metadata
dict
text
stringlengths
60
3.49M
{ "source": "joshuaskelly/wick", "score": 4 }
#### File: generators/csharp/filters.py ```python def pascal_case(text): """Returns text converted to PascalCase""" if text.count('_') == 0: return text s1 = text.split('_') return ''.join([s.lower().capitalize() for s in s1]) def integral_type(member): type = { 'char': 'char', 'signed char': 'sbyte', 'unsigned char': 'byte', 'short': 'short', 'unsigned short': 'ushort', 'int': 'int', 'unsigned int': 'uint', 'long': 'int', 'unsigned long': 'uint', 'long long': 'long', 'unsigned long long': 'ulong', 'float': 'float', 'double': 'double' }[member.type] return type def csharp_type(member, show_length=False): if member.type == 'char' and member.length > 1: return 'string' type = integral_type(member) if member.length > 1: return f'{type}[{member.length if show_length else ""}]' return type def reader_method(member): type = integral_type(member) method = { 'char': 'ReadChar', 'sbyte': 'ReadSByte', 'byte': 'ReadByte', 'short': 'ReadInt16', 'ushort': 'ReadUInt16', 'int': 'ReadInt32', 'uint': 'ReadUInt32', 'long': 'ReadInt64', 'ulong': 'ReadUInt64', 'float': 'ReadSingle', 'double': 'ReadDouble' }[type] return method def lines(text): ls = text.split('\n') if not ls: return [] if ls[0].strip() == '': ls = ls[1:] if not ls: return [] if ls[-1].strip() == '': ls = ls[:-1] return ls def leading_spaces(text): return len(text) - len(text.lstrip()) def remove_miniumum_whitespace(lines): try: minimum_whitespace = min([leading_spaces(l) for l in lines]) return [l[minimum_whitespace:] for l in lines] except ValueError: return [] def xml_comment(text): ls = lines(text) ls = remove_miniumum_whitespace(ls) return '\n'.join([f'/// {l}' for l in ls]) def comment(text): if text.count('\n') == 0: return single_line_comment(text) return multi_line_comment(text) def single_line_comment(text): ls = lines(text) ls = remove_miniumum_whitespace(ls) return '\n'.join([f'// {l}' for l in ls]) def multi_line_comment(text): ls = lines(text) ls = remove_miniumum_whitespace(ls) ls = [f' * {l}' for l in ls] ls.insert(0, '/*') ls.append(' */') return '\n'.join(ls) filters = { 'pascalcase': pascal_case, 'csharptype': csharp_type, 'readermethod': reader_method, 'comment': comment, 'singlelinecomment': single_line_comment, 'multilinecomment': multi_line_comment, 'xmlcomment': xml_comment } ``` #### File: generators/markdown/elements.py ```python class MarkDownElement: def __init__(self, text=''): self._text = text def __str__(self): return self.text def __add__(self, other): return self.text + str(other) def __radd__(self, other): return str(other) + self.text @property def text(self): return str(self._text) class H1(MarkDownElement): def __str__(self): return f'# {self.text}' class H2(MarkDownElement): def __str__(self): return f'## {self.text}' class H3(MarkDownElement): def __str__(self): return f'### {self.text}' class H4(MarkDownElement): def __str__(self): return f'#### {self.text}' class PlainText(MarkDownElement): def __str__(self): return self.text class BlankLine(MarkDownElement): def __str__(self): return '' class Table(MarkDownElement): def __init__(self, headers): self._headers = tuple(str(h) for h in headers) self._entries = [] def add_entry(self, entry): if len(entry) != len(self._headers): raise RuntimeError('Number of element per entry should match that of the header') self._entries.append(tuple([str(e) for e in entry])) def __str__(self): def columns(seq, char='|'): return f'{char}{char.join(seq)}{char}' widths = [len(h) for h in self._headers] for entry in self._entries: for i, z in enumerate(zip(widths, entry)): w, e = z widths[i] = max(w, len(e)) header = [] for i, h in enumerate(self._headers): header.append(self._headers[i].center(widths[i] + 2)) header = columns(header) divider = columns(['-' * (i + 2) for i in widths]) entries = [] for entry in self._entries: e = [f' {i[1].ljust(i[0])} ' for i in zip(widths, entry)] entries.append(columns(e)) result = [] result.append(header) result.append(divider) result+=entries result = '\n'.join(result) return result ``` #### File: generators/python/filters.py ```python import math import re from collections import namedtuple def snake_case(text): """Returns text converted to snake_case""" s1 = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', text) return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).lower() def pascal_case(text): """Returns text converted to PascalCase""" s1 = text.split('_') return ''.join([s.lower().capitalize() for s in s1]) def spaces(text): """Returns whitespace equal to the length of the given text. This is useful for making things line up. """ return ' ' * len(text) def format_string(members): result = '' for prop in members: type = prop.type if type == 'char' and prop.length > 1: format = f'{prop.length}s' result += format else: format = { 'char': 'c', 'signed char': 'b', 'unsigned char': 'B', 'short': 'h', 'unsigned short': 'H', 'int': 'i', 'unsigned int': 'I', 'long': 'l', 'unsigned long': 'L', 'long long': 'q', 'unsigned long long': 'Q', 'ssize_t': 'n', 'size_t': 'N', 'float': 'f', 'double': 'd' }[type] result += format * prop.length return simplify_format_string(result) RepeatedChar = namedtuple('RepeatedChar', ['count', 'char']) def simplify_format_string(input): if not input: return '' pairs = [RepeatedChar(1, input[0])] for c in input[1:]: repeat = pairs[-1] if c == repeat.char and c != 's': pairs[-1] = RepeatedChar(repeat.count + 1, repeat.char) else: pairs.append(RepeatedChar(1, c)) return ''.join(f'{p.count if p.count > 1 else ""}{p.char}' for p in pairs) value_generators = {} def test_data(member): global value_generators if member.type == 'char' and member.length > 1: test_characters = bytes(range(32, 127)).decode("ascii") count = math.ceil(member.length / len(test_characters)) test_characters = test_characters * count return f'"""{test_characters[:member.length]}"""' try: value_generator = value_generators.get(member.type) return next(value_generator) except TypeError: interesting_values = { 'char': [bytes([i]) for i in range(128)], 'signed char': [-128, 0, 127], 'unsigned char': [0, 255], 'short': [-32768, 0, 32767], 'unsigned short': [0, 65535], 'int': [-2147483648, 0, 2147483647], 'unsigned int': [0, 4294967295], 'long': [-2147483648, 0, 2147483647], 'unsigned long': [0, 4294967295], 'long long': [-9223372036854775808, 0, 9223372036854775807], 'unsigned long long': [0, 18446744073709551615], 'ssize_t': [0], 'size_t': [0], 'float': [-1.0, 0.0, 1.0], 'double': [-1.0, 0.0, 1.0] }[member.type] def value_generator(): i = 0 while True: yield interesting_values[i] i = (i + 1) % len(interesting_values) value_generators[member.type] = value_generator() return next(value_generators[member.type]) ``` #### File: generators/template/filters.py ```python def pascal_case(text): """Returns text converted to PascalCase""" s1 = text.split('_') return ''.join([s.lower().capitalize() for s in s1]) def csharp_type(member): if member.type == member.char and member.length > 1: return 'string' csharp_type = { 'char': 'char', 'signed char': 'sbyte', 'unsigned char': 'byte', 'short': 'short', 'unsigned short': 'ushort', 'int': 'int', 'unsigned int': 'uint', 'long': 'ing', 'unsigned long': 'uint', 'long long': 'long', 'unsigned long long': 'ulong', 'float': 'float', 'double': 'double' }[member.type] if member.length > 1: return f'{csharp_type}[]' return csharp_type ``` #### File: wick/parser/common.py ```python class Position: def __init__(self, line:int, character:int): self.line = line self.character = character def __iter__(self): return iter([self.line, self.character]) class Range: def __init__(self, start, end): self.start = Position(*start) self.end = Position(*end) def contains(self, position: Position): if position.line < self.start.line: return False elif position.line > self.end.line: return False elif position.character < self.start.character: return False elif position.character > self.end.character: return False return True ```
{ "source": "joshua-s/kitsune", "score": 2 }
#### File: kitsune/dashboards/cron.py ```python from datetime import date from django.conf import settings from django.db import connection import cronjobs from kitsune.dashboards.models import ( PERIODS, WikiDocumentVisits, WikiMetric, L10N_TOP20_CODE, L10N_ALL_CODE, L10N_ACTIVE_CONTRIBUTORS_CODE) from kitsune.dashboards.readouts import overview_rows from kitsune.products.models import Product from kitsune.sumo.redis_utils import redis_client from kitsune.wiki.models import Document from kitsune.wiki.utils import num_active_contributors @cronjobs.register def reload_wiki_traffic_stats(): if settings.STAGE: print ('Skipped reload_wiki_traffic_stats(). ' 'Set settings.STAGE to False to run it for real.') return for period, _ in PERIODS: WikiDocumentVisits.reload_period_from_analytics( period, verbose=settings.DEBUG) @cronjobs.register def update_l10n_coverage_metrics(): """Calculate and store the l10n metrics for each locale/product. The metrics are: * Percent localized of top 20 articles * Percent localized of all articles """ today = date.today() # Loop through all locales. for locale in settings.SUMO_LANGUAGES: # Skip en-US, it is always 100% localized. if locale == settings.WIKI_DEFAULT_LANGUAGE: continue # Loop through all enabled products, including None (really All). for product in [None] + list(Product.objects.filter(visible=True)): # (Ab)use the overview_rows helper from the readouts. rows = overview_rows(locale=locale, product=product) # % of top 20 articles top20 = rows['top-20'] percent = 100.0 * float(top20['numerator']) / top20['denominator'] WikiMetric.objects.create( code=L10N_TOP20_CODE, locale=locale, product=product, date=today, value=percent) # % of all articles all_ = rows['all'] try: percent = 100 * float(all_['numerator']) / all_['denominator'] except ZeroDivisionError: percent = 0.0 WikiMetric.objects.create( code=L10N_ALL_CODE, locale=locale, product=product, date=today, value=percent) @cronjobs.register def update_l10n_contributor_metrics(day=None): """Update the number of active contributors for each locale/product. An active contributor is defined as a user that created or reviewed a revision in the previous calendar month. """ if day is None: day = date.today() first_of_month = date(day.year, day.month, 1) if day.month == 1: previous_first_of_month = date(day.year - 1, 12, 1) else: previous_first_of_month = date(day.year, day.month - 1, 1) # Loop through all locales. for locale in settings.SUMO_LANGUAGES: # Loop through all enabled products, including None (really All). for product in [None] + list(Product.objects.filter(visible=True)): num = num_active_contributors( from_date=previous_first_of_month, to_date=first_of_month, locale=locale, product=product) WikiMetric.objects.create( code=L10N_ACTIVE_CONTRIBUTORS_CODE, locale=locale, product=product, date=previous_first_of_month, value=num) def _get_old_unhelpful(): """ Gets the data from 2 weeks ago and formats it as output so that we can get a percent change. """ old_formatted = {} cursor = connection.cursor() cursor.execute( """SELECT doc_id, yes, no FROM (SELECT wiki_revision.document_id as doc_id, SUM(limitedvotes.helpful) as yes, SUM(NOT(limitedvotes.helpful)) as no FROM (SELECT * FROM wiki_helpfulvote WHERE created <= DATE_SUB(CURDATE(), INTERVAL 1 WEEK) AND created >= DATE_SUB(DATE_SUB(CURDATE(), INTERVAL 1 WEEK), INTERVAL 1 WEEK) ) as limitedvotes INNER JOIN wiki_revision ON limitedvotes.revision_id=wiki_revision.id INNER JOIN wiki_document ON wiki_document.id=wiki_revision.document_id WHERE wiki_document.locale="en-US" GROUP BY doc_id HAVING no > yes ) as calculated""") old_data = cursor.fetchall() for data in old_data: doc_id = data[0] yes = float(data[1]) no = float(data[2]) total = yes + no if total == 0: continue old_formatted[doc_id] = {'total': total, 'percentage': yes / total} return old_formatted def _get_current_unhelpful(old_formatted): """Gets the data for the past week and formats it as return value.""" final = {} cursor = connection.cursor() cursor.execute( """SELECT doc_id, yes, no FROM (SELECT wiki_revision.document_id as doc_id, SUM(limitedvotes.helpful) as yes, SUM(NOT(limitedvotes.helpful)) as no FROM (SELECT * FROM wiki_helpfulvote WHERE created >= DATE_SUB(CURDATE(), INTERVAL 1 WEEK) ) as limitedvotes INNER JOIN wiki_revision ON limitedvotes.revision_id=wiki_revision.id INNER JOIN wiki_document ON wiki_document.id=wiki_revision.document_id WHERE wiki_document.locale="en-US" GROUP BY doc_id HAVING no > yes ) as calculated""") current_data = cursor.fetchall() for data in current_data: doc_id = data[0] yes = float(data[1]) no = float(data[2]) total = yes + no if total == 0: continue percentage = yes / total if doc_id in old_formatted: final[doc_id] = { 'total': total, 'currperc': percentage, 'diffperc': percentage - old_formatted[doc_id]['percentage'] } else: final[doc_id] = { 'total': total, 'currperc': percentage, 'diffperc': 0.0 } return final @cronjobs.register def cache_most_unhelpful_kb_articles(): """Calculate and save the most unhelpful KB articles in the past month.""" REDIS_KEY = settings.HELPFULVOTES_UNHELPFUL_KEY old_formatted = _get_old_unhelpful() final = _get_current_unhelpful(old_formatted) if final == {}: return def _mean(vals): """Argument: List of floats""" if len(vals) == 0: return None return sum(vals) / len(vals) def _bayes_avg(C, m, R, v): # Bayesian Average # C = mean vote, v = number of votes, # R = mean rating, m = minimum votes to list in topranked return (C * m + R * v) / (m + v) mean_perc = _mean([float(final[key]['currperc']) for key in final.keys()]) mean_total = _mean([float(final[key]['total']) for key in final.keys()]) # TODO: Make this into namedtuples sorted_final = [(key, final[key]['total'], final[key]['currperc'], final[key]['diffperc'], _bayes_avg(mean_perc, mean_total, final[key]['currperc'], final[key]['total'])) for key in final.keys()] sorted_final.sort(key=lambda entry: entry[4]) # Sort by Bayesian Avg redis = redis_client('helpfulvotes') redis.delete(REDIS_KEY) max_total = max([b[1] for b in sorted_final]) for entry in sorted_final: doc = Document.objects.get(pk=entry[0]) redis.rpush(REDIS_KEY, (u'%s::%s::%s::%s::%s::%s::%s' % (entry[0], # Document ID entry[1], # Total Votes entry[2], # Current Percentage entry[3], # Difference in Percentage 1 - (entry[1] / max_total), # Graph Color doc.slug, # Document slug doc.title))) # Document title ``` #### File: kitsune/upload/models.py ```python from django.conf import settings from django.contrib.auth.models import User from django.contrib.contenttypes.models import ContentType from django.contrib.contenttypes import generic from django.db import models from kitsune.sumo.helpers import reverse from kitsune.sumo.models import NoCacheModelBase from kitsune.sumo.utils import auto_delete_files @auto_delete_files class ImageAttachment(NoCacheModelBase): """An image attached to an object using a generic foreign key""" file = models.ImageField(upload_to=settings.IMAGE_UPLOAD_PATH, max_length=settings.MAX_FILEPATH_LENGTH) thumbnail = models.ImageField(upload_to=settings.THUMBNAIL_UPLOAD_PATH, null=True) creator = models.ForeignKey(User, related_name='image_attachments') content_type = models.ForeignKey(ContentType) object_id = models.PositiveIntegerField() content_object = generic.GenericForeignKey() def __unicode__(self): return self.file.name def get_absolute_url(self): return self.file.url def thumbnail_if_set(self): """Returns self.thumbnail, if set, else self.file""" return self.thumbnail if self.thumbnail else self.file def get_delete_url(self): """Returns the URL to delete this object. Assumes the object has an id.""" return reverse('upload.del_image_async', args=[self.id]) ``` #### File: kitsune/users/cron.py ```python import cronjobs from kitsune.search.models import generate_tasks from kitsune.users.models import RegistrationProfile @cronjobs.register def remove_expired_registration_profiles(): """"Cleanup expired registration profiles and users that not activated.""" RegistrationProfile.objects.delete_expired_users() generate_tasks() ``` #### File: kitsune/wiki/forms.py ```python import re from django import forms from django.conf import settings from django.template.defaultfilters import slugify from tower import ugettext_lazy as _lazy from kitsune.products.models import Product, Topic from kitsune.sumo.form_fields import MultiUsernameField, StrippedCharField from kitsune.wiki.config import SIGNIFICANCES, CATEGORIES from kitsune.wiki.models import ( Document, Revision, MAX_REVISION_COMMENT_LENGTH) from kitsune.wiki.widgets import ( RadioFieldRendererWithHelpText, ProductTopicsAndSubtopicsWidget) TITLE_REQUIRED = _lazy(u'Please provide a title.') TITLE_SHORT = _lazy(u'The title is too short (%(show_value)s characters). ' u'It must be at least %(limit_value)s characters.') TITLE_LONG = _lazy(u'Please keep the length of the title to %(limit_value)s ' u'characters or less. It is currently %(show_value)s ' u'characters.') SLUG_REQUIRED = _lazy(u'Please provide a slug.') SLUG_INVALID = _lazy(u'The slug provided is not valid.') SLUG_SHORT = _lazy(u'The slug is too short (%(show_value)s characters). ' u'It must be at least %(limit_value)s characters.') SLUG_LONG = _lazy(u'Please keep the length of the slug to %(limit_value)s ' u'characters or less. It is currently %(show_value)s ' u'characters.') SUMMARY_REQUIRED = _lazy(u'Please provide a summary.') SUMMARY_SHORT = _lazy(u'The summary is too short (%(show_value)s characters). ' u'It must be at least %(limit_value)s characters.') SUMMARY_LONG = _lazy(u'Please keep the length of the summary to ' u'%(limit_value)s characters or less. It is currently ' u'%(show_value)s characters.') CONTENT_REQUIRED = _lazy(u'Please provide content.') CONTENT_SHORT = _lazy(u'The content is too short (%(show_value)s characters). ' u'It must be at least %(limit_value)s characters.') CONTENT_LONG = _lazy(u'Please keep the length of the content to ' u'%(limit_value)s characters or less. It is currently ' u'%(show_value)s characters.') COMMENT_LONG = _lazy(u'Please keep the length of the comment to ' u'%(limit_value)s characters or less. It is currently ' u'%(show_value)s characters.') PRODUCT_REQUIRED = _lazy(u'Please select at least one product.') TOPIC_REQUIRED = _lazy(u'Please select at least one topic.') class DocumentForm(forms.ModelForm): """Form to create/edit a document.""" def __init__(self, *args, **kwargs): # Quasi-kwargs: can_archive = kwargs.pop('can_archive', False) can_edit_needs_change = kwargs.pop('can_edit_needs_change', False) initial_title = kwargs.pop('initial_title', '') super(DocumentForm, self).__init__(*args, **kwargs) title_field = self.fields['title'] title_field.initial = initial_title slug_field = self.fields['slug'] slug_field.initial = slugify(initial_title) topics_field = self.fields['topics'] topics_field.choices = Topic.objects.values_list('id', 'title') products_field = self.fields['products'] products_field.choices = Product.objects.values_list('id', 'title') # If user hasn't permission to frob is_archived, remove the field. This # causes save() to skip it as well. if not can_archive: del self.fields['is_archived'] # If user hasn't permission to mess with needs_change*, remove the # fields. This causes save() to skip it as well. if not can_edit_needs_change: del self.fields['needs_change'] del self.fields['needs_change_comment'] title = StrippedCharField( min_length=5, max_length=255, widget=forms.TextInput(), label=_lazy(u'Title:'), help_text=_lazy(u'Title of article'), error_messages={'required': TITLE_REQUIRED, 'min_length': TITLE_SHORT, 'max_length': TITLE_LONG}) # We don't use forms.SlugField because it is too strict in # what it allows (English/Roman alpha-numeric characters and dashes). # Instead, we do custom validation in `clean_slug` below. slug = StrippedCharField( min_length=3, max_length=255, widget=forms.TextInput(), label=_lazy(u'Slug:'), help_text=_lazy(u'Article URL'), error_messages={'required': SLUG_REQUIRED, 'min_length': SLUG_SHORT, 'max_length': SLUG_LONG}) products = forms.MultipleChoiceField( label=_lazy(u'Relevant to:'), required=False, widget=forms.CheckboxSelectMultiple()) is_localizable = forms.BooleanField( initial=True, label=_lazy(u'Allow translations:'), required=False) is_archived = forms.BooleanField( label=_lazy(u'Obsolete:'), required=False) allow_discussion = forms.BooleanField( label=_lazy(u'Allow discussion on this article?'), initial=True, required=False) category = forms.ChoiceField( choices=CATEGORIES, # Required for non-translations, which is # enforced in Document.clean(). required=False, label=_lazy(u'Category:'), help_text=_lazy(u'Type of article')) topics = forms.MultipleChoiceField( label=_lazy(u'Topics:'), required=False, widget=ProductTopicsAndSubtopicsWidget()) locale = forms.CharField(widget=forms.HiddenInput()) needs_change = forms.BooleanField( label=_lazy(u'Needs change:'), initial=False, required=False) needs_change_comment = forms.CharField( label=_lazy(u'Comment:'), widget=forms.Textarea(), required=False) def clean_slug(self): slug = self.cleaned_data['slug'] # Blacklist /, ?, % and +, if not re.compile(r'^[^/^\+^\?%]+$').match(slug): raise forms.ValidationError(SLUG_INVALID) return slug def clean(self): c = super(DocumentForm, self).clean() locale = c.get('locale') # Products are required for en-US products = c.get('products') if (locale == settings.WIKI_DEFAULT_LANGUAGE and (not products or len(products) < 1)): raise forms.ValidationError(PRODUCT_REQUIRED) # Topics are required for en-US topics = c.get('topics') if (locale == settings.WIKI_DEFAULT_LANGUAGE and (not topics or len(topics) < 1)): raise forms.ValidationError(TOPIC_REQUIRED) return c class Meta: model = Document fields = ('title', 'slug', 'category', 'is_localizable', 'products', 'topics', 'locale', 'is_archived', 'allow_discussion', 'needs_change', 'needs_change_comment') def save(self, parent_doc, **kwargs): """Persist the Document form, and return the saved Document.""" doc = super(DocumentForm, self).save(commit=False, **kwargs) doc.parent = parent_doc # If document doesn't need change, clear out the comment. if not doc.needs_change: doc.needs_change_comment = '' doc.save() self.save_m2m() if parent_doc: # Products are not set on translations. doc.products.remove(*[p for p in doc.products.all()]) return doc class RevisionForm(forms.ModelForm): """Form to create new revisions.""" keywords = StrippedCharField(required=False, label=_lazy(u'Keywords:'), help_text=_lazy(u'Affects search results')) summary = StrippedCharField( min_length=5, max_length=1000, widget=forms.Textarea(), label=_lazy(u'Search result summary:'), help_text=_lazy(u'Only displayed on search results page'), error_messages={'required': SUMMARY_REQUIRED, 'min_length': SUMMARY_SHORT, 'max_length': SUMMARY_LONG}) content = StrippedCharField( min_length=5, max_length=100000, label=_lazy(u'Content:'), widget=forms.Textarea(), error_messages={'required': CONTENT_REQUIRED, 'min_length': CONTENT_SHORT, 'max_length': CONTENT_LONG}) comment = StrippedCharField(required=False, label=_lazy(u'Comment:')) class Meta(object): model = Revision fields = ('keywords', 'summary', 'content', 'comment', 'based_on') def __init__(self, *args, **kwargs): super(RevisionForm, self).__init__(*args, **kwargs) self.fields['based_on'].widget = forms.HiddenInput() self.fields['comment'].widget = forms.TextInput( attrs={'maxlength': MAX_REVISION_COMMENT_LENGTH}) def save(self, creator, document, based_on_id=None, base_rev=None, **kwargs): """Persist me, and return the saved Revision. Take several other necessary pieces of data that aren't from the form. """ # Throws a TypeError if somebody passes in a commit kwarg: new_rev = super(RevisionForm, self).save(commit=False, **kwargs) new_rev.document = document new_rev.creator = creator if based_on_id: new_rev.based_on_id = based_on_id # If the document doesn't allow the revision creator to edit the # keywords, keep the old value. if base_rev and not document.allows(creator, 'edit_keywords'): new_rev.keywords = base_rev.keywords new_rev.save() return new_rev class ReviewForm(forms.Form): comment = StrippedCharField(max_length=2000, widget=forms.Textarea(), required=False, label=_lazy(u'Comment:'), error_messages={'max_length': COMMENT_LONG}) _widget = forms.RadioSelect(renderer=RadioFieldRendererWithHelpText) significance = forms.TypedChoiceField( label=_lazy(u'Significance:'), choices=SIGNIFICANCES, initial=SIGNIFICANCES[1][0], required=False, widget=_widget, coerce=int, empty_value=SIGNIFICANCES[1][0]) is_ready_for_localization = forms.BooleanField( initial=False, label=_lazy(u'Ready for localization'), required=False) needs_change = forms.BooleanField( label=_lazy(u'Needs change'), initial=False, required=False) needs_change_comment = forms.CharField( label=_lazy(u'Comment:'), widget=forms.Textarea(), required=False) class AddContributorForm(forms.Form): """Form to add contributors to a document.""" users = MultiUsernameField( widget=forms.TextInput(attrs={'placeholder': _lazy(u'username'), 'class': 'user-autocomplete'})) languages = [('', 'Any')] + [(l[0], u'{1} ({0})'.format(*l)) for l in settings.LANGUAGE_CHOICES] class RevisionFilterForm(forms.Form): """Form to filter a list of revisions.""" locale = forms.ChoiceField(label=_lazy(u'Locale:'), choices=languages, required=False) users = MultiUsernameField(label=_lazy(u'Users:'), required=False) start = forms.DateField(label=_lazy(u'Start:'), required=False) end = forms.DateField(label=_lazy(u'End:'), required=False) ``` #### File: wiki/tests/__init__.py ```python from datetime import datetime from django.template.defaultfilters import slugify from kitsune.products.models import Product from kitsune.products.tests import product, topic from kitsune.sumo.tests import LocalizingClient, TestCase, with_save from kitsune.users.tests import user from kitsune.wiki.models import Document, Revision, HelpfulVote, Locale from kitsune.wiki.config import CATEGORIES, SIGNIFICANCES class TestCaseBase(TestCase): """Base TestCase for the wiki app test cases.""" client_class = LocalizingClient # Model makers. These make it clearer and more concise to create objects in # test cases. They allow the significant attribute values to stand out rather # than being hidden amongst the values needed merely to get the model to # validate. @with_save def document(**kwargs): """Return an empty document with enough stuff filled out that it can be saved.""" defaults = {'category': CATEGORIES[0][0], 'title': u'đ' + str(datetime.now())} defaults.update(kwargs) if 'slug' not in kwargs: defaults['slug'] = slugify(defaults['title']) return Document(**defaults) @with_save def revision(**kwargs): """Return an empty revision with enough stuff filled out that it can be saved. Revision's is_approved=False unless you specify otherwise. Requires a users fixture if no creator is provided. """ d = kwargs.pop('document', None) or document(save=True) defaults = {'summary': u'đSome summary', 'content': u'đSome content', 'significance': SIGNIFICANCES[0][0], 'comment': u'đSome comment', 'creator': kwargs.get('creator', user(save=True)), 'document': d} defaults.update(kwargs) return Revision(**defaults) @with_save def helpful_vote(**kwargs): r = kwargs.pop('revision', None) or revision(save=True) defaults = {'created': datetime.now(), 'helpful': False, 'revision': r} defaults.update(kwargs) return HelpfulVote(**defaults) @with_save def locale(**kwargs): defaults = {'locale': 'en-US'} defaults.update(kwargs) return Locale(**defaults) def translated_revision(locale='de', save=False, **kwargs): """Return a revision that is the translation of a default-language one.""" parent_rev = revision(is_approved=True, is_ready_for_localization=True, save=True) translation = document(parent=parent_rev.document, locale=locale, save=True) new_kwargs = {'document': translation, 'based_on': parent_rev} new_kwargs.update(kwargs) return revision(save=save, **new_kwargs) # I don't like this thing. revision() is more flexible. All this adds is # is_approved=True, but it doesn't even mention approval in its name. # TODO: Remove. def doc_rev(content=''): """Save a document and an approved revision with the given content.""" r = revision(content=content, is_approved=True) r.save() return r.document, r # End model makers. def new_document_data(topic_ids=None, product_ids=None): product_ids = product_ids or [product(save=True).id] p = Product.objects.get(id=product_ids[0]) topic_ids = topic_ids or [topic(product=p, save=True).id] return { 'title': 'A Test Article', 'slug': 'a-test-article', 'locale': 'en-US', 'topics': topic_ids, 'products': product_ids, 'category': CATEGORIES[0][0], 'keywords': 'key1, key2', 'summary': 'lipsum', 'content': 'lorem ipsum dolor sit amet', } ``` #### File: wiki/tests/test_parser.py ```python import re from django.conf import settings from nose.tools import eq_ from pyquery import PyQuery as pq import kitsune.sumo.tests.test_parser from kitsune.gallery.models import Video from kitsune.gallery.tests import image, video from kitsune.sumo.tests import TestCase from kitsune.wiki.models import Document from kitsune.wiki.parser import ( WikiParser, ForParser, PATTERNS, RECURSION_MESSAGE, _key_split, _build_template_params as _btp, _format_template_content as _ftc) from kitsune.wiki.tests import document, revision def doc_rev_parser(*args, **kwargs): return kitsune.sumo.tests.test_parser.doc_rev_parser( *args, parser_cls=WikiParser, **kwargs) def doc_parse_markup(content, markup, title='Template:test'): """Create a doc with given content and parse given markup.""" _, _, p = doc_rev_parser(content, title) doc = pq(p.parse(markup)) return (doc, p) class SimpleSyntaxTestCase(TestCase): """Simple syntax regexing, like {note}...{/note}, {key Ctrl+K}""" def test_note_simple(self): """Simple note syntax""" p = WikiParser() doc = pq(p.parse('{note}this is a note{/note}')) eq_('this is a note', doc('div.note').text()) def test_warning_simple(self): """Simple warning syntax""" p = WikiParser() doc = pq(p.parse('{warning}this is a warning{/warning}')) eq_('this is a warning', doc('div.warning').text()) def test_warning_multiline(self): """Multiline warning syntax""" p = WikiParser() doc = pq(p.parse('{warning}\nthis is a warning\n{/warning}')) eq_('this is a warning', doc('div.warning').text()) def test_warning_multiline_breaks(self): """Multiline breaks warning syntax""" p = WikiParser() doc = pq(p.parse('\n\n{warning}\n\nthis is a warning\n\n' '{/warning}\n\n')) eq_('this is a warning', doc('div.warning').text()) def test_general_warning_note(self): """A bunch of wiki text with {warning} and {note}""" p = WikiParser() doc = pq(p.parse('\n\n{warning}\n\nthis is a warning\n\n{note}' 'this is a note{warning}!{/warning}{/note}' "[[Installing Firefox]] '''internal''' ''link''" '{/warning}\n\n')) eq_('!', doc('div.warning div.warning').text()) eq_('this is a note !', doc('div.note').text()) eq_('Installing Firefox', doc('a').text()) eq_('internal', doc('strong').text()) eq_('link', doc('em').text()) def test_key_inline(self): """{key} stays inline""" p = WikiParser() doc = pq(p.parse('{key Cmd+Shift+Q}')) eq_(1, len(doc('p'))) eq_(u'<span class="key">Cmd</span> + <span class="key">Shift</span>' u' + <span class="key">Q</span>', doc.html().replace('\n', '')) def test_template_inline(self): """Inline templates are not wrapped in <p>s""" doc, p = doc_parse_markup('<span class="key">{{{1}}}</span>', '[[T:test|Cmd]] + [[T:test|Shift]]') eq_(1, len(doc('p'))) def test_template_multiline(self): """Multiline templates are wrapped in <p>s""" doc, p = doc_parse_markup('<span class="key">\n{{{1}}}</span>', '[[T:test|Cmd]]') eq_(3, len(doc('p'))) def test_key_split_callback(self): """The _key_split regex callback does what it claims""" key_p = PATTERNS[2][0] # Multiple keys, with spaces eq_('<span class="key">ctrl</span> + <span class="key">alt</span> + ' '<span class="key">del</span>', key_p.sub(_key_split, '{key ctrl + alt + del}')) # Single key with spaces in it eq_('<span class="key">a key</span>', key_p.sub(_key_split, '{key a key}')) # Multiple keys with quotes and spaces eq_('<span class="key">"Param-One" and</span> + <span class="key">' 'param</span> + <span class="key">two</span>', key_p.sub(_key_split, '{key "Param-One" and + param+two}')) eq_('<span class="key">multi\nline</span> + ' '<span class="key">me</span>', key_p.sub(_key_split, '{key multi\nline\n+me}')) def test_key_split_brace_callback(self): """Adding brace inside {key ...}""" key_p = PATTERNS[2][0] eq_('<span class="key">ctrl</span> + <span class="key">and</span> ' 'Here is }', key_p.sub(_key_split, '{key ctrl + and} Here is }')) eq_('<span class="key">ctrl</span> + <span class="key">and</span> + ' '<span class="key">{</span>', key_p.sub(_key_split, '{key ctrl + and + {}')) def test_simple_inline_custom(self): """Simple custom inline syntax: menu, button, filepath, pref""" p = WikiParser() tags = ['menu', 'button', 'filepath', 'pref'] for tag in tags: doc = pq(p.parse('{%s this is a %s}' % (tag, tag))) eq_('this is a ' + tag, doc('span.' + tag).text()) def test_general_warning_note_inline_custom(self): """A mix of custom inline syntax with warnings and notes""" p = WikiParser() doc = pq(p.parse('\n\n{warning}\n\nthis is a {button warning}\n{note}' 'this is a {menu note}{warning}!{/warning}{/note}' "'''{filepath internal}''' ''{menu hi!}''{/warning}")) eq_('warning', doc('div.warning span.button').text()) eq_('this is a note !', doc('div.note').text()) eq_('note', doc('div.warning div.note span.menu').text()) eq_('internal', doc('strong span.filepath').text()) eq_('hi!', doc('em span.menu').text()) def test_comments(self): """Markup containing taggy comments shouldn't truncate afterward.""" p = WikiParser() # This used to truncate after the comment when rendered: eq_(p.parse('Start <!-- <foo --> End'), '<p>Start End\n</p>') # Just make sure these don't go awry either: eq_(p.parse('Start <!-- <foo> --> End'), '<p>Start End\n</p>') eq_(p.parse('Start <!-- foo> --> End'), '<p>Start End\n</p>') def test_internal_links(self): """Make sure internal links work correctly when not to redirected articles and when to redirected articles""" p = WikiParser() # Create a new article rev = revision(is_approved=True, save=True) doc = rev.document doc.current_revision = rev doc.title = 'Real article' doc.save() # Change the slug of the article to create a redirected article old_slug = doc.slug doc.slug = 'real-article' doc.save() redirect = Document.objects.get(slug=old_slug) # Both internal links should link to the same article eq_(p.parse('[[%s]]' % doc.title), '<p><a href="/en-US/kb/%s">%s</a>\n</p>' % (doc.slug, doc.title)) eq_(p.parse('[[%s]]' % redirect.title), '<p><a href="/en-US/kb/%s">%s</a>\n</p>' % (doc.slug, doc.title)) class TestWikiTemplate(TestCase): def test_template(self): """Simple template markup.""" doc, _ = doc_parse_markup('Test content', '[[Template:test]]') eq_('Test content', doc.text()) def test_template_does_not_exist(self): """Return a message if template does not exist""" p = WikiParser() doc = pq(p.parse('[[Template:test]]')) eq_('The template "test" does not exist or has no approved revision.', doc.text()) def test_template_locale(self): """Localized template is returned.""" py_doc, p = doc_parse_markup('English content', '[[Template:test]]') parent = document() d = document(parent=parent, title='Template:test', locale='fr') d.save() r = revision(content='French content', document=d, is_approved=True) r.save() eq_('English content', py_doc.text()) py_doc = pq(p.parse('[[T:test]]', locale='fr')) eq_('French content', py_doc.text()) def test_template_not_exist(self): """If template does not exist in set locale or English.""" p = WikiParser() doc = pq(p.parse('[[T:test]]', locale='fr')) eq_('The template "test" does not exist or has no approved revision.', doc.text()) def test_template_locale_fallback(self): """If localized template does not exist, fall back to English.""" _, p = doc_parse_markup('English content', '[[Template:test]]') doc = pq(p.parse('[[T:test]]', locale='fr')) eq_('English content', doc.text()) def test_template_anonymous_params(self): """Template markup with anonymous parameters.""" doc, p = doc_parse_markup('{{{1}}}:{{{2}}}', '[[Template:test|one|two]]') eq_('one:two', doc.text()) doc = pq(p.parse('[[T:test|two|one]]')) eq_('two:one', doc.text()) def test_template_named_params(self): """Template markup with named parameters.""" doc, p = doc_parse_markup('{{{a}}}:{{{b}}}', '[[Template:test|a=one|b=two]]') eq_('one:two', doc.text()) doc = pq(p.parse('[[T:test|a=two|b=one]]')) eq_('two:one', doc.text()) def test_template_numbered_params(self): """Template markup with numbered parameters.""" doc, p = doc_parse_markup('{{{1}}}:{{{2}}}', '[[Template:test|2=one|1=two]]') eq_('two:one', doc.text()) doc = pq(p.parse('[[T:test|2=two|1=one]]')) eq_('one:two', doc.text()) def test_template_wiki_markup(self): """A template with wiki markup""" doc, _ = doc_parse_markup("{{{1}}}:{{{2}}}\n''wiki''\n'''markup'''", '[[Template:test|2=one|1=two]]') eq_('two:one', doc('p')[1].text.replace('\n', '')) eq_('wiki', doc('em')[0].text) eq_('markup', doc('strong')[0].text) def test_template_args_inline_wiki_markup(self): """Args that contain inline wiki markup are parsed""" doc, _ = doc_parse_markup('{{{1}}}\n\n{{{2}}}', "[[Template:test|'''one'''|''two'']]") eq_("<p/><p><strong>one</strong></p><p><em>two</em></p><p/>", doc.html().replace('\n', '')) def test_template_args_block_wiki_markup(self): """Args that contain block level wiki markup aren't parsed""" doc, _ = doc_parse_markup('{{{1}}}\n\n{{{2}}}', "[[Template:test|* ordered|# list]]") eq_("<p/><p>* ordered</p><p># list</p><p/>", doc.html().replace('\n', '')) def test_format_template_content_named(self): """_ftc handles named arguments""" eq_('ab', _ftc('{{{some}}}{{{content}}}', {'some': 'a', 'content': 'b'})) def test_format_template_content_numbered(self): """_ftc handles numbered arguments""" eq_('a:b', _ftc('{{{1}}}:{{{2}}}', {'1': 'a', '2': 'b'})) def test_build_template_params_anonymous(self): """_btp handles anonymous arguments""" eq_({'1': '<span>a</span>', '2': 'test'}, _btp(['<span>a</span>', 'test'])) def test_build_template_params_numbered(self): """_btp handles numbered arguments""" eq_({'20': 'a', '10': 'test'}, _btp(['20=a', '10=test'])) def test_build_template_params_named(self): """_btp handles only named-arguments""" eq_({'a': 'b', 'hi': 'test'}, _btp(['hi=test', 'a=b'])) def test_build_template_params_named_anonymous(self): """_btp handles mixed named and anonymous arguments""" eq_({'1': 'a', 'hi': 'test'}, _btp(['hi=test', 'a'])) def test_build_template_params_named_numbered(self): """_btp handles mixed named and numbered arguments""" eq_({'10': 'a', 'hi': 'test'}, _btp(['hi=test', '10=a'])) def test_build_template_params_named_anonymous_numbered(self): """_btp handles mixed named, anonymous and numbered arguments""" eq_({'1': 'a', 'hi': 'test', '3': 'z'}, _btp(['hi=test', 'a', '3=z'])) def test_unapproved_template(self): document(title='Template:new').save() p = WikiParser() doc = pq(p.parse('[[T:new]]')) eq_('The template "new" does not exist or has no approved revision.', doc.text()) def test_for_in_template(self): """Verify that {for}'s render correctly in template.""" d = document(title='Template:for') d.save() r = revision(document=d, content='{for win}windows{/for}{for mac}mac{/for}') r.is_approved = True r.save() p = WikiParser() content = p.parse('[[Template:for]]') eq_('<p><span class="for" data-for="win">windows</span>' '<span class="for" data-for="mac">mac</span>\n\n</p>', content) def test_button_for_nesting(self): """You can nest {for}s inside {button}.""" text = '{button start {for mac}mac{/for}{for win}win{/for} rest}' p = WikiParser() content = p.parse(text) eq_(u'<p><span class="button">start ' u'<span class="for" data-for="mac">mac</span>' u'<span class="for" data-for="win">win</span> ' u'rest</span>\n</p>', content) def test_button_image_for_nesting(self): """You can nest [[Image:]] inside {for} inside {button}.""" image(title='image-file.png') text = '{button {for mac}[[Image:image-file.png]]{/for} text}' p = WikiParser() doc = pq(p.parse(text)) assert 'frameless' in doc('img').attr('class') eq_(0, doc('div.caption').length) eq_(0, doc('div.img').length) def test_direct_recursion(self): """Make sure direct recursion is caught on the very first nesting.""" d = document(title='Template:Boo') d.save() # Twice so the second revision sees content identical to itself: for i in range(2): revision(document=d, content='Fine [[Template:Boo]] Fellows', is_approved=True).save() eq_('<p>Fine %s Fellows\n</p>' % (RECURSION_MESSAGE % 'Template:Boo'), d.content_parsed) def test_indirect_recursion(self): """Make sure indirect recursion is caught.""" boo = document(title='Template:Boo') boo.save() yah = document(title='Template:Yah') yah.save() revision(document=boo, content='Paper [[Template:Yah]] Cups', is_approved=True).save() revision(document=yah, content='Wooden [[Template:Boo]] Bats', is_approved=True).save() recursion_message = RECURSION_MESSAGE % 'Template:Boo' eq_('<p>Paper Wooden %s Bats\n Cups\n</p>' % recursion_message, boo.content_parsed) class TestWikiInclude(TestCase): def test_revision_include(self): """Simple include markup.""" _, _, p = doc_rev_parser('Test content', 'Test title') # Existing title returns document's content doc = pq(p.parse('[[I:Test title]]')) eq_('Test content', doc.text()) # Nonexisting title returns 'Document not found' doc = pq(p.parse('[[Include:Another title]]')) eq_('The document "Another title" does not exist.', doc.text()) def test_revision_include_locale(self): """Include finds document in the correct locale.""" _, _, p = doc_rev_parser('English content', 'Test title') # Parsing in English should find the French article doc = pq(p.parse('[[Include:Test title]]', locale='en-US')) eq_('English content', doc.text()) # The French article will include the English content as fallback. doc = pq(p.parse('[[I:Test title]]', locale='fr')) eq_('English content', doc.text()) # Create the French article, and test again parent_rev = revision() d = document(parent=parent_rev.document, title='Test title', locale='fr') d.save() r = revision(document=d, content='French content', is_approved=True) r.save() # Parsing in French should find the French article doc = pq(p.parse('[[Include:Test title]]', locale='fr')) eq_('French content', doc.text()) def test_direct_recursion(self): """Make sure direct recursion is caught on the very first nesting.""" d = document(title='Boo') d.save() # Twice so the second revision sees content identical to itself: for i in range(2): revision(document=d, content='Fine [[Include:Boo]] Fellows', is_approved=True).save() eq_('<p>Fine %s Fellows\n</p>' % (RECURSION_MESSAGE % 'Boo'), d.content_parsed) def test_indirect_recursion(self): """Make sure indirect recursion is caught.""" boo = document(title='Boo') boo.save() yah = document(title='Yah') yah.save() revision(document=boo, content='Paper [[Include:Yah]] Cups', is_approved=True).save() revision(document=yah, content='Wooden [[Include:Boo]] Bats', is_approved=True).save() recursion_message = RECURSION_MESSAGE % 'Boo' # boo.content_parsed is something like <p>Paper </p><p>Wooden # [Recursive inclusion of "Boo"] Bats\n</p> Cups\n<p></p>. eq_('Paper Wooden %s Bats Cups' % recursion_message, re.sub(r'</?p>|\n', '', boo.content_parsed)) class TestWikiVideo(TestCase): """Video hook.""" def tearDown(self): Video.objects.all().delete() super(TestWikiVideo, self).tearDown() def test_video_english(self): """Video is created and found in English.""" v = video() d, _, p = doc_rev_parser('[[V:Some title]]') doc = pq(d.html) eq_('video', doc('div.video').attr('class')) # This test and the code it tests hasn't changed in # months. However, this test started failing for Mike and I # early July 2013. We think we picked up libxml2 2.9.1 and # that causes the output to be different. I contend that the # output and expected output are both "wrong" in that they're # invalid html5 and the output I'm getting isn't really any # worse. Ergo, I have changed the test to accept either output # because I got stuff to do. Having said that, this is kind of # ridiculous and should be fixed. See bug #892610. assert doc('video').html() in [ # This was the original expected test output. (u'<source src="{0}" ' u'type="video/webm"><source src="{1}" type="video/ogg"/>' u'</source>'.format(v.webm.url, v.ogv.url)), # This is the version that Mike and I get. (u'\n <source src="{0}" type="video/webm">' u'\n <source src="{1}" type="video/ogg">' u'\n </source></source>'.format(v.webm.url, v.ogv.url))] eq_(1, len(doc('video'))) eq_(2, len(doc('source'))) data_fallback = doc('video').attr('data-fallback') eq_(v.flv.url, data_fallback) def test_video_fallback_french(self): """English video is found in French.""" p = WikiParser() self.test_video_english() doc = pq(p.parse('[[V:Some title]]', locale='fr')) eq_('video', doc('div.video').attr('class')) eq_(1, len(doc('video'))) eq_(2, len(doc('source'))) data_fallback = doc('video').attr('data-fallback') eq_(Video.objects.all()[0].flv.url, data_fallback) def test_video_not_exist(self): """Video does not exist.""" p = WikiParser() doc = pq(p.parse('[[V:Some title]]', locale='fr')) eq_('The video "Some title" does not exist.', doc.text()) def test_video_modal(self): """Video modal defaults for plcaeholder and text.""" v = video() replacement = ('<img class="video-thumbnail" src="%s"/>' % v.thumbnail_url_if_set()) d, _, p = doc_rev_parser( '[[V:Some title|modal]]') doc = pq(d.html) eq_('Some title', doc('.video-modal')[0].attrib['title']) eq_(1, doc('.video video').length) eq_(replacement, doc('.video-placeholder').html().strip()) eq_('video modal-trigger', doc('div.video').attr('class')) def test_video_modal_caption_text(self): """Video modal can change title and placeholder text.""" video() d, _, p = doc_rev_parser( '[[V:Some title|modal|placeholder=Place<b>holder</b>|title=WOOT]]') doc = pq(d.html) eq_('WOOT', doc('.video-modal')[0].attrib['title']) eq_('Place<b>holder</b>', doc('.video-placeholder').html().strip()) def test_video_cdn(self): """Video URLs can link to the CDN if a CDN setting is set.""" video() cdn_url = 'http://videos.mozilla.org/serv/sumo/' self.old_settings = settings.GALLERY_VIDEO_URL settings.GALLERY_VIDEO_URL = cdn_url d, _, p = doc_rev_parser('[[V:Some title]]') settings.GALLERY_VIDEO_URL = self.old_settings doc = pq(d.html) assert cdn_url in doc('video').attr('data-fallback') assert cdn_url in doc('source').eq(0).attr('src') assert cdn_url in doc('source').eq(1).attr('src') def test_youtube_video(self): """Verify youtube embeds.""" urls = ['http://www.youtube.com/watch?v=oHg5SJYRHA0', 'https://youtube.com/watch?v=oHg5SJYRHA0' 'http://youtu.be/oHg5SJYRHA0' 'https://youtu.be/oHg5SJYRHA0'] parser = WikiParser() for url in urls: doc = pq(parser.parse('[[V:%s]]' % url)) assert doc('iframe')[0].attrib['src'].startswith( '//www.youtube.com/embed/oHg5SJYRHA0') def parsed_eq(want, to_parse): p = WikiParser() eq_(want, p.parse(to_parse).strip().replace('\n', '')) class ForWikiTests(TestCase): """Tests for the wiki implementation of the {for} directive, which arranges for certain parts of the page to show only when viewed on certain OSes or browser versions""" def test_block(self): """A {for} set off by itself or wrapping a block-level element should be a paragraph or other kind of block-level thing.""" parsed_eq('<p>Joe</p><p><span class="for">Red</span></p>' '<p>Blow</p>', 'Joe\n\n{for}Red{/for}\n\nBlow') parsed_eq('<p>Joe</p><div class="for"><ul><li> Red</li></ul></div>' '<p>Blow</p>', 'Joe\n\n{for}\n* Red\n{/for}\n\nBlow') def test_inline(self): """A for not meeting the conditions in test_block should be inline. """ parsed_eq('<p>Joe</p>' '<p>Red <span class="for">riding</span> hood</p>' '<p>Blow</p>', 'Joe\n\nRed {for}riding{/for} hood\n\nBlow') def test_nested(self): """{for} tags should be nestable.""" parsed_eq('<div class="for" data-for="mac">' '<p>Joe</p>' '<p>Red <span class="for"><span class="for">riding' '</span> hood</span></p>' '<p>Blow</p>' '</div>', '{for mac}\n' 'Joe\n' '\n' 'Red {for}{for}riding\n' '{/for} hood{/for}\n' '\n' 'Blow\n' '{/for}') def test_data_attrs(self): """Make sure the correct attributes are set on the for element.""" parsed_eq('<p><span class="for" data-for="mac,linux,3.6">' 'One</span></p>', '{for mac,linux,3.6}One{/for}') def test_early_close(self): """Make sure the parser closes the for tag at the right place when its closer is early.""" parsed_eq('<div class="for"><p>One</p>' '<ul><li>Fish</li></ul></div>', '{for}\nOne\n\n*Fish{/for}') def test_late_close(self): """If the closing for tag is not closed by the time the enclosing element of the opening for tag is closed, close the for tag just before the enclosing element.""" parsed_eq( '<ul><li><span class="for">One</span></li>' '<li>Fish</li></ul><p>Two</p>', '*{for}One\n*Fish\n\nTwo\n{/for}') def test_missing_close(self): """If the closing for tag is missing, close the for tag just before the enclosing element.""" parsed_eq( '<p><span class="for">One fish</span></p><p>Two fish</p>', '{for}One fish\n\nTwo fish') def test_unicode(self): """Make sure non-ASCII chars survive being wrapped in a for.""" french = u'Vous parl\u00e9 Fran\u00e7ais' parsed_eq('<p><span class="for">' + french + '</span></p>', '{for}' + french + '{/for}') def test_boolean_attr(self): """Make sure empty attributes don't raise exceptions.""" parsed_eq('<p><video controls height="120">' ' <source src="/some/path/file.ogv" type="video/ogv">' '</video></p>', '<p><video controls="" height="120">' ' <source src="/some/path/file.ogv" type="video/ogv">' '</video></p>') def test_adjacent_blocks(self): """Make sure one block-level {for} doesn't absorb an adjacent one.""" p = WikiParser() html = p.parse('{for fx4}\n' '{for mac}Fx4{/for}\n' '{/for}\n' '{for fx3}\n' '{for mac}Fx3{/for}\n' '{/for}') # The two div.fors should be siblings, not nested: eq_([], pq(html)('div.for div.for')) def test_leading_newlines(self): """Make sure leading newlines don't cause a block-level {for} to be sucked into the leading blank paragraph, causing the actual text to always be shown.""" doc = pq(WikiParser().parse('\n\n{for linux}\nunixify\n{/for}')) eq_('unixify', doc('.for').text().strip()) def test_big_swath(self): """Enclose a big section containing many tags.""" parsed_eq('<div class="for"><h1 id="w_h1">H1</h1>' '<h2 id="w_h2">H2</h2><p>Llamas are fun:</p>' '<ul><li>Jumping</li><li>Rolling</li><li>Grazing</li></ul>' '<p>They have high melting points.</p></div>', '{for}\n' '=H1=\n' '==H2==\n' 'Llamas are fun:\n' '\n' '*Jumping\n' '*Rolling\n' '*Grazing\n' '\n' 'They have high melting points.\n' '{/for}') def test_block_level_section(self): """Make sure we recognize <section> as a block element.""" p = WikiParser() html = p.parse('{for}<section>hi</section>{/for}') assert '<div' in html, "Didn't detect <section> tag as block level" def balanced_eq(want, to_balance): """Run `to_balance` through the expander to get its tags balanced, and assert the result is `want`.""" expander = ForParser(to_balance) eq_(want, expander.to_unicode()) def expanded_eq(want, to_expand): """Balance and expand the fors in `to_expand`, and assert equality with `want`.""" expander = ForParser(to_expand) expander.expand_fors() eq_(want, expander.to_unicode()) def strip_eq(want, text): eq_(want, ForParser.strip_fors(text)[0]) class ForParserTests(TestCase): """Tests for the ForParser These are unit tests for ForParser, and ForWikiTests are (as a bonus) integration tests for it. """ def test_well_formed(self): """Make sure the expander works on well-formed fragments.""" html = '<ul><li type="1"><br><for>One</for></li></ul>' balanced_eq(html, html) def test_document_mode(self): """Make sure text chunks interspersed with tags are parsed right.""" html = '<p>Hello<br>there, <br>you.</p>' balanced_eq(html, html) def test_early_close(self): """Make sure the parser closes the for tag at the right place when its closer is early.""" balanced_eq('<div><for><p>One</p></for></div>', '<div><for><p>One</for></for></p></div>') def test_late_close(self): """If the closing for tag is not closed by the time the enclosing element of the opening for tag is closed, close the for tag just before the enclosing element.""" balanced_eq( '<ul><li><for><for>One</for></for></li></ul>', '<ul><li><for><for>One</li></ul></for>') def test_close_absent_at_end(self): """Make sure the parser closes for tags left open at the EOF. This mattered more when we weren't building a parse tree. """ balanced_eq('<for><p>One</p></for>', '<for><p>One</for></for></p>') def test_unicode(self): """Make sure this all works with non-ASCII chars.""" html = u'<for>Vous parl\u00e9 Fran\u00e7ais</for>' balanced_eq(html, html) def test_div(self): """Make sure we use divs for fors containing block elements.""" expanded_eq('<div class="for"><p>One</p></div>', '<for><p>One</p></for>') def test_span(self): """Make sure we use spans for fors containing no block elements.""" expanded_eq('<span class="for"><em>One</em></span>', '<for><em>One</em></for>') def test_data_attrs(self): """Make sure the data- attributes look good.""" expanded_eq('<span class="for" data-for="mac,linux">One</span>', '<for data-for="mac,linux">One</for>') def test_on_own_line(self): def on_own_line_eq(want, text): """Assert that on_own_line operates as expected on the first match in `text`.""" match = ForParser._FOR_OR_CLOSER.search(text) eq_(want, ForParser._on_own_line(match, match.groups(3))) on_own_line_eq((True, True, True), '{for}') on_own_line_eq((True, True, True), '{for} ') on_own_line_eq((False, False, True), ' {for}') on_own_line_eq((True, False, True), 'q\n{for}') on_own_line_eq((False, True, False), '{for}q') on_own_line_eq((True, False, False), '\n{for} \nq') def test_strip(self): strip_eq('\x070\x07inline\x07/sf\x07', '{for}inline{/for}') strip_eq('\x070\x07\n\nblock\n\n\x07/sf\x07', '{for}\nblock\n{/for}') strip_eq('\x070\x07inline\n\n\x07/sf\x07', '{for}inline\n{/for}') strip_eq('\x070\x07\n\nblock\x07/sf\x07', '{for}\nblock{/for}') def test_whitespace_lookbehind(self): """Assert strip_fors is aware of newlines preceding the current match. This used to fail because both the postspace for the first closer and the prespace for the 2nd got 1 \n added, resulting in 3, which is 1 too many. Now we use the preceding_whitespace function to look behind and take preceding newlines into account. """ strip_eq('\x070\x07\n\n\x071\x07inline\x07/sf\x07\n\n\x07/sf\x07', '{for}\n{for}inline{/for}\n{/for}') def test_matches_see_replacements(self): """Make sure each whitespace lookbehind takes into account the effect of previous replacements' whitespace additions. When this bug existed, strip_fors would add a \n for postspace to the 2nd {/for}, but then the preceding_whitespace call for the next {for} wouldn't see what was added, since it was still looking in the original string, without the replacements applied. """ strip_eq('\x070\x07\n\n\x071\x07Fx4\x07/sf\x07\n\n\x07/sf\x07\n\n' '\x072\x07\n\n\x073\x07Fx3\x07/sf\x07\n\n\x07/sf\x07', '{for fx4}\n' '{for mac}Fx4{/for}\n' '{/for}\n' '{for fx3}\n' '{for mac}Fx3{/for}\n' '{/for}') def test_self_closers(self): """Make sure self-closing tags aren't balanced as paired ones.""" balanced_eq('<img src="smoo"><span>g</span>', '<img src="smoo"><span>g</span>') balanced_eq('<img src="smoo"><span>g</span>', '<img src="smoo"/><span>g</span>') def test_leading_text_nodes(self): """Make sure the parser handles a leading naked run of text. Test inner runs of text while we're at it. """ html = 'A<i>hi</i>B<i>there</i>C' p = ForParser(html) eq_(html, p.to_unicode()) class WhatLinksHereTests(TestCase): def test_links(self): d1, _, _ = doc_rev_parser('', title='D1') d2, _, _ = doc_rev_parser('[[D1]]', title='D2') d3, _, _ = doc_rev_parser('[[D1]] [[D2]]', title='D3') eq_(len(d1.links_to()), 2) eq_(len(d1.links_from()), 0) eq_(len(d2.links_to()), 1) eq_(len(d2.links_from()), 1) eq_(len(d3.links_to()), 0) eq_(len(d3.links_from()), 2) eq_([d.linked_from.title for d in d1.links_to()], ['D2', 'D3']) eq_([d.kind for d in d1.links_to()], ['link', 'link']) eq_([d.linked_from.title for d in d2.links_to()], ['D3']) def test_templates(self): d1, _, _ = doc_rev_parser('Oh hai', title='Template:D1') d2, _, _ = doc_rev_parser('[[Template:D1]]', title='D2') eq_(len(d1.links_to()), 1) eq_(len(d1.links_from()), 0) eq_(len(d2.links_to()), 0) eq_(len(d2.links_from()), 1) eq_(d1.links_to()[0].kind, 'template') def test_includes(self): d1, _, _ = doc_rev_parser('Oh hai', title='D1') d2, _, _ = doc_rev_parser('[[Include:D1]]', title='D2') eq_(len(d1.links_to()), 1) eq_(len(d1.links_from()), 0) eq_(len(d2.links_to()), 0) eq_(len(d2.links_from()), 1) eq_(d1.links_to()[0].kind, 'include') def test_duplicates(self): """Document.links_to and Document.links_from should only count documents that link, not every instance of a link on a page. Make sure that things work that way.""" d1, _, _ = doc_rev_parser('', title='D1') d2, _, _ = doc_rev_parser('[[D1]] [[D1]] [[D1]]', title='D2') eq_(len(d1.links_to()), 1) eq_(len(d1.links_from()), 0) eq_(len(d2.links_to()), 0) eq_(len(d2.links_from()), 1) eq_(d1.links_to()[0].kind, 'link') def test_locales_exists(self): """Links should use the correct locale.""" d1 = document(title='Foo', locale='en-US', save=True) revision(document=d1, content='', is_approved=True, save=True) d2 = document(title='Foo', locale='de', save=True) revision(document=d2, content='', is_approved=True, save=True) d3 = document(title='Bar', locale='de', save=True) revision(document=d3, content='[[Foo]]', is_approved=True, save=True) eq_(len(d1.links_to()), 0) eq_(len(d1.links_from()), 0) eq_(len(d2.links_to()), 1) eq_(len(d2.links_from()), 0) eq_(len(d3.links_to()), 0) eq_(len(d3.links_from()), 1) eq_(d2.links_to()[0].kind, 'link') def test_locales_renames(self): """Links should use the correct locale, even if the title has been translated.""" d1 = document(title='Foo', locale='en-US', save=True) revision(document=d1, content='', is_approved=True, save=True) d2 = document(title='German Foo', locale='de', parent=d1, save=True) revision(document=d2, content='', is_approved=True, save=True) d3 = document(title='German Bar', locale='de', save=True) revision(document=d3, content='[[Foo]]', is_approved=True, save=True) eq_(len(d1.links_to()), 0) eq_(len(d1.links_from()), 0) eq_(len(d2.links_to()), 1) eq_(len(d2.links_from()), 0) eq_(len(d3.links_to()), 0) eq_(len(d3.links_from()), 1) eq_(d2.links_to()[0].kind, 'link') def test_unicode(self): """Unicode is hard. Test that.""" # \u03C0 is pi and \u2764 is a heart symbol. d1 = document(title=u'\u03C0', slug='pi', save=True) revision(document=d1, content=u'I \u2764 \u03C0', is_approved=True, save=True) d2 = document(title=u'\u2764', slug='heart', save=True) revision(document=d2, content=u'What do you think about [[\u03C0]]?', is_approved=True, save=True) eq_(len(d1.links_to()), 1) eq_(len(d1.links_from()), 0) eq_(len(d2.links_to()), 0) eq_(len(d2.links_from()), 1) eq_(d1.links_to()[0].kind, 'link') def test_old_revisions(self): """Bug 862436. Updating old revisions could cause bad WLH data.""" d1 = document(title='D1', save=True) revision(document=d1, content='', is_approved=True, save=True) d2 = document(title='D2', save=True) revision(document=d2, content='', is_approved=True, save=True) # Make D3, then make a revision that links to D1, then a # revision that links to D2. Only the link to D2 should count. d3 = document(title='D3', save=True) r3_old = revision(document=d3, content='[[D1]]', is_approved=True, save=True) revision(document=d3, content='[[D2]]', is_approved=True, save=True) # This could cause stale data r3_old.content_parsed # D1 is not linked to in any current revisions. eq_(len(d1.links_to()), 0) eq_(len(d1.links_from()), 0) eq_(len(d2.links_to()), 1) eq_(len(d2.links_from()), 0) eq_(len(d3.links_to()), 0) eq_(len(d3.links_from()), 1) def test_images(self): img = image(title='image-file.png') d1, _, _ = doc_rev_parser('[[Image:image-file.png]]', title='D1') eq_(len(d1.images), 1) eq_(d1.images[0], img) eq_(len(img.documents), 1) eq_(img.documents[0], d1) class TestLazyWikiImageTags(TestCase): def setUp(self): self.d, self.r, self.p = doc_rev_parser( 'Test content', 'Installing Firefox') self.img = image(title='test.jpg') def tearDown(self): self.img.delete() def test_simple(self): """Simple image tag markup.""" doc = pq(self.p.parse('[[Image:test.jpg]]', locale=settings.WIKI_DEFAULT_LANGUAGE)) img = doc('img') eq_('test.jpg', img.attr('alt')) eq_(self.img.file.url, img.attr('data-original-src')) assert 'placeholder.gif' in img.attr('src') ```
{ "source": "joshua-software-dev/FF14AnglerParser", "score": 3 }
