs: break if outs: print(outs) if errs: print(errs) except subprocess.TimeoutExpired: break def all_live(procs): for proc in procs: if proc is None: continue if proc.poll() is not None: return False return True def check_proc(proc): return (proc is not None and proc.poll() is None) DEV_PROCESSES = { run_webapp: run_webapp() } def run_procs(processes, is_main): try: while True: while all_live(list(processes.values())): time.sleep(1) for runner, proc in processes.items(): if not check_proc(proc): processes[runner] = runner() finally: print_header("Terminating Flask Applications ...") for proc in processes.values(): if proc is not None: proc.terminate() if __name__ == '__main__': is_main = os.environ.get('WERKZEUG_RUN_MAIN') != 'true' if is_main: print_header("Running Dev Environment") try: run_procs(DEV_PROCESSES, is_main) except KeyboardInterrupt: pass ``` #### File: backend/languages/utils.py ```python __all__ = [ 'serializable_language' ] def serializable_language(lang): s = { 'id': lang.id, 'iso_code': lang.iso_code, 'name': lang.name } return s ``` #### File: backend/lexemes/utils.py ```python import requests from flask import current_app from lxml import etree, html from ...db.services import LexemeService from ..languages.utils import serializable_language __all__ = [ 'serializable_token', 'serializable_word', 'serializable_lexeme', 'get_token', 'parse_loegion' ] ALLOW_AUTOLOAD = False def serializable_token(token): if not token: return None s = { 'identifier': token.identifier, 'form': token.form, 'gloss': token.gloss, 'words': [serializable_word(w) for w in token.words] } return s def serializable_word(word): if not word: return None s = { 'id': word.id, 'form': word.form, 'parsing': word.parsing, 'lexeme': serializable_lexeme(word.lexeme) } return s def serializable_lexeme(lex): if not lex: return None s = { 'id': lex.id, 'lemma': lex.lemma, 'gloss': lex.gloss, 'language': serializable_language(lex.language) } return s def get_token(document, identifier): fname = document.file_url parser = etree.XMLParser(remove_blank_text=True) if not fname.startswith('http'): fname = current_app.static_path('data/' + fname) root = etree.parse(fname, parser) else: r = requests.get(fname) root = html.fromstring(r.text) t = root.xpath(f'//*[@id="{identifier}"]') if not t: return None return t[0].text def parse_loegion(document, identifier): from ...workbench.parsing.loegion import LoegionParser, norm_word t = get_token(document, identifier) lang = document.collection.language words = {} existing = LexemeService.Tokens.get_all(form=t) for tok in existing: for w in tok.words: words[w.id] = w word_form = norm_word(t) existing = LexemeService.Words.get_all(form=word_form) for w in existing: words[w.id] = w words = list(words.values()) if not words: if not ALLOW_AUTOLOAD: return None parsed = LoegionParser().parse_word(t) for lem, parsings in parsed.items(): lex = LexemeService.get_or_create( lemma=lem, language_id=lang.id ) if not lex.gloss: gloss = gloss_loegion(lex.lemma) if gloss: lex.gloss = gloss w = LexemeService.Words.get_or_create( form=word_form, lexeme_id=lex.id ) words.append(w) token = LexemeService.Tokens.get_or_create( identifier=identifier, form=t, document_id=document.id, no_commit=True ) token.words = words LexemeService.commit() return token def gloss_loegion(lemma): from ...workbench.glossing.loegion import LoegionGlosser gloss = LoegionGlosser().gloss(lemma) return gloss ``` #### File: backend/users/utils.py ```python __all__ = [ 'serializable_user' ] def serializable_user(user): if not user: return None s = { 'email': user.email, 'username': user.username } return s ``` #### File: schema/lexemes/models.py ```python import sqlalchemy as sa from ..utils.base import Model __all__ = [ 'Token', 'Word', 'Lexeme' ] token_words = sa.Table( 'token_words', Model.metadata, sa.Column('token_id', sa.Integer(), sa.ForeignKey('token.id'), nullable=False), sa.Column('word_id', sa.Integer(), sa.ForeignKey('word.id'), nullable=False) ) class Token(Model): identifier = sa.Column(sa.Unicode(60), nullable=False) gloss = sa.Column(sa.Unicode(), nullable=True) document_id = sa.Column( sa.Integer(), sa.ForeignKey('document.id'), nullable=True ) document = sa.orm.relationship( 'Document', backref=sa.orm.backref('tokens', cascade='all, delete-orphan') ) words = sa.orm.relationship( 'Word', secondary=token_words, backref=sa.orm.backref('tokens') ) __table_args__ = ( sa.UniqueConstraint( 'identifier', 'document_id' ), ) def __repr__(self): return ( f"{self.__class__.__qualname__}" f"('{self.document.title}', '{self.identifier}')" ) class Word(Model): form = sa.Column(sa.Unicode(), nullable=False) parsing = sa.Column(sa.Unicode(255), nullable=True) gloss = sa.Column(sa.Unicode(), nullable=True) lexeme_id = sa.Column( sa.Integer(), sa.ForeignKey('lexeme.id'), nullable=True ) lexeme = sa.orm.relationship( 'Lexeme', backref=sa.orm.backref('forms', cascade='all, delete-orphan') ) def __repr__(self): return ( f"{self.__class__.__qualname__}('{self.form}')" ) class Lexeme(Model): lemma = sa.Column(sa.Unicode(), nullable=False) gloss = sa.Column(sa.Unicode(), nullable=True) subscript = sa.Column(sa.Integer(), nullable=True) language_id = sa.Column( sa.Integer(), sa.ForeignKey('language.id'), nullable=True ) language = sa.orm.relationship( 'Language', backref=sa.orm.backref('lexemes', cascade='all, delete-orphan') ) __table_args__ = ( sa.UniqueConstraint( 'lemma', 'gloss', 'language_id' ), ) def __repr__(self): return ( f"{self.__class__.__qualname__}('{self.lemma}')" ) ``` #### File: db/services/generic.py ```python import os from ..schema.utils.engine import DataBase __all__ = ['db', 'GenericService', 'PermissionsMixin'] db_path = os.getenv('DATABASE_URI') db = DataBase(db_path) def make_key(**opts): key = '-'.join([ f'{k}={v}' for k, v in dict(opts).items() ]) return key # Caching is currently disabled; too buggy. # If this ends up being inefficient # we should return to caching and fix it class ServiceMetaClass(type): @property def db(cls): return db def cache(cls, key, value): try: cls.__cache except AttributeError: cls.__cache = {} cls.__cache[key] = value def cached(cls, key): try: cls.__cache except AttributeError: cls.__cache = {} # Using 'get' instead of 'pop' here would enable caching return cls.__cache.pop(key, None) def clear_cache(cls): cls.__cache = {} class GenericService(metaclass=ServiceMetaClass): __model__ = None __unique_on__ = [] auto_commit = True @classmethod def commit(cls): cls.clear_cache() cls.db.session.commit() @classmethod def rollback(cls): cls.clear_cache() cls.db.session.rollback() @classmethod def create(cls, *, no_commit=False, check_unique=True, **kwargs): opts = dict(kwargs) for k in list(opts): opt = opts.pop(k) if hasattr(opt, 'id') and hasattr(cls.__model__, f'{k}_id'): opts[f'{k}_id'] = opt.id else: opts[k] = opt if check_unique and cls.__unique_on__: check = {k: opts.get(k) for k in cls.__unique_on__} existing_term = cls.get(**check) if existing_term: for k, v in kwargs.items(): if hasattr(existing_term, k): setattr(existing_term, k, v) cls.db.session.add(existing_term) if not no_commit and cls.auto_commit: cls.commit() return existing_term with cls.db.session.no_autoflush: model = cls.__model__(**opts) cls.db.session.add(model) cls.cache(make_key(**opts), model) if not no_commit and cls.auto_commit: cls.commit() return model @classmethod def get_all(cls, **kwargs): key = make_key(**kwargs) if not cls.cached(key): with cls.db.session.no_autoflush: model_query = cls.db.session.query(cls.__model__) if kwargs: model_query = model_query.filter_by(**kwargs) models = model_query.all() cls.cache(key, models) ret = cls.cached(key) or [] if isinstance(ret, cls.__model__): ret = [ret] with cls.db.session.no_autoflush: ret = [ x if (x in cls.db.session) else cls.db.session.merge(x) for x in ret ] return ret @classmethod def get(cls, model_id=None, **kwargs): ret = None query_options = kwargs.pop('query_options', None) if model_id is not None: if not isinstance(model_id, int): raise TypeError( '"model_id" must be of type int,' f' not {model_id.__class__.__name__}' ) if model_id > 0: if not cls.cached(model_id): with cls.db.session.no_autoflush: q = cls.db.session.query(cls.__model__) if query_options is not None: q = q.options(query_options) model = q.get( model_id ) cls.cache(model_id, model) ret = cls.cached(model_id) elif kwargs: models = cls.get_all(**kwargs) models.append(None) ret = models[0] if ret: with cls.db.session.no_autoflush: if ret not in cls.db.session: ret = cls.db.session.merge(ret) return ret @classmethod def get_or_create(cls, model_id=None, no_commit=False, **kwargs): model = cls.get(model_id=model_id, **kwargs) if model is None: check_unique = kwargs.pop('check_unique', False) model = cls.create( no_commit=no_commit, check_unique=check_unique, **kwargs ) with cls.db.session.no_autoflush: if model not in cls.db.session: model = cls.db.session.merge(model) return model @classmethod def update(cls, model): if isinstance(model, list): models = model else: models = [model] for model in models: if not isinstance(model, cls.__model__): raise TypeError( '"model" must be of type' f' {cls.__model__.__class__.__name__},' f' not {model.__class__.__name__}' ) if model in cls.db.session: cls.db.session.expunge(model) cls.db.session.add_all(models) cls.commit() @classmethod def delete(cls, model_or_id, no_commit=False): if isinstance(model_or_id, int): model = cls.get(model_or_id) elif isinstance(model_or_id, cls.__model__): model = model_or_id if model not in cls.db.session: model = cls.db.session.merge(model) else: raise TypeError( '"model_or_id" must be of type int' f' or {cls.__model__.__class__.__name__},' f' not {model_or_id.__class__.__name__}' ) cls.db.session.delete(model) if not no_commit and cls.auto_commit: cls.commit() def __init__(self, model, *args, **kwargs): self.__instance = model class PermissionsMixin: @classmethod def grant(cls, model, user, permission, no_commit=False): if not hasattr(model, 'grant'): raise TypeError( f'{model.__class__.__qualname__} does not support permissions' ) model.grant(user, permission) cls.db.session.add(model) if not no_commit and cls.auto_commit: cls.commit() @classmethod def clear_permissions(cls, model, except_for=[]): model._permissions = [ # Clear existing permissions x for x in model._permissions if x.user_id in except_for ] ``` #### File: workbench/parsing/base.py ```python import json import os try: from ..processing.processor import TextProcessor except ValueError: from processing.processor import TextProcessor try: from ..utils import * except ValueError: from utils import * __all__ = ['Parser'] with open( os.path.join(os.path.dirname(os.path.abspath(__file__)), 'config.json') ) as f: PARSER_CONFIG = json.load(f) class Parser: config = PARSER_CONFIG _lemma_cache = {} def __init__(self, logger=None): if logger is None: logger = make_logger(self.__class__.__name__) self.logger = logger def parse_file(self, filepath): text = TextProcessor(self.logger).process_file(filepath) if not text: return None words = text.xpath('//span[@class="word"]') normed = {} for w in words: try: normalized = norm_word(w.text) except Exception: import traceback traceback.print_exc() raise normalized = None if not normalized: continue normed.setdefault(normalized, []).append(w.attrib['id']) lemmas = {} total = len(list(normed)) for i, (normed, ids) in enumerate(normed.items(), start=1): self.logger.debug(f'Parsing word {i}/{total} ...') if normed not in self._lemma_cache: lems = self.parse_word(normed) self._lemma_cache[normed] = lems lems = self._lemma_cache[normed] for lem, parsings in lems.items(): lemma_info = lemmas.setdefault(lem, {}).setdefault( normed, {} ) lemma_info.setdefault('tokens', []).append(ids) lemma_info.setdefault('parsings', []).extend(parsings) return { 'formatted_text': text, 'lemma_mapping': lemmas } def parse_word(self, word): raise NotImplementedError() def normalize_parsing(self, parsing): p = parsing.strip() if not p: return None if p.startswith('ronoun'): p = 'p' + p notes = [] while '(' in p: p = p.split('(', 1) note = p[-1].split(')', 1) p = (p[0] + ' ' + note[-1]).strip() notes.append(note[0].strip()) parse = {} for pos, mapped in self.config['parts_of_speech'].items(): if p.startswith(pos): parse['pos'] = mapped p = p[len(pos):].strip() break for x in p.split(' '): x = x.strip() for cat, mapping in self.config['categories'].items(): if x in mapping: parse[cat] = mapping[x] break if ('pos' not in parse) and (x in self.config['parts_of_speech']): parse['pos'] = self.config['parts_of_speech'][x] if 'pos' not in parse: if 'case' in parse: if 'tense' in parse: parse['pos'] = 'participle' else: parse['pos'] = 'noun' elif 'tense' in parse: parse['pos'] = 'verb' if notes: parse['notes'] = '; '.join(notes) return parse ``` #### File: workbench/processing/utils.py ```python import base64 from random import randint def make_uid(n=64**8): uid = base64.b64encode(bytes(str(randint(1, n)), encoding='ascii')) return uid.decode('ascii') ``` #### File: workbench/scrapers/perseus_github.py ```python from lxml import etree from .base import WebScraper __all__ = ['PerseusGithubClient'] class PerseusGithubClient(WebScraper): base_url = 'https://raw.githubusercontent.com/PerseusDL' def _load(self, urn, excerpt=None, filename=None): urn = urn.lstrip('urn:cts:') urn = urn.split(':') urn_path = urn[1].split('.') url = ( f'{self.base_url}/canonical-{urn[0]}/master/data' f'/{urn_path[0]}/{urn_path[1]}/{urn[1]}.xml' ) self.logger.debug(f'Loading {url}') r = self.session.get(url) parser = etree.XMLParser(remove_blank_text=True) html = etree.fromstring(r.content, parser=parser) body = html.findall(f'.//text//body')[0] def get_child_text(block, rank=1): ret = [] blocks = block.xpath(f'child::div{rank}') if not blocks: ret.append(' '.join(t for t in block.itertext())) return ret for b in blocks: t = (b.attrib.get('type') or '').strip() n = (b.attrib.get('n') or '').strip() name = ' '.join([x for x in [t, n] if x]).strip().title() child_txt = get_child_text(b, rank=(rank + 1)) if child_txt and name: child_txt = [name] + child_txt txt = '\n\n'.join(child_txt) ret.append(txt) return ret text = get_child_text(body) text = '\n\n'.join(text) return text ``` #### File: workbench/utils/loggers.py ```python import logging import os def make_logger(name, level=logging.INFO, filepath=None): if isinstance(level, str): try: level = getattr(logging, level.upper()) except AttributeError: level = logging.INFO logger = logging.Logger(name) f = logging.Formatter( '[%(asctime)s] %(levelname)s: %(message)s' ) h = logging.StreamHandler() h.setLevel(level) h.setFormatter(f) logger.addHandler(h) if filepath and os.path.isdir(os.path.dirname(filepath)): h = logging.FileHandler(filename=filepath, encoding='utf-8') h.setLevel(level) h.setFormatter(f) logger.addHandler(h) return logger ```
{ "source": "josiahjohnston/PowerGenome", "score": 3 }
#### File: PowerGenome/powergenome/load_profiles.py ```python import pandas as pd import logging from powergenome.util import reverse_dict_of_lists logger = logging.getLogger(__name__) def load_curves( pudl_engine, settings, pudl_table="load_curves_epaipm", settings_agg_key="region_aggregations", ): # Settings has a dictionary of lists for regional aggregations. Need # to reverse this to use in a map method. region_agg_map = reverse_dict_of_lists(settings[settings_agg_key]) # IPM regions to keep. Regions not in this list will be dropped from the # dataframe keep_regions = [ x for x in settings["model_regions"] + list(region_agg_map) if x not in region_agg_map.values() ] # I'd rather use a sql query and only pull the regions of interest but # sqlalchemy doesn't allow table names to be parameterized. logger.info("Loading load curves from PUDL") load_curves = pd.read_sql_table( pudl_table, pudl_engine, columns=["region_id_epaipm", "time_index", "load_mw"] ) load_curves = load_curves.loc[load_curves.region_id_epaipm.isin(keep_regions)] # Set a new column "region" to the old column values. Then replace values for any # regions that are being aggregated load_curves.loc[:, "region"] = load_curves.loc[:, "region_id_epaipm"] load_curves.loc[ load_curves.region_id_epaipm.isin(region_agg_map.keys()), "region" ] = load_curves.loc[ load_curves.region_id_epaipm.isin(region_agg_map.keys()), "region_id_epaipm" ].map( region_agg_map ) logger.info("Aggregating load curves in grouped regions") load_curves_agg = load_curves.groupby(["region", "time_index"]).sum() lc_wide = load_curves_agg.unstack(level=0) lc_wide.columns = lc_wide.columns.droplevel() return lc_wide ```
{ "source": "josiah-keller/aoc-2020", "score": 4 }
#### File: aoc-2020/11/seats.py ```python import argparse class SeatSimulation: FLOOR = '.' SEAT = 'L' OCCUPIED = '#' def __init__(self, filename): self.neighbor_tolerance = 4 self.load(filename) self.initialize_state() def load(self, filename): with open(filename, 'r') as f: self.layout = [[c for c in line if c != '\n'] for line in f.readlines()] def copy_state(self, state): return [row[:] for row in state] def initialize_state(self): self.state = self.copy_state(self.layout) def print_state(self): for row in self.state: print(''.join(row)) print('\n') def run_til_settled(self): next_state = self.calc_next_state() while next_state != self.state: self.state = next_state next_state = self.calc_next_state() def count_occupied(self): return sum([row.count(SeatSimulation.OCCUPIED) for row in self.state]) def count_occupied_neighbors(self, row_idx, seat_idx): count = 0 for i in range(max(0, row_idx - 1), row_idx + 2): for j in range(max(0, seat_idx - 1), seat_idx + 2): try: if i == row_idx and j == seat_idx: continue if self.state[i][j] == SeatSimulation.OCCUPIED: count += 1 except IndexError: pass return count def calc_next_state(self): new_state = self.copy_state(self.state) for i in range(len(self.state)): row = self.state[i] for j in range(len(row)): seat = row[j] if seat == SeatSimulation.FLOOR: continue if seat == SeatSimulation.SEAT: if self.count_occupied_neighbors(i, j) == 0: new_state[i][j] = SeatSimulation.OCCUPIED if seat == SeatSimulation.OCCUPIED: if self.count_occupied_neighbors(i, j) >= self.neighbor_tolerance: new_state[i][j] = SeatSimulation.SEAT return new_state class LineOfSightSeatSimulation(SeatSimulation): def __init__(self, filename): super().__init__(filename) self.neighbor_tolerance = 5 def trace_los(self, start_row, start_seat, row_delta, seat_delta): row = start_row + row_delta seat = start_seat + seat_delta while row >= 0 and seat >= 0 and row < len(self.state) and seat < len(self.state[row]): if self.state[row][seat] == SeatSimulation.OCCUPIED: return True elif self.state[row][seat] == SeatSimulation.SEAT: return False row += row_delta seat += seat_delta return False def count_occupied_neighbors(self, row_idx, seat_idx): count = 0 for row_delta in range(-1, 2): for seat_delta in range(-1, 2): if row_delta == 0 and seat_delta == 0: continue if self.trace_los(row_idx, seat_idx, row_delta, seat_delta): count += 1 return count if __name__ == '__main__': parser = argparse.ArgumentParser(description=__doc__) parser.add_argument('filename', help='Path to the file with the ferry seat layout') args = parser.parse_args() print('Simulation 1: tolerate up to 4 immediate neighbors') simulation_1 = SeatSimulation(args.filename) simulation_1.run_til_settled() print('Occupied seats:', simulation_1.count_occupied()) print('Simulation 2: tolerate up to 5 neighbors within line of sight') simulation_2 = LineOfSightSeatSimulation(args.filename) simulation_2.run_til_settled() print('Occupied seats:', simulation_2.count_occupied()) ``` #### File: aoc-2020/19/grammar.py ```python import argparse class Grammar: def __init__(self): self.rules = {} def add_rule(self, line): (label, expr) = line.split(':') if label in self.rules: raise Exception('Duplicate rule: %s' % label) self.rules[label] = expr.replace('\n', '') def _match_impl(self, string, rule='0'): if string == '': return (True, 0, -1) starting_alternation = 0 # ugly way of communicating backtrack back up the call stack rule_parts = rule.split('!') normalized_rule = rule_parts[0] if len(rule_parts) == 2: starting_alternation = int(rule_parts[1]) if not normalized_rule in self.rules: raise Exception('Unknown rule: %s' % rule) expr = self.rules[normalized_rule] alternations = expr.split('|') cursor = 0 alternation_idx = 0 while alternation_idx < len(alternations): alternation = alternations[alternation_idx] cursor = 0 tokens = alternation.strip().split(' ') fail = False for i in range(len(tokens)): if alternation_idx < starting_alternation: # this alternation already failed earlier - we're just catching back up! fail = True token = tokens[i] if cursor == len(string): # nothing left to match - fail out fail = True break if token[0] == '"': if string[cursor] == token[1]: cursor += 1 else: # character doesn't match - fail out fail = True break else: (match, offset, backtrack_alternation_idx) = self._match_impl(string[cursor:], token) cursor += offset if backtrack_alternation_idx > -1: # the child rule might still have more alternations to try in case # of backtracking. so we'll construct a new rule string that # encodes the next alternation index for the child rule and add it # to *our* alternations new_tokens = tokens[:] orig_token = token.split('!')[0] new_tokens[i] = '%s!%d' % (orig_token, backtrack_alternation_idx) alternations.append(' '.join(new_tokens)) if not match: # child rule didn't match - fail out fail = True break if not fail: # match! return (True, cursor, alternation_idx + 1) alternation_idx += 1 # fail return (False, cursor, -1) def match(self, string, rule='0'): (match, cursor, _) = self._match_impl(string, rule) return match and cursor == len(string) def read_grammar(f): grammar = Grammar() line = f.readline() while line != '\n': grammar.add_rule(line) line = f.readline() return grammar def read_inputs(f): inputs = [] line = f.readline() while line: inputs.append(line.replace('\n', '')) line = f.readline() return inputs def read_input(filename): with open(filename, 'r') as f: grammar = read_grammar(f) inputs = read_inputs(f) return (grammar, inputs) if __name__ == '__main__': parser = argparse.ArgumentParser(description=__doc__) parser.add_argument('filename', help='Path to input file') parser.add_argument('-v', '--verbose', action='store_true', help='Print list of inputs that matched') args = parser.parse_args() (grammar, inputs) = read_input(args.filename) matches = [grammar.match(input) for input in inputs] print('Matches:', matches.count(True)) if args.verbose: for i in range(len(inputs)): if matches[i]: print(inputs[i]) ``` #### File: aoc-2020/20/image.py ```python import argparse, math class Tile: def __init__(self, tile_id, lines): self.id = tile_id self.pixels = [list(line) for line in lines] self.calc_edges() self.width = len(self.pixels) def calc_edges(self): self.top_edge = self.pixels[0][:] self.bottom_edge = self.pixels[-1][:] self.left_edge = [line[0] for line in self.pixels] self.right_edge = [line[-1] for line in self.pixels] def get_edges_list(self): """List of edges in order top, right, bottom, left""" return [self.top_edge, self.right_edge, self.bottom_edge, self.left_edge] def rotate_right(self): new_pixels = [[None for x in range(self.width)] for y in range(self.width)] for y in range(self.width): for x in range(self.width): new_pixels[x][self.width - 1 - y] = self.pixels[y][x] self.pixels = new_pixels self.calc_edges() def flip_horizontal(self): self.pixels = [line[::-1] for line in self.pixels] self.calc_edges() def flip_vertical(self): self.pixels = self.pixels[::-1] self.calc_edges() def duplicate(self): return Tile(self.id, self.pixels) def __str__(self): return 'Tile %d:\n%s' % (self.id, '\n'.join([''.join(line) for line in self.pixels])) class Edge: def __init__(self, tile, edge): self.tile = tile self.edge = edge self.match = None class TilesMap: def __init__(self, tiles): self.tiles = tiles self.width = int(math.sqrt(len(self.tiles))) self.map = [[None for x in range(self.width)] for y in range(self.width)] def do_match(self, tile_a, tile_b): for edge_a in tile_a.get_edges_list(): for edge_b in tile_b.get_edges_list(): if edge_a == edge_b: return True return False def get_neighbor_candidates(self, tile): return [candidate for candidate in self.tiles if self.do_match(candidate, tile)] def arrange(self): edges = [] for tile in self.tiles: edges += [Edge(tile, edge) for edge in tile.get_edges_list()] for i in range(len(edges)): edge = edges[i] if edge.match is not None: continue for j in range(i + 1, len(edges)): other_edge = edges[j] if edge.edge == other_edge.edge: edge.match = other_edge other_edge.match = edge break elif edge.edge == other_edge.edge[::-1]: edge.match = other_edge other_edge.match = edge break match_counts = {} for edge in edges: if edge.match is not None: if not edge.tile.id in match_counts: match_counts[edge.tile.id] = 1 else: match_counts[edge.tile.id] += 1 corner_ids = [tile_id for (tile_id, count) in match_counts.items() if count == 2] product = 1 for tile_id in corner_ids: product *= tile_id print('Product of corner tile IDs:', product) def read_tiles(filename): tiles = [] with open(filename, 'r') as f: lines = [] for line in f: line = line.replace('\n', '') if 'Tile' in line: tile_id = int(line.replace('Tile ', '').replace(':', '')) elif line != '': lines.append(line) else: tiles.append(Tile(tile_id, lines)) lines = [] if len(lines) > 0: tiles.append(Tile(tile_id, lines)) return tiles if __name__ == '__main__': parser = argparse.ArgumentParser(description=__doc__) parser.add_argument('filename', help='Path to the file with image tiles') args = parser.parse_args() tiles = read_tiles(args.filename) tm = TilesMap(tiles) tm.arrange() ```
{ "source": "JosiahKerley/flags", "score": 3 }
#### File: flags/sysflags/cli.py ```python import argparse from .database import YamlDatabase as DB from . import utils def cli(): parser = argparse.ArgumentParser() parser.add_argument('-S', '--scope', default='directory', help="flag scope") parser.add_argument('-F', '--output-format', default='yaml', dest='format', help="output format") parser.add_argument('-g', '--get', help="get a value") parser.add_argument('-s', '--set', help="set a value") parser.add_argument('-v', '--value', help="set a value") parser.add_argument('-d', '--dump', action="store_true", help="dump the database") args = parser.parse_args() db = DB(scope=args.scope) if args.get: utils.print_formatted_message(db.get(query=args.get), format=args.format) elif args.set: utils.print_formatted_message(db.set(query=args.set, value=args.value), format=args.format) elif args.dump: utils.print_formatted_message(db.dump(), format=args.format) ``` #### File: flags/sysflags/database.py ```python from .strategies import * from . import utils import os import re import sys import dpath.util import pickle from pathlib import Path from datetime import datetime dpath.options.ALLOW_EMPTY_STRING_KEYS = True class Database: scope = None namespace = None snapshot = None strategy = None _file_extenstion = None _database_file_subpath = '{namespace}/snapshot-{snapshot}.{file_extenstion}' _datetime_fmt = "%Y-%m-%d_%H-%M-%S" _system_scope_parent_dir = '/etc/flags' _user_scope_parent_dir = f'{Path.home()}/.config/flags' _directory_scope_parent_dir = f'{os.getcwd()}/.flags' def __init__(self, scope='system', snapshot='current', namespace='default', strategy='MergeScopesTopToBottom'): self.scope = scope self.snapshot = snapshot self.namespace = namespace if strategy: self.strategy = getattr(sys.modules[__name__], strategy)(cls=self, scope=scope, snapshot=snapshot, namespace=namespace) self._setup() def _get_database_filepath(self, subpath=None): if not subpath: subpath = self._database_file_subpath.format( scope=self.scope, namespace=self.namespace, snapshot=self.snapshot, file_extenstion=self._file_extenstion ) if self.scope == 'system': return f'{self._system_scope_parent_dir}/{subpath}' elif self.scope == 'user': return f'{self._user_scope_parent_dir}/{subpath}' elif self.scope == 'directory': return f'{self._directory_scope_parent_dir}/{subpath}' else: raise Exception(f'unknown scope {self.scope}') def _get_database_filedir(self): return os.path.dirname(self._get_database_filepath()) def _get_datetime_string_now(self): return datetime.now().strftime(self._datetime_fmt) def _list_snapshot_filepaths(self): if os.path.exists(self._get_database_filedir()): return [f for f in os.listdir(self._get_database_filedir()) if re.match(rf'snapshot-.*.{self._file_extenstion}', f)] def _bootstrap_empty_file(self, filepath): os.mknod(filepath) return True def _setup_dirs(self): try: if not os.path.exists(self._get_database_filedir()): os.makedirs(self._get_database_filedir()) utils.eprint(f'Creating directory {self._get_database_filedir()}') except: utils.eprint(f'Cannot create directory {self._get_database_filedir()}') def _setup_files(self): if self.snapshot == 'current': if not os.path.islink(self._get_database_filepath()) and os.path.exists(self._get_database_filedir()): if not self._list_snapshot_filepaths(): subpath = self._database_file_subpath.format( scope=self.scope, namespace=self.namespace, snapshot=self._get_datetime_string_now(), file_extenstion=self._file_extenstion ) empty_snapshot_filepath = self._get_database_filepath(subpath) utils.eprint(f'Creating empty db file {empty_snapshot_filepath}') assert self._bootstrap_empty_file(empty_snapshot_filepath) os.symlink(empty_snapshot_filepath, self._get_database_filepath()) return True else: subpath = self._database_file_subpath.format( scope=self.scope, namespace=self.namespace, snapshot=self.snapshot, file_extenstion=self._file_extenstion ) return os.path.isfile(self._get_database_filepath(subpath)) def _setup(self): self._setup_dirs() self._setup_files() def _serialize(self, data: dict): return pickle.dumps(data) def _deserialize(self, datastr: str) -> dict: return pickle.loads(datastr) def _read_data(self): with open(self._get_database_filepath(), 'r') as f: return f.read() def _write_data(self, data): with open(self._get_database_filepath(), 'w') as f: return f.write(data) def _get_data(self): if self.strategy: return self.strategy.get_data() else: return self._deserialize(self._read_data()) def _set_data(self, data: dict): return self._write_data(self._serialize(data)) def dump(self): return self._get_data() def get(self, query: str): try: return dpath.util.get(self._get_data(), query) except: return None def search(self, query: str): return dpath.util.search(self._get_data(), query) def values(self, query: str): return dpath.util.values(self._get_data(), query) def set(self, query: str, value=None, writeback=True, recurse=True): if recurse: retval = dpath.util.new(self._get_data(), query, value) else: retval = dpath.util.set(self._get_data(), query, value) if writeback: self._set_data(retval) return retval class YamlDatabase(Database): import yaml _file_extenstion = 'yaml' def _bootstrap_empty_file(self, filepath): with open(filepath, 'w') as f: return f.write('{}') def _serialize(self, data: dict): return self.yaml.dump(data) def _deserialize(self, datastr: str) -> dict: return self.yaml.load(datastr, Loader=self.yaml.FullLoader) class JsonDatabase(Database): import json _file_extenstion = 'json' def _bootstrap_empty_file(self, filepath): with open(filepath, 'w') as f: return f.write('{}') def _serialize(self, data: dict): return self.json.dumps(data, indent=2) def _deserialize(self, datastr: str) -> dict: return self.json.loads(datastr) ``` #### File: flags/sysflags/strategies.py ```python import dpath.util class Strategy: def __init__(self, *args, **kwargs): self.args = args self.kwargs = kwargs self._setup() def _setup(self): pass class MergeStrategy(Strategy): def get_data(self): return {} def _setup(self): self._cls = self.kwargs['cls'].__class__ self._scope = self.kwargs['scope'] self._snapshot = self.kwargs['snapshot'] self._namespace = self.kwargs['namespace'] self.system = self._cls(scope='system', snapshot=self._snapshot, namespace=self._namespace, strategy=None) self.user = self._cls(scope='user', snapshot=self._snapshot, namespace=self._namespace, strategy=None) self.directory = self._cls(scope='directory', snapshot=self._snapshot, namespace=self._namespace, strategy=None) try: self.system = self.system._get_data() except: self.system = {} try: self.user = self.user._get_data() except: self.user = {} try: self.directory = self.directory._get_data() except: self.directory = {} class MergeScopesTopToBottom(MergeStrategy): def get_data(self): return dpath.util.merge( self.system, dpath.util.merge( self.user, self.directory ) ) ```
{ "source": "JosiahKerley/ovirt-ansible-dpdk-setup", "score": 2 }
#### File: ovirt-ansible-dpdk-setup/library/configure_kernel.py ```python DOCUMENTATION = ''' --- short_description: Configures the kernel to be DPDK compatible. author: "<NAME> (@leongold)" description: - "Module to configure the kernel to be DPDK compatible." options: pci_drivers: description: - "Dictionary of PCI address to device drivers. DPDK compatible devices\drivers has their CPU's isolated." required: true ''' EXAMPLES = ''' - name: configure kernel configure_kernel: pci_drivers: "0000:00:04.0": "vfio-pci" ''' RETURN = ''' changed: description: Describes whether any alterations to the kernel were made. returned: On success. type: boolean sample: true ''' import os import subprocess import traceback from ansible.module_utils.basic import AnsibleModule from ansible.module_utils.dpdk_setup_common import exec_cmd from ansible.module_utils.dpdk_setup_common import get_cpu_list from ansible.module_utils.dpdk_setup_common import DPDK_DRIVERS class ReadKernelArgsError(Exception): pass class UpdateKernelError(Exception): pass class SelectCpuPartitioningError(Exception): pass def _get_default_kernel(): proc = subprocess.Popen(['grubby', '--default-kernel'], stdout=subprocess.PIPE) return proc.stdout.read().strip() def _remove_stale_hugepages(): for arg in ('default_hugepagesz', 'hugepagesz', 'hugepages'): while arg in _get_kernel_args(): proc = subprocess.Popen( ['grubby', '--remove-args="{}"'.format(arg), '--update-kernel', _get_default_kernel() ] ) out, err = proc.communicate() if err: raise UpdateKernelError(out) def _1gb_hugepages_are_supported(): with open('/proc/cpuinfo') as f: return 'pdpe1gb' in f.read() def _add_hugepages(nr_2mb_hugepages, nr_1gb_hugepages, use_1gb_hugepages): use_1gb_hugepages = _1gb_hugepages_are_supported() and use_1gb_hugepages size = '1G' if use_1gb_hugepages else '2M' amount = str(nr_1gb_hugepages) if use_1gb_hugepages \ else str(nr_2mb_hugepages) if _current_hugepages(size, amount): return False _remove_stale_hugepages() args = 'default_hugepagesz={} hugepagesz={} hugepages={}'.format( size, size, amount ) proc = subprocess.Popen(['grubby', '--args="{}"'.format(args), '--update-kernel', _get_default_kernel()]) out, err = proc.communicate() if err: raise UpdateKernelError(out) return True def _change_isolated_cpus(cpu_list): VARIABLES_FILE = '/etc/tuned/cpu-partitioning-variables.conf' changed = False has_isolated_cores = False new_lines = [] with open(VARIABLES_FILE) as f: lines = f.readlines() for line in lines: if line.startswith('isolated_cores'): has_isolated_cores = True required_line = 'isolated_cores={}'.format(cpu_list) if line != required_line: line = required_line changed = True new_lines.append(line) if not has_isolated_cores: new_lines.append('isolated_cores={}'.format(cpu_list)) changed = True with open(VARIABLES_FILE, 'w') as f: f.writelines(new_lines) return changed def _current_hugepages(size, amount): kernel_args = _get_kernel_args() args_list = kernel_args.split() return all([ any([arg.startswith('hugepages=' + amount) for arg in args_list]), any([arg.startswith('hugepagesz=' + size) for arg in args_list]), any([arg.startswith('default_hugepagesz=' + size) for arg in args_list]) ]) def _get_kernel_args(): rc, out, err = exec_cmd(['grubby', '--info', _get_default_kernel()]) if rc != 0: raise ReadKernelArgsError(err) return [l.split('=', 1)[1].strip('"') for l in out.split('\n') if l.startswith('args')][0] def _select_cpu_partitioning(cpu_list): profile = 'cpu-partitioning' if cpu_list else 'balanced' rc, _, err = exec_cmd(['tuned-adm', 'profile', profile]) if rc != 0: raise SelectCpuPartitioningError(err) def _add_iommu(): if _is_iommu_set(): return False rc, _, err = exec_cmd(['grubby', '--args=iommu=pt intel_iommu=on', '--update-kernel={}'.format(_get_default_kernel())]) if rc != 0: raise UpdateKernelError(err) return True def _is_iommu_set(): kernel_args = _get_kernel_args() return 'iommu=pt' in kernel_args and 'intel_iommu=on' in kernel_args def _configure_kernel( pci_addresses, nr_2mb_hugepages, nr_1gb_hugepages, use_1gb_hugepages): cpu_list = get_cpu_list(pci_addresses) added_hugepages = _add_hugepages( nr_2mb_hugepages, nr_1gb_hugepages, use_1gb_hugepages ) changed_isolated_cpus = _change_isolated_cpus(cpu_list) _select_cpu_partitioning(cpu_list) added_iommu = _add_iommu() return any([added_hugepages, changed_isolated_cpus, added_iommu]) def main(): module = AnsibleModule( argument_spec=dict( pci_drivers=dict(default=None, type='dict', required=True), nr_2mb_hugepages=dict(default=None, type='int', required=True), nr_1gb_hugepages=dict(default=None, type='int', required=True), use_1gb_hugepages=dict(default=None, type='bool', required=True) ) ) pci_drivers = module.params.get('pci_drivers') pci_addresses = [addr for addr, driver in pci_drivers.iteritems() if driver in DPDK_DRIVERS] try: changed = _configure_kernel( pci_addresses, module.params.get('nr_2mb_hugepages'), module.params.get('nr_1gb_hugepages'), module.params.get('use_1gb_hugepages') ) except Exception as e: module.fail_json(msg=str(e), exception=traceback.format_exc()) module.exit_json(changed=changed) if __name__ == "__main__": main() ```
{ "source": "JosiahKerley/python-httpsync", "score": 2 }
#### File: JosiahKerley/python-httpsync/setup.py ```python import os from setuptools import setup from setuptools import find_packages from pip.req import parse_requirements def get_package_data(package): walk = [(dirpath.replace(package + os.sep, '', 1), filenames) for dirpath, dirnames, filenames in os.walk(package) if not os.path.exists(os.path.join(dirpath, '__init__.py'))] filepaths = [] for base, filenames in walk: filepaths.extend([os.path.join(base, filename) for filename in filenames]) return {package: filepaths} os.chdir(os.path.normpath(os.path.join(os.path.abspath(__file__), os.pardir))) install_reqs = parse_requirements('requirements.txt', session=False) with open(os.path.join(os.path.dirname(__file__), 'README.md')) as file: README = file.read() requirements = [str(ir.req) for ir in install_reqs] setup( name = 'HTTPSync', version = '1.0.1', description = 'Tool to sync down files from a URL', author = '<NAME>', author_email = '<EMAIL>', url = 'https://github.com/JosiahKerley/python-httpsync', zip_safe = False, install_requires = requirements, packages=find_packages(), package_data=get_package_data('httpsync'), entry_points = { "console_scripts": [ "httpsync = httpsync:run" ] } ) ```
{ "source": "josiahkhor/pdfminer.six", "score": 3 }
#### File: pdfminer.six/tests/test_font_size.py ```python from helpers import absolute_sample_path from pdfminer.high_level import extract_pages from pdfminer.layout import LTChar, LTTextBox def test_font_size(): path = absolute_sample_path('font-size-test.pdf') for page in extract_pages(path): for text_box in page: if isinstance(text_box, LTTextBox): for line in text_box: possible_number = line.get_text().strip() if possible_number.isdigit(): expected_size = int(possible_number) for char in line: if isinstance(char, LTChar): actual_size = int(round(char.size)) print(char, actual_size, expected_size) assert expected_size == actual_size else: print(repr(line.get_text())) ```
{ "source": "josiahls/fast-reinforcement-learning", "score": 3 }
#### File: fast_rl/core/data_structures.py ```python import numpy as np class SumTree(object): write = 0 def __init__(self, capacity): """ Used for PER. References: [1] SumTree implementation belongs to: https://github.com/rlcode/per Notes: As of 8/23/2019, does not have a license provided. As another note, this code is modified. Args: capacity: """ self.capacity = capacity self.tree = np.zeros(2 * capacity - 1) self.data = np.zeros(capacity, dtype=object) self.n_entries = 0 def _propagate(self, idx, change): """ Update to the root node """ parent = (idx - 1) // 2 self.tree[parent] += change if (np.isscalar(parent) and parent != 0) or (not np.isscalar(parent) and all(parent != 0)): if not np.isscalar(parent): change[parent == 0] = 0 self._propagate(parent, change) def get_left(self, index): return 2 * index + 1 def get_right(self, index): return self.get_left(index) + 1 def _retrieve(self, idx, s): """ Finds sample on leaf node """ left = self.get_left(idx) right = self.get_right(idx) if left >= len(self.tree): return idx if s <= self.tree[left]: return self._retrieve(left, s) else: return self._retrieve(right, s - self.tree[left]) def total(self): return self.tree[0] def add(self, p, data): """ Store priority and sample """ idx = self.write + self.capacity - 1 self.data[self.write] = data self.update(idx, p) self.write += 1 if self.write >= self.capacity: self.write = 0 if self.n_entries < self.capacity: self.n_entries += 1 def update(self, idx, p): """ Update priority """ p = p.flatten() if not np.isscalar(p) else p change = p - self.tree[idx] self.tree[idx] = p self._propagate(idx, change) def get(self, s): """ Get priority and sample """ idx = self._retrieve(0, s) data_index = idx - self.capacity + 1 return idx, self.tree[idx], self.data[data_index] def anneal_weights(self, priorities, beta): sampling_probabilities = priorities / self.total() is_weight = np.power(self.n_entries * sampling_probabilities, -beta) is_weight /= is_weight.max() return is_weight.astype(float) def batch_get(self, ss): return np.array(list(zip(*list([self.get(s) for s in ss if self.get(s)[2] != 0])))) def print_tree(tree: SumTree): print('\n') if tree.n_entries == 0: print('empty') return max_d = int(np.log2(len(tree.tree))) string_len_max = len(str(tree.tree[-1])) tree_strings = [] display_values = None display_indexes = None for layer in range(max_d + 1): # Get the indexes in the current layer d if display_indexes is None: display_indexes = [[0]] else: local_list = [] for i in [_ for _ in display_indexes[-1] if _ < len(tree.tree)]: if tree.get_left(i) < len(tree.tree): local_list.append(tree.get_left(i)) if tree.get_right(i) < len(tree.tree): local_list.append(tree.get_right(i)) display_indexes.append(local_list) for layer in display_indexes: # Get the v contained in current layer d if display_values is None: display_values = [[tree.tree[i] for i in layer]] else: display_values.append([tree.tree[i] for i in layer]) tab_sizes = [] spacings = [] for i, layer in enumerate(display_values): # for now ignore string length tab_sizes.append(0 if i == 0 else (tab_sizes[-1] + 1) * 2) spacings.append(3 if i == 0 else (spacings[-1] * 2 + 1)) for i, layer in enumerate(display_values): # tree_strings.append('*' * list(reversed(tab_sizes))[i]) values = ''.join(str(v) + ' ' * (string_len_max * list(reversed(spacings))[i]) for v in layer) tree_strings.append(' ' * (string_len_max * list(reversed(tab_sizes))[i]) + values) for tree_string in tree_strings: print(tree_string) ``` #### File: fast-reinforcement-learning/tests/conftest.py ```python import pytest def pytest_addoption(parser): parser.addoption("--include_performance_tests", action="store_true", help="Will run the performance tests which do full model testing. This could take a few" "days to fully accomplish.") @pytest.fixture() def include_performance_tests(pytestconfig): return pytestconfig.getoption("include_performance_tests") @pytest.fixture() def skip_performance_check(include_performance_tests): if not include_performance_tests: pytest.skip('Skipping due to performance argument not specified. Add --include_performance_tests to not skip') ``` #### File: fast-reinforcement-learning/tests/test_basic_train.py ```python import os from fast_rl.agents.dqn import create_dqn_model, FixedTargetDQNModule, dqn_learner from fast_rl.core.agent_core import ExperienceReplay, torch, GreedyEpsilon from fast_rl.core.basic_train import load_learner from fast_rl.core.data_block import MDPDataBunch def test_fit(): data=MDPDataBunch.from_env('CartPole-v0', render='rgb_array', bs=5, max_steps=20, add_valid=False) model=create_dqn_model(data, FixedTargetDQNModule, opt=torch.optim.RMSprop) memory=ExperienceReplay(memory_size=1000, reduce_ram=True) exploration_method=GreedyEpsilon(epsilon_start=1, epsilon_end=0.1, decay=0.001) learner=dqn_learner(data=data, model=model, memory=memory, exploration_method=exploration_method) learner.fit(2) learner.fit(2) learner.fit(2) assert len(data.x.info)==6 assert 0 in data.x.info assert 5 in data.x.info def test_to_pickle(): data=MDPDataBunch.from_env('CartPole-v0', render='rgb_array', bs=5, max_steps=20, add_valid=False) model=create_dqn_model(data, FixedTargetDQNModule, opt=torch.optim.RMSprop) memory=ExperienceReplay(memory_size=1000, reduce_ram=True) exploration_method=GreedyEpsilon(epsilon_start=1, epsilon_end=0.1, decay=0.001) learner=dqn_learner(data=data, model=model, memory=memory, exploration_method=exploration_method) learner.fit(2) assert len(data.x.info)==2 assert 0 in data.x.info assert 1 in data.x.info data.to_pickle('./data/test_to_pickle') assert os.path.exists('./data/test_to_pickle_CartPole-v0') def test_from_pickle(): data=MDPDataBunch.from_pickle('./data/test_to_pickle_CartPole-v0') model=create_dqn_model(data, FixedTargetDQNModule, opt=torch.optim.RMSprop) memory=ExperienceReplay(memory_size=1000, reduce_ram=True) exploration_method=GreedyEpsilon(epsilon_start=1, epsilon_end=0.1, decay=0.001) learner=dqn_learner(data=data, model=model, memory=memory, exploration_method=exploration_method) learner.fit(2) assert len(data.x.info)==4 assert 0 in data.x.info assert 3 in data.x.info def test_export_learner(): data=MDPDataBunch.from_env('CartPole-v0', render='rgb_array', bs=5, max_steps=20, add_valid=False) model=create_dqn_model(data, FixedTargetDQNModule, opt=torch.optim.RMSprop) memory=ExperienceReplay(memory_size=1000, reduce_ram=True) exploration_method=GreedyEpsilon(epsilon_start=1, epsilon_end=0.1, decay=0.001) learner=dqn_learner(data=data, model=model, memory=memory, exploration_method=exploration_method) learner.fit(2) learner.export('test_export.pkl')#, pickle_data=True) learner = load_learner(learner.path, 'test_export.pkl') learner.fit(2) ``` #### File: fast-reinforcement-learning/tests/test_data_structures.py ```python from fast_rl.core.data_structures import print_tree, SumTree def test_sum_tree_with_max_size(): memory = SumTree(10) values = [1, 1, 1, 1, 1, 1] data = [f'data with priority: {i}' for i in values] for element, value in zip(data, values): memory.add(value, element) print_tree(memory) ```
{ "source": "josiahls/fastrl", "score": 2 }
#### File: agents/dqn/core.py ```python __all__ = ['DQN', 'ArgMaxFeed', 'DiscreteEpsilonRandomSelect', 'Epsilon', 'DQNTrainer'] # Cell # Python native modules import os from collections import deque # Third party libs import torch from torch.nn import * from fastcore.all import * from fastai.learner import * from fastai.torch_basics import * from fastai.torch_core import * from fastai.callback.all import * from torch.utils.tensorboard import SummaryWriter # Local modules from ...data.block import * from ...data.gym import * from ...agent import * from ...core import * from ...memory.experience_replay import * # Cell class DQN(Module): def __init__(self,state_sz:int,action_sz:int,hidden=512): self.layers=Sequential( Linear(state_sz,hidden), ReLU(), Linear(hidden,action_sz), ) def forward(self,x): return self.layers(x) # Cell class ArgMaxFeed(AgentCallback): def before_action(self): raw_action=self.agent.model(self.experience['state'].to(default_device())) self.agent.raw_action_shape=raw_action.shape self.agent.action=torch.argmax(raw_action,dim=1).reshape(-1,1) class DiscreteEpsilonRandomSelect(AgentCallback): def __init__(self,idx=0,min_epsilon=0.2,max_epsilon=1,max_steps=5000): store_attr() self.epsilon=max_epsilon def before_noise(self): # Temporarily commenting this out to see if the random action selection is the problem. # Right now the issue is that we are not getting a lot of terminal examples early enough. # This is causing the loss to go crazy massive. # self.mask=torch.randn(size=(self.agent.action.shape[0],))<self.epsilon # self.experience['randomly_selected']=self.mask.reshape(-1,1) self.experience['epsilon']=torch.full(self.agent.action.shape,self.epsilon) self.experience['orignal_actions']=self.agent.action.detach().clone() # self.agent.action[self.mask]=self.agent.action[self.mask].random_(0,self.agent.raw_action_shape[1]) # self.agent.action=self.agent.action.detach().cpu().numpy() mask = np.random.random(size=self.action.shape[0]) < self.epsilon rand_actions = np.random.choice(len(self.action.shape), sum(mask)) actions=self.agent.action.cpu().detach().numpy().reshape((-1,)) actions[mask] = rand_actions self.agent.action=Tensor(actions).long().reshape(-1,1) if self.agent.model.training: self.idx+=1 self.epsilon=max(self.min_epsilon,self.max_epsilon-self.idx/self.max_steps) # Cell class Epsilon(Metric): order=30 epsilon=0 counter=0 def __init__(self,writer:SummaryWriter=None): store_attr() @property def value(self): return self.epsilon def reset(self): self.epsilon=0 def accumulate(self,learn): for cb in learn.model.cbs: if type(cb)==DiscreteEpsilonRandomSelect: self.epsilon=cb.epsilon self.counter+=1 if self.writer is not None: self.writer.add_scalar('epsilon',self.epsilon,self.counter) # Cell class DQNTrainer(Callback): "Performs traditional training on `next_q`. Requires a callback such as `RegularNextQ`" def __init__(self,discount=0.99,n_steps=1): store_attr() self._xb=None self.n_batch=0 def after_pred(self): self.learn.yb=self.xb # self.learn.xb=self.xb self._xb=(self.xb,) self.learn.done_mask=self.xb['done'].reshape(-1,) self.learn.next_q=self.learn.model.model(self.xb['next_state']).max(dim=1).values.reshape(-1,1) self.learn.next_q[self.done_mask]=0 #xb[done_mask]['reward'] self.learn.targets=self.xb['reward']+self.learn.next_q*(self.discount**self.n_steps) self.learn.pred=self.learn.model.model(self.xb['state']) t_q=self.pred.clone() t_q.scatter_(1,self.xb['action'],self.targets) # finalize the xb and yb self.learn.yb=(t_q,) # if (self.n_batch-1)%500==0: # print('The loss should be practically zero: ',self.loss) # print(self.learn.pred-t_q) with torch.no_grad(): self.learn.td_error=(self.pred-self.yb[0]).mean(dim=1).reshape(-1,1)**2 def before_backward(self): self.n_batch+=1 self.learn.xb=self._xb ``` #### File: fastrl/memory/tensorboard.py ```python __all__ = ['create_event_accumulator', 'diff_tags', 'scalars2value', 'scalar2line', 'images2animation', 'figures_to_html', 'create_experience_replay_fig'] # Cell # Python native modules import os from fnmatch import fnmatch from warnings import warn # Third party libs from PIL import Image from IPython.display import HTML from io import BytesIO import plotly.express as px import numpy as np import pandas as pd from fastcore.all import * from tensorboard.backend.event_processing import event_accumulator # Local modules from ..core import * # Cell def create_event_accumulator( p:Optional[Path]=None, # Path or in-complete path to a tensorboard event directory. ref `pattern` pattern:str='*', # Will filter paths at `cwd` if `p` is None, or filter at `p` verbose:bool=False, images=None, # Reference EventAccumulator `size_guidance` scalars=None, # Reference EventAccumulator `size_guidance` audio=None, # Reference EventAccumulator `size_guidance` histograms=None, # Reference EventAccumulator `size_guidance` compressed_histograms=None, # Reference EventAccumulator `size_guidance` )->event_accumulator.EventAccumulator: "Creates an event accumulator at the first directory at `p`." p=ifnone(p,Path.cwd()) events=L([o for o in p.ls() if fnmatch(str(o),pattern)]).sorted() if not events: raise Exception(f'No events were found at {p}'+('' if pattern is None else f' and pattern {pattern}')) if len(events)>1 and verbose: warn(f'Got {len(events)} events. Using the most recent one.') if verbose: print('Using: ',str(events[-1])) ea=event_accumulator.EventAccumulator(str(events[-1]), size_guidance={ event_accumulator.COMPRESSED_HISTOGRAMS: ifnone(compressed_histograms,500), event_accumulator.IMAGES: ifnone(images,100), event_accumulator.AUDIO: ifnone(audio,4), event_accumulator.SCALARS: ifnone(scalars,0), event_accumulator.HISTOGRAMS: ifnone(histograms,1), }) ea.Reload() return ea # Cell def diff_tags(a,b): return ''.join(set(a.split('/'))-set(b.split('/'))) # Cell def scalars2value(scalars:list): return list(map(lambda o:o.value,scalars)) def scalar2line( tag_pattern:str, # Tags that will match this pattern to be displayed. ea:event_accumulator.EventAccumulator, # The event accumulator to load the images start:int=0, # Where in the list of images to start loading end:Optional[int]=None, # Optionally where to stop loading images step:int=1 # Number of steps betwee image reads ): tags=[t for t in ea.Tags()['scalars'] if fnmatch(t,tag_pattern)] if not tags: warn(f'There are not tags with pattern {tag_pattern}, there are: \n{ea.Tags()["scalars"]}') # slice the scalars sliced={t:scalars2value(ea.Scalars(t)[start:end:step]) for t in tags} # Create the data frame df=pd.DataFrame( data={'values':np.array(list(sliced.values())).reshape(-1,), 'tags':np.array([[diff_tags(k,tag_pattern)]*len(v) for k,v in sliced.items()]).reshape(-1,), 'steps':np.array([np.arange(len(v)) for v in sliced.values()]).reshape(-1,)} ) value_array=np.array(list(sliced.values())) return px.line(data_frame=df,x='steps',y='values',animation_frame="tags", title=tag_pattern, range_y=[value_array.min(),value_array.max()]) # Cell def _td_gif2np(img): return np.array(Image.open(BytesIO(img.encoded_image_string)).convert('RGB')).copy() def images2animation( tag_pattern:str, # Tags that will match this pattern to be displayed. ea:event_accumulator.EventAccumulator, # The event accumulator to load the images start:int=0, # Where in the list of images to start loading end:Optional[int]=None, # Optionally where to stop loading images step:int=1 # Number of steps betwee image reads ): tags=[t for t in ea.Tags()['images'] if fnmatch(t,tag_pattern)] if not tags: warn(f'There are no images with pattern {tag_pattern} given tags: '+'\n'.join(ea.Tags()['images'])) return None imgs=ea.Images(tags[-1])[start:end:step] if not imgs: warn(f'There are no images in {tags[-1]}') return None np_imgs=[_td_gif2np(o) for o in imgs] return px.imshow(np.array(np_imgs),animation_frame=0) # Cell def figures_to_html(*figs): html="<html><head></head><body>" + "\n" for fig in figs: html+=fig.to_html().split('<body>')[1].split('</body>')[0] html+="</body></html>" + "\n" display(HTML(html)) # Cell @delegates(create_event_accumulator) def create_experience_replay_fig( tag_pattern_expected_reward:Union[str,list]='experience_replay/*/expected_reward/action_dim_0', # Tags about expected reward tag_pattern_td_error:str='experience_replay/*/td_error', # Tags about td_error tag_pattern_images:str='*', # Tags about images. start:int=0, # Where in the list of images to start loading end:Optional[int]=None, # Optionally where to stop loading images step:int=1, # Number of steps betwee image reads **kwargs): ea=create_event_accumulator(**kwargs) common_args=dict(start=start,end=end,step=step) if isinstance(tag_pattern_expected_reward,str): expected_reward_line=(scalar2line(tag_pattern_expected_reward,ea=ea,**common_args),) else: expected_reward_line=tuple(scalar2line(tper,ea=ea,**common_args) for tper in tag_pattern_expected_reward) td_error_line=scalar2line(tag_pattern_td_error,ea=ea,**common_args) if tag_pattern_images is not None: images_animation=images2animation(tag_pattern_images,ea=ea,**common_args) return figures_to_html( td_error_line, images_animation, *expected_reward_line ) else: return figures_to_html( td_error_line, *expected_reward_line ) ```
{ "source": "josiahls/Lowes-Product-Classifier", "score": 3 }
#### File: lowes-product-classifier/models/helpers.py ```python import os from pathlib import Path def get_absolute_data_path(data_workspace: str = 'data', parent_up_limit=2, sub_folder_name: str = None): """ Gets the absolute path for the 'data' directory. ***Note that this assumes the script is in the lowes-product-classifier*** :param sub_folder_name: A sub folder name. It is the user's responsibility if the sub folder has separators such as '/' or '\'. Please use os.sep if this is the case. :param data_workspace: Name of the workspace. Default is 'data' :param parent_up_limit: The number of upper folders to look through to find the directory :return: The absolute path to the workspace. IE a string like: /Users/jlaivins/PycharmProjects/Lowes-Product-Classifier/lowes-product-classifier/data/ """ absolute_path = '' for i in range(-1, parent_up_limit): if i == -1: curr = str(Path().absolute()) else: curr = str(Path().absolute().parents[i]) if data_workspace in os.listdir(curr): absolute_path = curr + os.sep + data_workspace break # If the user specifies a sub folder, add it if sub_folder_name is not None: absolute_path += sub_folder_name return absolute_path ```
{ "source": "JosiahMg/pyswan", "score": 3 }
#### File: pyswan/pyswan/extract_cpca.py ```python from pyswan.cpca import transform class GenPlace: @staticmethod def parse(message): df_message = transform([message.target]) for d in df_message.index: ele = {} ele['type'] = 'place' ele['province'] = df_message.loc[d]['province'] ele['city'] = df_message.loc[d]['city'] ele['area'] = df_message.loc[d]['area'] ele['code'] = df_message.loc[d]['adcode'] ele['address'] = df_message.loc[d]['address'] message.extracts.append(ele) return message ``` #### File: pyswan/pyswan/message.py ```python class Message: def __init__(self, target): self.origin = target # origin input self.target = target # current output self.history = [] # store history self.time_keywords = [] # extracte datetime self.extracts = [] def insert(self, **kwargs): element = {} for pro, info in kwargs.items(): element[pro] = info self.history.append(element) def merge(self): pass # 过滤掉self.extracts中的filter属性 def get_extracts(self, filter=['pattern']): res = [] for extract in self.extracts: tmp = {} for key, value in extract.items(): if key not in filter: tmp[key] = value res.append(tmp) return res ``` #### File: pyswan/pyswan/numeral.py ```python import regex as re from pyswan.constants import zh2arab_tab from pyswan.message import Message class ExtractNumeral: """ 将中文中的数字转换成阿拉伯数字, 如: 两百零三万五千九 -> 2035900 周日 -> 周7 """ @staticmethod def simple_zh2arab(message): ''' 简单的替换中文的数字为阿拉伯数字,如: 十二万八千零五 -> 十2万8千05 :param target: 待转换的输入 :return: ''' # 处理普通的数字 pattern = re.compile("[零一二两三四五六七八九]") match = pattern.finditer(message.target) for m in match: value = str(zh2arab_tab.get(m.group())) message.insert(start=m.start(), end=m.end(), body=m.group(), value=value, pattern=pattern) message.target = pattern.sub(value, message.target, 1) # 处理周末 周日 周天 pattern = re.compile("(?<=(周|星期))[末日天]") match = pattern.finditer(message.target) for m in match: value = str(zh2arab_tab.get(m.group())) message.insert(start=m.span()[0], end=m.end( ), body=m.group(), value=value, pattern=pattern) message.target = pattern.sub(value, message.target, 1) return message @staticmethod def __single_hundreds_digit_arab(message): ''' 处理如: 1百2 -> 120 :param target: :return: ''' pattern = re.compile("[1-9]百[1-9](?!十)") match = pattern.finditer(message.target) for m in match: group = m.group() s = group.split("百") s = list(filter(None, s)) num = 0 if len(s) == 2: num += int(s[0]) * 100 + int(s[1]) * 10 message.insert(start=m.span()[0], end=m.end( ), body=m.group(), value=str(num), pattern=pattern) message.target = pattern.sub(str(num), message.target, 1) return message @staticmethod def __single_thousands_digit_arab(message): ''' 处理如: 1千2 -> 1200 :param target: :return: ''' pattern = re.compile("[1-9]千[1-9](?!(百|十))") match = pattern.finditer(message.target) for m in match: group = m.group() s = group.split("千") s = list(filter(None, s)) num = 0 if len(s) == 2: num += int(s[0]) * 1000 + int(s[1]) * 100 message.insert(start=m.start(), end=m.end(), body=m.group(), value=str(num), pattern=pattern) message.target = pattern.sub(str(num), message.target, 1) return message @staticmethod def __single_ten_thousands_digit_arab(message): pattern = re.compile("[1-9]万[1-9](?!(千|百|十))") match = pattern.finditer(message.target) for m in match: group = m.group() s = group.split("万") s = list(filter(None, s)) num = 0 if len(s) == 2: num += int(s[0]) * 10000 + int(s[1]) * 1000 message.insert(start=m.start(), end=m.end(), body=m.group(), value=str(num), pattern=pattern) message.target = pattern.sub(str(num), message.target, 1) return message @staticmethod def __tens_digit_arab(message): ''' 需要simple_zh2arab处理后的数据 处理十位数,如 十2 -> 12 3十5 -> 35 :param target: 待转换的输入 :return: ''' pattern = re.compile("0?[0-9]?十[0-9]?") match = pattern.finditer(message.target) for m in match: group = m.group() s = group.split("十") num = 0 if s[0] == '': num += 10 else: num += int(s[0])*10 if s[1]: num += int(s[1]) message.insert(start=m.start(), end=m.end(), body=m.group(), value=str(num), pattern=pattern) message.target = pattern.sub(str(num), message.target, 1) return message @staticmethod def __hundreds_digit_arab(message): ''' 需要simple_zh2arab和tens_digit_arab处理后的数据 处理百位数,如 2百25 :param target: 待转换的输入 :return: ''' pattern = re.compile("0?[1-9]百[0-9]?[0-9]?") match = pattern.finditer(message.target) for m in match: group = m.group() s = group.split("百") s = list(filter(None, s)) num = 0 if len(s) == 1: hundred = int(s[0]) num += hundred * 100 elif len(s) == 2: hundred = int(s[0]) num += hundred * 100 num += int(s[1]) message.insert(start=m.start(), end=m.end(), body=m.group(), value=str(num), pattern=pattern) message.target = pattern.sub(str(num), message.target, 1) return message @staticmethod def __thousands_digit_arab(message): pattern = re.compile("0?[1-9]千[0-9]?[0-9]?[0-9]?") match = pattern.finditer(message.target) for m in match: group = m.group() s = group.split("千") s = list(filter(None, s)) num = 0 if len(s) == 1: thousand = int(s[0]) num += thousand * 1000 elif len(s) == 2: thousand = int(s[0]) num += thousand * 1000 num += int(s[1]) message.insert(start=m.start(), end=m.end(), body=m.group(), value=str(num), pattern=pattern) message.target = pattern.sub(str(num), message.target, 1) return message @staticmethod def __ten_thousands_digit_arab(message): """ thousands_digit_arab执行之后 :param target: :return: """ pattern = re.compile("[0-9]+万[0-9]?[0-9]?[0-9]?[0-9]?") match = pattern.finditer(message.target) for m in match: group = m.group() s = group.split("万") s = list(filter(None, s)) num = 0 if len(s) == 1: tenthousand = int(s[0]) num += tenthousand * 10000 elif len(s) == 2: tenthousand = int(s[0]) num += tenthousand * 10000 num += int(s[1]) message.insert(start=m.start(), end=m.end(), body=m.group(), value=str(num), pattern=pattern) message.target = pattern.sub(str(num), message.target, 1) return message @classmethod def digitize(cls, target): message = Message(target) message = cls.simple_zh2arab(message) # 处理如"十二万八千零五 -> 十2万8千05" message = cls.__single_ten_thousands_digit_arab(message) # 处理如"2万3" message = cls.__single_thousands_digit_arab(message) # 处理如"2千3" message = cls.__single_hundreds_digit_arab(message) # 处理如"2百3" message = cls.__tens_digit_arab(message) # 处理如"2十3" message = cls.__hundreds_digit_arab(message) # 处理 "5百35" message = cls.__thousands_digit_arab(message) # 处理 "1千456" message = cls.__ten_thousands_digit_arab(message) # 处理 "7万2337" return message if __name__ == '__main__': res = ExtractNumeral.digitize('梁山一百零八好汉') print(res.target) ``` #### File: pyswan/pyswan/parser.py ```python from pyswan.numeral import ExtractNumeral from pyswan.extract_time import GenDatetime from pyswan.extract_number import GenNumber from pyswan.extract_math_equation import GenMathEquation from pyswan.extract_cpca import GenPlace def digitize(target): return ExtractNumeral.digitize(target).target def parse(target, dim): """ :param target: input data :param dim: :return: """ supported = ['time', 'number', 'equation', 'place'] to_support = ['temperature', 'ordinal', 'distance', 'volume', 'amount-of-money', 'duration', 'email', 'url', 'phone-number'] if not isinstance(dim, list): print('dim must be of type list') return [] if len(dim) == 0: return [] # 数字化处理 中文数字 -> 阿拉伯数字 message = ExtractNumeral.digitize(target) for d in dim: if d not in supported: continue if d == 'time': message = GenDatetime().parse(message) if d == 'number': message = GenNumber().parse(message) if d == 'equation': message = GenMathEquation().parse(message) if d == 'place': message = GenPlace().parse(message) res = message.get_extracts(filter=['pattern']) return res if __name__ == '__main__': from pprint import pprint pprint(digitize('梁山一百零八好汉')) pprint(parse('现在是十二月13日12点50分', dim=['time', 'number'])) pprint(parse('六加十三除以2再乘八等于多少', dim=['equation'])) pprint(parse('徐汇区虹漕路461号五十八号楼五楼', dim=['place'])) ```
{ "source": "JosiahWI/AutoArch", "score": 2 }
#### File: JosiahWI/AutoArch/main.py ```python import discord from discord.ext import commands import cogs import settings import random bot = commands.Bot(command_prefix='=') bot.add_cog(cogs.Moderation(bot)) bot.add_cog(cogs.Fun(bot)) bot.add_cog(cogs.Utility(bot)) @bot.event async def on_ready(): activity = discord.Activity(name=bot.command_prefix+'help', type=discord.ActivityType.watching) await bot.change_presence(activity = activity) print('Logged in as '+str(bot.user)+'\n---\nGuilds: '+str(len(bot.guilds))) @bot.event async def on_command_error(ctx, error): if isinstance(error, discord.ext.commands.MissingPermissions): await ctx.send("You don't have the required permissions to use that command.\nMissing permission(s): `"+', '.join(error.missing_perms)+'`.') if isinstance(error, discord.ext.commands.BotMissingPermissions): await ctx.send("I don't have permission to do that here!\nAsk a server owner to give me the `"+', '.join(error.missing_perms)+"` permission(s).") if isinstance(error, discord.ext.commands.MissingRequiredArgument): await ctx.send("Looks like you're missing a required argument there.") if isinstance(error, discord.ext.commands.BadArgument): await ctx.send("Invalid argument(s) provided.") print(str(error)) class AutoArchHelpCommand(commands.MinimalHelpCommand): def get_command_signature(self, command): return '{0.clean_prefix}{1.qualified_name} {1.signature}'.format(self, command) async def send_bot_help(self, mapping): ctx = self.context help_embed = discord.Embed( title = 'Commands', description = self.get_opening_note(), colour = discord.Colour.gold() ) help_embed.set_footer(text = random.choice(settings.quotes_short)) help_embed.set_author(name=str(ctx.author), icon_url=ctx.author.avatar_url) for cog in mapping.keys(): name = 'Other' if cog != None: name = cog.qualified_name if hasattr(cog, 'custom_icon'): name = cog.custom_icon + ' ' + name help_embed.add_field(name = name, value = ', '.join([command.name for command in mapping[cog]])) await self.get_destination().send(embed = help_embed) async def send_command_help(self, command): ctx = self.context help_embed = discord.Embed( title = self.get_command_signature(command), description = command.help, colour = discord.Colour.gold() ) help_embed.set_footer(text = random.choice(settings.quotes_short)) help_embed.set_author(name=str(ctx.author), icon_url=ctx.author.avatar_url) await self.get_destination().send(embed = help_embed) async def send_cog_help(self, cog): ctx = self.context commands = ', '.join([command.qualified_name for command in cog.get_commands()]) help_embed = discord.Embed( title = cog.qualified_name, description = commands, colour = discord.Colour.gold() ) help_embed.set_footer(text = random.choice(settings.quotes_short)) help_embed.set_author(name=str(ctx.author), icon_url=ctx.author.avatar_url) await self.get_destination().send(embed = help_embed) async def send_group_help(self, group): ctx = self.context commands = ', '.join([command.qualified_name for command in group.commands]) help_embed = discord.Embed( title = group.qualified_name + ' Subcommands', description = commands, colour = discord.Colour.gold() ) help_embed.set_footer(text = random.choice(settings.quotes_short)) help_embed.set_author(name=str(ctx.author), icon_url=ctx.author.avatar_url) await self.get_destination().send(embed = help_embed) @bot.command(help = 'Link to the bot\'s GitHub repo.') async def source(ctx): source_embed = discord.Embed( title = 'Bot Source', description = 'The full source code is available at\n'+settings.source+'\nand is licensed under '+settings.license+'.', colour = discord.Colour.gold() ) source_embed.set_thumbnail(url = ctx.bot.user.avatar_url) source_embed.set_footer(text = random.choice(settings.quotes_short)) source_embed.set_author(name=str(ctx.author), icon_url=ctx.author.avatar_url) await ctx.send(embed = source_embed) bot.help_command = AutoArchHelpCommand() bot.run(settings.token) ```
{ "source": "josiahwitheford/fs.smbfs", "score": 2 }
#### File: fs.smbfs/tests/test_smbfs.py ```python from __future__ import absolute_import from __future__ import unicode_literals import io import shutil import sys import tempfile import time import unittest import uuid import smb.base import fs.errors import fs.path import fs.test from fs.enums import ResourceType from fs.subfs import ClosingSubFS from fs.smbfs import SMBFS from . import utils from .utils import mock @unittest.skipUnless(utils.DOCKER, "docker service unreachable.") class TestSMBFS(fs.test.FSTestCases, unittest.TestCase): def make_fs(self): self.dir = fs.path.join('data', uuid.uuid4().hex) self.smbfs = fs.open_fs('smb://rio:[email protected]/') self.smbfs.makedirs(self.dir, recreate=True) return self.smbfs.opendir(self.dir, factory=ClosingSubFS) @unittest.skip("the filesystem is not case sensitive") def test_case_sensitive(self): super(TestSMBFS, self).test_case_sensitive() def test_connection_error(self): with utils.mock.patch('fs.smbfs.smbfs.SMBFS.NETBIOS') as n: n.queryIPForName = utils.mock.MagicMock(return_value = ("TE")) self.assertRaises( fs.errors.CreateFailed, fs.open_fs, 'smb://8.8.8.8?timeout=1' ) def test_write_denied(self): _fs = fs.open_fs('smb://127.0.0.1/data') self.assertRaises( fs.errors.PermissionDenied, _fs.openbin, '/test.txt', 'w' ) def test_openbin_root(self): _fs = fs.open_fs('smb://rio:[email protected]/') self.assertRaises( fs.errors.ResourceNotFound, _fs.openbin, '/abc' ) self.assertRaises( fs.errors.PermissionDenied, _fs.openbin, '/abc', 'w' ) def test_openbin_error(self): self.fs.touch("abc") with mock.patch.object(self.smbfs, "_new_connection", side_effect=IOError): self.assertRaises(fs.errors.OperationFailed, self.fs.openbin, "abc") def test_makedir_root(self): _fs = fs.open_fs('smb://rio:[email protected]/') self.assertRaises( fs.errors.PermissionDenied, _fs.makedir, '/abc' ) def test_removedir_root(self): _fs = fs.open_fs('smb://rio:[email protected]/') scandir = utils.mock.MagicMock(return_value=iter([])) with utils.mock.patch.object(_fs, 'scandir', scandir): self.assertRaises( fs.errors.PermissionDenied, _fs.removedir, '/data' ) def test_seek(self): self.fs.writetext('foo.txt', 'Hello, World !') with self.fs.openbin('foo.txt') as handle: self.assertRaises(ValueError, handle.seek, -2, 0) self.assertRaises(ValueError, handle.seek, 2, 2) self.assertRaises(ValueError, handle.seek, -2, 12) self.assertEqual(handle.seek(2, 1), 2) self.assertEqual(handle.seek(-1, 1), 1) self.assertEqual(handle.seek(-2, 1), 0) self.fs.remove('foo.txt') def test_makedir(self): super(TestSMBFS, self).test_makedir() self.fs.touch('abc') self.assertRaises( fs.errors.DirectoryExpected, self.fs.makedir, '/abc/def' ) self.assertRaises( fs.errors.ResourceNotFound, self.fs.makedir, '/spam/bar' ) self.assertRaises( fs.errors.DirectoryExists, self.fs.delegate_fs().makedir, '/' ) self.assertRaises( fs.errors.DirectoryExists, self.fs.delegate_fs().makedir, 'data' ) def test_move(self): super(TestSMBFS, self).test_move() self.fs.touch('a') self.fs.touch('b') self.assertRaises( fs.errors.DirectoryExpected, self.fs.move, 'a', 'b/a' ) self.assertRaises( fs.errors.DestinationExists, self.fs.delegate_fs().move, fs.path.join(self.dir, 'a'), fs.path.join(self.dir, 'b'), ) def test_openbin(self): super(TestSMBFS, self).test_openbin() self.fs.makedir('spam') self.assertRaises( fs.errors.FileExpected, self.fs.openbin, 'spam' ) self.fs.touch('abc.txt') self.assertRaises( fs.errors.DirectoryExpected, self.fs.openbin, 'abc.txt/def.txt', 'w' ) def test_removedir(self): super(TestSMBFS, self).test_removedir() self.assertRaises( fs.errors.RemoveRootError, self.fs.delegate_fs().removedir, '/' ) def test_scanshares(self): share = next(self.fs.delegate_fs().scandir('/', ['basic', 'access'])) self.assertEqual(share.name, 'data') #self.assertEqual(share.get('access', 'uid'), "S-1-5-21-708263368-3365369569-291063048-1000") self.assertTrue(share.get('access', 'uid').startswith("S-1-5-21")) def test_getinfo_root(self): self.assertEqual(self.fs.delegate_fs().gettype('/'), ResourceType.directory) self.assertEqual(self.fs.delegate_fs().getsize('/'), 0) def test_info_access_smb1(self): self.fs.writetext('test.txt', 'This is a test') _smb = self.fs.delegate_fs()._smb with utils.mock.patch.object(_smb, '_getSecurity', new=_smb._getSecurity_SMB1): try: info = self.fs.getinfo('test.txt', namespaces=['access']) except smb.base.NotReadyError: self.fail("getinfo(..., ['access']) raised an error") try: list(self.fs.scandir('/', namespaces=['access'])) except smb.base.NotReadyError: self.fail("scandir(..., ['access']) raised an error") def test_getinfo_smb(self): self.fs.writetext('test.txt', 'This is a test') info = self.fs.getinfo('test.txt', namespaces=['basic', 'smb']) self.assertFalse(info.get('smb', 'hidden')) self.assertFalse(info.get('smb', 'system')) def test_openbin_w_readinto(self): with self.fs.openbin("abc", "w") as f: self.assertRaises(IOError, f.readinto, io.BytesIO()) def test_download_error(self): self.fs.makedir("/abc") self.assertRaises(fs.errors.FileExpected, self.fs.download, "/abc", io.BytesIO()) self.assertRaises(fs.errors.ResourceNotFound, self.fs.download, "/def", io.BytesIO()) self.assertRaises(fs.errors.ResourceNotFound, self.fs.download, "/def/ghi", io.BytesIO()) def test_upload_root(self): _fs = fs.open_fs('smb://rio:[email protected]/') self.assertRaises(fs.errors.PermissionDenied, _fs.upload, "/abc", io.BytesIO()) def test_upload_error(self): self.fs.makedir("/abc") self.assertRaises(fs.errors.FileExpected, self.fs.upload, "/abc", io.BytesIO()) self.assertRaises(fs.errors.ResourceNotFound, self.fs.upload, "/def/ghi", io.BytesIO()) @unittest.skipUnless(utils.DOCKER, "docker service unreachable.") class TestSMBFSConnection(unittest.TestCase): user = "rio" pasw = "<PASSWORD>" def open_smbfs(self, host_token, port=None, direct_tcp=False): return SMBFS(host_token, self.user, self.pasw, port=port, direct_tcp=direct_tcp) @utils.py2expectedFailure def test_hostname(self): smbfs = self.open_smbfs("SAMBAALPINE") def test_ip(self): smbfs = self.open_smbfs("127.0.0.1") @mock.patch.object(SMBFS, 'NETBIOS', mock.MagicMock()) def test_hostname_and_ip(self): smbfs = self.open_smbfs(("SAMBAALPINE", "127.0.0.1")) SMBFS.NETBIOS.queryIPforName.assert_not_called() SMBFS.NETBIOS.queryName.assert_not_called() @mock.patch.object(SMBFS, 'NETBIOS', mock.MagicMock()) def test_ip_and_hostname(self): smbfs = self.open_smbfs(("127.0.0.1", "SAMBAALPINE")) SMBFS.NETBIOS.queryIPforName.assert_not_called() SMBFS.NETBIOS.queryName.assert_not_called() def test_ip_and_none(self): smbfs = self.open_smbfs(("127.0.0.1", None)) def test_none_and_ip(self): smbfs = self.open_smbfs((None, "127.0.0.1")) @utils.py2expectedFailure def test_hostname_and_none(self): smbfs = self.open_smbfs(("SAMBAALPINE", None)) @utils.py2expectedFailure def test_none_and_hostname(self): smbfs = self.open_smbfs((None, "SAMBAALPINE")) def test_none_none(self): self.assertRaises( fs.errors.CreateFailed, self.open_smbfs, (None, None) ) def test_none(self): self.assertRaises( fs.errors.CreateFailed, self.open_smbfs, None ) def test_default_smb_port(self): smbfs = self.open_smbfs("127.0.0.1") self.assertEqual(smbfs._smb.sock.getpeername()[1], 139) def test_explicit_smb_port(self): smbfs = self.open_smbfs("127.0.0.1", port=445, direct_tcp=True) self.assertEqual(smbfs._smb.sock.getpeername()[1], 445) ```
{ "source": "josiah-wolf-oberholtzer/consort", "score": 2 }
#### File: consort/consort/__init__.py ```python from consort._version import __version_info__, __version__ del _version from consort.tools import * from abjad.tools import lilypondparsertools lilypondparsertools.LilyPondParser.register_markup_function('vstrut', []) del lilypondparsertools DEBUG = False def debug(*message): r'''Prints `message` in red when `consort.DEBUG` is true. Returns none. ''' RED = '\033[91m' END = '\033[0m' if DEBUG: if len(message) == 1: message = message[0] else: message = ' '.join(str(_) for _ in message) print(RED + str(message) + END) ``` #### File: consort/tools/DynamicExpression.py ```python import abjad from abjad import attach from abjad import iterate from abjad import select from abjad.tools import abctools from abjad.tools import lilypondnametools from abjad.tools import mathtools from abjad.tools import schemetools from abjad.tools import scoretools from abjad.tools import spannertools class DynamicExpression(abctools.AbjadValueObject): r"""A dynamic phrasing expression. :: >>> dynamic_expression = consort.DynamicExpression( ... dynamic_tokens='f p pp pp', ... transitions=('flared', None), ... ) >>> print(format(dynamic_expression)) consort.tools.DynamicExpression( dynamic_tokens=abjad.CyclicTuple( ['f', 'p', 'pp', 'pp'] ), transitions=abjad.CyclicTuple( ['flared', None] ), ) .. container:: example :: >>> music = abjad.Staff(r''' ... { c'4 d'4 e'4 f'4 } ... { g'4 a'4 b'4 } ... { c''4 } ... ''') >>> print(format(music)) \new Staff { { c'4 d'4 e'4 f'4 } { g'4 a'4 b'4 } { c''4 } } :: >>> dynamic_expression(music) >>> print(format(music)) \new Staff { { \once \override Hairpin.stencil = #flared-hairpin c'4 \f \> d'4 e'4 f'4 } { g'4 \p \> a'4 b'4 } { c''4 \pp } } .. container:: example :: >>> music = abjad.Staff(r''' ... { c'4 d'4 e'4 f'4 } ... { g'4 a'4 b'4 } ... { c''4 c'4 } ... ''') :: >>> dynamic_expression(music, seed=2) >>> print(format(music)) \new Staff { { c'4 \pp d'4 e'4 f'4 } { g'4 \< a'4 b'4 } { \once \override Hairpin.stencil = #flared-hairpin c''4 \f \> c'4 \p } } .. container:: example :: >>> music = abjad.Staff("{ c'4 }") >>> dynamic_expression(music, seed=1) >>> print(format(music)) \new Staff { { c'4 \p } } .. container:: example :: >>> music = abjad.Staff("{ c'4 d'4 }") >>> dynamic_expression(music, seed=1) >>> print(format(music)) \new Staff { { c'4 \p \> d'4 \pp } } .. container:: example :: >>> music = abjad.Staff("{ r4 c'4 r4 } { r4 d'4 r4 } { r4 e' r4 } ") >>> dynamic_expression(music) >>> print(format(music)) \new Staff { { r4 \once \override Hairpin.stencil = #flared-hairpin c'4 \f \> r4 } { r4 d'4 \p \> r4 } { r4 e'4 \pp r4 } } .. container:: example :: >>> music = abjad.Staff("{ c'16 c'16 }") >>> dynamic_expression(music) >>> print(format(music)) \new Staff { { c'16 \f c'16 } } .. container:: example :: >>> music = abjad.Staff("{ c'1 }") >>> dynamic_expression = consort.DynamicExpression( ... dynamic_tokens='fp', ... ) >>> dynamic_expression(music) >>> print(format(music)) \new Staff { { c'1 \fp } } .. container:: example :: >>> music = abjad.Staff("{ c'1 }") >>> dynamic_expression = consort.DynamicExpression( ... dynamic_tokens='fp', ... unsustained=True, ... ) >>> dynamic_expression(music) >>> print(format(music)) \new Staff { { c'1 \p } } .. container:: example :: >>> music = abjad.Staff(r''' ... { c'4 d'4 e'4 } ... { c'4 d'4 e'4 } ... { c'4 d'4 e'4 } ... { c'4 d'4 e'4 } ... { c'4 d'4 e'4 } ... ''') >>> dynamic_expression = consort.DynamicExpression( ... division_period=2, ... dynamic_tokens='p ppp', ... start_dynamic_tokens='niente', ... stop_dynamic_tokens='niente', ... ) >>> dynamic_expression(music) >>> print(format(music)) \new Staff { { \once \override Hairpin.circled-tip = ##t c'4 \< d'4 e'4 } { c'4 d'4 e'4 } { \once \override Hairpin.circled-tip = ##t c'4 \p \> d'4 e'4 } { c'4 d'4 e'4 } { c'4 d'4 e'4 \! } } .. container:: exmaple :: >>> music = abjad.Staff("{ c'8. } { e'8. } { g'8. }") >>> dynamic_expression = consort.DynamicExpression( ... division_period=2, ... dynamic_tokens='p ppp', ... start_dynamic_tokens='niente', ... stop_dynamic_tokens='niente', ... ) >>> dynamic_expression(music) >>> print(format(music)) \new Staff { { \once \override Hairpin.circled-tip = ##t c'8. \< } { e'8. } { g'8. \p } } .. container:: example :: >>> music = abjad.Staff(r''' ... { c'8 ~ c'4 } ... \times 3/4 { d'16 d' d' d' r d' d' r } ... ''') >>> dynamic_expression = consort.DynamicExpression( ... dynamic_tokens='mf mp fff', ... start_dynamic_tokens='f', ... stop_dynamic_tokens='mf', ... ) >>> dynamic_expression(music) >>> print(format(music)) \new Staff { { c'8 \f ~ \> c'4 } \tweak text #tuplet-number::calc-fraction-text \times 3/4 { d'16 \mf d'16 d'16 d'16 r16 d'16 d'16 r16 } } """ ### CLASS VARIABLES ### __slots__ = ( '_division_period', '_dynamic_tokens', '_only_first', '_start_dynamic_tokens', '_stop_dynamic_tokens', '_transitions', '_unsustained', ) _transition_types = ( 'constante', 'flared', 'simple', None, ) ### INITIALIZER ### def __init__( self, dynamic_tokens=('ppp',), division_period=None, only_first=None, start_dynamic_tokens=None, stop_dynamic_tokens=None, transitions=None, unsustained=None, ): dynamic_tokens = self._tokens_to_cyclic_tuple(dynamic_tokens) assert dynamic_tokens self._dynamic_tokens = dynamic_tokens if division_period is not None: division_period = int(division_period) assert 0 < division_period self._division_period = division_period self._start_dynamic_tokens = self._tokens_to_cyclic_tuple( start_dynamic_tokens) self._stop_dynamic_tokens = self._tokens_to_cyclic_tuple( stop_dynamic_tokens) if isinstance(transitions, (str, type(None))): transitions = [transitions] assert all(_ in self._transition_types for _ in transitions) transitions = abjad.CyclicTuple(transitions) self._transitions = transitions if only_first is not None: only_first = bool(only_first) self._only_first = only_first if unsustained is not None: unsustained = bool(unsustained) self._unsustained = unsustained ### SPECIAL METHODS ### def __call__(self, music, name=None, seed=0): import consort original_seed = seed current_dynamic = None current_hairpin = None selections, components = self._get_selections(music) #print(selections) #print(components) length = len(components) if self.only_first: length = 1 components = components[:1] for index, component in enumerate(components[:-1]): selection = selections[index] dynamic, hairpin, hairpin_override = self._get_attachments( index, length, seed, original_seed) if dynamic != current_dynamic: attach(dynamic, component, name=name) current_dynamic = dynamic if self.unsustained: inner_leaves = selection[1:-1] prototype = abjad.Rest if ( len(inner_leaves) and all(isinstance(_, prototype) for _ in inner_leaves) ): hairpin = None if hairpin is not None: attach(hairpin, selection, name=name) current_hairpin = hairpin if current_hairpin is not None and hairpin_override is not None: attach(hairpin_override, component, name=name) seed += 1 dynamic, _, _ = self._get_attachments( length - 1, length, seed, original_seed) if self.unsustained: if dynamic is not None: if length == 1: if not selections or len(selections[0]) < 4: if dynamic.name in dynamic._composite_dynamic_name_to_steady_state_dynamic_name: dynamic_name = dynamic._composite_dynamic_name_to_steady_state_dynamic_name[dynamic.name] dynamic = consort.Dynamic(dynamic_name) if dynamic != current_dynamic: attach(dynamic, components[-1], name=name) if dynamic.name == 'niente' and current_hairpin: next_leaf = components[-1]._get_leaf(1) if next_leaf is not None: current_hairpin._append(next_leaf) ### PRIVATE METHODS ### def _get_attachments(self, index, length, seed, original_seed): import consort dynamic_seed = seed if self.start_dynamic_tokens: dynamic_seed -= 1 this_token = None next_token = None this_dynamic = None next_dynamic = None hairpin = None hairpin_override = None if length == 1: if self.start_dynamic_tokens: this_token = self.start_dynamic_tokens[original_seed] elif self.stop_dynamic_tokens: this_token = self.stop_dynamic_tokens[original_seed] else: this_token = self.dynamic_tokens[dynamic_seed] if this_token == 'n<PASSWORD>': this_token = self.dynamic_tokens[dynamic_seed] elif length == 2: if index == 0: if self.start_dynamic_tokens: this_token = self.start_dynamic_tokens[original_seed] else: this_token = self.dynamic_tokens[dynamic_seed] if self.stop_dynamic_tokens: next_token = self.stop_dynamic_tokens[original_seed] else: next_token = self.dynamic_tokens[dynamic_seed + 1] elif index == 1: if self.stop_dynamic_tokens: this_token = self.stop_dynamic_tokens[original_seed] if ( this_token == 'n<PASSWORD>' and self.start_dynamic_tokens and self.start_dynamic_tokens[original_seed] == 'niente' ): this_token = self.dynamic_tokens[dynamic_seed] else: this_token = self.dynamic_tokens[dynamic_seed] if this_token == next_token == '<PASSWORD>': next_token = self.dynamic_tokens[dynamic_seed] else: #print('!!!', index) if index == 0: if self.start_dynamic_tokens: this_token = self.start_dynamic_tokens[original_seed] next_token = self.dynamic_tokens[dynamic_seed + 1] #print('A1', this_token, next_token) else: this_token = self.dynamic_tokens[dynamic_seed] next_token = self.dynamic_tokens[dynamic_seed + 1] #print('A2', this_token, next_token) elif index == length - 1: # Last component. if self.stop_dynamic_tokens: this_token = self.stop_dynamic_tokens[original_seed] #print('B1', this_token, next_token) else: this_token = self.dynamic_tokens[dynamic_seed] #print('B2', this_token, next_token) elif index == length - 2: # Next to last component. this_token = self.dynamic_tokens[dynamic_seed] if self.stop_dynamic_tokens: next_token = self.stop_dynamic_tokens[original_seed] #print('C1', this_token, next_token) else: next_token = self.dynamic_tokens[dynamic_seed + 1] #print('C2', this_token, next_token) else: this_token = self.dynamic_tokens[dynamic_seed] next_token = self.dynamic_tokens[dynamic_seed + 1] #print('D1', this_token, next_token) this_dynamic = consort.Dynamic(this_token) this_dynamic_ordinal = mathtools.NegativeInfinity() if this_dynamic.name != 'niente': this_dynamic_ordinal = this_dynamic.ordinal if next_token is not None: next_dynamic = consort.Dynamic(next_token) next_dynamic_ordinal = mathtools.NegativeInfinity() if next_dynamic.name != 'niente': next_dynamic_ordinal = next_dynamic.ordinal if next_dynamic is not None: if this_dynamic_ordinal < next_dynamic_ordinal: hairpin = spannertools.Hairpin('<', include_rests=True) elif next_dynamic_ordinal < this_dynamic_ordinal: hairpin = spannertools.Hairpin('>', include_rests=True) if hairpin is not None: transition = self.transitions[seed] if transition == 'constante': hairpin = spannertools.Hairpin('<', include_rests=True) if transition in ('flared', 'constante'): hairpin_override = lilypondnametools.LilyPondGrobOverride( grob_name='Hairpin', is_once=True, property_path='stencil', value=schemetools.Scheme('{}-hairpin'.format(transition)), ) if this_dynamic.name == 'niente' or next_dynamic.name == 'niente': hairpin_override = lilypondnametools.LilyPondGrobOverride( grob_name='Hairpin', is_once=True, property_path='circled-tip', value=True, ) #print(index, this_dynamic, next_dynamic, hairpin) return this_dynamic, hairpin, hairpin_override def _partition_selections(self, music): period = self.division_period or 1 selections = [ select(list(iterate(_).by_leaf())) for _ in music ] parts = abjad.Sequence(selections).partition_by_counts( [period], cyclic=True, overhang=True) parts = [list(_) for _ in parts] if len(parts[-1]) < period and 1 < len(parts): part = parts.pop() parts[-1].extend(part) selections = [] for part in parts: selection = part[0] for next_selection in part[1:]: selection = selection + next_selection selections.append(selection) return selections def _reorganize_selections(self, selections): prototype = (abjad.Note, abjad.Chord) for i, leaf in enumerate(selections[0]): if isinstance(leaf, prototype): break selections[0] = selections[0][i:] for i, leaf in enumerate(reversed(selections[-1])): if isinstance(leaf, prototype): break if i == 0: i = None else: i = -i selections[-1] = selections[-1][:i] if len(selections) == 1: return selections for i in range(len(selections) - 1): selection_one, selection_two = selections[i], selections[i + 1] for j, leaf in enumerate(selection_two): if isinstance(leaf, prototype): break if 0 < j: left, right = selection_two[:j], selection_two[j:] selection_one = selection_one + left selection_two = right selections[i] = selection_one selections[i + 1] = selection_two return selections def _get_selections(self, music): r"""Gets selections and attach components from `music`. .. container:: example :: >>> music = abjad.Staff(r''' ... { c'4 d'4 e'4 f'4 } ... { g'4 a'4 b'4 } ... { c''4 } ... ''') >>> dynamic_expression = consort.DynamicExpression("f") >>> result = dynamic_expression._get_selections(music) >>> selections, attach_components = result >>> for _ in selections: ... _ ... Selection([Note("c'4"), Note("d'4"), Note("e'4"), Note("f'4"), Note("g'4")]) Selection([Note("g'4"), Note("a'4"), Note("b'4"), Note("c''4")]) :: >>> for _ in attach_components: ... _ ... Note("c'4") Note("g'4") Note("c''4") .. container:: example :: >>> music = abjad.Staff(r''' ... { c'4 d'4 e'4 } ... { f'4 g'4 a'4 } ... { b'4 c''4 } ... ''') >>> dynamic_expression = consort.DynamicExpression("f") >>> result = dynamic_expression._get_selections(music) >>> selections, attach_components = result >>> for _ in selections: ... _ ... Selection([Note("c'4"), Note("d'4"), Note("e'4"), Note("f'4")]) Selection([Note("f'4"), Note("g'4"), Note("a'4"), Note("b'4")]) Selection([Note("b'4"), Note("c''4")]) :: >>> for _ in attach_components: ... _ ... Note("c'4") Note("f'4") Note("b'4") Note("c''4") .. container:: example :: >>> music = abjad.Staff(r''' ... { c'8 d'8 e'8 } ... { f'8 g'8 a'8 } ... { b'32 c''16. } ... ''') >>> result = dynamic_expression._get_selections(music) >>> selections, attach_components = result >>> for _ in selections: ... _ ... Selection([Note("c'8"), Note("d'8"), Note("e'8"), Note("f'8")]) Selection([Note("f'8"), Note("g'8"), Note("a'8"), Note("b'32"), Note("c''16.")]) :: >>> for _ in attach_components: ... _ ... Note("c'8") Note("f'8") Note("c''16.") .. container:: example :: >>> music = abjad.Staff("{ r4 c'4 r4 } { r4 d'4 r4 } { r4 e' r4 } ") >>> result = dynamic_expression._get_selections(music) >>> selections, attach_components = result >>> for _ in selections: ... _ ... Selection([Note("c'4"), Rest('r4'), Rest('r4'), Note("d'4")]) Selection([Note("d'4"), Rest('r4'), Rest('r4'), Note("e'4")]) :: >>> for _ in attach_components: ... _ ... Note("c'4") Note("d'4") Note("e'4") .. container:: example :: >>> music = abjad.Staff("{ c'8. } { e'8. } { g'8. }") >>> dynamic_expression = consort.DynamicExpression( ... division_period=2, ... dynamic_tokens='p ppp', ... start_dynamic_tokens='niente', ... stop_dynamic_tokens='niente', ... ) >>> result = dynamic_expression._get_selections(music) >>> selections, attach_components = result >>> for _ in selections: ... _ ... Selection([Note("c'8."), Note("e'8."), Note("g'8.")]) :: >>> for _ in attach_components: ... _ ... Note("c'8.") Note("g'8.") """ #print('---', music) initial_selections = self._partition_selections(music) #print(' ', initial_selections) initial_selections = self._reorganize_selections(initial_selections) #print(' ', initial_selections) attach_components = [] selections = [] assert len(initial_selections) for i, selection in enumerate(initial_selections): #print(' ', i, selection) if i < len(initial_selections) - 1: #print(' ', 'A') selection = selection + (initial_selections[i + 1][0],) selections.append(selection) attach_components.append(selection[0]) elif ( (selection.get_duration() <= abjad.Duration(1, 8) and 1 < len(selections)) or len(selection) == 1 ): #print(' ', 'B') attach_components.append(selection[-1]) if selections: #print(' ', 'B1') selections[-1] = selections[-1] + selection[1:] elif ( abjad.Duration(1, 8) < ( selection[-1]._get_timespan().start_offset - selection[0]._get_timespan().start_offset ) ): #print(' ', 'C') selections.append(selection) attach_components.append(selection[0]) attach_components.append(selection[-1]) else: #print(' ', 'D') attach_components.append(selection[0]) #print(' ', initial_selections) #print(' ', attach_components) return selections, attach_components def _tokens_to_cyclic_tuple(self, tokens): import consort if tokens is None: return tokens if isinstance(tokens, str): tokens = tokens.split() for token in tokens: if token == 'niente': continue assert token in consort.Dynamic._dynamic_names assert len(tokens) tokens = abjad.CyclicTuple(tokens) return tokens ### PUBLIC PROPERTIES ### @property def division_period(self): return self._division_period @property def dynamic_tokens(self): return self._dynamic_tokens @property def only_first(self): return self._only_first @property def period(self): return self._period @property def start_dynamic_tokens(self): return self._start_dynamic_tokens @property def stop_dynamic_tokens(self): return self._stop_dynamic_tokens @property def transitions(self): return self._transitions @property def unsustained(self): return self._unsustained ``` #### File: consort/tools/HarmonicExpression.py ```python import abjad from consort.tools.LogicalTieExpression import LogicalTieExpression class HarmonicExpression(LogicalTieExpression): r'''A harmonic expression. :: >>> harmonic_expression = consort.HarmonicExpression() >>> print(format(harmonic_expression)) consort.tools.HarmonicExpression( touch_interval=abjad.NamedInterval('+P4'), ) :: >>> staff = abjad.Staff("c'4 d'4 ~ d'4 e'4") >>> logical_tie = abjad.inspect(staff[1]).get_logical_tie() >>> harmonic_expression(logical_tie) >>> print(format(staff)) \new Staff { c'4 < d' \tweak style #'harmonic g' >4 ~ < d' \tweak style #'harmonic g' >4 e'4 } ''' ### CLASS VARIABLES ### __slots__ = ( '_touch_interval', ) ### INITIALIZER ### def __init__( self, touch_interval='P4', ): touch_interval = abjad.NamedInterval(touch_interval) self._touch_interval = touch_interval ### SPECIAL METHODS ### def __call__( self, logical_tie, pitch_range=None, ): for i, leaf in enumerate(logical_tie): stopped_pitch = leaf.written_pitch touched_pitch = stopped_pitch.transpose(self.touch_interval) chord = abjad.Chord(leaf) chord.written_pitches = [stopped_pitch, touched_pitch] #chord.note_heads[0].is_parenthesized = True #chord.note_heads[0].tweak.font_size = -4 chord.note_heads[1].tweak.style = 'harmonic' self._replace(leaf, chord) ### PUBLIC PROPERTIES ### @property def touch_interval(self): return self._touch_interval ``` #### File: consort/tools/Instrument.py ```python import abjad from abjad.tools import instrumenttools from abjad.tools import lilypondnametools from abjad.tools import markuptools from abjad.tools import systemtools class Instrument(instrumenttools.Instrument): r'''A fancy instrument indicator. :: >>> instrument_one = consort.Instrument( ... instrument_name_markup='Bassoon', ... short_instrument_name_markup='Bsn.', ... instrument_change_markup='B!', ... ) >>> instrument_two = consort.Instrument( ... instrument_name_markup='Cuica', ... short_instrument_name_markup='Cu.', ... instrument_change_markup='C!', ... ) :: >>> staff = abjad.Staff("c'4 d'4 e'4 f'4 g'4 a'4 b'4 c''4") >>> abjad.attach(instrument_one, staff[0]) >>> abjad.attach(instrument_two, staff[2]) >>> abjad.attach(instrument_two, staff[4]) >>> abjad.attach(instrument_one, staff[6]) >>> print(format(staff)) \new Staff { \set Staff.instrumentName = \markup { Bassoon } \set Staff.shortInstrumentName = \markup { Bsn. } c'4 d'4 \set Staff.instrumentName = \markup { Cuica } \set Staff.shortInstrumentName = \markup { Cu. } e'4 ^ \markup { C! } f'4 g'4 a'4 \set Staff.instrumentName = \markup { Bassoon } \set Staff.shortInstrumentName = \markup { Bsn. } b'4 ^ \markup { B! } c''4 } ''' ### CLASS VARIABLES ### __slots__ = ( '_instrument_change_markup', ) ### INITIALIZER ### def __init__( self, instrument_name=None, short_instrument_name=None, instrument_name_markup=None, short_instrument_name_markup=None, allowable_clefs=None, pitch_range=None, sounding_pitch_of_written_middle_c=None, instrument_change_markup=None, ): instrumenttools.Instrument.__init__( self, instrument_name=instrument_name, short_instrument_name=short_instrument_name, instrument_name_markup=instrument_name_markup, short_instrument_name_markup=short_instrument_name_markup, allowable_clefs=allowable_clefs, pitch_range=pitch_range, sounding_pitch_of_written_middle_c=sounding_pitch_of_written_middle_c, ) if instrument_change_markup is not None: instrument_change_markup = markuptools.Markup( instrument_change_markup, direction=Up) self._instrument_change_markup = instrument_change_markup ### PRIVATE METHODS ### def _get_lilypond_format_bundle(self, component): bundle = systemtools.LilyPondFormatBundle() previous_instrument = component._get_effective(type(self), n=-1) if isinstance(component, abjad.Container): previous_leaf = next(abjad.iterate(component).by_leaf())._get_leaf(-1) else: previous_leaf = component._get_leaf(-1) if self.instrument_change_markup and previous_instrument != self: if previous_instrument or previous_leaf: bundle.right.markup.append(self.instrument_change_markup) if previous_instrument == self: return bundle if isinstance(component, abjad.Leaf): if self.instrument_name_markup is not None: context_setting = lilypondnametools.LilyPondContextSetting( context_name=self._scope_name, context_property='instrumentName', value=abjad.new(self.instrument_name_markup, direction=None), ) bundle.update(context_setting) if self.short_instrument_name_markup is not None: context_setting = lilypondnametools.LilyPondContextSetting( context_name=self._scope_name, context_property='shortInstrumentName', value=abjad.new(self.short_instrument_name_markup, direction=None), ) bundle.update(context_setting) else: if self.instrument_name_markup is not None: string = 'instrumentName = {}'.format( self.instrument_name_markup, ) bundle.context_settings.append(string) if self.short_instrument_name_markup is not None: string = 'shortInstrumentName = {}'.format( self.short_instrument_name_markup, ) bundle.context_settings.append(string) return bundle ### PUBLIC PROPERTIES ### @property def instrument_change_markup(self): return self._instrument_change_markup @property def instrument_name_markup(self): return self._instrument_name_markup @property def short_instrument_name_markup(self): return self._short_instrument_name_markup ``` #### File: consort/tools/MusicSetting.py ```python import abjad import collections from abjad.tools import abctools from abjad.tools import rhythmmakertools from abjad.tools import systemtools class MusicSetting(abctools.AbjadValueObject): r'''A music setting. :: >>> red_setting = consort.MusicSetting( ... timespan_maker=consort.TaleaTimespanMaker( ... initial_silence_talea=rhythmmakertools.Talea( ... counts=(0, 4), ... denominator=16, ... ), ... playing_talea=rhythmmakertools.Talea( ... counts=(4, 8, 4), ... denominator=16, ... ), ... ), ... viola_rh=consort.tools.MusicSpecifier(), ... violin_1_rh=consort.tools.MusicSpecifier(), ... violin_2_rh=consort.tools.MusicSpecifier(), ... ) >>> print(format(red_setting)) consort.tools.MusicSetting( timespan_maker=consort.tools.TaleaTimespanMaker( initial_silence_talea=rhythmmakertools.Talea( counts=[0, 4], denominator=16, ), playing_talea=rhythmmakertools.Talea( counts=[4, 8, 4], denominator=16, ), playing_groupings=(1,), repeat=True, silence_talea=rhythmmakertools.Talea( counts=[4], denominator=16, ), step_anchor=Right, synchronize_groupings=False, synchronize_step=False, ), viola_rh=consort.tools.MusicSpecifier(), violin_1_rh=consort.tools.MusicSpecifier(), violin_2_rh=consort.tools.MusicSpecifier(), ) :: >>> segment_timespan = abjad.Timespan(1, 2) >>> from abjad.tools import templatetools >>> score_template = consort.StringQuartetScoreTemplate() >>> timespan_inventory = red_setting( ... layer=1, ... score_template=score_template, ... segment_timespan=segment_timespan, ... ) :: >>> print(format(timespan_inventory)) abjad.TimespanList( [ consort.tools.PerformedTimespan( start_offset=abjad.Offset(1, 1), stop_offset=abjad.Offset(5, 4), layer=1, music_specifier=consort.tools.MusicSpecifier(), voice_name='Violin 1 Bowing Voice', ), consort.tools.PerformedTimespan( start_offset=abjad.Offset(1, 1), stop_offset=abjad.Offset(3, 2), layer=1, music_specifier=consort.tools.MusicSpecifier(), voice_name='Viola Bowing Voice', ), consort.tools.PerformedTimespan( start_offset=abjad.Offset(5, 4), stop_offset=abjad.Offset(3, 2), layer=1, music_specifier=consort.tools.MusicSpecifier(), voice_name='Violin 2 Bowing Voice', ), consort.tools.PerformedTimespan( start_offset=abjad.Offset(3, 2), stop_offset=abjad.Offset(2, 1), layer=1, music_specifier=consort.tools.MusicSpecifier(), voice_name='Violin 1 Bowing Voice', ), consort.tools.PerformedTimespan( start_offset=abjad.Offset(7, 4), stop_offset=abjad.Offset(2, 1), layer=1, music_specifier=consort.tools.MusicSpecifier(), voice_name='Viola Bowing Voice', ), consort.tools.PerformedTimespan( start_offset=abjad.Offset(7, 4), stop_offset=abjad.Offset(2, 1), layer=1, music_specifier=consort.tools.MusicSpecifier(), voice_name='Violin 2 Bowing Voice', ), ] ) :: >>> red_setting = abjad.new( ... red_setting, ... silenced_contexts=[ ... 'viola_lh', ... 'cello', ... ], ... ) >>> print(format(red_setting)) consort.tools.MusicSetting( timespan_maker=consort.tools.TaleaTimespanMaker( initial_silence_talea=rhythmmakertools.Talea( counts=[0, 4], denominator=16, ), playing_talea=rhythmmakertools.Talea( counts=[4, 8, 4], denominator=16, ), playing_groupings=(1,), repeat=True, silence_talea=rhythmmakertools.Talea( counts=[4], denominator=16, ), step_anchor=Right, synchronize_groupings=False, synchronize_step=False, ), silenced_contexts=('cello', 'viola_lh'), viola_rh=consort.tools.MusicSpecifier(), violin_1_rh=consort.tools.MusicSpecifier(), violin_2_rh=consort.tools.MusicSpecifier(), ) :: >>> timespan_inventory = red_setting( ... layer=1, ... score_template=score_template, ... segment_timespan=segment_timespan, ... ) >>> print(format(timespan_inventory)) abjad.TimespanList( [ consort.tools.PerformedTimespan( start_offset=abjad.Offset(1, 1), stop_offset=abjad.Offset(5, 4), layer=1, music_specifier=consort.tools.MusicSpecifier(), voice_name='Violin 1 Bowing Voice', ), consort.tools.PerformedTimespan( start_offset=abjad.Offset(1, 1), stop_offset=abjad.Offset(3, 2), layer=1, music_specifier=consort.tools.MusicSpecifier(), voice_name='Viola Bowing Voice', ), consort.tools.SilentTimespan( start_offset=abjad.Offset(1, 1), stop_offset=abjad.Offset(2, 1), layer=1, voice_name='Cello Bowing Voice', ), consort.tools.SilentTimespan( start_offset=abjad.Offset(1, 1), stop_offset=abjad.Offset(2, 1), layer=1, voice_name='Cello Fingering Voice', ), consort.tools.SilentTimespan( start_offset=abjad.Offset(1, 1), stop_offset=abjad.Offset(2, 1), layer=1, voice_name='Viola Fingering Voice', ), consort.tools.PerformedTimespan( start_offset=abjad.Offset(5, 4), stop_offset=abjad.Offset(3, 2), layer=1, music_specifier=consort.tools.MusicSpecifier(), voice_name='Violin 2 Bowing Voice', ), consort.tools.PerformedTimespan( start_offset=abjad.Offset(3, 2), stop_offset=abjad.Offset(2, 1), layer=1, music_specifier=consort.tools.MusicSpecifier(), voice_name='Violin 1 Bowing Voice', ), consort.tools.PerformedTimespan( start_offset=abjad.Offset(7, 4), stop_offset=abjad.Offset(2, 1), layer=1, music_specifier=consort.tools.MusicSpecifier(), voice_name='Viola Bowing Voice', ), consort.tools.PerformedTimespan( start_offset=abjad.Offset(7, 4), stop_offset=abjad.Offset(2, 1), layer=1, music_specifier=consort.tools.MusicSpecifier(), voice_name='Violin 2 Bowing Voice', ), ] ) ''' ### CLASS VARIABLES ### __slots__ = ( '_music_specifiers', '_silenced_contexts', '_timespan_identifier', '_timespan_maker', ) ### INITIALIZER ### def __init__( self, timespan_identifier=None, timespan_maker=None, silenced_contexts=None, color=None, **music_specifiers ): import consort prototype = ( consort.CompositeMusicSpecifier, consort.MusicSpecifier, consort.MusicSpecifierSequence, str, # for demonstration purposes only ) for abbreviation, music_specifier in sorted(music_specifiers.items()): if isinstance(music_specifier, prototype): continue elif music_specifier is None: music_specifier = consort.MusicSpecifier( rhythm_maker=rhythmmakertools.NoteRhythmMaker( tie_specifier=rhythmmakertools.TieSpecifier( tie_across_divisions=True, ), ), ) music_specifiers[abbreviation] = music_specifier elif isinstance(music_specifier, collections.Sequence) and \ all(isinstance(x, prototype) for x in music_specifier): music_specifier = consort.MusicSpecifierSequence( music_specifiers=music_specifier, ) music_specifiers[abbreviation] = music_specifier else: raise ValueError(music_specifier) if color is not None: for abbreviation, music_specifier in sorted(music_specifiers.items()): if isinstance(music_specifier, consort.MusicSpecifier): music_specifier = abjad.new(music_specifier, color=color) elif isinstance(music_specifier, consort.CompositeMusicSpecifier): primary = abjad.new( music_specifier.primary_music_specifier, music_specifiers=[ abjad.new(_, color=color) for _ in music_specifier.primary_music_specifier ], ) secondary = abjad.new( music_specifier.secondary_music_specifier, music_specifiers=[ abjad.new(_, color=color) for _ in music_specifier.secondary_music_specifier ], ) music_specifier = abjad.new( music_specifier, primary_music_specifier=primary, secondary_music_specifier=secondary, ) elif isinstance(music_specifier, consort.MusicSpecifierSequence): music_specifier = abjad.new( music_specifier, music_specifiers=[ abjad.new(_, color=color) for _ in music_specifier.music_specifiers ], ) music_specifiers[abbreviation] = music_specifier self._music_specifiers = music_specifiers if silenced_contexts is not None: silenced_contexts = (str(_) for _ in silenced_contexts) silenced_contexts = tuple(sorted(set(silenced_contexts))) self._silenced_contexts = silenced_contexts if timespan_identifier is not None: prototype = ( abjad.Timespan, abjad.TimespanList, consort.RatioPartsExpression, ) if not isinstance(timespan_identifier, prototype): timespan_identifier = \ consort.RatioPartsExpression.from_sequence( timespan_identifier) assert isinstance(timespan_identifier, prototype) self._timespan_identifier = timespan_identifier if timespan_maker is not None: assert isinstance(timespan_maker, consort.TimespanMaker), \ timespan_maker else: timespan_maker = consort.FloodedTimespanMaker() self._timespan_maker = timespan_maker ### SPECIAL METHODS ### def __call__( self, layer=None, score=None, score_template=None, segment_timespan=None, timespan_inventory=None, timespan_quantization=None, ): if score is None: score = score_template() if timespan_inventory is None: timespan_inventory = abjad.TimespanList() if not self.music_specifiers: return timespan_inventory music_specifiers = self.resolve_music_specifiers( score_template, score=score, ) silenced_context_names = self.resolve_silenced_contexts( score_template, score=score, ) target_timespans = self.resolve_target_timespans( segment_timespan, timespan_quantization, ) for i, target_timespan in enumerate(target_timespans): timespan_maker = self.timespan_maker.rotate(i) timespan_inventory = timespan_maker( layer=layer, music_specifiers=music_specifiers, silenced_context_names=silenced_context_names, target_timespan=target_timespan, timespan_inventory=timespan_inventory, ) return timespan_inventory def __getattr__(self, item): if item in self.music_specifiers: return self.music_specifiers[item] elif item == 'color': return None return object.__getattribute__(self, item) ### PRIVATE METHODS ### def _get_format_specification(self): agent = systemtools.StorageFormatAgent(self) names = list(agent.signature_keyword_names) names.extend(sorted(self.music_specifiers)) template_names = tuple(names) if 'color' in names: names.remove('color') return systemtools.FormatSpecification( client=self, storage_format_kwargs_names=names, template_names=template_names, ) ### PUBLIC METHODS ### def resolve_music_specifiers( self, score_template, score=None, ): import consort assert score_template is not None if score is None: score = score_template() all_abbreviations = score_template.context_name_abbreviations prototype = ( consort.CompositeMusicSpecifier, consort.MusicSpecifierSequence, ) triples = [] for abbreviation, music_specifier in self.music_specifiers.items(): if not isinstance(music_specifier, prototype): music_specifier = consort.MusicSpecifierSequence( music_specifiers=music_specifier, ) context_name = all_abbreviations[abbreviation] context = score[context_name] context_index = abjad.inspect(context).get_parentage().score_index context_name = context.name if isinstance(music_specifier, consort.CompositeMusicSpecifier): composite_pairs = score_template.composite_context_pairs one, two = composite_pairs[abbreviation] primary_voice_name = all_abbreviations[one] secondary_voice_name = all_abbreviations[two] music_specifier = abjad.new( music_specifier, primary_voice_name=primary_voice_name, secondary_voice_name=secondary_voice_name, ) triple = ( context_index, context_name, music_specifier, ) triples.append(triple) triples.sort(key=lambda x: x[0]) music_specifiers = collections.OrderedDict() for context_index, context_name, music_specifier in triples: music_specifiers[context_name] = music_specifier return music_specifiers def resolve_silenced_contexts( self, score_template, score=None, ): assert score_template is not None if score is None: score = score_template() all_abbreviations = score_template.context_name_abbreviations composite_pairs = getattr( score_template, 'composite_context_pairs', {}, ) silenced_context_names = set() silenced_contexts = self.silenced_contexts or () for abbreviation in silenced_contexts: if abbreviation in composite_pairs: one, two = composite_pairs[abbreviation] primary_voice_name = all_abbreviations[one] secondary_voice_name = all_abbreviations[two] silenced_context_names.add(primary_voice_name) silenced_context_names.add(secondary_voice_name) elif abbreviation in all_abbreviations: context_name = all_abbreviations[abbreviation] silenced_context_names.add(context_name) else: message = 'Unresolvable context abbreviation: {}' message = message.format(abbreviation) raise Exception(message) return silenced_context_names def resolve_target_timespans( self, segment_timespan, timespan_quantization=None, ): import consort assert isinstance(segment_timespan, abjad.Timespan) timespan_identifier = self.timespan_identifier if timespan_identifier is None: target_timespans = abjad.TimespanList([ segment_timespan, ]) elif isinstance(self.timespan_identifier, abjad.Timespan): if timespan_identifier.stop_offset == Infinity: timespan_identifier = abjad.new( timespan_identifier, stop_offset=segment_timespan.stop_offset, ) segment_timespan = abjad.Timespan(start_offset=0) target_timespans = segment_timespan & timespan_identifier else: if isinstance(timespan_identifier, consort.RatioPartsExpression): mask_timespans = timespan_identifier(segment_timespan) else: mask_timespans = timespan_identifier target_timespans = abjad.TimespanList() for mask_timespan in mask_timespans: available_timespans = segment_timespan & mask_timespan target_timespans.extend(available_timespans) if timespan_quantization is not None: target_timespans.round_offsets( timespan_quantization, must_be_well_formed=True, ) return target_timespans ### PUBLIC PROPERTIES ### @property def music_specifiers(self): return self._music_specifiers @property def silenced_contexts(self): return self._silenced_contexts @property def timespan_identifier(self): return self._timespan_identifier @property def timespan_maker(self): return self._timespan_maker ``` #### File: consort/tools/PerformedTimespan.py ```python import abjad from abjad.tools import markuptools from abjad.tools import mathtools from abjad.tools import systemtools class PerformedTimespan(abjad.Timespan): r'''A Consort timespan. :: >>> timespan = consort.PerformedTimespan() >>> print(format(timespan)) consort.tools.PerformedTimespan( start_offset=NegativeInfinity, stop_offset=Infinity, ) ''' ### CLASS VARIABLES ### __slots__ = ( '_forbid_fusing', '_forbid_splitting', '_divisions', '_layer', '_minimum_duration', '_music', '_music_specifier', '_original_start_offset', '_original_stop_offset', '_voice_name', ) ### INITIALIZER ### def __init__( self, start_offset=mathtools.NegativeInfinity(), stop_offset=mathtools.Infinity(), divisions=None, forbid_fusing=None, forbid_splitting=None, layer=None, minimum_duration=None, music=None, music_specifier=None, original_start_offset=None, original_stop_offset=None, voice_name=None, ): abjad.Timespan.__init__( self, start_offset=start_offset, stop_offset=stop_offset, ) if divisions is not None: divisions = tuple(abjad.Duration(_) for _ in divisions) assert sum(divisions) == self.duration self._divisions = divisions if forbid_fusing is not None: forbid_fusing = bool(forbid_fusing) self._forbid_fusing = forbid_fusing if forbid_splitting is not None: forbid_splitting = bool(forbid_splitting) self._forbid_splitting = forbid_splitting if layer is not None: layer = int(layer) self._layer = layer if minimum_duration is not None: minimum_duration = abjad.Duration(minimum_duration) self._minimum_duration = minimum_duration #if music is not None: # assert inspect(music).get_duration() == self.duration self._music = music #if music_specifier is not None: # assert isinstance(music_specifier, consort.MusicSpecifier), \ # music_specifier self._music_specifier = music_specifier if original_start_offset is not None: original_start_offset = abjad.Offset(original_start_offset) else: original_start_offset = self.start_offset self._original_start_offset = original_start_offset if original_stop_offset is not None: original_stop_offset = abjad.Offset(original_stop_offset) else: original_stop_offset = self.stop_offset self._original_stop_offset = original_stop_offset self._voice_name = voice_name ### SPECIAL METHODS ### def __lt__(self, expr): if abjad.Timespan.__lt__(self, expr): return True if not abjad.Timespan.