#### File: ff14angler/database/alchemyMapping.py ```python import uuid from sqlalchemy import ( BigInteger, Binary, Boolean, Column, DECIMAL, DateTime, ForeignKey, Index, Integer, SmallInteger, String, Text, types ) from sqlalchemy.orm import relationship from sqlalchemy.ext.declarative import declarative_base Base = declarative_base() # noinspection PyAbstractClass class UUID(types.TypeDecorator): impl = Binary def __init__(self): self.impl.length = 16 types.TypeDecorator.__init__(self, length=self.impl.length) def process_bind_param(self, value, dialect=None): if value and isinstance(value, uuid.UUID): return value.bytes elif value and not isinstance(value, uuid.UUID): raise ValueError(f'value {value} is not a valid uuid.UUID') else: return None def process_result_value(self, value, dialect=None): if value: return str(uuid.UUID(bytes=value)) else: return None @staticmethod def is_mutable(): return False # noinspection SpellCheckingInspection class Bait(Base): __tablename__ = 'bait' bait_angler_bait_id = Column(BigInteger, primary_key=True) bait_xivapi_item_id = Column(BigInteger, nullable=False, index=True) bait_angler_name = Column(String(4096), nullable=False) bait_item_name_de = Column(String(4096), nullable=False) bait_item_name_en = Column(String(4096), nullable=False) bait_item_name_fr = Column(String(4096), nullable=False) bait_item_name_ja = Column(String(4096), nullable=False) bait_icon_url = Column(String(2083), nullable=False) bait_large_icon_url = Column(String(2083)) bait_lodestone_url = Column(String(2083)) bait_item_level = Column(SmallInteger, nullable=False) bait_item_description_de = Column(Text, nullable=False) bait_item_description_en = Column(Text, nullable=False) bait_item_description_fr = Column(Text, nullable=False) bait_item_description_ja = Column(Text, nullable=False) bait_gil_cost = Column(Integer) bait_gil_sell_price = Column(Integer) bait_is_mooch_fish = Column(Boolean, nullable=False) comment = relationship('Comment', secondary='bait_comment') spot_angler_spots = relationship('Spot', secondary='spot_effective_bait') # noinspection SpellCheckingInspection class Fish(Base): __tablename__ = 'fish' fish_angler_fish_id = Column(BigInteger, primary_key=True) fish_xivapi_item_id = Column(BigInteger, nullable=False, index=True) fish_angler_name = Column(String(4096), nullable=False) fish_item_name_de = Column(String(4096), nullable=False) fish_item_name_en = Column(String(4096), nullable=False) fish_item_name_fr = Column(String(4096), nullable=False) fish_item_name_ja = Column(String(4096), nullable=False) fish_icon_url = Column(String(2083), nullable=False) fish_large_icon_url = Column(String(2083)) fish_lodestone_url = Column(String(2083)) fish_item_level = Column(SmallInteger, nullable=False) fish_item_description_de = Column(Text, nullable=False) fish_item_description_en = Column(Text, nullable=False) fish_item_description_fr = Column(Text, nullable=False) fish_item_description_ja = Column(Text, nullable=False) fish_fishing_log_description_de = Column(Text) fish_fishing_log_description_en = Column(Text) fish_fishing_log_description_fr = Column(Text) fish_fishing_log_description_ja = Column(Text) fish_introduced_patch = Column(String(8), nullable=False) fish_angler_territory = Column(String(128)) fish_angler_item_category = Column(String(128), nullable=False) fish_angler_double_hooking_count = Column(String(8), nullable=False) fish_angler_aquarium_size = Column(String(8)) fish_angler_canvas_size = Column(String(8)) spot_angler_spots = relationship('Spot', secondary='spot_available_fish') # noinspection SpellCheckingInspection class Spot(Base): __tablename__ = 'spot' __table_args__ = ( Index('spot_spot_gathering_type', 'spot_gathering_type', 'spot_gathering_type_unique_id'), ) spot_angler_spot_id = Column(BigInteger, primary_key=True) spot_gathering_type = Column(Text, nullable=False) spot_gathering_type_unique_id = Column(BigInteger, nullable=False) spot_angler_area_id = Column(BigInteger, nullable=False) spot_angler_place_name = Column(String(4096), nullable=False) spot_place_name_de = Column(String(4096), nullable=False) spot_place_name_en = Column(String(4096), nullable=False) spot_place_name_fr = Column(String(4096), nullable=False) spot_place_name_ja = Column(String(4096), nullable=False) spot_angler_zone_name = Column(String(4096), nullable=False) spot_zone_name_de = Column(String(4096), nullable=False) spot_zone_name_en = Column(String(4096), nullable=False) spot_zone_name_fr = Column(String(4096), nullable=False) spot_zone_name_ja = Column(String(4096), nullable=False) spot_is_teeming_waters = Column(Boolean, nullable=False) spot_gathering_level = Column(SmallInteger, nullable=False) spot_angler_x_coord = Column(SmallInteger, nullable=False) spot_angler_y_coord = Column(SmallInteger, nullable=False) spot_angler_fishers_intuition_comment = Column(String(512)) # noinspection SpellCheckingInspection,SpellCheckingInspection class Comment(Base): __tablename__ = 'comment' comment_uuid = Column(UUID(), primary_key=True) comment_fetch_timestamp = Column(DateTime, nullable=False) comment_timestamp = Column(DateTime, nullable=False) comment_author = Column(String(256), nullable=False) comment_html = Column(Text, nullable=False) comment_text_original = Column(Text, nullable=False) comment_text_translated = Column(Text, nullable=False) fish_angler_fishs = relationship('Fish', secondary='fish_comment') spot_angler_spots = relationship('Spot', secondary='spot_comment') # noinspection SpellCheckingInspection class BaitComment(Comment): __tablename__ = 'bait_comment' bait_angler_bait_id = Column(ForeignKey('bait.bait_angler_bait_id'), primary_key=True, nullable=False, index=True) comment_uuid = Column(ForeignKey('comment.comment_uuid'), primary_key=True, nullable=False) # noinspection SpellCheckingInspection class FishComment(Comment): __tablename__ = 'fish_comment' fish_angler_fish_id = Column(ForeignKey('fish.fish_angler_fish_id'), primary_key=True, nullable=False, index=True) comment_uuid = Column(ForeignKey('comment.comment_uuid'), primary_key=True, nullable=False) # noinspection SpellCheckingInspection class SpotComment(Comment): __tablename__ = 'spot_comment' spot_angler_spot_id = Column(ForeignKey('spot.spot_angler_spot_id'), primary_key=True, nullable=False, index=True) comment_uuid = Column(ForeignKey('comment.comment_uuid'), primary_key=True, nullable=False) # noinspection SpellCheckingInspection class BaitAltCurrencyPrice(Base): __tablename__ = 'bait_alt_currency_price' bait_angler_bait_id = Column(ForeignKey('bait.bait_angler_bait_id'), primary_key=True, nullable=False, index=True) bait_alt_currency_id = Column(BigInteger, primary_key=True, nullable=False) bait_alt_currency_cost = Column(Integer, primary_key=True, nullable=False) bait_alt_currency_name = Column(String(4096), nullable=False) bait_angler_bait = relationship('Bait') # noinspection SpellCheckingInspection class FishBaitPreference(Base): __tablename__ = 'fish_bait_preference' fish_angler_fish_id = Column(BigInteger, primary_key=True, nullable=False, index=True) bait_angler_bait_id = Column(BigInteger, primary_key=True, nullable=False, index=True) bait_percentage = Column(String(8), nullable=False) # noinspection SpellCheckingInspection class FishCaughtCount(Base): __tablename__ = 'fish_caught_count' fish_angler_fish_id = Column(ForeignKey('fish.fish_angler_fish_id'), primary_key=True) fish_caught_all_hours_count = Column(BigInteger, nullable=False) fish_caught_all_weathers_count = Column(BigInteger) # noinspection SpellCheckingInspection class FishCaughtPerHour(Base): __tablename__ = 'fish_caught_per_hour' fish_angler_fish_id = Column(ForeignKey('fish.fish_angler_fish_id'), primary_key=True, nullable=False) hour_num = Column(Integer, primary_key=True, nullable=False) hour_fish_caught_count = Column(BigInteger, nullable=False) fish_angler_fish = relationship('Fish') # noinspection SpellCheckingInspection class FishCaughtPerWeather(Base): __tablename__ = 'fish_caught_per_weather' fish_angler_fish_id = Column(ForeignKey('fish.fish_angler_fish_id'), primary_key=True, nullable=False) weather_name = Column(String(128), primary_key=True, nullable=False) weather_fish_caught_count = Column(BigInteger, nullable=False) fish_angler_fish = relationship('Fish') # noinspection SpellCheckingInspection class FishDesynthesisItem(Base): __tablename__ = 'fish_desynthesis_item' fish_angler_fish_id = Column(ForeignKey('fish.fish_angler_fish_id'), primary_key=True, nullable=False) desynthesis_item_id = Column(BigInteger, primary_key=True, nullable=False) desynthesis_item_name_de = Column(String(4096), nullable=False) desynthesis_item_name_en = Column(String(4096), nullable=False) desynthesis_item_name_fr = Column(String(4096), nullable=False) desynthesis_item_name_ja = Column(String(4096), nullable=False) desynthesis_icon_url = Column(String(2083), nullable=False) desynthesis_large_icon_url = Column(String(2083)) desynthesis_angler_item_name = Column(String(4096), nullable=False) desynthesis_angler_lodestone_url = Column(String(2083)) desynthesis_angler_percentage = Column(String(8), nullable=False) fish_angler_fish = relationship('Fish') # noinspection SpellCheckingInspection class FishInvolvedLeve(Base): __tablename__ = 'fish_involved_leve' fish_angler_fish_id = Column(ForeignKey('fish.fish_angler_fish_id'), primary_key=True, nullable=False, index=True) leve_id = Column(BigInteger, primary_key=True, nullable=False) leve_name_de = Column(String(4096), nullable=False) leve_name_en = Column(String(4096), nullable=False) leve_name_fr = Column(String(4096), nullable=False) leve_name_ja = Column(String(4096), nullable=False) leve_angler_name = Column(String(4096), nullable=False) leve_angler_name_jp = Column(String(4096), nullable=False) leve_level = Column(SmallInteger, nullable=False) leve_angler_turn_in_count = Column(SmallInteger, nullable=False) fish_angler_fish = relationship('Fish') # noinspection SpellCheckingInspection class FishInvolvedRecipe(Base): __tablename__ = 'fish_involved_recipe' fish_angler_fish_id = Column(ForeignKey('fish.fish_angler_fish_id'), primary_key=True, nullable=False, index=True) recipe_item_id = Column(BigInteger, primary_key=True, nullable=False) recipe_item_name_de = Column(String(4096), nullable=False) recipe_item_name_en = Column(String(4096), nullable=False) recipe_item_name_fr = Column(String(4096), nullable=False) recipe_item_name_ja = Column(String(4096), nullable=False) recipe_angler_name = Column(String(4096), nullable=False) recipe_icon_url = Column(String(2083), nullable=False) recipe_large_icon_url = Column(String(2083)) recipe_angler_lodestone_url = Column(String(2083)) recipe_angler_crafting_class = Column(Text, nullable=False) fish_angler_fish = relationship('Fish') # noinspection SpellCheckingInspection class FishTugStrength(Base): __tablename__ = 'fish_tug_strength' fish_angler_fish_id = Column(ForeignKey('fish.fish_angler_fish_id'), primary_key=True, nullable=False, index=True) tug_strength = Column(Integer, primary_key=True, nullable=False) tug_strength_percent = Column(DECIMAL, nullable=False) fish_angler_fish = relationship('Fish') # noinspection SpellCheckingInspection class SpotAvailableFish(Base): __tablename__ = 'spot_available_fish' spot_angler_spot_id = Column(ForeignKey('spot.spot_angler_spot_id'), primary_key=True, nullable=False, index=True) fish_angler_fish_id = Column(ForeignKey('fish.fish_angler_fish_id'), primary_key=True, nullable=False, index=True) # noinspection SpellCheckingInspection class SpotBaitFishCatchInfo(Base): __tablename__ = 'spot_bait_fish_catch_info' spot_angler_spot_id = Column(ForeignKey('spot.spot_angler_spot_id'), primary_key=True, nullable=False, index=True) bait_angler_bait_id = Column(ForeignKey('bait.bait_angler_bait_id'), primary_key=True, nullable=False, index=True) fish_angler_fish_id = Column(ForeignKey('fish.fish_angler_fish_id'), primary_key=True, nullable=False, index=True) spot_bait_fish_catch_count = Column(BigInteger, nullable=False) spot_bait_fish_average_seconds_to_hook = Column(SmallInteger) spot_bait_fish_catch_percentage = Column(String(8), nullable=False) bait_angler_bait = relationship('Bait') fish_angler_fish = relationship('Fish') spot_angler_spot = relationship('Spot') # noinspection SpellCheckingInspection class SpotBaitTotalFishCaught(Base): __tablename__ = 'spot_bait_total_fish_caught' spot_angler_spot_id = Column(ForeignKey('spot.spot_angler_spot_id'), primary_key=True, nullable=False, index=True) bait_angler_bait_id = Column(ForeignKey('bait.bait_angler_bait_id'), primary_key=True, nullable=False, index=True) spot_bait_total_catch_count = Column(BigInteger, nullable=False) bait_angler_bait = relationship('Bait') spot_angler_spot = relationship('Spot') # noinspection SpellCheckingInspection class SpotEffectiveBait(Base): __tablename__ = 'spot_effective_bait' spot_angler_spot_id = Column(ForeignKey('spot.spot_angler_spot_id'), primary_key=True, nullable=False, index=True) bait_angler_bait_id = Column(ForeignKey('bait.bait_angler_bait_id'), primary_key=True, nullable=False, index=True) # noinspection SpellCheckingInspection class LastUpdated(Base): __tablename__ = 'last_updated' last_updated_timestamp = Column(DateTime, primary_key=True, nullable=False) bait_count = Column(BigInteger, nullable=False) fish_count = Column(BigInteger, nullable=False) spot_count = Column(BigInteger, nullable=False) ``` #### File: dataClasses/bait/baitId.py ```python from dataclasses import dataclass from typing import Optional from dataclasses_json import DataClassJsonMixin from ff14angler.constants.data_corrections import angler_bait_name_corrections, angler_bait_name_do_not_search from ff14angler.network.xivapiWrapper import XivapiWrapper @dataclass class BaitId(DataClassJsonMixin): bait_angler_bait_id: int bait_xivapi_item_id: Optional[int] @classmethod async def get_bait_id_from_angler_bait(cls, bait_angler_id: int, bait_angler_name: str): if bait_angler_name in angler_bait_name_do_not_search: search_response = {'ID': None} else: search_response = await XivapiWrapper.xivapi_item_search( angler_bait_name_corrections.get(bait_angler_name) or bait_angler_name ) return cls(bait_angler_bait_id=bait_angler_id, bait_xivapi_item_id=search_response['ID']) ``` #### File: dataClasses/bait/baitProvider.py ```python from typing import Dict, List, Optional from bs4 import BeautifulSoup # type: ignore from bs4.element import Tag # type: ignore from ff14angler.constants.regex import mooch_name_regex, non_number_replacement_regex from ff14angler.dataClasses.bait.bait import Bait from ff14angler.dataClasses.bait.baitPercentage import BaitPercentage class BaitProvider: bait_holder: Dict[int, Bait] = dict() @staticmethod async def _parse_angler_bait_id(td2: Tag) -> int: a_tag = td2.find('a') if a_tag: return int(non_number_replacement_regex.sub(repl='', string=a_tag.attrs['href'])) return int(non_number_replacement_regex.sub(repl='', string=td2.find('img').attrs['src'])) @classmethod async def get_bait_from_angler_bait(cls, bait_angler_id: int, bait_angler_name: str) -> Bait: if result := cls.bait_holder.get(bait_angler_id): return result cls.bait_holder[bait_angler_id] = await Bait.get_bait_from_angler_bait( bait_angler_id=bait_angler_id, bait_angler_name=bait_angler_name ) return cls.bait_holder[bait_angler_id] @classmethod async def get_bait_percentage_list_from_fish_soup(cls, soup: BeautifulSoup) -> List[BaitPercentage]: temp_bait_list: List[BaitPercentage] = [] bait_section: Optional[Tag] = soup.find('form', {'name': 'bait_delete'}) if not bait_section: return temp_bait_list for child in bait_section.find_all('td', {'class': 'width_max'}): # type: Tag parent: Tag = child.parent td1, td2 = parent.find_all('td')[:2] # type: Tag, Tag angler_bait_id: int = await cls._parse_angler_bait_id(td2) angler_bait_name: str = mooch_name_regex.sub('', td2.text).strip() bait = await cls.get_bait_from_angler_bait(angler_bait_id, angler_bait_name) if bait.bait_item_name_en is None: await bait.update_bait_with_assume_is_mooch_fish() temp_bait_list.append( BaitPercentage( bait_id=bait.bait_id, bait_percentage=td1.text.strip() ) ) return temp_bait_list ``` #### File: dataClasses/comment/commentSection.py ```python import json import urllib.parse import lxml # type: ignore from dataclasses import dataclass, field from datetime import datetime, timezone from typing import Any, Dict, List, Tuple from bs4 import BeautifulSoup # type: ignore from dataclasses_json import DataClassJsonMixin from selenium.webdriver.chrome.webdriver import WebDriver # type: ignore from ff14angler.constants.javascript import comment_metadata_javascript from ff14angler.constants.regex import non_number_replacement_regex from ff14angler.constants.values import ANGLER_BASE_URL from ff14angler.dataClasses.comment.comment import Comment @dataclass class CommentSection(DataClassJsonMixin): comments: List[Comment] comment_fetch_timestamp: datetime = field( default_factory=lambda: datetime.utcnow().replace(microsecond=0, tzinfo=timezone.utc), metadata={ 'dataclasses_json': { 'decoder': datetime.fromisoformat, 'encoder': datetime.isoformat } } ) @classmethod async def _get_request_metadata_from_web_driver(cls, driver: WebDriver) -> Tuple[int, int, int, int]: response: Tuple[int, str, str, str] = driver.execute_script(comment_metadata_javascript) request_id: int = response[0] type_id: int = int(response[1]) item_id: int = int(response[2]) max_comments: int = int(non_number_replacement_regex.sub(repl='', string=response[3]) or '0') return request_id, type_id, item_id, max_comments @classmethod async def parse_comment_section(cls, comment_list: List[Dict[str, Any]]) -> 'CommentSection': parsed_comment_list: List[Comment] = [] for comment_json in comment_list: parsed_comment_list.append(await Comment.get_comment_from_angler_comment_json(comment_json)) return cls(parsed_comment_list) @classmethod async def get_comment_section_from_web_driver(cls, driver: WebDriver) -> 'CommentSection': offset: int = 0 comment_list: List[Dict[str, Any]] = [] request_id, type_id, item_id, max_comments = await cls._get_request_metadata_from_web_driver(driver) while max_comments > 0: request_url: str = urllib.parse.urljoin( ANGLER_BASE_URL, '/comment.php?rid={}{}&limit=1000&type={}&item={}'.format( request_id, f'&offset={offset}' if offset > 0 else '', type_id, item_id ) ) print(f'Scraping comment URL: {request_url}') driver.get(request_url) if soup := BeautifulSoup(driver.page_source, lxml.__name__).find('pre'): if response := json.loads(soup.text.strip()): comment_list += response['comment'] offset += 1000 if len(comment_list) < max_comments: continue else: raise ValueError('No JSON response from server for comments.') break return await cls.parse_comment_section(comment_list=comment_list) ``` #### File: dataClasses/spot/spotBaitMetadata.py ```python from dataclasses import dataclass, field from typing import List, Optional from dataclasses_json import DataClassJsonMixin from ff14angler.dataClasses.bait.baitId import BaitId from ff14angler.dataClasses.fish.fishId import FishId from ff14angler.dataClasses.spot.spotBaitFishCatchInfo import SpotBaitFishCatchInfo @dataclass class SpotBaitMetadata(DataClassJsonMixin): spot_bait_id: BaitId spot_angler_bait_fish_catch_info: List[SpotBaitFishCatchInfo] = field(default_factory=list) spot_angler_bait_total_fish_caught: Optional[int] = None def update_spot_bait_metadata_with_spot_bait_fish_caught( self, caught_count: int, caught_percent: str, caught_total: int, fish_id: FishId ): if self.spot_angler_bait_total_fish_caught is not None: if self.spot_angler_bait_total_fish_caught != caught_total: raise ValueError('Got inconsistent total fish caught value.') self.spot_angler_bait_total_fish_caught = caught_total self.spot_angler_bait_fish_catch_info.append( SpotBaitFishCatchInfo( spot_angler_fish_caught_count=caught_count, spot_angler_fish_caught_percentage=caught_percent, spot_fish_id=fish_id ) ) ``` #### File: ff14angler/network/aiohttpWrapper.py ```python import aiohttp from typing import Any, Dict from asyncio_throttle import Throttler from ff14angler.exceptions.networkException import NetworkException class AiohttpWrapper: def __init__(self, rate_limit: int, duration: int): """The value `rate_limit` is max requests per duration. Duration is integer value in seconds.""" self._throttler = Throttler(rate_limit=rate_limit, period=duration) async def get_bytes_at_url(self, url: str) -> bytes: async with self._throttler: try: async with aiohttp.ClientSession() as session: print(f'Downloading URL: {url}') async with session.get(url) as response: return await response.read() except aiohttp.ClientError as e: raise NetworkException(e) async def get_json_at_url(self, url: str) -> Dict[str, Any]: async with self._throttler: try: async with aiohttp.ClientSession() as session: print(f'Fetching URL: {url}') async with session.get(url) as response: return await response.json() except aiohttp.ClientError as e: raise NetworkException(e) async def get_text_at_url(self, url: str) -> str: async with self._throttler: try: async with aiohttp.ClientSession() as session: print(f'Fetching URL: {url}') async with session.get(url) as response: return await response.text() except aiohttp.ClientError as e: raise NetworkException(e) async def post_json_at_url(self, url: str, item_name: str, json_obj: Dict[str, Any]) -> Dict[str, Any]: async with self._throttler: try: async with aiohttp.ClientSession() as session: print(f'Fetching URL: {url} : {item_name}') async with session.post(url, json=json_obj) as response: return await response.json() except aiohttp.ClientError as e: raise NetworkException(e) ``` #### File: ff14angler/scraper/fishScraper.py ```python import asyncio import urllib.parse import lxml # type: ignore from bs4 import BeautifulSoup # type: ignore from selenium.common.exceptions import TimeoutException # type: ignore from selenium.webdriver.chrome.webdriver import WebDriver # type: ignore from selenium.webdriver.common.by import By # type: ignore from selenium.webdriver.support.ui import WebDriverWait # type: ignore from selenium.webdriver.support import expected_conditions # type: ignore from ff14angler.constants.values import ( ANGLER_BASE_URL, ANGLER_PAGE_LOAD_WAIT_DURATION, ANGLER_DELAY_BETWEEN_REQUESTS_DURATION ) from ff14angler.dataClasses.comment.commentSection import CommentSection from ff14angler.dataClasses.fish.fish import Fish from ff14angler.dataClasses.fish.fishProvider import FishProvider from ff14angler.exceptions.networkException import NetworkException from ff14angler.scraper.lodestoneImageScraper import LodestoneImageScraper from ff14angler.network.delayOnReleaseLock import DelayOnReleaseLock class FishScraper: @staticmethod async def update_fish_with_large_icon_url(driver: WebDriver, fish: Fish): if fish.fish_angler_lodestone_url: if fish.fish_icon_url is None: raise ValueError(f'Missing icon url from xivapi: {fish}') fish.fish_large_icon_url = await LodestoneImageScraper.get_large_icon( driver=driver, short_icon_url=fish.fish_icon_url, lodestone_url=fish.fish_angler_lodestone_url ) @staticmethod async def update_fish_desynthesis_items_with_large_icon_url(driver: WebDriver, fish: Fish): for desynthesis_item in fish.fish_angler_desynthesis_items: if desynthesis_item.desynthesis_angler_lodestone_url: if desynthesis_item.desynthesis_icon_url is None: raise ValueError(f'Missing icon url from xivapi: {desynthesis_item}') desynthesis_item.desynthesis_large_icon_url = await LodestoneImageScraper.get_large_icon( driver=driver, short_icon_url=desynthesis_item.desynthesis_icon_url, lodestone_url=desynthesis_item.desynthesis_angler_lodestone_url ) @staticmethod async def update_fish_involved_recipes_with_large_icon_url(driver: WebDriver, fish: Fish): for recipe in fish.fish_angler_involved_recipes: if recipe.recipe_angler_lodestone_url: if recipe.recipe_icon_url is None: raise ValueError(f'Missing icon url from xivapi: {recipe}') recipe.recipe_large_icon_url = await LodestoneImageScraper.get_large_icon( driver=driver, short_icon_url=recipe.recipe_icon_url, lodestone_url=recipe.recipe_angler_lodestone_url ) @classmethod async def collect_fish_data(cls, driver: WebDriver): fish_url_template = urllib.parse.urljoin(ANGLER_BASE_URL, '/fish/') lock = DelayOnReleaseLock(ANGLER_DELAY_BETWEEN_REQUESTS_DURATION) for fish_id, fish in FishProvider.fish_holder.items(): angler_url: str = urllib.parse.urljoin(fish_url_template, str(fish_id)) for attempt in range(3): driver.get('about:blank') print(f'Scraping page: {angler_url}') driver.get(angler_url) try: WebDriverWait(driver, ANGLER_PAGE_LOAD_WAIT_DURATION).until( expected_conditions.presence_of_element_located( (By.CSS_SELECTOR, 'form.comment_form') ) ) async with lock: await asyncio.sleep(2) html: str = driver.page_source await fish.update_fish_with_comment_section( await CommentSection.get_comment_section_from_web_driver(driver) ) break except (NetworkException, TimeoutException, ValueError,): if attempt == 2: raise await fish.update_fish_with_fish_soup(BeautifulSoup(html, lxml.__name__)) await cls.update_fish_with_large_icon_url(driver, fish) await cls.update_fish_desynthesis_items_with_large_icon_url(driver, fish) await cls.update_fish_involved_recipes_with_large_icon_url(driver, fish) ``` #### File: FF14AnglerParser/ff14angler/scraper_main.py ```python import argparse import asyncio import os from ff14angler.constants.values import config_settings from ff14angler.dataClasses.cache.xivapiCache import XivapiCache from ff14angler.scraper.scraper import Scraper from ff14angler.network.chromeWrapper import ChromeWrapper from ff14angler.network.xivapiWrapper import XivapiWrapper def main(): arg_parser = argparse.ArgumentParser() arg_parser.add_argument( '-e', '--export-directory', action='store', dest='export_directory', default=None, help='Directory to place API cache, and game icon images.' ) config_settings['EXPORT_DIRECTORY'] = ( arg_parser.parse_args().export_directory or config_settings['EXPORT_DIRECTORY'] ) cache_path = os.path.join(config_settings['EXPORT_DIRECTORY'], 'xivapi_cache.json') try: with open(cache_path) as fh: print('Reading API cache into memory...') XivapiWrapper.cache = XivapiCache.from_json(fh.read()) except FileNotFoundError: print('No API cache found.') try: print('Starting Chrome...') with ChromeWrapper() as driver: print('Beginning scraping...') loop = asyncio.get_event_loop() loop.run_until_complete(Scraper.main(driver)) finally: print('Writing API cache to disk...') with open(cache_path, 'w+') as fh: fh.write(XivapiWrapper.cache.to_json()) ```
{ "source": "joshuaspence/unavailable_entities", "score": 2 }
#### File: custom_components/unavailable_entities/sensor.py ```python from typing import Any, Dict, Optional, Set from homeassistant.components.sensor import PLATFORM_SCHEMA from homeassistant.const import CONF_NAME, CONF_UNIQUE_ID from homeassistant.core import HomeAssistant from homeassistant.helpers import config_validation as cv from homeassistant.helpers.entity import Entity from homeassistant.helpers.entity_platform import AddEntitiesCallback from homeassistant.helpers.typing import ConfigType, DiscoveryInfoType, StateType import voluptuous as vol ATTR_ENTITIES = "entities" DEFAULT_NAME = "Unavailable Entities" PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend( { vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string, vol.Optional(CONF_UNIQUE_ID): cv.string, } ) def setup_platform( hass: HomeAssistant, config: ConfigType, add_entities: AddEntitiesCallback, # pylint: disable=unused-argument discovery_info: Optional[DiscoveryInfoType] = None, ) -> bool: name = config.get(CONF_NAME) unique_id = config.get(CONF_UNIQUE_ID) add_entities( [UnavailableEntitiesSensor(hass, name, unique_id)], update_before_add=True, ) return True class UnavailableEntitiesSensor(Entity): def __init__( self, hass: HomeAssistant, name: Optional[str] = None, unique_id: Optional[str] = None, ) -> None: self.hass = hass self._name = name self._unique_id = unique_id self._state: Set[str] = set() @property def entity_id(self) -> str: return "sensor.unavailable_entities" @property def extra_state_attributes(self) -> Dict[str, Any]: return {ATTR_ENTITIES: self._state} @property def icon(self) -> str: if self.state > 0: return "mdi:alert-circle" return "mdi:check-circle" @property def name(self) -> Optional[str]: return self._name @property def should_poll(self) -> bool: # TODO: Stop using polling. return True @property def state(self) -> StateType: return len(self._state) @property def unique_id(self) -> Optional[str]: return self._unique_id def update(self) -> None: entities = set() for state in self.hass.states.all(): if state.entity_id == self.entity_id: continue if state.state in ["unavailable", "unknown"]: entities.add(state.entity_id) self._state = entities ``` #### File: unavailable_entities/tests/test_sensor.py ```python from typing import Any, Dict from homeassistant.components.sensor import DOMAIN from homeassistant.const import ( ATTR_ENTITY_ID, ATTR_ICON, ATTR_UNIT_OF_MEASUREMENT, CONF_NAME, CONF_UNIQUE_ID, ) from homeassistant.core import HomeAssistant from homeassistant.helpers import entity_registry from homeassistant.setup import async_setup_component from custom_components.unavailable_entities.sensor import ATTR_ENTITIES, DEFAULT_NAME async def setup_test_entities( hass: HomeAssistant, config: Dict[str, Any] = None ) -> None: assert await async_setup_component( hass, DOMAIN, { "sensor": { "platform": "unavailable_entities", **(config or {}), }, }, ) await hass.async_block_till_done() await hass.async_start() await hass.async_block_till_done() async def test_sensor_manual_update(hass: HomeAssistant) -> None: await async_setup_component(hass, "homeassistant", {}) await setup_test_entities(hass) await hass.services.async_call( "homeassistant", "update_entity", {ATTR_ENTITY_ID: ["sensor.unavailable_entities"]}, blocking=True, ) state = hass.states.get("sensor.unavailable_entities") assert int(state.state) == 0 assert state.attributes[ATTR_ENTITIES] == set() sensors = { "binary_sensor.test": "off", "media_player.test": "off", "sensor.test": "off", } for sensor_id, sensor_state in sensors.items(): hass.states.async_set(sensor_id, sensor_state) await hass.async_block_till_done() await hass.services.async_call( "homeassistant", "update_entity", {ATTR_ENTITY_ID: ["sensor.unavailable_entities"]}, blocking=True, ) state = hass.states.get("sensor.unavailable_entities") assert int(state.state) == 0 assert state.attributes[ATTR_ENTITIES] == set() for sensor_id in sensors: hass.states.async_set(sensor_id, "unavailable") await hass.async_block_till_done() await hass.services.async_call( "homeassistant", "update_entity", {ATTR_ENTITY_ID: ["sensor.unavailable_entities"]}, blocking=True, ) state = hass.states.get("sensor.unavailable_entities") assert int(state.state) == len(sensors) assert state.attributes[ATTR_ENTITIES] == sensors.keys() async def test_sensor_defaults(hass: HomeAssistant) -> None: await setup_test_entities(hass) state = hass.states.get("sensor.unavailable_entities") assert state assert state.entity_id == "sensor.unavailable_entities" assert state.name == DEFAULT_NAME assert state.attributes.get(ATTR_ICON) == "mdi:check-circle" assert state.attributes.get(ATTR_UNIT_OF_MEASUREMENT) is None async def test_sensor_customizations(hass: HomeAssistant) -> None: sensor_name = "<NAME>" await setup_test_entities(hass, {CONF_NAME: sensor_name}) state = hass.states.get("sensor.unavailable_entities") assert state assert state.entity_id == "sensor.unavailable_entities" assert state.name == sensor_name async def test_sensor_unique_id(hass: HomeAssistant) -> None: unique_id = "abc123" await setup_test_entities(hass, {CONF_UNIQUE_ID: unique_id}) registry = entity_registry.async_get(hass) assert registry.async_get_entity_id("sensor", "unavailable_entities", unique_id) ```
{ "source": "joshuaspence/vtctrans", "score": 2 }
#### File: vtctrans/vtctrans/__init__.py ```python import sys from vtctrans.varnishtest import VarnishTest def main(): vtc = VarnishTest() argv = sys.argv argc = len(argv) opt = '' if(argv == 1): exit results = vtc.execVarnishTest(argv[1:]) for result in results: if (result['result'] != 'passed'): exit(1) exit(0) ```
{ "source": "joshua-s/punch", "score": 2 }
#### File: punch/punch/file_configuration.py ```python from __future__ import print_function, absolute_import, division import six import jinja2 class FileConfiguration(object): def __init__(self, filepath, local_variables, global_variables=None): self.config = {} if global_variables: self.config.update(global_variables) new_local_variables = {} env = jinja2.Environment(undefined=jinja2.DebugUndefined) for key, value in local_variables.items(): if six.PY2: value = value.decode('utf8') template = env.from_string(value) new_local_variables[key] = template.render( GLOBALS=global_variables) self.config.update(new_local_variables) self.path = filepath @classmethod def from_dict(cls, dic, global_variables): return cls(dic['path'], dic, global_variables) ``` #### File: punch/vcs_repositories/hg_repo.py ```python from __future__ import print_function, absolute_import, division import os import re import six from punch.vcs_repositories import vcs_repo as vr from punch.vcs_repositories import exceptions as e class HgRepo(vr.VCSRepo): DEFAULT_BRANCH = 'default' def __init__(self, working_path, config_obj): if six.PY2: super(HgRepo, self).__init__(working_path, config_obj) else: super().__init__(working_path, config_obj) self.branch = self.config_obj.options.get('branch', 'default') self._recorded_branch = None def get_current_branch(self): stdout = self._run([self.command, "branch"]) branch = stdout.replace("\n", "") return branch def get_branches(self): stdout = self._run([self.command, "branches"]) return {self._parse_branch_line(l) for l in stdout.splitlines()} def get_tags(self): tags_str = self._run([self.command, "tags"]) tags = map( lambda l: l.rsplit(" ", 1)[0].strip(), tags_str.splitlines() ) return "\n".join(tags) def get_summary(self): output = self._run([self.command, "summary"]) keys = {"branch", "commit", "update"} summary = {} for l in output.splitlines(): try: k, body = l.split(": ", 1) if k in keys: summary[k] = body except ValueError: pass return summary def pre_start_release(self): if not self._is_clean(): raise e.RepositoryStatusError( "Cannot update default while repository" + " contains uncommitted changes") self._recorded_branch = self.get_current_branch() self._change_branch(self.branch) branch = self.get_current_branch() if branch != self.branch: raise e.RepositoryStatusError( "Current branch shall be {} but is {}".format( self.branch, branch)) def start_release(self): pass def finish_release(self): self.get_current_branch() try: if self._is_clean(): return command_line = [self.command, "commit"] command_line.extend(["-m", self.config_obj.commit_message]) self._run(command_line) tag = self._configured_tag() self.tag(tag) finally: self._recover_branch() def tag(self, tag): self._run([self.command, "tag", tag]) def _recover_branch(self): if self._recorded_branch is not None: self._change_branch(self._recorded_branch) self._recorded_branch = None def _change_branch(self, branch): self._run([self.command, "update", branch]) def _check_config(self): # Tag names cannot contain spaces tag = self.config_obj.options.get('tag', '') if ' ' in tag: raise e.RepositoryConfigurationError( """You specified "'tag': {}".""".format(tag) + " Tag names cannot contain spaces") if re.match("^\d+$", tag): raise e.RepositoryConfigurationError( """You specified "'tag': {}".""".format(tag) + " Tag names cannot be just digits") def _check_system(self): if six.PY2: super(HgRepo, self)._check_system() else: super()._check_system() if not os.path.exists(os.path.join(self.working_path, '.hg')): raise e.RepositorySystemError( "The current directory {} is not a Hg repository".format( self.working_path)) def _set_command(self): self.commands = ['hg'] self.command = 'hg' def _is_clean(self): return self.get_summary()["commit"].endswith("(clean)") @classmethod def _parse_branch_line(cls, line): return re.match("(?P<tag>.+)\s+\d+:.+$", line).group("tag").strip() def _configured_tag(self): try: return self.config_obj.options['tag'] except KeyError: return self.config_obj.options['new_version'] ``` #### File: punch/tests/test_file_configuration.py ```python import pytest from punch import file_configuration as fc @pytest.fixture def global_variables(): return { 'serializer': '{{ major }}.{{ minor }}.{{ patch }}', 'mark': 'just a mark' } @pytest.fixture def local_variables(): return { 'serializer': '{{ major }}.{{ minor }}' } @pytest.fixture def file_configuration_dict(): return { 'path': 'pkg/__init__.py', 'serializer': '{{ major }}.{{ minor }}' } def test_file_configuration_from_string_local_variables_take_precedence( local_variables, global_variables): fconf = fc.FileConfiguration( 'pkg/__init__.py', local_variables, global_variables ) assert fconf.path == 'pkg/__init__.py' assert fconf.config['serializer'] == '{{ major }}.{{ minor }}' assert fconf.config['mark'] == 'just a mark' def test_file_configuration_from_string_can_include_global_variables( global_variables): local_variables = { 'serializer': '__version__ = {{GLOBALS.serializer}}' } fconf = fc.FileConfiguration( 'pkg/__init__.py', local_variables, global_variables ) assert fconf.path == 'pkg/__init__.py' assert fconf.config['serializer'] == \ '__version__ = {{ major }}.{{ minor }}.{{ patch }}' assert fconf.config['mark'] == 'just a mark' def test_file_conf_fr_str_path_cannot_be_overridden_by_global_variables( local_variables, global_variables): global_variables['path'] = 'a/new/path' fconf = fc.FileConfiguration( 'pkg/__init__.py', local_variables, global_variables ) assert fconf.path == 'pkg/__init__.py' def test_file_conf_fr_str_path_cannot_be_overridden_by_local_variables( local_variables, global_variables): local_variables['path'] = 'a/new/path' fconf = fc.FileConfiguration( 'pkg/__init__.py', local_variables, global_variables ) assert fconf.path == 'pkg/__init__.py' def test_file_configuration_from_dict_local_variables_take_precedence( file_configuration_dict, global_variables): fconf = fc.FileConfiguration.from_dict( file_configuration_dict, global_variables ) assert fconf.path == 'pkg/__init__.py' assert fconf.config['serializer'] == '{{ major }}.{{ minor }}' assert fconf.config['mark'] == 'just a mark' def test_file_conf_fr_dict_path_cannot_be_overridden_by_global_variables( file_configuration_dict, global_variables): global_variables['path'] = 'a/new/path' fconf = fc.FileConfiguration.from_dict( file_configuration_dict, global_variables ) assert fconf.path == 'pkg/__init__.py' ``` #### File: punch/tests/test_vcs_configuration.py ```python import pytest from punch import vcs_configuration as vc @pytest.fixture def global_variables(): return { 'serializer': '{{ major }}.{{ minor }}.{{ patch }}', 'mark': 'just a mark' } @pytest.fixture def vcs_configuration_dict(): return { 'name': 'git', 'commit_message': "Version updated to {{ new_version }}", 'finish_release': True, 'options': { 'make_release_branch': False, 'annotate_tags': False, 'annotation_message': '', } } @pytest.fixture def special_variables(): return { 'current_version': '1.2.3', 'new_version': '1.3.0' } def test_vcs_configuration_from_string( vcs_configuration_dict, global_variables, special_variables): vcsconf = vc.VCSConfiguration(vcs_configuration_dict['name'], vcs_configuration_dict['options'], global_variables, special_variables, vcs_configuration_dict['commit_message'] ) expected_options = { 'make_release_branch': False, 'annotate_tags': False, 'annotation_message': '', 'current_version': '1.2.3', 'new_version': '1.3.0' } assert vcsconf.name == 'git' assert vcsconf.commit_message == "Version updated to 1.3.0" assert vcsconf.finish_release is True assert vcsconf.options == expected_options def test_vcs_configuration_from_dict( vcs_configuration_dict, global_variables, special_variables): vcsconf = vc.VCSConfiguration.from_dict( vcs_configuration_dict, global_variables, special_variables ) expected_options = { 'make_release_branch': False, 'annotate_tags': False, 'annotation_message': '', 'current_version': '1.2.3', 'new_version': '1.3.0' } assert vcsconf.name == 'git' assert vcsconf.commit_message == "Version updated to 1.3.0" assert vcsconf.finish_release is True assert vcsconf.options == expected_options def test_vcs_configuration_from_dict_without_commit_message( vcs_configuration_dict, global_variables, special_variables): vcs_configuration_dict.pop('commit_message') vcsconf = vc.VCSConfiguration.from_dict( vcs_configuration_dict, global_variables, special_variables ) expected_options = { 'make_release_branch': False, 'annotate_tags': False, 'annotation_message': '', 'current_version': '1.2.3', 'new_version': '1.3.0' } assert vcsconf.name == 'git' assert vcsconf.commit_message == "Version updated 1.2.3 -> 1.3.0" assert vcsconf.finish_release is True assert vcsconf.options == expected_options def test_vcs_configuration_from_dict_without_finish_release( vcs_configuration_dict, global_variables, special_variables): vcs_configuration_dict.pop('finish_release') vcsconf = vc.VCSConfiguration.from_dict( vcs_configuration_dict, global_variables, special_variables ) expected_options = { 'make_release_branch': False, 'annotate_tags': False, 'annotation_message': '', 'current_version': '1.2.3', 'new_version': '1.3.0' } assert vcsconf.name == 'git' assert vcsconf.commit_message == "Version updated to 1.3.0" assert vcsconf.finish_release is True assert vcsconf.options == expected_options def test_vcs_configuration_from_dict_without_options( vcs_configuration_dict, global_variables, special_variables): vcs_configuration_dict.pop('options') vcsconf = vc.VCSConfiguration.from_dict( vcs_configuration_dict, global_variables, special_variables ) assert vcsconf.name == 'git' assert vcsconf.commit_message == "Version updated to 1.3.0" assert vcsconf.finish_release is True def test_vcs_configuration_from_dict_can_use_global_variables( vcs_configuration_dict, global_variables, special_variables): vcs_configuration_dict['commit_message'] = "Mark: {{ mark }}" vcsconf = vc.VCSConfiguration.from_dict( vcs_configuration_dict, global_variables, special_variables ) assert vcsconf.commit_message == "Mark: just a mark" def test_vcs_configuration_from_dict_special_variables_take_precedence( vcs_configuration_dict, global_variables, special_variables): vcs_configuration_dict['commit_message'] = "{{ current_version }}" global_variables['current_version'] = "5.0.0" vcsconf = vc.VCSConfiguration.from_dict( vcs_configuration_dict, global_variables, special_variables ) assert vcsconf.commit_message == "1.2.3" def test_vcs_configuration_from_dict_options_templates_are_processed( vcs_configuration_dict, global_variables, special_variables): vcs_configuration_dict['options']['annotation_message'] = \ "Updated {{ current_version}} -> {{ new_version }}" vcsconf = vc.VCSConfiguration.from_dict( vcs_configuration_dict, global_variables, special_variables ) expected_options = { 'make_release_branch': False, 'annotate_tags': False, 'annotation_message': 'Updated 1.2.3 -> 1.3.0', 'current_version': '1.2.3', 'new_version': '1.3.0' } assert vcsconf.options == expected_options ``` #### File: tests/vcs_repositories/test_hg_repo.py ```python import subprocess import os import pytest import sys from six.moves import configparser from punch import vcs_configuration as vc from punch.vcs_repositories import hg_repo as hr, exceptions as re from tests.conftest import safe_devnull pytestmark = pytest.mark.slow def hg_repo_add_file(temp_hg_dir, fname, content="", out=None): if out is None: out = safe_devnull() with open(os.path.join(temp_hg_dir, fname), "w") as f: f.write(content) subprocess.check_call(["hg", "add", fname], cwd=temp_hg_dir, stdout=out) def hg_repo_add_branch(temp_hg_dir, branch, message=None, out=None): if out is None: out = sys.stdout if message is None: message = "Starting new branch " + branch subprocess.check_call( ["hg", "branch", "-f", branch], cwd=temp_hg_dir, stdout=out ) subprocess.check_call( ["hg", "commit", "-m", message], cwd=temp_hg_dir, stdout=out ) def hg_repo_change_branch(temp_hg_dir, branch, out=None): if out is None: out = sys.stdout subprocess.check_call( ["hg", "update", branch], cwd=temp_hg_dir, stdout=out ) def hg_log(temp_hg_dir): p = subprocess.Popen(["hg", "log"], cwd=temp_hg_dir, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = p.communicate() return stdout.decode('utf8') @pytest.fixture def temp_empty_hg_dir(temp_empty_dir): subprocess.check_call(["hg", "init", temp_empty_dir]) hgrc = os.path.join(temp_empty_dir, ".hg", "hgrc") cp = configparser.ConfigParser() cp.read(hgrc) cp.add_section("ui") cp.set("ui", "username", "PyTest <<EMAIL>>") with open(hgrc, "w+") as f: cp.write(f) return temp_empty_dir @pytest.fixture def temp_hg_dir(temp_empty_hg_dir, safe_devnull): with open(os.path.join(temp_empty_hg_dir, "README.md"), "w") as f: f.writelines(["# Test file", "This is just a test file for punch"]) subprocess.check_call(["hg", "add", "README.md"], cwd=temp_empty_hg_dir, stdout=safe_devnull) subprocess.check_call( ["hg", "commit", "-m", "Initial addition"], cwd=temp_empty_hg_dir, stdout=safe_devnull ) return temp_empty_hg_dir @pytest.fixture def hg_other_branch(temp_hg_dir): hg_repo_add_branch(temp_hg_dir, "other") hg_repo_change_branch(temp_hg_dir, hr.HgRepo.DEFAULT_BRANCH) return temp_hg_dir @pytest.fixture def empty_vcs_configuration(): return vc.VCSConfiguration( 'hg', {}, {}, {'current_version': 'a', 'new_version': 'b'} ) @pytest.fixture def other_branch_vcs_configuration(): return vc.VCSConfiguration( 'hg', {"branch": "other"}, {}, {'current_version': 'a', 'new_version': 'b'} ) @pytest.fixture def ready_to_finish_repo(temp_hg_dir, **kwargs): release_name = "1.0" commit_message = "A commit message" config = vc.VCSConfiguration( 'git', kwargs, global_variables={}, special_variables={'new_version': release_name}, commit_message=commit_message ) repo = hr.HgRepo(temp_hg_dir, config) repo.pre_start_release() repo.start_release() hg_repo_add_file(temp_hg_dir, "version.txt", release_name + "\n") return repo def test_init(temp_empty_hg_dir, empty_vcs_configuration): repo = hr.HgRepo(temp_empty_hg_dir, empty_vcs_configuration) assert repo.working_path == temp_empty_hg_dir def test_init_with_uninitialized_dir(temp_empty_dir, empty_vcs_configuration): with pytest.raises(re.RepositorySystemError) as exc: hr.HgRepo(temp_empty_dir, empty_vcs_configuration) assert str(exc.value) == \ "The current directory {} is not a Hg repository".format( temp_empty_dir) def test_get_current_branch(temp_hg_dir, empty_vcs_configuration): repo = hr.HgRepo(temp_hg_dir, empty_vcs_configuration) assert repo.get_current_branch() == repo.DEFAULT_BRANCH def test_get_tags(temp_hg_dir, empty_vcs_configuration): repo = hr.HgRepo(temp_hg_dir, empty_vcs_configuration) assert repo.get_tags() == 'tip' def test_pre_start_release(temp_hg_dir, empty_vcs_configuration): repo = hr.HgRepo(temp_hg_dir, empty_vcs_configuration) repo.pre_start_release() assert repo.get_current_branch() == repo.DEFAULT_BRANCH def test_pre_start_release_start_from_different_branch( temp_hg_dir, empty_vcs_configuration): hg_dir = temp_hg_dir repo = hr.HgRepo(hg_dir, empty_vcs_configuration) hg_repo_add_branch(hg_dir, "other") repo.pre_start_release() assert repo.get_current_branch() == repo.DEFAULT_BRANCH def test_pre_start_release_should_use_other_branch( temp_hg_dir, other_branch_vcs_configuration): hg_dir = temp_hg_dir repo = hr.HgRepo(hg_dir, other_branch_vcs_configuration) hg_repo_add_branch(hg_dir, "other") repo.pre_start_release() hg_repo_change_branch(hg_dir, repo.DEFAULT_BRANCH) repo.pre_start_release() assert repo.get_current_branch() == "other" def test_pre_start_release_in_unclean_state( temp_hg_dir, empty_vcs_configuration): hg_dir = temp_hg_dir with open(os.path.join(hg_dir, "README.md"), "w") as f: f.writelines(["Uncommitted lines"]) repo = hr.HgRepo(hg_dir, empty_vcs_configuration) with pytest.raises(re.RepositoryStatusError): repo.pre_start_release() assert repo.get_current_branch() == repo.DEFAULT_BRANCH def test_pre_start_release_starting_from_different_branch_in_unclean_state( temp_hg_dir, empty_vcs_configuration): hg_dir = temp_hg_dir hg_repo_add_branch(hg_dir, "other") with open(os.path.join(hg_dir, "README.md"), "w") as f: f.writelines(["Uncommitted lines"]) repo = hr.HgRepo(hg_dir, empty_vcs_configuration) with pytest.raises(re.RepositoryStatusError): repo.pre_start_release() assert repo.get_current_branch() == "other" def test_start_release_should_be_in_defined_branch( hg_other_branch, other_branch_vcs_configuration): repo = hr.HgRepo(hg_other_branch, other_branch_vcs_configuration) repo.pre_start_release() repo.start_release() assert repo.get_current_branch() == "other" def test_finish_release_without_changes( hg_other_branch, other_branch_vcs_configuration): repo = hr.HgRepo(hg_other_branch, other_branch_vcs_configuration) repo.pre_start_release() repo.start_release() repo.finish_release() assert repo.get_current_branch() == repo.DEFAULT_BRANCH assert 'b' not in repo.get_tags() def test_finish_should_recover_start_branch( hg_other_branch, other_branch_vcs_configuration): hg_repo_add_branch(hg_other_branch, "third") repo = hr.HgRepo(hg_other_branch, other_branch_vcs_configuration) repo.pre_start_release() repo.start_release() repo.finish_release() assert repo.get_current_branch() == "third" def test_finish_release_with_message(ready_to_finish_repo): d = ready_to_finish_repo.working_path config = ready_to_finish_repo.config_obj commit_message = config.commit_message ready_to_finish_repo.finish_release() log = hg_log(d) assert commit_message in log def test_finish_release_without_release_branch(ready_to_finish_repo): config = ready_to_finish_repo.config_obj release_name = config.options['new_version'] ready_to_finish_repo.finish_release() assert release_name not in ready_to_finish_repo.get_branches() def test_finish_write_tag(ready_to_finish_repo): config = ready_to_finish_repo.config_obj release_name = config.options['new_version'] ready_to_finish_repo.finish_release() assert release_name in ready_to_finish_repo.get_tags() def test_finish_release_with_custom_tag(temp_hg_dir): tag = "Version_{}".format("1.0") repo = ready_to_finish_repo(temp_hg_dir, tag=tag) repo.finish_release() assert tag in repo.get_tags() def test_finish_release_custom_tag_cannot_contain_spaces(temp_hg_dir): release_name = "1.0" commit_message = "A commit message" tag = "Version {}".format(release_name) config = vc.VCSConfiguration('hg', {'tag': tag}, global_variables={}, special_variables={ 'new_version': release_name}, commit_message=commit_message) with pytest.raises(re.RepositoryConfigurationError): hr.HgRepo(temp_hg_dir, config) def test_finish_release_custom_tag_cannot_be_a_number(temp_hg_dir): release_name = "1.0" commit_message = "A commit message" tag = "12234" config = vc.VCSConfiguration('hg', {'tag': tag}, global_variables={}, special_variables={ 'new_version': release_name}, commit_message=commit_message) with pytest.raises(re.RepositoryConfigurationError): hr.HgRepo(temp_hg_dir, config) def test_start_summary(temp_hg_dir, empty_vcs_configuration): repo = hr.HgRepo(temp_hg_dir, empty_vcs_configuration) repo.pre_start_release() assert repo.get_summary() == {"branch": "default", "commit": "(clean)", "update": "(current)"} def test_get_branches(hg_other_branch, empty_vcs_configuration): repo = hr.HgRepo(hg_other_branch, empty_vcs_configuration) assert {"default", "other"} == repo.get_branches() def test_tag(temp_hg_dir, empty_vcs_configuration): repo = hr.HgRepo(temp_hg_dir, empty_vcs_configuration) repo.tag("just_a_tag") assert "just_a_tag" in repo.get_tags() ``` #### File: tests/vcs_use_cases/test_tag_use_case.py ```python import mock from punch.vcs_use_cases import tag def test_pre_tag(): repo = mock.Mock() use_case = tag.VCSTagUseCase(repo) use_case.tag("just_a_tag") assert repo.tag.called_with("just_a_tag") ```
{ "source": "joshuass/PyHail", "score": 3 }
#### File: PyHail/pyhail/hacc.py ```python import numpy as np from pyhail import common def main(radar, fz_level, pressure, z_fname, hsda_fname, mesh_fname, sp_reflectivity_threshold=55, heights_fieldname='gate_z'): """ Hail Accumulation defined by Robinson et al. 2018 and Kalina et al. 2016. If the heights field exists, this will be used and save a small amount of computation time. Parameters: =========== radar : object Py-ART radar object. fz_level: int wet bulb freezing level (m) pressure: float (1,) mean pressure between the surface and the height of the 0C wet-bulb temperature z_fname: str reflectivity field name hsda_fname: str field name for HSDR mesh_fname: str field name for MESH sp_reflectivity_threshold: float value used to threshold reflectivity for single pol analysis Returns: hAcc_meta: dict pyart field dictionary containing hAcc dataset """ Z = radar.fields[z_fname]["data"] if np.ma.is_masked(Z): Z = Z.filled(0) if hsda_fname is None: #use a simple single pol HCA for hail (fixed threshold) hail_hca = Z >= sp_reflectivity_threshold else: #use hsda to determine hail hail_hca = radar.fields[hsda_fname]["data"] if np.ma.is_masked(hail_hca): hail_hca = hail_hca.filled(0) #load mesh mesh = radar.get_field(0, mesh_fname) if np.ma.is_masked(mesh): mesh = mesh.filled(0) # calculate height try: heights = radar.fields[heights_fieldname]['data'] except: rg, azg = np.meshgrid(radar.range["data"], radar.azimuth["data"]) rg, eleg = np.meshgrid(radar.range["data"], radar.elevation["data"]) _, _, heights = common.antenna_to_cartesian(rg / 1000, azg, eleg) n = 0.64 # packing density of monodisperse spheres (Kalina et al. 2016) ph = 900 # density of ice (kg m-3) epsilon = 0.814 Ze = 10.0 ** (Z / 10.0) # convert Z to Ze IWC = ( (4.4 * 10 ** -5) * Ze ** (0.71) / 1000 ) # Ice Water Content (kg m-3) derived from Ze follow Heysfield and Miller 1998 # remove IWC values where hail_hca is not hail (less than 1) IWC[hail_hca < 1] = 0 # remove IWC values where temperature is at or below 0 IWC[heights > fz_level] = 0 # get lowest valid IWC # insert sweeps into 3D array (el, az, rg) el_sort_idx = np.argsort(radar.fixed_angle["data"]) az = radar.get_azimuth(0) rg = radar.range["data"] IWC_3d = np.ma.zeros((len(el_sort_idx), len(az), len(rg))) for i, el_idx in enumerate(el_sort_idx): IWC_3d[i, :, :] = IWC[radar.get_slice(el_idx)] # mask zero values IWC_3d_masked = np.ma.masked_array(IWC_3d, IWC_3d == 0) data_shape = IWC_3d_masked.shape # find the lowest unmasked value by first finding edges edges = np.ma.notmasked_edges(IWC_3d_masked, axis=0) # use first edge on axis 0 (lowest in height) IWC_lowest_valid = np.zeros_like(mesh) IWC_lowest_valid[edges[0][1], edges[0][2]] = IWC_3d_masked[edges[0]] # pressure correction from Heysmfield and Write (2014) PC = (1000 / pressure) ** 0.545 # diameter-fall speed relation from Heysmfield and Wright (2014), units of cm/s Vt = 488 * (mesh / 10) ** 0.84 * PC # calculate LASH (units of cm/s) hAcc = (1 / epsilon) * (1 / (n * ph)) * IWC_lowest_valid * Vt hAcc = hAcc * 60 # convert cm/s to cm/min # hAcc is only valid at the surface, to represent it in pyart radar objects, insert it into the lowest sweep hAcc_field = np.zeros_like(radar.fields[z_fname]["data"]) hAcc_field[radar.get_slice(el_sort_idx[0])] = hAcc hAcc_meta = { "data": hAcc_field, "units": "cm/min", "long_name": "hail accumulation", "description": "Hail Accumulation Retrieval developed by Wallace et al. (2019) doi:10.1175/WAF-D-18-0053.1", "comments": "only valid in the lowest sweep", } return hAcc_meta ```
{ "source": "joshua-sterner/stockwell_transform", "score": 3 }
#### File: stockwell_transform/stockwell/smt.py ```python import sys import numpy as npy from numpy import arange, sin, sqrt, pi from st import st from math import sqrt def calcK(bw, N, srate): """Calculate K for a given bandwidth, length, and sampling rate. bw = 2p * fr, where fr = srate / N (frequency resolution). p specifies the half bandwidth in bins (fr units). K = 2p - 1""" K = int(bw * float(N) / srate + .5) - 1 if K < 1: K = 1 return K def calcbw(K, N, srate): """Calculate the bandwidth given K.""" return float(K + 1) * srate / N # Precompute the tapers. def calc_tapers(K, N): return list(map(lambda k, N = N: sine_taper(k, N), npy.arange(K))) # Multitaper Stockwell transform. def mtst(K, tapers, x, lo, hi): N = len(x) K2 = float(K * K) s = 0. n = 0. for k in range(K): X = st(tapers[k] * x, int(lo), int(hi)) mu = 1. - k * k / K2 s += mu * abs(X)**2 n += mu s *= N / n return s # Riedel & Sidorenko sine tapers. def sine_taper(k, N): "Compute the kth sine taper of length N" s = sqrt(2. / (N + 1)) d = arange(N, dtype = 'd') return s * sin(pi * (k + 1) * (d + 1.) / (N + 1)) ```
{ "source": "joshua-sterner/torch_DCEC", "score": 3 }
#### File: joshua-sterner/torch_DCEC/ssim_matrix.py ```python from pathlib import Path from skimage.metrics import structural_similarity as ssim from skimage.metrics import mean_squared_error import numpy as np import argparse from PIL import Image def main(): argparser = argparse.ArgumentParser() argparser.add_argument('--image_dir', type=str, required=True) argparser.add_argument('--image_list_file', type=str, required=True) argparser.add_argument('--ssim_matrix_file', type=str, required=True) argparser.add_argument('--mse_matrix_file', type=str, required=True) argparser.add_argument('--image_symlink_dir', type=str, required=True) args = argparser.parse_args() image_dir = Path(args.image_dir) images = [] for image in image_dir.glob('**/*'): if image.is_dir(): continue images.append(image) # Save image list so we can identify images later images.sort() image_list_file = open(args.image_list_file, 'w') zfill_len = len(str(len(images))) for i in range(len(images)): image_list_file.write(f'{i}, {images[i]}\n') symlink_dir = Path(args.image_symlink_dir) / Path(str(i).zfill(zfill_len)) symlink_dir.mkdir(exist_ok = True, parents=True) symlink_target = Path('../'*len(symlink_dir.parts)) / images[i] (symlink_dir / images[i].name).symlink_to(symlink_target) image_list_file.close() ssim_matrix_file = open(args.ssim_matrix_file, 'w') mse_matrix_file = open(args.mse_matrix_file, 'w') for i in range(len(images)): i_img = np.array(Image.open(images[i])) for j in range(i+1, len(images)): j_img = np.array(Image.open(images[j])) ssim_matrix_file.write(str(ssim(i_img, j_img, multichannel=True))+',') mse_matrix_file.write(str(mean_squared_error(i_img, j_img))+',') ssim_matrix_file.write('\n') mse_matrix_file.write('\n') ssim_matrix_file.close() mse_matrix_file.close() if __name__ == '__main__': main() ```
{ "source": "joshua-stone/OpenRecipeBook-Ebook", "score": 3 }
#### File: lib/asciidocpresenters/recipe.py ```python from helpers import generate_link, generate_temperature, ref_encode import units class RecipeAsciidocPresenter(object): def __init__(self, recipe): self._data = recipe.data @property def data(self): return self._data @property def config_id(self): rendered = f"[[{ref_encode(self.data['config_id'])}]]" return rendered @property def name(self): rendered = f"=== {self.data['name']}" return rendered @property def summary(self): if self.data['summary']: rendered = f"\nSummary: {self.data['summary']}\n" else: rendered = '' return rendered @property def servings(self): rendered = f"Yield: {self.data['servings']}\n" return rendered @property def preptime(self): rendered = f"Prep Time: {self.data['preptime']}\n" return rendered @property def cooktime(self): rendered = f"Cook Time: {self.data['cooktime']}\n" return rendered @property def equipment(self): equipment = [] for item in self.data['equipment']: link = generate_link(item) equipment.append('* ' + link) rendered = 'Equipment:\n\n' + '\n'.join(equipment) + '\n' return rendered @property def ingredients(self): ingredients = [] for item in self.data['ingredients']: name = item['name'] quantity = units.parse_amount_with_unit(item['quantity']) if quantity.units == units.NO_UNIT: text = f"{quantity.magnitude:g} {name}" else: text = f"{quantity:~g} of {name}" if 'link' in item: link = item['link'] if link.startswith('equipment:') or link.startswith('ingredient:') or link.startswith('recipe:'): line = f"* <<{ref_encode(link)}, {text}>>" elif link.startswith('http://') or link.startswith('https://'): line = f'* {link}[{text}]' else: line = f'* {text}' else: line = f'* {text}' ingredients.append(line) rendered = 'Ingredients:\n\n' + '\n'.join(ingredients) + '\n' return rendered @property def directions(self): steps = [] for direction in self.data['directions']: step = '. ' + direction['step'] if 'note' in direction.keys(): step += ' +\n Note: ' + direction['note'] steps.append(generate_temperature(step)) rendered = 'Steps:\n\n' + '\n'.join(steps) return rendered @property def notes(self): notes = [] for note in self.data['notes']: notes.append('* ' + note) if notes: rendered = '\nNotes:\n\n' + '\n'.join(notes) + '\n\n' else: rendered = '' return rendered def render(self): recipe_parts = [ self.config_id, self.name, self.summary, self.servings, self.preptime, self.cooktime, self.equipment, self.ingredients, self.directions, self.notes, '<<<\n' ] return '\n'.join(recipe_parts) ``` #### File: OpenRecipeBook-Ebook/lib/recipe.py ```python class Recipe(object): def __init__(self, config_id='', name='', summary='', servings=1, preptime='1 min', cooktime='1 min', equipment=[], ingredients=[], steps=[], directions=[], notes=[], tags=[]): self._data = { 'config_id': config_id, 'name': name, 'summary': summary, 'servings': servings, 'preptime': preptime, 'cooktime': cooktime, 'equipment': equipment, 'ingredients': ingredients, 'steps': steps, 'directions': directions, 'notes': notes, 'tags': tags } @property def data(self): return self._data def config_id(self, config_id): recipe = join_params(self.data, {'config_id': config_id}) return self.__class__(**recipe) def name(self, name): recipe = join_params(self.data, {'name': name}) return self.__class__(**recipe) def summary(self, name): recipe = join_params(self.data, {'summary': summary}) return self.__class__(**recipe) def servings(self, servings): recipe = join_params(self.data, {'servings': servings}) return self.__class__(**recipe) def preptime(self, preptime): recipe = join_params(self.data, {'preptime': preptime}) return self.__class__(**updated) def cooktime(self, cooktime): recipe = join_params(self.data, {'cooktime': cooktime}) return self.__class__(**recipe) def equipment(self, equipment): recipe = join_params(self.data, {'equipment': equipment}) return self.__class__(**updated) def ingredients(self, ingredients): recipe = join_params(self.data, {'ingredients': ingredients}) return self.__class__(**updated) def steps(self, steps): recipe = join_params(self.data, {'step': steps}) return self.__class__(**updated) def notes(self, notes): recipe = join_params(self.data, {'notes': notes}) return self.__class__(**recipe) def tags(self, tags): recipe = join_params(self.data, {'tags': tags}) return self.__class__(**recipe) ``` #### File: lib/scaffold_generators/ingredient.py ```python from yaml import safe_dump class StoreGenerator: def __init__(self): self.name = None self.link = None def prompt_name(self): self.name = input('Enter store name (leave blank to skip): ') return bool(self.name) def prompt_link(self): self.link = input('Enter store URL: ') return True def run_prompt_sequence(self): return self.prompt_name() and self.prompt_link() def to_renderable_dict(self): return { 'name': self.name, 'link': self.link } class ProductGenerator: def __init__(self): self.name = None self.stores = [] def prompt_name(self): self.name = input('Enter product name (leave blank to skip): ') return bool(self.name) def prompt_stores(self): while True: store = StoreGenerator() print(f"Add store for {self.name}?") if not store.run_prompt_sequence(): print(f"Done adding stores to {self.name}.") break self.stores.append(store) print(f"Finished store: {store.name}.\n") return True def run_prompt_sequence(self): return self.prompt_name() and self.prompt_stores() def to_renderable_dict(self): return { 'name': self.name, 'stores': list(map( lambda store: store.to_renderable_dict(), self.stores )) } class IngredientGenerator: def __init__(self): self.id = None self.name = None self.products = [] def prompt_id(self): while True: self.id = input('Enter ingredient ID: ') if self.id: break print("An ingredient ID is required!") return True def prompt_name(self): while True: self.name = input('Enter ingredient name: ') if self.name: break print("An ingredient name is required!") return True def prompt_products(self): while True: product = ProductGenerator() print(f"Add a product listing for {self.name}?") if not product.run_prompt_sequence(): print(f"Done adding products to {self.name}.") break self.products.append(product) print(f"Finished product {product.name}.\n") return True def run_prompt_sequence(self): return self.prompt_id() and self.prompt_name() and self.prompt_products() def to_renderable_dict(self): return { 'id': self.id, 'name': self.name, 'products': list(map( lambda product: product.to_renderable_dict(), self.products )) } INGREDIENTS_ROOT = 'src/config/ingredients' def run_ingredient_scaffold_generator(file_name): output_path = f'{INGREDIENTS_ROOT}/{file_name}.yml' ingredient = IngredientGenerator() if not ingredient.run_prompt_sequence(): return False output = safe_dump(ingredient.to_renderable_dict(), sort_keys = False) with open(output_path, 'w') as output_file: output_file.write(output) return True ```
{ "source": "joshuasundance/restgdf", "score": 3 }
#### File: restgdf/restgdf/_getinfo.py ```python import re from typing import Union, Optional from pandas import DataFrame, concat from requests import Session, Response FIELDDOESNOTEXIST: IndexError = IndexError("Field does not exist") DEFAULTDICT: dict = { "where": "1=1", "outFields": "*", "returnGeometry": True, "returnCountOnly": False, "f": "json", } DEFAULTDICTSTR: str = "\n".join([f"{k}: {v}" for k, v in DEFAULTDICT.items()]) def default_data(data: dict = None, default_dict: dict = None) -> dict: f"""Return data dict after adding default values Will not replace existing values Defaults: {DEFAULTDICTSTR} """ data = data or {} default_dict = default_dict or DEFAULTDICT new_data: dict = {k: v for k, v in data.items()} for k, v in default_dict.items(): new_data[k] = new_data.get(k, v) return new_data def get_feature_count(url: str, session: Optional[Session] = None, **kwargs) -> int: """Return int number of features for a service Keyword arguments are passed on to post request """ session = session or Session() datadict: dict = {"where": "1=1", "returnCountOnly": True, "f": "json"} if "data" in kwargs: datadict["where"] = kwargs["data"].get("where", "1=1") if "token" in kwargs["data"]: datadict["token"] = kwargs["data"]["token"] xkwargs: dict = {k: v for k, v in kwargs.items() if k != "data"} response: Response = session.post( f"{url}/query", data=datadict, **xkwargs, # the line above provides keyword arguments other than data dict # because data dict is manipulated for this function # (this allows the use of token authentication, for example) ) return response.json()["count"] def get_jsondict(url: str, session: Optional[Session] = None, **kwargs) -> dict: """Return dict from a service's json Keyword arguments are passed on to post request """ session = session or Session() datadict: dict = default_data({}) if "data" not in kwargs else kwargs["data"] xkwargs: dict = {k: v for k, v in kwargs.items() if k != "data"} response: Response = session.post(url, data=datadict, **xkwargs) return response.json() def get_max_record_count(jsondict: dict) -> int: """Return int max record count for a service Keyword arguments are passed on to post request """ # TODO: why is there inconsistency in maxRecordCount key key_pattern: re.Pattern = re.compile( r"max(imum)?(\s|_)?record(\s|_)?count$", flags=re.IGNORECASE ) key_list: list = [key for key in jsondict if re.match(key_pattern, key)] assert len(key_list) == 1 return jsondict[key_list[0]] def get_offset_range(url: str, session: Optional[Session] = None, **kwargs) -> range: """Return offset range object using feature count and max record count Keyword arguments are passed on to post request """ session = session or Session() feature_count: int = get_feature_count(url, session, **kwargs) jsondict: dict = get_jsondict(url, session, **kwargs) max_record_count: int = get_max_record_count(jsondict) return range(0, feature_count, max_record_count) # TODO: convert post requests to session requests # TODO: add docstrings # TODO: implement class(url, s:Session=Session(), auth=None, **kwargs) def get_name(jsondict: dict) -> str: """Return str name for a service""" key_pattern: re.Pattern = re.compile("name", flags=re.IGNORECASE) key_list: list = [key for key in jsondict if re.match(key_pattern, key)] assert len(key_list) == 1 return jsondict[key_list[0]] def getfields(jsondict: dict, types: bool = False): """Return list of field names or a name:type dict if types=True""" if types: return { f["name"]: f["type"].replace("esriFieldType", "") for f in jsondict["fields"] } else: return [f["name"] for f in jsondict["fields"]] def getfields_df(jsondict: dict) -> DataFrame: return DataFrame( [ (f["name"], f["type"].replace("esriFieldType", "")) for f in jsondict["fields"] ], columns=["name", "type"], ) def getuniquevalues( url: str, fields: Union[tuple, str], sortby: str = None, session: Optional[Session] = None, **kwargs, ) -> Union[list, DataFrame]: """Return list of unique values if fields is str or list of len 1 Otherwise return pandas DataFrame of unique combinations, optionally sorted by field sortby """ session = session or Session() datadict: dict = { "where": "1=1", "f": "json", "returnGeometry": False, "returnDistinctValues": True, "outFields": fields if isinstance(fields, str) else ",".join(fields), } if "data" in kwargs: datadict["where"] = kwargs["data"].get("where", "1=1") if "token" in kwargs["data"]: datadict["token"] = kwargs["data"]["token"] xkwargs: dict = {k: v for k, v in kwargs.items() if k != "data"} response: Response = session.post(f"{url}/query", data=datadict, **xkwargs) jsondict: dict = response.json() res_l: Union[list, None] = None res_df: Union[DataFrame, None] = None if isinstance(fields, str): res_l = [x["attributes"][fields] for x in jsondict["features"]] elif len(fields) == 1: res_l = [x["attributes"][fields[0]] for x in jsondict["features"]] else: res_df = concat( [DataFrame(x).T.reset_index(drop=True) for x in jsondict["features"]], ignore_index=True, ) if sortby: res_df = res_df.sort_values(sortby).reset_index(drop=True) return res_l or res_df def getvaluecounts( url: str, field: str, session: Optional[Session] = None, **kwargs ) -> DataFrame: """Return DataFrame containing value counts (or dict if retdict=True)""" session = session or Session() statstr: str = ( "[{" f'"statisticType":"count","onStatisticField":"{field}",' f'"outStatisticFieldName":"{field}_count"' "}]" ) datadict: dict = { "where": "1=1", "f": "json", "returnGeometry": False, "outFields": field, "outStatistics": statstr, "groupByFieldsForStatistics": field, } if "data" in kwargs: datadict["where"] = kwargs["data"].get("where", "1=1") if "token" in kwargs["data"]: datadict["token"] = kwargs["data"]["token"] xkwargs: dict = {k: v for k, v in kwargs.items() if k != "data"} response: Response = session.post(f"{url}/query", data=datadict, **xkwargs) jsondict: dict = response.json() features: list = jsondict["features"] cc: DataFrame = concat( [DataFrame(x["attributes"], index=[0]) for x in features], ignore_index=True, ) return cc.sort_values(f"{field}_count", ascending=False).reset_index(drop=True) def nestedcount( url: str, fields, session: Optional[Session] = None, **kwargs ) -> DataFrame: """Return DataFrame containing count values for 2-field combinations""" session = session or Session() statstr: str = "".join( ( "[", ",".join( f'{{"statisticType":"count","onStatisticField":"{f}","outStatisticFieldName":"{f}_count"}}' for f in fields ), "]", ) ) datadict: dict = { "where": "1=1", "f": "json", "returnGeometry": False, "outFields": ",".join(fields), "outStatistics": statstr, "groupByFieldsForStatistics": ",".join(fields), } if "data" in kwargs: datadict["where"] = kwargs["data"].get("where", "1=1") if "token" in kwargs["data"]: datadict["token"] = kwargs["data"]["token"] xkwargs: dict = {k: v for k, v in kwargs.items() if k != "data"} response: Response = session.post(f"{url}/query", data=datadict, **xkwargs) jsondict: dict = response.json() features: list = jsondict["features"] cc: DataFrame = concat( [DataFrame(x).T.reset_index(drop=True) for x in features], ignore_index=True, ) dropcol: str = [c for c in cc.columns if c.startswith(f"{fields[0]}_count")][0] rencol: str = [c for c in cc.columns if c.startswith(f"{fields[1]}_count")][0] return ( cc.drop(columns=dropcol) .rename(columns={rencol: "Count"}) .sort_values([fields[0], "Count"], ascending=[True, False]) .reset_index(drop=True) ) ``` #### File: joshuasundance/restgdf/setup.py ```python from setuptools import setup def get_long_description(): with open("README.md", encoding="utf-8") as f: return f.read() setup( name="restgdf", version="0.2", description="improved esri rest io for geopandas", long_description="provides getgdf function and Rest class for gdf from rest io", url="https://github.com/joshuasundance/restgdf", author="<NAME>", author_email="<EMAIL>", license="BSD", packages=["restgdf"], zip_safe=False, install_requires=["requests", "pandas", "fiona", "geopandas"], ) ```
{ "source": "joshuataylor/dagster", "score": 2 }
#### File: dagster_graphql/schema/jobs.py ```python import pendulum import yaml from dagster import check from dagster.core.definitions.job import JobType, RunRequest from dagster.core.host_representation import ( ExternalScheduleExecutionData, ExternalScheduleExecutionErrorData, ) from dagster.core.scheduler.job import ( JobState, JobStatus, JobTick, JobTickStatus, ScheduleJobData, SensorJobData, ) from dagster.core.storage.pipeline_run import PipelineRunsFilter from dagster.core.storage.tags import TagType, get_tag_type from dagster_graphql import dauphin class DauphinJobTick(dauphin.ObjectType): class Meta: name = "JobTick" id = dauphin.NonNull(dauphin.ID) status = dauphin.NonNull("JobTickStatus") timestamp = dauphin.NonNull(dauphin.Float) runIds = dauphin.non_null_list(dauphin.String) error = dauphin.Field("PythonError") skipReason = dauphin.String() runs = dauphin.non_null_list("PipelineRun") def __init__(self, _, job_tick): self._job_tick = check.inst_param(job_tick, "job_tick", JobTick) super(DauphinJobTick, self).__init__( status=job_tick.status, timestamp=job_tick.timestamp, runIds=job_tick.run_ids, error=job_tick.error, skipReason=job_tick.skip_reason, ) def resolve_id(self, _): return "%s:%s" % (self._job_tick.job_origin_id, self._job_tick.timestamp) def resolve_runs(self, graphene_info): instance = graphene_info.context.instance return [ graphene_info.schema.type_named("PipelineRun")(instance.get_run_by_id(run_id)) for run_id in self._job_tick.run_ids if instance.has_run(run_id) ] class DauphinFutureJobTick(dauphin.ObjectType): class Meta(object): name = "FutureJobTick" timestamp = dauphin.NonNull(dauphin.Float) evaluationResult = dauphin.Field("TickEvaluation") def __init__(self, job_state, timestamp): self._job_state = check.inst_param(job_state, "job_state", JobState) self._timestamp = timestamp super(DauphinFutureJobTick, self).__init__( timestamp=check.float_param(timestamp, "timestamp"), ) def resolve_evaluationResult(self, graphene_info): if self._job_state.status != JobStatus.RUNNING: return None if self._job_state.job_type != JobType.SCHEDULE: return None repository_origin = self._job_state.origin.external_repository_origin if not graphene_info.context.has_repository_location( repository_origin.repository_location_origin.location_name ): return None repository_location = graphene_info.context.get_repository_location( repository_origin.repository_location_origin.location_name ) if not repository_location.has_repository(repository_origin.repository_name): return None repository = repository_location.get_repository(repository_origin.repository_name) external_schedule = repository.get_external_job(self._job_state.name) timezone_str = external_schedule.execution_timezone if not timezone_str: timezone_str = pendulum.now().timezone.name next_tick_datetime = next(external_schedule.execution_time_iterator(self._timestamp)) schedule_time = pendulum.instance(next_tick_datetime).in_tz(timezone_str) schedule_data = repository_location.get_external_schedule_execution_data( instance=graphene_info.context.instance, repository_handle=repository.handle, schedule_name=external_schedule.name, scheduled_execution_time=schedule_time, ) return graphene_info.schema.type_named("TickEvaluation")(schedule_data) class DauphinTickEvaluation(dauphin.ObjectType): class Meta(object): name = "TickEvaluation" runRequests = dauphin.List("RunRequest") skipReason = dauphin.String() error = dauphin.Field("PythonError") def __init__(self, schedule_data): check.inst_param( schedule_data, "schedule_data", (ExternalScheduleExecutionData, ExternalScheduleExecutionErrorData), ) error = ( schedule_data.error if isinstance(schedule_data, ExternalScheduleExecutionErrorData) else None ) skip_reason = ( schedule_data.skip_message if isinstance(schedule_data, ExternalScheduleExecutionData) else None ) self._run_requests = ( schedule_data.run_requests if isinstance(schedule_data, ExternalScheduleExecutionData) else None ) super(DauphinTickEvaluation, self).__init__(skipReason=skip_reason, error=error) def resolve_runRequests(self, graphene_info): if not self._run_requests: return self._run_requests return [ graphene_info.schema.type_named("RunRequest")(run_request) for run_request in self._run_requests ] class DauphinRunRequest(dauphin.ObjectType): class Meta(object): name = "RunRequest" runKey = dauphin.String() tags = dauphin.non_null_list("PipelineTag") runConfigYaml = dauphin.NonNull(dauphin.String) def __init__(self, run_request): super(DauphinRunRequest, self).__init__(runKey=run_request.run_key) self._run_request = check.inst_param(run_request, "run_request", RunRequest) def resolve_tags(self, graphene_info): return [ graphene_info.schema.type_named("PipelineTag")(key=key, value=value) for key, value in self._run_request.tags.items() if get_tag_type(key) != TagType.HIDDEN ] def resolve_runConfigYaml(self, _graphene_info): return yaml.dump(self._run_request.run_config, default_flow_style=False, allow_unicode=True) class DauphinFutureJobTicks(dauphin.ObjectType): class Meta(object): name = "FutureJobTicks" results = dauphin.non_null_list("FutureJobTick") cursor = dauphin.NonNull(dauphin.Float) class DauphinJobState(dauphin.ObjectType): class Meta: name = "JobState" id = dauphin.NonNull(dauphin.ID) name = dauphin.NonNull(dauphin.String) jobType = dauphin.NonNull("JobType") status = dauphin.NonNull("JobStatus") repositoryOrigin = dauphin.NonNull("RepositoryOrigin") jobSpecificData = dauphin.Field("JobSpecificData") runs = dauphin.Field(dauphin.non_null_list("PipelineRun"), limit=dauphin.Int()) runsCount = dauphin.NonNull(dauphin.Int) ticks = dauphin.Field(dauphin.non_null_list("JobTick"), limit=dauphin.Int()) runningCount = dauphin.NonNull(dauphin.Int) # remove with cron scheduler def __init__(self, job_state): self._job_state = check.inst_param(job_state, "job_state", JobState) super(DauphinJobState, self).__init__( id=job_state.job_origin_id, name=job_state.name, jobType=job_state.job_type, status=job_state.status, ) def resolve_repositoryOrigin(self, graphene_info): origin = self._job_state.origin.external_repository_origin return graphene_info.schema.type_named("RepositoryOrigin")(origin) def resolve_jobSpecificData(self, graphene_info): if not self._job_state.job_specific_data: return None if self._job_state.job_type == JobType.SENSOR: return graphene_info.schema.type_named("SensorJobData")( self._job_state.job_specific_data ) if self._job_state.job_type == JobType.SCHEDULE: return graphene_info.schema.type_named("ScheduleJobData")( self._job_state.job_specific_data ) return None def resolve_runs(self, graphene_info, **kwargs): if self._job_state.job_type == JobType.SENSOR: filters = PipelineRunsFilter.for_sensor(self._job_state) else: filters = PipelineRunsFilter.for_schedule(self._job_state) return [ graphene_info.schema.type_named("PipelineRun")(r) for r in graphene_info.context.instance.get_runs( filters=filters, limit=kwargs.get("limit"), ) ] def resolve_runsCount(self, graphene_info): if self._job_state.job_type == JobType.SENSOR: filters = PipelineRunsFilter.for_sensor(self._job_state) else: filters = PipelineRunsFilter.for_schedule(self._job_state) return graphene_info.context.instance.get_runs_count(filters=filters) def resolve_ticks(self, graphene_info, limit=None): ticks = graphene_info.context.instance.get_job_ticks(self._job_state.job_origin_id) if limit: ticks = ticks[:limit] return [graphene_info.schema.type_named("JobTick")(graphene_info, tick) for tick in ticks] def resolve_runningCount(self, graphene_info): if self._job_state.job_type == JobType.SENSOR: return 1 if self._job_state.status == JobStatus.RUNNING else 0 else: return graphene_info.context.instance.running_schedule_count( self._job_state.job_origin_id ) class DauphinJobSpecificData(dauphin.Union): class Meta: name = "JobSpecificData" types = ("SensorJobData", "ScheduleJobData") class DauphinSensorJobData(dauphin.ObjectType): class Meta: name = "SensorJobData" lastTickTimestamp = dauphin.Float() lastRunKey = dauphin.String() def __init__(self, job_specific_data): check.inst_param(job_specific_data, "job_specific_data", SensorJobData) super(DauphinSensorJobData, self).__init__( lastTickTimestamp=job_specific_data.last_tick_timestamp, lastRunKey=job_specific_data.last_run_key, ) class DauphinScheduleJobData(dauphin.ObjectType): class Meta: name = "ScheduleJobData" cronSchedule = dauphin.NonNull(dauphin.String) startTimestamp = dauphin.Float() def __init__(self, job_specific_data): check.inst_param(job_specific_data, "job_specific_data", ScheduleJobData) super(DauphinScheduleJobData, self).__init__( cronSchedule=job_specific_data.cron_schedule, startTimestamp=job_specific_data.start_timestamp, ) class DauphinJobStatesOrError(dauphin.Union): class Meta: name = "JobStatesOrError" types = ("JobStates", "PythonError") class DauphinJobStates(dauphin.ObjectType): class Meta: name = "JobStates" results = dauphin.non_null_list("JobState") DauphinJobType = dauphin.Enum.from_enum(JobType) DauphinJobStatus = dauphin.Enum.from_enum(JobStatus) DauphinJobTickStatus = dauphin.Enum.from_enum(JobTickStatus) ``` #### File: schema/schedules/schedules.py ```python import pendulum from dagster import check from dagster.core.host_representation import ExternalSchedule from dagster.seven import get_current_datetime_in_utc, get_timestamp_from_utc_datetime from dagster_graphql import dauphin from dagster_graphql.schema.errors import ( DauphinPythonError, DauphinRepositoryNotFoundError, DauphinScheduleNotFoundError, ) class DauphinScheduleOrError(dauphin.Union): class Meta: name = "ScheduleOrError" types = ("Schedule", DauphinScheduleNotFoundError, DauphinPythonError) class DauphinSchedules(dauphin.ObjectType): class Meta: name = "Schedules" results = dauphin.non_null_list("Schedule") class DauphinSchedulesOrError(dauphin.Union): class Meta: name = "SchedulesOrError" types = (DauphinSchedules, DauphinRepositoryNotFoundError, DauphinPythonError) class DauphinSchedule(dauphin.ObjectType): class Meta: name = "Schedule" id = dauphin.NonNull(dauphin.ID) name = dauphin.NonNull(dauphin.String) cron_schedule = dauphin.NonNull(dauphin.String) pipeline_name = dauphin.NonNull(dauphin.String) solid_selection = dauphin.List(dauphin.String) mode = dauphin.NonNull(dauphin.String) execution_timezone = dauphin.Field(dauphin.String) scheduleState = dauphin.NonNull("JobState") partition_set = dauphin.Field("PartitionSet") futureTicks = dauphin.NonNull("FutureJobTicks", cursor=dauphin.Float(), limit=dauphin.Int()) futureTick = dauphin.NonNull("FutureJobTick", tick_timestamp=dauphin.NonNull(dauphin.Int)) def resolve_id(self, _): return "%s:%s" % (self.name, self.pipeline_name) def resolve_partition_set(self, graphene_info): if self._external_schedule.partition_set_name is None: return None repository = graphene_info.context.get_repository_location( self._external_schedule.handle.location_name ).get_repository(self._external_schedule.handle.repository_name) external_partition_set = repository.get_external_partition_set( self._external_schedule.partition_set_name ) return graphene_info.schema.type_named("PartitionSet")( external_repository_handle=repository.handle, external_partition_set=external_partition_set, ) def resolve_futureTicks(self, graphene_info, **kwargs): cursor = kwargs.get( "cursor", get_timestamp_from_utc_datetime(get_current_datetime_in_utc()) ) limit = kwargs.get("limit", 10) tick_times = [] time_iter = self._external_schedule.execution_time_iterator(cursor) for _ in range(limit): tick_times.append(next(time_iter).timestamp()) future_ticks = [ graphene_info.schema.type_named("FutureJobTick")(self._schedule_state, tick_time) for tick_time in tick_times ] return graphene_info.schema.type_named("FutureJobTicks")( results=future_ticks, cursor=tick_times[-1] + 1 ) def resolve_futureTick(self, graphene_info, tick_timestamp): return graphene_info.schema.type_named("FutureJobTick")( self._schedule_state, float(tick_timestamp) ) def __init__(self, graphene_info, external_schedule): self._external_schedule = check.inst_param( external_schedule, "external_schedule", ExternalSchedule ) self._schedule_state = graphene_info.context.instance.get_job_state( self._external_schedule.get_external_origin_id() ) if not self._schedule_state: # Also include a ScheduleState for a stopped schedule that may not # have a stored database row yet self._schedule_state = self._external_schedule.get_default_job_state( graphene_info.context.instance ) super(DauphinSchedule, self).__init__( name=external_schedule.name, cron_schedule=external_schedule.cron_schedule, pipeline_name=external_schedule.pipeline_name, solid_selection=external_schedule.solid_selection, mode=external_schedule.mode, scheduleState=graphene_info.schema.type_named("JobState")(self._schedule_state), execution_timezone=( self._external_schedule.execution_timezone if self._external_schedule.execution_timezone else pendulum.now().timezone.name ), ) ```
{ "source": "joshua-taylor/dataIntegrator", "score": 2 }
#### File: uploads/core/models.py ```python from __future__ import unicode_literals from django.contrib.auth.models import AbstractUser, BaseUserManager from django.conf import settings from django.db import models from django.utils.translation import ugettext_lazy as _ from django.contrib.auth.models import AbstractBaseUser, PermissionsMixin #for validation of uploaded files: def validate_file_extension(value): import os from django.core.exceptions import ValidationError ext = os.path.splitext(value.name)[1] valid_extensions = ['.csv','.xlsx','.xls'] if not ext.lower() in valid_extensions: raise ValidationError(u'Unsupported file extension, please ensure you are uploading a spreadsheet with a file type ending in "csv", "xlsx", or "xls"') class UserManager(BaseUserManager): """Define a model manager for User model with no username field.""" use_in_migrations = True def _create_user(self, email, password, **extra_fields): """Create and save a User with the given email and password.""" if not email: raise ValueError('The given email must be set') email = self.normalize_email(email) user = self.model(email=email, **extra_fields) user.set_password(password) user.save(using=self._db) return user def create_user(self, email, password=None, **extra_fields): """Create and save a regular User with the given email and password.""" extra_fields.setdefault('is_staff', False) extra_fields.setdefault('is_superuser', False) return self._create_user(email, password, **extra_fields) def create_superuser(self, email, password, **extra_fields): """Create and save a SuperUser with the given email and password.""" extra_fields.setdefault('is_staff', True) extra_fields.setdefault('is_superuser', True) if extra_fields.get('is_staff') is not True: raise ValueError('Superuser must have is_staff=True.') if extra_fields.get('is_superuser') is not True: raise ValueError('Superuser must have is_superuser=True.') return self._create_user(email, password, **extra_fields) class CustomUser(AbstractBaseUser, PermissionsMixin): username = None email = models.EmailField(_('email'), unique=True) USERNAME_FIELD = 'email' REQUIRED_FIELDS = [] objects = UserManager() def __str__(self): return self.email class Document(models.Model): owner = models.ForeignKey( settings.AUTH_USER_MODEL, on_delete=models.CASCADE, ) description = models.CharField(max_length=255, blank=True) document = models.FileField(upload_to='documents/', validators=[validate_file_extension]) uploaded_at = models.DateTimeField(auto_now_add=True) ```
{ "source": "joshuataylor/great_expectations", "score": 3 }
#### File: great_expectations/cli/python_subprocess.py ```python import os import sys import time import traceback from subprocess import PIPE, CalledProcessError, CompletedProcess, Popen, run from typing import Union import click from great_expectations.core import logger def execute_shell_command(command: str) -> int: """ Execute a shell (bash in the present case) command from inside Python program. While developed independently, this function is very similar to the one, offered in this StackOverflow article: https://stackoverflow.com/questions/30993411/environment-variables-using-subprocess-check-output-python :param command: bash command -- as if typed in a shell/Terminal window :return: status code -- 0 if successful; all other values (1 is the most common) indicate an error """ cwd: str = os.getcwd() path_env_var: str = os.pathsep.join([os.environ.get("PATH", os.defpath), cwd]) env: dict = dict(os.environ, PATH=path_env_var) status_code: int = 0 try: res: CompletedProcess = run( args=["bash", "-c", command], stdin=None, input=None, stdout=None, stderr=None, capture_output=True, shell=False, cwd=cwd, timeout=None, check=True, encoding=None, errors=None, text=None, env=env, universal_newlines=True, ) sh_out: str = res.stdout.strip() logger.info(sh_out) except CalledProcessError as cpe: status_code = cpe.returncode sys.stderr.write(cpe.output) sys.stderr.flush() exception_message: str = "A Sub-Process call Exception occurred.\n" exception_traceback: str = traceback.format_exc() exception_message += ( f'{type(cpe).__name__}: "{str(cpe)}". Traceback: "{exception_traceback}".' ) logger.error(exception_message) return status_code def execute_shell_command_with_progress_polling(command: str) -> int: """ Execute a shell (bash in the present case) command from inside Python program with polling (to enable progress bar). :param command: bash command -- as if typed in a shell/Terminal window :return: status code -- 0 if successful; all other values (1 is the most common) indicate an error """ cwd: str = os.getcwd() path_env_var: str = os.pathsep.join([os.environ.get("PATH", os.defpath), cwd]) env: dict = dict(os.environ, PATH=path_env_var) status_code: int bar_length_100_percent: int = 100 max_work_amount: int = bar_length_100_percent poll_period_seconds: int = 1 gathered: int = 0 progress: float with click.progressbar(length=bar_length_100_percent, label=command) as bar: try: with Popen( args=["bash", "-c", command], bufsize=-1, executable=None, stdin=None, stdout=PIPE, stderr=PIPE, preexec_fn=None, close_fds=True, shell=False, cwd=cwd, env=env, universal_newlines=True, startupinfo=None, creationflags=0, restore_signals=True, start_new_session=False, pass_fds=(), encoding=None, errors=None, ) as proc: poll_status_code: Union[int, None] = proc.poll() poll_stdout: str = proc.stdout.readline() while poll_status_code is None: gathered += max([len(poll_stdout), poll_period_seconds]) progress = float(gathered) / max_work_amount excess: float = progress - 1.0 if excess > 0: if 0.0 < excess <= 1.0: max_work_amount += 2.0 * excess * max_work_amount elif 1.0 < excess <= 2.0: max_work_amount += 5.0 * excess * max_work_amount elif 2.0 < excess <= 1.0e1: max_work_amount += 1.0e1 * excess * max_work_amount else: max_work_amount += 1.0e2 * excess * max_work_amount progress = float(gathered) / max_work_amount bar.pos = int(progress * (bar_length_100_percent - 1)) + 1 bar.update(0) time.sleep(poll_period_seconds) poll_status_code = proc.poll() poll_stdout = proc.stdout.readline() status_code = proc.returncode if status_code != poll_status_code: status_code = 1 else: bar.pos = bar_length_100_percent bar.update(0) except CalledProcessError as cpe: status_code = cpe.returncode sys.stderr.write(cpe.output) sys.stderr.flush() exception_message: str = "A Sub-Process call Exception occurred.\n" exception_traceback: str = traceback.format_exc() exception_message += f'{type(cpe).__name__}: "{str(cpe)}". Traceback: "{exception_traceback}".' logger.error(exception_message) return status_code ``` #### File: great_expectations/core/data_context_key.py ```python from abc import ABCMeta, abstractmethod class DataContextKey(object, metaclass=ABCMeta): """DataContextKey objects are used to uniquely identify resources used by the DataContext. A DataContextKey is designed to support clear naming with multiple representations including a hashable version making it suitable for use as the key in a dictionary. """ @abstractmethod def to_tuple(self): pass @classmethod def from_tuple(cls, tuple_): return cls(*tuple_) def to_fixed_length_tuple(self): raise NotImplementedError @classmethod def from_fixed_length_tuple(cls, tuple_): raise NotImplementedError def __eq__(self, other): if not isinstance(other, self.__class__): # Delegate comparison to the other instance's __eq__. return NotImplemented return self.to_tuple() == other.to_tuple() def __ne__(self, other): return not self == other def __hash__(self): return hash(self.to_tuple()) def __repr__(self): return self.__class__.__name__ + "::" + "/".join(self.to_tuple()) class StringKey(DataContextKey): """A simple DataContextKey with just a single string value""" def __init__(self, key): self._key = key def to_tuple(self): return (self._key,) def to_fixed_length_tuple(self): return self.to_tuple() @classmethod def from_fixed_length_tuple(cls, tuple_): return cls.from_tuple(tuple_) ``` #### File: usage_statistics/anonymizers/anonymizer.py ```python import logging from hashlib import md5 from great_expectations.util import load_class logger = logging.getLogger(__name__) class Anonymizer(object): """Anonymize string names in an optionally-consistent way.""" def __init__(self, salt=None): if salt is not None and not isinstance(salt, str): logger.error("invalid salt: must provide a string. Setting a random salt.") salt = None if salt is None: import secrets self._salt = secrets.token_hex(8) else: self._salt = salt @property def salt(self): return self._salt def anonymize(self, string_): salted = self._salt + string_ return md5(salted.encode("utf-8")).hexdigest() def anonymize_object_info( self, anonymized_info_dict, ge_classes, object_=None, object_class=None, object_config=None, ): assert ( object_ or object_class or object_config ), "Must pass either object_ or object_class or object_config." try: if object_class is None and object_ is not None: object_class = object_.__class__ elif object_class is None and object_config is not None: object_class_name = object_config.get("class_name") object_module_name = object_config.get("module_name") object_class = load_class(object_class_name, object_module_name) object_class_name = object_class.__name__ for ge_class in ge_classes: if issubclass(object_class, ge_class): anonymized_info_dict["parent_class"] = ge_class.__name__ if not object_class == ge_class: anonymized_info_dict["anonymized_class"] = self.anonymize( object_class_name ) break if not anonymized_info_dict.get("parent_class"): anonymized_info_dict["parent_class"] = "__not_recognized__" anonymized_info_dict["anonymized_class"] = self.anonymize( object_class_name ) except AttributeError: anonymized_info_dict["parent_class"] = "__not_recognized__" anonymized_info_dict["anonymized_class"] = self.anonymize(object_class_name) return anonymized_info_dict ``` #### File: datasource/batch_kwargs_generator/s3_batch_kwargs_generator.py ```python import datetime import logging import re import warnings from great_expectations.datasource.batch_kwargs_generator.batch_kwargs_generator import ( BatchKwargsGenerator, ) from great_expectations.datasource.types import S3BatchKwargs from great_expectations.exceptions import BatchKwargsError, GreatExpectationsError try: import boto3 except ImportError: boto3 = None logger = logging.getLogger(__name__) class S3GlobReaderBatchKwargsGenerator(BatchKwargsGenerator): """ S3 BatchKwargGenerator provides support for generating batches of data from an S3 bucket. For the S3 batch kwargs generator, assets must be individually defined using a prefix and glob, although several additional configuration parameters are available for assets (see below). Example configuration:: datasources: my_datasource: ... batch_kwargs_generator: my_s3_generator: class_name: S3GlobReaderBatchKwargsGenerator bucket: my_bucket.my_organization.priv reader_method: parquet # This will be automatically inferred from suffix where possible, but can be explicitly specified as well reader_options: # Note that reader options can be specified globally or per-asset sep: "," delimiter: "/" # Note that this is the delimiter for the BUCKET KEYS. By default it is "/" boto3_options: endpoint_url: $S3_ENDPOINT # Use the S3_ENDPOINT environment variable to determine which endpoint to use max_keys: 100 # The maximum number of keys to fetch in a single list_objects request to s3. When accessing batch_kwargs through an iterator, the iterator will silently refetch if more keys were available assets: my_first_asset: prefix: my_first_asset/ regex_filter: .* # The regex filter will filter the results returned by S3 for the key and prefix to only those matching the regex directory_assets: True access_logs: prefix: access_logs regex_filter: access_logs/2019.*\.csv.gz sep: "~" max_keys: 100 """ recognized_batch_parameters = { "data_asset_name", "partition_id", "reader_method", "reader_options", "limit", } # FIXME add tests for new partitioner functionality def __init__( self, name="default", datasource=None, bucket=None, reader_options=None, assets=None, delimiter="/", reader_method=None, boto3_options=None, max_keys=1000, ): """Initialize a new S3GlobReaderBatchKwargsGenerator Args: name: the name of the batch kwargs generator datasource: the datasource to which it is attached bucket: the name of the s3 bucket from which it generates batch_kwargs reader_options: options passed to the datasource reader method assets: asset configuration (see class docstring for more information) delimiter: the BUCKET KEY delimiter reader_method: the reader_method to include in generated batch_kwargs boto3_options: dictionary of key-value pairs to use when creating boto3 client or resource objects max_keys: the maximum number of keys to fetch in a single list_objects request to s3 """ super().__init__(name, datasource=datasource) if reader_options is None: reader_options = {} if assets is None: assets = {"default": {"prefix": "", "regex_filter": ".*"}} self._bucket = bucket self._reader_method = reader_method self._reader_options = reader_options self._assets = assets self._delimiter = delimiter if boto3_options is None: boto3_options = {} self._max_keys = max_keys self._iterators = {} try: self._s3 = boto3.client("s3", **boto3_options) except TypeError: raise ( ImportError( "Unable to load boto3, which is required for S3 batch kwargs generator" ) ) @property def reader_options(self): return self._reader_options @property def assets(self): return self._assets @property def bucket(self): return self._bucket def get_available_data_asset_names(self): return {"names": [(key, "file") for key in self._assets.keys()]} def _get_iterator( self, data_asset_name, reader_method=None, reader_options=None, limit=None ): logger.debug( "Beginning S3GlobReaderBatchKwargsGenerator _get_iterator for data_asset_name: %s" % data_asset_name ) if data_asset_name not in self._assets: batch_kwargs = { "data_asset_name": data_asset_name, "reader_method": reader_method, "reader_options": reader_options, "limit": limit, } raise BatchKwargsError( "Unknown asset_name %s" % data_asset_name, batch_kwargs ) if data_asset_name not in self._iterators: self._iterators[data_asset_name] = {} asset_config = self._assets[data_asset_name] return self._build_asset_iterator( asset_config=asset_config, iterator_dict=self._iterators[data_asset_name], reader_method=reader_method, reader_options=reader_options, limit=limit, ) def _build_batch_kwargs_path_iter(self, path_list, reader_options=None, limit=None): for path in path_list: yield self._build_batch_kwargs( path, reader_options=reader_options, limit=limit ) def _build_batch_kwargs(self, batch_parameters): try: data_asset_name = batch_parameters.pop("data_asset_name") except KeyError: raise BatchKwargsError( "Unable to build BatchKwargs: no name provided in batch_parameters.", batch_kwargs=batch_parameters, ) partition_id = batch_parameters.pop("partition_id", None) batch_kwargs = self._datasource.process_batch_parameters(batch_parameters) if partition_id: try: asset_config = self._assets[data_asset_name] except KeyError: raise GreatExpectationsError( "No asset config found for asset %s" % data_asset_name ) if data_asset_name not in self._iterators: self._iterators[data_asset_name] = {} iterator_dict = self._iterators[data_asset_name] for key in self._get_asset_options(asset_config, iterator_dict): if ( self._partitioner(key=key, asset_config=asset_config) == partition_id ): batch_kwargs = self._build_batch_kwargs_from_key( key=key, asset_config=asset_config, reader_options=batch_parameters.get( "reader_options" ), # handled in generator limit=batch_kwargs.get( "limit" ), # may have been processed from datasource ) if batch_kwargs is None: raise BatchKwargsError( "Unable to identify partition %s for asset %s" % (partition_id, data_asset_name), {data_asset_name: data_asset_name, partition_id: partition_id}, ) return batch_kwargs else: return self.yield_batch_kwargs( data_asset_name=data_asset_name, **batch_parameters, **batch_kwargs ) def _build_batch_kwargs_from_key( self, key, asset_config=None, reader_method=None, reader_options=None, limit=None, ): batch_kwargs = { "s3": "s3a://" + self.bucket + "/" + key, "reader_options": self.reader_options, } if asset_config.get("reader_options"): batch_kwargs["reader_options"].update(asset_config.get("reader_options")) if reader_options is not None: batch_kwargs["reader_options"].update(reader_options) if self._reader_method is not None: batch_kwargs["reader_method"] = self._reader_method if asset_config.get("reader_method"): batch_kwargs["reader_method"] = asset_config.get("reader_method") if reader_method is not None: batch_kwargs["reader_method"] = reader_method if limit: batch_kwargs["limit"] = limit return S3BatchKwargs(batch_kwargs) def _get_asset_options(self, asset_config, iterator_dict): query_options = { "Bucket": self.bucket, "Delimiter": asset_config.get("delimiter", self._delimiter), "Prefix": asset_config.get("prefix", None), "MaxKeys": asset_config.get("max_keys", self._max_keys), } directory_assets = asset_config.get("directory_assets", False) if "continuation_token" in iterator_dict: query_options.update( {"ContinuationToken": iterator_dict["continuation_token"]} ) logger.debug( "Fetching objects from S3 with query options: %s" % str(query_options) ) asset_options = self._s3.list_objects_v2(**query_options) if directory_assets: if "CommonPrefixes" not in asset_options: raise BatchKwargsError( "Unable to build batch_kwargs. The asset may not be configured correctly. If directory assets " "are requested, then common prefixes must be returned.", { "asset_configuration": asset_config, "contents": asset_options["Contents"] if "Contents" in asset_options else None, }, ) keys = [item["Prefix"] for item in asset_options["CommonPrefixes"]] else: if "Contents" not in asset_options: raise BatchKwargsError( "Unable to build batch_kwargs. The asset may not be configured correctly. If s3 returned common " "prefixes it may not have been able to identify desired keys, and they are included in the " "incomplete batch_kwargs object returned with this error.", { "asset_configuration": asset_config, "common_prefixes": asset_options["CommonPrefixes"] if "CommonPrefixes" in asset_options else None, }, ) keys = [ item["Key"] for item in asset_options["Contents"] if item["Size"] > 0 ] keys = [ key for key in filter( lambda x: re.match(asset_config.get("regex_filter", ".*"), x) is not None, keys, ) ] for key in keys: yield key if asset_options["IsTruncated"]: iterator_dict["continuation_token"] = asset_options["NextContinuationToken"] # Recursively fetch more for key in self._get_asset_options(asset_config, iterator_dict): yield key elif "continuation_token" in iterator_dict: # Make sure we clear the token once we've gotten fully through del iterator_dict["continuation_token"] def _build_asset_iterator( self, asset_config, iterator_dict, reader_method=None, reader_options=None, limit=None, ): for key in self._get_asset_options(asset_config, iterator_dict): yield self._build_batch_kwargs_from_key( key, asset_config, reader_method=None, reader_options=reader_options, limit=limit, ) # TODO: deprecate generator_asset argument def get_available_partition_ids(self, generator_asset=None, data_asset_name=None): assert (generator_asset and not data_asset_name) or ( not generator_asset and data_asset_name ), "Please provide either generator_asset or data_asset_name." if generator_asset: warnings.warn( "The 'generator_asset' argument will be deprecated and renamed to 'data_asset_name'. " "Please update code accordingly.", DeprecationWarning, ) data_asset_name = generator_asset if data_asset_name not in self._iterators: self._iterators[data_asset_name] = {} iterator_dict = self._iterators[data_asset_name] asset_config = self._assets[data_asset_name] available_ids = [ self._partitioner(key=key, asset_config=asset_config) for key in self._get_asset_options(data_asset_name, iterator_dict) ] return available_ids def _partitioner(self, key, asset_config): if "partition_regex" in asset_config: match_group_id = asset_config.get("match_group_id", 1) matches = re.match(asset_config["partition_regex"], key) # In the case that there is a defined regex, the user *wanted* a partition. But it didn't match. # So, we'll add a *sortable* id if matches is None: logger.warning("No match found for key: %s" % key) return ( datetime.datetime.now(datetime.timezone.utc).strftime( "%Y%m%dT%H%M%S.%fZ" ) + "__unmatched" ) else: try: return matches.group(match_group_id) except IndexError: logger.warning( "No match group %d in key %s" % (match_group_id, key) ) return ( datetime.datetime.now(datetime.timezone.utc).strftime( "%Y%m%dT%H%M%S.