__gt__(self, expr): if hasattr(expr, 'voice_name'): return self.voice_name < expr.voice_name return False ### PRIVATE METHODS ### def _as_postscript( self, postscript_x_offset, postscript_y_offset, postscript_scale, ): start = (float(self.start_offset) * postscript_scale) start -= postscript_x_offset stop = (float(self.stop_offset) * postscript_scale) stop -= postscript_x_offset ps = markuptools.Postscript() ps = ps.moveto(start, postscript_y_offset) ps = ps.lineto(stop, postscript_y_offset) ps = ps.stroke() ps = ps.moveto(start, postscript_y_offset + 0.75) ps = ps.lineto(start, postscript_y_offset - 0.75) ps = ps.stroke() ps = ps.moveto(stop, postscript_y_offset + 0.75) ps = ps.lineto(stop, postscript_y_offset - 0.75) ps = ps.stroke() if self.layer is not None: ps = ps.moveto(start, postscript_y_offset) ps = ps.rmoveto(0.25, 0.5) ps = ps.show(str(self.layer)) return ps def _get_format_specification(self): agent = systemtools.StorageFormatAgent(self) names = agent.signature_keyword_names if self.original_start_offset == self.start_offset: names.remove('original_start_offset') if self.original_stop_offset == self.stop_offset: names.remove('original_stop_offset') return systemtools.FormatSpecification( storage_format_kwargs_names=names, ) ### PUBLIC METHODS ### def split_at_offset(self, offset): offset = abjad.Offset(offset) result = abjad.TimespanList() if self._start_offset < offset < self._stop_offset: left_divisions, right_divisions = None, None if self.divisions is not None: left_divisions, right_divisions = abjad.split_sequence( self.divisions, [offset - self.start_offset], overhang=True, ) left = abjad.new( self, start_offset=self._start_offset, stop_offset=offset, divisions=left_divisions, ) right = abjad.new( self, start_offset=offset, stop_offset=self._stop_offset, divisions=right_divisions, ) if left.duration: result.append(left) if right.duration: result.append(right) else: result.append(abjad.new(self)) return result ### PUBLIC PROPERTIES ### @property def divisions(self): return self._divisions @property def forbid_fusing(self): return self._forbid_fusing @property def forbid_splitting(self): return self._forbid_splitting @property def is_left_broken(self): if self.original_start_offset is not None: if self.original_start_offset != self.start_offset: return True return False @property def is_right_broken(self): if self.original_stop_offset is not None: if self.original_stop_offset != self.stop_offset: return True return False @property def layer(self): return self._layer @property def minimum_duration(self): return self._minimum_duration @property def music(self): return self._music @property def music_specifier(self): return self._music_specifier @property def original_start_offset(self): return self._original_start_offset @property def original_stop_offset(self): return self._original_stop_offset @property def voice_name(self): return self._voice_name ``` #### File: consort/tools/PitchSpecifier.py ```python import abjad from abjad.tools import abctools from abjad.tools import pitchtools class PitchSpecifier(abctools.AbjadValueObject): r'''A pitch specifier. :: >>> pitch_specifier = consort.PitchSpecifier( ... pitch_segments=( ... "c' e' g'", ... "fs' gs'", ... "b", ... ), ... ratio=(1, 2, 3), ... ) >>> print(format(pitch_specifier)) consort.tools.PitchSpecifier( pitch_segments=( abjad.PitchSegment( ( abjad.NamedPitch("c'"), abjad.NamedPitch("e'"), abjad.NamedPitch("g'"), ), item_class=abjad.NamedPitch, ), abjad.PitchSegment( ( abjad.NamedPitch("fs'"), abjad.NamedPitch("gs'"), ), item_class=abjad.NamedPitch, ), abjad.PitchSegment( ( abjad.NamedPitch('b'), ), item_class=abjad.NamedPitch, ), ), ratio=abjad.Ratio((1, 2, 3)), ) Pitch specifiers can be instantiated from a string of pitch names: :: >>> pitch_specifier = consort.PitchSpecifier("c' e' g' a'") >>> print(format(pitch_specifier)) consort.tools.PitchSpecifier( pitch_segments=( abjad.PitchSegment( ( abjad.NamedPitch("c'"), abjad.NamedPitch("e'"), abjad.NamedPitch("g'"), abjad.NamedPitch("a'"), ), item_class=abjad.NamedPitch, ), ), ratio=abjad.Ratio((1,)), ) Pitch specifiers can be instantiated from a single pitch: :: >>> pitch_specifier = consort.PitchSpecifier(abjad.NamedPitch("ds'")) >>> print(format(pitch_specifier)) consort.tools.PitchSpecifier( pitch_segments=( abjad.PitchSegment( ( abjad.NamedPitch("ds'"), ), item_class=abjad.NamedPitch, ), ), ratio=abjad.Ratio((1,)), ) ''' ### CLASS VARIABLES ### __slots__ = ( '_pitch_segments', '_ratio', ) ### INITIALIZER ### def __init__( self, pitch_segments=None, ratio=None, ): if pitch_segments is not None: if isinstance(pitch_segments, pitchtools.Pitch): pitch_segments = abjad.PitchSegment([pitch_segments]) elif isinstance(pitch_segments, str): pitch_segments = abjad.PitchSegment(pitch_segments) if isinstance(pitch_segments, abjad.PitchSegment): pitch_segments = [pitch_segments] coerced_pitch_segments = [] for pitch_segment in pitch_segments: pitch_segment = abjad.PitchSegment( pitch_segment, item_class=abjad.NamedPitch, ) if not pitch_segment: pitch_segment = abjad.PitchSegment("c'") coerced_pitch_segments.append(pitch_segment) pitch_segments = tuple(coerced_pitch_segments) assert len(pitch_segments) if pitch_segments and not ratio: ratio = [1] * len(pitch_segments) if ratio is not None: ratio = abjad.Ratio([abs(x) for x in ratio]) assert len(ratio) == len(pitch_segments) self._pitch_segments = pitch_segments self._ratio = ratio ### PUBLIC METHODS ### def get_timespans(self, stop_offset): r'''Gets pitch segment timespans. :: >>> pitch_specifier = consort.PitchSpecifier( ... pitch_segments=( ... "c' e' g'", ... "fs' g'", ... "b", ... ), ... ratio=(1, 2, 3), ... ) >>> timespans = pitch_specifier.get_timespans(stop_offset=10) >>> print(format(timespans)) consort.tools.TimespanCollection( [ abjad.AnnotatedTimespan( start_offset=abjad.Offset(0, 1), stop_offset=abjad.Offset(5, 3), annotation=abjad.PitchSegment( ( abjad.NamedPitch("c'"), abjad.NamedPitch("e'"), abjad.NamedPitch("g'"), ), item_class=abjad.NamedPitch, ), ), abjad.AnnotatedTimespan( start_offset=abjad.Offset(5, 3), stop_offset=abjad.Offset(5, 1), annotation=abjad.PitchSegment( ( abjad.NamedPitch("fs'"), abjad.NamedPitch("g'"), ), item_class=abjad.NamedPitch, ), ), abjad.AnnotatedTimespan( start_offset=abjad.Offset(5, 1), stop_offset=abjad.Offset(10, 1), annotation=abjad.PitchSegment( ( abjad.NamedPitch('b'), ), item_class=abjad.NamedPitch, ), ), ] ) ''' import consort timespans = consort.TimespanCollection() if not self.ratio or not self.pitch_segments: pitch_segment = abjad.PitchSegment("c'") annotated_timespan = abjad.AnnotatedTimespan( annotation=pitch_segment, start_offset=0, stop_offset=stop_offset, ), timespans.insert(annotated_timespan) else: target_timespan = abjad.Timespan( start_offset=0, stop_offset=stop_offset, ) divided_timespans = target_timespan.divide_by_ratio(self.ratio) for i, timespan in enumerate(divided_timespans): pitch_segment = self._pitch_segments[i] annotated_timespan = abjad.AnnotatedTimespan( annotation=pitch_segment, start_offset=timespan.start_offset, stop_offset=timespan.stop_offset, ) timespans.insert(annotated_timespan) return timespans def rotate(self, rotation): r'''Rotates pitch specifier. :: >>> pitch_specifier = consort.PitchSpecifier( ... pitch_segments=( ... "c' e' g'", ... "fs' gs'", ... "b", ... ), ... ratio=(1, 2, 3), ... ) >>> rotated_pitch_specifier = pitch_specifier.rotate(1) >>> print(format(rotated_pitch_specifier)) consort.tools.PitchSpecifier( pitch_segments=( abjad.PitchSegment( ( abjad.NamedPitch('b'), ), item_class=abjad.NamedPitch, ), abjad.PitchSegment( ( abjad.NamedPitch("c'"), abjad.NamedPitch('f'), abjad.NamedPitch('a'), ), item_class=abjad.NamedPitch, ), abjad.PitchSegment( ( abjad.NamedPitch("fs'"), abjad.NamedPitch("e'"), ), item_class=abjad.NamedPitch, ), ), ratio=abjad.Ratio((3, 1, 2)), ) Returns new pitch specifier. ''' import consort rotation = int(rotation) pitch_segments = tuple( _.rotate(rotation, stravinsky=True) for _ in self.pitch_segments ) pitch_segments = consort.rotate(pitch_segments, rotation) ratio = consort.rotate(self.ratio, rotation) return abjad.new( self, pitch_segments=pitch_segments, ratio=ratio, ) def transpose(self, expr=0): r'''Transposes pitch specifier. :: >>> pitch_specifier = consort.PitchSpecifier( ... pitch_segments=( ... "c' e' g'", ... "fs' gs'", ... "b", ... ), ... ratio=(1, 2, 3), ... ) >>> transposed_pitch_specifier = pitch_specifier.transpose('M2') >>> print(format(transposed_pitch_specifier)) consort.tools.PitchSpecifier( pitch_segments=( abjad.PitchSegment( ( abjad.NamedPitch("d'"), abjad.NamedPitch("fs'"), abjad.NamedPitch("a'"), ), item_class=abjad.NamedPitch, ), abjad.PitchSegment( ( abjad.NamedPitch("gs'"), abjad.NamedPitch("as'"), ), item_class=abjad.NamedPitch, ), abjad.PitchSegment( ( abjad.NamedPitch("cs'"), ), item_class=abjad.NamedPitch, ), ), ratio=abjad.Ratio((1, 2, 3)), ) Returns new pitch specifier. ''' pitch_segments = (_.transpose(expr) for _ in self.pitch_segments) return abjad.new(self, pitch_segments=pitch_segments) ### PUBLIC PROPERTIES ### @property def ratio(self): return self._ratio @property def pitch_segments(self): return self._pitch_segments ``` #### File: consort/tools/RatioPartsExpression.py ```python import abjad from abjad.tools import abctools class RatioPartsExpression(abctools.AbjadObject): r'''Ratio parts expression. .. container:: example :: >>> expression = consort.RatioPartsExpression( ... ratio=(1, 2, 1), ... parts=(0, 2), ... ) >>> print(format(expression)) consort.tools.RatioPartsExpression( parts=(0, 2), ratio=abjad.Ratio((1, 2, 1)), ) :: >>> timespan = abjad.Timespan( ... start_offset=abjad.Duration(1, 2), ... stop_offset=abjad.Duration(3, 2), ... ) >>> for x in expression(timespan): ... x ... Timespan(start_offset=Offset(1, 2), stop_offset=Offset(3, 4)) Timespan(start_offset=Offset(5, 4), stop_offset=Offset(3, 2)) .. container:: example :: >>> expression = consort.RatioPartsExpression( ... ratio=(1, 2, 1), ... parts=(0, 2), ... mask_timespan=abjad.Timespan( ... start_offset=(1, 4), ... ), ... ) :: >>> timespan = abjad.Timespan(0, 4) >>> for x in expression(timespan): ... x ... Timespan(start_offset=Offset(1, 4), stop_offset=Offset(1, 1)) Timespan(start_offset=Offset(3, 1), stop_offset=Offset(4, 1)) ''' ### CLASS VARIABLES ### __slots__ = ( '_parts', '_ratio', '_mask_timespan', ) ### INITIALIZER ### def __init__( self, parts=0, ratio=(1, 1), mask_timespan=None, ): if not isinstance(ratio, abjad.Ratio): ratio = abjad.Ratio(ratio) self._ratio = ratio if isinstance(parts, int): parts = (parts,) assert all(0 <= _ < len(ratio) for _ in parts) parts = tuple(sorted(set(parts))) self._parts = parts if mask_timespan is not None: assert isinstance(mask_timespan, abjad.Timespan) self._mask_timespan = mask_timespan ### SPECIAL METHODS ### def __call__(self, timespan): assert isinstance(timespan, abjad.Timespan) divided_timespan = timespan.divide_by_ratio(self.ratio) timespans = abjad.TimespanList() for part in self.parts: timespans.append(divided_timespan[part]) if self.mask_timespan is not None: timespans & self.mask_timespan return timespans ### PUBLIC METHODS ### @staticmethod def from_sequence(sequence): r'''Creates a ratio parts expression from `sequence`. :: >>> ratio = [-1, 2, -1, 1, -1] >>> expression = consort.RatioPartsExpression.from_sequence(ratio) >>> print(format(expression)) consort.tools.RatioPartsExpression( parts=(1, 3), ratio=abjad.Ratio((1, 2, 1, 1, 1)), ) Returns new ratio parts expression. ''' assert all(sequence) assert len(sequence) ratio = [] parts = [] for i, x in enumerate(sequence): if 0 < x: parts.append(i) ratio.append(abs(x)) result = RatioPartsExpression( parts=parts, ratio=ratio, ) return result ### PUBLIC PROPERTIES ### @property def mask_timespan(self): return self._mask_timespan @property def parts(self): return self._parts @property def ratio(self): return self._ratio ``` #### File: consort/tools/rotate.py ```python def rotate(iterable, n=0): n = n or 0 items = [] if len(iterable): n = n % len(iterable) for item in iterable[-n:len(iterable)] + iterable[:-n]: items.append(item) return type(iterable)(items) ``` #### File: consort/tools/StopTrillSpan.py ```python import abjad from abjad.tools import abctools from abjad.tools import scoretools from abjad.tools import systemtools class StopTrillSpan(abctools.AbjadValueObject): __slots__ = () def _get_lilypond_format_bundle(self, component): import consort parentage = abjad.inspect(component).get_parentage() prototype = scoretools.GraceContainer grace_container = None for parent in parentage: if isinstance(parent, prototype): grace_container = parent break if grace_container is None: return prototype = consort.ConsortTrillSpanner carrier = grace_container._carrier spanners = abjad.inspect(carrier).get_spanners(prototype) if not spanners: return bundle = systemtools.LilyPondFormatBundle() bundle.right.spanner_stops.append(r'\stopTrillSpan') return bundle ``` #### File: consort/tools/TimespanCollection.py ```python from abjad.tools import abctools from abjad.tools import systemtools class TimespanCollection(abctools.AbjadObject): r'''A mutable always-sorted collection of timespans. :: >>> timespans = ( ... abjad.Timespan(0, 3), ... abjad.Timespan(1, 3), ... abjad.Timespan(1, 2), ... abjad.Timespan(2, 5), ... abjad.Timespan(6, 9), ... ) >>> timespan_collection = consort.TimespanCollection(timespans) ''' ### CLASS VARIABLES ### __slots__ = ( '_root_node', ) ### INITIALIZER ### def __init__( self, timespans=None, ): self._root_node = None if timespans is not None and timespans: self.insert(timespans) ### SPECIAL METHODS ### def __contains__(self, timespan): r'''Is true if this timespan collection contains `timespan`. Otherwise false. :: >>> timespans = ( ... abjad.Timespan(0, 3), ... abjad.Timespan(1, 3), ... abjad.Timespan(1, 2), ... abjad.Timespan(2, 5), ... abjad.Timespan(6, 9), ... ) >>> timespan_collection = consort.TimespanCollection(timespans) :: >>> timespans[0] in timespan_collection True :: >>> abjad.Timespan(-1, 100) in timespan_collection False Returns boolean. ''' assert TimespanCollection._is_timespan(timespan) candidates = self.find_timespans_starting_at(timespan.start_offset) result = timespan in candidates return result def __getitem__(self, i): r'''Gets timespan at index `i`. :: >>> timespans = ( ... abjad.Timespan(0, 3), ... abjad.Timespan(1, 3), ... abjad.Timespan(1, 2), ... abjad.Timespan(2, 5), ... abjad.Timespan(6, 9), ... ) >>> timespan_collection = consort.TimespanCollection(timespans) :: >>> timespan_collection[-1] Timespan(start_offset=Offset(6, 1), stop_offset=Offset(9, 1)) :: >>> for timespan in timespan_collection[:3]: ... timespan ... Timespan(start_offset=Offset(0, 1), stop_offset=Offset(3, 1)) Timespan(start_offset=Offset(1, 1), stop_offset=Offset(2, 1)) Timespan(start_offset=Offset(1, 1), stop_offset=Offset(3, 1)) Returns timespan or timespans. ''' def recurse_by_index(node, index): if node.node_start_index <= index < node.node_stop_index: return node.payload[index - node.node_start_index] elif node.left_child and index < node.node_start_index: return recurse_by_index(node.left_child, index) elif node.right_child and node.node_stop_index <= index: return recurse_by_index(node.right_child, index) def recurse_by_slice(node, start, stop): result = [] if node is None: return result if start < node.node_start_index and node.left_child: result.extend(recurse_by_slice(node.left_child, start, stop)) if start < node.node_stop_index and node.node_start_index < stop: node_start = start - node.node_start_index if node_start < 0: node_start = 0 node_stop = stop - node.node_start_index result.extend(node.payload[node_start:node_stop]) if node.node_stop_index <= stop and node.right_child: result.extend(recurse_by_slice(node.right_child, start, stop)) return result if isinstance(i, int): if self._root_node is None: raise IndexError if i < 0: i = self._root_node.subtree_stop_index + i if i < 0 or self._root_node.subtree_stop_index <= i: raise IndexError return recurse_by_index(self._root_node, i) elif isinstance(i, slice): if self._root_node is None: return [] indices = i.indices(self._root_node.subtree_stop_index) start, stop = indices[0], indices[1] return recurse_by_slice(self._root_node, start, stop) raise TypeError('Indices must be integers or slices, got {}'.format(i)) def __iter__(self): r'''Iterates timespans in this timespan collection. :: >>> timespans = ( ... abjad.Timespan(0, 3), ... abjad.Timespan(1, 3), ... abjad.Timespan(1, 2), ... abjad.Timespan(2, 5), ... abjad.Timespan(6, 9), ... ) >>> timespan_collection = consort.TimespanCollection(timespans) :: >>> for timespan in timespan_collection: ... timespan ... Timespan(start_offset=Offset(0, 1), stop_offset=Offset(3, 1)) Timespan(start_offset=Offset(1, 1), stop_offset=Offset(2, 1)) Timespan(start_offset=Offset(1, 1), stop_offset=Offset(3, 1)) Timespan(start_offset=Offset(2, 1), stop_offset=Offset(5, 1)) Timespan(start_offset=Offset(6, 1), stop_offset=Offset(9, 1)) Returns generator. ''' def recurse(node): if node is not None: if node.left_child is not None: for timespan in recurse(node.left_child): yield timespan for timespan in node.payload: yield timespan if node.right_child is not None: for timespan in recurse(node.right_child): yield timespan return recurse(self._root_node) def __len__(self): r'''Gets length of this timespan collection. :: >>> timespans = ( ... abjad.Timespan(0, 3), ... abjad.Timespan(1, 3), ... abjad.Timespan(1, 2), ... abjad.Timespan(2, 5), ... abjad.Timespan(6, 9), ... ) >>> timespan_collection = consort.TimespanCollection(timespans) :: >>> len(timespan_collection) 5 Returns integer. ''' if self._root_node is None: return 0 return self._root_node.subtree_stop_index def __setitem__(self, i, new): r'''Sets timespans at index `i` to `new`. :: >>> timespans = ( ... abjad.Timespan(0, 3), ... abjad.Timespan(1, 3), ... abjad.Timespan(1, 2), ... abjad.Timespan(2, 5), ... abjad.Timespan(6, 9), ... ) >>> timespan_collection = consort.TimespanCollection(timespans) :: >>> timespan_collection[:3] = [abjad.Timespan(100, 200)] Returns none. ''' if isinstance(i, (int, slice)): old = self[i] self.remove(old) self.insert(new) else: message = 'Indices must be ints or slices, got {}'.format(i) raise TypeError(message) def __sub__(self, timespan): r'''Delete material that intersects `timespan`: :: >>> timespan_collection = consort.TimespanCollection([ ... abjad.Timespan(0, 16), ... abjad.Timespan(5, 12), ... abjad.Timespan(-2, 8), ... ]) :: >>> timespan = abjad.Timespan(5, 10) >>> result = timespan_collection - timespan :: >>> print(format(timespan_collection)) consort.tools.TimespanCollection( [ abjad.Timespan( start_offset=abjad.Offset(-2, 1), stop_offset=abjad.Offset(5, 1), ), abjad.Timespan( start_offset=abjad.Offset(0, 1), stop_offset=abjad.Offset(5, 1), ), abjad.Timespan( start_offset=abjad.Offset(10, 1), stop_offset=abjad.Offset(12, 1), ), abjad.Timespan( start_offset=abjad.Offset(10, 1), stop_offset=abjad.Offset(16, 1), ), ] ) Operates in place and returns timespan collection. ''' intersecting_timespans = self.find_timespans_intersecting_timespan( timespan) self.remove(intersecting_timespans) for intersecting_timespan in intersecting_timespans: for x in (intersecting_timespan - timespan): self.insert(x) return self ### PRIVATE METHODS ### def _insert_node(self, node, start_offset): import consort if node is None: return consort.TimespanCollectionNode(start_offset) if start_offset < node.start_offset: node.left_child = self._insert_node(node.left_child, start_offset) elif node.start_offset < start_offset: node.right_child = self._insert_node(node.right_child, start_offset) return self._rebalance(node) def _insert_timespan(self, timespan): self._root_node = self._insert_node( self._root_node, timespan.start_offset, ) node = self._search(self._root_node, timespan.start_offset) node.payload.append(timespan) node.payload.sort(key=lambda x: x.stop_offset) @staticmethod def _is_timespan(expr): if hasattr(expr, 'start_offset') and hasattr(expr, 'stop_offset'): return True return False def _rebalance(self, node): if node is not None: if 1 < node.balance: if 0 <= node.right_child.balance: node = self._rotate_right_right(node) else: node = self._rotate_right_left(node) elif node.balance < -1: if node.left_child.balance <= 0: node = self._rotate_left_left(node) else: node = self._rotate_left_right(node) assert -1 <= node.balance <= 1 return node def _remove_node(self, node, start_offset): if node is not None: if node.start_offset == start_offset: if node.left_child and node.right_child: next_node = node.right_child while next_node.left_child: next_node = next_node.left_child node._start_offset = next_node._start_offset node._payload = next_node._payload node.right_child = self._remove_node( node.right_child, next_node.start_offset, ) else: node = node.left_child or node.right_child elif start_offset < node.start_offset: node.left_child = self._remove_node( node.left_child, start_offset, ) elif node.start_offset < start_offset: node.right_child = self._remove_node( node.right_child, start_offset, ) return self._rebalance(node) def _remove_timespan(self, timespan, old_start_offset=None): start_offset = timespan.start_offset if old_start_offset is not None: start_offset = old_start_offset node = self._search(self._root_node, start_offset) if node is None: return if timespan in node.payload: node.payload.remove(timespan) if not node.payload: self._root_node = self._remove_node( self._root_node, start_offset, ) if isinstance(timespan, TimespanCollection): timespan._parents.remove(self) def _rotate_left_left(self, node): next_node = node.left_child node.left_child = next_node.right_child next_node.right_child = node return next_node def _rotate_left_right(self, node): node.left_child = self._rotate_right_right(node.left_child) next_node = self._rotate_left_left(node) return next_node def _rotate_right_left(self, node): node.right_child = self._rotate_left_left(node.right_child) next_node = self._rotate_right_right(node) return next_node def _rotate_right_right(self, node): next_node = node.right_child node.right_child = next_node.left_child next_node.left_child = node return next_node def _search(self, node, start_offset): if node is not None: if node.start_offset == start_offset: return node elif node.left_child and start_offset < node.start_offset: return self._search(node.left_child, start_offset) elif node.right_child and node.start_offset < start_offset: return self._search(node.right_child, start_offset) return None def _update_indices( self, node, ): def recurse( node, parent_stop_index=None, ): if node is None: return if node.left_child is not None: recurse( node.left_child, parent_stop_index=parent_stop_index, ) node._node_start_index = node.left_child.subtree_stop_index node._subtree_start_index = node.left_child.subtree_start_index elif parent_stop_index is None: node._node_start_index = 0 node._subtree_start_index = 0 else: node._node_start_index = parent_stop_index node._subtree_start_index = parent_stop_index node._node_stop_index = node.node_start_index + len(node.payload) node._subtree_stop_index = node.node_stop_index if node.right_child is not None: recurse( node.right_child, parent_stop_index=node.node_stop_index, ) node._subtree_stop_index = node.right_child.subtree_stop_index recurse(node) def _update_offsets( self, node, ): if node is None: return stop_offset_low = min(x.stop_offset for x in node.payload) stop_offset_high = max(x.stop_offset for x in node.payload) if node.left_child: left_child = self._update_offsets( node.left_child, ) if left_child.stop_offset_low < stop_offset_low: stop_offset_low = left_child.stop_offset_low if stop_offset_high < left_child.stop_offset_high: stop_offset_high = left_child.stop_offset_high if node.right_child: right_child = self._update_offsets( node.right_child, ) if right_child.stop_offset_low < stop_offset_low: stop_offset_low = right_child.stop_offset_low if stop_offset_high < right_child.stop_offset_high: stop_offset_high = right_child.stop_offset_high node._stop_offset_low = stop_offset_low node._stop_offset_high = stop_offset_high return node def _get_format_specification(self): values = [] timespans = [x for x in self] if timespans: values.append(timespans) names = [] return systemtools.FormatSpecification( client=self, storage_format_args_values=values, storage_format_kwargs_names=names, ) ### PUBLIC METHODS ### def find_timespans_starting_at(self, offset): results = [] node = self._search(self._root_node, offset) if node is not None: results.extend(node.payload) return tuple(results) def find_timespans_stopping_at(self, offset): def recurse(node, offset): result = [] if node is not None: if node.stop_offset_low <= offset <= node.stop_offset_high: for timespan in node.payload: if timespan.stop_offset == offset: result.append(timespan) if node.left_child is not None: result.extend(recurse(node.left_child, offset)) if node.right_child is not None: result.extend(recurse(node.right_child, offset)) return result results = recurse(self._root_node, offset) results.sort(key=lambda x: (x.start_offset, x.stop_offset)) return tuple(results) def find_timespans_overlapping_offset(self, offset): r'''Finds timespans overlapping `offset`. :: >>> timespans = ( ... abjad.Timespan(0, 3), ... abjad.Timespan(1, 3), ... abjad.Timespan(1, 2), ... abjad.Timespan(2, 5), ... abjad.Timespan(6, 9), ... ) >>> timespan_collection = consort.TimespanCollection(timespans) :: >>> for x in timespan_collection.find_timespans_overlapping_offset(1.5): ... x ... Timespan(start_offset=Offset(0, 1), stop_offset=Offset(3, 1)) Timespan(start_offset=Offset(1, 1), stop_offset=Offset(2, 1)) Timespan(start_offset=Offset(1, 1), stop_offset=Offset(3, 1)) Returns tuple of 0 or more timespans. ''' def recurse(node, offset, indent=0): result = [] if node is not None: if node.start_offset < offset < node.stop_offset_high: result.extend(recurse(node.left_child, offset, indent + 1)) for timespan in node.payload: if offset < timespan.stop_offset: result.append(timespan) result.extend(recurse(node.right_child, offset, indent + 1)) elif offset <= node.start_offset: result.extend(recurse(node.left_child, offset, indent + 1)) return result results = recurse(self._root_node, offset) results.sort(key=lambda x: (x.start_offset, x.stop_offset)) return tuple(results) def find_timespans_intersecting_timespan(self, timespan): r'''Finds timespans overlapping `timespan`. :: >>> timespans = ( ... abjad.Timespan(0, 3), ... abjad.Timespan(1, 3), ... abjad.Timespan(1, 2), ... abjad.Timespan(2, 5), ... abjad.Timespan(6, 9), ... ) >>> timespan_collection = consort.TimespanCollection(timespans) :: >>> timespan = abjad.Timespan(2, 4) >>> for x in timespan_collection.find_timespans_intersecting_timespan(timespan): ... x ... Timespan(start_offset=Offset(0, 1), stop_offset=Offset(3, 1)) Timespan(start_offset=Offset(1, 1), stop_offset=Offset(3, 1)) Timespan(start_offset=Offset(2, 1), stop_offset=Offset(5, 1)) Returns tuple of 0 or more timespans. ''' def recurse(node, timespan): result = [] if node is not None: if timespan.intersects_timespan(node): result.extend(recurse(node.left_child, timespan)) for candidate_timespan in node.payload: if candidate_timespan.intersects_timespan(timespan): result.append(candidate_timespan) result.extend(recurse(node.right_child, timespan)) elif (timespan.start_offset <= node.start_offset) or \ (timespan.stop_offset <= node.start_offset): result.extend(recurse(node.left_child, timespan)) return result results = recurse(self._root_node, timespan) results.sort(key=lambda x: (x.start_offset, x.stop_offset)) return tuple(results) def get_simultaneity_at(self, offset): r'''Gets simultaneity at `offset`. :: >>> timespans = ( ... abjad.Timespan(0, 3), ... abjad.Timespan(1, 3), ... abjad.Timespan(1, 2), ... abjad.Timespan(2, 5), ... abjad.Timespan(6, 9), ... ) >>> timespan_collection = consort.TimespanCollection(timespans) :: >>> timespan_collection.get_simultaneity_at(1) <TimespanSimultaneity(1 <<3>>)> :: >>> timespan_collection.get_simultaneity_at(6.5) <TimespanSimultaneity(6.5 <<1>>)> ''' import consort start_timespans = self.find_timespans_starting_at(offset) stop_timespans = self.find_timespans_stopping_at(offset) overlap_timespans = self.find_timespans_overlapping_offset(offset) simultaneity = consort.TimespanSimultaneity( timespan_collection=self, overlap_timespans=overlap_timespans, start_timespans=start_timespans, start_offset=offset, stop_timespans=stop_timespans, ) return simultaneity def get_start_offset_after(self, offset): r'''Gets start offst in this timespan collection after `offset`. :: >>> timespans = ( ... abjad.Timespan(0, 3), ... abjad.Timespan(1, 3), ... abjad.Timespan(1, 2), ... abjad.Timespan(2, 5), ... abjad.Timespan(6, 9), ... ) >>> timespan_collection = consort.TimespanCollection(timespans) :: >>> timespan_collection.get_start_offset_after(-1) Offset(0, 1) :: >>> timespan_collection.get_start_offset_after(0) Offset(1, 1) :: >>> timespan_collection.get_start_offset_after(1) Offset(2, 1) :: >>> timespan_collection.get_start_offset_after(2) Offset(6, 1) :: >>> timespan_collection.get_start_offset_after(6) is None True ''' def recurse(node, offset): if node is None: return None result = None if node.start_offset <= offset and node.right_child: result = recurse(node.right_child, offset) elif offset < node.start_offset: result = recurse(node.left_child, offset) or node return result result = recurse(self._root_node, offset) if result is None: return None return result.start_offset def get_start_offset_before(self, offset): r'''Gets start offst in this timespan collection before `offset`. :: >>> timespans = ( ... abjad.Timespan(0, 3), ... abjad.Timespan(1, 3), ... abjad.Timespan(1, 2), ... abjad.Timespan(2, 5), ... abjad.Timespan(6, 9), ... ) >>> timespan_collection = consort.TimespanCollection(timespans) :: >>> timespan_collection.get_start_offset_before(7) Offset(6, 1) :: >>> timespan_collection.get_start_offset_before(6) Offset(2, 1) :: >>> timespan_collection.get_start_offset_before(2) Offset(1, 1) :: >>> timespan_collection.get_start_offset_before(1) Offset(0, 1) :: >>> timespan_collection.get_start_offset_before(0) is None True ''' def recurse(node, offset): if node is None: return None result = None if node.start_offset < offset: result = recurse(node.right_child, offset) or node elif offset <= node.start_offset and node.left_child: result = recurse(node.left_child, offset) return result result = recurse(self._root_node, offset) if result is None: return None return result.start_offset def index(self, timespan): assert self._is_timespan(timespan) node = self._search(self._root_node, timespan.start_offset) if node is None or timespan not in node.payload: raise ValueError('{} not in timespan collection.'.format(timespan)) index = node.payload.index(timespan) + node.node_start_index return index def insert(self, timespans): r'''Inserts `timespans` into this timespan collection. :: >>> timespan_collection = consort.TimespanCollection() >>> timespan_collection.insert(abjad.Timespan(1, 3)) >>> timespan_collection.insert(( ... abjad.Timespan(0, 4), ... abjad.Timespan(2, 6), ... )) :: >>> for x in timespan_collection: ... x ... Timespan(start_offset=Offset(0, 1), stop_offset=Offset(4, 1)) Timespan(start_offset=Offset(1, 1), stop_offset=Offset(3, 1)) Timespan(start_offset=Offset(2, 1), stop_offset=Offset(6, 1)) `timespans` may be a single timespan or an iterable of timespans. Returns none. ''' if self._is_timespan(timespans): timespans = [timespans] for timespan in timespans: if not self._is_timespan(timespan): continue self._insert_timespan(timespan) self._update_indices(self._root_node) self._update_offsets(self._root_node) def iterate_simultaneities( self, reverse=False, ): r'''Iterates simultaneities in this timespan collection. :: >>> timespans = ( ... abjad.Timespan(0, 3), ... abjad.Timespan(1, 3), ... abjad.Timespan(1, 2), ... abjad.Timespan(2, 5), ... abjad.Timespan(6, 9), ... ) >>> timespan_collection = consort.TimespanCollection(timespans) :: >>> for x in timespan_collection.iterate_simultaneities(): ... x ... <TimespanSimultaneity(0 <<1>>)> <TimespanSimultaneity(1 <<3>>)> <TimespanSimultaneity(2 <<3>>)> <TimespanSimultaneity(6 <<1>>)> :: >>> for x in timespan_collection.iterate_simultaneities( ... reverse=True): ... x ... <TimespanSimultaneity(6 <<1>>)> <TimespanSimultaneity(2 <<3>>)> <TimespanSimultaneity(1 <<3>>)> <TimespanSimultaneity(0 <<1>>)> Returns generator. ''' if reverse: start_offset = self.latest_start_offset simultaneity = self.get_simultaneity_at(start_offset) yield simultaneity simultaneity = simultaneity.previous_simultaneity while simultaneity is not None: yield simultaneity simultaneity = simultaneity.previous_simultaneity else: start_offset = self.earliest_start_offset simultaneity = self.get_simultaneity_at(start_offset) yield simultaneity simultaneity = simultaneity.next_simultaneity while simultaneity is not None: yield simultaneity simultaneity = simultaneity.next_simultaneity def iterate_simultaneities_nwise( self, n=3, reverse=False, ): r'''Iterates simultaneities in this timespan collection in groups of `n`. :: >>> timespans = ( ... abjad.Timespan(0, 3), ... abjad.Timespan(1, 3), ... abjad.Timespan(1, 2), ... abjad.Timespan(2, 5), ... abjad.Timespan(6, 9), ... ) >>> timespan_collection = consort.TimespanCollection(timespans) :: >>> for x in timespan_collection.iterate_simultaneities_nwise(n=2): ... x ... (<TimespanSimultaneity(0 <<1>>)>, <TimespanSimultaneity(1 <<3>>)>) (<TimespanSimultaneity(1 <<3>>)>, <TimespanSimultaneity(2 <<3>>)>) (<TimespanSimultaneity(2 <<3>>)>, <TimespanSimultaneity(6 <<1>>)>) :: >>> for x in timespan_collection.iterate_simultaneities_nwise( ... n=2, reverse=True): ... x ... (<TimespanSimultaneity(2 <<3>>)>, <TimespanSimultaneity(6 <<1>>)>) (<TimespanSimultaneity(1 <<3>>)>, <TimespanSimultaneity(2 <<3>>)>) (<TimespanSimultaneity(0 <<1>>)>, <TimespanSimultaneity(1 <<3>>)>) Returns generator. ''' n = int(n) assert 0 < n if reverse: for simultaneity in self.iterate_simultaneities(reverse=True): simultaneities = [simultaneity] while len(simultaneities) < n: next_simultaneity = simultaneities[-1].next_simultaneity if next_simultaneity is None: break simultaneities.append(next_simultaneity) if len(simultaneities) == n: yield tuple(simultaneities) else: for simultaneity in self.iterate_simultaneities(): simultaneities = [simultaneity] while len(simultaneities) < n: previous_simultaneity = simultaneities[-1].previous_simultaneity if previous_simultaneity is None: break simultaneities.append(previous_simultaneity) if len(simultaneities) == n: yield tuple(reversed(simultaneities)) def remove(self, timespans): r'''Removes timespans from this timespan collection. :: >>> timespans = ( ... abjad.Timespan(0, 3), ... abjad.Timespan(1, 3), ... abjad.Timespan(1, 2), ... abjad.Timespan(2, 5), ... abjad.Timespan(6, 9), ... ) >>> timespan_collection = consort.TimespanCollection(timespans) :: >>> timespan_collection.remove(timespans[1:-1]) :: >>> for timespan in timespan_collection: ... timespan ... Timespan(start_offset=Offset(0, 1), stop_offset=Offset(3, 1)) Timespan(start_offset=Offset(6, 1), stop_offset=Offset(9, 1)) ''' if self._is_timespan(timespans): timespans = [timespans] for timespan in timespans: if not self._is_timespan(timespan): continue self._remove_timespan(timespan) self._update_indices(self._root_node) self._update_offsets(self._root_node) ### PUBLIC PROPERTIES ### @property def all_offsets(self): offsets = set() for timespan in self: offsets.add(timespan.start_offset) offsets.add(timespan.stop_offset) return tuple(sorted(offsets)) @property def all_start_offsets(self): start_offsets = set() for timespan in self: start_offsets.add(timespan.start_offset) return tuple(sorted(start_offsets)) @property def all_stop_offsets(self): stop_offsets = set() for timespan in self: stop_offsets.add(timespan.stop_offset) return tuple(sorted(stop_offsets)) @property def earliest_start_offset(self): def recurse(node): if node.left_child is not None: return recurse(node.left_child) return node.start_offset if self._root_node is not None: return recurse(self._root_node) return float('-inf') @property def earliest_stop_offset(self): if self._root_node is not None: return self._root_node.stop_offset_low return float('inf') @property def latest_start_offset(self): def recurse(node): if node.right_child is not None: return recurse(node._right_child) return node.start_offset if self._root_node is not None: return recurse(self._root_node) return float('-inf') @property def latest_stop_offset(self): if self._root_node is not None: return self._root_node.stop_offset_high return float('inf') @property def start_offset(self): return self.earliest_start_offset @property def stop_offset(self): return self.latest_stop_offset ``` #### File: consort/tools/TimespanInventoryMapping.py ```python import abjad class TimespanListMapping(dict): ### SPECIAL METHODS ### def __illustrate__(self, range_=None, scale=None): timespan_inventory = abjad.TimespanList() for key, value in self.items(): timespan_inventory.extend(value) return timespan_inventory.__illustrate__( key='voice_name', range_=range_, scale=scale, ) ``` #### File: consort/tools/TimespanSpecifier.py ```python import abjad from abjad.tools import abctools class TimespanSpecifier(abctools.AbjadValueObject): ### CLASS VARIABLES ### __slots__ = ( '_forbid_fusing', '_forbid_splitting', '_minimum_duration', ) ### INITIALIZER ### def __init__( self, forbid_fusing=None, forbid_splitting=None, minimum_duration=None, ): if forbid_fusing is not None: forbid_fusing = bool(forbid_fusing) self._forbid_fusing = forbid_fusing if forbid_splitting is not None: forbid_splitting = bool(forbid_splitting) self._forbid_splitting = forbid_splitting if minimum_duration is not None: minimum_duration = abjad.Duration(minimum_duration) self._minimum_duration = minimum_duration ### PUBLIC PROPERTIES ### @property def forbid_fusing(self): return self._forbid_fusing @property def forbid_splitting(self): return self._forbid_splitting @property def minimum_duration(self): return self._minimum_duration ``` #### File: consort/test/test_consort___copy__.py ```python import abjad import copy import inspect import pytest from abjad.tools import documentationtools from abjad.tools import scoretools classes = documentationtools.list_all_classes('consort') @pytest.mark.parametrize('class_', classes) def test_consort___copy___01(class_): r'''All concrete classes with a storage format can copy. ''' if ('_storage_format_specification' not in dir(class_) or '_get_format_specification' not in dir(class_)): return if inspect.isabstract(class_): return instance_one = class_() instance_two = copy.copy(instance_one) instance_one_format = format(instance_one, 'storage') instance_two_format = format(instance_two, 'storage') if not issubclass(class_, abjad.Container): assert instance_one_format == instance_two_format # TODO: eventually this second asset should also pass #assert instance_one == instance_two ``` #### File: consort/test/test_SegmentMaker_rehearsal_mark.py ```python import abjad import collections import consort from abjad.tools import systemtools from abjad.tools import templatetools segment_metadata = collections.OrderedDict( segment_count=3, segment_number=2, ) def test_SegmentMaker_rehearsal_mark_01(): segment_maker = consort.SegmentMaker( discard_final_silence=True, desired_duration_in_seconds=4, omit_stylesheets=True, score_template=templatetools.GroupedRhythmicStavesScoreTemplate( staff_count=1, ), settings=None, tempo=abjad.MetronomeMark((1, 4), 60), permitted_time_signatures=((4, 4),), ) lilypond_file, metadata = segment_maker( segment_metadata=segment_metadata, ) assert format(lilypond_file) == abjad.String.normalize( r''' \version "2.19.65" \language "english" #(ly:set-option 'relative-includes #t) \score { \context Score = "Grouped Rhythmic Staves Score" << \tag #'time \context TimeSignatureContext = "Time Signature Context" { { \tempo 4=60 \time 4/4 \mark \markup { \box \pad-around #0.5 \caps A } s1 * 1 } } \context StaffGroup = "Grouped Rhythmic Staves Staff Group" << \context RhythmicStaff = "Staff 1" { \bar "||" \context Voice = "Voice 1" { { % [Voice 1] Measure 1 { \stopStaff \once \override Staff.StaffSymbol.line-positions = #'(0) \startStaff R1 * 1 \stopStaff \startStaff } } } } >> >> } ''') def test_SegmentMaker_rehearsal_mark_02(): segment_maker = consort.SegmentMaker( discard_final_silence=True, desired_duration_in_seconds=4, name='A transitional segment', omit_stylesheets=True, score_template=templatetools.GroupedRhythmicStavesScoreTemplate( staff_count=1, ), settings=None, tempo=abjad.MetronomeMark((1, 4), 60), permitted_time_signatures=((4, 4),), ) lilypond_file, metadata = segment_maker( segment_metadata=segment_metadata, ) assert format(lilypond_file) == abjad.String.normalize( r''' \version "2.19.65" \language "english" #(ly:set-option 'relative-includes #t) \score { \context Score = "Grouped Rhythmic Staves Score" << \tag #'time \context TimeSignatureContext = "Time Signature Context" { { \tempo 4=60 \time 4/4 \mark \markup { \concat { \box \pad-around #0.5 \caps A " " \fontsize #-3 "A transitional segment" } } s1 * 1 } } \context StaffGroup = "Grouped Rhythmic Staves Staff Group" << \context RhythmicStaff = "Staff 1" { \bar "||" \context Voice = "Voice 1" { { % [Voice 1] Measure 1 { \stopStaff \once \override Staff.StaffSymbol.line-positions = #'(0) \startStaff R1 * 1 \stopStaff \startStaff } } } } >> >> } ''') ```
{ "source": "josiah-wolf-oberholtzer/discograph", "score": 2 }
#### File: discograph/discograph/app.py ```python import os import traceback from flask import Flask from flask import g from flask import jsonify from flask import make_response from flask import render_template from flask import request from flask.ext.compress import Compress from flask.ext.mobility import Mobility from werkzeug.contrib.cache import FileSystemCache from werkzeug.contrib.cache import RedisCache from werkzeug.contrib.fixers import ProxyFix from discograph import api from discograph import ui from discograph import exceptions app = Flask(__name__) app.config.from_object('discograph.config.DevelopmentConfiguration') app.config.from_object('discograph.locals') app.fcache = FileSystemCache( app.config['FILE_CACHE_PATH'], default_timeout=app.config['FILE_CACHE_TIMEOUT'], threshold=app.config['FILE_CACHE_THRESHOLD'], ) if not os.path.exists(app.config['FILE_CACHE_PATH']): os.makedirs(app.config['FILE_CACHE_PATH']) app.rcache = RedisCache() app.register_blueprint(api.blueprint, url_prefix='/api') app.register_blueprint(ui.blueprint) app.wsgi_app = ProxyFix(app.wsgi_app) Mobility(app) Compress(app) @app.after_request def inject_rate_limit_headers(response): try: requests, remaining, reset = map(int, g.view_limits) except (AttributeError, ValueError): return response else: h = response.headers h.add('X-RateLimit-Remaining', remaining) h.add('X-RateLimit-Limit', requests) h.add('X-RateLimit-Reset', reset) return response @app.errorhandler(Exception) def handle_error(error): if app.debug: traceback.print_exc() status_code = getattr(error, 'status_code', 400) if request.endpoint.startswith('api'): response = jsonify({ 'success': False, 'status': status_code, 'message': getattr(error, 'message', 'Error') }) else: rendered_template = render_template('error.html', error=error) response = make_response(rendered_template) response.status_code = status_code return response @app.errorhandler(404) def handle_error_404(error): status_code = 404 error = exceptions.APIError( message='Not Found', status_code=status_code, ) rendered_template = render_template('error.html', error=error) response = make_response(rendered_template) response.status_code = status_code return response @app.errorhandler(500) def handle_error_500(error): status_code = 500 error = exceptions.APIError( message='Something Broke', status_code=status_code, ) rendered_template = render_template('error.html', error=error) response = make_response(rendered_template) response.status_code = status_code return response if __name__ == '__main__': app.run(debug=True) ``` #### File: discograph/library/PostgresRelation.py ```python import itertools import peewee import random import multiprocessing import re import traceback from abjad.tools import datastructuretools from discograph.library.PostgresModel import PostgresModel from playhouse import postgres_ext class PostgresRelation(PostgresModel): ### CLASS VARIABLES ### class EntityType(datastructuretools.Enumeration): ARTIST = 1 LABEL = 2 class BootstrapWorker(multiprocessing.Process): corpus = {} def __init__(self, indices): multiprocessing.Process.__init__(self) self.indices = indices def run(self): proc_name = self.name for release_id in self.indices: try: PostgresRelation.bootstrap_pass_one_inner( release_id, self.corpus, annotation=proc_name, ) except: traceback.print_exc() aggregate_roles = ( 'Compiled By', 'Curated By', 'DJ Mix', 'Hosted By', 'Presenter', ) word_pattern = re.compile('\s+') ### PEEWEE FIELDS ### entity_one_type = peewee.IntegerField(index=False) entity_one_id = peewee.IntegerField(index=False) entity_two_type = peewee.IntegerField(index=False) entity_two_id = peewee.IntegerField(index=False) role = peewee.CharField(index=False) releases = postgres_ext.BinaryJSONField(null=True, index=False) ### PEEWEE META ### class Meta: db_table = 'relations' primary_key = peewee.CompositeKey( 'entity_one_type', 'entity_one_id', 'entity_two_type', 'entity_two_id', 'role', ) indexes = ( (( 'entity_one_type', 'entity_one_id', 'entity_two_type', 'entity_two_id', 'role'), True), (( 'entity_two_type', 'entity_two_id', 'entity_one_type', 'entity_one_id', 'role'), True), ) ### PRIVATE METHODS ### @classmethod def _as_artist_credits(cls, companies): artists = [] for company in companies: artist = { 'name': company['name'], 'id': company['id'], 'roles': [{'name': company['entity_type_name']}], } artists.append(artist) return artists ### PUBLIC METHODS ### def as_json(self): data = { 'key': self.link_key, 'role': self.role, 'source': self.json_entity_one_key, 'target': self.json_entity_two_key, } if hasattr(self, 'distance'): data['distance'] = self.distance if hasattr(self, 'pages'): data['pages'] = tuple(sorted(self.pages)) return data @classmethod def bootstrap(cls): cls.drop_table(True) cls.create_table() cls.bootstrap_pass_one() @classmethod def bootstrap_pass_one(cls, pessimistic=False): import discograph indices = discograph.PostgresRelease.get_indices(pessimistic) workers = [cls.BootstrapWorker(_) for _ in indices] for worker in workers: worker.start() for worker in workers: worker.join() for worker in workers: worker.terminate() @classmethod def bootstrap_pass_one_inner(cls, release_id, corpus, annotation=''): import discograph database = cls._meta.database with database.execution_context(with_transaction=False): release_cls = discograph.PostgresRelease query = release_cls.select().where(release_cls.id == release_id) if not query.count(): return document = query.get() relations = cls.from_release(document) print('{} (Pass 1) [{}]\t(id:{})\t[{}] {}'.format( cls.__name__.upper(), annotation, document.id, len(relations), document.title, )) for relation in relations: instance, created = cls.create_or_get( entity_one_type=relation['entity_one_type'], entity_one_id=relation['entity_one_id'], entity_two_type=relation['entity_two_type'], entity_two_id=relation['entity_two_id'], role=relation['role'], ) if created: instance.releases = {} instance.random = random.random() if 'release_id' in relation: release_id = relation['release_id'] year = relation.get('year') if not instance.releases: instance.releases = {} instance.releases[release_id] = year instance.save() @classmethod def from_release(cls, release): import discograph triples = set() artists, labels, is_compilation = cls.get_release_setup(release) triples.update(cls.get_artist_label_relations( artists, labels, is_compilation, )) aggregate_roles = {} if is_compilation: iterator = itertools.product(labels, release.extra_artists) else: iterator = itertools.product(artists, release.extra_artists) for entity_two, credit in iterator: for role in credit['roles']: role = role['name'] if role not in discograph.CreditRole.all_credit_roles: continue elif role in cls.aggregate_roles: if role not in aggregate_roles: aggregate_roles[role] = [] aggregate_credit = (cls.EntityType.ARTIST, credit['id']) aggregate_roles[role].append(aggregate_credit) continue entity_one = (cls.EntityType.ARTIST, credit['id']) triples.add((entity_one, role, entity_two)) if is_compilation: iterator = itertools.product(labels, release.companies) else: iterator = itertools.product(artists, release.companies) for entity_one, company in iterator: role = company['entity_type_name'] if role not in discograph.CreditRole.all_credit_roles: continue entity_two = (cls.EntityType.LABEL, company['id']) triples.add((entity_one, role, entity_two)) all_track_artists = set() for track in release.tracklist: track_artists = set( (cls.EntityType.ARTIST, _['id']) for _ in track.get('artists', ()) ) all_track_artists.update(track_artists) if not track.get('extra_artists'): continue track_artists = track_artists or artists or labels iterator = itertools.product(track_artists, track['extra_artists']) for entity_two, credit in iterator: for role in credit.get('roles', ()): role = role['name'] if role not in discograph.CreditRole.all_credit_roles: continue entity_one = (cls.EntityType.ARTIST, credit['id']) triples.add((entity_one, role, entity_two)) for role, aggregate_artists in aggregate_roles.items(): iterator = itertools.product(all_track_artists, aggregate_artists) for track_artist, aggregate_artist in iterator: entity_one = aggregate_artist entity_two = track_artist triples.add((entity_one, role, entity_two)) triples = sorted(triples) relations = cls.from_triples(triples, release=release) return relations @classmethod def get_artist_label_relations(cls, artists, labels, is_compilation): triples = set() iterator = itertools.product(artists, labels) if is_compilation: role = 'Compiled On' else: role = 'Released On' for artist, label in iterator: triples.add((artist, role, label)) return triples @classmethod def get_random(cls, roles=None): n = random.random() where_clause = (cls.random > n) if roles: where_clause &= (cls.role.in_(roles)) query = cls.select().where(where_clause).order_by( cls.random, cls.role).limit(1) print('Query:', query) while not query.count(): n = random.random() where_clause = (cls.random > n) if roles: where_clause &= (cls.role.in_(roles)) query = cls.select() query = query.where(where_clause) query = query.order_by(cls.random) query = query.limit(1) print('Query:', query) return query.get() @classmethod def get_release_setup(cls, release): is_compilation = False artists = set( (cls.EntityType.ARTIST, _['id']) for _ in release.artists ) labels = set( (cls.EntityType.LABEL, _.get('id')) for _ in release.labels if _.get('id') ) if len(artists) == 1 and release.artists[0]['name'] == 'Various': is_compilation = True artists.clear() for track in release.tracklist: artists.update( (cls.EntityType.ARTIST, _['id']) for _ in track.get('artists', ()) ) #for format_ in release.formats: # for description in format_.get('descriptions', ()): # if description == 'Compilation': # is_compilation = True # break return artists, labels, is_compilation @classmethod def from_triples(cls, triples, release=None): relations = [] for entity_one, role, entity_two in triples: entity_one_type, entity_one_id = entity_one entity_two_type, entity_two_id = entity_two relation = dict( entity_one_id=entity_one_id, entity_one_type=entity_one_type, entity_two_id=entity_two_id, entity_two_type=entity_two_type, role=role, ) if release is not None: relation['release_id'] = release.id if release.release_date is not None: relation['year'] = release.release_date.year relations.append(relation) return relations @classmethod def search( cls, entity_id, entity_type=1, roles=None, year=None, query_only=False, ): where_clause = ( (cls.entity_one_id == entity_id) & (cls.entity_one_type == entity_type) ) where_clause |= ( (cls.entity_two_id == entity_id) & (cls.entity_two_type == entity_type) ) if roles: where_clause &= (cls.role.in_(roles)) if year is not None: year_clause = cls.year.is_null(True) if isinstance(year, int): year_clause |= cls.year == year else: year_clause |= cls.year.between(year[0], year[1]) where_clause &= year_clause query = cls.select().where(where_clause) if query_only: return query return list(query) @classmethod def search_multi(cls, entity_keys, roles=None): assert entity_keys artist_ids, label_ids = [], [] for entity_type, entity_id in entity_keys: if entity_type == 1: artist_ids.append(entity_id) elif entity_type == 2: label_ids.append(entity_id) if artist_ids: artist_where_clause = ( ((cls.entity_one_type == 1) & (cls.entity_one_id.in_(artist_ids))) | ((cls.entity_two_type == 1) & (cls.entity_two_id.in_(artist_ids))) ) if label_ids: label_where_clause = ( ((cls.entity_one_type == 2) & (cls.entity_one_id.in_(label_ids))) | ((cls.entity_two_type == 2) & (cls.entity_two_id.in_(label_ids))) ) if artist_ids and label_ids: where_clause = artist_where_clause | label_where_clause elif artist_ids: where_clause = artist_where_clause elif label_ids: where_clause = label_where_clause if roles: where_clause &= (cls.role.in_(roles)) query = cls.select().where(where_clause) relations = {} for relation in query: relations[relation.link_key] = relation return relations @classmethod def search_bimulti( cls, lh_entities, rh_entities, roles=None, year=None, verbose=True, ): def build_query(lh_type, lh_ids, rh_type, rh_ids): where_clause = cls.entity_one_type == lh_type where_clause &= cls.entity_two_type == rh_type where_clause &= cls.entity_one_id.in_(lh_ids) where_clause &= cls.entity_two_id.in_(rh_ids) if roles: where_clause &= cls.role.in_(roles) if year is not None: year_clause = cls.year.is_null(True) if isinstance(year, int): year_clause |= cls.year == year else: year_clause |= cls.year.between(year[0], year[1]) where_clause &= year_clause query = cls.select().where(where_clause) return query lh_artist_ids = [] lh_label_ids = [] rh_artist_ids = [] rh_label_ids = [] for entity_type, entity_id in lh_entities: if entity_type == 1: lh_artist_ids.append(entity_id) else: lh_label_ids.append(entity_id) for entity_type, entity_id in rh_entities: if entity_type == 1: rh_artist_ids.append(entity_id) else: rh_label_ids.append(entity_id) queries = [] if lh_artist_ids: lh_type, lh_ids = 1, lh_artist_ids if rh_artist_ids: rh_type, rh_ids = 1, rh_artist_ids query = build_query(lh_type, lh_ids, rh_type, rh_ids) queries.append(query) if rh_label_ids: rh_type, rh_ids = 2, rh_label_ids query = build_query(lh_type, lh_ids, rh_type, rh_ids) queries.append(query) if lh_label_ids: lh_type, lh_ids = 2, lh_label_ids if rh_artist_ids: rh_type, rh_ids = 1, rh_artist_ids query = build_query(lh_type, lh_ids, rh_type, rh_ids) queries.append(query) if rh_label_ids: rh_type, rh_ids = 2, rh_label_ids query = build_query(lh_type, lh_ids, rh_type, rh_ids) queries.append(query) relations = [] for query in queries: #print(query) relations.extend(query) relations = { relation.link_key: relation for relation in relations } return relations ### PUBLIC PROPERTIES ### @property def entity_one_key(self): return (self.entity_one_type, self.entity_one_id) @property def entity_two_key(self): return (self.entity_two_type, self.entity_two_id) @property def json_entity_one_key(self): if self.entity_one_type == 1: return 'artist-{}'.format(self.entity_one_id) elif self.entity_one_type == 2: return 'label-{}'.format(self.entity_one_id) raise ValueError(self.entity_one_key) @property def json_entity_two_key(self): if self.entity_two_type == 1: return 'artist-{}'.format(self.entity_two_id) elif self.entity_two_type == 2: return 'label-{}'.format(self.entity_two_id) raise ValueError(self.entity_two_key) @property def link_key(self): source = self.json_entity_one_key target = self.json_entity_two_key role = self.word_pattern.sub('-', self.role).lower() pieces = [ source, role, target, ] return '-'.join(str(_) for _ in pieces) ``` #### File: library/test/test_RelationGrapher.py ```python import discograph import json from abjad import stringtools from playhouse import test_utils class Test(discograph.DiscographTestCase): """ Problematic networks: - 296570: 306 nodes, 13688 links, 5 pages: 149, 4, 4, 4, 158 - 1946151: unbalanced paging - 491160: bifurcated dense alias networks """ json_kwargs = { 'indent': 4, 'separators': (',', ': '), 'sort_keys': True, } @classmethod def setUpClass(cls): cls.setUpTestDB() def test___call___01(self): print(discograph.PostgresEntity._meta.database) artist = discograph.PostgresEntity.get(entity_type=1, name='Seefeel') roles = ['Alias', 'Member Of'] grapher = discograph.RelationGrapher( artist, degree=1, roles=roles, ) network = grapher.__call__() actual = json.dumps(network, **self.json_kwargs) expected = stringtools.normalize(''' { "center": { "key": "artist-152882", "name": "<NAME>" }, "links": [ { "key": "artist-152882-member-of-artist-2561672", "pages": [ 1 ], "role": "Member Of", "source": "artist-152882", "target": "artist-2561672" }, { "key": "artist-152882-member-of-artist-32550", "pages": [ 1 ], "role": "Member Of", "source": "artist-152882", "target": "artist-32550" }, { "key": "artist-32550-alias-artist-2561672", "pages": [ 1 ], "role": "Alias", "source": "artist-32550", "target": "artist-2561672" } ], "nodes": [ { "cluster": 1, "distance": 1, "id": 32550, "key": "artist-32550", "links": [ "artist-152882-member-of-artist-32550", "artist-32550-alias-artist-2561672" ], "missing": 10, "name": "The Time", "pages": [ 1 ], "size": 11, "type": "artist" }, { "distance": 0, "id": 152882, "key": "artist-152882", "links": [ "artist-152882-member-of-artist-2561672", "artist-152882-member-of-artist-32550" ], "missing": 0, "name": "<NAME>", "pages": [ 1 ], "size": 0, "type": "artist" }, { "cluster": 1, "distance": 1, "id": 2561672, "key": "artist-2561672", "links": [ "artist-152882-member-of-artist-2561672", "artist-32550-alias-artist-2561672" ], "missing": 6, "name": "The Original 7ven", "pages": [ 1 ], "size": 7, "type": "artist" } ], "pages": 1 } ''') assert actual == expected def test___call___02(self): artist = discograph.PostgresEntity.get(entity_type=1, name='<NAME>') roles = ['Alias', 'Member Of'] grapher = discograph.RelationGrapher( artist, degree=2, max_nodes=5, roles=roles, ) network = grapher.__call__() actual = json.dumps(network, **self.json_kwargs) expected = stringtools.normalize(''' { "center": { "key": "artist-152882", "name": "<NAME>" }, "links": [ { "key": "artist-100600-member-of-artist-2561672", "pages": [ 1 ], "role": "Member Of", "source": "artist-100600", "target": "artist-2561672" }, { "key": "artist-100600-member-of-artist-32550", "pages": [ 1 ], "role": "Member Of", "source": "artist-100600", "target": "artist-32550" }, { "key": "artist-113965-member-of-artist-2561672", "pages": [ 2 ], "role": "Member Of", "source": "artist-113965", "target": "artist-2561672" }, { "key": "artist-113965-member-of-artist-32550", "pages": [ 2 ], "role": "Member Of", "source": "artist-113965", "target": "artist-32550" }, { "key": "artist-152882-member-of-artist-2561672", "pages": [ 1, 2, 3 ], "role": "Member Of", "source": "artist-152882", "target": "artist-2561672" }, { "key": "artist-152882-member-of-artist-32550", "pages": [ 1, 2, 3 ], "role": "Member Of", "source": "artist-152882", "target": "artist-32550" }, { "key": "artist-23446-member-of-artist-32550", "pages": [ 3 ], "role": "Member Of", "source": "artist-23446", "target": "artist-32550" }, { "key": "artist-241356-member-of-artist-2561672", "pages": [ 3 ], "role": "Member Of", "source": "artist-241356", "target": "artist-2561672" }, { "key": "artist-241356-member-of-artist-32550", "pages": [ 3 ], "role": "Member Of", "source": "artist-241356", "target": "artist-32550" }, { "key": "artist-242702-member-of-artist-32550", "pages": [ 3 ], "role": "Member Of", "source": "artist-242702", "target": "artist-32550" }, { "key": "artist-32550-alias-artist-2561672", "pages": [ 1, 2, 3 ], "role": "Alias", "source": "artist-32550", "target": "artist-2561672" }, { "key": "artist-354129-member-of-artist-2561672", "pages": [ 2 ], "role": "Member Of", "source": "artist-354129", "target": "artist-2561672" }, { "key": "artist-354129-member-of-artist-32550", "pages": [ 2 ], "role": "Member Of", "source": "artist-354129", "target": "artist-32550" }, { "key": "artist-37806-member-of-artist-2561672", "pages": [ 2 ], "role": "Member Of", "source": "artist-37806", "target": "artist-2561672" }, { "key": "artist-37806-member-of-artist-32550", "pages": [ 2 ], "role": "Member Of", "source": "artist-37806", "target": "artist-32550" }, { "key": "artist-409502-member-of-artist-32550", "pages": [ 1 ], "role": "Member Of", "source": "artist-409502", "target": "artist-32550" }, { "key": "artist-453969-member-of-artist-32550", "pages": [ 1 ], "role": "Member Of", "source": "artist-453969", "target": "artist-32550" }, { "key": "artist-55449-member-of-artist-2561672", "pages": [ 1 ], "role": "Member Of", "source": "artist-55449", "target": "artist-2561672" }, { "key": "artist-55449-member-of-artist-32550", "pages": [ 1 ], "role": "Member Of", "source": "artist-55449", "target": "artist-32550" } ], "nodes": [ { "distance": 2, "id": 23446, "key": "artist-23446", "links": [ "artist-23446-member-of-artist-32550" ], "missing": 1, "name": "<NAME>", "pages": [ 3 ], "size": 0, "type": "artist" }, { "cluster": 1, "distance": 1, "id": 32550, "key": "artist-32550", "links": [ "artist-100600-member-of-artist-32550", "artist-113965-member-of-artist-32550", "artist-152882-member-of-artist-32550", "artist-23446-member-of-artist-32550", "artist-241356-member-of-artist-32550", "artist-242702-member-of-artist-32550", "artist-32550-alias-artist-2561672", "artist-354129-member-of-artist-32550", "artist-37806-member-of-artist-32550", "artist-409502-member-of-artist-32550", "artist-453969-member-of-artist-32550", "artist-55449-member-of-artist-32550" ], "missing": 0, "missingByPage": { "1": 6, "2": 7, "3": 7 }, "name": "<NAME>", "pages": [ 1, 2, 3 ], "size": 11, "type": "artist" }, { "distance": 2, "id": 37806, "key": "artist-37806", "links": [ "artist-37806-member-of-artist-2561672", "artist-37806-member-of-artist-32550" ], "missing": 2, "name": "<NAME>", "pages": [ 2 ], "size": 0, "type": "artist" }, { "distance": 2, "id": 55449, "key": "artist-55449", "links": [ "artist-55449-member-of-artist-2561672", "artist-55449-member-of-artist-32550" ], "missing": 3, "name": "<NAME>", "pages": [ 1 ], "size": 0, "type": "artist" }, { "distance": 2, "id": 100600, "key": "artist-100600", "links": [ "artist-100600-member-of-artist-2561672", "artist-100600-member-of-artist-32550" ], "missing": 1, "name": "<NAME>", "pages": [ 1 ], "size": 0, "type": "artist" }, { "distance": 2, "id": 113965, "key": "artist-113965", "links": [ "artist-113965-member-of-artist-2561672", "artist-113965-member-of-artist-32550" ], "missing": 4, "name": "<NAME>", "pages": [ 2 ], "size": 0, "type": "artist" }, { "distance": 0, "id": 152882, "key": "artist-152882", "links": [ "artist-152882-member-of-artist-2561672", "artist-152882-member-of-artist-32550" ], "missing": 0, "name": "<NAME>", "pages": [ 1, 2, 3 ], "size": 0, "type": "artist" }, { "cluster": 2, "distance": 2, "id": 241356, "key": "artist-241356", "links": [ "artist-241356-member-of-artist-2561672", "artist-241356-member-of-artist-32550" ], "missing": 4, "name": "<NAME>", "pages": [ 3 ], "size": 0, "type": "artist" }, { "cluster": 3, "distance": 2, "id": 242702, "key": "artist-242702", "links": [ "artist-242702-member-of-artist-32550" ], "missing": 5, "name": "<NAME>", "pages": [ 3 ], "size": 0, "type": "artist" }, { "distance": 2, "id": 354129, "key": "artist-354129", "links": [ "artist-354129-member-of-artist-2561672", "artist-354129-member-of-artist-32550" ], "missing": 1, "name": "<NAME>", "pages": [ 2 ], "size": 0, "type": "artist" }, { "distance": 2, "id": 409502, "key": "artist-409502", "links": [ "artist-409502-member-of-artist-32550" ], "missing": 1, "name": "<NAME>", "pages": [ 1 ], "size": 0, "type": "artist" }, { "distance": 2, "id": 453969, "key": "artist-453969", "links": [ "artist-453969-member-of-artist-32550" ], "missing": 2, "name": "<NAME>", "pages": [ 1 ], "size": 0, "type": "artist" }, { "cluster": 1, "distance": 1, "id": 2561672, "key": "artist-2561672", "links": [ "artist-100600-member-of-artist-2561672", "artist-113965-member-of-artist-2561672", "artist-152882-member-of-artist-2561672", "artist-241356-member-of-artist-2561672", "artist-32550-alias-artist-2561672", "artist-354129-member-of-artist-2561672", "artist-37806-member-of-artist-2561672", "artist-55449-member-of-artist-2561672" ], "missing": 0, "missingByPage": { "1": 4, "2": 3, "3": 5 }, "name": "The Original 7ven", "pages": [ 1, 2, 3 ], "size": 7, "type": "artist" } ], "pages": 3 } ''') assert actual == expected def test___call___03(self): artist = discograph.PostgresEntity.get(entity_type=1, name='<NAME>') roles = ['Alias', 'Member Of'] grapher = discograph.RelationGrapher( artist, degree=2, link_ratio=2, roles=roles, ) network = grapher.__call__() actual = json.dumps(network, **self.json_kwargs) expected = stringtools.normalize(''' { "center": { "key": "artist-152882", "name": "<NAME>" }, "links": [ { "key": "artist-100600-member-of-artist-2561672", "pages": [ 1 ], "role": "Member Of", "source": "artist-100600", "target": "artist-2561672" }, { "key": "artist-100600-member-of-artist-32550", "pages": [ 1 ], "role": "Member Of", "source": "artist-100600", "target": "artist-32550" }, { "key": "artist-113965-member-of-artist-2561672", "pages": [ 1 ], "role": "Member Of", "source": "artist-113965", "target": "artist-2561672" }, { "key": "artist-113965-member-of-artist-32550", "pages": [ 1 ], "role": "Member Of", "source": "artist-113965", "target": "artist-32550" }, { "key": "artist-152882-member-of-artist-2561672", "pages": [ 1 ], "role": "Member Of", "source": "artist-152882", "target": "artist-2561672" }, { "key": "artist-152882-member-of-artist-32550", "pages": [ 1 ], "role": "Member Of", "source": "artist-152882", "target": "artist-32550" }, { "key": "artist-23446-member-of-artist-32550", "pages": [ 1 ], "role": "Member Of", "source": "artist-23446", "target": "artist-32550" }, { "key": "artist-241356-member-of-artist-2561672", "pages": [ 1 ], "role": "Member Of", "source": "artist-241356", "target": "artist-2561672" }, { "key": "artist-241356-member-of-artist-32550", "pages": [ 1 ], "role": "Member Of", "source": "artist-241356", "target": "artist-32550" }, { "key": "artist-242702-member-of-artist-32550", "pages": [ 1 ], "role": "Member Of", "source": "artist-242702", "target": "artist-32550" }, { "key": "artist-32550-alias-artist-2561672", "pages": [ 1 ], "role": "Alias", "source": "artist-32550", "target": "artist-2561672" }, { "key": "artist-354129-member-of-artist-2561672", "pages": [ 1 ], "role": "Member Of", "source": "artist-354129", "target": "artist-2561672" }, { "key": "artist-354129-member-of-artist-32550", "pages": [ 1 ], "role": "Member Of", "source": "artist-354129", "target": "artist-32550" }, { "key": "artist-37806-member-of-artist-2561672", "pages": [ 1 ], "role": "Member Of", "source": "artist-37806", "target": "artist-2561672" }, { "key": "artist-37806-member-of-artist-32550", "pages": [ 1 ], "role": "Member Of", "source": "artist-37806", "target": "artist-32550" }, { "key": "artist-409502-member-of-artist-32550", "pages": [ 1 ], "role": "Member Of", "source": "artist-409502", "target": "artist-32550" }, { "key": "artist-453969-member-of-artist-32550", "pages": [ 1 ], "role": "Member Of", "source": "artist-453969", "target": "artist-32550" }, { "key": "artist-55449-member-of-artist-2561672", "pages": [ 1 ], "role": "Member Of", "source": "artist-55449", "target": "artist-2561672" }, { "key": "artist-55449-member-of-artist-32550", "pages": [ 1 ], "role": "Member Of", "source": "artist-55449", "target": "artist-32550" } ], "nodes": [ { "distance": 2, "id": 23446, "key": "artist-23446", "links": [ "artist-23446-member-of-artist-32550" ], "missing": 1, "name": "<NAME>", "pages": [ 1 ], "size": 0, "type": "artist" }, { "cluster": 1, "distance": 1, "id": 32550, "key": "artist-32550", "links": [ "artist-100600-member-of-artist-32550", "artist-113965-member-of-artist-32550", "artist-152882-member-of-artist-32550", "artist-23446-member-of-artist-32550", "artist-241356-member-of-artist-32550", "artist-242702-member-of-artist-32550", "artist-32550-alias-artist-2561672", "artist-354129-member-of-artist-32550", "artist-37806-member-of-artist-32550", "artist-409502-member-of-artist-32550", "artist-453969-member-of-artist-32550", "artist-55449-member-of-artist-32550" ], "missing": 0, "name": "<NAME>", "pages": [ 1 ], "size": 11, "type": "artist" }, { "distance": 2, "id": 37806, "key": "artist-37806", "links": [ "artist-37806-member-of-artist-2561672", "artist-37806-member-of-artist-32550" ], "missing": 2, "name": "<NAME>", "pages": [ 1 ], "size": 0, "type": "artist" }, { "distance": 2, "id": 55449, "key": "artist-55449", "links": [ "artist-55449-member-of-artist-2561672", "artist-55449-member-of-artist-32550" ], "missing": 3, "name": "<NAME>", "pages": [ 1 ], "size": 0, "type": "artist" }, { "distance": 2, "id": 100600, "key": "artist-100600", "links": [ "artist-100600-member-of-artist-2561672", "artist-100600-member-of-artist-32550" ], "missing": 1, "name": "<NAME>", "pages": [ 1 ], "size": 0, "type": "artist" }, { "distance": 2, "id": 113965, "key": "artist-113965", "links": [ "artist-113965-member-of-artist-2561672", "artist-113965-member-of-artist-32550" ], "missing": 4, "name": "<NAME>", "pages": [ 1 ], "size": 0, "type": "artist" }, { "distance": 0, "id": 152882, "key": "artist-152882", "links": [ "artist-152882-member-of-artist-2561672", "artist-152882-member-of-artist-32550" ], "missing": 0, "name": "<NAME>", "pages": [ 1 ], "size": 0, "type": "artist" }, { "cluster": 2, "distance": 2, "id": 241356, "key": "artist-241356", "links": [ "artist-241356-member-of-artist-2561672", "artist-241356-member-of-artist-32550" ], "missing": 4, "name": "<NAME>", "pages": [ 1 ], "size": 0, "type": "artist" }, { "cluster": 3, "distance": 2, "id": 242702, "key": "artist-242702", "links": [ "artist-242702-member-of-artist-32550" ], "missing": 5, "name": "<NAME>", "pages": [ 1 ], "size": 0, "type": "artist" }, { "distance": 2, "id": 354129, "key": "artist-354129", "links": [ "artist-354129-member-of-artist-2561672", "artist-354129-member-of-artist-32550" ], "missing": 1, "name": "<NAME>", "pages": [ 1 ], "size": 0, "type": "artist" }, { "distance": 2, "id": 409502, "key": "artist-409502", "links": [ "artist-409502-member-of-artist-32550" ], "missing": 1, "name": "<NAME>", "pages": [ 1 ], "size": 0, "type": "artist" }, { "distance": 2, "id": 453969, "key": "artist-453969", "links": [ "artist-453969-member-of-artist-32550" ], "missing": 2, "name": "<NAME>", "pages": [ 1 ], "size": 0, "type": "artist" }, { "cluster": 1, "distance": 1, "id": 2561672, "key": "artist-2561672", "links": [ "artist-100600-member-of-artist-2561672", "artist-113965-member-of-artist-2561672", "artist-152882-member-of-artist-2561672", "artist-241356-member-of-artist-2561672", "artist-32550-alias-artist-2561672", "artist-354129-member-of-artist-2561672", "artist-37806-member-of-artist-2561672", "artist-55449-member-of-artist-2561672" ], "missing": 0, "name": "The Original 7ven", "pages": [ 1 ], "size": 7, "type": "artist" } ], "pages": 1 } ''') assert actual == expected def test___call___04(self): r'''Missing count takes into account structural roles: members, aliases, groups, sublabels, parent labels, etc. ''' artist = discograph.PostgresEntity.get( entity_type=1, entity_id=1362698, ) roles = ['Alias', 'Member Of'] grapher = discograph.RelationGrapher( artist, degree=12, roles=roles, ) network = grapher.__call__() actual = json.dumps(network, **self.json_kwargs) expected = stringtools.normalize(''' { "center": { "key": "artist-1362698", "name": "Revolution (13)" }, "links": [ { "key": "artist-144943-alias-artist-535046", "pages": [ 1 ], "role": "Alias", "source": "artist-144943", "target": "artist-535046" }, { "key": "artist-144943-member-of-artist-1362698", "pages": [ 1 ], "role": "Member Of", "source": "artist-144943", "target": "artist-1362698" }, { "key": "artist-271585-member-of-artist-1362698", "pages": [ 1 ], "role": "Member Of", "source": "artist-271585", "target": "artist-1362698" } ], "nodes": [ { "cluster": 1, "distance": 1, "id": 144943, "key": "artist-144943", "links": [ "artist-144943-alias-artist-535046", "artist-144943-member-of-artist-1362698" ], "missing": 0, "name": "<NAME>", "pages": [ 1 ], "size": 0, "type": "artist" }, { "distance": 1, "id": 271585, "key": "artist-271585", "links": [ "artist-271585-member-of-artist-1362698" ], "missing": 0, "name": "Neuroti-k", "pages": [ 1 ], "size": 0, "type": "artist" }, { "cluster": 1, "distance": 2, "id": 535046, "key": "artist-535046", "links": [ "artist-144943-alias-artist-535046" ], "missing": 0, "name": "<NAME>", "pages": [ 1 ], "size": 0, "type": "artist" }, { "distance": 0, "id": 1362698, "key": "artist-1362698", "links": [ "artist-144943-member-of-artist-1362698", "artist-271585-member-of-artist-1362698" ], "missing": 0, "name": "Revolution (13)", "pages": [ 1 ], "size": 2, "type": "artist" } ], "pages": 1 } ''') assert actual == expected def test___call___05(self): artist = discograph.PostgresEntity.get( entity_type=2, name='<NAME>', ) roles = ['Recorded At'] grapher = discograph.RelationGrapher( artist, degree=2, roles=roles, ) network = grapher.__call__() # Should not error. ``` #### File: discograph/test/test_ui.py ```python import discograph import unittest class TestCase(unittest.TestCase): def setUp(self): self.app = discograph.app.test_client() def test_index(self): response = self.app.get('/') assert response.status == '200 OK' def test_artist_200(self): response = self.app.get('/artist/32550') assert response.status == '200 OK' def test_label_404(self): response = self.app.get('/label/2') assert response.status == '200 OK' def test_error(self): response = self.app.get('/malformed') assert response.status == '404 NOT FOUND' ```
{ "source": "josiah-wolf-oberholtzer/on-exactitude-in-science", "score": 2 }
#### File: api/maps/cli.py ```python import asyncio import logging from contextlib import ExitStack from pathlib import Path import click from uqbar.io import Profiler from maps import goblin, loader @click.group() @click.pass_context def cli(ctx): ctx.ensure_object(dict) logging.basicConfig( format="%(asctime)s %(name)s %(levelname)-8s %(message)s", datefmt="%Y-%m-%dT%H:%M:%S", ) logging.getLogger("maps").setLevel(logging.INFO) @cli.group() @click.option("-g", "--graph", default="graph") @click.pass_context def schema(ctx, graph): ctx.obj["graph"] = graph @cli.group() @click.option("-g", "--graph", default="graph") @click.pass_context def data(ctx, graph): ctx.obj["graph"] = graph @schema.command("load") @click.pass_context def schema_load(ctx): async def run(): graph_name = ctx.obj["graph"] manager = goblin.GoblinManager() async with manager as goblin_app: await goblin.install_schema(goblin_app, graph_name=graph_name) asyncio.run(run()) @data.command("load") @click.option( "-p", "--path", default="/data", type=click.Path(exists=True, file_okay=False, dir_okay=True), ) @click.option("-l", "--limit", default=None, type=int) @click.option("-w", "--workers", default=8) @click.option("--profile/--no-profile", default=False) @click.pass_context def data_load(ctx, path: str, limit, workers, profile): async def run(): aliases = {"graph": "g", "testgraph": "tg"} manager = goblin.GoblinManager(aliases={"g": aliases[ctx.obj["graph"]]}) with ExitStack() as stack: if profile: stack.enter_context(Profiler()) async with manager as goblin_app: await loader.load( goblin_app, Path(path), consumer_count=workers, limit=limit ) asyncio.run(run()) ``` #### File: api/tests/test_loader.py ```python import asyncio import logging import random from pathlib import Path import pytest from aiogremlin.process.graph_traversal import __ from maps import loader, xml @pytest.fixture async def session(goblin_app): yield await goblin_app.session() @pytest.mark.asyncio @pytest.mark.parametrize("consumer_count", [1, 8]) async def test_loader_run(goblin_app, session, consumer_count, caplog): caplog.set_level(logging.INFO, logger="maps") limit = 50 expected_vertex_counts = { "artist": 50, "company": 50, "master": 50, "release": 50, "track": 246, } expected_edge_counts = { "Alias Of": 5, "Arranged By": 15, "Co-producer": 1, "Copyright (c)": 5, "DJ Mix": 1, "Distributed By": 2, "Includes": 246, "Keyboards": 1, "Manufactured By": 2, "Member Of": 7, "Mixed By": 1, "Performer": 4, "Phonographic Copyright (p)": 5, "Presenter": 1, "Producer": 20, "Recorded By": 4, "Released On": 50, "Released": 34, "Remix": 15, "Strings": 1, "Subsidiary Of": 1, "Written-By": 13, } for attempt in range(2): await loader.load( goblin_app, Path(__file__).parent, consumer_count=consumer_count, limit=limit, ) await asyncio.sleep(2) actual_vertex_counts = await ( session.traversal().V().groupCount().by(__.label()) ).next() actual_edge_counts = await ( session.traversal().E().groupCount().by(__.values("name")) ).next() print(f"Attempt {attempt}") assert actual_vertex_counts == expected_vertex_counts assert actual_edge_counts == expected_edge_counts @pytest.mark.asyncio async def test_load_artist_vertex(session): entity_id = random.randint(0, 1000) xml_artist = xml.Artist(entity_id=entity_id, name="Foo") assert ( await session.g.V().has("artist", "artist_id", entity_id).count().next() ) == 0 await loader.load_artist_vertex(session, xml_artist) values_a = ( await session.g.V().has("artist", "artist_id", entity_id).valueMap().next() ) last_modified_a = values_a.pop("last_modified")[0] random_a = values_a.pop("random")[0] assert values_a == {"artist_id": [entity_id], "name": ["Foo"]} xml_artist.name = "Foo 2" await loader.load_artist_vertex(session, xml_artist) values_b = ( await session.g.V().has("artist", "artist_id", entity_id).valueMap().next() ) last_modified_b = values_b.pop("last_modified")[0] random_b = values_b.pop("random")[0] assert values_b == {"artist_id": [entity_id], "name": ["Foo 2"]} assert random_b != random_a assert last_modified_b > last_modified_a @pytest.mark.asyncio async def test_load_company_vertex(session): entity_id = random.randint(0, 1000) xml_company = xml.Company(entity_id=entity_id, name="Bar") assert ( await session.g.V().has("company", "company_id", entity_id).count().next() ) == 0 await loader.load_company_vertex(session, xml_company) values_a = ( await session.g.V().has("company", "company_id", entity_id).valueMap().next() ) last_modified_a = values_a.pop("last_modified")[0] random_a = values_a.pop("random")[0] assert values_a == {"company_id": [entity_id], "name": ["Bar"]} xml_company.name = "Bar 2" await loader.load_company_vertex(session, xml_company) values_b = ( await session.g.V().has("company", "company_id", entity_id).valueMap().next() ) last_modified_b = values_b.pop("last_modified")[0] random_b = values_b.pop("random")[0] assert values_b == {"company_id": [entity_id], "name": ["Bar 2"]} assert random_b != random_a assert last_modified_b > last_modified_a @pytest.mark.asyncio async def test_load_release_vertex_properties(session): entity_id = random.randint(0, 1000) xml_release = xml.Release( entity_id=entity_id, country="US", formats=['12"', "EP", "33\xe2\x85\x93"], name="Baz", tracks=[ xml.Track(entity_id=f"{entity_id}-A", name="Track A", position="A"), xml.Track(entity_id=f"{entity_id}-B", name="Track B", position="B"), ], ) assert ( await session.g.V().has("release", "release_id", entity_id).count().next() ) == 0 await loader.load_release_vertex_and_edges(session, xml_release, 0) values_a = ( await session.g.V().has("release", "release_id", entity_id).valueMap().next() ) values_aa = ( await session.g.V().has("track", "track_id", f"{entity_id}-A").valueMap().next() ) values_ab = ( await session.g.V().has("track", "track_id", f"{entity_id}-B").valueMap().next() ) last_modified_a = values_a.pop("last_modified")[0] random_a = values_a.pop("random")[0] values_aa.pop("last_modified") values_ab.pop("last_modified") values_aa.pop("random") values_ab.pop("random") assert values_a == { "country": ["US"], "formats": ['12"', "EP", "33\xe2\x85\x93"], "name": ["Baz"], "primacy": [1], "release_id": [entity_id], } assert values_aa == { "country": ["US"], "formats": ['12"', "EP", "33\xe2\x85\x93"], "name": ["Track A"], "position": ["A"], "primacy": [1], "track_id": [f"{entity_id}-A"], } assert values_ab == { "country": ["US"], "formats": ['12"', "EP", "33\xe2\x85\x93"], "name": ["Track B"], "position": ["B"], "primacy": [1], "track_id": [f"{entity_id}-B"], } xml_release.name = "Baz 2" xml_release.formats = ["EP", "33⅓", "Vinyl"] await loader.load_release_vertex_and_edges(session, xml_release, 0) values_b = ( await session.g.V().has("release", "release_id", entity_id).valueMap().next() ) values_ba = ( await session.g.V().has("track", "track_id", f"{entity_id}-A").valueMap().next() ) values_bb = ( await session.g.V().has("track", "track_id", f"{entity_id}-B").valueMap().next() ) last_modified_b = values_b.pop("last_modified")[0] random_b = values_b.pop("random")[0] values_ba.pop("last_modified") values_bb.pop("last_modified") values_ba.pop("random") values_bb.pop("random") assert values_b == { "country": ["US"], "formats": ["EP", "Vinyl", "33⅓"], "name": ["<NAME>"], "primacy": [1], "release_id": [entity_id], } assert random_b != random_a assert last_modified_b > last_modified_a assert values_ba == { "country": ["US"], "formats": ["EP", "Vinyl", "33⅓"], "name": ["Track A"], "position": ["A"], "primacy": [1], "track_id": [f"{entity_id}-A"], } assert values_bb == { "country": ["US"], "formats": ["EP", "Vinyl", "33⅓"], "name": ["Track B"], "position": ["B"], "primacy": [1], "track_id": [f"{entity_id}-B"], } ```
{ "source": "josiah-wolf-oberholtzer/supriya", "score": 2 }
#### File: supriya/nonrealtime/bases.py ```python import abc import functools from uqbar.objects import get_repr from supriya.system import SupriyaObject class SessionObject(SupriyaObject): """ A non-realtime session object, analogous to ServerObject. """ ### CLASS VARIABLES ### __documentation_section__ = "Session Internals" __slots__ = () ### INITIALIZER ### @abc.abstractmethod def __init__(self, session): import supriya.nonrealtime prototype = (supriya.nonrealtime.Session, type(None)) assert isinstance(session, prototype) self._session = session ### SPECIAL METHODS ### def __repr__(self): return get_repr(self, multiline=False) ### PUBLIC METHODS ### @staticmethod def require_offset(function): @functools.wraps(function) def wrapper(self, *args, **kwargs): import supriya.nonrealtime if isinstance(self, supriya.nonrealtime.Session): session = self else: session = self.session if "offset" not in kwargs or kwargs["offset"] is None: if not session._active_moments: raise ValueError("No active moment.") offset = session._active_moments[-1].offset kwargs["offset"] = offset if isinstance(self, SessionObject): if not (self.start_offset <= kwargs["offset"] <= self.stop_offset): raise ValueError( "Offset {} must intersect [{}, {}]".format( float(offset), self.start_offset, self.stop_offset ) ) with session.at(kwargs["offset"]): return function(self, *args, **kwargs) return wrapper ### PUBLIC PROPERTIES ### @property def session(self): return self._session ``` #### File: supriya/supriya/querytree.py ```python from collections.abc import Sequence from supriya import ParameterRate from supriya.system import SupriyaValueObject class QueryTreeControl(SupriyaValueObject): ### CLASS VARIABLES ### __slots__ = ("_control_value", "_control_name_or_index") ### INITIALIZER ### def __init__(self, control_name_or_index=None, control_value=None): self._control_value = control_value self._control_name_or_index = control_name_or_index ### SPECIAL METHODS ### def __str__(self): key = self._control_name_or_index value = self._control_value try: value = round(value, 6) except Exception: pass string = "{}: {!s}".format(key, value) return string ### PUBLIC METHODS ### @classmethod def from_control(cls, control): import supriya.realtime control_name = control.name if isinstance(control.value, supriya.realtime.Bus): control_value = str(control.value) else: control_value = float(control.value) return cls(control_value=control_value, control_name_or_index=control_name) ### PUBLIC PROPERTIES ### @property def control_name_or_index(self): return self._control_name_or_index @property def control_value(self): return self._control_value class QueryTreeSynth(SupriyaValueObject, Sequence): ### CLASS VARIABLES ### __slots__ = ("_controls", "_extra", "_name", "_node_id", "_synthdef_name") ### INITIALIZER ### def __init__( self, node_id=None, synthdef_name=None, controls=None, name=None, **extra ): self._controls = controls self._extra = tuple(sorted(extra.items())) self._node_id = node_id self._synthdef_name = synthdef_name self._name = name ### SPECIAL METHODS ### def __format__(self, format_spec): result = self._get_str_format_pieces(unindexed=format_spec == "unindexed") result = "\n".join(result) return result def __getitem__(self, item): return self._controls[item] def __len__(self): return len(self._controls) def __str__(self): result = self._get_str_format_pieces() result = "\n".join(result) return result ### PRIVATE METHODS ### @classmethod def _from_nrt_synth( cls, state, node, include_controls=False, include_timespans=False, id_mapping=None, ): from supriya.nonrealtime import Bus, BusGroup, Synth from supriya.synthdefs import SynthDef assert isinstance(node, Synth) node_id = node.session_id synthdef_name = node.synthdef if isinstance(synthdef_name, SynthDef): synthdef_name = synthdef_name.actual_name controls = [] if include_controls: settings = node._collect_settings( state.offset, persistent=True, id_mapping=id_mapping ) synthdef, synth_kwargs = node.synthdef, node.synth_kwargs for name, parameter in sorted(synthdef.parameters.items()): value = parameter.value if name in synth_kwargs: value = synth_kwargs[name] if name in settings: value = settings[name] if ( parameter.parameter_rate == ParameterRate.SCALAR or parameter.name in ("in_", "out") ): if value in id_mapping: value = id_mapping[value] value = float(value) elif isinstance(value, (Bus, BusGroup)) and value in id_mapping: value = value.get_map_symbol(id_mapping[value]) else: value = float(value) control = QueryTreeControl( control_name_or_index=name, control_value=value ) controls.append(control) extra = {} if include_timespans: extra.update(timespan=[node.start_offset, node.stop_offset]) query_tree_synth = QueryTreeSynth( node_id=node_id, synthdef_name=synthdef_name, controls=controls, **extra ) return query_tree_synth def _get_str_format_pieces(self, unindexed=False): result = [] node_id = self.node_id if unindexed: node_id = "..." string = f"{node_id} {self.synthdef_name}" if self.name: string += f" ({self.name})" if self.extra: string += ( " (" + ", ".join("{}: {}".format(key, value) for key, value in self.extra) + ")" ) result.append(string) if self.controls: control_string = ", ".join(str(control) for control in self.controls) control_string = " " + control_string result.append(control_string) return result ### PUBLIC METHODS ### def annotate(self, annotation_map): return type(self)( node_id=self.node_id, controls=self.controls, synthdef_name=self.synthdef_name, name=annotation_map.get(self.node_id), **dict(self.extra), ) @classmethod def from_response(cls, response): return cls( node_id=response.node_id, controls=[ QueryTreeControl(control_name_or_index=name, control_value=value) for name, value in (response.synthdef_controls.items() or {}) ], synthdef_name=response.synthdef_name, ) @classmethod def from_synth(cls, synth, include_controls=False): import supriya.commands import supriya.realtime import supriya.synthdefs assert isinstance(synth, supriya.realtime.Synth) node_id = synth.node_id synthdef_name = synth.synthdef if isinstance(synthdef_name, supriya.synthdefs.SynthDef): synthdef_name = synthdef_name.actual_name controls = [] if include_controls: for control_name in synth: control = QueryTreeControl.from_control(synth.controls[control_name]) controls.append(control) query_tree_synth = QueryTreeSynth( node_id=node_id, synthdef_name=synthdef_name, controls=tuple(controls) ) return query_tree_synth def to_dict(self): """ Convert QueryTreeSynth to JSON-serializable dictionary. :: >>> query_tree_synth = supriya.querytree.QueryTreeSynth( ... node_id=1001, ... synthdef_name="c1aa521afab5b0c0ce3d744690951649", ... controls=( ... supriya.querytree.QueryTreeControl( ... control_name_or_index="level", control_value=1.0, ... ), ... supriya.querytree.QueryTreeControl( ... control_name_or_index="out", control_value=0.0, ... ), ... ), ... ) :: >>> import json >>> result = query_tree_synth.to_dict() >>> result = json.dumps(result, indent=4, separators=(",", ": "), sort_keys=True,) >>> print(result) { "controls": { "level": 1.0, "out": 0.0 }, "node_id": 1001, "synthdef": "c1aa521afab5b0c0ce3d744690951649" } """ result = { "node_id": self.node_id, "synthdef": self.synthdef_name, "controls": {}, } for control in self.controls: name = control.control_name_or_index result["controls"][name] = control.control_value return result ### PUBLIC PROPERTIES ### @property def controls(self): return self._controls @property def extra(self): return self._extra @property def name(self): return self._name @property def node_id(self): return self._node_id @property def synthdef_name(self): return self._synthdef_name class QueryTreeGroup(SupriyaValueObject, Sequence): ### CLASS VARIABLES ### __slots__ = ("_children", "_extra", "_name", "_node_id") ### INITIALIZER ### def __init__(self, node_id=None, children=None, name=None, **extra): self._children = tuple(children or ()) self._extra = tuple(sorted(extra.items())) self._node_id = node_id self._name = name ### SPECIAL METHODS ### def __format__(self, format_spec): result = self._get_str_format_pieces(unindexed=format_spec == "unindexed") result = "\n".join(result) result = "NODE TREE {}".format(result) return result def __getitem__(self, item): return self._children[item] def __len__(self): return len(self._children) def __str__(self): result = self._get_str_format_pieces() result = "\n".join(result) result = "NODE TREE {}".format(result) return result ### PRIVATE METHODS ### @classmethod def _from_nrt_group( cls, state, node, include_controls=False, include_timespans=False, id_mapping=None, ): import supriya.commands import supriya.nonrealtime assert isinstance(node, supriya.nonrealtime.Group) node_id = node.session_id children = [] for child in state.nodes_to_children.get(node) or (): if isinstance(child, supriya.nonrealtime.Group): child = QueryTreeGroup._from_nrt_group( state, child, include_controls=include_controls, include_timespans=include_timespans, id_mapping=id_mapping, ) elif isinstance(child, supriya.nonrealtime.Synth): child = QueryTreeSynth._from_nrt_synth( state, child, include_controls=include_controls, include_timespans=include_timespans, id_mapping=id_mapping, ) else: raise ValueError(child) children.append(child) children = tuple(children) extra = {} if include_timespans: extra.update(timespan=[node.start_offset, node.stop_offset]) query_tree_group = QueryTreeGroup(node_id=node_id, children=children, **extra) return query_tree_group def _get_str_format_pieces(self, unindexed=False): result = [] node_id = self.node_id if unindexed: node_id = "..." string = f"{node_id} group" if self.name: string += f" ({self.name})" if self.extra: string += ( " (" + ", ".join("{}: {}".format(key, value) for key, value in self.extra) + ")" ) result.append(string) for child in self.children: for line in child._get_str_format_pieces(unindexed=unindexed): result.append(" {}".format(line)) return result ### PUBLIC METHODS ### def annotate(self, annotation_map): return type(self)( node_id=self.node_id, children=[child.annotate(annotation_map) for child in self.children], name=annotation_map.get(self.node_id), **dict(self.extra), ) @classmethod def from_group(cls, group, include_controls=False): import supriya.commands import supriya.realtime assert isinstance(group, supriya.realtime.Group) node_id = group.node_id children = [] for child in group.children: if isinstance(child, supriya.realtime.Group): child = QueryTreeGroup.from_group( child, include_controls=include_controls ) elif isinstance(child, supriya.realtime.Synth): child = QueryTreeSynth.from_synth( child, include_controls=include_controls ) else: raise ValueError(child) children.append(child) children = tuple(children) query_tree_group = QueryTreeGroup(node_id=node_id, children=children) return query_tree_group @classmethod def from_response(cls, response): return cls(node_id=response.node_id) @classmethod def from_state(cls, state, include_controls=False, include_timespans=False): id_mapping = state.session._build_id_mapping() root_node = state.session.root_node query_tree_group = cls._from_nrt_group( state, root_node, include_controls=include_controls, include_timespans=include_timespans, id_mapping=id_mapping, ) return query_tree_group def to_dict(self): """ Convert QueryTreeGroup to JSON-serializable dictionary. :: >>> query_tree_group = supriya.querytree.QueryTreeGroup( ... node_id=1002, ... children=( ... supriya.querytree.QueryTreeSynth( ... node_id=1105, ... synthdef_name="dca557070c6b57164557041ac746fb3f", ... controls=( ... supriya.querytree.QueryTreeControl( ... control_name_or_index="damping", ... control_value=0.06623425334692, ... ), ... supriya.querytree.QueryTreeControl( ... control_name_or_index="duration", ... control_value=3.652155876159668, ... ), ... supriya.querytree.QueryTreeControl( ... control_name_or_index="level", ... control_value=0.894767701625824, ... ), ... supriya.querytree.QueryTreeControl( ... control_name_or_index="out", control_value=16.0, ... ), ... supriya.querytree.QueryTreeControl( ... control_name_or_index="room_size", ... control_value=0.918643176555634, ... ), ... ), ... ), ... supriya.querytree.QueryTreeSynth( ... node_id=1098, ... synthdef_name="cc754c63533fdcf412a44ef6adb1a8f0", ... controls=( ... supriya.querytree.QueryTreeControl( ... control_name_or_index="duration", ... control_value=5.701356887817383, ... ), ... supriya.querytree.QueryTreeControl( ... control_name_or_index="level", ... control_value=0.959683060646057, ... ), ... supriya.querytree.QueryTreeControl( ... control_name_or_index="out", control_value=16.0, ... ), ... supriya.querytree.QueryTreeControl( ... control_name_or_index="pitch_dispersion", ... control_value=0.040342573076487, ... ), ... supriya.querytree.QueryTreeControl( ... control_name_or_index="pitch_shift", ... control_value=10.517594337463379, ... ), ... supriya.querytree.QueryTreeControl( ... control_name_or_index="time_dispersion", ... control_value=0.666014134883881, ... ), ... supriya.querytree.QueryTreeControl( ... control_name_or_index="window_size", ... control_value=1.014111995697021, ... ), ... ), ... ), ... ), ... ) :: >>> import json >>> result = query_tree_group.to_dict() >>> result = json.dumps(result, indent=4, separators=(",", ": "), sort_keys=True,) >>> print(result) { "children": [ { "controls": { "damping": 0.06623425334692, "duration": 3.652155876159668, "level": 0.894767701625824, "out": 16.0, "room_size": 0.918643176555634 }, "node_id": 1105, "synthdef": "dca557070c6b57164557041ac746fb3f" }, { "controls": { "duration": 5.701356887817383, "level": 0.959683060646057, "out": 16.0, "pitch_dispersion": 0.040342573076487, "pitch_shift": 10.517594337463379, "time_dispersion": 0.666014134883881, "window_size": 1.014111995697021 }, "node_id": 1098, "synthdef": "cc754c63533fdcf412a44ef6adb1a8f0" } ], "node_id": 1002 } """ result = { "node_id": self.node_id, "children": [x.to_dict() for x in self.children], } return result ### PUBLIC PROPERTIES ### @property def children(self): return self._children @property def extra(self): return self._extra @property def name(self): return self._name @property def node_id(self): return self._node_id ``` #### File: supriya/realtime/servers.py ```python import asyncio import logging import re import threading from typing import Optional, Set from uqbar.objects import new import supriya.exceptions from supriya.commands import ( # type: ignore FailResponse, GroupNewRequest, GroupQueryTreeRequest, NotifyRequest, QuitRequest, SyncRequest, ) from supriya.enums import CalculationRate, NodeAction from supriya.osc.protocols import ( AsyncOscProtocol, HealthCheck, OscProtocolOffline, ThreadedOscProtocol, ) from supriya.querytree import QueryTreeGroup, QueryTreeSynth from supriya.scsynth import Options, find from .allocators import BlockAllocator, NodeIdAllocator from .buffers import Buffer, BufferGroup from .buses import Bus, BusGroup from .meters import Meters from .nodes import Group, Synth from .protocols import AsyncProcessProtocol, SyncProcessProtocol from .recorder import Recorder try: from .shm import ServerSHM except (ImportError, ModuleNotFoundError): ServerSHM = None logger = logging.getLogger("supriya.server") DEFAULT_IP_ADDRESS = "127.0.0.1" DEFAULT_PORT = 57110 class BaseServer: ### INITIALIZER ### def __init__(self): # address self._ip_address = None self._port = None # process self._client_id = None self._is_owner = False self._is_running = False self._latency = 0.1 self._maximum_logins = None self._options = Options() self._osc_protocol = None self._process_protocol = None self._status = None self._shm = None # allocators self._audio_bus_allocator = None self._buffer_allocator = None self._control_bus_allocator = None self._node_id_allocator = None self._sync_id = 0 # proxy mappings self._synthdefs = {} ### SPECIAL METHODS ### def __repr__(self): if not self.is_running: return f"<{type(self).__name__}: offline>" string = "<{name}: {protocol}://{ip}:{port}, " string += "{inputs}i{outputs}o>" return string.format( name=type(self).__name__, protocol=self.options.protocol, ip=self.ip_address, port=self.port, inputs=self.options.input_bus_channel_count, outputs=self.options.output_bus_channel_count, ) ### PRIVATE METHODS ### def _handle_failed_response(self, message): logger.warning("Fail: {}".format(message)) def _handle_status_reply_response(self, message): from supriya.commands import Response response = Response.from_osc_message(message) self._status = response def _handle_synthdef_removed_response(self, message): from supriya.commands import Response response = Response.from_osc_message(message) synthdef_name = response.synthdef_name self._synthdefs.pop(synthdef_name, None) def _setup_allocators(self): self._audio_bus_allocator = BlockAllocator( heap_maximum=self._options.audio_bus_channel_count, heap_minimum=self._options.first_private_bus_id, ) self._buffer_allocator = BlockAllocator(heap_maximum=self._options.buffer_count) self._control_bus_allocator = BlockAllocator( heap_maximum=self._options.control_bus_channel_count ) self._node_id_allocator = NodeIdAllocator( initial_node_id=self._options.initial_node_id, client_id=self.client_id ) self._sync_id = self.client_id << 26 def _setup_osc_callbacks(self): self._osc_protocol.register( pattern="/d_removed", procedure=self._handle_synthdef_removed_response ) self._osc_protocol.register( pattern="/status.reply", procedure=self._handle_status_reply_response ) self._osc_protocol.register( pattern="/fail", procedure=self._handle_failed_response ) def _setup_shm(self): if ServerSHM is None: return self._shm = ServerSHM(self.port, self.options.control_bus_channel_count) def _teardown_allocators(self): self._audio_bus_allocator = None self._buffer_allocator = None self._control_bus_allocator = None self._node_id_allocator = None self._sync_id = 0 def _teardown_shm(self): self._shm = None ### PUBLIC METHODS ### def send(self, message): if not message: raise ValueError if not self.is_running: raise supriya.exceptions.ServerOffline self._osc_protocol.send(message) return self ### PUBLIC PROPERTIES ### @property def audio_bus_allocator(self): return self._audio_bus_allocator @property def buffer_allocator(self): return self._buffer_allocator @property def client_id(self): return self._client_id @property def control_bus_allocator(self): return self._control_bus_allocator @property def ip_address(self): return self._ip_address @property def is_owner(self): return self._is_owner @property def is_running(self): return self._is_running @property def latency(self): return self._latency @latency.setter def latency(self, latency): self._latency = float(latency) @property def maximum_logins(self): return self._maximum_logins @property def next_sync_id(self): sync_id = self._sync_id self._sync_id += 1 return sync_id @property def node_id_allocator(self): return self._node_id_allocator @property def osc_protocol(self): return self._osc_protocol @property def options(self): return self._options @property def port(self): return self._port @property def process_protocol(self): return self._process_protocol @property def status(self): return self._status class AsyncServer(BaseServer): ### CLASS VARIABLES ### _servers: Set["AsyncServer"] = set() ### INTIALIZER ### def __init__(self): BaseServer.__init__(self) self._boot_future = None self._quit_future = None ### SPECIAL METHODS ### def __contains__(self, expr): if isinstance(expr, supriya.synthdefs.SynthDef): name = expr.actual_name if name in self._synthdefs and self._synthdefs[name] == expr: return True return False ### PRIVATE METHODS ### async def _connect(self): self._osc_protocol = AsyncOscProtocol() await self._osc_protocol.connect( ip_address=self._ip_address, port=self._port, healthcheck=HealthCheck( request_pattern=["/status"], response_pattern=["/status.reply"], callback=self._shutdown, max_attempts=5, timeout=1.0, backoff_factor=1.5, ), ) self._is_running = True self._setup_osc_callbacks() await self._setup_notifications() self._setup_allocators() if self.client_id == 0: await self._setup_default_groups() await self._setup_system_synthdefs() self.boot_future.set_result(True) self._servers.add(self) async def _disconnect(self): self._is_running = False self._is_owner = False self._client_id = None self._maximum_logins = None self._teardown_shm() await self._osc_protocol.disconnect() await self._osc_protocol.exit_future self._teardown_allocators() if self in self._servers: self._servers.remove(self) self.quit_future.set_result(True) if not self.boot_future.done(): self.boot_future.set_result(False) async def _setup_default_groups(self): request = GroupNewRequest( items=[ GroupNewRequest.Item(1, i, 0) for i in range(1, self.maximum_logins + 1) ] ) self.send(request.to_osc()) async def _setup_notifications(self): request = NotifyRequest(True) response = await request.communicate_async(server=self) if isinstance(response, FailResponse): await self._shutdown() raise supriya.exceptions.TooManyClients self._client_id, self._maximum_logins = response.action[1], response.action[2] async def _setup_system_synthdefs(self): pass async def _shutdown(self): if not self.is_running: return elif self.is_owner: await self.quit() else: await self.disconnect() ### PUBLIC METHODS ### async def boot( self, *, ip_address: str = DEFAULT_IP_ADDRESS, port: int = DEFAULT_PORT, scsynth_path: Optional[str] = None, options: Optional[Options] = None, **kwargs, ) -> "AsyncServer": if self._is_running: raise supriya.exceptions.ServerOnline port = port or DEFAULT_PORT loop = asyncio.get_running_loop() self._boot_future = loop.create_future() self._quit_future = loop.create_future() self._options = new(options or Options(), **kwargs) scsynth_path = find(scsynth_path) self._process_protocol = AsyncProcessProtocol() await self._process_protocol.boot(self._options, scsynth_path, port) if not await self._process_protocol.boot_future: self._boot_future.set_result(False) self._quit_future.set_result(True) raise supriya.exceptions.ServerCannotBoot self._ip_address = ip_address self._is_owner = True self._port = port await self._connect() return self async def connect( self, *, ip_address: str = DEFAULT_IP_ADDRESS, port: int = DEFAULT_PORT ) -> "AsyncServer": if self._is_running: raise supriya.exceptions.ServerOnline loop = asyncio.get_running_loop() self._boot_future = loop.create_future() self._quit_future = loop.create_future() self._ip_address = ip_address self._is_owner = False self._port = port await self._connect() return self async def disconnect(self) -> "AsyncServer": if not self._is_running: raise supriya.exceptions.ServerOffline if self._is_owner: raise supriya.exceptions.OwnedServerShutdown( "Cannot disconnect from owned server." ) await self._disconnect() return self async def query(self, include_controls=True) -> QueryTreeGroup: request = GroupQueryTreeRequest(node_id=0, include_controls=include_controls) response = await request.communicate_async(server=self) return response.query_tree_group async def quit(self, force: bool = False) -> "AsyncServer": if not self._is_running: return self if not self._is_owner and not force: raise supriya.exceptions.UnownedServerShutdown( "Cannot quit unowned server without force flag." ) try: await QuitRequest().communicate_async(server=self, sync=True, timeout=1) except (OscProtocolOffline, asyncio.TimeoutError): pass if self._process_protocol is not None: self._process_protocol.quit() await self._disconnect() return self ### PUBLIC PROPERTIES ### @property def boot_future(self): return self._boot_future @property def default_group(self): return self.client_id + 1 @property def quit_future(self): return self._quit_future class Server(BaseServer): """ An scsynth server proxy. :: >>> import supriya.realtime >>> server = supriya.realtime.Server.default() >>> server.boot() <Server: udp://127.0.0.1:57110, 8i8o> :: >>> server.quit() <Server: offline> """ ### CLASS VARIABLES ### _default_server = None _servers: Set["Server"] = set() ### INITIALIZER ### def __init__(self): BaseServer.__init__(self) self._lock = threading.RLock() # proxies self._audio_input_bus_group = None self._audio_output_bus_group = None self._default_group = None self._root_node = None self._meters = Meters(self) self._recorder = Recorder(self) # proxy mappings self._audio_buses = {} self._buffer_proxies = {} self._buffers = {} self._control_bus_proxies = {} self._control_buses = {} self._nodes = {} self._pending_synths = {} ### SPECIAL METHODS ### def __contains__(self, expr): import supriya.realtime import supriya.synthdefs if isinstance(expr, supriya.realtime.Node): if expr.server is not self: return False node_id = expr.node_id if node_id in self._nodes and self._nodes[node_id] is expr: return True elif isinstance(expr, supriya.synthdefs.SynthDef): name = expr.actual_name if name in self._synthdefs and self._synthdefs[name] == expr: return True elif isinstance(expr, supriya.realtime.ServerObject): return expr.server is self return False def __getitem__(self, item): """ Get ``item`` from server. :: >>> server = supriya.Server.default().boot() >>> supriya.Synth(name="foo").allocate() <+ Synth: 1000 default (foo)> :: >>> server[1000] <+ Synth: 1000 default (foo)> :: >>> server["foo"] <+ Synth: 1000 default (foo)> :: >>> server["b10"] <+ Buffer: 10> :: >>> server["a0"] <+ Bus: 0 (audio)> :: >>> server["c16"] <+ Bus: 16 (control)> :: >>> server = server.quit() >>> server["c16"] Traceback (most recent call last): ... supriya.exceptions.ServerOffline """ import supriya if not self.is_running: raise supriya.exceptions.ServerOffline if isinstance(item, str): match = re.match(r"b(?P<id>\d+)", item) if match: id_ = int(match.groupdict()["id"]) return supriya.realtime.Buffer(id_).allocate(server=self) match = re.match(r"c(?P<id>\d+)", item) if match: id_ = int(match.groupdict()["id"]) return supriya.realtime.Bus(id_, "control").allocate(server=self) match = re.match(r"a(?P<id>\d+)", item) if match: id_ = int(match.groupdict()["id"]) return supriya.realtime.Bus(id_, "audio").allocate(server=self) result = self.root_node[item] elif isinstance(item, int): result = self._nodes.get(item) else: raise ValueError(item) if isinstance(result, set) and len(result) == 1: return tuple(result)[0] return result def __graph__(self): """ Graph server. :: >>> import supriya >>> server = supriya.Server.default().boot() >>> group = supriya.Group( ... [supriya.Synth(), supriya.Group([supriya.Synth(), supriya.Synth(),]),] ... ).allocate() :: >>> graph = server.__graph__() >>> print(format(graph, "graphviz")) digraph G { graph [bgcolor=transparent, color=lightslategrey, dpi=72, fontname=Arial, outputorder=edgesfirst, overlap=prism, penwidth=2, rankdir=TB, ranksep=0.5, splines=spline, style="dotted, rounded"]; node [fontname=Arial, fontsize=12, penwidth=2, shape=Mrecord, style="filled, rounded"]; edge [penwidth=2]; "root-node-0" [fillcolor=lightsalmon2, label="{ <f_0_0> RootNode | <f_0_1> id: 0 }"]; "group-1" [fillcolor=lightsteelblue2, label="{ <f_0_0> Group | <f_0_1> id: 1 }"]; "group-1000" [fillcolor=lightsteelblue2, label="{ <f_0_0> Group | <f_0_1> id: 1000 }"]; "synth-1001" [fillcolor=lightgoldenrod2, label="{ <f_0_0> Synth | <f_0_1> id: 1001 }"]; "group-1002" [fillcolor=lightsteelblue2, label="{ <f_0_0> Group | <f_0_1> id: 1002 }"]; "synth-1003" [fillcolor=lightgoldenrod2, label="{ <f_0_0> Synth | <f_0_1> id: 1003 }"]; "synth-1004" [fillcolor=lightgoldenrod2, label="{ <f_0_0> Synth | <f_0_1> id: 1004 }"]; "root-node-0" -> "group-1"; "group-1" -> "group-1000"; "group-1000" -> "synth-1001"; "group-1000" -> "group-1002"; "group-1002" -> "synth-1003"; "group-1002" -> "synth-1004"; } :: >>> supriya.graph(server) # doctest: +SKIP """ return self.root_node.__graph__() ### PRIVATE METHODS ### def _as_node_target(self): return self.default_group def _connect(self): self._osc_protocol = ThreadedOscProtocol() self._osc_protocol.connect( ip_address=self.ip_address, port=self.port, healthcheck=HealthCheck( request_pattern=["/status"], response_pattern=["/status.reply"], callback=self._shutdown, max_attempts=5, timeout=1.0, backoff_factor=1.5, ), ) self._is_running = True self._setup_osc_callbacks() self._setup_notifications() self._setup_allocators() self._setup_proxies() if self.client_id == 0: self._setup_default_groups() self._setup_system_synthdefs() self._servers.add(self) def _disconnect(self): logger.info("disconnecting") self._is_running = False self._is_owner = False self._client_id = None self._maximum_logins = None self._teardown_shm() self._osc_protocol.disconnect() self._teardown_proxies() self._teardown_allocators() if self in self._servers: self._servers.remove(self) logger.info("disconnected") def _get_buffer_proxy(self, buffer_id): import supriya.realtime buffer_proxy = self._buffer_proxies.get(buffer_id) if not buffer_proxy: buffer_proxy = supriya.realtime.BufferProxy( buffer_id=buffer_id, server=self ) self._buffer_proxies[buffer_id] = buffer_proxy return buffer_proxy def _get_control_bus_proxy(self, bus_id): import supriya.realtime import supriya.synthdefs control_bus_proxy = self._control_bus_proxies.get(bus_id) if not control_bus_proxy: control_bus_proxy = supriya.realtime.BusProxy( bus_id=bus_id, calculation_rate=supriya.CalculationRate.CONTROL, server=self, ) self._control_bus_proxies[bus_id] = control_bus_proxy return control_bus_proxy def _handle_buffer_info_response(self, message): from supriya.commands import Response response = Response.from_osc_message(message) for item in response.items: buffer_proxy = self._get_buffer_proxy(item.buffer_id) if buffer_proxy: buffer_proxy._handle_response(item) def _handle_control_bus_set_response(self, message): from supriya.commands import Response response = Response.from_osc_message(message) for item in response: bus_id = item.bus_id bus_proxy = self._get_control_bus_proxy(bus_id) bus_proxy._value = item.bus_value def _handle_control_bus_setn_response(self, message): from supriya.commands import Response response = Response.from_osc_message(message) for item in response: starting_bus_id = item.starting_bus_id for i, value in enumerate(item.bus_values): bus_id = starting_bus_id + i bus_proxy = self._get_control_bus_proxy(bus_id) bus_proxy._value = value def _handle_node_info_response(self, message): from supriya.commands import Response from supriya.realtime import Group, Synth response = Response.from_osc_message(message) with self._lock: node_id = response.node_id node = self._nodes.get(node_id) if node is not None: node._handle_response(response) elif response.action == NodeAction.NODE_CREATED: if response.is_group: node = Group() else: node = self._pending_synths.pop(node_id, Synth()) node._register_with_local_server(server=self, node_id=response.node_id) parent = self._nodes[response.parent_id] node._set_parent(parent) if response.previous_node_id: previous_child = self._nodes[response.previous_node_id] index = parent.index(previous_child) parent._children.insert(index + 1, node) else: parent._children.append(node) def _handle_synthdef_removed_response(self, message): from supriya.commands import Response response = Response.from_osc_message(message) synthdef_name = response.synthdef_name self._synthdefs.pop(synthdef_name, None) def _rehydrate(self): from supriya.realtime import Group, Synth def recurse(query_tree_node, node): for query_tree_child in query_tree_node.children: if isinstance(query_tree_child, QueryTreeGroup): group = Group() group._register_with_local_server( node_id=query_tree_child.node_id, server=self ) node._children.append(group) recurse(query_tree_child, group) elif isinstance(query_tree_child, QueryTreeSynth): synth = Synth() synth._register_with_local_server( node_id=query_tree_child.node_id, server=self ) node._children.append(synth) for query_tree_control in query_tree_child.children: pass recurse(self.query(), self.root_node) def _setup_notifications(self): request = NotifyRequest(True) response = request.communicate(server=self) if isinstance(response, FailResponse): self._shutdown() raise supriya.exceptions.TooManyClients if len(response.action) == 2: # supernova doesn't provide a max logins value self._client_id, self._maximum_logins = response.action[1], 1 else: self._client_id, self._maximum_logins = response.action[1:3] def _setup_default_groups(self): default_groups = [ supriya.Group(node_id_is_permanent=True) for _ in range(self.maximum_logins) ] self.root_node.extend(default_groups) self._default_group = default_groups[self.client_id] def _setup_proxies(self): import supriya.realtime self._audio_input_bus_group = supriya.realtime.AudioInputBusGroup(self) self._audio_output_bus_group = supriya.realtime.AudioOutputBusGroup(self) self._root_node = supriya.realtime.RootNode(server=self) self._nodes[0] = self._root_node def _setup_osc_callbacks(self): super()._setup_osc_callbacks() self._osc_protocol.register( pattern="/b_info", procedure=self._handle_buffer_info_response ) self._osc_protocol.register( pattern="/c_set", procedure=self._handle_control_bus_set_response ) self._osc_protocol.register( pattern="/c_setn", procedure=self._handle_control_bus_setn_response ) for pattern in ( "/n_end", "/n_go", "/n_info", "/n_move", "/n_off", "/n_on", "/n_set", "/n_setn", ): self._osc_protocol.register( pattern=pattern, procedure=self._handle_node_info_response ) def _setup_system_synthdefs(self, local_only=False): import supriya.assets.synthdefs import supriya.synthdefs system_synthdefs = [] for name in dir(supriya.assets.synthdefs): if not name.startswith("system_"): continue system_synthdef = getattr(supriya.assets.synthdefs, name) if not isinstance(system_synthdef, supriya.synthdefs.SynthDef): continue system_synthdefs.append(system_synthdef) if local_only: for synthdef in system_synthdefs: synthdef._register_with_local_server(self) else: supriya.synthdefs.SynthDef._allocate_synthdefs(system_synthdefs, self) def _teardown_proxies(self): for set_ in tuple(self._audio_buses.values()): for x in tuple(set_): x.free() for set_ in tuple(self._control_buses.values()): for x in tuple(set_): x.free() for set_ in tuple(self._buffers.values()): for x in tuple(set_): x.free() for x in tuple(self._nodes.values()): x.free() self._audio_buses.clear() self._audio_input_bus_group = None self._audio_output_bus_group = None self._buffers.clear() self._buffer_proxies.clear() self._control_buses.clear() self._control_bus_proxies.clear() self._default_group = None self._nodes.clear() self._root_node = None self._synthdefs.clear() def _shutdown(self): if not self.is_running: return logger.info("shutting down") if self.is_owner: self.quit() else: self.disconnect() ### PUBLIC METHODS ### def add_buffer( self, channel_count: int = None, frame_count: int = None, starting_frame: int = None, file_path: str = None, ) -> Buffer: """ Add a buffer. :: >>> server = supriya.Server().boot() >>> server.add_buffer(channel_count=2, frame_count=1024) <+ Buffer: 0> """ buffer_ = Buffer() if file_path: channel_indices = None if channel_count: channel_indices = tuple(range(channel_count)) buffer_.allocate_from_file( file_path, channel_indices=channel_indices, frame_count=frame_count, server=self, starting_frame=starting_frame, ) else: buffer_.allocate( channel_count=channel_count, frame_count=frame_count, server=self ) return buffer_ def add_buffer_group( self, buffer_count: int = 1, channel_count: int = None, frame_count: int = None ) -> BufferGroup: """ Add a buffer group. :: >>> server = supriya.Server().boot() >>> server.add_buffer_group(buffer_count=8, channel_count=1, frame_count=1024) <+ BufferGroup{8}: 0> """ buffer_group = BufferGroup(buffer_count) buffer_group.allocate( channel_count=channel_count, frame_count=frame_count, server=self ) return buffer_group def add_bus(self, calculation_rate: int = CalculationRate.CONTROL) -> Bus: """ Add a bus. :: >>> server = supriya.Server().boot() >>> server.add_bus() <+ Bus: 0 (control)> """ bus = Bus(calculation_rate=calculation_rate) bus.allocate(server=self) return bus def add_bus_group( self, bus_count: int = 1, calculation_rate: int = CalculationRate.CONTROL ) -> BusGroup: """ Add a bus group. :: >>> server = supriya.Server().boot() >>> server.add_bus_group(4, "audio") <+ BusGroup{4}: 16 (audio)> """ bus_group = BusGroup(bus_count=bus_count, calculation_rate=calculation_rate) bus_group.allocate(server=self) return bus_group def add_group(self, add_action: int = None) -> Group: """ Add a group relative to the default group via ``add_action``. :: >>> server = supriya.Server().boot() >>> print(server.query()) NODE TREE 0 group 1 group :: >>> group = server.add_group() >>> print(server.query()) NODE TREE 0 group 1 group 1000 group """ return self.default_group.add_group(add_action=add_action) def add_synth(self, synthdef=None, add_action: int = None, **kwargs) -> Synth: """ Add a synth relative to the default group via ``add_action``. :: >>> server = supriya.Server().boot() >>> print(server.query()) NODE TREE 0 group 1 group :: >>> synth = server.add_synth() >>> print(server.query()) NODE TREE 0 group 1 group 1000 default out: 0.0, amplitude: 0.1, frequency: 440.0, gate: 1.0, pan: 0.5 """ return self.default_group.add_synth( synthdef=synthdef, add_action=add_action, **kwargs ) def add_synthdef(self, synthdef) -> "Server": synthdef.allocate(server=self) return self def boot( self, *, ip_address: str = DEFAULT_IP_ADDRESS, port: int = DEFAULT_PORT, scsynth_path: Optional[str] = None, options: Optional[Options] = None, **kwargs, ): if self.is_running: raise supriya.exceptions.ServerOnline port = port or DEFAULT_PORT self._options = new(options or Options(), **kwargs) scsynth_path = find(scsynth_path) self._process_protocol = SyncProcessProtocol() self._process_protocol.boot(self._options, scsynth_path, port) self._ip_address = ip_address self._is_owner = True self._port = port self._connect() return self def connect( self, *, ip_address: str = DEFAULT_IP_ADDRESS, port: int = DEFAULT_PORT ) -> "Server": if self.is_running: raise supriya.exceptions.ServerOnline self._ip_address = ip_address self._is_owner = False self._port = port self._connect() if self.client_id > 0: self._setup_system_synthdefs(local_only=True) self._rehydrate() self._default_group = self._nodes[self.client_id + 1] return self def disconnect(self) -> "Server": if not self.is_running: raise supriya.exceptions.ServerOffline if self._is_owner: raise supriya.exceptions.OwnedServerShutdown( "Cannot disconnect from owned server." ) self._disconnect() return self def quit(self, force: bool = False) -> "Server": if not self.is_running: return self if not self._is_owner and not force: raise supriya.exceptions.UnownedServerShutdown( "Cannot quit unowned server without force flag." ) if self.recorder.is_recording: self.recorder.stop() try: QuitRequest().communicate(server=self) except OscProtocolOffline: pass if self._process_protocol is not None: self._process_protocol.quit() self._disconnect() return self @classmethod def default(cls) -> "Server": if cls._default_server is None: cls._default_server = Server() return cls._default_server def query(self, include_controls=True) -> QueryTreeGroup: request = GroupQueryTreeRequest(node_id=0, include_controls=include_controls) response = request.communicate(server=self) return response.query_tree_group def reboot(self, options: Optional[Options] = None, **kwargs) -> "Server": self.quit() self.boot(options=options, **kwargs) return self def reset(self) -> "Server": self.send(["/d_freeAll"]) self.send(["/g_freeAll", 0]) self.send(["/clearSched"]) self.sync() self._teardown_proxies() self._teardown_allocators() self._setup_allocators() self._setup_proxies() self._setup_default_groups() self._setup_system_synthdefs() self.sync() return self def sync(self, sync_id: Optional[int] = None) -> "Server": if not self.is_running: return self if sync_id is None: sync_id = self.next_sync_id request = SyncRequest(sync_id=sync_id) request.communicate(server=self) return self ### PUBLIC PROPERTIES ### @property def audio_input_bus_group(self): return self._audio_input_bus_group @property def audio_output_bus_group(self): return self._audio_output_bus_group @property def default_group(self): return self._default_group @property def meters(self): return self._meters @property def recorder(self): return self._recorder @property def root_node(self): return self._root_node ``` #### File: tests/patterns/test_ChainPattern.py ```python import pytest from supriya.patterns import ChainPattern, EventPattern, NoteEvent, SequencePattern from supriya.patterns.testutils import MockUUID as M from supriya.patterns.testutils import run_pattern_test @pytest.mark.parametrize( "stop_at, input_a, input_b1, input_b2, input_c, expected, is_infinite", [ ( None, SequencePattern([1, 2, 3]), SequencePattern([4, 5]), SequencePattern([7, 8, 9]), SequencePattern([10, 11]), [NoteEvent(M("A"), a=1, b=7, c=10), NoteEvent(M("B"), a=2, b=8, c=11)], False, ), ( None, SequencePattern([1, 2, 3], None), SequencePattern([4, 5], None), SequencePattern([7, 8, 9]), SequencePattern([10, 11]), [NoteEvent(M("A"), a=1, b=7, c=10), NoteEvent(M("B"), a=2, b=8, c=11)], False, ), ( None, SequencePattern([1, 2, 3], None), SequencePattern([4, 5], None), SequencePattern([7, 8, 9], None), SequencePattern([10, 11], None), [ NoteEvent(M("A"), a=1, b=7, c=10), NoteEvent(M("B"), a=2, b=8, c=11), NoteEvent(M("C"), a=3, b=9, c=10), NoteEvent(M("D"), a=1, b=7, c=11), NoteEvent(M("E"), a=2, b=8, c=10), NoteEvent(M("F"), a=3, b=9, c=11), ], True, ), ], ) def test(stop_at, input_a, input_b1, input_b2, input_c, expected, is_infinite): pattern = ChainPattern( EventPattern(a=input_a, b=input_b1), EventPattern(b=input_b2), EventPattern(c=input_c), ) run_pattern_test(pattern, expected, is_infinite, stop_at) ``` #### File: tests/patterns/test_CompositeEvent.py ```python import uuid import pytest from supriya.patterns.events import CompositeEvent, NodeFreeEvent, NullEvent, Priority id_ = uuid.uuid4() @pytest.mark.parametrize( "event, offset, expected", [ ( CompositeEvent([NullEvent(delta=0.25), NodeFreeEvent(id_, delta=0.0)]), 0.0, [(0.25, Priority.START, NodeFreeEvent(id_))], ), ( CompositeEvent([NullEvent(delta=0.5), NodeFreeEvent(id_, delta=0.0)]), 2.5, [(3.0, Priority.START, NodeFreeEvent(id_))], ), ], ) def test_expand(event, offset, expected): print(event) actual = event.expand(offset) assert actual == expected ``` #### File: tests/patterns/test_EventPattern.py ```python import pytest from supriya.patterns import EventPattern, NoteEvent, SequencePattern from supriya.patterns.testutils import MockUUID as M from supriya.patterns.testutils import run_pattern_test @pytest.mark.parametrize( "stop_at, input_a, input_b, expected, is_infinite", [ ( None, SequencePattern([1, 2, 3], None), SequencePattern([4, 5], None), [ NoteEvent(M("A"), a=1, b=4), NoteEvent(M("B"), a=2, b=5), NoteEvent(M("C"), a=3, b=4), NoteEvent(M("D"), a=1, b=5), NoteEvent(M("E"), a=2, b=4), NoteEvent(M("F"), a=3, b=5), ], True, ), ( None, SequencePattern([1, 2, 3], None), SequencePattern([4, 5], 1), [NoteEvent(M("A"), a=1, b=4), NoteEvent(M("B"), a=2, b=5)], False, ), ( None, SequencePattern([1, 2, 3], None), SequencePattern([4, 5], 2), [ NoteEvent(M("A"), a=1, b=4), NoteEvent(M("B"), a=2, b=5), NoteEvent(M("C"), a=3, b=4), NoteEvent(M("D"), a=1, b=5), ], False, ), ( None, SequencePattern([1, 2, 3], 1), SequencePattern([4, 5], 1), [NoteEvent(M("A"), a=1, b=4), NoteEvent(M("B"), a=2, b=5)], False, ), ( None, SequencePattern([1, 2, 3], 1), SequencePattern([4, 5], None), [ NoteEvent(M("A"), a=1, b=4), NoteEvent(M("B"), a=2, b=5), NoteEvent(M("C"), a=3, b=4), ], False, ), ( None, SequencePattern([1, 2, 3], 1), 4, [ NoteEvent(M("A"), a=1, b=4), NoteEvent(M("B"), a=2, b=4), NoteEvent(M("C"), a=3, b=4), ], False, ), ], ) def test(stop_at, input_a, input_b, expected, is_infinite): pattern = EventPattern(a=input_a, b=input_b) run_pattern_test(pattern, expected, is_infinite, stop_at) ``` #### File: tests/patterns/test_Event.py ```python import uuid from supriya.patterns import NoteEvent def test___eq__(): event_one = NoteEvent(uuid.uuid4()) event_two = NoteEvent(uuid.uuid4()) non_event = 23 assert event_one == event_one assert event_two == event_two assert event_one != event_two assert event_one != non_event assert event_two != non_event ``` #### File: tests/patterns/test_RandomPattern.py ```python import pytest from supriya.patterns import RandomPattern @pytest.mark.parametrize( "minimum, maximum, iterations, is_infinite", [ (0.0, 1.0, None, True), (0.0, 1.0, 1, False), (0.45, 0.55, None, True), (0.0, (1.0, 2.0), None, True), ], ) def test(minimum, maximum, iterations, is_infinite): pattern = RandomPattern(minimum=minimum, maximum=maximum, iterations=iterations) assert pattern.distribution == RandomPattern.Distribution.WHITE_NOISE assert pattern.is_infinite == is_infinite assert pattern.iterations == iterations assert pattern.maximum == maximum assert pattern.minimum == minimum iterator = iter(pattern) ceased = True actual = [] for _ in range(1000): try: actual.append(next(iterator)) except StopIteration: break else: ceased = False if is_infinite: assert not ceased else: assert len(actual) == iterations # TODO: Verify minimum / maximum bounds assert len(set(actual)) == len(actual) ``` #### File: tests/patterns/test_SeedPattern.py ```python import pytest from supriya.patterns import ChoicePattern, SeedPattern, SequencePattern from supriya.patterns.testutils import run_pattern_test @pytest.mark.parametrize( "stop_at, pattern, expected, is_infinite", [ (None, SequencePattern([1, 2, 3, 4]), [1, 2, 3, 4], False), (1, SequencePattern([1, 2, 3, 4]), [1], False), ], ) def test(stop_at, pattern, expected, is_infinite): pattern = SeedPattern(pattern) run_pattern_test(pattern, expected, is_infinite, stop_at) def test_random(): pattern = ChoicePattern([1, 2, 3]) assert len(set(tuple(pattern) for _ in range(10))) > 1 pattern = SeedPattern(ChoicePattern([1, 2, 3])) assert len(set(tuple(pattern) for _ in range(10))) == 1 ``` #### File: tests/patterns/test_UnaryOpPattern.py ```python import pytest from supriya.patterns import SequencePattern, UnaryOpPattern from supriya.patterns.testutils import run_pattern_test @pytest.mark.parametrize( "stop_at, operator, input_, expected, is_infinite", [ (None, "-", 1, [-1], True), (None, "-", [1], [(-1,)], True), (None, "-", [[1]], [((-1,),)], True), (None, "-", [[[1]]], [(((-1,),),)], True), (None, "-", [1, 2], [(-1, -2)], True), (None, "-", SequencePattern([1, 2, 3]), [-1, -2, -3], False), (None, "-", SequencePattern([1, 2, 3], None), [-1, -2, -3], True), ], ) def test(stop_at, operator, input_, expected, is_infinite): pattern = UnaryOpPattern(operator, input_) run_pattern_test(pattern, expected, is_infinite, stop_at) ``` #### File: tests/providers/test_RealtimeProvider.py ```python import time import pytest from uqbar.strings import normalize from supriya.assets.synthdefs import default from supriya.enums import AddAction, CalculationRate from supriya.providers import ( BufferProxy, BusGroupProxy, BusProxy, GroupProxy, Provider, ProviderMoment, RealtimeProvider, SynthProxy, ) from supriya.utils import locate def test_RealtimeProvider_init_error(): with pytest.raises(ValueError): RealtimeProvider(23) def test_RealtimeProvider_add_buffer_1(server): provider = Provider.from_context(server) file_path = locate("supriya.assets:audio/pulse_44100sr_16bit_octo.wav") with server.osc_protocol.capture() as transcript: with provider.at(1.2345): proxy = provider.add_buffer(file_path=file_path) time.sleep(0.1) assert isinstance(proxy, BufferProxy) assert [entry.message.to_list() for entry in transcript] == [ [1.3345, [["/b_allocRead", 0, str(file_path), 0, -1]]], ["/done", "/b_allocRead", 0], ] def test_RealtimeProvider_add_bus_1(server): provider = Provider.from_context(server) with provider.at(1.2345): bus_proxy_one = provider.add_bus(calculation_rate="audio") bus_proxy_two = provider.add_bus() assert bus_proxy_one == BusProxy( calculation_rate=CalculationRate.AUDIO, identifier=16, provider=provider ) assert bus_proxy_two == BusProxy( calculation_rate=CalculationRate.CONTROL, identifier=0, provider=provider ) def test_RealtimeProvider_add_bus_error(server): """ Must be control or audio rate. """ provider = Provider.from_context(server) with pytest.raises(ValueError): provider.add_bus() with provider.at(0): with pytest.raises(ValueError): provider.add_bus(calculation_rate="scalar") def test_RealtimeProvider_add_bus_group_1(server): provider = Provider.from_context(server) with server.osc_protocol.capture() as transcript: with provider.at(None): bus_group_proxy_one = provider.add_bus_group(channel_count=2) bus_group_proxy_two = provider.add_bus_group(channel_count=4) assert bus_group_proxy_one == BusGroupProxy( calculation_rate=CalculationRate.CONTROL, channel_count=2, identifier=0, provider=provider, ) assert bus_group_proxy_two == BusGroupProxy( calculation_rate=CalculationRate.CONTROL, channel_count=4, identifier=2, provider=provider, ) assert [entry.message for entry in transcript] == [] def test_RealtimeProvider_add_bus_group_error(server): """ Must be 1 or more channels and control or audio rate. """ provider = Provider.from_context(server) with pytest.raises(ValueError): provider.add_bus_group() with provider.at(0): with pytest.raises(ValueError): provider.add_bus_group(channel_count=0) with pytest.raises(ValueError): provider.add_bus_group(calculation_rate="scalar") def test_RealtimeProvider_add_group_1(server): provider = Provider.from_context(server) seconds = time.time() with server.osc_protocol.capture() as transcript: with provider.at(seconds) as provider_moment: group_proxy = provider.add_group() assert group_proxy == GroupProxy(identifier=1000, provider=provider) assert provider_moment == ProviderMoment( provider=provider, seconds=seconds, bus_settings=[], node_additions=[(group_proxy, AddAction.ADD_TO_HEAD, server.default_group)], node_removals=[], node_reorderings=[], node_settings=[], ) assert [entry.message.to_list() for entry in transcript] == [ [seconds + provider.latency, [["/g_new", 1000, 0, 1]]] ] time.sleep(0.1) assert str(server.query()) == normalize( """ NODE TREE 0 group 1 group 1000 group """ ) def test_RealtimeProvider_add_group_2(server): provider = Provider.from_context(server) seconds = time.time() with server.osc_protocol.capture() as transcript: with provider.at(None): group_proxy_one = provider.add_group() with provider.at(seconds + 0.01) as provider_moment: group_proxy_two = provider.add_group(target_node=group_proxy_one) assert group_proxy_two == GroupProxy(identifier=1001, provider=provider) assert provider_moment == ProviderMoment( provider=provider, seconds=seconds + 0.01, bus_settings=[], node_additions=[(group_proxy_two, AddAction.ADD_TO_HEAD, group_proxy_one)], node_removals=[], node_reorderings=[], node_settings=[], ) assert [entry.message.to_list() for entry in transcript] == [ [None, [["/g_new", 1000, 0, 1]]], [seconds + 0.01 + provider.latency, [["/g_new", 1001, 0, 1000]]], ] time.sleep(0.1) assert str(server.query()) == normalize( """ NODE TREE 0 group 1 group 1000 group 1001 group """ ) def test_RealtimeProvider_add_group_error(server): """ Requires moment. """ provider = Provider.from_context(server) with pytest.raises(ValueError): provider.add_group() def test_RealtimeProvider_add_synth_1(server): provider = Provider.from_context(server) seconds = time.time() with server.osc_protocol.capture() as transcript: with provider.at(seconds) as provider_moment: synth_proxy = provider.add_synth(amplitude=0.3, frequency=333) assert synth_proxy == SynthProxy( identifier=1000, provider=provider, synthdef=default, settings=dict(amplitude=0.3, frequency=333), ) assert provider_moment == ProviderMoment( provider=provider, seconds=seconds, bus_settings=[], node_additions=[(synth_proxy, AddAction.ADD_TO_HEAD, server.default_group)], node_removals=[], node_reorderings=[], node_settings=[], ) assert [entry.message.to_list() for entry in transcript] == [ [ seconds + provider.latency, [["/s_new", "default", 1000, 0, 1, "amplitude", 0.3, "frequency", 333]], ] ] time.sleep(0.1) assert str(server.query()) == normalize( """ NODE TREE 0 group 1 group 1000 default out: 0.0, amplitude: 0.3, frequency: 333.0, gate: 1.0, pan: 0.5 """ ) def test_RealtimeProvider_add_synth_2(server): provider = Provider.from_context(server) seconds = time.time() with server.osc_protocol.capture() as transcript: with provider.at(None): group_proxy = provider.add_group() with provider.at(seconds + 0.01) as provider_moment: synth_proxy = provider.add_synth( target_node=group_proxy, amplitude=0.5, frequency=666 ) assert synth_proxy == SynthProxy( identifier=1001, provider=provider, synthdef=default, settings=dict(amplitude=0.5, frequency=666), ) assert provider_moment == ProviderMoment( provider=provider, seconds=seconds + 0.01, bus_settings=[], node_additions=[(synth_proxy, AddAction.ADD_TO_HEAD, group_proxy)], node_removals=[], node_reorderings=[], node_settings=[], ) assert [entry.message.to_list() for entry in transcript] == [ [None, [["/g_new", 1000, 0, 1]]], [ seconds + 0.01 + provider.latency, [["/s_new", "default", 1001, 0, 1000, "amplitude", 0.5, "frequency", 666]], ], ] time.sleep(0.1) assert str(server.query()) == normalize( """ NODE TREE 0 group 1 group 1000 group 1001 default out: 0.0, amplitude: 0.5, frequency: 666.0, gate: 1.0, pan: 0.5 """ ) def test_RealtimeProvider_add_synth_3(server): provider = Provider.from_context(server) with server.osc_protocol.capture() as transcript: with provider.at(None): audio_bus_proxy = provider.add_bus("audio") control_bus_proxy = provider.add_bus("control") synth_proxy = provider.add_synth( amplitude=control_bus_proxy, out=audio_bus_proxy ) assert synth_proxy == SynthProxy( identifier=1000, provider=provider, synthdef=default, settings=dict(amplitude=control_bus_proxy, out=audio_bus_proxy), ) assert [entry.message.to_list() for entry in transcript] == [ [None, [["/s_new", "default", 1000, 0, 1, "amplitude", "c0", "out", 16.0]]] ] assert str(server.query()) == normalize( """ NODE TREE 0 group 1 group 1000 default out: 16.0, amplitude: c0, frequency: 440.0, gate: 1.0, pan: 0.5 """ ) def test_RealtimeProvider_add_synth_error(server): """ Requires moment. """ provider = Provider.from_context(server) with pytest.raises(ValueError): provider.add_synth() def test_RealtimeProvider_free_buffer(server): provider = Provider.from_context(server) file_path = locate("supriya.assets:audio/pulse_44100sr_16bit_octo.wav") with provider.at(1.2345): proxy = provider.add_buffer(file_path=file_path) time.sleep(0.1) with server.osc_protocol.capture() as transcript: with provider.at(2.3456): proxy.free() assert [entry.message.to_list() for entry in transcript] == [ [2.4456, [["/b_free", 0]]] ] def test_RealtimeProvider_free_bus_1(server): provider = Provider.from_context(server) seconds = time.time() with server.osc_protocol.capture() as transcript: with provider.at(seconds): audio_bus = provider.add_bus(calculation_rate=CalculationRate.AUDIO) control_bus_a = provider.add_bus() control_bus_b = provider.add_bus() control_bus_c = provider.add_bus() with provider.at(seconds + 0.01): audio_bus.free() control_bus_a.free() control_bus_d = provider.add_bus() assert audio_bus.identifier == 16 assert control_bus_a.identifier == 0 assert control_bus_b.identifier == 1 assert control_bus_c.identifier == 2 assert control_bus_d.identifier == 0 assert [entry.message for entry in transcript] == [] def test_RealtimeProvider_free_bus_error(server): provider = Provider.from_context(server) with provider.at(0): bus_proxy = provider.add_bus() with pytest.raises(ValueError): provider.free_bus(bus_proxy) def test_RealtimeProvider_free_bus_group_1(server): provider = Provider.from_context(server) seconds = time.time() with server.osc_protocol.capture() as transcript: with provider.at(seconds): audio_bus_group = provider.add_bus_group( channel_count=2, calculation_rate=CalculationRate.AUDIO ) control_bus_group_a = provider.add_bus_group(channel_count=2) control_bus_group_b = provider.add_bus_group(channel_count=3) control_bus_group_c = provider.add_bus_group(channel_count=2) with provider.at(seconds + 0.01): audio_bus_group.free() control_bus_group_a.free() control_bus_group_d = provider.add_bus_group(channel_count=2) assert audio_bus_group.identifier == 16 assert control_bus_group_a.identifier == 0 assert control_bus_group_b.identifier == 2 assert control_bus_group_c.identifier == 5 assert control_bus_group_d.identifier == 0 assert [entry.message for entry in transcript] == [] def test_RealtimeProvider_free_bus_group_error(server): provider = Provider.from_context(server) with provider.at(0): bus_group_proxy = provider.add_bus_group() with pytest.raises(ValueError): provider.free_bus_group(bus_group_proxy) def test_RealtimeProvider_free_node_error(server): """ Requires moment. """ provider = Provider.from_context(server) with provider.at(0): group_proxy = provider.add_group() with pytest.raises(ValueError): provider.free_node(group_proxy) def test_RealtimeProvider_free_node_1(server): provider = Provider.from_context(server) with server.osc_protocol.capture() as transcript: with provider.at(None): group_proxy = provider.add_group() synth_proxy = provider.add_synth() with provider.at(None): group_proxy.free() synth_proxy.free() assert [entry.message.to_list() for entry in transcript] == [ [None, [["/g_new", 1000, 0, 1], ["/s_new", "default", 1001, 0, 1]]], [None, [["/n_free", 1000], ["/n_set", 1001, "gate", 0]]], ] time.sleep(0.1) assert str(server.query()) == normalize( """ NODE TREE 0 group 1 group 1001 default out: 0.0, amplitude: 0.1, frequency: 440.0, gate: 0.0, pan: 0.5 """ ) def test_RealtimeProvider_move_node_1(server): provider = Provider.from_context(server) seconds = time.time() with server.osc_protocol.capture() as transcript: with provider.at(seconds): group_proxy_one = provider.add_group() group_proxy_two = provider.add_group() provider.move_node(group_proxy_one, AddAction.ADD_TO_TAIL, group_proxy_two) assert [entry.message.to_list() for entry in transcript] == [ [ seconds + provider.latency, [["/g_new", 1000, 0, 1], ["/g_new", 1001, 0, 1], ["/g_tail", 1001, 1000]], ] ] time.sleep(0.1) assert str(server.query()) == normalize( """ NODE TREE 0 group 1 group 1001 group 1000 group """ ) def test_RealtimeProvider_move_node_error(server): """ Requires moment. """ provider = Provider.from_context(server) with provider.at(0): group_proxy_one = provider.add_group() group_proxy_two = provider.add_group() with pytest.raises(ValueError): group_proxy_one.move(AddAction.ADD_TO_HEAD, group_proxy_two) def test_RealtimeProvider_set_bus_1(server): provider = Provider.from_context(server) seconds = time.time() with server.osc_protocol.capture() as transcript: with provider.at(seconds): bus_group_proxy = provider.add_bus_group(channel_count=4) for i, bus_proxy in enumerate(bus_group_proxy): bus_proxy.set_(pow(2, i)) assert [entry.message.to_list() for entry in transcript] == [ [seconds + provider.latency, [["/c_set", 0, 1.0, 1, 2.0, 2, 4.0, 3, 8.0]]] ] def test_RealtimeProvider_set_bus_error(server): provider = Provider.from_context(server) with provider.at(1.2345): audio_bus_proxy = provider.add_bus(calculation_rate=CalculationRate.AUDIO) control_bus_proxy = provider.add_bus() with pytest.raises(ValueError): audio_bus_proxy.set_(0.1234) with pytest.raises(ValueError): control_bus_proxy.set_(0.1234) def test_RealtimeProvider_set_node_1(server): provider = Provider.from_context(server) seconds = time.time() with provider.at(seconds): group_proxy = provider.add_group() with server.osc_protocol.capture() as transcript: with provider.at(seconds + 0.01): group_proxy["foo"] = 23 assert [entry.message.to_list() for entry in transcript] == [ [seconds + 0.01 + provider.latency, [["/n_set", 1000, "foo", 23]]] ] def test_RealtimeProvider_set_node_2(server): provider = Provider.from_context(server) with provider.at(None): synth_proxy = provider.add_synth() time.sleep(0.01) assert str(server.query()) == normalize( """ NODE TREE 0 group 1 group 1000 default out: 0.0, amplitude: 0.1, frequency: 440.0, gate: 1.0, pan: 0.5 """ ) with server.osc_protocol.capture() as transcript: with provider.at(None): synth_proxy["frequency"] = 443 assert [entry.message.to_list() for entry in transcript] == [ [None, [["/n_set", 1000, "frequency", 443.0]]] ] time.sleep(0.01) assert str(server.query()) == normalize( """ NODE TREE 0 group 1 group 1000 default out: 0.0, amplitude: 0.1, frequency: 443.0, gate: 1.0, pan: 0.5 """ ) def test_RealtimeProvider_set_node_3(server): provider = Provider.from_context(server) with provider.at(None): synth_proxy = provider.add_synth() bus_proxy = provider.add_bus() time.sleep(0.01) with server.osc_protocol.capture() as transcript: with provider.at(None): synth_proxy["frequency"] = bus_proxy assert [entry.message.to_list() for entry in transcript] == [ [None, [["/n_set", 1000, "frequency", "c0"]]] ] time.sleep(0.01) assert str(server.query()) == normalize( """ NODE TREE 0 group 1 group 1000 default out: 0.0, amplitude: 0.1, frequency: c0, gate: 1.0, pan: 0.5 """ ) time.sleep(0.01) with server.osc_protocol.capture() as transcript: with provider.at(None): synth_proxy["frequency"] = 443 assert [entry.message.to_list() for entry in transcript] == [ [None, [["/n_set", 1000, "frequency", 443.0]]] ] time.sleep(0.01) assert str(server.query()) == normalize( """ NODE TREE 0 group 1 group 1000 default out: 0.0, amplitude: 0.1, frequency: 443.0, gate: 1.0, pan: 0.5 """ ) def test_RealtimeProvider_set_node_error(server): provider = Provider.from_context(server) with provider.at(None): group_proxy = provider.add_group() synth_proxy = provider.add_synth() with pytest.raises(ValueError): group_proxy["foo"] = 23 with pytest.raises(ValueError): synth_proxy["foo"] = 23 ``` #### File: tests/realtime/test_realtime_Group_insert.py ```python import uqbar.strings import supriya.assets.synthdefs import supriya.realtime def test_01(server): group = supriya.realtime.Group().allocate() server_state = str(server.query(False)) assert server_state == uqbar.strings.normalize( """ NODE TREE 0 group 1 group 1000 group """ ) synth_a = supriya.realtime.Synth(supriya.assets.synthdefs.test) group.insert(0, synth_a) server_state = str(server.query(False)) assert server_state == uqbar.strings.normalize( """ NODE TREE 0 group 1 group 1000 group 1001 test """ ) synth_b = supriya.realtime.Synth(supriya.assets.synthdefs.test) group.insert(0, synth_b) server_state = str(server.query(False)) assert server_state == uqbar.strings.normalize( """ NODE TREE 0 group 1 group 1000 group 1002 test 1001 test """ ) synth_c = supriya.realtime.Synth(supriya.assets.synthdefs.test) group.insert(1, synth_c) server_state = str(server.query(False)) assert server_state == uqbar.strings.normalize( """ NODE TREE 0 group 1 group 1000 group 1002 test 1003 test 1001 test """ ) synth_d = supriya.realtime.Synth(supriya.assets.synthdefs.test) group.insert(3, synth_d) server_state = str(server.query(False)) assert server_state == uqbar.strings.normalize( """ NODE TREE 0 group 1 group 1000 group 1002 test 1003 test 1001 test 1004 test """ ) ``` #### File: tests/realtime/test_realtime_Group_pop.py ```python import uqbar.strings import supriya.assets.synthdefs import supriya.realtime def test_01(server): group_a = supriya.realtime.Group() group_a.allocate() synth_a = supriya.realtime.Synth(supriya.assets.synthdefs.test) group_a.append(synth_a) group_b = supriya.realtime.Group() group_a.append(group_b) synth_b = supriya.realtime.Synth(supriya.assets.synthdefs.test) group_b.append(synth_b) synth_c = supriya.realtime.Synth(supriya.assets.synthdefs.test) group_b.append(synth_c) group_c = supriya.realtime.Group() group_b.append(group_c) synth_d = supriya.realtime.Synth(supriya.assets.synthdefs.test) group_a.append(synth_d) server_state = str(server.query(False)) assert server_state == uqbar.strings.normalize( """ NODE TREE 0 group 1 group 1000 group 1001 test 1002 group 1003 test 1004 test 1005 group 1006 test """ ) group_a.pop() server_state = str(server.query(False)) assert server_state == uqbar.strings.normalize( """ NODE TREE 0 group 1 group 1000 group 1001 test 1002 group 1003 test 1004 test 1005 group """ ) group_b.pop(1) server_state = str(server.query(False)) assert server_state == uqbar.strings.normalize( """ NODE TREE 0 group 1 group 1000 group 1001 test 1002 group 1003 test 1005 group """ ) group_a.pop(0) server_state = str(server.query(False)) assert server_state == uqbar.strings.normalize( """ NODE TREE 0 group 1 group 1000 group 1002 group 1003 test 1005 group """ ) group_b.pop() server_state = str(server.query(False)) assert server_state == uqbar.strings.normalize( """ NODE TREE 0 group 1 group 1000 group 1002 group 1003 test """ ) group_a.pop() server_state = str(server.query(False)) assert server_state == uqbar.strings.normalize( """ NODE TREE 0 group 1 group 1000 group """ ) assert not group_b.is_allocated assert not group_c.is_allocated assert not synth_a.is_allocated assert not synth_b.is_allocated assert not synth_c.is_allocated assert not synth_d.is_allocated ``` #### File: tests/realtime/test_realtime_Node_replace_with.py ```python import uqbar.strings import supriya.assets.synthdefs import supriya.realtime def test_01(server): synth_a = supriya.realtime.Synth(supriya.assets.synthdefs.test) synth_b = supriya.realtime.Synth(supriya.assets.synthdefs.test) synth_c = supriya.realtime.Synth(supriya.assets.synthdefs.test) synth_d = supriya.realtime.Synth(supriya.assets.synthdefs.test) synth_e = supriya.realtime.Synth(supriya.assets.synthdefs.test) synth_a.allocate() synth_b.allocate() server_state = str(server.query(False)) assert server_state == uqbar.strings.normalize( """ NODE TREE 0 group 1 group 1001 test 1000 test """ ) synth_a.replace_with(synth_c) server_state = str(server.query(False)) assert server_state == uqbar.strings.normalize( """ NODE TREE 0 group 1 group 1001 test 1002 test """ ) synth_b.replace_with([synth_d, synth_e]) server_state = str(server.query(False)) assert server_state == uqbar.strings.normalize( """ NODE TREE 0 group 1 group 1003 test 1004 test 1002 test """ ) synth_c.replace_with([synth_a, synth_e]) server_state = str(server.query(False)) assert server_state == uqbar.strings.normalize( """ NODE TREE 0 group 1 group 1003 test 1005 test 1004 test """ ) ```
{ "source": "josiah-wolf-oberholtzer/tloen", "score": 2 }
#### File: tests/domain/test_Application_quit.py ```python import pytest from tloen.domain import Application @pytest.mark.asyncio async def test_1(): application = await Application.new() await application.boot() await application.quit() assert application.status == Application.Status.OFFLINE assert application.primary_context.provider is None ``` #### File: tests/domain/test_Application_render.py ```python import pytest from uqbar.strings import normalize from tloen.domain import Application @pytest.mark.asyncio async def test_1(): application = Application() context = await application.add_context() await context.add_track() session = await application.render() assert application.status == Application.Status.OFFLINE assert session.to_strings() == normalize( """ 0.0: NODE TREE 0 group 1000 group 1001 group 1002 group 1009 group 1010 group 1011 group 1012 group 1003 mixer/patch[fb,gain]/2x2 1008 group 1004 mixer/levels/2 1013 group 1005 mixer/levels/2 1014 group 1006 mixer/patch[gain,hard,replace]/2x2 1015 group 1029 mixer/patch[gain]/2x2 1007 mixer/levels/2 1016 group 1022 group 1023 group 1024 group 1017 mixer/patch[fb,gain]/2x2 1018 mixer/levels/2 1025 group 1019 mixer/levels/2 1026 group 1020 mixer/patch[gain,hard,replace]/2x2 1027 group 1028 mixer/patch/2x2 1021 mixer/levels/2 1030 group 1036 group 1037 group 1038 group 1039 group 1031 mixer/patch[fb,gain]/2x2 1032 mixer/levels/2 1040 group 1033 mixer/levels/2 1041 group 1034 mixer/patch[gain,hard,replace]/2x2 1042 group 1043 mixer/patch/2x2 1035 mixer/levels/2 inf: NODE TREE 0 group """ ) ``` #### File: tests/domain/test_Arpeggiator.py ```python import asyncio import logging import pytest from supriya.assets.synthdefs import default from tloen.domain import Application, Arpeggiator, Instrument from tloen.midi import NoteOffMessage, NoteOnMessage @pytest.fixture(autouse=True) def logger(caplog): caplog.set_level(logging.DEBUG, logger="tloen.domain") caplog.set_level(logging.DEBUG, logger="supriya.clocks") @pytest.fixture async def application(): application = Application() context = await application.add_context(name="Context") await context.add_track(name="Track") await application.boot() yield application await application.quit() @pytest.mark.timeout(10) @pytest.mark.asyncio async def test_timeout(application): await application["Track"].add_device(Arpeggiator) await application["Track"].add_device(Instrument, synthdef=default) await asyncio.sleep(0.1) await application.transport.perform([NoteOnMessage(pitch=60, velocity=100)]) await asyncio.sleep(1.0) @pytest.mark.asyncio async def test_query_1(application): """ Arpeggiator does not modify the server node tree. """ before = str(await application["Track"].query()) await application["Track"].add_device(Arpeggiator) await asyncio.sleep(0.1) after = str(await application["Track"].query()) assert before == after @pytest.mark.asyncio async def test_osc_transcript(application): """ Arpeggiator instantiation does not send any OSC messages. """ with application["Context"].provider.server.osc_protocol.capture() as transcript: await application["Track"].add_device(Arpeggiator) assert len(transcript.sent_messages) == 0 @pytest.mark.asyncio async def test_midi_transcript_1(mocker, application): time_mock = mocker.patch.object(application.transport._clock, "get_current_time") time_mock.return_value = 0.0 arpeggiator = await application["Track"].add_device(Arpeggiator) assert not application.transport.is_running with arpeggiator.capture() as transcript: await application.transport.perform([NoteOnMessage(pitch=60, velocity=100)]) assert application.transport.is_running await asyncio.sleep(0.1) time_mock.return_value = 0.5 await asyncio.sleep(0.1) assert [(_.label, _.moment.offset, _.message) for _ in transcript] == [ ("I", 0.0, NoteOnMessage(pitch=60, velocity=100)), ("O", 0.0, NoteOnMessage(pitch=60, velocity=100)), ("O", 0.0625, NoteOffMessage(pitch=60)), ("O", 0.0625, NoteOnMessage(pitch=60, velocity=100)), ("O", 0.125, NoteOffMessage(pitch=60)), ("O", 0.125, NoteOnMessage(pitch=60, velocity=100)), ("O", 0.1875, NoteOffMessage(pitch=60)), ("O", 0.1875, NoteOnMessage(pitch=60, velocity=100)), ("O", 0.25, NoteOffMessage(pitch=60)), ("O", 0.25, NoteOnMessage(pitch=60, velocity=100)), ] @pytest.mark.asyncio async def test_midi_transcript_2(mocker, application): time_mock = mocker.patch.object(application.transport._clock, "get_current_time") time_mock.return_value = 0.0 arpeggiator = await application["Track"].add_device(Arpeggiator) assert not application.transport.is_running with arpeggiator.capture() as transcript: await application.transport.perform([NoteOnMessage(pitch=60, velocity=100)]) await application.transport.perform([NoteOnMessage(pitch=63, velocity=100)]) await application.transport.perform([NoteOnMessage(pitch=67, velocity=100)]) assert application.transport.is_running await asyncio.sleep(0.1) time_mock.return_value = 0.5 await asyncio.sleep(0.1) assert [(_.label, _.moment.offset, _.message) for _ in transcript] == [ ("I", 0.0, NoteOnMessage(pitch=60, velocity=100)), ("I", 0.0, NoteOnMessage(pitch=63, velocity=100)), ("I", 0.0, NoteOnMessage(pitch=67, velocity=100)), ("O", 0.0, NoteOnMessage(pitch=60, velocity=100)), ("O", 0.0625, NoteOffMessage(pitch=60)), ("O", 0.0625, NoteOnMessage(pitch=63, velocity=100)), ("O", 0.125, NoteOffMessage(pitch=63)), ("O", 0.125, NoteOnMessage(pitch=67, velocity=100)), ("O", 0.1875, NoteOffMessage(pitch=67)), ("O", 0.1875, NoteOnMessage(pitch=60, velocity=100)), ("O", 0.25, NoteOffMessage(pitch=60)), ("O", 0.25, NoteOnMessage(pitch=63, velocity=100)), ] ``` #### File: tests/domain/test_Chain_move.py ```python import pytest from tloen.domain import Application, RackDevice @pytest.mark.asyncio async def test_1(): """ Unbooted, move one chain before another """ application = Application() context = await application.add_context() track = await context.add_track() rack_device = await track.add_device(RackDevice) chain_one = await rack_device.add_chain() chain_two = await rack_device.add_chain() await chain_two.move(rack_device, 0) assert list(rack_device.chains) == [chain_two, chain_one] @pytest.mark.asyncio async def test_2(): """ Booted, move one chain before another """ application = Application() context = await application.add_context() track = await context.add_track() rack_device = await track.add_device(RackDevice) chain_one = await rack_device.add_chain() chain_two = await rack_device.add_chain() await application.boot() with context.provider.server.osc_protocol.capture() as transcript: await chain_two.move(rack_device, 0) assert list(rack_device.chains) == [chain_two, chain_one] assert len(transcript.sent_messages) == 1 _, message = transcript.sent_messages[0] assert message.to_list() == [None, [["/g_head", 1017, 1032]]] @pytest.mark.asyncio async def test_3(): """ Booted, with cross-referencing sends, move one chain before another """ application = Application() context = await application.add_context() track = await context.add_track() rack_device = await track.add_device(RackDevice) chain_one = await rack_device.add_chain() chain_two = await rack_device.add_chain() await chain_one.add_send(chain_two) await chain_two.add_send(chain_one) await application.boot() with context.provider.server.osc_protocol.capture() as transcript: await chain_two.move(rack_device, 0) assert len(transcript.sent_messages) == 1 _, message = transcript.sent_messages[0] assert message.to_list() == [ None, [ [ "/s_new", "mixer/patch[gain]/2x2", 1078, 0, 1044, "in_", 28.0, "out", 24.0, ], [ "/s_new", "mixer/patch[fb,gain]/2x2", 1079, 0, 1030, "in_", 24.0, "out", 26.0, ], ["/g_head", 1017, 1032], ["/n_set", 1046, "gate", 0], ["/n_set", 1047, "gate", 0], ], ] @pytest.mark.asyncio async def test_4(): """ Booted, move one chain from one rack device to another """ application = Application() context = await application.add_context() track = await context.add_track() rack_device_one = await track.add_device(RackDevice) rack_device_two = await track.add_device(RackDevice) chain = await rack_device_one.add_chain() await application.boot() with context.provider.server.osc_protocol.capture() as transcript: await chain.move(rack_device_two, 0) assert len(transcript.sent_messages) == 1 _, message = transcript.sent_messages[0] assert message.to_list() == [ None, [ [ "/s_new", "mixer/patch[gain]/2x2", 1066, 0, 1030, "in_", 24.0, "out", 26.0, ], ["/g_tail", 1035, 1018], ["/n_set", 1031, "gate", 0], ], ] ``` #### File: tests/domain/test_Chain_unmute.py ```python import asyncio import pytest from tloen.domain import Application, AudioEffect, RackDevice @pytest.mark.asyncio async def test_repeat(dc_index_synthdef_factory): """ Unmuting more than once is a no-op """ application = Application(channel_count=1) context = await application.add_context() track = await context.add_track() rack = await track.add_device(RackDevice) chain = await rack.add_chain() await chain.add_device(AudioEffect, synthdef=dc_index_synthdef_factory) await application.boot() await chain.mute() await asyncio.sleep(0.2) assert [int(_) for _ in context.master_track.rms_levels["input"]] == [0] await chain.unmute() await asyncio.sleep(0.2) assert [int(_) for _ in context.master_track.rms_levels["input"]] == [1] with context.provider.server.osc_protocol.capture() as transcript: await chain.unmute() assert not len(transcript.sent_messages) ``` #### File: tests/domain/test_CueTrack___init__.py ```python from uuid import UUID from tloen.domain import CueTrack, Target def test_1(): cue_track = CueTrack() assert cue_track.application is None assert cue_track.channel_count == 2 assert cue_track.effective_channel_count == 2 assert cue_track.context is None assert cue_track.graph_order == () assert cue_track.name is None assert cue_track.parent is None assert cue_track.provider is None assert isinstance(cue_track.receive_target, Target) assert isinstance(cue_track.send_target, Target) assert isinstance(cue_track.uuid, UUID) assert len(cue_track.devices) == 0 assert len(cue_track.postfader_sends) == 0 assert len(cue_track.prefader_sends) == 0 ``` #### File: tests/domain/test_fixtures.py ```python import pytest from uqbar.strings import normalize def test_dc_index_synthdef_factory(dc_index_synthdef_factory): synthdef = dc_index_synthdef_factory.build(name="test") assert normalize(str(synthdef)) == normalize( """ synthdef: name: test ugens: - Control.ir: null - Control.kr: null - BinaryOpUGen(EQUAL).kr/0: left: Control.kr[0:index] right: 0.0 - BinaryOpUGen(EQUAL).kr/1: left: Control.kr[0:index] right: 1.0 - DC.ar: source: 1.0 - BinaryOpUGen(MULTIPLICATION).ar/0: left: DC.ar[0] right: BinaryOpUGen(EQUAL).kr/0[0] - BinaryOpUGen(MULTIPLICATION).ar/1: left: DC.ar[0] right: BinaryOpUGen(EQUAL).kr/1[0] - Out.ar: bus: Control.ir[0:out] source[0]: BinaryOpUGen(MULTIPLICATION).ar/0[0] source[1]: BinaryOpUGen(MULTIPLICATION).ar/1[0] """ ) @pytest.mark.asyncio async def test_track_mute_solo_application(track_mute_solo_application): await track_mute_solo_application.boot() assert format( await track_mute_solo_application.primary_context.query(), "unindexed" ) == normalize( """ NODE TREE ... group (Context) ... group (Tracks) ... group (a) ... group (Parameters) ... group (gain) ... group (panning) ... group (Receives) ... mixer/patch[fb,gain]/8x8 (Input) active: 1.0, gain: 0.0, gate: 1.0, in_: 16.0, lag: 0.01, out: 24.0 ... group (SubTracks) ... mixer/levels/8 (InputLevels) out: 24.0, gate: 1.0, lag: 0.01 ... group (Devices) ... group (AudioEffect) ... mixer/patch[replace]/8x8 (DeviceIn) active: 1.0, gate: 1.0, in_: 24.0, lag: 0.01, out: 32.0 ... group (Body) ... 7e3d216f841357d2a2e2ab2c3415df6f out: 32.0, index: 0.0 ... mixer/patch[hard,mix]/8x8 (DeviceOut) active: 1.0, gate: 1.0, hard_gate: 1.0, in_: 32.0, lag: 0.01, mix: 1.0, out: 24.0 ... mixer/levels/8 (PrefaderLevels) out: 24.0, gate: 1.0, lag: 0.01 ... group (PreFaderSends) ... mixer/patch[gain,hard,replace]/8x8 (Output) active: 1.0, gain: c0, gate: 1.0, hard_gate: 1.0, in_: 24.0, lag: 0.01, out: 24.0 ... group (PostFaderSends) ... mixer/patch[gain]/8x8 (Send) active: 1.0, gain: 0.0, gate: 1.0, in_: 24.0, lag: 0.01, out: 216.0 ... mixer/levels/8 (PostfaderLevels) out: 24.0, gate: 1.0, lag: 0.01 ... group (b) ... group (Parameters) ... group (gain) ... group (panning) ... group (Receives) ... mixer/patch[fb,gain]/8x8 (Input) active: 1.0, gain: 0.0, gate: 1.0, in_: 40.0, lag: 0.01, out: 48.0 ... group (SubTracks) ... group (ba) ... group (Parameters) ... group (gain) ... group (panning) ... group (Receives) ... mixer/patch[fb,gain]/8x8 (Input) active: 1.0, gain: 0.0, gate: 1.0, in_: 56.0, lag: 0.01, out: 64.0 ... group (SubTracks) ... mixer/levels/8 (InputLevels) out: 64.0, gate: 1.0, lag: 0.01 ... group (Devices) ... group (AudioEffect) ... mixer/patch[replace]/8x8 (DeviceIn) active: 1.0, gate: 1.0, in_: 64.0, lag: 0.01, out: 72.0 ... group (Body) ... 7e3d216f841357d2a2e2ab2c3415df6f out: 72.0, index: 2.0 ... mixer/patch[hard,mix]/8x8 (DeviceOut) active: 1.0, gate: 1.0, hard_gate: 1.0, in_: 72.0, lag: 0.01, mix: 1.0, out: 64.0 ... mixer/levels/8 (PrefaderLevels) out: 64.0, gate: 1.0, lag: 0.01 ... group (PreFaderSends) ... mixer/patch[gain,hard,replace]/8x8 (Output) active: 1.0, gain: c4, gate: 1.0, hard_gate: 1.0, in_: 64.0, lag: 0.01, out: 64.0 ... group (PostFaderSends) ... mixer/patch[gain]/8x8 (Send) active: 1.0, gain: 0.0, gate: 1.0, in_: 64.0, lag: 0.01, out: 48.0 ... mixer/levels/8 (PostfaderLevels) out: 64.0, gate: 1.0, lag: 0.01 ... group (bb) ... group (Parameters) ... group (gain) ... group (panning) ... group (Receives) ... mixer/patch[fb,gain]/8x8 (Input) active: 1.0, gain: 0.0, gate: 1.0, in_: 80.0, lag: 0.01, out: 88.0 ... group (SubTracks) ... mixer/levels/8 (InputLevels) out: 88.0, gate: 1.0, lag: 0.01 ... group (Devices) ... group (AudioEffect) ... mixer/patch[replace]/8x8 (DeviceIn) active: 1.0, gate: 1.0, in_: 88.0, lag: 0.01, out: 96.0 ... group (Body) ... 7e3d216f841357d2a2e2ab2c3415df6f out: 96.0, index: 3.0 ... mixer/patch[hard,mix]/8x8 (DeviceOut) active: 1.0, gate: 1.0, hard_gate: 1.0, in_: 96.0, lag: 0.01, mix: 1.0, out: 88.0 ... mixer/levels/8 (PrefaderLevels) out: 88.0, gate: 1.0, lag: 0.01 ... group (PreFaderSends) ... mixer/patch[gain,hard,replace]/8x8 (Output) active: 1.0, gain: c6, gate: 1.0, hard_gate: 1.0, in_: 88.0, lag: 0.01, out: 88.0 ... group (PostFaderSends) ... mixer/patch[gain]/8x8 (Send) active: 1.0, gain: 0.0, gate: 1.0, in_: 88.0, lag: 0.01, out: 48.0 ... mixer/levels/8 (PostfaderLevels) out: 88.0, gate: 1.0, lag: 0.01 ... mixer/levels/8 (InputLevels) out: 48.0, gate: 1.0, lag: 0.01 ... group (Devices) ... group (AudioEffect) ... mixer/patch[replace]/8x8 (DeviceIn) active: 1.0, gate: 1.0, in_: 48.0, lag: 0.01, out: 104.0 ... group (Body) ... 7e3d216f841357d2a2e2ab2c3415df6f out: 104.0, index: 1.0 ... mixer/patch[hard,mix]/8x8 (DeviceOut) active: 1.0, gate: 1.0, hard_gate: 1.0, in_: 104.0, lag: 0.01, mix: 1.0, out: 48.0 ... mixer/levels/8 (PrefaderLevels) out: 48.0, gate: 1.0, lag: 0.01 ... group (PreFaderSends) ... mixer/patch[gain,hard,replace]/8x8 (Output) active: 1.0, gain: c2, gate: 1.0, hard_gate: 1.0, in_: 48.0, lag: 0.01, out: 48.0 ... group (PostFaderSends) ... mixer/patch[gain]/8x8 (Send) active: 1.0, gain: 0.0, gate: 1.0, in_: 48.0, lag: 0.01, out: 216.0 ... mixer/levels/8 (PostfaderLevels) out: 48.0, gate: 1.0, lag: 0.01 ... group (c) ... group (Parameters) ... group (gain) ... group (panning) ... group (Receives) ... mixer/patch[fb,gain]/8x8 (Input) active: 1.0, gain: 0.0, gate: 1.0, in_: 112.0, lag: 0.01, out: 120.0 ... group (SubTracks) ... group (ca) ... group (Parameters) ... group (gain) ... group (panning) ... group (Receives) ... mixer/patch[fb,gain]/8x8 (Input) active: 1.0, gain: 0.0, gate: 1.0, in_: 128.0, lag: 0.01, out: 136.0 ... group (SubTracks) ... mixer/levels/8 (InputLevels) out: 136.0, gate: 1.0, lag: 0.01 ... group (Devices) ... group (AudioEffect) ... mixer/patch[replace]/8x8 (DeviceIn) active: 1.0, gate: 1.0, in_: 136.0, lag: 0.01, out: 144.0 ... group (Body) ... 7e3d216f841357d2a2e2ab2c3415df6f out: 144.0, index: 5.0 ... mixer/patch[hard,mix]/8x8 (DeviceOut) active: 1.0, gate: 1.0, hard_gate: 1.0, in_: 144.0, lag: 0.01, mix: 1.0, out: 136.0 ... mixer/levels/8 (PrefaderLevels) out: 136.0, gate: 1.0, lag: 0.01 ... group (PreFaderSends) ... mixer/patch[gain,hard,replace]/8x8 (Output) active: 1.0, gain: c10, gate: 1.0, hard_gate: 1.0, in_: 136.0, lag: 0.01, out: 136.0 ... group (PostFaderSends) ... mixer/patch[gain]/8x8 (Send) active: 1.0, gain: 0.0, gate: 1.0, in_: 136.0, lag: 0.01, out: 120.0 ... mixer/levels/8 (PostfaderLevels) out: 136.0, gate: 1.0, lag: 0.01 ... group (cb) ... group (Parameters) ... group (gain) ... group (panning) ... group (Receives) ... mixer/patch[fb,gain]/8x8 (Input) active: 1.0, gain: 0.0, gate: 1.0, in_: 152.0, lag: 0.01, out: 160.0 ... group (SubTracks) ... group (cba) ... group (Parameters) ... group (gain) ... group (panning) ... group (Receives) ... mixer/patch[fb,gain]/8x8 (Input) active: 1.0, gain: 0.0, gate: 1.0, in_: 168.0, lag: 0.01, out: 176.0 ... group (SubTracks) ... mixer/levels/8 (InputLevels) out: 176.0, gate: 1.0, lag: 0.01 ... group (Devices) ... group (AudioEffect) ... mixer/patch[replace]/8x8 (DeviceIn) active: 1.0, gate: 1.0, in_: 176.0, lag: 0.01, out: 184.0 ... group (Body) ... 7e3d216f841357d2a2e2ab2c3415df6f out: 184.0, index: 7.0 ... mixer/patch[hard,mix]/8x8 (DeviceOut) active: 1.0, gate: 1.0, hard_gate: 1.0, in_: 184.0, lag: 0.01, mix: 1.0, out: 176.0 ... mixer/levels/8 (PrefaderLevels) out: 176.0, gate: 1.0, lag: 0.01 ... group (PreFaderSends) ... mixer/patch[gain,hard,replace]/8x8 (Output) active: 1.0, gain: c14, gate: 1.0, hard_gate: 1.0, in_: 176.0, lag: 0.01, out: 176.0 ... group (PostFaderSends) ... mixer/patch[gain]/8x8 (Send) active: 1.0, gain: 0.0, gate: 1.0, in_: 176.0, lag: 0.01, out: 160.0 ... mixer/levels/8 (PostfaderLevels) out: 176.0, gate: 1.0, lag: 0.01 ... mixer/levels/8 (InputLevels) out: 160.0, gate: 1.0, lag: 0.01 ... group (Devices) ... group (AudioEffect) ... mixer/patch[replace]/8x8 (DeviceIn) active: 1.0, gate: 1.0, in_: 160.0, lag: 0.01, out: 192.0 ... group (Body) ... 7e3d216f841357d2a2e2ab2c3415df6f out: 192.0, index: 6.0 ... mixer/patch[hard,mix]/8x8 (DeviceOut) active: 1.0, gate: 1.0, hard_gate: 1.0, in_: 192.0, lag: 0.01, mix: 1.0, out: 160.0 ... mixer/levels/8 (PrefaderLevels) out: 160.0, gate: 1.0, lag: 0.01 ... group (PreFaderSends) ... mixer/patch[gain,hard,replace]/8x8 (Output) active: 1.0, gain: c12, gate: 1.0, hard_gate: 1.0, in_: 160.0, lag: 0.01, out: 160.0 ... group (PostFaderSends) ... mixer/patch[gain]/8x8 (Send) active: 1.0, gain: 0.0, gate: 1.0, in_: 160.0, lag: 0.01, out: 120.0 ... mixer/levels/8 (PostfaderLevels) out: 160.0, gate: 1.0, lag: 0.01 ... mixer/levels/8 (InputLevels) out: 120.0, gate: 1.0, lag: 0.01 ... group (Devices) ... group (AudioEffect) ... mixer/patch[replace]/8x8 (DeviceIn) active: 1.0, gate: 1.0, in_: 120.0, lag: 0.01, out: 200.0 ... group (Body) ... 7e3d216f841357d2a2e2ab2c3415df6f out: 200.0, index: 4.0 ... mixer/patch[hard,mix]/8x8 (DeviceOut) active: 1.0, gate: 1.0, hard_gate: 1.0, in_: 200.0, lag: 0.01, mix: 1.0, out: 120.0 ... mixer/levels/8 (PrefaderLevels) out: 120.0, gate: 1.0, lag: 0.01 ... group (PreFaderSends) ... mixer/patch[gain,hard,replace]/8x8 (Output) active: 1.0, gain: c8, gate: 1.0, hard_gate: 1.0, in_: 120.0, lag: 0.01, out: 120.0 ... group (PostFaderSends) ... mixer/patch[gain]/8x8 (Send) active: 1.0, gain: 0.0, gate: 1.0, in_: 120.0, lag: 0.01, out: 216.0 ... mixer/levels/8 (PostfaderLevels) out: 120.0, gate: 1.0, lag: 0.01 ... group (MasterTrack) ... group (Parameters) ... group (gain) ... group (Receives) ... mixer/patch[fb,gain]/8x8 (Input) active: 1.0, gain: 0.0, gate: 1.0, in_: 208.0, lag: 0.01, out: 216.0 ... mixer/levels/8 (InputLevels) out: 216.0, gate: 1.0, lag: 0.01 ... group (Devices) ... mixer/levels/8 (PrefaderLevels) out: 216.0, gate: 1.0, lag: 0.01 ... group (PreFaderSends) ... mixer/patch[gain,hard,replace]/8x8 (Output) active: 1.0, gain: c16, gate: 1.0, hard_gate: 1.0, in_: 216.0, lag: 0.01, out: 216.0 ... group (PostFaderSends) ... mixer/patch/8x2 (DirectOut) active: 1.0, gate: 1.0, in_: 216.0, lag: 0.01, out: 0.0 ... mixer/levels/8 (PostfaderLevels) out: 216.0, gate: 1.0, lag: 0.01 ... group (CueTrack) ... group (Parameters) ... group (gain) ... group (mix) ... group (Receives) ... mixer/patch[fb,gain]/2x2 (Input) active: 1.0, gain: 0.0, gate: 1.0, in_: 224.0, lag: 0.01, out: 226.0 ... mixer/levels/2 (InputLevels) out: 226.0, gate: 1.0, lag: 0.01 ... group (Devices) ... mixer/levels/2 (PrefaderLevels) out: 226.0, gate: 1.0, lag: 0.01 ... group (PreFaderSends) ... mixer/patch[gain,hard,replace]/2x2 (Output) active: 1.0, gain: c17, gate: 1.0, hard_gate: 1.0, in_: 226.0, lag: 0.01, out: 226.0 ... group (PostFaderSends) ... mixer/patch/2x2 (DirectOut) active: 1.0, gate: 1.0, in_: 226.0, lag: 0.01, out: 2.0 ... mixer/levels/2 (PostfaderLevels) out: 226.0, gate: 1.0, lag: 0.01 """ ) @pytest.mark.asyncio async def test_channel_count_application(channel_count_application): await channel_count_application.boot() assert format( await channel_count_application.primary_context.query(), "unindexed" ) == normalize( """ NODE TREE ... group (Context) ... group (Tracks) ... group (One) ... group (Parameters) ... group (gain) ... group (panning) ... group (Receives) ... mixer/patch[fb,gain]/2x2 (Input) active: 1.0, gain: 0.0, gate: 1.0, in_: 16.0, lag: 0.01, out: 18.0 ... group (SubTracks) ... mixer/levels/2 (InputLevels) out: 18.0, gate: 1.0, lag: 0.01 ... group (Devices) ... group (Rack) ... mixer/patch[gain]/2x2 (RackIn) active: 1.0, gain: 0.0, gate: 1.0, in_: 18.0, lag: 0.01, out: 20.0 ... group (ChainContainer) ... group (Chain) ... group (Parameters) ... group (gain) ... group (panning) ... group (Receives) ... mixer/patch[fb,gain]/2x2 (Input) active: 1.0, gain: 0.0, gate: 1.0, in_: 22.0, lag: 0.01, out: 24.0 ... mixer/levels/2 (InputLevels) out: 24.0, gate: 1.0, lag: 0.01 ... group (Devices) ... group (Device) ... mixer/patch[replace]/2x2 (DeviceIn) active: 1.0, gate: 1.0, in_: 24.0, lag: 0.01, out: 26.0 ... group (Body) ... ab5b942cf898e9d22891fff080fee99e out: 26.0, index: 0.0 ... mixer/patch[hard,mix]/2x2 (DeviceOut) active: 1.0, gate: 1.0, hard_gate: 1.0, in_: 26.0, lag: 0.01, mix: 1.0, out: 24.0 ... mixer/levels/2 (PrefaderLevels) out: 24.0, gate: 1.0, lag: 0.01 ... group (PreFaderSends) ... mixer/patch[gain,hard,replace]/2x2 (Output) active: 1.0, gain: c2, gate: 1.0, hard_gate: 1.0, in_: 24.0, lag: 0.01, out: 24.0 ... group (PostFaderSends) ... mixer/patch[gain]/2x2 (Send) active: 1.0, gain: 0.0, gate: 1.0, in_: 24.0, lag: 0.01, out: 20.0 ... mixer/levels/2 (PostfaderLevels) out: 24.0, gate: 1.0, lag: 0.01 ... mixer/patch[hard,mix]/2x2 (RackOut) active: 1.0, gate: 1.0, hard_gate: 1.0, in_: 20.0, lag: 0.01, mix: 1.0, out: 18.0 ... mixer/levels/2 (PrefaderLevels) out: 18.0, gate: 1.0, lag: 0.01 ... group (PreFaderSends) ... mixer/patch[gain,hard,replace]/2x2 (Output) active: 1.0, gain: c0, gate: 1.0, hard_gate: 1.0, in_: 18.0, lag: 0.01, out: 18.0 ... group (PostFaderSends) ... mixer/patch[gain]/2x2 (Send) active: 1.0, gain: 0.0, gate: 1.0, in_: 18.0, lag: 0.01, out: 38.0 ... mixer/levels/2 (PostfaderLevels) out: 18.0, gate: 1.0, lag: 0.01 ... group (Two) ... group (Parameters) ... group (gain) ... group (panning) ... group (Receives) ... mixer/patch[fb,gain]/2x2 (Input) active: 1.0, gain: 0.0, gate: 1.0, in_: 28.0, lag: 0.01, out: 30.0 ... group (SubTracks) ... group (Three) ... group (Parameters) ... group (gain) ... group (panning) ... group (Receives) ... mixer/patch[fb,gain]/2x2 (Input) active: 1.0, gain: 0.0, gate: 1.0, in_: 32.0, lag: 0.01, out: 34.0 ... group (SubTracks) ... mixer/levels/2 (InputLevels) out: 34.0, gate: 1.0, lag: 0.01 ... group (Devices) ... mixer/levels/2 (PrefaderLevels) out: 34.0, gate: 1.0, lag: 0.01 ... group (PreFaderSends) ... mixer/patch[gain,hard,replace]/2x2 (Output) active: 1.0, gain: c6, gate: 1.0, hard_gate: 1.0, in_: 34.0, lag: 0.01, out: 34.0 ... group (PostFaderSends) ... mixer/patch[gain]/2x2 (Send) active: 1.0, gain: 0.0, gate: 1.0, in_: 34.0, lag: 0.01, out: 30.0 ... mixer/levels/2 (PostfaderLevels) out: 34.0, gate: 1.0, lag: 0.01 ... mixer/levels/2 (InputLevels) out: 30.0, gate: 1.0, lag: 0.01 ... group (Devices) ... mixer/levels/2 (PrefaderLevels) out: 30.0, gate: 1.0, lag: 0.01 ... group (PreFaderSends) ... mixer/patch[gain,hard,replace]/2x2 (Output) active: 1.0, gain: c4, gate: 1.0, hard_gate: 1.0, in_: 30.0, lag: 0.01, out: 30.0 ... group (PostFaderSends) ... mixer/patch[gain]/2x2 (Send) active: 1.0, gain: 0.0, gate: 1.0, in_: 30.0, lag: 0.01, out: 38.0 ... mixer/levels/2 (PostfaderLevels) out: 30.0, gate: 1.0, lag: 0.01 ... group (MasterTrack) ... group (Parameters) ... group (gain) ... group (Receives) ... mixer/patch[fb,gain]/2x2 (Input) active: 1.0, gain: 0.0, gate: 1.0, in_: 36.0, lag: 0.01, out: 38.0 ... mixer/levels/2 (InputLevels) out: 38.0, gate: 1.0, lag: 0.01 ... group (Devices) ... mixer/levels/2 (PrefaderLevels) out: 38.0, gate: 1.0, lag: 0.01 ... group (PreFaderSends) ... mixer/patch[gain,hard,replace]/2x2 (Output) active: 1.0, gain: c8, gate: 1.0, hard_gate: 1.0, in_: 38.0, lag: 0.01, out: 38.0 ... group (PostFaderSends) ... mixer/patch/2x2 (DirectOut) active: 1.0, gate: 1.0, in_: 38.0, lag: 0.01, out: 0.0 ... mixer/levels/2 (PostfaderLevels) out: 38.0, gate: 1.0, lag: 0.01 ... group (CueTrack) ... group (Parameters) ... group (gain) ... group (mix) ... group (Receives) ... mixer/patch[fb,gain]/2x2 (Input) active: 1.0, gain: 0.0, gate: 1.0, in_: 40.0, lag: 0.01, out: 42.0 ... mixer/levels/2 (InputLevels) out: 42.0, gate: 1.0, lag: 0.01 ... group (Devices) ... mixer/levels/2 (PrefaderLevels) out: 42.0, gate: 1.0, lag: 0.01 ... group (PreFaderSends) ... mixer/patch[gain,hard,replace]/2x2 (Output) active: 1.0, gain: c9, gate: 1.0, hard_gate: 1.0, in_: 42.0, lag: 0.01, out: 42.0 ... group (PostFaderSends) ... mixer/patch/2x2 (DirectOut) active: 1.0, gate: 1.0, in_: 42.0, lag: 0.01, out: 2.0 ... mixer/levels/2 (PostfaderLevels) out: 42.0, gate: 1.0, lag: 0.01 """ ) @pytest.mark.asyncio async def test_chain_mute_solo_application(chain_mute_solo_application): await chain_mute_solo_application.boot() assert format( await chain_mute_solo_application.primary_context.query(), "unindexed" ) == normalize( """ NODE TREE ... group (Context) ... group (Tracks) ... group (Track) ... group (Parameters) ... group (gain) ... group (panning) ... group (Receives) ... mixer/patch[fb,gain]/8x8 (Input) active: 1.0, gain: 0.0, gate: 1.0, in_: 16.0, lag: 0.01, out: 24.0 ... group (SubTracks) ... mixer/levels/8 (InputLevels) out: 24.0, gate: 1.0, lag: 0.01 ... group (Devices) ... group (outer/a) ... mixer/patch[gain]/8x8 (RackIn) active: 1.0, gain: 0.0, gate: 1.0, in_: 24.0, lag: 0.01, out: 32.0 ... group (ChainContainer) ... group (outer/a/a) ... group (Parameters) ... group (gain) ... group (panning) ... group (Receives) ... mixer/patch[fb,gain]/8x8 (Input) active: 1.0, gain: 0.0, gate: 1.0, in_: 40.0, lag: 0.01, out: 48.0 ... mixer/levels/8 (InputLevels) out: 48.0, gate: 1.0, lag: 0.01 ... group (Devices) ... group (AudioEffect) ... mixer/patch[replace]/8x8 (DeviceIn) active: 1.0, gate: 1.0, in_: 48.0, lag: 0.01, out: 56.0 ... group (Body) ... 7e3d216f841357d2a2e2ab2c3415df6f out: 56.0, index: 0.0 ... mixer/patch[hard,mix]/8x8 (DeviceOut) active: 1.0, gate: 1.0, hard_gate: 1.0, in_: 56.0, lag: 0.01, mix: 1.0, out: 48.0 ... mixer/levels/8 (PrefaderLevels) out: 48.0, gate: 1.0, lag: 0.01 ... group (PreFaderSends) ... mixer/patch[gain,hard,replace]/8x8 (Output) active: 1.0, gain: c2, gate: 1.0, hard_gate: 1.0, in_: 48.0, lag: 0.01, out: 48.0 ... group (PostFaderSends) ... mixer/patch[gain]/8x8 (Send) active: 1.0, gain: 0.0, gate: 1.0, in_: 48.0, lag: 0.01, out: 32.0 ... mixer/levels/8 (PostfaderLevels) out: 48.0, gate: 1.0, lag: 0.01 ... group (outer/a/b) ... group (Parameters) ... group (gain) ... group (panning) ... group (Receives) ... mixer/patch[fb,gain]/8x8 (Input) active: 1.0, gain: 0.0, gate: 1.0, in_: 64.0, lag: 0.01, out: 72.0 ... mixer/levels/8 (InputLevels) out: 72.0, gate: 1.0, lag: 0.01 ... group (Devices) ... group (inner/a) ... mixer/patch[gain]/8x8 (RackIn) active: 1.0, gain: 0.0, gate: 1.0, in_: 72.0, lag: 0.01, out: 80.0 ... group (ChainContainer) ... group (inner/a/a) ... group (Parameters) ... group (gain) ... group (panning) ... group (Receives) ... mixer/patch[fb,gain]/8x8 (Input) active: 1.0, gain: 0.0, gate: 1.0, in_: 88.0, lag: 0.01, out: 96.0 ... mixer/levels/8 (InputLevels) out: 96.0, gate: 1.0, lag: 0.01 ... group (Devices) ... group (AudioEffect) ... mixer/patch[replace]/8x8 (DeviceIn) active: 1.0, gate: 1.0, in_: 96.0, lag: 0.01, out: 104.0 ... group (Body) ... 7e3d216f841357d2a2e2ab2c3415df6f out: 104.0, index: 2.0 ... mixer/patch[hard,mix]/8x8 (DeviceOut) active: 1.0, gate: 1.0, hard_gate: 1.0, in_: 104.0, lag: 0.01, mix: 1.0, out: 96.0 ... mixer/levels/8 (PrefaderLevels) out: 96.0, gate: 1.0, lag: 0.01 ... group (PreFaderSends) ... mixer/patch[gain,hard,replace]/8x8 (Output) active: 1.0, gain: c6, gate: 1.0, hard_gate: 1.0, in_: 96.0, lag: 0.01, out: 96.0 ... group (PostFaderSends) ... mixer/patch[gain]/8x8 (Send) active: 1.0, gain: 0.0, gate: 1.0, in_: 96.0, lag: 0.01, out: 80.0 ... mixer/levels/8 (PostfaderLevels) out: 96.0, gate: 1.0, lag: 0.01 ... group (inner/a/b) ... group (Parameters) ... group (gain) ... group (panning) ... group (Receives) ... mixer/patch[fb,gain]/8x8 (Input) active: 1.0, gain: 0.0, gate: 1.0, in_: 112.0, lag: 0.01, out: 120.0 ... mixer/levels/8 (InputLevels) out: 120.0, gate: 1.0, lag: 0.01 ... group (Devices) ... group (AudioEffect) ... mixer/patch[replace]/8x8 (DeviceIn) active: 1.0, gate: 1.0, in_: 120.0, lag: 0.01, out: 128.0 ... group (Body) ... 7e3d216f841357d2a2e2ab2c3415df6f out: 128.0, index: 3.0 ... mixer/patch[hard,mix]/8x8 (DeviceOut) active: 1.0, gate: 1.0, hard_gate: 1.0, in_: 128.0, lag: 0.01, mix: 1.0, out: 120.0 ... mixer/levels/8 (PrefaderLevels) out: 120.0, gate: 1.0, lag: 0.01 ... group (PreFaderSends) ... mixer/patch[gain,hard,replace]/8x8 (Output) active: 1.0, gain: c8, gate: 1.0, hard_gate: 1.0, in_: 120.0, lag: 0.01, out: 120.0 ... group (PostFaderSends) ... mixer/patch[gain]/8x8 (Send) active: 1.0, gain: 0.0, gate: 1.0, in_: 120.0, lag: 0.01, out: 80.0 ... mixer/levels/8 (PostfaderLevels) out: 120.0, gate: 1.0, lag: 0.01 ... mixer/patch[hard,mix]/8x8 (RackOut) active: 1.0, gate: 1.0, hard_gate: 1.0, in_: 80.0, lag: 0.01, mix: 1.0, out: 72.0 ... group (AudioEffect) ... mixer/patch[replace]/8x8 (DeviceIn) active: 1.0, gate: 1.0, in_: 72.0, lag: 0.01, out: 136.0 ... group (Body) ... 7e3d216f841357d2a2e2ab2c3415df6f out: 136.0, index: 1.0 ... mixer/patch[hard,mix]/8x8 (DeviceOut) active: 1.0, gate: 1.0, hard_gate: 1.0, in_: 136.0, lag: 0.01, mix: 1.0, out: 72.0 ... mixer/levels/8 (PrefaderLevels) out: 72.0, gate: 1.0, lag: 0.01 ... group (PreFaderSends) ... mixer/patch[gain,hard,replace]/8x8 (Output) active: 1.0, gain: c4, gate: 1.0, hard_gate: 1.0, in_: 72.0, lag: 0.01, out: 72.0 ... group (PostFaderSends) ... mixer/patch[gain]/8x8 (Send) active: 1.0, gain: 0.0, gate: 1.0, in_: 72.0, lag: 0.01, out: 32.0 ... mixer/levels/8 (PostfaderLevels) out: 72.0, gate: 1.0, lag: 0.01 ... mixer/patch[hard,mix]/8x8 (RackOut) active: 1.0, gate: 1.0, hard_gate: 1.0, in_: 32.0, lag: 0.01, mix: 1.0, out: 24.0 ... group (outer/b) ... mixer/patch[gain]/8x8 (RackIn) active: 1.0, gain: 0.0, gate: 1.0, in_: 24.0, lag: 0.01, out: 144.0 ... group (ChainContainer) ... group (outer/b/a) ... group (Parameters) ... group (gain) ... group (panning) ... group (Receives) ... mixer/patch[fb,gain]/8x8 (Input) active: 1.0, gain: 0.0, gate: 1.0, in_: 152.0, lag: 0.01, out: 160.0 ... mixer/levels/8 (InputLevels) out: 160.0, gate: 1.0, lag: 0.01 ... group (Devices) ... group (AudioEffect) ... mixer/patch[replace]/8x8 (DeviceIn) active: 1.0, gate: 1.0, in_: 160.0, lag: 0.01, out: 168.0 ... group (Body) ... 7e3d216f841357d2a2e2ab2c3415df6f out: 168.0, index: 4.0 ... mixer/patch[hard,mix]/8x8 (DeviceOut) active: 1.0, gate: 1.0, hard_gate: 1.0, in_: 168.0, lag: 0.01, mix: 1.0, out: 160.0 ... mixer/levels/8 (PrefaderLevels) out: 160.0, gate: 1.0, lag: 0.01 ... group (PreFaderSends) ... mixer/patch[gain,hard,replace]/8x8 (Output) active: 1.0, gain: c10, gate: 1.0, hard_gate: 1.0, in_: 160.0, lag: 0.01, out: 160.0 ... group (PostFaderSends) ... mixer/patch[gain]/8x8 (Send) active: 1.0, gain: 0.0, gate: 1.0, in_: 160.0, lag: 0.01, out: 144.0 ... mixer/levels/8 (PostfaderLevels) out: 160.0, gate: 1.0, lag: 0.01 ... group (outer/b/b) ... group (Parameters) ... group (gain) ... group (panning) ... group (Receives) ... mixer/patch[fb,gain]/8x8 (Input) active: 1.0, gain: 0.0, gate: 1.0, in_: 176.0, lag: 0.01, out: 184.0 ... mixer/levels/8 (InputLevels) out: 184.0, gate: 1.0, lag: 0.01 ... group (Devices) ... group (inner/b) ... mixer/patch[gain]/8x8 (RackIn) active: 1.0, gain: 0.0, gate: 1.0, in_: 184.0, lag: 0.01, out: 192.0 ... group (ChainContainer) ... group (inner/b/a) ... group (Parameters) ... group (gain) ... group (panning) ... group (Receives) ... mixer/patch[fb,gain]/8x8 (Input) active: 1.0, gain: 0.0, gate: 1.0, in_: 200.0, lag: 0.01, out: 208.0 ... mixer/levels/8 (InputLevels) out: 208.0, gate: 1.0, lag: 0.01 ... group (Devices) ... group (AudioEffect) ... mixer/patch[replace]/8x8 (DeviceIn) active: 1.0, gate: 1.0, in_: 208.0, lag: 0.01, out: 216.0 ... group (Body) ... 7e3d216f841357d2a2e2ab2c3415df6f out: 216.0, index: 6.0 ... mixer/patch[hard,mix]/8x8 (DeviceOut) active: 1.0, gate: 1.0, hard_gate: 1.0, in_: 216.0, lag: 0.01, mix: 1.0, out: 208.0 ... mixer/levels/8 (PrefaderLevels) out: 208.0, gate: 1.0, lag: 0.01 ... group (PreFaderSends) ... mixer/patch[gain,hard,replace]/8x8 (Output) active: 1.0, gain: c14, gate: 1.0, hard_gate: 1.0, in_: 208.0, lag: 0.01, out: 208.0 ... group (PostFaderSends) ... mixer/patch[gain]/8x8 (Send) active: 1.0, gain: 0.0, gate: 1.0, in_: 208.0, lag: 0.01, out: 192.0 ... mixer/levels/8 (PostfaderLevels) out: 208.0, gate: 1.0, lag: 0.01 ... group (inner/b/b) ... group (Parameters) ... group (gain) ... group (panning) ... group (Receives) ... mixer/patch[fb,gain]/8x8 (Input) active: 1.0, gain: 0.0, gate: 1.0, in_: 224.0, lag: 0.01, out: 232.0 ... mixer/levels/8 (InputLevels) out: 232.0, gate: 1.0, lag: 0.01 ... group (Devices) ... group (AudioEffect) ... mixer/patch[replace]/8x8 (DeviceIn) active: 1.0, gate: 1.0, in_: 232.0, lag: 0.01, out: 240.0 ... group (Body) ... 7e3d216f841357d2a2e2ab2c3415df6f out: 240.0, index: 7.0 ... mixer/patch[hard,mix]/8x8 (DeviceOut) active: 1.0, gate: 1.0, hard_gate: 1.0, in_: 240.0, lag: 0.01, mix: 1.0, out: 232.0 ... mixer/levels/8 (PrefaderLevels) out: 232.0, gate: 1.0, lag: 0.01 ... group (PreFaderSends) ... mixer/patch[gain,hard,replace]/8x8 (Output) active: 1.0, gain: c16, gate: 1.0, hard_gate: 1.0, in_: 232.0, lag: 0.01, out: 232.0 ... group (PostFaderSends) ... mixer/patch[gain]/8x8 (Send) active: 1.0, gain: 0.0, gate: 1.0, in_: 232.0, lag: 0.01, out: 192.0 ... mixer/levels/8 (PostfaderLevels) out: 232.0, gate: 1.0, lag: 0.01 ... mixer/patch[hard,mix]/8x8 (RackOut) active: 1.0, gate: 1.0, hard_gate: 1.0, in_: 192.0, lag: 0.01, mix: 1.0, out: 184.0 ... group (AudioEffect) ... mixer/patch[replace]/8x8 (DeviceIn) active: 1.0, gate: 1.0, in_: 184.0, lag: 0.01, out: 248.0 ... group (Body) ... 7e3d216f841357d2a2e2ab2c3415df6f out: 248.0, index: 5.0 ... mixer/patch[hard,mix]/8x8 (DeviceOut) active: 1.0, gate: 1.0, hard_gate: 1.0, in_: 248.0, lag: 0.01, mix: 1.0, out: 184.0 ... mixer/levels/8 (PrefaderLevels) out: 184.0, gate: 1.0, lag: 0.01 ... group (PreFaderSends) ... mixer/patch[gain,hard,replace]/8x8 (Output) active: 1.0, gain: c12, gate: 1.0, hard_gate: 1.0, in_: 184.0, lag: 0.01, out: 184.0 ... group (PostFaderSends) ... mixer/patch[gain]/8x8 (Send) active: 1.0, gain: 0.0, gate: 1.0, in_: 184.0, lag: 0.01, out: 144.0 ... mixer/levels/8 (PostfaderLevels) out: 184.0, gate: 1.0, lag: 0.01 ... mixer/patch[hard,mix]/8x8 (RackOut) active: 1.0, gate: 1.0, hard_gate: 1.0, in_: 144.0, lag: 0.01, mix: 1.0, out: 24.0 ... mixer/levels/8 (PrefaderLevels) out: 24.0, gate: 1.0, lag: 0.01 ... group (PreFaderSends) ... mixer/patch[gain,hard,replace]/8x8 (Output) active: 1.0, gain: c0, gate: 1.0, hard_gate: 1.0, in_: 24.0, lag: 0.01, out: 24.0 ... group (PostFaderSends) ... mixer/patch[gain]/8x8 (Send) active: 1.0, gain: 0.0, gate: 1.0, in_: 24.0, lag: 0.01, out: 264.0 ... mixer/levels/8 (PostfaderLevels) out: 24.0, gate: 1.0, lag: 0.01 ... group (MasterTrack) ... group (Parameters) ... group (gain) ... group (Receives) ... mixer/patch[fb,gain]/8x8 (Input) active: 1.0, gain: 0.0, gate: 1.0, in_: 256.0, lag: 0.01, out: 264.0 ... mixer/levels/8 (InputLevels) out: 264.0, gate: 1.0, lag: 0.01 ... group (Devices) ... mixer/levels/8 (PrefaderLevels) out: 264.0, gate: 1.0, lag: 0.01 ... group (PreFaderSends) ... mixer/patch[gain,hard,replace]/8x8 (Output) active: 1.0, gain: c18, gate: 1.0, hard_gate: 1.0, in_: 264.0, lag: 0.01, out: 264.0 ... group (PostFaderSends) ... mixer/patch/8x2 (DirectOut) active: 1.0, gate: 1.0, in_: 264.0, lag: 0.01, out: 0.0 ... mixer/levels/8 (PostfaderLevels) out: 264.0, gate: 1.0, lag: 0.01 ... group (CueTrack) ... group (Parameters) ... group (gain) ... group (mix) ... group (Receives) ... mixer/patch[fb,gain]/2x2 (Input) active: 1.0, gain: 0.0, gate: 1.0, in_: 272.0, lag: 0.01, out: 274.0 ... mixer/levels/2 (InputLevels) out: 274.0, gate: 1.0, lag: 0.01 ... group (Devices) ... mixer/levels/2 (PrefaderLevels) out: 274.0, gate: 1.0, lag: 0.01 ... group (PreFaderSends) ... mixer/patch[gain,hard,replace]/2x2 (Output) active: 1.0, gain: c19, gate: 1.0, hard_gate: 1.0, in_: 274.0, lag: 0.01, out: 274.0 ... group (PostFaderSends) ... mixer/patch/2x2 (DirectOut) active: 1.0, gate: 1.0, in_: 274.0, lag: 0.01, out: 2.0 ... mixer/levels/2 (PostfaderLevels) out: 274.0, gate: 1.0, lag: 0.01 """ ) ``` #### File: tests/domain/test_Instrument_perform.py ```python import asyncio import pytest from supriya.assets.synthdefs import default from uqbar.strings import normalize from tloen.domain import Application, Instrument from tloen.midi import NoteOnMessage @pytest.fixture async def application(): application = Application() context = await application.add_context(name="Context") await context.add_track(name="Track") await application.boot() yield application await application.quit() @pytest.mark.asyncio async def test_1(application): track = application.primary_context["Track"] instrument = await track.add_device(Instrument, synthdef=default) await asyncio.sleep(0.01) async with instrument.lock(instrument, 0.0): with instrument.capture() as transcript: await instrument.perform([NoteOnMessage(pitch=57, velocity=100)]) await asyncio.sleep(0.01) assert list(transcript) == [ instrument.CaptureEntry( moment=None, label="I", message=NoteOnMessage(pitch=57, velocity=100) ) ] assert format(await instrument.query(), "unindexed") == normalize( """ NODE TREE ... group (Instrument) ... mixer/patch[replace]/2x2 (DeviceIn) active: 1.0, gate: 1.0, in_: 18.0, lag: 0.01, out: 28.0 ... group (Body) ... default out: 28.0, amplitude: 0.620001, frequency: 220.0, gate: 1.0, pan: 0.5 ... mixer/patch[hard,mix]/2x2 (DeviceOut) active: 1.0, gate: 1.0, hard_gate: 1.0, in_: 28.0, lag: 0.01, mix: 1.0, out: 18.0 """ ) async with instrument.lock(instrument, 0.0): with instrument.capture() as transcript: await instrument.perform([NoteOnMessage(pitch=57, velocity=127)]) await asyncio.sleep(0.01) assert list(transcript) == [ instrument.CaptureEntry( moment=None, label="I", message=NoteOnMessage(pitch=57, velocity=127) ) ] assert format(await instrument.query(), "unindexed") == normalize( """ NODE TREE ... group (Instrument) ... mixer/patch[replace]/2x2 (DeviceIn) active: 1.0, gate: 1.0, in_: 18.0, lag: 0.01, out: 28.0 ... group (Body) ... default out: 28.0, amplitude: 1.0, frequency: 220.0, gate: 1.0, pan: 0.5 ... default out: 28.0, amplitude: 0.620001, frequency: 220.0, gate: 0.0, pan: 0.5 ... mixer/patch[hard,mix]/2x2 (DeviceOut) active: 1.0, gate: 1.0, hard_gate: 1.0, in_: 28.0, lag: 0.01, mix: 1.0, out: 18.0 """ ) ``` #### File: tests/domain/test_Track_gain.py ```python import asyncio import pytest from tloen.domain import Application, AudioEffect @pytest.mark.asyncio async def test_gain(dc_index_synthdef_factory): application = Application(channel_count=1) context = await application.add_context() track = await context.add_track() await track.add_device(AudioEffect, synthdef=dc_index_synthdef_factory) await application.boot() await asyncio.sleep(0.1) assert track.rms_levels["prefader"] == (1.0,) assert track.rms_levels["postfader"] == (1.0,) assert context.master_track.rms_levels["input"] == (1.0,) with context.provider.server.osc_protocol.capture() as transcript: await track.parameters["gain"].set_(-6.0) assert len(transcript.sent_messages) == 1 _, message = transcript.sent_messages[0] assert message.to_list() == [None, [["/c_set", 0, -6.0]]] await asyncio.sleep(0.2) assert track.rms_levels["prefader"] == (1.0,) assert round(track.rms_levels["postfader"][0], 4) == 0.5012 assert round(context.master_track.rms_levels["input"][0], 4) == 0.5012 ``` #### File: tests/domain/test_Track_group.py ```python import pytest from tloen.domain import Application, Track @pytest.mark.asyncio async def test_1(): track_a = Track() track_b = Track() group_track = await Track.group([track_a, track_b]) assert isinstance(group_track, Track) assert list(group_track.tracks) == [track_a, track_b] assert group_track.application is track_a.application assert group_track.channel_count is None assert group_track.name is None assert group_track.parent is None assert group_track.provider is track_a.provider assert not group_track.is_cued assert not group_track.is_muted assert not group_track.is_soloed assert track_a.parent is group_track.tracks assert track_b.parent is group_track.tracks @pytest.mark.asyncio async def test_2(): application = Application() context = await application.add_context() track_a = await context.add_track() track_b = await context.add_track() track_c = await context.add_track() group_track = await Track.group([track_b, track_c]) assert list(context.tracks) == [track_a, group_track] assert list(group_track.tracks) == [track_b, track_c] assert group_track.application is application assert group_track.parent is context.tracks assert group_track.provider is context.provider assert track_b.provider is context.provider assert track_c.provider is context.provider @pytest.mark.asyncio async def test_3(): application = Application() context = await application.add_context() track_a = await context.add_track() track_b = await context.add_track() track_c = await context.add_track() await application.boot() group_track = await Track.group([track_b, track_c]) assert list(context.tracks) == [track_a, group_track] assert list(group_track.tracks) == [track_b, track_c] assert group_track.application is application assert group_track.parent is context.tracks assert group_track.provider is context.provider assert track_b.provider is context.provider assert track_c.provider is context.provider ``` #### File: tests/domain/test_Track_remove_devices.py ```python import asyncio import pytest from supriya.synthdefs import SynthDefFactory from tloen.domain import Application, AudioEffect @pytest.fixture def synthdef_factory(): return ( SynthDefFactory() .with_channel_count(2) .with_input() .with_signal_block(lambda builder, source, state: (source * -2) + 0.25) .with_gate(0.01, 0.01) .with_output(replacing=True) ) @pytest.mark.asyncio async def test_1(synthdef_factory): """ Remove one device """ application = Application() context = await application.add_context() track = await context.add_track() device = await track.add_device(AudioEffect, synthdef=synthdef_factory) await track.remove_devices(device) assert list(track.devices) == [] assert device.application is None assert device.graph_order == () assert device.parent is None assert device.provider is None @pytest.mark.asyncio async def test_2(synthdef_factory): """ Remove two devices """ application = Application() context = await application.add_context() track = await context.add_track() device_one = await track.add_device(AudioEffect, synthdef=synthdef_factory) device_two = await track.add_device(AudioEffect, synthdef=synthdef_factory) await track.remove_devices(device_one, device_two) assert list(track.devices) == [] assert device_one.application is None assert device_one.graph_order == () assert device_one.parent is None assert device_one.provider is None assert device_two.application is None assert device_two.graph_order == () assert device_two.parent is None assert device_two.provider is None @pytest.mark.asyncio async def test_3(synthdef_factory): """ Remove first device, leaving second untouched """ application = Application() context = await application.add_context() track = await context.add_track() device_one = await track.add_device(AudioEffect, synthdef=synthdef_factory) device_two = await track.add_device(AudioEffect, synthdef=synthdef_factory) await track.remove_devices(device_one) assert list(track.devices) == [device_two] assert device_one.application is None assert device_one.graph_order == () assert device_one.parent is None assert device_one.provider is None assert device_two.application is context.application assert device_two.graph_order == (3, 0, 0, 0, 5, 0) assert device_two.parent is track.devices assert device_two.provider is None @pytest.mark.asyncio async def test_4(synthdef_factory): """ Boot, remove first device, leaving second untouched """ application = Application() context = await application.add_context() track = await context.add_track() device_one = await track.add_device(AudioEffect, synthdef=synthdef_factory) device_two = await track.add_device(AudioEffect, synthdef=synthdef_factory) await application.boot() with context.provider.server.osc_protocol.capture() as transcript: await track.remove_devices(device_one) await asyncio.sleep(0.1) assert list(track.devices) == [device_two] assert device_one.application is None assert device_one.graph_order == () assert device_one.parent is None assert device_one.provider is None assert device_two.application is context.application assert device_two.graph_order == (3, 0, 0, 0, 5, 0) assert device_two.parent is track.devices assert device_two.provider is context.provider assert len(transcript.sent_messages) == 1 _, message = transcript.sent_messages[0] assert message.to_list() == [None, [["/n_set", 1014, "gate", 0]]] assert track.peak_levels == dict( input=(0.0, 0.0), postfader=(0.25, 0.25), prefader=(0.25, 0.25) ) assert context.master_track.peak_levels == dict( input=(0.25, 0.25), postfader=(0.25, 0.25), prefader=(0.25, 0.25) ) ``` #### File: tloen/tloen/bases.py ```python import asyncio import dataclasses @dataclasses.dataclass class Command: future: asyncio.Future = dataclasses.field(init=False, compare=False, hash=False) def __post_init__(self): try: self.future = asyncio.get_running_loop().create_future() except Exception: self.future = None @dataclasses.dataclass class Event: pass ``` #### File: tloen/domain/audioeffects.py ```python from typing import Union from supriya import ugens from supriya.enums import AddAction from supriya.synthdefs import SynthDef, SynthDefFactory from .devices import AllocatableDevice from .parameters import BusParameter, Float class AudioEffect(AllocatableDevice): ### INITIALIZER ### def __init__( self, *, synthdef: Union[SynthDef, SynthDefFactory], name=None, synthdef_kwargs=None, parameters=None, parameter_map=None, uuid=None, ): AllocatableDevice.__init__( self, name=name, parameters=parameters, parameter_map=parameter_map, synthdef=synthdef, synthdef_kwargs=synthdef_kwargs, uuid=uuid, ) ### PRIVATE METHODS ### def _allocate_synths(self, provider, channel_count, *, synth_pair=None): synthdef = self.synthdef if isinstance(synthdef, SynthDefFactory): synthdef = synthdef.build(channel_count=self.effective_channel_count) synth_target, synth_action = synth_pair or ( self.node_proxies["body"], AddAction.ADD_TO_HEAD, ) self._node_proxies["synth"] = provider.add_synth( add_action=synth_action, synthdef=synthdef, target_node=synth_target, **self._build_kwargs(), ) def _reallocate(self, difference): channel_count = self.effective_channel_count synth_synth = self._node_proxies.pop("synth") self._free_audio_buses() self._allocate_audio_buses(self.provider, channel_count) self._allocate_synths( self.provider, self.effective_channel_count, synth_pair=(synth_synth, AddAction.ADD_AFTER), ) synth_synth.free() class Limiter(AudioEffect): ### INITIALIZER ### # TODO: This should support a multiple-mono approach def __init__(self, *, name=None, uuid=None): gain_spec = Float(default=0, minimum=-96, maximum=6) frequency_1_spec = Float(default=200, minimum=20, maximum=22050) frequency_2_spec = Float(default=2000, minimum=20, maximum=22050) AudioEffect.__init__( self, name=name, parameters={ parameter.name: parameter for parameter in [ BusParameter("frequency_1", frequency_1_spec), BusParameter("frequency_2", frequency_2_spec), BusParameter("band_1_gain", gain_spec), BusParameter("band_2_gain", gain_spec), BusParameter("band_3_gain", gain_spec), BusParameter("band_1_limit", gain_spec), BusParameter("band_2_limit", gain_spec), BusParameter("band_3_limit", gain_spec), BusParameter("band_1_pregain", gain_spec), BusParameter("band_2_pregain", gain_spec), BusParameter("band_3_pregain", gain_spec), ] }, parameter_map={ name: name for name in [ "frequency_1", "frequency_2", "band_1_gain", "band_2_gain", "band_3_gain", "band_1_limit", "band_2_limit", "band_3_limit", "band_1_pregain", "band_2_pregain", "band_3_pregain", ] }, synthdef=self.build_synthdef(), uuid=uuid, ) def build_synthdef(self): def signal_block(builder, source, state): frequency_1 = builder["frequency_1"].minimum(builder["frequency_2"]) frequency_2 = builder["frequency_1"].maximum(builder["frequency_2"]) band_1 = ugens.LPF.ar(frequency=frequency_1, source=source) band_2 = ugens.LPF.ar(frequency=frequency_2, source=source - band_1) band_3 = source - band_2 - band_1 # TODO: optimize this bands = [band_1, band_2, band_3] limiters = [] for i, band in enumerate(bands, 1): limiter = ugens.Limiter.ar( source=band * builder[f"band_{i}_pregain"].db_to_amplitude(), level=builder[f"band_{i}_limit"].db_to_amplitude(), ) limiters.append(limiter * builder[f"band_{i}_gain"].db_to_amplitude()) return ugens.Mix.multichannel( sources=limiters, channel_count=state["channel_count"], ) factory = ( SynthDefFactory( frequency_1=200, frequency_2=2000, band_1_gain=0, band_1_limit=0, band_1_pregain=0, band_2_gain=0, band_2_limit=0, band_2_pregain=0, band_3_gain=0, band_3_limit=0, band_3_pregain=0, ) .with_channel_count(2) .with_gate() .with_input() .with_output(replacing=True) .with_signal_block(signal_block) ) return factory class Reverb(AudioEffect): ### INITIALIZER ### # TODO: This should support a multiple-mono approach def __init__(self, *, name=None, uuid=None): AudioEffect.__init__( self, name=name, synthdef=self.build_synthdef(), uuid=uuid, ) def build_synthdef(self): def signal_block(builder, source, state): return ugens.FreeVerb.ar(source=source, mix=1.0) factory = ( SynthDefFactory() .with_channel_count(2) .with_gate() .with_input() .with_output(replacing=True) .with_signal_block(signal_block) ) return factory ``` #### File: tloen/domain/notes.py ```python class NoteSelector: _valid_operators = frozenset(("==", "!=", "<", ">", "<=", ">=")) def __init__(self, clip, filters=None): self._clip = clip self._filters = tuple(filters or ()) def __iter__(self): source = iter(self._clip) for filter_ in self._filters: filter_name, filter_args = filter_[0], filter_[1:] filter_func = getattr(self, "_" + filter_name) source = filter_func(source, *filter_args) yield from source def __and__(self, selector): pass def __or__(self, selector): pass def __invert__(self): pass def __xor__(self): pass def _and_selector(self, source, selector): pass def _or_selector(self, source, selector): pass def _xor_selector(self, source, selector): pass def _invert(self, source): pass def _between_offsets(self, source, start_offset, stop_offset): if start_offset is None and stop_offset is not None: for note in source: if note.stop_offset <= stop_offset: yield note elif start_offset is not None and stop_offset is None: for note in source: if start_offset <= note.start_offset: yield note elif start_offset < stop_offset: for note in source: if ( start_offset <= note.start_offset and note.stop_offset <= stop_offset ): yield note elif stop_offset < start_offset: for note in source: if note.stop_offset <= stop_offset or start_offset <= note.start_offset: yield note else: yield from source def _between_pitches(self, source, start_pitch, stop_pitch): if start_pitch is None and stop_pitch is not None: for note in source: if note.pitch <= stop_pitch: yield note elif start_pitch is not None and stop_pitch is None: for note in source: if start_pitch <= note.pitch: yield note elif start_pitch < stop_pitch: for note in source: if start_pitch <= note.pitch <= stop_pitch: yield note elif stop_pitch < start_pitch: for note in source: if note.pitch <= stop_pitch or start_pitch <= note.pitch: yield note else: yield from source def _with_durations(self, source, durations, operator): pass def _with_pitches(self, source, pitches, operator): pass def _with_pitch_classes(self, source, pitch_classes, operator): pass def between_offsets(self, start_offset=None, stop_offset=None): if start_offset is not None: start_offset = float(start_offset) if stop_offset is not None: stop_offset = float(stop_offset) filter_ = ("between_offsets", start_offset, stop_offset) filters = self._filters + (filter_,) return type(self)(self._clip, filters) def between_pitches(self, start_pitch=None, stop_pitch=None): if start_pitch is not None: start_pitch = float(start_pitch) if stop_pitch is not None: stop_pitch = float(stop_pitch) filter_ = ("between_pitches", start_pitch, stop_pitch) filters = self._filters + (filter_,) return type(self)(self._clip, filters) def with_durations(self, durations, operator="=="): pass def with_pitches(self, pitches, operator="=="): pass def with_pitch_classes(self, pitch_classes, operator="=="): pass def delete(self): self._clip.remove_notes(self) def replace(self, notes): self._clip.remove_notes(self) self._clip.add_notes(notes) def transpose(self, transposition): notes = list(self) self._clip.remove_notes(self) self._clip.add_notes([note.transpose(transposition) for note in notes]) def translate(self, translation): notes = list(self) self._clip.remove_notes(self) self._clip.add_notes( [note.translate(translation, translation) for note in notes] ) def translate_offsets(self, start_translation=None, stop_translation=None): notes = list(self) self._clip.remove_notes(self) self._clip.add_notes( [note.translate(start_translation, stop_translation) for note in notes] ) ``` #### File: tloen/domain/sends.py ```python import abc from typing import Optional, Set, Union from uuid import UUID, uuid4 from supriya.enums import AddAction, CalculationRate from supriya.providers import NodeProxy from supriya.typing import Default from .bases import Allocatable, ApplicationObject from .synthdefs import build_patch_synthdef # Send SynthDef creation is universal # Let's generalize it to support all inter-object comms class SendObject(Allocatable): ### INITIALIZER ### def __init__(self, name=None, uuid=None): self._gain = 0.0 self._uuid = uuid or uuid4() Allocatable.__init__(self, name=name) ### SPECIAL METHODS ### def __str__(self): node_proxy_id = int(self.node_proxy) if self.node_proxy is not None else "?" obj_name = type(self).__name__ return "\n".join( [ f"<{obj_name} [{node_proxy_id}] {self.uuid}>", *(f" {line}" for child in self for line in str(child).splitlines()), ] ) ### PRIVATE METHODS ### def _reallocate(self, difference): Allocatable._reallocate(self, difference) node_proxy = self._node_proxies.pop("node") self._allocate( self.provider, target_node=node_proxy, add_action=AddAction.ADD_AFTER ) node_proxy.free() ### PUBLIC METHODS ### @classmethod def build_synthdef( cls, source_channel_count, target_channel_count, *, feedback=False, calculation_rate=CalculationRate.AUDIO, ): return build_patch_synthdef( source_channel_count, target_channel_count, feedback=feedback, calculation_rate=calculation_rate, ) def set_gain(self, gain): pass ### PUBLIC PROPERTIES ### @property def gain(self): return self._gain @property def uuid(self) -> UUID: return self._uuid class Patch(SendObject): ### INITIALIZER ### def __init__(self, *, name=None, uuid=None): SendObject.__init__(self, name=name, uuid=uuid) ### PRIVATE METHODS ### def _allocate(self, provider, target_node, add_action): # TODO: Primary node proxy should be a dedicated group Allocatable._allocate(self, provider, target_node, add_action) self._allocate_synths(self.parent.node_proxy, AddAction.ADD_TO_HEAD) def _allocate_synths(self, target_node, add_action): self._node_proxies["node"] = self.provider.add_synth( active=self.is_active, add_action=add_action, in_=self.cached_state["source_bus"], out=self.cached_state["target_bus"], name=self.label, synthdef=self.build_synthdef( self.cached_state["source_channel_count"], self.cached_state["target_channel_count"], feedback=self.cached_state["feedback"], ), target_node=target_node, ) def _get_state(self): return dict( application=self.application, feedback=self.feedback, index=self.parent.index(self) if self.parent else None, parent=self.parent, source=self.effective_source, source_anchor=self.source_anchor, source_bus=self.source_bus, source_channel_count=self.source_channel_count, source_provider=self.source_provider, target=self.effective_target, target_anchor=self.target_anchor, target_bus=self.target_bus, target_channel_count=self.target_channel_count, target_provider=self.target_provider, ) def _reconcile( self, target_node: Optional[NodeProxy] = None, add_action: Optional[int] = None, dispose_only: bool = False, **kwargs, ): difference = self._get_state_difference() if "application" in difference: old_application, new_application = difference.pop("application") if old_application: self._deapplicate(old_application) if new_application: self._applicate(new_application) if "source_anchor" in difference: old_anchor, new_anchor = difference.pop("source_anchor") if old_anchor is not None and hasattr(old_anchor, "_dependencies"): old_anchor._dependencies.remove(self) if new_anchor is not None and hasattr(new_anchor, "_dependencies"): new_anchor._dependencies.add(self) if "target_anchor" in difference: old_anchor, new_anchor = difference.pop("target_anchor") if old_anchor is not None and hasattr(old_anchor, "_dependencies"): old_anchor._dependencies.remove(self) if new_anchor is not None and hasattr(new_anchor, "_dependencies"): new_anchor._dependencies.add(self) if "source_provider" in difference or "target_provider" in difference: source, target = self.effective_source, self.effective_target old_source_provider, new_source_provider = difference.pop( "source_provider", (source.provider, source.provider) if source else (None, None), ) old_target_provider, new_target_provider = difference.pop( "target_provider", (target.provider, target.provider) if target else (None, None), ) if old_source_provider and (old_source_provider is old_target_provider): self._deallocate(old_source_provider, dispose_only=dispose_only) if new_source_provider and (new_source_provider is new_target_provider): self._allocate(new_source_provider, target_node, add_action) elif self.provider and any( [ "feedback" in difference, "source_bus" in difference, "source_channel_count" in difference, "target_bus" in difference, "target_channel_count" in difference, ] ): self._reallocate(difference) def _serialize(self): serialized, auxiliary_entities = super()._serialize() serialized["spec"]["target"] = ( str(self.effective_target.uuid) if not isinstance(self.target, Default) else "default" ) return serialized, auxiliary_entities ### PUBLIC METHODS ### ### PUBLIC PROPERTIES ### @property def effective_source(self): return self.source @property def effective_target(self): return self.target @property def feedback(self): source_anchor = self.source_anchor target_anchor = self.target_anchor if source_anchor is not None and target_anchor is not None: return target_anchor.graph_order < source_anchor.graph_order return None @property @abc.abstractmethod def source(self): raise NotImplementedError @property @abc.abstractmethod def source_anchor(self): raise NotImplementedError @property @abc.abstractmethod def source_bus(self): raise NotImplementedError @property def source_channel_count(self): effective_source = self.effective_source if effective_source: return effective_source.effective_channel_count return None @property def source_provider(self): effective_source = self.effective_source if effective_source: return effective_source.provider return None @property @abc.abstractmethod def target(self): raise NotImplementedError @property @abc.abstractmethod def target_anchor(self): raise NotImplementedError @property @abc.abstractmethod def target_bus(self): raise NotImplementedError @property def target_channel_count(self): effective_target = self.effective_target if effective_target: return effective_target.effective_channel_count return None @property def target_provider(self): effective_target = self.effective_target if effective_target: return effective_target.provider return None class Send(Patch): ### INITIALIZER ### def __init__(self, target: Union[Allocatable, Default], *, name=None, uuid=None): if not isinstance(target, Default): if not hasattr(target, "send_target"): raise ValueError self._target = target Patch.__init__(self, name=name, uuid=uuid) ### PRIVATE METHODS ### @classmethod async def _deserialize(cls, data, application) -> bool: parent_uuid = UUID(data["meta"]["parent"]) parent = application.registry.get(parent_uuid) if parent is None: return True if data["spec"]["target"] == "default": target = Default() else: target_uuid = UUID(data["spec"]["target"]) target = application.registry.get(target_uuid) if target is None: return True send = cls( name=data["meta"].get("name"), uuid=UUID(data["meta"]["uuid"]), target=target, ) if data["spec"]["position"] == "prefader": parent.prefader_sends._append(send) elif data["spec"]["position"] == "postfader": parent.postfader_sends._append(send) else: raise ValueError(f"Unknown position: {data['position']}") return False ### PUBLIC METHODS ### @classmethod def build_synthdef( cls, source_channel_count, target_channel_count, *, feedback=False, calculation_rate=CalculationRate.AUDIO, ): return build_patch_synthdef( source_channel_count, target_channel_count, feedback=feedback, gain=True, calculation_rate=calculation_rate, ) ### PUBLIC PROPERTIES ### @property def effective_source(self): return self.source @property def effective_target(self): if not isinstance(self.target, Default): return self.target for parent in self.parentage[1:]: if hasattr(parent, "default_send_target"): return parent.default_send_target return None @property def source(self): if self.parent and self.parent.parent: return self.parent.parent return None @property def source_anchor(self): return self @property def source_bus(self): source = self.effective_source if source: return source.audio_bus_proxies.get("output") return None @property def target(self): return self._target @property def target_anchor(self): effective_target = self.effective_target return effective_target.send_target if effective_target else None @property def target_bus(self): target = self.effective_target if not target: return None if self.feedback: return target.audio_bus_proxies.get("input") return target.audio_bus_proxies.get("output") class Receive(Patch): ### INITIALIZER ### def __init__(self, source: Union[Allocatable, Default], *, name=None, uuid=None): if not isinstance(source, Default): if not hasattr(source, "receive_target"): raise ValueError self._source = source Patch.__init__(self, name=name, uuid=uuid) ### PRIVATE METHODS ### @classmethod async def _deserialize(cls, data, application) -> bool: parent_uuid = UUID(data["meta"]["parent"]) parent = application.registry.get(parent_uuid) if parent is None: return True if data["spec"]["source"] == "default": source = Default() else: source_uuid = UUID(data["spec"]["source"]) source = application.registry.get(source_uuid) if source is None: return True send = cls( name=data["meta"].get("name"), uuid=UUID(data["meta"]["uuid"]), source=source, ) if data["spec"]["position"] == "prefader": parent.prefader_sends._append(send) elif data["spec"]["position"] == "postfader": parent.postfader_sends._append(send) else: raise ValueError(f"Unknown position: {data['position']}") return False ### PUBLIC PROPERTIES ### @property def effective_source(self): if not isinstance(self.source, Default): return self.source for parent in self.parentage[1:]: if hasattr(parent, "default_receive_target"): return parent.default_receive_target return None @property def effective_target(self): return self.target @property def source(self): return self._source @property def source_anchor(self): effective_source = self.effective_source return effective_source.receive_target if effective_source else None @property def source_bus(self): source = self.effective_source if not source: return None return source.audio_bus_proxies.get("output") @property def target(self): if self.parent and self.parent.parent: return self.parent.parent return None @property def target_anchor(self): return self @property def target_bus(self): target = self.effective_target if target: return target.audio_bus_proxies.get("output") return None class DirectIn(SendObject): ### INITIALIZER ### def __init__( self, source_bus_id: int, source_channel_count: int, *, name=None, uuid=None ): self._source_bus_id = int(source_bus_id) self._source_channel_count = int(source_channel_count) SendObject.__init__(self, name=name, uuid=uuid) ### PRIVATE METHODS ### def _allocate(self, provider, target_node, add_action): Allocatable._allocate(self, provider, target_node, add_action) self._node_proxies["node"] = provider.add_synth( in_=self.source_bus_id, out=self.parent.parent.audio_bus_proxies["output"], synthdef=self.build_synthdef( self.source_channel_count, self.effective_channel_count ), name=self.label, target_node=self.parent.node_proxy, ) ### PUBLIC PROPERTIES ### @property def source_bus_id(self): return self._source_bus_id @property def source_channel_count(self): return self._source_channel_count class DirectOut(SendObject): ### INITIALIZER ### def __init__( self, target_bus_id: int, target_channel_count: int, *, name=None, uuid=None ): self._target_bus_id = int(target_bus_id) self._target_channel_count = int(target_channel_count) SendObject.__init__(self, name=name, uuid=uuid) ### PRIVATE METHODS ### def _allocate(self, provider, target_node, add_action): Allocatable._allocate(self, provider, target_node, add_action) self._node_proxies["node"] = provider.add_synth( active=self.is_active, in_=self.parent.parent.audio_bus_proxies["output"], out=self.target_bus_id, synthdef=self.build_synthdef( self.effective_channel_count, self.target_channel_count ), name=self.label, target_node=self.parent.node_proxy, ) @classmethod async def _deserialize(cls, data, application): parent_uuid = UUID(data["meta"]["parent"]) parent = application.registry.get(parent_uuid) if parent is None: return True send = cls( name=data["meta"].get("name"), uuid=UUID(data["meta"]["uuid"]), target_bus_id=data["spec"]["target_bus_id"], target_channel_count=data["spec"]["target_channel_count"], ) if data["spec"]["position"] == "prefader": parent.prefader_sends._append(send) elif data["spec"]["position"] == "postfader": parent.postfader_sends._append(send) else: raise ValueError(f"Unknown position: {data['position']}") def _reallocate(self, difference): Allocatable._reallocate(self, difference) node_proxy = self._node_proxies.pop("node") self._allocate( self.provider, target_node=node_proxy, add_action=AddAction.ADD_AFTER ) node_proxy.free() def _serialize(self): serialized, auxiliary_entities = super()._serialize() serialized["spec"].update( target_bus_id=self.target_bus_id, target_channel_count=self.target_channel_count, ) return serialized, auxiliary_entities ### PUBLIC PROPERTIES ### @property def target_bus_id(self): return self._target_bus_id @property def target_channel_count(self): return self._target_channel_count class Target(ApplicationObject): ### INITIALIZER ### def __init__(self, *, label=None): ApplicationObject.__init__(self) self._dependencies: Set[Send] = set() self._label = label ### SPECIAL METHODS ### def __str__(self): return f"<{self.label} ({len(self._dependencies)})>" ### PUBLIC PROPERTIES ### @property def label(self): return self._label or type(self).__name__ ``` #### File: tloen/textui/__init__.py ```python import asyncio import urwid from ..commands.applications import ( BootApplication, ExitToTerminal, QuitApplication, ) from ..commands.slots import FireSlot from ..commands.transports import ToggleTransport from ..pubsub import PubSub from .transport import TransportWidget from .tree import ContextTree, DeviceTree, ParameterTree class Application: def __init__(self, command_queue, pubsub=None, registry=None): self.command_queue = command_queue self.pubsub = pubsub or PubSub() self.registry = registry if registry is not None else {} transport_widget = TransportWidget(self.pubsub) context_tree = ContextTree( self.command_queue, pubsub=self.pubsub, registry=self.registry, ) device_tree = DeviceTree( self.command_queue, pubsub=self.pubsub, registry=self.registry, ) parameter_tree = ParameterTree( self.command_queue, pubsub=self.pubsub, registry=self.registry, ) header = urwid.Columns([urwid.Text("\nt / l / ö / n"), transport_widget]) body = urwid.Columns( [ urwid.LineBox(context_tree, title="tracks", title_align="left"), urwid.LineBox(device_tree, title="devices", title_align="left"), urwid.LineBox(parameter_tree, title="parameters", title_align="left"), ], dividechars=1, ) footer = urwid.LineBox(urwid.Text("...")) self.widget = urwid.Frame(body, header=header, footer=footer) self.handlers = { "ctrl q": QuitApplication(), "ctrl b": BootApplication(), "ctrl c": ExitToTerminal(), "ctrl g": FireSlot(), " ": ToggleTransport(), } def unhandled_input(self, key): command = self.handlers.get(key) if command is None: return self.command_queue.put_nowait(command) async def run_async(self): loop = asyncio.get_running_loop() self.exit_future = loop.create_future() self.main_loop = urwid.MainLoop( self.widget, event_loop=urwid.AsyncioEventLoop(loop=loop), unhandled_input=self.unhandled_input, ) try: self.main_loop.start() self.main_loop.screen.tty_signal_keys( "undefined", "undefined", "undefined", "undefined", "undefined" ) await self.exit_future finally: self.main_loop.stop() def exit(self): self.exit_future.set_result(True) ```
{ "source": "josiah-wolf-oberholtzer/uqbar", "score": 2 }
#### File: josiah-wolf-oberholtzer/uqbar/setup.py ```python import pathlib import sys from distutils.version import LooseVersion import setuptools package_name = "uqbar" def read_version(): root_path = pathlib.Path(__file__).parent version_path = root_path / package_name / "_version.py" with version_path.open() as file_pointer: file_contents = file_pointer.read() local_dict = {} exec(file_contents, None, local_dict) return local_dict["__version__"] description = "Tools for building documentation with Sphinx, Graphviz and LaTeX" classifiers = [ "Development Status :: 3 - Alpha", "Environment :: Console", "Intended Audience :: Developers", "License :: OSI Approved :: MIT License", "Natural Language :: English", "Operating System :: MacOS", "Operating System :: POSIX", "Programming Language :: Python :: 3.6", ] install_requires = [ "Sphinx >= 3.2.0", "Unidecode >= 1.0.0", "black", "sphinx-rtd-theme >= 0.5.0", ] if LooseVersion(sys.version.split()[0]) < LooseVersion("3.7.0"): install_requires.append("dataclasses") extras_require = { "test": [ "flake8 >= 3.9.0", "isort >= 5.9.0", "mypy >= 0.900", "pytest >= 6.2.0", "pytest-cov >= 2.12.0", "types-PyYAML", "types-docutils", ] } keywords = ["sphinx", "graphviz", "latex", "documentation"] with open("README.md", "r") as file_pointer: long_description = file_pointer.read() version = read_version() if __name__ == "__main__": setuptools.setup( author="<NAME>", author_email="<EMAIL>", classifiers=classifiers, description=description, extras_require=extras_require, include_package_data=True, install_requires=install_requires, keywords=keywords, long_description=description, name=package_name, packages=[package_name], url="https://github.com/josiah-wolf-oberholtzer/uqbar", version=version, zip_safe=False, ) ``` #### File: uqbar/tests/test_book_sphinx.py ```python import sys from distutils.version import LooseVersion import pytest from docutils.parsers.rst import directives import uqbar.book.sphinx from uqbar.book.console import ConsoleError, ConsoleInput, ConsoleOutput from uqbar.book.extensions import GraphExtension from uqbar.book.sphinx import UqbarBookDirective from uqbar.strings import normalize @pytest.fixture(scope="module", autouse=True) def register_directives(): directives.register_directive("book", UqbarBookDirective) yield directives._directives.pop("book") source_a = """ :: >>> string = 'Hello, world!' :: >>> for i in range(3): ... string += " {}".format(i) ... :: >>> print(string) Hello, world! """ source_b = """ :: >>> import uqbar.graphs >>> g = uqbar.graphs.Graph() >>> n1 = uqbar.graphs.Node() >>> n2 = uqbar.graphs.Node() >>> g.extend([n1, n2]) >>> e = n1.attach(n2) :: >>> print(format(g, "graphviz")) :: >>> uqbar.graphs.Grapher(g)() """ source_c = """ :: >>> import uqbar.graphs >>> g = uqbar.graphs.Graph() >>> n1 = uqbar.graphs.Node() >>> g.append(n1) >>> for i in range(3): ... n2 = uqbar.graphs.Node() ... g.append(n2) ... e = n1.attach(n2) ... uqbar.graphs.Grapher(g)() ... print(i) ... n1 = n2 ... """ source_d = """ .. book:: :hide: >>> import uqbar.graphs >>> g = uqbar.graphs.Graph() >>> n1 = uqbar.graphs.Node() >>> n2 = uqbar.graphs.Node() >>> g.extend([n1, n2]) >>> e = n1.attach(n2) >>> uqbar.graphs.Grapher(g)() """ def test_parse_rst_01(): document = uqbar.book.sphinx.parse_rst(source_a) assert normalize(document.pformat()) == normalize( """ <document source="test"> <literal_block xml:space="preserve"> >>> string = 'Hello, world!' <literal_block xml:space="preserve"> >>> for i in range(3): ... string += " {}".format(i) ... <literal_block xml:space="preserve"> >>> print(string) Hello, world! """ ) def test_parse_rst_02(): document = uqbar.book.sphinx.parse_rst(source_b) assert normalize(document.pformat()) == normalize( """ <document source="test"> <literal_block xml:space="preserve"> >>> import uqbar.graphs >>> g = uqbar.graphs.Graph() >>> n1 = uqbar.graphs.Node() >>> n2 = uqbar.graphs.Node() >>> g.extend([n1, n2]) >>> e = n1.attach(n2) <literal_block xml:space="preserve"> >>> print(format(g, "graphviz")) <literal_block xml:space="preserve"> >>> uqbar.graphs.Grapher(g)() """ ) def test_collect_literal_blocks_01(): document = uqbar.book.sphinx.parse_rst(source_a) blocks = uqbar.book.sphinx.collect_literal_blocks(document) expected = [ """ <literal_block xml:space="preserve"> >>> string = 'Hello, world!' """, """ <literal_block xml:space="preserve"> >>> for i in range(3): ... string += " {}".format(i) ... """, """ <literal_block xml:space="preserve"> >>> print(string) Hello, world! """, ] actual = [normalize(block.pformat()) for block in blocks] expected = [normalize(text) for text in expected] assert actual == expected def test_collect_literal_blocks_02(): document = uqbar.book.sphinx.parse_rst(source_b) blocks = uqbar.book.sphinx.collect_literal_blocks(document) expected = [ """ <literal_block xml:space="preserve"> >>> import uqbar.graphs >>> g = uqbar.graphs.Graph() >>> n1 = uqbar.graphs.Node() >>> n2 = uqbar.graphs.Node() >>> g.extend([n1, n2]) >>> e = n1.attach(n2) """, """ <literal_block xml:space="preserve"> >>> print(format(g, "graphviz")) """, """ <literal_block xml:space="preserve"> >>> uqbar.graphs.Grapher(g)() """, ] actual = [normalize(block.pformat()) for block in blocks] expected = [normalize(text) for text in expected] assert actual == expected def test_interpret_code_blocks_01(): document = uqbar.book.sphinx.parse_rst(source_a) blocks = uqbar.book.sphinx.collect_literal_blocks(document) node_mapping = uqbar.book.sphinx.interpret_code_blocks(blocks) assert list(node_mapping.values()) == [ [ConsoleInput(string=">>> string = 'Hello, world!'\n")], [ ConsoleInput( string='>>> for i in range(3):\n... string += " {}".format(i)\n... \n' ) ], [ ConsoleInput(string=">>> print(string)\n"), ConsoleOutput(string="Hello, world! 0 1 2\n"), ], ] def test_interpret_code_blocks_02(): def logger_func(message): messages.append(message) error_message = ( "Traceback (most recent call last):\n" ' File "<stdin>", line 1, in <module>\n' ) if LooseVersion(sys.version.split()[0]) < LooseVersion("3.7"): error_message += "TypeError: must be str, not int\n" else: error_message += 'TypeError: can only concatenate str (not "int") to str\n' messages = [] source = normalize( """ This will interpret happily. :: >>> "1" + 2 Traceback (most recent call last): File "<stdin>", line 1, in <module> {error_message} """.format( error_message=error_message ) ) document = uqbar.book.sphinx.parse_rst(source) blocks = uqbar.book.sphinx.collect_literal_blocks(document) # This has a traceback, so it passes. uqbar.book.sphinx.interpret_code_blocks(blocks, logger_func=logger_func) assert messages == [error_message] messages[:] = [] source = normalize( """ This will not interpret happily. :: >>> for i in range(1, 4): ... i / 0 ... "This is fine" """ ) document = uqbar.book.sphinx.parse_rst(source) blocks = uqbar.book.sphinx.collect_literal_blocks(document) with pytest.raises(ConsoleError): # This does not have a traceback, so it fails. uqbar.book.sphinx.interpret_code_blocks(blocks, logger_func=logger_func) assert messages == [ ( "Traceback (most recent call last):\n" ' File "<stdin>", line 2, in <module>\n' "ZeroDivisionError: division by zero\n" ) ] messages[:] = [] # This passes because we force it to. uqbar.book.sphinx.interpret_code_blocks( blocks, allow_exceptions=True, logger_func=logger_func ) assert messages == [ ( "Traceback (most recent call last):\n" ' File "<stdin>", line 2, in <module>\n' "ZeroDivisionError: division by zero\n" ) ] def test_rebuild_document_01(): document = uqbar.book.sphinx.parse_rst(source_a) blocks = uqbar.book.sphinx.collect_literal_blocks(document) node_mapping = uqbar.book.sphinx.interpret_code_blocks(blocks) uqbar.book.sphinx.rebuild_document(document, node_mapping) assert normalize(document.pformat()) == normalize( """ <document source="test"> <literal_block xml:space="preserve"> >>> string = 'Hello, world!' <literal_block xml:space="preserve"> >>> for i in range(3): ... string += " {}".format(i) ... <literal_block xml:space="preserve"> >>> print(string) Hello, world! 0 1 2 """ ) def test_rebuild_document_02(): document = uqbar.book.sphinx.parse_rst(source_b) blocks = uqbar.book.sphinx.collect_literal_blocks(document) extensions = [GraphExtension] node_mapping = uqbar.book.sphinx.interpret_code_blocks( blocks, extensions=extensions ) uqbar.book.sphinx.rebuild_document(document, node_mapping) assert normalize(document.pformat()) == normalize( """ <document source="test"> <literal_block xml:space="preserve"> >>> import uqbar.graphs >>> g = uqbar.graphs.Graph() >>> n1 = uqbar.graphs.Node() >>> n2 = uqbar.graphs.Node() >>> g.extend([n1, n2]) >>> e = n1.attach(n2) <literal_block xml:space="preserve"> >>> print(format(g, "graphviz")) digraph G { node_0; node_1; node_0 -> node_1; } <literal_block xml:space="preserve"> >>> uqbar.graphs.Grapher(g)() <graphviz_block layout="dot" xml:space="preserve"> digraph G { node_0; node_1; node_0 -> node_1; } """ ) def test_rebuild_document_03(): document = uqbar.book.sphinx.parse_rst(source_c) blocks = uqbar.book.sphinx.collect_literal_blocks(document) extensions = [GraphExtension] node_mapping = uqbar.book.sphinx.interpret_code_blocks( blocks, extensions=extensions ) uqbar.book.sphinx.rebuild_document(document, node_mapping) assert normalize(document.pformat()) == normalize( """ <document source="test"> <literal_block xml:space="preserve"> >>> import uqbar.graphs >>> g = uqbar.graphs.Graph() >>> n1 = uqbar.graphs.Node() >>> g.append(n1) >>> for i in range(3): ... n2 = uqbar.graphs.Node() ... g.append(n2) ... e = n1.attach(n2) ... uqbar.graphs.Grapher(g)() ... print(i) ... n1 = n2 ... <graphviz_block layout="dot" xml:space="preserve"> digraph G { node_0; node_1; node_0 -> node_1; } <literal_block xml:space="preserve"> 0 <graphviz_block layout="dot" xml:space="preserve"> digraph G { node_0; node_1; node_2; node_0 -> node_1; node_1 -> node_2; } <literal_block xml:space="preserve"> 1 <graphviz_block layout="dot" xml:space="preserve"> digraph G { node_0; node_1; node_2; node_3; node_0 -> node_1; node_1 -> node_2; node_2 -> node_3; } <literal_block xml:space="preserve"> 2 """ ) def test_rebuild_document_04(): document = uqbar.book.sphinx.parse_rst(source_d) blocks = uqbar.book.sphinx.collect_literal_blocks(document) extensions = [GraphExtension] node_mapping = uqbar.book.sphinx.interpret_code_blocks( blocks, extensions=extensions ) uqbar.book.sphinx.rebuild_document(document, node_mapping) assert normalize(document.pformat()) == normalize( """ <document source="test"> <graphviz_block layout="dot" xml:space="preserve"> digraph G { node_0; node_1; node_0 -> node_1; } """ ) ``` #### File: uqbar/tests/test_cli.py ```python import io import pytest import uqbar.cli import uqbar.io from uqbar.strings import normalize class MeowCLI(uqbar.cli.CLI): alias = "meow" scripting_group = "mammals" short_description = "speak like a cat" def _process_args(self, arguments): if arguments.loud: print("MEOW!") else: print("Mew.") def _setup_argument_parser(self, parser): parser.add_argument("--loud", action="store_true", help="be adamant") class SquawkCLI(uqbar.cli.CLI): alias = "squawk" scripting_group = "birds" short_description = "speak like a bird" def _process_args(self, arguments): if arguments.loud: print("CAW!") else: print("Cheap.") def _setup_argument_parser(self, parser): parser.add_argument("--loud", action="store_true", help="be adamant") class WoofCLI(uqbar.cli.CLI): alias = "woof" scripting_group = "mammals" short_description = "speak like a dog" def _process_args(self, arguments): if arguments.loud: print("WOOF!") else: print("Wuf.") def _setup_argument_parser(self, parser): parser.add_argument("--loud", action="store_true", help="be adamant") class VoxAggregator(uqbar.cli.CLIAggregator): @property def cli_classes(self): return [MeowCLI, SquawkCLI, WoofCLI] def test_call(): string_io = io.StringIO() with uqbar.io.RedirectedStreams(string_io, string_io): with pytest.raises(SystemExit): VoxAggregator()("mammals meow --loud") assert normalize(string_io.getvalue()) == normalize( """ MEOW! """ ) def test_call_help(): string_io = io.StringIO() with uqbar.io.RedirectedStreams(string_io, string_io): with pytest.raises(SystemExit): VoxAggregator()("mammals meow --help") assert normalize(string_io.getvalue()) == normalize( """ usage: meow-cli [-h] [--version] [--loud] speak like a cat optional arguments: -h, --help show this help message and exit --version show program's version number and exit --loud be adamant """ ) def test_help(): string_io = io.StringIO() with uqbar.io.RedirectedStreams(string_io, string_io): with pytest.raises(SystemExit): VoxAggregator()("help") assert normalize(string_io.getvalue()) == normalize( """ usage: vox-aggregator [-h] [--version] {help,list,birds,mammals} ... optional arguments: -h, --help show this help message and exit --version show program's version number and exit subcommands: {help,list,birds,mammals} help print subcommand help list list subcommands birds {squawk} subcommand(s) mammals {meow, woof} subcommand(s) """ ) def test_list(): string_io = io.StringIO() with uqbar.io.RedirectedStreams(string_io, string_io): with pytest.raises(SystemExit): VoxAggregator()("list") assert normalize(string_io.getvalue()) == normalize( """ [birds] squawk: speak like a bird [mammals] meow: speak like a cat woof: speak like a dog """ ) ``` #### File: uqbar/tests/test_graphs_Node.py ```python import unittest import uqbar.graphs from uqbar.strings import normalize class TestCase(unittest.TestCase): def test___init__(self): node = uqbar.graphs.Node() assert node.name is None node = uqbar.graphs.Node(name="foo") assert node.name == "foo" assert not node.attributes attributes = uqbar.graphs.Attributes(mode="node", color="blue") node = uqbar.graphs.Node(name="foo", attributes=attributes) assert node.name == "foo" assert len(node.attributes) == 1 assert node.attributes["color"] == node.attributes.Color("blue") def test__get_canonical_name(self): node = uqbar.graphs.Node() assert node._get_canonical_name() == "node_0" node = uqbar.graphs.Node(name="foo") assert node._get_canonical_name() == "foo" node = uqbar.graphs.Node(name="Foo Bar Baz") assert node._get_canonical_name() == "Foo Bar Baz" graph = uqbar.graphs.Graph() node = uqbar.graphs.Node() graph.append(node) assert node._get_canonical_name() == "node_0" graph = uqbar.graphs.Graph() subgraph = uqbar.graphs.Graph() node = uqbar.graphs.Node() graph.append(subgraph) subgraph.append(node) assert node._get_canonical_name() == "node_0_0" graph = uqbar.graphs.Graph() node_a = uqbar.graphs.Node(name="foo") node_b = uqbar.graphs.Node(name="foo") node_c = uqbar.graphs.Node(name="bar") graph.extend([node_a, node_b, node_c]) assert node_a._get_canonical_name() == "foo_0" assert node_b._get_canonical_name() == "foo_1" assert node_c._get_canonical_name() == "bar" def test___format___str(self): node = uqbar.graphs.Node() assert format(node) == repr(node) node = uqbar.graphs.Node(name="foo") assert format(node) == repr(node) attributes = uqbar.graphs.Attributes(mode="node", color="blue") node = uqbar.graphs.Node(name="foo", attributes=attributes) assert format(node) == repr(node) def test___format___graphviz(self): node = uqbar.graphs.Node() assert format(node, "graphviz") == "node_0;" node = uqbar.graphs.Node(name="foo") assert format(node, "graphviz") == "foo;" attributes = uqbar.graphs.Attributes( mode="node", color="blue", fontname="Times New Roman", fontsize=11.5, shape="oval", ) node = uqbar.graphs.Node(name="foo", attributes=attributes) assert format(node, "graphviz") == normalize( """ foo [color=blue, fontname="Times New Roman", fontsize=11.5, shape=oval]; """ ) ``` #### File: uqbar/apis/ModuleDocumenter.py ```python import importlib import pathlib import types from typing import List, MutableMapping, Sequence, Tuple, Type # noqa import uqbar # noqa from uqbar.apis.ClassDocumenter import ClassDocumenter from uqbar.apis.FunctionDocumenter import FunctionDocumenter from uqbar.apis.MemberDocumenter import MemberDocumenter class ModuleDocumenter: """ A basic module documenter. :: >>> import uqbar.apis >>> documenter = uqbar.apis.ModuleDocumenter( ... 'uqbar.io', ... module_documenters=[ ... uqbar.apis.ModuleDocumenter('uqbar.io.Timer'), ... ], ... ) >>> print(str(documenter)) .. _uqbar--io: <BLANKLINE> io == <BLANKLINE> .. automodule:: uqbar.io <BLANKLINE> .. currentmodule:: uqbar.io <BLANKLINE> .. toctree:: <BLANKLINE> Timer <BLANKLINE> .. autofunction:: find_common_prefix <BLANKLINE> .. autofunction:: find_executable <BLANKLINE> .. autofunction:: relative_to <BLANKLINE> .. autofunction:: walk <BLANKLINE> .. autofunction:: write .. tip:: Subclass :py:class:`~uqbar.apis.ModuleDocumenter` to implement your own custom module documentation output. You'll need to provide your desired reStructuredText output via an overridden :py:meth:`~uqbar.apis.ModuleDocumenter.ModuleDocumenter.__str__` implementation. See :py:class:`~uqbar.apis.SummarizingModuleDocumenter` for an example. :param package_path: the module path of the module to document :param document_private_members: whether to documenter private module members :param member_documenter_classes: a list of :py:class:`~uqbar.apis.MemberDocumenter` subclasses, defining what classes to use to identify and document module members :param module_documenters: a list of of documenters for submodules and subpackages of the documented module; these are generated by an :py:class:`~uqbar.apis.APIBuilder` instance rather than the module documenter directly :param api_builder: an :py:class:`~uqbar.apis.APIBuilder` instance """ ### CLASS VARIABLES ### __documentation_section__ = "Documenters" ### INITIALIZER ### def __init__( self, package_path: str, document_private_members: bool = False, member_documenter_classes: Sequence[Type[MemberDocumenter]] = None, module_documenters: Sequence["ModuleDocumenter"] = None, ) -> None: self._package_path = package_path client = importlib.import_module(package_path) assert isinstance(client, types.ModuleType) self._client = client self._document_private_members = bool(document_private_members) if member_documenter_classes is None: member_documenter_classes = [ClassDocumenter, FunctionDocumenter] for _ in member_documenter_classes: assert issubclass(_, MemberDocumenter), _ self._member_documenter_classes = tuple(member_documenter_classes) if module_documenters is not None: for submodule_documenter in module_documenters: assert isinstance(submodule_documenter, ModuleDocumenter) module_documenters = tuple(module_documenters) self._module_documenters = module_documenters or () self._member_documenters = self._populate() ### SPECIAL METHODS ### def __str__(self) -> str: result = self._build_preamble() result.extend(self._build_toc(self.module_documenters or [])) for documenter in self._member_documenters: result.extend(["", str(documenter)]) return "\n".join(result) ### PRIVATE METHODS ### def _populate(self) -> Sequence[MemberDocumenter]: documenters = [] for name in sorted(dir(self.client)): if name.startswith("_") and not self.document_private_members: continue client = getattr(self.client, name) for class_ in self.member_documenter_classes: if class_.validate_client(client, self.package_path): path = "{}.{}".format(client.__module__, client.__name__) documenter = class_(path) documenters.append(documenter) break return tuple(documenters) ### PRIVATE METHODS ### def _build_toc(self, documenters, **kwargs) -> List[str]: result: List[str] = [] if not documenters: return result result.extend(["", ".. toctree::"]) result.append("") module_documenters = [_ for _ in documenters if isinstance(_, type(self))] for module_documenter in module_documenters: path = self._build_toc_path(module_documenter) if path: result.append(" {}".format(path)) return result def _build_toc_path(self, documenter): path = documenter.package_path.partition(self.package_path + ".")[-1] base, _, name = path.rpartition(".") if name.lower() == "index": path = base + "._" + name if not isinstance(documenter, ModuleDocumenter): path = path.rpartition(".")[0] elif documenter.is_package: path += "/index" if path.lower() == "index": path = "_" + path return path def _build_preamble(self) -> List[str]: result: List[str] = [ ".. _{}:".format(self.reference_name), "", self.package_name, "=" * len(self.package_name), "", ".. automodule:: {}".format(self.package_path), "", ".. currentmodule:: {}".format(self.package_path), ] return result ### PUBLIC PROPERTIES ### @property def client(self) -> object: return self._client @property def is_package(self) -> bool: return hasattr(self.client, "__path__") @property def document_private_members(self) -> bool: return self._document_private_members @property def documentation_path(self) -> pathlib.Path: path = pathlib.Path(".").joinpath(*self.package_path.split(".")) if self.is_package: path = path.joinpath("index") elif path.name.lower() == "index": name = path.name path = path.parent.joinpath("_" + name) return path.with_suffix(".rst") @property def is_nominative(self) -> bool: if self.is_package or len(self.member_documenters) != 1: return False parts = self.member_documenters[0].package_path.split(".") return parts[-1] == parts[-2] @property def member_documenter_classes(self) -> Sequence[Type[MemberDocumenter]]: return self._member_documenter_classes @property def member_documenters(self) -> Sequence[MemberDocumenter]: return self._member_documenters @property def member_documenters_by_section( self, ) -> Sequence[Tuple[str, Sequence[MemberDocumenter]]]: result: MutableMapping[str, List[MemberDocumenter]] = {} for documenter in self.member_documenters: result.setdefault(documenter.documentation_section, []).append(documenter) return sorted(result.items()) @property def module_documenters(self) -> Sequence["ModuleDocumenter"]: return self._module_documenters @property def package_name(self) -> str: if "." in self.package_path: return self._package_path.rpartition(".")[-1] return self._package_path @property def package_path(self) -> str: return self._package_path @property def reference_name(self) -> str: return self.package_path.replace("_", "-").replace(".", "--") ``` #### File: uqbar/apis/RootDocumenter.py ```python import pathlib class RootDocumenter: """ A basic root documenter. This documenter generates only one reStructuredText document: the root API index page, which contains information about all of the modules traversed by an :py:class:`~uqbar.apis.APIBuilder`. Output is a basic `toctree` directive. :: >>> import uqbar.apis >>> documenter = uqbar.apis.RootDocumenter( ... module_documenters=[ ... uqbar.apis.ModuleDocumenter('uqbar.io'), ... uqbar.apis.ModuleDocumenter('uqbar.strings'), ... ], ... ) >>> print(str(documenter)) API === <BLANKLINE> .. toctree:: <BLANKLINE> uqbar/io/index uqbar/strings <BLANKLINE> .. tip:: Subclass :py:class:`~uqbar.apis.RootDocumenter` to implement your own custom module documentation output. You'll need to provide your desired reStructuredText output via an overridden :py:meth:`~uqbar.apis.RootDocumenter.RootDocumenter.__str__` implementation. See :py:class:`~uqbar.apis.SummarizingRootDocumenter` for an example. :param module_documenters: a list of of documenters for modules and packages of the root documenter; these are generated by an :py:class:`~uqbar.apis.APIBuilder` instance rather than the module documenter directly """ ### CLASS VARIABLES ### __documentation_section__ = "Documenters" ### INITIALIZER ### def __init__(self, module_documenters=None, title="API"): import uqbar.apis if module_documenters is not None: assert all( isinstance(_, uqbar.apis.ModuleDocumenter) for _ in module_documenters ), module_documenters module_documenters = tuple(module_documenters) self._module_documenters = module_documenters or () self._title = title ### SPECIAL METHODS ### def __str__(self): result = [self.title, "=" * len(self.title), ""] if self.module_documenters: result.extend([".. toctree::", ""]) for module_documenter in self.module_documenters: path = module_documenter.package_path.replace(".", "/") if module_documenter.is_package: path = "{}/index".format(path) result.append(" {}".format(path)) result.append("") return "\n".join(result) ### PUBLIC PROPERTIES ### @property def documentation_path(self): return pathlib.Path("index.rst") @property def module_documenters(self): return self._module_documenters @property def title(self): return self._title ``` #### File: uqbar/apis/SummarizingClassDocumenter.py ```python import enum import inspect from typing import List, Tuple from uqbar.apis.ClassDocumenter import ClassDocumenter class SummarizingClassDocumenter(ClassDocumenter): """ A summarizing class documenter. Organizes class members by category, separated by category title and horizontal rule. Categories include: - Special methods - Methods - Class and static methods - Read/write properties - Read-only properties :: >>> import uqbar.apis >>> path = 'uqbar.apis.SummarizingClassDocumenter.SummarizingClassDocumenter' >>> documenter = uqbar.apis.SummarizingClassDocumenter(path) >>> documentation = str(documenter) >>> print(documentation) .. autoclass:: SummarizingClassDocumenter <BLANKLINE> .. raw:: html <BLANKLINE> <hr/> <BLANKLINE> .. rubric:: Attributes Summary :class: class-header <BLANKLINE> .. autosummary:: :nosignatures: <BLANKLINE> __str__ ignored_special_methods <BLANKLINE> .. raw:: html <BLANKLINE> <hr/> <BLANKLINE> .. rubric:: Special methods :class: class-header <BLANKLINE> .. automethod:: SummarizingClassDocumenter.__str__ <BLANKLINE> .. raw:: html <BLANKLINE> <hr/> <BLANKLINE> .. rubric:: Class & static methods :class: class-header <BLANKLINE> .. container:: inherited <BLANKLINE> .. automethod:: SummarizingClassDocumenter.validate_client <BLANKLINE> .. raw:: html <BLANKLINE> <hr/> <BLANKLINE> .. rubric:: Read-only properties :class: class-header <BLANKLINE> .. container:: inherited <BLANKLINE> .. autoattribute:: SummarizingClassDocumenter.client <BLANKLINE> .. container:: inherited <BLANKLINE> .. autoattribute:: SummarizingClassDocumenter.documentation_section <BLANKLINE> .. container:: inherited <BLANKLINE> .. autoattribute:: SummarizingClassDocumenter.package_path :param package_path: the module path and name of the member to document """ ### CLASS VARIABLES ### __documentation_section__ = "Documenters" ignored_special_methods: Tuple[str, ...] = ( "__dict__", "__getattribute__", "__getnewargs__", "__getstate__", "__init__", "__reduce__", "__reduce_ex__", "__setstate__", "__sizeof__", "__subclasshook__", "fromkeys", "pipe_cloexec", ) ### SPECIAL METHODS ### def __str__(self) -> str: name = getattr(self.client, "__name__") if issubclass(self.client, Exception): # type: ignore return ".. autoexception:: {}".format(name) attributes = self._classify_class_attributes() ( class_methods, data, methods, readonly_properties, readwrite_properties, special_methods, static_methods, ) = attributes result = [".. autoclass:: {}".format(name)] if issubclass(self.client, enum.Enum): # type: ignore result.extend([" :members:", " :undoc-members:"]) else: result.extend(self._build_member_autosummary(attributes)) result.extend( self._build_attribute_section( special_methods, "automethod", "Special methods" ) ) result.extend(self._build_attribute_section(methods, "automethod", "Methods")) result.extend( self._build_attribute_section( sorted(class_methods + static_methods, key=lambda x: x.name), "automethod", "Class & static methods", ) ) result.extend( self._build_attribute_section( readwrite_properties, "autoattribute", "Read/write properties" ) ) result.extend( self._build_attribute_section( readonly_properties, "autoattribute", "Read-only properties" ) ) return "\n".join(result) ### PRIVATE METHODS ### def _build_attribute_section( self, attributes, directive: str, title: str ) -> List[str]: result: List[str] = [] if not attributes: return result result.extend( [ "", " .. raw:: html", "", " <hr/>", "", " .. rubric:: {}".format(title), " :class: class-header", ] ) for attribute in attributes: result.append("") autodoc_directive = " .. {}:: {}.{}".format( directive, getattr(self.client, "__name__"), attribute.name ) if attribute.defining_class is self.client: result.append(autodoc_directive) else: result.append(" .. container:: inherited") result.append("") result.append(" {}".format(autodoc_directive)) return result def _build_member_autosummary(self, attributes) -> List[str]: result: List[str] = [] all_attributes: List[inspect.Attribute] = [] for attribute_section in attributes: all_attributes.extend( attribute for attribute in attribute_section if attribute.defining_class is self.client ) all_attributes.sort(key=lambda x: x.name) if not all_attributes: return result result.extend( [ "", " .. raw:: html", "", " <hr/>", "", " .. rubric:: {}".format("Attributes Summary"), " :class: class-header", "", " .. autosummary::", " :nosignatures:", "", ] ) for attribute in all_attributes: result.append(" {}".format(attribute.name)) return result def _classify_class_attributes(self): class_methods = [] data = [] methods = [] readonly_properties = [] readwrite_properties = [] special_methods = [] static_methods = [] attrs = inspect.classify_class_attrs(self.client) for attr in attrs: if attr.defining_class is object: continue elif ( getattr(self.client, "__documentation_ignore_inherited__", None) and attr.defining_class is not self.client ): continue # Handle un-gettable attrs like Flask-SQLAlchemy's Model's `query` try: getattr(self.client, attr.name) except Exception: continue if attr.kind == "method": if attr.name not in self.ignored_special_methods: if attr.name.startswith("__"): special_methods.append(attr) elif not attr.name.startswith("_"): methods.append(attr) elif attr.kind == "class method": if attr.name not in self.ignored_special_methods: if attr.name.startswith("__"): special_methods.append(attr) elif not attr.name.startswith("_"): class_methods.append(attr) elif attr.kind == "static method": if attr.name not in self.ignored_special_methods: if attr.name.startswith("__"): special_methods.append(attr) elif not attr.name.startswith("_"): static_methods.append(attr) elif attr.kind == "property" and not attr.name.startswith("_"): if attr.object.fset is None: readonly_properties.append(attr) else: readwrite_properties.append(attr) elif ( attr.kind == "data" and not attr.name.startswith("_") and attr.name not in getattr(self.client, "__slots__", ()) ): data.append(attr) class_methods = tuple(sorted(class_methods)) data = tuple(sorted(data)) methods = tuple(sorted(methods)) readonly_properties = tuple(sorted(readonly_properties)) readwrite_properties = tuple(sorted(readwrite_properties)) special_methods = tuple(sorted(special_methods)) static_methods = tuple(sorted(static_methods)) result = ( class_methods, data, methods, readonly_properties, readwrite_properties, special_methods, static_methods, ) return result ``` #### File: uqbar/containers/UniqueTreeList.py ```python from .UniqueTreeContainer import UniqueTreeContainer class UniqueTreeList(UniqueTreeContainer): """ A list-like node in a "unique" tree. List nodes may contain zero or more other nodes. Unique tree nodes may have at most one parent and may appear only once in the tree. """ ### INITIALIZER ### def __init__(self, children=None, name=None): super().