%fZ" ) + "__no_match_group" ) # If there is no partitioner defined, fall back on using the path as a partition_id else: prefix = asset_config.get("prefix", "") if key.startswith(prefix): key = key[len(prefix) :] return key ``` #### File: great_expectations/datasource/sparkdf_datasource.py ```python import datetime import logging import uuid from great_expectations.datasource.types import BatchMarkers from great_expectations.types import ClassConfig from ..core.batch import Batch from ..dataset import SparkDFDataset from ..exceptions import BatchKwargsError from ..types.configurations import classConfigSchema from .datasource import Datasource logger = logging.getLogger(__name__) try: from pyspark.sql import SparkSession, DataFrame except ImportError: SparkSession = None # TODO: review logging more detail here logger.debug( "Unable to load pyspark; install optional spark dependency for support." ) class SparkDFDatasource(Datasource): """The SparkDFDatasource produces SparkDFDatasets and supports generators capable of interacting with local filesystem (the default subdir_reader batch kwargs generator) and databricks notebooks. Accepted Batch Kwargs: - PathBatchKwargs ("path" or "s3" keys) - InMemoryBatchKwargs ("dataset" key) - QueryBatchKwargs ("query" key) """ recognized_batch_parameters = { "reader_method", "reader_options", "limit", "dataset_options", } @classmethod def build_configuration( cls, data_asset_type=None, batch_kwargs_generators=None, spark_config=None, **kwargs ): """ Build a full configuration object for a datasource, potentially including generators with defaults. Args: data_asset_type: A ClassConfig dictionary batch_kwargs_generators: Generator configuration dictionary spark_config: dictionary of key-value pairs to pass to the spark builder **kwargs: Additional kwargs to be part of the datasource constructor's initialization Returns: A complete datasource configuration. """ if data_asset_type is None: data_asset_type = { "class_name": "SparkDFDataset", "module_name": "great_expectations.dataset", } else: data_asset_type = classConfigSchema.dump(ClassConfig(**data_asset_type)) if spark_config is None: spark_config = {} configuration = kwargs configuration.update( {"data_asset_type": data_asset_type, "spark_config": spark_config} ) if batch_kwargs_generators: configuration["batch_kwargs_generators"] = batch_kwargs_generators return configuration def __init__( self, name="default", data_context=None, data_asset_type=None, batch_kwargs_generators=None, spark_config=None, **kwargs ): """Build a new SparkDFDatasource instance. Args: name: the name of this datasource data_context: the DataContext to which this datasource is connected data_asset_type: ClassConfig describing the data_asset type to be constructed by this datasource batch_kwargs_generators: generator configuration spark_config: dictionary of key-value pairs to be set on the spark session builder **kwargs: Additional """ configuration_with_defaults = SparkDFDatasource.build_configuration( data_asset_type, batch_kwargs_generators, spark_config, **kwargs ) data_asset_type = configuration_with_defaults.pop("data_asset_type") batch_kwargs_generators = configuration_with_defaults.pop( "batch_kwargs_generators", None ) super().__init__( name, data_context=data_context, data_asset_type=data_asset_type, batch_kwargs_generators=batch_kwargs_generators, **configuration_with_defaults ) try: builder = SparkSession.builder for k, v in configuration_with_defaults["spark_config"].items(): builder.config(k, v) self.spark = builder.getOrCreate() except AttributeError: logger.error( "Unable to load spark context; install optional spark dependency for support." ) self.spark = None self._build_generators() def process_batch_parameters( self, reader_method=None, reader_options=None, limit=None, dataset_options=None ): batch_kwargs = super().process_batch_parameters( limit=limit, dataset_options=dataset_options, ) # Apply globally-configured reader options first if reader_options: # Then update with any locally-specified reader options if not batch_kwargs.get("reader_options"): batch_kwargs["reader_options"] = dict() batch_kwargs["reader_options"].update(reader_options) if reader_method is not None: batch_kwargs["reader_method"] = reader_method return batch_kwargs def get_batch(self, batch_kwargs, batch_parameters=None): """class-private implementation of get_data_asset""" if self.spark is None: logger.error("No spark session available") return None reader_options = batch_kwargs.get("reader_options", {}) # We need to build batch_markers to be used with the DataFrame batch_markers = BatchMarkers( { "ge_load_time": datetime.datetime.now(datetime.timezone.utc).strftime( "%Y%m%dT%H%M%S.%fZ" ) } ) if "path" in batch_kwargs or "s3" in batch_kwargs: # If both are present, let s3 override path = batch_kwargs.get("path") path = batch_kwargs.get("s3", path) reader_method = batch_kwargs.get("reader_method") reader = self.spark.read for option in reader_options.items(): reader = reader.option(*option) reader_fn = self._get_reader_fn(reader, reader_method, path) df = reader_fn(path) elif "query" in batch_kwargs: df = self.spark.sql(batch_kwargs["query"]) elif "dataset" in batch_kwargs and isinstance( batch_kwargs["dataset"], (DataFrame, SparkDFDataset) ): df = batch_kwargs.get("dataset") # We don't want to store the actual dataframe in kwargs; copy the remaining batch_kwargs batch_kwargs = {k: batch_kwargs[k] for k in batch_kwargs if k != "dataset"} if isinstance(df, SparkDFDataset): # Grab just the spark_df reference, since we want to override everything else df = df.spark_df # Record this in the kwargs *and* the id batch_kwargs["SparkDFRef"] = True batch_kwargs["ge_batch_id"] = str(uuid.uuid1()) else: raise BatchKwargsError( "Unrecognized batch_kwargs for spark_source", batch_kwargs ) if "limit" in batch_kwargs: df = df.limit(batch_kwargs["limit"]) return Batch( datasource_name=self.name, batch_kwargs=batch_kwargs, data=df, batch_parameters=batch_parameters, batch_markers=batch_markers, data_context=self._data_context, ) @staticmethod def guess_reader_method_from_path(path): if path.endswith(".csv") or path.endswith(".tsv"): return {"reader_method": "csv"} elif path.endswith(".parquet"): return {"reader_method": "parquet"} raise BatchKwargsError( "Unable to determine reader method from path: %s" % path, {"path": path} ) def _get_reader_fn(self, reader, reader_method=None, path=None): """Static helper for providing reader_fn Args: reader: the base spark reader to use; this should have had reader_options applied already reader_method: the name of the reader_method to use, if specified path (str): the path to use to guess reader_method if it was not specified Returns: ReaderMethod to use for the filepath """ if reader_method is None and path is None: raise BatchKwargsError( "Unable to determine spark reader function without reader_method or path.", {"reader_method": reader_method}, ) if reader_method is None: reader_method = self.guess_reader_method_from_path(path=path)[ "reader_method" ] try: if reader_method.lower() == "delta": return reader.format("delta").load return getattr(reader, reader_method) except AttributeError: raise BatchKwargsError( "Unable to find reader_method %s in spark." % reader_method, {"reader_method": reader_method}, ) ``` #### File: great_expectations/profile/multi_batch_validation_meta_analysis.py ```python # import logging # from collections import defaultdict # import collections # # import warnings # from great_expectations.datasource.types import BatchKwargs # from great_expectations.profile.metrics_store import MetricsStore # from great_expectations.profile.metrics_utils import ( # set_nested_value_in_dict, # get_nested_value_from_dict # ) # # logger = logging.getLogger(__name__) # # # class MultiBatchValidationMetaAnalysis(object): # """MultiBatchValidationMetaAnalysis takes a list of validation results # (same expectation suite evaluated against multiple batches) # and returns multi-batch metrics from these results. # # """ # # # (expectation type, result key) -> (expectation kwargs that should become metric kwargs) # # result key is a string or a tuple if the key is nested. same for the expectation kwargs # # # NOTE: Eugene: 2019-09-04: Add more entries # EXPECTATION_DEFINED_METRICS_LOOKUP_TABLE = { # ('expect_column_values_to_not_be_null', ('unexpected_percent',)): ('column',), # note: "," is important - it makes it a tuple! # ('expect_column_quantile_values_to_be_between', ('observed_value', 'values')): ( # 'column', ('quantile_ranges', 'quantiles')), # # } # # @classmethod # def add_expectation_defined_metric_for_result_key(cls, d, result, data_asset_name, batch_kwargs, metrics_store, t=()): # for key, value in d.items(): # if isinstance(value, collections.Mapping): # cls.add_expectation_defined_metric_for_result_key(value, result, data_asset_name, batch_kwargs, metrics_store, t + (key,)) # else: # # result_key_lookup_key = key if t==() else (t + (key,)) # result_key_lookup_key = (t + (key,)) # full_lookup_key = (result.expectation_config.expectation_type, result_key_lookup_key) # metric_kwargs_names = cls.EXPECTATION_DEFINED_METRICS_LOOKUP_TABLE.get(full_lookup_key) # if metric_kwargs_names: # metric_kwargs = {} # for metric_kwarg_name in metric_kwargs_names: # if isinstance(metric_kwarg_name, tuple): # set_nested_value_in_dict(metric_kwargs, metric_kwarg_name, get_nested_value_from_dict(result.expectation_config['kwargs'], metric_kwarg_name)) # else: # metric_kwargs[metric_kwarg_name] = result.expectation_config['kwargs'][metric_kwarg_name] # # metrics_store.add_single_batch_expectation_defined_metric( # data_asset_name, # batch_kwargs.batch_fingerprint, # result.expectation_config.expectation_type, # result_key_lookup_key, # metric_kwargs, # value) # # @classmethod # def add_metrics_from_single_expectation_validation_result(cls, result, data_asset_name, batch_kwargs, metrics_store): # """ # Extract metrics from a validation result of one expectation and store them. # Depending on the type of the expectation, this method chooses the key # in the result dictionary that should be returned as a metric # (e.g., "observed_value" or "unexpected_percent"). # # :param result: a validation result dictionary of one expectation # :param data_asset_name: # :param batch_kwargs: BatchKwargs of the batch that was validated # :param metrics_store # """ # # NOTE: Eugene: 2019-09-04: Add more entries # expectation_metrics = { # # 'expect_column_distinct_values_to_be_in_set' # # 'expect_column_kl_divergence_to_be_less_than', # 'expect_column_max_to_be_between': { # 'observed_value': 'column_max' # }, # 'expect_column_mean_to_be_between': { # 'observed_value': 'column_mean' # }, # 'expect_column_median_to_be_between': { # 'observed_value': 'column_median' # }, # 'expect_column_min_to_be_between': { # 'observed_value': 'column_min' # }, # 'expect_column_proportion_of_unique_values_to_be_between': { # 'observed_value': 'column_proportion_of_unique_values' # }, # # 'expect_column_quantile_values_to_be_between', # 'expect_column_stdev_to_be_between': { # 'observed_value': 'column_stdev' # }, # 'expect_column_unique_value_count_to_be_between': { # 'observed_value': 'column_unique_count' # }, # # 'expect_column_values_to_be_between', # # 'expect_column_values_to_be_in_set', # # 'expect_column_values_to_be_in_type_list', # 'expect_column_values_to_be_unique': { # # }, # # 'expect_table_columns_to_match_ordered_list', # 'expect_table_row_count_to_be_between': { # 'observed_value': 'row_count' # } # # } # # metrics = [] # if result.get('result'): # entry = expectation_metrics.get(result.expectation_config.expectation_type) # if entry: # for key in result['result'].keys(): # metric_name = entry.get(key) # if metric_name: # metric_kwargs = {"column": result.expectation_config['kwargs']['column']} if result.expectation_config[ # 'kwargs'].get('column') else {} # # metrics_store.add_single_batch_metric( # data_asset_name, # batch_kwargs.batch_fingerprint, # metric_name, # metric_kwargs, # result['result'][key]) # # else: # cls.add_expectation_defined_metric_for_result_key(result['result'], result, # data_asset_name, batch_kwargs, metrics_store) # # @classmethod # def get_metrics(cls, validation_results_list, data_context): # """ # Get multi-batch metrics from a list of validation results # # :param validation_results_list: a list validation results where each item is a # result of validating a batch against the same expectation suite # :return: a dict: {multi-batch metric urn -> multi-batch metric} # """ # # # NOTE: Eugene: 2019-09-04: For now we are creating an instance of metrics store here # # but it probably should be some singleton obtained from a factory/manager. # metrics_store = MetricsStore() # # batch_kwargs_list = [] # for j, one_batch_validation_results in enumerate(validation_results_list): # # print(json.dumps(one_batch_validation_results['meta'], indent=2)) # batch_kwargs = BatchKwargs(one_batch_validation_results['meta']['batch_kwargs']) # batch_kwargs_list.append(batch_kwargs) # # # NOTE: Eugene 2019-08-25: when validation results be a typed object, # # that object will have data_asset_name property method that will # # return a NormalizedDataAssetName. Until then we are constructing # # a NormalizedDataAssetName from the string that we fetch from the dictionary # normalized_data_asset_name = data_context.normalize_data_asset_name( # one_batch_validation_results['meta']['data_asset_name']) # for i, result in enumerate(one_batch_validation_results['results']): # cls.add_metrics_from_single_expectation_validation_result(result, # normalized_data_asset_name, # batch_kwargs, # metrics_store) # # mb_metrics = metrics_store.get_multi_batch_metrics(batch_kwargs_list) # # return mb_metrics ``` #### File: render/renderer/slack_renderer.py ```python import datetime from ...core.id_dict import BatchKwargs from .renderer import Renderer class SlackRenderer(Renderer): def __init__(self): super().__init__() def render(self, validation_result=None): # Defaults timestamp = datetime.datetime.strftime( datetime.datetime.now(datetime.timezone.utc), "%x %X %Z" ) default_text = ( "No validation occurred. Please ensure you passed a validation_result." ) status = "Failed :x:" title_block = { "type": "section", "text": {"type": "mrkdwn", "text": default_text,}, } query = { "blocks": [title_block], # this abbreviated root level "text" will show up in the notification and not the message "text": default_text, } # TODO improve this nested logic if validation_result: expectation_suite_name = validation_result.meta.get( "expectation_suite_name", "__no_expectation_suite_name__" ) n_checks_succeeded = validation_result.statistics["successful_expectations"] n_checks = validation_result.statistics["evaluated_expectations"] run_id = validation_result.meta.get("run_id", "__no_run_id__") batch_id = BatchKwargs( validation_result.meta.get("batch_kwargs", {}) ).to_id() check_details_text = "*{}* of *{}* expectations were met".format( n_checks_succeeded, n_checks ) if validation_result.success: status = "Success :tada:" summary_text = """*Batch Validation Status*: {} *Expectation suite name*: `{}` *Run ID*: `{}` *Batch ID*: `{}` *Timestamp*: `{}` *Summary*: {}""".format( status, expectation_suite_name, run_id, batch_id, timestamp, check_details_text, ) query["blocks"][0]["text"]["text"] = summary_text # this abbreviated root level "text" will show up in the notification and not the message query["text"] = "{}: {}".format(expectation_suite_name, status) if "result_reference" in validation_result.meta: report_element = { "type": "section", "text": { "type": "mrkdwn", "text": "- *Validation Report*: {}".format( validation_result.meta["result_reference"] ), }, } query["blocks"].append(report_element) if "dataset_reference" in validation_result.meta: dataset_element = { "type": "section", "text": { "type": "mrkdwn", "text": "- *Validation data asset*: {}".format( validation_result.meta["dataset_reference"] ), }, } query["blocks"].append(dataset_element) custom_blocks = self._custom_blocks(evr=validation_result) if custom_blocks: query["blocks"].append(custom_blocks) documentation_url = "https://docs.greatexpectations.io/en/latest/tutorials/getting_started/set_up_data_docs.html#_getting_started__set_up_data_docs" footer_section = { "type": "context", "elements": [ { "type": "mrkdwn", "text": "Learn how to review validation results in Data Docs: {}".format( documentation_url ), } ], } divider_block = {"type": "divider"} query["blocks"].append(divider_block) query["blocks"].append(footer_section) return query def _custom_blocks(self, evr): return None ``` #### File: great_expectations/validation_operators/util.py ```python import logging import requests logger = logging.getLogger(__name__) def send_slack_notification(query, slack_webhook): session = requests.Session() try: response = session.post(url=slack_webhook, json=query) except requests.ConnectionError: logger.warning( "Failed to connect to Slack webhook at {url} " "after {max_retries} retries.".format(url=slack_webhook, max_retries=10) ) except Exception as e: logger.error(str(e)) else: if response.status_code != 200: logger.warning( "Request to Slack webhook at {url} " "returned error {status_code}: {text}".format( url=slack_webhook, status_code=response.status_code, text=response.text, ) ) else: return "Slack notification succeeded." ``` #### File: tests/cli/utils.py ```python import traceback from _pytest.logging import LogCaptureFixture from click.testing import Result def assert_dict_key_and_val_in_stdout(dict_, stdout): """Use when stdout contains color info and command chars""" for key, val in dict_.items(): if isinstance(val, dict): assert key in stdout assert_dict_key_and_val_in_stdout(val, stdout) else: assert key in stdout assert str(val) in stdout def assert_no_logging_messages_or_tracebacks(my_caplog, click_result): """ Use this assertion in all CLI tests unless you have a very good reason. Without this assertion, it is easy to let errors and tracebacks bubble up to users without being detected, unless you are manually inspecting the console output (stderr and stdout), as well as logging output from every test. Usage: ``` def test_my_stuff(caplog): ... result = runner.invoke(...) ... assert_no_logging_messages_or_tracebacks(caplog, result) ``` :param my_caplog: the caplog pytest fixutre :param click_result: the Result object returned from click runner.invoke() """ assert_no_logging_messages(my_caplog) assert_no_tracebacks(click_result) def assert_no_logging_messages(my_caplog): """ Assert no logging output messages. :param my_caplog: the caplog pytest fixutre """ assert isinstance( my_caplog, LogCaptureFixture ), "Please pass in the caplog object from your test." messages = my_caplog.messages assert isinstance(messages, list) if messages: print("Found logging messages:\n") print("\n".join([m for m in messages])) assert not messages def assert_no_tracebacks(click_result): """ Assert no tracebacks. :param click_result: the Result object returned from click runner.invoke() """ assert isinstance( click_result, Result ), "Please pass in the click runner invoke result object from your test." if click_result.exc_info: # introspect the call stack to make sure no exceptions found there way through # https://docs.python.org/2/library/sys.html#sys.exc_info _type, value, _traceback = click_result.exc_info if not isinstance(value, SystemExit): # SystemExit is a known "good" exit type print("".join(traceback.format_tb(_traceback))) assert False, "Found exception of type {} with message {}".format( _type, value ) if not isinstance(click_result.exception, SystemExit): # Ignore a SystemeExit, because some commands intentionally exit in an error state assert not click_result.exception, "Found exception {}".format( click_result.exception ) assert ( "traceback" not in click_result.output.lower() ), "Found a traceback in the console output: {}".format(click_result.output) assert ( "traceback" not in click_result.stdout.lower() ), "Found a traceback in the console output: {}".format(click_result.stdout) try: assert ( "traceback" not in click_result.stderr.lower() ), "Found a traceback in the console output: {}".format(click_result.stderr) except ValueError as ve: # sometimes stderr is not captured separately pass ``` #### File: tests/core/test_urn.py ```python from urllib.parse import parse_qs import pytest from pyparsing import ParseException from great_expectations.core.urn import ge_urn def test_ge_validations_urn(): # We should be able to parse validations urns urn = ( "urn:great_expectations:validations:my_suite:expect_something.observed_value:query=s%20tring&query=" "string3&query2=string2" ) res = ge_urn.parseString(urn) assert res["urn_type"] == "validations" assert res["expectation_suite_name"] == "my_suite" assert res["metric_name"] == "expect_something.observed_value" kwargs_dict = parse_qs(res["metric_kwargs"]) assert kwargs_dict == {"query": ["s tring", "string3"], "query2": ["string2"]} # no kwargs is ok urn = "urn:great_expectations:validations:my_suite:expect_something.observed_value" res = ge_urn.parseString(urn) assert res["urn_type"] == "validations" assert res["expectation_suite_name"] == "my_suite" assert res["metric_name"] == "expect_something.observed_value" assert "metric_kwargs" not in res def test_ge_metrics_urn(): urn = "urn:great_expectations:metrics:20200403T1234.324Z:my_suite:expect_something.observed_value:column=mycol" res = ge_urn.parseString(urn) assert res["urn_type"] == "metrics" assert res["run_id"] == "20200403T1234.324Z" assert res["expectation_suite_name"] == "my_suite" assert res["metric_name"] == "expect_something.observed_value" kwargs_dict = parse_qs(res["metric_kwargs"]) assert kwargs_dict == {"column": ["mycol"]} # No kwargs is ok urn = "urn:great_expectations:metrics:20200403T1234.324Z:my_suite:expect_something.observed_value" res = ge_urn.parseString(urn) assert res["urn_type"] == "metrics" assert res["run_id"] == "20200403T1234.324Z" assert res["expectation_suite_name"] == "my_suite" assert res["metric_name"] == "expect_something.observed_value" assert "kwargs_dict" not in res def test_ge_stores_urn(): urn = "urn:great_expectations:stores:my_store:mymetric:kw=param" res = ge_urn.parseString(urn) assert res["urn_type"] == "stores" assert res["store_name"] == "my_store" assert res["metric_name"] == "mymetric" kwargs_dict = parse_qs(res["metric_kwargs"]) assert kwargs_dict == { "kw": ["param"], } # No kwargs is ok urn = "urn:great_expectations:stores:my_store:mymetric" res = ge_urn.parseString(urn) assert res["urn_type"] == "stores" assert res["store_name"] == "my_store" assert res["metric_name"] == "mymetric" assert "metric_kwargs" not in res def test_invalid_urn(): # Must start with "urn:great_expectations" with pytest.raises(ParseException) as e: ge_urn.parseString("not_a_ge_urn") assert "not_a_ge_urn" in e.value.line # Must have one of the recognized types with pytest.raises(ParseException) as e: ge_urn.parseString("urn:great_expectations:foo:bar:baz:bin:barg") assert "urn:great_expectations:foo:bar:baz:bin:barg" in e.value.line # Cannot have too many parts with pytest.raises(ParseException) as e: ge_urn.parseString( "urn:great_expectations:validations:foo:bar:baz:bin:barg:boo" ) assert "urn:great_expectations:validations:foo:bar:baz:bin:barg:boo" in e.value.line ``` #### File: tests/render/test_data_documentation_site_builder.py ```python import os import shutil import pytest from freezegun import freeze_time from great_expectations import DataContext from great_expectations.core import RunIdentifier from great_expectations.data_context.store import ExpectationsStore, ValidationsStore from great_expectations.data_context.types.resource_identifiers import ( ExpectationSuiteIdentifier, ValidationResultIdentifier, ) from great_expectations.data_context.util import ( file_relative_path, instantiate_class_from_config, ) from great_expectations.render.renderer.site_builder import SiteBuilder def assert_how_to_buttons( context, index_page_locator_info: str, index_links_dict: dict, show_how_to_buttons=True, ): """Helper function to assert presence or non-presence of how-to buttons and related content in various Data Docs pages. """ # these are simple checks for presence of certain page elements show_walkthrough_button = "Show Walkthrough" walkthrough_modal = "Great Expectations Walkthrough" cta_footer = ( "To continue exploring Great Expectations check out one of these tutorials..." ) how_to_edit_suite_button = "How to Edit This Suite" how_to_edit_suite_modal = "How to Edit This Expectation Suite" action_card = "Actions" how_to_page_elements_dict = { "index_pages": [show_walkthrough_button, walkthrough_modal, cta_footer], "expectation_suites": [ how_to_edit_suite_button, how_to_edit_suite_modal, show_walkthrough_button, walkthrough_modal, ], "validation_results": [ how_to_edit_suite_button, how_to_edit_suite_modal, show_walkthrough_button, walkthrough_modal, ], "profiling_results": [action_card, show_walkthrough_button, walkthrough_modal], } data_docs_site_dir = os.path.join( context._context_root_directory, context._project_config.data_docs_sites["local_site"]["store_backend"][ "base_directory" ], ) page_paths_dict = { "index_pages": [index_page_locator_info[7:]], "expectation_suites": [ os.path.join(data_docs_site_dir, link_dict["filepath"]) for link_dict in index_links_dict.get("expectations_links", []) ], "validation_results": [ os.path.join(data_docs_site_dir, link_dict["filepath"]) for link_dict in index_links_dict.get("validations_links", []) ], "profiling_results": [ os.path.join(data_docs_site_dir, link_dict["filepath"]) for link_dict in index_links_dict.get("profiling_links", []) ], } for page_type, page_paths in page_paths_dict.items(): for page_path in page_paths: with open(page_path, "r") as f: page = f.read() for how_to_element in how_to_page_elements_dict[page_type]: if show_how_to_buttons: assert how_to_element in page else: assert how_to_element not in page @freeze_time("09/26/2019 13:42:41") @pytest.mark.rendered_output def test_configuration_driven_site_builder( site_builder_data_context_with_html_store_titanic_random, ): context = site_builder_data_context_with_html_store_titanic_random context.add_validation_operator( "validate_and_store", { "class_name": "ActionListValidationOperator", "action_list": [ { "name": "store_validation_result", "action": { "class_name": "StoreValidationResultAction", "target_store_name": "validations_store", }, }, { "name": "extract_and_store_eval_parameters", "action": { "class_name": "StoreEvaluationParametersAction", "target_store_name": "evaluation_parameter_store", }, }, ], }, ) # profiling the Titanic datasource will generate one expectation suite and one validation # that is a profiling result datasource_name = "titanic" data_asset_name = "Titanic" profiler_name = "BasicDatasetProfiler" generator_name = "subdir_reader" context.profile_datasource(datasource_name) # creating another validation result using the profiler's suite (no need to use a new expectation suite # for this test). having two validation results - one with run id "profiling" - allows us to test # the logic of run_name_filter that helps filtering validation results to be included in # the profiling and the validation sections. batch_kwargs = context.build_batch_kwargs( datasource=datasource_name, batch_kwargs_generator=generator_name, data_asset_name=data_asset_name, ) expectation_suite_name = "{}.{}.{}.{}".format( datasource_name, generator_name, data_asset_name, profiler_name ) batch = context.get_batch( batch_kwargs=batch_kwargs, expectation_suite_name=expectation_suite_name, ) run_id = RunIdentifier(run_name="test_run_id_12345") context.run_validation_operator( assets_to_validate=[batch], run_id=run_id, validation_operator_name="validate_and_store", ) data_docs_config = context._project_config.data_docs_sites local_site_config = data_docs_config["local_site"] validations_set = set(context.stores["validations_store"].list_keys()) assert len(validations_set) == 6 assert ( ValidationResultIdentifier( expectation_suite_identifier=ExpectationSuiteIdentifier( expectation_suite_name=expectation_suite_name ), run_id="test_run_id_12345", batch_identifier=batch.batch_id, ) in validations_set ) assert ( ValidationResultIdentifier( expectation_suite_identifier=ExpectationSuiteIdentifier( expectation_suite_name=expectation_suite_name ), run_id="profiling", batch_identifier=batch.batch_id, ) in validations_set ) assert ( ValidationResultIdentifier( expectation_suite_identifier=ExpectationSuiteIdentifier( expectation_suite_name=expectation_suite_name ), run_id="profiling", batch_identifier=batch.batch_id, ) in validations_set ) assert ( ValidationResultIdentifier( expectation_suite_identifier=ExpectationSuiteIdentifier( expectation_suite_name=expectation_suite_name ), run_id="profiling", batch_identifier=batch.batch_id, ) in validations_set ) site_builder = SiteBuilder( data_context=context, runtime_environment={"root_directory": context.root_directory}, **local_site_config ) res = site_builder.build() index_page_locator_info = res[0] index_links_dict = res[1] # assert that how-to buttons and related elements are rendered (default behavior) assert_how_to_buttons(context, index_page_locator_info, index_links_dict) # print(json.dumps(index_page_locator_info, indent=2)) assert ( index_page_locator_info == "file://" + context.root_directory + "/uncommitted/data_docs/local_site/index.html" ) # print(json.dumps(index_links_dict, indent=2)) assert "site_name" in index_links_dict assert "expectations_links" in index_links_dict assert len(index_links_dict["expectations_links"]) == 5 assert "validations_links" in index_links_dict assert ( len(index_links_dict["validations_links"]) == 1 ), """ The only rendered validation should be the one not generated by the profiler """ assert "profiling_links" in index_links_dict assert len(index_links_dict["profiling_links"]) == 5 # save documentation locally os.makedirs("./tests/render/output", exist_ok=True) os.makedirs("./tests/render/output/documentation", exist_ok=True) if os.path.isdir("./tests/render/output/documentation"): shutil.rmtree("./tests/render/output/documentation") shutil.copytree( os.path.join( site_builder_data_context_with_html_store_titanic_random.root_directory, "uncommitted/data_docs/", ), "./tests/render/output/documentation", ) # let's create another validation result and run the site builder to add it # to the data docs # the operator does not have an StoreValidationResultAction action configured, so the site # will not be updated without our call to site builder expectation_suite_path_component = expectation_suite_name.replace(".", "/") validation_result_page_path = os.path.join( site_builder.site_index_builder.target_store.store_backends[ ValidationResultIdentifier ].full_base_directory, "validations", expectation_suite_path_component, run_id.run_name, run_id.run_time.strftime("%Y%m%dT%H%M%S.%fZ"), batch.batch_id + ".html", ) ts_last_mod_0 = os.path.getmtime(validation_result_page_path) run_id = RunIdentifier(run_name="test_run_id_12346") operator_result = context.run_validation_operator( assets_to_validate=[batch], run_id=run_id, validation_operator_name="validate_and_store", ) validation_result_id = operator_result.list_validation_result_identifiers()[0] res = site_builder.build(resource_identifiers=[validation_result_id]) index_links_dict = res[1] # verify that an additional validation result HTML file was generated assert len(index_links_dict["validations_links"]) == 2 site_builder.site_index_builder.target_store.store_backends[ ValidationResultIdentifier ].full_base_directory # verify that the validation result HTML file rendered in the previous run was NOT updated ts_last_mod_1 = os.path.getmtime(validation_result_page_path) assert ts_last_mod_0 == ts_last_mod_1 # verify that the new method of the site builder that returns the URL of the HTML file that renders # a resource new_validation_result_page_path = os.path.join( site_builder.site_index_builder.target_store.store_backends[ ValidationResultIdentifier ].full_base_directory, "validations", expectation_suite_path_component, run_id.run_name, run_id.run_time.strftime("%Y%m%dT%H%M%S.%fZ"), batch.batch_id + ".html", ) html_url = site_builder.get_resource_url(resource_identifier=validation_result_id) assert "file://" + new_validation_result_page_path == html_url html_url = site_builder.get_resource_url() assert ( "file://" + os.path.join( site_builder.site_index_builder.target_store.store_backends[ ValidationResultIdentifier ].full_base_directory, "index.html", ) == html_url ) team_site_config = data_docs_config["team_site"] team_site_builder = SiteBuilder( data_context=context, runtime_environment={"root_directory": context.root_directory}, **team_site_config ) team_site_builder.clean_site() obs = [ url_dict for url_dict in context.get_docs_sites_urls(site_name="team_site") if url_dict.get("site_url") ] assert len(obs) == 0 # exercise clean_site site_builder.clean_site() obs = [ url_dict for url_dict in context.get_docs_sites_urls() if url_dict.get("site_url") ] assert len(obs) == 0 # restore site context = site_builder_data_context_with_html_store_titanic_random site_builder = SiteBuilder( data_context=context, runtime_environment={"root_directory": context.root_directory}, **local_site_config ) res = site_builder.build() @pytest.mark.rendered_output def test_configuration_driven_site_builder_without_how_to_buttons( site_builder_data_context_with_html_store_titanic_random, ): context = site_builder_data_context_with_html_store_titanic_random context.add_validation_operator( "validate_and_store", { "class_name": "ActionListValidationOperator", "action_list": [ { "name": "store_validation_result", "action": { "class_name": "StoreValidationResultAction", "target_store_name": "validations_store", }, }, { "name": "extract_and_store_eval_parameters", "action": { "class_name": "StoreEvaluationParametersAction", "target_store_name": "evaluation_parameter_store", }, }, ], }, ) # profiling the Titanic datasource will generate one expectation suite and one validation # that is a profiling result datasource_name = "titanic" data_asset_name = "Titanic" profiler_name = "BasicDatasetProfiler" generator_name = "subdir_reader" context.profile_datasource(datasource_name) # creating another validation result using the profiler's suite (no need to use a new expectation suite # for this test). having two validation results - one with run id "profiling" - allows us to test # the logic of run_name_filter that helps filtering validation results to be included in # the profiling and the validation sections. batch_kwargs = context.build_batch_kwargs( datasource=datasource_name, batch_kwargs_generator=generator_name, name=data_asset_name, ) expectation_suite_name = "{}.{}.{}.{}".format( datasource_name, generator_name, data_asset_name, profiler_name ) batch = context.get_batch( batch_kwargs=batch_kwargs, expectation_suite_name=expectation_suite_name, ) run_id = "test_run_id_12345" context.run_validation_operator( assets_to_validate=[batch], run_id=run_id, validation_operator_name="validate_and_store", ) data_docs_config = context._project_config.data_docs_sites local_site_config = data_docs_config["local_site"] # set this flag to false in config to hide how-to buttons and related elements local_site_config["show_how_to_buttons"] = False site_builder = SiteBuilder( data_context=context, runtime_environment={"root_directory": context.root_directory}, **local_site_config ) res = site_builder.build() index_page_locator_info = res[0] index_links_dict = res[1] assert_how_to_buttons( context, index_page_locator_info, index_links_dict, show_how_to_buttons=False ) def test_site_builder_with_custom_site_section_builders_config(tmp_path_factory): """Test that site builder can handle partially specified custom site_section_builders config""" base_dir = str(tmp_path_factory.mktemp("project_dir")) project_dir = os.path.join(base_dir, "project_path") os.mkdir(project_dir) # fixture config swaps site section builder source stores and specifies custom run_name_filters shutil.copy( file_relative_path( __file__, "../test_fixtures/great_expectations_custom_local_site_config.yml" ), str(os.path.join(project_dir, "great_expectations.yml")), ) context = DataContext(context_root_dir=project_dir) local_site_config = context._project_config.data_docs_sites.get("local_site") module_name = "great_expectations.render.renderer.site_builder" site_builder = instantiate_class_from_config( config=local_site_config, runtime_environment={ "data_context": context, "root_directory": context.root_directory, "site_name": "local_site", }, config_defaults={"module_name": module_name}, ) site_section_builders = site_builder.site_section_builders expectations_site_section_builder = site_section_builders["expectations"] assert isinstance(expectations_site_section_builder.source_store, ValidationsStore) validations_site_section_builder = site_section_builders["validations"] assert isinstance(validations_site_section_builder.source_store, ExpectationsStore) assert validations_site_section_builder.run_name_filter == { "ne": "custom_validations_filter" } profiling_site_section_builder = site_section_builders["profiling"] assert isinstance(validations_site_section_builder.source_store, ExpectationsStore) assert profiling_site_section_builder.run_name_filter == { "eq": "custom_profiling_filter" } @freeze_time("09/24/2019 23:18:36") def test_site_builder_usage_statistics_enabled( site_builder_data_context_with_html_store_titanic_random, ): context = site_builder_data_context_with_html_store_titanic_random sites = ( site_builder_data_context_with_html_store_titanic_random._project_config_with_variables_substituted.data_docs_sites ) local_site_config = sites["local_site"] site_builder = instantiate_class_from_config( config=local_site_config, runtime_environment={ "data_context": context, "root_directory": context.root_directory, "site_name": "local_site", }, config_defaults={ "module_name": "great_expectations.render.renderer.site_builder" }, ) site_builder_return_obj = site_builder.build() index_page_path = site_builder_return_obj[0] links_dict = site_builder_return_obj[1] expectation_suite_pages = [ file_relative_path(index_page_path, expectation_suite_link_dict["filepath"]) for expectation_suite_link_dict in links_dict["expectations_links"] ] profiling_results_pages = [ file_relative_path(index_page_path, profiling_link_dict["filepath"]) for profiling_link_dict in links_dict["profiling_links"] ] page_paths_to_check = ( [index_page_path] + expectation_suite_pages + profiling_results_pages ) expected_logo_url = "https://great-expectations-web-assets.s3.us-east-2.amazonaws.com/logo-long.png?d=20190924T231836.000000Z&dataContextId=f43d4897-385f-4366-82b0-1a8eda2bf79c" for page_path in page_paths_to_check: with open(page_path[7:]) as f: page_contents = f.read() assert expected_logo_url in page_contents @freeze_time("09/24/2019 23:18:36") def test_site_builder_usage_statistics_disabled( site_builder_data_context_with_html_store_titanic_random, ): context = site_builder_data_context_with_html_store_titanic_random context._project_config.anonymous_usage_statistics = { "enabled": False, "data_context_id": "f43d4897-385f-4366-82b0-1a8eda2bf79c", } data_context_id = context.anonymous_usage_statistics["data_context_id"] sites = ( site_builder_data_context_with_html_store_titanic_random._project_config_with_variables_substituted.data_docs_sites ) local_site_config = sites["local_site"] site_builder = instantiate_class_from_config( config=local_site_config, runtime_environment={ "data_context": context, "root_directory": context.root_directory, "site_name": "local_site", }, config_defaults={ "module_name": "great_expectations.render.renderer.site_builder" }, ) site_builder_return_obj = site_builder.build() index_page_path = site_builder_return_obj[0] links_dict = site_builder_return_obj[1] expectation_suite_pages = [ file_relative_path(index_page_path, expectation_suite_link_dict["filepath"]) for expectation_suite_link_dict in links_dict["expectations_links"] ] profiling_results_pages = [ file_relative_path(index_page_path, profiling_link_dict["filepath"]) for profiling_link_dict in links_dict["profiling_links"] ] page_paths_to_check = ( [index_page_path] + expectation_suite_pages + profiling_results_pages ) expected_logo_url = "https://great-expectations-web-assets.s3.us-east-2.amazonaws.com/logo-long.png?d=20190924T231836.000000Z" for page_path in page_paths_to_check: with open(page_path[7:]) as f: page_contents = f.read() assert expected_logo_url in page_contents assert data_context_id not in page_contents ```
{ "source": "joshuatee/Posh-Stem", "score": 3 }
#### File: examples/client_usage/Using_SocksiPy.py ```python import socks # SocksiPy module import socket import urllib # Set socks proxy and wrap the urllib module socks.setdefaultproxy(socks.PROXY_TYPE_SOCKS5, '127.0.0.1', SOCKS_PORT) socket.socket = socks.socksocket # Perform DNS resolution through the socket def getaddrinfo(*args): return [(socket.AF_INET, socket.SOCK_STREAM, 6, '', (args[0], args[1]))] socket.getaddrinfo = getaddrinfo def query(url): """ Uses urllib to fetch a site using SocksiPy for Tor over the SOCKS_PORT. """ try: return urllib.urlopen(url).read() except: return "Unable to reach %s" % url ```
{ "source": "joshuathayer/spot", "score": 2 }
#### File: joshuathayer/spot/example.py ```python from PyQt5.QtWidgets import QApplication, QWidget, QPushButton, \ QVBoxLayout, QListWidget, QListWidgetItem import spot.system import logging import time import requests import uuid import random logging.basicConfig(level=logging.INFO, format='%(message)s') logger = logging.getLogger(__name__) class Timer: def act(self, msg, tell, create): target = msg['target'] target_msg = msg['target_msg'] time.sleep(msg['sleep']) tell(target, target_msg) class Counter: def __init__(self): self.count = 0 def act(self, msg, tell, create): self.count += 1 tell('fetcher', self.count) class Fetcher: def act(self, msg, tell, create): req_id = str(uuid.uuid4()) tell('receiver', {'req_id': req_id, 'action': 'newreq'}) timed_actor = create(Timer()) tell(timed_actor.name, {'sleep': 2, 'target': 'receiver', 'target_msg': {'req_id': req_id, 'action': 'timeout'}}) # simulate a slow connection time.sleep(random.randint(0, 3)) response = requests.get("https://jsonplaceholder.typicode.com/todos/{}".format(msg)) resp = response.json() tell('receiver', {'req_id': req_id, 'action': 'resp', 'resp': resp}) class Receiver: def __init__(self): self.current_reqs = {} def act(self, msg, tell, create): req_id = msg['req_id'] action = msg['action'] if action == 'newreq': self.current_reqs[req_id] = True elif action == 'timeout' and req_id in self.current_reqs: logger.info("Request timed out!") del self.current_reqs[req_id] elif action == 'resp' and req_id in self.current_reqs: del self.current_reqs[req_id] resp = msg['resp'] tell('db', {'type': 'new-todo', 'body': resp}) tell('item-list', {'type': 'new-todo', 'body': resp}) else: logger.warn("Not sure what to do with {} {}".format(action, req_id)) # single point of DB mutation class DB: def __init__(self): self.state = {} def act(self, msg, tell, create): msg_type = msg['type'] if msg_type == 'new-todo': title = msg['body']['title'] msg_id = msg['body']['id'] self.state[msg_id] = title class ItemList: def __init__(self, item_list): self.item_list = item_list def act(self, msg, tell, create): msg_type = msg['type'] if msg_type == 'new-todo': title = msg['body']['title'] QListWidgetItem(title, self.item_list) app = QApplication([]) window = QWidget() layout = QVBoxLayout() get = QPushButton('Fetch Item') item_list = QListWidget() system = spot.system.ActorSystem(app) system.create_actor(Counter(), 'counter') system.create_actor(DB(), 'db') system.create_actor(Fetcher(), 'fetcher') system.create_actor(Receiver(), 'receiver') system.create_actor(ItemList(item_list), 'item-list') get.clicked.connect(lambda: system.tell('counter', "click!")) layout.addWidget(get) layout.addWidget(item_list) window.setLayout(layout) window.show() app.exec_() ``` #### File: spot/spot/system.py ```python import uuid import logging import random import collections from PyQt5.QtCore import QObject, pyqtSignal, pyqtSlot, \ QEvent, QRunnable, QThreadPool, QMutex logger = logging.getLogger(__name__) class Actor(QRunnable): done = pyqtSignal() def __init__(self, runnable, tell, create, done, name=None): super().__init__() if name is None: name = str(uuid.uuid4()) self.setAutoDelete(False) self.runnable = runnable self.tell = tell self.create = create self.name = name self.done = done self.inbox = collections.deque() @pyqtSlot() def run(self): # blocks... if len(list(self.inbox)) > 0: self.runnable.act(self.inbox.pop(), self.tell, self.create) else: logger.warning("Unexpectedly ran an actor ({}) with an empty inbox.".format(self.name)) # unblocked... self.done(self.name) class ActorSystem(QObject): actor_event = pyqtSignal(object) def __init__(self, app): super().__init__() self.app = app self.actors = {} self.threads = QThreadPool() self.tickmutex = QMutex() self.running = set() self.actor_event.connect(self.event) def event(self, e): self.tick() return False def create_actor(self, actor_class, actor_name=None): actor = Actor(actor_class, lambda t, m: self.tell(t, m), lambda a: self.create_actor(a), self.actor_done, actor_name) name = actor.name if name in self.actors: logger.info("Replacing existing actor at {}".format(name)) self.actors[name] = actor self.actor_event.emit(None) return actor def tell(self, target, message): # this can run in an arbitrary thread # we'll assume `appendLeft` is thread safe if target in self.actors: self.actors[target].inbox.appendleft(message) else: logger.info("Was asked to add to an actor which does not exist") self.actor_event.emit(None) def actor_done(self, name): self.running.remove(name) self.actor_event.emit(None) def tick(self): if self.tickmutex.tryLock(): readys = list(filter(lambda v: True if len(v.inbox) > 0 and v.name not in self.running else False, self.actors.values())) random.shuffle(readys) for actor in readys: self.running.add(actor.name) self.threads.start(actor) self.tickmutex.unlock() else: logger.info("Failed to get tick mutex") ```
{ "source": "joshuathompsonlindley/OpenWordle", "score": 2 }
#### File: support/preprocessors/transform_env.py ```python import argparse import os import re import subprocess from typing import Dict, List CAPTURE = re.compile(r'{env: (.*?)}') parser = argparse.ArgumentParser( description='Transforms environment variables to their values in code.') parser.add_argument('-f', '--files', nargs='+', help='List of files to process. (Required)', required=True) def get_sed_commands(path: str) -> List[List[str]]: commitable_changes: List[List[str]] = [] file: str = '' with open(path, 'r', encoding="UTF-8") as opened: file = ''.join(opened.readlines()) matches = re.findall(CAPTURE, file) for match in matches: commitable_changes.append([ 'sed', '-i', '-e', 's/{env: ' + match + '}/' + os.environ[match] + '/g', path ]) return commitable_changes def processor(file_list: List[str]) -> Dict[str, List[List[str]]]: change_list: Dict[str, List[List[str]]] = {} for file in file_list: commands = get_sed_commands(file) if commands: change_list[file] = commands return change_list def commit_changes(change_list: Dict[str, List[List[str]]]) -> None: for file, commands in change_list.items(): print(f'+ Transforming environment variables for file {file}') for command in commands: try: subprocess.run(command, check=True) except subprocess.CalledProcessError: print('+ Error running that command.') if __name__ == '__main__': args = parser.parse_args() files: List[str] = parser.parse_args()._get_kwargs()[0][1] changes: Dict[str, List[List[str]]] = processor(files) commit_changes(changes) ``` #### File: OpenWordle/openwordle_server/model.py ```python from datetime import datetime from typing import Optional from openwordle_server import database class Words(database.Model): __tablename__ = 'words' date = database.Column(database.Text, primary_key=True, nullable=False, unique=True) word = database.Column(database.Text, nullable=False, unique=True) def get_word_for_date() -> str: date: datetime = datetime.today() date_string: str = date.strftime('%Y%m%d') result: Words = Words.query.filter(Words.date == date_string).first() word: str = result.word return word def get_word_by_word(word: str) -> Optional[Words]: return Words.query.filter(Words.word == word).first() ``` #### File: test/integration/test_is_valid_word_api.py ```python from typing import List from openwordle_server.config import Config from openwordle_server.test.context import OpenWordleApiTestCase, ApiResponse class IsValidWordApiTest(OpenWordleApiTestCase): def setUp(self) -> None: OpenWordleApiTestCase.setUpClass() self.correct_words: List[str] = [] self.wrong_words: List[str] = [ ('a' * Config.GAMEBOARD_ROW_LENGTH), ('b' * Config.GAMEBOARD_ROW_LENGTH), ('c' * Config.GAMEBOARD_ROW_LENGTH), ('d' * Config.GAMEBOARD_ROW_LENGTH), ('e' * Config.GAMEBOARD_ROW_LENGTH) ] with open(Config.TXT_FILE, 'r', encoding='UTF-8') as file: for _ in range(5): line: str = file.readline().lower().replace('\n', '') self.correct_words.append(line) def get(self, word: str) -> ApiResponse: request = self.api.get( f'/is_valid_word/{word}', follow_redirects=True ) return ApiResponse( request.status_code, request.json.get('is_valid_word') ) def test_is_valid_word_correct_1(self): result: ApiResponse = self.get(self.correct_words[0]) self.assertEqual(result.response_code, 200) self.assertTrue(result.response_txt) def test_is_valid_word_correct_2(self): result: ApiResponse = self.get(self.correct_words[1]) self.assertEqual(result.response_code, 200) self.assertTrue(result.response_txt) def test_is_valid_word_correct_3(self): result: ApiResponse = self.get(self.correct_words[2]) self.assertEqual(result.response_code, 200) self.assertTrue(result.response_txt) def test_is_valid_word_correct_4(self): result: ApiResponse = self.get(self.correct_words[3]) self.assertEqual(result.response_code, 200) self.assertTrue(result.response_txt) def test_is_valid_word_correct_5(self): result: ApiResponse = self.get(self.correct_words[4]) self.assertEqual(result.response_code, 200) self.assertTrue(result.response_txt) def test_is_valid_word_wrong_1(self): result: ApiResponse = self.get(self.wrong_words[0]) self.assertEqual(result.response_code, 200) self.assertFalse(result.response_txt) def test_is_valid_word_wrong_2(self): result: ApiResponse = self.get(self.wrong_words[1]) self.assertEqual(result.response_code, 200) self.assertFalse(result.response_txt) def test_is_valid_word_wrong_3(self): result: ApiResponse = self.get(self.wrong_words[2]) self.assertEqual(result.response_code, 200) self.assertFalse(result.response_txt) def test_is_valid_word_wrong_4(self): result: ApiResponse = self.get(self.wrong_words[3]) self.assertEqual(result.response_code, 200) self.assertFalse(result.response_txt) def test_is_valid_word_wrong_5(self): result: ApiResponse = self.get(self.wrong_words[4]) self.assertEqual(result.response_code, 200) self.assertFalse(result.response_txt) ``` #### File: test/unit/test_highlight_api.py ```python from unittest import TestCase from openwordle_server.highlight import highlight_word class HighlightAPITestCase(TestCase): def test_wrong_word(self) -> None: correct_word: str = 'tests' given_word: str = 'qwryu' result: str = highlight_word(given_word, correct_word) expected: str = '-----' self.assertEqual(result, expected) def test_correct_word(self) -> None: correct_word: str = 'tests' given_word: str = 'tests' result: str = highlight_word(given_word, correct_word) expected: str = '+++++' self.assertEqual(result, expected) def test_simple_most_correct_wrong_letter(self) -> None: correct_word: str = 'tests' given_word: str = 'testa' result: str = highlight_word(given_word, correct_word) expected: str = '++++-' self.assertEqual(result, expected) def test_complex_most_correct_wrong_letter(self) -> None: correct_word: str = 'tests' given_word: str = 'tasts' result: str = highlight_word(given_word, correct_word) expected: str = '+-+++' self.assertEqual(result, expected) def test_simple_jumbled_word(self) -> None: correct_word: str = 'tests' given_word: str = 'stest' result: str = highlight_word(given_word, correct_word) expected: str = '?????' self.assertEqual(result, expected) def test_complex_jumbled_word(self) -> None: correct_word: str = 'tests' given_word: str = 'tasst' result: str = highlight_word(given_word, correct_word) expected: str = '+-+??' self.assertEqual(result, expected) def test_lookahead_jumbled_word_in_right_place(self) -> None: correct_word: str = 'tests' given_word: str = 'sests' result: str = highlight_word(given_word, correct_word) expected: str = '-++++' self.assertEqual(result, expected) def test_lookahead_jumbled_word_in_wrong_place(self) -> None: correct_word: str = 'tests' given_word: str = 'sestt' result: str = highlight_word(given_word, correct_word) expected: str = '?+++?' self.assertEqual(result, expected) ```
{ "source": "JoshuaTianYangLiu/tcgen", "score": 4 }
#### File: tcgen/tcgen/generator.py ```python from abc import ABC, abstractmethod class Generator(ABC): @abstractmethod def generate(self, case_num): pass def p(self, *args): self.output += ' '.join(map(str, args)) self.output += '\n' print = p def get_test_cases(self, N): ret = [] for case_num in range(N): self.output = '' self.generate(case_num) ret.append(self.output) return ret def get_test_case(self): self.output = '' self.generate(1) return self.output ``` #### File: tcgen/tests/test_random.py ```python from tcgen.utils.constants import LOWERCASE from tcgen.utils import random, InvalidRangeException import pytest class TestRandom: def setup_method(self): random.seed(0) def test_randint(self): with pytest.raises(TypeError): random.randint() with pytest.raises(TypeError): random.randint(1, 2, 3, 4) with pytest.raises(InvalidRangeException): random.randint(10, 1) with pytest.raises(InvalidRangeException): random.randint(1, 2, False) assert random.randint(1, 100000) == 50495 assert random.randint(L=12345, U=123456) == 111691 assert random.randint(1, 3, False) == 2 def test_wrandint(self): with pytest.raises(TypeError): random.wrandint() with pytest.raises(InvalidRangeException): random.wrandint(10, 1) with pytest.raises(InvalidRangeException): random.wrandint(1, 2, inclusive=False) assert random.wrandint(1, 100000) == 99347 assert random.wrandint(1, 3, inclusive=False) == 2 assert random.wrandint(1, 100000, -10) == 12430 def test_noise(self): with pytest.raises(InvalidRangeException): random.noise(10, 1, [1, 1, 2, 3, 4]) assert random.noise(1, 1000, [0, 0, 0, 0, 9999, 0, 0]) == [865, 395, 777, 912, 10430, 42, 266] assert random.noise(1, 100, []) == [] def test_randfloat(self): with pytest.raises(InvalidRangeException): random.randfloat(1.15, 1.13, 2) with pytest.raises(InvalidRangeException): random.randfloat(1.00, 1.02, 1, inclusive=False) with pytest.raises(InvalidRangeException): random.randfloat(1.0, 1.1, 1, inclusive=False) assert random.randfloat(1.15, 2.35, 2) == 2.22 assert random.randfloat(1.15, 2.35, 3) == 1.938 assert random.randfloat(100, 200, 1, inclusive=False) == 177.7 assert random.randfloat(1.00, 1.02, 2, inclusive=False) == 1.01 assert random.randfloat(1.0, 1.2, 1, inclusive=False) == 1.1 def test_wrandfloat(self): with pytest.raises(InvalidRangeException): random.wrandfloat(1.15, 1.13, 2) with pytest.raises(InvalidRangeException): random.wrandfloat(1.00, 1.02, 1, inclusive=False) with pytest.raises(InvalidRangeException): random.wrandfloat(1.0, 1.1, 1, inclusive=False) assert random.wrandfloat(1.15, 2.35, 2) == 2.27 assert random.wrandfloat(1.15, 2.35, 3, wcnt=-10) == 1.435 assert random.wrandfloat(100, 200, 1, inclusive=False) == 181.9 assert random.wrandfloat(100, 200, 1, wcnt=-10, inclusive=False) == 110.2 def test_choice(self): with pytest.raises(TypeError): random.choice('') assert random.choice('.#') == '#' assert random.choice('.#') == '#' assert random.choice('.#') == '.' assert random.choice(LOWERCASE) == 'i' def test_wchoice(self): assert random.wchoice(LOWERCASE, list(range(1, len(LOWERCASE) + 1)), wcnt=10) == 'a' assert random.wchoice(LOWERCASE, list(range(1, len(LOWERCASE) + 1)), wcnt=-50) == 'z' with pytest.raises(TypeError): random.wchoice('', [], wcnt=-50) with pytest.raises(TypeError): random.wchoice('aaa', [], wcnt=-50) def test_randprime(self): with pytest.raises(TypeError): random.randprime() with pytest.raises(TypeError): random.randprime(1, 2, 3, 4) with pytest.raises(InvalidRangeException): random.randprime(10, 1) with pytest.raises(InvalidRangeException): random.randprime(1, 2, False) assert random.randprime(1, 100000) == 50497 assert random.randprime(L=12345, U=123456) == 111697 assert random.randprime(1, 3, False) == 2 def test_wrandprime(self): with pytest.raises(TypeError): random.wrandprime() with pytest.raises(InvalidRangeException): random.wrandprime(10, 1) with pytest.raises(InvalidRangeException): random.wrandprime(1, 2, inclusive=False) with pytest.raises(ValueError): random.wrandprime(8, 10) assert random.wrandprime(1, 100000) == 99347 assert random.wrandprime(1, 3, inclusive=False) == 2 assert random.wrandprime(1, 100000, -10) == 12433 ```
{ "source": "JoshuaTPritchett/30DaysCoding", "score": 2 }
#### File: python_programming/basics/exceptions.py ```python class MyError(Exception): pass class MylistError(MyError): def __init__(self, expression, message): self.expression_error = expression self.message = message ``` #### File: python_programming/basics/module.py ```python def print_test(): print 'yo you made your first module' test_string = 'YO THIS IS A TEST STRING' ``` #### File: python_programming/basics/mylist.py ```python import random class MyList(object): def __init__(self): self.mylist = [] def fill_list(self): for i in xrange(60): self.mylist.append(random.randint(1,1000)) def empty_list(self): #empties memory location # self.mylist = [] will repoint the pointer # to a new list in memory self.mylist[:] = [] def append(self, value): self.mylist.append(value) def append_position(self, position, value): self.mylist.insert(position, value) ``` #### File: python_programming/basics/new_basic.py ```python try: from mylist import Mylist except ImportError as lerr: print lerr Mylist = None try: from exceptions import MyListError except ImportError as merr: print merr MyListError = None from sys import exit from mylist import MyList def end(reason): print reason, "Exiting.." exit(0) def start(): try: mlist = MyList() mlist.fill_list() for value in mlist.mylist: print value mlist.mylist.append(60) if 60 in mlist.mylist: end("This is over!") except MyListError as lerr: print lerr #:HMM start() ``` #### File: python_programming/test_basics/number.py ```python import math import unittest """ Bruh here is a fun test of basic python skills """ def convert_binary(num): test = [] a = num while a > 0: test.insert(0,str(a%2))#little edian format a = a/(2) ret_value = ''.join(e for e in test) #create a string return ret_value def convert_binary_decimal(str_num): a = 0 twos_power = 0 #convert back to big endian for s in str_num[::-1]: if s == '1': a = a + 2 ** twos_power twos_power = twos_power + 1 return a def convert_binary_octal(str_num): octal_string = '' twos_power = 0 tracking_num = 0 for s in str_num[::-1]: if s == '1': tracking_num = tracking_num + (2 ** twos_power) twos_power = twos_power + 1 if twos_power % 3 == 0: octal_string = str(tracking_num) + octal_string twos_power = 0 tracking_num = 0 if tracking_num != 0: octal_string = str(tracking_num) + octal_string return octal_string def convert_binary_hex(): return def built_in_binary(x): return bin(x)[2:] print convert_binary(8) print convert_binary_octal('100011') print convert_binary_octal('0111') print convert_binary_octal('1000') print convert_binary_decimal('1000') #Shit I suck lemme practice that slicing stuff.... """ s = '<NAME>' print s[4:8] # from 4-8 print s[4:] # to end of string print s[:4] # 1-4 print s[:] #why? well because... print s[:6] + s[6:] #this is trill but liek .... print s[-3:-1] print s[4:8:1] #from 4-8 skip by 1 print s[4:8:2] #from 4-8 skip by 2 print s[8:4:-1] # 8-4 going by 1 print s[4::-1] #from 4-1 going by -1 going backwards print s[:4:-1] #end of string to 4 -1 going backwards """ #LETS PRACTICE HERP #print s[len(s): -3:1] #print s[0:1] #print s[6:9] #print s[len(s):-3:1] #str_num = '01000' #list_A = [str_num[i:i-3] for i in range(len(str_num) - 1, -1, -3)] """for i in range(len(str_num), 0, -n): if i - n > 0: print str_num[i-n:i] else: print str_num[i - (i % n): i] """ #GOT IT ```
{ "source": "joshuauk1026/smt", "score": 3 }
#### File: applications/tests/test_mixed_integer.py ```python import unittest import numpy as np import matplotlib matplotlib.use("Agg") from smt.applications.mixed_integer import ( MixedIntegerContext, MixedIntegerSamplingMethod, FLOAT, ENUM, INT, check_xspec_consistency, unfold_xlimits_with_continuous_limits, fold_with_enum_index, unfold_with_enum_mask, compute_unfolded_dimension, cast_to_enum_value, cast_to_mixed_integer, ) from smt.problems import Sphere from smt.sampling_methods import LHS from smt.surrogate_models import KRG class TestMixedInteger(unittest.TestCase): def test_check_xspec_consistency(self): xtypes = [FLOAT, (ENUM, 3), INT] xlimits = [[-10, 10], ["blue", "red", "green"]] # Bad dimension with self.assertRaises(ValueError): check_xspec_consistency(xtypes, xlimits) xtypes = [FLOAT, (ENUM, 3), INT] xlimits = [[-10, 10], ["blue", "red"], [-10, 10]] # Bad enum with self.assertRaises(ValueError): check_xspec_consistency(xtypes, xlimits) def test_krg_mixed_3D(self): xtypes = [FLOAT, (ENUM, 3), INT] xlimits = [[-10, 10], ["blue", "red", "green"], [-10, 10]] mixint = MixedIntegerContext(xtypes, xlimits) sm = mixint.build_surrogate_model(KRG(print_prediction=False)) sampling = mixint.build_sampling_method(LHS, criterion="m") fun = Sphere(ndim=3) xt = sampling(20) yt = fun(xt) sm.set_training_values(xt, yt) sm.train() eq_check = True for i in range(xt.shape[0]): if abs(float(xt[i, :][2]) - int(float(xt[i, :][2]))) > 10e-8: eq_check = False if not (xt[i, :][1] == 0 or xt[i, :][1] == 1 or xt[i, :][1] == 2): eq_check = False self.assertTrue(eq_check) def test_compute_unfolded_dimension(self): xtypes = [FLOAT, (ENUM, 2)] self.assertEqual(3, compute_unfolded_dimension(xtypes)) def test_unfold_with_enum_mask(self): xtypes = [FLOAT, (ENUM, 2)] x = np.array([[1.5, 1], [1.5, 0], [1.5, 1]]) expected = [[1.5, 0, 1], [1.5, 1, 0], [1.5, 0, 1]] self.assertListEqual(expected, unfold_with_enum_mask(xtypes, x).tolist()) def test_unfold_with_enum_mask_with_enum_first(self): xtypes = [(ENUM, 2), FLOAT] x = np.array([[1, 1.5], [0, 1.5], [1, 1.5]]) expected = [[0, 1, 1.5], [1, 0, 1.5], [0, 1, 1.5]] self.assertListEqual(expected, unfold_with_enum_mask(xtypes, x).tolist()) def test_fold_with_enum_index(self): xtypes = [FLOAT, (ENUM, 2)] x = np.array([[1.5, 0, 1], [1.5, 1, 0], [1.5, 0, 1]]) expected = [[1.5, 1], [1.5, 0], [1.5, 1]] self.assertListEqual(expected, fold_with_enum_index(xtypes, x).tolist()) def test_fold_with_enum_index_with_list(self): xtypes = [FLOAT, (ENUM, 2)] expected = [[1.5, 1]] x = np.array([1.5, 0, 1]) self.assertListEqual(expected, fold_with_enum_index(xtypes, x).tolist()) x = [1.5, 0, 1] self.assertListEqual(expected, fold_with_enum_index(xtypes, x).tolist()) def test_cast_to_enum_value(self): xlimits = [[0.0, 4.0], ["blue", "red"]] x_col = 1 enum_indexes = [1, 1, 0, 1, 0] expected = ["red", "red", "blue", "red", "blue"] self.assertListEqual(expected, cast_to_enum_value(xlimits, x_col, enum_indexes)) def test_unfolded_xlimits_type(self): xtypes = [FLOAT, (ENUM, 2), (ENUM, 2), INT] xlimits = np.array([[-5, 5], ["2", "3"], ["4", "5"], [0, 2]]) sampling = MixedIntegerSamplingMethod(xtypes, xlimits, LHS, criterion="ese") doe = sampling(10) self.assertEqual((10, 4), doe.shape) def test_cast_to_mixed_integer(self): xtypes = [FLOAT, (ENUM, 2), (ENUM, 3), INT] xlimits = np.array( [[-5, 5], ["blue", "red"], ["short", "medium", "long"], [0, 2]], dtype="object", ) x = np.array([1.5, 0, 2, 1]) self.assertEqual( [1.5, "blue", "long", 1], cast_to_mixed_integer(xtypes, xlimits, x) ) def run_mixed_integer_lhs_example(self): import numpy as np import matplotlib.pyplot as plt from matplotlib import colors from smt.sampling_methods import LHS from smt.applications.mixed_integer import ( FLOAT, INT, ENUM, MixedIntegerSamplingMethod, ) xtypes = [FLOAT, (ENUM, 2)] xlimits = [[0.0, 4.0], ["blue", "red"]] sampling = MixedIntegerSamplingMethod(xtypes, xlimits, LHS, criterion="ese") num = 40 x = sampling(num) print(x.shape) cmap = colors.ListedColormap(xlimits[1]) plt.scatter(x[:, 0], np.zeros(num), c=x[:, 1], cmap=cmap) plt.show() def run_mixed_integer_qp_example(self): import numpy as np import matplotlib.pyplot as plt from smt.surrogate_models import QP from smt.applications.mixed_integer import MixedIntegerSurrogateModel, INT xt = np.array([0.0, 1.0, 2.0, 3.0, 4.0]) yt = np.array([0.0, 1.0, 1.5, 0.5, 1.0]) # xtypes = [FLOAT, INT, (ENUM, 3), (ENUM, 2)] # FLOAT means x1 continuous # INT means x2 integer # (ENUM, 3) means x3, x4 & x5 are 3 levels of the same categorical variable # (ENUM, 2) means x6 & x7 are 2 levels of the same categorical variable sm = MixedIntegerSurrogateModel(xtypes=[INT], xlimits=[[0, 4]], surrogate=QP()) sm.set_training_values(xt, yt) sm.train() num = 100 x = np.linspace(0.0, 4.0, num) y = sm.predict_values(x) plt.plot(xt, yt, "o") plt.plot(x, y) plt.xlabel("x") plt.ylabel("y") plt.legend(["Training data", "Prediction"]) plt.show() def run_mixed_integer_context_example(self): import numpy as np import matplotlib.pyplot as plt from matplotlib import colors from mpl_toolkits.mplot3d import Axes3D from smt.surrogate_models import KRG from smt.sampling_methods import LHS, Random from smt.applications.mixed_integer import MixedIntegerContext, FLOAT, INT, ENUM xtypes = [INT, FLOAT, (ENUM, 4)] xlimits = [[0, 5], [0.0, 4.0], ["blue", "red", "green", "yellow"]] def ftest(x): return (x[:, 0] * x[:, 0] + x[:, 1] * x[:, 1]) * (x[:, 2] + 1) # context to create consistent DOEs and surrogate mixint = MixedIntegerContext(xtypes, xlimits) # DOE for training lhs = mixint.build_sampling_method(LHS, criterion="ese") num = mixint.get_unfolded_dimension() * 5 print("DOE point nb = {}".format(num)) xt = lhs(num) yt = ftest(xt) # Surrogate sm = mixint.build_surrogate_model(KRG()) print(xt) sm.set_training_values(xt, yt) sm.train() # DOE for validation rand = mixint.build_sampling_method(Random) xv = rand(50) yv = ftest(xv) yp = sm.predict_values(xv) plt.plot(yv, yv) plt.plot(yv, yp, "o") plt.xlabel("actual") plt.ylabel("prediction") plt.show() if __name__ == "__main__": TestMixedInteger().run_mixed_integer_context_example() ``` #### File: smt/surrogate_models/rmtc.py ```python import numpy as np import scipy.sparse from numbers import Integral from smt.utils.linear_solvers import get_solver from smt.utils.line_search import get_line_search_class from smt.surrogate_models.rmts import RMTS from smt.surrogate_models.rmtsclib import PyRMTC class RMTC(RMTS): """ Regularized Minimal-energy Tensor-product Cubic hermite spline (RMTC) interpolant. RMTC divides the n-dimensional space using n-dimensional box elements. Each n-D box is represented using a tensor-product of cubic functions, one in each dimension. The coefficients of the cubic functions are computed by minimizing the second derivatives of the interpolant under the condition that it interpolates or approximates the training points. Advantages: - Extremely fast to evaluate - Evaluation/training time are relatively insensitive to the number of training points - Avoids oscillations Disadvantages: - Training time scales poorly with the # dimensions (too slow beyond 4-D) - The user must choose the number of elements in each dimension """ def _initialize(self): super(RMTC, self)._initialize() declare = self.options.declare declare( "num_elements", 4, types=(Integral, list, np.ndarray), desc="# elements in each dimension - ndarray [nx]", ) self.name = "RMTC" def _setup(self): options = self.options nx = self.training_points[None][0][0].shape[1] for name in ["smoothness", "num_elements"]: if isinstance(options[name], (int, float)): options[name] = [options[name]] * nx options[name] = np.atleast_1d(options[name]) self.printer.max_print_depth = options["max_print_depth"] num = {} # number of inputs and outputs num["x"] = self.training_points[None][0][0].shape[1] num["y"] = self.training_points[None][0][1].shape[1] # number of elements num["elem_list"] = np.array(options["num_elements"], int) num["elem"] = np.prod(num["elem_list"]) # number of terms/coefficients per element num["term_list"] = 4 * np.ones(num["x"], int) num["term"] = np.prod(num["term_list"]) # number of nodes num["uniq_list"] = num["elem_list"] + 1 num["uniq"] = np.prod(num["uniq_list"]) # total number of training points (function values and derivatives) num["t"] = 0 for kx in self.training_points[None]: num["t"] += self.training_points[None][kx][0].shape[0] # for RMT num["coeff"] = num["term"] * num["elem"] num["support"] = num["term"] num["dof"] = num["uniq"] * 2 ** num["x"] self.num = num self.rmtsc = PyRMTC() self.rmtsc.setup( num["x"], np.array(self.options["xlimits"][:, 0]), np.array(self.options["xlimits"][:, 1]), np.array(num["elem_list"], np.int32), np.array(num["term_list"], np.int32), ) def _compute_jac_raw(self, ix1, ix2, x): n = x.shape[0] nnz = n * self.num["term"] data = np.empty(nnz) rows = np.empty(nnz, np.int32) cols = np.empty(nnz, np.int32) self.rmtsc.compute_jac(ix1 - 1, ix2 - 1, n, x.flatten(), data, rows, cols) return data, rows, cols def _compute_dof2coeff(self): num = self.num # This computes an num['term'] x num['term'] matrix called coeff2nodal. # Multiplying this matrix with the list of coefficients for an element # yields the list of function and derivative values at the element nodes. # We need the inverse, but the matrix size is small enough to invert since # RMTC is normally only used for 1 <= nx <= 4 in most cases. elem_coeff2nodal = np.zeros(num["term"] * num["term"]) self.rmtsc.compute_coeff2nodal(elem_coeff2nodal) elem_coeff2nodal = elem_coeff2nodal.reshape((num["term"], num["term"])) elem_nodal2coeff = np.linalg.inv(elem_coeff2nodal) # This computes a num_coeff_elem x num_coeff_uniq permutation matrix called # uniq2elem. This sparse matrix maps the unique list of nodal function and # derivative values to the same function and derivative values, but ordered # by element, with repetition. nnz = num["elem"] * num["term"] data = np.empty(nnz) rows = np.empty(nnz, np.int32) cols = np.empty(nnz, np.int32) self.rmtsc.compute_uniq2elem(data, rows, cols) num_coeff_elem = num["term"] * num["elem"] num_coeff_uniq = num["uniq"] * 2 ** num["x"] full_uniq2elem = scipy.sparse.csc_matrix( (data, (rows, cols)), shape=(num_coeff_elem, num_coeff_uniq) ) # This computes the matrix full_dof2coeff, which maps the unique # degrees of freedom to the list of coefficients ordered by element. nnz = num["term"] ** 2 * num["elem"] data = np.empty(nnz) rows = np.empty(nnz, np.int32) cols = np.empty(nnz, np.int32) self.rmtsc.compute_full_from_block(elem_nodal2coeff.flatten(), data, rows, cols) num_coeff = num["term"] * num["elem"] full_nodal2coeff = scipy.sparse.csc_matrix( (data, (rows, cols)), shape=(num_coeff, num_coeff) ) full_dof2coeff = full_nodal2coeff * full_uniq2elem return full_dof2coeff ``` #### File: surrogate_models/tests/test_krg_training.py ```python from __future__ import print_function, division import numpy as np import unittest from smt.utils.sm_test_case import SMTestCase from smt.utils.kriging_utils import ( abs_exp, squar_exp, act_exp, cross_distances, componentwise_distance, standardization, matern52, matern32, ) from smt.sampling_methods.lhs import LHS from smt.surrogate_models import KRG, MGP print_output = False class Test(SMTestCase): def setUp(self): eps = 1e-8 xlimits = np.asarray([[0, 1], [0, 1]]) self.random = np.random.RandomState(42) lhs = LHS(xlimits=xlimits, random_state=self.random) X = lhs(8) y = LHS(xlimits=np.asarray([[0, 1]]), random_state=self.random)(8) X_norma, y_norma, X_offset, y_mean, X_scale, y_std = standardization(X, y) D, ij = cross_distances(X_norma) theta = self.random.rand(2) corr_str = ["abs_exp", "squar_exp", "act_exp", "matern32", "matern52"] corr_def = [abs_exp, squar_exp, act_exp, matern32, matern52] self.eps = eps self.X = X self.y = y ( self.X_norma, self.y_norma, self.X_offset, self.y_mean, self.X_scale, self.y_std, ) = ( X_norma, y_norma, X_offset, y_mean, X_scale, y_std, ) self.D, self.ij = D, ij self.theta = theta self.corr_str = corr_str self.corr_def = corr_def def test_noise_estimation(self): xt = np.array([[0.0], [1.0], [2.0], [3.0], [4.0]]) yt = np.array([0.0, 1.0, 1.5, 0.9, 1.0]) sm = KRG(hyper_opt="Cobyla", eval_noise=True, noise0=[1e-4]) sm.set_training_values(xt, yt) sm.train() x = np.linspace(0, 4, 100) y = sm.predict_values(x) self.assert_error( np.array(sm.optimal_theta), np.array([0.11798507]), 1e-5, 1e-5 ) def test_corr_derivatives(self): for ind, corr in enumerate(self.corr_def): # For every kernel self.corr_str[ind] = self.corr_def[ind] D = componentwise_distance(self.D, self.corr_str, self.X.shape[1]) k = corr(self.theta, D) K = np.eye(self.X.shape[0]) K[self.ij[:, 0], self.ij[:, 1]] = k[:, 0] K[self.ij[:, 1], self.ij[:, 0]] = k[:, 0] grad_norm_all = [] diff_norm_all = [] ind_theta = [] for i, theta_i in enumerate(self.theta): eps_theta = np.zeros(self.theta.shape) eps_theta[i] = self.eps k_dk = corr(self.theta + eps_theta, D) K_dk = np.eye(self.X.shape[0]) K_dk[self.ij[:, 0], self.ij[:, 1]] = k_dk[:, 0] K_dk[self.ij[:, 1], self.ij[:, 0]] = k_dk[:, 0] grad_eps = (K_dk - K) / self.eps dk = corr(self.theta, D, grad_ind=i) dK = np.zeros((self.X.shape[0], self.X.shape[0])) dK[self.ij[:, 0], self.ij[:, 1]] = dk[:, 0] dK[self.ij[:, 1], self.ij[:, 0]] = dk[:, 0] grad_norm_all.append(np.linalg.norm(dK)) diff_norm_all.append(np.linalg.norm(grad_eps)) ind_theta.append(r"$x_%d$" % i) self.assert_error( np.array(grad_norm_all), np.array(diff_norm_all), 1e-5, 1e-5 ) # from utils/smt_test_case.py def test_corr_hessian(self): for ind, corr in enumerate(self.corr_def): # For every kernel self.corr_str[ind] = self.corr_def[ind] D = componentwise_distance(self.D, self.corr_str, self.X.shape[1]) grad_norm_all = [] diff_norm_all = [] for i, theta_i in enumerate(self.theta): k = corr(self.theta, D, grad_ind=i) K = np.eye(self.X.shape[0]) K[self.ij[:, 0], self.ij[:, 1]] = k[:, 0] K[self.ij[:, 1], self.ij[:, 0]] = k[:, 0] for j, omega_j in enumerate(self.theta): eps_omega = np.zeros(self.theta.shape) eps_omega[j] = self.eps k_dk = corr(self.theta + eps_omega, D, grad_ind=i) K_dk = np.eye(self.X.shape[0]) K_dk[self.ij[:, 0], self.ij[:, 1]] = k_dk[:, 0] K_dk[self.ij[:, 1], self.ij[:, 0]] = k_dk[:, 0] grad_eps = (K_dk - K) / self.eps dk = corr(self.theta, D, grad_ind=i, hess_ind=j) dK = np.zeros((self.X.shape[0], self.X.shape[0])) dK[self.ij[:, 0], self.ij[:, 1]] = dk[:, 0] dK[self.ij[:, 1], self.ij[:, 0]] = dk[:, 0] grad_norm_all.append(np.linalg.norm(dK)) diff_norm_all.append(np.linalg.norm(grad_eps)) self.assert_error( np.array(grad_norm_all), np.array(diff_norm_all), 1e-5, 1e-5 ) # from utils/smt_test_case.py def test_likelihood_derivatives(self): for corr_str in [ "abs_exp", "squar_exp", "act_exp", "matern32", "matern52", ]: # For every kernel for poly_str in ["constant", "linear", "quadratic"]: # For every method if corr_str == "act_exp": kr = MGP(print_global=False) theta = self.random.rand(4) else: kr = KRG(print_global=False) theta = self.theta kr.options["poly"] = poly_str kr.options["corr"] = corr_str kr.set_training_values(self.X, self.y) kr.train() grad_red, dpar = kr._reduced_likelihood_gradient(theta) red, par = kr._reduced_likelihood_function(theta) grad_norm_all = [] diff_norm_all = [] ind_theta = [] for i, theta_i in enumerate(theta): eps_theta = theta.copy() eps_theta[i] = eps_theta[i] + self.eps red_dk, par_dk = kr._reduced_likelihood_function(eps_theta) dred_dk = (red_dk - red) / self.eps grad_norm_all.append(grad_red[i]) diff_norm_all.append(float(dred_dk)) ind_theta.append(r"$x_%d$" % i) grad_norm_all = np.atleast_2d(grad_norm_all) diff_norm_all = np.atleast_2d(diff_norm_all).T self.assert_error( grad_norm_all, diff_norm_all, atol=1e-5, rtol=1e-3 ) # from utils/smt_test_case.py def test_likelihood_hessian(self): for corr_str in [ "abs_exp", "squar_exp", "act_exp", "matern32", "matern52", ]: # For every kernel for poly_str in ["constant", "linear", "quadratic"]: # For every method if corr_str == "act_exp": kr = MGP(print_global=False) theta = self.random.rand(4) else: kr = KRG(print_global=False) theta = self.theta kr.options["poly"] = poly_str kr.options["corr"] = corr_str kr.set_training_values(self.X, self.y) kr.train() grad_red, dpar = kr._reduced_likelihood_gradient(theta) hess, hess_ij, _ = kr._reduced_likelihood_hessian(theta) Hess = np.zeros((theta.shape[0], theta.shape[0])) Hess[hess_ij[:, 0], hess_ij[:, 1]] = hess[:, 0] Hess[hess_ij[:, 1], hess_ij[:, 0]] = hess[:, 0] grad_norm_all = [] diff_norm_all = [] ind_theta = [] for j, omega_j in enumerate(theta): eps_omega = theta.copy() eps_omega[j] += self.eps grad_red_eps, _ = kr._reduced_likelihood_gradient(eps_omega) for i, theta_i in enumerate(theta): hess_eps = (grad_red_eps[i] - grad_red[i]) / self.eps grad_norm_all.append( np.linalg.norm(Hess[i, j]) / np.linalg.norm(Hess) ) diff_norm_all.append( np.linalg.norm(hess_eps) / np.linalg.norm(Hess) ) ind_theta.append(r"$x_%d,x_%d$" % (j, i)) self.assert_error( np.array(grad_norm_all), np.array(diff_norm_all), atol=1e-5, rtol=1e-3, ) # from utils/smt_test_case.py if __name__ == "__main__": print_output = True unittest.main() ``` #### File: utils/test/test_kriging_utils.py ```python import unittest import numpy as np from smt.utils.sm_test_case import SMTestCase from smt.utils.kriging_utils import standardization class Test(SMTestCase): def test_standardization(self): d, n = (10, 100) X = np.random.normal(size=(n, d)) y = np.random.normal(size=(n, 1)) X_norm, _, _, _, _, _ = standardization(X, y, scale_X_to_unit=True) interval = (np.min(X_norm), np.max(X_norm)) self.assertEqual((0, 1), interval) if __name__ == "__main__": unittest.main() ```
{ "source": "joshuaulrich/rchitect", "score": 2 }
#### File: rchitect/rchitect/py_tools.py ```python from __future__ import unicode_literals, absolute_import from rchitect._cffi import lib import operator import sys import importlib from six import text_type from types import ModuleType from .interface import rcopy, robject, rfunction, rcall_p, rcall def get_p(name, envir): return rcall_p(("base", "get"), name, envir=envir) def inject_py_tools(): def py_import(module): return importlib.import_module(module) def py_import_builtins(): if sys.version >= "3": return importlib.import_module("builtins") else: return importlib.import_module("__builtin__") def py_call(fun, *args, **kwargs): # todo: suuport .asis and .convert if isinstance(fun, text_type): fun = eval(fun) return fun(*args, **kwargs) def py_copy(*args): return robject(*args) def py_eval(code): return eval(code) def py_get_attr(obj, key): if isinstance(obj, ModuleType): try: return importlib.import_module("{}.{}".format(obj.__name__, key)) except ImportError: pass return getattr(obj, key) def py_get_item(obj, key): return obj[key] def py_names(obj): try: return list(k for k in obj.__dict__.keys() if not k.startswith("_")) except Exception: return None def py_object(*args): if len(args) == 1: return robject("PyObject", rcopy(args[0])) elif len(args) == 2: return robject("PyObject", rcopy(rcopy(object, args[0]), args[1])) def py_print(r): rcall_p("cat", repr(r) + "\n") def py_set_attr(obj, key, value): lib.Rf_protect(obj) lib.Rf_protect(key) lib.Rf_protect(value) pyo = rcopy(object, obj) try: setattr(pyo, rcopy(key), rcopy(value)) finally: lib.Rf_unprotect(3) return pyo def py_set_item(obj, key, value): lib.Rf_protect(obj) lib.Rf_protect(key) lib.Rf_protect(value) pyo = rcopy(object, obj) try: pyo[rcopy(key)] = rcopy(value) finally: lib.Rf_unprotect(3) return pyo def py_dict(**kwargs): narg = len(kwargs) for key in kwargs: lib.Rf_protect(kwargs[key]) try: return {key: rcopy(kwargs[key]) for key in kwargs} finally: lib.Rf_unprotect(narg) def py_tuple(*args): narg = len(args) for a in args: lib.Rf_protect(a) try: return tuple([rcopy(a) for a in args]) finally: lib.Rf_unprotect(narg) def py_unicode(obj): return text_type(obj) def assign(name, value, envir): rcall(("base", "assign"), name, value, envir=envir) e = rcall(("base", "new.env"), parent=lib.R_GlobalEnv) kwarg = {"rchitect.py_tools": e} rcall(("base", "options"), **kwarg) assign("import", rfunction(py_import, convert=False), e) assign("import_builtins", rfunction(py_import_builtins, convert=False), e) assign("py_call", rfunction(py_call, convert=False), e) assign("py_copy", rfunction(py_copy, convert=True), e) assign("py_eval", rfunction(py_eval, convert=False), e) assign("py_get_attr", rfunction(py_get_attr, convert=False), e) assign("py_get_item", rfunction(py_get_item, convert=False), e) assign("py_object", rfunction(py_object, asis=True, convert=False), e) assign("py_set_attr", rfunction(py_set_attr, invisible=True, asis=True, convert=False), e) assign("py_set_item", rfunction(py_set_item, invisible=True, asis=True, convert=False), e) assign("py_unicode", rfunction(py_unicode, convert=False), e) assign("dict", rfunction(py_dict, asis=True, convert=False), e) assign("tuple", rfunction(py_tuple, asis=True, convert=False), e) assign("names.PyObject", rfunction(py_names, convert=True), e) assign("print.PyObject", rfunction(py_print, invisible=True, convert=False), e) assign(".DollarNames.PyObject", rfunction(py_names, convert=True), e) assign("$.PyObject", rfunction(py_get_attr, convert=True), e) assign("[.PyObject", rfunction(py_get_item, convert=True), e) assign("$<-.PyObject", rfunction(py_set_attr, invisible=True, asis=True, convert=False), e) assign("[<-.PyObject", rfunction(py_set_item, invisible=True, asis=True, convert=False), e) assign("&.PyObject", rfunction(operator.and_, invisible=True, convert=False), e) assign("|.PyObject", rfunction(operator.or_, invisible=True, convert=False), e) assign("!.PyObject", rfunction(operator.not_, invisible=True, convert=False), e) def attach(): parent_frame = rcall("sys.frame", -1) things = [ "import", "import_builtins", "py_call", "py_copy", "py_eval", "py_get_attr", "py_get_item", "py_object", "py_set_attr", "py_set_item", "py_unicode", "dict", "tuple", "names.PyObject", "print.PyObject", ".DollarNames.PyObject", "$.PyObject", "[.PyObject", "$<-.PyObject", "[<-.PyObject", "&.PyObject", "|.PyObject", "!.PyObject" ] for thing in things: assign(thing, get_p(thing, e), parent_frame) assign("attach", robject(attach, invisible=True), e) ``` #### File: rchitect/reticulate/__init__.py ```python from __future__ import unicode_literals import os from rchitect.interface import rcall, rcopy, set_hook, package_event def configure(): def _configure(): rcall( ("base", "source"), os.path.join(os.path.dirname(__file__), "config.R"), rcall(("base", "new.env"))) if "reticulate" in rcopy(rcall(("base", "loadedNamespaces"))): _configure() else: set_hook(package_event("reticulate", "onLoad"), lambda x, y: _configure()) ``` #### File: rchitect/rchitect/setup.py ```python from __future__ import unicode_literals import sys import os from six.moves import input as six_input from rchitect._cffi import ffi, lib from .utils import Rhome, ensure_path, system2utf8 from .callbacks import def_callback, setup_unix_callbacks, setup_rstart def load_lib_error(): return"Cannot load shared library: {}".format( system2utf8(ffi.string(lib._libR_dl_error_message()))) def load_symbol_error(): return "Cannot load symbol {}: {}".format( system2utf8(ffi.string(lib._libR_last_loaded_symbol())), system2utf8(ffi.string(lib._libR_dl_error_message()))) def load_constant_error(): return "Cannot load constant {}: {}".format( system2utf8(ffi.string(lib._libR_last_loaded_symbol())), system2utf8(ffi.string(lib._libR_dl_error_message()))) def init(args=None, register_signal_handlers=None): if not args: args = ["rchitect", "--quiet", "--no-save"] if register_signal_handlers is None: register_signal_handlers = os.environ.get("RCHITECT_REGISTER_SIGNAL_HANDLERS", "1") == "1" rhome = Rhome() # microsoft python doesn't load DLL's from PATH # we will need to open the DLL's directly in _libR_load ensure_path(rhome) libR_loaded = lib.Rf_initialize_R != ffi.NULL if not libR_loaded: # `system2utf8` may not work before `Rf_initialize_R` because locale may not be set if not lib._libR_load(rhome.encode("utf-8")): raise Exception(load_lib_error()) if not lib._libR_load_symbols(): raise Exception(load_symbol_error()) # _libR_is_initialized only works after _libR_load is run. if not lib._libR_is_initialized(): _argv = [ffi.new("char[]", a.encode("utf-8")) for a in args] argv = ffi.new("char *[]", _argv) if sys.platform.startswith("win"): if register_signal_handlers: lib.Rf_initialize_R(len(argv), argv) setup_rstart(rhome, args) else: # Rf_initialize_R will set handler for SIGINT # we need to workaround it lib.R_SignalHandlers_t[0] = 0 setup_rstart(rhome, args) lib.R_set_command_line_arguments(len(argv), argv) lib.GA_initapp(0, ffi.NULL) lib.setup_Rmainloop() # require R 4.0 if lib.EmitEmbeddedUTF8_t != ffi.NULL: lib.EmitEmbeddedUTF8_t[0] = 1 else: lib.R_SignalHandlers_t[0] = register_signal_handlers lib.Rf_initialize_R(len(argv), argv) setup_unix_callbacks() lib.setup_Rmainloop() if not libR_loaded: if not lib._libR_load_constants(): raise Exception(load_constant_error()) lib._libR_setup_xptr_callback() from rchitect.py_tools import inject_py_tools inject_py_tools() if os.environ.get("RCHITECT_RETICULATE_CONFIG", "1") != "0": from rchitect import reticulate reticulate.configure() def loop(): lib.run_Rmainloop() def ask_input(s): return six_input(s) @def_callback() def show_message(buf): sys.stdout.write(buf) sys.stdout.flush() @def_callback() def read_console(p, add_history): sys.stdout.flush() sys.stderr.flush() return ask_input(p) @def_callback() def write_console_ex(buf, otype): if otype == 0: if sys.stdout: sys.stdout.write(buf) sys.stdout.flush() else: if sys.stderr: sys.stderr.write(buf) sys.stderr.flush() @def_callback() def busy(which): pass @def_callback() def polled_events(): pass # @def_callback() # def clean_up(saveact, status, run_last): # lib.Rstd_CleanUp(saveact, status, run_last) @def_callback() def yes_no_cancel(p): while True: try: result = ask_input("{} [y/n/c]: ".format(p)) if result in ["Y", "y"]: return 1 elif result in ["N", "n"]: return 2 else: return 0 except EOFError: return 0 except KeyboardInterrupt: return 0 except Exception: pass ``` #### File: rchitect/rchitect/xptr.py ```python from __future__ import unicode_literals from rchitect._cffi import ffi, lib from .types import box, unbox _global_set = dict() @ffi.callback("void(SEXP)") def finalizer(s): h = lib.R_ExternalPtrAddr(s) del _global_set[h] def new_xptr_p(x): h = ffi.new_handle(x) hp = ffi.cast("void*", h) _global_set[hp] = h s = lib.R_MakeExternalPtr(hp, lib.R_NilValue, lib.R_NilValue) lib.R_RegisterCFinalizerEx(s, finalizer, 1) return s def new_xptr(x): return box(new_xptr_p(x)) def from_xptr(s): return ffi.from_handle(lib.R_ExternalPtrAddr(unbox(s))) ``` #### File: rchitect/tests/test_robject.py ```python from __future__ import unicode_literals from rchitect import rcopy, rcall, reval, robject from rchitect.interface import rclass, rstring, rint, rdouble from collections import OrderedDict def test_booleans(): assert rcall("identical", robject([True, False]), reval("c(TRUE, FALSE)"), _convert=True) def test_numbers(): assert rcall("identical", robject(1), rint(1), _convert=True) assert rcall("identical", robject(1.0), rdouble(1), _convert=True) assert not rcall("identical", robject(1), rdouble(1), _convert=True) assert not rcall("identical", robject(1.0), rint(1), _convert=True) assert rcall("identical", robject(complex(1, 2)), reval("1 + 2i"), _convert=True) assert rcall("identical", robject([1, 2]), reval("c(1L, 2L)"), _convert=True) assert rcall("identical", robject([1.0, 2.0]), reval("c(1, 2)"), _convert=True) assert rcall( "identical", robject([complex(1, 2), complex(2, 1)]), reval("c(1 + 2i, 2 + 1i)"), _convert=True) def test_strings(): assert rcall("identical", robject("abc"), rstring("abc"), _convert=True) assert rcall("identical", robject("β"), rstring("β"), _convert=True) assert rcall("identical", robject("你"), rstring("你"), _convert=True) assert rcall("identical", robject(['a', 'b']), reval("c('a', 'b')"), _convert=True) def test_raw(): assert rcall("rawToChar", robject("raw", b"hello"), _convert=True) == "hello" def test_none(): assert rcall("identical", robject(None), reval("NULL"), _convert=True) def test_ordered_list(): d = OrderedDict([("a", 2), ("b", "hello")]) assert rcall("identical", robject(d), reval("list(a = 2L, b = 'hello')"), _convert=True) def test_functions(): def f(x): return x + 3 fun = robject(f) assert "PyCallable" in rclass(fun) assert rcopy(rcall(fun, 4)) == f(4) assert rcopy(rcall(fun, x=4)) == f(4) fun = robject(lambda x: x + 3, convert=False) assert "PyCallable" in rclass(fun) ret = rcall(fun, 4) assert "PyObject" in rclass(ret) assert rcopy(ret) == f(4) makef = robject(lambda: f, convert=False) ret = rcall(makef) assert "PyCallable" in rclass(ret) assert rcopy(ret) == f ```
{ "source": "JoshuaUrrutia/python-vbr-1", "score": 3 }
#### File: src/vbr/connection.py ```python import psycopg2 import logging import os import uuid from typing import NoReturn from . import constants from . import errors from . import record from . import unique_record from . import tableclasses logging.basicConfig(level=logging.DEBUG) class VBRConn: """Managed connection to a VBR PostgreSQL database """ CONNECT_TIMEOUT = 30 SESSION_FIELD_NAME = tableclasses.SESSION_FIELD def __init__(self, config: dict = None, session: str = None, no_connect: bool = False): if session is None: self.session = uuid.uuid4().hex else: self.session = str(session) logging.debug('VBR Session: ' + self.session) self.session_field = self.SESSION_FIELD_NAME if no_connect is False: self.db = self._connect(config) else: self.db = None def _connect(self, config: dict = None) -> NoReturn: # Environment variables and defaults supported by the VBR database driver cfg = [('VBR_HOST', 'ip', 'localhost'), ('VBR_USERNAME', 'user', 'vbruser'), ('VBR_PASSWORD', '<PASSWORD>', None), ('VBR_DATABASE', 'db', 'vbr')] if config == None: config = {} vbr = {} for env_var, cfg_key, default in cfg: vbr[cfg_key] = config.pop(cfg_key, os.getenv(env_var, None)) logging.debug('Connecting to database {} on {}'.format( vbr['db'], vbr['ip'])) conn = psycopg2.connect(host=vbr['ip'], database=vbr['db'], user=vbr['user'], password=vbr['pass'], connect_timeout=self.CONNECT_TIMEOUT) logging.debug('(Connected)') return conn def retrieve_record(self, pk_value: str, table_name: str) -> record.VBRRecord: """Retrieve a VBR Record from the database by primary key and table name """ # Get SQL attributes and data from VBR Record rec_cls = tableclasses.class_from_table(table_name) db_table = rec_cls.TABLE db_pk = rec_cls.PRIMARY_KEY db_cols = rec_cls.field_names(include_pk=True) sql_columns = ','.join(db_cols) # Fetch record from database # Resolve class C for record # Return C(**record) SQL = "SELECT {} FROM {} WHERE {} = %s LIMIT 1".format( sql_columns, db_table, db_pk) conn = self.db with conn: with conn.cursor() as cur: logging.debug(cur.mogrify(SQL, [ pk_value, ])) cur.execute(SQL, [ pk_value, ]) try: db_vals = cur.fetchall()[0] record = dict() for col, val in zip(db_cols, db_vals): record[col] = val logging.debug('Retrieve successful') return rec_cls(**record, new=False) except IndexError: raise errors.RecordNotFoundError( 'No {0}.{1} record matching {2} was found'.format( db_table, db_pk, pk_value)) except Exception: raise def create_record(self, vbr_object: record.VBRRecord) -> str: """Insert a VBR Record into the database """ # NOTE: vbr_object is instance of a class defined in tableclasses # Get SQL attributes and data from VBR Record db_table = vbr_object.table_name db_pk = vbr_object.primary_key db_cols = vbr_object.field_names() db_values = vbr_object.field_values() logging.debug('Writing to table {0}'.format(db_table)) # Extend with private session ID db_cols = list(db_cols) db_cols.append(self.session_field) db_values = list(db_values) db_values.append(self.session) # enumerate column names sql_columns = ','.join(db_cols) # create a '%s' string for every data element sql_vars = ','.join(['%s' for d in db_cols]) # Construct SQL statement including return of primary key # https://stackoverflow.com/a/5247723 SQL = "INSERT INTO {} ({}) VALUES ({}) RETURNING {};".format( db_table, sql_columns, sql_vars, db_pk) conn = self.db id_of_new_row = None # Using a pair of contexts will automatically roll back the pending transaction # if an Exception is encountered with conn: with conn.cursor() as cur: logging.debug(cur.mogrify(SQL, db_values)) try: cur.execute(SQL, db_values) # Get last row created # https://stackoverflow.com/a/5247723 id_of_new_row = cur.fetchone()[0] conn.commit() logging.debug('Create successful: {0}.{1} = {2}'.format( db_table, db_pk, id_of_new_row)) return str(id_of_new_row) except psycopg2.errors.UniqueViolation: # TODO check for existence of '*signature_unique' in error string if isinstance(vbr_object, unique_record.VBRUniqueRecord): raise errors.DuplicateSignature( 'A record with this distinct signature exists already.' ) else: raise except Exception: raise # TODO - implement better failure handling def update_record(self, vbr_object: record.VBRRecord) -> NoReturn: """Update a VBR Record in the database """ db_table = vbr_object.table_name db_pk = vbr_object.primary_key pk_value = vbr_object._VALUES.get(db_pk) db_cols = vbr_object.field_names(include_pk=False) db_values = vbr_object.field_values(include_pk=False) if pk_value is None: raise errors.ValidationError( 'Field {0} cannot be empty'.format(db_pk)) # Create SQL statement data = [] sets = [] for col, val in zip(db_cols, db_values): sets.append('{0} = %s'.format(col)) data.append(val) sets_sql = ','.join(sets) SQL = "UPDATE {0} SET {1} WHERE {2} = %s;".format( db_table, sets_sql, db_pk) # Add primary key value to end of data to support the WHERE clause above data.append(pk_value) conn = self.db with conn: with conn.cursor() as cur: logging.debug(cur.mogrify(SQL, data)) # TODO - implement check for DuplicateSignature as this will mean that # TODO - the user is trying to update a record that has the same content as # TODO - an existing unique record try: cur.execute(SQL, data) conn.commit() logging.debug('Update successful') except psycopg2.errors.UniqueViolation: # TODO check for existence of '*signature_unique' in error string if isinstance(vbr_object, unique_record.VBRUniqueRecord): raise errors.DuplicateSignature( 'This record was not updated because it would duplicate an existing unique record' ) else: raise except Exception: raise def delete_record(self, vbr_object: record.VBRRecord) -> NoReturn: """Delete a VBR Record from the database """ # Get SQL attributes and data from VBR Record db_table = vbr_object.table_name db_pk = vbr_object.primary_key pk_value = vbr_object._VALUES.get(db_pk) SQL = "DELETE FROM {} WHERE {} = %s".format(db_table, db_pk) conn = self.db with conn: with conn.cursor() as cur: logging.debug(cur.mogrify(SQL, [ pk_value, ])) cur.execute(SQL, [ pk_value, ]) conn.commit() logging.debug('Delete successful') ```
{ "source": "JoshuaVarga/ImGuess", "score": 2 }
#### File: ImGuess/src/ImGuess.pyw ```python from model import Model from view import View from controller import Controller def main(): model = Model() view = View() controller = Controller(model, view) controller.run() if __name__ == "__main__": main(); ```
{ "source": "joshuavictorchen/neutrino", "score": 4 }
#### File: neutrino/neutrino/datum.py ```python import neutrino.config as c import neutrino.tools as t class Datum: """Custom data object that contains a DataFrame and a corresponding main key \ with which to pull specific DataFrame values. .. note:: This class may be used to do more useful things in the future. **Instance attributes:** \n * **name** (*str*): Name of the Datum. * **df** (*DataFrame*): The Datum's DataFrame object, where data is stored. * **main_key** (*str*): Name of the main (unique) key column of the Datum's DataFrame. Args: name (str): Name of the :py:obj:`Datum` to be generated. Used as the default filename when exporting data to CSV. df (DataFrame): DataFrame object for the Datum. main_key (str): Name of the main (unique) key column of the provided DataFrame.\ Used to retrieve values from the DataFrame in a similar manner to a dictionary. save (bool, optional): Exports the DataFrame's data as a CSV to the default database path if ``True``. Defaults to ``False``. """ def __init__(self, name, df, main_key, save=False): self.name = name self.df = df # if the provided main_key is none, then default to 'id': if main_key is None: main_key = "id" print(f"\n WARNING: no main key for {name} found; defaulting to 'id'") self.main_key = main_key if save: self.save_csv() def get(self, return_column, lookup_value, lookup_key=None): """Treats the :py:obj:`self.df` DataFrame as a dictionary and pulls the value of ``return_column`` corresponding to \ the row containing ``lookup_value`` within the ``lookup_key`` column. .. admonition:: TODO Throw a warning/error if the key is not unique, doesn't exist, etc. Currently, the first matching value is returned \ if multiple matches exist. Args: return_column (str): Column of the value to be returned. lookup_value (str): Value of the key to look up. lookup_key (str, optional): Column of the key to look up. Defaults to :py:obj:`self.main_key`. Returns: various: Value of the ``return_column`` corresponding to the lookup inputs. """ # TODO: throw warning if key is not unique, doesn't exist, etc. if lookup_key is None: lookup_key = self.main_key return self.df[return_column].iloc[ self.df[self.df[lookup_key] == lookup_value].index[0] ] def print_df(self): """Simply prints :py:obj:`self.df` to the console with a leading newline.""" print() print(self.df) def save_csv(self, custom_name=None, custom_dir=None): """Exports :py:obj:`self.df` to a CSV file via :py:obj:`neutrino.tools.save_df_to_csv`.\ The CSV name and filepath may be specified. Args: custom_name (str, optional): Name of the CSV file to be saved. Defaults to :py:obj:`self.name`. custom_dir (str, optional): Path to where the CSV file will be saved.\ Defaults to the :py:obj:`neutrino.main.Neutrino`'s ``db_path``. """ csv_name = custom_name if custom_name else self.name database_path = custom_dir if custom_dir else c.db_path t.save_df_to_csv(self.df, csv_name, database_path) ``` #### File: neutrino/neutrino/tools.py ```python import neutrino.config as c import os import shutil import sys import yaml from datetime import datetime, timezone, timedelta from dateutil.parser import isoparse def print_recursive_dict(data, indent_spaces=3, indent_step=2, recursion=False): """Prints a formatted nested dictionary to the console. .. code-block:: # example console output for an input of {'123':{'456':['aaa', 'bbb', 'ccc']}} " 123 : 456 : aaa bbb ccc" Args: data (dict): Dictionary of values that can be converted to strings. indent_spaces (int, optional): Number of leading whitespaces to insert before each element. Defaults to 3. indent_step (int, optional): Number of whitespaces to increase the indentation by, for each level of ``dict`` nesting. Defaults to 2. recursion (bool, optional): Whether or not this method is being called by itself. Defaults to False. """ # print a newline once, prior to the formatted dictionary if not recursion: print() # loop through the dictionary for key, value in data.items(): # the right-justification for each key is equal to the length of the longest key rjust = len(max(data, key=len)) # if the value is a dictionary, then recursively call this function to print the inner dictionary if isinstance(value, dict): print(" " * indent_spaces + f"{key.rjust(rjust)} : ") print_recursive_dict( list_to_string(value, rjust), indent_spaces + indent_step + rjust + 1, # adjust the indentation level of the inner dictionary indent_step, True, ) # if the value is not a dictionary, then print the key-value pair else: print( " " * indent_spaces + f"{key.rjust(rjust)} : {list_to_string(value, rjust + indent_spaces + 3)}" ) def list_to_string(value, leading_whitespaces=1): """Takes a list and returns a formatted string containing each element delimited by newlines. .. admonition:: TODO Incorporate :py:obj:`print_recursive_dict` for lists with dictionary elements, i.e. ``[{}, {}]``. Args: value (list): A list of elements that can be represented by strings. leading_whitespaces (int, optional): Number of leading whitespaces to insert before each element. Defaults to 1. Returns: str: Formatted string containing each element of the provided list delimited by newlines, with ``leading_whitespaces`` leading whitespaces before each element. .. code-block:: # example returned string for an input of ['abc', 'def', 'ghi'] " abc\\n def\\n ghi" """ # just return the same value if it's not a list if not isinstance(value, list): return value # if the list is empty, then return a blank string elif len(value) == 0: return "" # if the list has only one element, then return that element elif len(value) == 1: return value[0] # if the list has more than one element, then return a string containing each element delimited by newlines # add leading_whitespaces number of leading whitespaces before each element else: return_string = str(value[0]) + "\n" for i in range(1, len(value)): return_string += (" " * leading_whitespaces) + str(value[i]) + "\n" return return_string.strip() def load_yaml_settings(settings_file, settings_template_file): """Loads a dictionary of settings values from a YAML file. This YAML file is gitignored so that the repository's configuration is not affected by user personalization. If the YAML file does not exist, then it is copied from the repository's version controlled template. Args: settings_file (str): Absolute path to the gitignored YAML file. settings_template_file (str): Absolute path to the version controlled YAML template. Returns: dict: Dictionary representation of loaded settings from a YAML file. """ # if file does not exist, copy one from the default template if not os.path.isfile(settings_file): # TODO: prompt user to update keys_file defs, etc. shutil.copy2(settings_template_file, settings_file) print(f"\n Settings file generated: {settings_file}") settings = parse_yaml(settings_file, echo_yaml=False) return settings def parse_yaml(filepath, echo_yaml=True): """Parses a YAML file and returns a dict of its contents. Optionally prints the formatted dict to the console. Args: filepath (str): Path to the supplied YAML file. echo_yaml (bool, optional): Whether or not to print the formatted loaded dict to the console. Defaults to True. Returns: dict: Dictionary of contents loaded from the supplied YAML file. """ # open the file and load its data into a dict with open(filepath) as stream: try: yaml_data = yaml.safe_load(stream) except yaml.YAMLError as exc: sys.exit(f"\n Neutrino annihilated - YAML file is corrupted:\n\n {exc}") # if echo_yaml is True, then print the formatted dict to the console if echo_yaml: print_recursive_dict(yaml_data) return yaml_data def save_df_to_csv(df, csv_name, database_path): """Exports the provided DataFrame to a CSV file. Cleans timestrings per :py:obj:`clean_df_timestrings`.\ Prompts the user to close the file if it exists and is open. Args: df (DataFrame): DataFrame to be exported to a CSV file. csv_name (str): Name of the CSV file to be saved, **without** the ``.csv`` extension \ (i.e., ``saved_file`` instead of ``saved_file.csv``). database_path (Path): Absolute path to the directory in which the CSV file will be saved. """ # TODO: default behavior should be to APPEND to CSV, with option to OVERWRITE filepath = database_path / (csv_name + ".csv") df = clean_df_timestrings(df) while True: try: df.to_csv(filepath, index=False) break except PermissionError: response = input( f"\n Error exporting {csv_name} to CSV: {filepath} is currently open.\ \n Close the file and press [enter] to continue. Input any other key to abort: " ) if response != "": print(f"\n {csv_name} CSV not saved.") return print(f" \n {csv_name} exported to: {filepath}") def clean_df_timestrings(df): """Ensure the provided DataFrame's time string columns are properly formatted (``%Y-%m-%d %H:%M``). \ This is needed because timestrings loaded into a DataFrame from a CSV file may be automatically reformatted \ into another configuration. .. note:: This does not affect time strings stored in ISO 8601 format. Args: df (DataFrame): DataFrame to be processed. Returns: DataFrame: DataFrame object with cleaned time string columns. """ # use the add_minutes_to_time_string method (adding 0 minutes) on each column # this ensures proper time string formatting for all columns containing generic time string strings for column in df: try: df[column] = df[column].apply(lambda x: add_minutes_to_time_string(x, 0)) except: pass return df def move_df_column_inplace(df, column, position): """Moves a DataFrame column to the specified index position inplace. Credit: https://stackoverflow.com/a/58686641/17591579 Args: df (DataFrame): DataFrame whose columns will be rearranged. column (str): Name of the column to be moved. position (int): Index to which the column will be moved. """ column = df.pop(column) df.insert(position, column.name, column) def local_to_ISO_time_string(local_time_string, time_format=c.TIME_FORMAT): """Converts a local time string to an ISO 8601 time string. Example use case: converting user-specified start/end times in Link.get_product_candles(). Args: local_time_string (string): Time string with the specified time_format. time_format (string, optional): Format of local_time_string. Returns: str: ISO 8601 time string. """ # use epoch as an intermediary for conversion return datetime.utcfromtimestamp( datetime.timestamp(datetime.strptime(local_time_string, time_format)) ).isoformat() def ISO_to_local_time_dt(ISO_time_string): """Converts an ISO 8601 time string to a local-timezone datetime object. Example use case: converting API-retrieved timestamps to a usable format for data processing. Args: ISO_time_string (str): ISO 8601 time string. Returns: datetime: Datetime object (local timezone). """ return isoparse(ISO_time_string).replace(tzinfo=timezone.utc).astimezone(tz=None) def ISO_to_local_time_string(ISO_time_string, time_format=c.TIME_FORMAT): """Converts an ISO 8601 time string to a local time string. Example use case: converting API-retrieved timestamps to local time format for output to the console. Args: ISO_time_string (str): ISO 8601 time string. time_format (str, optional): Format of the returned local time string. Returns: str: Local time string. """ return datetime.strftime(ISO_to_local_time_dt(ISO_time_string), time_format) def add_minutes_to_time_string(time_string, minute_delta, time_format=c.TIME_FORMAT): """Adds minutes to a given time string and returns the result as another time string. Args: time_string (str): Original time string. minute_delta (int): Minutes to add to the original time string. Can be negative. time_format (str, optional): Format of the provided and returned time strings. Returns: str: Result from time_string plus minute_delta. """ return datetime.strftime( datetime.strptime(time_string, time_format) + timedelta(minutes=minute_delta), time_format, ) ```
{ "source": "JoshuaW1990/bus_arrival_prediction", "score": 3 }