__init__(name=name) self._children = [] if children is not None: self[:] = children ### SPECIAL METHODS ### def __delitem__(self, i): if isinstance(i, str): children = tuple(self._named_children[i]) for child in children: parent = child.parent del parent[parent.index(child)] return if isinstance(i, int): if i < 0: i = len(self) + i i = slice(i, i + 1) self.__setitem__(i, []) self._mark_entire_tree_for_later_update() def __getitem__(self, expr): if isinstance(expr, (int, slice)): return self._children[expr] elif isinstance(expr, str): result = sorted(self._named_children[expr], key=lambda x: x.graph_order) if len(result) == 1: return result[0] return result raise ValueError(expr) def __setitem__(self, i, new_items): if isinstance(i, int): new_items = self._prepare_setitem_single(new_items) start_index, stop_index, _ = slice(i, i + 1).indices(len(self)) else: new_items = self._prepare_setitem_multiple(new_items) start_index, stop_index, _ = i.indices(len(self)) old_items = self[start_index:stop_index] self._validate(new_items, old_items, start_index, stop_index) self._set_items(new_items, old_items, start_index, stop_index) self._mark_entire_tree_for_later_update() ### PRIVATE METHODS ### def _prepare_setitem_multiple(self, expr): return list(expr) def _prepare_setitem_single(self, expr): return [expr] def _set_items(self, new_items, old_items, start_index, stop_index): for old_item in old_items: old_item._set_parent(None) for new_item in new_items: new_item._set_parent(self) self._children.__setitem__(slice(start_index, start_index), new_items) def _validate(self, new_nodes, old_nodes, start_index, stop_index): parentage = self.parentage for new_node in new_nodes: if not isinstance(new_node, self._node_class): raise ValueError(f"Expected {self._node_class}, got {type(new_node)}") elif new_node in parentage: raise ValueError("Cannot set parent node as child.") ### PUBLIC METHODS ### def append(self, expr): self.__setitem__(slice(len(self), len(self)), [expr]) def extend(self, expr): self.__setitem__(slice(len(self), len(self)), expr) def index(self, expr): for i, child in enumerate(self._children): if child is expr: return i message = "{!r} not in {!r}." message = message.format(expr, self) raise ValueError(message) def insert(self, i, expr): self.__setitem__(slice(i, i), [expr]) def pop(self, i=-1): node = self[i] del self[i] return node def remove(self, node): i = self.index(node) del self[i] ``` #### File: uqbar/ext/ipython.py ```python from xml.dom import minidom # type: ignore from uqbar.graphs import Grapher def load_ipython_extension(ipython): patch_grapher() def patch_grapher(): def get_format(self): return "svg" def open_output_path(self, output_path): from IPython.core.display import display_svg with output_path.open() as file_pointer: contents = file_pointer.read() delete_attributes = True document = minidom.parseString(contents) svg_element = document.getElementsByTagName("svg")[0] view_box = svg_element.getAttribute("viewBox") view_box = [float(_) for _ in view_box.split()] if delete_attributes: if svg_element.attributes.get("height", None): del svg_element.attributes["height"] if svg_element.attributes.get("width", None): del svg_element.attributes["width"] else: height = "{}pt".format(int(view_box[-1] * 0.6)) width = "{}pt".format(int(view_box[-2] * 0.6)) svg_element.setAttribute("height", height) svg_element.setAttribute("width", width) svg_element.setAttribute("preserveAspectRatio", "xMinYMin") contents = document.toprettyxml() display_svg(contents, raw=True) Grapher.get_format = get_format Grapher.open_output_path = open_output_path ``` #### File: uqbar/graphs/Edge.py ```python from typing import Mapping, Optional, Tuple, Union import uqbar.graphs # noqa from uqbar.graphs.Attributes import Attributes class Edge(object): """ A Graphviz edge. """ ### CLASS VARIABLES ### __documentation_section__ = "Core Classes" ### INITIALIZER ### def __init__( self, attributes: Union[Mapping[str, object], Attributes] = None, is_directed: bool = True, head_port_position: str = None, tail_port_position: str = None, ) -> None: from .Attachable import Attachable from .Node import Node self._attributes = Attributes("edge", **(attributes or {})) self._head: Optional[Union[Node, Attachable]] = None self._head_port_position = head_port_position self._is_directed = bool(is_directed) self._tail: Optional[Union[Node, Attachable]] = None self._tail_port_position = tail_port_position ### SPECIAL METHODS ### def __format__(self, format_spec=None) -> str: # TODO: make the format specification options machine-readable if format_spec == "graphviz": return self.__format_graphviz__() return str(self) def __format_graphviz__(self) -> str: from .Attachable import Attachable from .Node import Node connection = "->" if not self.is_directed: connection = "--" tail_parts = [] tail_node = None tail_port_name = None if isinstance(self.tail, Node): tail_node = self.tail elif isinstance(self.tail, Attachable): tail_node = self.tail._get_node() tail_port_name = self.tail._get_port_name() if tail_node is None: raise ValueError tail_parts.append(tail_node._get_canonical_name()) if tail_port_name: tail_parts.append(tail_port_name) if self.tail_port_position: tail_parts.append(self.tail_port_position) tail_name = ":".join(Attributes._format_value(part) for part in tail_parts) head_parts = [] head_node = None head_port_name = None if isinstance(self.head, Node): head_node = self.head elif isinstance(self.head, Attachable): head_node = self.head._get_node() head_port_name = self.head._get_port_name() if head_node is None: raise ValueError head_parts.append(head_node._get_canonical_name()) if head_port_name: head_parts.append(head_port_name) if self.head_port_position: head_parts.append(self.head_port_position) head_name = ":".join(Attributes._format_value(part) for part in head_parts) edge_definition = "{} {} {}".format(tail_name, connection, head_name) result = [edge_definition] if len(self.attributes): attributes = format(self.attributes, "graphviz").split("\n") result[0] = "{} {}".format(result[0], attributes[0]) result.extend(attributes[1:]) else: result[-1] += ";" return "\n".join(result) ### PRIVATE METHODS ### def _get_highest_parent(self) -> "uqbar.graphs.Graph": if self.tail is None: raise ValueError(self.tail) elif self.head is None: raise ValueError(self.head) highest_parent: Optional[uqbar.graphs.Graph] = None tail_parentage = list(self.tail.parentage[1:]) head_parentage = list(self.head.parentage[1:]) while ( len(tail_parentage) and len(head_parentage) and tail_parentage[-1] is head_parentage[-1] ): highest_parent = tail_parentage[-1] tail_parentage.pop() head_parentage.pop() if highest_parent is None: message = "highest parent can not be none." raise Exception(message) return highest_parent ### PUBLIC METHODS ### def attach( self, tail: Union["uqbar.graphs.Node", "uqbar.graphs.Attachable"], head: Union["uqbar.graphs.Node", "uqbar.graphs.Attachable"], ) -> "Edge": from .Attachable import Attachable from .Node import Node prototype = (Node, Attachable) assert isinstance(tail, prototype) assert isinstance(head, prototype) self.detach() tail._edges.add(self) head._edges.add(self) self._tail = tail self._head = head return self def detach(self) -> "Edge": if self.tail is not None: self.tail._edges.remove(self) self._tail = None if self.head is not None: self.head._edges.remove(self) self._head = None return self ### PUBLIC PROPERTIES ### @property def attributes(self) -> Attributes: return self._attributes @property def head(self) -> Optional[Union["uqbar.graphs.Node", "uqbar.graphs.Attachable"]]: return self._head @property def head_graph_order(self) -> Tuple[int, ...]: if self.head is None: return () return self.head.graph_order @property def head_port_position(self) -> Optional[str]: return self._head_port_position @property def is_directed(self) -> bool: return self._is_directed @property def tail(self) -> Optional[Union["uqbar.graphs.Node", "uqbar.graphs.Attachable"]]: return self._tail @property def tail_graph_order(self) -> Tuple[int, ...]: if self.tail is None: return () return self.tail.graph_order @property def tail_port_position(self) -> Optional[str]: return self._tail_port_position ``` #### File: uqbar/graphs/Graph.py ```python from typing import Dict, List, Mapping, Set, Tuple, Union # noqa from uqbar.containers import UniqueTreeList from .Attributes import Attributes from .Edge import Edge # noqa from .Node import Node # noqa class Graph(UniqueTreeList): """ A Graphviz graph, subgraph or cluster. """ ### CLASS VARIABLES ### __documentation_section__ = "Core Classes" ### INITIALIZER ### def __init__( self, children=None, *, attributes: Union[Mapping[str, object], Attributes] = None, edge_attributes: Union[Mapping[str, object], Attributes] = None, is_cluster: bool = False, is_digraph: bool = True, name: str = None, node_attributes: Union[Mapping[str, object], Attributes] = None, ) -> None: UniqueTreeList.__init__(self, name=name, children=children) self._attributes = Attributes( "cluster" if is_cluster else "graph", **(attributes or {}) ) self._edge_attributes = Attributes("edge", **(edge_attributes or {})) self._node_attributes = Attributes("node", **(node_attributes or {})) self._is_cluster = bool(is_cluster) self._is_digraph = bool(is_digraph) ### SPECIAL METHODS ### def __format__(self, format_spec: str = None) -> str: # TODO: make the format specification options machine-readable if format_spec == "graphviz": return self.__format_graphviz__() return str(self) def __format_graphviz__(self) -> str: def recurse(graph): indent = " " result = [] if not graph.parent: name = graph.name or "G" if graph.is_digraph: string = "digraph {} {{".format(Attributes._format_value(name)) else: string = "graph {} {{".format(Attributes._format_value(name)) else: if graph.name is not None: name = graph.name if graph.is_cluster: name = "cluster_{}".format(name) else: name = graph._get_canonical_name() string = "subgraph {} {{".format(Attributes._format_value(name)) result.append(string) if graph.attributes: attributes = "graph {}".format( format(graph.attributes, "graphviz") ).split("\n") result.extend(indent + line for line in attributes) if graph.node_attributes: attributes = "node {}".format( format(graph.node_attributes, "graphviz") ).split("\n") result.extend(indent + line for line in attributes) if graph.edge_attributes: attributes = "edge {}".format( format(graph.edge_attributes, "graphviz") ).split("\n") result.extend(indent + line for line in attributes) for child in graph: if isinstance(child, type(self)): lines = (indent + line for line in recurse(child)) else: lines = ( indent + line for line in format(child, "graphviz").split("\n") ) result.extend(lines) if graph in edge_parents: for edge in edge_parents[graph]: lines = format(edge, "graphviz").split("\n") result.extend(indent + line for line in lines) result.append("}") return result all_edges: Set[Edge] = set() for child in self.depth_first(): for edge in getattr(child, "edges", ()): if edge.tail.root is not edge.head.root: continue all_edges.add(edge) edge_parents: Dict[Graph, List[Edge]] = {} for edge in sorted( all_edges, key=lambda edge: (edge.tail_graph_order, edge.head_graph_order) ): highest_parent = edge._get_highest_parent() edge_parents.setdefault(highest_parent, []).append(edge) return "\n".join(recurse(self)) ### PRIVATE METHODS ### def _get_canonical_name(self) -> str: name_prefix = "graph" if self.is_cluster: name_prefix = "cluster" if self.name is not None: name = self.name root = self.root if root: instances = root[self.name] if not isinstance(instances, type(self)): name = "{}_{}".format(name, instances.index(self)) suffix = name elif self.graph_order: suffix = "_".join(str(x) for x in self.graph_order) else: suffix = "0" return "{}_{}".format(name_prefix, suffix) ### PRIVATE PROPERTIES ### @property def _node_class(self) -> Tuple[type, ...]: import uqbar.graphs return (uqbar.graphs.Graph, uqbar.graphs.Node) ### PUBLIC PROPERTIES ### @property def attributes(self) -> Attributes: return self._attributes @property def edge_attributes(self) -> Attributes: return self._edge_attributes @property def is_cluster(self) -> bool: return self._is_cluster @property def is_digraph(self) -> bool: return self._is_digraph @property def node_attributes(self) -> Attributes: return self._node_attributes ``` #### File: uqbar/graphs/RecordField.py ```python from typing import Optional import uqbar.graphs # noqa from uqbar.containers import UniqueTreeNode from .Attachable import Attachable class RecordField(Attachable, UniqueTreeNode): """ A Graphviz record field. :: >>> import uqbar.graphs >>> field = uqbar.graphs.RecordField(label='My Label') >>> print(format(field, 'graphviz')) <f_0> My Label Port names are generated based on the graph order of the field within its parent node: :: >>> other_field = uqbar.graphs.RecordField(label='Other Label') >>> group = uqbar.graphs.RecordGroup() >>> node = uqbar.graphs.Node(attributes=dict(shape='Mrecord')) >>> cluster = uqbar.graphs.Graph(is_cluster=True) >>> graph = uqbar.graphs.Graph() :: >>> graph.append(cluster) >>> cluster.append(node) >>> node.append(group) >>> group.extend([other_field, field]) >>> print(format(field, 'graphviz')) <f_0_1> My Label If a node contains record fields or groups, their format contributions override any string label in the node's attributes: :: >>> print(format(node, 'graphviz')) node_0_0 [label="{ <f_0_0> Other Label | <f_0_1> My Label }", shape=Mrecord]; :: >>> node.attributes['label'] = 'Foo' >>> print(format(node, 'graphviz')) node_0_0 [label="{ <f_0_0> Other Label | <f_0_1> My Label }", shape=Mrecord]; :: >>> node[:] = [] >>> print(format(node, 'graphviz')) node_0_0 [label=Foo, shape=Mrecord]; """ ### CLASS VARIABLES ### __documentation_section__ = "Record Field Classes" ### INITIALIZER ### def __init__(self, label: str = None, *, name: str = None) -> None: UniqueTreeNode.__init__(self, name=name) Attachable.__init__(self) if label is not None: label = str(label) self._label = label ### SPECIAL METHODS ### def __format__(self, format_spec: str = None) -> str: # TODO: make the format specification options machine-readable if format_spec == "graphviz": return self.__format_graphviz__() return str(self) def __format_graphviz__(self) -> str: result = "<{}>".format(self._get_port_name()) if self.label: result = "{} {}".format(result, self.label) return result ### PUBLIC PROPERTIES ### @property def label(self) -> Optional[str]: return self._label ``` #### File: uqbar/graphs/RecordGroup.py ```python from typing import Tuple # noqa from uqbar.containers import UniqueTreeList class RecordGroup(UniqueTreeList): """ A Graphviz record field group. :: >>> import uqbar.graphs >>> group = uqbar.graphs.RecordGroup() >>> group.extend([ ... uqbar.graphs.RecordField(), ... uqbar.graphs.RecordGroup([ ... uqbar.graphs.RecordField(), ... uqbar.graphs.RecordField(), ... ]), ... uqbar.graphs.RecordField(), ... ]) >>> print(format(group, 'graphviz')) { <f_0> | { <f_0> | <f_0> } | <f_0> } """ ### CLASS VARIABLES ### __documentation_section__ = "Record Field Classes" ### INITIALIZER ### def __init__(self, children=None, *, name: str = None) -> None: UniqueTreeList.__init__(self, name=name, children=children) ### SPECIAL METHODS ### def __format__(self, format_spec=None) -> str: # TODO: make the format specification options machine-readable if format_spec == "graphviz": return self.__format_graphviz__() return str(self) def __format_graphviz__(self) -> str: result = " | ".join(_ for _ in (format(_, "graphviz") for _ in self) if _) if result: result = "{{ {} }}".format(result) return result ### PRIVATE PROPERTIES ### @property def _node_class(self) -> Tuple[type, ...]: import uqbar.graphs return (uqbar.graphs.RecordField, uqbar.graphs.RecordGroup) ``` #### File: uqbar/io/__init__.py ```python import collections import os import pathlib from typing import Generator, List, Optional, Sequence, Tuple, Union from .DirectoryChange import DirectoryChange # noqa from .Profiler import Profiler # noqa from .RedirectedStreams import RedirectedStreams # noqa from .Timer import Timer # noqa def find_common_prefix( paths: Sequence[Union[str, pathlib.Path]] ) -> Optional[pathlib.Path]: """ Find the common prefix of two or more paths. :: >>> import pathlib >>> one = pathlib.Path('foo/bar/baz') >>> two = pathlib.Path('foo/quux/biz') >>> three = pathlib.Path('foo/quux/wuux') :: >>> import uqbar.io >>> str(uqbar.io.find_common_prefix([one, two, three])) 'foo' :param paths: paths to inspect """ counter: collections.Counter = collections.Counter() for path in paths: path = pathlib.Path(path) counter.update([path]) counter.update(path.parents) valid_paths = sorted( [path for path, count in counter.items() if count >= len(paths)], key=lambda x: len(x.parts), ) if valid_paths: return valid_paths[-1] return None def find_executable(name: str, flags=os.X_OK) -> List[str]: """ Finds executable `name`. Similar to Unix ``which`` command. Returns list of zero or more full paths to `name`. """ result = [] extensions = [x for x in os.environ.get("PATHEXT", "").split(os.pathsep) if x] path = os.environ.get("PATH", None) if path is None: return [] for path in os.environ.get("PATH", "").split(os.pathsep): path = os.path.join(path, name) if os.access(path, flags): result.append(path) for extension in extensions: path_extension = path + extension if os.access(path_extension, flags): result.append(path_extension) return result def relative_to( source_path: Union[str, pathlib.Path], target_path: Union[str, pathlib.Path] ) -> pathlib.Path: """ Generates relative path from ``source_path`` to ``target_path``. Handles the case of paths without a common prefix. :: >>> import pathlib >>> source = pathlib.Path('foo/bar/baz') >>> target = pathlib.Path('foo/quux/biz') :: >>> target.relative_to(source) Traceback (most recent call last): ... ValueError: 'foo/quux/biz' does not start with 'foo/bar/baz' :: >>> import uqbar.io >>> str(uqbar.io.relative_to(source, target)) '../../quux/biz' :param source_path: the source path :param target_path: the target path """ source_path = pathlib.Path(source_path).absolute() if source_path.is_file(): source_path = source_path.parent target_path = pathlib.Path(target_path).absolute() common_prefix = find_common_prefix([source_path, target_path]) if not common_prefix: raise ValueError("No common prefix") source_path = source_path.relative_to(common_prefix) target_path = target_path.relative_to(common_prefix) result = pathlib.Path(*[".."] * len(source_path.parts)) return result / target_path def walk( root_path: Union[str, pathlib.Path], top_down: bool = True ) -> Generator[ Tuple[pathlib.Path, Sequence[pathlib.Path], Sequence[pathlib.Path]], None, None ]: """ Walks a directory tree. Like :py:func:`os.walk` but yielding instances of :py:class:`pathlib.Path` instead of strings. :param root_path: foo :param top_down: bar """ root_path = pathlib.Path(root_path) directory_paths, file_paths = [], [] for path in sorted(root_path.iterdir()): if path.is_dir(): directory_paths.append(path) else: file_paths.append(path) if top_down: yield root_path, directory_paths, file_paths for directory_path in directory_paths: yield from walk(directory_path, top_down=top_down) if not top_down: yield root_path, directory_paths, file_paths def write( contents: str, path: Union[str, pathlib.Path], verbose: bool = False, logger_func=None, ) -> bool: """ Writes ``contents`` to ``path``. Checks if ``path`` already exists and only write out new contents if the old contents do not match. Creates any intermediate missing directories. :param contents: the file contents to write :param path: the path to write to :param verbose: whether to print output """ print_func = logger_func or print path = pathlib.Path(path) if path.exists(): with path.open("r") as file_pointer: old_contents = file_pointer.read() if old_contents == contents: if verbose: print_func("preserved {}".format(path)) return False else: with path.open("w") as file_pointer: file_pointer.write(contents) if verbose: print_func("rewrote {}".format(path)) return True elif not path.exists(): if not path.parent.exists(): path.parent.mkdir(parents=True) with path.open("w") as file_pointer: file_pointer.write(contents) if verbose: print_func("wrote {}".format(path)) return True ``` #### File: uqbar/uqbar/objects.py ```python import collections import inspect def _dispatch_formatting(expr): if isinstance(expr, (list, tuple)): return _get_sequence_repr(expr) return repr(expr) def _get_object_signature(expr): expr = type(expr) # print('E-I-ID', id(expr.__init__)) # print('E-N-ID', id(expr.__new__)) # print('o-I-ID', id(object.__init__)) # print('o-N-ID', id(object.__new__)) # print('IEQ?', expr.__init__ == object.__init__) # print('NEQ?', expr.__new__ == object.__new__) # attrs = {_.name: _ for _ in inspect.classify_class_attrs(expr)} # print('I?', attrs['__init__']) # print('N?', attrs['__new__']) if expr.__new__ is not object.__new__: return inspect.signature(expr.__new__) if expr.__init__ is not object.__init__: return inspect.signature(expr.__init__) return None def _get_sequence_repr(expr): prototype = (bool, int, float, str, type(None)) if all(isinstance(x, prototype) for x in expr): result = repr(expr) if len(result) < 50: return result if isinstance(expr, list): braces = "[", "]" else: braces = "(", ")" result = [braces[0]] for x in expr: for line in repr(x).splitlines(): result.append(" " + line) result[-1] += "," result.append(braces[-1]) return "\n".join(result) def compare_objects(object_one, object_two, coerce=False): if coerce: try: object_two = type(object_one)(object_two) except (ValueError, TypeError): return False object_one_values = type(object_one), get_vars(object_one) try: object_two_values = type(object_two), get_vars(object_two) except AttributeError: object_two_values = type(object_two), object_two return object_one_values == object_two_values def get_hash(expr): args, var_args, kwargs = get_vars(expr) hash_values = [type(expr)] for key, value in args.items(): if isinstance(value, list): value = tuple(value) elif isinstance(value, set): value = frozenset(value) elif isinstance(value, dict): value = tuple(sorted(value.items())) args[key] = value hash_values.append(tuple(args.items())) hash_values.append(tuple(var_args)) for key, value in kwargs.items(): if isinstance(value, list): value = tuple(value) elif isinstance(value, set): value = frozenset(value) elif isinstance(value, dict): value = tuple(sorted(value.items())) kwargs[key] = value hash_values.append(tuple(sorted(kwargs.items()))) return hash(tuple(hash_values)) def get_repr(expr, multiline=None, suppress_defaults=True): """ Build a repr string for ``expr`` from its vars and signature. :: >>> class MyObject: ... def __init__(self, arg1, arg2, *var_args, foo=None, bar=None, **kwargs): ... self.arg1 = arg1 ... self.arg2 = arg2 ... self.var_args = var_args ... self.foo = foo ... self.bar = bar ... self.kwargs = kwargs ... >>> my_object = MyObject('a', 'b', 'c', 'd', foo='x', quux=['y', 'z']) :: >>> import uqbar >>> print(uqbar.objects.get_repr(my_object)) MyObject( 'a', 'b', 'c', 'd', foo='x', quux=['y', 'z'], ) """ signature = _get_object_signature(expr) if signature is None: return "{}()".format(type(expr).__name__) defaults = {} for name, parameter in signature.parameters.items(): if parameter.default is not inspect._empty: defaults[name] = parameter.default args, var_args, kwargs = get_vars(expr) args_parts = collections.OrderedDict() var_args_parts = [] kwargs_parts = {} has_lines = bool(multiline) parts = [] # Format keyword-optional arguments. # print(type(expr), args) for i, (key, value) in enumerate(args.items()): arg_repr = _dispatch_formatting(value) if "\n" in arg_repr: has_lines = True args_parts[key] = arg_repr # Format *args for arg in var_args: arg_repr = _dispatch_formatting(arg) if "\n" in arg_repr: has_lines = True var_args_parts.append(arg_repr) # Format **kwargs for key, value in sorted(kwargs.items()): if suppress_defaults and key in defaults and value == defaults[key]: continue value = _dispatch_formatting(value) arg_repr = "{}={}".format(key, value) has_lines = True kwargs_parts[key] = arg_repr for _, part in args_parts.items(): parts.append(part) parts.extend(var_args_parts) for _, part in sorted(kwargs_parts.items()): parts.append(part) # If we should format on multiple lines, add the appropriate formatting. if has_lines and parts and multiline is not False: for i, part in enumerate(parts): parts[i] = "\n".join(" " + line for line in part.split("\n")) parts.append(")") parts = ",\n".join(parts) return "{}(\n{}".format(type(expr).__name__, parts) parts = ", ".join(parts) return "{}({})".format(type(expr).__name__, parts) def get_vars(expr): """ Get ``args``, ``var args`` and ``kwargs`` for an object ``expr``. :: >>> class MyObject: ... def __init__(self, arg1, arg2, *var_args, foo=None, bar=None, **kwargs): ... self.arg1 = arg1 ... self.arg2 = arg2 ... self.var_args = var_args ... self.foo = foo ... self.bar = bar ... self.kwargs = kwargs ... >>> my_object = MyObject('a', 'b', 'c', 'd', foo='x', quux=['y', 'z']) :: >>> import uqbar >>> args, var_args, kwargs = uqbar.objects.get_vars(my_object) :: >>> args OrderedDict([('arg1', 'a'), ('arg2', 'b')]) :: >>> var_args ['c', 'd'] :: >>> kwargs {'foo': 'x', 'quux': ['y', 'z']} """ # print('TYPE?', type(expr)) signature = _get_object_signature(expr) if signature is None: return ({}, [], {}) # print('SIG?', signature) args = collections.OrderedDict() var_args = [] kwargs = {} if expr is None: return args, var_args, kwargs for i, (name, parameter) in enumerate(signature.parameters.items()): # print(' ', parameter) if i == 0 and name in ("self", "cls", "class_", "klass"): continue if parameter.kind is inspect._POSITIONAL_ONLY: try: args[name] = getattr(expr, name) except AttributeError: args[name] = expr[name] elif ( parameter.kind is inspect._POSITIONAL_OR_KEYWORD or parameter.kind is inspect._KEYWORD_ONLY ): found = False for x in (name, "_" + name): try: value = getattr(expr, x) found = True break except AttributeError: try: value = expr[x] found = True break except (KeyError, TypeError): pass if not found: raise ValueError("Cannot find value for {!r}".format(name)) if parameter.default is inspect._empty: args[name] = value elif parameter.default != value: kwargs[name] = value else: kwargs[name] = parameter.default elif parameter.kind is inspect._VAR_POSITIONAL: value = None try: value = expr[:] except TypeError: value = getattr(expr, name) if value: var_args.extend(value) elif parameter.kind is inspect._VAR_KEYWORD: items = {} if hasattr(expr, "items"): items = expr.items() elif hasattr(expr, name): mapping = getattr(expr, name) if not isinstance(mapping, dict): mapping = dict(mapping) items = mapping.items() elif hasattr(expr, "_" + name): mapping = getattr(expr, "_" + name) if not isinstance(mapping, dict): mapping = dict(mapping) items = mapping.items() for key, value in items: if key not in args: kwargs[key] = value return args, var_args, kwargs def new(expr, *args, **kwargs): """ Template an object. :: >>> class MyObject: ... def __init__(self, arg1, arg2, *var_args, foo=None, bar=None, **kwargs): ... self.arg1 = arg1 ... self.arg2 = arg2 ... self.var_args = var_args ... self.foo = foo ... self.bar = bar ... self.kwargs = kwargs ... >>> my_object = MyObject('a', 'b', 'c', 'd', foo='x', quux=['y', 'z']) :: >>> import uqbar >>> new_object = uqbar.objects.new(my_object, foo=666, bar=1234) >>> print(uqbar.objects.get_repr(new_object)) MyObject( 'a', 'b', 'c', 'd', bar=1234, foo=666, quux=['y', 'z'], ) Original object is unchanged: :: >>> print(uqbar.objects.get_repr(my_object)) MyObject( 'a', 'b', 'c', 'd', foo='x', quux=['y', 'z'], ) """ # TODO: Clarify old vs. new variable naming here. current_args, current_var_args, current_kwargs = get_vars(expr) new_kwargs = current_kwargs.copy() recursive_arguments = {} for key in tuple(kwargs): if "__" in key: value = kwargs.pop(key) key, _, subkey = key.partition("__") recursive_arguments.setdefault(key, []).append((subkey, value)) for key, pairs in recursive_arguments.items(): recursed_object = current_args.get(key, current_kwargs.get(key)) if recursed_object is None: continue kwargs[key] = new(recursed_object, **dict(pairs)) if args: current_var_args = args for key, value in kwargs.items(): if key in current_args: current_args[key] = value else: new_kwargs[key] = value new_args = list(current_args.values()) + list(current_var_args) return type(expr)(*new_args, **new_kwargs) ``` #### File: uqbar/sphinx/api.py ```python import importlib import pathlib import types from typing import Any, Dict, List from sphinx.util import logging from sphinx.util.console import bold, darkgreen, darkred, purple # type: ignore import uqbar.apis logger = logging.getLogger(__name__) def logger_func(string): if string.startswith("preserved"): return elif string.startswith("rewrote"): string = purple(string) elif string.startswith("pruned"): string = darkred(string) elif string.startswith("wrote"): string = darkgreen(string) logger.info("{} {}".format(bold("[uqbar-api]"), string)) def on_builder_inited(app): """ Hooks into Sphinx's ``builder-inited`` event. Builds out the ReST API source. """ config = app.builder.config target_directory = ( pathlib.Path(app.builder.env.srcdir) / config.uqbar_api_directory_name ) initial_source_paths: List[str] = [] source_paths = config.uqbar_api_source_paths for source_path in source_paths: if isinstance(source_path, types.ModuleType): if hasattr(source_path, "__path__"): initial_source_paths.extend(getattr(source_path, "__path__")) else: initial_source_paths.extend(source_path.__file__) continue try: module = importlib.import_module(source_path) if hasattr(module, "__path__"): initial_source_paths.extend(getattr(module, "__path__")) else: initial_source_paths.append(module.__file__) except ImportError: initial_source_paths.append(source_path) root_documenter_class = config.uqbar_api_root_documenter_class if isinstance(root_documenter_class, str): module_name, _, class_name = root_documenter_class.rpartition(".") module = importlib.import_module(module_name) root_documenter_class = getattr(module, class_name) module_documenter_class = config.uqbar_api_module_documenter_class if isinstance(module_documenter_class, str): module_name, _, class_name = module_documenter_class.rpartition(".") module = importlib.import_module(module_name) module_documenter_class = getattr(module, class_name) # Don't modify the list in Sphinx's config. Sphinx won't pickle class # references, and strips them from the saved config. That leads to Sphinx # believing that the config has changed on every run. member_documenter_classes = list(config.uqbar_api_member_documenter_classes or []) for i, member_documenter_class in enumerate(member_documenter_classes): if isinstance(member_documenter_class, str): module_name, _, class_name = member_documenter_class.rpartition(".") module = importlib.import_module(module_name) member_documenter_classes[i] = getattr(module, class_name) api_builder = uqbar.apis.APIBuilder( initial_source_paths=initial_source_paths, target_directory=target_directory, document_empty_modules=config.uqbar_api_document_empty_modules, document_private_members=config.uqbar_api_document_private_members, document_private_modules=config.uqbar_api_document_private_modules, member_documenter_classes=member_documenter_classes or None, module_documenter_class=module_documenter_class, omit_root=config.uqbar_api_omit_root, root_documenter_class=root_documenter_class, title=config.uqbar_api_title, logger_func=logger_func, ) api_builder() def setup(app) -> Dict[str, Any]: """ Sets up Sphinx extension. """ app.add_config_value("uqbar_api_directory_name", "api", "env") app.add_config_value("uqbar_api_document_empty_modules", False, "env") app.add_config_value("uqbar_api_document_private_members", False, "env") app.add_config_value("uqbar_api_document_private_modules", False, "env") app.add_config_value("uqbar_api_member_documenter_classes", None, "env") app.add_config_value("uqbar_api_module_documenter_class", None, "env") app.add_config_value("uqbar_api_omit_root", False, "env") app.add_config_value("uqbar_api_root_documenter_class", None, "env") app.add_config_value("uqbar_api_source_paths", None, "env") app.add_config_value("uqbar_api_title", "API", "html") app.connect("builder-inited", on_builder_inited) return { "version": uqbar.__version__, "parallel_read_safe": True, "parallel_write_safe": True, } ```
{ "source": "josiahw/SimpleSVM", "score": 3 }
#### File: josiahw/SimpleSVM/SimpleSVM.py ```python import numpy import numpy.linalg def polyKernel(a,b,pwr): return numpy.dot(a,b)**pwr #numpy.dot(a,a) - numpy.dot(b,b) # -1 # def rbfKernel(a,b,gamma): return numpy.exp(-gamma * numpy.linalg.norm(a - b)) class SimpleSVM: w = None a = None b = None C = None sv = None kernel = None kargs = () tolerance = None verbose = True def __init__(self, C, tolerance = 0.001, kernel = numpy.dot, kargs = () ): """ The parameters are: - C: SVC cost - tolerance: gradient descent solution accuracy - kernel: the kernel function do use as k(a, b, *kargs) - kargs: extra parameters for the kernel """ self.C = C self.kernel = kernel self.tolerance = tolerance self.kargs = kargs def fit(self, X, y): """ Fit to data X with labels y. """ """ Construct the Q matrix for solving """ ysigned = y * 2 - 1 Q = numpy.zeros((len(data),len(data))) for i in xrange(len(data)): for j in xrange(i,len(data)): Qval = ysigned[i] * ysigned[j] Qval *= self.kernel(*( (data[i,:], data[j,:]) + self.kargs )) Q[i,j] = Q[j,i] = Qval """ Solve for a and w simultaneously by coordinate descent. This means no quadratic solver is needed! The support vectors correspond to non-zero values in a. """ self.w = numpy.zeros(X.shape[1]) self.a = numpy.zeros(X.shape[0]) delta = 10000000000.0 while delta > self.tolerance: delta = 0. for i in xrange(len(data)): g = numpy.dot(Q[i,:], self.a) - 1.0 adelta = self.a[i] - min(max(self.a[i] - g/Q[i,i], 0.0), self.C) self.w += adelta * X[i,:] delta += abs(adelta) self.a[i] -= adelta if self.verbose: print "Descent step magnitude:", delta #print Q #self.a self.sv = X[self.a > 0.0, :] self.a = (self.a * ysigned)[self.a > 0.0] if self.verbose: print "Number of support vectors:", len(self.a) """ Select support vectors and solve for b to get the final classifier """ self.b = self._predict(self.sv[0,:])[0] if self.a[0] > 0: self.b *= -1 if self.verbose: print "Bias value:", self.b def _predict(self, X): if (len(X.shape) < 2): X = X.reshape((1,-1)) clss = numpy.zeros(len(X)) for i in xrange(len(X)): for j in xrange(len(self.sv)): clss[i] += self.a[j] * self.kernel(* ((self.sv[j,:],X[i,:]) + self.kargs)) return clss def predict(self, X): """ Predict classes for data X. """ return self._predict(X) > self.b if __name__ == '__main__': import sklearn.datasets data = sklearn.datasets.load_digits(2).data labels = sklearn.datasets.load_digits(2).target C = 100.0 clss = SimpleSVM(C,0.001,rbfKernel,(0.5,)) clss.fit(data,labels) t = clss.predict(data) print "Error", numpy.sum((labels-t)**2) / float(len(data)) #print sum(a > 0) #print w ```
{ "source": "josiasal/tweetinvi", "score": 2 }
#### File: tweetinvi/tools/tweetinvi-builder.py ```python import os import re import glob import argparse import sys from shutil import copyfile, rmtree from pathlib import Path parser = argparse.ArgumentParser() parser.add_argument('--version', nargs=1, default='5.0.4') parser.add_argument('--pre', nargs=1, default='') parser.add_argument('--build-version', action='store_true') parser.add_argument('--nuget-push', action='store_true') args = parser.parse_args() version = args.version nugetVersion = version + args.pre if args.build_version: print(nugetVersion) sys.exit(0) if args.nuget_push: print('This is going to publish 3 packages on nuget.org as version' + nugetVersion + '. Please confirm by typing "continue"') answer = input() if answer == 'continue': print('publishing on nuget...') os.system('cd TweetinviAPI && nuget push TweetinviAPI.' + nugetVersion + '.nupkg -Source nuget.org') os.system('cd TweetinviAPI-Symbols && nuget push TweetinviAPI.' + nugetVersion + '.snupkg -Source nuget.org') os.system('cd TweetinviAspNet && nuget push TweetinviAPI.AspNetPlugin.' + nugetVersion + '.nupkg -Source nuget.org') else: print('nuget push aborted') sys.exit(0) srcFolders = os.listdir('../src/') tweetinviProjects = list(filter(lambda folder: "Tweetinvi" in folder, srcFolders)) def replace(filepath, regex, with_content): with open(filepath, 'r') as file: filedata = file.read() filedata = re.sub(regex, with_content, filedata) with open(filepath, 'w') as file: file.write(filedata) def remove_files_in(path): files = glob.glob(path + '/*') for f in files: os.remove(f) def createPath(path): try: os.makedirs(path) except FileExistsError: print("Directory ", path, " already exists") def update_version(): nuspecVersionRegex = re.compile(r'<version>.*</version>') nuspecNewVersion = '<version>' + nugetVersion + '</version>' replace('./TweetinviAPI/TweetinviAPI.nuspec', nuspecVersionRegex, nuspecNewVersion) replace('./TweetinviAPI-Symbols/TweetinviAPI-Symbols.nuspec', nuspecVersionRegex, nuspecNewVersion) replace('./TweetinviAspNet/TweetinviAPI.AspNetPlugin.nuspec', nuspecVersionRegex, nuspecNewVersion) nugetDependency = '<dependency id="TweetinviAPI" version="' + nugetVersion + '" />' aspnetPluginTweetinviDependencyVersionRegex = re.compile(r'<dependency id="TweetinviAPI" version=".*" \/>') replace('./TweetinviAspNet/TweetinviAPI.AspNetPlugin.nuspec', aspnetPluginTweetinviDependencyVersionRegex, nugetDependency) userAgentRegex = re.compile(r'"User-Agent",\s"Tweetinvi/.+"') replace('../src/Tweetinvi.WebLogic/TwitterClientHandler.cs', userAgentRegex, '"User-Agent", "Tweetinvi/' + nugetVersion + '"') print('updated nuspec versions to ' + version) csprojVersionRegex = re.compile(r'<VersionPrefix>.*</VersionPrefix>') csprojNewVersion = '<VersionPrefix>' + version + '</VersionPrefix>' for projectPath in tweetinviProjects: filePath = '../src/' + projectPath + '/' + projectPath + '.csproj' print('updating ' + projectPath + ' version to ' + version) replace(filePath, csprojVersionRegex, csprojNewVersion) def clean_build(): print('Cleaning build folders') releasePath = '../src/Tweetinvi/bin/' if os.path.exists(releasePath): rmtree(releasePath) releasePath = '../src/Tweetinvi.AspNet/bin/' if os.path.exists(releasePath): rmtree(releasePath) def compile_tweetinvi(): print('Compiling Tweetinvi...') os.system('dotnet build -c release ../src/Tweetinvi') os.system('dotnet build -c release ../src/Tweetinvi.AspNet') def clean_nuget_folder(): print('Cleaning nuget build...') cachePackagePath = 'C:/Users/linvi/.nuget/packages/tweetinviapi/' + version if os.path.exists(cachePackagePath): rmtree(cachePackagePath) cachePackagePath = 'C:/Users/linvi/.nuget/packages/tweetinviapi.aspnetplugin/' + version if os.path.exists(cachePackagePath): rmtree(cachePackagePath) files = glob.glob('./TweetinviAPI/*.nupkg') for f in files: os.remove(f) remove_files_in('./TweetinviAPI/lib/netstandard1.4') remove_files_in('./TweetinviAPI/lib/netstandard2.0') createPath('./TweetinviAPI/lib/netstandard1.4') createPath('./TweetinviAPI/lib/netstandard2.0') files = glob.glob('./TweetinviAPI-Symbols/*.snupkg') for f in files: os.remove(f) remove_files_in('./TweetinviAPI-Symbols/lib/netstandard1.4') remove_files_in('./TweetinviAPI-Symbols/lib/netstandard2.0') createPath('./TweetinviAPI-Symbols/lib/netstandard1.4') createPath('./TweetinviAPI-Symbols/lib/netstandard2.0') files = glob.glob('./TweetinviAspNet/*.nupkg') for f in files: os.remove(f) createPath('./TweetinviAspNet/lib/netstandard2.0') remove_files_in('./TweetinviAspNet/lib/netcoreapp2.1') remove_files_in('./TweetinviAspNet/lib/netcoreapp3.1') createPath('./TweetinviAspNet/lib/netstandard2.0') createPath('./TweetinviAspNet/lib/netcoreapp2.1') createPath('./TweetinviAspNet/lib/netcoreapp3.1') def build_tweetinvi_nuget_package(): print('Building nuget package...') tweetinviBuildFiles = os.listdir('../src/Tweetinvi/bin/release/netstandard2.0') tweetinviDllFiles = list(filter(re.compile(r'.*\.dll').search, tweetinviBuildFiles)) tweetinviXmlFiles = list(filter(re.compile(r'.*\.xml').search, tweetinviBuildFiles)) for dll in tweetinviDllFiles: copyfile('../src/Tweetinvi/bin/release/netstandard1.4/' + dll, './TweetinviAPI/lib/netstandard1.4/' + dll) copyfile('../src/Tweetinvi/bin/release/netstandard2.0/' + dll, './TweetinviAPI/lib/netstandard2.0/' + dll) for xml in tweetinviXmlFiles: copyfile('../src/Tweetinvi/bin/release/netstandard1.4/' + xml, './TweetinviAPI/lib/netstandard1.4/' + xml) copyfile('../src/Tweetinvi/bin/release/netstandard2.0/' + xml, './TweetinviAPI/lib/netstandard2.0/' + xml) os.system('cd TweetinviAPI && nuget pack') def build_tweetinvi_nuget_symbols(): print('building symbols package') tweetinviBuildFiles = os.listdir('../src/Tweetinvi/bin/release/netstandard2.0') symbolsFilter = re.compile(r'.*\.pdb') tweetinviSymbolFiles = list(filter(symbolsFilter.search, tweetinviBuildFiles)) for pdb in tweetinviSymbolFiles: copyfile('../src/Tweetinvi/bin/release/netstandard1.4/' + pdb, './TweetinviAPI-Symbols/lib/netstandard1.4/' + pdb) copyfile('../src/Tweetinvi/bin/release/netstandard2.0/' + pdb, './TweetinviAPI-Symbols/lib/netstandard2.0/' + pdb) os.system('cd TweetinviAPI-Symbols && nuget pack') os.rename('./TweetinviAPI-Symbols/TweetinviAPI.' + nugetVersion + '.nupkg', './TweetinviAPI-Symbols/TweetinviAPI.' + nugetVersion + '.snupkg') def build_aspNet_nuget_package(): def copy_aspnet_file(filepath): copyfile('../src/Tweetinvi.AspNet/bin/release/' + filepath, './TweetinviAspNet/lib/' + filepath) Path("./TweetinviAspNet/lib/netstandard2.0").mkdir(parents=True, exist_ok=True) Path("./TweetinviAspNet/lib/netcoreapp2.1").mkdir(parents=True, exist_ok=True) Path("./TweetinviAspNet/lib/netcoreapp3.1").mkdir(parents=True, exist_ok=True) copy_aspnet_file('netstandard2.0/Tweetinvi.AspNet.dll') copy_aspnet_file('netstandard2.0/Tweetinvi.AspNet.xml') copy_aspnet_file('netcoreapp2.1/Tweetinvi.AspNet.dll') copy_aspnet_file('netcoreapp2.1/Tweetinvi.AspNet.xml') copy_aspnet_file('netcoreapp3.1/Tweetinvi.AspNet.dll') copy_aspnet_file('netcoreapp3.1/Tweetinvi.AspNet.xml') os.system('cd TweetinviAspNet && nuget pack') update_version() clean_build() compile_tweetinvi() clean_nuget_folder() build_tweetinvi_nuget_package() build_tweetinvi_nuget_symbols() build_aspNet_nuget_package() ```
{ "source": "JosiasAurel/python-hashnode", "score": 3 }
#### File: python-hashnode/hashnode/hashnode.py ```python from gql import Client, gql from gql.transport.aiohttp import AIOHTTPTransport class Hashnode(object): def __init__(self, api_token: str): self.api_token = api_token TRANSPORT = AIOHTTPTransport( url="https://api.hashnode.com/", headers={"Authorization": api_token}) # create graphql client to interact with the hashnode api client = Client( transport=TRANSPORT, fetch_schema_from_transport=True) self.client = client # set the class client as the hashnode graphql api client # the below are queries def get_user_info(self, username: str): query = gql(""" query($username: String!) { user(username: $username) { _id, name, username, blogHandle, followers, publicationDomain, tagline, isEvangelist, dateJoined, socialMedia, numFollowing, numFollowers, coverImage, location, photo, numPosts, numReactions, publication } } """) params = { "username": username } res = self.client.execute(query, variable_values=params) return res def get_feed(self, feed_type: str, page=0): # accepted feed type : # BEST # FEATURED # NEW # COMMUNITY query = gql(""" query($type:FeedType!, $page: Int) { storiesFeed(type: $type, page: $page) { _id, title, author { name, username, blogHandle, photo }, tags { name, logo, slug, wiki, managers { role, user { name, blogHandle } } }, slug, cuid, type, coverImage, brief, dateUpdated, followersCount, popularity, totalReactions, dateAdded, responseCount, dateFeatured, responseCount, reactionsByCurrentUser {image, name}, bookmarkedIn, isAnonymous, poll {totalVotes}, replyCount, contentMarkdown } } """) params = { "type": feed_type, "page": page } res = self.client.execute(query, variable_values=params) return res def get_amas(self, page=0): query = gql( """ query($page: Int) { amas(page: $page) { _id, title, author { name, username, blogHandle, photo }, tags { name, logo, slug, wiki, managers { role, user { name, blogHandle } }, slug, cuid, type, coverImage, brief, dateUpdated, followersCount, popularity, totalReactions, dateAdded, responseCount, dateFeatured, responseCount, reactionsByCurrentUser {image, name}, bookmarkedIn, isAnonymous, poll {totalVotes}, replyCount, contentMarkdown } } """ ) params = { "page": page } res = self.client.execute(query, variable_values=params) return res def get_post(self, slug: str, hostname: str): query = gql( """ query($slug: String!, $hostname: String) { post(slug: $slug, hostname:$hostname) { _id, cuid, slug, title, type, author { name, username, blogHandle, photo }, dateAdded, tags { name, logo, slug, wiki, managers { role, user {name, blogHandle} } }, contributors, coverImage, brief, dateUpdated, isFeatured, reactions, replyCount, responseCount, sourceFromGithub, isRepublished, followersCount, untaggedFrom, reactionsByCurrentUser {image, name}, poll {totalVotes}, popularity, content, contentMarkdown } } """ ) params = { "slug": slug, "hostname": hostname } res = self.client.execute(query, variable_values=params) return res def get_tag_categories(self): query = gql( """ { tagCategories { _id, name, isActive, priority, slug, tags { name, logo, slug, wiki, managers {role, user{name, blogHandle}} } } } """ ) result = self.client.execute(query) return result # here marks the end of queries and the beginning of mutations def follow_user(self, user_id: str): mutation = gql( """ mutation($userId: String!) { followUser(userId: $userId) { code, success, message } } """ ) params = { "userId": user_id } result = self.client.execute(mutation, variable_values=params) return result def create_story(self, story: str): mutation = gql( """ mutation($input: CreateStoryInput!) { createStory(input:$input) { code, success, message, post } } """ ) params = { "input": story } result = self.client.execute(mutation, variable_values=params) return result def create_publication_story(self, story_input: str, publication_id: str, hide_from_hashnode_feed: bool = False): mutation = gql( """ mutation($input: CreateStoryInput!, publicationId: String!, $hideFromHashnodeFeed: Boolean) { createPublicationStory(input: $input, publicationId: $publicationId, hideFromHashnodeFeed:$hideFromHashnodeFeed) { code, success, message, post } } """ ) params = { "input": story_input, "publicationId": publication_id, "hideFromHashnodeFeed": hide_from_hashnode_feed } result = self.client.execute(mutation, variable_values=params) return result def update_story(self, post_id: str, story: str): mutation = gql( """ mutation($postId: String!, $input: UpdateStoryInput!) { updateStory(postId:$postId, input:$input) { code, success, message, post } } """) params = { "postId": post_id, "input": story } result = self.client.execute(mutation, variable_values=params) return result def react_to_story(self, reaction): mutation = gql( """ mutation($input: ReactToPostInput!) { reactToStory(input:$input) { code, success, message } } """ ) params = { "input": reaction } result = self.client.execute(mutation, variable_values=params) return result def delete_post(self, post_id: str): mutation = gql( """ mutation($id: String!) { deletePost(id:$id) { code, success, message } } """ ) params = { "id": post_id } result = self.client.execute(mutation, variable_values=params) return result def create_response(self, response: str): mutation = gql( """ mutation($input: CreateResponseInput!) { createResponse(input:$input) { code, success, message, response } } """ ) params = { "input": response } result = self.client.execute(mutation, variable_values=params) return result def update_reponse(self, response_id: str, post_id: str, content: str): mutation = gql( """ mutation($responseId: String!, $postId: String, $contentInMarkdown: String!) { updateResponse(responseId:$responseId, postId:$postId, contentInMarkdown:$contentInMarkdown) { code, success, message, response } } """ ) params = { "responseId": response_id, "postId": post_id, "contentInMarkdown": content } result = self.client.execute(mutation, variable_values=params) return result def react_to_response(self, response: str): mutation = gql( """ mutation($input: ReactToResponseInput!) { reactToResponse(input: $input) { code, success, message } } """) params = { "input": response } result = self.client.execute(mutation, variable_values=params) return result def delete_response(self, response_id: str, post_id: str): mutation = gql( """ mutation($responseId: String!, $postId: String!) { deleteResponse(responseId:$responseId, postId:$postId) { code, success, message } } """ ) params = { "responseId": response_id, "postId": post_id } result = self.client.execute(mutation, variable_values=params) return result def create_reply(self, reply: str): mutation = gql( """ mutation($input: CreateReplyInput!) { createReply(input: $input) { code, success, message, reply } } """ ) params = { "input": reply } result = self.client.execute(mutation, variable_values=params) return result def update_reply(self, reply_id: str, response_id: str, post_id: str, new_reply: str): mutation = gql( """ mutation($replyId: String!, $responseId: String!, $postId: String!, $contentInMarkdown: String!) { updateReply(replyId:$replyId, responseId:$responseId, postId:$postId, contentInMarkdown:$contentInMarkdown) { code, success, message, reply } } """ ) params = { "replyId": reply_id, "responseId": response_id, "postId": post_id, "contentInMarkdown": new_reply } result = self.client.execute(mutation, variable_values=params) return result def react_to_reply(self, reply: str): mutation = gql( """ mutation($input: ReactToReplyInput!) { reactToReply(input:$input) { code, success, message, reply } } """ ) params = { "input": reply } result = self.client.execute(mutation, variable_values=params) return result def delete_reply(self, reply_id: str, response_id: str, post_id: str): mutation = gql( """ mutation($replyId: String!, $responseId: String!, $postId: String!) { deleteReply(replyId:$replyId, responseId:$responseId, postId:$postId) { code, success, message } } """ ) params = { "replyId": reply_id, "responseId": response_id, "postId": post_id } result = self.client.execute(mutation, variable_values=params) return result """ Executong results with the gql result = client.execute(query:str) """ ```
{ "source": "josiasMO/raspi_integrations", "score": 2 }
#### File: josiasMO/raspi_integrations/Gprs.py ```python import subprocess import threading import socket import os, sys import time from time import sleep import logging import ctypes import binascii import serial from datetime import datetime def crc16(datos, offset, length): crctab16 = ( 0x0000, 0x1189, 0x2312, 0x329B, 0x4624, 0x57AD, 0x6536, 0x74BF, 0x8C48, 0x9DC1, 0xAF5A, 0xBED3, 0xCA6C, 0xDBE5, 0xE97E, 0xF8F7, 0x1081, 0x0108, 0x3393, 0x221A, 0x56A5, 0x472C, 0x75B7, 0x643E, 0x9CC9, 0x8D40, 0xBFDB, 0xAE52, 0xDAED, 0xCB64, 0xF9FF, 0xE876, 0x2102, 0x308B, 0x0210, 0x1399, 0x6726, 0x76AF, 0x4434, 0x55BD, 0xAD4A, 0xBCC3, 0x8E58, 0x9FD1, 0xEB6E, 0xFAE7, 0xC87C, 0xD9F5, 0x3183, 0x200A, 0x1291, 0x0318, 0x77A7, 0x662E, 0x54B5, 0x453C, 0xBDCB, 0xAC42, 0x9ED9, 0x8F50, 0xFBEF, 0xEA66, 0xD8FD, 0xC974, 0x4204, 0x538D, 0x6116, 0x709F, 0x0420, 0x15A9, 0x2732, 0x36BB, 0xCE4C, 0xDFC5, 0xED5E, 0xFCD7, 0x8868, 0x99E1, 0xAB7A, 0xBAF3, 0x5285, 0x430C, 0x7197, 0x601E, 0x14A1, 0x0528, 0x37B3, 0x263A, 0xDECD, 0xCF44, 0xFDDF, 0xEC56, 0x98E9, 0x8960, 0xBBFB, 0xAA72, 0x6306, 0x728F, 0x4014, 0x519D, 0x2522, 0x34AB, 0x0630, 0x17B9, 0xEF4E, 0xFEC7, 0xCC5C, 0xDDD5, 0xA96A, 0xB8E3, 0x8A78, 0x9BF1, 0x7387, 0x620E, 0x5095, 0x411C, 0x35A3, 0x242A, 0x16B1, 0x0738, 0xFFCF, 0xEE46, 0xDCDD, 0xCD54, 0xB9EB, 0xA862, 0x9AF9, 0x8B70, 0x8408, 0x9581, 0xA71A, 0xB693, 0xC22C, 0xD3A5, 0xE13E, 0xF0B7, 0x0840, 0x19C9, 0x2B52, 0x3ADB, 0x4E64, 0x5FED, 0x6D76, 0x7CFF, 0x9489, 0x8500, 0xB79B, 0xA612, 0xD2AD, 0xC324, 0xF1BF, 0xE036, 0x18C1, 0x0948, 0x3BD3, 0x2A5A, 0x5EE5, 0x4F6C, 0x7DF7, 0x6C7E, 0xA50A, 0xB483, 0x8618, 0x9791, 0xE32E, 0xF2A7, 0xC03C, 0xD1B5, 0x2942, 0x38CB, 0x0A50, 0x1BD9, 0x6F66, 0x7EEF, 0x4C74, 0x5DFD, 0xB58B, 0xA402, 0x9699, 0x8710, 0xF3AF, 0xE226, 0xD0BD, 0xC134, 0x39C3, 0x284A, 0x1AD1, 0x0B58, 0x7FE7, 0x6E6E, 0x5CF5, 0x4D7C, 0xC60C, 0xD785, 0xE51E, 0xF497, 0x8028, 0x91A1, 0xA33A, 0xB2B3, 0x4A44, 0x5BCD, 0x6956, 0x78DF, 0x0C60, 0x1DE9, 0x2F72, 0x3EFB, 0xD68D, 0xC704, 0xF59F, 0xE416, 0x90A9, 0x8120, 0xB3BB, 0xA232, 0x5AC5, 0x4B4C, 0x79D7, 0x685E, 0x1CE1, 0x0D68, 0x3FF3, 0x2E7A, 0xE70E, 0xF687, 0xC41C, 0xD595, 0xA12A, 0xB0A3, 0x8238, 0x93B1, 0x6B46, 0x7ACF, 0x4854, 0x59DD, 0x2D62, 0x3CEB, 0x0E70, 0x1FF9, 0xF78F, 0xE606, 0xD49D, 0xC514, 0xB1AB, 0xA022, 0x92B9, 0x8330, 0x7BC7, 0x6A4E, 0x58D5, 0x495C, 0x3DE3, 0x2C6A, 0x1EF1, 0x0F78, ) fcs = 0xFFFF i = offset while i < length + offset: fcs = ((fcs >> 8) ^ crctab16[(fcs ^ datos[i]) & 0xFF]) i += 1 return ctypes.c_ushort(~fcs).value def encoder(data): """encode sysjourney data 0x20, 0x20, data_lenth, packet_id, data0, data1, ...., datan, check_h, check_l, 0x0D, 0x0A """ strpackage = '2020' + '%002x' % len(data) + '19' for elem in data: strpackage = strpackage + '%002x' % int(elem) send_data = binascii.unhexlify(strpackage) chk_p = ' '.join(strpackage[i: i + 2] for i in range(0, len(strpackage), 2)) chk_p = chk_p.split() chk_p = [int(p, 16) for p in chk_p] send_chk = crc16(chk_p[2:], 0, len(chk_p) - 2) send_chk = bytearray([(send_chk & 0xFF00) >> 8, send_chk & 0x00FF]) return (send_data + send_chk + b"\r\n") class GPRS(object): def __init__(self, host='rasp.dalmago.xyz', port=5555): self.proc = None self.host = host self.port = port def __ppp0status(self): """Check if the ppp0 connection is ready""" try: f = open('/sys/class/net/ppp0/operstate','r') if (f.readline() == 'unknown\n'): print('[PPPD]: ppp0 interface is UP') return 1 except: return 0 def __conn(self, data): """Open tcp socket and send data to the specified host""" s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.settimeout(10) #long timeout for gprs connections s.connect((self.host, self.port)) s.sendall(data) recv = s.recv(1024) s.close() return recv def __procout(self, proc): """handle pppd subprocess output""" for line in iter(proc.stdout.readline, b''): print('[PPPD]: {0}'.format(line.decode('utf-8')), end='') def get_time(self): """ Get time from gprs tracker, and clean the serial buffer return a list with the date and time [y_high, y_low, month, day, hour, minute, second ] """ try: conn = serial.Serial("/dev/ttyS0", 115200, timeout=1) conn.flushInput() #get gprs time conn.write('AT+CCLK?'.encode('utf-8')+b'\r\n') conn.flush() except serial.SerialException: return ['0']*7 received = conn.read(56).decode('utf-8').split('+CCLK: ') for line in received: if(line.startswith('"')): time = line[:19] else: time = None #clean buffer and close pyserial conn.flushInput() conn.flushOutput() conn.close() #check if the gprs tracker answered with the time try: if (len(time) > 1): #convert string to datetime time = datetime.strptime(time, '"%y/%m/%d,%H:%M:%S"') date_list = [time.year - 2000, \ time.month, time.day, time.hour, time.minute, time.second] return [str(a) for a in date_list] else: return ['0']*7 except (IndexError,UnboundLocalError,TypeError): return ['0']*7 def get_terminalID(self): """ Request product serial number identification(IMEI) return a list with 8 integer numbers """ try: conn = serial.Serial("/dev/ttyS0", 115200, timeout=1) conn.flushInput() conn.write('ATE1'.encode('utf-8')+b'\r\n') time.sleep(0.1) #get device imei conn.write('AT+CGSN'.encode('utf-8')+b'\r\n') conn.flush() received = conn.read(56).decode('utf-8').split('AT+') conn.write('ATE0'.encode('utf-8')+b'\r\n') conn.flushInput() conn.flushOutput() except serial.SerialException: print("Serial exeption during get imei") return ['0']*8 #close serial connection conn.close() for line in received: if(line.startswith('CGSN')): received = line[10:25] received = '0'+received else: received = None if(received != None): received = [received[i:i+2] for i in range(0, len(received), 2)] else: return ['0']*8 return received def send(self,data): """start pppd subprocess, handle the data form user""" proc = subprocess.Popen(['pppd','call','gprs'], stdout=subprocess.PIPE, stderr=subprocess.STDOUT) t = threading.Thread(target=self.__procout, args=(proc,)) t.start() recv = None try: while proc.poll() is None: if(self.__ppp0status()): r = encoder(data) recv = self.__conn (r) if recv is not None: #the server should send back: # //0x00 = tudo ok # //0x08 = identicador não cadastrado # //0x09 = veículo ocupado por outro motorista # //0x0A = motorista não cadastrado # //0x0B = motorista em outro veículo # //0x0C = linha não cadastrada # //0x0D = veículo em outra linha # //0x0E = combinação veiculo x motorista já cadastrada # //0x0F = jornada não criada antes de finalizar # //0xFF = Erro desconhecido if ord(recv) not in [250, 8 ,9, 10, 11, 12 ,13 , 14, 15 ,255]: recv = None proc.terminate() time.sleep(0.5) except socket.error as exc: proc.terminate() print ("socket.error : %s" % exc) finally: print('[PPPD]: End pppd process') try: proc.wait(timeout=2) print('== subprocess exited with rc =', proc.returncode) except subprocess.TimeoutExpired: print('subprocess did not terminate in time') t.join() print ('==Received from server %s bytes==' % recv) if recv is not None: return ord(recv) else: return None # if __name__ == "__main__": # g = GPRS() # print (g.get_time()) # # # g.send(['0', '15','0', '35','0', '43', '0'] + g.get_time()) # # time.sleep(2) ```
{ "source": "Josicamats/rpachallenge", "score": 3 }
#### File: Josicamats/rpachallenge/WebNavigation.py ```python import logging from RPA.Browser.Selenium import Selenium from RPA.Tables import Tables from RPA.FileSystem import FileSystem browser = Selenium() tb = Tables() fs = FileSystem() class WebNavigation: def __init__(self) -> None: self.logger = logging.getLogger(__name__) #set download directory def set_download_directory(self, directory): try: browser.set_download_directory(directory, True) except Exception as err: self.logger.error("Set download directory fails: " + str(err)) raise SystemError("Set download directory fails: " + str(err)) # Open specified website def open_website(self, url: str): try: browser.open_available_browser(url) browser.maximize_browser_window() browser.set_browser_implicit_wait(30) #self.browser.wait_until_page_contains_element() except Exception as err: self.logger.error("Login website fails bc: " + str(err)) raise SystemError("Login website fails bc: " + str(err)) # Click specified button def click_button(self, button: str): try: browser.wait_until_element_is_visible(button) browser.click_element_when_visible(button) #browser.set_browser_implicit_wait(30) except Exception as err: self.logger.error("Click button failes bc: " + str(err)) raise SystemError("Click button failes bc: " + str(err)) # Close browsers: def close_browser(self): try: browser.close_all_browsers() except Exception as err: self.logger.error("Close all browsers fails bc: " + str(err)) raise SystemError("Close all browsers fails bc: " + str(err)) # Get Agencies Data: def get_agencies(self): try: total = 0 count_agencies = len(browser.find_elements("(//*[contains(@class, 'col-sm-4 text-center noUnderline')])")) agencies = [] for i in range(1,10): for j in range (1,4): total = total + 1 if total <= count_agencies: agency = browser.find_element("xpath://*[@id='agency-tiles-widget']/div/div["+str(i)+"]/div["+str(j)+"]/div/div/div/div[1]/a/span[1]").text agencies.append(agency) #dt_agencies = tb.create_table(agencies) return agencies except Exception as err: self.logger.error("Unable to get Agencies names bc: " + str(err)) raise SystemError("Unable to get Agencies names bc: " + str(err)) # Get Amounts Data: def get_amounts(self): try: total = 0 count_agencies = len(browser.find_elements("(//*[contains(@class, 'col-sm-4 text-center noUnderline')])")) amounts = [] for i in range(1,10): for j in range (1,4): total = total + 1 if total <= count_agencies: amount = browser.find_element("xpath://*[@id='agency-tiles-widget']/div/div["+str(i)+"]/div["+str(j)+"]/div/div/div/div[1]/a/span[2]").text amounts.append(amount) #dt_amounts = tb.create_table(amounts) return amounts except Exception as err: self.logger.error("Unable to get amounts of each agency bc: " + str(err)) raise SystemError("Unable to get amounts of each agency bc: " + str(err)) #Scraping data from table def get_table_data(self): try: browser.select_from_list_by_value("//*[@id='investments-table-object_length']/label/select","-1") browser.set_browser_implicit_wait(5) row_count = len(browser.find_elements("//*[@id='investments-table-object']/tbody/tr")) col_count = len(browser.find_elements("//*[@id='investments-table-object']/tbody/tr[1]/td")) data = tb.create_table() columns = ["A","B","C","D","E","F","G"] for col in columns: tb.add_table_column(data, col) for n in range(1, row_count+1): browser.select_from_list_by_value("//*[@id='investments-table-object_length']/label/select","-1") rows = [] row = 0 for m in range(1, col_count+1): browser.select_from_list_by_value("//*[@id='investments-table-object_length']/label/select","-1") path = "//*[@id='investments-table-object']/tbody/tr["+str(n)+"]/td["+str(m)+"]" table_data = browser.find_element(path).text rows.append(table_data) if(columns[row] == 'A'): directory = "C:\\ROBOTS\\RPAChallenge\\Challenge\\output" download_pdf(table_data, directory) row = row + 1 tb.add_table_row(data, rows) return data except Exception as err: self.logger.error("Scraping data from table fails: " + str(err)) raise SystemError("Scraping data from table fails: " + str(err)) # Download Specified Business Case if Exists Link def download_pdf(file: str, directory): try: tableURL = "/drupal/summary/393/" + file exist = browser.does_page_contain_link(tableURL) if(exist): link = browser.find_element('//a[@href="'+tableURL+'"]') browser.click_link(link) browser.set_browser_implicit_wait(30) pdfPath = browser.find_element("//*[@id='business-case-pdf']/a") browser.click_link(pdfPath) while(fs.does_file_not_exist(directory+"\\"+file+".pdf")): browser.set_browser_implicit_wait(10) browser.go_back() browser.go_back() except: pass ```
{ "source": "josiearcuri/Cutoffs", "score": 3 }
#### File: Cutoffs/HKplus/HKplus.py ```python import numpy as np import pandas as pd import time, sys import numba import math import matplotlib.pyplot as plt from matplotlib.colors import LinearSegmentedColormap import matplotlib.colors as mcolors import matplotlib.gridspec as gridspec from matplotlib import cm import matplotlib as mpl from scipy.stats import norm import scipy.interpolate from scipy.interpolate import InterpolatedUnivariateSpline from scipy.spatial import distance def update_progress(progress, start_time): """progress bar from https://stackoverflow.com/questions/3160699/python-progress-bar update_progress() : Displays or updates a console progress bar Accepts a float between 0 and 1. Any int will be converted to a float. A value under 0 represents a 'halt'. A value at 1 or bigger represents 100%""" barLength = 20 # Modify this to change the length of the progress bar status = "" if isinstance(progress, int): progress = float(progress) if not isinstance(progress, float): progress = 0 status = "error: progress var must be float\r\n" if progress < 0: progress = 0 status = "Halt...\r\n" if progress >= 1: progress = 1 status = "Done...\r\n" block = int(round(barLength*progress)) text = "\rPercent: [{0}] {1}% {2}".format( "#"*block + "-"*int(round(barLength-block)), int(progress*100), status) sys.stdout.write(text + "-- %s minute(s) --" % int(round((time.time() - start_time)/60))) sys.stdout.flush() class Channel: """class for Channel objects""" def __init__(self,x,y,W,D,MR): """initialize Channel object x, y, z - coordinates of centerline W - channel width D - channel depth MR - migration rate from last centerline""" self.x = x self.y = y self.W = W self.D = D self.MR = MR class Cutoff: """class for Cutoff objects""" def __init__(self,x,y,W,dist, time, cut_len, rad, cllen): """initialize Cutoff object x, y, - coordinates of centerline W - channel width dist - distance along centerline of upstream most node of cutoff bend. time - year of occurrence cut_len - ditance removed from centerline by cutoff radius - radius of curvature cllen - centerline length after cutoff """ self.x = x self.y = y self.W = W self.dist = dist self.time = time self.cut_len = cut_len self.radius = rad self.cllen = cllen class ChannelBelt: """class for ChannelBelt objects""" def __init__(self, channels, cutoffs, cl_times, cutoff_times, cutoff_dists, decay_rate, bump_scale, cut_thresh, sinuosity): """initialize ChannelBelt object channels - list of Channel objects cutoffs - list of Cutoff objects cl_times - list of ages of Channel objects cutoff_times - list of ages of Cutoff objects cutoff_dists - list of cutoff distances downstream decay_rate - rate at which nonlocal effects dissipate bump_scale - amplitude of nonlocal effects bump, scalar cut_thresh - how many cutoffs to simulate""" self.channels = channels self.cutoffs = cutoffs self.cl_times = cl_times self.cutoff_times = cutoff_times self.cutoff_dists = cutoff_dists self.decay_rate = decay_rate self.bump_scale = bump_scale self.cut_thresh = cut_thresh self.sinuosity = sinuosity def migrate_years(self,nit,saved_ts,deltas,pad, crdist,Cf,kl,dt,dens=1000): """function for computing migration rates along channel centerlines and moving them, limited by number of iterations inputs: nit - number of iterations saved_ts - which time steps will be saved deltas - distance between nodes on centerline pad - padding for upstream bc (number of nodepoints along centerline) crdist - threshold distance at which cutoffs occur Cf - dimensionless Chezy friction factor kl - migration rate constant (m/s) dt - time step (s)""" start_time = time.time() channel = self.channels[-1] # first channel is the same as last channel of input x = channel.x; y = channel.y; W = channel.W; D = channel.D; k = 1.0 # constant in HK equation xc = [] # initialize cutoff coordinates yc = [] cut_dist = []# initialize cutoff distance ds array cut_len = []# initialize cutoff length removal array # determine age of last channel: if len(self.cl_times)>0: last_cl_time = self.cl_times[-1] else: last_cl_time = 0 dx, dy, ds, s = compute_derivatives(x,y) omega = -1.0 # constant in curvature calculation (Howard and Knutson, 1984) gamma = 2.5 # from Ikeda et al., 1981 and Howard and Knutson, 1984 ne = np.zeros_like(x) #array to keep track of nonlocal effects MR = 0 DS = 0 for itn in range(nit): # main loop update_progress(itn/nit, start_time) ne = update_nonlocal_effects(ne, s, self.decay_rate, self.bump_scale, cut_dist, cut_len) #update array of ne with last itn's cutoff(s) and decay old ne klarray = nominal_rate(kl, ne)## compute array of nominal migration rate in m/s with nonlocal effects accounted for curv = compute_curvature(x,y)#get curvature of bends before cutoffs happen x, y, R1 = migrate_one_step(x,y,W,klarray,dt,k,Cf,D,pad,omega,gamma) x,y,xc,yc,cut_dist, cut_len, ind1, ind2 = cut_off_cutoffs(x,y,s,crdist,deltas) # find and execute cutoffs x,y,dx,dy,ds,s = resample_centerline(x,y,deltas) # resample centerline Sin = get_sinuosity(x,y,s) if len(xc)>0: # save cutoff data rad = get_radii(curv, ind1, ind2, W) cutoff = Cutoff(xc,yc,W,cut_dist[0],last_cl_time+(itn)*dt/(365*24*60*60.0), cut_len[0], rad, s[-1]) # create cutoff object #keep track of year cutoff occurs, where it occurs, and save an object. self.cutoff_times.append(last_cl_time+(itn)*dt/(365*24*60*60.0)) self.cutoff_dists.append(cut_dist) self.cutoffs.append(cutoff) # saving centerlines: if np.mod(itn,saved_ts)==0 or itn == nit-1: channel = Channel(x,y,W,D, MR) # create channel object, save year self.cl_times.append(last_cl_time+(itn)*dt/(365*24*60*60.0)) self.channels.append(channel) self.sinuosity.append(Sin) def migrate_cuts(self,saved_ts,deltas,pad, crdist,Cf,kl,dt,dens=1000): """function for computing migration rates along channel centerlines and moving them, limited by number of cutoffs the channel experiences inputs: saved_ts - which time steps will be saved deltas - distance between nodes on centerline pad - padding for upstream bc (number of nodepoints along centerline) crdist - threshold distance at which cutoffs occur Cf - dimensionless Chezy friction factor kl - migration rate constant (m/s) dt - time step (s)""" start_time = time.time() channel = self.channels[-1] # first channel is the same as last channel of input x = channel.x; y = channel.y; W = channel.W; D = channel.D; k = 1.0 # constant in HK equation xc = [] # initialize cutoff coordinates yc = [] cut_dist = []# initialize cutoff distance ds array cut_len = []# initialize cutoff length removal array # determine age of last channel: if len(self.cl_times)>0: last_cl_time = self.cl_times[-1] else: last_cl_time = 0 dx, dy, ds, s = compute_derivatives(x,y) omega = -1.0 # constant in curvature calculation (Howard and Knutson, 1984) gamma = 2.5 # from Ikeda et al., 1981 and Howard and Knutson, 1984 ne = np.zeros_like(x) #array to keep track of nonlocal effects ymax = self.bump_scale*kl*2 itn = 0 while len(self.cutoffs)<self.cut_thresh: # main loop itn = itn+1 update_progress(len(self.cutoffs)/self.cut_thresh, start_time) ne = update_nonlocal_effects(ne, s, self.decay_rate, self.bump_scale, cut_dist, cut_len) #update array of ne with last itn's cutoff(s) and decay old ne curv = compute_curvature(x,y) klarray = nominal_rate(kl, ne)## compute array of nominal migration rate in m/s with nonlocal effects accounted for x, y, MR = migrate_one_step(x,y,W,klarray,dt,k,Cf,D,pad,omega,gamma) x,y,xc,yc,cut_dist, cut_len,ind1, ind2 = cut_off_cutoffs(x,y,s,crdist,deltas) # find and execute cutoffs x,y,dx,dy,ds,s = resample_centerline(x,y,deltas) # resample centerline Sin = get_sinuosity(x,y,s) if len(xc)>0: # save cutoff data rad = get_radii(curv, ind1, ind2, W) cutoff = Cutoff(xc,yc,W,cut_dist,last_cl_time+(itn)*dt/(365*24*60*60.0), cut_len, rad, s[-1]) # create cutoff object #keep track of year cutoff occurs, where it occurs, and save an object. self.cutoff_times.append(last_cl_time+(itn)*dt/(365*24*60*60.0)) self.cutoff_dists.append(cut_dist) self.cutoffs.append(cutoff) # saving centerlines: if np.mod(itn,saved_ts)==0 or len(self.cutoffs)>=self.cut_thresh: channel = Channel(x,y,W,D,MR) # create channel object, save year self.cl_times.append(last_cl_time+(itn)*dt/(365*24*60*60.0)) self.channels.append(channel) self.sinuosity.append(Sin) def migrate_bendtracking(self,saved_ts,deltas,pad, crdist,Cf,kl,dt,dens=1000): """function for computing migration rates along channel centerlines and moving them, limited by number of cutoffs the channel experiences inputs: saved_ts - which time steps will be saved deltas - distance between nodes on centerline pad - padding for upstream bc (number of nodepoints along centerline) crdist - threshold distance at which cutoffs occur Cf - dimensionless Chezy friction factor kl - migration rate constant (m/s) dt - time step (s)""" start_time = time.time() channel = self.channels[-1] # first channel is the same as last channel of input x = channel.x; y = channel.y; W = channel.W; D = channel.D; k = 1.0 # constant in HK equation xc = [] # initialize cutoff coordinates yc = [] cut_dist = []# initialize cutoff distance ds array cut_len = []# initialize cutoff length removal array # determine age of last channel: if len(self.cl_times)>0: last_cl_time = self.cl_times[-1] else: last_cl_time = 0 dx, dy, ds, s = compute_derivatives(x,y) omega = -1.0 # constant in curvature calculation (Howard and Knutson, 1984) gamma = 2.5 # from Ikeda et al., 1981 and Howard and Knutson, 1984 ne = np.zeros_like(x) #array to keep track of nonlocal effects ymax = self.bump_scale*kl*2 itn = 0 while len(self.cutoffs)<self.cut_thresh: # main loop itn = itn+1 update_progress(len(self.cutoffs)/self.cut_thresh, start_time) ne = update_nonlocal_effects(ne, s, self.decay_rate, self.bump_scale, cut_dist, cut_len) #update array of ne with last itn's cutoff(s) and decay old ne curv = compute_curvature(x,y) klarray = nominal_rate(kl, ne)## compute array of nominal migration rate in m/s with nonlocal effects accounted for x, y, MR = migrate_one_step(x,y,W,klarray,dt,k,Cf,D,pad,omega,gamma) x,y,xc,yc,cut_dist, cut_len,ind1, ind2 = cut_off_cutoffs(x,y,s,crdist,deltas) # find and execute cutoffs x,y,dx,dy,ds,s = resample_centerline(x,y,deltas) # resample centerline if len(xc)>0: # save cutoff data rad = get_radii(curv, ind1, ind2, W) cutoff = Cutoff(xc,yc,W,cut_dist,last_cl_time+(itn)*dt/(365*24*60*60.0), cut_len, rad, s[-1]) # create cutoff object #keep track of year cutoff occurs, where it occurs, and save an object. self.cutoff_times.append(last_cl_time+(itn)*dt/(365*24*60*60.0)) self.cutoff_dists.append(cut_dist) self.cutoffs.append(cutoff) # saving centerlines: if np.mod(itn,saved_ts)==0 or len(self.cutoffs)>=self.cut_thresh: channel = Channel(x,y,W,D,MR) # create channel object, save year self.cl_times.append(last_cl_time+(itn)*dt/(365*24*60*60.0)) self.channels.append(channel) def plot_channels(self): cot = np.array(self.cutoff_times) sclt = np.array(self.cl_times) times = np.unique(np.sort(np.hstack((cot,sclt)))) # set up min and max x and y coordinates of the plot: xmin = np.min(self.channels[0].x) xmax = 1 ymax = 1 for i in range(len(self.channels)): ymax = max(ymax, np.max(np.abs(self.channels[i].y))) xmax = max(xmax, np.max(np.abs(self.channels[i].x))) ymax = ymax+1000# add a bit of space on top and bottom ymin = -1*ymax # size figure so that its size matches the size of the model: fig, ax = plt.subplots(figsize=(10,(ymax-ymin)*10/(xmax-xmin))) cmap = cm.get_cmap('gray_r',len(sclt)) ax.set_xlim([xmin-1000,xmax+1000]) ax.set_ylim([ymin,ymax]) plt.axis('equal') ax.plot([xmin, xmin+5000],[ymin, ymin], 'k', linewidth=2) ax.text(xmin+1500, ymin+200+100, '5 km', fontsize=8) order = 0 for i in range(0,len(times)): if times[i] in cot: ind = np.where(cot==times[i])[0][0] for j in range(0,len(self.cutoffs[ind].x)): x1 = self.cutoffs[ind].x[j] y1 = self.cutoffs[ind].y[j] W = self.channels[-1].W xm, ym = get_channel_banks(x1,y1,W) order += 1 if times[i]==cot[-1] and j==(len(self.cutoffs[ind].x)-1): plt.fill(xm,ym,facecolor='r',edgecolor = 'none', alpha = .5,zorder=order, label= 'cutoff') else: plt.fill(xm,ym,facecolor='r',edgecolor = 'none', alpha = .5,zorder=order, label= '_nolegend_') if times[i] in sclt: ind = np.where(sclt==times[i])[0][0] x1 = self.channels[ind].x y1 = self.channels[ind].y W = self.channels[ind].W xm, ym = get_channel_banks(x1,y1,W) order += 1 plt.fill(xm,ym,facecolor=cmap(ind/len(sclt)),edgecolor = 'k', linewidth=0.1,zorder=order, label= '_nolegend_') ax.legend(frameon = False, loc = 'lower left',bbox_to_anchor=(7000/(xmax+2000), 0, .1, .1), markerscale = .1) ax.axis('off') return fig def plot_channels2(self,ncutoff, directory): cot = np.array(self.cutoff_times) sclt = np.array(self.cl_times) # set up min and max x and y coordinates of the plot: xmin = np.min(self.channels[0].x) xmax = 1 ymax = 1 for i in range(len(self.channels)): ymax = max(ymax, np.max(np.abs(self.channels[i].y))) xmax = max(xmax, np.max(np.abs(self.channels[i].x))) ymax = ymax+1000# add a bit of space on top and bottom ymin = -1*ymax # size figure so that its size matches the size of the model: cmap = cm.get_cmap('gray_r',self.bump_scale) order = 0 figs=[] cmap = LinearSegmentedColormap.from_list('custom red', ['#ffffff','#de2d26'], N=256) ind = np.where(sclt>=cot[ncutoff])[0][0] times = np.arange(0, len(sclt))[(ind-1):1+(ind+(4*4))] fig, axs = plt.subplots(6,1, figsize = (2.5, 5), constrained_layout = True) cx1 = self.cutoffs[ncutoff].x[0] cy1 = self.cutoffs[ncutoff].y[0] dist = self.cutoffs[ncutoff].cut_len loc = self.cutoffs[ncutoff].dist bump = self.bump_scale decay = self.decay_rate steps = np.arange(1, 18, 4) ne = np.zeros_like(self.channels[times[0]].x) s = np.zeros_like(self.channels[times[0]].x) for t in range(0,len(times)): W = self.channels[-1].W x1 = self.channels[times[t]].x y1 = self.channels[times[t]].y dx, dy, ds, s = compute_derivatives(x1,y1) ne = update_nonlocal_effects(ne, s, decay, bump, [], []) xm, ym = get_channel_banks(x1,y1,W) order += 1 central_node = np.where(x1>=cx1[0])[0][0] upstream_node = np.where(s>=s[central_node]-dist)[0][0] downstream_node = np.where(s>=s[central_node]+dist)[0][0] ne_x = x1[upstream_node-1:downstream_node+1] ne_y = y1[upstream_node-1:downstream_node+1] ne_mag = ne[upstream_node-1:downstream_node+1] if t==0: ne = update_nonlocal_effects(ne, s, decay, bump,np.array(loc), np.array(dist)) central_node = np.where(x1>=cx1[0])[0][0] upstream_node = np.where(s>=s[central_node]-dist)[0][0] downstream_node = np.where(s>=s[central_node]+dist)[0][0] ne_x = x1[upstream_node-1:downstream_node+1] ne_y = y1[upstream_node-1:downstream_node+1] ne_mag = ne[upstream_node-1:downstream_node+1] axs[0].set_xlim([cx1[0]-dist[0]/1.85,cx1[0]+dist[0]/1.85]) axs[0].fill(xm,ym,facecolor='k',edgecolor = 'k', alpha = 1, linewidth=0.1,zorder=order) #axs[i].fill(xm[idx,y1,facecolor='r',edgecolor = 'none', alpha = .5,zorder=order, label= '_nolegend_') #plt.plot(chx1[central], chy1[chx1<=x1[0]], color = 'k', linewidth = 1, zorder = order) axs[0].annotate(text ='year '+str(int(t)) , xy = (.9,.9), xycoords='axes fraction', fontsize = 10) axs[0].axis('off') if t in steps: nextind = np.where(steps==t)[0][0]+1 axs[nextind].fill(xm,ym,facecolor='k',edgecolor = 'k', alpha = 1, linewidth=0.1,zorder=order, label= 'year '+str(2+int((t-1)/4))) #axs[i].fill(xm[idx,y1,facecolor='r',edgecolor = 'none', alpha = .5,zorder=order, label= '_nolegend_') #plt.plot(chx1[central], chy1[chx1<=x1[0]], color = 'k', linewidth = 1, zorder = order) axs[nextind].annotate(text ='year '+str(1+int((t-1)/4)) , xy = (.9,.9), xycoords='axes fraction', fontsize = 10) axs[nextind].axis('off') nemap = axs[nextind].scatter(ne_x[ne_mag>0], ne_y[ne_mag>0], s= 40, c = ne_mag[ne_mag>0], vmin = 0, vmax = bump, cmap = cmap) axs[nextind].set_xlim([cx1[0]-dist[0]/1.85,cx1[0]+dist[0]/1.85]) #axs[t].set_ylim([ymin,ymax]) norm = mpl.colors.Normalize(vmin=0, vmax=bump) fig.colorbar(mpl.cm.ScalarMappable(norm=norm, cmap=cmap),orientation='horixontal', ax = axs, label = 'nonlocal effect [*]', shrink = 0.6) #axs[-1].set_xlim([cx1[0]-dist[0]/4,cx1[0]+dist[0]/4]) return fig def cutoff_distributions(self, year, filepath, mode): """pull cutoff data from channel belt object and export csv, return dataframe for plotting year - last centerline year filepath - where cutoff info csv and distrubution plot are saved mode - for plotting - "OnlyCurvature or "NonlocalEffects" """ #pull cutoff locations, downstrem distance, time from channel belt as a pandas dataframe distances = [i.dist[0] for i in self.cutoffs] times = [i.time for i in self.cutoffs] radius = [i.radius for i in self.cutoffs] cutlen = [i.cut_len[0] for i in self.cutoffs] cllen = [i.cllen for i in self.cutoffs] cuts = pd.DataFrame({'downstream_distance': distances, 'time': times, 'radius':radius, 'cutlen': cutlen, 'cllen': cllen }) #save distribution to csv newcuts = cuts.to_csv(filepath+mode+str(len(cuts['time']))+"_cutoffs_distribution.csv", index_label = "Cutoff") plot_cuts(cuts,self.channels[-1].W, filepath) return cuts def MR_time(self, filepath): MR = [[bend for bend in i.MR] for i in self.channels[1:]] clt = np.array(self.cl_times[1:]) MRdf= pd.DataFrame(MR).dropna(axis=1, how = 'all').dropna(axis=0, how = 'all') MRdf.to_csv(filepath, index=False, header=False) MRdf = pd.read_csv(filepath, sep = ',', header=None).to_numpy() fig, axs = plt.subplots(1,1, figsize=(6,8)) plot_segmented_MR(MRdf,np.nanmean(MRdf), fig, axs, 'k', filepath[-16:-18]) def plot_cuts(cuts,W, filepath): fig = plt.figure(figsize = (5,5)) plt.rcParams.update({'font.size': 10}) plt.scatter(cuts['downstream_distance']/W,cuts['time'], c = 'black', s = 1.5, edgecolor = 'black') ncuts = len(cuts['time']) plt.ylabel("time (years)") plt.xlim(left=0) plt.ylim(bottom=0) plt.xlabel("distance downstream (ch-w)") return fig def resample_centerline(x,y,deltas): dx, dy, ds, s = compute_derivatives(x,y) # compute derivatives # resample centerline so that 'deltas' is roughly constant # [parametric spline representation of curve] tck, u = scipy.interpolate.splprep([x,y],s=0) unew = np.linspace(0,1,1+int(s[-1]/deltas)) # vector for resampling out = scipy.interpolate.splev(unew,tck) # resampling x, y = out[0], out[1] # assign new coordinate values dx, dy, ds, s = compute_derivatives(x,y) # recompute derivatives return x,y,dx,dy,ds,s def nominal_rate(kl, ne): """update nominal migration rate with nonlocal effects array""" new_kl = kl*(1+ne) return new_kl def migrate_one_step(x,y,W,klarray,dt,k,Cf,D,pad,omega,gamma): dx, dy, ds, s = compute_derivatives(x,y) curv = W*compute_curvature(x,y)# dimensionless curvature R0 = klarray*curv #nominal migration rate with local curvature alpha = k*2*Cf/D # exponent for convolution function G R1 = compute_migration_rate(pad,len(x),ds,alpha,omega,gamma,R0) # calculate bend-by-bend migration rate MR = segmented_MR(curv, R1, s) # calculate new centerline coordinates: dy_ds = dy/ds dx_ds = dx/ds # move x and y coordinates: x = x + R1*dy_ds*dt y = y - R1*dx_ds*dt return x,y, MR def generate_initial_channel(W,D,deltas,pad): """generate straight Channel object with some noise added that can serve as input for initializing a ChannelBelt object from MeanderPy W - channel width D - channel depth deltas - distance between nodes on centerline pad - padding (number of nodepoints along centerline)""" cl_length = ((50*W)*10)# length of noisy part of initial centerline pad1 = pad//10 #padding at upstream end can be shorter than padding on downstream end if pad1<5: pad1 = 5 x = np.linspace(0, cl_length+(2*pad1)*deltas, int(cl_length/deltas+(2*pad1))+1) # x coordinate y = 10.0 * (2*np.random.random_sample(int(cl_length/deltas)+1,)-1) y = np.hstack((np.zeros((pad1),),y,np.zeros((pad1),))) # y coordinate MR = np.zeros_like(x) return Channel(x,y,W,D, MR) def load_initial_channel(filepath, W, D, deltas): """generate initial channel from centerline csv that can serve as input for initializing a ChannelBelt object. must be fine enough resolution to not warrant smoothing filepath - csv with x, y coordinates and no headers W - channel width D - channel depth deltas - distance between nodes on centerline""" df = pd.read_csv(filepath, sep = ',', header=None).values x = df[:,0] y = df[:,1] MR = np.zeros(int(len(x)/30)) return Channel(x,y,W,D,MR) def generate_channel_from_file(filelist, deltas, matlab_corr= -1): """function for creating a MeanderPy Channel object from an externally-sourced centerline in .csv file format. inputs: filelist - filelist must be a list of filepaths. thie first should be a csv containing x and y values for each point on a centerline. The second should be the widths of each point along the centerline slope - average channel slope (default = .01) D_in - channel depth (m, default = 10) smooth_factor - fraction of centerline points to sample from spline (default = 1/4) matlab_corr - 1 if y-axis need not be flipped, -1 for centerlines exported from matlab and need flipping outputs: ch - MeanderPy object of channel centerline x - uninterpolated array of x coordinates y - uninterpolated array of y coordinates cl_len - length of centerline(m) """ #use pandas to load x,y coordinates and widths of centerline from csv varlist = [pd.read_csv(file, sep = ',', header=None).values for file in filelist] x = varlist[0][:,0]*30 ## x-dim array in Sm y = varlist[0][:,1]*matlab_corr*30 ##southern hemisphere y-dim array in m # shift coordinates so all are positive if sum(n < 0 for n in y) > 0: y = y-min(y)## y-dim earray in m if sum(n < 0 for n in x) > 0: x = x-min(x) #average over widths to get a reach-constant width scalar W = np.mean(varlist[1][:,0])*30 ## water depth scalar# D = np.exp(np.log(W/18.8)/1.41) # Linear length along the line, add a zero for first point: points = np.vstack([x, y]).T distance = np.cumsum( np.sqrt(np.sum( np.diff(points, axis=0)**2, axis=1 )) ) distance = np.insert(distance, 0, 0) # Build a list of the spline function, one for each dimension: splines = [InterpolatedUnivariateSpline(distance, coords) for coords in points.T] # Compute the spline for the smoothed(sampled) distances: points_fitted = np.vstack([spl(np.linspace(0, distance[-1],int(distance[-1]/(W//2)))) for spl in splines]) ## z-dim array, interpolated with constant slope along points of centerline. assumes centerline points are equidistantly placed along original centerline. #deltas = round(distance[-1]/(len(points_fitted[0])-1)) MR = np.zeros_like(points_fitted[0]) return Channel(points_fitted[0],points_fitted[1],W,D, MR), D, W @numba.jit(nopython=True) def compute_migration_rate(pad,ns,ds,alpha,omega,gamma,R0): """compute migration rate as weighted sum of upstream curvatures pad - padding (number of nodepoints along centerline) ns - number of points in centerline ds - distances between points in centerline omega - constant in HK model gamma - constant in HK model R0 - nominal migration rate (dimensionless curvature * migration rate constant)""" R1 = np.zeros(ns) # preallocate adjusted channel migration rate pad_up = ns-pad #########Periodic Boundary######################### for i in range(2,pad): si2 = np.hstack((np.array([0]),np.cumsum(np.hstack((ds[i-1::-1], ds[ns-1:pad_up:-1]))))) G = np.exp(-alpha*si2) # convolution vector for downstream boundary to wrap around R1[i] = omega*R0[i] + gamma*np.sum(np.hstack((R0[i::-1], R0[ns-1:pad_up:-1]))*G)/np.sum(G) # main equation, weighted sum of curvatures upstream from downstream boundary - periodic boundary condition ##################################################### for i in range(pad,ns): si2 = np.hstack((np.array([0]),np.cumsum(ds[i-1::-1]))) # distance along centerline, backwards from current point G = np.exp(-alpha*si2) # convolution vector R1[i] = omega*R0[i] + gamma*np.sum(R0[i::-1]*G)/np.sum(G) # main equation return R1 def compute_derivatives(x,y): """function for computing first derivatives of a curve (centerline) x,y are cartesian coodinates of the curve outputs: dx - first derivative of x coordinate dy - first derivative of y coordinate ds - distances between consecutive points along the curve s - cumulative distance along the curve""" if len(x) < 2: dx = [0]; dy = [0]; ds = [0]; s = [0] else: dx = np.gradient(x) # first derivatives dy = np.gradient(y) ds = np.sqrt(dx**2+dy**2) s = np.hstack((0,np.cumsum(ds[1:]))) return dx, dy, ds, s def compute_curvature(x,y): """function for computing first derivatives and curvature of a curve (centerline) x,y are cartesian coodinates of the curve outputs: dx - first derivative of x coordinate dy - first derivative of y coordinate ds - distances between consecutive points along the curve s - cumulative distance along the curve curvature - curvature of the curve (in 1/units of x and y)""" dx = np.gradient(x) # first derivatives dy = np.gradient(y) ddx = np.gradient(dx) # second derivatives ddy = np.gradient(dy) curvature = (dx*ddy-dy*ddx)/((dx**2+dy**2)**1.5) return curvature def kth_diag_indices(a,k): """function for finding diagonal indices with k offset [from https://stackoverflow.com/questions/10925671/numpy-k-th-diagonal-indices]""" rows, cols = np.diag_indices_from(a) if k<0: return rows[:k], cols[-k:] elif k>0: return rows[k:], cols[:-k] else: return rows, cols def find_cutoffs(x,y,crdist,deltas): """function for identifying locations of cutoffs along a centerline and the indices of the segments that will become part of the oxbows from MeanderPy x,y - coordinates of centerline crdist - critical cutoff distance deltas - distance between neighboring points along the centerline""" diag_blank_width = int((crdist+20*deltas)/deltas) # distance matrix for centerline points: dist = distance.cdist(np.array([x,y]).T,np.array([x,y]).T) dist[dist>crdist] = np.NaN # set all values that are larger than the cutoff threshold to NaN # set matrix to NaN along the diagonal zone: for k in range(-diag_blank_width,diag_blank_width+1): rows, cols = kth_diag_indices(dist,k) dist[rows,cols] = np.NaN i1, i2 = np.where(~np.isnan(dist)) ind1 = i1[np.where(i1<i2)[0]] # get rid of unnecessary indices ind2 = i2[np.where(i1<i2)[0]] # get rid of unnecessary indices return ind1, ind2 # return indices of cutoff points and cutoff coordinates def cut_off_cutoffs(x,y,s,crdist,deltas): """function for executing cutoffs - removing oxbows from centerline and storing cutoff coordinates from meanderpy x,y - coordinates of centerline crdist - critical cutoff distance deltas - distance between neighboring points along the centerline outputs: x,y - updated coordinates of centerline xc, yc - lists with coordinates of cutoff segments cl_dist - distance cutoff occurs down centerline""" xc = [] yc = [] cl_dist = [] cut_len = [] max_curv = [] ind1, ind2 = find_cutoffs(x,y,crdist,deltas) # initial check for cutoffs ind1_save = [] ind2_save = [] if len(ind1)>0: ind1_save = ind1[0] ind2_save = ind2[0] while len(ind1)>0: xc.append(x[ind1[0]:ind2[0]+1]) # x coordinates of cutoff yc.append(y[ind1[0]:ind2[0]+1]) # y coordinates of cutoff dx, dy, ds, s_little = compute_derivatives(x[:ind1[0]+1],y[:ind1[0]+1])#compute derivatives upstream of cutoff cl_dist.append(s_little[-1]) #cutoff distance downstream dx, dy, ds, s_between = compute_derivatives(xc[-1],yc[-1])#compute derivatives along cutoff bend cut_len.append(s_between[-1]) #length removed by cutoff x = np.hstack((x[:ind1[0]+1],x[ind2[0]:])) # x coordinates after cutoff y = np.hstack((y[:ind1[0]+1],y[ind2[0]:])) # y coordinates after cutoff ind1, ind2 = find_cutoffs(x,y,crdist,deltas) return x,y,xc,yc, cl_dist, cut_len, ind1_save, ind2_save def get_channel_banks(x,y,W): """function for finding coordinates of channel banks, given a centerline and a channel width from meanderpy x,y - coordinates of centerline W - channel width outputs: xm, ym - coordinates of channel banks (both left and right banks)""" x1 = x.copy() y1 = y.copy() x2 = x.copy() y2 = y.copy() ns = len(x) dx = np.diff(x); dy = np.diff(y) ds = np.sqrt(dx**2+dy**2) x1[:-1] = x[:-1] + 0.5*W*np.diff(y)/ds y1[:-1] = y[:-1] - 0.5*W*np.diff(x)/ds x2[:-1] = x[:-1] - 0.5*W*np.diff(y)/ds y2[:-1] = y[:-1] + 0.5*W*np.diff(x)/ds x1[ns-1] = x[ns-1] + 0.5*W*(y[ns-1]-y[ns-2])/ds[ns-2] y1[ns-1] = y[ns-1] - 0.5*W*(x[ns-1]-x[ns-2])/ds[ns-2] x2[ns-1] = x[ns-1] - 0.5*W*(y[ns-1]-y[ns-2])/ds[ns-2] y2[ns-1] = y[ns-1] + 0.5*W*(x[ns-1]-x[ns-2])/ds[ns-2] xm = np.hstack((x1,x2[::-1])) ym = np.hstack((y1,y2[::-1])) return xm, ym def update_nonlocal_effects(ne, s, decay, scale, cut_dist, cut_len, thresh = .05): #reshape array to fit new centerline ne = np.interp(np.arange(len(s)),np.arange(len(ne)), ne) ###decay old NE ne_new = ne*np.exp(-decay) ### remove ne that are less than some threshold, default = .05 (1/20 of background rate) ne_new[np.where(ne_new<(thresh))[0]] = 0 for k in range(len(cut_dist)): #for each cutoff, add new NE #gaussian bump mu = cut_dist[k] print(cut_len[k]) sigma = (cut_len[k]*1.19)/2 # want 88% of the bump within 1.19*cut_len, rest is negligible y_bump = norm.pdf(s, mu, sigma) ne_new = ne_new + ((scale)*y_bump/np.max(y_bump)) return ne_new def get_sinuosity(x,y,s): dist = np.hypot(abs(x[-1]-x[0]), abs(y[-1]-y[0])) Sin = s[-1]/dist return Sin def plot_sinuosity(time, sin): fig, ax = plt.subplots(1,1) ax.plot(range(0,len(sin)), sin, 'k', label = "mean S = "+ str(np.mean(sin))) plt.legend() ax.set_title("Sinuosity") return fig def get_radii(c, ind1, ind2, W): #unsigned curvature radii = abs(c) # Width divided by maximum dimensionless curvature of cutoff bend max_rad = W/(np.max(radii[ind1:ind2])*W) return max_rad def plot_distribution(cuts,W, filepath): x = cuts['downstream_distance']/W y = cuts['time']- min(cuts['time']) # definitions for the axes left, width = 0.1, 0.65 bottom, height = 0.1, 0.65 spacing = 0.005 rect_scatter = [left, bottom, width, height] rect_histx = [left, bottom + height + spacing, width, 0.2] rect_histy = [left + width + spacing, bottom, 0.2, height] # start with a square Figure fig, ax = plt.subplots(1,1,figsize=(3, 3)) plt.rcParams.update({'font.size': 10}) #ax = fig.add_axes([0,0,1,1]) #ax_histx = fig.add_axes(rect_histx, sharex=ax) #ax_histy = fig.add_axes(rect_histy, sharey=ax) ax.scatter(x, y, c = 'black', s = 10, alpha = .8) # use the previously defined function # scatter_hist(x, y, ax, ax_histx, ax_histy) ax.set_ylabel("time (years)") #plt.xlim(left=0) #plt.ylim(bottom=0) ax.set_xlabel("distance downstream (ch-w)") ax.set_xlim([0,1500]) ax.set_ylim([0,250]) return fig def scatter_hist(x, y, ax, ax_histx, ax_histy): # no labels ax_histx.tick_params(axis="x", labelbottom=False) ax_histy.tick_params(axis="y", labelleft=False) # the scatter plot: ax.scatter(x, y, c = 'black', s = 2) # now determine nice limits by hand: xbinwidth = 25 ybinwidth = 10 xmax = np.max(np.abs(x)) ymax = np.max(np.abs(y)) xlim = (int(xmax/xbinwidth) + 1) * xbinwidth ylim = (int(ymax/ybinwidth) + 1) * ybinwidth xbins = np.arange(0, xlim + xbinwidth, xbinwidth) ybins = np.arange(0, ylim + ybinwidth, ybinwidth) ax_histx.hist(x, bins=xbins) ax_histy.hist(y, bins=ybins, orientation='horizontal') def segmented_MR(curv, R1, s, n=90): """ approximate a bend-by-bend nth percentile lateral migration rate. Inputs: curve: array of curvature for every node along the centerline. R1: array of already computed migration distances for every node along the centerline. ds: array of cumulative distance downstream between nodes. n: percentile Output: MR: array of nth percentile migration rate for each segment. upstream: distance downstream of each segment start downstream: distance downstream of each segment end """ R1 = np.array(R1)*365*24*60*60.0 #m/yr instead of m/sec infs1 = np.where(np.logical_and(curv[1:] > 0, curv[:-1] < 0))[0] + 1 infs2 = np.where(np.logical_and(curv[1:] < 0, curv[:-1] > 0))[0] + 1 idx = np.sort(np.concatenate((infs1, infs2))) #nodes = np.array([(curv[i-2]*curv[i])< 0 and (curv[i+2]*curv[i])> 0 for i in range(2,len(curv)-2)]) #idx = np.where(nodes==1)[0] idx = [idx[i] for i in range(len(idx)-1) if idx[i+1]-idx[i] >5] MR = [np.percentile(np.abs(R1[idx[i]:idx[i+1]]), 100) for i in range(len(idx)-1)] return MR def moving_average(matrix, window): """ averages migration rates on each bend over a set time window upwind. inputs matrix: n years by m bend migration rate numpy array window: how many indices to average over, as years in the past output mid: moving average migration rate over window years for each bend """ years = len(matrix) bends = np.min([np.count_nonzero(~np.isnan(matrix[i])) for i in range(years)]) mid = np.zeros(shape = (years, bends)) mid[0,:bends] = matrix[0][:bends] for year in range(1,years): if year < window: mid[year, :] = np.nanmean(matrix[:year][:bends]) else: mid[year, :] = np.nanmean(matrix[year-window:(year+1)][:bends]) return mid def plot_segmented_MR(MR,obmr, fig, axs, c, name, dt = 1): mean_all = round(np.nanmean(MR[:, 2:-2]),3) max_all = round(np.nanmax(MR[:, 2:-2]), 3) #heatmap = ax1.imshow(MR, cmap = 'gist_heat') #heatmap = axs[1].imshow(MR/100, cmap = 'cividis', vmin = 0, vmax =np.nanmax(MR/100), aspect = 'auto', origin = 'lower') #axs[1].set_xlabel('distance downstream (bend #)') #cb = fig.colorbar(heatmap, ax=axs[1]) #cb.set_label("maximum migration rate (ch-w/yr)") #mid = moving_average(MR, 2)/100 #min #axs[0].plot(MR/100, range(len(MR)), alpha=.2, c = 'k') #mean # MR_ddt = np.nanpercentile((MR[1:, :] - MR[:-1, :])/MR[1:, :], 50, axis = 1) #f_spec, Pxx_mid = periodogram(np.nanpercentile(MR[:, 10:], 50, axis = 1),dt, scaling = 'spectrum') #f_spec, Pxx_mid = welch(np.nanpercentile(MR[:, :], 50, axis = 1), dt, nperseg=500, scaling = 'spectrum') #f, t, Zxx = stft(np.nanpercentile(MR[:, :], 50, axis = 1), nperseg=100) #line =axs.pcolormesh(t, f, np.abs(Zxx), vmin=0,vmax=int(np.nanpercentile(Zxx, 90)), shading='gouraud') #filter #Pxx_mid[1:-1]= np.convolve(Pxx_mid, np.ones(3)/3, mode='valid') #cumu = np.cumsum(Pxx_mid) #midfreq = f_spec[cumu>=(cumu[-1]/2)][0] #freqscale = (f_spec[1:])/(500/len(MR[:, 0])) #Pxx_mid = savgol_filter(Pxx_mid,5,3) # Pxx_den = medfilt(Pxx_den) #upper = np.percentile(Pxx_mid, 99) #upper_noise = np.percentile(Pxx_mid[int(len(Pxx_mid)/2):], 95) #NP = np.mean(Pxx_mid[-int((len(Pxx_mid)/4)):]) #peaks, _ = find_peaks(Pxx_mid) #[proms, leftbases, rightbases] = peak_prominences(Pxx_mid, peaks) #mids = ((rightbases-leftbases)/2) +leftbases #newmids = mids[proms>=np.percentile(proms, 90)] #print(newmids) #input() #proms = proms[proms>=np.percentile(proms, 90)] #idx = proms.argsort()[:] #proms = proms[idx] #newmids = newmids[idx] #lower_noise = np.percentile(Pxx_mid[-int(len(Pxx_mid)/5):], 1) #amp = Pxx_mid.max() #stn = amp/NP #maxfreq = f_spec[Pxx_mid == Pxx_mid.max()] line = axs.hist(MR.flatten(), range=(0,500), bins= range(0, 50),color= c, linewidth = 1.5, histtype='step') #line = axs.semilogy(f[1:], NP/(np.power(f, 2))[1:],alpha=.8, linewidth = 1, ls = "--", c = 'brown', label = '_nolegend_') #line = axs.semilogy(f_spec[1:], 1/(np.power(f_spec, .8))[1:],alpha=.8, linewidth = 1, ls = "--", c = 'pink', label = '_nolegend_') #line = axs.semilogy(f[1:], NP+(f[1:]*0),alpha=.8, linewidth = 1, ls = "--", c = 'purple', label = '_nolegend_') #line = axs.semilogy(f_spec[1:]/(500/len(MR[:, 0])), 1/(np.ones(len(f_spec)-1)*(upper_noise/NP)),alpha=.5, linewidth = .5, ls = "--", c = 'grey', label = '_nolegend_') #line = axs.semilogy(f_spec[1:]/(500/len(MR[:, 0])), 1/(np.ones(len(f_spec)-1)*(lower_noise/NP)),alpha=.5, linewidth = .5, ls = "--", c = 'grey', label = '_nolegend_') #line = axs.loglog((f_spec[1:]), 1/(f_spec[1:]**2),alpha=.8, linewidth = 1, ls = "--", c = 'brown', label = '_nolegend_') #line = axs.loglog((f_spec[1:]), 1/(f_spec[1:]**1),alpha=.8, linewidth = 1, ls = "--", c = 'pink', label = '_nolegend_') #line = axs.loglog((f_spec[1:]), (np.ones(len(f_spec)-1)),alpha=.8, linewidth = 1, ls = "--", c = 'grey', label = '_nolegend_') #line = axs.semilogy((f_spec[1:]), Pxx_mid[1:]/NP,alpha=.8, linewidth = 1, c = c)#, label = name + " SNR = "+ str(round(stn, 3))) #axs.scatter(newmids, np.ones(len(newmids)),marker = 'o', color = c,alpha = .8, label = '_nolegend_') #axs.set_xlim([0, 100]) #xtickz = axs.get_xticks() #axs.set_xticklabels(1/xtickz) #axs.plot(, range(len(MR[:,0])), alpha=1, c = 'r', label = 'max = '+str(max_all)) axs.legend(loc = 'upper right', fontsize=8, frameon = False) print("mean obmr = "+str(round(mean_all,5))) return fig, axs, line ``` #### File: Cutoffs/SpaceTime/SpaceTime.py ```python import numpy as np import math import matplotlib.pyplot as plt import itertools as it """ class of functions to statistically compare cutoff 2-d spatiotemporal point processes to simulated complete spatial randomness. This is an implementation of Ripley's K function for 2-D space time. """ class RipleysKEstimator_spacetime: def __init__(self,t_max, d_max, t_min, d_min, width, dt): """initialize estimator t_max - int, last year of model iteration d_max - int, longest centerline length t_min - int, 0 d_min - in, 0 width - constant channel width in m""" self.t_max = t_max # last year self.d_max = d_max # max centerline length self.t_min = t_min # 0 self.d_min = d_min # 0 self.width = width self.dt = dt def __call__(self, cutoffs, mode, max_search_d, max_search_t, plotornot): """ perform main function """ return self.mc_env(cutoffs = cutoffs, nit=99, mode = mode, max_search_d=max_search_d, max_search_t=max_search_t, plotornot=plotornot) def _pairwise_diffs(self, data): """ compute array of distances between every point in 1D data - 1-D array of deltas, space or time """ npts = len(data) diff = np.zeros(shape=(npts * (npts - 1) // 2), dtype=np.double) datai = np.zeros(shape=(npts * (npts - 1) // 2), dtype=np.double) k = 0 for i in range(npts - 1): for j in range(i+1, npts): diff[k] = abs(data[i] - data[j]) datai[k] = data[i] k += 1 return datai, diff def _near_neigh(self,data): """ compute array of distance between every point and its nearest neighbor in 1D data - 1-D array of deltas, space or time """ npts = len(data) diff = np.zeros(shape=npts, dtype=np.double) for i in range(npts): others= np.hstack((data[i::-1], data[i+1:])) mask = np.ones(len(data), dtype=bool) mask[i] = False others = others[mask] diff[i] = np.min(abs(data[i] - others)) return diff def _weights(self, xi, yi, diff_d, diff_t): """ compute weights for edge effect correction. one over intersecting area """ npts = 500 weights = np.ones(shape=(npts * (npts - 1) // 2), dtype=np.double) #top weights[(((self.t_max- yi) - diff_t )<= 0)] =2 #bottom weights[((yi-diff_t) <= 0)] =2 weights[(((self.d_max- xi) - diff_d )<= 0)] =2 weights[((xi-diff_d) <= 0)] =2 return weights def _evaluate(self, data, dist_space, dist_time, mode): """ INPUTS data - 2-D array of N by 2 size where N is number of cutoffs in dataset, column [:,0] records distance downstream and [:,1] is time. dist_space - 1-D array of radii to search in for intensity estimates dist_time - 1-D array of durations to search in for intensity estimates mode - statistical measurement to be made, str, either 'K_st, 'K', 'G', or 'H' OUTPUTS stat_d - 1-D Ripleys K at distances dist_space stat_t - 1-D temporal Ripleys K at durations dist_time stat_dt - 2-D spatiotemporal Ripleys K of M by N{n} size, where M{t} is dist_space, T is dist_time, and each array member is the intensity of the sampled point process at n search distance and t search time. """ data = np.asarray(data) npts = len(data) stat_d = np.zeros(len(dist_space)) #1-D spatial statistic stat_t = np.zeros(len(dist_time))#1-D temporal statistic stat_dt = np.zeros((len(dist_space), len(dist_time))) #2D space-time statistic null = stat_dt.copy() if mode == "H": """ H , the probability of finding neighbors in search dist """ deltaspace = self._pairwise_diffs(data[:,0]) deltatime = self._pairwise_diffs(data[:,1]) for i in range(len(dist_space)): d_indicator = (deltaspace <=dist_space[i]) stat_d[i] = (d_indicator).sum() for i in range(len(dist_time)): t_indicator = (deltatime<=dist_time[i]) stat_t[i] = (t_indicator).sum() stat_t = 2*stat_t/(npts*(npts-1)) stat_d = 2*stat_d/(npts*(npts-1)) return (stat_d, stat_t) if mode == "G": """ G, probability the nearest neighbor is within search dist """ deltaspace = self._near_neigh(data[:,0]) deltatime = self._near_neigh(data[:,1]) for i in range(len(dist_space)): d_indicator = (deltaspace <=dist_space[i]) stat_d[i] = (d_indicator).sum() for i in range(len(dist_time)): t_indicator = (deltatime<=dist_time[i]) stat_t[i] = (t_indicator).sum() stat_t = stat_t/(npts) stat_d = stat_d/(npts) return (stat_d, stat_t) if mode == "K": """ number of additional events near other events on time scales of dist_time and spatial scales of dist_space, 2 1-d plots """ xi, deltaspace = self._pairwise_diffs(data[:,0]) yi, deltatime = self._pairwise_diffs(data[:,1]) for i in range(len(dist_space)): d_indicator = (deltaspace <=dist_space[i]) stat_d[i] = (d_indicator*xi).sum() for i in range(len(dist_time)): t_indicator = (deltatime<=dist_time[i]) stat_t[i] = (t_indicator*yi).sum() stat_t = 2*(self.t_max*stat_t/(npts*(npts-1))) stat_d = 2*(self.d_max*stat_d/((npts-1)*npts)) return (stat_d, stat_t) if mode == "K_st": """ number of additional events near other events given sepcific search distances and durations. 2D heatmap """ xi, deltaspace = self._pairwise_diffs(data[:,0]) yi, deltatime = self._pairwise_diffs(data[:,1]) weights = self._weights(xi, yi, deltaspace, deltatime) for x in range(len(dist_space)): for t in range(len(dist_time)): dt_indicator = (deltatime<=dist_time[t])&(deltaspace <=dist_space[x]) stat_dt[x,t] = (dt_indicator*weights).sum() stat_dt = (self.d_max*self.t_max*stat_dt)/(npts*(npts-1)) return(stat_dt) def mc_env(self,cutoffs, nit, mode, max_search_d, max_search_t, plotornot): """ generate random distibutions in same space + time ranges as data """ rng = np.random.default_rng(seed = 80) data = cutoffs[['downstream_distance', 'time']].to_numpy() num_samples = len(cutoffs.time) r_time = np.linspace(self.dt,self.dt*max_search_t, max_search_t) r_space = np.linspace(self.width,self.width*max_search_d, max_search_d) mc_d = np.zeros((len(r_space), nit)) mc_t = np.zeros((len(r_time), nit)) mc_dt = np.zeros((len(r_space), len(r_time), nit)) z = np.zeros((num_samples, 2)) for i in range(nit): z[:,0] = rng.random(size = num_samples)*self.d_max z[:,1] = rng.random(size = num_samples)*self.t_max k_dt = self._evaluate(data=z, dist_time=r_time, dist_space=r_space, mode='K_st') mc_dt[:, :, i]= k_dt k_d, k_t = self._evaluate(data=z, dist_time=r_time, dist_space=r_space, mode='K') mc_d[:,i] = k_d mc_t[:,i] = k_t if mode == 'K_st': ## monte carlo envelope - limits on probable randomness upper_dt = np.percentile(mc_dt, 97.5, axis = 2) lower_dt = np.percentile(mc_dt, 2.5, axis = 2) middle_dt = np.ma.mean(mc_dt, axis = 2) upper_d = np.ma.max(mc_d, axis = 1) lower_d = np.ma.min(mc_d, axis = 1) upper_t = np.ma.max(mc_t, axis = 1) lower_t = np.ma.min(mc_t, axis = 1) #K values stat_d, stat_t = self._evaluate(data=data, dist_time=r_time, dist_space=r_space, mode='K') #space-time K stat_dt = self._evaluate(data=data, dist_time=r_time, dist_space=r_space, mode=mode) #dependent_clustered = (stat_dt>np.multiply(upper_d.reshape(len(upper_d),1),upper_t)) #dependent_regular = (stat_dt<np.multiply(lower_d.reshape(len(lower_d),1),lower_t)) #locations of statictically nonrandom, dependent K values #significantly more aggregated than upper mc env, and clustered = (stat_dt>upper_dt) regular = (stat_dt<lower_dt) sig_mask = (clustered+regular) #stat_d_times_stat_t = np.multiply(stat_d.reshape(len(stat_d),1),stat_t.reshape(1,len(stat_t))) normalized = stat_dt-middle_dt if plotornot == 1: self.plot_st(r_space, r_time, normalized, sig_mask, np.sum(normalized), lower_dt-middle_dt, upper_dt-middle_dt)# return [normalized,middle_dt, upper_dt-middle_dt, lower_dt-middle_dt] else: #monte carlo envelope upper_d = np.ma.max(mc_d, axis = 1)/(r_space*2)-1 upper_t = np.ma.max(mc_t, axis = 1)/(r_time*2)-1 lower_d = np.ma.min(mc_d, axis = 1)/(r_space*2)-1 lower_t = np.ma.min(mc_t, axis = 1)/(r_time*2)-1 #Simulated Poisson distrubution middle_d = np.ma.mean(mc_d, axis = 1)/(r_space*2)-1 middle_t = np.ma.mean(mc_t, axis = 1)/(r_time*2)-1 #K values stat_d, stat_t = self._evaluate(data=data, dist_time=r_time, dist_space=r_space, mode=mode) #normalize to what's expected under poisson stat_d = (stat_d)/(r_space*2) -1 stat_t = (stat_t)/(r_time*2) -1 self.plot(upper_d,upper_t, lower_d, lower_t, middle_d, middle_t, r_space, r_time, stat_d, stat_t, num_samples) def plot_st(self, r_space, r_time, normalized, sig_mask, D, lowerlim, upperlim): plt.rcParams.update({'font.size': 10}) fig,ax = plt.subplots(figsize = (8,4)) cmap = plt.get_cmap('PiYG') vscale = np.max(abs(normalized)) #im = ax.imshow(np.ma.masked_values(normalized, 0),origin='lower' cmap = cmap) im =ax.pcolormesh(np.swapaxes(normalized,0,1), cmap = cmap,vmin = -np.max(np.abs(lowerlim, upperlim)), vmax = np.max(np.abs(lowerlim, upperlim))) #plt.pcolor(np.ma.masked_values(np.swapaxes(normalized*sig_mask,0,1),0), edgecolors='k', linewidths=4, alpha=0.) im2 =ax.pcolormesh(np.ma.masked_values(np.swapaxes(normalized*sig_mask,0,1)/np.swapaxes(normalized*sig_mask,0,1),0), zorder=2, linewidths = .01,facecolor='none', edgecolors='k',cmap='gray') plt.title('D ='+str(D), pad = 10) cbar = ax.figure.colorbar(im, ax=ax)#, ticks = [-2,-1,0,1,2]) cbar.ax.set_ylabel("D(d,t) = K_hat(d,t)-K(d,t)", va="bottom", rotation=-90) #cbar.ax.set_yticklabels(['<-2', '-1', '0','1','>2']) ax.set_ylim(bottom=0, top=max(r_time/self.dt)) ax.set_xlim(left=0, right=max(r_space/self.width)) ax.set_ylabel('time window (years)') ax.set_xlabel('search distance (ch-w)') ax.set_xticks(r_space/(self.width), minor=True) ax.set_yticks(r_time/self.dt, minor=True) ax.set_xticks(r_space/self.width-.5) ax.set_yticks(r_time/self.dt-.5) ax.set_yticklabels((r_time).astype(int)) ax.set_xticklabels((r_space/100).astype(int))#, rotation='vertical') ax.tick_params(axis = 'both', which = 'major', top =False, bottom = False, left = False, right = False) #ax.grid(True, which='minor', color='k', linewidth=.1) return fig, def plot(self,upper_d,upper_t, lower_d, lower_t, middle_d, middle_t, r_space, r_time, stat_d, stat_t, num_samples): #1-d spatial Ripley's K fig = plt.figure() #plot CSR envelope plt.plot(r_space/self.width, upper_d, color='red', ls=':', label='_nolegend_', linewidth = .5) plt.plot(r_space/self.width, lower_d, color='red', ls=':', label='_nolegend_', linewidth = .5) plt.plot(r_space/self.width, middle_d, color='red', ls=':', label='CSR', linewidth = .5) plt.plot(r_space/self.width, stat_d, color = "black", linewidth = .5,label = str(num_samples)+ ' cutoffs') plt.legend(loc = 'lower right') plt.xlabel("d along centerline (ch-w)") plt.ylabel('K/2-d') plt.title("Homegrown 1D space EDF") #plt.savefig(resultdir + str(year)+"yrs_Space_Ripley_"+mode+".jpg", dpi = 500) plt.show() #1-D Temporal Ripley's K fig2 = plt.figure() #plot CSR envelope plt.plot(r_time, upper_t, color='red', ls=':',linewidth = .5, label='_nolegend_') plt.plot(r_time, lower_t, color='red', ls=':',linewidth = .5, label='_nolegend_') plt.plot(r_time, middle_t, color='red', ls=':',linewidth = .5, label='CSR') plt.plot(r_time, stat_t, color = "black", linewidth = .5, label =str(num_samples)+ ' cutoffs') plt.legend(loc = 'lower right') plt.xlabel("t in years") plt.ylabel('K/2 -t') plt.title("Homegrown 1D time EDF") plt.show() ```
{ "source": "josieheartthrob/guescii", "score": 3 }
#### File: guescii/source/game.py ```python import string, subprocess, random from source.gamedata import Data, EXACT, SIMILAR from shellpages import Page, ParseError # Global aliases EXACT_CHAR, SIMILAR_CHAR = EXACT, SIMILAR class Game(object): """The main class that runs an actual game.""" def __init__(self, settings, options, order): """Assumes settings is a settings dictionary; Options is a dictionary of options; Order is sequence of characters that represents the option order.""" options = options.copy() options['/g'] = self._guess self.__place = 0 self._settings = settings.copy() self._answer = self._build_answer() self._data = Data(settings) self._page = Page(self._data.header, self._data.__str__(), options, order, self._parse) #-----Public properties----- @property def page(self): return self._page #-----Private properties----- @property def _place(self): return self.__place @_place.setter def _place(self, other): if other-self.__place != 1: raise ValueError('place can only increment by 1') elif self.__place+1 == self._settings['attempts']: self._data.answer = self._answer self.__place = other #-----Private methods----- def _build_answer(self): """Create a randomized answer combination.""" # Helper Variables types = string.lowercase[:self._settings['types']] # Main algorithm answer = '' for i in xrange(self._settings['length']): answer += random.choice(types) return answer def _build_hint(self, guess): """Return a string that gives the user info about their guess. Arguments: guess ----- a string entered by the user """ # Here's a funny thing: In Tatham's source code they reference a # wolfram alpha page that has the formula for this. But I actually # figured this out before I even knew Tatham's code was open-source - # because I'm a fucking math-genius. # Helper variables guess_map = {c: guess.count(c) for c in set(guess)} answer_map = {c: self._answer.count(c) for c in set(self._answer)} # Main algorithm exact = sum([1 for i, c in enumerate(guess) if c == self._answer[i]]) similar = (sum([min(guess_map[c], answer_map[c]) for c in answer_map if c in guess_map]) - exact) return EXACT_CHAR*exact + SIMILAR_CHAR*similar def _parse(self, data): """Parse data to call an option or evaluate a guess. Arguments: data ----- a string entered by the user """ # Helper Variables types = string.lowercase[:self._settings['types']] guess = data.replace(' ', '') # Main algorithm if data in self._page.options.keys(): return data, (), {} elif self._data.answer.replace(' ', '') == self._answer: raise ParseError('Game over. Please choose an option.') elif len(guess) != self._settings['length']: raise ParseError('Guess must be exactly ' + '{} letters long'.format(self._settings['length'])) elif not set(guess).issubset(set(types)): raise ParseError('Guess must be composed of ' + '[{}]'.format(types.replace('', ' ')[1:-1])) else: return '/g', [guess], {} def _guess(self, combo): """Display accuracy of the given combination to the user. Arguments: combo ----- A combination string Side Effects: Modifies the private data property's answer, guesses, and hints properties. Modifies the private page property's body property. """ self._data.add_guess(combo, self._place) hint = self._build_hint(combo) self._data.add_hint(hint, self._place) if combo == self._answer: self._data.answer = self._answer self._place += 1 self._page.body = self._data.__str__() #------------------Testing-------------------- def test(): from shellpages import Option from sys import exit def close(): raw_input('> ') subprocess.call('cls', shell=True) exit() settings = {'types': 6, 'length': 4, 'attempts': 5} options = {'q': Option('q', 'quit', close)} game = Game(settings, options, ['q']) while True: game._page() if __name__ == '__main__': test() ```
{ "source": "josieheartthrob/testtools", "score": 4 }
#### File: josieheartthrob/testtools/testtools.py ```python function_message = 'expected: %s\nactual: %s' method_message = '"%s" attribute\n' + function_message def run_function_tests(function, cases, expected_values): """Run tests on a function Assumes function returns a value Assumes cases is an ordered collection of dictionaries as defined by arguments in the module documentation Assumes expected_values is an ordered collection of obects as the expected values of the function called with the arguments from cases at the same index Returns a tuple of a bool (result) and a string (message) as defined by results in the module documentation """ message = function_message for i, testcase in enumerate(cases): expected = expected_values[i] actual = function(*testcase.get('args', ()), **testcase.get('kwargs', {})) yield actual == expected, message % (expected, actual) def run_void_method_tests(instances, method_name, cases, targets): """Run tests on a void mutator method Assumes instances is a list of object instances of a class. Each instance has the method 'method_name' Assumes method_name is a string as the name of the method being tested. Assumes cases is an ordered collection of dictionaries as defined by arguments in the module documentation. must be same length as isntances. Assumes targets is a list of dictionaries that map strings (attribute) to objects to objects (expected) where each attribute is the name of an attribute mutated by this method and each expected is the expected value. must be same length as instances. Returns a tuple of a bool (result) and a string (message) as defined by results in the module documentation. Each individual attribute test has no local return order, but each attribute group returns in aggregate in the same order as targets. """ message = method_message for i, testcase in enumerate(cases): instance = instances[i] method = getattr(instance, method_name) method(*testcase.get('args', ()), **testcase.get('kwargs', {})) for attribute, expected in targets[i].items(): actual = getattr(instance, attribute) yield expected == actual, message % (attribute, expected, actual) def get_instances(ClassName, arguments, attributes): """Get instances of a class with specific attributes Assumes ClassName is a class type Assumes arguments is an ordered collection of dictionaries as defined in the module documentation Assumes attributes is a list of dictionaries that maps strings (name) to objects (value). name is the name of an attribute in ClassName, and value is what the value of the attribute should be. must be same length as arguments. Returns a list of instances of ClassName such that each relevant attribute is as specified in attributes """ instances = [] for instance in arguments: args = instance.get('args', ()) kwargs = instance.get('kwargs', {}) instances.append(ClassName(*args, **kwargs)) for i, instance in enumerate(instances): for name, value in attributes[i].items(): setattr(instance, name, value) return instances ```
{ "source": "JosieHong/Handwritten-digit-recognition-based-on-CNN", "score": 3 }
#### File: JosieHong/Handwritten-digit-recognition-based-on-CNN/CIFARHelper.py ```python import numpy as np def one_hot_encode(vec, vals=10): n = len(vec) out = np.zeros((n, vals)) out[range(n), vec] = 1 return out class CifarHelper(object): def __init__(self, all_data): self.i = 0 batch_meta = all_data[0] data_batch1 = all_data[1] data_batch2 = all_data[2] data_batch3 = all_data[3] data_batch4 = all_data[4] data_batch5 = all_data[5] test_batch = all_data[6] # Grabs a list of all the data batches for training self.all_train_batches = [data_batch1,data_batch2,data_batch3,data_batch4,data_batch5] # Grabs a list of all the test batches (really just one batch) self.test_batch = [test_batch] # Intialize some empty variables for later on self.training_images = None self.training_labels = None self.test_images = None self.test_labels = None def set_up_images(self): print("Setting Up Training Images and Labels") # Vertically stacks the training images self.training_images = np.vstack([d[b"data"] for d in self.all_train_batches]) train_len = len(self.training_images) # Reshapes and normalizes training images self.training_images = self.training_images.reshape(train_len,3,32,32).transpose(0,2,3,1)/255 # One hot Encodes the training labels (e.g. [0,0,0,1,0,0,0,0,0,0]) self.training_labels = one_hot_encode(np.hstack([d[b"labels"] for d in self.all_train_batches]), 10) print("Setting Up Test Images and Labels") # Vertically stacks the test images self.test_images = np.vstack([d[b"data"] for d in self.test_batch]) test_len = len(self.test_images) # Reshapes and normalizes test images self.test_images = self.test_images.reshape(test_len,3,32,32).transpose(0,2,3,1)/255 # One hot Encodes the test labels (e.g. [0,0,0,1,0,0,0,0,0,0]) self.test_labels = one_hot_encode(np.hstack([d[b"labels"] for d in self.test_batch]), 10) def next_batch(self, batch_size): # Note that the 100 dimension in the reshape call is set by an assumed batch size of 100 x = self.training_images[self.i:self.i+batch_size].reshape(100,32,32,3) y = self.training_labels[self.i:self.i+batch_size] self.i = (self.i + batch_size) % len(self.training_images) return x, y ``` #### File: JosieHong/Handwritten-digit-recognition-based-on-CNN/ResNet_model.py ```python import tensorflow as tf from tensorflow.python.training import moving_averages def variable_weight(name, shape, initializer, trainable=True): return tf.get_variable(name, shape=shape, dtype=tf.float32, initializer=initializer, trainable=trainable) def conv_layer(x, num_outputs, kernel_size, stride=1, scope="conv2d"): input_channels = x.get_shape()[-1] with tf.variable_scope(scope): kernel = variable_weight("kernel", [kernel_size, kernel_size, input_channels, num_outputs], tf.contrib.layers.xavier_initializer_conv2d()) return tf.nn.conv2d(x, kernel, strides=[1, stride, stride, 1], padding="SAME") def fc_layer(x, num_outputs, scope="fc"): input_channels = x.get_shape()[-1] with tf.variable_scope(scope): W = variable_weight("weight", [input_channels, num_outputs], tf.contrib.layers.xavier_initializer()) b = variable_weight("bias", [num_outputs,], tf.zeros_initializer()) return tf.nn.xw_plus_b(x, W, b) # batch norm layer def batch_norm(x, decay=0.999, epsilon=1e-03, scope="scope"): x_shape = x.get_shape() input_channels = x_shape[-1] reduce_dims = list(range(len(x_shape) - 1)) with tf.variable_scope(scope): beta = variable_weight("beta", [input_channels,], initializer=tf.zeros_initializer()) gamma = variable_weight("gamma", [input_channels,], initializer=tf.ones_initializer()) # for inference moving_mean = variable_weight("moving_mean", [input_channels,], initializer=tf.zeros_initializer(), trainable=False) moving_variance = variable_weight("moving_variance", [input_channels], initializer=tf.ones_initializer(), trainable=False) mean, variance = tf.nn.moments(x, axes=reduce_dims) update_move_mean = moving_averages.assign_moving_average(moving_mean, mean, decay=decay) update_move_variance = moving_averages.assign_moving_average(moving_variance, variance, decay=decay) tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, update_move_mean) tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, update_move_variance) return tf.nn.batch_normalization(x, mean, variance, beta, gamma, epsilon) def pool_layer(x, pool_size, pool_stride, name, padding='SAME', pooling_Mode='Max_Pool'): if pooling_Mode=='Max_Pool': return tf.nn.max_pool(x, [1, pool_size, pool_size, 1], [1, pool_stride, pool_stride, 1], padding = padding, name = name) if pooling_Mode=='Avg_Pool': return tf.nn.avg_pool(x, [1, pool_size, pool_size, 1], [1, pool_stride, pool_stride, 1], padding = padding, name = name) class ResNet50(object): def __init__(self, x, keep_prob, num_classes): self.X =x self.KEEP_PROB = keep_prob self.NUM_CLASSES = num_classes self._build_model() def _build_model(self): conv1 = conv_layer(self.X, 64, 7, 2, scope="conv1") # -> [batch, 112, 112, 64] bn1 = tf.nn.relu(batch_norm(conv1, scope="bn1")) maxpool1 = pool_layer(bn1, 3, 2, name="maxpool1", pooling_Mode = 'Max_Pool') # -> [batch, 56, 56, 64] block2 = self._block(maxpool1, 256, 3, init_stride=1, scope="block2") # -> [batch, 56, 56, 256] block3 = self._block(block2, 512, 4, scope="block3") # -> [batch, 28, 28, 512] block4 = self._block(block3, 1024, 6, scope="block4") # -> [batch, 14, 14, 1024] block5 = self._block(block4, 2048, 3, scope="block5") # -> [batch, 7, 7, 2048] avgpool5 = pool_layer(block5, 7, 7, name="avgpool5", pooling_Mode = 'Avg_Pool') # -> [batch, 1, 1, 2048] spatialsqueeze = tf.squeeze(avgpool5, [1, 2], name="SpatialSqueeze") # -> [batch, 2048] self.logits = fc_layer(spatialsqueeze, self.NUM_CLASSES, "fc6") # -> [batch, num_classes] self.output = tf.nn.softmax(self.logits) def _block(self, x, n_out, n, init_stride=2, scope="block"): with tf.variable_scope(scope): h_out = n_out // 4 out = self._bottleneck(x, h_out, n_out, stride=init_stride, scope="bottlencek1") for i in range(1, n): out = self._bottleneck(out, h_out, n_out, scope=("bottlencek%s" % (i + 1))) return out def _bottleneck(self, x, h_out, n_out, stride=None, scope="bottleneck"): input_channels = x.get_shape()[-1] if stride is None: stride = 1 if input_channels == n_out else 2 with tf.variable_scope(scope): h = conv_layer(x, h_out, 1, stride=stride, scope="conv_1") h = batch_norm(h, scope="bn_1") h = tf.nn.relu(h) h = conv_layer(h, h_out, 3, stride=1, scope="conv_2") h = batch_norm(h, scope="bn_2") h = tf.nn.relu(h) h = conv_layer(h, n_out, 1, stride=1, scope="conv_3") h = batch_norm(h, scope="bn_3") if input_channels != n_out: shortcut = conv_layer(x, n_out, 1, stride=stride, scope="conv_4") shortcut = batch_norm(shortcut, scope="bn_4") else: shortcut = x return tf.nn.relu(shortcut + h) ``` #### File: JosieHong/Handwritten-digit-recognition-based-on-CNN/VGG16_model.py ```python import tensorflow as tf def conv_layer(x, num_filters, name, filter_height = 3, filter_width = 3, stride = 1, padding = 'SAME'): input_channels = int(x.get_shape()[-1]) with tf.variable_scope(name) as scope: W = tf.get_variable('weights', shape = [filter_height, filter_width, input_channels, num_filters], initializer = tf.random_normal_initializer(mean = 0, stddev = 0.01)) b = tf.get_variable('biases', shape = [num_filters], initializer = tf.constant_initializer(0.0)) conv = tf.nn.conv2d(x, W, strides = [1, stride, stride, 1], padding = padding) z = tf.nn.bias_add(conv, b) return tf.nn.relu(z, name = scope.name) def fc_layer(x, input_size, output_size, name, activation = 'relu'): with tf.variable_scope(name) as scope: W = tf.get_variable('weights', shape = [input_size, output_size], initializer = tf.random_normal_initializer(mean = 0, stddev = 0.01)) b = tf.get_variable('biases', shape = [output_size], initializer = tf.constant_initializer(1.0)) z = tf.nn.bias_add(tf.matmul(x, W), b, name = scope.name) if activation == 'relu': # Apply ReLu non linearity. return tf.nn.relu(z, name = scope.name) elif activation == 'softmax': return tf.nn.softmax(z, name = scope.name) else: return z def max_pool(x, name, filter_height = 2, filter_width = 2, stride = 2, padding = 'SAME'): return tf.nn.max_pool(x, ksize = [1, filter_height, filter_width, 1], strides = [1, stride, stride, 1], padding = padding, name = name) def dropout(x, keep_prob): return tf.nn.dropout(x, keep_prob = keep_prob) class VGG16(object): def __init__(self, x, keep_prob, num_classes): self.X = x self.KEEP_PROB = keep_prob self.NUM_CLASSES = num_classes self._build_model() def _build_model(self): # Block 1 block1_conv1 = conv_layer(self.X, 64, name = 'block1_conv1') block1_conv2 = conv_layer(block1_conv1, 64, name='block1_conv2') block1_pool = max_pool(block1_conv2, name='block1_pool') # Block 2 block2_conv1 = conv_layer(block1_pool, 128, name = 'block2_conv1') block2_conv2 = conv_layer(block2_conv1, 128, name = 'block2_conv2') block2_pool = max_pool(block2_conv2, name = 'block2_pool') # Block 3 block3_conv1 = conv_layer(block2_pool, 256, name = 'block3_conv1') block3_conv2 = conv_layer(block3_conv1, 256, name = 'block3_conv2') block3_conv3 = conv_layer(block3_conv2, 256, name = 'block3_conv3') block3_pool = max_pool(block3_conv3, name = 'block3_pool') # Block 4 block4_conv1 = conv_layer(block3_pool, 512, name = 'block4_conv1') block4_conv2 = conv_layer(block4_conv1, 512, name = 'block4_conv2') block4_conv3 = conv_layer(block4_conv2, 512, name = 'block4_conv3') block4_pool = max_pool(block4_conv3, name = 'block4_pool') # Block 5 block5_conv1 = conv_layer(block4_pool, 512, name = 'block5_conv1') block5_conv2 = conv_layer(block5_conv1, 512, name = 'block5_conv2') block5_conv3 = conv_layer(block5_conv2, 512, name = 'block5_conv3') block5_pool = max_pool(block5_conv3, name = 'block5_pool') # Full connection layers # In the original paper implementaion this will be: #flattened = tf.reshape(block5_pool, [-1, 7*7*512]) #fc1 = fc_layer(flattened, 7*7*512, 7*7*512, name = 'fc1') flattened = tf.reshape(block5_pool, [-1, 1*1*512]) fc1 = fc_layer(flattened, 1*1*512, 1*1*512, name = 'fc1', activation = 'relu') dropout1 = dropout(fc1, self.KEEP_PROB) # In the original paper implementaion this will be: #fc2 = fc_layer(dropout1, 7*7*512, 7*7*512, name = 'fc1') fc2 = fc_layer(dropout1, 1*1*512, 1*1*512, name = 'fc2', activation = 'relu') dropout2 = dropout(fc2, self.KEEP_PROB) # In the original paper implementaion this will be: #self.fc3 = fc_layer(dropout2, 7*7*512, self.NUM_CLASSES, name = 'fc3', relu = False) fc3 = fc_layer(dropout2, 1*1*512, self.NUM_CLASSES, name = 'fc3', activation = 'softmax') self.output = fc3 ```
{ "source": "JosieHong/VOS_with_Seg-Siam", "score": 2 }
#### File: mmdet/datasets/davis.py ```python import os.path as osp import warnings import math import cv2 import mmcv import numpy as np from imagecorruptions import corrupt from mmcv.parallel import DataContainer as DC import torch from .utils import random_scale, to_tensor from .registry import DATASETS from .coco_seg import Coco_Seg_Dataset, INF @DATASETS.register_module class DAVIS_Seg_Dataset(Coco_Seg_Dataset): # davis 2016 # CLASSES = ('aerobatics', 'bear', 'bike-packing', 'blackswan', 'bmx-bumps', # 'bmx-trees', 'boat', 'boxing-fisheye', 'breakdance', 'breakdance-flare', # 'bus', 'camel', 'car-race', 'car-roundabout', 'car-shadow', # 'car-turn', 'carousel', 'cat-girl', 'cats-car', 'chamaleon', # 'classic-car', 'color-run', 'cows', 'crossing', 'dance-jump', # 'dance-twirl', 'dancing', 'deer', 'disc-jockey', 'dog', # 'dog-agility', 'dog-gooses', 'dogs-jump', 'dogs-scale', 'drift-chicane', # 'drift-straight', 'drift-turn', 'drone', 'elephant', 'flamingo', # 'giant-slalom', 'girl-dog', 'goat', 'gold-fish', 'golf', # 'guitar-violin', 'gym', 'helicopter', 'hike', 'hockey', # 'horsejump-high', 'horsejump-low', 'horsejump-stick', 'hoverboard', 'india', # 'judo', 'kid-football', 'kite-surf', 'kite-walk', 'koala', # 'lab-coat', 'lady-running', 'libby', 'lindy-hop', 'loading', # 'lock', 'longboard', 'lucia', 'mallard-fly', 'mallard-water', # 'man-bike', 'mbike-trick', 'miami-surf', 'monkeys-trees', 'motocross-bumps', # 'motocross-jump', 'motorbike', 'mtb-race', 'night-race', 'orchid', # 'paragliding', 'paragliding-launch', 'parkour', 'people-sunset', 'pigs', # 'planes-crossing', 'planes-water', 'rallye', 'rhino', 'rollerblade', # 'rollercoaster', 'salsa', 'schoolgirls', 'scooter-black', 'scooter-board', # 'scooter-gray', 'seasnake', 'sheep', 'shooting', 'skate-jump', # 'skate-park', 'slackline', 'snowboard', 'soapbox', 'soccerball', # 'stroller', 'stunt', 'subway', 'surf', 'swing', # 'tandem', 'tennis', 'tennis-vest', 'tractor', 'tractor-sand', # 'train', 'tuk-tuk', 'upside-down', 'varanus-cage', 'walking') # davis 2017 CLASSES = ('bear', 'bike-packing', 'blackswan', 'bmx-bumps', 'bmx-trees', 'boat', 'boxing-fisheye', 'breakdance', 'breakdance-flare', 'bus', 'camel', 'car-roundabout', 'car-shadow', 'car-turn', 'cat-girl', 'classic-car', 'color-run', 'cows', 'crossing', 'dance-jump', 'dance-twirl', 'dancing', 'deer', 'disc-jockey', 'dog', 'dog-agility', 'dog-gooses', 'dogs-jump', 'dogs-scale', 'drift-chicane', 'drift-straight', 'drift-turn', 'drone', 'elephant', 'flamingo', 'goat', 'gold-fish', 'hike', 'hockey', 'horsejump-high', 'horsejump-low', 'india', 'judo', 'kid-football', 'kite-surf', 'kite-walk', 'koala', 'lab-coat', 'lady-running', 'libby', 'lindy-hop', 'loading', 'longboard', 'lucia', 'mallard-fly', 'mallard-water', 'mbike-trick', 'miami-surf', 'motocross-bumps', 'motocross-jump', 'motorbike', 'night-race', 'paragliding', 'paragliding-launch', 'parkour', 'pigs', 'planes-water', 'rallye', 'rhino', 'rollerblade', 'schoolgirls', 'scooter-black', 'scooter-board', 'scooter-gray', 'sheep', 'shooting', 'skate-park', 'snowboard', 'soapbox', 'soccerball', 'stroller', 'stunt', 'surf', 'swing', 'tennis', 'tractor-sand', 'train', 'tuk-tuk', 'upside-down', 'varanus-cage', 'walking') def __init__(self, ann_file, img_prefix, img_scale, img_norm_cfg, refer_scale=(127,127), num_polar=36, multiscale_mode='value', size_divisor=None, proposal_file=None, num_max_proposals=1000, flip_ratio=0, with_mask=True, with_crowd=True, with_label=True, with_semantic_seg=False, seg_prefix=None, seg_scale_factor=1, extra_aug=None, resize_keep_ratio=True, corruption=None, corruption_severity=1, skip_img_without_anno=True, test_mode=False, strides=[8, 16, 32, 64, 128], regress_ranges=[(-1, 64), (64, 128), (128, 256), (256, 512), (512, 1e8)]): super(DAVIS_Seg_Dataset, self).__init__(ann_file, img_prefix, img_scale, img_norm_cfg, multiscale_mode, size_divisor, proposal_file, num_max_proposals, flip_ratio, with_mask, with_crowd, with_label, with_semantic_seg, seg_prefix, seg_scale_factor, extra_aug, resize_keep_ratio, corruption, corruption_severity, skip_img_without_anno, test_mode) self.refer_scale = refer_scale self.strides = strides self.regress_ranges = regress_ranges assert num_polar in [36, 72, 180] self.num_polar = num_polar def prepare_train_img(self, idx): img_info = self.img_infos[idx] img = mmcv.imread(osp.join(self.img_prefix, img_info['filename'])) # corruption if self.corruption is not None: img = corrupt( img, severity=self.corruption_severity, corruption_name=self.corruption) # load proposals if necessary if self.proposals is not None: proposals = self.proposals[idx][:self.num_max_proposals] # TODO: Handle empty proposals properly. Currently images with # no proposals are just ignored, but they can be used for # training in concept. if len(proposals) == 0: return None if not (proposals.shape[1] == 4 or proposals.shape[1] == 5): raise AssertionError( 'proposals should have shapes (n, 4) or (n, 5), ' 'but found {}'.format(proposals.shape)) if proposals.shape[1] == 5: scores = proposals[:, 4, None] proposals = proposals[:, :4] else: scores = None ann = self.get_ann_info(idx) gt_bboxes = ann['bboxes'] gt_labels = ann['labels'] if self.with_crowd: gt_bboxes_ignore = ann['bboxes_ignore'] # skip the image if there is no valid gt bbox if len(gt_bboxes) == 0 and self.skip_img_without_anno: warnings.warn('Skip the image "%s" that has no valid gt bbox' % osp.join(self.img_prefix, img_info['filename'])) return None # apply transforms flip = True if np.random.rand() < self.flip_ratio else False # randomly sample a scale img_scale = random_scale(self.img_scales, self.multiscale_mode) img, img_shape, pad_shape, scale_factor = self.img_transform(img, img_scale, flip, keep_ratio=self.resize_keep_ratio) img = img.copy() # get img_refer from first frame first_frame_idx = img_info["first_frame"] refer_info = self.img_infos[first_frame_idx] refer_ann = self.get_ann_info(first_frame_idx) img_refer = mmcv.imread(osp.join(self.img_prefix, refer_info['filename'])) # crop the bbox img_refer = torch.squeeze(torch.Tensor(mmcv.imcrop(img_refer, refer_ann["bboxes"]))) # resize to refer_scale img_refer = torch.Tensor(mmcv.imresize(np.float32(img_refer), self.refer_scale, return_scale=False)).permute(2, 0, 1) if self.with_seg: gt_seg = mmcv.imread( osp.join(self.seg_prefix, img_info['filename'].replace('jpg', 'png')), flag='unchanged') gt_seg = self.seg_transform(gt_seg.squeeze(), img_scale, flip) gt_seg = mmcv.imrescale( gt_seg, self.seg_scale_factor, interpolation='nearest') gt_seg = gt_seg[None, ...] if self.proposals is not None: proposals = self.bbox_transform(proposals, img_shape, scale_factor, flip) proposals = np.hstack([proposals, scores ]) if scores is not None else proposals gt_bboxes = self.bbox_transform(gt_bboxes, img_shape, scale_factor, flip) if self.with_crowd: gt_bboxes_ignore = self.bbox_transform(gt_bboxes_ignore, img_shape, scale_factor, flip) if self.with_mask: gt_masks = self.mask_transform(ann['masks'], pad_shape, scale_factor, flip) ori_shape = (img_info['height'], img_info['width'], 3) img_meta = dict( ori_shape=ori_shape, img_shape=img_shape, pad_shape=pad_shape, scale_factor=scale_factor, flip=flip) data = dict( img=DC(to_tensor(img), stack=True), img_meta=DC(img_meta, cpu_only=True), gt_bboxes=DC(to_tensor(gt_bboxes)), img_refer=DC(to_tensor(img_refer), stack=True)) if self.with_label: data['gt_labels'] = DC(to_tensor(gt_labels)) if self.with_crowd: data['gt_bboxes_ignore'] = DC(to_tensor(gt_bboxes_ignore)) if self.with_mask: data['gt_masks'] = DC(gt_masks, cpu_only=True) #--------------------offline ray label generation----------------------------- self.center_sample = True self.use_mask_center = True self.radius = 1.5 featmap_sizes = self.get_featmap_size(pad_shape) # featmap_sizes: [[32, 32], [16, 16], [8, 8]] num_levels = len(self.strides) all_level_points = self.get_points(featmap_sizes) # level 0 points: torch.Size([1024, 2]) # level 1 points: torch.Size([256, 2]) # level 2 points: torch.Size([64, 2]) self.num_points_per_level = [i.size()[0] for i in all_level_points] expanded_regress_ranges = [ all_level_points[i].new_tensor(self.regress_ranges[i])[None].expand_as( all_level_points[i]) for i in range(num_levels) ] concat_regress_ranges = torch.cat(expanded_regress_ranges, dim=0) concat_points = torch.cat(all_level_points, 0) gt_masks = gt_masks[:len(gt_bboxes)] gt_bboxes = torch.Tensor(gt_bboxes) gt_labels = torch.Tensor(gt_labels) _labels, _bbox_targets, _mask_targets = self.polar_target_single( gt_bboxes,gt_masks,gt_labels,concat_points, concat_regress_ranges, self.num_polar) data['_gt_labels'] = DC(_labels) data['_gt_bboxes'] = DC(_bbox_targets) data['_gt_masks'] = DC(_mask_targets) #--------------------offline ray label generation----------------------------- return data def get_featmap_size(self, shape): h,w = shape[:2] featmap_sizes = [] for i in self.strides: featmap_sizes.append([int(h / i)+1, int(w / i)+1]) return featmap_sizes def prepare_test_img(self, idx): """Prepare an image for testing (multi-scale and flipping)""" img_info = self.img_infos[idx] img = mmcv.imread(osp.join(self.img_prefix, img_info['filename'])) # corruption if self.corruption is not None: img = corrupt( img, severity=self.corruption_severity, corruption_name=self.corruption) # load proposals if necessary if self.proposals is not None: proposal = self.proposals[idx][:self.num_max_proposals] if not (proposal.shape[1] == 4 or proposal.shape[1] == 5): raise AssertionError( 'proposals should have shapes (n, 4) or (n, 5), ' 'but found {}'.format(proposal.shape)) else: proposal = None # get img_refer from first frame first_frame_idx = img_info["first_frame"] refer_info = self.img_infos[first_frame_idx] refer_ann = self.get_ann_info(first_frame_idx) img_refer = mmcv.imread(osp.join(self.img_prefix, refer_info['filename'])) # crop the bbox img_refer = torch.squeeze(torch.Tensor(mmcv.imcrop(img_refer, refer_ann["bboxes"]))) # resize to refer_scale img_refer = torch.Tensor(mmcv.imresize(np.float32(img_refer), self.refer_scale, return_scale=False)).permute(2, 0, 1) def prepare_single(img, scale, flip, proposal=None): _img, img_shape, pad_shape, scale_factor = self.img_transform( img, scale, flip, keep_ratio=self.resize_keep_ratio) _img = to_tensor(_img) _img_meta = dict( ori_shape=(img_info['height'], img_info['width'], 3), img_shape=img_shape, pad_shape=pad_shape, scale_factor=scale_factor, flip=flip) if proposal is not None: if proposal.shape[1] == 5: score = proposal[:, 4, None] proposal = proposal[:, :4] else: score = None _proposal = self.bbox_transform(proposal, img_shape, scale_factor, flip) _proposal = np.hstack([_proposal, score ]) if score is not None else _proposal _proposal = to_tensor(_proposal) else: _proposal = None return _img, _img_meta, _proposal imgs = [] img_metas = [] img_refers = [] proposals = [] for scale in self.img_scales: _img, _img_meta, _proposal = prepare_single( img, scale, False, proposal) imgs.append(_img) img_metas.append(DC(_img_meta, cpu_only=True)) img_refers.append(DC(to_tensor(img_refer), stack=True)) proposals.append(_proposal) if self.flip_ratio > 0: _img, _img_meta, _proposal = prepare_single( img, scale, True, proposal) imgs.append(_img) img_metas.append(DC(_img_meta, cpu_only=True)) img_refers.append(DC(to_tensor(img_refer), stack=True)) proposals.append(_proposal) data = dict(img=imgs, img_meta=img_metas, img_refer=img_refers) if self.proposals is not None: data['proposals'] = proposals return data # fit different polar nunbers def polar_target_single(self, gt_bboxes, gt_masks, gt_labels, points, regress_ranges, num_polar): num_points = points.size(0) num_gts = gt_labels.size(0) if num_gts == 0: return gt_labels.new_zeros(num_points), \ gt_bboxes.new_zeros((num_points, 4)) areas = (gt_bboxes[:, 2] - gt_bboxes[:, 0] + 1) * ( gt_bboxes[:, 3] - gt_bboxes[:, 1] + 1) # TODO: figure out why these two are different # areas = areas[None].expand(num_points, num_gts) areas = areas[None].repeat(num_points, 1) regress_ranges = regress_ranges[:, None, :].expand( num_points, num_gts, 2) gt_bboxes = gt_bboxes[None].expand(num_points, num_gts, 4) #xs ys 分别是points的x y坐标 xs, ys = points[:, 0], points[:, 1] xs = xs[:, None].expand(num_points, num_gts) ys = ys[:, None].expand(num_points, num_gts) left = xs - gt_bboxes[..., 0] right = gt_bboxes[..., 2] - xs top = ys - gt_bboxes[..., 1] bottom = gt_bboxes[..., 3] - ys bbox_targets = torch.stack((left, top, right, bottom), -1) #feature map上所有点对于gtbox的上下左右距离 [num_pix, num_gt, 4] #mask targets 也按照这种写 同时labels 得从bbox中心修改成mask 重心 mask_centers = [] mask_contours = [] #第一步 先算重心 return [num_gt, 2] for mask in gt_masks: cnt, contour = self.get_single_centerpoint(mask) contour = contour[0] contour = torch.Tensor(contour).float() y, x = cnt mask_centers.append([x,y]) mask_contours.append(contour) mask_centers = torch.Tensor(mask_centers).float() # 把mask_centers assign到不同的层上,根据regress_range和重心的位置 mask_centers = mask_centers[None].expand(num_points, num_gts, 2) #--------------------------------------------------------------------------- # condition1: inside a gt bbox # add center sample if self.center_sample: if self.use_mask_center: inside_gt_bbox_mask = self.get_mask_sample_region(gt_bboxes, mask_centers, self.strides, self.num_points_per_level, xs, ys, radius=self.radius) else: inside_gt_bbox_mask = self.get_sample_region(gt_bboxes, self.strides, self.num_points_per_level, xs, ys, radius=self.radius) else: inside_gt_bbox_mask = bbox_targets.min(-1)[0] > 0 # condition2: limit the regression range for each location max_regress_distance = bbox_targets.max(-1)[0] inside_regress_range = ( max_regress_distance >= regress_ranges[..., 0]) & ( max_regress_distance <= regress_ranges[..., 1]) areas[inside_gt_bbox_mask == 0] = INF areas[inside_regress_range == 0] = INF min_area, min_area_inds = areas.min(dim=1) labels = gt_labels[min_area_inds] labels[min_area == INF] = 0 #[num_gt] 介于0-80 bbox_targets = bbox_targets[range(num_points), min_area_inds] pos_inds = labels.nonzero().reshape(-1) mask_targets = torch.zeros(num_points, num_polar).float() pos_mask_ids = min_area_inds[pos_inds] for p,id in zip(pos_inds, pos_mask_ids): x, y = points[p] pos_mask_contour = mask_contours[id] # SiamPolar: interpolate new_contour = [] contour_length = len(pos_mask_contour) for i in range(contour_length): new_contour.append(pos_mask_contour[i]) # new_contour.append((3*pos_mask_contour[i]+pos_mask_contour[(i+1)%contour_length])/4) new_contour.append((pos_mask_contour[i]+pos_mask_contour[(i+1)%contour_length])/2) # new_contour.append((pos_mask_contour[i]+3*pos_mask_contour[(i+1)%contour_length])/4) new_pos_mask_contour = torch.cat(new_contour, dim=0).unsqueeze(1) # print(pos_mask_contour.size()) # print(new_pos_mask_contour.size()) # print(new_pos_mask_contour) # exit() dists, coords = self.get_coordinates(x, y, new_pos_mask_contour, num_polar) mask_targets[p] = dists return labels, bbox_targets, mask_targets def get_coordinates(self, c_x, c_y, pos_mask_contour, num_polar): ct = pos_mask_contour[:, 0, :] x = ct[:, 0] - c_x y = ct[:, 1] - c_y # angle = np.arctan2(x, y)*180/np.pi angle = torch.atan2(x, y) * 180 / np.pi angle[angle < 0] += 360 angle = angle.int() # dist = np.sqrt(x ** 2 + y ** 2) dist = torch.sqrt(x ** 2 + y ** 2) angle, idx = torch.sort(angle) dist = dist[idx] # generate num_polar angles new_coordinate = {} step_size = int(360/num_polar) for i in range(0, 360, step_size): if i in angle: d = dist[angle==i].max() new_coordinate[i] = d elif i + 1 in angle: d = dist[angle == i+1].max() new_coordinate[i] = d elif i - 1 in angle: d = dist[angle == i-1].max() new_coordinate[i] = d elif i + 2 in angle: d = dist[angle == i+2].max() new_coordinate[i] = d elif i - 2 in angle: d = dist[angle == i-2].max() new_coordinate[i] = d elif i + 3 in angle: d = dist[angle == i+3].max() new_coordinate[i] = d elif i - 3 in angle: d = dist[angle == i-3].max() new_coordinate[i] = d # josie.add elif i + 4 in angle: d = dist[angle == i+4].max() new_coordinate[i] = d elif i - 4 in angle: d = dist[angle == i-4].max() new_coordinate[i] = d elif i + 5 in angle: d = dist[angle == i+5].max() new_coordinate[i] = d elif i - 5 in angle: d = dist[angle == i-5].max() new_coordinate[i] = d distances = torch.zeros(num_polar) for a in range(0, 360, step_size): if not a in new_coordinate.keys(): new_coordinate[a] = torch.tensor(1e-6) distances[a//step_size] = 1e-6 else: distances[a//step_size] = new_coordinate[a] return distances, new_coordinate def __getitem__(self, idx): if self.test_mode: return self.prepare_test_img(idx) while True: data = self.prepare_train_img(idx) if data is None: idx = self._rand_another(idx) continue return data def merge_contours(self, contours): alpha = 0.25 # init b = contours[0][:, 0, :] cx, cy = b.mean(axis=0) # guarantee that the threshold is at the same level as the object size # thrx = contours[0][:, 0, :][:, 0].max() - contours[0][:, 0, :][:, 0].min() # thry = contours[0][:, 0, :][:, 1].max() - contours[0][:, 0, :][:, 1].min() records = [0 for i in range(len(contours))] new_contours = [contours[0]] records[0] = 1 flag = True while (flag == True): flag = False for i in range(1, len(contours)-1): tmp = contours[i][:, 0, :] tx, ty = tmp.mean(axis=0) if records[i] == 0: d = math.sqrt((cx - tx) ** 2 + (cy - ty) ** 2) lx = b[:, 0].max() - b[:, 0].min() + tmp[:, 0].max() - tmp[:, 0].min() ly = b[:, 1].max() - b[:, 1].min() + tmp[:, 1].max() - tmp[:, 1].min() l = math.sqrt(lx ** 2 + ly ** 2) # print("d: {}, l: {}".format(d, l)) if d <= alpha * l: # print("Add a new contour!") new_contours.append(contours[i]) records[i] = 1 flag = True cx = (cx + tx) / 2 cy = (cy + ty) / 2 return new_contours def get_single_centerpoint(self, mask): contours, _ = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE) contours.sort(key=lambda x: cv2.contourArea(x), reverse=True) # only save the biggest one '''debug IndexError: list index out of range''' if len(contours) == 0: return None, None count = contours[0][:, 0, :] try: center = self.get_centerpoint(count) except: x,y = count.mean(axis=0) center = [int(x), int(y)] if len(contours) > 1: # keep the contours near the biggest contour new_contours = self.merge_contours(contours) else: new_contours = [contours[0]] # the biggest contour return center, new_contours ``` #### File: mmdet/datasets/tsd_max.py ```python import os.path as osp import warnings import mmcv import numpy as np from imagecorruptions import corrupt from mmcv.parallel import DataContainer as DC import torch from .utils import random_scale, to_tensor from .registry import DATASETS from .coco_seg import Coco_Seg_Dataset, INF @DATASETS.register_module class TSD_MAX_Seg_Dataset(Coco_Seg_Dataset): CLASSES = ('Section8', 'Section6', 'Section63', 'Section33', 'Section11', 'Section2', 'Section48', 'Section13', 'Section64', 'Section4', 'Section75') def __init__(self, ann_file, img_prefix, img_scale, img_norm_cfg, refer_scale=(127,127), num_polar=36, multiscale_mode='value', size_divisor=None, proposal_file=None, num_max_proposals=1000, flip_ratio=0, with_mask=True, with_crowd=True, with_label=True, with_semantic_seg=False, seg_prefix=None, seg_scale_factor=1, extra_aug=None, resize_keep_ratio=True, corruption=None, corruption_severity=1, skip_img_without_anno=True, test_mode=False, strides=[8, 16, 32, 64, 128], regress_ranges=[(-1, 64), (64, 128), (128, 256), (256, 512), (512, 1e8)]): super(TSD_MAX_Seg_Dataset, self).__init__(ann_file, img_prefix, img_scale, img_norm_cfg, multiscale_mode, size_divisor, proposal_file, num_max_proposals, flip_ratio, with_mask, with_crowd, with_label, with_semantic_seg, seg_prefix, seg_scale_factor, extra_aug, resize_keep_ratio, corruption, corruption_severity, skip_img_without_anno, test_mode) self.refer_scale = refer_scale self.strides = strides self.regress_ranges = regress_ranges assert num_polar in [36, 72] self.num_polar = num_polar def prepare_train_img(self, idx): img_info = self.img_infos[idx] img = mmcv.imread(osp.join(self.img_prefix[:-11], img_info['filename'])) # corruption if self.corruption is not None: img = corrupt( img, severity=self.corruption_severity, corruption_name=self.corruption) # load proposals if necessary if self.proposals is not None: proposals = self.proposals[idx][:self.num_max_proposals] # TODO: Handle empty proposals properly. Currently images with # no proposals are just ignored, but they can be used for # training in concept. if len(proposals) == 0: return None if not (proposals.shape[1] == 4 or proposals.shape[1] == 5): raise AssertionError( 'proposals should have shapes (n, 4) or (n, 5), ' 'but found {}'.format(proposals.shape)) if proposals.shape[1] == 5: scores = proposals[:, 4, None] proposals = proposals[:, :4] else: scores = None ann = self.get_ann_info(idx) gt_bboxes = ann['bboxes'] gt_labels = ann['labels'] if self.with_crowd: gt_bboxes_ignore = ann['bboxes_ignore'] # skip the image if there is no valid gt bbox if len(gt_bboxes) == 0 and self.skip_img_without_anno: warnings.warn('Skip the image "%s" that has no valid gt bbox' % osp.join(self.img_prefix, img_info['filename'])) return None # apply transforms flip = True if np.random.rand() < self.flip_ratio else False # randomly sample a scale img_scale = random_scale(self.img_scales, self.multiscale_mode) img, img_shape, pad_shape, scale_factor = self.img_transform(img, img_scale, flip, keep_ratio=self.resize_keep_ratio) img = img.copy() # get img_refer from first frame first_frame_idx = img_info["first_frame"] refer_info = self.img_infos[first_frame_idx] refer_ann = self.get_ann_info(first_frame_idx) img_refer = mmcv.imread(osp.join(self.img_prefix[:-11], refer_info['filename'])) # crop the bbox img_refer = torch.squeeze(torch.Tensor(mmcv.imcrop(img_refer, refer_ann["bboxes"]))) # resize to refer_scale img_refer = torch.Tensor(mmcv.imresize(np.float32(img_refer), self.refer_scale, return_scale=False)).permute(2, 0, 1) if self.with_seg: gt_seg = mmcv.imread( osp.join(self.seg_prefix, img_info['filename'].replace('jpg', 'png')), flag='unchanged') gt_seg = self.seg_transform(gt_seg.squeeze(), img_scale, flip) gt_seg = mmcv.imrescale( gt_seg, self.seg_scale_factor, interpolation='nearest') gt_seg = gt_seg[None, ...] if self.proposals is not None: proposals = self.bbox_transform(proposals, img_shape, scale_factor, flip) proposals = np.hstack([proposals, scores ]) if scores is not None else proposals gt_bboxes = self.bbox_transform(gt_bboxes, img_shape, scale_factor, flip) if self.with_crowd: gt_bboxes_ignore = self.bbox_transform(gt_bboxes_ignore, img_shape, scale_factor, flip) if self.with_mask: gt_masks = self.mask_transform(ann['masks'], pad_shape, scale_factor, flip) ori_shape = (img_info['height'], img_info['width'], 3) img_meta = dict( ori_shape=ori_shape, img_shape=img_shape, pad_shape=pad_shape, scale_factor=scale_factor, flip=flip) data = dict( img=DC(to_tensor(img), stack=True), img_meta=DC(img_meta, cpu_only=True), gt_bboxes=DC(to_tensor(gt_bboxes)), img_refer=DC(to_tensor(img_refer), stack=True)) if self.with_label: data['gt_labels'] = DC(to_tensor(gt_labels)) if self.with_crowd: data['gt_bboxes_ignore'] = DC(to_tensor(gt_bboxes_ignore)) if self.with_mask: data['gt_masks'] = DC(gt_masks, cpu_only=True) #--------------------offline ray label generation----------------------------- self.center_sample = True self.use_mask_center = True self.radius = 1.5 featmap_sizes = self.get_featmap_size(pad_shape) # featmap_sizes: [[32, 32], [16, 16], [8, 8]] num_levels = len(self.strides) all_level_points = self.get_points(featmap_sizes) # level 0 points: torch.Size([1024, 2]) # level 1 points: torch.Size([256, 2]) # level 2 points: torch.Size([64, 2]) self.num_points_per_level = [i.size()[0] for i in all_level_points] expanded_regress_ranges = [ all_level_points[i].new_tensor(self.regress_ranges[i])[None].expand_as( all_level_points[i]) for i in range(num_levels) ] concat_regress_ranges = torch.cat(expanded_regress_ranges, dim=0) concat_points = torch.cat(all_level_points, 0) gt_masks = gt_masks[:len(gt_bboxes)] gt_bboxes = torch.Tensor(gt_bboxes) gt_labels = torch.Tensor(gt_labels) _labels, _bbox_targets, _mask_targets = self.polar_target_single( gt_bboxes,gt_masks,gt_labels,concat_points, concat_regress_ranges, self.num_polar) data['_gt_labels'] = DC(_labels) data['_gt_bboxes'] = DC(_bbox_targets) data['_gt_masks'] = DC(_mask_targets) #--------------------offline ray label generation----------------------------- return data def get_featmap_size(self, shape): h,w = shape[:2] featmap_sizes = [] for i in self.strides: featmap_sizes.append([int(h / i)+1, int(w / i)+1]) return featmap_sizes def prepare_test_img(self, idx): """Prepare an image for testing (multi-scale and flipping)""" img_info = self.img_infos[idx] img = mmcv.imread(osp.join(self.img_prefix[:-11], img_info['filename'])) # corruption if self.corruption is not None: img = corrupt( img, severity=self.corruption_severity, corruption_name=self.corruption) # load proposals if necessary if self.proposals is not None: proposal = self.proposals[idx][:self.num_max_proposals] if not (proposal.shape[1] == 4 or proposal.shape[1] == 5): raise AssertionError( 'proposals should have shapes (n, 4) or (n, 5), ' 'but found {}'.format(proposal.shape)) else: proposal = None # get img_refer from first frame first_frame_idx = img_info["first_frame"] refer_info = self.img_infos[first_frame_idx] refer_ann = self.get_ann_info(first_frame_idx) img_refer = mmcv.imread(osp.join(self.img_prefix[:-11], refer_info['filename'])) # crop the bbox img_refer = torch.squeeze(torch.Tensor(mmcv.imcrop(img_refer, refer_ann["bboxes"]))) # resize to refer_scale img_refer = torch.Tensor(mmcv.imresize(np.float32(img_refer), self.refer_scale, return_scale=False)).permute(2, 0, 1) def prepare_single(img, scale, flip, proposal=None): _img, img_shape, pad_shape, scale_factor = self.img_transform( img, scale, flip, keep_ratio=self.resize_keep_ratio) _img = to_tensor(_img) _img_meta = dict( ori_shape=(img_info['height'], img_info['width'], 3), img_shape=img_shape, pad_shape=pad_shape, scale_factor=scale_factor, flip=flip) if proposal is not None: if proposal.shape[1] == 5: score = proposal[:, 4, None] proposal = proposal[:, :4] else: score = None _proposal = self.bbox_transform(proposal, img_shape, scale_factor, flip) _proposal = np.hstack([_proposal, score ]) if score is not None else _proposal _proposal = to_tensor(_proposal) else: _proposal = None return _img, _img_meta, _proposal imgs = [] img_metas = [] img_refers = [] proposals = [] for scale in self.img_scales: _img, _img_meta, _proposal = prepare_single( img, scale, False, proposal) imgs.append(_img) img_metas.append(DC(_img_meta, cpu_only=True)) img_refers.append(DC(to_tensor(img_refer), stack=True)) proposals.append(_proposal) if self.flip_ratio > 0: _img, _img_meta, _proposal = prepare_single( img, scale, True, proposal) imgs.append(_img) img_metas.append(DC(_img_meta, cpu_only=True)) img_refers.append(DC(to_tensor(img_refer), stack=True)) proposals.append(_proposal) data = dict(img=imgs, img_meta=img_metas, img_refer=img_refers) if self.proposals is not None: data['proposals'] = proposals return data # fit different polar nunbers def polar_target_single(self, gt_bboxes, gt_masks, gt_labels, points, regress_ranges, num_polar): num_points = points.size(0) num_gts = gt_labels.size(0) if num_gts == 0: return gt_labels.new_zeros(num_points), \ gt_bboxes.new_zeros((num_points, 4)) areas = (gt_bboxes[:, 2] - gt_bboxes[:, 0] + 1) * ( gt_bboxes[:, 3] - gt_bboxes[:, 1] + 1) # TODO: figure out why these two are different # areas = areas[None].expand(num_points, num_gts) areas = areas[None].repeat(num_points, 1) regress_ranges = regress_ranges[:, None, :].expand( num_points, num_gts, 2) gt_bboxes = gt_bboxes[None].expand(num_points, num_gts, 4) #xs ys 分别是points的x y坐标 xs, ys = points[:, 0], points[:, 1] xs = xs[:, None].expand(num_points, num_gts) ys = ys[:, None].expand(num_points, num_gts) left = xs - gt_bboxes[..., 0] right = gt_bboxes[..., 2] - xs top = ys - gt_bboxes[..., 1] bottom = gt_bboxes[..., 3] - ys bbox_targets = torch.stack((left, top, right, bottom), -1) #feature map上所有点对于gtbox的上下左右距离 [num_pix, num_gt, 4] #mask targets 也按照这种写 同时labels 得从bbox中心修改成mask 重心 mask_centers = [] mask_contours = [] #第一步 先算重心 return [num_gt, 2] for mask in gt_masks: cnt, contour = self.get_single_centerpoint(mask) contour = contour[0] contour = torch.Tensor(contour).float() y, x = cnt mask_centers.append([x,y]) mask_contours.append(contour) mask_centers = torch.Tensor(mask_centers).float() # 把mask_centers assign到不同的层上,根据regress_range和重心的位置 mask_centers = mask_centers[None].expand(num_points, num_gts, 2) #------------------------------------------------------------------------------------------------------------------------------------------------------------- # condition1: inside a gt bbox # add center sample if self.center_sample: if self.use_mask_center: inside_gt_bbox_mask = self.get_mask_sample_region(gt_bboxes, mask_centers, self.strides, self.num_points_per_level, xs, ys, radius=self.radius) else: inside_gt_bbox_mask = self.get_sample_region(gt_bboxes, self.strides, self.num_points_per_level, xs, ys, radius=self.radius) else: inside_gt_bbox_mask = bbox_targets.min(-1)[0] > 0 # condition2: limit the regression range for each location max_regress_distance = bbox_targets.max(-1)[0] inside_regress_range = ( max_regress_distance >= regress_ranges[..., 0]) & ( max_regress_distance <= regress_ranges[..., 1]) areas[inside_gt_bbox_mask == 0] = INF areas[inside_regress_range == 0] = INF min_area, min_area_inds = areas.min(dim=1) labels = gt_labels[min_area_inds] labels[min_area == INF] = 0 #[num_gt] 介于0-80 bbox_targets = bbox_targets[range(num_points), min_area_inds] pos_inds = labels.nonzero().reshape(-1) mask_targets = torch.zeros(num_points, num_polar).float() pos_mask_ids = min_area_inds[pos_inds] for p,id in zip(pos_inds, pos_mask_ids): x, y = points[p] pos_mask_contour = mask_contours[id] # SiamPolar: interpolate new_contour = [] contour_length = len(pos_mask_contour) for i in range(contour_length): new_contour.append(pos_mask_contour[i]) # new_contour.append((3*pos_mask_contour[i]+pos_mask_contour[(i+1)%contour_length])/4) new_contour.append((pos_mask_contour[i]+pos_mask_contour[(i+1)%contour_length])/2) # new_contour.append((pos_mask_contour[i]+3*pos_mask_contour[(i+1)%contour_length])/4) new_pos_mask_contour = torch.cat(new_contour, dim=0).unsqueeze(1) # print(pos_mask_contour.size()) # print(new_pos_mask_contour.size()) # print(new_pos_mask_contour) # exit() dists, coords = self.get_coordinates(x, y, new_pos_mask_contour, num_polar) mask_targets[p] = dists return labels, bbox_targets, mask_targets def get_coordinates(self, c_x, c_y, pos_mask_contour, num_polar): ct = pos_mask_contour[:, 0, :] x = ct[:, 0] - c_x y = ct[:, 1] - c_y # angle = np.arctan2(x, y)*180/np.pi angle = torch.atan2(x, y) * 180 / np.pi angle[angle < 0] += 360 angle = angle.int() # dist = np.sqrt(x ** 2 + y ** 2) dist = torch.sqrt(x ** 2 + y ** 2) angle, idx = torch.sort(angle) dist = dist[idx] # generate num_polar angles new_coordinate = {} step_size = int(360/num_polar) for i in range(0, 360, step_size): if i in angle: d = dist[angle==i].max() new_coordinate[i] = d elif i + 1 in angle: d = dist[angle == i+1].max() new_coordinate[i] = d elif i - 1 in angle: d = dist[angle == i-1].max() new_coordinate[i] = d elif i + 2 in angle: d = dist[angle == i+2].max() new_coordinate[i] = d elif i - 2 in angle: d = dist[angle == i-2].max() new_coordinate[i] = d elif i + 3 in angle: d = dist[angle == i+3].max() new_coordinate[i] = d elif i - 3 in angle: d = dist[angle == i-3].max() new_coordinate[i] = d # josie.add elif i + 4 in angle: d = dist[angle == i+4].max() new_coordinate[i] = d elif i - 4 in angle: d = dist[angle == i-4].max() new_coordinate[i] = d elif i + 5 in angle: d = dist[angle == i+5].max() new_coordinate[i] = d elif i - 5 in angle: d = dist[angle == i-5].max() new_coordinate[i] = d distances = torch.zeros(num_polar) for a in range(0, 360, step_size): if not a in new_coordinate.keys(): new_coordinate[a] = torch.tensor(1e-6) distances[a//step_size] = 1e-6 else: distances[a//step_size] = new_coordinate[a] return distances, new_coordinate def __getitem__(self, idx): if self.test_mode: return self.prepare_test_img(idx) while True: data = self.prepare_train_img(idx) if data is None: idx = self._rand_another(idx) continue return data ``` #### File: models/backbones/siam_resnet.py ```python import torch import torch.nn as nn import torch.nn.functional as F from ..registry import BACKBONES from mmcv.cnn import constant_init, kaiming_init from .resnet import ResNet @BACKBONES.register_module class SiamResNet(nn.Module): """ This is a simese network using ResNet bacbone and returning every blocks' feature map. """ def __init__(self, depth, template_depth, template_pretrained, num_stages=4, strides=(1, 2, 2, 2), dilations=(1, 1, 1, 1), out_indices=(0, 1, 2, 3), style='pytorch', frozen_stages=-1, conv_cfg=None, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, dcn=None, stage_with_dcn=(False, False, False, False), gcb=None, stage_with_gcb=(False, False, False, False), gen_attention=None, stage_with_gen_attention=((), (), (), ()), with_cp=False, zero_init_residual=True, correlation_blocks=[3, 4, 5], attention_blocks=None): super(SiamResNet, self).__init__() self.template_backbone = ResNet(template_depth, num_stages, strides, dilations, out_indices, style, frozen_stages, conv_cfg, norm_cfg, norm_eval, dcn, stage_with_dcn, gcb, stage_with_gcb, gen_attention, stage_with_gen_attention, with_cp, zero_init_residual) self.template_pretrained = template_pretrained self.search_backbone = ResNet(depth, num_stages, strides, dilations, out_indices, style, frozen_stages, conv_cfg, norm_cfg, norm_eval, dcn, stage_with_dcn, gcb, stage_with_gcb, gen_attention, stage_with_gen_attention, with_cp, zero_init_residual) # Cross Correlation self.correlation_blocks = [correlation_block-2 for correlation_block in correlation_blocks] # start from block2 self.match_batchnorm = nn.BatchNorm2d(1) self.softmax = nn.Softmax(dim=1) self.gama = nn.Parameter(torch.zeros(1)) def forward(self, x1, x2): """ Args: x1 (torch.Tensor): The search region image of dimensions [B, C, H', W']. Usually the shape is [4, 3, 255, 255]. x2 (torch.Tensor): The reference patch of dimensions [B, C, H, W]. Usually the shape is [4, 3, 127, 127]. Returns: block2, block3, block4, block5: The outputs of each block, some are fused with response maps. """ # extract features search_blocks = self.search_backbone(x1) template_blocks = self.template_backbone(x2) # init outs outs = [search_block for search_block in search_blocks] # re-cross correlation for correlation_block in self.correlation_blocks: embedding_search = search_blocks[correlation_block] embedding_template = template_blocks[correlation_block] # re-correlation match_map = self.match_corr(embedding_search, embedding_template, embedding_search.shape[2:]) match_map = match_map.repeat(1, embedding_template.size()[1], 1, 1) corr_value = self.softmax(match_map)*embedding_search outs[correlation_block] = self.gama*corr_value + embedding_search return tuple(outs) def init_weights(self, pretrained=None): for m in self.modules(): if isinstance(m, nn.Conv2d): kaiming_init(m) elif isinstance(m, nn.BatchNorm2d): constant_init(m, 1) self.search_backbone.init_weights(pretrained) self.template_backbone.init_weights(self.template_pretrained) def match_corr(self, embed_srch, embed_ref, upsc_size): """ reference: https://github.com/rafellerc/Pytorch-SiamFC Matches the two embeddings using the correlation layer. As per usual it expects input tensors of the form [B, C, H, W]. Args: embed_ref: (torch.Tensor) The embedding of the reference image, or the template of reference (the average of many embeddings for example). embed_srch: (torch.Tensor) The embedding of the search image. Returns: match_map: (torch.Tensor) The correlation between """ # print('embed_srch: ', embed_srch.size(), "embed_ref: ", embed_ref.size()) b, c, h, w = embed_srch.shape # Here the correlation layer is implemented using a trick with the # conv2d function using groups in order to do the correlation with # batch dimension. Basically we concatenate each element of the batch # in the channel dimension for the search image (making it # [1 x (B.C) x H' x W']) and setting the number of groups to the size of # the batch. This grouped convolution/correlation is equivalent to a # correlation between the two images, though it is not obvious. match_map = F.conv2d(embed_srch.view(1, b * c, h, w), embed_ref, groups=b) # Here we reorder the dimensions to get back the batch dimension. match_map = match_map.permute(1, 0, 2, 3) match_map = self.match_batchnorm(match_map) match_map = F.interpolate(match_map, upsc_size, mode='bilinear', align_corners=False) return match_map ```
{ "source": "Josie-Li/ZazuML-easy_AutoML", "score": 2 }
#### File: ZazuML-easy_AutoML/dataloop_services/trial_module.py ```python import logging import os import torch import json import dtlpy as dl from importlib import import_module from dataloop_services.plugin_utils import maybe_download_data from logging_utils import init_logging class ServiceRunner(dl.BaseServiceRunner): """ Plugin runner class """ def __init__(self, package_name): logging.getLogger('dtlpy').setLevel(logging.WARN) self.package_name = package_name self.path_to_metrics = 'metrics.json' self.path_to_tensorboard_dir = 'runs' self.path_to_logs = 'logger.conf' self.logger = init_logging(__name__, filename=self.path_to_logs) self.logger.info(self.package_name + ' initialized') def run(self, dataset, train_query, val_query, model_specs, hp_values, configs=None, progress=None): maybe_download_data(dataset, train_query, val_query) # get project # project = dataset.project assert isinstance(dataset, dl.entities.Dataset) project = dl.projects.get(project_id=dataset.projects[0]) # start tune cls = getattr(import_module('.adapter', 'object_detecter.' + model_specs['name']), 'AdapterModel') #TODO: without roberto work with path / or github inputs_dict = {'devices': {'gpu_index': 0}, 'model_specs': model_specs, 'hp_values': hp_values} #json save #TODO: make sure you dont run two runs in concurrency and have two saving the same thing twice torch.save(inputs_dict, 'checkpoint.pt') adapter = cls() adapter.load() if hasattr(adapter, 'reformat'): adapter.reformat() if hasattr(adapter, 'data_loader'): adapter.data_loader() if hasattr(adapter, 'preprocess'): adapter.preprocess() if hasattr(adapter, 'build'): adapter.build() self.logger.info('commencing training . . . ') adapter.train() self.logger.info('training finished') save_info = { 'package_name': self.package_name, 'execution_id': progress.execution.id } checkpoint_path = adapter.save() # upload metrics as artifact self.logger.info('uploading metrics to dataloop') project.artifacts.upload(filepath=self.path_to_logs, package_name=save_info['package_name'], execution_id=save_info['execution_id']) # this is the same as uplading metrics because the map is saved under checkpoint['metrics']['val_accuracy'] project.artifacts.upload(filepath=checkpoint_path, package_name=save_info['package_name'], execution_id=save_info['execution_id']) project.artifacts.upload(filepath=self.path_to_tensorboard_dir, package_name=save_info['package_name'], execution_id=save_info['execution_id']) # change to clean up adapter.delete_stuff() self.logger.info('finished uploading checkpoint and logs') self.logger.info('FINISHED SESSION') ``` #### File: ZazuML-easy_AutoML/spec/models_stuff.py ```python from .spec_base import Spec class ModelsSpec(Spec): def __init__(self, spec_data=None): if not spec_data: pass super().__init__(spec_data) pass def validate(self): # if 'model_space' not in self.spec_data: # raise Exception("Model spec must have a model_space field") # # if 'task' not in self.spec_data: # raise Exception("Recipe must have a task field") pass @property def models_space(self): new_dic = {} for model_name, model_dic in self.spec_data.items(): new_dic[model_name] = [] for rating in ['accuracy_rating', 'speed_rating', 'memory_rating']: new_dic[model_name].append(model_dic['model_space'][rating]) return new_dic # @property # def task(self): # return self.spec_data['task'] ```
{ "source": "josieljunior/API-COF", "score": 2 }
#### File: API-COF/api/models.py ```python from django.db import models class Default(models.Model): description = models.CharField(max_length=300, blank=False, null=False) value = models.FloatField(blank=False, null=False) date = models.DateField(blank=False, null=False) def __str__(self): return self.description class Expense(Default): pass class Income(Default): pass ```
{ "source": "JosielSantos/virtual-piano", "score": 3 }
#### File: virtual-piano/src/channel.py ```python import os.path from notes_manager import NotesManager from util import app, validate class Channel: DIRECTION_LEFT = -1 DIRECTION_MIDDLE = 0 DIRECTION_RIGHT = 1 notes_on = [] __notes_manager = None __start_note = 48 def __init__(self, instrument, volume, direction, keymap_file_path): self.set_instrument(instrument) self.set_volume(volume) self.set_direction(direction) self.keymap_file_path = keymap_file_path self.__load_notes_manager() def get_instrument(self): return self.__instrument def set_instrument(self, instrument): validate.integer(instrument, 'Instrument') validate.midi_range(instrument, 'Instrument') self.__instrument = instrument def get_volume(self): return self.__volume def set_volume(self, volume): validate.integer(volume, 'Volume') validate.midi_range(volume, 'Volume') self.__volume = volume def get_direction(self): return self.__direction def set_direction(self, direction): if direction not in [self.DIRECTION_LEFT, self.DIRECTION_MIDDLE, self.DIRECTION_RIGHT]: raise ValueError('Invalid direction') self.__direction = direction def __load_notes_manager(self): self.__notes_manager = NotesManager() self.__notes_manager.load_file(self.keymap_file_path) self.__notes_manager.set_start_note(self.__start_note) self.__notes_manager.organize_notes() def note_on(self, note): if note not in self.notes_on: self.notes_on.append(note) def note_off(self, note): if note in self.notes_on: self.notes_on.remove(note) def next_instrument(self): instrument = self.__instrument + 1 if instrument > 127: instrument = 0 self.__instrument = instrument def previous_instrument(self): instrument = self.__instrument - 1 if instrument < 0 : instrument = 127 self.__instrument = instrument def volume_down(self, num = 10): volume = self.__volume - num if volume < 0: volume = 0 self.__volume = volume def volume_up(self, num = 10): volume = self.__volume + num if volume > 127: volume = 127 self.__volume = volume def get_note(self, key): return self.__notes_manager[key] if key in self.__notes_manager else None def octave_down(self): self.__notes_manager.octave_down() def octave_up(self): self.__notes_manager.octave_up() def semitone_down(self, total): self.__notes_manager.semitone_down(total) def semitone_up(self, total): self.__notes_manager.semitone_up(total) ``` #### File: virtual-piano/src/main.py ```python import wx from config import Config import constants from exceptions import UserError from util.dialogs import edit_dialog, message_dialog from util import app, char from midi_factory import MidiOutputFactory from piano import Piano class PianoApp(wx.App): config = None functions_keymap = {} multi_voice = False active_channels = [] current_channel = 0 def OnInit(self): try: self.load_config() self.init_piano() self.init_ui() return True except UserError as user_error: wx.MessageBox(str(user_error), 'Erro', wx.OK | wx.ICON_ERROR) return False def load_config(self): self.config = Config(app.config_file_path()) def init_piano(self): self.create_midi_driver() self.piano = Piano(self.config.get_keymap_file_path('pianoeletronico.kmp'), self.midi_output) self.active_channels.append(0) self.piano.set_instrument(0, 0) def create_midi_driver(self): midi_output_factory = MidiOutputFactory() midi_output_driver = self.config.get_midi_output_driver(constants.MIDI_OUTPUT_DEFAULT_DRIVER) if midi_output_driver >= constants.MIDI_OUTPUT_DEFAULT_DRIVER: self.midi_output = midi_output_factory.factory_pygame(midi_output_driver ) elif midi_output_driver == constants.MIDI_OUTPUT_FLUIDSYNTH_DRIVER: self.midi_output = midi_output_factory.factory_fluidsynth(self.config.get_soundfont_file_path()) else: raise UserError('Erro de configuração: MIDI driver inexistente') def init_ui(self): self.mainFrame = wx.Frame(parent = None, id = -1, title = 'Virtual Piano') self.mainFrame.Bind(wx.EVT_KEY_DOWN, self.on_key_down) self.mainFrame.Bind(wx.EVT_KEY_UP, self.on_key_up) self.functions_keymap = { wx.WXK_RIGHT: lambda evt: self.piano.next_instrument(self.current_channel), wx.WXK_LEFT: lambda evt: self.piano.previous_instrument(self.current_channel), wx.WXK_UP: lambda evt: self.tone_change_up(evt), wx.WXK_DOWN: lambda evt: self.tone_change_down(evt), wx.WXK_PAGEUP: lambda evt: self.next_channel(), wx.WXK_PAGEDOWN: lambda evt: self.previous_channel(), wx.WXK_DELETE: lambda evt: self.delete_current_channel(), wx.WXK_F2: lambda evt: self.select_instrument_by_number(self.current_channel), wx.WXK_F8: lambda evt: self.piano.volume_down(self.current_channel), wx.WXK_F9: lambda evt: self.piano.volume_up(self.current_channel), wx.WXK_BACK: self.toggle_multi_voice, wx.WXK_TAB: self.pan, } self.mainFrame.Show(True) def on_key_down(self, evt): key = evt.GetKeyCode() if key in self.functions_keymap: self.functions_keymap[key](evt) if self.multi_voice: for channel_number in self.active_channels: note = self.get_note_from_key_event(evt, channel_number) if note is not None: self.piano.note_on(note, channel_number) else: note = self.get_note_from_key_event(evt, self.current_channel) if note is not None: self.piano.note_on(note, self.current_channel) def on_key_up(self, evt): if self.multi_voice: for channel_number in self.active_channels: note = self.get_note_from_key_event(evt, channel_number) if note is not None: self.piano.note_off(note, channel_number) else: note = self.get_note_from_key_event(evt, self.current_channel) if note is not None: self.piano.note_off(note, self.current_channel) def get_note_from_key_event(self, evt, channel_number): key = evt.GetUnicodeKey() if key != wx.WXK_NONE: if key > 127: key = char.unicode_workaround(chr(key).encode('utf-8')) return self.piano.get_note(key, channel_number) def toggle_multi_voice(self, evt): self.piano.all_notes_off() self.multi_voice = not self.multi_voice def pan(self, evt): back = True if evt.GetModifiers() == wx.MOD_SHIFT else False self.piano.pan(back, self.current_channel) def next_channel(self): if self.current_channel == 15: return self.piano.all_notes_off() self.current_channel += 1 if not self.current_channel in self.active_channels: self.active_channels.append(self.current_channel) self.piano.get_channel(self.current_channel) def previous_channel(self): if self.current_channel == 0: return self.piano.all_notes_off() self.current_channel -= 1 def delete_current_channel(self): self.piano.delete_channel(self.current_channel) self.active_channels.remove(self.current_channel) self.current_channel -= 1 def tone_change_up(self, evt): key_modifier = evt.GetModifiers() if key_modifier == wx.MOD_SHIFT: self.piano.semitone_up(1, self.current_channel) else: self.piano.octave_up(self.current_channel) def tone_change_down(self, evt): key_modifier = evt.GetModifiers() if key_modifier == wx.MOD_SHIFT: self.piano.semitone_down(1, self.current_channel) else: self.piano.octave_down(self.current_channel) def select_instrument_by_number(self, target_channel): current_instrument = str(self.piano.get_instrument_for_channel(target_channel) + 1) pressed_ok, selected_instrument = edit_dialog(self.mainFrame, "Instrument", "Enter instrument number for channel %d (from 1 to 128):" % target_channel, current_instrument) if pressed_ok: try: instrument_number = int(selected_instrument) - 1 except ValueError: message_dialog(self.mainFrame, "Error", "Instrument not a number") return if instrument_number < 0 or instrument_number > 127: message_dialog(self.mainFrame, "Error", "Instrument number not in range from 1 to 128") return self.piano.set_instrument(instrument_number, target_channel) if __name__ == '__main__': app = PianoApp() app.MainLoop() ```
{ "source": "josiemundi/refarch-kc", "score": 3 }
#### File: itg-tests/es-it/CancelledOrderTests.py ```python import unittest import os import json import requests import time import OrderConsumer try: ORDER_CMD_MS = os.environ['ORDER_CMD_MS'] except KeyError: ORDER_CMD_MS = "ordercmd:9080" def orderCommand(order): res = requests.post("http://" + ORDER_CMD_MS + "/orders",json=order) return json.loads(res.text) class TestEventSourcingHappyPath(unittest.TestCase): def test_createCancellableOrder(self): print("Create a cancellable order") # 1- load the order request from json f = open('../data/FreshProductCancellableOrder.json','r') order = json.load(f) f.close() # 2- create order by doing a POST on /api/orders of the orders command service orderRep=orderCommand(order) orderID=orderRep['orderID'] self.assertIsNotNone(orderID) print('@@@@ Post new order -> resp with ID:' + orderID) # 3- Get order create event print('@@@@ wait for OrderCreated event with ID:' + orderID) orderEvent = OrderConsumer.pollNextOrder(orderID) self.assertEqual(orderEvent['type'], "OrderCreated") # 4- get next order event, should be order cancelled to a voyage print('@@@@ wait for OrderCancelled event from the voyage service for ' + orderID) orderEvent = OrderConsumer.pollNextOrder(orderID) self.assertEqual(orderEvent['type'], "OrderCancelled") if __name__ == '__main__': unittest.main() ``` #### File: itg-tests/es-it/TraceContainers.py ```python import sys,os import time,json import signal,asyncio from confluent_kafka import KafkaError, Consumer try: KAFKA_BROKERS = os.environ['KAFKA_BROKERS'] except KeyError: print("The KAFKA_BROKERS environment variable needs to be set.") exit try: KAFKA_APIKEY = os.environ['KAFKA_APIKEY'] except KeyError: print("The KAFKA_APIKEY environment variable not set... assume local deployment") TOPIC_NAME = "containers" KEY_NAME = "containerID" KEY_VALUE = "1" def parseArguments(): global KEY_VALUE if len(sys.argv) <= 1: print("usage container ID to receive") KEY_VALUE = sys.argv[1] print("The arguments are: " , str(sys.argv)) kafkaConsumer = Consumer({ 'bootstrap.servers': KAFKA_BROKERS, 'group.id': 'python-orders-consumer', 'auto.offset.reset': 'earliest', 'enable.auto.commit': True }) kafkaConsumer.subscribe([TOPIC_NAME]) def pollNextEvent(aKey): print('Start to listen to events') gotIt = False while not gotIt: msg = kafkaConsumer.poll(timeout=10.0) if msg is None: print("no message") continue if msg.error(): print("Consumer error: {}".format(msg.error())) continue print('@@@ pollNextEvent {} partition: [{}] at offset {} with key {}:\n' .format(msg.topic(), msg.partition(), msg.offset(), str(msg.key()))) msgAsStr = msg.value().decode('utf-8') print('@@@ pollNextEvent Received message: {}'.format(msgAsStr)) eventAsJson = json.loads(msgAsStr) if (eventAsJson['payload'][KEY_NAME] == aKey): print('@@@@ got the matching expected key ') gotIt = True return eventAsJson if __name__ == '__main__': parseArguments() pollNextEvent(KEY_VALUE) kafkaConsumer.close() ``` #### File: itg-tests/OrdersPython/OrderConsumer.py ```python import os,sys from kafka.KcConsumer import KafkaConsumer print(" @@@ Excuting script: OrderConsumer.py") # Try to read the Kafka broker from the environment variables try: KAFKA_BROKERS = os.environ['KAFKA_BROKERS'] except KeyError: print("[ERROR] - The KAFKA_BROKERS environment variable needs to be set.") exit(1) # Try to read the Kafka API key from the environment variables try: KAFKA_APIKEY = os.environ['KAFKA_APIKEY'] except KeyError: print("The KAFKA_APIKEY environment variable not set... assume local deployment") # Try to read the Kafka environment from the environment variables try: KAFKA_ENV = os.environ['KAFKA_ENV'] except KeyError: KAFKA_ENV='LOCAL' # Default values TOPIC_NAME='orders' OID = 'o_1' def parseArguments(): print("The arguments for the script are: " , str(sys.argv)) if len(sys.argv) != 2: print("[ERROR] - Need to have at least one argument order ID") exit(1) OID = sys.argv[1] print("The Kafka environment is: " + KAFKA_ENV) print("The Kafka brokers are: " + KAFKA_BROKERS) print("The Kafka API key is: " + KAFKA_APIKEY) return OID if __name__ == '__main__': OID = parseArguments() orderConsumer = KafkaConsumer(KAFKA_ENV,KAFKA_BROKERS,KAFKA_APIKEY,TOPIC_NAME,False) orderConsumer.prepareConsumer() #orderConsumer.pollNextEvent(OID,'orderID') orderConsumer.pollEvents() orderConsumer.close() ```
{ "source": "josienb/project_euler", "score": 4 }
#### File: josienb/project_euler/euler007.py ```python def calculate_nth_prime(n): number = 1 prime_counter = 0 while prime_counter < n: if isprime(number): prime_counter = prime_counter + 1 if prime_counter == n: break number = number + 1 return number def isprime(n): '''check if integer n is a prime''' # make sure n is a positive integer n = abs(int(n)) # 0 and 1 are not primes if n < 2: return False # 2 is the only even prime number if n == 2: return True # all other even numbers are not primes if not n & 1: return False # range starts with 3 and only needs to go up the squareroot of n # for all odd numbers for x in range(3, int(n**0.5)+1, 2): if n % x == 0: return False return True print calculate_nth_prime(10001) ```
{ "source": "josieoharrow/QAPics", "score": 3 }
#### File: QAPics/API/qapics.py ```python import sys from PIL import Image import sys import os import json import datetime from scipy import misc QAPicsDir = os.path.dirname(os.path.abspath(__file__)) + "/.." sys.path.append(QAPicsDir + "/Analysis") import analyze baseline_image_path = QAPicsDir + "/Baselines/" + sys.argv[1] + ".png" compare_image_path = QAPicsDir + "/" + sys.argv[1] + ".png" mask_json = QAPicsDir + "/Masks/" + sys.argv[1] + ".json" #Could store screenshot in output and adjust it with filters later. print(mask_json) baseline_image = Image.open(baseline_image_path, 'r') compare_image = Image.open(compare_image_path, 'r') mask_data = None with open(mask_json) as f: mask_data = json.load(f) if len(sys.argv) > 2: mask_data = Image.open(sys.argv[2], 'r') def get_differences(baseline_image, compare_image, mask_data): return analyze.compare(baseline_image, compare_image, mask_data) def save_output_image_from_array(pixel_array): if not os.path.isdir(QAPicsDir + "/Output"): os.mkdir(QAPicsDir + "/Output") currentDT = datetime.datetime.now() image_name = QAPicsDir + '/Output/Output_' + str(currentDT) + '.png' misc.imsave(image_name, pixel_array) output_image = Image.open(image_name) output_image = output_image.transpose(Image.FLIP_TOP_BOTTOM).transpose(Image.ROTATE_270) output_image.save(image_name) val = get_differences(baseline_image, compare_image, mask_data) save_output_image_from_array(val[1]) print(val[0]) ```
{ "source": "josiest/Flora-Data-Extraction", "score": 3 }
#### File: Flora-Data-Extraction/florana/extract.py ```python import textract import re import json import argparse import os import textwrap import itertools from pathlib import Path from collections import OrderedDict file_dir = Path(__file__).parent.absolute() cwd = Path() # TODO: Recursively iterate through a directory # Data to extract: # species name | states and provinces it appears in | classifier def main(): # Build the command line argument parser description = ''' Extract data from genus treatment pdfs of "Flora of North America The csv ouptut files should have the following format: <genus name>, <locations appeared in>, <classifier> Example usage: python -m florana.extract -A -o data.csv ''' prog='python -m florana.extract' fmt_class = argparse.RawDescriptionHelpFormatter parser = argparse.ArgumentParser(formatter_class=fmt_class, description=textwrap.dedent(description), prog=prog) parser.add_argument('-A', action='store_true', help='parse all pdf files in the current directory') parser.add_argument('filenames', metavar='F', nargs='*', help='the treatment files to extract from') parser.add_argument('-o', action='store', help='specify a single output file (csv)') success = True args = parser.parse_args() treatments = [] # The user specified to parse all pdf files in the directory if args.A and not args.filenames: treatments = [fn for fn in os.listdir() if '.pdf' in fn] # The user specified the files manually elif args.filenames: treatments = args.filenames else: message = 'Please either specify filenames manually or use the '\ '"parse all" flag (-A).' raise ValueError(message) locations = '' classifiers = '' sep = '' error = '' # Brief error message for program ouput to console log_error = '' # Verbose error message for error.log for treatment in treatments: # name the csv file after the pdf input match = re.match(r'([\w\.]+)\.pdf', treatment) if not match: print(f'"{treatment}" is not a pdf file!') success = False continue fn = match[1] # If the extracting algorithm couldn't find locations, keep track of # the error messages results = extract_from(treatment) if results['error']: success = False error += sep+results['error'] log_error += sep+results['verbose-error'] # If the user specified a single output file, compile all the # lines into a single string and write to a file later if args.o: locations += sep+results['locations'] classifiers += sep+results['classifiers'] # If the user didn't specify a single output file write the files # for each treatment as we go else: with open(fn+'.csv', 'w') as f: f.write(results['locations']) with open(fn+'-classifiers.csv', 'w') as f: f.write(results['classifiers']) sep = '\n' # if the user specified a single output file, now is when we write it if args.o: # locations file fn = args.o # classifiers file idfn = '' # The user may have alread include the file extension try: i = fn.index('.csv') idfn = fn[:i]+'-classifiers'+fn[i:] # If the user didn't include the file extension, add it except ValueError: fn += '.csv' idfn = fn+'-classifiers.csv' with open(fn, 'w') as f: f.write(locations) with open(idfn, 'w') as f: f.write(classifiers) if success: print('Data was extracted successfully') else: print(error) with open('error.log', 'wb') as f: f.write(log_error.encode('utf8')) print('An error occured when extracting the flora data. See ' \ 'error.log for more details.') def extract_from(treatment): """Extract the data from the genus treatment. Parameters: treatment - a pdf file name of the genus treatment. data_type - "locations" or "classifiers" Returns a dict of results with the following format "locations" - a string of species names and locations they appear in "classifiers" - a string of species names and their classifiers "error" - a brief error message stating which species the algorithm couldn't find locations for "verbose-error" - an error message stating which species the algorithm couldn't find locations for as well as the block of text that the algorithm searched in for the locations Raises a Value error if the genus isn't found in the treatment. """ text = load_treatment(treatment) genus = genus_in(text) if not genus: raise ValueError("No genus was found!") data = {'locations': '', 'classifiers': '', 'error': '', 'verbose-error': ''} locsep = '' errsep = '' idsep = '' for block, name in partition(text, genus): ids = ids_in(block) data['classifiers'] += f'{idsep}{name}, {ids}' idsep = '\n' locs = '\n'.join(f'{name}, {loc}' for loc in locs_in(block)) if not locs: data['error'] += f"{errsep}Couldn't find locations for {name}" data['verbose-error'] += f"{errsep}Couldn't find locations for " \ f"{name} in:\n\n{block}\n" errsep = '\n' else: data['locations'] += locsep+locs locsep = '\n' return data def load_treatment(fn, encoding='utf-8'): """ Load the treatment using textract Parameters: fn - the file name of the treatment encoding - the encoding of the file (defaults to utf-8) """ path = Path.joinpath(Path.cwd(), fn) return textract.process(str(path), encoding=encoding).decode(encoding) # regex patterns # --- Genus pattern --- # # Assumes that the file contains the genus name in the following format: # # n. GENUS # # Where n is an arbitrary natural and GENUS is all-caps. GENUS doesn't # necessarily end the line genus_pattern = re.compile(r'^[ ]*\d+[a-z]*\.[ ]*([A-Z]+)\s+', flags=re.MULTILINE) def genus_in(treatment): """Return the genus name in the given treatment string. If the genus couldn't be found, an empty string is returned. """ genus_match = genus_pattern.search(treatment) # If the genus name couldn't be found, return an empty string if not genus_match: return "" # Else, get the first match and de-"caps-lock" it genus = genus_match[1] return genus[0]+(genus[1:].lower()) def partition(treatment, genus): """Yield the block and name in treatment associated with each species*. *Note that this includes subspecies. treatment - the treatment text (a string) species - a list of species names """ # Find all the species names in the treatment and reorder them in the order # they appear in the text name_gens = [keys_in(subgroup, genus) for subgroup in subgroups(treatment)] names = sorted(itertools.chain(*name_gens), key=lambda s: int(s.split('.')[0])) # We want to remove the number before each name and also remove any # duplicates while preserving order. OrderedDict can acheive this names = (' '.join(name.split(' ')[1:3]).strip() for name in names) names = OrderedDict.fromkeys(names).keys() for block, name in species_blocks(treatment, names): # each species block may have subspecies has_subspecies = False for sub_block, sub_name in subspecies_blocks(block, name): has_subspecies = True yield sub_block, sub_name if not has_subspecies: yield block, name def subgroups(treatment): """Generate each subgroup block in order.""" # Find all occurences of genus headers headers = list(genus_pattern.finditer(treatment)) i, j = 0, 0 # If there are subgroups, the first header is for the entire treatement and # there's no species key before the header for the first subgroup, so take # the first header out of the list if len(headers) > 1: headers = headers[1:] for next_header in headers: # Update j to the start of the current header: we're really yielding # the previous match j = next_header.start() # If the block starts at index 0, then we haven't even reached the first # subgroup block, so don't yield yet if i > 0: yield treatment[i:j] # Update i to the start of the current header: on the next iteration # it will become the start of the previous header and j will be the # start of the current header. i = j # Once this is encountered, all info is irrelevant for this program try: k = treatment.lower().index("other reference") except: k = -1 if i > 0: yield treatment[j:k] # If there were no matches, then a genus couldn't be found else: raise ValueError("No genus was found!") def keys_in(subgroup, genus): """Generate all species names from the species key in a subgroup block. subgroup - the subgroup block containing the species genus - of the species """ key_pattern = build_key_pattern(genus) has_species_key = False for match in key_pattern.finditer(subgroup): has_species_key = True yield match[0] # it's possible that the text has no species key - this happens when # there's only one species if not has_species_key: # Compile the intro pattern without knowing what the species is. Since # there's only one species this is fine. intro_pattern = build_intro_pattern(genus) intro = intro_pattern.search(subgroup) if not intro: raise ValueError('No species found!') else: yield '1. '+' '.join(intro.groups()) def species_blocks(treatment, names): """Generate all species blocks* and names in treatment. *Note that this includes all subspecies if any. treatment - the treatment text names - an ordered list of all species names that appear in the treatment """ error='' i, j = 0, 0 # Split the whole text into blocks based on the introduction to each subsp. for next_name in names: # split the name up into its individual parts in order to pass once # again into the intro_pattern builder, this time compiling to look # for a specific species. if len(next_name.split(' ')) > 2: if error: error += '\n' error += f'"{next_name}" is too long: expected 2 words!' continue genus, species = next_name.split(' ') intro_pattern = build_intro_pattern(genus, species=species) intro = intro_pattern.search(treatment) # Produce error message if species introduction couldn't be found if not intro: if error: error += '\n' error += f'Could not find species introduction for "{next_name}"' continue j = intro.start() # If i > j, then something went wrong when we reordered the search # results. if i > j: if error: error += '\n' error += f'When searching in {next_name}: Indices ({i}, {j}) are '\ 'out of order!' # If the block starts at index 0, then we haven't even reached the first # species block, so don't yield yet elif i > 0: yield treatment[i:j], name name = next_name i = j # Finally yield the "current" match (the last match). try: k = treatment.index("OTHER REFERENCES") except ValueError: k = -1 if i > 0: yield treatment[j:k], name if error: error += "\nErrors occured while partitioning species blocks!" raise ValueError(error) def subspecies_blocks(block, species): """Generate all subspecies blocks in a species block, if any. block - the species block to look in species - the species name of the form "<genus> <species>" """ if len(species.split(' ')) > 2: raise ValueError(f'"{species}" is too long: expected 2 words!') genus, species = species.split(' ') # Build the intro pattern to specifically look for subspecies intro_pattern = build_intro_pattern(genus, species=species, subspecies=r'[a-z]+') error = '' i, j = 0, 0 name = '' # go through each subspecies introduction match for intro in intro_pattern.finditer(block): # Start j = intro.start() # Only yield the previous match when we've actually found it if i > 0: if i > j: if error: error += '\n' error += f'When searching in "{name}" block: Indices ({i}, {j}'\ ') are out of order!' yield block[i:j], name # The name should include the entire species, including the subspecies # The intro pattern should have matched all of these. name = ' '.join(intro.groups()) i = j # It's possible that there are no subspecies. The intro pattern wouldn't # have found anything and i would have never been incremented. If this is # the case we don't want to yield anything, otherwise yield the rest of # subspecies block until the end of the species block if i > 0: yield block[j:-1], name if error: error += "\nErrors occured when partitioning the treatment" raise ValueError(error) def build_key_pattern(genus): """Build a regex pattern for the genus key Parameters: genus - the genus of the file (a string) The pattern has one subgroup: the genus and species name """ # --- Species name from index line --- # # Relies on the assumption that index lines have the following format # # n. <genus> <species> [(in part)]\n # # Where n is an arbitrary natural, genus is specified, species is a # lowercase word and "(in part)" doesn't necessarily appear. # # The key pattern matches two subgroups: # 1. The number that orders how the species appears in the text # 2. The genus and species name key_pattern = re.compile(r'(\d+)\.[ ]*('+genus+r' (?:x\\)?[a-z\-]+)'+ r'(?: \(in part\))?\s*\n', flags=re.MULTILINE) return key_pattern def build_intro_pattern(genus, species=r'(?:x\\)?[a-z\-]+', subspecies=''): """Build a regex pattern for a species introduction. Paramters: genus - of the species species - specific species to look for (defaults to any) subspecies - the subspecies to look for (defaults to empty string) The regex pattern has three potenital subgroups. 1 - the genus name 2 - the species name 3 - the subspecies name (if specified) """ # --- Species Introduction --- # # Relies on the assumption that a species introduction is formatted as: # # n[a]*. Species name {arbitrary text} [(subsp|var). name] {arbitrary text} # # Where n is an arbitrary natural and a is an arbitrary alphabetical # character. # This will match the "n[a]*" part of the inroduction pattern = r'^\d+' # if the subspecies was specified, we know there must be alphabetical # numbering on them if subspecies: pattern += r'[a-z]+' if 'x\\' in species and '[a-z' not in species: species = species.replace('x\\', 'x\\\\') # This will now match the 'n[a]*. Species name' part of the introduction pattern += r'\.[ ]*('+genus+') ('+species+')' # if the subspecies was specified, we know there must be some descriptor # followed by 'subsp.' and the subspecies name # # i.e. the '{arbitrary text} [(subsp|var). name] {arbitrary text}' part of # the introduction is now matched if subspecies: pattern += r'.*?(?:subsp|var)\.\s*('+subspecies+')' return re.compile(pattern, flags=re.MULTILINE|re.DOTALL) # --- Finding classifiers --- # # Always terminates the line # Always set off by spaces (never punctuation - before or after) # If a common name (of the form "* Common name") appears, there will be # text between the date and classifiers # Otherwise it's possible to have a "(parenthetical statement)" between # the date and the classifier, but usually not # It's possible that there are no classifiers id_pattern = re.compile(r'([CEFIW ]+)\s*$', re.MULTILINE) def ids_in(block): """Finds the classifiers for a species. Parameters: block - a block of text (a string) with its scope limited to a single species or subspecies Returns an empty string if there are no classifiers for this species. """ error = '' sep = '' for line in block.split('\n'): matches = id_pattern.findall(line) # If matches were found return the last match (the pattern is meant to # be searched from the end of the line) if matches: return matches[-1].strip() # if no matches found, there are no classifiers; return an empty string return '' # --- Finding provinces --- # # abbreviations and full state names are listed in geography.txt and # locations.txt so grab each of them # I could just use a string, but I want to '|'.join(loc_names) so it'll be # easier to '|' the two to gether loc_names = [] for fn in ('geography.txt', 'locations.txt'): path = Path.joinpath(file_dir, fn) with open(path) as f: s = f.read() # these are special regex charaters, so escape them wherever they # appear for r in ('.', '(', ')'): s = s.replace(r, '\\'+r) # I want to '|' each province name, but since they have non-alphabetic # characters I need to group each name w/o capturing, hence the (?:) # # Also cut off the last blank line loc_names.extend('(?:'+m+')' for m in s.split('\n')[:-1]) # If one string is a substring of another, regex will match with whatever # comes first in the pattern. We want to match the longest substrings possible # so sort the location names by length # # Also replace spaces in each name with arbitrary whitespace loc_names = sorted((loc.replace(' ', r'\s*') for loc in loc_names), key=len, reverse=True) # Assumes locations have the following format: # # {<beginning of line>, <;> or <,>} {location name (may include newlines)}{<;>, # <,> or <end of line>} loc_pattern_str = r'[^;,]\s*('+'|'.join(loc_names)+r')(?:[;,]|\s*?$|\s*?\n)' loc_pattern = re.compile(loc_pattern_str, re.MULTILINE) # --- Location Paragraph Pattern --- # # Assumes That locations that a species appears in meets the following format: # # 0{arbitrary white space}m; {locations on an abitrary number of lines where # countries are separated by ';' and states/provinces are separated by ','}.\n # # The line doesn't necessarily begin at 0, but a line does end at '.\n' loc_text_pattern = re.compile(r'0[\)\]]?\s+?m;.*?(?<!Nfld|Labr|..St)'+ r'\.\s*?(?:\n|$)', re.DOTALL|re.MULTILINE) loc_exception_pattern = re.compile(r'(?:Flowering.*?;|introduced;)' \ r'.*?\.\s*?(?:\n|$)', re.DOTALL|re.MULTILINE) # load the key which maps full state and province names to their abbreviations key_fn = 'key.json' key_path = Path.joinpath(file_dir, key_fn) key = {} with open(key_path) as f: key = json.load(f) def locs_in(block): """Generates the locations that a species appears in. Parameters: block - a block of text (a string) with its scope limited to a single species or subspecies """ # First find the locations paragraph loc_match = loc_text_pattern.search(block) if not loc_match: loc_match = loc_exception_pattern.search(block) loc_text = "" if loc_match: loc_text = loc_match[0] # find all states and provinces in the paragraph locs = loc_pattern.findall(re.sub('[Bb]aja\s*[Cc]alifornia', '', loc_text)) # remove duplicates #locs = {key[loc] if loc in key else loc for loc in matches} for loc in locs: # in replace all whitespace with a single space loc = ' '.join(loc.split()) # convert full state and province names to their abbreviations if loc in key: loc = key[loc] # Handle Nfld/Labr differentiation # if specified, yield the relevant one if '(Labr.)' in loc: yield 'Labr.' elif '(Nfld.)' in loc: yield 'Nfld.' # otherwise yield both if both elif 'Nfld' in loc and 'Labr' in loc: yield 'Nfld.' yield 'Labr.' # now that these cases have been handled, yield as usual elif loc: yield loc if __name__ == '__main__': main() ```
{ "source": "josiest/hangman", "score": 4 }
#### File: josiest/hangman/hangman.py ```python import subprocess import sys import prompter import random from copy import deepcopy from collections import OrderedDict from textwrap import wrap _CLEAR_WORD = 'cls' if len(sys.argv) > 1 and sys.argv[1] == '-u': _CLEAR_WORD = 'clear' title = r"""================================================================================ || || ||=\\ ||\ || //====|| ||\ /|| ||=\\ ||\ || || || || \\ ||\\ || /| ||\\ //|| || \\ ||\\ || ||=====|| ||===\\ || \\ || || ==== || \\/ || ||===\\ || \\ || || || || \\ || \\ || \| || || || || \\ || \\ || || || || \\ || \\|| \\====|| || || || \\ || \\|| ================================================================================""" def load_words(filename, sep=' '): """Load a random word from word_file Preconditions: word_file is a string as the name of a text file located in the same directory as this module has no new lines and contains only unique words as defined in the module documentation seperated by 1 space each returns a string (word) Postcondition word is a random word in word_file """ with open(filename) as word_file: return word_file.read().split(sep) words = load_words('words.txt', '\n') def get_menu(options): """Get the string representation of a menu from the specified options Assumes options is an ordered dictionary that maps strings (option) to strings (name) assumes option length + name length + 2 < 20 Return a string along these lines each option must appear in order [--------------------] [1] option ... ... [--------------------] """ border = '[%s]' % ('-'*20) menu = border for option, name in options.items(): space = ' ' * (20 - (len(option) + 2) - len(name)) menu += '\n\n [%s]%s%s' % (option, space, name) menu += '\n\n%s' % border return menu saves = {} def new_game(): saves['game'] = Game(random.choice(words)) return saves['game'].play() def continue_game(): return saves['game'].play() menus = { 'main': { 'text': '%s\n\n%s' % (title, get_menu(OrderedDict([ ('1', 'new game'), ('2', 'exit')]))), 'options': {'1': new_game, '2': lambda: {}}, 'message': 'Please enter "1" or "2"'}, 'continue': { 'text': '%s\n\n%s' % (title, get_menu(OrderedDict([ ('1', 'continue'), ('2', 'new game'), ('3', 'exit')]))), 'options': {'1': continue_game, '2': new_game, '3': lambda: {}, 'message': 'Please enter "1", "2", or "3"'} }, 'gameover': { 'text': '{}\n\n%s' % get_menu(OrderedDict([ ('1', 'new game'), ('2', 'exit')])), 'options': {'1': new_game, '2': lambda: {}}, 'message': 'Please enter "1" or "2"'} } def main(): prompter.clear(_CLEAR_WORD) menu = menus['main'] while menu: choice = prompter.get_option(menu) menu = menu['options'][choice]() prompter.clear(_CLEAR_WORD) sys.exit() class Game(object): screen = r"""---------------------------------- |__| /\ |\ | /** |\/| /\ |\ | | | /--\ | \| \__| | | /--\ | \| ---------------------------------- o-----------------o %s o-----------------o [ Already Guessed ] o-----------------o %s o-----------------o""" label = '| {:%s15} |' gameover_text = { 'win': 'You guessed the word: %s', 'lose': 'You lose. The word was: %s'} def __init__(self, word): self.word = word self.visible_letters = ['_' for letter in word] self.guesses = [] self.strikes = 0 def play(self): limit = strike_limit(self.word) win_condition = 'lose' while self.strikes < limit: guess = self._get_valid_guess() self.guesses.append(guess) self.make_guess(guess) if not ('_' in self.visible_letters): win_condition = 'win' break gameover_menu = deepcopy(menus['gameover']) text = gameover_menu['text'] screen = self.get_gameover_screen(win_condition) gameover_menu['text'] = text.format(screen) return gameover_menu def make_guess(self, guess): """Make a guess for the hidden word assumes guess is an alphabetical string 1 character long or as long as word and it's not in visible_letters. If as long as word, it meets precondition of word as defined in the module documentation mutates self such that strikes has increased by 1 if the guess was incorrect mutates visible_letters such that if the guess was correct guess now appears in visible_letters where it appears in word """ if guess == self.word: self.visible_letters = [letter for letter in self.word] elif guess in self.word: self.show_letters(guess) else: self.strikes += 1 def show_letters(self, guess): """Reveal the places where guess appears in word Preconditions guess - is a string * lowercase alphabetical * one character long * in self.word Postconditions mutates visible_letters * at each index where guess appears in self.word, guess now appears in self.visible_letters """ for i, letter in enumerate(self.word): if letter == guess: self.visible_letters[i] = letter def get_screen(self): """Get the current screen as a string""" vl = ' '.join(self.visible_letters) vl = self._get_label(vl, '^') guesses = ' '.join(self.guesses) guesses = self._get_label(guesses, '<') return Game.screen % (vl, guesses) def get_gameover_screen(self, state): """Get the gameover screen as a string assumes state is a string of either 'win' or 'lose' """ gameover_text = Game.gameover_text[state] % self.word return '%s\n\n%s' % (self.get_screen(), gameover_text) def _get_label(self, text, justification): label = Game.label % justification lines = [''] if text: lines = wrap(text, 15) lines = [label.format(line) for line in lines] return '\n'.join(lines) def _get_valid_guess(self): vl = self.visible_letters conditions = [ {'function': lambda data, letters: len(data) in (1, len(letters)), 'args': [vl], 'message': ( 'Your guess must be 1 character or as long as the word')}, {'function': lambda data: data.isalpha(), 'message': 'Your guess must only contain alphabetical characters'}, {'function': lambda data, guesses: data.lower() not in guesses, 'args': [self.guesses], 'message': 'You\'ve already guessed that'}] prompt = 'Guess a letter or a word' guess = prompter.ask_for(self.get_screen(), prompt, conditions, clear_word=_CLEAR_WORD) return guess.lower() def strike_limit(word): """Get the strike limit for a specific word Precondition word - is a string * contains only alphabetical characters Postconditions Returns an integer (limit) * positive * greater than the amount of unique letters in word * greater than or equal to 6 * less than or equal to 26 """ return 6 if __name__ == '__main__': main() ```
{ "source": "josip8/EwilTwin-attack", "score": 3 }
#### File: josip8/EwilTwin-attack/login.py ```python import argparse import sys import datetime import json import logging import re import random import requests import shutil from pyquery import PyQuery as pq def main(username, password): logging.basicConfig(filename='logging.log', level=logging.DEBUG) session = requests.session() uid, dtsg = login(session, username, password) def login(session, username, password): # Navigate to the Facebook homepage response = session.get('https://facebook.com') # Construct the DOM dom = pq(response.text) # Get the lsd value from the HTML. This is required to make the login request lsd = dom('[name="lsd"]').val() # Perform the login request response = session.post('https://www.facebook.com/login.php?login_attempt=1', data={ 'lsd': lsd, 'email': username, 'pass': password, 'default_persistent': '0', 'timezone': '-60', 'lgndim': '', 'lgnrnd': '', 'lgnjs': '', 'locale':'en_GB', 'qsstamp': '' }) print len(response.text) sys.stdout.flush() try: main(username=sys.argv[1], password=sys.argv[2]) except Exception, e: logging.exception(e) ```
{ "source": "JosipAleric/P2-Zadace", "score": 4 }
#### File: P2-Zadace/zadace/zad5.py ```python def function(n): for i in range(n): if i % 2 == 0 or i % 2 != 0: yield i iterator = iter(function(20)) while 1: try: print(next(iterator)) except: break ``` #### File: P2-Zadace/zadace/zad8.py ```python def dobrodosao(ime): print ("Dobrodosao " + ime) #Druga funkcija pozdrav = (lambda ime: ("Pozdrav " + ime)) #Treca funkcija def dobrodoslica(funkcija): return funkcija("Josip") print(dobrodoslica(dobrodosao)) print(dobrodoslica(pozdrav)) ```
{ "source": "josipbudzaki/backtrader-binance", "score": 3 }
#### File: backtrader-binance/backtrader_binance/binance_feed.py ```python from collections import deque import pandas as pd from backtrader.feed import DataBase from backtrader.utils import date2num from backtrader.utils.py3 import with_metaclass from .binance_store import BinanceStore class MetaBinanceData(DataBase.__class__): def __init__(cls, name, bases, dct): """Class has already been created ... register""" # Initialize the class super(MetaBinanceData, cls).__init__(name, bases, dct) # Register with the store BinanceStore.DataCls = cls class BinanceData(with_metaclass(MetaBinanceData, DataBase)): params = ( ('drop_newest', True), ) # States for the Finite State Machine in _load _ST_LIVE, _ST_HISTORBACK, _ST_OVER = range(3) def __init__(self, **kwargs): self.store = BinanceStore(**kwargs) self._data = deque() def _load(self): if self._state == self._ST_OVER: return False elif self._state == self._ST_LIVE: return self._load_kline() elif self._state == self._ST_HISTORBACK: if self._load_kline(): return True else: self._start_live() def _load_kline(self): try: kline = self._data.popleft() except IndexError: return None timestamp, open_, high, low, close, volume = kline self.lines.datetime[0] = date2num(timestamp) self.lines.open[0] = open_ self.lines.high[0] = high self.lines.low[0] = low self.lines.close[0] = close self.lines.volume[0] = volume return True def _parser_dataframe(self, data): df = data.copy() df.columns = ['timestamp', 'open', 'high', 'low', 'close', 'volume'] df['timestamp'] = df['timestamp'].values.astype(dtype='datetime64[ms]') df['open'] = df['open'].values.astype(float) df['high'] = df['high'].values.astype(float) df['low'] = df['low'].values.astype(float) df['close'] = df['close'].values.astype(float) df['volume'] = df['volume'].values.astype(float) # df.set_index('timestamp', inplace=True) return df def _parser_to_kline(self, timestamp, kline): df = pd.DataFrame([[timestamp, kline['o'], kline['h'], kline['l'], kline['c'], kline['v']]]) return self._parser_dataframe(df) def _process_kline_msg(self, msg): """https://binance-docs.github.io/apidocs/spot/en/#kline-candlestick-streams""" if msg['e'] == 'kline': if msg['k']['x']: # Is closed kline = self._parser_to_kline(msg['k']['t'], msg['k']) self._data.extend(kline.values.tolist()) elif msg['e'] == 'error': raise msg def _start_live(self): self._state = self._ST_LIVE self.put_notification(self.LIVE) self.store.binance_socket.start_kline_socket( self.symbol_info['symbol'], self._process_kline_msg, self.interval) self.store.start_socket() def haslivedata(self): return self._state == self._ST_LIVE and self._data def islive(self): return True def start(self): DataBase.start(self) self.interval = self.store.get_interval(self.p.timeframe, self.p.compression) if self.interval is None: self._state = self._ST_OVER self.put_notification(self.NOTSUPPORTED_TF) return self.symbol_info = self.store.get_symbol_info(self.p.dataname) if self.symbol_info is None: self._state = self._ST_OVER self.put_notification(self.NOTSUBSCRIBED) return if self.p.fromdate: self._state = self._ST_HISTORBACK self.put_notification(self.DELAYED) klines = self.store.binance.get_historical_klines( self.symbol_info['symbol'], self.interval, self.p.fromdate.strftime('%d %b %Y %H:%M:%S')) if self.p.drop_newest: klines.pop() df = pd.DataFrame(klines) df.drop(df.columns[[6, 7, 8, 9, 10, 11]], axis=1, inplace=True) # Remove unnecessary columns df = self._parser_dataframe(df) self._data.extend(df.values.tolist()) else: self._start_live() ```
{ "source": "josipbudzaki/btoandav20", "score": 3 }
#### File: btoandav20/sizers/oandav20backtestsizer.py ```python import backtrader as bt from btoandav20.commissions import OandaV20BacktestCommInfo class OandaV20BacktestSizer(bt.Sizer): params = dict( percents=0, # percents of cash amount=0, # amount of cash avail_reduce_perc=0, ) def _getsizing(self, comminfo, cash, data, isbuy): position = self.broker.getposition(data) if position: return position.size price = data.close[0] avail = comminfo.getsize(price, cash) if self.p.avail_reduce_perc > 0: avail -= avail/100 * self.p.avail_reduce_perc if self.p.percents != 0: size = avail * (self.p.percents / 100) elif self.p.amount != 0: size = (avail / cash) * self.p.amount else: size = 0 return int(size) class OandaV20BacktestPercentSizer(OandaV20BacktestSizer): params = dict( percents=5, ) class OandaV20BacktestCashSizer(OandaV20BacktestSizer): params = dict( amount=50, ) class OandaV20BacktestRiskSizer(bt.Sizer): params = dict( percents=0, # risk percents amount=0, # risk amount pips=5, # stop loss in pips avail_reduce_perc=0, ) def getsizing(self, data, isbuy, pips=None, price=None, exchange_rate=None): comminfo = self.broker.getcommissioninfo(data) return self._getsizing( comminfo, self.broker.getvalue(), data, isbuy, pips, price, exchange_rate) def _getsizing(self, comminfo, cash, data, isbuy, pips=None, price=None, exchange_rate=None): position = self.broker.getposition(data) if position: return position.size if not pips: pips = self.p.pips price = data.close[0] avail = comminfo.getsize(price, cash) if self.p.avail_reduce_perc > 0: avail -= avail / 100 * self.p.avail_reduce_perc if self.p.percents != 0: cash_to_use = cash * (self.p.percents / 100) elif self.p.amount != 0: cash_to_use = self.p.amount else: raise Exception('Either percents or amount is needed') if not isinstance(comminfo, OandaV20BacktestCommInfo): raise Exception('OandaV20CommInfo required') mult = float(1 / 10 ** comminfo.p.pip_location) price_per_pip = cash_to_use / pips if not comminfo.p.acc_counter_currency and price: # Acc currency is same as base currency pip = price_per_pip * price size = pip * mult elif exchange_rate: # Acc currency is neither same as base or counter currency pip = price_per_pip * exchange_rate size = pip * mult else: # Acc currency and counter currency are the same size = price_per_pip * mult size = min(size, avail) return int(size) class OandaV20BacktestRiskPercentSizer(OandaV20BacktestRiskSizer): params = dict( percents=5, ) class OandaV20BacktestRiskCashSizer(OandaV20BacktestRiskSizer): params = dict( amount=50, ) ```
{ "source": "josipd/jax", "score": 4 }
#### File: jax/experimental/jambax.py ```python import collections import ctypes from functools import partial # pylint:disable=g-importing-member import jax from jax.interpreters import batching from jax.interpreters import xla from jax.lib import xla_client from jaxlib import xla_extension import numba from numba import types as nb_types import numba.typed as nb_typed import numpy as onp def _xla_shape_to_abstract(xla_shape): return jax.abstract_arrays.ShapedArray(xla_shape.dimensions(), xla_shape.element_type()) def _create_xla_target_capsule(ptr): xla_capsule_magic = b"xla._CUSTOM_CALL_TARGET" ctypes.pythonapi.PyCapsule_New.argtypes = [ ctypes.c_void_p, ctypes.c_char_p, ctypes.c_void_p] ctypes.pythonapi.PyCapsule_New.restype = ctypes.py_object return ctypes.pythonapi.PyCapsule_New(ptr, xla_capsule_magic, None) def _np_evaluation_rule(call_fn, abstract_eval_fn, *args, **kwargs): output_shapes = abstract_eval_fn(*args) outputs = tuple( onp.empty(shape.shape, dtype=shape.dtype) for shape in output_shapes) inputs = tuple(onp.zeros_like(arg) for arg in args) call_fn(outputs + inputs, **kwargs) return tuple(outputs) def _naive_batching(call_fn, args, batch_axes): # TODO(josipd): Check that the axes are all zeros. Add support when only a # subset of the arguments have to be batched. # TODO(josipd): Do this smarter than n CustomCalls. return tuple(jax.lax.map(lambda x: call_fn(*x), args)), batch_axes def _xla_translation(numba_fn, abstract_eval_fn, xla_builder, *args): """Returns the XLA CustomCall for the given numba function. Args: numba_fn: A numba function. For its signature, see the module docstring. abstract_eval_fn: The abstract shape evaluation function. xla_builder: The XlaBuilder instance. *args: The positional arguments to be passed to `numba_fn`. Returns: The XLA CustomCall operation calling into the numba function. """ input_shapes = [xla_builder.get_shape(arg) for arg in args] # TODO(josipd): Check that the input layout is the numpy default. output_abstract_arrays = abstract_eval_fn(*[ _xla_shape_to_abstract(shape) for shape in input_shapes]) output_shapes = tuple(array.shape for array in output_abstract_arrays) output_dtypes = tuple(array.dtype for array in output_abstract_arrays) layout_for_shape = lambda shape: range(len(shape)-1, -1, -1) output_layouts = map(layout_for_shape, output_shapes) xla_output_shapes = [ xla_client.Shape.array_shape(*arg) for arg in zip(output_dtypes, output_shapes, output_layouts)] xla_output_shape = xla_client.Shape.tuple_shape(xla_output_shapes) input_dtypes = tuple(shape.element_type() for shape in input_shapes) input_dimensions = tuple(shape.dimensions() for shape in input_shapes) xla_call_sig = nb_types.void(nb_types.CPointer(nb_types.voidptr), nb_types.CPointer(nb_types.voidptr)) @numba.cfunc(xla_call_sig) def xla_custom_call_target(output_ptrs, input_ptrs): args = nb_typed.List() for i in range(len(output_shapes)): args.append(numba.carray( output_ptrs[i], output_shapes[i], dtype=output_dtypes[i])) for i in range(len(input_dimensions)): args.append(numba.carray( input_ptrs[i], input_dimensions[i], dtype=input_dtypes[i])) numba_fn(args) target_name = xla_custom_call_target.native_name.encode("ascii") capsule = _create_xla_target_capsule(xla_custom_call_target.address) xla_extension.register_custom_call_target(target_name, capsule, "Host") return xla_client.ops.CustomCallWithLayout( xla_builder, target_name, operands=args, shape_with_layout=xla_output_shape, operand_shapes_with_layout=input_shapes, ) def numba_to_jax(name: str, numba_fn, abstract_eval_fn, batching_fn=None): """Create a jittable JAX function for the given Numba function. Args: name: The name under which the primitive will be registered. numba_fn: The function that can be compiled with Numba. abstract_eval_fn: The abstract evaluation function. batching_fn: If set, this function will be used when vmap-ing the returned function. Returns: A jitable JAX function. """ primitive = jax.core.Primitive(name) primitive.multiple_results = True def abstract_eval_fn_always(*args, **kwargs): # Special-casing when only a single tensor is returned. shapes = abstract_eval_fn(*args, **kwargs) if not isinstance(shapes, collections.abc.Collection): return [shapes] else: return shapes primitive.def_abstract_eval(abstract_eval_fn_always) primitive.def_impl( partial(_np_evaluation_rule, numba_fn, abstract_eval_fn_always)) def _primitive_bind(*args): result = primitive.bind(*args) output_shapes = abstract_eval_fn(*args) # Special-casing when only a single tensor is returned. if not isinstance(output_shapes, collections.abc.Collection): assert len(result) == 1 return result[0] else: return result if batching_fn is not None: batching.primitive_batchers[primitive] = batching_fn else: batching.primitive_batchers[primitive] = partial( _naive_batching, _primitive_bind) xla.backend_specific_translations["cpu"][primitive] = partial( _xla_translation, numba_fn, abstract_eval_fn_always) return _primitive_bind ```
{ "source": "josipd/proxTV", "score": 2 }
#### File: proxTV/prox_tv/prox_tv_build.py ```python import os import os.path from cffi import FFI ffi = FFI() ffi.cdef(""" typedef struct { ...; } Workspace; // Condat's implementatino. void TV1D_denoise(double* input, double* output, const int width, const double lambda); // Ryan's implementation of Johnson's algorithm void dp(int n, double *y, double lam, double *beta); /* TV-L1 solvers */ int tautString_TV1(double *y, double lambda, double *x,int n); int PN_TV1(double *y, double lambda, double *x, double *info, int n, double sigma, Workspace *ws); /* Weighted TV-L1 solvers */ int PN_TV1_Weighted(double* Y, double* W, double* X, double* info, int n, double sigma, Workspace* ws); int tautString_TV1_Weighted(double *y, double* lambda, double *x, int n); /* TV-L2 solvers */ int more_TV2(double *y,double lambda, double *x, double *info, int n); int PG_TV2(double *y, double lambda, double *x,double *info, int n); int morePG_TV2(double *y, double lambda, double *x, double *info, int n, Workspace *ws); /* Weighted TV-L2 solvers */ int DR2L1W_TV(size_t M, size_t N, double* unary, double*W1, double*W2, double *s, int nThreads, int maxit, double* info); /* 2-dimensional TV solvers */ int PD2_TV(double *y, double *lambdas, double *norms, double *dims, double *x, double *info, int *ns, int nds, int npen, int ncores, int maxIters); int DR2_TV(size_t M, size_t N, double*unary, double W1, double W2, double norm1, double norm2, double*s, int nThreads, int maxit, double* info); int CondatChambollePock2_TV(size_t M, size_t N, double*Y, double lambda, double*X, short alg, int maxit, double* info); int Yang2_TV(size_t M, size_t N, double*Y, double lambda, double*X, int maxit, double* info); /* General-dimension TV solvers */ int PD_TV(double *y, double *lambdas, double *norms, double *dims, double *x, double *info, int *ns, int nds, int npen, int ncores, int maxIters); /* TV-Lp solvers */ int GP_TVp(double *y, double lambda, double *x, double *info, int n, double p, Workspace *ws); int OGP_TVp(double *y, double lambda, double *x, double *info, int n, double p, Workspace *ws); int FISTA_TVp(double *y, double lambda, double *x, double *info, int n, double p, Workspace *ws); int FW_TVp(double *y, double lambda, double *x, double *info, int n, double p, Workspace *ws); int GPFW_TVp(double *y, double lambda, double *x, double *info, int n, double p, Workspace *ws); """) sources = [os.path.join('src', fname) for fname in ( 'condat_fast_tv.cpp', 'johnsonRyanTV.cpp', 'LPopt.cpp', 'TV2Dopt.cpp', 'TV2DWopt.cpp', 'TVgenopt.cpp', 'TVL1opt.cpp', 'TVL1Wopt.cpp', 'TVL2opt.cpp', 'TVLPopt.cpp', 'TVNDopt.cpp', 'utils.cpp' )] ffi.set_source( '_prox_tv', """ typedef struct { /* Size of memory vectors */ int n; /* Generic memory which can be used by 1D algorithms */ double **d; int maxd, nd; int **i; int maxi, ni; /* Memory for inputs and outputs */ double *in,*out; /* Warm restart variables */ short warm; double *warmDual; double warmLambda; } Workspace; """, sources=sources, define_macros=[('NOMATLAB', 1)], extra_compile_args=['-fopenmp'], extra_link_args=['-fopenmp'], libraries=['lapack'] ) if __name__ == '__main__': ffi.compile() ```
{ "source": "josipgrgurica/django-docstringviewer", "score": 2 }
#### File: django-docstringviewer/docstringviewer/views.py ```python from django.views.generic import TemplateView from .conf import PROJECT_ROOT from .utils import build_tree, get_module_docs class DocsView(TemplateView): """ Builds project tree and module docs for given module import path in request. If module path is not provided in request, first module from first app in project is fetched. """ template_name = "docs/main.html" def get_context_data(self, **kwargs): """ Builds project tree and module docs for given module import path in request. If module path is not provided in request, first module from first app in project is fetched. """ context = super(DocsView, self).get_context_data(**kwargs) context['module_docs'] = get_module_docs(self.request.GET.get('module')) if self.request.is_ajax(): self.template_name = "docs/docs.html" else: context['tree'] = build_tree(PROJECT_ROOT, []) return context ```
{ "source": "josipjukic/Adversarial-NLP", "score": 2 }
#### File: attacks/neighbour_attacks/utils.py ```python import numpy as np def softmax(x): exp = np.exp(x) return exp / exp.sum() def prob_normalize(x): s = np.sum(x) if s == 0: return x return x / s ``` #### File: attacks/word_bug/adversarial_transforms.py ```python import numpy as np def adversarial_text(raw, nlp, indices, transform): adv_words = [token.text_with_ws for token in nlp(raw)] for i in indices: if i >= len(adv_words): continue adv_words[i] = transform(adv_words[i]) return ''.join(adv_words) homos = {'-':'˗','9':'৭','8':'Ȣ','7':'𝟕','6':'б','5':'Ƽ','4':'Ꮞ','3':'Ʒ','2':'ᒿ','1':'l','0':'O', "'":'`','a': 'ɑ', 'b': 'Ь', 'c': 'ϲ', 'd': 'ԁ', 'e': 'е', 'f': '𝚏', 'g': 'ɡ', 'h': 'հ', 'i': 'і', 'j': 'ϳ', 'k': '𝒌', 'l': 'ⅼ', 'm': 'm', 'n': 'ո', 'o':'о', 'p': 'р', 'q': 'ԛ', 'r': 'ⲅ', 's': 'ѕ', 't': '𝚝', 'u': 'ս', 'v': 'ѵ', 'w': 'ԝ', 'x': '×', 'y': 'у', 'z': 'ᴢ'} def homoglyph(word): N = len(word)-1 if word[-1] == ' ' else len(word) N = max(1, N) s = np.random.randint(0, N) if word[s] in homos: adv_char = homos[word[s]] else: adv_char = word[s] adv_word = word[:s] + adv_char + word[s+1:] return adv_word def remove_char(word): N = len(word)-1 if word[-1] == ' ' else len(word) N = max(1, N) s = np.random.randint(0, N) adv_word = word[:s] + word[s+1:] return adv_word def flip_char(word): N = len(word)-1 if word[-1] == ' ' else len(word) N = max(1, N) s = np.random.randint(0, N) letter = ord(word[s]) adv_char = np.random.randint(0,25) + 97 adv_word = word[:s] + chr(adv_char) + word[s+1:] return adv_word ``` #### File: attacks/word_bug/scoring.py ```python import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.data import DataLoader import argparse import model import math import numpy as np import sys def word_drop(model, batch, y_preds, num_classes, device): inputs = batch[0] losses = torch.zeros(inputs.shape) target = None for i in range(inputs.shape[0]): if target: index, vals = target inputs[i-1,:] = vals target = (i, torch.clone(inputs[i,:])) inputs[i,:] = 0 with torch.no_grad(): out = model.predict_proba(batch) losses[i,:] = out.gather(1, y_preds).squeeze() if target: index, vals = target inputs[-1,:] = vals return 1.-losses def temporal(model, batch, y_preds, num_classes, device): inputs, lengths = batch new_preds = torch.zeros(inputs.shape) losses = torch.zeros(inputs.shape) for i in range(inputs.shape[0]): preinputs = inputs[:i+1,:] with torch.no_grad(): new_lengths = torch.min(lengths, torch.tensor(i+1).to(device)) preout = model.predict_proba((preinputs, new_lengths)) new_preds[i,:] = preout.gather(1, y_preds).squeeze() losses[0,:] = new_preds[0,:] - 1.0/num_classes for i in range(1, inputs.shape[0]): losses[i,:] = new_preds[i,:] - new_preds[i-1,:] return losses def temporal_tail(model, batch, y_preds, num_classes, device): inputs, lengths = batch new_preds = torch.zeros(inputs.shape) losses = torch.zeros(inputs.shape) for i in range(inputs.shape[0]): postinputs = inputs[i:,:] with torch.no_grad(): new_lengths = torch.max(lengths-i, torch.tensor(1).to(device)) postout = model.predict_proba((postinputs, new_lengths)) new_preds[i,:] = postout.gather(1, y_preds).squeeze() losses[-1,:] = new_preds[-1,:] - 1.0/num_classes for i in range(inputs.shape[0]-1): losses[i,:] = new_preds[i,:] - new_preds[i+1,:] return losses def combined_temporal(model, batch, y_preds, num_classes, device, alpha=1.): temporal_score = temporal(model, batch, y_preds, num_classes, device) temporal_tail_score = temporal_tail(model, batch, y_preds, num_classes, device) return temporal_score + alpha*temporal_tail_score def random(inputs, *args, **kwargs): losses = torch.rand(inputs.size()[0], inputs.size()[1]) return losses ``` #### File: Adversarial-NLP/src/metrics.py ```python import numpy as np import torch from tqdm.notebook import tqdm def accuracy(y_pred, y_gold): if y_pred.shape[1] == 1: # binary preds = torch.round(torch.sigmoid(y_pred)).squeeze() else: # multi-class preds = torch.argmax(y_pred, dim=1) correct = (preds == y_gold).float() acc = correct.sum() / len(correct) return acc.item() def is_pareto_efficient(costs): is_efficient = np.ones(costs.shape[0], dtype = bool) for i, c in enumerate(costs): if is_efficient[i]: is_efficient[is_efficient] = np.any(costs[is_efficient]<c, axis=1) # keep any point with a lower cost is_efficient[i] = True # and keep self return is_efficient def init_tqdms(args, iterator): epoch_bar = tqdm(desc='Training routine', total=args.num_epochs, position=0) train_bar = tqdm(desc='Train set', total=len(iterator['train']), position=1) val_bar = tqdm(desc='Valid set', total=len(iterator['valid']), position=1) tqdms = dict(main=epoch_bar, train=train_bar, valid=val_bar) return tqdms ```
{ "source": "josipklaric/python-playground", "score": 3 }
#### File: python-playground/src/jkcalc.py ```python from caster.caster import as_int def add(x, y): return as_int(x) + as_int(y) def substract(x, y): return x - y def multiply(x, y): return x * y def devide(x, y): return x / y # Test function def _test(): assert add(1,2) == 3 assert add('1','2') == 3 if __name__ == '__main__': _test() ```
{ "source": "josip-milic/asc_qwerty_test", "score": 2 }
#### File: rest-framework-tutorial/services/models.py ```python from django.db import models class Event(models.Model): title = models.CharField(max_length=255) date = models.DateTimeField() description = models.TextField() location_lat = models.DecimalField(max_digits=9, decimal_places=6) location_lng = models.DecimalField(max_digits=9, decimal_places=6) marker_type = models.CharField(max_length=255) created = models.DateTimeField(auto_now_add=True) def __unicode__(self): return self.title ```
{ "source": "josivantarcio/Desafios-em-Python", "score": 4 }
#### File: Desafios-em-Python/Desafios/desafio098.py ```python def contador(i, f, p): if p < 0: p *= -1 if p == 0: p = 1 if i <= f: for x in range(i, f+p, p): print(x, end=" ", flush=True) sleep(0.5) print('Fim') if f <= i: for x in range(i, f-p, -p): print(x, end=" ", flush=True) sleep(0.5) print('Fim') from time import sleep #main contador(1, 10, 1) contador(10, 0, 2) inicio = int(input('Início: ')) fim = int(input('Fim: ')) passo = int(input('Passo: ')) contador(inicio, fim, passo) print('FIM') ``` #### File: Desafios-em-Python/Desafios/desafio113.py ```python def printErro(): print('\033[31mErro! Digite um numero valido\033[m') def leiaInt(n=0): while True: try: valor = int(input(n)) break except (ValueError, TypeError): printErro() return valor def leiaReal(r): for i in range(2, -1, -1): try: valor = float(input(r)) return valor break except (ValueError, TypeError, EOFError): printErro() print(f'Voce tem {i} tentativas restantes') except (KeyboardInterrupt, KeyError): print('\nErro! Programa suspenso pelo usuario') return 0 break print('Fim das tentativas! Inicie novamente') n = leiaInt('Digite um numero inteiro: ') f = leiaReal('Digite um numero real: ') print(f'O numero inteiro foi {n} e o real {f}') ``` #### File: utilidadesCeV/menu/__init__.py ```python def linha(tam=29): return f'=' * tam def leiaInt(n=0): while True: try: valor = int(input(n)) break except (ValueError, TypeError): print('\033[31mErro. Digite valor valido\033[m') return valor def cabecalho(msg): print(linha()) print(msg.center(29).upper()) print(linha()) def menu(lista): cabecalho('menu principal') for k, v in enumerate(lista): print(f'{k+1}: {v}') print(linha()) opcao = leiaInt('Sua Opção: ') return opcao def final(): print(linha()) print('ATÉ LOGO | SEE YOU LATER!'.center(29)) print(linha()) ```
{ "source": "josix/cookiecutter-python-template", "score": 2 }
#### File: cookiecutter-python-template/hooks/post_gen_project.py ```python import os def remove_pipfile(): os.remove("Pipfile") def remove_publish_pypi_github_action(): os.remove(".github/workflows/python-publish.yaml") def remove_docker_file(): os.remove("Dockerfile") def main(): if "{{ cookiecutter.dependency_management_tool }}" != "pipenv": remove_pipfile() if "{{ cookiecutter.build_pypi_package }}" == "n": remove_publish_pypi_github_action() if "{{ cookiecutter.build_docker_image }}" == "n": remove_docker_file() if __name__ == "__main__": main() ```
{ "source": "josix/pycon.tw", "score": 2 }
#### File: proposals/forms/proposals.py ```python from django import forms from django.conf import settings from django.utils.functional import cached_property from django.utils.translation import gettext_lazy as _ from crispy_forms.helper import FormHelper from core.utils import form_has_instance from proposals.models import TalkProposal, TutorialProposal from .mixins import ( RequestUserSpeakerValidationMixin, TalkProposalMixin, TutorialProposalMixin, ) class ProposalCreateForm(RequestUserSpeakerValidationMixin, forms.ModelForm): def save(self, commit=True): """Fill user field on save. """ proposal = super().save(commit=False) proposal.submitter = self._request.user if commit: proposal.save() return proposal class TalkProposalCreateForm(TalkProposalMixin, ProposalCreateForm): """Form used to create a talk proposal. Fields in this form is intentionally reduced to allow people to submit a proposal very quickly, and fill in the details later. """ duration = forms.ChoiceField( label=_('duration'), choices=settings.TALK_PROPOSAL_DURATION_CHOICES, ) class Meta(TalkProposalMixin.Meta): fields = [ 'title', 'category', 'duration', 'language', 'python_level', 'recording_policy', 'remoting_policy', 'first_time_speaker', 'referring_policy', ] class TutorialProposalCreateForm(TutorialProposalMixin, ProposalCreateForm): """Form used to create a tutorial proposal. Fields in this form is intentionally reduced to allow people to submit a proposal very quickly, and fill in the details later. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.fields['duration'].disabled = True class Meta(TutorialProposalMixin.Meta): fields = [ 'title', 'category', 'duration', 'language', 'python_level', 'recording_policy', 'remoting_policy' ] class ProposalUpdateForm(forms.ModelForm): @cached_property def helper(self): helper = FormHelper() helper.template = '_includes/proposal_update_form.html' helper.form_tag = False helper.include_media = False return helper class TalkProposalUpdateForm(TalkProposalMixin, ProposalUpdateForm): """Form used to update a talk proposal. This is the complete editing form for proposal. It should contain all user-editable fields. """ duration = forms.ChoiceField( label=_('duration'), choices=settings.TALK_PROPOSAL_DURATION_CHOICES, ) class Meta(TalkProposalMixin.Meta): fields = [ 'title', 'category', 'duration', 'language', 'abstract', 'python_level', 'objective', 'detailed_description', 'outline', 'supplementary', 'recording_policy', 'remoting_policy', 'first_time_speaker', 'slide_link', 'referring_policy', ] class TutorialProposalUpdateForm(ProposalUpdateForm): """Form used to update a tutorial proposal. This is the complete editing form for proposal. It should contain all user-editable fields. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.fields['duration'].disabled = True class Meta(TutorialProposalMixin.Meta): fields = [ 'title', 'category', 'duration', 'language', 'abstract', 'python_level', 'objective', 'detailed_description', 'outline', 'supplementary', 'recording_policy', 'remoting_policy', 'slide_link', ] class ProposalCancelForm(forms.ModelForm): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) if not form_has_instance(self): raise ValueError( 'Proposal cancel form must be initialized with an instance.' ) class TalkProposalCancelForm(ProposalCancelForm): class Meta: model = TalkProposal fields = ['cancelled'] class TutorialProposalCancelForm(ProposalCancelForm): class Meta: model = TutorialProposal fields = ['cancelled'] ```
{ "source": "josjosephine/dsa", "score": 4 }
#### File: AlgorithmicToolbox/Divide-and-Conquer/organizing_lottery.py ```python from sys import stdin # from bisect import bisect_left, bisect_right def points_cover_naive(starts, ends, points): assert len(starts) == len(ends) count = [0] * len(points) for index, point in enumerate(points): for start, end in zip(starts, ends): if start <= point <= end: count[index] += 1 return count def BinarySearch(a, x, direction): if len(a) == 0: return -1 left, right = 0, len(a)-1 while left <= right: ave = (left + right) // 2 if x == a[ave]: while left - 1 < ave <= right: if x == a[ave]: if direction: ave += 1 else: ave -= 1 else: break if direction: return ave else: return ave + 1 elif x < a[ave]: right = ave - 1 else: left = ave + 1 return right + 1 def points_cover(starts, ends, points): cnt = [0] * len(points) starts = sorted(starts) ends = sorted(ends) for i in range(len(points)): st = BinarySearch(starts, points[i], 1) end = BinarySearch(ends, points[i], 0) cnt[i] = st - end return cnt if __name__ == '__main__': data = list(map(int, stdin.read().split())) n, m = data[0], data[1] input_starts, input_ends = data[2:2 * n + 2:2], data[3:2 * n + 2:2] input_points = data[2 * n + 2:] output_count = points_cover(input_starts, input_ends, input_points) print(*output_count) ``` #### File: AlgorithmicToolbox/DynamicProgramming/partition_souvenirs.py ```python from itertools import product from sys import stdin def partition3(values): assert 1 <= len(values) <= 20 assert all(1 <= v <= 30 for v in values) total = sum(values) if len(values) < 3 or total % 3: return 0 third = total // 3 table = [[0] * (len(values) + 1) for _ in range(third + 1)] for i in range(1, third + 1): for j in range(1, len(values) + 1): ii = i - values[j - 1] if values[j - 1] == i or (ii > 0 and table[ii][j - 1]): table[i][j] = 1 if table[i][j - 1] == 0 else 2 else: table[i][j] = table[i][j - 1] return 1 if table[-1][-1] == 2 else 0 if __name__ == '__main__': input_n, *input_values = list(map(int, stdin.read().split())) assert input_n == len(input_values) print(partition3(input_values)) ``` #### File: AlgorithmicToolbox/DynamicProgramming/primitive_calculator.py ```python def compute_operations(n): assert 1 <= n <= 10 ** 6 cnt = [0] * (n + 1) cnt[1] = 1 for i in range(2, n + 1): indices = [i - 1] if i % 2 == 0: indices.append(i // 2) if i % 3 == 0: indices.append(i // 3) mins = min([cnt[x] for x in indices]) cnt[i] = mins + 1 ptr = n optimal_seq = [ptr] while ptr != 1: candidates = [ptr - 1] if ptr % 2 == 0: candidates.append(ptr // 2) if ptr % 3 == 0: candidates.append(ptr // 3) ptr = min( [(c, cnt[c]) for c in candidates], key=lambda x: x[1] )[0] optimal_seq.append(ptr) return reversed(optimal_seq) if __name__ == '__main__': input_n = int(input()) output_sequence = list(compute_operations(input_n)) print(len(output_sequence) - 1) print(*output_sequence) ``` #### File: AlgorithmicToolbox/GreedyAlgorithm/maximum_loot.py ```python from sys import stdin def maximum_loot_value(capacity, weights, prices): assert 0 <= capacity <= 2 * 10 ** 6 assert len(weights) == len(prices) assert 1 <= len(weights) <= 10 ** 3 assert all(0 < w <= 2 * 10 ** 6 for w in weights) assert all(0 <= p <= 2 * 10 ** 6 for p in prices) price = 0 vpw = [] for w, v, i in zip(weights, prices, list(range(n))): vpw.append((float(v / w), i)) vpw = sorted(vpw, key=lambda t: t[0], reverse=True) j = 0 while capacity > 0 and j < n: weight = weights[vpw[j][1]] if weight > capacity: price += capacity * vpw[j][0] break else: price += prices[vpw[j][1]] capacity -= weight j += 1 return price if __name__ == "__main__": data = list(map(int, stdin.read().split())) n, input_capacity = data[0:2] input_prices = data[2:(2 * n + 2):2] input_weights = data[3:(2 * n + 2):2] opt_value = maximum_loot_value(input_capacity, input_weights, input_prices) print("{:.10f}".format(opt_value)) ```
{ "source": "josjsjen/latent_ode", "score": 2 }
#### File: josjsjen/latent_ode/camh.py ```python import torch import os import pandas as pd import numpy as np class Simulated(object): def __init__(self, root, quantization=0.1, n_samples=None, device=torch.device("cpu")): self.root = root self.reduce = "average" self.quantization = quantization self.csv = pd.read_csv(self.root) self.device = device def processing(self): df = self.csv df = df.drop(['time'], axis=1) self.dataset_obj = [] max_timestamps = 0 for id in df.id.values: if df.loc[df.id == id].iloc[:, 1].shape[0] > max_timestamps: max_timestamps = df.loc[df.id == id].iloc[:, 1].shape[0] total_unique_ids = df['id'].unique() for i in total_unique_ids: patient_id = i tt = np.arange(max_timestamps) vals = df.loc[df.id == i].iloc[:, 2:].values if max_timestamps - vals.shape[0] >0: dup = np.stack([vals[-1] for _ in range(max_timestamps - vals.shape[0])], axis=0) vals = np.vstack((vals, dup)) masks = np.copy(vals) masks[~np.isnan(masks)] = 1 masks[np.isnan(masks)] = 0 labels=np.zeros(1) # todo: confirm if this is the right way to impute missingness vals = np.nan_to_num(vals, nan=0) tt = torch.tensor(tt).to("cpu").to(dtype=torch.float32) vals = torch.tensor(vals).to("cpu").to(dtype=torch.float32) masks = torch.tensor(masks).to("cpu").to(dtype=torch.float32) labels = torch.tensor(labels).to("cpu").to(dtype=torch.float32) self.dataset_obj.append((patient_id, tt, vals, masks, labels)) return self.dataset_obj ```
{ "source": "JosJuice/fifoci", "score": 2 }