#### File: bus_arrival_prediction/preprocess/data_collection.py ```python import pandas as pd import os from datetime import datetime, timedelta from dateutil.rrule import rrule, DAILY import requests import random import urllib ################################################################################################################# # helper function for api data, segment data, and other calcualtion # ################################################################################################################# """ Helper functions for generating api data, segment data and even the arrival time list of helper functions: * calculate_arrival_time * calculate_arrival_distance * extract_time * calculate_time_span * calculate_time_from_stop * filter_single_history """ def calculate_arrival_time(stop_dist, prev_dist, next_dist, prev_timestamp, next_timestamp): """ Calculate the arrival time according to the given tuple (prev_dist, next_dist), the current location, the timestamp of the prev location, and the timestamp of the next location :param stop_dist: the distance of the target stop between the prev and next tuple :param prev_dist: the distance of the location of the bus at the previous record :param next_dist: the distance of the location of the bus at the next record :param prev_timestamp: the timestamp of the bus at the previous record :param next_timestamp: the timestamp of the bus at the next record :return result: the timestamp of the bus arrival the target stop """ distance_prev_next = next_dist - prev_dist distance_prev_stop = stop_dist - prev_dist ratio = float(distance_prev_stop) / float(distance_prev_next) duration_prev_next = next_timestamp - prev_timestamp duration_prev_stop = ratio * duration_prev_next.total_seconds() duration_prev_stop = timedelta(0, duration_prev_stop) stop_timestamp = prev_timestamp + duration_prev_stop return stop_timestamp def calculate_arrival_distance(time_of_day, prev_dist, next_dist, prev_timestamp, next_timestamp): """ calculate arrival distance according to the given input: time_of_day, prev_dist, next_dist, prev_timestamp, next_timestamp :param time_of_day: the given time for calculating the dist_along_route :param prev_dist: the distance of the location of the bus for the previous record in historical data :param next_dist: the distance of the location of the bus for the next record in historical data :param prev_timestamp: the timestamp of the bus for the previous record in historical data :param next_timestamp: the timestamp of the bus for the next record in historical data :return result: dist_along_route for the bus at the given time_of_day """ duration_prev_next = next_timestamp - prev_timestamp duration_prev_time = time_of_day - prev_timestamp duration_prev_next = duration_prev_next.total_seconds() duration_prev_time = duration_prev_time.total_seconds() ratio = duration_prev_time / duration_prev_next distance_prev_next = next_dist - prev_dist distance_prev_time = distance_prev_next * ratio dist_along_route = prev_dist + distance_prev_time return dist_along_route def extract_time(time): """ Convert the string into datetime format. :param time: string of time need to be converted. Example: '2017-01-16T15:09:28Z' :return: the time in datetime format """ result = datetime.strptime(time[11: 19], '%H:%M:%S') return result def calculate_time_span(time1, time2): """ Calculate the duration of two timepoints :param time1: previous time point in string format, ex: '2017-01-16T15:09:28Z' :param time2: next time point in string format, ex: '2017-01-16T15:09:28Z' :return: float number of seconds """ timespan = extract_time(time2) - extract_time(time1) return timespan.total_seconds() def calculate_time_from_stop(segment_df, dist_along_route, prev_record, next_record): """ Calculate the time from stop within the tuple (prev_record, next_record) Algorithm: if prev_record = next_record: the bus is parking at the stop, return 0 Calcualte the distance within the tuple Calculate the distance between the current location and the prev record Calcualte the ratio of these two distances Use the ratio to calcualte the time_from_stop :param segment_df: dataframe for the preprocessed segment data :param dist_along_route: distance between the intial stop and the current location of the bus :param prev_record: single record of the route_stop_dist.csv file :param next_record: single record of the route_stop_dist.csv file :return: total seconds of the time_from_stop """ if prev_record.get('stop_id') == next_record.get('stop_id'): return 0.0 distance_stop_stop = next_record.get('dist_along_route') - prev_record.get('dist_along_route') distance_bus_stop = next_record.get('dist_along_route') - dist_along_route ratio = float(distance_bus_stop) / float(distance_stop_stop) assert ratio < 1 try: travel_duration = segment_df[(segment_df.segment_start == prev_record.get('stop_id')) & ( segment_df.segment_end == next_record.get('stop_id'))].iloc[0]['travel_duration'] except: travel_duration = segment_df['travel_duration'].mean() time_from_stop = travel_duration * ratio return time_from_stop def filter_single_history(single_history, stop_sequence): """ Filter the history file with only one day and one stop sequence to remove abnormal record :param single_history: dataframe for history table with only one day :param stop_sequence: list of stop id :return: dataframe for filtered history table """ current_history = single_history[ (single_history.next_stop_id.isin(stop_sequence)) & (single_history.dist_along_route > 0)] if len(current_history) < 3: return None tmp_history = pd.DataFrame(columns=current_history.columns) i = 1 prev_record = current_history.iloc[0] while i < len(current_history): next_record = current_history.iloc[i] prev_distance = float(prev_record.total_distance) next_distance = float(next_record.total_distance) while prev_distance >= next_distance: i += 1 if i == len(current_history): break next_record = current_history.iloc[i] next_distance = float(next_record.total_distance) tmp_history.loc[len(tmp_history)] = prev_record prev_record = next_record i += 1 if float(prev_record.total_distance) > float(tmp_history.iloc[-1].total_distance): tmp_history.loc[len(tmp_history)] = prev_record return tmp_history ################################################################################################################# # weather.csv # ################################################################################################################# def get_precip(gooddate, api_token): """ Download the weather information for a specific date :param gooddate: date for downloading :param api_token: the token for api interface :return: list of the data """ urlstart = 'http://api.wunderground.com/api/' + api_token + '/history_' urlend = '/q/NY/New_York.json' url = urlstart + str(gooddate) + urlend data = requests.get(url).json() result = None for summary in data['history']['dailysummary']: rain = summary['rain'] snow = summary['snow'] if snow == '1': weather = '2' elif rain == '1': weather = '1' else: weather = '0' result = [gooddate, rain, snow, weather] return result def download_weather(date_start, date_end, api_token): """ download the weather information for a date range :param date_start: start date, string, ex: '20160101' :param date_end: similar to date_start :param api_token: the token for api interface :return: dataframe for weather table weather = 2: snow weather = 1: rain weather = 0: sunny """ a = datetime.strptime(date_start, '%Y%m%d') b = datetime.strptime(date_end, '%Y%m%d') result = pd.DataFrame(columns=['date', 'rain', 'snow', 'weather']) for dt in rrule(DAILY, dtstart=a, until=b): current_data = get_precip(dt.strftime("%Y%m%d"), api_token) if current_data is None: continue else: result.loc[len(result)] = current_data return result ################################################################################################################# # route_stop_dist.csv # ################################################################################################################# """ Calculate the distance of each stops for a specific route from the initial stop. It will read three different files: trips.txt, stop_times.txt and history file. Use the stop_times.txt and trips.txt file to obtain the stop sequence for each route and use the historical data to calculate the actual distance for each stop. """ def calculate_stop_distance(stop_times, history, direction_id=0): """ Calculate the distance of each stop with its initial stop. Notice that the dist_along_route is the distance between the next_stop and the initial stop Algorithm: split the history and stop_times table according to the route id and shape id for each subset of the divided history table: get the route id and shape id for the subset get the corresponding subset of the stop_times table get the stop sequence from this subset define a new dataframe based on the stop sequence for that shape id find the distance from history data for the corresponding stop and shape id save the result for this subset concatenate all the results :param stop_times: the stop_times table read from stop_times.txt file in GTFS :param history: the history table from preprocessed history.csv file :param direction_id: the direction id which can be 0 or 1 :return: the route_stop_dist table in dataframe """ route_grouped_history = history.groupby(['route_id', 'shape_id']) route_grouped_stop_times = stop_times.groupby(['route_id', 'shape_id']) result_list = [] for name, single_route_history in route_grouped_history: route_id, shape_id = name flag = 0 current_result = pd.DataFrame() single_stop_times = route_grouped_stop_times.get_group((route_id, shape_id)) trip_id = single_stop_times.iloc[0]['trip_id'] single_stop_times = single_stop_times[single_stop_times.trip_id == trip_id] single_stop_times.reset_index(inplace=True) current_result['stop_id'] = single_stop_times['stop_id'] current_result['route_id'] = route_id current_result['shape_id'] = shape_id current_result['direction_id'] = direction_id stop_grouped = single_route_history.groupby(['next_stop_id']).mean() stop_grouped.reset_index(inplace=True) stop_grouped['next_stop_id'] = pd.to_numeric(stop_grouped['next_stop_id']) stop_set = set(stop_grouped['next_stop_id']) for i in xrange(len(current_result)): next_stop_id = current_result.iloc[i]['stop_id'] if next_stop_id not in stop_set: print route_id, shape_id flag = 1 break else: dist_along_route = stop_grouped[stop_grouped.next_stop_id == next_stop_id].iloc[0]['dist_along_route'] current_result.set_value(i, 'dist_along_route', dist_along_route) if flag == 1: continue else: result_list.append(current_result) result = pd.concat(result_list, ignore_index=True) return result ################################################################################################################# # segment.csv # ################################################################################################################# """ generate the segment table """ def generate_original_segment(full_history_var, weather, stop_times_var): """ Generate the original segment data Algorithm: Split the full historical data according to the service date, trip_id with groupby function For name, item in splitted historical dataset: service date, trip_id = name[0], name[1] Find the vehicle id which is the majority elements in this column (For removing the abnormal value in historical data) calcualte the travel duration within the segement of this splitted historical data and save the result into list concatenate the list :param full_history_var: the historical data after filtering :param weather: the dataframe for the weather information :param stop_times_var: the dataframe from stop_times.txt :return: dataframe for the original segment format: segment_start, segment_end, timestamp, travel_duration, weather, service date, day_of_week, trip_id, vehicle_id """ full_history_var = full_history_var[full_history_var.total_distance > 0] grouped = list(full_history_var.groupby(['service_date', 'trip_id'])) result_list = [] step_count = range(0, len(grouped), len(grouped) / 10) for index in range(len(grouped)): name, single_history = grouped[index] if index in step_count: print "process: ", str(step_count.index(index)) + '/' + str(10) service_date, trip_id = name if service_date <= 20160103: continue grouped_vehicle_id = list(single_history.groupby(['vehicle_id'])) majority_length = -1 majority_vehicle = -1 majority_history = single_history for vehicle_id, item in grouped_vehicle_id: if len(item) > majority_length: majority_length = len(item) majority_history = item majority_vehicle = vehicle_id stop_sequence = [item for item in list(stop_times_var[stop_times_var.trip_id == trip_id].stop_id)] current_segment_df = generate_original_segment_single_history(majority_history, stop_sequence) if current_segment_df is None: continue current_weather = weather[weather.date == service_date].iloc[0]['weather'] current_segment_df['weather'] = current_weather day_of_week = datetime.strptime(str(service_date), '%Y%m%d').weekday() current_segment_df['service_date'] = service_date current_segment_df['day_of_week'] = day_of_week current_segment_df['trip_id'] = trip_id current_segment_df['vehicle_id'] = majority_vehicle result_list.append(current_segment_df) if result_list != []: result = pd.concat(result_list, ignore_index=True) else: return None return result def generate_original_segment_single_history(history, stop_sequence): """ Calculate the travel duration for a single historical data Algorithm: Filter the historical data with the stop sequence here arrival_time_list = [] i = 0 while i < len(history): use prev and the next to mark the record: prev = history[i - 1] next = history[i] check whether the prev stop is the same as the next stop: if yes, skip this row and continue to next row prev_distance = prev.dist_along_route - prev.dist_from_stop next_distance = next.dist_along_route - next.dist_from_stop if prev_distance == next_distance: continue to next row elif prev.dist_from_stop = 0: current_arrival_time = prev.timestamp else: current_arrival_duration = calcualte_arrival_time(prev.dist_along_route, prev_distance, next_distance, prev_timestamp, next_timestamp) arrival_time_list.append((prev.next_stop_id, current_arrival_time)) result = pd.Dataframe for i in range(1, len(arrival_time_list)): prev = arrival_time_list[i - 1] next = arrival_time_list[i] segment_start, segment_end obtained travel_duration = next[1] - prev[1] timestamp = prev[1] save the record to result :param history: single historical data :param stop_sequence: stop sequence for the corresponding trip id :return: the dataframe of the origianl segment dataset format: segment_start, segment_end, timestamp, travel_duration """ single_history = filter_single_history(history, stop_sequence) if single_history is None or len(single_history) < 3: return None arrival_time_list = [] grouped_list = list(single_history.groupby('next_stop_id')) if len(grouped_list) < 3: return None history = pd.DataFrame(columns=single_history.columns) for i in xrange(len(grouped_list)): history.loc[len(history)] = grouped_list[i][1].iloc[-1] history.sort_values(by='timestamp', inplace=True) if history.iloc[0]['total_distance'] < 1: prev_record = history.iloc[1] i = 2 else: prev_record = history.iloc[0] i = 1 while i < len(history): next_record = history.iloc[i] while stop_sequence.index(prev_record.next_stop_id) >= stop_sequence.index(next_record.next_stop_id): i += 1 if i == len(history): break next_record = history.iloc[i] if i == len(history): break prev_distance = float(prev_record.total_distance) next_distance = float(next_record.total_distance) prev_timestamp = datetime.strptime(prev_record.timestamp, '%Y-%m-%dT%H:%M:%SZ') next_timestamp = datetime.strptime(next_record.timestamp, '%Y-%m-%dT%H:%M:%SZ') if prev_distance == next_distance: # the bus didn't move yet i += 1 continue if prev_record.dist_from_stop == 0: # if prev.dist_from_stop is 0, the bus is 0, then save result into timestamp current_arrival_time = prev_timestamp else: stop_dist = prev_record.dist_along_route current_arrival_time = calculate_arrival_time(stop_dist, prev_distance, next_distance, prev_timestamp, next_timestamp) arrival_time_list.append((prev_record.next_stop_id, current_arrival_time)) prev_record = next_record i += 1 result = pd.DataFrame(columns=['segment_start', 'segment_end', 'timestamp', 'travel_duration']) for i in range(1, len(arrival_time_list)): prev_record = arrival_time_list[i - 1] next_record = arrival_time_list[i] segment_start, segment_end = prev_record[0], next_record[0] timestamp = prev_record[1] travel_duration = next_record[1] - prev_record[1] travel_duration = travel_duration.total_seconds() result.loc[len(result)] = [segment_start, segment_end, str(timestamp), travel_duration] return result def improve_dataset_unit(segment_df, stop_sequence): """ improve the dataset for a specific trip_id at a specific date: add the skipped segments back into the dataframe Algorithm: define result_df For each row in segment_df: obtain segment_start, segment_end, timestamp, travel_duration from the current row start_index: index of segment_start in stop_sequence end_index: ... count = end_index - start_index if count is 1, save the current row and continue to next row average_travel_duration = travel_duration / count For index in range(start_index, end_index): current_segment_start = stop_sequence[index] current_segment_end = stop_sequence[index + 1] save the new row with the timestamp, average_travel_duration, current_segment_start, and current_segment_end into result_df timestamp = timestamp + average_travel_duration return result_df :param segment_df: a subset of segment table with one trip id and service date :param stop_sequence: stop sequence for the corresponding trip id :return: dataframe for improved segment table return format: segment_start, segment_end, timestamp, travel_duration """ result = pd.DataFrame(columns=['segment_start', 'segment_end', 'timestamp', 'travel_duration']) for i in xrange(len(segment_df)): segment_start = segment_df.iloc[i]['segment_start'] segment_end = segment_df.iloc[i]['segment_end'] timestamp = segment_df.iloc[i]['timestamp'] travel_duration = segment_df.iloc[i]['travel_duration'] start_index = stop_sequence.index(segment_start) end_index = stop_sequence.index(segment_end) count = end_index - start_index if count <= 0: print "error" continue average_travel_duration = float(travel_duration) / float(count) for j in range(start_index, end_index): current_segment_start = stop_sequence[j] current_segment_end = stop_sequence[j + 1] result.loc[len(result)] = [current_segment_start, current_segment_end, timestamp, average_travel_duration] timestamp = datetime.strptime(timestamp[:19], '%Y-%m-%d %H:%M:%S') + timedelta(0, average_travel_duration) timestamp = str(timestamp) return result def improve_dataset(segment_df, stop_times, weather_df): """ Improve the segment table by adding the skipped stops and other extra columns like weather, day_of_week, etc. algorithm: split the segment dataframe by groupby(service_date, trip_id) result_list = [] for name, item in grouped_segment: obtained the improved segment data for the item add the columns: weather, service date, day_of_week, trip_id, vehicle_id save the result into result_list concatenate the dataframe in the result_list :param segment_df: the dataframe of segment table :param stop_times: the dataframe of the stop_times.txt file in GTFS dataset :param weather_df: the dataframe of the weather information :return: the dataframe of the improved segment table """ grouped_list = list(segment_df.groupby(['service_date', 'trip_id'])) result_list = [] for i in xrange(len(grouped_list)): name, item = grouped_list[i] service_date, trip_id = name stop_sequence = list(stop_times[stop_times.trip_id == trip_id].stop_id) current_segment = improve_dataset_unit(item, stop_sequence) if current_segment is None: continue # add the other columns current_segment['weather'] = weather_df[weather_df.date == service_date].iloc[0].weather current_segment['service_date'] = service_date current_segment['day_of_week'] = datetime.strptime(str(service_date), '%Y%m%d').weekday() current_segment['trip_id'] = trip_id current_segment['vehicle_id'] = item.iloc[0].vehicle_id result_list.append(current_segment) if result_list == []: result = None else: result = pd.concat(result_list, ignore_index=True) return result ################################################################################################################# # api data section # ################################################################################################################# """ Generate the api data from the GTFS data and the historical data """ def generate_api_data(date_list, time_list, stop_num, route_stop_dist, full_history): """ Generate the api data for the test_route_set and given time list Algorithm: Generate the set of trip id for test routes Generate the random test stop id for each test routes Filtering the historical data with trip id Generate the list of historical data Groupby(date, trip id) for each item in the list of the historical data: obtain the trip id and the date obtain the corresponding route obtain the corresponding stop set for stop in stop set: for each time point in the time list: check whether the bus has passed the stop at the time point if yes, continue to next stop otherwise, save the record into result :param time_list: the date list for testing [20160101, 20160102, ...] :param time_list: the time list for testing, ['12:00:00', '12:05:00', ...] :param stop_num: the number of the target stop for test :param route_stop_dist: the dataframe for the route_stop_dist table :param full_history: the dataframe for the history table :return: the dataframe for the api data """ trip_route_dict = {} route_stop_dict = {} grouped = route_stop_dist.groupby(['shape_id']) for shape_id, single_route_stop_dist in grouped: stop_sequence = list(single_route_stop_dist.stop_id) if len(stop_sequence) < 5: continue trip_set = set(full_history[full_history.shape_id == shape_id].trip_id) current_dict = dict.fromkeys(trip_set, shape_id) trip_route_dict.update(current_dict) stop_set = set() for i in range(stop_num): stop_set.add(stop_sequence[random.randint(2, len(stop_sequence) - 2)]) route_stop_dict[shape_id] = stop_set history = full_history[ (full_history.trip_id.isin(trip_route_dict.keys())) & (full_history.service_date.isin(date_list))] history_grouped = history.groupby(['service_date', 'trip_id']) result = pd.DataFrame( columns=['trip_id', 'vehicle_id', 'route_id', 'stop_id', 'time_of_day', 'date', 'dist_along_route', 'shape_id']) print_dict = dict.fromkeys(date_list, True) for name, single_history in history_grouped: service_date, trip_id = name if service_date not in date_list: continue if print_dict[service_date]: print service_date print_dict[service_date] = False shape_id = trip_route_dict[trip_id] stop_set = [str(int(item)) for item in route_stop_dict[shape_id]] stop_sequence = list(route_stop_dist[route_stop_dist.shape_id == shape_id].stop_id) # filtering the history data: remove the abnormal value single_history = filter_single_history(single_history, stop_sequence) if single_history is None or len(single_history) < 2: continue for target_stop in stop_set: target_index = stop_sequence.index(float(target_stop)) for current_time in time_list: prev_history = single_history[single_history['timestamp'].apply(lambda x: x[11:19] <= current_time)] next_history = single_history[single_history['timestamp'].apply(lambda x: x[11:19] > current_time)] if len(prev_history) == 0: continue if len(next_history) == 0: break tmp_stop = str(prev_history.iloc[-1].next_stop_id) tmp_index = stop_sequence.index(float(tmp_stop)) if tmp_index > target_index: break # If the bus does not pass the target stop, save the remained stops into the stop sequence and calculate the result route_id = single_history.iloc[0].route_id current_list = generate_single_api(current_time, route_id, prev_history, next_history, target_stop, shape_id) if current_list is not None: result.loc[len(result)] = current_list return result def generate_single_api(current_time, route_id, prev_history, next_history, stop_id, shape_id): """ Calculate the single record for the api data Algorithm for calculate the single record: According to the time point, find the closest time duration (prev, next) Calculate the dist_along_route for the bus at current timepoint: calculate the space distance between the time duration (prev, next) calculate the time distance of two parts: (prev, current), (prev, next) use the ratio of the time distance to multiply with the space distance to obtain the dist_along_route for current According to the dista_along_route and the stop sequence confirm the remained stops including the target stop Count the number of the remained stops :param current_time: The current time for generating the api data :param route_id: the id of the route for the specific record :param prev_history: the dataframe of the history table before the timestamp on the record of api data with the same trip id :param next_history: the dataframe of the history table after the timestamp on the record of api data with the same trip id :param stop_id: The id of the target stop :param shape_id: The id of the shape (stop sequence) :return: the list for the result """ single_trip = prev_history.iloc[0].trip_id prev_record = prev_history.iloc[-1] next_record = next_history.iloc[0] # calculate the dist_along_route for current prev_distance = float(prev_record.total_distance) next_distance = float(next_record.total_distance) prev_timestamp = datetime.strptime(prev_record['timestamp'], '%Y-%m-%dT%H:%M:%SZ') next_timestamp = datetime.strptime(next_record['timestamp'], '%Y-%m-%dT%H:%M:%SZ') # determine the current time if prev_record['timestamp'][11:19] <= current_time <= next_record['timestamp'][11:19]: time_of_day = prev_record['timestamp'][:11] + current_time + 'Z' else: # case: this trip is crossing between two days if current_time > next_record['timestamp'][11:19]: time_of_day = prev_record['timestamp'][11:19] + current_time + 'Z' else: time_of_day = next_record['timestamp'][11:19] + current_time + 'Z' time_of_day = datetime.strptime(time_of_day, '%Y-%m-%dT%H:%M:%SZ') dist_along_route = calculate_arrival_distance(time_of_day, prev_distance, next_distance, prev_timestamp, next_timestamp) # Generate the return list # trip_id vehicle_id route_id stop_id time_of_day date dist_along_route result = [single_trip, prev_record['vehicle_id'], route_id, stop_id, str(time_of_day), prev_record['service_date'], dist_along_route, shape_id] return result ################################################################################################################# # main function section # ################################################################################################################# """ Functions for users """ # weather data def obtain_weather(start_date, end_date, api_token, save_path=None, engine=None): """ Download the weather.csv file into save_path :param start_date: start date, string, example: '20160101' :param end_date: similar to start_date :param api_token: api_token for wunderground api interface. Anyone can apply for it in free. :param save_path: path of a csv file for storing the weather table. :param engine: database connect engine :return: return the weather table in dataframe """ weather = download_weather(start_date, end_date, api_token) if save_path is not None: weather.to_csv(save_path) if engine is not None: weather.to_sql(name='weather', con=engine, if_exists='replace', index_label='id') return weather # history data def download_history_file(year, month, date_list, save_path): """ Download the history data from nyc database. User still needs to uncompress the data into csv file :param year: integer to represent the year, example: 2016 :param month: integer to represent the month, example: 1 :param date_list: list of integer to represent the dates of the required data :param save_path: path for downloading the compressed data :return: None """ year = str(year) if month < 10: month = '0' + str(month) else: month = str(month) base_url = 'http://data.mytransit.nyc/bus_time/' url = base_url + year + '/' + year + '-' + month + '/' download_file = urllib.URLopener() for date in date_list: if date < 10: date = '0' + str(date) else: date = str(date) filename = 'bus_time_' + year + month + date + '.csv.xz' file_url = url + filename download_file.retrieve(file_url, save_path + filename) def obtain_history(start_date, end_date, trips, history_path, save_path=None, engine=None): """ Generate the csv file for history data :param start_date: integer to represent the start date, example: 20160105 :param end_date: integer to represent the end date, format is the same as start date :param trips: the dataframe storing the table from trips.txt file in GTFS dataset :param history_path: path of all the historical data. User should place all the historical data under the same directory and use this directory as the history_path. Please notice that the change of the filename might cause error. :param save_path: path of a csv file to store the history table :param engine: database connect engine :return: the history table in dataframe """ trip_set = set(trips.trip_id) # generate the history data file_list = os.listdir(history_path) history_list = [] for filename in file_list: if not filename.endswith('.csv'): continue if int(start_date) <= int(filename[9:17]) <= int(end_date): print filename ptr_history = pd.read_csv(history_path + filename) tmp_history = ptr_history[(ptr_history.dist_along_route != '\N') & (ptr_history.dist_along_route != 0) & (ptr_history.progress == 0) & (ptr_history.block_assigned == 1) & (ptr_history.dist_along_route > 1) & (ptr_history.trip_id.isin(trip_set))] history_list.append(tmp_history) result = pd.concat(history_list, ignore_index=True) # add some other information: total_distance, route_id, shape_id result['dist_along_route'] = pd.to_numeric(result['dist_along_route']) result['dist_from_stop'] = pd.to_numeric(result['dist_from_stop']) result['total_distance'] = result['dist_along_route'] - result['dist_from_stop'] trip_route_dict = trips.set_index('trip_id').to_dict(orient='index') result['route_id'] = result['trip_id'].apply(lambda x: trip_route_dict[x]['route_id']) result['shape_id'] = result['trip_id'].apply(lambda x: trip_route_dict[x]['shape_id']) # export csv file if save_path is not None: result.to_csv(save_path) if engine is not None: result.to_sql(name='history', con=engine, if_exists='replace', index_label='id') return result # route_stop_dist data def obtain_route_stop_dist(trips, stop_times, history_file, save_path=None, engine=None): """ Generate the csv file for route_stop_dist data. In order to obtain a more complete data for route_stop_dist, the size of the history file should be as large as possible. :param trips: the dataframe storing the table from trips.txt file in GTFS dataset :param stop_times: the dataframe storing the table from stop_times.txt file in GTFS dataset :param history_file: path of the preprocessed history file :param save_path: path of a csv file to store the route_stop_dist table :param engine: database connect engine :return: the route_stop_dist table in dataframe """ trip_route_dict = trips.set_index('trip_id').to_dict(orient='index') stop_times['route_id'] = stop_times['trip_id'].apply(lambda x: trip_route_dict[x]['route_id']) stop_times['shape_id'] = stop_times['trip_id'].apply(lambda x: trip_route_dict[x]['shape_id']) history = pd.read_csv(history_file) route_stop_dist = calculate_stop_distance(stop_times, history) if save_path is not None: route_stop_dist.to_csv(save_path) if engine is not None: route_stop_dist.to_sql(name='route_stop_dist', con=engine, if_exists='replace', index_label='id') return route_stop_dist # segment data def obtain_segment(weather_df, trips, stop_times, route_stop_dist, full_history, training_date_list, save_path=None, engine=None): """ Generate the csv file for segment table :param weather_df: the dataframe storing the weather data :param trips: the dataframe storing the table from trips.txt file in GTFS dataset :param stop_times: the dataframe storing the table from stop_times.txt file in GTFS dataset :param full_history: the dataframe storing the history table :param training_date_list: the list of dates to generate the segments from history table :param save_path: path of a csv file to store the segment table :param engine: database connect engine :return: the segment table in dataframe """ full_history = full_history[full_history.service_date.isin(training_date_list)] shape_list = set(route_stop_dist.shape_id) full_history = full_history[full_history.shape_id.isin(shape_list)] segment_df = generate_original_segment(full_history, weather_df, stop_times) segment_df = improve_dataset(segment_df, stop_times, weather_df) trip_route_dict = trips.set_index('trip_id').to_dict(orient='index') segment_df['route_id'] = segment_df['trip_id'].apply(lambda x: trip_route_dict[x]['route_id']) segment_df['shape_id'] = segment_df['trip_id'].apply(lambda x: trip_route_dict[x]['shape_id']) if save_path is not None: segment_df.to_csv(save_path) if engine is not None: segment_df.to_sql(name='segment', con=engine, if_exists='replace', index_label='id') return segment_df # api_data table def obtain_api_data(route_stop_dist, full_history, date_list, time_list, stop_num, save_path=None, engine=None): """ Generate the csv file for api_data table :param route_stop_dist: the dataframe storing route_stop_dist table :param full_history: the dataframe storing historical data :param date_list: the list of integers to represent the dates for generating api data. Example: [20160101, 20160102, 20160103] :param time_list: the list of strings to represent the time for generating api data. Example: ['12:00:00', '12:05:00', '12:10:00', '12:15:00', '12:20:00', '12:25:00', '12:30:00']. Please follow the same format. :param stop_num: the number of target stop for each shape id :param save_path: path of a csv file to store the api_data table :param engine: database connect engine :return: the dataframe storing api_data table """ full_history = full_history[full_history.service_date.isin(date_list)] result = generate_api_data(date_list, time_list, stop_num, route_stop_dist, full_history) if save_path is not None: result.to_csv(save_path) if engine is not None: result.to_sql(name='api_data', con=engine, if_exists='replace', index_label='id') return result ```
{ "source": "Joshuawadd/rlcard", "score": 3 }
#### File: rlcard/envs/env.py ```python from rlcard.utils import * from rlcard.games.whist.utils import cards2list import os class Env(object): ''' The base Env class. For all the environments in RLCard, we should base on this class and implement as many functions as we can. ''' def __init__(self, config): ''' Initialize the environment Args: config (dict): A config dictionary. All the fields are optional. Currently, the dictionary includes: 'seed' (int) - A environment local random seed. 'env_num' (int) - If env_num>1, the environemnt wil be run with multiple processes. Note the implementatino is in `vec_env.py`. 'allow_step_back' (boolean) - True if allowing step_back. 'allow_raw_data' (boolean) - True if allow raw obs in state['raw_obs'] and raw legal actions in state['raw_legal_actions']. 'single_agent_mode' (boolean) - True if single agent mode, i.e., the other players are pretrained models. 'active_player' (int) - If 'singe_agent_mode' is True, 'active_player' specifies the player that does not use pretrained models. There can be some game specific configurations, e.g., the number of players in the game. These fields should start with 'game_', e.g., 'game_player_num' we specify the number of players in the game. Since these configurations may be game-specific, The default settings shpuld be put in the Env class. For example, the default game configurations for Blackjack should be in 'rlcard/envs/blackjack.py' TODO: Support more game configurations in the future. ''' self.allow_step_back = self.game.allow_step_back = config['allow_step_back'] self.allow_raw_data = config['allow_raw_data'] self.record_action = config['record_action'] if self.record_action: self.action_recorder = [] # Game specific configurations # Currently only support blackjack # TODO support game configurations for all the games supported_envs = ['blackjack'] if self.name in supported_envs: _game_config = self.default_game_config.copy() for key in config: if key in _game_config: _game_config[key] = config[key] self.game.configure(_game_config) # Get the number of players/actions in this game self.player_num = self.game.get_player_num() self.action_num = self.game.get_action_num() # A counter for the timesteps self.timestep = 0 # Modes self.single_agent_mode = config['single_agent_mode'] self.active_player = config['active_player'] # Load pre-trained models if single_agent_mode=True if self.single_agent_mode: self.model = self._load_model() # If at least one pre-trained agent needs raw data, we set self.allow_raw_data = True for agent in self.model.agents: if agent.use_raw: self.allow_raw_data = True break # Set random seed, default is None self._seed(config['seed']) def reset(self): ''' Reset environment in single-agent mode Call `_init_game` if not in single agent mode ''' if not self.single_agent_mode: return self._init_game() while True: state, player_id = self.game.init_game() while not player_id == self.active_player: self.timestep += 1 action, _ = self.model.agents[player_id].eval_step( self._extract_state(state)) if not self.model.agents[player_id].use_raw: action = self._decode_action(action) state, player_id = self.game.step(action) if not self.game.is_over(): break return self._extract_state(state) def step(self, action, raw_action=False): ''' Step forward Args: action (int): The action taken by the current player raw_action (boolean): True if the action is a raw action Returns: (tuple): Tuple containing: (dict): The next state (int): The ID of the next player ''' if not raw_action: action = self._decode_action(action) if self.single_agent_mode: return self._single_agent_step(action) self.timestep += 1 # Record the action for human interface if self.record_action: self.action_recorder.append([self.get_player_id(), action]) next_state, player_id = self.game.step(action) return self._extract_state(next_state), player_id def step_back(self): ''' Take one step backward. Returns: (tuple): Tuple containing: (dict): The previous state (int): The ID of the previous player Note: Error will be raised if step back from the root node. ''' if not self.allow_step_back: raise Exception( 'Step back is off. To use step_back, please set allow_step_back=True in rlcard.make') if not self.game.step_back(): return False player_id = self.get_player_id() state = self.get_state(player_id) return state, player_id def set_agents(self, agents): ''' Set the agents that will interact with the environment. This function must be called before `run`. Args: agents (list): List of Agent classes ''' if self.single_agent_mode: raise ValueError( 'Setting agent in single agent mode or human mode is not allowed.') self.agents = agents # If at least one agent needs raw data, we set self.allow_raw_data = True for agent in self.agents: if agent.use_raw: self.allow_raw_data = True break def run(self, is_training=False): ''' Run a complete game, either for evaluation or training RL agent. Args: is_training (boolean): True if for training purpose. Returns: (tuple) Tuple containing: (list): A list of trajectories generated from the environment. (list): A list payoffs. Each entry corresponds to one player. Note: The trajectories are 3-dimension list. The first dimension is for different players. The second dimension is for different transitions. The third dimension is for the contents of each transiton ''' if self.single_agent_mode: raise ValueError('Run in single agent not allowed.') trajectories = [[] for _ in range(self.player_num)] state, player_id = self.reset() player_hand = [0, 0, 0, 0] difficulty = 0 #print(self.game.trump_suit) if not is_training: for player_id in range(self.player_num): #print(cards2list(self.game.players[player_id].hand)) for card in self.game.players[player_id].hand: if card.suit == self.game.trump_suit: if card.rank == 'A': player_hand[player_id] += 27 elif card.rank == 'K': player_hand[player_id] += 26 elif card.rank == 'Q': player_hand[player_id] += 25 elif card.rank == 'J': player_hand[player_id] += 24 elif card.rank == 'T': player_hand[player_id] += 23 else: player_hand[player_id] += (int(card.rank) + 13) else: if card.rank == 'A': player_hand[player_id] += 14 elif card.rank == 'K': player_hand[player_id] += 13 elif card.rank == 'Q': player_hand[player_id] += 12 elif card.rank == 'J': player_hand[player_id] += 11 elif card.rank == 'T': player_hand[player_id] += 10 else: player_hand[player_id] += int(card.rank) #print(player_hand) score_1 = max(player_hand[0], player_hand[2]) score_2 = max(player_hand[1], player_hand[3]) difficulty = score_1 - score_2 # Loop to play the game trajectories[player_id].append(state) while not self.is_over(): # Agent plays if not is_training: action, _=self.agents[player_id].eval_step(state) else: action=self.agents[player_id].step(state) # Environment steps next_state, next_player_id=self.step( action, self.agents[player_id].use_raw) # Save action trajectories[player_id].append(action) # Set the state and player state=next_state player_id=next_player_id # Save state. if not self.game.is_over(): trajectories[player_id].append(state) # Add a final state to all the players for player_id in range(self.player_num): state=self.get_state(player_id) trajectories[player_id].append(state) # Payoffs payoffs=self.get_payoffs() # print("start") # print(trajectories) # print() # Reorganize the trajectories trajectories=reorganize(trajectories, payoffs) return trajectories, payoffs, difficulty def run_example(self, log_location, is_training=False): ''' Run a complete game, either for evaluation or training RL agent. Args: is_training (boolean): True if for training purpose. Returns: (tuple) Tuple containing: (list): A list of trajectories generated from the environment. (list): A list payoffs. Each entry corresponds to one player. Note: The trajectories are 3-dimension list. The first dimension is for different players. The second dimension is for different transitions. The third dimension is for the contents of each transiton ''' if self.single_agent_mode: raise ValueError('Run in single agent not allowed.') trajectories=[[] for _ in range(self.player_num)] state, player_id=self.reset() player_hand = [0, 0, 0, 0] if not is_training: for player_id in range(self.player_num): #print(cards2list(self.game.players[player_id].hand)) for card in self.game.players[player_id].hand: if card.suit == self.game.trump_suit: if card.rank == 'A': player_hand[player_id] += 27 elif card.rank == 'K': player_hand[player_id] += 26 elif card.rank == 'Q': player_hand[player_id] += 25 elif card.rank == 'J': player_hand[player_id] += 24 elif card.rank == 'T': player_hand[player_id] += 23 else: player_hand[player_id] += (int(card.rank) + 13) else: if card.rank == 'A': player_hand[player_id] += 14 elif card.rank == 'K': player_hand[player_id] += 13 elif card.rank == 'Q': player_hand[player_id] += 12 elif card.rank == 'J': player_hand[player_id] += 11 elif card.rank == 'T': player_hand[player_id] += 10 else: player_hand[player_id] += int(card.rank) #print(player_hand) score_1 = max(player_hand[0], player_hand[2]) score_2 = max(player_hand[1], player_hand[3]) difficulty = score_1 - score_2 # Loop to play the game trajectories[player_id].append(state) i=1 while not self.is_over(): # Agent plays if not is_training: action, _=self.agents[player_id].eval_step(state) else: action=self.agents[player_id].step(state) # Environment steps next_state, next_player_id=self.step( action, self.agents[player_id].use_raw) # Save action trajectories[player_id].append(action) if i % 4 == 0: # print("") # print("Player 0 hand:", cards2list(self.game.players[0].hand)) # print("Player 1 hand:", cards2list(self.game.players[1].hand)) # print("Player 2 hand:", cards2list(self.game.players[2].hand)) # print("Player 3 hand:", cards2list(self.game.players[3].hand)) # print("Lead player:", self.game.round.lead_player) # print("Trump Suit:", self.game.trump_suit) # print("Playing Card:", self.game.round.played_card) # print("Played Cards:", cards2list(self.game.round.played_cards)) # print("Winner:", self.game.round.round_winner, "Winning card:", self.game.round.played_cards[self.game.round.winning_card]) # print("Score:", self.game.players[0].tricks, self.game.players[1].tricks, self.game.players[2].tricks, self.game.players[3].tricks) with open(log_location, "a") as file_object: file_object.write("\n") file_object.write( "Difficulty: " + str(difficulty) + "\n") file_object.write( "Player 0 hand: " + str(cards2list(self.game.players[0].hand)) + "\n") file_object.write( "Player 1 hand: " + str(cards2list(self.game.players[1].hand)) + "\n") file_object.write( "Player 2 hand: " + str(cards2list(self.game.players[2].hand)) + "\n") file_object.write( "Player 3 hand: " + str(cards2list(self.game.players[3].hand)) + "\n") file_object.write("Lead player: " + \ str(self.game.round.last_lead) + "\n") file_object.write( "Trump Suit: " + self.game.trump_suit + "\n") # file_object.write("Playing Card: " + self.game.round.played_card.__str__() + "\n") file_object.write( "Played Cards: " + str(cards2list(self.game.round.round_cards)) + "\n") file_object.write("Winner: " + str(self.game.round.round_winner) + \ " Winning card: " + self.game.round.winning_card.__str__() + "\n") file_object.write("Score: " + str(self.game.players[0].tricks) + " " + str(self.game.players[1].tricks) + " " + str( self.game.players[2].tricks) + " " + str(self.game.players[3].tricks) + "\n") # Set the state and player state=next_state player_id=next_player_id # Save state. if not self.game.is_over(): trajectories[player_id].append(state) i += 1 # Add a final state to all the players for player_id in range(self.player_num): state=self.get_state(player_id) trajectories[player_id].append(state) # Payoffs payoffs=self.get_payoffs() # print("start") # print(trajectories[0][0]) # Reorganize the trajectories trajectories=reorganize(trajectories, payoffs) # return trajectories, payoffs def is_over(self): ''' Check whether the curent game is over Returns: (boolean): True if current game is over ''' return self.game.is_over() def get_player_id(self): ''' Get the current player id Returns: (int): The id of the current player ''' return self.game.get_player_id() def get_state(self, player_id): ''' Get the state given player id Args: player_id (int): The player id Returns: (numpy.array): The observed state of the player ''' return self._extract_state(self.game.get_state(player_id)) def get_payoffs(self): ''' Get the payoffs of players. Must be implemented in the child class. Returns: (list): A list of payoffs for each player. Note: Must be implemented in the child class. ''' raise NotImplementedError def get_perfect_information(self): ''' Get the perfect information of the current state Returns: (dict): A dictionary of all the perfect information of the current state Note: Must be implemented in the child class. ''' raise NotImplementedError def _seed(self, seed=None): self.np_random, seed=seeding.np_random(seed) self.game.np_random=self.np_random return seed def _init_game(self): ''' Start a new game Returns: (tuple): Tuple containing: (numpy.array): The begining state of the game (int): The begining player ''' state, player_id=self.game.init_game() if self.record_action: self.action_recorder=[] return self._extract_state(state), player_id def _load_model(self): ''' Load pretrained/rule model Returns: model (Model): A Model object ''' raise NotImplementedError def _extract_state(self, state): ''' Extract useful information from state for RL. Must be implemented in the child class. Args: state (dict): The raw state Returns: (numpy.array): The extracted state ''' raise NotImplementedError def _decode_action(self, action_id): ''' Decode Action id to the action in the game. Args: action_id (int): The id of the action Returns: (string): The action that will be passed to the game engine. Note: Must be implemented in the child class. ''' raise NotImplementedError def _get_legal_actions(self): ''' Get all legal actions for current state. Returns: (list): A list of legal actions' id. Note: Must be implemented in the child class. ''' raise NotImplementedError def _single_agent_step(self, action): ''' Step forward for human/single agent Args: action (int): The action takem by the current player Returns: next_state (numpy.array): The next state ''' reward=0. done=False self.timestep += 1 state, player_id=self.game.step(action) while not self.game.is_over() and not player_id == self.active_player: self.timestep += 1 action, _=self.model.agents[player_id].eval_step( self._extract_state(state)) if not self.model.agents[player_id].use_raw: action=self._decode_action(action) state, player_id=self.game.step(action) if self.game.is_over(): reward=self.get_payoffs()[self.active_player] done=True state=self.reset() return state, reward, done return self._extract_state(state), reward, done @ staticmethod def init_game(): ''' (This function has been replaced by `reset()`) ''' raise ValueError('init_game is removed. Please use env.reset()') ``` #### File: games/whist/judger.py ```python from rlcard.core import Judger from rlcard.utils.utils import rank2int class WhistJudger(Judger): def __init__(self, np_random): ''' Initialize a judger class ''' self.np_random = np_random def judge_round(self, trump, lead_suit, played_cards): winning_card = None for card in played_cards: if winning_card == None: winning_card = card elif card.suit == trump: if winning_card.suit == trump: if rank2int(card.rank) > rank2int(winning_card.rank): winning_card = card else: winning_card = card elif card.suit == lead_suit: if winning_card.suit == lead_suit: if rank2int(card.rank) > rank2int(winning_card.rank): winning_card = card return played_cards.index(winning_card), winning_card def judge_game(self, players): winner = None start = True for player in players: if start: winner = player.player_id start = False else: if player.tricks > players[winner].tricks: winner = player.player_id return winner ``` #### File: games/whist/player.py ```python from rlcard.core import Player class WhistPlayer(Player): def __init__(self, player_id, np_random): self.np_random = np_random self.hand = [] self.tricks = 0 self.player_id = player_id self.empty_suits = [] def get_player_id(self): ''' Return the id of the player ''' return self.player_id ``` #### File: games/whist/round.py ```python from rlcard.core import Round, Card from rlcard.utils.utils import init_standard_deck, elegent_form from rlcard.games.whist.utils import cards2list import numpy as np from rlcard.utils.utils import init_standard_deck class WhistRound(Round): def __init__(self, dealer, num_players, np_random, judger, trump_suit): ''' When the game starts, round id should be 1 ''' self.np_random = np_random self.dealer = dealer self.target = None self.current_player = 0 self.num_players = num_players self.played_cards = [] self.old_cards = [] self.is_over = False self.winner = None self.lead_player = 0 self.lead_card = None self.round_winner = None self.judger = judger self.trump_suit = trump_suit self.played_card = None self.winning_card = None self.round_cards = [] self.last_lead = 0 def start_new_round (self, players): winning_index, self.winning_card = self.judger.judge_round(self.trump_suit, self.lead_card.suit, self.played_cards) self.round_winner = (self.current_player + winning_index) % self.num_players players[self.round_winner].tricks +=1 players[(self.round_winner + 2) % self.num_players].tricks += 1 self.old_cards.extend(self.played_cards) # print("") # print("Player 0 hand:", cards2list(players[0].hand)) # print("Player 1 hand:", cards2list(players[1].hand)) # print("Player 2 hand:", cards2list(players[2].hand)) # print("Player 3 hand:", cards2list(players[3].hand)) # print("Lead player:", self.lead_player) # print("Trump Suit:", self.trump_suit) # print("Played Cards:", cards2list(self.played_cards)) # print("Winner:", self.round_winner, "Winning card:", winning_card) # print("Score:", players[0].tricks, players[1].tricks, players[2].tricks, players[3].tricks) self.round_cards = self.played_cards self.last_lead = self.lead_player self.played_cards = [] self.current_player = self.round_winner self.lead_player = self.current_player if not players[self.current_player].hand: self.is_over = True self.winner = self.judger.judge_game(players) def proceed_round(self, players, action): ''' Call other Classes's functions to keep the game running ''' player = players[self.current_player] #print(action) suit = action[1] rank = action[0] # for actions in player.hand: # print(actions) for index, card in enumerate(player.hand): if suit == card.suit and rank == card.rank: remove_index = index break card = player.hand.pop(remove_index) self.played_card = card self.played_cards.append(card) #print(player.get_player_id(), self.lead_player) if player.get_player_id() == self.lead_player: self.lead_card = card else: if card.suit != self.lead_card.suit: player.empty_suits.append(card.suit) self.current_player = (self.current_player + 1) % self.num_players #print("current player", self.current_player, self.lead_player) if self.current_player == self.lead_player: self.start_new_round(players) def get_legal_actions(self, players, player_id, lead_player, lead_card): legal_actions = [] hand = players[player_id].hand target = self.target #print(lead_card) if lead_card: lead_suit = lead_card.suit lead_suit_cards = [] if player_id == lead_player: for card in hand: #print('hi', card.__str__()[0]) #x = card.__str__() #legal_actions.append(x) legal_actions.append(card) else: for card in hand: if card.suit == lead_suit: #x = card.__str__() #legal_actions.append(x) lead_suit_cards.append(card) if not lead_suit_cards: for card in hand: #x = card.__str__() #legal_actions.append(x) legal_actions.append(card) else: for card in lead_suit_cards: #x = card.__str__() #legal_actions.append(x) legal_actions.append(card) #print('hi', legal_actions) return cards2list(legal_actions) def get_state(self, players, player_id): ''' Get player's state Args: players (list): The list of UnoPlayer player_id (int): The id of the player ''' state = {} player = players[player_id] state['hand'] = cards2list(player.hand) state['played_cards'] = cards2list(self.played_cards) state['old_cards'] = cards2list(self.old_cards) others_hand = [[],[],[]] i=0 for other_player in players: if other_player.player_id != player_id: possible_cards = init_standard_deck() for card in player.hand: possible_cards.remove(card) for card in self.played_cards: possible_cards.remove(card) for card in self.old_cards: possible_cards.remove(card) for card in possible_cards: if card.suit in other_player.empty_suits: possible_cards.remove(card) others_hand[i].extend(possible_cards) i+=1 #print(cards2list(others_hand[0])) state['others_hand_0'] = cards2list(others_hand[0]) state['others_hand_1'] = cards2list(others_hand[1]) state['others_hand_2'] = cards2list(others_hand[2]) state['player_position'] = len(self.played_cards) # others_hand = [] # for player in players: # if player.player_id != player_id: # others_hand.extend(player.hand) # state['others_hand'] = cards2list(others_hand) state['legal_actions'] = self.get_legal_actions(players, player_id, self.lead_player, self.lead_card) state['card_num'] = [] state['score'] = [] for player in players: state['card_num'].append(len(player.hand)) state['score'].append(player.tricks) if self.lead_card: state['lead_card'] = self.lead_card.__str__() else: state['lead_card'] = self.lead_card state['lead_player'] = self.lead_player return state ``` #### File: rlcard/models/whist_rule_models.py ```python import numpy as np import rlcard from rlcard.models.model import Model from rlcard.utils.utils import rank2int class WhistRuleAgentV1(object): ''' Whist Rule agent version 1 ''' def __init__(self): self.use_raw = True def step(self, state): ''' Predict the action given raw state. A naive rule. Choose the color that appears least in the hand from legal actions. Try to keep wild cards as long as it can. Args: state (dict): Raw state from the game Returns: action (str): Predicted action ''' legal_actions = state['raw_legal_actions'] state = state['raw_obs'] hand = state['hand'] played_cards = state['played_cards'] player_position = state['player_position'] trump = state['trump_suit'] highest_card = None winnable_cards = [] lowest_card = None if player_position == 0: for card in hand: #print(card) if highest_card == None: highest_card = card elif rank2int(card[0]) > rank2int(highest_card[0]): highest_card = card action = highest_card else: for card in legal_actions: if self.can_win(played_cards, card, trump, state['lead_card'][1]): winnable_cards.append(card) #print(winnable_cards) if winnable_cards: action = np.random.choice(winnable_cards) else: for card in legal_actions: if lowest_card == None: lowest_card = card elif rank2int(card[0]) < rank2int(lowest_card[0]): lowest_card = card action = lowest_card #print(legal_actions, winnable_cards, action) #print(action) return action def eval_step(self, state): ''' Step for evaluation. The same to step ''' return self.step(state), [] @staticmethod def can_win(played_cards, card, trump, lead_suit): played_cards.append(card) winning_card = None for card in played_cards: if winning_card == None: winning_card = card elif card[1] == trump: if winning_card[1] == trump: if rank2int(card[0]) > rank2int(winning_card[0]): winning_card = card else: winning_card = card elif card[1] == lead_suit: if winning_card[1] == lead_suit: if rank2int(card[0]) > rank2int(winning_card[0]): winning_card = card if winning_card == card: return True else: return False class WhistRuleModelV1(Model): ''' Whist Rule Model version 1 ''' def __init__(self): ''' Load pretrained model ''' env = rlcard.make('whist') rule_agent = WhistRuleAgentV1() self.rule_agents = [rule_agent for _ in range(env.player_num)] @property def agents(self): ''' Get a list of agents for each position in a the game Returns: agents (list): A list of agents Note: Each agent should be just like RL agent with step and eval_step functioning well. ''' return self.rule_agents @property def use_raw(self): ''' Indicate whether use raw state and action Returns: use_raw (boolean): True if using raw state and action ''' return True ``` #### File: rlcard/utils/logger.py ```python import os import csv class Logger(object): ''' Logger saves the running results and helps make plots from the results ''' def __init__(self, log_dir): ''' Initialize the labels, legend and paths of the plot and log file. Args: log_path (str): The path the log files ''' self.log_dir = log_dir self.txt_path = os.path.join(log_dir, 'log.txt') self.csv_path = os.path.join(log_dir, 'performance.csv') self.fig_path = os.path.join(log_dir, 'fig.png') self.txt_path_win = os.path.join(log_dir, 'win_log.txt') self.csv_path_win = os.path.join(log_dir, 'win_performance.csv') self.fig_path_win = os.path.join(log_dir, 'win_fig.png') self.fig_path_win_easy = os.path.join(log_dir, 'win_fig_easy.png') self.fig_path_win_medium = os.path.join(log_dir, 'win_fig_medium.png') self.fig_path_win_hard = os.path.join(log_dir, 'win_fig_hard.png') self.fig_path_win_all = os.path.join(log_dir, 'win_fig_all.png') if not os.path.exists(log_dir): os.makedirs(log_dir) self.txt_file = open(self.txt_path, 'a') self.csv_file = open(self.csv_path, 'a') #self.txt_file_win = open(self.txt_path_win, 'w') self.csv_file_win = open(self.csv_path_win, 'a') fieldnames = ['episodes', 'reward'] fieldnames_win = ['episodes', 'win rate', 'win rate easy', 'win rate medium', 'win rate hard'] self.writer = csv.DictWriter(self.csv_file, fieldnames=fieldnames) self.writer_win = csv.DictWriter(self.csv_file_win, fieldnames=fieldnames_win) self.writer.writeheader() self.writer_win.writeheader() def log(self, text): ''' Write the text to log file then print it. Args: text(string): text to log ''' self.txt_file.write(text+'\n') self.txt_file.flush() print(text) def log_performance(self, episodes, reward, win_rate): ''' Log a point in the curve Args: episodes (int): the episodes of the current point reward (float): the reward of the current point ''' self.txt_file = open(self.txt_path, 'a') self.csv_file = open(self.csv_path, 'a') self.csv_file_win = open(self.csv_path_win, 'a') fieldnames = ['episodes', 'reward'] fieldnames_win = ['episodes', 'win rate', 'win rate easy', 'win rate medium', 'win rate hard'] self.writer = csv.DictWriter(self.csv_file, fieldnames=fieldnames) self.writer_win = csv.DictWriter(self.csv_file_win, fieldnames=fieldnames_win) self.writer.writerow({'episodes': episodes, 'reward': reward}) self.writer_win.writerow({'episodes': episodes, 'win rate': win_rate[0], 'win rate easy': win_rate[1] , 'win rate medium': win_rate[2], 'win rate hard': win_rate[3]}) print('') self.log('----------------------------------------') self.log(' episodes | ' + str(episodes)) self.log(' reward | ' + str(reward)) self.log(' win rate | ' + str(win_rate[0])) self.log(' win rate easy | ' + str(win_rate[1])) self.log(' win rate medium | ' + str(win_rate[2])) self.log(' win rate hard | ' + str(win_rate[3])) self.log('----------------------------------------') def plot(self, algorithm): plot(self.csv_path, self.fig_path, algorithm) plot_win(self.csv_path_win, self.fig_path_win, 'win rate', algorithm) plot_win(self.csv_path_win, self.fig_path_win_easy, 'win rate easy', algorithm) plot_win(self.csv_path_win, self.fig_path_win_medium, 'win rate medium', algorithm) plot_win(self.csv_path_win, self.fig_path_win_hard, 'win rate hard', algorithm) plot_win_all(self.csv_path_win, self.fig_path_win_all, algorithm) def close_files(self): ''' Close the created file objects ''' if self.txt_path is not None: self.txt_file.close() if self.csv_path is not None: self.csv_file.close() if self.csv_path_win is not None: self.csv_file_win.close() def plot(csv_path, save_path, algorithm): ''' Read data from csv file and plot the results ''' import matplotlib.pyplot as plt with open(csv_path) as csvfile: #print(csv_path) reader = csv.DictReader(csvfile) xs = [] ys = [] for row in reader: xs.append(int(row['episodes'])) ys.append(float(row['reward'])) fig, ax = plt.subplots() ax.plot(xs, ys, label=algorithm) ax.set(xlabel='episodes', ylabel='reward') ax.legend() ax.grid() save_dir = os.path.dirname(save_path) if not os.path.exists(save_dir): os.makedirs(save_dir) fig.savefig(save_path) plt.close(fig) def plot_win(csv_path, save_path, row_name, algorithm): ''' Read data from csv file and plot the results ''' import matplotlib.pyplot as plt with open(csv_path) as csvfile: #print(csv_path) reader = csv.DictReader(csvfile) xs = [] ys = [] for row in reader: xs.append(int(row['episodes'])) ys.append(float(row[row_name])) fig, ax = plt.subplots() ax.plot(xs, ys, label=algorithm) ax.set(xlabel='episodes', ylabel='win rate') ax.legend() ax.grid() save_dir = os.path.dirname(save_path) if not os.path.exists(save_dir): os.makedirs(save_dir) fig.savefig(save_path) plt.close(fig) def plot_win_all(csv_path, save_path, algorithm): ''' Read data from csv file and plot the results ''' import matplotlib.pyplot as plt with open(csv_path) as csvfile: #print(csv_path) reader = csv.DictReader(csvfile) xs = [] ys1 = [] ys2 = [] ys3 = [] for row in reader: xs.append(int(row['episodes'])) ys1.append(float(row['win rate easy'])) ys2.append(float(row['win rate medium'])) ys3.append(float(row['win rate hard'])) fig, ax = plt.subplots() ax.plot(xs, ys1, label='Easy') ax.plot(xs, ys2, label='Medium') ax.plot(xs, ys3, label='Hard') ax.set(xlabel='episodes', ylabel='win rate') ax.legend() ax.grid() save_dir = os.path.dirname(save_path) if not os.path.exists(save_dir): os.makedirs(save_dir) fig.savefig(save_path) plt.close(fig) ```
{ "source": "joshuawallace/Fragile-Families-Challenge", "score": 3 }