#### File: fifoci/runner/runner.py ```python from PIL import Image import argparse import hashlib import json import os import os.path import requests import shutil import subprocess import sys import tempfile import zipfile def recent_enough(): """A bit ugly, but checks that the version being ran is more recent than the one introducing features we need for fifoci to not hang. 20e82ec08c9ab811b04664a6a4f9859924f712f0 adds the configuration option to stop a FIFO log playback after the last frame was rendered (instead of looping back to the first frame). b7916f965530b0369bf08ed6bc9ec3ef20f7cd2f fixes a WX assert error that causes freezes on Windows FifoCI (and is a close descendent of another commits that adds DumpFramesSilent to remove more interactivity). """ return os.system('git merge-base --is-ancestor ' 'b7916f965530b0369bf08ed6bc9ec3ef20f7cd2f HEAD') == 0 def find_parents(rev_hash): """List a given number of parents commits from a Git hash. Required until the Buildbot starts getting this information from Github. """ out = [] ref = rev_hash for i in range(50): ref += "^" hash = subprocess.check_output('git rev-parse ' + ref, shell=True).strip() out.append(hash.decode('ascii')) return out def download_dff(url, path): """Downloads a missing DFF from the specified URL to a given FS path.""" resp = requests.get(url, stream=True) if resp.status_code != 200: print('DFF %s not found' % url) return False with open(path, 'wb') as fp: for chunk in resp.iter_content(chunk_size=4096): if chunk: fp.write(chunk) return True def generate_targets_list(dff_dir, url_base): """Generates a list of targets and their respective output directory from a given spec URL. If the required input files are missing, they are downloaded from the URL given in the spec. """ url_base = url_base.rstrip('/') out = [] spec = requests.get(url_base + '/dff/').json() for target in spec: path = os.path.join(dff_dir, target['filename']) success = True if not os.path.exists(path): print('DFF %s does not exist, downloading...' % path) success = download_dff(url_base + target['url'], path) if success: out.append((target['shortname'], path, tempfile.mkdtemp(suffix='.fifoci-out'))) return out def get_existing_images(url_base): """Downloads the list of images already present on the server to reduce upload footprint. Only new images will be present in the result zip. """ return requests.get(url_base.rstrip('/') + '/existing-images/').json() def spawn_tests(args, targets): """Spawn the test runner, which will run each log and write output images to a given path. """ base_path = os.path.dirname(__file__) backend, system, driver = args.type.split('-', 2) # HACK: Since we use : as field separator, C:\ paths on windows break. # Assume that we are only ever going to run fifoci on the system drive and # strip the drive. def strip_drive(p): return p[2:] if p[1] == ':' else p if system == 'win': targets = [(t[0], strip_drive(t[1]), strip_drive(t[2])) for t in targets] target_descr = ' '.join(':'.join(target[1:]) for target in targets) if system == 'lin': ret = os.system('%s/linux/run_fifo_test.sh %s %s %s %s' % (base_path, backend, driver, args.dolphin, target_descr)) elif system == 'win': ret = subprocess.call('powershell %s/windows/run_fifo_test.ps1 %s %s %s %s' % (base_path, backend, driver, args.dolphin, target_descr)) else: raise RuntimeError('unsupported system: %r' % system) if ret: raise RuntimeError('run_fifo_test.sh returned %d' % ret) def compute_image_hash(fn): """From a given image file, generate a hash of the pixel data of that image. """ im = Image.open(fn) data = im.convert('RGB').tobytes('raw', 'RGB') return hashlib.sha1(data).hexdigest() def generate_results_data(args, targets): """Writes the results to a ZIP file. Metadata is contained in a JSON object, and images are stored as individual files. """ parents = find_parents(args.rev_base_hash) if args.rev_base_hash != args.rev_hash: parents = [args.rev_base_hash] + parents meta = { 'type': args.type, 'rev': { 'parents': parents, 'hash': args.rev_hash, 'name': args.rev_name, 'submitted': args.rev_submitted.lower() in ['true', 'yes', '1'], }, 'results': {} } zf = zipfile.ZipFile(args.output, 'w') already_existing = get_existing_images(args.url_base) for dff_short_name, dff_path, out_path in targets: result = {'hashes': []} meta['results'][dff_short_name] = result if os.path.exists(os.path.join(out_path, 'failure')): result['failure'] = True else: result['failure'] = False for i in range(1, 1001): fn = os.path.join(out_path, 'frame-%03d.png' % i) if not os.path.exists(fn): break hash = compute_image_hash(fn) # HACK: Currently D3D on Windows inserts a black frame as the # first frame of all recordings. if i == 1 and hash in ('f971f36357cc45414090cecece55a91ee19aab29', '44bba96a45cf665df718f81ea48f867e174999da'): continue result['hashes'].append(hash) if hash not in already_existing: zf.writestr('fifoci-result/%s.png' % hash, open(fn, 'rb').read()) zf.writestr('fifoci-result/meta.json', json.dumps(meta).encode('utf-8')) zf.close() def remove_output_directories(targets): """Deletes the temporary directory created to store image data.""" for dff_short_name, dff_path, out_path in targets: shutil.rmtree(out_path) if __name__ == '__main__': parser = argparse.ArgumentParser( description='Run fifoCI tests on a given Dolphin build') parser.add_argument('--type', required=True) parser.add_argument('--dolphin', required=True) parser.add_argument('--rev_base_hash', required=True) parser.add_argument('--rev_hash', required=True) parser.add_argument('--rev_name', required=True) parser.add_argument('--rev_submitted', required=True) parser.add_argument('--output', required=True) parser.add_argument('--url_base', required=True) parser.add_argument('--dff_dir', required=True) args = parser.parse_args() if not recent_enough(): print('The requested version is lacking features required for fifoci.') print('Exiting early without providing results.') sys.exit(1) targets = generate_targets_list(args.dff_dir, args.url_base) spawn_tests(args, targets) generate_results_data(args, targets) remove_output_directories(targets) ```
{ "source": "joskid/tiote", "score": 2 }
#### File: tiote/tiote/forms.py ```python from django import forms from django.core import validators from django.utils.datastructures import SortedDict from itertools import chain from django.utils.encoding import StrAndUnicode, force_unicode from django.utils.html import escape, conditional_escape from django.utils.safestring import mark_safe from django.forms import widgets from tiote import utils mysql_types = ('varchar', 'char', 'text', 'tinytext', 'mediumtext', 'longtext', 'tinyint', 'smallint', 'mediumint', 'int', 'bigint', 'real', 'double', 'float', 'decimal', 'numeric', 'date', 'time', 'datetime', 'timestamp', 'tinyblob', 'blob', 'mediumblob', 'longblob', 'binary', 'varbinary', 'bit', 'enum', 'set') pgsql_types = ('bigint', 'bigserial', 'bit', 'bit varying', 'boolean', 'bytea', 'character varying', 'character', 'cidr', 'date', 'double precision', 'inet', 'integer', 'lseg', 'macaddr', 'money', 'real', 'smallint', 'serial', 'text', 'time', 'time with time zone', 'timestamp', 'timestamp with time zone', 'uuid', 'xml') pgsql_encoding = ('UTF8', 'SQL_ASCII', 'BIG5', 'EUC_CN', 'EUC_JP', 'EUC_KR', 'EUC_TW', 'GB18030', 'GBK', 'ISO_8859_5', 'ISO_8859_6', 'ISO_8859_7', 'ISO_8859_8', 'JOHAB', 'KOI8R', 'KOI8U', 'LATIN1', 'LATIN2', 'LATIN3', 'LATIN4', 'LATIN5', 'LATIN6', 'LATIN7', 'LATIN8', 'LATIN9', 'LATIN10', 'MULE_INTERNAL', 'WIN866', 'WIN874', 'WIN1250', 'WIN1251', 'WIN1252', 'WIN1253', 'WIN1254', 'WIN1255', 'WIN1256', 'WIN1257', 'WIN1258') mysql_key_choices = ('primary','unique','index') pgsql_key_choices = ('unique', 'primary', 'foreign') mysql_other_choices = ('unsigned','binary','not null','auto increment' ) user_privilege_choices = ['SELECT', 'INSERT', 'UPDATE', 'DELETE', 'CREATE', 'DROP', 'ALTER', 'INDEX', 'CREATE TEMPORARY TABLES'] admin_privilege_choices = ('FILE','PROCESS','RELOAD', 'SHUTDOWN','SUPER') pgsql_privileges_choices = ('INHERIT','CREATEDB','CREATEROLE','REPLICATION','SUPERUSER') format_choices = ( ('SQL', 'sql'),('CSV', 'csv') ) export_choices = ( ('structure', 'structure'),('data', 'data') ) foreign_key_action_choices = ['no action', 'restrict', 'cascade', 'set null', 'set default'] class tt_CheckboxSelectMultiple(widgets.CheckboxSelectMultiple): """ Copy of that found in stock django but added here in other to change its rendering ( addition of a class to part of its rendered html) """ def render(self, name, value, attrs=None, choices=()): if value is None: value = [] has_id = attrs and 'id' in attrs final_attrs = self.build_attrs(attrs, name=name) output = [u'<ul class="inputs-list">'] # Normalize to strings str_values = set([force_unicode(v) for v in value]) for i, (option_value, option_label) in enumerate(chain(self.choices, choices)): # If an ID attribute was given, add a numeric index as a suffix, # so that the checkboxes don't all have the same ID attribute. if has_id: final_attrs = dict(final_attrs, id='%s_%s' % (attrs['id'], i)) label_for = u' for="%s"' % final_attrs['id'] else: label_for = '' cb = forms.CheckboxInput(final_attrs, check_test=lambda value: value in str_values) option_value = force_unicode(option_value) rendered_cb = cb.render(name, option_value) option_label = conditional_escape(force_unicode(option_label)) output.append(u'<li><label%s>%s <span>%s</span></label></li>' % (label_for, rendered_cb, option_label)) output.append(u'</ul>') return mark_safe(u'\n'.join(output)) class tt_RadioFieldRenderer(widgets.RadioFieldRenderer): """ Copy of that found in stock django but added here in other to change its rendering ( addition of a class to part of its rendered html) """ def render(self): """Outputs a <ul> for this set of radio fields.""" return mark_safe(u'<ul class="inputs-list">\n%s\n</ul>' % u'\n'.join([u'<li>%s</li>' % force_unicode(w) for w in self])) class InsertForm(forms.BaseForm): ''' Dynamically created form which generates its fields along with the fields' options from its parameters. Does not make use of metaclasses so it subclasses forms.BaseForm directly. It loops through the parameter ``tbl_struct``(the structure of a table) and then generates fiels which would fit the description of respective columns It also treats some fields specially as defined in ``tbl_indexes`` and the form's ``dialect`` ''' def __init__(self, dialect, tbl_struct, tbl_indexes=(), **kwargs): # keys = ['column','type','null','default','character_maximum_length','numeric_precision', 'extra','column_type'] f = SortedDict() # dict to increase performance indexed_cols = utils.fns.parse_indexes_query(tbl_indexes) # determing type of form fields for each column for row in tbl_struct['rows']: _classes = [] if row[1] in ('character varying', 'varchar','character', 'char'): f[row[0]] = forms.CharField() # if row[4]: f[row[0]].max_length = row[4] #max_length elif row[1] in ('varbinary', 'bit', 'bit varying',): f[row[0]] = forms.CharField() # if row[4]: f[row[0]].max_length = row[4] #max_length elif row[1] in ('text', 'tinytext', 'mediumtext', 'longtext', ): f[row[0]] = forms.CharField(widget=forms.Textarea(attrs={'cols':'', 'rows':''})) # if row[4]: f[row[0]].max_length = row[4] #max_length elif row[1] in ('boolean', ): f[row[0]] = forms.BooleanField() elif row[1] in ('tinyint', 'smallint', 'mediumint', 'int', 'bigint','integer',): f[row[0]] = forms.IntegerField() # if row[5]: f[row[0]].validators.append(validators.MaxLengthValidator(row[5])) _classes.append('validate-integer') elif row[1] in ('real', 'double', 'float', 'decimal', 'numeric', 'double precision'): f[row[0]] = forms.FloatField() # if row[5]: f[row[0]].validators.append(validators.MaxLengthValidator(row[5])) _classes.append('validate-numeric') elif row[1] in ('decimal', 'numeric', 'money',): f[row[0]] = forms.DecimalField() # if row[5]: f[row[0]].validators.append(validators.MaxLengthValidator(row[5])) _classes.append('validate-numeric') elif row[1] in ('date',): f[row[0]] = forms.DateField() _classes.append('validate-date') elif row[1] in ('datetime', 'time','time with time zone','timestamp', 'timestamp with time zone',): # no longer used a python field (date, datetime) because # - of error generated when submitting fields which # - are populated from the database f[row[0]] = forms.CharField() elif row[1] == 'set': f[row[0]] = forms.MultipleChoiceField(widget=tt_CheckboxSelectMultiple()) # parse the field description to list with all the unnecssary quotes removed choices = row[len(row)-1].replace("set(", "").replace(")","") choices = choices.replace("'", "").split(",") f[row[0]].choices = utils.fns.make_choices(choices, True) elif row[1] == 'enum': f[row[0]] = forms.ChoiceField() # parse the field description to list with all the unnecssary quotes removed choices = row[len(row)-1].replace("enum(", "").replace("\"","").replace(")","") choices = choices.replace("'", "").split(",") f[row[0]].choices = utils.fns.make_choices(choices, False) # any field not currently understood (PostgreSQL makes use of a lot of user defined fields # which is difficult to keep track of) else: f[row[0]] = forms.CharField(widget=forms.Textarea(attrs={'cols':'', 'rows':''})) #required fields if row[2].lower() == 'no' or row[2] == False: # the field row[2] is required _classes.append("required") # the option above must be the last assignment to _classes because it's index # - must be the last one for the next lines of logic to work else: f[row[0]].required = False # options common to all fields # help_text _il = [ row[len(row) - 1], ] if dialect == 'mysql': _il.append(row[len(row) -2 ]) f[row[0]].help_text = " ".join(_il) if row[3]: f[row[0]].default = row[3] #default # work with indexes if indexed_cols.has_key( row[0] ): if dialect == 'mysql' and indexed_cols[ row[0] ].count("PRIMARY KEY"): # make an indexed column with auto_increment flag not required (MySQL) if row[len(row) - 2].count('auto_increment') > 0: if _classes.count('required') > 0: _classes.pop() f[ row[0] ].required = False # width of the fields if type(f[row[0]].widget) not in (forms.CheckboxSelectMultiple, tt_CheckboxSelectMultiple,): _classes.append("span6") # add the attribute classes if f[row[0]].widget.attrs.has_key('class'): f[row[0]].widget.attrs['class'] += " ".join(_classes) else: f[row[0]].widget.attrs.update({'class':" ".join(_classes)}) self.base_fields = f forms.BaseForm.__init__(self, **kwargs) class EditForm(InsertForm): ''' Subclasses InsertForm to include the dynamic property of InsertForm as well as to add and option that specifies if the request would be for a new row or would be an update for that row ''' def __init__(self, dialect, tbl_struct, tbl_indexes=(), **kwargs): InsertForm.__init__(self, dialect, tbl_struct, tbl_indexes, **kwargs) # working with self.fields attribute because this is an instance of InsertForm # - and not a whole form class definition self.fields['save_changes_to'] = forms.ChoiceField( label = 'save changes to', choices = (('update_row', 'Same row (UPDATE statment)',), ('insert_row', 'Another row (INSERT statement)') ), initial = 'update_row', widget = forms.RadioSelect(attrs={'class':'inputs-list'}, renderer = tt_RadioFieldRenderer) ) # New Database Form class mysqlDbForm(forms.Form): def __init__(self, templates=None, users=None, charsets=None, **kwargs): f = SortedDict() f['name'] = forms.CharField(widget=forms.TextInput(attrs={'class':'required'})) f['charset'] = forms.ChoiceField( choices = utils.fns.make_choices(charsets), initial = 'latin1' ) self.base_fields = f forms.BaseForm.__init__(self, **kwargs) class pgsqlDbForm(forms.BaseForm): def __init__(self, templates=None, users=None, charsets=None, **kwargs): f = SortedDict() f['name'] = forms.CharField(widget=forms.TextInput(attrs={'class':'required'})) f['encoding'] = forms.ChoiceField( choices = utils.fns.make_choices(pgsql_encoding), initial = 'UTF8', ) f['template'] = forms.ChoiceField( choices = utils.fns.make_choices(templates), required = False, ) f['owner'] = forms.ChoiceField( choices = utils.fns.make_choices(users) , required = False, ) self.base_fields = f forms.BaseForm.__init__(self, **kwargs) #New Role/User Form class mysqlUserForm(forms.BaseForm): def __init__(self, dbs = None, groups=None, **kwargs): f = SortedDict() f['host'] = forms.CharField( widget=forms.TextInput(attrs={'class':'required '}), initial='localhost', ) f['username'] = forms.CharField( widget=forms.TextInput(attrs={'class':'required '}) ) f['password'] = forms.CharField( widget=forms.PasswordInput(attrs={'class':''}), required = False ) f['access'] = forms.ChoiceField( choices = (('all', 'All Databases'),('select', 'Selected Databases'),), widget = forms.RadioSelect(attrs={'class':'addevnt hide_1'}), label = 'Allow access to ', ) f['select_databases'] = forms.MultipleChoiceField( required = False, widget = forms.CheckboxSelectMultiple(attrs={'class':'retouch'}), choices = utils.fns.make_choices(dbs, True), ) f['privileges'] = forms.ChoiceField( choices = (('all', 'All Privileges'),('select','Selected Privedges'),), widget = forms.RadioSelect(attrs={'class':'addevnt hide_2'}) ) f['user_privileges'] = forms.MultipleChoiceField( required = False, widget = forms.CheckboxSelectMultiple(attrs={'class':'privileges'}), choices = utils.fns.make_choices(user_privilege_choices, True), ) f['administrator_privileges'] = forms.MultipleChoiceField( required = False, choices = utils.fns.make_choices(admin_privilege_choices, True) , widget = forms.CheckboxSelectMultiple(attrs={'class':'privileges'}), ) f['options'] = forms.MultipleChoiceField( choices = (('GRANT OPTION','Grant Option'),), widget = forms.CheckboxSelectMultiple, required = False, ) self.base_fields = f forms.BaseForm.__init__(self, **kwargs) class pgsqlUserForm(forms.BaseForm): def __init__(self, groups=None, dbs=None, **kwargs): f = SortedDict() f['role_name'] = forms.CharField( widget = forms.TextInput(attrs={'class':'required'}) ) f['can_login'] = forms.CharField( widget = forms.CheckboxInput ) f['password'] = forms.CharField( widget = forms.PasswordInput, required = False ) f['valid_until'] = forms.DateTimeField( widget = forms.TextInput(attrs={}), required = False) f['connection_limit'] = forms.IntegerField( widget=forms.TextInput(attrs={'class':'validate-integer'}), required = False) # f['comment'] = forms.CharField( # widget = forms.Textarea(attrs={'cols':'', 'rows':''}), # required = False) f['role_privileges'] = forms.MultipleChoiceField( required = False, widget = forms.CheckboxSelectMultiple, choices = utils.fns.make_choices(pgsql_privileges_choices, True) ) if groups: f['group_membership'] = forms.MultipleChoiceField( choices = utils.fns.make_choices(groups, True), required = False, widget = forms.CheckboxSelectMultiple,) self.base_fields = f forms.BaseForm.__init__(self, **kwargs) # table and columns creation form class pgsqlTableForm(forms.BaseForm): def __init__(self, engines=None, charsets=None, edit=False, column_count=1, column_form=False, existing_tables = None, existing_columns = None, **kwargs): f = SortedDict() wdg = forms.Select(attrs={}) if existing_tables else forms.Select if edit is False: f['name'] = forms.CharField(widget=forms.TextInput(attrs={'class':'required'})) f['of_type'] = forms.ChoiceField( choices = utils.fns.make_choices(existing_tables), required = False, widget = wdg ) f['inherit'] = forms.ChoiceField( choices = utils.fns.make_choices(existing_tables), required = False, widget = wdg ) # variable number of columns for i in range( column_count ): fi = str(i) f['name_'+fi] = forms.CharField( widget=forms.TextInput(attrs={'class':'required'}), label = 'name') f['type_'+fi] = forms.ChoiceField( label = 'type', choices = utils.fns.make_choices(pgsql_types), widget = forms.Select(attrs={'class':'required'}), ) f['length_'+fi] = forms.IntegerField( widget=forms.TextInput(attrs={'class':'validate-integer'}), label = 'length', required=False, ) f['key_'+fi] = forms.ChoiceField( required = False, widget = forms.Select(attrs={'class':'even needs:foreign-fields:foreign' +' select_requires:references_'+fi+'|column_'+fi+':foreign'}), choices = utils.fns.make_choices(pgsql_key_choices), label = 'key', ) f['references_'+fi] = forms.ChoiceField( required= False, label = 'references', choices = utils.fns.make_choices(existing_tables), widget = forms.Select() ) f['column_'+fi] = forms.ChoiceField( required = False, label = 'column', ) f['on_update_'+fi] = forms.ChoiceField( required= False, label = 'on update', choices = utils.fns.make_choices(foreign_key_action_choices, True) ) f['on_delete_'+fi] = forms.ChoiceField( required = False, label = 'on delete', choices = utils.fns.make_choices(foreign_key_action_choices, True) ) f['default_'+fi] = forms.CharField( required = False, label = 'default', widget=forms.TextInput ) f['other_'+fi] = forms.MultipleChoiceField( label = 'other', required = False, widget = forms.CheckboxSelectMultiple(), choices = utils.fns.make_choices(['not null'], True)) if column_form: f['insert_position'] = forms.ChoiceField( choices = utils.fns.make_choices(['at the end of the table', 'at the beginning'], True) + utils.fns.make_choices(existing_columns,False,'--------','after'), label = 'insert this column', initial = 'at the end of the table', widget = forms.Select(attrs={'class':'required'}), ) self.base_fields = f forms.BaseForm.__init__(self, **kwargs) class mysqlTableForm(forms.BaseForm): def __init__(self, engines=None, charsets=None, edit=False, column_count=1, column_form=False, existing_tables = None, existing_columns = None, **kwargs): f = SortedDict() engine_list = [] default_engine = '' for tup in engines: engine_list.append((tup[0],)) if tup[1] == 'DEFAULT': default_engine = tup[0] if edit is False: f['name'] = forms.CharField(widget=forms.TextInput(attrs={'class':'required'})) f['charset'] = forms.ChoiceField( choices = utils.fns.make_choices(charsets), initial='latin1' ) f['engine'] = forms.ChoiceField( required = False, choices = utils.fns.make_choices( engine_list ), initial = default_engine ) # variable amount of column_count # field label's are directly tied to the corresponding template for i in range( column_count ): sfx = '_' + str(i) f['name'+sfx] = forms.CharField( widget=forms.TextInput(attrs={'class':'required'}), label = 'name') f['type'+sfx] = forms.ChoiceField( choices = utils.fns.make_choices(mysql_types), widget = forms.Select(attrs={'class':'required needs:values:set|enum select_requires:values' +sfx+':set|enum select_requires:size'+sfx+':varchar'}), initial = 'varchar', label = 'type', ) f['values'+sfx] = forms.CharField( label = 'values', required = False, help_text="Enter in the format: ('yes','false')", ) f['size'+sfx] = forms.IntegerField( widget=forms.TextInput(attrs={'class':'validate-integer'}), label = 'size', required=False, ) f['key'+sfx] = forms.ChoiceField( required = False, widget = forms.Select(attrs={'class':'even'}), choices = utils.fns.make_choices(mysql_key_choices), label = 'key', ) f['default'+sfx] = forms.CharField( required = False, label = 'default', widget=forms.TextInput ) f['charset'+sfx] = forms.ChoiceField( choices = utils.fns.make_choices(charsets), initial='latin1', label = 'charset', widget=forms.Select(attrs={'class':'required'}) ) f['other'+sfx] = forms.MultipleChoiceField( choices = utils.fns.make_choices(mysql_other_choices, True), widget = forms.CheckboxSelectMultiple(attrs={'class':'occupy'}), required = False, label = 'other', ) if column_form: f['insert_position'] = forms.ChoiceField( choices = utils.fns.make_choices(['at the end of the table', 'at the beginning'], True) + utils.fns.make_choices(existing_columns,False,'--------','after'), label = 'insert this column', initial = 'at the end of the table', widget = forms.Select(attrs={'class':'required'}), ) # complete form creation process self.base_fields = f forms.BaseForm.__init__(self, **kwargs) class LoginForm(forms.BaseForm): def __init__(self, templates=None, choices="a", charsets=None, **kwargs): f = SortedDict() # choices = "a" || all choices # choices = "m" || mysql dialect # , # choices = "p" || postgresql dialect database_choices = [ ('', 'select database driver'),] if choices == "p" or choices == "a": database_choices.append(('postgresql', 'PostgreSQL')) if choices == "m" or choices == "a": database_choices.append(('mysql', 'MySQL')) f['host'] = forms.CharField( initial = 'localhost', widget=forms.TextInput(attrs=({'class':'required'})) ) f['username'] = forms.CharField( widget=forms.TextInput(attrs=({'class':'required'})) ) f['password'] = forms.CharField( widget = forms.PasswordInput, required = False, ) f['database_driver'] = forms.ChoiceField( choices = database_choices, widget = forms.Select(attrs={ # 'class':'select_requires:connection_database:postgresql' 'class':'required' } ), ) f['connection_database'] = forms.CharField( required=False, help_text='Optional but needed if the PostgreSQL installation does not include the default `postgres` database' ) self.base_fields = f forms.BaseForm.__init__(self, **kwargs) class pgsqlSequenceForm(forms.Form): name = forms.CharField( widget=forms.TextInput(attrs={'class':'required'}) ) incremented_by = forms.IntegerField( required=False, widget = forms.TextInput(attrs={'class':'validate-integer'}) ) min_value = forms.IntegerField( required=False, widget = forms.TextInput(attrs={'class':'validate-integer'}) ) max_value = forms.IntegerField( required=False, widget = forms.TextInput(attrs={'class':'validate-integer'}) ) start_value = forms.IntegerField( required = False, widget = forms.TextInput(attrs={'class':'validate-integer'}) ) cache_value = forms.IntegerField( required =False, widget = forms.TextInput(attrs={'class':'validate-integer'}) ) can_cycle = forms.ChoiceField( label = 'Can cycle?', required = False, widget = forms.CheckboxInput() ) class QueryForm(forms.Form): query = forms.CharField(label = u"Enter your query:", widget = forms.Textarea(attrs={'class':'required span10','rols':0, 'cols':0, 'style':'height:100px;resize:none;'},) ) def get_dialect_form(form_name, dialect): ''' structure of dialect_forms: { 'form_name': [ postgresql version of form_name, mysql version of form_name] } ''' dialect_forms = { 'DbForm': [pgsqlDbForm, mysqlDbForm], 'UserForm': [pgsqlUserForm, mysqlUserForm], 'TableForm': [pgsqlTableForm, mysqlTableForm], # 'InsertForm': [pgsqlInsertForm, mysqlInsertForm] } return dialect_forms[form_name][0] if dialect == 'postgresql' else dialect_forms[form_name][1] ``` #### File: tiote/tiote/sql.py ```python from sqlalchemy import create_engine, text from sqlalchemy.engine.url import URL from sqlalchemy.exc import OperationalError, ProgrammingError, DatabaseError import datetime # sqlaclehemy modules def stored_query(query, dialect): # db of stored queries stored_query_db = { 'postgresql': { 'variables': "SHOW server_version", 'template_list': "SELECT datname FROM pg_catalog.pg_database", 'group_list': "SELECT rolname FROM pg_catalog.pg_roles WHERE rolcanlogin=False", 'db_list': "SELECT datname FROM pg_catalog.pg_database WHERE datistemplate = 'f' ORDER BY datname ASC;", 'user_rpr': "SELECT rolname, rolcanlogin, rolsuper, rolinherit, rolvaliduntil FROM pg_catalog.pg_roles", 'user_list': "SELECT rolname FROM pg_catalog.pg_roles", 'table_list': "SELECT schemaname, tablename FROM pg_catalog.pg_tables ORDER BY schemaname DESC", 'full_schema_list': "SELECT schema_name, schema_owner FROM information_schema.schemata \ WHERE schema_name NOT LIKE '%pg_toast%' AND schema_name NOT LIKE '%pg_temp%'", 'user_schema_list': "SELECT schema_name, schema_owner FROM information_schema.schemata \ WHERE schema_name NOT LIKE '%pg_toast%' AND schema_name NOT LIKE '%pg_temp%' \ AND schema_name NOT IN ('pg_catalog', 'information_schema')" # manually filled, might need to be adjusted if new # - system catalogs are discovered }, 'mysql': { 'describe_databases': "SELECT TABLE_SCHEMA, TABLE_NAME, TABLE_ROWS FROM `information_schema`.`tables`", 'db_list': "SHOW databases", 'user_rpr': "SELECT user.`Host`, user.`User` FROM user", 'user_list': "SELECT user.`User` FROM user", 'supported_engines': "SELECT engine, support FROM `information_schema`.`engines` \ WHERE support='yes' OR support='default'", 'charset_list': "SELECT CHARACTER_SET_NAME FROM INFORMATION_SCHEMA.CHARACTER_SETS", 'variables': '''SHOW SESSION VARIABLES WHERE `Variable_name`='version_compile_machine' OR `Variable_name`='version_compile_os' OR `variable_name`='version' ''' } } # return stored_query_db[dialect][query] def generate_query(query_type, dialect='postgresql', query_data=None): ''' Generates queries of ``query_type`` with the given ``query_data``. The generated queries are returned as a tuple of strings. ''' # init if query_data.has_key('schm'): prfx = "{schm}.".format(**query_data) if dialect =='postgresql' else "" else: prfx = "" #queries if query_type == 'get_single_row': q0 = "SELECT * FROM {0}{tbl} WHERE {where} LIMIT 1".format(prfx, **query_data) return (q0,) elif query_type == 'browse_table': q0 = "SELECT * FROM {0}{tbl}" if query_data.has_key('sort_key') and query_data.has_key('sort_dir'): q0 += " ORDER BY {sort_key} {sort_dir}" q0 += " LIMIT {limit} OFFSET {offset}" return (q0.format(prfx, **query_data),) elif query_type == 'count_rows': q0 = "SELECT count(*) FROM {0}{tbl}".format(prfx, **query_data) return (q0,) elif query_type == 'drop_table': queries = [] for where in query_data['conditions']: where['table'] = where['table'].replace("'", "") queries.append( "DROP TABLE {0}{table}".format(prfx, **where)) return tuple(queries) elif query_type == 'empty_table': queries = [] for where in query_data['conditions']: where['table'] = where['table'].replace("'", "") queries.append( "TRUNCATE {0}{table}".format(prfx, **where) ) return tuple(queries) elif query_type == 'delete_row': queries = [] for whereCond in query_data['where_stmt'].split(';'): q0 = "DELETE FROM {0}{tbl}".format(prfx, **query_data) + " WHERE "+whereCond queries.append(q0) return tuple(queries) elif dialect == 'postgresql': #postgresql-only statements if query_type == 'create_user': # create role statement q0 = "CREATE ROLE {role_name}".format(**query_data) if query_data['can_login']: q0 += " LOGIN" if query_data['password']: q0 += " ENCRYPTED PASSWORD '{password}'".format(**query_data) if query_data['role_privileges']: for option in query_data['role_privileges']: q0 += " " + option if query_data['connection_limit']: q0 += " CONNECTION LIMIT {connection_limit}".format(**query_data) if query_data['valid_until']: q0 += " VALID UNTIL '{valid_until}'".format(**query_data) if query_data['group_membership']: q0 += " IN ROLE" for grp_index in range( len(query_data['group_membership']) ): if grp_index == len(query_data['group_membership']) - 1: q0 += " " + query_data['group_membership'][grp_index] else: q0 += " " + query_data['group_membership'][grp_index] + "," # if query_data['comment']: # q1 = "COMMENT ON ROLE {role_name} IS \'{comment}\'".format(**query_data) # queries.append(q1) queries = (q0, ) return queries elif query_type == 'drop_user': queries = [] for cond in query_data: q = "DROP ROLE {rolname}".format(**cond) queries.append(q) return tuple(queries) elif query_type == 'create_db': _l = [] _l.append("CREATE DATABASE {name}") if query_data['encoding']: _l.append(" WITH ENCODING='{encoding}'") if query_data['owner']: _l.append(" OWNER={owner}") if query_data['template']: _l.append(" TEMPLATE={template}") return ("".join(_l).format(**query_data), ) elif query_type == 'table_rpr': q = "SELECT t2.tablename AS table, t2.tableowner AS owner, t2.tablespace, t1.reltuples::integer AS \"estimated row count\" \ FROM ( pg_catalog.pg_class as t1 INNER JOIN pg_catalog.pg_tables AS t2 ON t1.relname = t2.tablename) \ WHERE t2.schemaname='{schm}' ORDER BY t2.tablename ASC".format(**query_data) return (q, ) elif query_type == 'indexes': q0 = "SELECT kcu.column_name, kcu.constraint_name, tc.constraint_type \ FROM information_schema.key_column_usage AS kcu LEFT OUTER JOIN information_schema.table_constraints \ AS tc on (kcu.constraint_name = tc.constraint_name) WHERE kcu.table_name='{tbl}' \ AND kcu.table_schema='{schm}' AND kcu.table_catalog='{db}'".format(**query_data) return (q0,) elif query_type == 'primary_keys': q0 = "SELECT kcu.column_name, kcu.constraint_name, tc.constraint_type \ FROM information_schema.key_column_usage AS kcu LEFT OUTER JOIN information_schema.table_constraints \ AS tc on (kcu.constraint_name = tc.constraint_name) WHERE kcu.table_name='{tbl}' \ AND kcu.table_schema='{schm}' AND kcu.table_catalog='{db}' AND \ (tc.constraint_type='PRIMARY KEY')".format(**query_data) return (q0, ) elif query_type == 'table_structure': q0 = "SELECT column_name as column, data_type as type, is_nullable as null, \ column_default as default, character_maximum_length, numeric_precision, numeric_scale, \ datetime_precision, interval_type, interval_precision FROM information_schema.columns \ WHERE table_catalog='{db}' AND table_schema='{schm}' AND table_name='{tbl}' \ ORDER BY ordinal_position ASC".format(**query_data) return (q0, ) elif query_type == 'table_sequences': q0 = 'SELECT sequence_name, nextval(sequence_name::regclass), \ setval(sequence_name::regclass, lastval() - 1, true) FROM information_schema.sequences' return (q0, ) elif query_type == 'existing_tables': # selects both tables and views # q0 = "SELECT table_name FROM information_schema.tables WHERE table_schema='{schm}' \ #ORDER BY table_name ASC".format(**query_data) # selects only tables q0 = "SELECT tablename FROM pg_catalog.pg_tables WHERE schemaname='{schm}' \ ORDER BY tablename ASC".format(**query_data) return (q0, ) elif query_type == 'foreign_key_relation': q0 = 'SELECT conname, confrelid::regclass AS "referenced_table", \ conkey AS array_local_columns, confkey AS array_foreign_columns \ FROM pg_constraint WHERE contype = \'f\' AND conrelid::regclass = \'{tbl}\'::regclass \ AND connamespace = (SELECT oid from pg_namespace WHERE nspname=\'{schm}\') \ '.format(**query_data) return (q0, ) elif dialect == 'mysql': # mysql-only statements if query_type == 'create_user': # create user statement queries = [] q1 = "CREATE USER '{username}'@'{host}'".format(**query_data) if query_data['password']: q1 += " IDENTIFIED BY '{password}'".format(**query_data) queries.append(q1) # grant privileges q2 = "GRANT" if query_data['privileges'] == 'all': q2 += " ALL" elif query_data['privileges'] == 'select': priv_groups = ['user_privileges','administrator_privileges'] for priv_group in priv_groups: for priv_in in range( len(query_data[priv_group])): if priv_in == len(query_data[priv_group]) - 1: q2 += ' ' + query_data[priv_group][priv_in] else: q2 += ' ' + query_data[priv_group][priv_in] + ',' if query_data['select_databases'] and len(query_data['select_databases']) > 1: for db in query_data['select_databases']: #mutliple grant objects q3 = q2 + ' ON {db}.*'.format(database = db) # user specification q3 += " TO '{username}'@'{host}'".format(**query_data) # grant option if query_data['options']: q3 += " WITH {options[0]}".format(**query_data) # append generated query to queries queries.append(q3) else: # database access if query_data['access'] == 'all': q4 = q2 + ' ON *.*' elif query_data['access'] == 'select': q4 = q2 + ' ON {select_databases[0]}.*'.format(**query_data) # user specification q4 += " TO '{username}'@'{host}'".format(**query_data) # grant option if query_data['options']: q4 += " WITH {options[0]}".format(**query_data) queries.append(q4) return tuple( queries ) elif query_type == 'create_db': q = "CREATE DATABASE {name}".format(**query_data) if query_data['charset']: q += " CHARACTER SET {charset}".format(**query_data) return (q, ) elif query_type == 'column_list': return ("SELECT column_name FROM information_schema.columns WHERE table_schema='{db}' AND table_name='{tbl}'") elif query_type == 'drop_user': queries = [] for where in query_data: q = "DROP USER '{user}'@'{host}'".format(**where) queries.append(q) return tuple(queries) elif query_type == 'table_rpr': q = "SELECT TABLE_NAME AS 'table', TABLE_ROWS AS 'rows', TABLE_TYPE AS 'type', ENGINE as 'engine' \ FROM `INFORMATION_SCHEMA`.`TABLES` WHERE TABLE_SCHEMA = '{db}'".format(**query_data) return (q,) elif query_type == 'indexes': q0 = "SELECT DISTINCT kcu.column_name, kcu.constraint_name, tc.constraint_type \ from information_schema.key_column_usage as kcu, information_schema.table_constraints as tc WHERE \ kcu.constraint_name = tc.constraint_name AND kcu.table_schema='{db}' AND tc.table_schema='{db}' \ AND kcu.table_name='{tbl}'".format(**query_data) return (q0, ) elif query_type == 'primary_keys': q0 = "SELECT DISTINCT kcu.column_name, kcu.constraint_name, tc.constraint_type \ from information_schema.key_column_usage as kcu, information_schema.table_constraints as tc WHERE \ kcu.constraint_name = tc.constraint_name AND kcu.table_schema='{db}' AND tc.table_schema='{db}' \ AND kcu.table_name='{tbl}' AND tc.table_name='{tbl}' \ AND (tc.constraint_type='PRIMARY KEY')".format(**query_data) return (q0, ) elif query_type == 'table_structure': q0 = 'SELECT column_name AS "column", column_type AS "type", is_nullable AS "null", \ column_default AS "default", extra \ FROM information_schema.columns WHERE table_schema="{db}" AND table_name="{tbl}" \ ORDER BY ordinal_position ASC'.format(**query_data) return (q0, ) elif query_type == 'raw_table_structure': q0 = 'SELECT column_name AS "column", data_type AS "type", is_nullable AS "null", \ column_default AS "default", character_maximum_length, numeric_precision, numeric_scale, extra, column_type \ FROM information_schema.columns WHERE table_schema="{db}" AND table_name="{tbl}" \ ORDER BY ordinal_position ASC'.format(**query_data) return (q0, ) elif query_type == 'existing_tables': q0 = "SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES WHERE TABLE_SCHEMA='{db}'".format(**query_data) return (q0, ) def full_query(conn_params, query): ''' executes and returns a query result ''' eng = create_engine(get_conn_link(conn_params)) conn = eng.connect() try: conn = eng.connect() query_result = conn.execute(text(query)) d = {} l = [] for row in query_result: row = list(row) for i in range(len(row)): if row[i] == None: row[i] = "" elif type( row[i] ) == datetime.datetime: row[i] = row[i].__str__() l.append( tuple(row) ) d = {'columns': query_result.keys(),'count': query_result.rowcount, 'rows': l} conn.close() return d except Exception as e: conn.close() return str(e) def short_query(conn_params, queries): """ executes and returns the success state of the query """ eng = create_engine( get_conn_link(conn_params) ) conn = '' try: conn = eng.connect() for query in queries: query_result = conn.execute(text(query)) return {'status':'success', 'msg':''} except Exception as e: conn.close() return {'status':'fail', 'msg': str(e) } def model_login(conn_params): link = URL(conn_params['database_driver'], username = conn_params['username'], password= conn_params['password'], host = conn_params['host']) if conn_params['connection_database']: link.database = conn_params['connection_database'] elif not conn_params['connection_database'] and conn_params['database_driver'] == 'postgresql': link.database = 'postgres' engine = create_engine(link) conn = '' dict_ret = {} try: conn = engine.connect() except OperationalError as e: dict_ret = {'login': False, 'msg': str(e)} else: # todo 'msg' dict_ret = {'login': True, 'msg': ''} conn.close() return dict_ret def get_conn_link(conn_params): return '{dialect}://{username}:{password}@{host}/{db}'.format(**conn_params) ``` #### File: tiote/utils/db.py ```python import json from django.http import HttpResponse from django.conf import settings from tiote import sql import fns def rpr_query(conn_params, query_type, get_data={}, post_data={}): ''' Run queries that have to be generated on the fly. Most queries depends on get_data, while some few depends on post_data get_data and post_data are gotten from request.GET and request.POST or form.cleaned_data ''' # common queries that returns success state as a dict only no_return_queries = ('create_user', 'drop_user', 'create_db','create_table', 'drop_table', 'empty_table', 'delete_row', 'create_column', 'delete_column',) if query_type in no_return_queries: conn_params['db'] = get_data['db'] if get_data.has_key('db') else conn_params['db'] query_data = {} query_data.update(get_data, **post_data) q = sql.generate_query( query_type, conn_params['dialect'],query_data) result = sql.short_query(conn_params, q) return HttpResponse( json.dumps(result) ) # specific queries with implementations similar to both dialects elif query_type == 'user_rpr': if conn_params['dialect'] == 'mysql': conn_params['db'] = 'mysql' r = sql.full_query(conn_params, sql.stored_query(get_data['query'],conn_params['dialect']) ) if type(r) == dict: r else: return fns.http_500(r) elif query_type in ('indexes', 'primary_keys', 'foreign_key_relation'): if conn_params['dialect'] == 'postgresql': conn_params['db'] = get_data['db'] r = sql.full_query(conn_params, sql.generate_query(query_type, conn_params['dialect'], get_data)[0]) return r elif query_type in ('get_single_row',): sub_q_data = {'tbl': get_data['tbl'],'db':get_data['db']} if get_data.has_key('schm'): sub_q_data['schm'] = get_data['schm'] # generate where statement sub_q_data['where'] = "" for ind in range(len(post_data)): sub_q_data['where'] += post_data.keys()[ind].strip() + "=" sub_q_data['where'] += post_data.values()[ind].strip() if ind != len(post_data) - 1: sub_q_data['where'] += ' AND ' # retrieve and run queries conn_params['db'] = get_data['db'] # assert False q = sql.generate_query(query_type, conn_params['dialect'], sub_q_data) r = sql.full_query(conn_params, q[0]) return r elif query_type in ('table_rpr', 'table_structure', 'raw_table_structure'): conn_params['db'] = get_data['db'] sub_q_data = {'db': get_data['db'],} if get_data.has_key('tbl'): sub_q_data['tbl'] = get_data['tbl'] if get_data.has_key('schm'): sub_q_data['schm'] = get_data['schm'] # make query if conn_params['dialect'] == 'postgresql' and query_type == 'raw_table_structure': q = 'table_structure' else: q = query_type r = sql.full_query(conn_params, sql.generate_query(q, conn_params['dialect'], sub_q_data)[0] ) # further needed processing if conn_params['dialect'] == 'postgresql' and query_type.count('table_structure'): rwz = [] for tuple_row in r['rows']: row = list(tuple_row) _l = [ row[1] ] if row[1] in ('bit', 'bit varying', 'character varying', 'character') and type(row[4]) is int: _l.append( '({0})'.format(row[4]) ) elif row[1] in ('numeric', 'decimal') and type(row[5]) is int or type(row[6]) is int: _l.append( '({0},{1})'.format(row[5], row[6]) ) elif row[1] in ('interval', 'time with time zone', 'time without time zone', 'timestamp with time zone', 'timestamp without time zone') and type(row[7]) is int: _l.append( '({0})'.format(row[7]) ) # append the current row to rwz if query_type == 'table_structure': rwz.append([row[0], "".join(_l), row[2], row[3] ]) elif query_type == 'raw_table_structure': row.append("".join(_l)) rwz.append(row) # change r['rows'] r['rows'] = rwz # change r['columns'] if query_type == 'table_structure': r['columns'] = [ r['columns'][0], r['columns'][1], r['columns'][2], r['columns'][3] ] elif query_type == 'raw_table_structure': r['columns'].append('column_type') return r elif query_type == 'browse_table': # initializations sub_q_data = {'tbl': get_data['tbl'],'db':get_data['db']} sub_q_data['offset'] = get_data['offset'] if get_data.has_key('offset') else 0 sub_q_data['limit'] = get_data['limit'] if get_data.has_key('limit') else getattr(settings, 'TT_MAX_ROW_COUNT', 100) for item in ['schm', 'sort_key', 'sort_dir']: if get_data.has_key(item): sub_q_data[item] = get_data[item] # retrieve and run queries conn_params['db'] = get_data['db'] keys = rpr_query(conn_params, 'primary_keys', sub_q_data) count = sql.full_query(conn_params, sql.generate_query('count_rows', conn_params['dialect'], sub_q_data)[0], )['rows'] r = sql.full_query(conn_params, sql.generate_query(query_type, conn_params['dialect'], sub_q_data)[0] ) # format and return data if type(r) == dict: r.update({'total_count': count[0][0], 'offset': sub_q_data['offset'], 'limit':sub_q_data['limit'], 'keys': keys}) return r else: return fns.http_500(r) # queries that just asks formats and return result elif query_type in ('existing_tables',): query_data = {'db':get_data['db'],} if get_data.has_key('tbl'): query_data['tbl'] = get_data['tbl'] if conn_params['dialect'] == 'postgresql': query_data['schm'] = get_data['schm'] conn_params['db'] = query_data['db'] q = sql.generate_query(query_type, conn_params['dialect'], query_data) r = sql.full_query(conn_params, q[0]) return r['rows'] # queries with dissimilar implementations elif conn_params['dialect'] == 'postgresql': return fns.http_500('query ({query_type}) not implemented!'.format(query_type=query_type)) elif conn_params['dialect'] == 'mysql': if query_type == 'describe_databases': conn_params['db'] = 'INFORMATION_SCHEMA'; query = sql.stored_query(query_type, conn_params['dialect']) return sql.full_query(conn_params, query) else: return fns.http_500('query not yet implemented!') else: return fns.http_500('dialect not supported!') def fn_query(conn_params, query_name, get_data={}, post_data={}): ''' reduces the growth rate of the rpr_query function above it uses a mapping to know which function to call all its queries are functions to be called not sections of stored logic like rpr_query ''' query_map = { 'get_row': get_row } return query_map[query_name](conn_params, get_data, post_data) def common_query(conn_params, query_name, get_data={}): ''' Run queries that needs no dynamic generation. Queries here are already stored and would only need to be executed on the database selected get_data is a django QueryDict structure ''' pgsql_redundant_queries = ('template_list', 'group_list', 'user_list', 'db_list', 'schema_list') mysql_redundant_queries = ('db_list','charset_list', 'supported_engines') if conn_params['dialect'] == 'postgresql' and query_name in pgsql_redundant_queries : # this kind of queries require no special attention if query_name == 'schema_list': if hasattr(settings, 'TT_SHOW_SYSTEM_CATALOGS'): query_name = 'full_schema_list' if settings.TT_SHOW_SYSTEM_CATALOGS == True else "user_schema_list" else: query_name = "user_schema_list" # default conn_params['db'] == get_data.get('db') if get_data.get('db') else conn_params['db'] r = sql.full_query(conn_params, sql.stored_query(query_name, conn_params['dialect'])) return r['rows'] elif conn_params['dialect'] == 'mysql': if query_name in mysql_redundant_queries : # this kind of queries require no special attention return sql.full_query(conn_params, sql.stored_query(query_name, conn_params['dialect']))['rows'] def get_row(conn_params, get_data={}, post_data={}): r = rpr_query(conn_params, 'get_single_row', get_data, post_data) html = "" if type(r) == str: return r for ind in range(len(r['columns'])): html += '<span class="column-entry">' + str(r['columns'][ind]) + '</span>' html += '<br /><div class="data-entry"><code>' + str(r['rows'][0][ind]) + '</code></div>' # replace all newlines with <br /> because html doesn't render newlines (\n) directly html = html.replace('\n', '<br />') return html def insert_row(conn_params, get_data={}, form_data={}): # set execution context conn_params['db'] = get_data['db'] # format form_data ( from a form) according to the following rules # * add single qoutes to the variables # * make lists a concatenation of lists cols, values = [], [] for k in form_data: if k in ('csrfmiddlewaretoken', 'save_changes_to'): continue cols.append(k) if type(form_data[k]) == list: value = ",".join( form_data[k] ) values.append( fns.quote(value) ) else: values.append( fns.quote( unicode(form_data[k]) ) ) # generate sql insert statement q = "INSERT INTO {0}{tbl} ({1}) VALUES ({2})".format( '{schm}.'.format(**get_data) if conn_params['dialect'] == 'postgresql' else '', ",".join(cols), ",".join(values), **get_data ) # run query and return results ret = sql.short_query(conn_params, (q, )) if ret['status'] == 'success': ret['msg'] = 'Insertion succeeded' # format status messages used in flow control (javascript side) # replaces with space and new lines with the HTML equivalents ret['msg'] = '<div class="alert-message block-message {0} span8 data-entry"><code>\ {1}</code></div>'.format( 'success' if ret['status'] == 'success' else 'error', ret['msg'].replace(' ', '&nbsp;&nbsp;&nbsp;').replace('\n', '<br />') ) return ret def update_row(conn_params, indexed_cols={}, get_data={}, form_data={}): # set execution context conn_params['db'] = get_data['db'] # format form_data ( from a form) according to the following rules # * add single qoutes to the variables # * make lists a concatenation of lists cols, values = [], [] for k in form_data: if k in ('csrfmiddlewaretoken', 'save_changes_to'): continue cols.append(k) if type(form_data[k]) == list: value = ",".join( form_data[k] ) values.append( fns.quote(value) ) else: values.append( fns.quote( unicode(form_data[k]) ) ) # generate SET sub statment _l_set = [] for i in range(len(cols)): short_stmt = "=".join([cols[i], values[i]]) _l_set.append(short_stmt) # generate WHERE sub statement _l_where = [] for key in indexed_cols: short_stmt = "=".join([ key, fns.quote( unicode(form_data[key]) ) ]) _l_where.append(short_stmt) # generate full query q = "UPDATE {0}{tbl} SET {set_stmts} WHERE {where_stmts}".format( '{schm}.'.format(**get_data) if conn_params['dialect'] == 'postgresql' else '', set_stmts = ", ".join(_l_set), where_stmts = "AND ".join(_l_where), **get_data ) # run query and return results ret = sql.short_query(conn_params, (q, )) if ret['status'] == 'success': ret['msg'] = 'Row update succeeded' # format status messages used in flow control (javascript side) # replaces with space and new lines with the HTML equivalents ret['msg'] = '<div class="alert-message block-message {0} span12 data-entry"><code>\ {1}</code></div>'.format( 'success' if ret['status'] == 'success' else 'error', ret['msg'].replace(' ', '&nbsp;&nbsp;&nbsp;').replace('\n', '<br />') ) return ret def do_login(request, cleaned_data): host = cleaned_data['host'] username = cleaned_data['username'] password = <PASSWORD>_data['password'] database_driver = cleaned_data['database_driver'] dict_post = {'username':username,'password':password,'database_driver':database_driver, 'host':host} if 'connection_database' in cleaned_data: dict_post['connection_database'] = cleaned_data['connection_database'] dict_cd = sql.model_login(dict_post) if not dict_cd['login']: #authentication failed return dict_cd else: # authentication succeeded request.session['TT_LOGIN'] = 'true' request.session['TT_USERNAME'] = username request.session['TT_PASSWORD'] = password request.session['TT_DIALECT'] = database_driver request.session['TT_HOST'] = host if 'connection_database' in dict_post: request.session['TT_DATABASE'] = dict_post['connection_database'] return dict_cd def get_home_variables(request): p = fns.get_conn_params(request) variables = {'user': p['username'], 'host': p['host']} variables['dialect'] = 'PostgreSQL' if p['dialect'] == 'postgresql' else 'MySQL' result = sql.full_query( p, sql.stored_query('variables', p['dialect'])) if p['dialect'] == 'postgresql': variables['version'] = result['rows'][0] return variables elif p['dialect'] == 'mysql': if type(result) == dict: ll = result['rows'] d = {} for i in range( len(ll) ): d[ll[i][0]] = ll[i][1] variables.update(d) return variables else: return fns.http_500(result) ```
{ "source": "joskid/vardbg", "score": 3 }
#### File: vardbg/output/json_writer.py ```python import copy import time import jsonpickle from .writer import Writer NEW_FRAME = "new_frame" EXECUTE_FRAME = "exec_frame" ADD_VARIABLE = "add_var" CHANGE_VARIABLE = "change_var" REMOVE_VARIABLE = "remove_var" class JsonWriter(Writer): def __init__(self, output_path): self.output_path = output_path self.data = {"events": []} self._step = 0 def step(self): self._step += 1 return self._step def write_event(self, evt_name, **kwargs): event = {"step": self.step(), "time": time.time_ns(), "event": evt_name} event.update(kwargs) self.data["events"].append(event) def write_cur_frame(self, frame_info, output): self.write_event(NEW_FRAME, frame_info=frame_info, output=output) def write_frame_exec(self, frame_info, exec_time, exec_times): # exec_times needs to be copied to preserve the *current* state self.write_event(EXECUTE_FRAME, frame_info=frame_info, exec_time=exec_time, exec_times=exec_times.copy()) def write_add(self, var, val, history, *, action, plural): self.write_event( ADD_VARIABLE, var_name=var, value=val, history=copy.deepcopy(history), action=action, plural=plural, ) def write_change(self, var, val_before, val_after, history, *, action): self.write_event( CHANGE_VARIABLE, var_name=var, value_before=val_before, value_after=val_after, history=copy.deepcopy(history), action=action, ) def write_remove(self, var, val, history, *, action): self.write_event(REMOVE_VARIABLE, var_name=var, value=val, history=copy.deepcopy(history), action=action) def write_summary(self, var_history, exec_start_time, exec_stop_time, frame_exec_times): # frame_exec_times is skipped because it can be readily reconstructed during replay self.data["var_history"] = list(var_history.items()) self.data["exec_start_time"] = exec_start_time self.data["exec_stop_time"] = exec_stop_time def close(self): # Write all the collected data out together with open(self.output_path, "w+") as f: f.write(jsonpickle.dumps(self.data)) ``` #### File: output/video_writer/renderer.py ```python from pathlib import Path from PIL import Image, ImageDraw, ImageFont from .config import Config from .gif_encoder import GIFEncoder from .opencv_encoder import OpenCVEncoder from .text_format import irepr from .text_painter import TextPainter from .webp_encoder import WebPEncoder WATERMARK = "Generated by vardbg" SAMPLE_CHARS = "0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~ " class FrameRenderer: RED = 0 GREEN = 1 BLUE = 2 def __init__(self, path, config_path): # Config self.cfg = Config(config_path) # Video encoder ext = Path(path).suffix.lower()[1:] if ext == "mp4": self.encoder = OpenCVEncoder(path, "mp4v", self.cfg.fps, self.cfg.w, self.cfg.h) elif ext == "gif": self.encoder = GIFEncoder(path, self.cfg.fps) elif ext == "webp": self.encoder = WebPEncoder(path, self.cfg.fps) else: raise ValueError(f"Unrecognized file extension '{ext}'") # Drawing context self.draw = None # Fonts self.body_font = ImageFont.truetype(*self.cfg.font_body) self.body_bold_font = ImageFont.truetype(*self.cfg.font_body_bold) self.caption_font = ImageFont.truetype(*self.cfg.font_caption) self.head_font = ImageFont.truetype(*self.cfg.font_heading) self.intro_font = ImageFont.truetype(*self.cfg.font_intro) # Whether the watermark has been drawn on this frame self._watermark_drawn = False # Sizes and positions to be calculated later # Code body size self.line_height = None self.body_cols = None self._body_rows = None self.body_rows = None # Output body start position self.out_x = None self.out_y = None # Output body size self.out_cols = None self.out_rows = None # Variable body start positions self.vars_x = None self.vars_y = None self.ovars_x = None self.ovars_y = None # Variable body size self.vars_cols = None self.vars_rows = None self.ovars_cols = None self.ovars_rows = None # Per-frame positions self.last_var_x = None self.last_var_y = None self.ref_var_x = None self.ref_var_y = None # Current video frame (image) self.frame = None # Text size cache self.text_size_cache = {} # Prepare base frame self.base_frame = None self.prepare_base_frame() # Write intro (if necessary) if self.cfg.intro_text and self.cfg.intro_time: self.write_intro() def text_size(self, text, factor=10, **kwargs): cache_key = (text, kwargs.get("font", None)) if cache_key in self.text_size_cache: return self.text_size_cache[cache_key] else: # Multiply string and divide by the factor to get a more precise width w, h = self.draw.textsize(text * factor, **kwargs) w /= factor # Save to cache and return sizes = (w, h) self.text_size_cache[cache_key] = sizes return sizes def calc_sizes(self): # Calculate text sizes w = self.text_size(SAMPLE_CHARS, font=self.body_font)[0] / len(SAMPLE_CHARS) hw, hh = self.text_size("A", font=self.head_font) _, mh = self.text_size("`^Ag", font=self.body_font) _, ch = self.text_size("1p", font=self.caption_font) # Code body size self.line_height = mh * self.cfg.line_height self.body_cols = int((self.cfg.var_x - self.cfg.sect_padding * 2) / w) self._body_rows = (self.cfg.out_y - self.cfg.sect_padding * 2 - ch) / self.line_height self.body_rows = int(self._body_rows) # Output body start position self.out_x = self.cfg.sect_padding self.out_y = self.cfg.out_y + self.cfg.head_padding * 2 + hh # Output body size self.out_cols = self.body_cols self.out_rows = round((self.cfg.h - self.out_y) / self.line_height) # Variable body start positions # Top-left X and Y for last variable section self.vars_x = self.cfg.var_x + self.cfg.sect_padding self.vars_y = self.cfg.head_padding * 2 + hh # Columns and rows for last variable section self.vars_cols = int((self.cfg.w - self.cfg.var_x - self.cfg.sect_padding * 2) / w) self.vars_rows = int((self.cfg.ovar_y - self.cfg.head_padding * 2 - hh) / self.line_height) # Top-left X and Y for other variables section self.ovars_x = self.vars_x self.ovars_y = self.cfg.ovar_y + self.vars_y # Columns and rows for other variables section self.ovars_cols = self.vars_cols ovars_h = self.cfg.h - self.cfg.ovar_y self.ovars_rows = int((ovars_h - self.cfg.sect_padding * 2) / self.line_height) def get_color(self, col): if col == self.RED: return self.cfg.red elif col == self.GREEN: return self.cfg.green else: return self.cfg.blue def draw_text_center(self, x, y, text, font, color): w, h = self.text_size(text, font=font) self.draw.text((x - w / 2, y - h / 2), text, font=font, fill=color) def prepare_base_frame(self): # Create new empty frame self.new_frame(from_base=False) # Draw output section # Horizontal divider at 4/5 height self.draw.line(((0, self.cfg.out_y), (self.cfg.var_x, self.cfg.out_y)), fill=self.cfg.fg_divider, width=1) # Label horizontally centered and padded out_center_x = self.cfg.var_x / 2 out_y = self.cfg.out_y + self.cfg.head_padding self.draw_text_center( out_center_x, out_y, "Output", self.head_font, self.cfg.fg_heading, ) # Draw variable section # Vertical divider at 2/3 width self.draw.line(((self.cfg.var_x, 0), (self.cfg.var_x, self.cfg.h)), fill=self.cfg.fg_divider, width=1) # Label horizontally centered in the variable section and vertically padded var_center_x = self.cfg.var_x + ((self.cfg.w - self.cfg.var_x) / 2) self.draw_text_center(var_center_x, self.cfg.head_padding, "Last Variable", self.head_font, self.cfg.fg_heading) # Draw other variables section # Horizontal divider at 1/3 height self.draw.line( ((self.cfg.var_x, self.cfg.ovar_y), (self.cfg.w, self.cfg.ovar_y)), fill=self.cfg.fg_divider, width=1 ) # Label similar to the first, but in the others section instead ovar_label_y = self.cfg.ovar_y + self.cfg.head_padding self.draw_text_center(var_center_x, ovar_label_y, "Other Variables", self.head_font, self.cfg.fg_heading) # Populate sizes and positions self.calc_sizes() # Save frame as base and reset current frame self.base_frame = self.frame self.frame = None def new_frame(self, from_base=True): # Create image if from_base: self.frame = self.base_frame.copy() else: self.frame = Image.new("RGB", (self.cfg.w, self.cfg.h), self.cfg.bg) # Create drawing context self.draw = ImageDraw.Draw(self.frame) # Reset watermark drawn flag self._watermark_drawn = False def start_frame(self): self.new_frame() def finish_frame(self, var_state): # Bail out if there's no frame to finish if self.frame is None: return # Draw variable state (if available) if var_state is not None: self.draw_variables(var_state) if self.cfg.watermark and not self._watermark_drawn: self.draw_watermark() self._watermark_drawn = True self.encoder.write(self.frame) def write_intro(self): # Render frame self.new_frame(from_base=False) x = self.cfg.w / 2 y = self.cfg.h / 2 self.draw_text_center(x, y, self.cfg.intro_text, self.intro_font, self.cfg.fg_heading) # Repeatedly write frame frames = round(self.cfg.intro_time * self.cfg.fps) for _ in range(frames): self.finish_frame(None) def draw_code(self, lines, cur_line): cur_idx = cur_line - 1 # Construct list of (line, highlighted) tuples hlines = [(line, i == cur_idx) for i, line in enumerate(lines)] # Calculate start and end display indexes with an equivalent number of lines on both sides for context ctx_side_lines = (self._body_rows - 1) / 2 start_idx = round(cur_idx - ctx_side_lines) end_idx = round(cur_idx + ctx_side_lines) # Accommodate for situations where not enough lines are available at the beginning if start_idx < 0: start_extra = abs(start_idx) end_idx += start_extra start_idx = 0 # Slice selected section display_lines = hlines[start_idx:end_idx] # Construct painter x_start = self.cfg.sect_padding y_start = self.cfg.sect_padding + self.line_height x_end = self.cfg.var_x - self.cfg.sect_padding painter = TextPainter(self, x_start, y_start, self.body_cols, self.body_rows, x_end=x_end, show_truncate=False) # Render processed lines for i, (line, highlighted) in enumerate(display_lines): bg_color = self.cfg.highlight if highlighted else None for token, text in line: painter.write(text, bg_color=bg_color, **self.cfg.styles[token]) def draw_output(self, lines): lines = lines[-self.out_rows :] painter = TextPainter(self, self.out_x, self.out_y, self.out_cols, self.out_rows) painter.write("\n".join(lines)) def draw_exec(self, nr_times, cur, avg, total): plural = "" if nr_times == 1 else "s" text = f"Line executed {nr_times} time{plural} — current time elapsed: {cur}, average: {avg}, total: {total}" _, h = self.text_size(text, font=self.caption_font) x = self.cfg.sect_padding y = self.cfg.out_y - self.cfg.sect_padding - h self.draw.text((x, y), text, font=self.caption_font) def draw_last_var(self, state): painter = TextPainter(self, self.vars_x, self.vars_y, self.vars_cols, self.vars_rows) # Draw variable name painter.write(state.name + " ") # Draw action with color self.last_var_x, self.last_var_y = painter.write(state.action + " ", bold=True, color=state.color) painter.new_line() # Draw remaining text painter.write(state.text) def draw_other_vars(self, state): painter = TextPainter(self, self.ovars_x, self.ovars_y, self.ovars_cols, self.ovars_rows) # Draw text for idx, (var, values) in enumerate(state.other_history): if values.ignored: continue if idx > 0: painter.write("\n\n") painter.write(var.name + ":") for v_idx, value in enumerate(values): # sourcery off painter.write("\n \u2022 ") # Reference highlighting for latest value and matching variables only if var.name == state.ref and v_idx == len(values) - 1: v_pos = irepr(painter, value.value, state.value, bold=True, color=state.color, return_pos="H") self.ref_var_x, self.ref_var_y = v_pos else: irepr(painter, value.value) def draw_var_ref(self, state): # Calculate X position to route the line on # It should be as short as possible while not obscuring any variables or exceeding the scene width right_line_x = min( max(self.last_var_x, self.ref_var_x) + self.cfg.sect_padding, self.cfg.w - self.cfg.sect_padding / 2 ) sw, sh = self.text_size(" ", font=self.body_font) # Draw the polyline self.draw.line( ( (self.last_var_x, self.last_var_y), (right_line_x, self.last_var_y), (right_line_x, self.ref_var_y - sh), (self.ref_var_x, self.ref_var_y - sh), (self.ref_var_x, self.ref_var_y), ), fill=state.color, width=2, ) def draw_variables(self, state): self.draw_other_vars(state) self.draw_last_var(state) if state.ref is not None: self.draw_var_ref(state) def draw_watermark(self): # Get target bottom-right position x = self.cfg.w - self.cfg.sect_padding y = self.cfg.h - self.cfg.sect_padding # Subtract text size to position it properly w, h = self.text_size(WATERMARK, font=self.caption_font) x -= w y -= h # Draw text self.draw.text((x, y), WATERMARK, fill=self.cfg.fg_watermark, font=self.caption_font) def close(self, var_state): # Finish final frame self.finish_frame(var_state) # Close encoder self.encoder.stop() ```
{ "source": "joskoanicic/carelle", "score": 2 }
#### File: carelle/arelle/FormulaEvaluator.py ```python from arelle import (XPathContext, XbrlConst, XmlUtil, XbrlUtil, XmlValidate) from arelle.FunctionXs import xsString from arelle.ModelObject import ModelObject from arelle.ModelFormulaObject import (aspectModels, Aspect, aspectModelAspect, ModelFormula, ModelTuple, ModelExistenceAssertion, ModelValueAssertion, ModelFactVariable, ModelGeneralVariable, ModelVariable, ModelParameter, ModelFilter, ModelAspectCover, ModelBooleanFilter) from arelle.PrototypeInstanceObject import DimValuePrototype from arelle.ModelValue import (QName) import datetime, time, logging, re from decimal import Decimal from math import log10, isnan, isinf, fabs from arelle.Locale import format_string from collections import defaultdict ModelDimensionValue = None expressionVariablesPattern = re.compile(r"([^$]*)([$]\w[\w:.-]*)([^$]*)") def evaluate(xpCtx, varSet, variablesInScope=False, uncoveredAspectFacts=None): # for each dependent variable, find bindings if variablesInScope: stackedEvaluations = (xpCtx.evaluations, xpCtx.evaluationHashDicts) else: xpCtx.varBindings = {} uncoveredAspectFacts = {} xpCtx.evaluations = [] # list of evaluations xpCtx.evaluationHashDicts = [] # hash indexs of evaluations try: xpCtx.variableSet = varSet if isinstance(varSet, ModelExistenceAssertion): varSet.evaluationsCount = 0 if xpCtx.formulaOptions.timeVariableSetEvaluation: varSet.timeEvaluationStarted = timeEvaluationsStarted = time.time() varSet.evaluationNumber = 0 initialTraceCount = xpCtx.modelXbrl.logCount.get(logging.getLevelName('INFO'), 0) evaluateVar(xpCtx, varSet, 0, {}, uncoveredAspectFacts) if isinstance(varSet, ModelExistenceAssertion): prog = varSet.testProg if prog: assertionParamQnames = [] # set and then remove assertion variable quames for varRel in varSet.orderedVariableRelationships: varQname = varRel.variableQname var = varRel.toModelObject if isinstance(var, ModelParameter) and varQname not in xpCtx.inScopeVars: assertionParamQnames.append(varQname) xpCtx.inScopeVars[varQname] = xpCtx.inScopeVars.get(var.parameterQname) result = xpCtx.evaluateBooleanValue(prog, contextItem=varSet.evaluationsCount) for varQname in assertionParamQnames: xpCtx.inScopeVars.pop(varQname) else: result = varSet.evaluationsCount > 0 if result: varSet.countSatisfied += 1 else: varSet.countNotSatisfied += 1 if ((xpCtx.formulaOptions.traceSatisfiedAssertions and result) or ((xpCtx.formulaOptions.traceUnsatisfiedAssertions or xpCtx.formulaOptions.errorUnsatisfiedAssertions ) and not result)): xpCtx.modelXbrl.log( "ERROR" if (xpCtx.formulaOptions.errorUnsatisfiedAssertions and not result) else "INFO", "formula:assertionSatisfied" if result else "formula:assertionUnsatisfied", _("%(label)s"), modelObject=varSet, label=varSet.logLabel(), messageCodes=("formula:assertionSatisfied", "formula:assertionUnsatisfied")) if xpCtx.formulaOptions.traceVariableSetExpressionResult: xpCtx.modelXbrl.info("formula:trace", _("Existence Assertion %(xlinkLabel)s \nResult: %(result)s"), modelObject=varSet, xlinkLabel=varSet.xlinkLabel, result=result) msg = varSet.message(result) if msg is not None: xpCtx.inScopeVars[XbrlConst.qnEaTestExpression] = varSet.test xpCtx.modelXbrl.info("message:" + (varSet.id or varSet.xlinkLabel or _("unlabeled variableSet")), msg.evaluate(xpCtx), modelObject=varSet, messageCodes=("message:{variableSetID|xlinkLabel}",)) xpCtx.inScopeVars.pop(XbrlConst.qnEaTestExpression) if xpCtx.formulaOptions.traceVariableSetExpressionResult and initialTraceCount == xpCtx.modelXbrl.logCount.get(logging._checkLevel('INFO'), 0): xpCtx.modelXbrl.info("formula:trace", _("Variable set %(xlinkLabel)s had no xpCtx.evaluations"), modelObject=varSet, xlinkLabel=varSet.xlinkLabel) if xpCtx.formulaOptions.timeVariableSetEvaluation: xpCtx.modelXbrl.info("formula:time", _("Variable set %(xlinkLabel)s time for %(count)s evaluations: %(time)s"), modelObject=varSet, xlinkLabel=varSet.xlinkLabel, count=varSet.evaluationNumber, time=format_string(xpCtx.modelXbrl.modelManager.locale, "%.3f", time.time() - timeEvaluationsStarted)) xpCtx.variableSet = None except XPathContext.XPathException as err: xpCtx.modelXbrl.error(err.code, _("Variable set %(label)s \nException: %(error)s"), modelObject=varSet, label=varSet.logLabel(), error=err.message) xpCtx.variableSet = None if xpCtx.formulaOptions.traceVariableSetExpressionResult: xpCtx.modelXbrl.info("formula:trace", _("Variable set %(xlinkLabel)s evaluations: %(evaluations)s x %(variables)s"), modelObject=varSet, xlinkLabel=varSet.xlinkLabel, evaluations=len(xpCtx.evaluations), variables=max(len(e) for e in xpCtx.evaluations) if xpCtx.evaluations else 0) del xpCtx.evaluations[:] # dereference del xpCtx.evaluationHashDicts[:] if variablesInScope: xpCtx.evaluations, xpCtx.evaluationHashDicts = stackedEvaluations else: for vb in xpCtx.varBindings.values(): vb.close() # dereference xpCtx.varBindings.clear() # dereference uncoveredAspectFacts.clear() # dereference pass def evaluateVar(xpCtx, varSet, varIndex, cachedFilteredFacts, uncoveredAspectFacts): if varIndex == len(varSet.orderedVariableRelationships): # check if all fact vars are fallen back anyFactVar = False; anyBoundFactVar = False for vb in xpCtx.varBindings.values(): if vb.isFactVar: anyFactVar = True if not vb.isFallback: anyBoundFactVar = True if xpCtx.varBindings and anyFactVar and not anyBoundFactVar: if xpCtx.formulaOptions.traceVariableSetExpressionResult: xpCtx.modelXbrl.info("formula:trace", _("Variable set %(xlinkLabel)s skipped evaluation, all fact variables have fallen back"), modelObject=varSet, xlinkLabel=varSet.xlinkLabel) return # record completed evaluation, for fallback blocking purposes fbVars = set(vb.qname for vb in xpCtx.varBindings.values() if vb.isFallback) thisEvaluation = tuple(vb.matchableBoundFact(fbVars) for vb in xpCtx.varBindings.values()) if evaluationIsUnnecessary(thisEvaluation, xpCtx.evaluationHashDicts, xpCtx.evaluations): if xpCtx.formulaOptions.traceVariableSetExpressionResult: xpCtx.modelXbrl.info("formula:trace", _("Variable set %(xlinkLabel)s skipped non-different or fallback evaluation, duplicates another evaluation"), modelObject=varSet, xlinkLabel=varSet.xlinkLabel) varSet.evaluationNumber += 1 if xpCtx.formulaOptions.timeVariableSetEvaluation: now = time.time() xpCtx.modelXbrl.info("formula:time", _("Variable set %(xlinkLabel)s skipped evaluation %(count)s: %(time)s sec"), modelObject=varSet, xlinkLabel=varSet.xlinkLabel, count=varSet.evaluationNumber, time=format_string(xpCtx.modelXbrl.modelManager.locale, "%.3f", now - varSet.timeEvaluationStarted)) varSet.timeEvaluationStarted = now if xpCtx.isRunTimeExceeded: raise XPathContext.RunTimeExceededException() xpCtx.modelXbrl.profileActivity("... evaluation {0} (skipped)".format(varSet.evaluationNumber), minTimeToShow=10.0) return xpCtx.modelXbrl.profileActivity("... evaluation {0}".format(varSet.evaluationNumber), minTimeToShow=10.0) for i, fb in enumerate(thisEvaluation): while i >= len(xpCtx.evaluationHashDicts): xpCtx.evaluationHashDicts.append(defaultdict(set)) xpCtx.evaluationHashDicts[i][hash(fb)].add(len(xpCtx.evaluations)) # hash and eval index xpCtx.evaluations.append(thisEvaluation) # complete evaluations tuple # evaluate preconditions for precondition in varSet.preconditions: result = precondition.evalTest(xpCtx) if xpCtx.formulaOptions.traceVariableSetExpressionResult: xpCtx.modelXbrl.info("formula:trace", _("Variable set %(xlinkLabel)s \nPrecondition %(precondition)s \nResult: %(result)s"), modelObject=varSet, xlinkLabel=varSet.xlinkLabel, precondition=precondition.xlinkLabel, result=result) if not result: # precondition blocks evaluation if xpCtx.formulaOptions.timeVariableSetEvaluation: varSet.evaluationNumber += 1 now = time.time() xpCtx.modelXbrl.info("formula:time", _("Variable set %(xlinkLabel)s precondition blocked evaluation %(count)s: %(time)s sec"), modelObject=varSet, xlinkLabel=varSet.xlinkLabel, count=varSet.evaluationNumber, time=format_string(xpCtx.modelXbrl.modelManager.locale, "%.3f", now - varSet.timeEvaluationStarted)) varSet.timeEvaluationStarted = now if xpCtx.isRunTimeExceeded: raise XPathContext.RunTimeExceededException() return # evaluate variable set if isinstance(varSet, ModelExistenceAssertion): varSet.evaluationsCount += 1 else: if isinstance(varSet, ModelTuple): result = "(tuple)" traceOf = "Tuple" elif isinstance(varSet, ModelFormula): result = xpCtx.evaluate(varSet.valueProg) traceOf = "Formula" elif isinstance(varSet, ModelValueAssertion): result = xpCtx.evaluateBooleanValue(varSet.testProg) if result: varSet.countSatisfied += 1 else: varSet.countNotSatisfied += 1 msg = varSet.message(result) if msg is not None: xpCtx.inScopeVars[XbrlConst.qnVaTestExpression] = varSet.test xpCtx.modelXbrl.info("message:" + (varSet.id or varSet.xlinkLabel or _("unlabeled variableSet")), msg.evaluate(xpCtx), modelObject=varSet, label=varSet.logLabel(), messageCodes=("message:{variableSetID|xlinkLabel}",)) xpCtx.inScopeVars.pop(XbrlConst.qnVaTestExpression) if ((xpCtx.formulaOptions.traceSatisfiedAssertions and result) or ((xpCtx.formulaOptions.traceUnsatisfiedAssertions or xpCtx.formulaOptions.errorUnsatisfiedAssertions ) and not result)): _modelObjects = [varSet] factVarBindings = [] for vb in sorted(xpCtx.varBindings.values(), key=lambda _vb: _vb.qname): if vb.isFallback: factVarBindings.append(", \n${}: fallback {}".format(vb.qname, xpCtx.flattenSequence(vb.values))) else: if vb.isBindAsSequence: _modelObjects.extend(vb.yieldedEvaluation) else: _modelObjects.append(vb.yieldedFact) factVarBindings.append(", \n${}: {} context {}".format(vb.qname, vb.yieldedFact.qname, vb.yieldedFactContext.id)) xpCtx.modelXbrl.log( "ERROR" if (xpCtx.formulaOptions.errorUnsatisfiedAssertions and not result) else "INFO", "formula:assertionSatisfied" if result else "formula:assertionUnsatisfied", _("%(label)s%(factVarBindings)s"), modelObject=_modelObjects, label=varSet.logLabel(), factVarBindings="".join(factVarBindings) + ("\n" if factVarBindings else ""), messageCodes=("formula:assertionSatisfied", "formula:assertionUnsatisfied")) del _modelObjects[:] traceOf = "Value Assertion" if xpCtx.formulaOptions.traceVariableSetExpressionResult: label = varSet.logLabel() expression = varSet.expression xpCtx.modelXbrl.info("formula:trace", _("%(variableSetType)s %(xlinkLabel)s{0} \nExpression: %(expression)s \nEvaluated: %(evaluatedExpression)s \nResult: %(result)s") .format(" \n%(label)s" if label else ""), modelObject=varSet, variableSetType=traceOf, xlinkLabel=varSet.xlinkLabel, label=label, result=result, expression=expression, evaluatedExpression=''.join(xpCtx.traceEffectiveVariableValue(varSet,expr) for grp in expressionVariablesPattern.findall(expression) for expr in grp)) if isinstance(varSet, ModelFormula) and varSet.outputInstanceQname in xpCtx.inScopeVars: newFact = produceOutputFact(xpCtx, varSet, result) else: newFact = None if varSet.hasConsistencyAssertion: from arelle import FormulaConsisAsser FormulaConsisAsser.evaluate(xpCtx, varSet, newFact) if xpCtx.formulaOptions.timeVariableSetEvaluation: varSet.evaluationNumber += 1 now = time.time() xpCtx.modelXbrl.info("formula:time", _("Variable set %(xlinkLabel)s completed evaluation %(count)s: %(time)s sec"), modelObject=varSet, xlinkLabel=varSet.xlinkLabel, count=varSet.evaluationNumber, time=format_string(xpCtx.modelXbrl.modelManager.locale, "%.3f", now - varSet.timeEvaluationStarted)) varSet.timeEvaluationStarted = now if xpCtx.isRunTimeExceeded: raise XPathContext.RunTimeExceededException() # do dependent variable scope relationships for varScopeRel in xpCtx.modelXbrl.relationshipSet(XbrlConst.variablesScope).fromModelObject(varSet): try: resultQname = varScopeRel.variableQname if resultQname: overriddenInScopeVar = xpCtx.inScopeVars.get(resultQname) xpCtx.inScopeVars[resultQname] = result vb = VariableBinding(xpCtx, varScopeRel) vb.yieldedEvaluation = result vb.yieldedFact = newFact overriddenVarBinding = xpCtx.varBindings.get(resultQname) xpCtx.varBindings[resultQname] = vb evaluate(xpCtx, varScopeRel.toModelObject, True, uncoveredAspectFacts) if resultQname: xpCtx.inScopeVars.pop(resultQname) if overriddenInScopeVar is not None: # restore overridden value if there was one xpCtx.inScopeVars[resultQname] = overriddenInScopeVar xpCtx.varBindings.pop(resultQname) if overriddenVarBinding is not None: xpCtx.varBindings[resultQname] = overriddenVarBinding vb.close() # dereference except XPathContext.XPathException as err: xpCtx.modelXbrl.error(err.code, _("Variable set chained in scope of variable set %(variableset)s \nException: \n%(error)s"), modelObject=(varSet, varScopeRel.toModelObject), variableSet=varSet.logLabel(), error=err.message) else: # produce variable bindings varRel = varSet.orderedVariableRelationships[varIndex] varQname = varRel.variableQname vb = VariableBinding(xpCtx, varRel) var = vb.var if vb.isFactVar: vb.aspectsDefined = set(aspectModels[varSet.aspectModel]) # has to be a mutable set vb.values = None varHasNoVariableDependencies = var.hasNoVariableDependencies varHasNilFacts = var.nils == "true" if varHasNoVariableDependencies and varQname in cachedFilteredFacts: facts, vb.aspectsDefined, vb.aspectsCovered = cachedFilteredFacts[varQname] if xpCtx.formulaOptions.traceVariableFilterWinnowing: xpCtx.modelXbrl.info("formula:trace", _("Fact Variable %(variable)s: start with %(factCount)s facts previously cached after explicit filters"), modelObject=var, variable=varQname, factCount=len(facts)) else: if var.fromInstanceQnames: groupFilteredFactsKey = "grp:" + str(varQname) # multi instance vars or non-var-dependent variables elif varHasNilFacts: groupFilteredFactsKey = "grp:stdInstWithNils" else: groupFilteredFactsKey = "grp:stdInstNonNil" if groupFilteredFactsKey in cachedFilteredFacts: facts = cachedFilteredFacts[groupFilteredFactsKey] if xpCtx.formulaOptions.traceVariableFilterWinnowing: xpCtx.modelXbrl.info("formula:trace", _("Fact Variable %(variable)s: start with %(factCount)s facts previously cached before variable filters"), modelObject=var, variable=varQname, factCount=len(facts)) else: facts = set.union(*[(inst.factsInInstance if varHasNilFacts else inst.nonNilFactsInInstance) for inst in vb.instances]) if xpCtx.formulaOptions.traceVariableFilterWinnowing: xpCtx.modelXbrl.info("formula:trace", _("Fact Variable %(variable)s filtering: start with %(factCount)s facts"), modelObject=var, variable=varQname, factCount=len(facts)) facts = filterFacts(xpCtx, vb, facts, varSet.groupFilterRelationships, "group") vb.aspectsCovered.clear() # group boolean sub-filters may have covered aspects cachedFilteredFacts[groupFilteredFactsKey] = facts facts = filterFacts(xpCtx, vb, facts, var.filterRelationships, None) # also finds covered aspects (except aspect cover filter dims, not known until after this complete pass) # adding dim aspects must be done after explicit filterin for fact in facts: if fact.isItem and fact.context is not None: vb.aspectsDefined |= fact.context.dimAspects(xpCtx.defaultDimensionAspects) coverAspectCoverFilterDims(xpCtx, vb, var.filterRelationships) # filters need to know what dims are covered if varHasNoVariableDependencies: cachedFilteredFacts[varQname] = (facts, vb.aspectsDefined, vb.aspectsCovered) considerFallback = bool(var.fallbackValueProg) if varSet.implicitFiltering == "true": if any((_vb.isFactVar and not _vb.isFallback) for _vb in xpCtx.varBindings.values()): factCount = len(facts) # uncovered aspects of the prior variable bindings may include aspects not in current variable binding uncoveredAspects = (vb.aspectsDefined | _DICT_SET(uncoveredAspectFacts.keys())) - vb.aspectsCovered - {Aspect.DIMENSIONS} facts = implicitFilter(xpCtx, vb, facts, uncoveredAspects, uncoveredAspectFacts) if (considerFallback and varHasNoVariableDependencies and factCount and factCount - len(facts) == 0 and len(xpCtx.varBindings) > 1 and all((len(_vb.aspectsDefined) == len(vb.aspectsDefined) for _vb in xpCtx.varBindings.values()))): considerFallback = False vb.facts = facts if xpCtx.formulaOptions.traceVariableFiltersResult: xpCtx.modelXbrl.info("formula:trace", _("Fact Variable %(variable)s: filters result %(result)s"), modelObject=var, variable=varQname, result=str(vb.facts)) if considerFallback: vb.values = xpCtx.evaluate(var.fallbackValueProg) if xpCtx.formulaOptions.traceVariableExpressionResult: xpCtx.modelXbrl.info("formula:trace", _("Fact Variable %(variable)s: fallbackValue result %(result)s"), modelObject=var, variable=varQname, result=str(vb.values)) elif vb.isGeneralVar: # general variable if var.fromInstanceQnames: contextItem = [inst.modelDocument.xmlRootElement for qn in var.fromInstanceQnames for instSeq in (xpCtx.inScopeVars[qn],) for inst in (instSeq if isinstance(instSeq,(list,tuple)) else (instSeq,)) ] else: contextItem = xpCtx.modelXbrl.modelDocument.xmlRootElement # default is standard input instance vb.values = xpCtx.flattenSequence( xpCtx.evaluate(var.selectProg, contextItem=contextItem) ) if xpCtx.formulaOptions.traceVariableExpressionResult: xpCtx.modelXbrl.info("formula:trace", _("General Variable %(variable)s: select result %(result)s"), modelObject=var, variable=varQname, result=str(vb.values)) elif vb.isParameter: vb.parameterValue = xpCtx.inScopeVars.get(var.parameterQname) # recurse partitions, preserve overlaid var bindings and inScopeVars overriddenVarBinding = xpCtx.varBindings.get(varQname) xpCtx.varBindings[varQname] = vb for evaluationResult in vb.evaluationResults: overriddenInScopeVar = xpCtx.inScopeVars.get(varQname) xpCtx.inScopeVars[varQname] = evaluationResult evaluationContributedUncoveredAspects = {} if vb.isFactVar and not vb.isFallback: # cache uncoveredAspect facts for nested evaluations for aspect in vb.aspectsDefined | vb.aspectsCovered: # covered aspects may not be defined e.g., test 12062 v11, undefined aspect is a complemented aspect if uncoveredAspectFacts.get(aspect) is None: evaluationContributedUncoveredAspects[aspect] = uncoveredAspectFacts.get(aspect,"none") uncoveredAspectFacts[aspect] = None if vb.hasAspectValueCovered(aspect) else vb.yieldedFact if xpCtx.formulaOptions.traceVariableFiltersResult: xpCtx.modelXbrl.info("formula:trace", _("%(variableType)s %(variable)s: bound value %(result)s"), modelObject=var, variableType=vb.resourceElementName, variable=varQname, result=str(evaluationResult)) if xpCtx.isRunTimeExceeded: raise XPathContext.RunTimeExceededException() evaluateVar(xpCtx, varSet, varIndex + 1, cachedFilteredFacts, uncoveredAspectFacts) xpCtx.inScopeVars.pop(varQname) if overriddenInScopeVar is not None: # restore overridden value if there was one xpCtx.inScopeVars[varQname] = overriddenInScopeVar for aspect, priorFact in evaluationContributedUncoveredAspects.items(): if priorFact == "none": del uncoveredAspectFacts[aspect] else: uncoveredAspectFacts[aspect] = priorFact xpCtx.varBindings.pop(varQname) vb.close() # dereference if overriddenVarBinding is not None: xpCtx.varBindings[varQname] = overriddenVarBinding def filterFacts(xpCtx, vb, facts, filterRelationships, filterType): typeLbl = filterType + " " if filterType else "" orFilter = filterType == "or" groupFilter = filterType == "group" if orFilter: factSet = set() for varFilterRel in filterRelationships: _filter = varFilterRel.toModelObject if isinstance(_filter,ModelFilter): # relationship not constrained to real filters result = _filter.filter(xpCtx, vb, facts, varFilterRel.isComplemented) if xpCtx.formulaOptions.traceVariableFilterWinnowing: xpCtx.modelXbrl.info("formula:trace", _("Fact Variable %(variable)s %(filterType)s %(filter)s filter %(xlinkLabel)s passes %(factCount)s facts"), modelObject=vb.var, variable=vb.qname, filterType=typeLbl, filter=_filter.localName, xlinkLabel=_filter.xlinkLabel, factCount=len(result)), if orFilter: factSet |= result else: facts = result if not groupFilter and varFilterRel.isCovered: # block boolean group filters that have cover in subnetworks vb.aspectsCovered |= _filter.aspectsCovered(vb) if orFilter: return factSet else: return facts def coverAspectCoverFilterDims(xpCtx, vb, filterRelationships): for varFilterRel in filterRelationships: _filter = varFilterRel.toModelObject if isinstance(_filter,ModelAspectCover): # relationship not constrained to real filters if varFilterRel.isCovered: vb.aspectsCovered |= _filter.dimAspectsCovered(vb) elif isinstance(_filter,ModelBooleanFilter) and varFilterRel.isCovered: coverAspectCoverFilterDims(xpCtx, vb, _filter.filterRelationships) def implicitFilter(xpCtx, vb, facts, aspects, uncoveredAspectFacts): if xpCtx.formulaOptions.traceVariableFilterWinnowing: # trace shows by aspect by bound variable match for aspect in aspects: if uncoveredAspectFacts.get(aspect, "none") is not None: facts = [fact for fact in facts if aspectMatches(xpCtx, uncoveredAspectFacts.get(aspect), fact, aspect)] a = str(aspect) if isinstance(aspect,QName) else Aspect.label[aspect] xpCtx.modelXbrl.info("formula:trace", _("Fact Variable %(variable)s implicit filter %(aspect)s passes %(factCount)s facts"), modelObject=vb.var, variable=vb.qname, aspect=a, factCount=len(facts)) if len(facts) == 0: break else: testableAspectFacts = [(aspect, uncoveredAspectFacts.get(aspect)) for aspect in aspects if uncoveredAspectFacts.get(aspect, "none") is not None] #testableAspectFacts = [(aspect, fact) # for aspect, fact in uncoveredAspectFacts.items() # if not vb.hasAspectValueCovered(aspect)] if testableAspectFacts: # not tracing, do bulk aspect filtering facts = [fact for fact in facts if all(aspectMatches(xpCtx, uncoveredAspectFact, fact, aspect) for (aspect, uncoveredAspectFact) in testableAspectFacts)] return facts def aspectsMatch(xpCtx, fact1, fact2, aspects): return all(aspectMatches(xpCtx, fact1, fact2, aspect) for aspect in aspects) def aspectMatches(xpCtx, fact1, fact2, aspect): if fact1 is None: # fallback (atomic) never matches any aspect return False if aspect == 1: # Aspect.LOCATION: return (fact2 is not None and fact1.modelXbrl != fact2.modelXbrl or # test deemed true for multi-instance comparisons fact1.getparent() == fact2.getparent()) elif aspect == 2: # Aspect.CONCEPT: return fact2 is not None and fact1.qname == fact2.qname elif fact1.isTuple or fact2.isTuple: return fact1.isTuple and fact2.isTuple # only match the aspects both facts have elif aspect == 5: # Aspect.UNIT: u1 = fact1.unit u2 = fact2.unit if fact2 is not None else None if u1 is not None: return u1.isEqualTo(u2) return u2 is None else: # rest of comparisons are for context c1 = fact1.context c2 = fact2.context if fact2 is not None else None if c1 is None or (c2 is None and aspect != 10): return False # something wrong, must be a context if c1 is c2: return True # same context if aspect == 4: # Aspect.PERIOD: return c1.isPeriodEqualTo(c2) if aspect == 3: # Aspect.ENTITY_IDENTIFIER: return c1.isEntityIdentifierEqualTo(c2) if aspect == 6: # Aspect.COMPLETE_SEGMENT: return XbrlUtil.nodesCorrespond(fact1.modelXbrl, c1.segment, c2.segment, dts2=fact2.modelXbrl) elif aspect == 7: # Aspect.COMPLETE_SCENARIO: return XbrlUtil.nodesCorrespond(fact1.modelXbrl, c1.scenario, c2.scenario, dts2=fact2.modelXbrl) elif aspect == 8 or aspect == 9: # aspect in (Aspect.NON_XDT_SEGMENT, Aspect.NON_XDT_SCENARIO): nXs1 = c1.nonDimValues(aspect) nXs2 = c2.nonDimValues(aspect) lXs1 = len(nXs1) lXs2 = len(nXs2) if lXs1 != lXs2: return False elif lXs1 > 0: for i in range(lXs1): if not XbrlUtil.nodesCorrespond(fact1.modelXbrl, nXs1[i], nXs2[i], dts2=fact2.modelXbrl): return False return True elif aspect == 10: # Aspect.DIMENSIONS: ''' (no implicit filtering on ALL dimensions for now) dimQnames1 = fact1.context.dimAspects dimQnames2 = fact2.context.dimAspects if len(dimQnames1 ^ dimQnames2): # dims not in both matches = False else: for dimQname1 in dimQnames1: if dimQname1 not in dimQnames2 or \ not aspectMatches(fact1, fact2, dimQname1): matches = False break ''' elif isinstance(aspect, QName): global ModelDimensionValue if ModelDimensionValue is None: from arelle.ModelInstanceObject import ModelDimensionValue dimValue1 = c1.dimValue(aspect) if c2 is None: if dimValue1 is None: # neither fact nor matching facts have this dimension aspect return True return False dimValue2 = c2.dimValue(aspect) if isinstance(dimValue1, ModelDimensionValue): if dimValue1.isExplicit: if isinstance(dimValue2, QName): if dimValue1.memberQname != dimValue2: return False elif isinstance(dimValue2, (ModelDimensionValue,DimValuePrototype)): if dimValue2.isTyped: return False elif dimValue1.memberQname != dimValue2.memberQname: return False elif dimValue2 is None: return False elif dimValue1.isTyped: if isinstance(dimValue2, QName): return False elif isinstance(dimValue2, (ModelDimensionValue,DimValuePrototype)): if dimValue2.isExplicit: return False elif dimValue1.dimension.typedDomainElement in xpCtx.modelXbrl.modelFormulaEqualityDefinitions: equalityDefinition = xpCtx.modelXbrl.modelFormulaEqualityDefinitions[dimValue1.dimension.typedDomainElement] return equalityDefinition.evalTest(xpCtx, fact1, fact2) elif not XbrlUtil.nodesCorrespond(fact1.modelXbrl, dimValue1.typedMember, dimValue2.typedMember, dts2=fact2.modelXbrl): return False elif dimValue2 is None: return False elif isinstance(dimValue1,QName): # first dim is default value of an explicit dim if isinstance(dimValue2, QName): # second dim is default value of an explicit dim # multi-instance does not consider member's qname here where it is a default # only check if qnames match if the facts are from same instance if fact1.modelXbrl == fact2.modelXbrl and dimValue1 != dimValue2: return False elif isinstance(dimValue2, (ModelDimensionValue,DimValuePrototype)): if dimValue2.isTyped: return False elif dimValue1 != dimValue2.memberQname: return False elif dimValue2 is None: # no dim aspect for fact 2 if fact1.modelXbrl == fact2.modelXbrl: # only allowed for multi-instance return False elif dimValue1 is None: # absent dim member from fact1 allowed if fact2 is default in different instance if isinstance(dimValue2,QName): if fact1.modelXbrl == fact2.modelXbrl: return False elif dimValue2 is not None: return False # else if both are None, matches True for single and multiple instance return True def factsPartitions(xpCtx, facts, aspects): factsPartitions = [] for fact in facts: matched = False for partition in factsPartitions: if aspectsMatch(xpCtx, fact, partition[0], aspects): partition.append(fact) matched = True break if not matched: factsPartitions.append([fact,]) return factsPartitions def evaluationIsUnnecessary(thisEval, otherEvalHashDicts, otherEvals): if otherEvals: if all(e is None for e in thisEval): return True # evaluation not necessary, all fallen back # hash check if any hashes merit further look for equality otherEvalSets = [otherEvalHashDicts[i].get(hash(e), set()) for i, e in enumerate(thisEval) if e is not None] if otherEvalSets: matchingEvals = [otherEvals[i] for i in set.intersection(*otherEvalSets)] # detects evaluations which are not different (duplicate) and extra fallback evaluations return any(all([e == matchingEval[i] for i, e in enumerate(thisEval) if e is not None]) for matchingEval in matchingEvals) return False ''' r = range(len(thisEval)) for otherEval in otherEvals: if all([thisEval[i] is None or thisEval[i] == otherEval[i] for i in r]): return True return False ''' def produceOutputFact(xpCtx, formula, result): priorErrorCount = len(xpCtx.modelXbrl.errors) isTuple = isinstance(formula,ModelTuple) # assemble context conceptQname = formulaAspectValue(xpCtx, formula, Aspect.CONCEPT, "xbrlfe:missingConceptRule") if isinstance(conceptQname, VariableBindingError): xpCtx.modelXbrl.error(conceptQname.err, _("Formula %(label)s concept: %(concept)s"), modelObject=formula, label=formula.logLabel(), concept=conceptQname.msg) modelConcept = None else: modelConcept = xpCtx.modelXbrl.qnameConcepts[conceptQname] if modelConcept is None or (not modelConcept.isTuple if isTuple else not modelConcept.isItem): xpCtx.modelXbrl.error("xbrlfe:missingConceptRule", _("Formula %(label)s concept %(concept)s is not a %(element)s"), modelObject=formula, label=formula.logLabel(), concept=conceptQname, element=formula.localName) outputLocation = formulaAspectValue(xpCtx, formula, Aspect.LOCATION_RULE, None) if not isTuple: # entity entityIdentScheme = formulaAspectValue(xpCtx, formula, Aspect.SCHEME, "xbrlfe:missingEntityIdentifierRule") if isinstance(entityIdentScheme, VariableBindingError): xpCtx.modelXbrl.error(str(entityIdentScheme), _("Formula %(label)s entity identifier scheme: %(scheme)s"), modelObject=formula, label=formula.logLabel(), scheme=entityIdentScheme.msg) entityIdentValue = None else: entityIdentValue = formulaAspectValue(xpCtx, formula, Aspect.VALUE, "xbrlfe:missingEntityIdentifierRule") if isinstance(entityIdentValue, VariableBindingError): xpCtx.modelXbrl.error(str(entityIdentScheme), _("Formula %(label)s entity identifier value: %(entityIdentifier)s"), modelObject=formula, label=formula.logLabel(), entityIdentifier=entityIdentValue.msg) # period periodType = formulaAspectValue(xpCtx, formula, Aspect.PERIOD_TYPE, "xbrlfe:missingPeriodRule") periodStart = None periodEndInstant = None if isinstance(periodType, VariableBindingError): xpCtx.modelXbrl.error(str(periodType), _("Formula %(label)s period type: %(periodType)s"), modelObject=formula, label=formula.logLabel(), periodType=periodType.msg) elif periodType == "instant": periodEndInstant = formulaAspectValue(xpCtx, formula, Aspect.INSTANT, "xbrlfe:missingPeriodRule") if isinstance(periodEndInstant, VariableBindingError): xpCtx.modelXbrl.error(str(periodEndInstant), _("Formula %(label)s period end: %(period)s"), modelObject=formula, label=formula.logLabel(), period=periodEndInstant.msg) elif periodType == "duration": periodStart = formulaAspectValue(xpCtx, formula, Aspect.START, "xbrlfe:missingPeriodRule") if isinstance(periodStart, VariableBindingError): xpCtx.modelXbrl.error(str(periodStart), _("Formula %(label)s period start: %(period)s"), modelObject=formula, label=formula.logLabel(), period=periodStart.msg) periodEndInstant = formulaAspectValue(xpCtx, formula, Aspect.END, "xbrlfe:missingPeriodRule") if isinstance(periodEndInstant, VariableBindingError): xpCtx.modelXbrl.error(str(periodEndInstant), _("Formula %(label)s period end: %(period)s"), modelObject=formula, label=formula.logLabel(), period=periodEndInstant.msg) # unit if modelConcept is not None and modelConcept.isNumeric: unitSource = formulaAspectValue(xpCtx, formula, Aspect.UNIT_MEASURES, None) multDivBy = formulaAspectValue(xpCtx, formula, Aspect.MULTIPLY_BY, "xbrlfe:missingUnitRule") if isinstance(multDivBy, VariableBindingError): xpCtx.modelXbrl.error(str(multDivBy) if isinstance(multDivBy, VariableBindingError) else "xbrlfe:missingUnitRule", _("Formula %(label)s unit: %(unit)s"), modelObject=formula, label=formula.logLabel(), unit=multDivBy.msg) multiplyBy = (); divideBy = () # prevent errors later if bad else: divMultBy = formulaAspectValue(xpCtx, formula, Aspect.DIVIDE_BY, "xbrlfe:missingUnitRule") if isinstance(divMultBy, VariableBindingError): xpCtx.modelXbrl.error(str(multDivBy) if isinstance(divMultBy, VariableBindingError) else "xbrlfe:missingUnitRule", _("Formula %(label)s unit: %(unit)s"), modelObject=formula, label=formula.logLabel(), unit=divMultBy.msg) multiplyBy = (); divideBy = () # prevent errors later if bad else: multiplyBy = unitSource[0] + multDivBy[0] + divMultBy[1] divideBy = unitSource[1] + multDivBy[1] + divMultBy[0] # remove cancelling mult/div units lookForCommonUnits = True while lookForCommonUnits: lookForCommonUnits = False for commonUnit in multiplyBy: if commonUnit in divideBy: multiplyBy.remove(commonUnit) divideBy.remove(commonUnit) lookForCommonUnits = True break if len(multiplyBy) == 0: # if no units add pure if (Aspect.MULTIPLY_BY not in formula.aspectValues and Aspect.MULTIPLY_BY not in formula.aspectProgs and Aspect.DIVIDE_BY not in formula.aspectValues and Aspect.DIVIDE_BY not in formula.aspectProgs): xpCtx.modelXbrl.error("xbrlfe:missingUnitRule", _("Formula %(label)s"), modelObject=formula, label=formula.logLabel()) multiplyBy.append(XbrlConst.qnXbrliPure) # dimensions segOCCs = [] scenOCCs = [] if formula.aspectModel == "dimensional": dimAspects = {} dimQnames = formulaAspectValue(xpCtx, formula, Aspect.DIMENSIONS, None) if dimQnames: for dimQname in dimQnames: dimConcept = xpCtx.modelXbrl.qnameConcepts[dimQname] dimErr = "xbrlfe:missing{0}DimensionRule".format("typed" if dimConcept is not None and dimConcept.isTypedDimension else "explicit") dimValue = formulaAspectValue(xpCtx, formula, dimQname, dimErr) if isinstance(dimValue, VariableBindingError): xpCtx.modelXbrl.error(dimErr, _("Formula %(label)s dimension %(dimension)s: %(value)s"), modelObject=formula, label=formula.logLabel(), dimension=dimQname, value=dimValue.msg) elif dimConcept.isTypedDimension: if isinstance(dimValue, list): # result of flatten, always a list if len(dimValue) != 1 or not isinstance(dimValue[0], ModelObject): xpCtx.modelXbrl.error("xbrlfe:wrongXpathResultForTypedDimensionRule", _("Formula %(label)s dimension %(dimension)s value is not a node: %(value)s"), modelObject=formula, label=formula.logLabel(), dimension=dimQname, value=dimValue) continue dimValue = dimValue[0] dimAspects[dimQname] = dimValue elif dimValue is not None and xpCtx.modelXbrl.qnameDimensionDefaults.get(dimQname) != dimValue: dimAspects[dimQname] = dimValue segOCCs = formulaAspectValue(xpCtx, formula, Aspect.NON_XDT_SEGMENT, None) scenOCCs = formulaAspectValue(xpCtx, formula, Aspect.NON_XDT_SCENARIO, None) for occElt in xpCtx.flattenSequence((segOCCs, scenOCCs)): if isinstance(occElt, ModelObject) and occElt.namespaceURI == XbrlConst.xbrldi: xpCtx.modelXbrl.error("xbrlfe:badSubsequentOCCValue", _("Formula %(label)s OCC element %(occ)s covers a dimensional aspect"), modelObject=(formula,occElt), label=formula.logLabel(), occ=occElt.elementQname) else: dimAspects = None # non-dimensional segOCCs = formulaAspectValue(xpCtx, formula, Aspect.COMPLETE_SEGMENT, None) scenOCCs = formulaAspectValue(xpCtx, formula, Aspect.COMPLETE_SCENARIO, None) if priorErrorCount < len(xpCtx.modelXbrl.errors): return None # had errors, don't produce output fact # does context exist in out instance document outputInstanceQname = formula.outputInstanceQname outputXbrlInstance = xpCtx.inScopeVars[outputInstanceQname] xbrlElt = outputXbrlInstance.modelDocument.xmlRootElement # in source instance document newFact = None if isTuple: newFact = outputXbrlInstance.createFact(conceptQname, parent=outputLocation, afterSibling=xpCtx.outputLastFact.get(outputInstanceQname)) else: # add context prevCntx = outputXbrlInstance.matchContext( entityIdentScheme, entityIdentValue, periodType, periodStart, periodEndInstant, dimAspects, segOCCs, scenOCCs) if prevCntx is not None: cntxId = prevCntx.id newCntxElt = prevCntx else: newCntxElt = outputXbrlInstance.createContext(entityIdentScheme, entityIdentValue, periodType, periodStart, periodEndInstant, conceptQname, dimAspects, segOCCs, scenOCCs, afterSibling=xpCtx.outputLastContext.get(outputInstanceQname), beforeSibling=xpCtx.outputFirstFact.get(outputInstanceQname)) cntxId = newCntxElt.id xpCtx.outputLastContext[outputInstanceQname] = newCntxElt # does unit exist # add unit if modelConcept.isNumeric: prevUnit = outputXbrlInstance.matchUnit(multiplyBy, divideBy) if prevUnit is not None: unitId = prevUnit.id newUnitElt = prevUnit else: newUnitElt = outputXbrlInstance.createUnit(multiplyBy, divideBy, afterSibling=xpCtx.outputLastUnit.get(outputInstanceQname), beforeSibling=xpCtx.outputFirstFact.get(outputInstanceQname)) unitId = newUnitElt.id xpCtx.outputLastUnit[outputInstanceQname] = newUnitElt # add fact attrs = [("contextRef", cntxId)] precision = None decimals = None if modelConcept.isNumeric: attrs.append(("unitRef", unitId)) value = formula.evaluate(xpCtx) valueSeqLen = len(value) if valueSeqLen > 1: xpCtx.modelXbrl.error("xbrlfe:nonSingletonOutputValue", _("Formula %(label)s value is a sequence of length %(valueSequenceLength)s"), modelObject=formula, label=formula.logLabel(), valueSequenceLength=valueSeqLen) else: if valueSeqLen == 0: #xsi:nil if no value attrs.append((XbrlConst.qnXsiNil, "true")) v = None else: # add precision/decimals for non-fraction numerics if modelConcept.isNumeric and not modelConcept.isFraction: if formula.hasDecimals: decimals = formula.evaluateRule(xpCtx, Aspect.DECIMALS) attrs.append(("decimals", decimals)) else: if formula.hasPrecision: precision = formula.evaluateRule(xpCtx, Aspect.PRECISION) else: precision = 0 attrs.append(("precision", precision)) x = value[0] if isinstance(x,float): if (isnan(x) or (precision and (isinf(precision) or precision == 0)) or (decimals and isinf(decimals))): v = xsString(xpCtx, None, x) elif decimals is not None: v = "%.*f" % ( int(decimals), x) elif precision is not None and precision != 0: a = fabs(x) log = log10(a) if a != 0 else 0 v = "%.*f" % ( int(precision) - int(log) - (1 if a >= 1 else 0), x) else: # no implicit precision yet v = xsString(xpCtx, None, x) elif isinstance(x,Decimal): if (x.is_nan() or (precision and (isinf(precision) or precision == 0)) or (decimals and isinf(decimals))): v = xsString(xpCtx, None, x) elif decimals is not None: v = "%.*f" % ( int(decimals), x) elif precision is not None and precision != 0: a = x.copy_abs() log = a.log10() if a != 0 else 0 v = "%.*f" % ( int(precision) - int(log) - (1 if a >= 1 else 0), x) else: # no implicit precision yet v = xsString(xpCtx, None, x) elif isinstance(x,QName): v = XmlUtil.addQnameValue(xbrlElt, x) elif isinstance(x,datetime.datetime): v = XmlUtil.dateunionValue(x) else: v = xsString(xpCtx, None, x) newFact = outputXbrlInstance.createFact(conceptQname, attributes=attrs, text=v, parent=outputLocation, afterSibling=xpCtx.outputLastFact.get(outputInstanceQname)) if newFact is not None: xpCtx.outputLastFact[outputInstanceQname] = newFact if outputInstanceQname not in xpCtx.outputFirstFact: xpCtx.outputFirstFact[outputInstanceQname] = newFact return newFact def formulaAspectValue(xpCtx, formula, aspect, srcMissingErr): ruleValue = formula.evaluateRule(xpCtx, aspect) if ruleValue is not None: if aspect in (Aspect.CONCEPT, Aspect.VALUE, Aspect.SCHEME, Aspect.PERIOD_TYPE, Aspect.START, Aspect.END, Aspect.INSTANT, ): return ruleValue if isinstance(aspect,QName) and ruleValue != XbrlConst.qnFormulaDimensionSAV: return ruleValue sourceQname = formula.source(aspect) formulaUncovered = sourceQname == XbrlConst.qnFormulaUncovered if aspect == Aspect.LOCATION_RULE and sourceQname is None: return xpCtx.inScopeVars[formula.outputInstanceQname].modelDocument.xmlRootElement elif aspect == Aspect.DIMENSIONS and formulaUncovered: aspectSourceValue = set() # union of uncovered dimensions, all variables elif srcMissingErr is None: aspectSourceValue = None # important for dimensions, missing is not an error elif formulaUncovered: if isinstance(aspect,QName): # absent uncovered dimension is ok, just not copied to output OCC aspectSourceValue = None else: aspectSourceValue = xbrlfe_undefinedSAV # other then dimensions, absent is an error else: aspectSourceValue = VariableBindingError(srcMissingErr, _("neither source {0}, nor an aspect rule, were found.") .format(sourceQname if sourceQname else '')) for vb in xpCtx.varBindings.values(): if vb.isFactVar and not vb.isFallback: if aspect == Aspect.DIMENSIONS and formulaUncovered: aspectSourceValue |= vb.aspectValue(aspect) elif formulaUncovered and vb.hasAspectValueUncovered(aspect): aspectSourceValue = vb.aspectValue(aspect) break elif sourceQname == vb.qname: if not vb.isBindAsSequence or vb.hasAspectValueUncovered(aspect): aspectSourceValue = vb.aspectValue(aspect) else: aspectSourceValue = VariableBindingError("xbrlfe:sequenceSAVConflicts", _("source, {0}, contains the QName of a fact variable that binds as a sequence where that fact's aspect rule covers this filtered aspect") .format(sourceQname)) break elif aspect == Aspect.LOCATION_RULE and sourceQname == vb.qname: aspectSourceValue = vb.aspectValue(aspect) break # modify by any specific rules if aspect in (Aspect.CONCEPT, Aspect.LOCATION_RULE, Aspect.VALUE, Aspect.SCHEME, Aspect.PERIOD_TYPE, Aspect.START, Aspect.END, Aspect.INSTANT, ) or isinstance(aspect,QName): return aspectSourceValue elif aspect == Aspect.UNIT_MEASURES: augment = formula.evaluateRule(xpCtx, Aspect.AUGMENT) if aspectSourceValue and (not augment or augment == "true"): # true is the default behavior return aspectSourceValue else: return ([],[]) elif aspect in (Aspect.MULTIPLY_BY, Aspect.DIVIDE_BY): if sourceQname and aspectSourceValue: return aspectSourceValue else: return (ruleValue,[]) elif aspect == Aspect.DIMENSIONS: if aspectSourceValue is None: aspectSourceValue = set() if ruleValue is None: ruleValueSet = set() else: ruleValueSet = set(ruleValue) omitDims = formula.evaluateRule(xpCtx, Aspect.OMIT_DIMENSIONS) if omitDims is None: omitDimsSet = set() else: omitDimsSet = set(omitDims) return (aspectSourceValue | ruleValueSet) - omitDimsSet elif isinstance(aspect, QName): return aspectSourceValue elif aspect in (Aspect.COMPLETE_SEGMENT, Aspect.COMPLETE_SCENARIO, Aspect.NON_XDT_SEGMENT, Aspect.NON_XDT_SCENARIO): occFragments = [] occEmpty = ruleValue and ruleValue[0] == XbrlConst.qnFormulaOccEmpty if not occEmpty and aspectSourceValue: occFragments.extend(aspectSourceValue) if ruleValue: occFragments.extend(ruleValue[1 if occEmpty else 0:]) return occFragments return None def uncoveredAspectValue(xpCtx, aspect): for vb in xpCtx.varBindings.values(): if vb.isFactVar and not vb.isFallback and vb.hasAspectValueUncovered(aspect): return vb.aspectValue(aspect) return None def variableBindingIsFallback(xpCtx, variableQname): for vb in xpCtx.varBindings.values(): if vb.qname == variableQname: return vb.isFactVar and vb.isFallback return False def uncoveredVariableSetAspects(xpCtx): aspectsDefined = set() aspectsCovered = set() for vb in xpCtx.varBindings.values(): if vb.isFactVar and not vb.isFallback: aspectsCovered |= vb.aspectsCovered aspectsDefined |= vb.aspectsDefined return (aspectsDefined - aspectsCovered) class VariableBindingError: def __init__(self, err, msg=None): self.err = err self.msg = msg def __repr__(self): return self.err xbrlfe_undefinedSAV = VariableBindingError("xbrlfe:undefinedSAV") class VariableBinding: def __init__(self, xpCtx, varRel=None, boundFact=None): self.xpCtx = xpCtx if varRel is not None: self.qname = varRel.variableQname self.var = varRel.toModelObject else: self.qname = self.var = None self.aspectsDefined = set() self.aspectsCovered = set() self.isFactVar = isinstance(self.var, ModelFactVariable) self.isGeneralVar = isinstance(self.var, ModelGeneralVariable) self.isParameter = isinstance(self.var, ModelParameter) self.isFormulaResult = isinstance(self.var, ModelFormula) self.isBindAsSequence = self.var.bindAsSequence == "true" if isinstance(self.var,ModelVariable) else False self.yieldedFact = boundFact self.yieldedFactResult = None self.isFallback = False self.instances = ([inst for qn in self.var.fromInstanceQnames for inst in xpCtx.flattenSequence(xpCtx.inScopeVars[qn])] if self.var is not None and self.var.fromInstanceQnames else [xpCtx.modelXbrl]) def close(self): self.__dict__.clear() # dereference pass @property def resourceElementName(self): if self.isFactVar: return _("Fact Variable") elif self.isGeneralVar: return _("General Variable") elif self.isParameter: return _("Parameter") elif isinstance(self.var, ModelTuple): return _("Tuple") elif isinstance(self.var, ModelFormula): return _("Formula") elif isinstance(self.var, ModelValueAssertion): return _("ValueAssertion") elif isinstance(self.var, ModelExistenceAssertion): return _("ExistenceAssertion") def matchesSubPartitions(self, partition, aspects): if self.var.matches == "true": return [partition] subPartitions = [] for fact in partition: foundSubPartition = False for subPartition in subPartitions: matchedInSubPartition = False for fact2 in subPartition: if aspectsMatch(self.xpCtx, fact, fact2, aspects): matchedInSubPartition = True break if not matchedInSubPartition: subPartition.append(fact) foundSubPartition = True break if not foundSubPartition: subPartitions.append([fact,]) return subPartitions @property def evaluationResults(self): includeFallback = True if self.isFactVar: if self.isBindAsSequence and self.facts: for factsPartition in factsPartitions(self.xpCtx, self.facts, self.aspectsDefined - self.aspectsCovered): for matchesSubPartition in self.matchesSubPartitions(factsPartition, self.aspectsDefined): self.yieldedFact = matchesSubPartition[0] self.yieldedFactContext = self.yieldedFact.context self.yieldedEvaluation = matchesSubPartition self.isFallback = False includeFallback = False yield matchesSubPartition else: for fact in self.facts: self.yieldedFact = fact self.yieldedFactContext = self.yieldedFact.context self.yieldedEvaluation = fact self.isFallback = False includeFallback = False yield fact if self.values: if includeFallback: self.yieldedFact = None self.yieldedFactContext = None self.yieldedEvaluation = "fallback" self.isFallback = True yield self.values elif self.isGeneralVar: self.yieldedFact = None self.yieldedFactContext = None self.isFallback = False if self.isBindAsSequence: self.yieldedEvaluation = self.values yield self.values else: for value in self.values: self.yieldedEvaluation = value yield value elif self.isParameter: self.yieldedFact = None self.yieldedEvaluation = None self.isFallback = False yield self.parameterValue def matchableBoundFact(self, fbVars): # return from this function has to be hashable if (self.isFallback or self.isParameter # remove to allow different gen var evaluations: or self.isGeneralVar or (self.isGeneralVar and not fbVars.isdisjoint(self.var.variableRefs()))): return None if self.isBindAsSequence: return tuple(self.yieldedEvaluation) if self.isFormulaResult: return self.yieldedFact return self.yieldedEvaluation def hasDimension(self, dimension): return dimension in self.definedDimensions def hasDimensionValueDefined(self, dimension): return dimension in self.definedDimensions def definedDimensions(self, dimension): return self.yieldedFact.context.dimAspects(self.xpCtx.defaultDimensionAspects) if self.yieldedFact.isItem and self.yieldedFact.context is not None else set() def isDimensionalValid(self, dimension): return False def hasAspectValueUncovered(self, aspect): if aspect in aspectModelAspect: aspect = aspectModelAspect[aspect] return aspect in self.aspectsDefined and aspect not in self.aspectsCovered def hasAspectValueCovered(self, aspect): if aspect in aspectModelAspect: aspect = aspectModelAspect[aspect] return aspect in self.aspectsCovered def aspectsNotCovered(self, aspects): return set(a for a in aspects if not self.hasAspectValueCovered(a)) def hasAspectValueDefined(self, aspect): if aspect in aspectModelAspect: aspect = aspectModelAspect[aspect] return aspect in self.aspectsDefined def aspectValue(self, aspect): fact = self.yieldedFact if fact is None: if aspect == Aspect.DIMENSIONS: return set() else: return None if aspect == Aspect.LOCATION: return fact.getparent() elif aspect == Aspect.LOCATION_RULE: return fact elif aspect == Aspect.CONCEPT: return fact.qname elif fact.isTuple or fact.context is None: return None #subsequent aspects don't exist for tuples # context is known to be not None after here elif aspect == Aspect.PERIOD: return fact.context.period elif aspect == Aspect.PERIOD_TYPE: if fact.context.isInstantPeriod: return "instant" elif fact.context.isStartEndPeriod: return "duration" elif fact.context.isForeverPeriod: return "forever" return None elif aspect == Aspect.INSTANT: return fact.context.instantDatetime elif aspect == Aspect.START: return fact.context.startDatetime elif aspect == Aspect.END: return fact.context.endDatetime elif aspect == Aspect.ENTITY_IDENTIFIER: return fact.context.entityIdentifierElement elif aspect == Aspect.SCHEME: return fact.context.entityIdentifier[0] elif aspect == Aspect.VALUE: return fact.context.entityIdentifier[1] elif aspect in (Aspect.COMPLETE_SEGMENT, Aspect.COMPLETE_SCENARIO, Aspect.NON_XDT_SEGMENT, Aspect.NON_XDT_SCENARIO): return fact.context.nonDimValues(aspect) elif aspect == Aspect.DIMENSIONS: return fact.context.dimAspects(self.xpCtx.defaultDimensionAspects) elif isinstance(aspect, QName): return fact.context.dimValue(aspect) elif fact.unit is not None: if aspect == Aspect.UNIT: return fact.unit elif aspect in (Aspect.UNIT_MEASURES, Aspect.MULTIPLY_BY, Aspect.DIVIDE_BY): return fact.unit.measures return None ``` #### File: carelle/arelle/ValidateFiling.py ```python import xml.dom, xml.parsers import os, re, collections, datetime from decimal import Decimal from collections import defaultdict from arelle import (ModelDocument, ModelValue, ValidateXbrl, ModelRelationshipSet, XmlUtil, XbrlConst, UrlUtil, ValidateFilingDimensions, ValidateFilingDTS, ValidateFilingText) from arelle.ValidateXbrlCalcs import insignificantDigits from arelle.XmlValidate import UNVALIDATED, VALID from arelle.ModelObject import ModelObject from arelle.ModelInstanceObject import ModelFact from arelle.ModelDtsObject import ModelConcept from arelle.PluginManager import pluginClassMethods from arelle.UrlUtil import isHttpUrl datePattern = None linkroleDefinitionStatementSheet = None class ValidateFiling(ValidateXbrl.ValidateXbrl): def __init__(self, modelXbrl): super(ValidateFiling, self).__init__(modelXbrl) global datePattern, GFMcontextDatePattern, signOrCurrencyPattern, instanceFileNamePattern, linkroleDefinitionStatementSheet, efmCIKpattern if datePattern is None: datePattern = re.compile(r"([12][0-9]{3})-([01][0-9])-([0-3][0-9])") GFMcontextDatePattern = re.compile(r"^[12][0-9]{3}-[01][0-9]-[0-3][0-9]$") # note \u20zc = euro, \u00a3 = pound, \u00a5 = yen signOrCurrencyPattern = re.compile("^(-)[0-9]+|[^eE](-)[0-9]+|(\\()[0-9].*(\\))|([$\u20ac\u00a3\00a5])") instanceFileNamePattern = re.compile(r"^(\w+)-([12][0-9]{3}[01][0-9][0-3][0-9]).xml$") linkroleDefinitionStatementSheet = re.compile(r"[^-]+-\s+Statement\s+-\s+.