#### File: Fragile-Families-Challenge/actual_submission/general_functions.py ```python import pickle import numpy as np import csv import os.path # A dict to reference outcomes by their index in the data read in outcome_indices = {'ID': 0, 'gpa': 1, 'grit': 2, 'materialhardship': 3, 'eviction': 4, 'layoff': 5, 'jobtraining': 6} def read_in_data(path, care_about_mothid1=False, remove_bad_columns=True): """Reads in the data and removes some columns of unusable data or non-data Arguments: path {string} -- path to the data file Keyword Arguments: care_about_mothid1 {bool} -- whether to care about the mothid1 column (default: {False}) remove_bad_columns {bool} -- whether to remove the bad columns (default: {True}) Returns: tuple -- first element is the header of the data file, and the second element is the data, read in """ the_data = [] # Read in the data with open(path, 'r') as f: csvreader = csv.reader(f,delimiter=',') for row in csvreader: the_data.append(row) # Remove some of the columns that are id values if 'background.csv' in path: for line in the_data: line = line[2:] # Remove the header line, save it as its own thing header = the_data.pop(0) # Set bounds to remove other unnecessary columns if 'train.csv' in path: lower_bound = lambda x: 1; upper_bound = lambda y: len(y) elif 'background.csv' in path: lower_bound = lambda x: 0; upper_bound = lambda y: len(y) - 1 else: raise RuntimeError("Do not understand which file type is being passed, \ and thus do not understand which bounds to use in float conversion.") # Now, convert numerical values to actual numbers, instead of strings for i in range(len(the_data)): for j in range(lower_bound(the_data[i]), upper_bound(the_data[i])): try: temp = float(the_data[i][j]) the_data[i][j] = temp # Try to convert to float except ValueError: # Can't convert to float the_data[i][j] = 'NA' # Remove some pre-determined bad columns if 'background.csv' in path and remove_bad_columns: columns_to_remove = np.loadtxt("columns_to_remove.txt", dtype=int) print "Deleting " + str(len(columns_to_remove)) + " columns from " +\ "the survey data, because all the data in those columns either " +\ "are NA, are the same value, or the columns correspond to " +\ "mother or father ID numbers." for line in the_data: for j in range(len(columns_to_remove)): del line[columns_to_remove[j]] for i in range(len(columns_to_remove)): del header[columns_to_remove[i]] return (header, the_data) def remove_lines_with_all_NA(outcomes_data): """Removes lines from the training outcomes that have all NA values. Since we don't know what outcomes the data have, no use training on these guys. Arguments: outcomes_data {list of lists} -- contains the training outcomes to be processed Returns: list of lists -- the original argument but with all lines containing nothing but NA's removed Raises: RuntimeError -- for some reason one of the internal lists didn't match the length of the input list. """ all_NA = [] # A list that will be filled with Boolean values, # specifying whether all the outcomes are NA or not. for i in range(len(outcomes_data)): # Loop through the data # If all six outcomes are 'NA', append True to all_NA try: true1 = 'NA' in outcomes_data[i][outcome_indices['gpa']] true2 = 'NA' in outcomes_data[i][outcome_indices['grit']] true3 = 'NA' in outcomes_data[i][outcome_indices['materialhardship']] true4 = 'NA' in outcomes_data[i][outcome_indices['eviction']] true5 = 'NA' in outcomes_data[i][outcome_indices['layoff']] true6 = 'NA' in outcomes_data[i][outcome_indices['jobtraining']] if true1 and true2 and true3 and true4 and true5 and true6: all_NA.append(True) else: # Else append False all_NA.append(False) except TypeError: all_NA.append(False) # Checking that all_NA is the appropriate length if len(outcomes_data) != len(all_NA): raise RuntimeError("For some reason, all_NA is not the proper length \ (the same length as the input)") # Form the new list based on the elements of the old list that aren't all NA outcomes_data_removed = [list(outcomes_data[i]) for i in range(len(outcomes_data)) if all_NA[i] == False] # Print out, letting you know how many rows are kept. print str(len(outcomes_data_removed)) + " rows kept from the training outcomes \ out of " + str(len(outcomes_data)) # Return return outcomes_data_removed def match_up_data_with_training_set_of_outcomes(survey_data, training_outcomes_data, clean_up_training=False): """Match up the data rows with the corresponding outcomes Arguments: survey_data {array-like} -- the survey data training_outcomes_data {list-like} -- the training outcomes Keyword Arguments: clean_up_training {bool} -- clean up training data if there aren't any corresponding survey data (default: {False}) Returns: tuple -- the survey data matched up, and the training data matched up """ training_data_ids = [] # Get the training data outcome ids. for i in range(len(training_outcomes_data)): training_data_ids.append(training_outcomes_data[i][ outcome_indices['ID']]) # Match the survey data with the available training data outcomes survey_data_to_return_temp = [list(survey_data[i]) for i in range(len(survey_data)) if survey_data[i][-1] in training_data_ids] # Thanks to http://jakzaprogramowac.pl/pytanie/20037,python-how-to-order-a-list-based-on-another-list for the # Order the data by id numbers data_order = dict(zip(training_data_ids, range(len(training_data_ids)))) survey_data_to_return = sorted(survey_data_to_return_temp, key=lambda x: data_order.get(x[-1], len(data_order))) missing_matches = [] survey_data_to_return_ids = [item[-1] for item in survey_data_to_return] # See if any training outcomes don't have corresponding survey data for i in range(len(training_data_ids)): if training_data_ids[i] not in survey_data_to_return_ids: missing_matches.append(training_data_ids[i]) if missing_matches: print "************************" print "There were some id's in the training set of outcomes not in " +\ "the survey question data. Specifically, " + \ str(len(missing_matches)) + " id's." # Clean up if allowed and necessary if clean_up_training == False or not missing_matches: if missing_matches: print "Doing nothing about the missing data..." else: print "Training data cleanup is set to False" training_data_to_return = [list(line) for line in training_outcomes_data] else: "Matching the training outcomes to the survey data" training_data_to_return = [list(line) for line in training_outcomes_data] missing_matches.sort(reverse="true") for i in missing_matches: training_data_to_return.pop(i) return (survey_data_to_return, training_data_to_return) def data_open_and_process(data_filename="background.csv", training_outcomes_filename="train.csv", remove_bad_columns=True): """Open and process the data Keyword Arguments: data_filename {str} -- the file name for the survey data (default: {"background.csv"}) training_outcomes_filename {str} -- the file name for the outcomes (default: {"train.csv"}) remove_bad_columns {bool} -- remove the bad columns(default: {True}) Returns: dict -- this has all the information collected from opening and processing the data """ print "Reading in training outcomes" # Read in the outcomes training_outcomes_header, training_outcomes = read_in_data(training_outcomes_filename) print "Done reading in the training outcomes, now reading in survey data." # Read in the survey data survey_data_header, survey_data = read_in_data(data_filename, remove_bad_columns=remove_bad_columns) print "Done reading in survey data, now cleaning up training " +\ "outcomes with all NA's." # Remove lines with all NA outcomes_NAall_removed = remove_lines_with_all_NA(training_outcomes) print "Now matching the survey data with the training outcomes, " +\ "to get a training data set." # Match the survey data to the training data set survey_data_matched, training_outcomes_matched = \ match_up_data_with_training_set_of_outcomes(survey_data, outcomes_NAall_removed, clean_up_training=True) print "Now removing the id numbers from the data, so the data can be " +\ "used as is." # Remove id numbers from the data _ = survey_data_header.pop(-1) _ = training_outcomes_header.pop(0) survey_data_ids = [line.pop(-1) for line in survey_data] survey_data_matched_to_outcomes_ids = [line.pop(-1) for line in survey_data_matched] training_outcomes_ids = [line.pop(0) for line in training_outcomes] training_outcomes_NAall_removed_ids = [line.pop(0) for line in outcomes_NAall_removed] training_outcomes_matched_to_outcomes_ids = [line.pop(0) for line in training_outcomes_matched] print "Done with input and processing." return {'survey_data_header': survey_data_header, 'survey_data': survey_data, 'survey_data_ids': survey_data_ids, 'survey_data_matched_to_outcomes': survey_data_matched, 'survey_data_matched_to_outcomes_ids': survey_data_matched_to_outcomes_ids, 'training_outcomes_header': training_outcomes_header, #'training_outcomes': training_outcomes, #'training_outcomes_ids': training_outcomes_ids, #'training_outcomes_NAall_removed': outcomes_NAall_removed, #'training_outcomes_NAall_removed_ids': training_outcomes_NAall_removed_ids, 'training_outcomes_matched_to_outcomes': training_outcomes_matched, 'training_outcomes_matched_to_outcomes_ids': training_outcomes_matched_to_outcomes_ids} pickle_file_name = "ffc_data.p" def save_data_as_pickle(data, path=pickle_file_name): pickle.dump(data, open(path, 'wb')) def open_pickle_of_input_data(path=pickle_file_name): return pickle.load(open(path,'rb')) def check_if_data_exists_if_not_open_and_read(path=pickle_file_name, remove_bad_columns=True): if os.path.isfile(path): print "Pickle file already exists, just reading it in." print "" print "" return open_pickle_of_input_data(path) else: print "Pickle file does not exist, now reading in and processing data" print "" print "" data_loaded = data_open_and_process(remove_bad_columns=remove_bad_columns) save_data_as_pickle(data_loaded) return data_loaded def precision_recall_etc(classification, actual_classification): """Given a pair of classifications and actual classifications, calculates various assessment parameters of the classification Parameters calculated: precision, recall, specificity, NPV, f1, tp (true positive), tn (true negative), fp (false positive), fn (false negative), accuracy Arguments: classification {[type]} -- the classifications you want to evaluate actual_classification {[list-like]} -- the reference, actual classifications to evaluate against Returns: dict -- a dictionary which can access all the values in the description above, with keys matching the values in the description above. Raises: RuntimeError -- len() of the two function arguments not the same """ if len(classification) != len(actual_classification): # if lengths don't match raise RuntimeError("Lengths of arguments to accuracy_percentage \ not the same") tp = fp = tn = fn = 0 # t=true, f=false, p=postive, n=negative for i in range(len(classification)): if actual_classification[i] == 1: # actual sentiment is positive if classification[i] == actual_classification[i]: # if matches tp += 1 else: # if doesn't match fn += 1 else: # actual sentiment is negative if classification[i] == actual_classification[i]: # if matches tn += 1 else: # if doesn't match fp += 1 # calculate the various performance metrics precision = float(tp)/float(tp + fp) recall = float(tp)/float(tp + fn) specificity = float(tn)/float(fp + tn) NPV = float(tn)/float(tn + fn) f1 = 2.*float(precision*recall)/float(precision + recall) return {'precision': precision, 'recall': recall, 'specificity': specificity, 'NPV': NPV, 'f1': f1, 'tp': tp, 'tn': tn, 'fp': fp, 'fn': fn, 'accuracy': float(tp + tn)/float(tp + fp + tn + fn)} def mean_squared_error(x1, x2): """Calculates the mean squared error between x1 and x2 [description] Arguments: x1 {list-like} -- the calculated values x2 {list-like} -- the actual values Returns: [type] -- [description] Raises: RuntimeError -- [description] """ if len(x1) != len(x2): raise RuntimeError("Length of two iterables is not the same") sum = 0. for i in range(len(x1)): sum += (x1[i] - x2[i])**2 return sum/float(len(x1)) ``` #### File: joshuawallace/Fragile-Families-Challenge/look_at_results.py ```python import matplotlib.pyplot as plt import numpy as np def plot_predict_actual_pairs(predicted_values, actual_values, ylabel="The values"): predicted_values_to_use = np.asarray(predicted_values) actual_values_to_use = np.asarray(actual_values) order = actual_values_to_use.argsort() predicted_values_to_plot = predicted_values_to_use[order] actual_values_to_plot = actual_values_to_use[order] number_of_things_to_plot = len(predicted_values_to_plot) fig= plt.figure() for i in range(number_of_things_to_plot): plt.plot(2*[float(i)/float(number_of_things_to_plot)], [predicted_values_to_plot[i], actual_values_to_plot[i]], color='blue', marker=None, linewidth=.05) plt.scatter(float(i)/float(number_of_things_to_plot), predicted_values_to_plot[i], s=5) plt.scatter(float(i)/float(number_of_things_to_plot), actual_values_to_plot[i], s=20) plt.ylabel(ylabel) #plt.set_xticklabels([]) return fig def plot_errors_func_k_noalpha(mean_squared_error, r_squared_error, k_values): fig = plt.figure(figsize=(7,4)) ax = fig.add_subplot(111) ln1 = ax.plot(k_values, mean_squared_error, label="MSE", color='blue', ls='--') ax2 = ax.twinx() ln2 = ax2.plot(k_values, np.mean(r_squared_error, axis=1), label="R^2mean", color='red') ln3 = ax2.plot(k_values, np.median(r_squared_error, axis=1), label="R^2median", color='green') lns = ln1+ln2+ln3 labs = [l.get_label() for l in lns] ax.legend(lns, labs, loc='best') ax.set_ylabel("MSE") ax2.set_ylabel("R^2") ax.set_xlabel("Value for K") ax2.set_ylim(-0.1, .9) fig.tight_layout() return fig def plot_errors_func_k_alpha(mean_squared_error, r_squared_error, k_values, alpha_values): fig1 = plt.figure(figsize=(7, 4)) ax1 = fig1.add_subplot(111) for i in range(len(alpha_values)): ax1.plot(k_values, [line[i] for line in mean_squared_error], label=round(alpha_values[i], 5)) ax1.set_ylabel("MSE") ax1.set_xlabel("Value for K") ax1.legend(loc='best') ########################## fig2 = plt.figure(figsize=(7, 4)) ax2 = fig2.add_subplot(111) for i in range(len(alpha_values)): ax2.plot(k_values, [np.mean(line[i]) for line in r_squared_error], label=round(alpha_values[i], 5)) ax2.set_ylabel("Mean R^2") ax2.set_xlabel("Value for K") ax2.set_ylim(-0.5,1) ax2.legend(loc='best') ########################## fig3 = plt.figure(figsize=(7, 4)) ax3 = fig3.add_subplot(111) for i in range(len(alpha_values)): ax3.plot(k_values, [np.median(line[i]) for line in r_squared_error], label=round(alpha_values[i], 5)) ax3.set_ylabel("Median R^2") ax3.set_xlabel("Value for K") ax3.set_ylim(-0.5,1) ax3.legend(loc='best') fig1.tight_layout() fig2.tight_layout() fig3.tight_layout() return (fig1, fig2, fig3) ```
{ "source": "joshuawallace/hw3", "score": 3 }
#### File: hw3/p1/plotphase.py ```python import numpy as np import matplotlib.pyplot as pp omega = .1 omega_n = 5 def analytic(t): return (np.cos(omega*t) - np.cos(omega_n*t) ) / (omega_n * omega_n - omega * omega) num=[1000,10000,100000] for type in ('euler', 'euler_symplectic', 'rk4'): for value in num: s = type + '.' + str(value) + '.out' t,x,xprime = np.loadtxt(s,unpack=True) labelstring = 'Nsteps = ' + str(value) #if type != 'euler_symplectic': # pp.plot(x,xprime,label=labelstring) if value == 10000: pp.plot(x,xprime,label=labelstring,lw=2.5) elif value == 1000: pp.plot(x,xprime,label=labelstring,lw=2) else: pp.plot(x,xprime,label=labelstring) # pp.plot(np.linspace(0.,100.,1000),analytic(np.linspace(0.,100.,1000)),label="True") pp.xlabel("position") pp.ylabel("velocity") pp.xlim(-.1,.1) pp.ylim(-.3,.3) if type == 'euler': pp.xlim(-1,1) pp.ylim(-1,1) pp.legend(loc='best') pp.title(type) s = 'pdf/' + type + '_phase_plot.pdf' pp.savefig(s) pp.close() #Now plot for a given nsteps all the types for value in num: for type in ('euler', 'euler_symplectic', 'rk4'): s = type + '.' + str(value) + '.out' t,x,xprime = np.loadtxt(s,unpack=True) if type == 'euler_symplectic': pp.plot(x,xprime,label=type,lw=4) else: pp.plot(x,xprime,label=type) #pp.plot(np.linspace(0.,100.,100000),analytic(np.linspace(0.,100.,100000)),label="True") pp.xlabel("position") pp.ylabel("velocity") pp.xlim(-.2,.15) pp.ylim(-1,1) pp.legend(loc='best') titlestring = 'Nsteps = ' + str(value) pp.title(titlestring) s = 'pdf/' + str(value) + '_phase_plot.pdf' pp.savefig(s) pp.close() ```
{ "source": "joshuawall/amuse", "score": 2 }
#### File: examples/applications/asterisk_movie_example.py ```python import numpy.random from amuse.ic.flatimf import new_flat_mass_distribution from amuse.ic.plummer import new_plummer_model from amuse.units import nbody_system as nbody # from amuse.community.asterisk.interface import AsteriskInterface from amuse.community.asterisk.interface import Asterisk # from matplotlib import pyplot from amuse.units import units # from amuse.datamodel import Particles # from amuse.ic.brokenimf import new_scalo_mass_distribution from amuse.ext.particles_with_color import new_particles_with_blackbody_color from amuse.community.seba.interface import SeBa from amuse.community.bhtree.interface import BHTree def new_stellar_evolution(particles): stellar_evolution = SeBa() stellar_evolution.particles.add_particles(particles) return stellar_evolution def new_gravity(particles, converter): gravity = BHTree(converter) gravity.particles.add_particles(particles) return gravity if __name__ in ('__main__', '__plot__'): number_of_particles = 100 # create a Plummer sphere with a number of stars numpy.random.seed(12345) masses = new_flat_mass_distribution(number_of_particles) converter = nbody.nbody_to_si(1.0 | units.parsec, masses.sum()) particles = new_plummer_model(number_of_particles, converter) particles.mass = masses particles.move_to_center() # create simulation codes gravity = new_gravity(particles, converter) stellar_evolution = new_stellar_evolution(particles) # create channels to and from the local particle set and the simulations from_gravity_to_local = gravity.particles.new_channel_to(particles) from_stellar_evolution_to_local = \ stellar_evolution.particles.new_channel_to(particles) from_stellar_evolution_to_local.copy() # creating colored particles particles = new_particles_with_blackbody_color(particles) particles.alpha = 1.0 particles.radius = ( stellar_evolution.particles.radius.sqrt() * (1e4 | units.parsec).sqrt() ) # creating visualization code converter = nbody.nbody_to_si(10.0 | units.parsec, masses.sum()) visualization = Asterisk(converter, redirection="none") visualization.initialize_code() # optional: set the zoom and rotation of the visualization # visualization.parameters.rotation = (15, -15, 45) # visualization.parameters.camera_distance = 100 | units.parsec # add (now colored) particles to visualization visualization.particles.add_particles(particles) from_local_to_viz = particles.new_channel_to(visualization.particles) visualization.store_view(0 | units.Myr) # evolve module for some time for i in range(1, 100): target_time = i * 0.05 | units.Myr print 'starting evolve to time = ', target_time gravity.evolve_model(target_time) from_gravity_to_local.copy() stellar_evolution.evolve_model(target_time) from_stellar_evolution_to_local.copy() from_local_to_viz.copy_attributes( ["x", "y", "z", "red", "green", "blue"]) visualization.particles.radius = ( stellar_evolution.particles.radius.sqrt() * (1e4 | units.parsec).sqrt() ) print 'updating visualization to time = ', target_time visualization.store_view(target_time) # give the user an opportunity to change the visualization settings raw_input( "\n\nTweak your visualization settings and press 'Enter' to continue... ") # generate screenshots while changing some visual parameters. for i in range(1, 100): visualization.parameters.rotation = (15, -i * 10, 0) visualization.parameters.camera_distance = ( 15.0 - (0.1 * i)) | units.parsec visualization.parameters.scene = i filename = "screenshot-%05d.png" % i visualization.screenshot(filename) visualization.stop() gravity.stop() stellar_evolution.stop() ``` #### File: examples/applications/test_HRdiagram_tracks.py ```python import sys import os import warnings from optparse import OptionParser from amuse.units import units from amuse.community.sse.interface import SSE from amuse.community.evtwin.interface import EVtwin from amuse.community.evtwin2sse.interface import EVtwin2SSE from amuse.community.mesa.interface import MESA from amuse.community.cachedse.interface import CachedStellarEvolution from amuse.test.amusetest import get_path_to_results from amuse import datamodel from amuse.rfi.core import is_mpd_running usage = """\ usage: %prog [options] This script will generate HR diagram tracks for stars with specified a masses. """ def stellar_remnant_state(star): return 10 <= star.stellar_type.value_in(units.stellar_type) and \ star.stellar_type.value_in(units.stellar_type) < 16 def simulate_evolution_tracks( stellar_evolution=SSE(), masses=[0.5, 1.0, 2.0, 5.0, 10.0, 20.0, 30.0] | units.MSun, name_of_the_figure="HR_evolution_tracks.png" ): """ For every mass in the `masses' array, a stellar evolution track across the Hertzsprung-Russell diagram will be calculated and plotted. Each star will be created, evolved and removed one by one. This is only necessary because the time span of each track is different (a solar mass star evolution track takes billions of years, but we don't want to also evolve high mass stars for billions of years) In most applications the stars have to be evolved up to a common end time, which can be more easily accomplished by creating an array (stars = datamodel.Stars(number_of_stars)) and using evolve_model(end_time = ...). """ number_of_stars = len(masses) all_tracks_luminosity = [] all_tracks_temperature = [] all_tracks_stellar_type = [] stellar_evolution.commit_parameters() print( "The evolution across the Hertzsprung-Russell diagram of ", str(number_of_stars), " stars with\nvarying masses will be simulated..." ) for j in range(number_of_stars): star = datamodel.Particle() star.mass = masses[j] print "Created new star with mass: ", star.mass star = stellar_evolution.particles.add_particle(star) stellar_evolution.commit_particles() luminosity_at_time = [] | units.LSun temperature_at_time = [] | units.K stellar_type_at_time = [] | units.stellar_type stopped_evolving = False # Evolve this star until it changes into a compact stellar remnant # (white dwarf, neutron star, or black hole) while not stellar_remnant_state(star) and not stopped_evolving: luminosity_at_time.append(star.luminosity) temperature_at_time.append(star.temperature) stellar_type_at_time.append(star.stellar_type) previous_age = star.age try: stellar_evolution.evolve_model() # Check whether the age has stopped increasing stopped_evolving = (star.age == previous_age) except Exception as ex: print str(ex) stopped_evolving = True if stopped_evolving: print "Age did not increase during timestep. Aborted evolving..." else: stellar_type_at_time.append(star.stellar_type) # Fudged: final stellar type annotation at previous (Teff, L); # BHs and neutron stars would otherwise fall off the chart. luminosity_at_time.append(luminosity_at_time[-1]) temperature_at_time.append(temperature_at_time[-1]) print " ... evolved model to t = " + \ str(star.age.as_quantity_in(units.Myr)) print( "Star has now become a: ", star.stellar_type, "(stellar_type: "+str( star.stellar_type.value_in(units.stellar_type) )+")" ) print all_tracks_luminosity.append(luminosity_at_time) all_tracks_temperature.append(temperature_at_time) all_tracks_stellar_type.append(stellar_type_at_time) # Remove the star before creating the next one. See comments at the top. stellar_evolution.particles.remove_particle(star) stellar_evolution.stop() plot_HR_diagram(masses, all_tracks_luminosity, all_tracks_temperature, all_tracks_stellar_type, name_of_the_figure) print "All done!" def plot_HR_diagram( masses, luminosity_tracks, temperature_tracks, stellar_type_tracks, plotfile): try: # This removes the need for ssh -X to be able to do plotting import matplotlib matplotlib.use("Agg", warn=False) from matplotlib import pyplot print "Plotting the data..." pyplot.figure(figsize=(7, 8)) pyplot.title('Hertzsprung-Russell diagram', fontsize=12) pyplot.xlabel('Effective Temperature (K)') pyplot.ylabel('Luminosity (solar luminosity)') # Define some strings for line formatting (colors, symbols, etc.), used # recurrently when many stars are simulated plot_format_strings_lines = ["r-", "y-", "c-", "b-", "m-"] len_fmt_str_lin = len(plot_format_strings_lines) plot_format_strings_symbols = [ "r^", "y^", "c^", "b^", "m^", "rs", "ys", "cs", "bs", "ms"] len_fmt_str_sym = len(plot_format_strings_symbols) number_of_stars = len(masses) for j in range(number_of_stars): # Plot track of the current star j x_values = temperature_tracks[j].value_in(units.K) y_values = luminosity_tracks[j].value_in(units.LSun) pyplot.loglog(x_values, y_values, plot_format_strings_lines[j % len_fmt_str_lin]) # Plot symbols whenever this star has switched to the next stellar # evolution phase x_values = [] y_values = [] text_values = [] previous_type = 15 | units.stellar_type for i, type in enumerate(stellar_type_tracks[j]): if not type == previous_type: x_values.append(temperature_tracks[j][i].value_in(units.K)) y_values.append( luminosity_tracks[j][i].value_in(units.LSun)) text_values.append( stellar_type_tracks[j][i].value_in(units.stellar_type)) previous_type = type pyplot.loglog(x_values, y_values, plot_format_strings_symbols[j % len_fmt_str_sym]) text_offset_factor_x = 1.05 text_offset_factor_y = 0.6 for i, phase in enumerate(text_values): pyplot.annotate( str(int(phase)), xy=(x_values[i], y_values[i]), xytext=( x_values[i]*text_offset_factor_x, y_values[i]*text_offset_factor_y) ) text_offset_factor_x = 1.1 text_offset_factor_y = 0.9 pyplot.annotate(str(masses[j]), xy=(x_values[0], y_values[0]), xytext=(x_values[0]*text_offset_factor_x, y_values[0]*text_offset_factor_y), color='g', horizontalalignment='right') pyplot.axis([300000., 2500., 1.e-2, 1.e6]) # Or use these axes to also view neutron stars and black holes: # pyplot.axis([1.e7, 2500., 1.e-11, 1.e6]) pyplot.savefig(plotfile) print "Meaning of the stellar evolution phase markers (black numbers):" for i in range(16): print str(i)+": ", (i | units.stellar_type) except ImportError: print "Unable to produce plot: couldn't find matplotlib." class InstantiateCode(object): def sse(self, number_of_stars): return SSE() def evtwin(self, number_of_stars): result = EVtwin() result.initialize_code() if number_of_stars > result.parameters.maximum_number_of_stars: result.parameters.maximum_number_of_stars = number_of_stars warnings.warn( "You're simulating a large number of stars with EVtwin. This may not be such a good idea...") return result def mesa(self, number_of_stars): result = MESA() result.initialize_code() if number_of_stars > (10): warnings.warn( "You're simulating a large number of stars with MESA. This may not be such a good idea...") if number_of_stars > (1000): raise Exception( "You want to simulate with more than 1000 stars using MESA, this is not supported") return result def evtwin2sse(self, number_of_stars): result = EVtwin2SSE() result.initialize_code() # TODO add maximum_number_of_stars parameter to Evtwin2SSE # if number_of_stars > result.parameters.maximum_number_of_stars: # result.parameters.maximum_number_of_stars = number_of_stars # warnings.warn("You're simulating a large number of stars with EVtwin. This may not be such a good idea...") return result def new_code(self, name_of_the_code, number_of_stars): if hasattr(self, name_of_the_code): return getattr(self, name_of_the_code)(number_of_stars) else: raise Exception( "Cannot instantiate code with name '{0}'".format( name_of_the_code ) ) def new_code(name_of_the_code, number_of_stars): return InstantiateCode().new_code(name_of_the_code, number_of_stars) def test_simulate_one_star(): assert is_mpd_running() code = new_code("sse", 1) test_results_path = get_path_to_results() output_file = os.path.join(test_results_path, "HR_evolution_tracks.png") simulate_evolution_tracks( code, [20.0] | units.MSun, name_of_the_figure=output_file, ) def new_commandline_option_parser(): result = OptionParser(usage) result.add_option( "-c", "--code", choices=["sse", "evtwin", "mesa", "evtwin2sse"], default="sse", dest="code", metavar="CODE", help="CODE to use for stellar evolution" ) result.add_option( "-C", "--cache", type="string", default=None, dest="cacheDir", help="Use/write cache from directory" ) result.add_option( "-p", "--plot_file", type="string", default="HR_evolution_tracks.png", dest="plot_filename", help="Name of the file to plot to" ) return result if __name__ == '__main__': if not is_mpd_running(): print "There is no mpd server running. Please do 'mpd &' first." sys.exit() parser = new_commandline_option_parser() (options, arguments) = parser.parse_args() if arguments: parser.error("unknown arguments '{0}'".format(arguments)) mass_list = [0.5, 1.0, 2.0, 5.0, 10.0, 20.0, 30.0] | units.MSun code = new_code(options.code, len(mass_list)) if not (options.cacheDir is None): print "Using cache directory: %s" % (options.cacheDir) # As a special case, we use caching of the underlying models instead of # the model output for EVtwin2SSE if (options.code == "evtwin2sse"): code.cache_underlying_models(options.cacheDir) else: code = CachedStellarEvolution(code, options.cacheDir) simulate_evolution_tracks( code, masses=mass_list, name_of_the_figure=options.plot_filename ) ``` #### File: examples/simple/binary_population_synthesis.py ```python from __future__ import print_function from amuse.units import units from amuse.units import quantities from amuse import datamodel from amuse.community.seba.interface import SeBa # from amuse.community.bse.interface import BSE from matplotlib import pyplot import numpy # import time USE_VECTOR_OPERATIONS = True def multidimensional_meshgrid(*arrays): """ Utitility function to create a multidimensional grid based on a list of arrays. Each array defines a range in one dimension. """ reversed_quantities = tuple(reversed(arrays)) lengths = map(len, reversed_quantities) dim = len(reversed_quantities) size = 1 for length in lengths: size *= length result = [] for i, quantity in enumerate(reversed_quantities): shape = numpy.ones(dim, dtype=numpy.int) shape[i] = lengths[i] if quantities.is_quantity(quantity): array = quantity.value_in(quantity.unit) else: array = quantity array = array.reshape(shape) for j, length in enumerate(lengths): if j != i: array = array.repeat(length, axis=j) if quantities.is_quantity(quantity): result.append(quantity.unit.new_quantity(array)) else: result.append(array) return tuple(result[::-1]) def create_binary( stars, binaries, primary_mass, mass_ratio, separation, eccentricity): """ creates a single binary, the constituent stars will be accumulated in the stars partice set, the binary will be added to the binaries particle set. """ primary_star = datamodel.Particle() primary_star.mass = primary_mass # we add the particle to the stars set # and we get a reference to the particle in the stars set # back # we want to use that star in constructing the # binary, so that the binaries all refer to # the stars in the "stars set" primary_star = stars.add_particle(primary_star) secondary_star = datamodel.Particle() secondary_star.mass = primary_mass * mass_ratio secondary_star = stars.add_particle(secondary_star) binary = datamodel.Particle() binary.eccentricity = eccentricity binary.semi_major_axis = separation binary.child1 = primary_star binary.child2 = secondary_star binaries.add_particle(binary) def generate_initial_population_grid( min_mass, max_mass, number_of_mass_bins, min_ratio, max_ratio, number_of_ratio_bins, min_separation, max_separation, number_of_separation_bins, min_eccentricity, max_eccentricity, number_of_eccentricity_bins ): """ creates a set of binaries and a set of stars, the grid will be divided in equal parts amongst all dimensions (primary mass, ratio and separation), the total number of binaries will be the product of all bins. """ # quantities.linspace takes care of the units, # but is otherwhise equal to numpy.arange primary_masses = quantities.linspace( min_mass, max_mass, number_of_mass_bins) mass_ratios = quantities.linspace( min_ratio, max_ratio, number_of_ratio_bins) separations = quantities.linspace( min_separation, max_separation, number_of_separation_bins) eccentricities = quantities.linspace( min_eccentricity, max_eccentricity, number_of_eccentricity_bins) # We can create the binaries individualy (with nested for loops to # go through each dimension) or at once with vector operations. # As vector operations are handled by numpy (in C) these are # much faster (default in this script). if USE_VECTOR_OPERATIONS is True: grid = multidimensional_meshgrid( primary_masses, mass_ratios, separations, eccentricities) all_primary_masses = grid[0].flatten() all_mass_ratios = grid[1].flatten() all_separations = grid[2].flatten() all_eccentricities = grid[3].flatten() primary_stars = datamodel.Particles(mass=all_primary_masses) secondary_stars = datamodel.Particles( mass=all_primary_masses * all_mass_ratios) stars = datamodel.Particles() primary_stars = stars.add_particles(primary_stars) secondary_stars = stars.add_particles(secondary_stars) binaries = datamodel.Particles( semi_major_axis=all_separations, eccentricity=all_eccentricities ) binaries.child1 = list(primary_stars) binaries.child2 = list(secondary_stars) else: for primary_mass in primary_masses: for mass_ratio in mass_ratios: for separation in separations: for eccentricity in eccentricities: create_binary( stars, binaries, primary_mass, mass_ratio, separation, eccentricity ) return binaries, stars def evolve_population(binaries, stars, end_time, time_step): code = SeBa() # add the stars first, as the binaries will # refer to them code.particles.add_particles(stars) code.binaries.add_particles(binaries) channel_from_code_to_model_for_binaries = code.binaries.new_channel_to( binaries) channel_from_code_to_model_for_stars = code.particles.new_channel_to(stars) # we evolve in steps of timestep, just to get some feedback print("start evolving...") time = 0.0 * end_time while time < end_time: time += time_step code.evolve_model(time) print("evolved to time: ", time.as_quantity_in(units.Myr)) channel_from_code_to_model_for_stars.copy() channel_from_code_to_model_for_binaries.copy() def make_hr_diagram(binaries): pyplot.figure(figsize=(8, 8)) pyplot.title('Binary population', fontsize=12) separation = binaries.semi_major_axis.value_in(units.RSun) eccentricity = binaries.eccentricity pyplot.hexbin( separation, eccentricity, gridsize=40, bins='log', extent=(0, 100, 0.0, 0.9) ) pyplot.xlabel('semi major axis (AU)') pyplot.ylabel('eccentricity') pyplot.show() if __name__ == "__main__": print("generating a binary population...") binaries, stars = generate_initial_population_grid( 0.5 | units.MSun, 1.5 | units.MSun, 3, # mass range 0.9, 0.9, 1, # mass ratios range 10 | units.RSun, 100 | units.RSun, 120, # semi major axis range 0.0, 1.0, 120 # eccentricity range ) print("generated a population of", len(binaries), "binaries") evolve_population(binaries, stars, 1 | units.Gyr, 250 | units.Myr) make_hr_diagram(binaries) ``` #### File: examples/simple/cluster.py ```python from __future__ import print_function import numpy from matplotlib import pyplot from amuse.units import nbody_system from amuse.community.hermite0.interface import Hermite # import logging from amuse.ic.plummer import new_plummer_model # logging.basicConfig(level=logging.DEBUG) smoothing_length = 0.0 | nbody_system.length ** 2 def print_log(time, gravity, particles, total_energy_at_t0): kinetic_energy = gravity.kinetic_energy potential_energy = gravity.potential_energy total_energy_at_this_time = kinetic_energy + potential_energy print("time : ", time) print("energy error : ", ( total_energy_at_this_time - total_energy_at_t0) / total_energy_at_t0) def simulate_small_cluster( number_of_stars=1000, end_time=40 | nbody_system.time, number_of_workers=1 ): particles = new_plummer_model(number_of_stars) particles.scale_to_standard() gravity = Hermite(number_of_workers=number_of_workers) gravity.parameters.epsilon_squared = 0.15 | nbody_system.length ** 2 gravity.particles.add_particles(particles) from_gravity_to_model = gravity.particles.new_channel_to(particles) time = 0.0 * end_time total_energy_at_t0 = gravity.kinetic_energy + gravity.potential_energy positions_at_different_times = [] positions_at_different_times.append(particles.position) times = [] times.append(time) print("evolving the model until t = " + str(end_time)) while time < end_time: time += end_time / 3.0 gravity.evolve_model(time) from_gravity_to_model.copy() positions_at_different_times.append(particles.position) times.append(time) print_log(time, gravity, particles, total_energy_at_t0) gravity.stop() return times, positions_at_different_times def adjust_spines(ax, spines, ticks): for loc, spine in ax.spines.iteritems(): if loc in spines: spine.set_position(('outward', 10)) # outward by 10 points spine.set_smart_bounds(True) else: spine.set_color('none') # don't draw spine if 'left' in spines: ax.yaxis.set_ticks_position('left') ax.yaxis.set_ticks(ticks) else: ax.yaxis.set_ticks([]) if 'bottom' in spines: ax.xaxis.set_ticks_position('bottom') ax.xaxis.set_ticks(ticks) else: ax.xaxis.set_ticks([]) def plot_positions(times, positions_at_different_times): figure = pyplot.figure() plot_matrix_size = numpy.ceil(numpy.sqrt( len(positions_at_different_times))).astype(int) number_of_rows = len(positions_at_different_times) / plot_matrix_size figure.subplots_adjust(wspace=0.15, hspace=0.15) for index, (time, positions) in enumerate( zip(times, positions_at_different_times) ): subplot = figure.add_subplot( plot_matrix_size, plot_matrix_size, index + 1) subplot.scatter( positions[..., 0].value_in(nbody_system.length), positions[..., 1].value_in(nbody_system.length), s=1, edgecolors='red', facecolors='red' ) subplot.set_xlim(-4.0, 4.0) subplot.set_ylim(-4.0, 4.0) title = 'time = {0:.2f}'.format(time.value_in(nbody_system.time)) subplot.set_title(title) # , fontsize=12) spines = [] if index % plot_matrix_size == 0: spines.append('left') if index >= ((number_of_rows - 1)*plot_matrix_size): spines.append('bottom') adjust_spines(subplot, spines, numpy.arange(-4.0, 4.1, 1.0)) if index % plot_matrix_size == 0: subplot.set_ylabel('y') if index >= ((number_of_rows - 1)*plot_matrix_size): subplot.set_xlabel('x') pyplot.show() if __name__ == "__main__": times, positions_at_different_time = simulate_small_cluster( 300, 9.0 | nbody_system.time ) plot_positions(times, positions_at_different_time) ``` #### File: examples/simple/grav_stellar_simple.py ```python from __future__ import print_function import os from amuse.units.optparse import OptionParser from amuse.units import units, nbody_system from amuse.datamodel.particles import Channels from amuse.community.hermite0.interface import Hermite from amuse.community.seba.interface import SeBa from amuse.couple.bridge import Bridge from amuse.ic.plummer import new_plummer_model from amuse.ic.salpeter import new_salpeter_mass_distribution from matplotlib import pyplot from amuse import plot as aplot from amuse.support.console import set_printing_strategy def create_stars(number_of_stars, size): masses = new_salpeter_mass_distribution( number_of_stars, mass_min=2 | units.MSun) converter = nbody_system.nbody_to_si(masses.sum(), size) stars = new_plummer_model(number_of_stars, convert_nbody=converter) stars.mass = masses stars.zams_mass = masses return stars, converter def plot_results(stars, time): mass_loss = stars.zams_mass - stars.mass x = stars.x.in_(units.parsec) y = stars.y.in_(units.parsec) pyplot.figure(figsize=(8, 8)) aplot.plot(x, y, "*") for x, y, mass_loss in zip(x.number, y.number, mass_loss): pyplot.annotate( "%0.2f" % abs(mass_loss.number), xy=(x, y+2), horizontalalignment='center', verticalalignment='bottom', ) pyplot.axis('equal') pyplot.xlim([-60, 60]) pyplot.ylim([-60, 60]) aplot.xlabel("x") aplot.ylabel("y") pyplot.title("time = " + str(time)) if not os.path.exists("plots"): os.mkdir("plots") name = "plots/plot_{0:=05}.png".format(int(time.value_in(units.Myr))) print("creating", name) pyplot.savefig(name) pyplot.close() def gravity_and_stellar_evolution( number_of_stars, size, end_time, sync_timestep=1 | units.Myr, plot_timestep=10 | units.Myr): stars, converter = create_stars(number_of_stars, size) gravity = Hermite(converter) stellar = SeBa() bridge = Bridge() gravity.particles.add_particles(stars) stellar.particles.add_particles(stars) bridge.add_system(gravity) bridge.add_system(stellar) bridge.channels.add_channel(stellar.particles.new_channel_to( gravity.particles, attributes=["mass", "radius"])) bridge.timestep = sync_timestep plot_channels = Channels() plot_channels.add_channel(stellar.particles.new_channel_to(stars)) plot_channels.add_channel(gravity.particles.new_channel_to(stars)) time = 0 | units.Myr while time <= end_time: bridge.evolve_model(time) plot_channels.copy() plot_results(stars, time) time += plot_timestep def parse_arguments(): parser = OptionParser() parser.add_option( "-N", dest="number_of_stars", type="int", default=100, help="The number of stars in the cluster [%default].") parser.add_option( "-s", dest="size", type="float", unit=units.parsec, default=10, help="The total size of the cluster [%default %unit].") parser.add_option( "-t", dest="end_time", type="float", unit=units.Gyr, default=0.1, help="The end time of the simulation [%default %unit].") options, args = parser.parse_args() return options.__dict__ if __name__ == "__main__": options = parse_arguments() set_printing_strategy( "custom", preferred_units=[ units.MSun, units.parsec, units.Myr ], precision=3) gravity_and_stellar_evolution(**options) ``` #### File: examples/syllabus/molecular_cloud_to_star_cluster.py ```python import numpy from matplotlib import pyplot from amuse.lab import * from amuse.units import nbody_system from amuse.units import units from amuse.units import constants from amuse.community.fi.interface import Fi from amuse.ext.molecular_cloud import molecular_cloud from amuse.ext.evrard_test import body_centered_grid_unit_cube from amuse.ext.derived_grav_systems import copycat from amuse.ext.bridge import bridge from amuse.io import write_set_to_file from amuse.support.data import ParticlesWithUnitsConverted from amuse.datamodel import Particles def make_map(sph,N=100,L=1): x,y=numpy.indices( ( N+1,N+1 )) x=L*(x.flatten()-N/2.)/N y=L*(y.flatten()-N/2.)/N z=x*0. vx=0.*x vy=0.*x vz=0.*x x=units.parsec(x) y=units.parsec(y) z=units.parsec(z) vx=units.kms(vx) vy=units.kms(vy) vz=units.kms(vz) rho,rhovx,rhovy,rhovz,rhoe=sph.get_hydro_state_at_point(x,y,z,vx,vy,vz) rho=rho.reshape((N+1,N+1)) return rho ''' def write_output(filename, parts, conv): output= file(filename, 'w') for i in range (0,len(parts)): #print i rho = conv.to_nbody(parts.rho[i]) mass= conv.to_nbody(parts.mass[i]) x= conv.to_nbody(parts.x[i]) y= conv.to_nbody(parts.y[i]) z= conv.to_nbody(parts.z[i]) vx= conv.to_nbody(parts.vx[i]) vy= conv.to_nbody(parts.vy[i]) vz= conv.to_nbody(parts.vz[i]) print>> output, rho.value_in(nbody_system.mass/nbody_system.length**3), mass.value_in(nbody_system.mass), x.value_in(nbody_system.length), y.value_in(nbody_system.length), z.value_in(nbody_system.length), vx.value_in(nbody_system.length/nbody_system.time), vy.value_in(nbody_system.length/nbody_system.time),vz.value_in(nbody_system.length/nbody_system.time) output.close() return 0 ''' def write_output(filename, parts, conv): particles_nbody = ParticlesWithUnitsConverted(parts, conv.as_converter_from_nbody_to_si()) #print particles_nbody write_set_to_file(particles_nbody, filename, "txt", attribute_names= ('rho', 'mass', 'x', 'y', 'z','vx', 'vy', 'vz')) return 0 def plot_stars(time, stars, i, L=6.): fig=pyplot.figure(figsize=(12,12)) m = 100.0*stars.mass/max(stars.mass) x = -stars.x.value_in(units.parsec) y = stars.y.value_in(units.parsec) pyplot.scatter(x, y, s=m) pyplot.title("Star cluster at"+time.as_string_in(units.Myr)) pyplot.xlim(-L/2., L/2.) pyplot.ylim(-L/2., L/2.) pyplot.xlabel("x [pc]") pyplot.ylabel("y [pc]") pyplot.savefig("SC_"+str(i)+".png") def plot_hydro(time, sph, i, L=10): fig=pyplot.figure(figsize=(12,12)) rho=make_map(sph,N=200,L=L) pyplot.imshow(numpy.log10(1.e-5+rho.value_in(units.amu/units.cm**3)), extent=[-L/2,L/2,-L/2,L/2],vmin=1,vmax=5) # subplot.set_title("GMC at zero age") pyplot.title("Molecular cloud at time="+time.as_string_in(units.Myr)) pyplot.xlabel("x [pc]") pyplot.ylabel("x [pc]") pyplot.title("GMC at time="+time.as_string_in(units.Myr)) pyplot.savefig("GMC_"+str(i)+".png") def plot_hydro_and_stars(time, sph, L=10): fig=pyplot.figure(figsize=(12,12)) rho=make_map(sph,N=200,L=L) pyplot.imshow(numpy.log10(1.e-5+rho.value_in(units.amu/units.cm**3)), extent=[-L/2,L/2,-L/2,L/2],vmin=1,vmax=5) # subplot.set_title("GMC at zero age") stars = get_stars_from_molecular_clous(sph.gas_particles) m = 100.0*stars.mass/max(stars.mass) x = -stars.x.value_in(units.parsec) y = stars.y.value_in(units.parsec) pyplot.scatter(x, y, s=m) pyplot.xlim(-L/2., L/2.) pyplot.ylim(-L/2., L/2.) pyplot.title("Molecular cloud at time="+time.as_string_in(units.Myr)) pyplot.xlabel("x [pc]") pyplot.ylabel("x [pc]") pyplot.title("GMC at time="+time.as_string_in(units.Myr)) pyplot.savefig("GMC_SC.png") def run_molecular_cloud(N=100, Mcloud=100. | units.MSun, Rcloud=1. | units.parsec): conv = nbody_system.nbody_to_si(Mcloud,Rcloud) rho_cloud = 3.*Mcloud/(4.*numpy.pi*Rcloud**3) print rho_cloud tff = 0.5427/numpy.sqrt(constants.G*rho_cloud) print "t_ff=", tff.value_in(units.Myr), 'Myr' dt = 5.e-2 | units.Myr tend=1.0 | units.Myr # tend=2.0 | units.Myr parts=molecular_cloud(targetN=N,convert_nbody=conv, base_grid=body_centered_grid_unit_cube, seed=100).result sph=Fi(conv, number_of_workers=3) sph.parameters.use_hydro_flag=True sph.parameters.radiation_flag=False sph.parameters.gamma=1 sph.parameters.isothermal_flag=True sph.parameters.integrate_entropy_flag=False sph.parameters.timestep=dt sph.parameters.verbosity = 0 sph.parameters.eps_is_h_flag = False# h_smooth is constant eps = 0.1 | units.parsec sph.parameters.gas_epsilon = eps sph.parameters.sph_h_const = eps parts.h_smooth= eps print 'eps-h flag', sph.get_eps_is_h(), sph.get_consthsm() expected_dt = 0.2*numpy.pi*numpy.power(eps, 1.5)/numpy.sqrt(constants.G*Mcloud/N) print "dt_exp=", expected_dt.value_in(units.Myr) print "dt=", dt print "eps=", sph.parameters.gas_epsilon.in_(units.parsec) sph.gas_particles.add_particles(parts) #grav=copycat(Fi, sph, conv) #sys=bridge(verbose=False) #sys.add_system(sph,(grav,),False) channel_from_sph_to_parts= sph.gas_particles.new_channel_to(parts) channel_from_parts_to_sph= parts.new_channel_to(sph.gas_particles) i=0 L=6 E0 = 0.0 ttarget = 0.0 | units.Myr plot_hydro(ttarget, sph, i, L) while ttarget < tend: ttarget=float(i)*dt print ttarget sph.evolve_model(ttarget, timestep=dt) E = sph.gas_particles.kinetic_energy()+sph.gas_particles.potential_energy() + sph.gas_particles.thermal_energy() E_th = sph.gas_particles.thermal_energy() if i==0: E0 = E Eerr = (E-E0)/E0 print 'energy=', E, 'energy_error=', Eerr, 'e_th=', E_th channel_from_sph_to_parts.copy() """ filename = 'm400k_r10pc_e01_'+ str(i).zfill(2) + '.dat' print filename parts_sorted = parts.sorted_by_attribute('rho') write_output(filename, parts_sorted, conv) """ plot_hydro(ttarget, sph, i, L) i=i+1 plot_hydro_and_stars(ttarget, sph, L) sph.stop() return parts def make_stars(cluster_particle): sfe = 0.3 mmean = 1.0|units.MSun N = int(sfe*cluster_particle.mass/mmean) stars = Particles(0) print "N_cluster=", N if N>0: masses = new_salpeter_mass_distribution(N, 0.3|units.MSun, min(100|units.MSun, cluster_particle.mass)) r = cluster_particle.h_smooth converter=nbody_system.nbody_to_si(masses.sum(),r) stars = new_plummer_model(N, convert_nbody=converter) stars.mass = masses stars.position += cluster_particle.position stars.velocity += cluster_particle.velocity return stars def get_stars_from_molecular_clous(parts): cutoff_density = 10000 | units.amu/units.cm**3 stars = Particles(0) for ip in parts: if ip.rho>cutoff_density: local_stars = make_stars(ip) stars.add_particles(local_stars) return stars def run_dynamics(bodies, t_end, nsteps): Mtot_init = bodies.mass.sum() stellar = SeBa() stellar.parameters.metallicity = 0.02 stellar.particles.add_particle(bodies) Rvir = 1|units.parsec converter=nbody_system.nbody_to_si(stars.mass.sum(),Rvir) gravity = ph4(converter) # gravity = bhtree(converter) gravity.parameters.timestep_parameter = 0.01 gravity.particles.add_particles(bodies) channel_from_se_to_framework = stellar.particles.new_channel_to(bodies) channel_from_gd_to_framework = gravity.particles.new_channel_to(bodies) channel_from_framework_to_gd = bodies.new_channel_to(gravity.particles) channel_from_se_to_framework.copy_attributes(["mass","radius","luminosity"]) bodies.scale_to_standard(convert_nbody=converter) filename = "GMC_stars.hdf5" write_set_to_file(bodies.savepoint(0|units.Myr), filename, 'hdf5') Etot_init = gravity.kinetic_energy + gravity.potential_energy Etot_prev = Etot_init time = 0.0 | t_end.unit dt = t_end/nsteps i = 0 plot_stars(time, bodies, i) while time < t_end: time += dt gravity.evolve_model(time) Etot_prev_se = gravity.kinetic_energy + gravity.potential_energy stellar.evolve_model(time) channel_from_gd_to_framework.copy() channel_from_se_to_framework.copy_attributes(["mass","radius","luminosity", "temperature"]) channel_from_framework_to_gd.copy_attributes(["mass"]) write_set_to_file(bodies.savepoint(time), filename, 'hdf5') Ekin = gravity.kinetic_energy Epot = gravity.potential_energy Etot = Ekin + Epot dE = Etot_prev-Etot dE_se = Etot_prev_se-Etot Mtot = bodies.mass.sum() print "T=", time, print "M=", Mtot, "(dM[SE]=", Mtot/Mtot_init, ")", print "E= ", Etot, "Q= ", Ekin/Epot, print "dE=", (Etot_init-Etot)/Etot, "ddE=", (Etot_prev-Etot)/Etot, print "(dE[SE]=", dE_se/Etot, ")" Etot_init -= dE Etot_prev = Etot plot_stars(time, bodies, i) i+=1 gravity.stop() stellar.stop() plot_stars(time, bodies, i, L=20) if __name__ in ("__main__","__plot__"): # parts = run_molecular_cloud(4000, Mcloud=400000. | units.MSun, Rcloud=10. | units.parsec) parts = run_molecular_cloud(1000, Mcloud=10000. | units.MSun, Rcloud=3. | units.parsec) stars = get_stars_from_molecular_clous(parts) # write_set_to_file(stars, "stars.hdf5", 'hdf5') run_dynamics(stars, 10.0|units.Myr, 10) ``` #### File: examples/syllabus/plot_molecular_cloud.py ```python import numpy from matplotlib import pyplot from amuse.lab import * from amuse.ext.molecular_cloud import molecular_cloud from amuse.ext.evrard_test import body_centered_grid_unit_cube from amuse.plot import sph_particles_plot, native_plot def create_molecular_cloud(N, Mcloud, Rcloud, t_end): converter = nbody_system.nbody_to_si(Mcloud,Rcloud) parts=molecular_cloud(targetN=N,convert_nbody=converter, base_grid=body_centered_grid_unit_cube, seed=100).result # parts = new_plummer_gas_model(N, convert_nbody=converter) sph=Fi(converter) sph.gas_particles.add_particle(parts) sph.evolve_model(t_end) ch = sph.gas_particles.new_channel_to(parts) ch.copy() sph.stop() return parts if __name__ in ("__main__","__plot__"): sph_particles = create_molecular_cloud(10000, Mcloud=10000. | units.MSun, Rcloud=10. | units.parsec, t_end=1|units.day) native_plot.figure(figsize = (10, 10), dpi = 50) sph_particles_plot(sph_particles) native_plot.show() ``` #### File: examples/syllabus/stellar_gravity_hydro.py ```python import numpy from amuse.lab import * from amuse.couple import bridge from amuse import datamodel from amuse.ext.evrard_test import uniform_unit_sphere def new_sph_particles_from_stellar_wind(stars, mgas): new_sph=datamodel.Particles(0) for si in stars: p = si.position v = si.velocity Ngas = int(-si.Mwind/mgas) print "new Ngas=", si.mass, Ngas, if Ngas==0: continue Mgas = mgas*Ngas si.Mwind += Mgas # Ngas = 10 # mgas = Mgas/10. print "new Ngas=", Ngas, mgas add=datamodel.Particles(Ngas) add.mass = mgas add.h_smooth=0. | units.parsec dx,dy,dz=uniform_unit_sphere(Ngas).make_xyz() add.x=si.x+(dx * si.radius) add.y=si.y+(dy * si.radius) add.z=si.z+(dz * si.radius) for ri in range(len(add)): r = add[ri].position-p r = r/r.length() v_wind = (constants.G*si.mass/(add[ri].position-p).length()).sqrt() add.u= 0.5 * (v_wind)**2 v_wind = si.terminal_wind_velocity add.vx=v.x + r[0]*v_wind add.vy=v.y + r[1]*v_wind add.vz=v.z + r[2]*v_wind new_sph.add_particles(add) return new_sph def v_terminal_teff(star): t4=numpy.log10(star.temperature.value_in(units.K))-4. t4=t4.clip(0.,1.) return (30 | units.km/units.s) + ((4000 | units.km/units.s)*t4) def get_kepler_elements(model_time, bh, star, converter): kep = Kepler(converter) kep.initialize_code() pos = bh.position - star.position vel = bh.velocity - star.velocity print "Kep:", bh.mass + star.mass, pos[0], pos[1], pos[2], vel[0], vel[1], vel[2] kep.initialize_from_dyn(bh.mass + star.mass, pos[0], pos[1], pos[2], vel[0], vel[1], vel[2]) a,e = kep.get_elements() kep.stop() return a, e def gravity_hydro_bridge(a, ecc, t_end, n_steps, Rgas, Mgas, Ngas): stars = Particles(3) stars.mass = [5.0, 9.9, 10.0] | units.MSun stellar = SeBa() stellar.particles.add_particles(stars) stellar_to_framework = stellar.particles.new_channel_to(stars) stellar.evolve_model(26|units.Myr) stellar_to_framework.copy_attributes(["mass","radius","temperature"]) print "stars=", stars stellar.evolve_model(26.1|units.Myr) stars.dmdt = (stellar.particles.mass-stars.mass)/(0.1|units.Myr) stars.Mwind = 0 | units.MSun stars.terminal_wind_velocity=v_terminal_teff(stars) stellar.stop() print "dmdt=", stars.dmdt dt = 0.1|units.day mgas = 0.1*abs(stars.dmdt.sum()*dt) print "mgas=", mgas.value_in(units.MJupiter), stars.dmdt/mgas vc = constants.G*stars.mass.sum()/a Porb = 2*numpy.pi*(a**3/(constants.G*stars.mass.sum())).sqrt() stars[0].position = (0,0,0) | units.AU stars[0].velocity = (0,0,0) | units.kms vc = (constants.G*stars[:2].mass.sum()/(a*(1+ecc))).sqrt() vc *= numpy.sqrt((1-ecc)/(1+ecc)) stars[1].position = (a.value_in(units.AU),0,0) | units.AU stars[1].velocity = (0,vc.value_in(units.kms),0) | units.kms stars[:2].move_to_center() ecc = 0.2 vc = (constants.G*stars.mass.sum()/(10*a*(1+ecc))).sqrt() vc *= numpy.sqrt((1-ecc)/(1+ecc)) stars[2].position = (10*a.value_in(units.AU),0,0) | units.AU stars[2].velocity = (0,vc.value_in(units.kms),0) | units.kms stars.move_to_center() stars.radius = 0.2*a #define for printing # stars.h_smooth= 0.0*a # stars.u = 0 | units.kms**2 converter=nbody_system.nbody_to_si(stars.mass.sum(), a) gravity = ph4(converter, redirection="none") gravity.particles.add_particles(stars) gravity.parameters.epsilon_squared = (10|units.RSun)**2 Ed0_tot = gravity.kinetic_energy + gravity.potential_energy channel_from_gravity = gravity.particles.new_channel_to(stars) channel_from_to_gravity = stars.new_channel_to(gravity.particles) dt = t_end/float(n_steps) converter=nbody_system.nbody_to_si(1.0|units.MSun, a) ism = Particles(0) ism.mass = mgas ism.position = (0,0,0)|units.AU ism.velocity = (0,0,0)|units.kms ism.u = 0 | units.m**2 * units.s**-2 ism.h_smooth= 0.01*a hydro = Fi(converter, redirection="none") hydro.parameters.timestep = dt/8. hydro.parameters.use_hydro_flag=True hydro.parameters.radiation_flag=False hydro.parameters.self_gravity_flag=True hydro.parameters.integrate_entropy_flag=False hydro.parameters.gamma=1. hydro.parameters.isothermal_flag=True hydro.parameters.epsilon_squared = (10|units.RSun)**2 if len(ism)>0: hydro.gas_particles.add_particles(ism) Eh0_tot = hydro.kinetic_energy + hydro.potential_energy + hydro.thermal_energy hydro.parameters.periodic_box_size = 10000*a channel_from_hydro = hydro.gas_particles.new_channel_to(ism) channel_from_to_hydro = ism.new_channel_to(hydro.gas_particles) moving_bodies = ParticlesSuperset([stars, ism]) model_time = 0 | units.Myr filename = "stellargravhydro.hdf5" if len(ism)>0: write_set_to_file(moving_bodies, filename, 'hdf5') gravhydro = bridge.Bridge(use_threading=False) gravhydro.add_system(gravity, (hydro,) ) gravhydro.add_system(hydro, (gravity,) ) gravhydro.timestep = min(dt, 2*hydro.parameters.timestep) istep = 0 while model_time < t_end: model_time += dt a, e = get_kepler_elements(gravity.model_time, stars[0], stars[1], converter) print "AB: time=", model_time, a, e com_star = Particles(1) com_star.mass = stars[:2].mass.sum() com_star.position = stars[:2].center_of_mass() com_star.velocity = stars[:2].center_of_mass_velocity() a, e = get_kepler_elements(gravity.model_time, com_star[0], stars[2], converter) print "(AB)C: time=", model_time, a, e stars.Mwind += stars.dmdt*dt print "Mw=", stars.Mwind, stars.Mwind/mgas new_sph = new_sph_particles_from_stellar_wind(stars, mgas) print "Ngas=", len(new_sph), len(ism), len(hydro.gas_particles) if len(new_sph)>0: # and len(bodies)<4000: ism.add_particles(new_sph) ism.synchronize_to(hydro.gas_particles) if len(ism)>100: print "t=", hydro.model_time, dt gravhydro.evolve_model(model_time) channel_from_gravity.copy() channel_from_hydro.copy() channel_from_hydro.copy_attributes(["u"]) print "N=", len(hydro.particles) Ed_tot = gravity.kinetic_energy + gravity.potential_energy Eh_tot = hydro.kinetic_energy + hydro.potential_energy + hydro.thermal_energy print "Energies:", Ed_tot/Ed0_tot, Eh_tot/Eh0_tot if istep%10==0: write_set_to_file(moving_bodies, filename, 'hdf5') istep+=1 gravity.stop() hydro.stop() def new_option_parser(): from amuse.units.optparse import OptionParser result = OptionParser() result.add_option("-n", dest="n_steps", type="int", default = 1000, help="number of diagnostics time steps [%default]") result.add_option("-N", dest="Ngas", type="int", default = 1024, help="number of gas particles [%default]") result.add_option("-M", unit=units.MSun, dest="Mgas", type="float", default = 1|units.MSun, help="Mass of the gas [%default]") result.add_option("-R", unit=units.AU, dest="Rgas", type="float", default = 1|units.AU, help="Size of the gas distribution [%default]") result.add_option("-a", unit=units.AU, dest="a", type="float", default = 0.2|units.AU, help="initial orbital separation [%default]") result.add_option("-e", dest="ecc", type="float", default = 0.0, help="initial orbital eccentricity [%default]") result.add_option("-t", unit=units.yr, dest="t_end", type="float", default = 10|units.yr, help="end time of the simulation [%default]") return result if __name__ in ('__main__', '__plot__'): o, arguments = new_option_parser().parse_args() gravity_hydro_bridge(**o.