*", # no restriction to type of statement re.IGNORECASE) efmCIKpattern = re.compile(r"^[0-9]{10}$") def validate(self, modelXbrl, parameters=None): if not hasattr(modelXbrl.modelDocument, "xmlDocument"): # not parsed return self._isStandardUri = {} modelXbrl.modelManager.disclosureSystem.loadStandardTaxonomiesDict() # find typedDomainRefs before validateXBRL pass if modelXbrl.modelManager.disclosureSystem.SBRNL: for pluginXbrlMethod in pluginClassMethods("Validate.SBRNL.Start"): pluginXbrlMethod(self, modelXbrl) self.qnSbrLinkroleorder = ModelValue.qname("http://www.nltaxonomie.nl/5.0/basis/sbr/xbrl/xbrl-syntax-extension","linkroleOrder") self.typedDomainQnames = set() self.typedDomainElements = set() for modelConcept in modelXbrl.qnameConcepts.values(): if modelConcept.isTypedDimension: typedDomainElement = modelConcept.typedDomainElement if isinstance(typedDomainElement, ModelConcept): self.typedDomainQnames.add(typedDomainElement.qname) self.typedDomainElements.add(typedDomainElement) # note that some XFM tests are done by ValidateXbrl to prevent mulstiple node walks super(ValidateFiling,self).validate(modelXbrl, parameters) xbrlInstDoc = modelXbrl.modelDocument.xmlDocument.getroot() disclosureSystem = self.disclosureSystem disclosureSystemVersion = disclosureSystem.version modelXbrl.modelManager.showStatus(_("validating {0}").format(disclosureSystem.name)) self.modelXbrl.profileActivity() conceptsUsed = {} # key=concept object value=True if has presentation label labelsRelationshipSet = modelXbrl.relationshipSet(XbrlConst.conceptLabel) if self.validateSBRNL: # include generic labels in a (new) set genLabelsRelationshipSet = modelXbrl.relationshipSet(XbrlConst.elementLabel) presentationRelationshipSet = modelXbrl.relationshipSet(XbrlConst.parentChild) referencesRelationshipSetWithProhibits = modelXbrl.relationshipSet(XbrlConst.conceptReference, includeProhibits=True) self.modelXbrl.profileActivity("... cache lbl, pre, ref relationships", minTimeToShow=1.0) validateInlineXbrlGFM = (modelXbrl.modelDocument.type == ModelDocument.Type.INLINEXBRL and self.validateGFM) validateEFMpragmatic = disclosureSystem.names and "efm-pragmatic" in disclosureSystem.names self.validateLoggingSemantic = validateLoggingSemantic = ( modelXbrl.isLoggingEffectiveFor(level="WARNING-SEMANTIC") or modelXbrl.isLoggingEffectiveFor(level="ERROR-SEMANTIC")) if self.validateEFM: for pluginXbrlMethod in pluginClassMethods("Validate.EFM.Start"): pluginXbrlMethod(self) # instance checks self.fileNameBasePart = None # prevent testing on fileNameParts if not instance or invalid self.fileNameDate = None self.entityRegistrantName = None self.requiredContext = None self.standardNamespaceConflicts = defaultdict(set) self.exhibitType = None # e.g., EX-101, EX-201 if modelXbrl.modelDocument.type == ModelDocument.Type.INSTANCE or \ modelXbrl.modelDocument.type == ModelDocument.Type.INLINEXBRL: instanceName = modelXbrl.modelDocument.basename # parameter-provided CIKs and registrant names paramFilerIdentifier = None paramFilerIdentifiers = None paramFilerNames = None submissionType = None if self.validateEFM and self.parameters: p = self.parameters.get(ModelValue.qname("CIK",noPrefixIsNoNamespace=True)) if p and len(p) == 2 and p[1] not in ("null", "None"): paramFilerIdentifier = p[1] p = self.parameters.get(ModelValue.qname("cikList",noPrefixIsNoNamespace=True)) if p and len(p) == 2: paramFilerIdentifiers = p[1].split(",") p = self.parameters.get(ModelValue.qname("cikNameList",noPrefixIsNoNamespace=True)) if p and len(p) == 2: paramFilerNames = p[1].split("|Edgar|") if paramFilerIdentifiers and len(paramFilerIdentifiers) != len(paramFilerNames): self.modelXbrl.error(("EFM.6.05.24.parameters", "GFM.3.02.02"), _("parameters for cikList and cikNameList different list entry counts: %(cikList)s, %(cikNameList)s"), modelXbrl=modelXbrl, cikList=paramFilerIdentifiers, cikNameList=paramFilerNames) p = self.parameters.get(ModelValue.qname("submissionType",noPrefixIsNoNamespace=True)) if p and len(p) == 2: submissionType = p[1] p = self.parameters.get(ModelValue.qname("exhibitType",noPrefixIsNoNamespace=True)) if p and len(p) == 2: self.exhibitType = p[1] #6.3.3 filename check m = instanceFileNamePattern.match(modelXbrl.modelDocument.basename) if m: self.fileNameBasePart = m.group(1) self.fileNameDatePart = m.group(2) if not self.fileNameBasePart: modelXbrl.error((self.EFM60303, "GFM.1.01.01"), _('Invalid instance document base name part (ticker or mnemonic name) in "{base}-{yyyymmdd}.xml": %(filename)s'), modelObject=modelXbrl.modelDocument, filename=modelXbrl.modelDocument.basename, messageCodes=("EFM.6.03.03", "EFM.6.23.01", "GFM.1.01.01")) else: try: self.fileNameDate = datetime.datetime.strptime(self.fileNameDatePart,"%Y%m%d").date() except ValueError: modelXbrl.error((self.EFM60303, "GFM.1.01.01"), _('Invalid instance document base name part (date) in "{base}-{yyyymmdd}.xml": %(filename)s'), modelObject=modelXbrl.modelDocument, filename=modelXbrl.modelDocument.basename, messageCodes=("EFM.6.03.03", "EFM.6.23.01", "GFM.1.01.01")) else: modelXbrl.error((self.EFM60303, "GFM.1.01.01"), _('Invalid instance document name, must match "{base}-{yyyymmdd}.xml": %(filename)s'), modelObject=modelXbrl.modelDocument, filename=modelXbrl.modelDocument.basename, messageCodes=("EFM.6.03.03", "EFM.6.23.01", "GFM.1.01.01")) #6.5.1 scheme, 6.5.2, 6.5.3 identifier entityIdentifierValue = None entityIdentifierValueElt = None if disclosureSystem.identifierValueName: # omit if no checks for entityIdentifierElt in xbrlInstDoc.iterdescendants("{http://www.xbrl.org/2003/instance}identifier"): if isinstance(entityIdentifierElt,ModelObject): schemeAttr = entityIdentifierElt.get("scheme") entityIdentifier = XmlUtil.text(entityIdentifierElt) if not disclosureSystem.identifierSchemePattern.match(schemeAttr): try: contextId = entityIdentifierElt.getparent().getparent().id except AttributeError: contextId = "not available" modelXbrl.error(("EFM.6.05.01", "GFM.1.02.01"), _("Invalid entity identifier scheme %(scheme)s in context %(context)s for identifier %(identifier)s"), modelObject=entityIdentifierElt, scheme=schemeAttr, context=contextId, identifier=entityIdentifier) if not disclosureSystem.identifierValuePattern.match(entityIdentifier): modelXbrl.error(("EFM.6.05.02", "GFM.1.02.02"), _("Invalid entity identifier %(entityIdentifierName)s: %(entityIdentifer)s"), modelObject=entityIdentifierElt, entityIdentifierName=disclosureSystem.identifierValueName, entityIdentifer=entityIdentifier) if not entityIdentifierValue: entityIdentifierValue = entityIdentifier entityIdentifierValueElt = entityIdentifierElt if self.validateEFM and not efmCIKpattern.match(entityIdentifierValue): self.modelXbrl.error("EFM.6.05.23.cikValue", _("EntityIdentifier %(entityIdentifer)s must be 10 digits."), modelObject=entityIdentifierElt, entityIdentifer=entityIdentifierValue) elif entityIdentifier != entityIdentifierValue: modelXbrl.error(("EFM.6.05.03", "GFM.1.02.03"), _("Multiple %(entityIdentifierName)ss: %(entityIdentifer)s, %(entityIdentifer2)s"), modelObject=(entityIdentifierElt, entityIdentifierValueElt), entityIdentifierName=disclosureSystem.identifierValueName, entityIdentifer=entityIdentifierValue, entityIdentifer2=entityIdentifier, filerIdentifier=",".join(paramFilerIdentifiers or [])) self.modelXbrl.profileActivity("... filer identifier checks", minTimeToShow=1.0) #6.5.7 duplicated contexts contexts = modelXbrl.contexts.values() contextIDs = set() uniqueContextHashes = {} contextsWithDisallowedOCEs = [] contextsWithDisallowedOCEcontent = [] for context in contexts: contextID = context.id contextIDs.add(contextID) h = context.contextDimAwareHash if h in uniqueContextHashes: if context.isEqualTo(uniqueContextHashes[h]): modelXbrl.error(("EFM.6.05.07", "GFM.1.02.07"), _("Context ID %(context)s is equivalent to context ID %(context2)s"), modelObject=(context, uniqueContextHashes[h]), context=contextID, context2=uniqueContextHashes[h].id) else: uniqueContextHashes[h] = context #GFM no time in contexts if self.validateGFM: for dateElt in XmlUtil.children(context, XbrlConst.xbrli, ("startDate", "endDate", "instant")): dateText = XmlUtil.text(dateElt) if not GFMcontextDatePattern.match(dateText): modelXbrl.error("GFM.1.02.25", _("Context id %(context)s %(elementName)s invalid content %(value)s"), modelObject=dateElt, context=contextID, elementName=dateElt.prefixedName, value=dateText) #6.5.4 scenario hasSegment = XmlUtil.hasChild(context, XbrlConst.xbrli, "segment") hasScenario = XmlUtil.hasChild(context, XbrlConst.xbrli, "scenario") notAllowed = None if disclosureSystem.contextElement == "segment" and hasScenario: notAllowed = _("Scenario") elif disclosureSystem.contextElement == "scenario" and hasSegment: notAllowed = _("Segment") elif disclosureSystem.contextElement == "either" and hasSegment and hasScenario: notAllowed = _("Both segment and scenario") elif disclosureSystem.contextElement == "none" and (hasSegment or hasScenario): notAllowed = _("Neither segment nor scenario") if notAllowed: if validateEFMpragmatic: contextsWithDisallowedOCEs.append(context) else: modelXbrl.error(("EFM.6.05.04", "GFM.1.02.04", "SBR.NL.2.3.5.06"), _("%(elementName)s element not allowed in context Id: %(context)s"), modelObject=context, elementName=notAllowed, context=contextID, count=1) #6.5.5 segment only explicit dimensions for contextName in {"segment": ("{http://www.xbrl.org/2003/instance}segment",), "scenario": ("{http://www.xbrl.org/2003/instance}scenario",), "either": ("{http://www.xbrl.org/2003/instance}segment","{http://www.xbrl.org/2003/instance}scenario"), "both": ("{http://www.xbrl.org/2003/instance}segment","{http://www.xbrl.org/2003/instance}scenario"), "none": [], None:[] }[disclosureSystem.contextElement]: for segScenElt in context.iterdescendants(contextName): if isinstance(segScenElt,ModelObject): childTags = ", ".join([child.prefixedName for child in segScenElt.iterchildren() if isinstance(child,ModelObject) and child.tag != "{http://xbrl.org/2006/xbrldi}explicitMember"]) if len(childTags) > 0: if validateEFMpragmatic: contextsWithDisallowedOCEcontent.append(context) else: modelXbrl.error(("EFM.6.05.05", "GFM.1.02.05"), _("%(elementName)s of context Id %(context)s has disallowed content: %(content)s"), modelObject=context, context=contextID, content=childTags, elementName=contextName.partition("}")[2].title()) #6.5.38 period forever if context.isForeverPeriod: self.modelXbrl.error("EFM.6.05.38", _("Context %(contextID)s has a forever period."), modelObject=context, contextID=contextID) if validateEFMpragmatic: # output combined count message if contextsWithDisallowedOCEs: modelXbrl.error(("EFM.6.05.04", "GFM.1.02.04"), _("%(count)s contexts contain disallowed %(elementName)s: %(context)s"), modelObject=contextsWithDisallowedOCEs, elementName=notAllowed, count=len(contextsWithDisallowedOCEs), context=', '.join(c.id for c in contextsWithDisallowedOCEs)) if contextsWithDisallowedOCEcontent: modelXbrl.error(("EFM.6.05.05", "GFM.1.02.05"), _("%(count)s contexts contain disallowed %(elementName)s content: %(context)s"), modelObject=contextsWithDisallowedOCEcontent, elementName=disclosureSystem.contextElement, count=len(contextsWithDisallowedOCEcontent), context=', '.join(c.id for c in contextsWithDisallowedOCEcontent)) del uniqueContextHashes, contextsWithDisallowedOCEs, contextsWithDisallowedOCEcontent self.modelXbrl.profileActivity("... filer context checks", minTimeToShow=1.0) #fact items from standard context (no dimension) amendmentDescription = None amendmentDescriptionFact = None amendmentFlag = None amendmentFlagFact = None documentPeriodEndDate = None documentPeriodEndDateFact = None documentType = None documentTypeFact = None deiItems = {} deiFacts = {} commonSharesItemsByStockClass = defaultdict(list) commonSharesClassMembers = None hasDefinedStockAxis = False hasCommonSharesOutstandingDimensionedFactWithDefaultStockClass = False commonSharesClassUndefinedMembers = None commonStockMeasurementDatetime = None deiCheckLocalNames = { "EntityRegistrantName", "EntityCommonStockSharesOutstanding", "EntityCurrentReportingStatus", "EntityVoluntaryFilers", disclosureSystem.deiCurrentFiscalYearEndDateElement, "EntityFilerCategory", "EntityWellKnownSeasonedIssuer", "EntityPublicFloat", disclosureSystem.deiDocumentFiscalYearFocusElement, "DocumentFiscalPeriodFocus", "EntityReportingCurrencyISOCode", # for SD } #6.5.8 unused contexts for f in modelXbrl.facts: factContextID = f.contextID contextIDs.discard(factContextID) context = f.context factQname = f.qname # works for both inline and plain instances factElementName = factQname.localName if disclosureSystem.deiNamespacePattern is not None: factInDeiNamespace = disclosureSystem.deiNamespacePattern.match(factQname.namespaceURI) else: factInDeiNamespace = None # standard dei items from required context if context is not None: # tests do not apply to tuples if not context.hasSegment and not context.hasScenario: #default context if factInDeiNamespace: value = f.value if factElementName == disclosureSystem.deiAmendmentFlagElement: amendmentFlag = value amendmentFlagFact = f elif factElementName == "AmendmentDescription": amendmentDescription = value amendmentDescriptionFact = f elif factElementName == disclosureSystem.deiDocumentPeriodEndDateElement: documentPeriodEndDate = value documentPeriodEndDateFact = f commonStockMeasurementDatetime = context.endDatetime elif factElementName == "DocumentType": documentType = value documentTypeFact = f elif factElementName == disclosureSystem.deiFilerIdentifierElement: deiItems[factElementName] = value if entityIdentifierValue != value: self.modelXbrl.error(("EFM.6.05.23", "GFM.3.02.02"), _("dei:%(elementName)s %(value)s must match the context entity identifier %(entityIdentifier)s"), modelObject=f, elementName=disclosureSystem.deiFilerIdentifierElement, value=value, entityIdentifier=entityIdentifierValue) if paramFilerIdentifiers and value not in paramFilerIdentifiers: self.modelXbrl.error(("EFM.6.05.23.submissionIdentifier", "GFM.3.02.02"), _("dei:%(elementName)s %(value)s must match submission: %(filerIdentifier)s"), modelObject=f, elementName=disclosureSystem.deiFilerIdentifierElement, value=value, filerIdentifier=",".join(paramFilerIdentifiers)) elif paramFilerIdentifier and value != paramFilerIdentifier: self.modelXbrl.error(("EFM.6.05.23.submissionIdentifier", "GFM.3.02.02"), _("dei:%(elementName)s %(value)s must match submission: %(filerIdentifier)s"), modelObject=f, elementName=disclosureSystem.deiFilerIdentifierElement, value=value, filerIdentifier=paramFilerIdentifier) elif factElementName == disclosureSystem.deiFilerNameElement: deiItems[factElementName] = value if paramFilerIdentifiers and paramFilerNames and entityIdentifierValue in paramFilerIdentifiers: prefix = paramFilerNames[paramFilerIdentifiers.index(entityIdentifierValue)] if not value.lower().startswith(prefix.lower()): self.modelXbrl.error(("EFM.6.05.24", "GFM.3.02.02"), _("dei:%(elementName)s %(prefix)s should be a case-insensitive prefix of: %(value)s"), modelObject=f, elementName=disclosureSystem.deiFilerNameElement, prefix=prefix, value=value) elif factElementName in deiCheckLocalNames: deiItems[factElementName] = value deiFacts[factElementName] = f if (self.requiredContext is None and context.isStartEndPeriod and context.startDatetime is not None and context.endDatetime is not None): self.requiredContext = context else: # segment present isEntityCommonStockSharesOutstanding = factElementName == "EntityCommonStockSharesOutstanding" hasClassOfStockMember = False # note all concepts used in explicit dimensions for dimValue in context.qnameDims.values(): if dimValue.isExplicit: dimConcept = dimValue.dimension memConcept = dimValue.member for dConcept in (dimConcept, memConcept): if dConcept is not None: conceptsUsed[dConcept] = False if (isEntityCommonStockSharesOutstanding and dimConcept is not None and dimConcept.name == "StatementClassOfStockAxis"): commonSharesItemsByStockClass[memConcept.qname].append(f) ''' per discussion with <NAME>, remove use of LB defined members from this test if commonSharesClassMembers is None: commonSharesClassMembers, hasDefinedStockAxis = self.getDimMembers(dimConcept) if not hasDefinedStockAxis: # no def LB for stock axis, note observed members commonSharesClassMembers.add(memConcept.qname) #following is replacement:''' if commonSharesClassMembers is None: commonSharesClassMembers = set() commonSharesClassMembers.add(memConcept.qname) # only note the actually used members, not any defined members #end of replacement hasClassOfStockMember = True if isEntityCommonStockSharesOutstanding and not hasClassOfStockMember: hasCommonSharesOutstandingDimensionedFactWithDefaultStockClass = True # absent dimension, may be no def LB if self.validateEFM: # note that this is in the "if context is not None" region for pluginXbrlMethod in pluginClassMethods("Validate.EFM.Fact"): pluginXbrlMethod(self, f) #6.5.17 facts with precision concept = f.concept if concept is None: modelXbrl.error(("EFM.6.04.03", "GFM.2.01.01"), _("Fact %(fact)s of context %(contextID)s has an XBRL error"), modelObject=f, fact=f.qname, contextID=factContextID) else: # note fact concpts used conceptsUsed[concept] = False if concept.isNumeric: if f.precision: modelXbrl.error(("EFM.6.05.17", "GFM.1.02.16"), _("Numeric fact %(fact)s of context %(contextID)s has a precision attribute '%(precision)s'"), modelObject=f, fact=f.qname, contextID=factContextID, precision=f.precision) #6.5.25 domain items as facts if self.validateEFM and concept.type is not None and concept.type.isDomainItemType: modelXbrl.error("EFM.6.05.25", _("Domain item %(fact)s in context %(contextID)s may not appear as a fact"), modelObject=f, fact=f.qname, contextID=factContextID) if validateInlineXbrlGFM: if f.localName == "nonFraction" or f.localName == "fraction": syms = signOrCurrencyPattern.findall(f.text) if syms: modelXbrl.error(("EFM.N/A", "GFM.1.10.18"), 'ix-numeric Fact %(fact)s of context %(contextID)s has a sign or currency symbol "%(value)s" in "%(text)s"', modelObject=f, fact=f.qname, contextID=factContextID, value="".join(s for t in syms for s in t), text=f.text) self.entityRegistrantName = deiItems.get("EntityRegistrantName") # used for name check in 6.8.6 self.modelXbrl.profileActivity("... filer fact checks", minTimeToShow=1.0) if len(contextIDs) > 0: # check if contextID is on any undefined facts for undefinedFact in modelXbrl.undefinedFacts: contextIDs.discard(undefinedFact.get("contextRef")) if len(contextIDs) > 0: modelXbrl.error(("EFM.6.05.08", "GFM.1.02.08"), _("The instance document contained a context(s) %(contextIDs)s that was(are) not used in any fact."), modelXbrl=modelXbrl, contextIDs=", ".join(contextIDs)) #6.5.9, .10 start-end durations if disclosureSystem.GFM or \ disclosureSystemVersion[0] >= 27 or \ documentType in { '20-F', '40-F', '10-Q', '10-QT', '10-K', '10-KT', '10', 'N-CSR', 'N-CSRS', 'N-Q', '20-F/A', '40-F/A', '10-Q/A', '10-QT/A', '10-K/A', '10-KT/A', '10/A', 'N-CSR/A', 'N-CSRS/A', 'N-Q/A'}: ''' for c1 in contexts: if c1.isStartEndPeriod: end1 = c1.endDatetime start1 = c1.startDatetime for c2 in contexts: if c1 != c2 and c2.isStartEndPeriod: duration = end1 - c2.startDatetime if duration > datetime.timedelta(0) and duration <= datetime.timedelta(1): modelXbrl.error(("EFM.6.05.09", "GFM.1.2.9"), _("Context {0} endDate and {1} startDate have a duration of one day; that is inconsistent with document type {2}."), c1.id, c2.id, documentType), "err", ) if self.validateEFM and c1 != c2 and c2.isInstantPeriod: duration = c2.endDatetime - start1 if duration > datetime.timedelta(0) and duration <= datetime.timedelta(1): modelXbrl.error( _("Context {0} startDate and {1} end (instant) have a duration of one day; that is inconsistent with document type {2}."), c1.id, c2.id, documentType), "err", "EFM.6.05.10") ''' durationCntxStartDatetimes = defaultdict(set) for cntx in contexts: if cntx.isStartEndPeriod and cntx.startDatetime is not None: durationCntxStartDatetimes[cntx.startDatetime].add(cntx) probStartEndCntxsByEnd = defaultdict(set) startEndCntxsByEnd = defaultdict(set) probInstantCntxsByEnd = defaultdict(set) probCntxs = set() for cntx in contexts: end = cntx.endDatetime if end is not None: if cntx.isStartEndPeriod: thisStart = cntx.startDatetime for otherStart, otherCntxs in durationCntxStartDatetimes.items(): duration = end - otherStart if duration > datetime.timedelta(0) and duration <= datetime.timedelta(1): if disclosureSystemVersion[0] < 27: probCntxs |= otherCntxs - {cntx} elif thisStart is not None and end - thisStart > datetime.timedelta(1): for otherCntx in otherCntxs: if otherCntx is not cntx and otherCntx.endDatetime != end and otherStart != cntx.startDatetime: probCntxs.add(otherCntx) if probCntxs: probStartEndCntxsByEnd[end] |= probCntxs startEndCntxsByEnd[end] |= {cntx} probCntxs.clear() if self.validateEFM and cntx.isInstantPeriod: for otherStart, otherCntxs in durationCntxStartDatetimes.items(): duration = end - otherStart if duration > datetime.timedelta(0) and duration <= datetime.timedelta(1): probCntxs |= otherCntxs if probCntxs: probInstantCntxsByEnd[end] |= ( probCntxs | {cntx} ) probCntxs.clear() del probCntxs for end, probCntxs in probStartEndCntxsByEnd.items(): endCntxs = startEndCntxsByEnd[end] modelXbrl.error(("EFM.6.05.09", "GFM.1.2.9"), _("Context endDate %(endDate)s, and startDate(s) have a duration of one day, for end context(s): %(endContexts)s and start context(s): %(startContexts)s; that is inconsistent with document type %(documentType)s."), modelObject=probCntxs, endDate=XmlUtil.dateunionValue(end, subtractOneDay=True), endContexts=', '.join(sorted(c.id for c in endCntxs)), startContexts=', '.join(sorted(c.id for c in probCntxs)), documentType=documentType) if disclosureSystemVersion[0] < 27: for end, probCntxs in probInstantCntxsByEnd.items(): modelXbrl.error("EFM.6.05.10", _("Context instant date %(endDate)s startDate has a duration of one day,with end (instant) of context(s): %(contexts)s; that is inconsistent with document type %(documentType)s."), modelObject=probCntxs, endDate=XmlUtil.dateunionValue(end, subtractOneDay=True), contexts=', '.join(sorted(c.id for c in probCntxs)), documentType=documentType) del probStartEndCntxsByEnd, startEndCntxsByEnd, probInstantCntxsByEnd del durationCntxStartDatetimes self.modelXbrl.profileActivity("... filer instant-duration checks", minTimeToShow=1.0) #6.5.19 required context foundRequiredContext = False for c in contexts: if c.isStartEndPeriod: if not c.hasSegment: foundRequiredContext = True break if not foundRequiredContext: modelXbrl.error(("EFM.6.05.19", "GFM.1.02.18"), _("Required context (no segment) not found for document type %(documentType)s."), modelObject=documentTypeFact, documentType=documentType) #6.5.11 equivalent units uniqueUnitHashes = {} for unit in self.modelXbrl.units.values(): h = unit.hash if h in uniqueUnitHashes: if unit.isEqualTo(uniqueUnitHashes[h]): modelXbrl.error(("EFM.6.05.11", "GFM.1.02.10"), _("Units %(unitID)s and %(unitID2)s are equivalent."), modelObject=(unit, uniqueUnitHashes[h]), unitID=unit.id, unitID2=uniqueUnitHashes[h].id) else: uniqueUnitHashes[h] = unit if self.validateEFM: # 6.5.38 for measureElt in unit.iterdescendants(tag="{http://www.xbrl.org/2003/instance}measure"): if isinstance(measureElt.xValue, ModelValue.QName) and len(measureElt.xValue.localName) > 65: l = len(measureElt.xValue.localName.encode("utf-8")) if l > 200: modelXbrl.error("EFM.6.05.36", _("Unit has a measure with localName length (%(length)s) over 200 bytes long in utf-8, %(measure)s."), modelObject=measureElt, unitID=unit.id, measure=measureElt.xValue.localName, length=l) del uniqueUnitHashes self.modelXbrl.profileActivity("... filer unit checks", minTimeToShow=1.0) # EFM.6.05.14, GFM.1.02.13 xml:lang tests, as of v-17, full default lang is compared #if self.validateEFM: # factLangStartsWith = disclosureSystem.defaultXmlLang[:2] #else: # factLangStartsWith = disclosureSystem.defaultXmlLang requiredFactLang = disclosureSystem.defaultXmlLang #6.5.12 equivalent facts factsForLang = {} factForConceptContextUnitLangHash = {} keysNotDefaultLang = {} iF1 = 1 for f1 in modelXbrl.facts: # build keys table for 6.5.14 if not f1.isNil: langTestKey = "{0},{1},{2}".format(f1.qname, f1.contextID, f1.unitID) factsForLang.setdefault(langTestKey, []).append(f1) lang = f1.xmlLang if lang and lang != requiredFactLang: # not lang.startswith(factLangStartsWith): keysNotDefaultLang[langTestKey] = f1 # 6.5.37 test (insignificant digits due to rounding) if f1.isNumeric and f1.decimals and f1.decimals != "INF" and not f1.isNil and getattr(f1,"xValid", 0) == 4: try: insignificance = insignificantDigits(f1.xValue, decimals=f1.decimals) if insignificance: # if not None, returns (truncatedDigits, insiginficantDigits) modelXbrl.error(("EFM.6.05.37", "GFM.1.02.26"), _("Fact %(fact)s of context %(contextID)s decimals %(decimals)s value %(value)s has nonzero digits in insignificant portion %(insignificantDigits)s."), modelObject=f1, fact=f1.qname, contextID=f1.contextID, decimals=f1.decimals, value=f1.xValue, truncatedDigits=insignificance[0], insignificantDigits=insignificance[1]) except (ValueError,TypeError): modelXbrl.error(("EFM.6.05.37", "GFM.1.02.26"), _("Fact %(fact)s of context %(contextID)s decimals %(decimals)s value %(value)s causes Value Error exception."), modelObject=f1, fact=f1.qname, contextID=f1.contextID, decimals=f1.decimals, value=f1.value) # 6.5.12 test h = f1.conceptContextUnitLangHash if h in factForConceptContextUnitLangHash: f2 = factForConceptContextUnitLangHash[h] if f1.qname == f2.qname and \ f1.contextID == f2.contextID and \ f1.unitID == f2.unitID and \ f1.xmlLang == f2.xmlLang: modelXbrl.error(("EFM.6.05.12", "GFM.1.02.11"), "Facts %(fact)s of context %(contextID)s and %(contextID2)s are equivalent.", modelObject=(f1, f2), fact=f1.qname, contextID=f1.contextID, contextID2=f2.contextID) else: factForConceptContextUnitLangHash[h] = f1 iF1 += 1 del factForConceptContextUnitLangHash self.modelXbrl.profileActivity("... filer fact checks", minTimeToShow=1.0) #6.5.14 facts without english text for keyNotDefaultLang, factNotDefaultLang in keysNotDefaultLang.items(): anyDefaultLangFact = False for fact in factsForLang[keyNotDefaultLang]: if fact.xmlLang == requiredFactLang: #.startswith(factLangStartsWith): anyDefaultLangFact = True break if not anyDefaultLangFact: self.modelXbrl.error(("EFM.6.05.14", "GFM.1.02.13"), _("Fact %(fact)s of context %(contextID)s has text of xml:lang '%(lang)s' without corresponding %(lang2)s text"), modelObject=factNotDefaultLang, fact=factNotDefaultLang.qname, contextID=factNotDefaultLang.contextID, lang=factNotDefaultLang.xmlLang, lang2=requiredFactLang) # factLangStartsWith) #label validations if not labelsRelationshipSet: self.modelXbrl.error(("EFM.6.10.01.missingLabelLinkbase", "GFM.1.05.01"), _("A label linkbase is required but was not found"), modelXbrl=modelXbrl) elif disclosureSystem.defaultXmlLang: # cannot check if no defaultXmlLang specified for concept in conceptsUsed.keys(): self.checkConceptLabels(modelXbrl, labelsRelationshipSet, disclosureSystem, concept) #6.5.15 facts with xml in text blocks if self.validateEFMorGFM: ValidateFilingText.validateTextBlockFacts(modelXbrl) if amendmentFlag is None: modelXbrl.log("WARNING" if validateEFMpragmatic else "ERROR", ("EFM.6.05.20.missingAmendmentFlag", "GFM.3.02.01"), _("%(elementName)s is not found in the default context"), modelXbrl=modelXbrl, elementName=disclosureSystem.deiAmendmentFlagElement) if not documentPeriodEndDate: modelXbrl.error(("EFM.6.05.20.missingDocumentPeriodEndDate", "GFM.3.02.01"), _("%(elementName)s is required and was not found in the default context"), modelXbrl=modelXbrl, elementName=disclosureSystem.deiDocumentPeriodEndDateElement) else: dateMatch = datePattern.match(documentPeriodEndDate) if not dateMatch or dateMatch.lastindex != 3: modelXbrl.error(("EFM.6.05.20", "GFM.3.02.01"), _("%(elementName)s is in the default context is incorrect '%(date)s'"), modelXbrl=modelXbrl, elementName=disclosureSystem.deiDocumentPeriodEndDateElement, date=documentPeriodEndDate) self.modelXbrl.profileActivity("... filer label and text checks", minTimeToShow=1.0) if self.validateEFM: if amendmentFlag == "true" and amendmentDescription is None: modelXbrl.log("WARNING" if validateEFMpragmatic else "ERROR", "EFM.6.05.20.missingAmendmentDescription", _("AmendmentFlag is true in context %(contextID)s so AmendmentDescription is also required"), modelObject=amendmentFlagFact, contextID=amendmentFlagFact.contextID if amendmentFlagFact is not None else "unknown") if amendmentDescription is not None and amendmentFlag != "true": modelXbrl.log("WARNING" if validateEFMpragmatic else "ERROR", "EFM.6.05.20.extraneous", _("AmendmentDescription can not be provided when AmendmentFlag is not true in context %(contextID)s"), modelObject=amendmentDescriptionFact, contextID=amendmentDescriptionFact.contextID) if documentType is None: modelXbrl.error("EFM.6.05.20.missingDocumentType", _("DocumentType is required and was not found in the default context"), modelXbrl=modelXbrl) elif documentType not in { "497", "10-12B", "10-12B/A", "10-12G", "10-12G/A", "10-K/A", "10-KT", "10-K", "10-KT/A", "10-Q/A", "10-QT", "10-Q", "10-QT/A", "20-F", "20-F/A", "20FR12B", "20FR12B/A", "20FR12G", "20FR12G/A", "40-F", "40-F/A", "40FR12B", "40FR12B/A", "40FR12G", "40FR12G/A", "485BPOS", "6-K", "6-K/A", "8-K", "8-K/A", "8-K12B", "8-K12B/A", "8-K12G3", "8-K12G3/A", "8-K15D5", "8-K15D5/A", "F-1/A", "F-10", "F-10/A", "F-10EF", "F-10POS", "F-3/A", "F-3ASR", "F-3D", "F-3DPOS", "F-4 POS", "F-4/A", "F-4EF", "F-9 POS", "F-9/A", "F-9", "F-9EF", "N-1A", "N-1A/A", "N-CSR", "N-CSR/A", "N-CSRS", "N-CSRS/A", "N-Q", "N-Q/A", "F-1", "F-6", "POS AM", "SD", "SD/A", "S-20", "S-B", "F-4", "POS EX", "F-1MEF", "F-3MEF", "F-4MEF", "POS462B", "POS462C", "S-BMEF", "F-3", "Other", "POSASR", "S-1", "S-1/A", "S-11", "S-11/A", "S-11MEF", "S-1MEF", "S-3/A", "S-3ASR", "S-3D", "S-3", "S-3DPOS", "S-3MEF", "S-4 POS", "S-4/A", "S-4", "S-4EF", "S-4MEF", "SD", "SD/A", "SP 15D2", "SP 15D2/A" }: modelXbrl.error("EFM.6.05.20.documentTypeValue", _("DocumentType '%(documentType)s' of context %(contextID)s was not recognized"), modelObject=documentTypeFact, contextID=documentTypeFact.contextID, documentType=documentType) elif submissionType: expectedDocumentTypes = { "10-12B": ("10-12B", "Other"), "10-12B/A": ("10-12B/A", "Other"), "10-12G": ("10-12G", "Other"), "10-12G/A": ("10-12G/A", "Other"), "10-K": ("10-K",), "10-K/A": ("10-K", "10-K/A"), "10-KT": ("10-K","10-KT","Other"), "10-KT/A": ("10-K", "10-KT", "10-KT/A", "Other"), "10-Q": ("10-Q",), "10-Q/A": ("10-Q", "10-Q/A"), "10-QT": ("10-Q", "10-QT", "Other"), "10-QT/A": ("10-Q", "10-QT", "10-QT/A", "Other"), "20-F": ("20-F",), "20-F/A": ("20-F", "20-F/A"), "20FR12B": ("20FR12B", "Other"), "20FR12B/A": ("20FR12B/A", "Other"), "20FR12G": ("20FR12G", "Other"), "20FR12G/A": ("20FR12G/A", "Other"), "40-F": ("40-F",), "40-F/A": ("40-F", "40-F/A"), "40FR12B": ("40FR12B", "Other"), "40FR12B/A": ("40FR12B/A", "Other"), "40FR12G": ("40FR12G", "Other"), "40FR12G/A": ("40FR12G/A", "Other"), "485BPOS": ("485BPOS",), "497": ("497", "Other"), "6-K": ("6-K",), "6-K/A": ("6-K", "6-K/A"), "8-K": ("8-K",), "8-K/A": ("8-K", "8-K/A"), "8-K12B": ("8-K12B", "Other"), "8-K12B/A": ("8-K12B/A", "Other"), "8-K12G3": ("8-K12G3", "Other"), "8-K12G3/A": ("8-K12G3/A", "Other"), "8-K15D5": ("8-K15D5", "Other"), "8-K15D5/A": ("8-K15D5/A", "Other"), "F-1": ("F-1",), "F-1/A": ("F-1", "F-1/A"), "F-10": ("F-10",), "F-10/A": ("F-10", "F-10/A"), "F-10EF": ("F-10EF", "Other"), "F-10POS": ("F-10POS", "Other"), "F-1MEF": ("F-1MEF",), "F-3": ("F-3",), "F-3/A": ("F-3", "F-3/A"), "F-3ASR": ("F-3", "F-3ASR"), "F-3D": ("F-3", "F-3D"), "F-3DPOS": ("F-3", "F-3DPOS"), "F-3MEF": ("F-3MEF",), "F-4": ("F-4",), "F-4 POS": ("F-4", "F-4 POS"), "F-4/A": ("F-4", "F-4/A"), "F-4EF": ("F-4", "F-4EF"), "F-4MEF": ("F-4MEF",), "F-9": ("F-9",), "F-9 POS": ("F-9", "F-9 POS"), "F-9/A": ("F-9", "F-9/A"), "F-9EF": ("F-9", "F-9EF"), "N-1A": ("N-1A",), "N-1A/A": ("N-1A/A", "Other"), "N-CSR": ("N-CSR",), "N-CSR/A": ("N-CSR/A",), "N-CSRS": ("N-CSRS",), "N-CSRS/A": ("N-CSRS/A",), "N-Q": ("N-Q",), "N-Q/A": ("N-Q/A",), "POS AM": ("F-1", "F-3", "F-4", "F-6", "Other", "POS AM", "S-1", "S-11", "S-20", "S-3", "S-4", "S-B"), "POS EX": ("F-3", "F-4", "Other", "POS EX", "S-1", "S-3", "S-4"), "POS462B": ("F-1MEF", "F-3MEF", "F-4MEF", "Other", "POS462B", "POS462C", "S-11MEF", "S-1MEF", "S-3MEF", "S-BMEF"), "POSASR": ("F-3", "Other", "POSASR", "S-3"), "S-1": ("S-1",), "S-1/A": ("S-1", "S-1/A"), "S-11": ("S-11",), "S-11/A": ("S-11/A",), "S-11MEF": ("S-11MEF",), "S-1MEF": ("S-1MEF",), "S-3": ("S-3",), "S-3/A": ("S-3", "S-3/A"), "S-3ASR": ("S-3", "S-3ASR"), "S-3D": ("S-3", "S-3D"), "S-3DPOS": ("S-3", "S-3DPOS"), "S-3MEF": ("S-3MEF",), "S-4": ("S-4",), "S-4 POS": ("S-4", "S-4 POS"), "S-4/A": ("S-4", "S-4/A"), "S-4EF": ("S-4", "S-4EF"), "S-4MEF": ("S-4MEF",), "SD": ("SD",), "SD/A": ("SD/A",), "SP 15D2": ("SP 15D2",), "SP 15D2/A": ("SP 15D2/A",) }.get(submissionType) if expectedDocumentTypes and documentType not in expectedDocumentTypes: modelXbrl.error("EFM.6.05.20.submissionDocumentType" if self.exhibitType != "EX-2.01" else "EFM.6.23.03", _("DocumentType '%(documentType)s' of context %(contextID)s inapplicable to submission form %(submissionType)s"), modelObject=documentTypeFact, contextID=documentTypeFact.contextID, documentType=documentType, submissionType=submissionType, messageCodes=("EFM.6.05.20.submissionDocumentType", "EFM.6.23.03")) if self.exhibitType: if (documentType in ("SD", "SD/A")) != (self.exhibitType == "EX-2.01"): modelXbrl.error({"EX-100":"EFM.6.23.04", "EX-101":"EFM.6.23.04", "EX-2.01":"EFM.6.23.05"}.get(self.exhibitType,"EX-101"), _("The value for dei:DocumentType, %(documentType)s, is not allowed for %(exhibitType)s attachments."), modelObject=documentTypeFact, contextID=documentTypeFact.contextID, documentType=documentType, exhibitType=self.exhibitType, messageCodes=("EFM.6.23.04", "EFM.6.23.04", "EFM.6.23.05")) # 6.5.21 for doctypesRequired, deiItemsRequired in ( (("10-K", "10-KT", "10-Q", "10-QT", "20-F", "40-F", "10-K/A", "10-KT/A", "10-Q/A", "10-QT/A", "20-F/A", "40-F/A", "6-K", "NCSR", "N-CSR", "N-CSRS", "N-Q", "6-K/A", "NCSR/A", "N-CSR/A", "N-CSRS/A", "N-Q/A", "10", "S-1", "S-3", "S-4", "S-11", "POS AM", "10/A", "S-1/A", "S-3/A", "S-4/A", "S-11/A", "8-K", "F-1", "F-3", "F-10", "497", "485BPOS", "8-K/A", "F-1/A", "F-3/A", "F-10/A", "Other"), ("EntityRegistrantName", "EntityCentralIndexKey")), (("10-K", "10-KT", "20-F", "40-F", "10-K/A", "10-KT/A", "20-F/A", "40-F/A"), ("EntityCurrentReportingStatus",)), (("10-K", "10-KT", "10-K/A", "10-KT/A",), ("EntityVoluntaryFilers", "EntityPublicFloat")), (("10-K", "10-KT", "10-Q", "10-QT", "20-F", "40-F", "10-K/A", "10-KT/A", "10-Q/A", "10-QT/A", "20-F/A", "40-F/A", "6-K", "NCSR", "N-CSR", "N-CSRS", "N-Q", "6-K/A", "NCSR/A", "N-CSR/A", "N-CSRS/A", "N-Q/A"), ("CurrentFiscalYearEndDate", "DocumentFiscalYearFocus", "DocumentFiscalPeriodFocus")), (("10-K", "10-KT", "10-Q", "10-QT", "20-F", "10-K/A", "10-KT/A", "10-Q/A", "10-QT/A", "20-F/A", "10", "S-1", "S-3", "S-4", "S-11", "POS AM", "10/A", "S-1/A", "S-3/A", "S-4/A", "S-11/A"), ("EntityFilerCategory",)), (("10-K", "10-KT", "20-F", "10-K/A", "10-KT/A", "20-F/A"), ("EntityWellKnownSeasonedIssuer",)), (("SD", "SD/A"), ("EntityReportingCurrencyISOCode", )) ): if documentType in doctypesRequired: for deiItem in deiItemsRequired: if deiItem not in deiItems or not deiItems[deiItem]: #must exist and value must be non-empty (incl not nil) modelXbrl.log(("WARNING" if validateEFMpragmatic and deiItem in { "CurrentFiscalYearEndDate", "DocumentFiscalPeriodFocus", "DocumentFiscalYearFocus", "EntityCurrentReportingStatus", "EntityFilerCategory", "EntityPublicFloat", "EntityVoluntaryFilers", "EntityWellKnownSeasonedIssuer" } else "ERROR"), ("EFM.6.05.21.{0}".format(deiItem) if validateEFMpragmatic and deiItem in { "CurrentFiscalYearEndDate", "DocumentFiscalPeriodFocus", "DocumentFiscalYearFocus", "EntityRegistrantName", "EntityCentralIndexKey", "EntityCurrentReportingStatus", "EntityFilerCategory", "EntityPublicFloat", "EntityVoluntaryFilers", "EntityWellKnownSeasonedIssuer" } else "EFM.6.23.36" if deiItem == "EntityReportingCurrencyISOCode" else "EFM.6.05.21"), _("dei:%(elementName)s is required for DocumentType '%(documentType)s' of context %(contextID)s"), modelObject=documentTypeFact, contextID=documentTypeFact.contextID, documentType=documentType, elementName=deiItem, messageCodes=("EFM.6.05.21.CurrentFiscalYearEndDate", "EFM.6.05.21.DocumentFiscalPeriodFocus", "EFM.6.05.21.DocumentFiscalYearFocus", "EFM.6.05.21.EntityRegistrantName", "EFM.6.05.21.EntityCentralIndexKey", "EFM.6.05.21.EntityCurrentReportingStatus", "EFM.6.05.21.EntityFilerCategory", "EFM.6.05.21.EntityPublicFloat", "EFM.6.05.21.EntityVoluntaryFilers", "EFM.6.05.21.EntityWellKnownSeasonedIssuer", "EFM.6.23.36", "EFM.6.05.21")) if documentType in {"10-K", "10-KT", "10-Q", "10-QT", "20-F", "40-F", "10-K/A", "10-KT/A", "10-Q/A", "10-QT/A", "20-F/A", "40-F/A"}: defaultContextSharesOutstandingValue = deiItems.get("EntityCommonStockSharesOutstanding") errLevel = "WARNING" if validateEFMpragmatic else "ERROR" if commonSharesClassMembers: if defaultContextSharesOutstandingValue: # checks that it exists and is not empty or nil modelXbrl.log(errLevel, "EFM.6.05.26", _("dei:EntityCommonStockSharesOutstanding is required for DocumentType '%(documentType)s' but not in the default context because there are multiple classes of common shares"), modelObject=documentTypeFact, contextID=documentTypeFact.contextID, documentType=documentType) elif len(commonSharesClassMembers) == 1: # and not hasDefinedStockAxis: modelXbrl.log(errLevel, "EFM.6.05.26", _("dei:EntityCommonStockSharesOutstanding is required for DocumentType '%(documentType)s' but but a default-context because only one class of stock"), modelObject=documentTypeFact, documentType=documentType) ''' per Dean R, this test no longer makes sense because we don't check against def LB defined members missingClasses = commonSharesClassMembers - _DICT_SET(commonSharesItemsByStockClass.keys()) if missingClasses: modelXbrl.log(errLevel, "EFM.6.05.26", _("dei:EntityCommonStockSharesOutstanding is required for DocumentType '%(documentType)s' but missing in these stock classes: %(stockClasses)s"), modelObject=documentTypeFact, documentType=documentType, stockClasses=", ".join([str(c) for c in missingClasses])) ''' for mem, facts in commonSharesItemsByStockClass.items(): if len(facts) != 1: modelXbrl.log(errLevel, "EFM.6.05.26", _("dei:EntityCommonStockSharesOutstanding is required for DocumentType '%(documentType)s' but only one per stock class %(stockClass)s"), modelObject=documentTypeFact, documentType=documentType, stockClass=mem) ''' removed per ARELLE-124 (should check measurement date vs report date) elif facts[0].context.instantDatetime != commonStockMeasurementDatetime: modelXbrl.log(errLevel, "EFM.6.05.26", _("dei:EntityCommonStockSharesOutstanding is required for DocumentType '%(documentType)s' in stock class %(stockClass)s with measurement date %(date)s"), modelObject=documentTypeFact, documentType=documentType, stockClass=mem, date=commonStockMeasurementDatetime) ''' elif hasCommonSharesOutstandingDimensionedFactWithDefaultStockClass and not defaultContextSharesOutstandingValue: modelXbrl.log(errLevel, "EFM.6.05.26", _("dei:EntityCommonStockSharesOutstanding is required for DocumentType '%(documentType)s' but missing for a non-default-context fact"), modelObject=documentTypeFact, documentType=documentType) elif not defaultContextSharesOutstandingValue: # missing, empty, or nil modelXbrl.log(errLevel, "EFM.6.05.26", _("dei:EntityCommonStockSharesOutstanding is required for DocumentType '%(documentType)s' in the default context because there are not multiple classes of common shares"), modelObject=documentTypeFact, documentType=documentType) if documentType in ("SD", "SD/A"): # SD documentType self.modelXbrl.profileActivity("... filer required facts checks (other than SD)", minTimeToShow=1.0) rxdNs = None # find RXD schema rxdDoc = None hasRxdPre = hasRxdDef = False for rxdLoc in disclosureSystem.familyHrefs["RXD"]: rxdUri = rxdLoc.href if rxdUri in modelXbrl.urlDocs: if rxdUri.endswith(".xsd") and rxdLoc.elements == "1": if rxdNs is None: rxdDoc = modelXbrl.urlDocs[rxdUri] rxdNs = rxdDoc.targetNamespace else: modelXbrl.error("EFM.6.23.10", _("The DTS of must use only one version of the RXD schema"), modelObject=(rxdDoc, modelXbrl.urlDocs[rxdUri]), instance=instanceName) elif "/rxd-pre-" in rxdUri: hasRxdPre = True elif "/rxd-def-" in rxdUri: hasRxdDef = True if not hasRxdPre: modelXbrl.error("EFM.6.23.08", _("The DTS must use a standard presentation linkbase from Family RXD in edgartaxonomies.xml."), modelObject=modelXbrl, instance=instanceName) if not hasRxdDef: modelXbrl.error("EFM.6.23.09", _("The DTS must use a standard definition linkbase from Family RXD in edgartaxonomies.xml."), modelObject=modelXbrl, instance=instanceName) countryNs = None deiNS = None for url, doc in modelXbrl.urlDocs.items(): if doc.type == ModelDocument.Type.SCHEMA: if url.startswith("http://xbrl.sec.gov/country/"): if countryNs is None: countryNs = doc.targetNamespace else: modelXbrl.error("EFM.6.23.11", _("The DTS must use must use only one version of the COUNTRY schema."), modelObject=(doc for url,doc in modelXbrl.urlDocs.items() if url.startswith("http://xbrl.sec.gov/country/")), instance=instanceName) if disclosureSystem.deiNamespacePattern.match(doc.targetNamespace): deiNS = doc.targetNamespace if rxdNs: qn = ModelValue.qname(rxdNs, "AmendmentNumber") if amendmentFlag == "true" and ( qn not in modelXbrl.factsByQname or not any( f.context is not None and not f.context.hasSegment for f in modelXbrl.factsByQname[qn])): modelXbrl.error("EFM.6.23.06", _("The value for dei:DocumentType, %(documentType)s, requires a value for rxd:AmendmentNumber in the Required Context."), modelObject=modelXbrl, documentType=documentType) else: modelXbrl.error("EFM.6.23.07", _("The DTS must use a standard schema from Family RXD in edgartaxonomies.xml."), modelObject=modelXbrl, instance=instanceName) class Rxd(): # fake class of rxd qnames based on discovered rxd namespace def __init__(self): for name in ("CountryAxis", "GovernmentAxis", "PaymentTypeAxis", "ProjectAxis","PmtAxis", "AllGovernmentsMember", "AllProjectsMember","BusinessSegmentAxis", "EntityDomain", "A", "Cm", "Co", "Cu", "D", "Gv", "E", "K", "Km", "P", "Payments", "Pr", "Sm"): setattr(self, name, ModelValue.qname(rxdNs, "rxd:" + name)) rxd = Rxd() f1 = deiFacts.get(disclosureSystem.deiCurrentFiscalYearEndDateElement) if f1 is not None and documentPeriodEndDateFact is not None and f1.xValid and documentPeriodEndDateFact.xValid: d = ModelValue.dateunionDate(documentPeriodEndDateFact.xValue)# is an end date, convert back to a start date without midnight part if f1.xValue.month != d.month or f1.xValue.day != d.day: modelXbrl.error("EFM.6.23.26", _("The dei:CurrentFiscalYearEndDate, %(fyEndDate)s does not match the dei:DocumentReportingPeriod %(reportingPeriod)s"), modelObject=(f1,documentPeriodEndDateFact), fyEndDate=f1.value, reportingPeriod=documentPeriodEndDateFact.value) if (documentPeriodEndDateFact is not None and documentPeriodEndDateFact.xValid and not any(f2.xValue == documentPeriodEndDateFact.xValue for f2 in modelXbrl.factsByQname[rxd.D] if f2.xValid)): modelXbrl.error("EFM.6.23.27", _("The dei:DocumentPeriodEndDate %(reportingPeriod)s has no corresponding rxd:D fact."), modelObject=documentPeriodEndDateFact, reportingPeriod=documentPeriodEndDateFact.value) for url,doc in modelXbrl.urlDocs.items(): if (url not in disclosureSystem.standardTaxonomiesDict and doc.type == ModelDocument.Type.SCHEMA): for concept in XmlUtil.children(doc.xmlRootElement, XbrlConst.xsd, "element"): name = concept.name if not concept.isAbstract and not concept.isTextBlock: modelXbrl.error("EFM.6.23.12", _("Extension concept %(concept)s is non-abstract and not a Text Block."), modelObject=concept, schemaName=doc.basename, name=concept.name, concept=concept.qname) elif name.endswith("Table") or name.endswith("Axis") or name.endswith("Domain"): modelXbrl.error("EFM.6.23.13", _("Extension concept %(concept)s is not allowed in an extension schema."), modelObject=concept, schemaName=doc.basename, name=concept.name, concept=concept.qname) self.modelXbrl.profileActivity("... SD checks 6-13, 26-27", minTimeToShow=1.0) dimDefRelSet = modelXbrl.relationshipSet(XbrlConst.dimensionDefault) dimDomRelSet = modelXbrl.relationshipSet(XbrlConst.dimensionDomain) hypDimRelSet = modelXbrl.relationshipSet(XbrlConst.hypercubeDimension) hasHypRelSet = modelXbrl.relationshipSet(XbrlConst.all) for rel in dimDomRelSet.modelRelationships: if (isinstance(rel.fromModelObject, ModelConcept) and isinstance(rel.toModelObject, ModelConcept) and not dimDefRelSet.isRelated(rel.fromModelObject, "child", rel.toModelObject)): modelXbrl.error("EFM.6.23.14", _("The target of the dimension-domain relationship in role %(linkrole)s from %(source)s to %(target)s must be the default member of %(source)s."), modelObject=(rel, rel.fromModelObject, rel.toModelObject), linkbaseName=rel.modelDocument.basename, linkrole=rel.linkrole, source=rel.fromModelObject.qname, target=rel.toModelObject.qname) domMemRelSet = modelXbrl.relationshipSet(XbrlConst.domainMember) memDim = {} def checkMemMultDims(memRel, dimRel, elt, ELR, visited): if elt not in visited: visited.add(elt) for rel in domMemRelSet.toModelObject(elt): if rel.consecutiveLinkrole == ELR and isinstance(rel.fromModelObject, ModelConcept): checkMemMultDims(memRel, None, rel.fromModelObject, rel.linkrole, visited) for rel in dimDomRelSet.toModelObject(elt): if rel.consecutiveLinkrole == ELR: dim = rel.fromModelObject mem = memRel.toModelObject if isinstance(dim, ModelConcept) and isinstance(mem, ModelConcept): if dim.qname == rxd.PaymentTypeAxis and not mem.modelDocument.targetNamespace.startswith("http://xbrl.sec.gov/rxd/"): modelXbrl.error("EFM.6.23.17", _("The member %(member)s in dimension rxd:PaymentTypeAxis in linkrole %(linkrole)s must be a QName with namespace that begins with \"http://xbrl.sec.gov/rxd/\". "), modelObject=(rel, memRel, dim, mem), member=mem.qname, linkrole=rel.linkrole) if dim.qname == rxd.CountryAxis and not mem.modelDocument.targetNamespace.startswith("http://xbrl.sec.gov/country/"): modelXbrl.error("EFM.6.23.18", _("The member %(member)s in dimension rxd:CountryAxis in linkrole %(linkrole)s must be a QName with namespace that begins with \"http://xbrl.sec.gov/country//\". "), modelObject=(rel, memRel, dim, mem), member=mem.qname, linkrole=rel.linkrole) checkMemMultDims(memRel, rel, rel.fromModelObject, rel.linkrole, visited) for rel in hypDimRelSet.toModelObject(elt): if rel.consecutiveLinkrole == ELR and isinstance(rel.fromModelObject, ModelConcept): checkMemMultDims(memRel, dimRel, rel.fromModelObject, rel.linkrole, visited) for rel in hasHypRelSet.toModelObject(elt): if rel.consecutiveLinkrole == ELR and isinstance(rel.fromModelObject, ModelConcept): linkrole = rel.linkrole mem = memRel.toModelObject if (mem,linkrole) not in memDim: memDim[mem,linkrole] = (dimRel, memRel) else: otherDimRel, otherMemRel = memDim[mem,linkrole] modelXbrl.error("EFM.6.23.16", _("The member %(member)s has two dimensions, %(dimension1)s in linkrole %(linkrole1)s and %(dimension2)s in linkrole %(linkrole2)s. "), modelObject=(dimRel, otherDimRel, memRel, otherMemRel, dimRel.fromModelObject, otherDimRel.fromModelObject), member=mem.qname, dimension1=dimRel.fromModelObject.qname, linkrole1=linkrole, dimension2=otherDimRel.fromModelObject.qname, linkrole2=otherDimRel.linkrole) visited.discard(elt) for rel in domMemRelSet.modelRelationships: if isinstance(rel.fromModelObject, ModelConcept) and isinstance(rel.toModelObject, ModelConcept): for rel2 in modelXbrl.relationshipSet(XbrlConst.domainMember, rel.consecutiveLinkrole).fromModelObject(rel.toModelObject): if rel2.fromModelObject is not None and rel2.toModelObject is not None: modelXbrl.error("EFM.6.23.15", _("The domain-member relationship in %(linkrole)s from %(source)s to %(target)s is consecutive with domain-member relationship in %(linkrole2)s to %(target2)s. "), modelObject=(rel, rel.fromModelObject, rel.toModelObject), linkrole=rel.linkrole, linkrole2=rel2.linkrole, source=rel.fromModelObject.qname, target=rel.toModelObject.qname, target2=rel2.toModelObject.qname) checkMemMultDims(rel, None, rel.fromModelObject, rel.linkrole, set()) self.modelXbrl.profileActivity("... SD checks 14-18", minTimeToShow=1.0) qnDeiEntityDomain = ModelValue.qname(deiNS, "dei:EntityDomain") for relSet, dom, priItem, errCode in ((domMemRelSet, rxd.AllProjectsMember, rxd.Pr, "EFM.6.23.30"), (domMemRelSet, rxd.AllGovernmentsMember, rxd.Gv, "EFM.6.23.31"), (dimDomRelSet, rxd.BusinessSegmentAxis, rxd.Sm, "EFM.6.23.33"), (domMemRelSet, qnDeiEntityDomain, rxd.E, "EFM.6.23.34")): for f in modelXbrl.factsByQname[priItem]: if (not f.isNil and f.xValid and not relSet.isRelated(dom, "descendant", f.xValue, isDRS=True)): modelXbrl.error(errCode, _("The %(fact)s %(value)s in context %(context)s is not a %(domain)s."), modelObject=f, fact=priItem, value=f.xValue, context=f.context.id, domain=dom, messageCodes=("EFM.6.23.30", "EFM.6.23.31", "EFM.6.23.33", "EFM.6.23.34")) self.modelXbrl.profileActivity("... SD checks 30, 31, 33, 34", minTimeToShow=1.0) cntxEqualFacts = defaultdict(list) for f in modelXbrl.facts: if f.context is not None: cntxEqualFacts[f.context.contextDimAwareHash].append(f) self.modelXbrl.profileActivity("... SD prepare facts by context", minTimeToShow=1.0) qnCurrencyMeasure = XbrlConst.qnIsoCurrency(deiItems.get("EntityReportingCurrencyISOCode")) currencyMeasures = ([qnCurrencyMeasure],[]) qnAllCountriesDomain = ModelValue.qname(countryNs, "country:AllCountriesDomain") for cntxFacts in cntxEqualFacts.values(): qnameFacts = dict((f.qname,f) for f in cntxFacts) context = cntxFacts[0].context contextDims = cntxFacts[0].context.qnameDims # required priItem values based on context dimension for dim, priItem, errCode in ((rxd.PmtAxis, rxd.P, "EFM.6.23.20"), (rxd.GovernmentAxis, rxd.Payments, "EFM.6.23.22")): if context.hasDimension(dim) and (priItem not in qnameFacts or qnameFacts[priItem].isNil): modelXbrl.error(errCode, _("The Context %(context)s has dimension %(dimension)s member %(member)s but is missing required fact %(fact)s"), modelObject=context, context=context.id, dimension=dim, member=context.dimMemberQname(dim), fact=priItem, messageCodes=("EFM.6.23.20", "EFM.6.23.22")) if (rxd.Co in qnameFacts and not qnameFacts[rxd.Co].isNil and not domMemRelSet.isRelated(qnAllCountriesDomain, "descendant", qnameFacts[rxd.Co].xValue, isDRS=True)): modelXbrl.error("EFM.6.23.44", _("Fact rxd:Co value %(value)s in context %(context)s is not in the domain of country:AllCountriesDomain"), modelObject=f, context=context.id, value=qnameFacts[rxd.Co].value) # required present facts based on other present fact for qnF, fNilOk, qnG, gNilOk, errCode in ((rxd.A, True, rxd.Cu, False, "EFM.6.23.24"), (rxd.A, True, rxd.D, False, "EFM.6.23.25"), (rxd.A, False, rxd.Gv, False, "EFM.6.23.28"), (rxd.A, False, rxd.Co, False, "EFM.6.23.29"), (rxd.Km, False, rxd.K, False, "EFM.6.23.35"), (rxd.K, False, rxd.Km, False, "EFM.6.23.35"), (rxd.Cm, False, rxd.Cu, False, "EFM.6.23.39"), (rxd.K, False, rxd.A, False, "EFM.6.23.42"), (rxd.Pr, False, rxd.A, False, "EFM.6.23.43")): if (qnF in qnameFacts and (fNilOk or not qnameFacts[qnF].isNil) and (qnG not in qnameFacts or (not gNilOk and qnameFacts[qnG].isNil))): modelXbrl.error(errCode, _("The Context %(context)s has a %(fact1)s and is missing required %(fact2NotNil)sfact %(fact2)s"), modelObject=qnameFacts[qnF], context=context.id, fact1=qnF, fact2=qnG, fact2NotNil="" if gNilOk else "non-nil ", messageCodes=("EFM.6.23.24", "EFM.6.23.25", "EFM.6.23.28", "EFM.6.23.29", "EFM.6.23.35", "EFM.6.23.35", "EFM.6.23.39", "EFM.6.23.42", "EFM.6.23.43")) for f in cntxFacts: if (not context.hasDimension(rxd.PmtAxis) and f.isNumeric and f.unit is not None and f.unit.measures != currencyMeasures): modelXbrl.error("EFM.6.23.37", _("Fact %(fact)s in context %(context)s has unit %(unit)s not matching dei:EntityReportingCurrencyISOCode %(currency)s"), modelObject=f, fact=f.qname, context=context.id, unit=f.unit.value, currency=qnCurrencyMeasure) if (rxd.A in qnameFacts and not qnameFacts[rxd.A].isNil and rxd.Cm in qnameFacts and not qnameFacts[rxd.Cm].isNil and qnameFacts[rxd.A].unit is not None and qnameFacts[rxd.A].unit.measures == currencyMeasures): modelXbrl.error("EFM.6.23.38", _("A value cannot be given for rxd:Cm in context %(context)s because the payment is in the reporting currency %(currency)s."), modelObject=(qnameFacts[rxd.A],qnameFacts[rxd.Cm]), context=context.id, currency=qnCurrencyMeasure) if (rxd.A in qnameFacts and rxd.Cu in qnameFacts and not qnameFacts[rxd.Cu].isNil and qnameFacts[rxd.A].unit is not None and qnameFacts[rxd.A].unit.measures != ([XbrlConst.qnIsoCurrency(qnameFacts[rxd.Cu].xValue)],[])): modelXbrl.error("EFM.6.23.41", _("The unit %(unit)s of rxd:A in context %(context)s is not consistent with the value %(currency)s of rxd:Cu."), modelObject=(qnameFacts[rxd.A],qnameFacts[rxd.Cu]), context=context.id, unit=qnameFacts[rxd.A].unit.value, currency=qnameFacts[rxd.Cu].value) if (context.hasDimension(rxd.ProjectAxis) and not any(f.xValue == m for m in (contextDims[rxd.ProjectAxis].memberQname,) for f in modelXbrl.factsByQname[rxd.Pr] if f.context is not None)): modelXbrl.error("EFM.6.23.19", _("The Context %(context)s has dimension %(dimension)s but is missing any payment."), modelObject=context, context=context.id, dimension=rxd.GovernmentAxis) if (context.hasDimension(rxd.GovernmentAxis) and not any(f.xValue == m and f.context.hasDimension(rxd.PmtAxis) for m in (contextDims[rxd.GovernmentAxis].memberQname,) for f in modelXbrl.factsByQname[rxd.Gv] if f.context is not None)): modelXbrl.error("EFM.6.23.21", _("The Context %(context)s has dimension %(dimension)s member %(member)s but is missing any payment."), modelObject=context, context=context.id, dimension=rxd.GovernmentAxis, member=context.dimMemberQname(rxd.GovernmentAxis)) if rxd.P in qnameFacts and not any(f.context is not None and not f.context.hasSegment for f in modelXbrl.factsByQname.get(qnameFacts[rxd.P].xValue,())): modelXbrl.error("EFM.6.23.23", _("The Context %(context)s has payment type %(paymentType)s but is missing a corresponding fact in the required context."), modelObject=context, context=context.id, paymentType=qnameFacts[rxd.P].xValue) if not context.hasDimension(rxd.PmtAxis) and rxd.A in qnameFacts and not qnameFacts[rxd.A].isNil: modelXbrl.error("EFM.6.23.40", _("There is a non-nil rxd:A in context %(context)s but missing a dimension rxd:PmtAxis."), modelObject=(context, qnameFacts[rxd.A]), context=context.id) self.modelXbrl.profileActivity("... SD by context for 19-25, 28-29, 35, 37-39, 40-44", minTimeToShow=1.0) for f in modelXbrl.factsByQname[rxd.D]: if not f.isNil and f.xValid and f.xValue + datetime.timedelta(1) != f.context.endDatetime: # date needs to be midnite to compare to datetime modelXbrl.error("EFM.6.23.32", _("The rxd:D %(value)s in context %(context)s does not match the context end date %(endDate)s."), modelObject=f, value=f.xValue, context=f.context.id, endDate=XmlUtil.dateunionValue(f.context.endDatetime, subtractOneDay=True)) self.modelXbrl.profileActivity("... SD checks 32 (last SD check)", minTimeToShow=1.0) # deference object references no longer needed del rxdDoc, cntxEqualFacts # dereference compatibly with 2.7 (as these may be used in nested contexts above hasHypRelSet = hypDimRelSet = dimDefRelSet = domMemRelSet = dimDomRelSet = None memDim.clear() else: # non-SD documentType pass # no non=SD tests yet elif disclosureSystem.GFM: for deiItem in ( disclosureSystem.deiCurrentFiscalYearEndDateElement, disclosureSystem.deiDocumentFiscalYearFocusElement, disclosureSystem.deiFilerNameElement): if deiItem not in deiItems or deiItems[deiItem] == "": modelXbrl.error("GFM.3.02.01", _("dei:%(elementName)s is required in the default context"), modelXbrl=modelXbrl, elementName=deiItem) if documentType not in ("SD", "SD/A"): self.modelXbrl.profileActivity("... filer required facts checks", minTimeToShow=1.0) #6.5.27 footnote elements, etc footnoteLinkNbr = 0 for footnoteLinkElt in xbrlInstDoc.iterdescendants(tag="{http://www.xbrl.org/2003/linkbase}footnoteLink"): if isinstance(footnoteLinkElt,ModelObject): footnoteLinkNbr += 1 linkrole = footnoteLinkElt.get("{http://www.w3.org/1999/xlink}role") if linkrole != XbrlConst.defaultLinkRole: modelXbrl.error(("EFM.6.05.28.linkrole", "GFM.1.02.20"), _("FootnoteLink %(footnoteLinkNumber)s has disallowed role %(linkrole)s"), modelObject=footnoteLinkElt, footnoteLinkNumber=footnoteLinkNbr, linkrole=linkrole) # find modelLink of this footnoteLink # modelLink = modelXbrl.baseSetModelLink(footnoteLinkElt) relationshipSet = modelXbrl.relationshipSet("XBRL-footnotes", linkrole) #if (modelLink is None) or (not relationshipSet): # continue # had no child elements to parse locNbr = 0 arcNbr = 0 for child in footnoteLinkElt: if isinstance(child,ModelObject): xlinkType = child.get("{http://www.w3.org/1999/xlink}type") if child.namespaceURI != XbrlConst.link or \ xlinkType not in ("locator", "resource", "arc") or \ child.localName not in ("loc", "footnote", "footnoteArc"): modelXbrl.error(("EFM.6.05.27", "GFM.1.02.19"), _("FootnoteLink %(footnoteLinkNumber)s has disallowed child element %(elementName)s"), modelObject=child, footnoteLinkNumber=footnoteLinkNbr, elementName=child.prefixedName) elif xlinkType == "locator": locNbr += 1 locrole = child.get("{http://www.w3.org/1999/xlink}role") if locrole is not None and (disclosureSystem.GFM or \ not disclosureSystem.uriAuthorityValid(locrole)): modelXbrl.error(("EFM.6.05.29", "GFM.1.02.21"), _("FootnoteLink %(footnoteLinkNumber)s loc %(locNumber)s has disallowed role %(role)s"), modelObject=child, footnoteLinkNumber=footnoteLinkNbr, xlinkLabel=child.xlinkLabel, locNumber=locNbr, role=locrole) href = child.get("{http://www.w3.org/1999/xlink}href") if not href.startswith("#"): modelXbrl.error(("EFM.6.05.32", "GFM.1.02.23"), _("FootnoteLink %(footnoteLinkNumber)s loc %(locNumber)s has disallowed href %(locHref)s"), modelObject=child, footnoteLinkNumber=footnoteLinkNbr, locNumber=locNbr, locHref=href, locLabel=child.get("{http://www.w3.org/1999/xlink}label")) else: label = child.get("{http://www.w3.org/1999/xlink}label") elif xlinkType == "arc": arcNbr += 1 arcrole = child.get("{http://www.w3.org/1999/xlink}arcrole") if (self.validateEFM and not disclosureSystem.uriAuthorityValid(arcrole)) or \ (disclosureSystem.GFM and arcrole != XbrlConst.factFootnote and arcrole != XbrlConst.factExplanatoryFact): modelXbrl.error(("EFM.6.05.30", "GFM.1.02.22"), _("FootnoteLink %(footnoteLinkNumber)s arc %(arcNumber)s has disallowed arcrole %(arcrole)s"), modelObject=child, footnoteLinkNumber=footnoteLinkNbr, arcNumber=arcNbr, arcToLabel=child.get("{http://www.w3.org/1999/xlink}to"), arcrole=arcrole) elif xlinkType == "resource": # footnote footnoterole = child.get("{http://www.w3.org/1999/xlink}role") if footnoterole == "": modelXbrl.error(("EFM.6.05.28.missingRole", "GFM.1.2.20"), _("Footnote %(xlinkLabel)s is missing a role"), modelObject=child, xlinkLabel=child.get("{http://www.w3.org/1999/xlink}label")) elif (self.validateEFM and not disclosureSystem.uriAuthorityValid(footnoterole)) or \ (disclosureSystem.GFM and footnoterole != XbrlConst.footnote): modelXbrl.error(("EFM.6.05.28", "GFM.1.2.20"), _("Footnote %(xlinkLabel)s has disallowed role %(role)s"), modelObject=child, xlinkLabel=child.get("{http://www.w3.org/1999/xlink}label"), role=footnoterole) if self.validateEFM: ValidateFilingText.validateFootnote(modelXbrl, child) # find modelResource for this element foundFact = False if XmlUtil.text(child) != "": if relationshipSet: for relationship in relationshipSet.toModelObject(child): if isinstance(relationship.fromModelObject, ModelFact): foundFact = True break if not foundFact: modelXbrl.error(("EFM.6.05.33", "GFM.1.02.24"), _("FootnoteLink %(footnoteLinkNumber)s footnote %(footnoteLabel)s has no linked fact"), modelObject=child, footnoteLinkNumber=footnoteLinkNbr, footnoteLabel=child.get("{http://www.w3.org/1999/xlink}label"), text=XmlUtil.text(child)[:100]) self.modelXbrl.profileActivity("... filer rfootnotes checks", minTimeToShow=1.0) # entry point schema checks elif modelXbrl.modelDocument.type == ModelDocument.Type.SCHEMA: if self.validateSBRNL: # entry must have a P-link if not any(hrefElt.localName == "linkbaseRef" and hrefElt.get("{http://www.w3.org/1999/xlink}role") == "http://www.xbrl.org/2003/role/presentationLinkbaseRef" for hrefElt, hrefDoc, hrefId in modelXbrl.modelDocument.hrefObjects): modelXbrl.error("SBR.NL.2.2.10.01", 'Entrypoint schema must have a presentation linkbase', modelObject=modelXbrl.modelDocument) # all-labels and references checks defaultLangStandardLabels = {} for concept in modelXbrl.qnameConcepts.values(): conceptHasDefaultLangStandardLabel = False for modelLabelRel in labelsRelationshipSet.fromModelObject(concept): modelLabel = modelLabelRel.toModelObject role = modelLabel.role text = modelLabel.text lang = modelLabel.xmlLang if role == XbrlConst.documentationLabel: if concept.modelDocument.targetNamespace in disclosureSystem.standardTaxonomiesDict: modelXbrl.error(("EFM.6.10.05", "GFM.1.05.05", "SBR.NL.2.1.0.08"), _("Concept %(concept)s of a standard taxonomy cannot have a documentation label: %(text)s"), modelObject=modelLabel, concept=concept.qname, text=text) elif text and lang and disclosureSystem.defaultXmlLang and lang.startswith(disclosureSystem.defaultXmlLang): if role == XbrlConst.standardLabel: if text in defaultLangStandardLabels: concept2, modelLabel2 = defaultLangStandardLabels[text] modelXbrl.error(("EFM.6.10.04", "GFM.1.05.04"), _("Same labels for concepts %(concept)s and %(concept2)s for %(lang)s standard role: %(text)s."), modelObject=(concept, modelLabel, concept2, modelLabel2), concept=concept.qname, concept2=concept2.qname, lang=disclosureSystem.defaultLanguage, text=text[:80]) else: defaultLangStandardLabels[text] = (concept, modelLabel) conceptHasDefaultLangStandardLabel = True if len(text) > 511: modelXbrl.error(("EFM.6.10.06", "GFM.1.05.06"), _("Label for concept %(concept)s role %(role)s length %(length)s must be shorter than 511 characters: %(text)s"), modelObject=modelLabel, concept=concept.qname, role=role, length=len(text), text=text[:80]) match = modelXbrl.modelManager.disclosureSystem.labelCheckPattern.search(text) if match: modelXbrl.error(("EFM.6.10.06", "GFM.1.05.07", "SBR.NL.2.3.8.07"), 'Label for concept %(concept)s role %(role)s has disallowed characters: "%(text)s"', modelObject=modelLabel, concept=concept.qname, role=role, text=match.group()) if (text is not None and len(text) > 0 and modelXbrl.modelManager.disclosureSystem.labelTrimPattern and (modelXbrl.modelManager.disclosureSystem.labelTrimPattern.match(text[0]) or \ modelXbrl.modelManager.disclosureSystem.labelTrimPattern.match(text[-1]))): modelXbrl.error(("EFM.6.10.08", "GFM.1.05.08"), _("Label for concept %(concept)s role %(role)s lang %(lang)s is not trimmed: %(text)s"), modelObject=modelLabel, concept=concept.qname, role=role, lang=lang, text=text) for modelRefRel in referencesRelationshipSetWithProhibits.fromModelObject(concept): modelReference = modelRefRel.toModelObject text = XmlUtil.innerText(modelReference) #6.18.1 no reference to company extension concepts if concept.modelDocument.targetNamespace not in disclosureSystem.standardTaxonomiesDict: modelXbrl.error(("EFM.6.18.01", "GFM.1.9.1"), _("References for extension concept %(concept)s are not allowed: %(text)s"), modelObject=modelReference, concept=concept.qname, text=text, xml=XmlUtil.xmlstring(modelReference, stripXmlns=True, contentsOnly=True)) elif (self.validateEFM or self.validateSBRNL) and not self.isStandardUri(modelRefRel.modelDocument.uri): #6.18.2 no extension to add or remove references to standard concepts modelXbrl.error(("EFM.6.18.02", "SBR.NL.2.1.0.08"), _("References for standard taxonomy concept %(concept)s are not allowed in an extension linkbase: %(text)s"), modelObject=modelReference, concept=concept.qname, text=text, xml=XmlUtil.xmlstring(modelReference, stripXmlns=True, contentsOnly=True)) if self.validateSBRNL and (concept.isItem or concept.isTuple): if concept.modelDocument.targetNamespace not in disclosureSystem.standardTaxonomiesDict: if not conceptHasDefaultLangStandardLabel: modelXbrl.error("SBR.NL.2.2.2.26", _("Concept %(concept)s missing standard label in local language."), modelObject=concept, concept=concept.qname) subsGroup = concept.get("substitutionGroup") if ((not concept.isAbstract or subsGroup == "sbr:presentationItem") and not (presentationRelationshipSet.toModelObject(concept) or presentationRelationshipSet.fromModelObject(concept))): modelXbrl.error("SBR.NL.2.2.2.04", _("Concept %(concept)s not referred to by presentation relationship."), modelObject=concept, concept=concept.qname) elif ((concept.isDimensionItem or (subsGroup and (subsGroup.endswith(":domainItem") or subsGroup.endswith(":domainMemberItem")))) and not (presentationRelationshipSet.toModelObject(concept) or presentationRelationshipSet.fromModelObject(concept))): modelXbrl.error("SBR.NL.2.2.10.03", _("DTS concept %(concept)s not referred to by presentation relationship."), modelObject=concept, concept=concept.qname) if (concept.substitutionGroupQname and concept.substitutionGroupQname.namespaceURI not in disclosureSystem.baseTaxonomyNamespaces): modelXbrl.error("SBR.NL.2.2.2.05", _("Concept %(concept)s has a substitutionGroup of a non-standard concept."), modelObject=concept, concept=concept.qname) if concept.isTuple: # verify same presentation linkbase nesting for missingQname in set(concept.type.elements) ^ pLinkedNonAbstractDescendantQnames(modelXbrl, concept): modelXbrl.error("SBR.NL.2.3.4.01", _("Tuple %(concept)s has mismatch between content and presentation children: %(missingQname)s."), modelObject=concept, concept=concept.qname, missingQname=missingQname) self.checkConceptLabels(modelXbrl, labelsRelationshipSet, disclosureSystem, concept) self.checkConceptLabels(modelXbrl, genLabelsRelationshipSet, disclosureSystem, concept) # role types checks # 6.7.10 only one role type declaration in DTS for roleURI, modelRoleTypes in modelXbrl.roleTypes.items(): if len(modelRoleTypes) > 1: modelXbrl.error(("EFM.6.07.10", "GFM.1.03.10"), _("RoleType %(roleType)s is defined in multiple taxonomies"), modelObject=modelRoleTypes, roleType=roleURI, numberOfDeclarations=len(modelRoleTypes)) # 6.7.14 only one arcrole type declaration in DTS for arcroleURI, modelRoleTypes in modelXbrl.arcroleTypes.items(): if len(modelRoleTypes) > 1: modelXbrl.error(("EFM.6.07.14", "GFM.1.03.16"), _("ArcroleType %(arcroleType)s is defined in multiple taxonomies"), modelObject=modelRoleTypes, arcroleType=arcroleURI, numberOfDeclarations=len(modelRoleTypes) ) self.modelXbrl.profileActivity("... filer concepts checks", minTimeToShow=1.0) del defaultLangStandardLabels #dereference # checks on all documents: instance, schema, instance ValidateFilingDTS.checkDTS(self, modelXbrl.modelDocument, []) ''' removed RH 2011-12-23, corresponding use of nameWordsTable in ValidateFilingDTS if self.validateSBRNL: del self.nameWordsTable ''' self.modelXbrl.profileActivity("... filer DTS checks", minTimeToShow=1.0) # checks for namespace clashes if self.validateEFM: # check number of us-roles taxonomies referenced for conflictClass, modelDocuments in self.standardNamespaceConflicts.items(): if len(modelDocuments) > 1: modelXbrl.error("EFM.6.22.03", _("References for conflicting standard %(conflictClass)s taxonomies %(namespaceConflicts)s are not allowed in same DTS"), modelObject=modelXbrl, conflictClass=conflictClass, namespaceConflicts=sorted((d.targetNamespace for d in modelDocuments), key=lambda ns: ns.rpartition('/')[2])) conceptRelsUsedWithPreferredLabels = defaultdict(list) usedCalcsPresented = defaultdict(set) # pairs of concepts objectIds used in calc usedCalcFromTosELR = {} localPreferredLabels = defaultdict(set) drsELRs = set() # do calculation, then presentation, then other arcroles self.summationItemRelsSetAllELRs = modelXbrl.relationshipSet(XbrlConst.summationItem) for arcroleFilter in (XbrlConst.summationItem, XbrlConst.parentChild, "*"): for baseSetKey, baseSetModelLinks in modelXbrl.baseSets.items(): arcrole, ELR, linkqname, arcqname = baseSetKey if ELR and linkqname and arcqname and not arcrole.startswith("XBRL-"): # assure summationItem, then parentChild, then others if not (arcroleFilter == arcrole or arcroleFilter == "*" and arcrole not in (XbrlConst.summationItem, XbrlConst.parentChild)): continue if self.validateEFMorGFM or (self.validateSBRNL and arcrole == XbrlConst.parentChild): ineffectiveArcs = ModelRelationshipSet.ineffectiveArcs(baseSetModelLinks, arcrole) #validate ineffective arcs for modelRel in ineffectiveArcs: if modelRel.fromModelObject is not None and modelRel.toModelObject is not None: modelXbrl.error(("EFM.6.09.03", "GFM.1.04.03", "SBR.NL.2.3.4.06"), _("Ineffective arc %(arc)s in \nlink role %(linkrole)s \narcrole %(arcrole)s \nfrom %(conceptFrom)s \nto %(conceptTo)s \n%(ineffectivity)s"), modelObject=modelRel, arc=modelRel.qname, arcrole=modelRel.arcrole, linkrole=modelRel.linkrole, linkroleDefinition=modelXbrl.roleTypeDefinition(modelRel.linkrole), conceptFrom=modelRel.fromModelObject.qname, conceptTo=modelRel.toModelObject.qname, ineffectivity=modelRel.ineffectivity) if arcrole == XbrlConst.parentChild: isStatementSheet = any(linkroleDefinitionStatementSheet.match(roleType.definition or '') for roleType in self.modelXbrl.roleTypes.get(ELR,())) conceptsPresented = set() # 6.12.2 check for distinct order attributes parentChildRels = modelXbrl.relationshipSet(arcrole, ELR) for relFrom, siblingRels in parentChildRels.fromModelObjects().items(): targetConceptPreferredLabels = defaultdict(dict) orderRels = {} firstRel = True relFromUsed = True for rel in siblingRels: if firstRel: firstRel = False if relFrom in conceptsUsed: conceptsUsed[relFrom] = True # 6.12.3, has a pres relationship relFromUsed = True relTo = rel.toModelObject preferredLabel = rel.preferredLabel if relTo in conceptsUsed: conceptsUsed[relTo] = True # 6.12.3, has a pres relationship if preferredLabel and preferredLabel != "": conceptRelsUsedWithPreferredLabels[relTo].append(rel) if self.validateSBRNL and preferredLabel in ("periodStart","periodEnd"): modelXbrl.error("SBR.NL.2.3.4.03", _("Preferred label on presentation relationships not allowed"), modelObject=modelRel) # 6.12.5 distinct preferred labels in base set preferredLabels = targetConceptPreferredLabels[relTo] if (preferredLabel in preferredLabels or (self.validateSBRNL and not relFrom.isTuple and (not preferredLabel or None in preferredLabels))): if preferredLabel in preferredLabels: rel2, relTo2 = preferredLabels[preferredLabel] else: rel2 = relTo2 = None modelXbrl.error(("EFM.6.12.05", "GFM.1.06.05", "SBR.NL.2.3.4.06"), _("Concept %(concept)s has duplicate preferred label %(preferredLabel)s in link role %(linkrole)s"), modelObject=(rel, relTo, rel2, relTo2), concept=relTo.qname, fromConcept=rel.fromModelObject.qname, preferredLabel=preferredLabel, linkrole=rel.linkrole, linkroleDefinition=modelXbrl.roleTypeDefinition(rel.linkrole)) else: preferredLabels[preferredLabel] = (rel, relTo) if relFromUsed: # 6.14.5 conceptsPresented.add(relFrom.objectIndex) conceptsPresented.add(relTo.objectIndex) order = rel.order if order in orderRels: modelXbrl.error(("EFM.6.12.02", "GFM.1.06.02", "SBR.NL.2.3.4.05"), _("Duplicate presentation relations from concept %(conceptFrom)s for order %(order)s in base set role %(linkrole)s to concept %(conceptTo)s and to concept %(conceptTo2)s"), modelObject=(rel, orderRels[order]), conceptFrom=relFrom.qname, order=rel.arcElement.get("order"), linkrole=rel.linkrole, linkroleDefinition=modelXbrl.roleTypeDefinition(rel.linkrole), conceptTo=rel.toModelObject.qname, conceptTo2=orderRels[order].toModelObject.qname) else: orderRels[order] = rel if self.validateSBRNL and not relFrom.isTuple: if relTo in localPreferredLabels: if {None, preferredLabel} & localPreferredLabels[relTo]: self.modelXbrl.error("SBR.NL.2.3.4.06", _("Non-distinguished preferredLabel presentation relations from concept %(conceptFrom)s in base set role %(linkrole)s"), modelObject=rel, conceptFrom=relFrom.qname, linkrole=rel.linkrole, conceptTo=relTo.qname) localPreferredLabels[relTo].add(preferredLabel) targetConceptPreferredLabels.clear() orderRels.clear() localPreferredLabels.clear() # clear for next relationship for conceptPresented in conceptsPresented: if conceptPresented in usedCalcsPresented: usedCalcPairingsOfConcept = usedCalcsPresented[conceptPresented] if len(usedCalcPairingsOfConcept & conceptsPresented) > 0: usedCalcPairingsOfConcept -= conceptsPresented # 6.15.02, 6.15.03 semantics checks for totals and calc arcs (by tree walk) if validateLoggingSemantic: for rootConcept in parentChildRels.rootConcepts: self.checkCalcsTreeWalk(parentChildRels, rootConcept, isStatementSheet, False, conceptsUsed, set()) elif arcrole == XbrlConst.summationItem: if self.validateEFMorGFM: # 6.14.3 check for relation concept periods fromRelationships = modelXbrl.relationshipSet(arcrole,ELR).fromModelObjects() allElrRelSet = modelXbrl.relationshipSet(arcrole) for relFrom, rels in fromRelationships.items(): orderRels = {} for rel in rels: relTo = rel.toModelObject # 6.14.03 must have matched period types across relationshp if isinstance(relTo, ModelConcept) and relFrom.periodType != relTo.periodType: self.modelXbrl.error(("EFM.6.14.03", "GFM.1.07.03"), "Calculation relationship period types mismatched in base set role %(linkrole)s from %(conceptFrom)s to %(conceptTo)s", modelObject=rel, linkrole=rel.linkrole, conceptFrom=relFrom.qname, conceptTo=relTo.qname, linkroleDefinition=self.modelXbrl.roleTypeDefinition(ELR)) # 6.14.5 concepts used must have pres in same ext link if relFrom in conceptsUsed and relTo in conceptsUsed: fromObjId = relFrom.objectIndex toObjId = relTo.objectIndex if fromObjId < toObjId: usedCalcsPresented[fromObjId].add(toObjId) else: usedCalcsPresented[toObjId].add(fromObjId) order = rel.order if order in orderRels and disclosureSystem.GFM: self.modelXbrl.error(("EFM.N/A", "GFM.1.07.06"), _("Duplicate calculations relations from concept %(conceptFrom)s for order %(order)s in base set role %(linkrole)s to concept %(conceptTo)s and to concept %(conceptTo2)s"), modelObject=(rel, orderRels[order]), linkrole=rel.linkrole, conceptFrom=relFrom.qname, order=order, conceptTo=rel.toModelObject.qname, conceptTo2=orderRels[order].toModelObject.qname) else: orderRels[order] = rel directedCycleRels = self.directedCycle(relFrom,relFrom,fromRelationships,{relFrom}) if directedCycleRels is not None: self.modelXbrl.error(("EFM.6.14.04", "GFM.1.07.04"), _("Calculation relationships have a directed cycle in base set role %(linkrole)s starting from %(concept)s"), modelObject=[relFrom] + directedCycleRels, linkrole=ELR, concept=relFrom.qname, linkroleDefinition=self.modelXbrl.roleTypeDefinition(ELR)) orderRels.clear() # if relFrom used by fact and multiple calc networks from relFrom, test 6.15.04 if rels and relFrom in conceptsUsed: relFromAndTos = (relFrom.objectIndex,) + tuple(sorted((rel.toModelObject.objectIndex for rel in rels if isinstance(rel.toModelObject, ModelConcept)))) if relFromAndTos in usedCalcFromTosELR: otherRels = usedCalcFromTosELR[relFromAndTos] otherELR = otherRels[0].linkrole self.modelXbrl.log("WARNING-SEMANTIC", ("EFM.6.15.04", "GFM.2.06.04"), _("Calculation relationships should have a same set of targets in %(linkrole)s and %(linkrole2)s starting from %(concept)s"), modelObject=[relFrom] + rels + otherRels, linkrole=ELR, linkrole2=otherELR, concept=relFrom.qname) else: usedCalcFromTosELR[relFromAndTos] = rels elif self.validateSBRNL: # find a calc relationship to get the containing document name for modelRel in self.modelXbrl.relationshipSet(arcrole, ELR).modelRelationships: self.modelXbrl.error("SBR.NL.2.3.9.01", _("Calculation linkbase linkrole %(linkrole)s"), modelObject=modelRel, linkrole=ELR) break elif arcrole == XbrlConst.all or arcrole == XbrlConst.notAll: drsELRs.add(ELR) elif arcrole == XbrlConst.dimensionDomain or arcrole == XbrlConst.dimensionDefault and \ self.validateEFMorGFM: # 6.16.3 check domain targets in extension linkbases are domain items fromRelationships = modelXbrl.relationshipSet(arcrole,ELR).fromModelObjects() for relFrom, rels in fromRelationships.items(): for rel in rels: relTo = rel.toModelObject if not (isinstance(relTo, ModelConcept) and relTo.type is not None and relTo.type.isDomainItemType) and not self.isStandardUri(rel.modelDocument.uri): self.modelXbrl.error(("EFM.6.16.03", "GFM.1.08.03"), _("Definition relationship from %(conceptFrom)s to %(conceptTo)s in role %(linkrole)s requires domain item target"), modelObject=(rel, relFrom, relTo), conceptFrom=relFrom.qname, conceptTo=(relTo.qname if relTo is not None else None), linkrole=rel.linkrole) elif self.validateSBRNL: if arcrole == XbrlConst.dimensionDefault: for modelRel in self.modelXbrl.relationshipSet(arcrole).modelRelationships: self.modelXbrl.error("SBR.NL.2.3.6.05", _("Dimension-default in from %(conceptFrom)s to %(conceptTo)s in role %(linkrole)s is not allowed"), modelObject=modelRel, conceptFrom=modelRel.fromModelObject.qname, conceptTo=modelRel.toModelObject.qname, linkrole=modelRel.linkrole) ''' removed per RH 2013-01-11 if not (XbrlConst.isStandardArcrole(arcrole) or XbrlConst.isDefinitionOrXdtArcrole(arcrole)): for modelRel in self.modelXbrl.relationshipSet(arcrole).modelRelationships: relTo = modelRel.toModelObject relFrom = modelRel.fromModelObject if not ((isinstance(relFrom,ModelConcept) and isinstance(relTo,ModelConcept)) or (relFrom.modelDocument.inDTS and (relTo.qname == XbrlConst.qnGenLabel and modelRel.arcrole == XbrlConst.elementLabel) or (relTo.qname == XbrlConst.qnGenReference and modelRel.arcrole == XbrlConst.elementReference) or (relTo.qname == self.qnSbrLinkroleorder))): self.modelXbrl.error("SBR.NL.2.3.2.07", _("The source and target of an arc must be in the DTS from %(elementFrom)s to %(elementTo)s, in linkrole %(linkrole)s, arcrole %(arcrole)s"), modelObject=modelRel, elementFrom=relFrom.qname, elementTo=relTo.qname, linkrole=modelRel.linkrole, arcrole=arcrole) ''' # definition tests (GFM only, for now) if XbrlConst.isDefinitionOrXdtArcrole(arcrole) and disclosureSystem.GFM: fromRelationships = modelXbrl.relationshipSet(arcrole,ELR).fromModelObjects() for relFrom, rels in fromRelationships.items(): orderRels = {} for rel in rels: relTo = rel.toModelObject order = rel.order if order in orderRels and disclosureSystem.GFM: self.modelXbrl.error("GFM.1.08.10", _("Duplicate definitions relations from concept %(conceptFrom)s for order %(order)s in base set role %(linkrole)s to concept %(conceptTo)s and to concept %(conceptTo2)s"), modelObject=(rel, relFrom, relTo), conceptFrom=relFrom.qname, order=order, linkrole=rel.linkrole, conceptTo=rel.toModelObject.qname, conceptTo2=orderRels[order].toModelObject.qname) else: orderRels[order] = rel if (arcrole not in (XbrlConst.dimensionDomain, XbrlConst.domainMember) and rel.get("{http://xbrl.org/2005/xbrldt}usable") == "false"): self.modelXrl.error("GFM.1.08.11", _("Disallowed xbrldt:usable='false' attribute on %(arc)s relationship from concept %(conceptFrom)s in base set role %(linkrole)s to concept %(conceptTo)s"), modelObject=(rel, relFrom, relTo), arc=rel.qname, conceptFrom=relFrom.qname, linkrole=rel.linkrole, conceptTo=rel.toModelObject.qname) del localPreferredLabels # dereference del usedCalcFromTosELR del self.summationItemRelsSetAllELRs self.modelXbrl.profileActivity("... filer relationships checks", minTimeToShow=1.0) # checks on dimensions ValidateFilingDimensions.checkDimensions(self, drsELRs) self.modelXbrl.profileActivity("... filer dimensions checks", minTimeToShow=1.0) for concept, hasPresentationRelationship in conceptsUsed.items(): if not hasPresentationRelationship: self.modelXbrl.error(("EFM.6.12.03", "GFM.1.6.3"), _("Concept used in instance %(concept)s does not participate in an effective presentation relationship"), modelObject=[concept] + list(modelXbrl.factsByQname[concept.qname]), concept=concept.qname) for fromIndx, toIndxs in usedCalcsPresented.items(): for toIndx in toIndxs: fromModelObject = self.modelXbrl.modelObject(fromIndx) toModelObject = self.modelXbrl.modelObject(toIndx) calcRels = modelXbrl.relationshipSet(XbrlConst.summationItem) \ .fromToModelObjects(fromModelObject, toModelObject, checkBothDirections=True) fromFacts = self.modelXbrl.factsByQname[fromModelObject.qname] toFacts = self.modelXbrl.factsByQname[toModelObject.qname] fromFactContexts = set(f.context.contextNonDimAwareHash for f in fromFacts if f.context is not None) contextId = backupId = None # for EFM message for f in toFacts: if f.context is not None: if f.context.contextNonDimAwareHash in fromFactContexts: contextId = f.context.id break backupId = f.context.id if contextId is None: contextId = backupId self.modelXbrl.error(("EFM.6.14.05", "GFM.1.7.5"), _("Used calculation relationship from %(conceptFrom)s to %(conceptTo)s does not participate in an effective presentation relationship"), modelObject=calcRels + [fromModelObject, toModelObject], linkroleDefinition=self.modelXbrl.roleTypeDefinition(calcRels[0].linkrole if calcRels else None), conceptFrom=self.modelXbrl.modelObject(fromIndx).qname, conceptTo=self.modelXbrl.modelObject(toIndx).qname, contextId=contextId) if disclosureSystem.defaultXmlLang: for concept, preferredLabelRels in conceptRelsUsedWithPreferredLabels.items(): for preferredLabelRel in preferredLabelRels: preferredLabel = preferredLabelRel.preferredLabel hasDefaultLangPreferredLabel = False for modelLabelRel in labelsRelationshipSet.fromModelObject(concept): modelLabel = modelLabelRel.toModelObject if modelLabel.xmlLang.startswith(disclosureSystem.defaultXmlLang) and \ modelLabel.role == preferredLabel: hasDefaultLangPreferredLabel = True break if not hasDefaultLangPreferredLabel: self.modelXbrl.error("GFM.1.06.04", # 6.12.04 now reserved: ("EFM.6.12.04", "GFM.1.06.04"), _("Concept %(concept)s missing %(lang)s preferred labels for role %(preferredLabel)s"), modelObject=(preferredLabelRel, concept), concept=concept.qname, fromConcept=preferredLabelRel.fromModelObject.qname, lang=disclosureSystem.defaultLanguage, preferredLabel=preferredLabel) del conceptRelsUsedWithPreferredLabels # 6 16 4, 1.16.5 Base sets of Domain Relationship Sets testing self.modelXbrl.profileActivity("... filer preferred label checks", minTimeToShow=1.0) ''' try moving to plug-in if self.validateSBRNL: # check presentation link roles for generic linkbase order number ordersRelationshipSet = modelXbrl.relationshipSet("http://www.nltaxonomie.nl/2011/arcrole/linkrole-order") presLinkroleNumberURI = {} presLinkrolesCount = 0 for countLinkroles in (True, False): for roleURI, modelRoleTypes in modelXbrl.roleTypes.items(): for modelRoleType in modelRoleTypes: if XbrlConst.qnLinkPresentationLink in modelRoleType.usedOns: if countLinkroles: presLinkrolesCount += 1 else: if not ordersRelationshipSet: modelXbrl.error("SBR.NL.2.2.3.06", _("Presentation linkrole %(linkrole)s missing order number relationship set"), modelObject=modelRoleType, linkrole=modelRoleType.roleURI) else: order = None for orderNumRel in ordersRelationshipSet.fromModelObject(modelRoleType): order = getattr(orderNumRel.toModelObject, "xValue", "(noPSVIvalue)") if order in presLinkroleNumberURI: modelXbrl.error("SBR.NL.2.2.3.06", _("Presentation linkrole order number %(order)s of %(linkrole)s also used in %(otherLinkrole)s"), modelObject=modelRoleType, order=order, linkrole=modelRoleType.roleURI, otherLinkrole=presLinkroleNumberURI[order]) else: presLinkroleNumberURI[order] = modelRoleType.roleURI if not order: modelXbrl.error("SBR.NL.2.2.3.06", _("Presentation linkrole %(linkrole)s missing order number"), modelObject=modelRoleType, linkrole=modelRoleType.roleURI) if countLinkroles and presLinkrolesCount < 2: break # don't check order numbers if only one presentation linkrole # check arc role definitions for labels for arcroleURI, modelRoleTypes in modelXbrl.arcroleTypes.items(): for modelRoleType in modelRoleTypes: if (not arcroleURI.startswith("http://xbrl.org/") and modelRoleType.modelDocument.targetNamespace not in disclosureSystem.baseTaxonomyNamespaces and (not modelRoleType.genLabel(lang="nl") or not modelRoleType.genLabel(lang="en"))): modelXbrl.error("SBR.NL.2.2.4.02", _("ArcroleType missing nl or en generic label: %(arcrole)s"), modelObject=modelRoleType, arcrole=arcroleURI) for domainElt in typedDomainElements: if domainElt.modelDocument.targetNamespace not in disclosureSystem.baseTaxonomyNamespaces: if not domainElt.genLabel(fallbackToQname=False,lang="nl"): modelXbrl.error("SBR.NL.2.2.8.01", _("Typed dimension domain element %(concept)s must have a generic label"), modelObject=domainElt, concept=domainElt.qname) if domainElt.type is not None and domainElt.type.localName == "complexType": modelXbrl.error("SBR.NL.2.2.8.02", _("Typed dimension domain element %(concept)s has disallowed complex content"), modelObject=domainElt, concept=domainElt.qname) self.modelXbrl.profileActivity("... SBR role types and type facits checks", minTimeToShow=1.0) ''' if self.validateEFM: for pluginXbrlMethod in pluginClassMethods("Validate.EFM.Finally"): pluginXbrlMethod(self, conceptsUsed) elif self.validateSBRNL: for pluginXbrlMethod in pluginClassMethods("Validate.SBRNL.Finally"): pluginXbrlMethod(self, conceptsUsed) self.modelXbrl.profileActivity("... plug in '.Finally' checks", minTimeToShow=1.0) self.modelXbrl.profileStat(_("validate{0}").format(modelXbrl.modelManager.disclosureSystem.validationType)) modelXbrl.modelManager.showStatus(_("ready"), 2000) def isStandardUri(self, uri): try: return self._isStandardUri[uri] except KeyError: isStd = (uri in self.disclosureSystem.standardTaxonomiesDict or (not isHttpUrl(uri) and # try 2011-12-23 RH: if works, remove the localHrefs # any(u.endswith(e) for u in (uri.replace("\\","/"),) for e in disclosureSystem.standardLocalHrefs) "/basis/sbr/" in uri.replace("\\","/") )) self._isStandardUri[uri] = isStd return isStd def directedCycle(self, relFrom, origin, fromRelationships, path): if relFrom in fromRelationships: for rel in fromRelationships[relFrom]: relTo = rel.toModelObject if relTo == origin: return [rel] if relTo not in path: # report cycle only where origin causes the cycle path.add(relTo) foundCycle = self.directedCycle(relTo, origin, fromRelationships, path) if foundCycle is not None: foundCycle.insert(0, rel) return foundCycle path.discard(relTo) return None ''' this may be unused now, if common stock class members are only taken from observed facts, not defined members, per Dean R def getDimMembers(self, dim, default=None, rels=None, members=None, visited=None): hasDefinedRelationship = False if rels is None: visited = set() members = set() for rel in self.modelXbrl.relationshipSet(XbrlConst.dimensionDefault).fromModelObject(dim): default = rel.toModelObject rels = self.modelXbrl.relationshipSet(XbrlConst.dimensionDomain).fromModelObject(dim) for rel in rels: hasDefinedRelationship = True relTo = rel.toModelObject if rel.isUsable and relTo != default: # HF: bug, if not usable, then not usable in any other place in network, fix members.add(relTo.qname) if relTo not in visited: visited.add(relTo) domMbrRels = self.modelXbrl.relationshipSet(XbrlConst.domainMember, rel.consecutiveLinkrole).fromModelObject(relTo) self.getDimMembers(dim, default, domMbrRels, members, visited) visited.discard(relTo) return (members,hasDefinedRelationship) ''' def checkConceptLabels(self, modelXbrl, labelsRelationshipSet, disclosureSystem, concept): hasDefaultLangStandardLabel = False dupLabels = {} for modelLabelRel in labelsRelationshipSet.fromModelObject(concept): modelLabel = modelLabelRel.toModelObject if modelLabel is not None and modelLabel.xmlLang: if modelLabel.xmlLang.startswith(disclosureSystem.defaultXmlLang) and \ modelLabel.role == XbrlConst.standardLabel: hasDefaultLangStandardLabel = True dupDetectKey = ( (modelLabel.role or ''), modelLabel.xmlLang) if dupDetectKey in dupLabels: modelXbrl.error(("EFM.6.10.02", "GFM.1.5.2", "SBR.NL.2.2.1.05"), _("Concept %(concept)s has duplicated labels for role %(role)s lang %(lang)s."), modelObject=(modelLabel, dupLabels[dupDetectKey]), # removed concept from modelObjects concept=concept.qname, role=dupDetectKey[0], lang=dupDetectKey[1]) else: dupLabels[dupDetectKey] = modelLabel if modelLabel.role in (XbrlConst.periodStartLabel, XbrlConst.periodEndLabel): modelXbrl.error("SBR.NL.2.3.8.03", _("Concept %(concept)s has label for semantical role %(role)s."), modelObject=modelLabel, concept=concept.qname, role=modelLabel.role) if self.validateSBRNL: # check for missing nl labels for role, lang in dupLabels.keys(): if role and lang != disclosureSystem.defaultXmlLang and (role,disclosureSystem.defaultXmlLang) not in dupLabels: modelXbrl.error("SBR.NL.2.3.8.05", _("Concept %(concept)s has en but no nl label in role %(role)s."), modelObject=(concept,dupLabels[(role,lang)]), concept=concept.qname, role=role) #6 10.1 en-US standard label if not hasDefaultLangStandardLabel: modelXbrl.error(("EFM.6.10.01", "GFM.1.05.01"), _("Concept used in facts %(concept)s is missing an %(lang)s standard label."), # concept must be the first referenced modelObject modelObject=[concept] + list(modelXbrl.factsByQname[concept.qname]), concept=concept.qname, lang=disclosureSystem.defaultLanguage) #6 10.3 default lang label for every role try: dupLabels[("zzzz",disclosureSystem.defaultXmlLang)] = None #to allow following loop priorRole = None priorLang = None hasDefaultLang = True for role, lang in sorted(dupLabels.keys()): if role != priorRole: if not hasDefaultLang: modelXbrl.error(("EFM.6.10.03", "GFM.1.5.3"), _("Concept %(concept)s is missing an %(lang)s label for role %(role)s."), modelObject=list(modelXbrl.factsByQname[concept.qname]) + [dupLabels[(priorRole,priorLang)]], concept=concept.qname, lang=disclosureSystem.defaultLanguage, role=priorRole) hasDefaultLang = False priorLang = lang priorRole = role if lang is not None and lang.startswith(disclosureSystem.defaultXmlLang): hasDefaultLang = True except Exception as err: pass # check if concept is behaving as a total based on role, deed, or circumstances def presumptionOfTotal(self, rel, siblingRels, iSibling, isStatementSheet, nestedInTotal, checkLabelRoleOnly): """ A numeric concept target of a parent-child relationship is presumed total if: (i) its preferredLabel role is a total role (pre XbrlConst static function of current such total roles) or (ii) if not in a nested total (abstract child relationship to a known total's contributing siblings): the parent is not SupplementalCashFlowInformationAbstract and the preceding sibling relationship is monetary and it's on a statement sheet and it's the last of more than one monetary item (a) Last monetary parented by an abstract or non-monetary and not in a nested (breakdown) total, or (b) effective label (en-US of preferred role) has "Total" in its wording. (c) (commented out for now due to false positives: Concept name has "Total" in its name) (d) last monetary (may be sub level) whose immediate sibling is a calc LB child """ concept = rel.toModelObject if isinstance(concept, ModelConcept) and concept.isNumeric: preferredLabel = rel.preferredLabel if XbrlConst.isTotalRole(preferredLabel): return _("preferredLabel {0}").format(os.path.basename(preferredLabel)) if concept.isMonetary and not checkLabelRoleOnly: effectiveLabel = concept.label(lang="en-US", fallbackToQname=False, preferredLabel=preferredLabel) ''' word total in label/name does not seem to be a good indicator, e.g., Google Total in label for ShareBasedCompensationArrangementByShareBasedPaymentAwardGrantDateFairValueOfOptionsVested followed by label with Aggregate but name has Total ... so only perform this test on last monetary in a Note if 'Total' in effectiveLabel: # also check for Net ??? return _("word 'Total' in effective label {0}").format(effectiveLabel) if 'Total' in concept.name: # also check for Net ??? return _("word 'Total' in concept name {0}").format(concept.name) ''' parent = rel.fromModelObject if (len(siblingRels) > 1 and iSibling == len(siblingRels) - 1 and parent is not None and parent.name not in { "SupplementalCashFlowInformationAbstract" }): preceedingSibling = siblingRels[iSibling - 1].toModelObject if preceedingSibling is not None and preceedingSibling.isMonetary: # last fact, may be total if isStatementSheet: # check if facts add up?? if (parent.isAbstract or not parent.isMonetary) and not nestedInTotal: return _("last monetary item in statement sheet monetary line items parented by nonMonetary concept") elif effectiveLabel and 'Total' in effectiveLabel: return _("last monetary item in statement sheet monetary line items with word 'Total' in effective label {0}").format(effectiveLabel) elif 'Total' in concept.name: return _("last monetary item in statement sheet monetary line items with word 'Total' in concept name {0}").format(concept.name) elif self.summationItemRelsSetAllELRs.isRelated(concept, "child", preceedingSibling): return _("last monetary item in statement sheet monetary line items is calc sum of previous line item") ''' for now unreliable to use total words for notes else: if 'Total' in effectiveLabel: # also check for Net ??? return _("last monetary item in note with word 'Total' in effective label {0}").format(effectiveLabel) if 'Total' in concept.name: # also check for Net ??? return _("last monetary item in note with word 'Total' in concept name {0}").format(concept.name) ''' return None # 6.15.02, 6.15.03 def checkCalcsTreeWalk(self, parentChildRels, concept, isStatementSheet, inNestedTotal, conceptsUsed, visited): """ - EFM-strict validation 6.15.2/3: finding presumed totals in presentation and inspecting for equivalents in calculation (noted as error-semantic, in efm-strict mode). - Best practice approach: inspecting for calcuations in the UGT calculations that would hint that like filing constructs should have presentation (noted as warning-semantic in best practices plug-in, when loaded and enabled) EFM-strict missing-calcs a. Presumption of total The presentation linkbase is tree-walked to find items presumed to be totals and their contributing items. (see description of presumptionOfTotal, above) b. Finding calculation link roles with least mis-fit to presumed total and its contributing items (presumptionOfTotal in ValidateFiling.py). For each presumed total (checkForCalculations in ValidateFiling.py): b.1 Contributing items are found for the presumed total as follows: From the presumed total, walking back through its preceding sibilings (with caution to avoid looping on allowed direct cycles), a preceding sibling is a contributing item if it has facts, same period type, and numeric. If a preceding sibling is abstract, the abstract's children are likewise recursively checked (as they often represent a breakdown, and such children of an abstract sibling to the total are also contributing items (except for such children preceding a total at the child level). If a preceding sibling is presumed total (on same level), it is a running subtotal (in subsequent same-level total) unless it's independent in the calc LB (separate totaled stuff preceding these siblings) or related to grandparent sum. b.2 Finding the facts of these total/contributing item sets Sets of total and compatible contributing facts that match the sets of total concept and contributing concept must next be found, because each of these different sets (of total and compatible contributing facts) may fit different calculation link roles (according to which compatible contributing facts are present for each total). This is particularly important when totals and contributing items exist both on face statements and notes, but the contributing compatible fact population is different). For each fact of the total concept, that has a specified end/instant datetime and unit, if (i) it's not on a statement or (ii) required context is absent or (iii) the fact's end/instant is within the required context's duration, the contributing item facts are those unit and context equivalent to such total fact. b.3 Finding least-mis-matched calculation link role Each link role in calculation produces a different set of summation-item arc-sets, and each set of presumed-total facts and compatible contributing item facts is separately considered to find the least-mismatched calculation summation-item arc-set. The link roles are not intermixed or aggregated, each link role produces independent summation-item arc-sets (XBRL 2.1 section 5.2.5.2). For each total fact and compatible contributing item facts, the calculation link roles are examined one-by-one for that link-role where the total has children missing the least of the compatible contributing item fact children, and reported either as 6.15.02 (for statement sheet presentation link roles) or 6.15.03 (for non-statement link roles). The determination of statement sheet is according to the presentation tree walk. The search for least-misfit calculation link role does not care or consider the value of the calculation link role, just the summation-item arc-set from the presumed-total concept. """ if concept not in visited: visited.add(concept) siblingRels = parentChildRels.fromModelObject(concept) foundTotalAtThisLevel = False for iSibling, rel in enumerate(siblingRels): reasonPresumedTotal = self.presumptionOfTotal(rel, siblingRels, iSibling, isStatementSheet, False, inNestedTotal) if reasonPresumedTotal: foundTotalAtThisLevel = True self.checkForCalculations(parentChildRels, siblingRels, iSibling, rel.toModelObject, rel, reasonPresumedTotal, isStatementSheet, conceptsUsed, False, set()) if foundTotalAtThisLevel: # try nested tree walk to look for lower totals inNestedTotal = True for rel in siblingRels: self.checkCalcsTreeWalk(parentChildRels, rel.toModelObject, isStatementSheet, inNestedTotal, conceptsUsed, visited) visited.remove(concept) def checkForCalculations(self, parentChildRels, siblingRels, iSibling, totalConcept, totalRel, reasonPresumedTotal, isStatementSheet, conceptsUsed, nestedItems, contributingItems): # compatible preceding sibling facts must have calc relationship to toal for iContributingRel in range(iSibling - 1, -1, -1): contributingRel = siblingRels[iContributingRel] siblingConcept = contributingRel.toModelObject if siblingConcept is not None: if siblingConcept is totalConcept: # direct cycle loop likely, possibly among children of abstract sibling break if self.summationItemRelsSetAllELRs.isRelated(totalConcept, 'ancestral-sibling', siblingConcept): break # sibling independently contributes as sibling of totalConcept to grandfather total if any(self.summationItemRelsSetAllELRs.isRelated(contributingItem, 'child', siblingConcept) for contributingItem in contributingItems): break # this subtotal is a breakdown of something already being considered isContributingTotal = self.presumptionOfTotal(contributingRel, siblingRels, iContributingRel, isStatementSheet, True, False) # contributing total may actually be separate non-running subtotal, if so don't include it here if isContributingTotal: if (self.summationItemRelsSetAllELRs.fromModelObject(siblingConcept) and not self.summationItemRelsSetAllELRs.toModelObject(siblingConcept)): break # sibling independently contributes as sibling of totalConcept as a root in another hierarchy if siblingConcept.isAbstract: childRels = parentChildRels.fromModelObject(siblingConcept) self.checkForCalculations(parentChildRels, childRels, len(childRels), totalConcept, totalRel, reasonPresumedTotal, isStatementSheet, conceptsUsed, True, contributingItems) elif (siblingConcept in conceptsUsed and siblingConcept.isNumeric and siblingConcept.periodType == totalConcept.periodType): contributingItems.add(siblingConcept) if isContributingTotal: break if not nestedItems and contributingItems: # must check each totalFact and compatible items for a relationship set separately # (because different sets of sums/items could, on edge case, be in different ELRs) compatibleItemsFacts = defaultdict(set) for totalFact in self.modelXbrl.factsByQname[totalConcept.qname]: totalFactContext = totalFact.context totalFactUnit = totalFact.unit if (totalFactContext is not None and totalFactUnit is not None and totalFactContext.endDatetime is not None and (not isStatementSheet or (self.requiredContext is None or self.requiredContext.startDatetime <= totalFactContext.endDatetime <= self.requiredContext.endDatetime))): compatibleItemConcepts = set() compatibleFacts = {totalFact} for itemConcept in contributingItems: for itemFact in self.modelXbrl.factsByQname[itemConcept.qname]: if (totalFactContext.isEqualTo(itemFact.context) and totalFactUnit.isEqualTo(itemFact.unit)): compatibleItemConcepts.add(itemConcept) compatibleFacts.add(itemFact) if len(compatibleItemConcepts) >= 2: # 6.15.2 requires 2 or more line items along with their net or total compatibleItemsFacts[frozenset(compatibleItemConcepts)].update(compatibleFacts) for compatibleItemConcepts, compatibleFacts in compatibleItemsFacts.items(): foundSummationItemSet = False leastMissingItemsSet = compatibleItemConcepts for ELR in self.summationItemRelsSetAllELRs.linkRoleUris: relSet = self.modelXbrl.relationshipSet(XbrlConst.summationItem,ELR) missingItems = (compatibleItemConcepts - frozenset(r.toModelObject for r in relSet.fromModelObject(totalConcept))) # may be slow, but must remove sibling or descendants to avoid annoying false positives # such as in http://www.sec.gov/Archives/edgar/data/1341439/000119312512129918/orcl-20120229.xml missingItems -= set(concept for concept in missingItems if relSet.isRelated(totalConcept, "sibling-or-descendant", concept)) # items not required in sum unrequiredItems = set(concept for concept in missingItems if concept.name in ("CommitmentsAndContingencies")) missingItems -= unrequiredItems if missingItems: if len(missingItems) < len(leastMissingItemsSet): leastMissingItemsSet = missingItems else: foundSummationItemSet = True ''' # testing with DH (merge all calc ELRs instead of isolating calc ELRs)... relSet = self.modelXbrl.relationshipSet(XbrlConst.summationItem) missingItems = (compatibleItemConcepts - frozenset(r.toModelObject for r in relSet.fromModelObject(totalConcept))) foundSummationItemSet = len(missingItems) == 0 ''' if not foundSummationItemSet: linkroleDefinition = self.modelXbrl.roleTypeDefinition(contributingRel.linkrole) reasonIssueIsWarning = "" msgCode = "ERROR-SEMANTIC" if isStatementSheet: errs = ("EFM.6.15.02,6.13.02,6.13.03", "GFM.2.06.02,2.05.02,2.05.03") msg = _("Financial statement calculation relationship missing from total concept to item concepts, based on required presentation of line items and totals. " "%(reasonIssueIsWarning)s" "\n\nPresentation link role: \n%(linkrole)s \n%(linkroleDefinition)s. " "\n\nTotal concept: \n%(conceptSum)s. " "\n\nReason presumed total: \n%(reasonPresumedTotal)s. " "\n\nSummation items missing: \n%(missingConcepts)s. " "\n\nExpected item concepts: \n%(itemConcepts)s. " "\n\nCorresponding facts in contexts: \n%(contextIDs)s\n") else: errs = ("EFM.6.15.03,6.13.02,6.13.03", "GFM.2.06.03,2.05.02,2.05.03") msg = _("Notes calculation relationship missing from total concept to item concepts, based on required presentation of line items and totals. " "%(reasonIssueIsWarning)s" "\n\nPresentation link role: \n%(linkrole)s \n%(linkroleDefinition)s." "\n\nTotal concept: \n%(conceptSum)s. " "\n\nReason presumed total: \n%(reasonPresumedTotal)s. " "\n\nSummation items missing \n%(missingConcepts)s. " "\n\nExpected item concepts \n%(itemConcepts)s. " "\n\nCorresponding facts in contexts: \n%(contextIDs)s\n") # cases causing this issue to be a warning instead of an error if all(f.isNil for f in compatibleFacts if f.concept in leastMissingItemsSet): reasonIssueIsWarning = _("\n\nMissing items are nil, which doesn't affect validity but may impair analysis of concept semantics from calculation relationships. ") msgCode = "WARNING-SEMANTIC" errs = tuple(e + '.missingItemsNil' for e in errs) if "parenthetical" in linkroleDefinition.lower(): reasonIssueIsWarning += _("\n\nLink role is parenthetical. ") msgCode = "WARNING-SEMANTIC" errs = tuple(e + '.parenthetical' for e in errs) """@messageCatalog=[ [["EFM.6.15.02,6.13.02,6.13.03", "GFM.2.06.02,2.05.02,2.05.03"], "Financial statement calculation relationship missing from total concept to item concepts, based on required presentation of line items and totals. %(reasonIssueIsWarning)s Presentation link role: %(linkrole)s %(linkroleDefinition)s. Total concept: %(conceptSum)s. Reason presumed total: n%(reasonPresumedTotal)s. Summation items missing n%(missingConcepts)s. Expected item concepts %(itemConcepts)s. Corresponding facts in contexts: %(contextIDs)s "], [["EFM.6.15.03,6.13.02,6.13.03", "GFM.2.06.03,2.05.02,2.05.03"], "Notes calculation relationship missing from total concept to item concepts, based on required presentation of line items and totals. %(reasonIssueIsWarning)s Presentation link role: %(linkrole)s %(linkroleDefinition)s. Total concept: %(conceptSum)s. Reason presumed total: %(reasonPresumedTotal)s. Summation items missing %(missingConcepts)s. Expected item concepts %(itemConcepts)s. Corresponding facts in contexts: %(contextIDs)s"]]""" self.modelXbrl.log(msgCode, errs, msg, modelObject=[totalConcept, totalRel, siblingConcept, contributingRel] + [f for f in compatibleFacts], reasonIssueIsWarning=reasonIssueIsWarning, conceptSum=totalConcept.qname, linkrole=contributingRel.linkrole, linkroleDefinition=linkroleDefinition, reasonPresumedTotal=reasonPresumedTotal, itemConcepts=', \n'.join(sorted(set(str(c.qname) for c in compatibleItemConcepts))), missingConcepts = ', \n'.join(sorted(set(str(c.qname) for c in leastMissingItemsSet))), contextIDs=', '.join(sorted(set(f.contextID for f in compatibleFacts)))) leastMissingItemsSet = None #dereference, can't delete with Python 3.1 del foundSummationItemSet del compatibleItemsFacts # dereference object references @property def EFM60303(self): if self.exhibitType == "EX-2.01": # only applicable for edgar production and parameterized testcases return "EFM.6.23.01" else: return "EFM.6.03.03" # for SBR 2.3.4.01 def pLinkedNonAbstractDescendantQnames(modelXbrl, concept, descendants=None): if descendants is None: descendants = set() for rel in modelXbrl.relationshipSet(XbrlConst.parentChild).fromModelObject(concept): child = rel.toModelObject if child is not None: if child.isAbstract: pLinkedNonAbstractDescendantQnames(modelXbrl, child, descendants) else: descendants.add(child.qname) return descendants ```
{ "source": "josl/ASM_challenge", "score": 2 }
#### File: ASM_challenge/isolates/download_accession_list.py ```python from __future__ import division, print_function, absolute_import import os import sys import json import argparse from shutil import move from progressbar import Bar, Percentage, ProgressBar, ETA from isolates import __version__, TemporaryDirectory from isolates.log import _logger from isolates.metadata import (ExtractExperimentMetadata, ExtractExperimentIDs_acc) from isolates.sequence import Sequence from isolates.source import acctypes __author__ = "<NAME>" __coauthor__ = "<NAME>" __copyright__ = "<NAME>" __license__ = "none" def parse_args_accessions(args): """ Parse command line parameters :param args: command line parameters as list of strings :return: command line parameters as :obj:`argparse.Namespace` """ parser = argparse.ArgumentParser( description="Download script of isolates from" + "ENA taxonomy or Accession list") parser.add_argument( '--version', action='version', version='isolates {ver}'.format(ver=__version__)) parser.add_argument( '-a', nargs=1, metavar=('PATH'), help='Format: [PATH]\n' + 'to file containing list of ACCESSION IDs, 1 per line\n' + 'Name of the file is used to identify the isolates downloaded.' ) parser.add_argument( '-m', nargs=1, type=argparse.FileType('r'), metavar=('METADATA'), default=None, help='JSON file with seed attributes and mandatory fields\n' ) parser.add_argument( '-out', nargs=1, metavar=('OUTPUT'), required=True, help='Path to save isolates' ) parser.add_argument( '-p', '--preserve', action="store_true", dest="preserve", default=False, help='preserve any existing SRA and fastq files\n' ) parser.add_argument( '--all_runs_as_samples', action="store_true", dest="all_runs_as_samples", default=False, help=('Treat all runs associated to a sample as separate samples. ' 'Default is to combine them into one run.\n') ) parser.add_argument( '--skip_files', action="store_true", dest="skip_files", default=False, help=('Treat all runs associated to a sample as separate samples. ' 'Default is to combine them into one run.\n') ) return parser.parse_args(args) def DownloadRunFiles(runid, tmpdir): # Download run files try: s = Sequence(runid, tmpdir) s.download_fastq() if not s.error: _logger.info("Downloaded files: %s", ','.join(s.files)) return s.files else: return None except ValueError, e: _logger.error(e) return None def CreateSampleDir(sfiles, m, sample_dir, preserve=False, skip_files=False): sample_dir = str(sample_dir) if not skip_files and len(sfiles) == 0: _logger.error("Error: No files were found! (%s)", sample_dir) return False if not os.path.exists(sample_dir): _logger.info("Create sample dir: %s", sample_dir) # Create 'sample' dir os.mkdir(sample_dir) # Move files from tmpdir to sample dir for sf in sfiles: move(sf, sample_dir) elif not preserve and not skip_files: # Empty sample directory for fn in os.listdir(sample_dir): os.unlink("%s/%s"%(sample_dir, fn)) # Move files from tmpdir to sample dir for sf in sfiles: move(sf, sample_dir) # Update and create metadata file try: m.metadata["file_names"] = ' '.join( [os.path.basename(sf).replace(' ','_') for sf in sfiles if not os.path.basename(sf) == 'meta.json'] ) m.save_metadata(sample_dir) except ValueError, e: _logger.error(e) return False else: return True def download_fastq_from_list(accession_list, output, json, preserve=False, all_runs_as_samples=False, skip_files=False): """ Get Fastq from list of IDs :param accession_list: List of accessions :param dir: Output folder """ metadata = [] cwd = os.getcwd() with open(accession_list, 'r') as f: # Setup batch dir batch_dir = "%s/%s/"%(cwd, output) if not os.path.exists(batch_dir): os.mkdir(batch_dir) os.chdir(batch_dir) # Set logging _logger.Set(filename="%s/download-acceession-list.log"%batch_dir) # Count samples in accession_list n_samples = sum(1 for l in f) f.seek(0) _logger.info("Number of samples to download: %s", n_samples) # Start progress bar pbar = ProgressBar( widgets = [ETA(), ' - ', Percentage(), ' : ', Bar()], maxval = n_samples ).start() pbar.update(0) failed_accession = [] sample_dir_id = 0 for i, l in enumerate(f): accession = l.strip() if accession == '': continue # Determine accession type if accession[:3] in acctypes: accession_type = acctypes[accession[:3]] else: _logger.error("unknown accession type for '%s'!", accession) failed_accession.append(accession) continue _logger.info("Acc Found: %s (%s)", accession, accession_type) if accession_type in ['study', 'sample']: for experiment_id in ExtractExperimentIDs_acc(accession): sample_dir_id = ProcessExperiment( experiment_id, json, batch_dir,sample_dir_id, preserve, failed_accession, all_runs_as_samples, skip_files) elif accession_type == 'experiment': sample_dir_id = ProcessExperiment( accession, json, batch_dir,sample_dir_id, preserve, failed_accession, all_runs_as_samples, skip_files) elif accession_type == 'run': sample_dir_id = ProcessExperiment( accession, json, batch_dir,sample_dir_id, preserve, failed_accession, all_runs_as_samples, skip_files) pbar.update(i) pbar.finish() if failed_accession: _logger.info("The following accessions were not downloaded!") _logger.info('\n'.join(failed_accession)) else: _logger.info("All accessions downloaded succesfully!") def ProcessExperiment(experiment_id, json, batch_dir, sample_dir_id, preserve, failed_accession, all_runs_as_samples, skip_files=False): _logger.info("Processing %s...", experiment_id) if all_runs_as_samples: sample_dir_id = ProcessExperimentSeparate( experiment_id, json, batch_dir, sample_dir_id, preserve, failed_accession, skip_files) else: sample_dir_id = ProcessExperimentCombined( experiment_id, json, batch_dir, sample_dir_id, preserve, failed_accession, skip_files) return sample_dir_id def ProcessExperimentSeparate(experiment_id, json, batch_dir, sample_dir_id, preserve, failed_accession, skip_files=False): m = ExtractExperimentMetadata(experiment_id, json) if m.valid_metadata(): # Check if a run ID was submitted, and if so only process that if experiment_id in m.runIDs: m.runIDs = [experiment_id] # Process the runIDs as samples _logger.info("Found Following Runs: %s", ', '.join(m.runIDs)) for runid in m.runIDs: with TemporaryDirectory() as tmpdir: os.chdir(batch_dir) sample_dir = "%s/%s/"%(batch_dir, sample_dir_id) if os.path.exists(sample_dir): sfiles = [x for x in os.listdir(sample_dir) if any([y in x for y in ['fq','fastq']])] else: sfiles = [] if not preserve or not skip_files or len(sfiles) == 0: sfiles = DownloadRunFiles(runid, tmpdir) if sfiles is not None: success = CreateSampleDir(sfiles, m, sample_dir, preserve, skip_files) if success: sample_dir_id += 1 else: failed_accession.append(runid) else: _logger.error("Files could not be retrieved! (%s)", runid) failed_accession.append(runid) else: _logger.error("Metadata Invalid! (%s) - %s", experiment_id, m.metadata.items()) failed_accession.append(experiment_id) return sample_dir_id def ProcessExperimentCombined(experiment_id, json, batch_dir, sample_dir_id, preserve, failed_accession, skip_files=False): m = ExtractExperimentMetadata(experiment_id, json) if m.valid_metadata(): # Check if a run ID was submitted, and if so only process that if experiment_id in m.runIDs: m.runIDs = [experiment_id] # Process the runs as one sample _logger.info("Found Following Runs: %s", ', '.join(m.runIDs)) with TemporaryDirectory() as tmpdir: os.chdir(batch_dir) sample_dir = "%s/%s/"%(batch_dir, sample_dir_id) csfiles = [] if preserve and os.path.exists(sample_dir): csfiles = [x for x in os.listdir(sample_dir) if any([y in x for y in ['fq','fastq']])] if csfiles == [] and not skip_files: sfiles = [] for runid in m.runIDs: sf = DownloadRunFiles(runid, tmpdir) if sf is not None: sfiles.append(sf) else: _logger.error("Run files could not be retrieved! (%s)", runid) _logger.info("Found Following files sets:\n%s\n", '\n'.join([', '.join(sf) for sf in sfiles])) # Combine sfiles into one entry if len(sfiles) > 1: for file_no, file_set in enumerate(zip(*sfiles)): ext = '.'.join(file_set[0].split('/')[-1].split('.')[1:]) if len(sfiles[0]) > 1: new_file = "%s_%s.combined.%s"%(experiment_id,file_no+1, ext) else: new_file = "%s.combined.%s"%(experiment_id, ext) with open(new_file, 'w') as nf: for fn in file_set: with open(fn, 'rb') as f: nf.write(f.read()) if os.path.exists(new_file): csfiles.append(new_file) else: _logger.error("Combined file creation failed! (%s: %s)", experiment_id, file_no) break elif isinstance(sfiles[0], list): csfiles = sfiles[0] if csfiles == []: _logger.error("Files could not be combined! (%s)", experiment_id) failed_accession.append(experiment_id) if csfiles != [] or skip_files: success = CreateSampleDir(csfiles, m, sample_dir, preserve, skip_files) if success: sample_dir_id += 1 else: failed_accession.append(experiment_id) else: _logger.error("Files could not be retrieved! (%s)", experiment_id) failed_accession.append(experiment_id) else: _logger.error("Metadata Invalid! (%s) - %s", experiment_id, m.metadata.items()) failed_accession.append(experiment_id) return sample_dir_id def download_accession_list(): args = parse_args_accessions(sys.argv[1:]) if args.a is not None: if args.m is not None: try: default = json.load(args.m[0]) except ValueError as e: print("ERROR: Json file has the wrong format!\n", e) exit() else: default = None download_fastq_from_list(args.a[0], args.out[0], default, args.preserve, args.all_runs_as_samples, args.skip_files) else: print('Usage: -a PATH -o ORGANISM -out PATH [-m JSON]') if __name__ == "__main__": download_accession_list() ``` #### File: ASM_challenge/isolates/__init__.py ```python import pkg_resources import socket import urllib from email.mime.text import MIMEText from subprocess import Popen, PIPE from shutil import rmtree from tempfile import mkdtemp # GENERAL MODULE CLASSES class TemporaryDirectory(object): """Create and return a temporary directory. This has the same behavior as mkdtemp but can be used as a context manager. For example: >>> import os >>> tmpfile = 'file.ext' >>> with TemporaryDirectory() as tmpdir: ... print "Was tmpdir created? %s"%os.path.exists(tmpdir) ... os.chdir(tmpdir) ... with open(tmpfile, 'w') as f: ... f.write('Hello World!') ... print "Was tmpfile created? %s"%os.path.exists(tmpfile) Was tmpdir created? True Was tmpfile created? True >>> print "Does tmpfile still exist? %s"%os.path.exists(tmpfile) Does tmpfile still exist? False >>> print "Does tmpdir still exist? %s"%os.path.exists(tmpdir) Does tmpdir still exist? False Upon exiting the context, the directory and everything contained in it are removed. This method is not implemented in python-2.7! """ def __init__(self, suffix="", prefix="tmp", dir=None): self.name = None self.name = mkdtemp(suffix, prefix, dir) def __enter__(self): return self.name def cleanup(self, _warn=False): if self.name: try: rmtree(self.name) except: print('Could not remove %s'%self.name) else: self.name = None def __exit__(self, exc, value, tb): self.cleanup() class openurl(object): ''' urllib library wrapper, to make it easier to use. >>> import urllib >>> with openurl('http://www.ncbi.nlm.nih.gov/sra/?term=ERX006651&format=text') as u: ... for l in u: ... print l.strip() ''' def __init__(self, url): self.url = url def __enter__(self): self.u = urllib.urlopen(self.url) return self.u def __exit__(self, type=None, value=None, traceback=None): self.u.close() self.u = None def __iter__(self): yield self.readline() def read(self): return self.u.read() def readline(self): return self.u.readline() def readlines(self): return self.u.readlines() class mail_obj(): ''' >>> mail = mail_obj(['<EMAIL>'], '<EMAIL>') >>> mail.send('Hello my subject!','Hello my body!') ''' def __init__(self, recepients, sender, reply): self.to = recepients self.fr = sender self.rt = reply def send(self, subject, message): ''' ''' msg = MIMEText(message) msg["To"] = ', '.join(self.to) if isinstance(self.to, list) else self.to msg["From"] = self.fr msg["Reply-To"] = self.rt msg["Subject"] = subject p = Popen(["sendmail -r %s %s"%(self.fr, ' '.join(self.to))], shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE) out, err = p.communicate(msg.as_string()) p.wait() def test(self, subject, message): ''' ''' msg = MIMEText(message) msg["To"] = ', '.join(self.to) if isinstance(self.to, list) else self.to msg["From"] = self.fr msg["Reply-To"] = self.rt msg["Subject"] = subject return "%s\n%s"%("sendmail -r %s %s"%(self.fr, ' '.join(self.to)), msg.as_string()) # GENERAL MODULE FUNCTIONS def flipdict(d): ''' switch keys and values, so that all values are keys in a new dict ''' return dict(zip(*list(reversed(zip(*[(k, v) for k in d for v in d[k]]))))) def ceil(n): ''' compute the closest upper integer of a float ''' return int(n) + (n%1 > 0) # MAIN # Set version try: __version__ = pkg_resources.get_distribution(__name__).version except: __version__ = 'unknown' # Setup Mail Wrapper fqdn = socket.getfqdn() if 'cbs.dtu.dk' in fqdn: mail = mail_obj(['<EMAIL>'], '<EMAIL>', '<EMAIL>') elif any([x in fqdn for x in ['computerome', 'risoe']]): mail = mail_obj(['<EMAIL>'], '<EMAIL>', '<EMAIL>') else: mail = None ``` #### File: ASM_challenge/isolates/log.py ```python import logging import sys class log_obj(): ''' Object for handling logging across sevaral modules/scripts USAGE: >>> from log import _logger >>> _logger.Set(filename='metadata.log') >>> _logger.error("error msg %s, %s", 'arg1', 'arg2') ''' def __init__(self): pass def Set(self, filename='metadata.log'): # Setup of what? logging.basicConfig( level=logging.INFO, stream=sys.stdout, format='%(levelname)s:%(message)s', filename=filename, filemode='w' ) self.logger = logging.getLogger(__name__) def debug(self, *msg): self.logger.debug(*msg) def info(self, *msg): self.logger.info(*msg) def warning(self, *msg): self.logger.warning(*msg) def error(self, *msg): self.logger.error(*msg) def log(self, *msg): self.logger.log(*msg) # Init _logger _logger = log_obj() ```
{ "source": "JoslaTech/casba-web-master", "score": 3 }
#### File: casba-web-master/test/switchIT.py ```python import os import time from flask import Flask, request import hashlib import requests from xml.etree.ElementTree import Element, SubElement, tostring app = Flask(__name__) @app.route('/') def index(): destination = "2001220212" endpoint = "A" pin = "0012" bankCode = "033" amount = "1000" currency = "NGN" reference = ''.join(["JE", str(time.time()), "switchIT"]) fundTransferAccount = Element('fundTransferAccount') destination = SubElement(fundTransferAccount, 'destination') destination.text = "2001220212" endpoint = SubElement(fundTransferAccount, 'endpoint') endpoint.text = "A" pin = SubElement(fundTransferAccount, 'pin') pin.text = "0012" bankCode = SubElement(fundTransferAccount, 'bankCode') bankCode.text = "033" amount = SubElement(fundTransferAccount, 'amount') amount.text = "1000" currency = SubElement(fundTransferAccount, 'currency') currency.text = "NGN" reference = SubElement(fundTransferAccount, 'reference') reference.text = ''.join(["JE", str(time.time()), "switchIT"]) # print tostring(fundTransferAccount) headers = {'Content-Type': 'application/xml'} # set what your server accepts response = requests.post("https://staging.etranzact.com/FundGatePlus/doc.wsdl", data=fundTransferAccount, ) print response.content return '<h1>Hello World!</h1>' port = os.getenv('PORT', '5000') if __name__ == '__main__': app.run(host='0.0.0.0', port=int(port)) ```
{ "source": "josl/global-sewage-signatures", "score": 2 }
#### File: global-sewage-signatures/global_sewage_signatures/test.python.py ```python from global_sewage_signatures import MinHash as MH import redis from pkg_resources import resource_filename import numpy as np import sys import threading import time from bitarray import bitarray from struct import * import cython # Hostname comes from docker-compose.yml "depends_on" directive redis_db = redis.StrictRedis(db=3, host='redis', port=6379) dist = 0.2 sparse_matrix = [] hash_funcs = 100 keys = len(redis_db.keys()) # size = 4**16 # a = bitarray(size) # a.setall(True) # a[45] = False # redis_db.set('test5', a.tobytes()) def worker_dense(key): key = 'test5' print(key) byte_string = redis_db.get(key) bytes_read = 0 bytes_to_unpack = 1 # bytes_to_unpack = string.len(s) # if bytes_to_unpack > 32 then # bytes_to_unpack = 1 # end # max = string.len(s) / bytes_to_unpack max_bytes = len(byte_string) / bytes_to_unpack tot_bits = max_bytes * 8 tot = len(byte_string) * 8 zeroes = 0 positions = [] total_bytes = 1 negation = 2 ** (bytes_to_unpack * 8) - 1 fmt = str(bytes_to_unpack) + 'B' pop = redis_db.bitcount(key) tot = len(byte_string) * 8 start = time.time() print(bytes_read, max_bytes) while bytes_read < max_bytes: d = unpack_from(fmt, byte_string, bytes_read) bytes_read += (1 * bytes_to_unpack) d = negation - d[0] while d: tot -= 1 # zeroes = zeroes + 1 # Calculate position of 1 # d_ones = d # inner_zeroes = 0 # while not d_ones & 1: # inner_zeroes += 1 # d_ones >>= 1 # positions.append(((bytes_read - 1) * 8) - 1 - inner_zeroes) # estimated = (((time.time() - start) / len(positions)) * ((tot_bits - pop) - len(positions))) / (60*60) # sys.stdout.write('Thread: [%s] %s out of total (%s) %.2f hours\r' % (key, len(positions), tot_bits - pop, estimated)) d &= d - 1 print('\n',tot, pop) # def worker_sparse(key): threads = [] for key in range(0, 85): tot = redis_db.strlen(key) * 8 pop = redis_db.bitcount(key) if pop < (tot - pop) and False: t = threading.Thread(target=worker_sparse, args=(key,)) else: t = threading.Thread(target=worker_dense, args=(key,)) threads.append(t) t.start() break ```
{ "source": "josl/sequence-reverse-complement", "score": 3 }
#### File: josl/sequence-reverse-complement/test.py ```python import timeit import time from threading import Timer import random from string import maketrans from Bio.Seq import Seq # -------------------------------------- # reverse complement sequence: # -------------------------------------- def reversecomplement(): '''Reverse complement''' comp = '' for s in seq: if s == 'A': comp = comp + 'T' elif s == 'T': comp = comp + 'A' elif s == 'C': comp = comp + 'G' elif s == 'G': comp = comp + 'C' else: comp = comp + s return comp[::-1] def reversecomplement_faster_A(): '''Reverse complement''' mapping = { 'A': 'T', 'T': 'A', 'C': 'G', 'G': 'C' } return ''.join([mapping.get(s, s) for s in seq])[::-1] def reversecomplement_faster_A1(): '''Reverse complement''' mapping = { 'A': 'T', 'T': 'A', 'C': 'G', 'G': 'C' } return ''.join(mapping.get(s, s) for s in seq)[::-1] def reversecomplement_faster_B(): '''Reverse complement''' mapping = { 'A': 'T', 'T': 'A', 'C': 'G', 'G': 'C' } return ''.join([mapping.get(s, s) for s in reversed(seq)]) def reversecomplement_faster_B1(): '''Reverse complement''' mapping = { 'A': 'T', 'T': 'A', 'C': 'G', 'G': 'C' } return ''.join(mapping.get(s, s) for s in reversed(seq)) def reversecomplement_faster_C(): '''Reverse complement''' reverse = [] mapping = { 'A': 'T', 'T': 'A', 'C': 'G', 'G': 'C' } for s in seq: reverse.append(mapping.get(s, s)) return ''.join(reverse)[::-1] def ReverseComplementSUPERFAST(): return seq.translate(maketrans("ATGC", "TACG"))[::-1] def ReverseComplementBIOPython(): my_seq.reverse_complement() if __name__ == '__main__': import timeit # Global to make it visible to all functions seq = ''.join(random.choice('CGTA') for _ in xrange(10000)) print 'Old and slow string concat' print (timeit.timeit( """reversecomplement()""", number=1000, setup="from __main__ import reversecomplement")) print "''.join([mapping.get(s, s) for s in seq])[::-1]" print (timeit.timeit( """reversecomplement_faster_A()""", number=1000, setup="from __main__ import reversecomplement_faster_A")) print "''.join(mapping.get(s, s) for s in seq)[::-1]" print (timeit.timeit( """reversecomplement_faster_A1()""", number=1000, setup="from __main__ import reversecomplement_faster_A1")) print "''.join([mapping.get(s, s) for s in reversed(seq)])" print (timeit.timeit( """reversecomplement_faster_B()""", number=1000, setup="from __main__ import reversecomplement_faster_B")) print "''.join(mapping.get(s, s) for s in reversed(seq))" print (timeit.timeit( """reversecomplement_faster_B1()""", number=1000, setup="from __main__ import reversecomplement_faster_B1")) print """ for s in seq: reverse.append(mapping.get(s, s)) return ''.join(reverse)[::-1] """ print (timeit.timeit( """reversecomplement_faster_C()""", number=1000, setup="from __main__ import reversecomplement_faster_C")) print 'seq.translate(maketrans("ATGC","TACG"))[::-1]' print (timeit.timeit( """ReverseComplementSUPERFAST()""", number=1000, setup="from __main__ import ReverseComplementSUPERFAST")) print 'Reverse Bio PYthon' my_seq = Seq(seq) print (timeit.timeit( """ReverseComplementBIOPython()""", number=1000, setup="from __main__ import ReverseComplementBIOPython")) ```
{ "source": "JosmanPS/foe-gae", "score": 2 }
#### File: foe-gae/foe/views.py ```python from django.shortcuts import redirect, render, render_to_response, render, get_object_or_404 from django.contrib.auth.decorators import login_required from django.core.urlresolvers import reverse from .forms import * from .models import * from django.utils.text import slugify # # FOE, main site # def index(request): args = dict() return render_to_response('foe/main/index.html', args) @login_required def registro_oe(request): args = dict() usuario = request.user oe_usuario = OrganizacionEstudiantil(usuario=usuario) oe = OrganizacionEstudiantil.objects.filter(usuario=usuario) args['completo'] = False if request.method == 'POST': print(usuario) if oe: form = OEForm(request.POST, request.FILES, instance=oe[0]) else: form = OEForm(request.POST, request.FILES, instance=oe_usuario) if form.is_valid(): f = form.save() f.slug = slugify(f.nombre) f.save() return redirect(reverse('registro_bancario')) else: if oe: form = OEForm(instance=oe[0]) else: form = OEForm(instance=oe_usuario) args['form'] = form return render(request, "foe/forms/registroOE.html", args) @login_required def registro_comite(request): args = dict() usuario = request.user cm_usuario = Comite(usuario=usuario) cm = Comite.objects.filter(usuario=usuario) if request.method == 'POST': print(usuario) if cm: form = ComiteForm(request.POST, request.FILES, instance=cm[0]) else: form = ComiteForm(request.POST, request.FILES, instance=cm_usuario) print(request.FILES) print(form.is_valid()) if form.is_valid(): form.save() return redirect('/') else: if cm: form = ComiteForm(instance=cm[0]) else: form = ComiteForm(instance=cm_usuario) args['form'] = form return render(request, "foe/forms/comite.html", args) @login_required def miembros_oe(request): args = dict() usuario = request.user oe = get_object_or_404(OrganizacionEstudiantil, usuario=usuario) pres_oe = Miembro(organizacion_estudiantil=oe, cargo='presidente') pres = Miembro.objects.filter(organizacion_estudiantil=oe, cargo='presidente') sec_oe = Miembro(organizacion_estudiantil=oe, cargo='secretario') sec = Miembro.objects.filter( organizacion_estudiantil=oe, cargo='secretario') tes_oe = Miembro( organizacion_estudiantil=oe, cargo='tesorero') tes = Miembro.objects.filter( organizacion_estudiantil=oe, cargo='tesorero') redes_oe = Miembro( organizacion_estudiantil=oe, cargo='redes') redes = Miembro.objects.filter( organizacion_estudiantil=oe, cargo='redes') if request.method == 'POST': if pres: form_presidente = MiembroForm( request.POST, request.FILES, instance=pres[0], prefix='presidente') else: form_presidente = MiembroForm( request.POST, request.FILES, instance=pres_oe, prefix='presidente') if sec: form_secretario = MiembroForm( request.POST, request.FILES, instance=sec[0], prefix='secretario') else: form_secretario = MiembroForm( request.POST, request.FILES, instance=sec_oe, prefix='secretario') if tes: form_tesorero = MiembroForm( request.POST, request.FILES, instance=tes[0], prefix='tesorero') else: form_tesorero = MiembroForm( request.POST, request.FILES, instance=tes_oe, prefix='tesorero') if redes: form_redes = MiembroForm( request.POST, request.FILES, instance=redes[0], prefix='redes') else: form_redes = MiembroForm( request.POST, request.FILES, instance=redes_oe, prefix='redes') if form_presidente.is_valid(): form_presidente.save() if form_secretario.is_valid(): form_secretario.save() if form_tesorero.is_valid(): form_tesorero.save() if form_redes.is_valid(): form_redes.save() return redirect('/') else: if pres: form_presidente = MiembroForm( instance=pres[0], prefix='presidente') else: form_presidente = MiembroForm( instance=pres_oe, prefix='presidente') if sec: form_secretario = MiembroForm( instance=sec[0], prefix='secretario') else: form_secretario = MiembroForm( instance=sec_oe, prefix='secretario') if tes: form_tesorero = MiembroForm( instance=tes[0], prefix='tesorero') else: form_tesorero = MiembroForm( instance=tes_oe, prefix='tesorero') if redes: form_redes = MiembroForm( instance=redes[0], prefix='redes') else: form_redes = MiembroForm( instance=redes_oe, prefix='redes') args['form_presidente'] = form_presidente args['form_secretario'] = form_secretario args['form_tesorero'] = form_tesorero args['form_redes'] = form_redes return render(request, "foe/forms/miembro.html", args) @login_required def datos_bancarios(request): args = dict() usuario = request.user oe = get_object_or_404(OrganizacionEstudiantil, usuario=usuario) m_oe = DatosBancarios(organizacion_estudiantil=oe) m = DatosBancarios.objects.filter(organizacion_estudiantil=oe) if request.method == 'POST': print(usuario) if m: form = BancarioForm(request.POST, request.FILES, instance=m[0]) else: form = BancarioForm(request.POST, request.FILES, instance=m_oe) if form.is_valid(): form.save() return redirect(reverse('registro_miembro')) else: if m: form = BancarioForm(instance=m[0]) else: form = BancarioForm(instance=m_oe) args['form'] = form return render(request, "foe/forms/datos-bancarios.html", args) def directorio(request): args = dict() oes = OrganizacionEstudiantil.objects.all() oes.order_by('clasificacion', 'nombre') args['organizaciones'] = oes return render(request, "foe/main/directorio.html", args) def perfil_oe(request, oe_slug): args = dict() oe = get_object_or_404( OrganizacionEstudiantil, slug=oe_slug) args['oe'] = oe args['logo_url'] = oe.logo._get_url() args['plan_trabajo_url'] = oe.plan_trabajo._get_url() args['presupuesto_url'] = oe.presupuesto._get_url() return render(request, "foe/main/perfil.html", args) ```
{ "source": "JosmarSuarez/centermask2", "score": 2 }
#### File: modeling/centermask/proposal_utils.py ```python import math import torch from detectron2.structures import Instances def add_ground_truth_to_proposals(targets, proposals): """ Call `add_ground_truth_to_proposals_single_image` for all images. Args: targets(list[Instances]): list of N elements. Element i is a Boxes representing the gound-truth for image i. proposals (list[Instances]): list of N elements. Element i is a Instances representing the proposals for image i. Returns: list[Instances]: list of N Instances. Each is the proposals for the image, with field "proposal_boxes" and "objectness_logits". """ assert targets is not None assert len(proposals) == len(targets) if len(proposals) == 0: return proposals return [ add_ground_truth_to_proposals_single_image(tagets_i, proposals_i) for tagets_i, proposals_i in zip(targets, proposals) ] def add_ground_truth_to_proposals_single_image(targets_i, proposals): """ Augment `proposals` with ground-truth boxes from `gt_boxes`. Args: Same as `add_ground_truth_to_proposals`, but with targets and proposals per image. Returns: Same as `add_ground_truth_to_proposals`, but for only one image. """ device = proposals.scores.device proposals.proposal_boxes = proposals.pred_boxes proposals.remove("pred_boxes") # Concatenating gt_boxes with proposals requires them to have the same fields # Assign all ground-truth boxes an objectness logit corresponding to P(object) \approx 1. gt_logit_value = math.log((1.0 - 1e-10) / (1 - (1.0 - 1e-10))) gt_logits = gt_logit_value * torch.ones(len(targets_i), device=device) gt_proposal = Instances(proposals.image_size) gt_proposal.proposal_boxes = targets_i.gt_boxes # to have the same fields with proposals gt_proposal.scores = gt_logits gt_proposal.pred_classes = targets_i.gt_classes gt_proposal.locations = torch.ones((len(targets_i), 2), device=device) new_proposals = Instances.cat([proposals, gt_proposal]) return new_proposals ```
{ "source": "josmcg/Mask_RCNN", "score": 3 }
#### File: Mask_RCNN/training/train.py ```python import mrcnn.model as modellib from config import PageConfig, classes import click from dataset.dataset import PageDataset from dataset.dataset import ICDAR_convert def train(epochs, save_dir, data_dir, collapse=False): collapse = bool(collapse) # just in case if data_dir[-1] != '/': data_dir += '/' data_train = PageDataset('train', data_dir, collapse) data_train.load_page(classes=classes) data_train.prepare() data_val = PageDataset('val', data_dir, collapse) data_val.load_page(classes=classes) data_val.prepare() config = PageConfig() model = modellib.MaskRCNN(mode="training", config=config, model_dir=save_dir) try: model_path = model.find_last() print("reloading wieghts from {}".format(model_path)) except Exception: model_path = model.get_imagenet_weights() model.load_weights(model_path, by_name=True, exclude=['mrcnn_bbox_fc', 'mrcnn_class_logits', 'mrcnn_mask']) model.train(data_train, data_val, learning_rate=config.LEARNING_RATE, epochs=epochs, layers='heads') @click.command() @click.argument("epochs",type=click.INT) @click.argument("save_dir") @click.argument("data_dir") @click.option("--collapse", default=False) def main(*inputs,**kwargs): train(*inputs,**kwargs) if __name__ == "__main__": main() ```
{ "source": "josmejia2401/angox-core-lib", "score": 3 }
#### File: angox-core-lib/utils/path.py ```python from urllib.parse import urlparse from config.config_dto import ConfigDTO import random class UtilidadPath(object): def __init__(self, config: ConfigDTO = None): self.config = config def allows_path(self, original_path = None) -> str: if not original_path: return None, True if original_path[0] != '/': original_path = '/' + original_path if len(self.config.routes.routes) > 0: for route in self.config.routes.routes: if not route.url or len(route.url) == 0: continue num_asterisks = str(route.path).count('*') route_url = None route_path = route.path if len(route.url) > 0: route_url = random.choice(route.url) if num_asterisks == 0: if original_path == route_path: return f'{route_url}{original_path}', route.need_authentication elif num_asterisks == 1: new_path = route_path.replace('*', '') new_path = original_path.replace(new_path, '') num_asterisks_ = new_path.count('/') if num_asterisks_ < 2: return f'{route_url}{original_path}', route.need_authentication else: new_path = route_path.replace('*', '') new_path = new_path.replace('//', '/') if new_path in original_path: return f'{route_url}{original_path}', route.need_authentication raise Exception('La ruta no coincide (3)', original_path) else: raise Exception('No hay routes definidos') ```
{ "source": "josmejia2401/angox-media-api-speech-to-text", "score": 2 }
#### File: josmejia2401/angox-media-api-speech-to-text/handler.py ```python from src.main.controllers.controller import Controller1 from src.main.utils.core import config from src.core_lib.logger2 import Logger2 import jsonpickle controller = Controller1(config) def lambda_handler(event, context): try: controller.speechToText({"advanced": {}, "fileName": "aa.mp3", "voice": '' }) #Logger2.setLog('media', config.application.name, 'INFO', jsonpickle.encode(event)) return "ok" except Exception as e: print(e) #Logger2.setLog('media', config.application.name, 'ERROR', str(e)) raise e if __name__ == '__main__': try: lambda_handler({"name": "jose"}, None) except Exception as e: Logger2.setLog('media', config.application.name, 'ERROR', str(e)) ```
{ "source": "josmejia2401/angox-orchestrator-server", "score": 3 }
#### File: core_lib/dto/dto.py ```python import json import datetime class DTO(object): def __init__(self, dataAsJson={}, ignored_none=False): self.ignored_none = ignored_none self.id = None if dataAsJson is None: return if 'id' in dataAsJson and dataAsJson['id']: self.id = dataAsJson['id'] def validate(self, validateItems=[]): for item in validateItems: if any(item == element for element in self.__dict__): if item not in self.__dict__ or self.__dict__[item] is None: raise Exception(item + ' not found (1)') else: raise Exception(item + ' not found (2)') def default(self, o): if isinstance(o, (datetime.date, datetime.datetime)): return o.isoformat() return json.JSONEncoder.default(self, o) def to_json(self): to_json_value = {} for k in self.__dict__: if k == 'ignored_none': continue if self.ignored_none == True and self.__dict__[k] is None: continue v = self.__dict__[k] if v and isinstance(v, (datetime.date, datetime.datetime)): v = v.isoformat() to_json_value[k] = v #return json.dumps(self.__dict__, sort_keys=True, indent=1, default=self.default) return to_json_value def get_json(self): return { 'id': self.id, 'updateAt': self.updateAt.isoformat(), 'createAt': self.createAt.isoformat() } ``` #### File: angox-orchestrator-server/core_lib/service.py ```python import requests from requests.exceptions import HTTPError from core_lib.config.config_dto import ConfigDTO class ServiceExternal(object): def __init__(self, config:ConfigDTO = None): self.__config = config def get(self, url, params=None, is_json=True): try: response = requests.get(url, params=params) if response and response.status_code > 299: raise Exception(response.content) if is_json == True: return response.json() return response.content except HTTPError as e: raise e except Exception as e: raise e def post(self, url, params=None, payload=None, data=None, is_json=True): try: response = requests.post(url, data=data, json=payload, params=params) if response and response.status_code > 299: raise Exception(response.content) if is_json == True: return response.json() return response.content except HTTPError as e: raise e except Exception as e: raise e def put(self, url, params=None, payload=None, data=None, is_json=True): try: response = requests.put(url, data=data, json=payload, params=params) if response and response.status_code > 299: raise Exception(response.content) if is_json == True: return response.json() return response.content except HTTPError as e: raise e except Exception as e: raise e def delete(self, url, params=None, payload=None, data=None, is_json=True): try: response = requests.delete(url, data=data, json=payload, params=params) if response and response.status_code > 299: raise Exception(response.content) if is_json == True: return response.json() return response.content except HTTPError as e: raise e except Exception as e: raise e ```
{ "source": "josmejia2401/angox-security-ms-account", "score": 2 }
#### File: main/controllers/controller.py ```python from src.main.utils.core import ControllerDataBase from src.main.utils.core import ConfigDTO from src.main.dto.dto import AccountDTO from src.main.controllers.token import TokenExternal class Controller1(ControllerDataBase): def __init__(self, config:ConfigDTO = None): ControllerDataBase.__init__(self, config, 'sa_security_account') self.token_external = TokenExternal(config) def create(self, payload=None) -> any: account_dto = AccountDTO(payload) account_dto.validate(['fullName', 'username','password', 'email']) response = self.get_service().create(account_dto.to_json()) if response: del response['password'] return response def update(self, id=None, payload=None, upsert=False) -> any: account_dto = AccountDTO(payload, True, True) account_dto.validate(['fullName', 'username','password', 'email']) response = self.get_service().update(id, account_dto.to_json(), upsert) if response: del response['password'] return response def delete(self, id=None) -> int: raise NotImplementedError('the ID is not found') def get(self, id=None) -> any: if id is None or not id: raise Exception('the ID is not found') response = self.get_service().get(id) if response: del response['password'] return response def sign_in(self, payload=None) -> any: account_dto = AccountDTO(payload) account_dto.validate(['username','password']) response = self.get_service().get_one({'username': account_dto.username, 'password': account_dto.password}) print(1, response) if response: print(2) del response['password'] print(3, response['id']) token = self.token_external.create_token(response['id']) print(4, token) response['token'] = token['token'] print(5, response) return response ```
{ "source": "josmejia2401/face_recognition_python", "score": 2 }
#### File: app/camera/alert.py ```python import copy import boto3 from app.dto.record import ConfigDTO, StreamDTO from app.camera.q import Q import time class Alert(Q): def __init__(self, config: ConfigDTO = None): super().__init__() self.__config = copy.deepcopy(config) self.current_mov = 0 self.client = None def process_item(self, item: StreamDTO = None) -> None: try: if item is None: return if item.is_mov == True: self.current_mov += 1 if self.current_mov > self.__config.general.maxMovements and self.client: phoneNumber = self.__config.alarm.indicator + self.__config.alarm.phoneNumber self.client.publish(PhoneNumber=phoneNumber, Message=self.__config.alarm.defaultMessage) self.current_mov = 0 except Exception as e: print("Record_process_item", e) def process_status(self)-> None: try: if self.__config.alarm.delay_status > 0: time.sleep(self.__config.alarm.delay_status) except: pass def empty_queue_for_lock(self)-> None: if self.__config.alert.delay > 0: time.sleep(self.__config.alert.delay) else: self.apply_lock() def initialize(self): if self.__config.aws.accessKey and self.__config.aws.secretKey and self.__config.aws.regionName: try: self.client = boto3.client(self.__config.aws.client, aws_access_key_id=self.__config.aws.accessKey, aws_secret_access_key=self.__config.aws.secretKey, region_name=self.__config.aws.regionName) self.run_queue() except Exception as e: print(e) def stop(self) -> None: self.stop_queue() ``` #### File: app/camera/process_frame.py ```python from app.dto.record import FrameDTO, StreamDTO, ConfigDTO from app.camera.frame import Frame from app.camera.record import Record from app.camera.alert import Alert from app.camera.q import Q import copy import time class ProcessFrame(Q): def __init__(self, config: ConfigDTO = None): super().__init__() self.__config = copy.deepcopy(config) self.__frame = Frame(self.__config) self.__record = Record(self.__config) self.__alert = Alert(self.__config) def process_item(self, item: FrameDTO = None) -> None: try: if item is None: return is_mov = self.__frame.is_movement(item.frame1, item.frame2) stream_dto = StreamDTO(item.source, item.frame2, self.__config.camera.cameraType, is_mov, item.image) self.__record.put_item(stream_dto) self.__alert.put_item(stream_dto) except Exception as e: print("ProcessFrame__process", e) def process_status(self)-> None: try: if self.__config.general.delay_status > 0: time.sleep(self.__config.general.delay_status) except: pass def empty_queue_for_lock(self)-> None: if self.__config.general.delay > 0: time.sleep(self.__config.general.delay) else: self.apply_lock() def initialize(self): self.__record.initialize() self.__alert.initialize() self.run_queue() def stop(self) -> None: self.stop_queue() self.__record.stop() self.__alert.stop() ``` #### File: app/dto/record.py ```python class StreamDTO: def __init__(self, source, frame, camera_type, is_mov, image): self.source = source self.frame = frame self.camera_type = camera_type self.is_mov = is_mov self.image = image class FrameDTO: def __init__(self, source, frame1, frame2, image): self.source = source self.frame1 = frame1 self.frame2 = frame2 self.image = image #config class GeneralDTO: def __init__(self, data_json = {}): self.maxMovements = int(data_json["MAX_MOVEMENTS"]) self.onGuard = int(data_json["ON_GUARD"]) self.minAreaObject = int(data_json["MIN_AREA_OBJECT"]) self.delay = float(data_json["DELAY"]) self.delay_status = float(data_json["DELAY_STATUS"]) class AlarmDTO: def __init__(self, data_json = {}): self.phoneNumber = str(data_json["PHONE_NUMBER"]) self.indicator = str(data_json["INDICATOR"]) self.maxMessages = str(data_json["MAX_MESSAGES"]) self.defaultMessage = str(data_json["DEFAULT_MESSAGE"]) self.delay = float(data_json["DELAY"]) self.delay_status = float(data_json["DELAY_STATUS"]) class AwsDTO: def __init__(self, data_json = {}): self.accessKey = str(data_json["ACCESS_KEY"]) self.secretKey = str(data_json["SECRET_KEY"]) self.regionName = str(data_json["REGION_NAME"]) self.client = str(data_json["CLIENT"]) class CameraDTO: def __init__(self, data_json = {}): self.dimWidth = int(data_json["DIM_WIDTH"]) self.dimHeight = int(data_json["DIM_HEIGHT"]) self.cameraType = int(data_json["CAMERA_TYPE"]) self.applyResize = False class RecordDTO: def __init__(self, data_json = {}): self.fps = float(data_json["FPS"]) self.maxTimeOutSeg = int(data_json["MAX_TIME_OUT_SEG"]) self.delay = float(data_json["DELAY"]) self.delay_status = float(data_json["DELAY_STATUS"]) class StreamingDTO: def __init__(self, data_json = {}): self.host = str(data_json["HOST"]) self.port = int(data_json["PORT"]) self.username = str(data_json["USERNAME"]) self.password = str(data_json["PASSWORD"]) self.delay = float(data_json["DELAY"]) self.delay_status = float(data_json["DELAY_STATUS"]) class ConfigDTO: def __init__(self, data_json = {}): self.general = GeneralDTO(data_json["GENERAL"]) self.alarm = AlarmDTO(data_json["ALARM"]) self.aws = AwsDTO(data_json["AWS"]) self.camera = CameraDTO(data_json["CAMERA"]) self.record = RecordDTO(data_json["RECORD"]) self.streaming = StreamingDTO(data_json["STREAMING"]) ``` #### File: trash/camera copy 2/process_frame.py ```python from dto.record import FrameDTO, StreamDTO, ConfigDTO from camera.frame import Frame from camera.record import Record from camera.alert import Alert from camera.streaming import Streaming from camera.q import Q import copy import time class ProcessFrame(Q): def __init__(self, config: ConfigDTO = None): super().__init__() self.__config = copy.deepcopy(config) self.__frame = Frame(self.__config) self.__record = Record(self.__config) self.__alert = Alert(self.__config) self.__streaming = Streaming(self.__config, False) def process_item(self, item: FrameDTO = None) -> None: try: if item is None: return is_mov = self.__frame.is_movement(item.frame1, item.frame2) if self.__config.camera.defaultDim == True: new_frame = self.__frame.resize(item.frame1) else: new_frame = item.frame1 _, image = self.__frame.frame_to_image(new_frame) stream_dto = StreamDTO(item.source, new_frame, self.__config.camera.cameraType, is_mov, image) self.__record.put_item(stream_dto) self.__alert.put_item(stream_dto) self.__streaming.put_item(stream_dto) except Exception as e: print("ProcessFrame__process", e) def process_status(self)-> None: try: if self.__config.general.delay_status > 0: time.sleep(self.__config.general.delay_status) except: pass def empty_queue_for_lock(self)-> None: if self.__config.general.delay > 0: time.sleep(self.__config.general.delay) else: self.apply_lock() def initialize(self): self.__record.initialize() self.__alert.initialize() self.__streaming.initialize() self.run_queue() def stop(self) -> None: self.stop_queue() self.__record.stop() self.__alert.stop() self.__streaming.stop() ``` #### File: trash/camera copy 2/streaming2.py ```python from socketIO_client import SocketIO, LoggingNamespace from dto.record import StreamDTO, ConfigDTO from threading import Thread, RLock, Condition import queue import base64 import time import copy from socketIO_client import SocketIO, BaseNamespace start_broadcasting = 0 class Namespace(BaseNamespace): def message(self, data): try: print("type", type(data)) if isinstance(data, dict): if "operation" in data and data["operation"] == 'broadcasting': global start_broadcasting start_broadcasting = int(data["message"]) print("message", data) except Exception as e: pass def on_message(self, data): try: print("type", type(data)) if isinstance(data, dict): if "operation" in data and data["operation"] == 'broadcasting': global start_broadcasting start_broadcasting = int(data["message"]) print("on_message", data) except Exception as e: pass def on_handle_message(self, data): try: print("type", type(data)) if isinstance(data, dict): if "operation" in data and data["operation"] == 'broadcasting': global start_broadcasting start_broadcasting = int(data["message"]) print("on_handle_message", data) except Exception as e: pass def handle_message(self, data): try: print("type", type(data)) if isinstance(data, dict): if "operation" in data and data["operation"] == 'broadcasting': global start_broadcasting start_broadcasting = int(data["message"]) print("handle_message", data) except Exception as e: pass def on_connect(self): print('[Connected]') def on_reconnect(self): print('[Reconnected]') def on_disconnect(self): print('[Disconnected]') #https://pypi.org/project/socketIO-client/ class Streaming: def __init__(self, config: ConfigDTO = None, wait_for_connection = True): super().__init__() self.__config = copy.deepcopy(config) self.wait_for_connection = wait_for_connection self.q = queue.Queue(maxsize=1000) self.condition = Condition(RLock()) self.started = False self.waiting = False self.socketIO = None def __build(self): #while True: data_auth = {'username': self.__config.streaming.username, 'password': self.__config.streaming.password} self.socketIO = SocketIO(host=self.__config.streaming.host, port=self.__config.streaming.port, Namespace=Namespace, wait_for_connection=self.wait_for_connection, params=data_auth) self.socketIO.wait(seconds=1) def __check_socket(self): if self.socketIO and self.socketIO.connected == False: self.socketIO.connect() def initialize(self): try: self.__build() self.__check_socket() except Exception as e: print(e) def __on_bbb_response(self, *args): print('on_bbb_response', args) def __process(self, item: StreamDTO = None) -> None: try: if item is None: return jpeg = item.image.tobytes() jpeg = base64.b64encode(jpeg).decode('utf-8') image = "data:image/jpeg;base64,{}".format(jpeg) item = {'image': True, 'source': item.source, 'buff': image, 'username': self.__config.streaming.username} self.__check_socket() if self.socketIO: self.socketIO.emit('handle_frame', item, callback=self.__on_bbb_response) except Exception as e: print(e) def __worker(self): while self.started == True: if self.q.empty() == True: with self.condition: self.waiting = True self.condition.wait() self.waiting = False else: item = self.q.get() self.__process(item) self.q.task_done() def put_nowait(self, item: StreamDTO = None) -> None: global start_broadcasting if start_broadcasting > 1: self.q.put_nowait(item) self.run() if self.waiting == True: with self.condition: self.condition.notify_all() def put(self, item: StreamDTO = None, block=True, timeout=None) -> None: global start_broadcasting if start_broadcasting > 1: self.q.put(item, block, timeout) self.run() if self.waiting == True: with self.condition: self.condition.notify_all() def run(self) -> None: if self.started == True: return self.started = True self.thr = Thread(target=self.__worker, daemon=True) self.thr.start() def join(self) -> None: self.q.join() def __unsuscriber(self): if self.socketIO: #self.socketIO.emit('on_unsubscriber', callback=self.__on_bbb_response) self.socketIO.emit('unsubscriber', callback=self.__on_bbb_response) self.socketIO.wait_for_callbacks(seconds=1) self.socketIO.disconnect() def stop(self): self.started = False self.__unsuscriber() def __del__(self): self.__config = None self.q = None self.started = None self.socketIO = None self.condition = None self.waiting = None self.wait_for_connection = None ``` #### File: trash/camera copy/camera_async.py ```python import cv2 from threading import Thread, Lock import time class CameraAsync: def __init__(self, src=0, name='0', width=None, height=None): super().__init__() self.name = name self.src = src self.width=width self.height = height #others self.started = False self.read_lock = Lock() self.stream = None self.grabbed1, self.frame1 = None, None self.grabbed2, self.frame2 = None, None def __put_stream__(self) -> None: if self.stream and self.stream.isOpened(): return self.stream = cv2.VideoCapture(self.src) if self.width is None or self.height is None: self.height = int(self.stream.get(3)) self.width = int(self.stream.get(4)) self.stream.set(3, self.height) self.stream.set(4, self.width) def initialize(self) -> None: self.__put_stream__() def get_started(self) -> bool: return self.started def get_dimentions(self): return self.width, self.height def start(self) -> None: if self.started == True: return self.started = True self.thread = Thread(target=self.__update, args=(), name=self.name, daemon=True) self.thread.start() def __update(self) -> None: while self.started == True and self.stream.isOpened() == True: (grabbed, frame) = self.stream.read() self.read_lock.acquire() if self.frame1 is None or self.frame2 is None: self.grabbed1, self.frame1 = grabbed, frame else: self.grabbed1, self.frame1 = self.grabbed2, self.frame2 self.grabbed2, self.frame2 = grabbed, frame self.read_lock.release() def read(self) -> any: try: self.read_lock.acquire() frame1 = self.frame1.copy() grabbed1 = self.grabbed1 frame2 = self.frame2.copy() grabbed2 = self.grabbed2 except Exception as e: grabbed1, frame1, grabbed2, frame2 = False, None, False, None finally: self.read_lock.release() return grabbed1, frame1, grabbed2, frame2 def stop(self) -> any: try: self.started = False time.sleep(0.9) self.thread.join() self.release() self.grabbed1, self.frame1 = None, None self.grabbed2, self.frame2 = None, None self.stream = None except Exception as e: print(e) def release(self): if self.stream: self.stream.release() @staticmethod def list_devices(): index = 0 arr = [] cap = None while True: try: cap = cv2.VideoCapture(index) if not cap.read()[0]: break else: arr.append(index) cap.release() index += 1 except Exception as e: print(e) cap.release() return arr def __exit__(self, exc_type, exc_value, traceback): print("exit") self.stop() def __del__(self): print("del") self.stop() ``` #### File: face_recognition_python/trash/circle.py ```python import cv2 import numpy as np class Cyrcle: def __init__(self): super().__init__() def get_detector_with_params_circle(self): # Setup SimpleBlobDetector parameters. params = cv2.SimpleBlobDetector_Params() # Change thresholds params.minThreshold = 0 params.maxThreshold = 255 # Set edge gradient params.thresholdStep = 5 # Filter by Area. params.filterByArea = True params.minArea = 1000 # Set up the detector with default parameters. detector = cv2.SimpleBlobDetector_create(params) return detector def _process_circle(self, detector, frame): # Detect blobs. keypoints = detector.detect(frame) # Draw detected blobs as red circles. # cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS ensures the size of the circle corresponds to the size of blob im_with_keypoints = cv2.drawKeypoints(frame, keypoints, np.array([]), (0, 0, 255), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS) return im_with_keypoints ``` #### File: face_recognition_python/trash/live2.py ```python import cv2 import numpy as np def get_detector_with_params_circle(): # Setup SimpleBlobDetector parameters. params = cv2.SimpleBlobDetector_Params() # Change thresholds params.minThreshold = 0 params.maxThreshold = 255 # Set edge gradient params.thresholdStep = 5 # Filter by Area. params.filterByArea = True params.minArea = 1000 # Set up the detector with default parameters. detector = cv2.SimpleBlobDetector_create(params) return detector def _process_circle(detector, frame): # Detect blobs. keypoints = detector.detect(frame) # Draw detected blobs as red circles. # cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS ensures the size of the circle corresponds to the size of blob im_with_keypoints = cv2.drawKeypoints(frame, keypoints, np.array([]), (0, 0, 255), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS) return im_with_keypoints def _show(name, item): # Show keypoints circle cv2.imshow(name, item) def _process_frame(frame1, frame2): # Difference between frame1(image) and frame2(image) diff = cv2.absdiff(frame1, frame2) # Converting color image to gray_scale image gray = cv2.cvtColor(diff, cv2.COLOR_BGR2GRAY) # Converting gray scale image to GaussianBlur, so that change can be find easily blur = cv2.GaussianBlur(gray, (5, 5), 0) # If pixel value is greater than 20, it is assigned white(255) otherwise black _, thresh = cv2.threshold(blur, 20, 255, cv2.THRESH_BINARY) dilated = cv2.dilate(thresh, None, iterations=4) # finding contours of moving object contours, hirarchy = cv2.findContours(dilated, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) return contours, hirarchy, thresh def _draw_rectangle(frame, x, y, w, h, text): cv2.rectangle(frame1, (x, y), (x+w, y+h), (0, 255, 255), 2) cv2.putText(frame, text, (x+5, y-5), font, 1, (255, 255, 255), 2) def _is_object(contour): referenceArea = cv2.contourArea(contour) if referenceArea < 10000: return None return referenceArea # capturing video cap = cv2.VideoCapture(0) # cap.set(3, 640) # set video width # cap.set(4, 480) # set video height # reading back-to-back frames(images) from video cont = 0 font = cv2.FONT_HERSHEY_SIMPLEX REFERENCE_AREA = 36 detector = get_detector_with_params_circle() ret, frame1 = cap.read() ret, frame2 = cap.read() while cap.isOpened(): contours, hirarchy, thresh = _process_frame(frame1, frame2) # making rectangle around moving object for contour in contours: (x, y, w, h) = cv2.boundingRect(contour) referenceArea = _is_object(contour) if referenceArea is None: continue text = "area {} px2".format(referenceArea) _draw_rectangle(frame1, x, y, w, h, text) #im_with_keypoints = _process_circle(detector, frame2) print("hay movimiento", cont) cont += 1 #_show("circle", im_with_keypoints) # Display original frame _show('Motion Detector', frame1) # Display Diffrenciate Frame - escala gris - muestra los cambios #_show('Difference Frame', thresh) # Displaying image in gray_scale # cv2.imshow("Gray_Frame", gray) # Assign frame2(image) to frame1(image) frame1 = frame2 # Read new frame2 ret, frame2 = cap.read() # Press 'esc' for quit if cv2.waitKey(40) == 27: break # Release cap resource cap.release() # Destroy all windows cv2.destroyAllWindows() ``` #### File: server/webserver/api.py ```python from flask import Flask, request, Response, render_template import server.webserver.controllers as c app = Flask(__name__) app.config['JSON_AS_ASCII'] = False @app.route('/') def index(): return render_template('index.html') @app.route('/video-feed', methods=["GET", "POST"]) def video_feed(): return Response(c._video_feed(), mimetype='multipart/x-mixed-replace; boundary=frame') @app.route('/video-stop', methods=["GET", "POST"]) def video_stop(): return c._video_stop() @app.route('/video-reset', methods=["GET", "POST"]) def video_reset(): return c._video_reset() @app.after_request def after_request(response): response.headers.add('Access-Control-Allow-Origin', '*') response.headers.add('Access-Control-Allow-Headers', '*') response.headers.add('Access-Control-Allow-Methods', 'GET,PUT,POST,DELETE,OPTIONS') return response ``` #### File: server/webserver/controllers.py ```python from app.camera.kernel import Kernel _k = Kernel() _k.initialize() def _video_feed() -> any: try: global _k if _k: return _k.get_frame() return None except ValueError as e: return str(e), 400 except Exception as e: print(e) return str(e), 500 def _video_stop() -> any: try: global _k if _k: _k.stop_streaming() return "OK", 200 return None except ValueError as e: return str(e), 400 except Exception as e: print(e) return str(e), 500 def _video_reset() -> any: try: global _k if _k: _k.stop() _k = Kernel() _k.initialize() return "OK", 200 return None except ValueError as e: return str(e), 400 except Exception as e: print(e) return str(e), 500 ```
{ "source": "josmejia2401/temp-notes", "score": 3 }
#### File: temp-notes/mc-web/app.py ```python from main.util.config import Config from flask import Flask, render_template, send_from_directory import os # app = Flask(__name__, static_folder="build", template_folder="build") @app.route("/") def hello(): return render_template('index.html') @app.route('/', defaults={'path': ''}) @app.route('/<path:path>') def serve(path): if path.startswith('notes/'): path = path.replace("notes/", "") if path != "" and os.path.exists(app.static_folder + '/' + path): return send_from_directory(app.static_folder, path) else: return render_template('index.html') if __name__ == '__main__': serverConfig = Config().get_object('server') app.run(host=serverConfig['host'], port=serverConfig['port'], debug=serverConfig['debug']) ``` #### File: main/controllers/note_controller.py ```python from main.services.note_service import NoteService from main.db.entity.note import NoteEntity class NoteController(object): def __init__(self, config = {}): self.__noteService = NoteService(config) def insert(self, username=None, payload=None) -> any: try: note = NoteEntity(payload) note.validate(['title', 'description']) return self.__noteService.insert(username=username, payload=note.get_json()) except Exception as e: raise e def get(self, username=None, noteId=None) -> any: try: if not username or not noteId: raise Exception('username or noteId not found') result = self.__noteService.get(username, noteId) return result except Exception as e: raise e def get_all(self, username=None) -> any: try: if not username: raise Exception('username not found') return self.__noteService.get_all(username) except Exception as e: raise e def update(self, username=None, noteId=None, payload=None) -> any: try: if not payload or not username or not noteId: raise Exception('payload or username or noteId not found') payload['username'] = username note = NoteEntity(payload) note.validate(['title', 'description']) return self.__noteService.update(username, noteId, note.get_json()) except Exception as e: raise e def delete(self, username=None, noteId=None) -> any: try: if not username or not noteId: raise Exception('username or noteId not found') return self.__noteService.delete(username, noteId) except Exception as e: raise e ``` #### File: main/db/db.py ```python import abc from pymongo import MongoClient from pymongo.errors import AutoReconnect from main.util.db_util import retry retry_auto_reconnect = retry(3, (AutoReconnect,)) class Database(abc.ABC): def __init__(self): pass @abc.abstractmethod def connect(self): pass @abc.abstractmethod def disconnect(self): pass @abc.abstractmethod def reconnect(self): pass @abc.abstractmethod def get_db(self, name): pass # @Database.register # https://api.mongodb.com/python/3.3.0/api/pymongo/mongo_client.html class MongoDatabase(Database): def __init__(self, config = {}): super().__init__() self.__config = config self.__client = None def connect(self): try: print('conecting to MongoDB!') db_config = self.__config.get_object('db') general_config = self.__config.get_object('general') # variables uri = db_config['uri2'] name = db_config['name'] maxPoolSize = None if db_config['maxPoolSize'] == 0 else db_config['maxPoolSize'] minPoolSize = 0 if db_config['minPoolSize'] == 0 else db_config['minPoolSize'] maxIdleTimeMS = None if db_config['maxIdleTimeMS'] == 0 else db_config['maxIdleTimeMS'] socketTimeoutMS = None if db_config['socketTimeoutMS'] == 0 else db_config['socketTimeoutMS'] connectTimeoutMS = None if db_config['connectTimeoutMS'] == 0 else db_config['connectTimeoutMS'] serverSelectionTimeoutMS = None if db_config['serverSelectionTimeoutMS'] == 0 else db_config['serverSelectionTimeoutMS'] appName = general_config['appName'] # conexion self.__client = MongoClient(host=uri, appname=appName, maxPoolSize=maxPoolSize,#el número máximo permitido de conexiones simultáneas a cada servidor conectado. Las solicitudes a un servidor se bloquearán si hay conexiones pendientes de maxPoolSize al servidor solicitado. El valor predeterminado es 100. No puede ser 0. minPoolSize=minPoolSize,#el número mínimo requerido de conexiones simultáneas que el grupo mantendrá en cada servidor conectado. El valor predeterminado es 0. maxIdleTimeMS=maxIdleTimeMS,#a cantidad máxima de milisegundos que una conexión puede permanecer inactiva en el grupo antes de ser eliminada y reemplazada. El valor predeterminado es Ninguno (sin límite). socketTimeoutMS=socketTimeoutMS,#Controla cuánto tiempo (en milisegundos) el controlador esperará una respuesta después de enviar una operación de base de datos normal (sin supervisión) antes de concluir que se ha producido un error de red. El valor predeterminado es Ninguno (sin tiempo de espera). connectTimeoutMS=connectTimeoutMS,#Controla cuánto tiempo (en milisegundos) esperará el controlador durante la supervisión del servidor cuando se conecta un nuevo socket a un servidor antes de concluir que el servidor no está disponible. El valor predeterminado es 20000 (20 segundos). serverSelectionTimeoutMS=serverSelectionTimeoutMS#Controla cuánto tiempo (en milisegundos) esperará el controlador para encontrar un servidor apropiado disponible para llevar a cabo una operación de base de datos; mientras está esperando, se pueden realizar múltiples operaciones de monitoreo del servidor, cada una controlada por connectTimeoutMS . El valor predeterminado es 30000 (30 segundos). ) print('conected to MongoDB!') except Exception as e: print('MongoDatabase.connect', e) raise e def disconnect(self): if self.__client: self.__client.close() @retry_auto_reconnect def reconnect(self): print('reconecting to MongoDB!') db_config = self.__config.get_object('db') general_config = self.__config.get_object('general') # variables uri = db_config['uri2'] name = db_config['name'] maxPoolSize = None if db_config['maxPoolSize'] == 0 else db_config['maxPoolSize'] minPoolSize = 0 if db_config['minPoolSize'] == 0 else db_config['minPoolSize'] maxIdleTimeMS = None if db_config['maxIdleTimeMS'] == 0 else db_config['maxIdleTimeMS'] socketTimeoutMS = None if db_config['socketTimeoutMS'] == 0 else db_config['socketTimeoutMS'] connectTimeoutMS = None if db_config['connectTimeoutMS'] == 0 else db_config['connectTimeoutMS'] serverSelectionTimeoutMS = None if db_config['serverSelectionTimeoutMS'] == 0 else db_config['serverSelectionTimeoutMS'] appName = general_config['appName'] # conexion self.__client = MongoClient(host=uri, appname=appName, maxPoolSize=maxPoolSize,#el número máximo permitido de conexiones simultáneas a cada servidor conectado. Las solicitudes a un servidor se bloquearán si hay conexiones pendientes de maxPoolSize al servidor solicitado. El valor predeterminado es 100. No puede ser 0. minPoolSize=minPoolSize,#el número mínimo requerido de conexiones simultáneas que el grupo mantendrá en cada servidor conectado. El valor predeterminado es 0. maxIdleTimeMS=maxIdleTimeMS,#a cantidad máxima de milisegundos que una conexión puede permanecer inactiva en el grupo antes de ser eliminada y reemplazada. El valor predeterminado es Ninguno (sin límite). socketTimeoutMS=socketTimeoutMS,#Controla cuánto tiempo (en milisegundos) el controlador esperará una respuesta después de enviar una operación de base de datos normal (sin supervisión) antes de concluir que se ha producido un error de red. El valor predeterminado es Ninguno (sin tiempo de espera). connectTimeoutMS=connectTimeoutMS,#Controla cuánto tiempo (en milisegundos) esperará el controlador durante la supervisión del servidor cuando se conecta un nuevo socket a un servidor antes de concluir que el servidor no está disponible. El valor predeterminado es 20000 (20 segundos). serverSelectionTimeoutMS=serverSelectionTimeoutMS#Controla cuánto tiempo (en milisegundos) esperará el controlador para encontrar un servidor apropiado disponible para llevar a cabo una operación de base de datos; mientras está esperando, se pueden realizar múltiples operaciones de monitoreo del servidor, cada una controlada por connectTimeoutMS . El valor predeterminado es 30000 (30 segundos). ) print('reconected to MongoDB!') def get_db(self, name: str = None): if name and self.__client: return self.__client[name] elif self.__client: db_config = self.__config.get_object('db') name = db_config['name'] return self.__client[name] else: raise Exception('No se encuentra el cliente DB') ``` #### File: temp-notes/ms-reverse-proxy/app_requests.py ```python from urllib.parse import urlparse, urljoin from flask import Flask, render_template, request, Response, redirect import requests from main.util.config import Config from main.log.log import logger, logging app = Flask(__name__) config = Config() logging.getLogger('requests').setLevel(logging.ERROR) logging.getLogger('urllib3').setLevel(logging.ERROR) logging.getLogger('werkzeug').setLevel(logging.ERROR) logging.getLogger('requests.packages.urllib3').setLevel(logging.ERROR) @app.after_request def after_request(response): response.headers.add(['Access-Control-Allow-Origin'], '*') response.headers.add("Access-Control-Allow-Origin", "*") response.headers.add('Access-Control-Allow-Headers', "*") response.headers.add('Access-Control-Allow-Methods', "*") return response @app.route('/<path:url>', methods=["GET", "POST", "PUT", "DELETE"]) def proxy(url): try: targetHost = __allows_path(url, request.method) print('url - targetHost', url, targetHost) if not targetHost: return {}, 403 r = make_request(url, targetHost, request.method, dict(request.headers)) headers = dict(r.raw.headers) def generate(): for chunk in r.raw.stream(decode_content=False): yield chunk out = Response(generate(), headers=headers) out.status_code = r.status_code return out except Exception as e: logger.error(e) return 'Error interno', 500 def make_request(url, targetHost, method, headers={}): if targetHost['ignorePath'] == True: targetPath = __normalize_url('', targetHost['path']) url = __normalize_url('', url) url = url.replace(targetPath, '') url = __normalize_url(targetHost['url'], url) else: url = __normalize_url(targetHost['url'], url) logger.info('se ha definido false=>', url) host = request.headers.get('host') if host: headers.update({ "Host" : "%s" % (targetHost['url'])}) if method.upper() == 'GET' or method.upper() == 'DELETE': return requests.request(method, url, params=request.args, stream=True, headers=headers, allow_redirects=False) if request.is_json and request.json and len(request.json) > 0: return requests.request(method, url, params=request.args, stream=True, headers=headers, allow_redirects=False, json=request.json) elif request.form and len(request.form) > 0: return requests.request(method, url, params=request.args, stream=True, headers=headers, allow_redirects=False, data=request.form) elif request.data and len(request.data) > 0: return requests.request(method, url, params=request.args, stream=True, headers=headers, allow_redirects=False, data=request.data) else: return requests.request(method, url, params=request.args, stream=True, headers=headers, allow_redirects=False) def __normalize_url(url, path): if not url.endswith('/'): url = url + '/' if path.endswith('/'): path = path[:-1] if path.startswith('/'): path = path[1:] return urljoin(url, path) def __allows_path(url, command): if not url: return None targetHost = config.get_object('targetHost') new_url = __normalize_url('localhost', url) for target in targetHost: target_url = __normalize_url('localhost', target['path']) if new_url in target_url: return target elif target_url in new_url: return target return None if __name__ == "__main__": serverConfig = config.get_object('server') app.run(host=serverConfig['host'], port=serverConfig['port'], debug=serverConfig['debug']) ``` #### File: main/util/config.py ```python import json from pathlib import Path import os class Config(object): def __init__(self): self.__config_json = None self.__load_json() def __load_json(self): current_dir = Path(__file__).parent file_path = os.path.join(current_dir, 'resources', 'config.json') contBreak = 0 while os.path.exists(file_path) == False: if contBreak > 3: break current_dir = Path(current_dir).parent file_path = os.path.join(current_dir, 'resources', 'config.json') contBreak += 1 with open(file_path) as json_file: self.__config_json = json.load(json_file) def get_config(self) -> any: return self.__config_json def get_object(self, name: str) -> any: return self.__config_json[name] ```
{ "source": "josmejia2401/xyz_voice", "score": 3 }
#### File: core/collections/activation.py ```python import sys import time from datetime import datetime from core.skill import AssistantSkill class ActivationSkills(AssistantSkill): @classmethod def enable_assistant(cls, ext = None, template = None, values = None, history = []): cls.set_activation(True) r = template.format("Se activa el asistente") cls.response(r) @classmethod def disable_assistant(cls, ext = None, template = None, values = None, history = []): cls.set_activation(False) r = template.format("Se desactiva el asistente") cls.response(r) @classmethod def assistant_greeting(cls, ext = None, template = None, values = None, history = []) -> None: try: if cls.get_activation() == False: return r = '' now = datetime.now() day_time = int(now.strftime('%H')) if day_time < 12: r = template.format('Buenos días mi señor') elif 12 <= day_time < 18: r = template.format("Buenas tardes mi señor") else: r = template.format('Buenas noches mi señor') cls.response(r) except Exception as e: print("ActivationSkills.assistant_greeting", e) r = template.format("No se pudo procesar el comando") cls.response(r) ``` #### File: core/collections/alarm.py ```python import re import time import datetime from utils.text_number import to_number from threading import Thread from apscheduler.schedulers.background import BackgroundScheduler #from apscheduler.schedulers.blocking import BlockingScheduler from apscheduler.triggers.cron import CronTrigger from apscheduler.triggers.combining import OrTrigger import uuid from core.skill import AssistantSkill time_intervals = { 'segundos': {'variations': ['segundos', 'segundo'], 'scheduler_interval': 'seconds' }, 'minutos': {'variations': ['minutos', 'minuto'], 'scheduler_interval': 'minutes' }, 'horas': {'variations': ['hora', 'horas'], 'scheduler_interval': 'hours' }, 'mes': {'variations': ['mes', 'meses'], 'scheduler_interval': 'months' }, 'año': {'variations': ['año', 'años'], 'scheduler_interval': 'years' }, 'lunes': {'variations': ['lunes', 'lune'], 'scheduler_interval': 'mon' }, 'martes': {'variations': ['martes', 'marte'], 'scheduler_interval': 'tue' }, 'miercoles': {'variations': ['miercoles', 'miercole'], 'scheduler_interval': 'wed' }, 'jueves': {'variations': ['jueves', 'jueve'], 'scheduler_interval': 'thu' }, 'viernes': {'variations': ['viernes', 'vierne'], 'scheduler_interval': 'fri' }, 'sabado': {'variations': ['sabado', 'sabados'], 'scheduler_interval': 'sat' }, 'domingo': {'variations': ['domingo', 'domingos'], 'scheduler_interval': 'sun' }, } def get_id(): uuid_x = str(uuid.uuid1()) return uuid_x class AlarmSkills(AssistantSkill): scheduler = BackgroundScheduler() alarm_pending = [] @classmethod def stop_all(cls, ext=None, template=None, values=None, history=[]): try: if cls.get_activation() == False: return cls.alarm_pending = [] cls.scheduler.remove_all_jobs() cls.scheduler.shutdown() r = template.format("Se detienen todas las alarmas") cls.response(r) except Exception as e: r = template.format("No se pudo detener todas las alarmas") cls.response(r) @classmethod def list_all(cls, ext=None, template=None, values=None, history=[]): try: if cls.get_activation() == False: return if cls.alarm_pending: cls.response("Las alarmas son:") for alarm in cls.alarm_pending: day_of_week = alarm["day_of_week"] hour = alarm["hour"] minute = alarm["minute"] r = "semana: {} , hora: {} , minuto: {}".format(day_of_week, hour, minute) cls.response(r) r = template.format("Se listaron todas las alarmas") cls.response(r) else: r = template.format("No hay alarmas") cls.response(r) except Exception as e: r = template.format("No se pudo listar las alarmas") cls.response(r) @classmethod def _alarm_minutes(cls, idx, duration): cls.scheduler.remove_job(job_id=idx) for p in cls.alarm_pending: if p["id"] == idx: cls.alarm_pending.remove(p) break cls.response("<NAME>") @classmethod def create_alarm_time_minutes(cls, ext=None, template=None, values=None, history=[]): try: if cls.get_activation() == False: return #if isinstance(values, tuple): values_x = values[0] if isinstance(values_x, list): duration = values_x[0] else: duration = values_x duration = cls._replace_words_with_numbers(duration) if duration is not None: idx = get_id() scheduler_interval = 'minutes' interval = {scheduler_interval: int(duration)} job = cls.scheduler.add_job(cls._alarm_minutes, 'interval', **interval, id=idx, args=[idx, duration]) cls.alarm_pending.append({"id": idx, "job": job, "day_of_week": None, "hour": None, "minute": duration}) if not cls.scheduler.running: cls.scheduler.start() r = template.format("He creado una alarma en {0} minutos".format(duration)) cls.response(r) except Exception as e: print(e) r = template.format("No se pudo crear la alarma") cls.response(r) @classmethod def _alarm_hours(cls, idx, duration): cls.scheduler.remove_job(job_id=idx) for p in cls.alarm_pending: if p["id"] == idx: cls.alarm_pending.remove(p) break cls.response("SONANDO ALARMA") @classmethod def create_alarm_time_hours(cls, ext=None, template=None, values=None, history=[]): try: if cls.get_activation() == False: return values_x = values[0] if isinstance(values_x, list): duration = values_x[0] else: duration = values_x duration = cls._replace_words_with_numbers(duration) if duration is not None: idx = get_id() scheduler_interval = 'hours' interval = {scheduler_interval: int(duration)} job = cls.scheduler.add_job(cls._alarm_hours, 'interval', **interval, id=idx, args=[idx, duration]) cls.alarm_pending.append({"id": idx, "job": job, "day_of_week": None, "hour": duration, "minute": None}) if not cls.scheduler.running: cls.scheduler.start() r = template.format("He creado una alarma en {0} horas".format(duration)) cls.response(r) except Exception as e: print(e) r = template.format("No se pudo crear la alarma") cls.response(r) @classmethod def _alarm_range_am(cls, idx): cls.scheduler.remove_job(job_id=idx) for p in cls.alarm_pending: if p["id"] == idx: cls.alarm_pending.remove(p) break cls.response("<NAME>") @classmethod def create_alarm_range_time_week_am(cls, ext=None, template=None, values=None, history=[]): try: if cls.get_activation() == False: return #hora, minuto, rango ini, rango fin values_x = values[0] if isinstance(values_x, list): duration_h = values_x[0] duration_m = values_x[1] range_week_start = values_x[2] range_week_end = values_x[3] else: duration_h = values_x duration_m = values[1] range_week_start = values[2] range_week_end = values[3] duration_h = cls._replace_words_with_numbers(duration_h) duration_m = cls._replace_words_with_numbers(duration_m) for time_interval in time_intervals.values(): for variation in time_interval['variations']: if variation in range_week_start: range_week_start = time_interval['scheduler_interval'] break for time_interval in time_intervals.values(): for variation in time_interval['variations']: if variation in range_week_end: range_week_end = time_interval['scheduler_interval'] break if duration_h is not None and duration_m is not None: idx = get_id() m2 = str(duration_h) + ":" + str(duration_m) + " AM" m2 = cls._time_conversion(m2) m2 = m2.split(":") duration_h = m2[0].strip() duration_m = m2[1].strip() day_of_week = range_week_start + "-" + range_week_end cron1 = CronTrigger(day_of_week=day_of_week, hour=duration_h, minute=duration_m, timezone='America/Bogota') trigger = OrTrigger([cron1]) job = cls.scheduler.add_job(cls._alarm_range_am, trigger, id=idx, args=[idx]) cls.alarm_pending.append({"id": idx, "job": job, "day_of_week": day_of_week, "hour": duration_h, "minute": duration_m}) if not cls.scheduler.running: cls.scheduler.start() r = template.format("He creado la alarma {0} {1} {2} am".format(day_of_week, duration_h, duration_m)) cls.response(r) except Exception as e: print(e) r = template.format("No se pudo crear la alarma") cls.response(r) @classmethod def create_alarm_range_week_time_am(cls, ext=None, template=None, values=None, history=[]): try: if cls.get_activation() == False: return #hora, minuto, rango ini, rango fin values_x = values[0] if isinstance(values_x, list): range_week_start = values_x[0] range_week_end = values_x[1] duration_h = values_x[2] duration_m = values_x[3] elif isinstance(values_x, tuple): range_week_start = values_x[0] range_week_end = values_x[1] duration_h = values_x[2] duration_m = values_x[3] else: range_week_start = values[0] range_week_end = values[1] duration_h = values[2] duration_m = values[3] duration_h = cls._replace_words_with_numbers(duration_h) duration_m = cls._replace_words_with_numbers(duration_m) for time_interval in time_intervals.values(): for variation in time_interval['variations']: if variation in range_week_start: range_week_start = time_interval['scheduler_interval'] break for time_interval in time_intervals.values(): for variation in time_interval['variations']: if variation in range_week_end: range_week_end = time_interval['scheduler_interval'] break if duration_h is not None and duration_m is not None: idx = get_id() m2 = str(duration_h) + ":" + str(duration_m) + " AM" m2 = cls._time_conversion(m2) m2 = m2.split(":") duration_h = m2[0].strip() duration_m = m2[1].strip() day_of_week = range_week_start + "-" + range_week_end cron1 = CronTrigger(day_of_week=day_of_week, hour=duration_h, minute=duration_m, timezone='America/Bogota') trigger = OrTrigger([cron1]) job = cls.scheduler.add_job(cls._alarm_range_am, trigger, id=idx, args=[idx]) cls.alarm_pending.append({"id": idx, "job": job, "day_of_week": day_of_week, "hour": duration_h, "minute": duration_m}) if not cls.scheduler.running: cls.scheduler.start() r = template.format("He creado la alarma {0} {1} {2} am".format(day_of_week, duration_h, duration_m)) cls.response(r) except Exception as e: print(e) r = template.format("No se pudo crear la alarma") cls.response(r) @classmethod def _alarm_range_pm(cls, idx): cls.scheduler.remove_job(job_id=idx) for p in cls.alarm_pending: if p["id"] == idx: cls.alarm_pending.remove(p) break cls.response("SON<NAME>") @classmethod def create_alarm_range_time_week_pm(cls, ext=None, template=None, values=None, history=[]): try: if cls.get_activation() == False: return #hora, minuto, rango ini, rango fin values_x = values[0] if isinstance(values_x, list): duration_h = values_x[0] duration_m = values_x[1] range_week_start = values_x[2] range_week_end = values_x[3] elif isinstance(values_x, tuple): duration_h = values_x[0] duration_m = values_x[1] range_week_start = values_x[2] range_week_end = values_x[3] else: duration_h = values[0] duration_m = values[1] range_week_start = values[2] range_week_end = values[3] duration_h = cls._replace_words_with_numbers(duration_h) duration_m = cls._replace_words_with_numbers(duration_m) for time_interval in time_intervals.values(): for variation in time_interval['variations']: if variation in range_week_start: range_week_start = time_interval['scheduler_interval'] break for time_interval in time_intervals.values(): for variation in time_interval['variations']: if variation in range_week_end: range_week_end = time_interval['scheduler_interval'] break if duration_h is not None and duration_m is not None: idx = get_id() m2 = str(duration_h) + ":" + str(duration_m) + " PM" m2 = cls._time_conversion(m2) m2 = m2.split(":") duration_h = m2[0].strip() duration_m = m2[1].strip() day_of_week = range_week_start + "-" + range_week_end cron1 = CronTrigger(day_of_week=day_of_week, hour=duration_h, minute=duration_m, timezone='America/Bogota') trigger = OrTrigger([cron1]) job = cls.scheduler.add_job(cls._alarm_range_pm, trigger, id=idx, args=[idx]) cls.alarm_pending.append({"id": idx, "job": job, "day_of_week": day_of_week, "hour": duration_h, "minute": duration_m}) if not cls.scheduler.running: cls.scheduler.start() r = template.format("He creado la alarma {0} {1} {2} pm".format(day_of_week, duration_h, duration_m)) cls.response(r) except Exception as e: print(e) r = template.format("No se pudo crear la alarma") cls.response(r) @classmethod def create_alarm_range_week_time_pm(cls, ext=None, template=None, values=None, history=[]): try: if cls.get_activation() == False: return #hora, minuto, rango ini, rango fin values_x = values[0] if isinstance(values_x, list): range_week_start = values_x[0] range_week_end = values_x[1] duration_h = values_x[2] duration_m = values_x[3] elif isinstance(values_x, tuple): range_week_start = values_x[0] range_week_end = values_x[1] duration_h = values_x[2] duration_m = values_x[3] else: range_week_start = values[0] range_week_end = values[1] duration_h = values[2] duration_m = values[3] duration_h = cls._replace_words_with_numbers(duration_h) duration_m = cls._replace_words_with_numbers(duration_m) for time_interval in time_intervals.values(): for variation in time_interval['variations']: if variation in range_week_start: range_week_start = time_interval['scheduler_interval'] break for time_interval in time_intervals.values(): for variation in time_interval['variations']: if variation in range_week_end: range_week_end = time_interval['scheduler_interval'] break if duration_h is not None and duration_m is not None: idx = get_id() m2 = str(duration_h) + ":" + str(duration_m) + " PM" m2 = cls._time_conversion(m2) m2 = m2.split(":") duration_h = m2[0].strip() duration_m = m2[1].strip() day_of_week = range_week_start + "-" + range_week_end cron1 = CronTrigger(day_of_week=day_of_week, hour=duration_h, minute=duration_m, timezone='America/Bogota') trigger = OrTrigger([cron1]) job = cls.scheduler.add_job(cls._alarm_range_pm, trigger, id=idx, args=[idx]) cls.alarm_pending.append({"id": idx, "job": job, "day_of_week": day_of_week, "hour": duration_h, "minute": duration_m}) if not cls.scheduler.running: cls.scheduler.start() r = template.format("He creado la alarma {0} {1} {2} pm".format(day_of_week, duration_h, duration_m)) cls.response(r) except Exception as e: print(e) r = template.format("No se pudo crear la alarma") cls.response(r) @classmethod def _replace_words_with_numbers(cls, transcript): transcript_with_numbers = '' for word in transcript.split(): try: number = to_number(word) print(number) transcript_with_numbers += ' ' + str(number) except ValueError as e: print(e) transcript_with_numbers += ' ' + word return transcript_with_numbers @classmethod def _time_conversion(cls, s): if "PM" in s: s=s.replace("PM"," ") t= s.split(":") if t[0] != '12': t[0]=str(int(t[0])+12) s= (":").join(t) return s else: s = s.replace("AM"," ") t= s.split(":") if t[0] == '12': t[0]='00' s= (":").join(t) return s ``` #### File: core/collections/internet.py ```python from core.skill import AssistantSkill import urllib.request as urllib2 class InternetSkills(AssistantSkill): @classmethod def _check_internet_connection(cls,**kwargs): try: urllib2.urlopen('http://www.google.com', timeout=1) return True except urllib2.URLError as err: print(err) return False @classmethod def internet_availability(cls, ext = None, template = None, values = None, history = []): if cls.get_activation() == False: return if cls._check_internet_connection(): r = template.format("Hay conexión a internet") cls.response(r) else: r = template.format("En este momento no hay conexión a internet") cls.response(r) ``` #### File: core/collections/weather.py ```python import requests from utils.settings import WEATHER_API from core.skill import AssistantSkill from core.collections.geolocation import GeoLocationSkills class WeatherSkills(AssistantSkill): @classmethod def tell_the_weather(cls, ext = None, template = None, values = None, history = []): try: if cls.get_activation() == False: return if WEATHER_API['KEY']: city = cls._get_city() if city: temperature, temperature_min, temperature_max = cls._get_weather_status_and_temperature(city) if temperature and temperature_min and temperature_max: r = template.format("La temperatura actual para %s es %0.1f centigrados, temperatura mínima de %0.1f centigrados y temperatura máxima de %0.1f centigrados" % (city, temperature, temperature_min, temperature_max)) else: r = template.format("Lo siento, en este momento no hay datos del tiempo.") else: r = template.format("Lo siento, en este momento no hay datos de tu localización.") else: r = template.format("Por favor define la llave de open weather map.") cls.response(r) except Exception as e: r = template.format("En este momento no pude obtener datos del tiempo.") cls.response(r) @classmethod def tell_the_weather_city(cls, ext = None, template = None, values = None, history = []): try: if cls.get_activation() == False: return if WEATHER_API['KEY']: city = values[0] if isinstance(city, list): city = city[0] elif isinstance(city, tuple): city = city[0] else: city = city if city: temperature, temperature_min, temperature_max = cls._get_weather_status_and_temperature(city) if temperature and temperature_min and temperature_max: r = template.format("La temperatura actual para %s es %0.1f centigrados, temperatura mínima de %0.1f centigrados y temperatura máxima de %0.1f centigrados" % (city, temperature, temperature_min, temperature_max)) else: r = template.format("Lo siento, en este momento no hay datos del tiempo.") else: r = template.format("Lo siento, en este momento no hay datos de tu localización.") else: r = template.format("Por favor define la llave de open weather map.") cls.response(r) except Exception as e: r = template.format("En este momento no pude obtener datos del tiempo.") cls.response(r) """ { "coord":{ "lon":-74.08, "lat":4.61 }, "weather":[ { "id":803, "main":"Clouds", "description":"nubes rotas", "icon":"04d" } ], "base":"stations", "main":{ "temp":18, "feels_like":12.72, "temp_min":18, "temp_max":18, "pressure":1029, "humidity":45 }, "visibility":10000, "wind":{ "speed":6.2, "deg":130 }, "clouds":{ "all":75 }, "dt":1601057296, "sys":{ "type":1, "id":8582, "country":"CO", "sunrise":1601030689, "sunset":1601074246 }, "timezone":-18000, "id":3688689, "name":"Bogotá", "cod":200 } """ @classmethod def _get_weather_status_and_temperature(cls, city): url = WEATHER_API["URL"].format(city, WEATHER_API["UNITS"], WEATHER_API["LANG"], WEATHER_API['KEY']) r = requests.get(url=url) if r.status_code == 200: rx = r.json() if rx["main"]: return rx["main"]["temp"], rx["main"]["temp_min"], rx["main"]["temp_max"] return None, None, None @classmethod def _get_city(cls): return GeoLocationSkills._get_location() ``` #### File: xyz_voice/core/skill.py ```python from engines.tts import TTSEngine from engines.stt import STTEngine import locale #locale.setlocale(locale.LC_TIME, 'es_ES.UTF-8') locale.setlocale(locale.LC_TIME, 'es_CO.utf8') class AssistantSkill: """ This class is the parent of all skill classes. """ activation = True @classmethod def set_activation(cls, activation = True): AssistantSkill.activation = activation @classmethod def get_activation(cls): return AssistantSkill.activation @classmethod def set_stop_speaking(cls, stop_speaking = True): TTSEngine.set_stop_speaking(stop_speaking) if stop_speaking == True: TTSEngine.stop_audio() TTSEngine.stop_song() @classmethod def get_stop_speaking(cls): return TTSEngine.stop_speaking @classmethod def response(cls, text): """ The mode of the response depends on the output engine: - TTT Engine: The response is only in text - TTS Engine: The response is in voice and text """ TTSEngine.play_text(text) @classmethod def play_sound(cls, filename, asyncx = False): """ The mode of the response depends on the output engine: - TTT Engine: The response is only in text - TTS Engine: The response is in voice and text """ TTSEngine.play_sound(filename, asyncx) @classmethod def user_input(cls): response = STTEngine._recognize_speech_from_mic(already_activated=True) return response @classmethod def new_history(cls, inputx, outputx): out = { "intput" : inputx, "output": outputx } return new_history @classmethod def extract_tags(cls, voice_transcript, tags): """ This method identifies the tags from the user transcript for a specific skill. e.x Let's that the user says "hi jarvis!". The skill analyzer will match it with enable_assistant skill which has tags 'hi, hello ..' This method will identify the that the enabled word was the 'hi' not the hello. :param voice_transcript: string :param tags: string :return: set """ try: transcript_words = voice_transcript.split() tags = tags.split(',') return set(transcript_words).intersection(tags) except Exception as e: return set() ```
{ "source": "josmet52/amod", "score": 3 }
#### File: amod/lib/amod_interrupt_lib.py ```python import time import RPi.GPIO as GPIO import math import numpy as np import scipy.stats as stat import pandas as pd import matplotlib.pyplot as plt import matplotlib.dates as mdates import matplotlib.patches as mpatches import pdb class Amod: def __init__(self, from_who = ""): # version infos VERSION_NO = "0.01.01" VERSION_DATE = "27.11.2020" VERSION_DESCRIPTION = "prototype" VERSION_STATUS = "initial version" VERSION_AUTEUR = "josmet" self.pin_cmd = 38 # control pin self.pin_mes = 36 # measure pin GPIO.setmode(GPIO.BOARD) GPIO.setwarnings(False) GPIO.setup(self.pin_cmd, GPIO.OUT) # initialize control pin GPIO.setup(self.pin_mes, GPIO.IN) # initialize measure pi (attention no pull-up or pull-down) GPIO.add_event_detect(self.pin_mes, GPIO.RISING, callback=self.end_charge_reached) GPIO.output(self.pin_cmd, GPIO.HIGH) self.t_discharge = 250e-6 # time to discharge the capacitor self.t_charge_stop = 0.0 self.t_charge_start = 0.0 self.stop_requierd = False self.rep_int_time = 5.15e-3 self.v_timeout = 1 self.v_tol = 2.5 / 100 # 2.5 % self.filter = 1.5 # +/- n ecart types gardés if from_who != "calibration": # if not in calibration read the ini data with open('amod.ini', 'r') as ini_file: data = ini_file.readlines() params = data[0].split(",") self.u_in_trig = float(params[0]) # the input trigger level (depend on the harware) self.R1 = float(params[1]) # value of the resistor self.C1 = float(params[2]) # value of the capacitor self.rep_int_time = float(params[3]) # interrupt respons time def get_tension(self, n_moyenne, show_histogram = False): GPIO.output(self.pin_cmd, GPIO.HIGH) # décharger le condensateur j = 0 l_elapsed = [] while j < n_moyenne: time.sleep(self.t_discharge) # laisser du temps pour décharger le condo self.stop_requierd = False GPIO.output(self.pin_cmd, GPIO.LOW) # déclancher la mesure self.t_charge_start = time.time() # déclancher le chrono #TODO: voir s'il ne faut pas inverser les deux opérations ci-dessus while not self.stop_requierd: if time.time() - self.t_charge_start > self.v_timeout: stop_requierd = True print("interruption manquée") elapsed = (self.t_charge_stop - self.t_charge_start) - self.rep_int_time l_elapsed.append(elapsed) GPIO.output(self.pin_cmd, GPIO.HIGH) # déclancher la décharge du condensateur j += 1 GPIO.output(self.pin_cmd, GPIO.LOW) # déclancher la décharge du condensateur # get stats of data list nx, mmx, mx, vx, skx, ktx = stat.describe(l_elapsed) # filter the data list df = pd.DataFrame(l_elapsed, columns=list('B')) l_ref_filtered = df[((df.B - df.B.mean()) / df.B.std()).abs() < self.filter] l_ref_filtered_mean = l_ref_filtered.B.mean() # create ans show histogramm if show_histogram: l_tension = [] for v in l_elapsed: l_tension.append(self.u_in_trig / (1 - math.exp(- v / (self.R1 * self.C1)))) df1 = pd.DataFrame(l_tension, columns=list('B')) l_tension_filtered = df1[((df1.B - df1.B.mean()) / df1.B.std()).abs() < self.filter] l_tension_filtered_mean = l_tension_filtered.B.mean() # plot histogramm n, bins, patches = plt.hist(x=l_tension, bins=min(int(n_moyenne/4),50), color='#0504aa', alpha=0.7, rwidth=0.85) plt.hist(x=l_tension_filtered, bins=bins, color='#ffff00', alpha=0.7, rwidth=0.85) plt.grid(axis='y', alpha=0.75) plt.xlabel('Avg = ' + '{:.3f}'.format(l_tension_filtered_mean)) plt.ylabel('Frequency') plt.title("Filtered on " + str(self.filter) + " standard deviation") plt.text(23, 45, r'$\mu=15, b=3$') maxfreq = n.max() # Set a clean upper y-axis limit. plt.ylim(ymax=np.ceil(maxfreq/10) *10 if maxfreq % 10 else maxfreq + 10) # insert a legend blue_patch = mpatches.Patch(color='#0504aa', label='excluded') yellow_patch = mpatches.Patch(color='#ffff00', label='used for avg') plt.legend(handles=[blue_patch, yellow_patch]) plt.show() u_average = self.u_in_trig / (1 - math.exp(- l_ref_filtered_mean / (self.R1 * self.C1))) return u_average def end_charge_reached(self, channel): self.t_charge_stop = time.time() self.stop_requierd = True def set_param(self, u_in, xR1, xC1, n_moyenne, int_resp_time): GPIO.output(self.pin_cmd, GPIO.HIGH) # décharger le condensateur j = 0 l_elapsed = [] while j < n_moyenne: time.sleep(self.t_discharge) # laisser du temps pour décharger le condo self.stop_requierd = False GPIO.output(self.pin_cmd, GPIO.LOW) # déclancher la mesure self.t_charge_start = time.time() # déclancher le chrono #TODO: voir s'il ne faut pas inverser les deux opérations ci-dessus while not self.stop_requierd: if time.time() - self.t_charge_start > self.v_timeout: stop_requierd = True print("interruption manquée") elapsed = (self.t_charge_stop - self.t_charge_start) - self.rep_int_time l_elapsed.append(elapsed) GPIO.output(self.pin_cmd, GPIO.HIGH) # déclancher la décharge du condensateur j += 1 GPIO.output(self.pin_cmd, GPIO.LOW) # déclancher la décharge du condensateur # get stats of data list nx, mmx, mx, vx, skx, ktx = stat.describe(l_elapsed) # filter the data list df = pd.DataFrame(l_elapsed, columns=list('B')) l_ref_filtered = df[((df.B - df.B.mean()) / df.B.std()).abs() < self.filter] l_ref_filtered_mean = l_ref_filtered.B.mean() u_trig_calc = u_in * (1 - math.exp(-l_ref_filtered_mean / (xR1 * xC1))) with open('amod.ini', 'w') as ini_file: ini_file.writelines(str(u_trig_calc) + "," + str(xR1) + "," + str(xC1) + "," + str(int_resp_time)) return u_trig_calc if __name__ == '__main__': #verify tension and filtering amod = Amod() a = amod.get_tension(50, show_histogram = True) GPIO.cleanup() ```
{ "source": "josmfred/fastMRI", "score": 2 }
#### File: fastmri/data/transforms.py ```python import numpy as np import torch def to_tensor(data): """ Convert numpy array to PyTorch tensor. For complex arrays, the real and imaginary parts are stacked along the last dimension. Args: data (np.array): Input numpy array. Returns: torch.Tensor: PyTorch version of data. """ if np.iscomplexobj(data): data = np.stack((data.real, data.imag), axis=-1) return torch.from_numpy(data) def tensor_to_complex_np(data): """ Converts a complex torch tensor to numpy array. Args: data (torch.Tensor): Input data to be converted to numpy. Returns: np.array: Complex numpy version of data. """ data = data.numpy() return data[..., 0] + 1j * data[..., 1] def apply_mask(data, mask_func, seed=None, padding=None): """ Subsample given k-space by multiplying with a mask. Args: data (torch.Tensor): The input k-space data. This should have at least 3 dimensions, where dimensions -3 and -2 are the spatial dimensions, and the final dimension has size 2 (for complex values). mask_func (callable): A function that takes a shape (tuple of ints) and a random number seed and returns a mask. seed (int or 1-d array_like, optional): Seed for the random number generator. Returns: (tuple): tuple containing: masked data (torch.Tensor): Subsampled k-space data mask (torch.Tensor): The generated mask """ shape = np.array(data.shape) shape[:-3] = 1 mask = mask_func(shape, seed) if padding is not None: mask[:, :, : padding[0]] = 0 mask[:, :, padding[1] :] = 0 # padding value inclusive on right of zeros masked_data = data * mask + 0.0 # the + 0.0 removes the sign of the zeros return masked_data, mask def mask_center(x, mask_from, mask_to): mask = torch.zeros_like(x) mask[:, :, :, mask_from:mask_to] = x[:, :, :, mask_from:mask_to] return mask def center_crop(data, shape): """ Apply a center crop to the input real image or batch of real images. Args: data (torch.Tensor): The input tensor to be center cropped. It should have at least 2 dimensions and the cropping is applied along the last two dimensions. shape (int, int): The output shape. The shape should be smaller than the corresponding dimensions of data. Returns: torch.Tensor: The center cropped image. """ assert 0 < shape[0] <= data.shape[-2] assert 0 < shape[1] <= data.shape[-1] w_from = (data.shape[-2] - shape[0]) // 2 h_from = (data.shape[-1] - shape[1]) // 2 w_to = w_from + shape[0] h_to = h_from + shape[1] return data[..., w_from:w_to, h_from:h_to] def complex_center_crop(data, shape): """ Apply a center crop to the input image or batch of complex images. Args: data (torch.Tensor): The complex input tensor to be center cropped. It should have at least 3 dimensions and the cropping is applied along dimensions -3 and -2 and the last dimensions should have a size of 2. shape (int): The output shape. The shape should be smaller than the corresponding dimensions of data. Returns: torch.Tensor: The center cropped image """ assert 0 < shape[0] <= data.shape[-3] assert 0 < shape[1] <= data.shape[-2] w_from = (data.shape[-3] - shape[0]) // 2 h_from = (data.shape[-2] - shape[1]) // 2 w_to = w_from + shape[0] h_to = h_from + shape[1] return data[..., w_from:w_to, h_from:h_to, :] def center_crop_to_smallest(x, y): """ Apply a center crop on the larger image to the size of the smaller. The minimum is taken over dim=-1 and dim=-2. If x is smaller than y at dim=-1 and y is smaller than x at dim=-2, then the returned dimension will be a mixture of the two. Args: x (torch.Tensor): The first image. y (torch.Tensor): The second image Returns: tuple: tuple of tensors x and y, each cropped to the minimim size. """ smallest_width = min(x.shape[-1], y.shape[-1]) smallest_height = min(x.shape[-2], y.shape[-2]) x = center_crop(x, (smallest_height, smallest_width)) y = center_crop(y, (smallest_height, smallest_width)) return x, y def normalize(data, mean, stddev, eps=0.0): """ Normalize the given tensor. Applies the formula (data - mean) / (stddev + eps). Args: data (torch.Tensor): Input data to be normalized. mean (float): Mean value. stddev (float): Standard deviation. eps (float, default=0.0): Added to stddev to prevent dividing by zero. Returns: torch.Tensor: Normalized tensor """ return (data - mean) / (stddev + eps) def normalize_instance(data, eps=0.0): """ Normalize the given tensor with instance norm/ Applies the formula (data - mean) / (stddev + eps), where mean and stddev are computed from the data itself. Args: data (torch.Tensor): Input data to be normalized eps (float): Added to stddev to prevent dividing by zero Returns: torch.Tensor: Normalized tensor """ mean = data.mean() std = data.std() return normalize(data, mean, std, eps), mean, std ``` #### File: models/varnet/varnet.py ```python import math import pathlib import os import random import numpy as np import torch import torch.backends.cudnn as cudnn from pytorch_lightning import Trainer from torch import nn from torch.nn import functional as F from common.args import Args from common.subsample import create_mask_for_mask_type from data import transforms as T from models.mri_model import MRIModel from models.unet.unet_model import UnetModel class DataTransform: """ Data Transformer for training Var Net models. """ def __init__(self, resolution, mask_func=None, use_seed=True): """ Args: mask_func (common.subsample.MaskFunc): A function that can create a mask of appropriate shape. resolution (int): Resolution of the image. use_seed (bool): If true, this class computes a pseudo random number generator seed from the filename. This ensures that the same mask is used for all the slices of a given volume every time. """ self.mask_func = mask_func self.resolution = resolution self.use_seed = use_seed def __call__(self, kspace, mask, target, attrs, fname, slice): """ Args: kspace (numpy.array): Input k-space of shape (num_coils, rows, cols, 2) for multi-coil data or (rows, cols, 2) for single coil data. mask (numpy.array): Mask from the test dataset target (numpy.array): Target image attrs (dict): Acquisition related information stored in the HDF5 object. fname (str): File name slice (int): Serial number of the slice. Returns: (tuple): tuple containing: masked_kspace (torch.Tensor): Masked k-space mask (torch.Tensor): Mask target (torch.Tensor): Target image converted to a torch Tensor. fname (str): File name slice (int): Serial number of the slice. max_value (numpy.array): Maximum value in the image volume """ if target is not None: target = T.to_tensor(target) max_value = attrs['max'] else: target = torch.tensor(0) max_value = 0.0 kspace = T.to_tensor(kspace) seed = None if not self.use_seed else tuple(map(ord, fname)) acq_start = attrs['padding_left'] acq_end = attrs['padding_right'] if self.mask_func: masked_kspace, mask = T.apply_mask( kspace, self.mask_func, seed, (acq_start, acq_end)) else: masked_kspace = kspace shape = np.array(kspace.shape) num_cols = shape[-2] shape[:-3] = 1 mask_shape = [1 for _ in shape] mask_shape[-2] = num_cols mask = torch.from_numpy(mask.reshape( *mask_shape).astype(np.float32)) mask[:, :, :acq_start] = 0 mask[:, :, acq_end:] = 0 return masked_kspace, mask.byte(), target, fname, slice, max_value class SSIM(nn.Module): def __init__(self, win_size=7, k1=0.01, k2=0.03): super().__init__() self.win_size = win_size self.k1, self.k2 = k1, k2 self.register_buffer('w', torch.ones( 1, 1, win_size, win_size) / win_size ** 2) NP = win_size ** 2 self.cov_norm = NP / (NP - 1) def forward(self, X, Y, data_range): data_range = data_range[:, None, None, None] C1 = (self.k1 * data_range) ** 2 C2 = (self.k2 * data_range) ** 2 ux = F.conv2d(X, self.w) uy = F.conv2d(Y, self.w) uxx = F.conv2d(X * X, self.w) uyy = F.conv2d(Y * Y, self.w) uxy = F.conv2d(X * Y, self.w) vx = self.cov_norm * (uxx - ux * ux) vy = self.cov_norm * (uyy - uy * uy) vxy = self.cov_norm * (uxy - ux * uy) A1, A2, B1, B2 = (2 * ux * uy + C1, 2 * vxy + C2, ux ** 2 + uy ** 2 + C1, vx + vy + C2) D = B1 * B2 S = (A1 * A2) / D return 1 - S.mean() class NormUnet(nn.Module): def __init__(self, chans, num_pools): super().__init__() self.unet = UnetModel( in_chans=2, out_chans=2, chans=chans, num_pool_layers=num_pools, drop_prob=0 ) def complex_to_chan_dim(self, x): b, c, h, w, two = x.shape assert two == 2 return x.permute(0, 4, 1, 2, 3).contiguous().view(b, 2 * c, h, w) def chan_complex_to_last_dim(self, x): b, c2, h, w = x.shape assert c2 % 2 == 0 c = c2 // 2 return x.view(b, 2, c, h, w).permute(0, 2, 3, 4, 1) def norm(self, x): # Group norm b, c, h, w = x.shape x = x.contiguous().view(b, 2, c // 2 * h * w) mean = x.mean(dim=2).view(b, 2, 1, 1, 1).expand( b, 2, c // 2, 1, 1).contiguous().view(b, c, 1, 1) std = x.std(dim=2).view(b, 2, 1, 1, 1).expand( b, 2, c // 2, 1, 1).contiguous().view(b, c, 1, 1) x = x.view(b, c, h, w) return (x - mean) / std, mean, std def unnorm(self, x, mean, std): return x * std + mean def pad(self, x): def floor_ceil(n): return math.floor(n), math.ceil(n) b, c, h, w = x.shape w_mult = ((w - 1) | 15) + 1 h_mult = ((h - 1) | 15) + 1 w_pad = floor_ceil((w_mult - w) / 2) h_pad = floor_ceil((h_mult - h) / 2) x = F.pad(x, w_pad + h_pad) return x, (h_pad, w_pad, h_mult, w_mult) def unpad(self, x, h_pad, w_pad, h_mult, w_mult): return x[..., h_pad[0]:h_mult - h_pad[1], w_pad[0]:w_mult - w_pad[1]] def forward(self, x): x = self.complex_to_chan_dim(x) x, mean, std = self.norm(x) x, pad_sizes = self.pad(x) x = self.unet(x) x = self.unpad(x, *pad_sizes) x = self.unnorm(x, mean, std) x = self.chan_complex_to_last_dim(x) return x class VarNetBlock(nn.Module): def __init__(self, model): super(VarNetBlock, self).__init__() self.model = model self.dc_weight = nn.Parameter(torch.ones(1)) self.register_buffer('zero', torch.zeros(1, 1, 1, 1, 1)) def forward(self, current_kspace, ref_kspace, mask, sens_maps): def sens_expand(x): return T.fft2(T.complex_mul(x, sens_maps)) def sens_reduce(x): x = T.ifft2(x) return T.complex_mul(x, T.complex_conj(sens_maps)).sum(dim=1, keepdim=True) def soft_dc(x): return torch.where(mask, x - ref_kspace, self.zero) * self.dc_weight return current_kspace - \ soft_dc(current_kspace) - \ sens_expand(self.model(sens_reduce(current_kspace))) class SensitivityModel(nn.Module): def __init__(self, chans, num_pools): super().__init__() self.norm_unet = NormUnet(chans, num_pools) def chans_to_batch_dim(self, x): b, c, *other = x.shape return x.contiguous().view(b * c, 1, *other), b def batch_chans_to_chan_dim(self, x, batch_size): bc, one, *other = x.shape c = bc // batch_size return x.view(batch_size, c, *other) def divide_root_sum_of_squares(self, x): return x / T.root_sum_of_squares_complex(x, dim=1).unsqueeze(-1).unsqueeze(1) def forward(self, masked_kspace, mask): def get_low_frequency_lines(mask): l = r = mask.shape[-2] // 2 while mask[..., r, :]: r += 1 while mask[..., l, :]: l -= 1 return l + 1, r l, r = get_low_frequency_lines(mask) num_low_freqs = r - l pad = (mask.shape[-2] - num_low_freqs + 1) // 2 x = T.mask_center(masked_kspace, pad, pad + num_low_freqs) x = T.ifft2(x) x, b = self.chans_to_batch_dim(x) x = self.norm_unet(x) x = self.batch_chans_to_chan_dim(x, b) x = self.divide_root_sum_of_squares(x) return x class VariationalNetworkModel(MRIModel): def __init__(self, hparams): super().__init__(hparams) self.sens_net = SensitivityModel( hparams.sens_chans, hparams.sens_pools) self.cascades = nn.ModuleList([ VarNetBlock(NormUnet(hparams.chans, hparams.pools)) for _ in range(hparams.num_cascades) ]) self.ssim_loss = SSIM() def forward(self, masked_kspace, mask): sens_maps = self.sens_net(masked_kspace, mask) kspace_pred = masked_kspace.clone() for cascade in self.cascades: kspace_pred = cascade(kspace_pred, masked_kspace, mask, sens_maps) return T.root_sum_of_squares(T.complex_abs(T.ifft2(kspace_pred)), dim=1) def training_step(self, batch, batch_idx): masked_kspace, mask, target, fname, _, max_value = batch output = self.forward(masked_kspace, mask) target, output = T.center_crop_to_smallest(target, output) ssim_loss = self.ssim_loss(output.unsqueeze( 1), target.unsqueeze(1), data_range=max_value) return {'loss': ssim_loss, 'log': {'train_loss': ssim_loss.item()}} def validation_step(self, batch, batch_idx): masked_kspace, mask, target, fname, slice, max_value = batch output = self.forward(masked_kspace, mask) target, output = T.center_crop_to_smallest(target, output) return { 'fname': fname, 'slice': slice, 'output': output.cpu().numpy(), 'target': target.cpu().numpy(), 'val_loss': self.ssim_loss(output.unsqueeze(1), target.unsqueeze(1), data_range=max_value), } def test_step(self, batch, batch_idx): masked_kspace, mask, _, fname, slice, _ = batch output = self.forward(masked_kspace, mask) b, h, w = output.shape crop_size = min(w, self.hparams.resolution) output = T.center_crop(output, (crop_size, crop_size)) return { 'fname': fname, 'slice': slice, 'output': output.cpu().numpy(), } def configure_optimizers(self): optim = torch.optim.Adam( self.parameters(), lr=self.hparams.lr, weight_decay=self.hparams.weight_decay) scheduler = torch.optim.lr_scheduler.StepLR( optim, self.hparams.lr_step_size, self.hparams.lr_gamma) return [optim], [scheduler] def train_data_transform(self): mask = create_mask_for_mask_type(self.hparams.mask_type, self.hparams.center_fractions, self.hparams.accelerations) return DataTransform(self.hparams.resolution, mask, use_seed=False) def val_data_transform(self): mask = create_mask_for_mask_type(self.hparams.mask_type, self.hparams.center_fractions, self.hparams.accelerations) return DataTransform(self.hparams.resolution, mask) def test_data_transform(self): mask = create_mask_for_mask_type(self.hparams.mask_type, self.hparams.center_fractions, self.hparams.accelerations) return DataTransform(self.hparams.resolution, mask) @staticmethod def add_model_specific_args(parser): parser.add_argument('--num-cascades', type=int, default=12, help='Number of U-Net channels') parser.add_argument('--pools', type=int, default=4, help='Number of U-Net pooling layers') parser.add_argument('--chans', type=int, default=18, help='Number of U-Net channels') parser.add_argument('--sens-pools', type=int, default=4, help='Number of U-Net pooling layers') parser.add_argument('--sens-chans', type=int, default=8, help='Number of U-Net channels') parser.add_argument('--batch-size', default=1, type=int, help='Mini batch size') parser.add_argument('--lr', type=float, default=0.0003, help='Learning rate') parser.add_argument('--lr-step-size', type=int, default=40, help='Period of learning rate decay') parser.add_argument('--lr-gamma', type=float, default=0.1, help='Multiplicative factor of learning rate decay') parser.add_argument('--weight-decay', type=float, default=0., help='Strength of weight decay regularization') return parser def create_trainer(args): backend = 'ddp' if args.gpus > 0 else 'ddp_cpu' return Trainer( default_save_path=args.exp_dir, max_epochs=args.num_epochs, gpus=args.gpus, num_nodes=args.nodes, weights_summary=None, distributed_backend=backend, replace_sampler_ddp=False, ) def run(args): cudnn.benchmark = True cudnn.enabled = True if args.mode == 'train': trainer = create_trainer(args) model = VariationalNetworkModel(args) trainer.fit(model) else: # args.mode == 'test' or args.mode == 'challenge' assert args.checkpoint is not None model = VariationalNetworkModel.load_from_checkpoint( str(args.checkpoint)) model.hparams = args model.hparams.sample_rate = 1. trainer = create_trainer(args) trainer.test(model) def main(args=None): parser = Args() parser.add_argument('--mode', choices=['train', 'test'], default='train') parser.add_argument('--num-epochs', type=int, default=50, help='Number of training epochs') parser.add_argument('--gpus', type=int, default=1) parser.add_argument('--nodes', type=int, default=1) parser.add_argument('--exp-dir', type=pathlib.Path, default='experiments', help='Path where model and results should be saved') parser.add_argument('--exp', type=str, help='Name of the experiment', default='default') parser.add_argument('--checkpoint', type=pathlib.Path, help='Path to pre-trained model. Use with --mode test') parser = VariationalNetworkModel.add_model_specific_args(parser) if args is not None: parser.set_defaults(**args) args, _ = parser.parse_known_args() random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) run(args) if __name__ == '__main__': main() ``` #### File: fastMRI/tests/conftest.py ```python import pathlib import numpy as np import pytest import torch import yaml # these are really slow - skip by default skip_module_test_flag = True skip_data_test_flag = True def create_input(shape): x = np.arange(np.product(shape)).reshape(shape) x = torch.from_numpy(x).float() return x @pytest.fixture def skip_module_test(): return skip_module_test_flag @pytest.fixture def skip_data_test(): return skip_data_test_flag @pytest.fixture def knee_split_lens(): split_lens = { "multicoil_train": 34742, "multicoil_val": 7135, "multicoil_test": 4092, "singlecoil_train": 34742, "singlecoil_val": 7135, "singlecoil_test": 3903, } return split_lens @pytest.fixture def brain_split_lens(): split_lens = { "multicoil_train": 70748, "multicoil_val": 21842, "multicoil_test": 8852, } return split_lens ``` #### File: fastMRI/tests/test_modules.py ```python import pathlib from argparse import ArgumentParser import pytest from pytorch_lightning import Trainer from experimental.unet.unet_module import UnetModule from experimental.varnet.varnet_module import VarNetModule from fastmri.data.mri_data import fetch_dir def build_unet_args(): knee_path = fetch_dir("knee_path") logdir = fetch_dir("log_path") / "test_dir" parent_parser = ArgumentParser(add_help=False) parser = UnetModule.add_model_specific_args(parent_parser) parser = Trainer.add_argparse_args(parser) num_gpus = 1 backend = "dp" batch_size = 1 if backend == "ddp" else num_gpus config = dict( in_chans=1, out_chans=1, chans=32, num_pool_layers=4, drop_prob=0.0, mask_type="random", center_fractions=[0.08], accelerations=[4], resolution=384, lr=0.001, lr_step_size=40, lr_gamma=0.1, weight_decay=0.0, data_path=knee_path, challenge="singlecoil", exp_dir=logdir, exp_name="unet_demo", test_split="test", batch_size=batch_size, ) parser.set_defaults(**config) parser.set_defaults( gpus=num_gpus, default_root_dir=logdir, replace_sampler_ddp=(backend != "ddp"), distributed_backend=backend, ) parser.add_argument("--mode", default="train", type=str) args = parser.parse_args([]) return args def build_varnet_args(): knee_path = fetch_dir("knee_path") logdir = fetch_dir("log_path") / "test_dir" parent_parser = ArgumentParser(add_help=False) parser = VarNetModule.add_model_specific_args(parent_parser) parser = Trainer.add_argparse_args(parser) backend = "dp" num_gpus = 2 if backend == "ddp" else 1 batch_size = 1 config = dict( num_cascades=8, pools=4, chans=18, sens_pools=4, sens_chans=8, mask_type="equispaced", center_fractions=[0.08], accelerations=[4], resolution=384, lr=0.001, lr_step_size=40, lr_gamma=0.1, weight_decay=0.0, data_path=knee_path, challenge="multicoil", exp_dir=logdir, exp_name="varnet_demo", test_split="test", batch_size=batch_size, ) parser.set_defaults(**config) parser.set_defaults( gpus=num_gpus, default_root_dir=logdir, replace_sampler_ddp=(backend != "ddp"), distributed_backend=backend, ) parser.add_argument("--mode", default="train", type=str) args = parser.parse_args([]) return args @pytest.mark.parametrize("backend", [(None)]) def test_unet_trainer(backend, skip_module_test): if skip_module_test: pytest.skip("config set to skip") args = build_unet_args() args.fast_dev_run = True args.backend = backend model = UnetModule(**vars(args)) trainer = Trainer.from_argparse_args(args) trainer.fit(model) @pytest.mark.parametrize("backend", [(None)]) def test_varnet_trainer(backend, skip_module_test): if skip_module_test: pytest.skip("config set to skip") args = build_varnet_args() args.fast_dev_run = True args.backend = backend model = VarNetModule(**vars(args)) trainer = Trainer.from_argparse_args(args) trainer.fit(model) ```
{ "source": "josmjimjim/NeuroscienceLab", "score": 3 }
#### File: NeuroscienceLab/main/background.py ```python import sys, os from PyQt5.QtWidgets import QApplication, QMdiArea from PyQt5.QtGui import QFont, QPixmap, QPainter, QColor from PyQt5.QtCore import Qt, pyqtSlot class Background (QMdiArea): def __init__(self, parent=None): # Initialize QMdiArea and set up parent: MainWindow super().__init__(parent) self.tileSubWindows() # Define paintEvent to display background image @pyqtSlot() def paintEvent(self, event): # Paint event is a method from QMdiArea super().paintEvent(event) painter = QPainter(self.viewport()) file = os.getcwd() pixmap, control = self.loadImage(file + '/main/assets/neuroscience.png') if control: painter.drawPixmap(self.rect(), pixmap) else: painter.setPen(QColor(168, 34, 3)) painter.setFont(QFont('Helvetica', 26)) painter.drawText(self.rect(), Qt.AlignCenter, pixmap) @staticmethod def loadImage(path2Image): # Static Method to load background image # and return it and control variable try: with open(path2Image): pixmap = QPixmap(path2Image) control = True except FileNotFoundError: pixmap = 'Error image not found !' control = False return pixmap, control if __name__ == '__main__': app = QApplication(sys.argv) window = Background() sys.exit(app.exec_()) ``` #### File: NeuroscienceLab/main/plotoptions.py ```python import sys from PyQt5.QtWidgets import (QApplication, QWidget, QVBoxLayout, QPushButton, QRadioButton, QButtonGroup, QGroupBox, QMessageBox, QCheckBox, QLabel, QSpinBox, QGridLayout, QLineEdit, QFileDialog) from PyQt5.QtCore import Qt, pyqtSignal from singleton import Singleton from stylesheet import abstyle class PlotKindsOptions(QWidget): __slots__ = ['names', 'options', 'options_list', 'url_link', 'time', 'interval', 'file', 'directory'] accept_signal = pyqtSignal(list, bool, int, str) def __init__(self, trigger, parent = None): super().__init__(parent) self.url_link = False self.directory = None self.interval = 0 if trigger: self.names = ('Lineal Plot Time', 'Pie', 'Box Plot', 'Histogram', 'Gaussian Histogram', 'Bar Plot', 'Horizontal Bar Plot', 'Violin') else: self.names = ('Lineal Plot Time', 'Pie', 'Bar Plot', 'Horizontal Bar Plot') self.displayOptions() optionsLayout = QVBoxLayout() optionsLayout.addWidget(self.options) self.setGeometry(340, 200, 560, 420) self.setLayout(optionsLayout) self.setStyleSheet(abstyle) self.show() def displayOptions(self): self.options = QGroupBox('Please, select plot types to display',self) self.options_list = QButtonGroup(self) layout_box = QVBoxLayout(self) # Define check option for time int plot self.file = QLineEdit(self) dir_button = QPushButton('...') dir_button.setToolTip("Select directory to save.") dir_button.clicked.connect(self.setDirectory) layout_dirbox = QVBoxLayout() layout_box.addLayout(layout_dirbox) grid = QGridLayout() grid.addWidget(self.file, 0, 0) grid.addWidget(dir_button, 0, 1) layout_dirbox.addLayout(grid) for opt in self.names: nms = QRadioButton(opt) layout_box.addWidget(nms) self.options_list.addButton(nms) # Define check option for time int plot label = QLabel('Insert time interval to plot', self) self.time = QSpinBox() self.time.setRange(0,100) grid_time = QGridLayout() grid_time.addWidget(label,0,0) grid_time.addWidget(self.time,0,1) layout_box.addLayout(grid_time) self.time.valueChanged.connect(self.recognizeState2) # Define check option for video display if Singleton().hasUrl(): check_button = QCheckBox('Do you want to display the video file?',self) layout_box.addStretch() layout_box.addWidget(check_button) check_button.stateChanged.connect(self.recognizeState) # Define accept button and add to layout accept_button = QPushButton('&Accept',self) accept_button.clicked.connect(self.buttonAccept) layout_box.addWidget(accept_button) # Define the user alert label_alert = QLabel("Please remain here until window closes," " after press accept button!!", self) layout_box.addWidget(label_alert) self.options_list.setExclusive(False) self.options.setLayout(layout_box) def buttonAccept(self): ''' Close the window and show results. ''' options_selected = [button.text() for i, button in enumerate(self. options_list.buttons()) if button.isChecked()] self.directory = self.file.text() if options_selected and self.directory: self.accept_signal.emit(options_selected, self.url_link, self.interval, self.directory) self.close() # close windows class else: QMessageBox().warning(self, "", "Error, options selections are empty!\n" "Please select one at least! or select path", QMessageBox.Ok, QMessageBox.Ok) def recognizeState(self, state): if state == Qt.Checked: self.url_link = True else: self.url_link = False def recognizeState2(self): self.interval = self.time.value() def setDirectory(self): """ Choose the directory. """ file_dialog = QFileDialog(self) #file_dialog.setFileMode(QFileDialog.Directory) self.directory = file_dialog.getExistingDirectory(self, "Select Directory") if self.directory: self.file.setText(self.directory) else: QMessageBox().warning(self, "", "Error, please select a path folder", QMessageBox.Ok, QMessageBox.Ok) if __name__ == '__main__': app = QApplication(sys.argv) window = PlotKindsOptions() sys.exit(app.exec_()) ``` #### File: NeuroscienceLab/main/videoprocess.py ```python import cv2, sys, os from videobarplot import imageGenerator, overlayPlot import pandas as pd def VideoProcess(*args): video = args[0] path = args[1] try: # Load csv file and delete the firs column data = pd.read_csv(path+'/emotion.csv') if data.shape[1] == 1: raise Exception except: # Load csv file and delete the firs column data = pd.read_csv(path+'/emotion.csv', delimiter=';') #Proces emotiosn and convert to numpy and get time for check with fps cols = data.shape[0] time = data.at[cols-1,'time'] fps1 = cols/time if args[2] == '1': data = data.drop(['Unnamed: 0','trigger', 'time'], axis=1).to_numpy().astype(float) else: data = data.drop(['Unnamed: 0','time'], axis=1).to_numpy().astype(float) emotions = data[:,0::1] # Open the video and get dimensions and fps cap = cv2.VideoCapture(video) video_width = cap.get(cv2.CAP_PROP_FRAME_WIDTH) video_heigth = cap.get(cv2.CAP_PROP_FRAME_HEIGHT) fps = cap.get(cv2.CAP_PROP_FPS) # Check the video fps if fps > fps1: fps = fps1 size = (int(video_width), int(video_heigth)) size_plot = (int(video_width*0.35), int(video_heigth*0.35)) # Initialize the video writer out = cv2.VideoWriter(path + '/output_processed.avi', cv2.VideoWriter_fourcc(*'MJPG'), fps, size) # Initialize the detector file = os.getcwd() face_cascade = cv2.CascadeClassifier(file + '/main/assets/haarcascade_frontalface_default.xml') j = 0 jend = cols # Do operations while video is opened while (cap.isOpened()): # ret is the boolean True is video opened and frame is the frame in this moment ret, img = cap.read() try: # Convert frame to gray color and detect face gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(gray, 1.3, 5) for (x, y, w, h) in faces: # draw rectangle to main image cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2) if j < jend: # Generate plot image try: image = imageGenerator(emotions[j], size_plot, size) img = overlayPlot(img, image, size) except Exception: break else: break except: break out.write(img) j += 1 if j == int(0.2*jend): sys.stderr.write("Total complete: 20%\n") elif j == int(0.4 * jend): sys.stderr.write("Total complete: 40%\n") elif j == int(0.6 * jend): sys.stderr.write("Total complete: 60%\n") elif j == int(0.8 * jend): sys.stderr.write("Total complete: 80%\n") # ESC to quit if (cv2.waitKey(0) & 0xFF == ord('q')) or not ret: break sys.stderr.write("Total complete: 100%\n") # kill open cv things cap.release() out.release() cv2.destroyAllWindows() if __name__ == "__main__": a = sys.argv[1] b = sys.argv[2] c = sys.argv[3] VideoProcess(a, b, c) ```
{ "source": "josmople/pytorch_utils", "score": 3 }
#### File: josmople/pytorch_utils/az.py ```python import typing as _T A = _T.TypeVar("A") B = _T.TypeVar("B") C = _T.TypeVar("C") D = _T.TypeVar("D") @_T.overload def tuple_n(n: _T.Literal[2], vals: _T.Tuple[A, B], clss: _T.Tuple[_T.Type[A], _T.Type[B]] = None) -> _T.Tuple[A, B]: ... @_T.overload def tuple_n(n: _T.Literal[2], vals: _T.Tuple[A, A], clss: _T.Type[A] = None) -> _T.Tuple[A, A]: ... @_T.overload def tuple_n(n: _T.Literal[2], vals: _T.Iterable[A], clss: _T.Type[A] = None) -> _T.Tuple[A, A]: ... @_T.overload def tuple_n(n: _T.Literal[2], vals: A, clss: _T.Type[A] = None) -> _T.Tuple[A, A]: ... @_T.overload def tuple_n(n: _T.Literal[3], vals: _T.Tuple[A, B, C], clss: _T.Tuple[_T.Type[A], _T.Type[B], _T.Type[C]] = None) -> _T.Tuple[A, B, C]: ... @_T.overload def tuple_n(n: _T.Literal[3], vals: _T.Tuple[A, A, A], clss: _T.Type[A] = None) -> _T.Tuple[A, A, A]: ... @_T.overload def tuple_n(n: _T.Literal[3], vals: _T.Iterable[A], clss: _T.Type[A] = None) -> _T.Tuple[A, A, A]: ... @_T.overload def tuple_n(n: _T.Literal[3], vals: A, clss: _T.Type[A] = None) -> _T.Tuple[A, A, A]: ... @_T.overload def tuple_n(n: _T.Literal[4], vals: _T.Tuple[A, B, C, D], clss: _T.Tuple[_T.Type[A], _T.Type[B], _T.Type[C], _T.Type[D]] = None) -> _T.Tuple[A, B, C, D]: ... @_T.overload def tuple_n(n: _T.Literal[4], vals: _T.Tuple[A, A, A, A], clss: _T.Type[A] = None) -> _T.Tuple[A, A, A, A]: ... @_T.overload def tuple_n(n: _T.Literal[4], vals: _T.Iterable[A], clss: _T.Type[A] = None) -> _T.Tuple[A, A, A, A]: ... @_T.overload def tuple_n(n: _T.Literal[4], vals: A, clss: _T.Type[A] = None) -> _T.Tuple[A, A, A, A]: ... @_T.overload def tuple_n(n: int, vals: _T.Iterable[A], clss: _T.Type[A] = None) -> _T.Tuple[A, ...]: ... @_T.overload def tuple_n(n: int, vals: _T.Union[_T.Iterable, object], clss: _T.Union[type, _T.Iterable[type]] = None) -> tuple: ... def tuple_n(n: int, vals: object, clss: type = None) -> tuple: if isinstance(vals, _T.Iterable): vals = list(vals) assert len(vals) == n, f"Length of iterable must be {n} but got {len(vals)}" else: vals = [vals] * n if clss is None: clss = [None] * n if callable(clss): # `type` or `Callable` clss = [clss] * n assert isinstance(clss, _T.Iterable), "Parameter clss must be a `type` or `Iterable[type | Callable]`" nvals = list(vals) for i, (val, cls) in enumerate(zip(vals, clss)): if cls == None: continue assert callable(cls), f"Parameter clss[{i}] must be `type` or `Callable`" nvals[i] = cls(val) return tuple(vals) @_T.overload def tuple_2(vals: _T.Tuple[A, B], clss: _T.Tuple[_T.Type[A], _T.Type[B]] = None) -> _T.Tuple[A, B]: ... @_T.overload def tuple_2(vals: _T.Tuple[A, A], clss: _T.Type[A] = None) -> _T.Tuple[A, A]: ... @_T.overload def tuple_2(vals: _T.Iterable[A], clss: _T.Type[A] = None) -> _T.Tuple[A, A]: ... @_T.overload def tuple_2(vals: A, clss: _T.Type[A] = None) -> _T.Tuple[A, A]: ... def tuple_2(vals: object, clss: type = None) -> tuple: return tuple_n(2, vals, clss) @_T.overload def tuple_3(vals: _T.Tuple[A, B, C], clss: _T.Tuple[_T.Type[A], _T.Type[B], _T.Type[C]] = None) -> _T.Tuple[A, B, C]: ... @_T.overload def tuple_3(vals: _T.Tuple[A, A, A], clss: _T.Type[A] = None) -> _T.Tuple[A, A, A]: ... @_T.overload def tuple_3(vals: _T.Iterable[A], clss: _T.Type[A] = None) -> _T.Tuple[A, A, A]: ... @_T.overload def tuple_3(vals: A, clss: _T.Type[A] = None) -> _T.Tuple[A, A, A]: ... def tuple_3(vals: object, clss: type = None) -> tuple: return tuple_n(3, vals, clss) @_T.overload def tuple_4(vals: _T.Tuple[A, B, C, D], clss: _T.Tuple[_T.Type[A], _T.Type[B], _T.Type[C], _T.Type[D]] = None) -> _T.Tuple[A, B, C, D]: ... @_T.overload def tuple_4(vals: _T.Tuple[A, A, A, A], clss: _T.Type[A] = None) -> _T.Tuple[A, A, A, A]: ... @_T.overload def tuple_4(vals: _T.Iterable[A], clss: _T.Type[A] = None) -> _T.Tuple[A, A, A, A]: ... @_T.overload def tuple_4(vals: A, clss: _T.Type[A] = None) -> _T.Tuple[A, A, A, A]: ... def tuple_4(vals: object, clss: type = None) -> tuple: return tuple_n(4, vals, clss) ``` #### File: josmople/pytorch_utils/fn.py ```python import typing as _T from torch.nn import Module as _Module _Fn = _T.TypeVar("_Fn") class instanceclassmethod(object): """ The method should take two arguments, 'self' and 'cls'. The value of 'self' is None if invoked as a classmethod. """ def __init__(self, func: _Fn): self.func = func def __get__(self, instance, clas=None) -> _Fn: from functools import wraps @wraps(self.func) def func(*args, **kwds): return self.func(instance, clas, *args, **kwds) return func def ignore_unmatched_kwargs(f): """Make function ignore unmatched kwargs. If the function already has the catch all **kwargs, do nothing. From: https://stackoverflow.com/a/63787701 """ from inspect import Parameter, signature import functools if any(param.kind == Parameter.VAR_KEYWORD for param in signature(f).parameters.values()): return f # @functools.wraps(f) def inner(*args, **kwargs): # For each keyword arguments recognised by f, take their binding from **kwargs received filtered_kwargs = { name: kwargs[name] for name, param in signature(f).parameters.items() if name in kwargs and ( param.kind is Parameter.KEYWORD_ONLY or param.kind is Parameter.POSITIONAL_OR_KEYWORD ) } return f(*args, **filtered_kwargs) return inner def as_pytorch_module(fn: _Fn = None, *, include_self=False) -> _T.Union[type, _T.Callable[[], _T.Union[_Fn, _Module]]]: """ Transforms functions to torch.nn.Module """ if fn is None: from functools import partial return partial(as_pytorch_module, include_self=include_self) from torch.nn import Module if include_self: def forward(self, *args, **kwds): return fn(self, *args, **kwds) else: def forward(self, *args, **kwds): return fn(*args, **kwds) return type(f"LambdaModule__{fn.__name__}", (Module, ), dict(forward=forward)) del _Module, _T, _Fn ```
{ "source": "jo-sm/SublimeLinter-contrib-stylelint_d", "score": 3 }
#### File: jo-sm/SublimeLinter-contrib-stylelint_d/linter.py ```python from SublimeLinter.lint import NodeLinter, util import json class Stylelint_d(NodeLinter): """Provides an interface to stylelint_d.""" syntax = ('css', 'sass', 'scss', 'postcss', 'less') cmd = ('stylelint_d', '--stdin', '--formatter=json', '--file', '@') npm_name = 'stylelint_d' version_args = '--version' version_re = r'(?P<version>\d+\.\d+\.\d+)' version_requirement = '>= 1.0.8' line_col_base = (1, 1) error_stream = util.STREAM_BOTH comment_re = r'\s*/[/*]' selectors = { 'html': 'source.css.embedded.html' } # https://github.com/kungfusheep/SublimeLinter-contrib-stylelint/blob/master/linter.py # Adapted from SublimeLinter-contrib-stylelint regex = ( r'^\s*(?P<line>[0-9]*)\:(?P<col>[0-9]*)\s*' r'(?:(?P<error>error)|(?P<warning>warning)|(?P<deprecation>deprecation)|(?P<invalid>invalid))\s*' r'(?P<message>.+)' ) # https://github.com/SublimeLinter/SublimeLinter-csslint/blob/master/linter.py # Taken from SublimeLinter-csslint word_re = r'^(#?[-\w]+)' def split_match(self, match): """Override `split_match` to support invalidOptionWarnings and deprecations.""" if match: group = match.groupdict() if group.get('deprecation') or group.get('invalid'): # We have to show the error on some line or else it won't # show in Sublime return match, 0, 0, True, False, group.get('message'), None else: return super().split_match(match) else: return super().split_match(match) def run(self, cmd, code): """Parse returned JSON into SublimeLinter friendly text.""" raw = super().run(cmd, code) try: parsed = json.loads(raw) except ValueError: return [] result = [] try: file_errors = parsed[0] # Parsed is an array of each file data except IndexError: return [] for error in file_errors.get('deprecations', []): result.append("0:0 deprecation {}".format(error.get('text'))) for error in file_errors.get('invalidOptionWarnings', []): result.append('0:0 invalid {}'.format(error.get('text'))) for error in file_errors.get('warnings', []): # Severity may not be present in the warning result.append("{}:{} {} {}".format( error.get('line', '0'), error.get('column', '0'), error.get('severity', 'error'), error.get('text', '')) ) return "\n".join(result) ```
{ "source": "josndan/octo-song-search", "score": 3 }
#### File: josndan/octo-song-search/Graph.py ```python import sys class Vertex: def __init__(self, artist): self.id = artist self.songs = [] self.coArtists = {} self.color = 'white' self.dist = sys.maxsize self.pred = None self.disc = 0 self.fin = 0 """resets a node to do search algorithms again""" def reset(self): self.color = 'white' self.dist = sys.maxsize self.pred = None self.disc = 0 self.fin = 0 """Sets the color""" def setColor(self, color): self.color = color """Sets the distance""" def setDistance(self, d): self.dist = d """Sets the the predecessor node""" def setPred(self, p): self.pred = p """Sets the discovery time""" def setDiscovery(self, dtime): self.disc = dtime """Sets the finish time""" def setFinish(self, ftime): self.fin = ftime """Returns the finish time""" def getFinish(self): return self.fin """returns the discovery time""" def getDiscovery(self): return self.disc """returns the predecessor node """ def getPred(self): return self.pred """returns the distance""" def getDistance(self): return self.dist """returns the color of the node""" def getColor(self): return self.color """creates an edge""" def addNeighbor(self, nbr, weight=0): self.coArtists[nbr] = weight def __str__(self): return str(self.id) + ' connectedTo: ' + str([x for x in self.coArtists]) """returns the connectes nodes list""" def getConnections(self): return self.coArtists.keys() """returns the node id""" def getId(self): return self.id """returns the weight of an edge""" def getWeight(self, nbr): return self.coArtists[nbr] ```
{ "source": "josndan/twitter-moniter", "score": 3 }
#### File: josndan/twitter-moniter/twitter.py ```python import twitter_credential import tweepy import time from tweepy import OAuthHandler from tweepy import API from tweepy import Cursor import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from nltk.sentiment.vader import SentimentIntensityAnalyzer import nltk nltk.download('vader_lexicon',quiet=True) def authenticate(): auth = OAuthHandler(twitter_credential.API_KEY, twitter_credential.API_SECRET_KEY) auth.set_access_token(twitter_credential.ACCESS_TOKEN, twitter_credential.ACCESS_TOKEN_SECRET) return auth class TwitterClient(): def __init__(self, username=None): self.auth = authenticate() self.twitterClient = API(self.auth,wait_on_rate_limit=True,wait_on_rate_limit_notify=True) self.username = username def get_tweets(self, numTweets): # tweets = [] # for tweet in Cursor(self.twitterClient.user_timeline, id=self.username).items(numTweets): # tweets.append(tweet) count = 0 add = False tweets = Cursor(self.twitterClient.user_timeline,q="-filter:retweets", id=self.username).items() res=[] while count < numTweets: try: tweet = tweets.next() if hasattr(tweet, "in_reply_to_status_id_str"): if tweet.in_reply_to_status_id_str is None: add=True else: add = True if add and (not tweet.retweeted) and ('RT @' not in tweet.text): res.append(tweet) count += 1 add = False except tweepy.RateLimitError as e: print(f'API rate limit reached {e}') time.sleep(60) continue except tweepy.TweepError as e: print(f'tweepy error occured {e}') error = True break except StopIteration as e: print(f"Loop ended {e}") break except Exception as e: print(f'Error: {e}') error = True break return res def get_client(self): return self.twitterClient def get_username(self): return self.username class DataLoader(): def toDataFrame(self, tweets): df =None try: df = pd.DataFrame( data=[[tweet.id, tweet.text, tweet.favorite_count, tweet.retweet_count , tweet.source, tweet.created_at] for tweet in tweets] , columns=["id", "text", "favorite_count", "retweet_count", "source", "created_at"]) except AttributeError: df = pd.DataFrame( data=[[tweet.id, tweet.full_text, tweet.favorite_count, tweet.retweet_count , tweet.source, tweet.created_at] for tweet in tweets] , columns=["id", "text", "favorite_count", "retweet_count", "source", "created_at"]) return df class Analyzer(): # def strip_tweet(self, tweet): # return ''.join(re.sub("(@[A-Za-z0-9]+)|([^0-9A-Za-z \t])|(\w+:\/\/\S+)", " ", tweet)).strip() def get_sentiment(self, tweet): return SentimentIntensityAnalyzer().polarity_scores(tweet) def add_sentiment(self,df): df["sentiment"] = np.array([self.get_sentiment(tweet)["compound"] for tweet in df["text"]]) return df def graph(self,df): sns.set() sns.relplot(data=df, x="created_at", y="sentiment", hue="source", kind="line", ci=None) plt.show() class Tweets(): def __init__(self,username,num_tweets=5): self.client = TwitterClient(username) self.tweets = DataLoader().toDataFrame(self.client.get_tweets(num_tweets)) self.analyzer = Analyzer() self.num_tweets = num_tweets # self.num_replies = num_replies # self.replies = {} # self.get_replies() self.analyzer.add_sentiment(self.tweets) def get_reply(self,id,num=5): api = self.client.get_client() print("\nSearching for tweets with") print(f'Id : {id}\nto:{self.client.get_username()}') print("\n") tweets = Cursor(api.search, q=f'to:@{self.<EMAIL>_username()}' , since_id=id, tweet_mode='extended' , result_type='recent' ).items() count = 0 replies=[] while count < num: try: tweet = tweets.next() # print(tweet) if hasattr(tweet, "in_reply_to_status_id_str"): # print(tweet) if tweet.in_reply_to_status_id_str == str(id): # print(f'Reply:{tweet}') replies.append(tweet) count += 1 except tweepy.RateLimitError as e: print(f'API rate limit reached {e}') time.sleep(60) continue except tweepy.TweepError as e: print(f'tweepy error occured {e}') break except StopIteration: print() print("Stop Iteration") print(f'Only {count} items present in the result') break except Exception as e: print(f'Error: {e}') break replies = DataLoader().toDataFrame(replies) self.analyzer.add_sentiment(replies) return replies # for id in self.tweets["id"]: # replies=[] # # try: # # for tweet in Cursor(api.search,q=f'to:{self.client.get_username()}' # # ,since_id = id,tweet_mode='extended' # # ,result_type='recent').items(2): # # print(tweet) # # if hasattr(tweet,"in_reply_to_status_id_str") and tweet.in_reply_to_status_id_str==id: # # print(f'Reply:{tweet}') # # replies.append(tweet) # # if error: # break # # except Exception as e: # # print(f'Error: {e}') # # break # # self.replies[id] = DataLoader().toDataFrame(replies) # self.analyzer.add_sentiment(self.replies[id]) def display(self): print(f"\n First {self.num_tweets} tweets\n") pd.set_option('max_colwidth', 60) pd.options.display.show_dimensions = False print(self.tweets[['text','sentiment']]) print("\n") # print() # print("Replies ") # for id in self.replies: # print(f'For tweet {id} :') # print(self.replies[id][['id','text','sentiment']]) username = input("Enter the username ") user = Tweets(username) user.display() row=int(input("\nEnter the tweet number to analyse ")) id= user.tweets["id"].iloc[row] nreplies=int(input("\nEnter the number of replies to analyse ")) user.analyzer.graph(user.get_reply(id,nreplies)) ```
{ "source": "josndan/urabn-fortnight", "score": 3 }
#### File: urabn-fortnight/lib/Posting.py ```python class Posting: def __init__(self, id, data, positions): self.docId = id self.data = data self.positions = positions def getTermCount(self): return len(self.positions) def getDocId(self): return self.docId def getPositions(self): return self.positions def __repr__(self): return f"{self.docId} : {self.data} : {self.positions}" ```
{ "source": "josojo/plasma-mvp", "score": 2 }
#### File: plasma/client/client.py ```python import json import rlp from web3.contract import ConciseContract from web3 import HTTPProvider from plasma.config import plasma_config from plasma.root_chain.deployer import Deployer from plasma.child_chain.transaction import Transaction, UnsignedTransaction from .child_chain_service import ChildChainService class Client(object): def __init__(self, root_chain_provider=HTTPProvider('http://localhost:8545'), child_chain_url="http://localhost:8546/jsonrpc"): deployer = Deployer(root_chain_provider) abi = json.load(open("contract_data/RootChain.json")) self.root_chain = deployer.w3.eth.contract(abi, plasma_config['ROOT_CHAIN_CONTRACT_ADDRESS'], ContractFactoryClass=ConciseContract) self.child_chain = ChildChainService(child_chain_url) def create_transaction(self, blknum1=0, txindex1=0, oindex1=0, blknum2=0, txindex2=0, oindex2=0, newowner1=b'\x00' * 20, amount1=0, newowner2=b'\x00' * 20, amount2=0, fee=0): return Transaction(blknum1, txindex1, oindex1, blknum2, txindex2, oindex2, newowner1, amount1, newowner2, amount2, fee) def sign_transaction(self, transaction, key1=b'', key2=b''): if key1: transaction.sign1(key1) if key2: transaction.sign1(key2) return transaction def deposit(self, transaction): self.root_chain.deposit(transact={'from': '0x' + transaction.newowner1.hex(), 'value': transaction.amount1}) def apply_transaction(self, transaction): self.child_chain.apply_transaction(transaction) def submit_block(self, block): self.child_chain.submit_block(block) def withdraw(self, txPos, tx, proof, sigs): utxoPos = txPos[0] * 1000000000 + txPos[1] * 10000 + txPos[2] * 1 self.root_chain.startExit(utxoPos, rlp.encode(tx, UnsignedTransaction), proof, sigs, transact={'from': '0x' + tx.newowner1.hex()}) def get_transaction(self, blknum, txindex): return self.child_chain.get_transaction(blknum, txindex) def get_current_block(self): return self.child_chain.get_current_block() def get_block(self, blknum): return self.child_chain.get_block(blknum) def get_current_block_num(self): return self.child_chain.get_current_block_num() ``` #### File: plasma/root_chain/deployer.py ```python import json import os from ethereum.tools import tester as t from solc import compile_standard from web3.contract import ConciseContract from web3 import Web3, HTTPProvider from plasma.config import plasma_config OWN_DIR = os.path.dirname(os.path.realpath(__file__)) class Deployer(object): def __init__(self, provider=HTTPProvider('http://localhost:8545')): self.w3 = Web3(provider) def get_dirs(self, path): abs_contract_path = os.path.realpath(os.path.join(OWN_DIR, 'contracts')) extra_args = [[file, [os.path.realpath(os.path.join(r, file))]] for r, d, f in os.walk(abs_contract_path) for file in f] contracts = {} for contract in extra_args: contracts[contract[0]] = {'urls': contract[1]} path = '{}/{}'.format(abs_contract_path, path) return path, contracts def compile_contract(self, path, args=()): file_name = path.split('/')[1] contract_name = file_name.split('.')[0] path, contracts = self.get_dirs(path) compiled_sol = compile_standard({'language': 'Solidity', 'sources': {**{path.split('/')[-1]: {'urls': [path]}}, **contracts}}, # Noqa E999 allow_paths=OWN_DIR + "/contracts") abi = compiled_sol['contracts'][file_name][contract_name]['abi'] bytecode = compiled_sol['contracts'][file_name][contract_name]['evm']['bytecode']['object'] # Create the contract_data folder if it doesn't already exist os.makedirs('contract_data', exist_ok=True) contract_file = open('contract_data/%s.json' % (file_name.split('.')[0]), "w+") json.dump(abi, contract_file) contract_file.close() return abi, bytecode, contract_name def create_contract(self, path, args=(), gas=4410000, sender=t.k0): abi, bytecode, contract_name = self.compile_contract(path, args) contract = self.w3.eth.contract(abi=abi, bytecode=bytecode) # Get transaction hash from deployed contract tx_hash = contract.deploy(transaction={'from': self.w3.eth.accounts[0], 'gas': gas}, args=args) # Get tx receipt to get contract address tx_receipt = self.w3.eth.getTransactionReceipt(tx_hash) contract_address = tx_receipt['contractAddress'] # Contract instance in concise mode contract_instance = self.w3.eth.contract(abi, contract_address, ContractFactoryClass=ConciseContract) print("Successfully deployed {} contract!".format(contract_name)) return contract_instance def get_contract(self, path): file_name = path.split('/')[1] abi = json.load(open('contract_data/%s.json' % (file_name.split('.')[0]))) return self.w3.eth.contract(abi, plasma_config['ROOT_CHAIN_CONTRACT_ADDRESS']) ```
{ "source": "josola/project-euler", "score": 4 }
#### File: project-euler/python/p010.py ```python def compute(LIMIT): # - Uses Sieve of Eratosthenes to eliminate composite # numbers up to the limit. # - The sieve tracks previously marked primes without increasing # the computation time unnecessarily. This allows the sieve to # jump ahead to the square of the current prime and # remove all the factors of the current prime. prime = [True] * LIMIT i = 2 while (i * i) <= LIMIT: if prime[i] == True: j = i * i while j <= LIMIT - 1: prime[j] = False j += i i += 1 sum = 0 for i in range(2, LIMIT): if prime[i] == True: sum += i return sum if __name__ == "__main__": print(compute(2000000)) # Answer: 142'913'828'922 # Asymptotic complexity: O(N LogN) # M1 (3.2 GHz CPU) ARMv8-A64 (64 bit): 1 loop, best of 5: 314 msec per loop ``` #### File: project-euler/python/p012.py ```python import math def compute(TARGET): term = 1 triangular = 0 div_count = 0 while div_count < TARGET: term += 1 div_count = 0 # - Triangular numbers and arithmetic progressions can be found # using the same formula. # - Triangular number (arithmetic progression): a = n * (n + 1) / 2 # Where "a" is the triangular number, and "n" is the last number # in the arithmetic progression (term). # - See p001, and p006 for more examples of # the arithmetic progression formula. triangular = term * (term + 1) // 2 # - We can take the same algorithm p003 used to find # the largest prime factor and adapt it to find all the # factors belonging to our triangular number. root = int(math.sqrt(triangular)) for i in range(1, root + 1, 1): if triangular % i == 0: div_count += 2 return triangular if __name__ == "__main__": print(compute(500)) # Answer: 76576500 # Asymptotic complexity: O(N) # M1 (3.2 GHz CPU) ARMv8-A64 (64 bit): 1 loop, best of 5: 1.79 sec per loop ``` #### File: project-euler/python/p017.py ```python def compute(START, END): ones_place = [ "", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine", "ten", "eleven", "twelve", "thirteen", "forteen", "fifteen", "sixteen", "seventeen", "eighteen", "nineteen" ] tens_place = [ "", "", "twenty", "thirty", "forty", "fifty", "sixty", "seventy", "eighty", "ninety" ] hundreds_place = "hundred" total = 0 for i in range(START, END + 1, 1): word = "" if i < 20: word = ones_place[i] elif i >= 20 and i < 100: word = tens_place[i // 10] + ones_place[i % 10] elif i >= 100 and (i % 100) // 10 == 0 and i % 10 == 0 and i < 1000: word = ones_place[i // 100] + hundreds_place elif i >= 100 and (i % 100) // 10 < 2 and i < 1000: word = ones_place[i // 100] + hundreds_place + "and" + ones_place[i % 100] elif i >= 120 and i < 1000: word = ones_place[i // 100] + hundreds_place + "and" + tens_place[(i % 100) // 10] + ones_place[i % 10] elif i == 1000: word = "onethousand" total += len(word) return total if __name__ == "__main__": print(compute(1, 1000)) # Answer: 21124 # Asymptotic complexity: O(N) # M1 (3.2 GHz CPU) ARMv8-A64 (64 bit): 1000 loops, best of 5: 315 usec per loop ```
{ "source": "josonle/LearningDjango", "score": 2 }
#### File: mysite/blog/views.py ```python from django.shortcuts import render,get_object_or_404 from .models import BlogArticles # Create your views here. def blog_title(request): blogs=BlogArticles.objects.all() return render(request,"blog/titles.html",{"blogs":blogs}) def article(request,a_id): blog=get_object_or_404(BlogArticles,id=a_id) publish_time=blog.publish return render(request,"blog/article.html",{'blog':blog,'publish':publish_time}) ```
{ "source": "josoriov/python3-projects", "score": 4 }
#### File: easy/02-simple-chatty-bot/simple_chatty_bot.py ```python from src.functions import safe_cast def introduction(): botname = "Talko" bith_year = 2021 print(f"Hello! My name is {botname}") print(f"I Was created in {bith_year}") def presentation(): print("Please, remind me your name") name = input() print(f"What a great name you have, {name}!") def age_guess(): print("Let me guess your age.") remainder_3 = int(input("Enter the remainder of dividing you age by 3: ")) remainder_5 = int(input("Enter the remainder of dividing you age by 5: ")) remainder_7 = int(input("Enter the remainder of dividing you age by 7: ")) age = (remainder_3*70 + remainder_5*21 + remainder_7*15) % 105 print(f"Your age is {age}; that's a good time to start programming!") def counting(): print("Now I will prove to you that I can count to any number you want.") number = int(input("Enter the number you want me to count to: ")) for i in range(number): print(i, end=" - ") print(number) def quiz(): question = """ Let's test your programming knowledge! What type of language Python is? 1) Interpreted and statically typed 2) Interpreted and dynamically typed 3) Compiled and statically typed 4) Compilled and dynamically typed""" print(question) correct = False while not correct: ans = input("Enter your anwser: ") ans = safe_cast(ans, int, 0) if ans == 2: print("That's correct! Python is both interpreted and dynamically typed") correct = True else: print("Please, try again.") def exit_message(): print("Congratulations, have a nice day!") def main(): introduction() presentation() age_guess() counting() quiz() exit_message() main() ```