__dict__) ``` #### File: examples/textbook/evolve_triple_with_wind_2.py ```python import sys import math, numpy from optparse import OptionParser import matplotlib #matplotlib.use('Agg') from matplotlib import pyplot as plt from prepare_figure import single_frame from distinct_colours import get_distinct from amuse.units import units, constants, nbody_system from amuse.units.quantities import zero from amuse.datamodel import Particle, Particles from amuse.support.console import set_printing_strategy from amuse.io import store from amuse.ext.orbital_elements import new_binary_from_orbital_elements from amuse.ext.orbital_elements import orbital_elements_from_binary from amuse.community.symple.interface import symple # symplectic from amuse.community.huayno.interface import Huayno # symplectic from amuse.community.smalln.interface import SmallN # time reversible from amuse.community.hermite0.interface import Hermite # not symplectic from amuse.community.seba.interface import SeBa from amuse.community.sse.interface import SSE def orbital_period(a, Mtot): return 2*numpy.pi*(a**3/(constants.G*Mtot)).sqrt() def semimajor_axis(P, Mtot): return (constants.G*Mtot*P**2/(4*numpy.pi**2))**(1./3) def get_orbital_elements_of_triple(stars): inner_binary = stars[0]+stars[1] outer_binary = Particles(1) outer_binary[0].mass = inner_binary.mass.sum() outer_binary[0].position = inner_binary.center_of_mass() outer_binary[0].velocity = inner_binary.center_of_mass_velocity() outer_binary.add_particle(stars[2]) M1, M2, ain, ein, ta_in, inc_in, lan_in, aop_in \ = orbital_elements_from_binary(inner_binary, G=constants.G) M12, M3, aout, eout, ta_out, outc_out, lan_out, aop_out \ = orbital_elements_from_binary(outer_binary, G=constants.G) return ain, ein, aout, eout def evolve_triple_with_wind(M1, M2, M3, Pora, Pin_0, ain_0, aout_0, ein_0, eout_0, t_end, nsteps, scheme, integrator, t_stellar, dt_se, dtse_fac, interp): import random from amuse.ext.solarsystem import get_position numpy.random.seed(42) print "Initial masses:", M1, M2, M3 triple = Particles(3) triple[0].mass = M1 triple[1].mass = M2 triple[2].mass = M3 stellar = SeBa() stellar.particles.add_particles(triple) channel_from_stellar = stellar.particles.new_channel_to(triple) # Evolve to t_stellar. stellar.evolve_model(t_stellar) channel_from_stellar.copy_attributes(["mass"]) M1 = triple[0].mass M2 = triple[1].mass M3 = triple[2].mass print "t=", stellar.model_time.in_(units.Myr) print "M=", stellar.particles.mass.in_(units.MSun) print "R=", stellar.particles.radius.in_(units.RSun) print "L=", stellar.particles.luminosity.in_(units.LSun) print "T=", stellar.particles.temperature.in_(units.K) print "Mdot=", \ -stellar.particles.wind_mass_loss_rate.in_(units.MSun/units.yr) # Start the dynamics. # Inner binary: tmp_stars = Particles(2) tmp_stars[0].mass = M1 tmp_stars[1].mass = M2 if Pora == 1: ain_0 = semimajor_axis(Pin_0, M1+M2) else: Pin_0 = orbital_period(ain_0, M1+M2) print 'Pin =', Pin_0 print 'ain_0 =', ain_0 print 'M1+M2 =', M1+M2 print 'Pin_0 =', Pin_0.value_in(units.day), '[day]' #print 'semi:', semimajor_axis(Pin_0, M1+M2).value_in(units.AU), 'AU' #print 'period:', orbital_period(ain_0, M1+M2).value_in(units.day), '[day]' dt_init = 0.01*Pin_0 ma = 180 inc = 60 aop = 180 lon = 0 r,v = get_position(M1, M2, ein_0, ain_0, ma, inc, aop, lon, dt_init) tmp_stars[1].position = r tmp_stars[1].velocity = v tmp_stars.move_to_center() # Outer binary: r,v = get_position(M1+M2, M3, eout_0, aout_0, 0, 0, 0, 0, dt_init) tertiary = Particle() tertiary.mass = M3 tertiary.position = r tertiary.velocity = v tmp_stars.add_particle(tertiary) tmp_stars.move_to_center() triple.position = tmp_stars.position triple.velocity = tmp_stars.velocity Mtriple = triple.mass.sum() Pout = orbital_period(aout_0, Mtriple) print "T=", stellar.model_time.in_(units.Myr) print "M=", stellar.particles.mass.in_(units.MSun) print "Pout=", Pout.in_(units.Myr) print 'tK =', ((M1+M2)/M3)*Pout**2*(1-eout_0**2)**1.5/Pin_0 converter = nbody_system.nbody_to_si(triple.mass.sum(), aout_0) if integrator == 0: gravity = Hermite(converter) gravity.parameters.timestep_parameter = 0.01 elif integrator == 1: gravity = SmallN(converter) gravity.parameters.timestep_parameter = 0.01 gravity.parameters.full_unperturbed = 0 elif integrator == 2: gravity = Huayno(converter) gravity.parameters.inttype_parameter = 20 gravity.parameters.timestep = (1./256)*Pin_0 else: gravity = symple(converter) gravity.parameters.integrator = 10 #gravity.parameters.timestep_parameter = 0. gravity.parameters.timestep = (1./128)*Pin_0 print gravity.parameters gravity.particles.add_particles(triple) channel_from_framework_to_gd = triple.new_channel_to(gravity.particles) channel_from_gd_to_framework = gravity.particles.new_channel_to(triple) Etot_init = gravity.kinetic_energy + gravity.potential_energy Etot_prev = Etot_init gravity.particles.move_to_center() # Note: time = t_diag = 0 at the start of the dynamical integration. dt_diag = t_end/float(nsteps) t_diag = dt_diag time = 0.0 | t_end.unit t_se = t_stellar + time print 't_end =', t_end print 'dt_diag =', dt_diag ain, ein, aout, eout = get_orbital_elements_of_triple(triple) print "Triple elements t=", time, \ "inner:", triple[0].mass, triple[1].mass, ain, ein, \ "outer:", triple[2].mass, aout, eout t = [time.value_in(units.Myr)] Mtot = triple.mass.sum() mtot = [Mtot.value_in(units.MSun)] smai = [ain/ain_0] ecci = [ein/ein_0] smao = [aout/aout_0] ecco = [eout/eout_0] if interp: # Create arrays of stellar times and masses for interpolation. times = [time] masses = [triple.mass.copy()] while time < t_end: time += dt_se stellar.evolve_model(t_stellar+time) channel_from_stellar.copy_attributes(["mass"]) times.append(time) masses.append(triple.mass.copy()) time = 0.0 | t_end.unit print '\ntimes:', times, '\n' # Evolve the system. def advance_stellar(t_se, dt): E0 = gravity.kinetic_energy + gravity.potential_energy t_se += dt if interp: t = t_se-t_stellar i = int(t/dt_se) mass = masses[i] + (t-times[i])*(masses[i+1]-masses[i])/dt_se triple.mass = mass #print 't_se =', t_se, 'masses =', mass else: stellar.evolve_model(t_se) channel_from_stellar.copy_attributes(["mass"]) channel_from_framework_to_gd.copy_attributes(["mass"]) return t_se, gravity.kinetic_energy + gravity.potential_energy - E0 def advance_gravity(tg, dt): tg += dt gravity.evolve_model(tg) channel_from_gd_to_framework.copy() return tg while time < t_end: if scheme == 1: # Advance to the next diagnostic time. dE_se = zero dt = t_diag - time if dt > 0|dt.unit: time = advance_gravity(time, dt) elif scheme == 2: # Derive dt from Pin using dtse_fac. dt = dtse_fac*Pin_0 if time + dt > t_diag: dt = t_diag - time if dt > 0|dt.unit: t_se, dE_se = advance_stellar(t_se, dt) time = advance_gravity(time, dt) elif scheme == 3: # Derive dt from Pin using dtse_fac. dt = dtse_fac*Pin_0 if time + dt > t_diag: dt = t_diag - time if dt > 0|dt.unit: time = advance_gravity(time, dt) t_se, dE_se = advance_stellar(t_se, dt) elif scheme == 4: # Derive dt from Pin using dtse_fac. dt = dtse_fac*Pin_0 if time + dt > t_diag: dt = t_diag - time if dt > 0|dt.unit: t_se, dE_se = advance_stellar(t_se, 0.5*dt) time = advance_gravity(time, dt) t_se, dE_se2 = advance_stellar(t_se, 0.5*dt) dE_se += dE_se2 elif scheme == 5: # Use the specified dt_se. dE_se = zero dt = dt_se if time + dt > t_diag: dt = t_diag - time if dt > 0|dt.unit: # For use with symple only: set up average mass loss. channel_from_stellar.copy_attributes(["mass"]) m0 = triple.mass.copy() stellar.evolve_model(t_se+dt) channel_from_stellar.copy_attributes(["mass"]) t_se = stellar.model_time m1 = triple.mass dmdt = (m1-m0)/dt for i in range(len(dmdt)): gravity.set_dmdt(i, dmdt[i]) time = advance_gravity(time, dt) else: print 'unknown option' sys.exit(0) if time >= t_diag: t_diag = time + dt_diag Ekin = gravity.kinetic_energy Epot = gravity.potential_energy Etot = Ekin + Epot dE = Etot_prev - Etot Mtot = triple.mass.sum() print "T=", time, print "M=", Mtot, "(dM[SE]=", Mtot/Mtriple, ")", print "E= ", Etot, "Q= ", Ekin/Epot, print "dE=", (Etot_init-Etot)/Etot, "ddE=", (Etot_prev-Etot)/Etot, print "(dE[SE]=", dE_se/Etot, ")" Etot_init -= dE Etot_prev = Etot ain, ein, aout, eout = get_orbital_elements_of_triple(triple) print "Triple elements t=", t_stellar + time, \ "inner:", triple[0].mass, triple[1].mass, ain, ein, \ "outer:", triple[2].mass, aout, eout t.append(time.value_in(units.yr)) mtot.append(Mtot.value_in(units.MSun)) smai.append(ain/ain_0) ecci.append(ein/ein_0) smao.append(aout/aout_0) ecco.append(eout/eout_0) if eout > 1 or aout <= zero: print "Binary ionized or merged" break gravity.stop() stellar.stop() return t, mtot, smai, ecci, smao, ecco def main(M1, M2, M3, Pora, Pin, ain, aout, ein, eout, t_end, nsteps, scheme, integrator, t_stellar, dt_se, dtse_fac, interp, show): two_frames = False plot_ae = True color = get_distinct(4) if two_frames: plt.figure(figsize=(10, 8)) else: plt.figure(figsize=(12, 8)) if scheme == 5: if integrator != 3: print 'Warning: scheme = 5 forces integrator = 3' integrator = 3 srange = [1,scheme] # 1 = no mass loss; other = mass loss # assume scheme > 1 i = 0 lw = [1,2] srange = [1, scheme] for s in srange: time, mtot, ai, ei, ao, eo \ = evolve_triple_with_wind(M1, M2, M3, Pora, Pin, ain, aout, ein, eout, t_end, nsteps, s, integrator, t_stellar, dt_se, dtse_fac, interp) if i == 0: if two_frames: plt.subplot(1,2,1) plt.plot(time, ai, c=color[0], linewidth=lw[i], label='inner, no mass loss') plt.plot(time, ao, c=color[3], linewidth=lw[i], label='outer, no mass loss') plt.xlabel('time (yr)') plt.ylabel('$a/a_0$') if two_frames: plt.subplot(1,2,2) if plot_ae: plt.plot(ai, ei, c=color[0], linewidth=lw[i]) plt.plot(ao, eo, c=color[3], linewidth=lw[i]) plt.xlabel('$a/a_0$') plt.ylabel('$e/e_0$') else: plt.plot(time, mtot, c=color[0], linewidth=lw[i]) plt.xlabel('time (yr)') plt.ylabel('M') i = 1 else: if two_frames: plt.subplot(1,2,1) plt.plot(time, ai, c=color[1], linewidth=lw[i], label='inner, mass loss') plt.plot(time, ao, c=color[2], linewidth=lw[i], label='outer, mass loss') if two_frames: plt.subplot(1,2,2) if plot_ae: plt.plot(ai, ei, c=color[1], linewidth=lw[i]) plt.plot(ao, eo, c=color[2], linewidth=lw[i]) else: plt.plot(time, mtot, c=color[1], linewidth=lw[i]) if two_frames: plt.subplot(1,2,1) plt.legend(loc='best') integrators = ['hermite', 'smalln', 'huayno', 'symple'] label = integrators[integrator] label += ' integrator, stellev scheme= {:d}'.format(scheme) save_file \ = 'evolve_triple_with_wind_t={:.3f}'.format(t_end.value_in(units.Myr)) \ +'_i={:d}_s={:d}'.format(integrator, scheme) if scheme < 5: label += ', dtse_fac = {:.3f}'.format(dtse_fac) save_file += '_dtsefac={:.3f}'.format(dtse_fac) else: label += ', dt_se = {:.1f}'.format(dt_se.value_in(units.yr)) save_file += '_dtse={:.1f}'.format(dt_se.value_in(units.yr)) save_file += '.png' if two_frames: plt.tight_layout() plt.subplots_adjust(top=0.88) #plt.suptitle(label, y=0.97, fontsize=15) ax = plt.gca() ax.minorticks_on() # switch on the minor ticks ax.tick_params(axis='both', which='both', direction='in') ax.locator_params(nbins=3) ax.get_yaxis().get_major_formatter().set_useOffset(False) plt.savefig(save_file, dpi=300) print '\nSaved figure in file', save_file,'\n' if show: plt.show() def new_option_parser(): from amuse.units.optparse import OptionParser result = OptionParser() result.add_option("--ain", unit=units.AU, dest="ain", type="float", default = 0.63|units.AU, help="orbital separation [%default]") result.add_option("--aout", unit=units.AU, dest="aout", type="float", default = 100|units.AU, help="orbital separation [%default]") result.add_option("--dtse", unit=units.Myr, dest="dt_se", type="float", default = 1.e-3|units.Myr, help="stellar mass-loss time step [%default]") result.add_option("--dtse_fac", dest="dtse_fac", type="float", default = 0.1, help="stellar mass-loss time step fraction [%default]") result.add_option("--ein", dest="ein", type="float", default = 0.2, help="orbital eccentricity [%default]") result.add_option("--eout", dest="eout", type="float", default = 0.6, help="orbital eccentricity [%default]") result.add_option("-i", dest="integrator", type="int", default = 2, help="integration scheme [%default]") result.add_option("-I", dest="interp", action="store_false", default = True, help="interpolate stellar evolution [%default]") result.add_option("--M1", unit=units.MSun, dest="M1", type="float", default = 60|units.MSun, help="Primary mass [%default]") result.add_option("--M2", unit=units.MSun, dest="M2", type="float", default = 30|units.MSun, help="secondary mass [%default]") result.add_option("--M3", unit=units.MSun, dest="M3", type="float", default = 20|units.MSun, help="secondary mass [%default]") result.add_option("-n", dest="nsteps", type="int", default = 1000, help="number of data points [%default]") result.add_option("--Pin", unit=units.day, dest="Pin", type="float", default = 19|units.day, help="orbital period [%default]") result.add_option("--Pora", dest="Pora", type="int", default = 1, help="period (1) or semimajor axis (2) [%default]") result.add_option("-s", dest="scheme", type="int", default = 3, help="stellar integration method [%default]") result.add_option("-S", dest="show", action="store_false", default = True, help="show plot on display [%default]") result.add_option("-t", unit=units.Myr, dest="t_end", type="float", default = 1.e-3|units.Myr, help="end time of the dynamical simulation [%default]") result.add_option("--ts", unit=units.Myr, dest="t_stellar", type="float", default = 4.|units.Myr, help="stellar evolution time [%default]") return result if __name__ in ('__main__', '__plot__'): #set_printing_strategy("custom", # preferred_units = [units.MSun, units.AU, units.Myr], # precision = 12, prefix = "", # separator = " [", suffix = "]") o, arguments = new_option_parser().parse_args() print o.__dict__ main(**o.__dict__) ``` #### File: examples/textbook/merge_two_stars_and_evolve_orig.py ```python import numpy from matplotlib import pyplot from amuse.lab import * from amuse.community.mmams.interface import MakeMeAMassiveStarInterface from amuse.community.mmams.interface import MakeMeAMassiveStar from amuse.couple.collision_handler import CollisionHandler from prepare_figure import single_frame from distinct_colours import get_distinct default_options = dict() def get_density_profile(code=MESA, M=1.0|units.MSun, z=0.02, t=2|units.Myr): stellar = code() stellar.parameters.metallicity = z stellar.particles.add_particle(Particle(mass=M)) print "Nzones=", stellar.particles.get_number_of_zones() stellar.evolve_model(t) radius = stellar.particles[0].get_radius_profile() rho = stellar.particles[0].get_density_profile() stellar.stop() return radius, rho def print_stars(stellar_evolution): print "Primary: Time=", stellar_evolution.model_time.in_(units.Myr), \ stellar_evolution.particles[0].mass.in_(units.MSun), \ stellar_evolution.particles[0].radius.in_(units.RSun), \ stellar_evolution.particles[0].temperature.in_(units.K), \ stellar_evolution.particles[0].luminosity.in_(units.LSun) print "Secondary: Time=", stellar_evolution.model_time.in_(units.Myr), \ stellar_evolution.particles[1].mass.in_(units.MSun), \ stellar_evolution.particles[1].radius.in_(units.RSun), \ stellar_evolution.particles[1].temperature.in_(units.K), \ stellar_evolution.particles[1].luminosity.in_(units.LSun) def merge_two_stars(Mprim, Msec, tcoll, tend): stars = Particles(2) stars.mass = [Mprim.value_in(units.MSun), Msec.value_in(units.MSun)] | units.MSun stellar_evolution = MESA() stellar_evolution.particles.add_particles(stars) time = [] | units.Myr mass = [] | units.MSun radius = [] | units.RSun temperature = [] | units.K luminosity = [] | units.LSun stellar_type = [] nmerge = 0 while stellar_evolution.model_time < tcoll: stellar_evolution.evolve_model() print_stars(stellar_evolution) time.append(stellar_evolution.model_time) mass.append(stellar_evolution.particles[0].mass) radius.append(stellar_evolution.particles[0].radius) temperature.append(stellar_evolution.particles[0].temperature) luminosity.append(stellar_evolution.particles[0].luminosity) stellar_type.append(stellar_evolution.particles[0].stellar_type) nmerge += 1 n_shell = min(stellar_evolution.particles[0].get_number_of_zones(), stellar_evolution.particles[1].get_number_of_zones()) merger = MakeMeAMassiveStar(**default_options) merger.parameters.target_n_shells = n_shell merger.parameters.dump_mixed_flag = True merger.parameters.do_shock_heating_flag = True merger.commit_parameters() handler = CollisionHandler(merger, stellar_evolution_code = stellar_evolution) merger_product = handler.handle_collision(stellar_evolution.particles[0], stellar_evolution.particles[1]) merged = stellar_evolution.particles[0] print "Stars merged:", merged stellar_evolution.evolve_model(keep_synchronous=True) print "star A:", stellar_evolution.particles while stellar_evolution.model_time < tend: stellar_evolution.evolve_model() time.append(stellar_evolution.model_time) mass.append(stellar_evolution.particles[0].mass) radius.append(stellar_evolution.particles[0].radius) temperature.append(stellar_evolution.particles[0].temperature) luminosity.append(stellar_evolution.particles[0].luminosity) stellar_type.append(stellar_evolution.particles[0].stellar_type) print "Time=", time[-1], stellar_type[-1], mass[-1], radius[-1], \ temperature[-1].in_(units.K), luminosity[-1].in_(units.LSun) if stellar_type[-1] >= 4 | units.stellar_type: break print "star B:", stellar_evolution.particles rho_profile = merged.get_density_profile() radius_profile = merged.get_radius_profile() merger.stop() stellar_evolution.stop() return time, stellar_type, mass, radius, temperature, luminosity, nmerge def evolve_single_star(mass, tend): star = Particles(1) star.mass = mass stellar_evolution = MESA() stellar_evolution.particles.add_particles(star) time = [] | units.Myr mass = [] | units.MSun radius = [] | units.RSun temperature = [] | units.K luminosity = [] | units.LSun stellar_type = [] while stellar_evolution.model_time < tend: stellar_evolution.evolve_model() time.append(stellar_evolution.model_time) mass.append(stellar_evolution.particles[0].mass) radius.append(stellar_evolution.particles[0].radius) temperature.append(stellar_evolution.particles[0].temperature) luminosity.append(stellar_evolution.particles[0].luminosity) stellar_type.append(stellar_evolution.particles[0].stellar_type) print "Time=", time[-1], stellar_type[-1], mass[-1], radius[-1], \ temperature[-1].in_(units.K), luminosity[-1].in_(units.LSun) if stellar_type[-1] >= 4 | units.stellar_type: break stellar_evolution.stop() return time, stellar_type, mass, radius, temperature, luminosity def new_option_parser(): from amuse.units.optparse import OptionParser result = OptionParser() result.add_option("--tcoll", unit=units.Myr, dest="tcoll", type="float",default = 1|units.Myr, help="moment of collision [%default]") result.add_option("--tend", unit=units.Myr, dest="tend", type="float",default = 1|units.Myr, help="evolution after the collision [%default]") result.add_option("-M", unit=units.MSun, dest="Mprim", type="float",default = 1|units.MSun, help="Primary ZAMS mass [%default]") result.add_option("-m", unit=units.MSun, dest="Msec", type="float",default = 1|units.MSun, help="Secondary ZAMS mass [%default]") return result def plot_post_collision_star(time, mass, radius, temperature, luminosity): pyplot.subplot(2,2,1) pyplot.plot(time.value_in(units.Myr), mass.value_in(units.MSun)) pyplot.subplot(2,2,2) pyplot.plot(time.value_in(units.Myr), radius.value_in(units.RSun)) pyplot.subplot(2,2,3) pyplot.plot(temperature.value_in(units.K), luminosity.value_in(units.LSun)) pyplot.loglog() pyplot.show() if __name__ in ('__main__','__plot__'): set_printing_strategy("custom", #nbody_converter = converter, precision = 15, prefix = "", separator = " [", suffix = "]") o, arguments = new_option_parser().parse_args() x_label = "T [K]" y_label = "L [$L_\odot$]" figure = single_frame(x_label, y_label, logx=True, logy=True, xsize=14, ysize=10) color = get_distinct(4) pyplot.xlim(5.e+4, 1.e+3) Mprim = 3.0|units.MSun Msec = 1.0|units.MSun tend = 2.0|units.Gyr print "Evolve single star" time, stp, mass, radius, temperature, luminosity \ = evolve_single_star(Mprim, tend) pyplot.plot(temperature.value_in(units.K), luminosity.value_in(units.LSun), c=color[1]) pyplot.scatter(temperature[0].value_in(units.K), luminosity[0].value_in(units.LSun), c=color[0], marker="^", s=150, lw=0) tms = 0 |units.Myr for i in range(len(stp)): if stp[i] >= 2 | units.stellar_type: tms = time[i] if tms <= 1|units.Myr: tms = 10|units.Myr print "Main-sequence age:", tms.in_(units.Myr) tend = tms print "Evolve single star" time, stp, mass, radius, temperature, luminosity \ = evolve_single_star(Mprim+Msec, tend) pyplot.plot(temperature.value_in(units.K), luminosity.value_in(units.LSun), c=color[1]) pyplot.scatter(temperature[0].value_in(units.K), luminosity[0].value_in(units.LSun), c=color[1], s=150, marker="^") tcoll = 0.5*tend print "Evolve two single stars and collide at:", tcoll.in_(units.Myr) time, stp, mass, radius, temperature, luminosity, nmerge \ = merge_two_stars(Mprim, Msec, tcoll, tend) pyplot.plot(temperature[nmerge+1:].value_in(units.K), luminosity[nmerge+1:].value_in(units.LSun), c=color[2], ls="--") pyplot.scatter(temperature[nmerge-1:nmerge+1].value_in(units.K), luminosity[nmerge-1:nmerge+1].value_in(units.LSun), c=color[2], s=150, marker="o") tcoll = 2*tcoll print "Evolve two single stars and collide at:", tcoll.in_(units.Myr) time, stp, mass, radius, temperature, luminosity, nmerge \ = merge_two_stars(Mprim, Msec, tcoll, tend) pyplot.plot(temperature[:nmerge].value_in(units.K), luminosity[:nmerge].value_in(units.LSun), c=color[3], ls="-") pyplot.plot(temperature[nmerge+1:].value_in(units.K), luminosity[nmerge+1:].value_in(units.LSun), c=color[3], ls="--") pyplot.savefig("merge_two_stars_and_evolve") ``` #### File: examples/textbook/multiple_stellar_threaded.py ```python import Queue import threading import multiprocessing from amuse.lab import * ###BOOKLISTSTART1### code_queue = Queue.Queue() def remote_worker_code(): code = code_queue.get() evolve_single_star(code) code_queue.task_done() def evolve_with_different_stellar_model(codes): for ci in codes: code_queue.put(ci) n_cpu = multiprocessing.cpu_count() for i in range(n_cpu): th = threading.Thread(target=remote_worker_code) th.daemon = True th.start() code_queue.join() # block until all tasks are done ###BOOKLISTSTOP1### ###BOOKLISTSTART2### def evolve_single_star(code): stars = Particles(mass=10|units.MSun) stellar = code() stellar.particles.add_particles(stars) channel = stellar.particles.new_channel_to(stars) stellar.evolve_model(1|units.Myr) channel.copy() print "Star evolved to time=", stellar.model_time, \ " M=", stars.mass, "R=", stars.radius stellar.stop() ###BOOKLISTSTOP2### def new_option_parser(): from amuse.units.optparse import OptionParser result = OptionParser() result.add_option("-t", action="store_true", dest="threaded", help="run threaded [%default]") return result if __name__ in ('__main__', '__plot__'): o, arguments = new_option_parser().parse_args() set_printing_strategy("custom",\ preferred_units = [units.MSun, units.RSun, units.Myr],\ precision = 6, prefix = "", separator = "[", suffix = "]") codes = [SeBa, MESA, SSE, EVtwin] if o.threaded: print "Run threaded" evolve_with_different_stellar_model(codes) else: print "Run sequentially" for ci in codes: evolve_single_star(ci) ``` #### File: examples/textbook/old_merge_two_stars_sph_evolve.py ```python import os import os.path import shutil import numpy from amuse.lab import * from amuse.community.mesa.interface import MESA as stellar_evolution_code from amuse.ext.star_to_sph import convert_stellar_model_to_SPH from amuse.ext.sph_to_star import convert_SPH_to_stellar_model from prepare_figure import single_frame from distinct_colours import get_distinct from matplotlib import pyplot def plot_clumps(groups): number_of_particles_in_group = [] fraction_of_mass_in_group = [] # number_of_particles_in_group.append(len(group)) # fraction = (group.mass.sum()/total_mass) # fraction_of_mass_in_group.append(fraction) print "N=", len(groups) ci = ['r', 'b', 'g', 'k'] figure = pyplot.figure(figsize=(12,6)) i = 0 alpha = 1 sizes = 50 for group in groups: pyplot.scatter(group.x.value_in(units.RSun), group.y.value_in(units.RSun), sizes, ci[i], edgecolors = "none", alpha = alpha) # pyplot.scatter( # group.x.value_in(units.RSun), # group.y.value_in(units.RSun), # s = 1,#group.mass.value_in(units.MSun), # c = ci[i] # ) i+=1 pyplot.xlabel('x (AU)') pyplot.ylabel('y (A*)') # pyplot.xlim(-30, 30) # pyplot.ylim(-30, 30) pyplot.show() def find_clumps(particles, unit_converter): hop = Hop(unit_converter) hop.particles.add_particles(particles) hop.calculate_densities() mean_densty = hop.particles.density.mean() hop.parameters.peak_density_threshold = mean_densty hop.parameters.saddle_density_threshold = 0.99*mean_densty hop.parameters.outer_density_threshold = 0.01*mean_densty # print "Peak density threshold:", hop.do_hop() result = [x.get_intersecting_subset_in(particles) for x in hop.groups()] hop.stop() return result def evolve_single_star(mass, tend): star = Particles(1) star.mass = mass stellar_evolution = MESA() stellar_evolution.particles.add_particles(star) time = [] | units.Myr mass = [] | units.MSun radius = [] | units.RSun temperature = [] | units.K luminosity = [] | units.LSun stellar_type = [] while stellar_evolution.model_time<tend: stellar_evolution.evolve_model() time.append(stellar_evolution.model_time) mass.append(stellar_evolution.particles[0].mass) radius.append(stellar_evolution.particles[0].radius) temperature.append(stellar_evolution.particles[0].temperature) luminosity.append(stellar_evolution.particles[0].luminosity) stellar_type.append(stellar_evolution.particles[0].stellar_type) print "Time=", time[-1], stellar_type[-1], mass[-1], radius[-1], \ temperature[-1].in_(units.K), luminosity[-1].in_(units.LSun) if stellar_type[-1] >= 4 | units.stellar_type: break stellar_evolution.stop() return time, stellar_type, mass, radius, temperature, luminosity def merge_two_stars_sph_and_evolve(Mprim, Msec, tcoll, tend): stars = Particles(2) stars[0].mass = Mprim stars[1].mass = Msec stellar = EVtwin() stellar.particles.add_particle(stars[0]) stellar.particles.add_particle(stars[1]) time = [] | units.Myr mass = [] | units.MSun radius = [] | units.RSun temperature = [] | units.K luminosity = [] | units.LSun while stellar.model_time < tcoll: stellar.evolve_model() time.append(stellar.model_time) mass.append(stellar.particles[0].mass) radius.append(stellar.particles[0].radius) temperature.append(stellar.particles[0].temperature) luminosity.append(stellar.particles[0].luminosity) print "Time=", time[-1], mass[-1], radius[-1], \ temperature[-1].in_(units.K), luminosity[-1].in_(units.LSun) n_normal = len(time) print stars Nprim = int(100*stellar.particles[0].mass.value_in(units.MSun)) mgas = stellar.particles[0].mass/Nprim Nsec = int(stellar.particles[1].mass/mgas) print "N gas=", Nprim, Nsec sph_primary = convert_stellar_model_to_SPH( stellar.particles[0], Nprim, seed=12345 ).gas_particles sph_secondary = convert_stellar_model_to_SPH( stellar.particles[0], Nsec, seed=12345 ).gas_particles stellar.stop() distance = 1 | units.RSun sph_secondary.x += distance sph_secondary.vx -= 1.7*numpy.sqrt(2*constants.G*stars.mass.sum()/distance) sph_particles = Particles() sph_particles.add_particles(sph_primary) #sph_particles.add_particles(sph_secondary) sph_particles.move_to_center() converter = nbody_system.nbody_to_si(1|units.hour, 1|units.RSun) hydrodynamics = Gadget2(converter) hydrodynamics.gas_particles.add_particles(sph_particles) hydrodynamics.evolve_model(10.0|units.hour) hydrodynamics.gas_particles.copy_values_of_attributes_to(["density", "u", "pressure"], sph_particles) hydrodynamics.stop() print "N all=", len(sph_particles) clumps = find_clumps(sph_particles, converter) #sph_particles = clumps[0] print "N blob=", len(sph_particles) #plot_clumps(clumps) #sph_merger = sph_particles[0] print "convert SPH to stellar model" merged_star = convert_SPH_to_stellar_model(sph_particles) print "initiate stellar evolution model" #stellar_evolution = MESA() stellar_evolution = EVtwin(redirect="none") stellar_evolution.new_particle_from_model(merged_star, 0.0|units.Myr) print "star:", stellar_evolution.particles print "evolve star" #stellar_evolution.evolve_model(tend) while stellar_evolution.model_time<(tend-tcoll): stellar_evolution.evolve_model() time.append(stellar_evolution.model_time) mass.append(stellar_evolution.particles[0].mass) radius.append(stellar_evolution.particles[0].radius) temperature.append(stellar_evolution.particles[0].temperature) luminosity.append(stellar_evolution.particles[0].luminosity) print "Time=", time[-1], mass[-1], radius[-1], \ temperature[-1].in_(units.K), luminosity[-1].in_(units.LSun) print stellar_evolution.particles stellar_evolution.stop() return time, mass, radius, temperature, luminosity, n_normal def new_option_parser(): from amuse.units.optparse import OptionParser result = OptionParser() result.add_option("-f", dest="filename", default = "hydro_triple_gas.hdf5", help="input filename [%default]") result.add_option("--tcoll", unit=units.Myr, dest="tcoll", type="float", default = 50|units.Myr, help="evolution time scale [%default]") result.add_option("--tend", unit=units.Myr, dest="tend", type="float", default = 423|units.Myr, help="evolution time scale [%default]") result.add_option("-M", unit=units.MSun, dest="Mprim", type="float", default = 3|units.MSun, help="stellar mass [%default]") result.add_option("-m", unit=units.MSun, dest="Msec", type="float", default = 1|units.MSun, help="stellar mass [%default]") return result if __name__ == "__main__": set_printing_strategy("custom", #nbody_converter = converter, preferred_units = [units.MSun, units.RSun, units.Myr], precision = 11, prefix = "", separator = " [", suffix = "]") o, arguments = new_option_parser().parse_args() Mprim = o.Mprim Msec = o.Msec tend = o.tend tcoll = o.tcoll x_label = "T [K]" y_label = "L [$L_\odot$]" figure = single_frame(x_label, y_label, logx=True, logy=True, xsize=14, ysize=10) color = get_distinct(4) pyplot.xlim(5.e+4, 1.e+3) print "Evolve single star of M=", (Mprim).in_(units.MSun) time, stp, mass, radius, temperature, luminosity \ = evolve_single_star(Mprim, tend) pyplot.plot(temperature.value_in(units.K), luminosity.value_in(units.LSun), c=color[0], lw=2) pyplot.scatter(temperature[0].value_in(units.K), luminosity[0].value_in(units.LSun), c=color[0], s=150, marker="^") print "Evolve single star of M=", (Mprim).in_(units.MSun)+(0.2|units.MSun) time, stp, mass, radius, temperature, luminosity \ = evolve_single_star(Mprim+(0.2|units.MSun), tend) pyplot.plot(temperature.value_in(units.K), luminosity.value_in(units.LSun), c=color[1], lw=2) pyplot.scatter(temperature[0].value_in(units.K), luminosity[0].value_in(units.LSun), c=color[1], s=150, marker="^") print "Evolve single star of M=", \ (Mprim+Msec).in_(units.MSun) + (0.4|units.MSun) time, stp, mass, radius, temperature, luminosity \ = evolve_single_star(Mprim+(0.4|units.MSun), tend) pyplot.plot(temperature.value_in(units.K), luminosity.value_in(units.LSun), c=color[3], lw=2) pyplot.scatter(temperature[0].value_in(units.K), luminosity[0].value_in(units.LSun), c=color[3], s=150, marker="^") tms = 0 |units.Myr for i in range(len(stp)): if stp[i]>=2 | units.stellar_type: tms = time[i] if tms <= 1|units.Myr: tms = 10|units.Myr print "Main-sequence age:", tms.in_(units.Myr) tend = tms print "Main sequence lifetime of star=", tms.in_(units.Myr) #tcoll = 0.5*tms time, mass, radius, temperature, luminosity, n \ = merge_two_stars_sph_and_evolve(o.Mprim, o.Msec, tcoll, o.tend) pyplot.scatter(temperature[0].value_in(units.K), luminosity[0].value_in(units.LSun), c=color[2], s=150, marker="^") pyplot.plot(temperature[:n].value_in(units.K), luminosity[:n].value_in(units.LSun), c=color[2]) pyplot.scatter(temperature[n-1].value_in(units.K), luminosity[n-1].value_in(units.LSun), c=color[2], s=150, marker="o") pyplot.plot(temperature[n:].value_in(units.K), luminosity[n:].value_in(units.LSun), c=color[2]) pyplot.scatter(temperature[n+1].value_in(units.K), luminosity[n+1].value_in(units.LSun), c=color[2], s=150, marker="o") pyplot.show() ``` #### File: examples/textbook/plot_M67withBSS_tracks.py ```python from amuse.lab import * from matplotlib import pyplot import plot_M67Data from prepare_figure import single_frame, figure_frame, set_tickmarks from distinct_colours import get_distinct TBSS = [6170, 6820, 6675, 7050, 6650] LBSS = [12.259, 11.078, 12.127, 11.226, 12.892] def single_star_evolution(M, z, model_time): stellar = SeBa() stellar.parameters.metallicity = z stellar.particles.add_particle(Particle(mass=M)) stellar.commit_particles() initial_luminosity = stellar.particles.luminosity dt = 1 | units.Myr time = 0 | units.Myr L = [] | units.LSun T = [] | units.K while stellar.particles[0].age<model_time: time += dt stellar.evolve_model(time) L.append(stellar.particles[0].luminosity) T.append(stellar.particles[0].temperature) final_luminosity = stellar.particles.luminosity print "L(t=0)=", initial_luminosity, \ ", L (t=", stellar.particles.age, ")=", \ final_luminosity, stellar.particles.radius stellar.stop() return L, T def new_option_parser(): from amuse.units.optparse import OptionParser result = OptionParser() result.add_option("-M", unit= units.MSun, dest="M", type="float",default = 1.7 | units.MSun, help="stellar mass [1.0] %unit") result.add_option("-t", unit = units.Myr, dest="model_time", type="float", default = 4000.0|units.Myr, help="end time of the simulation [4.7] %unit") result.add_option("-z", dest="z", type="float", default = 0.02, help="metalicity [0.02]") return result if __name__ in ('__main__', '__plot__'): o, arguments = new_option_parser().parse_args() x_label = "T [$K$]" y_label = "L [$L_\odot$]" figure = single_frame(x_label, y_label, logx=False, logy=True, xsize=14, ysize=10) color = get_distinct(6) L, T = single_star_evolution(M=1.4|units.MSun, z=0.04, model_time=4|units.Gyr) pyplot.plot(T.value_in(units.K),L.value_in(units.LSun), c=color[0]) L, T = single_star_evolution(**o.__dict__) pyplot.plot(T.value_in(units.K),L.value_in(units.LSun), c=color[4]) m67 = plot_M67Data.Cluster() m67.read() pyplot.scatter(m67.Teff, m67.L, c=color[1], lw=0, s=100) pyplot.scatter(TBSS, LBSS, c=color[3], lw=0, s=250) pyplot.scatter(TBSS[3], LBSS[3], c=color[2], lw=0, s=250) pyplot.xlim(9000, 4000) pyplot.ylim(1, 50) save_file = 'fig_M67withBSS_tracks.png' pyplot.savefig(save_file) print '\nSaved figure in file', save_file,'\n' pyplot.show() ``` #### File: examples/textbook/plot_wind_disk_interaction.py ```python import sys import numpy from matplotlib import pyplot from amuse.plot import scatter, xlabel, ylabel from amuse.lab import * from amuse.io import store #from optparse import OptionParser from time import sleep from amuse.units.optparse import OptionParser from amuse.plot import sph_particles_plot import matplotlib.pyplot as plt import matplotlib.cm as cm from matplotlib.colors import LogNorm import numpy as np from prepare_figure import single_frame #from distinct_colours import get_distinct def main(filename = "hydro.hdf5", lim=None, image_id=-1, nice_plot=1): x_label = 'x' y_label = 'y' figure = single_frame(x_label, y_label, logy=False, xsize=14, ysize=10) stars = read_set_from_file(filename, "hdf5") print stars snapshot_id = 0 isgas = True snapshot_id = 0 sinks = Particles(0) for si in stars.history: if isgas: gas = si isgas = False else: sinks = si isgas = True if not isgas: snapshot_id += 1 time = gas.get_timestamp() if image_id<0 or image_id == snapshot_id: pyplot.hist2d(gas.x.value_in(units.AU), gas.y.value_in(units.AU), (200, 200), cmap=plt.cm.jet) pyplot.scatter(gas.x.value_in(units.AU), gas.y.value_in(units.AU), c='y', s=100) if False: for gi in gas: pyplot.arrow(gi.x.value_in(units.AU), gi.y.value_in(units.AU), gi.vx.value_in(units.AU/units.yr), gi.vy.value_in(units.AU/units.yr), head_width=0.05, head_length=0.1) # sph_particles_plot(gas, u_range=[min(gas.u), max(gas.u)], width=lim, alpha = 1) # if len(sinks): # scatter(sinks.x.value_in(units.AU), sinks.y.value_in(units.AU), c='y', s=100) if image_id == snapshot_id: break pyplot.xlabel("X [pc]") pyplot.ylabel("Y [pc]") pyplot.show() def new_option_parser(): result = OptionParser() result.add_option("-f", dest="filename", default = "DiskWind.h5", help="output filename [DiskWind.h5]") result.add_option("-l", unit=units.parsec, dest="lim", type="float", default = None, help="boxsize [%default]") result.add_option("-i", dest="image_id", type="int", default = -1, help="image id [%default]") result.add_option("-p", dest="nice_plot", type="int", default = 1, help="nice plot [%default]") return result if __name__ in ('__main__', '__plot__'): o, arguments = new_option_parser().parse_args() filename = "hydro_GMC.h5" gas = read_set_from_file(filename, "hdf5") main(**o.__dict__) ``` #### File: examples/textbook/Sun_and_M67_in_the_Galaxy.py ```python import numpy import math from amuse.lab import * from amuse import datamodel from amuse.units import quantities from amuse.ext.rotating_bridge import Rotating_Bridge from amuse.community.galaxia.interface import BarAndSpirals3D from amuse.ext.composition_methods import * from prepare_figure import * from distinct_colours import get_distinct class drift_without_gravity(object): """ This class is to make the ev of non interactig particles by using bridge. """ def __init__(self, particles, time= 0 |units.Myr): self.particles=particles self.model_time= time def evolve_model(self, t_end): dt= t_end- self.model_time self.particles.position += self.particles.velocity*dt self.model_time= t_end @property def potential_energy(self): return quantities.zero @property def kinetic_energy(self): return (0.5*self.particles.mass*self.particles.velocity.lengths()**2).sum() I = 0 class IntegrateOrbit(object): """ This class makes the integration of the Sun in the Milky Way by using BarAndSpirals3D. galaxy(): Function that sets the desired Galactic model. Any question on the parameters, contact me creation_particles_noinertial(): creates a parti le set in a rotating frame noinertial_to_inertial(): converts data from rotating to inertial frame get_pos_vel_and_orbit(): Makes the evolution of the particle set """ def __init__(self, t_end= 10 |units.Myr, dt_bridge=0.5 |units.Myr, method= SPLIT_6TH_SS_M13, phase_bar= 0, phase_spiral= 0, omega_spiral= -20 |(units.kms/units.kpc), amplitude= 650|(units.kms**2/units.kpc), m=4, omega_bar= -50 |(units.kms/units.kpc), mass_bar= 1.1e10 |units.MSun ): # Simulation parameters self.t_end= t_end self.dt_bridge= dt_bridge self.method= method self.time= 0 |units.Myr #galaxy parameters self.omega= 0 | (units.kms/units.kpc) self.initial_phase= 0 self.bar_phase= phase_bar self.spiral_phase= phase_spiral self.omega_spiral= omega_spiral self.amplitude= amplitude self.rsp= 3.12 |units.kpc self.m= m self.tan_pitch_angle= 0.227194425 self.omega_bar= omega_bar self.mass_bar= mass_bar self.aaxis_bar= 3.12 |units.kpc self.axis_ratio_bar= 0.37 return def galaxy(self): global I galaxy= BarAndSpirals3D(redirection='file', redirect_stdout_file="GAL{0}.log".format(I)) I = I + 1 galaxy.kinetic_energy=quantities.zero galaxy.potential_energy=quantities.zero galaxy.parameters.bar_contribution= True galaxy.parameters.bar_phase= self.bar_phase galaxy.parameters.omega_bar= self.omega_bar galaxy.parameters.mass_bar= self.mass_bar galaxy.parameters.aaxis_bar= self.aaxis_bar galaxy.parameters.axis_ratio_bar= self.axis_ratio_bar galaxy.parameters.spiral_contribution= False galaxy.parameters.spiral_phase= self.spiral_phase galaxy.parameters.omega_spiral= self.omega_spiral galaxy.parameters.amplitude= self.amplitude galaxy.parameters.rsp= self.rsp galaxy.parameters.m= self.m galaxy.parameters.tan_pitch_angle= self.tan_pitch_angle galaxy.commit_parameters() self.omega= galaxy.parameters.omega_system self.initial_phase= galaxy.parameters.initial_phase print "INITIAL_PHASE:", self.initial_phase galaxy.kinetic_energy=quantities.zero galaxy.potential_energy=quantities.zero return galaxy def creation_particles_noinertial(self, particles): """ makes trans in a counterclockwise frame. If the Galaxy only has bar or only spiral arms, the frame corotates with the bar or with the spiral arms. If the Galaxy has bar and spiral arms, the frame corotates with the bar """ no_inertial_system= particles.copy() angle= self.initial_phase + self.omega*self.time C1= particles.vx + self.omega*particles.y C2= particles.vy - self.omega*particles.x no_inertial_system.x = particles.x*numpy.cos(angle) + particles.y*numpy.sin(angle) no_inertial_system.y = -particles.x*numpy.sin(angle) + particles.y*numpy.cos(angle) no_inertial_system.z = particles.z no_inertial_system.vx = C1*numpy.cos(angle) + C2*numpy.sin(angle) no_inertial_system.vy = C2*numpy.cos(angle) - C1*numpy.sin(angle) no_inertial_system.vz = particles.vz return no_inertial_system def noinertial_to_inertial(self, part_noin, part_in): #makes trans in a counterclockwise frame angle= self.initial_phase + self.omega*self.time C1= part_noin.vx - part_noin.y*self.omega C2= part_noin.vy + part_noin.x*self.omega part_in.x= part_noin.x*numpy.cos(angle)-part_noin.y*numpy.sin(angle) part_in.y= part_noin.x*numpy.sin(angle)+part_noin.y*numpy.cos(angle) part_in.z= part_noin.z part_in.vx= C1*numpy.cos(angle) - C2*numpy.sin(angle) part_in.vy= C1*numpy.sin(angle) + C2*numpy.cos(angle) part_in.vz= part_noin.vz return def testing_potential_and_force(self, galaxy, x, y, z): dx, dy, dz = 0.001 |units.kpc, 0.001 |units.kpc, 0.001 |units.kpc phi1x= galaxy.get_potential_at_point(0 |units.kpc, (x+dx), y, z) phi2x= galaxy.get_potential_at_point(0 |units.kpc, (x-dx), y, z) f1x= -(phi1x-phi2x)/(2*dx) phi1y= galaxy.get_potential_at_point(0 |units.kpc, x, (y+dy), z) phi2y= galaxy.get_potential_at_point(0 |units.kpc, x, (y-dy), z) f1y= -(phi1y-phi2y)/(2*dy) phi1z= galaxy.get_potential_at_point(0 |units.kpc, x, y, (z+dz)) phi2z= galaxy.get_potential_at_point(0 |units.kpc, x, y, (z-dz)) f1z= -(phi1z-phi2z)/(2*dz) fx,fy,fz= galaxy.get_gravity_at_point(0 |units.kpc, x, y, z) print "analytic", "numerical" print fx.value_in(100*units.kms**2/units.kpc) , f1x.value_in(100*units.kms**2/units.kpc) print fy.value_in(100*units.kms**2/units.kpc) , f1y.value_in(100*units.kms**2/units.kpc) print fz.value_in(100*units.kms**2/units.kpc) , f1z.value_in(100*units.kms**2/units.kpc) return def get_pos_vel_and_orbit(self, particle_set): #particle_set.velocity= (-1)*particle_set.velocity filename="sunandM67.hdf5" write_set_to_file(particle_set.savepoint(self.time), filename, "hdf5", append_to_file=False) MW= self.galaxy() print "OMEGA:", self.omega.as_quantity_in(1/units.Gyr) particle_rot= self.creation_particles_noinertial(particle_set) gravless= drift_without_gravity(particle_rot) system= Rotating_Bridge(self.omega, timestep= self.dt_bridge, verbose= False, method= self.method) system.add_system(gravless, (MW,), False) system.add_system(MW, (), False) # This is to update time inside the interface Ei= system.potential_energy+ system.kinetic_energy+ system.jacobi_potential_energy energy=[] dmin = (particle_set[0].position-particle_set[1].position).length() tmin = 0|units.Myr d = [] | units.kpc t = [] | units.Myr d.append(dmin) t.append(self.time) while (self.time < self.t_end-self.dt_bridge/2): self.time += self.dt_bridge system.evolve_model(self.time) self.noinertial_to_inertial(particle_rot, particle_set) Ef= system.potential_energy+ system.kinetic_energy+ system.jacobi_potential_energy dje= (Ef-Ei)/Ei energy.append(dje) d.append((particle_set[0].position-particle_set[1].position).length()) t.append(self.time) if d[-1]<dmin: dmin = d[-1] tmin = self.time x = particle_set.x y = particle_set.y write_set_to_file(particle_set.savepoint(self.time), filename, "hdf5") print "minimum", tmin.in_(units.Myr), dmin.in_(units.parsec) bar_angle= self.bar_phase + (self.omega_bar*self.time) spiral_angle= self.spiral_phase + (self.omega_spiral*self.time) return self.time, particle_set[0].x.value_in(units.kpc), particle_set[0].y.value_in(units.kpc),\ particle_set[0].z.value_in(units.kpc), particle_set[0].vx.value_in(units.kms), \ particle_set[0].vy.value_in(units.kms), particle_set[0].vz.value_in(units.kms), \ bar_angle , spiral_angle, t, d def Sun_and_M67_in_the_Galaxy(): bodies = Particles(2) Sun = bodies[0] v_LSR = (-10, 5.2, 7.2) | units.kms Sun.mass = 1|units.MSun Sun.radius = 1|units.RSun Sun.position = (8.4, 0.0, 0.017) | units.kpc Sun.velocity = (-11.4, 232, 7.41) | units.kms # SPZ2009 M67 = bodies[1] M67.mass = 50000 | units.MSun M67.radius = 3 | units.parsec M67.position = Sun.position + ((0.766, 0.0, 0.49) |units.kpc) M67.velocity = Sun.velocity + ((31.92, -21.66, -8.87) |units.kms) bodies.velocity *= -1 simulation_time= 4600. |units.Myr dt_bridge= 5 | units.Myr OS= 20 |(units.kms/units.kpc) OB= 40 |(units.kms/units.kpc) A= 1300 |(units.kms**2/units.kpc) M= 1.4e10 |units.MSun m=2 phi_bar, phi_sp= -0.34906, -0.34906 inte= IntegrateOrbit( t_end= simulation_time, dt_bridge= dt_bridge, phase_bar= phi_bar, phase_spiral= phi_sp, omega_spiral= OS, omega_bar= OB, amplitude= A, m=m, mass_bar= M ) MW= inte.galaxy() print MW.parameters print MW.get_phi21() print "Backwards integration" time, xf, yf, zf, vxf, vyf, vzf, bar_angle, spiral_angle, t1, d1= inte.get_pos_vel_and_orbit(bodies) print "Birth position of the Sun:", xf, yf, zf, vxf, vyf, vzf print "---" print 'time after backward integration:', time colors = get_distinct(4) figure = pyplot.figure(figsize=(16, 12)) ax = pyplot.gca() ax.minorticks_on() # switch on the minor ticks ax.locator_params(nbins=3) x_label = "t [Gyr]" y_label = "d [kpc]" pyplot.xlabel(x_label) pyplot.ylabel(y_label) pyplot.plot(-t1.value_in(units.Gyr), d1.value_in(units.kpc), lw=3, c=colors[0]) pyplot.ylim(0, 6) pyplot.xlim(-5, 0) pyplot.savefig("sun_and_M67") pyplot.show() """ from matplotlib import pyplot from amuse.plot import scatter, plot plot(-1*t1, d1, c = "k") pyplot.semilogy() pyplot.show() """ if __name__ in ('__main__', '__plot__'): set_printing_strategy("custom", #nbody_converter = converter, preferred_units = [units.MSun, units.kpc, units.Myr], precision = 4, prefix = "", separator = " [", suffix = "]") Sun_and_M67_in_the_Galaxy() ``` #### File: examples/validation/particles_and_gas_in_cluster.py ```python from amuse.couple import bridge from amuse.community.bhtree.interface import BHTree from amuse.community.hermite0.interface import Hermite from amuse.community.fi.interface import Fi from amuse.community.octgrav.interface import Octgrav from amuse.community.gadget2.interface import Gadget2 from amuse.community.phiGRAPE.interface import PhiGRAPE from amuse.ic import plummer from amuse.ic import gasplummer from amuse.units import units from amuse.units import constants from amuse.units import quantities from amuse.units import nbody_system from optparse import OptionParser import numpy # import time try: import pylab except ImportError: pylab = None class GasPlummerModelExternalField(object): """ skeleton grav code for use in bridge. must have get_gravity_at_point and get_potential_at_point """ def __init__( self, position=[0, 0, 0] | units.parsec, radius=1000. | units.parsec, total_mass=1.6e10 | units.MSun): self.radius = radius self.total_mass = total_mass self.gravity_constant = constants.G self.position = position self.radius_squared = (self.radius**2) def get_gravity_at_point(self, eps, x, y, z): dx = x - self.position.x dy = y - self.position.y dz = z - self.position.z radii_squared = dx**2 + dy**2 + dz**2 # radii = radii_squared**0.5 plummer_radii_squared = radii_squared + self.radius_squared plummer_radii_15 = plummer_radii_squared ** 1.5 fr = -self.gravity_constant*self.total_mass/plummer_radii_15 ax = fr*dx ay = fr*dy az = fr*dz return ax, ay, az def get_potential_at_point(self, eps, x, y, z): dx = x - self.position.x dy = y - self.position.y dz = z - self.position.z radii_squared = dx**2 + dy**2 + dz**2 # radii = radii_squared**0.5 plummer_radii = (radii_squared + self.radius_squared)**0.5 phi = self.gravity_constant*self.total_mass/plummer_radii return -phi * 2 def stop(self): pass @property def kinetic_energy(self): return quantities.zero @property def potential_energy(self): return quantities.zero @property def thermal_energy(self): return quantities.zero class AbstractStarAndGasPlummerCode(object): def __init__(self, nstars=10, ngas=-1, endtime=10, total_mass=1000, gas_fraction=0.9, rscale=1.0, star_smoothing_fraction=0.001, gas_smoothing_fraction=0.05, seed=-1, ntimesteps=10, must_do_plot=True ): if seed >= 0: numpy.random.seed(seed) if ngas < 0: ngas = nstars * 10 self.must_do_plot = must_do_plot self.line = None self.line2 = None self.ntimesteps = ntimesteps self.ngas = ngas self.nstars = nstars self.total_mass = total_mass | units.MSun self.gas_fraction = gas_fraction self.star_fraction = 1.0 - self.gas_fraction self.rscale = rscale | units.parsec self.star_epsilon = star_smoothing_fraction * self.rscale self.gas_epsilon = gas_smoothing_fraction * self.rscale self.star_mass = self.star_fraction * self.total_mass self.gas_mass = self.gas_fraction * self.total_mass self.converter = nbody_system.nbody_to_si(self.total_mass, self.rscale) self.endtime = self.converter.to_si(endtime | nbody_system.time) self.delta_t = self.endtime / self.ntimesteps def update_plot(self, time, code): time = self.converter.to_nbody(time).value_in(nbody_system.time), sum_energy = ( code.kinetic_energy + code.potential_energy + code.thermal_energy ) energy = self.converter.to_nbody( sum_energy).value_in(nbody_system.energy) coreradius = ( self.star_code.particles.virial_radius().value_in( self.rscale.to_unit()) ) # kicke = self.converter.to_nbody(code.kick_energy).value_in(nbody_system.energy) if self.line is None: pylab.ion() pylab.subplot(1, 2, 1) self.line = pylab.plot([time], [energy])[0] pylab.xlim(0, self.converter.to_nbody( self.endtime).value_in(nbody_system.time)) pylab.ylim(energy * 0.8, energy * 1.2) pylab.subplot(1, 2, 2) self.line2 = pylab.plot([time], [coreradius])[0] # self.line2 = pylab.plot([time], [kicke])[0] pylab.xlim(0, self.converter.to_nbody( self.endtime).value_in(nbody_system.time)) pylab.ylim(0, 3) # pylab.ylim(-0.1, 0.1) else: xdata = self.line.get_xdata() ydata = self.line.get_ydata() xdata = numpy.concatenate((xdata, time)) ydata = numpy.concatenate((ydata, [energy])) self.line.set_xdata(xdata) self.line.set_ydata(ydata) xdata = self.line2.get_xdata() ydata = self.line2.get_ydata() xdata = numpy.concatenate((xdata, time)) # ydata = numpy.concatenate( (ydata, [kicke]) ) ydata = numpy.concatenate((ydata, [coreradius])) self.line2.set_xdata(xdata) self.line2.set_ydata(ydata) pylab.draw() def new_particles_cluster(self): particles = plummer.new_plummer_model( self.nstars, convert_nbody=self.converter) particles.radius = self.star_epsilon particles.mass = (1.0/self.nstars) * self.star_mass return particles def new_gas_cluster(self): particles = gasplummer.new_plummer_gas_model( self.ngas, convert_nbody=self.converter) particles.h_smooth = self.gas_epsilon particles.mass = (1.0/self.ngas) * self.gas_mass return particles def new_particles_cluster_as_gas(self): particles = plummer.new_plummer_model( self.ngas, convert_nbody=self.converter) particles.radius = self.gas_epsilon particles.mass = (1.0/self.ngas) * self.gas_mass return particles def stop(self): pass def evolve_model(self): if self.must_do_plot: self.update_plot(time=0 * self.delta_t, code=self.code) for time in self.delta_t * range(1, self.ntimesteps+1): self.code.evolve_model(time) print self.converter.to_nbody(self.code.time) if self.must_do_plot: self.update_plot(time=self.code.time, code=self.code) class BridgeStarAndGasPlummerCode(AbstractStarAndGasPlummerCode): def __init__(self, nstars=10, ngas=-1, endtime=10, total_mass=1000, gas_fraction=0.9, rscale=1.0, star_code='hermite', gas_code='field', star_smoothing_fraction=0.001, gas_smoothing_fraction=0.05, seed=-1, ntimesteps=10, interaction_timestep=0.01, must_do_plot=True, gas_to_star_interaction_code='none', star_to_gas_interaction_code='none', **ignored_options ): AbstractStarAndGasPlummerCode.__init__( self, nstars, ngas, endtime, total_mass, gas_fraction, rscale, star_smoothing_fraction, gas_smoothing_fraction, seed, ntimesteps, must_do_plot ) self.interaction_timestep = self.converter.to_si( interaction_timestep | nbody_system.time) self.create_codes( gas_code, star_code, gas_to_star_interaction_code, star_to_gas_interaction_code, ) self.create_bridge() self.code = self.bridge_system time = 0 sum_energy = self.code.kinetic_energy + \ self.code.potential_energy + self.code.thermal_energy energy = self.converter.to_nbody( sum_energy).value_in(nbody_system.energy) coreradius = self.star_code.particles.virial_radius().value_in( self.rscale.to_unit()) print "Time :", time print "Energy :", energy print "Virial radius :", coreradius self.evolve_model() if must_do_plot: pylab.show() pylab.savefig( "{0}-{1}-{2}-{3}.png".format( star_code, gas_code, nstars, ngas ) ) time = self.converter.to_nbody( self.code.time).value_in(nbody_system.time) sum_energy = self.code.kinetic_energy + \ self.code.potential_energy + self.code.thermal_energy energy = self.converter.to_nbody( sum_energy).value_in(nbody_system.energy) coreradius = self.star_code.particles.virial_radius().value_in( self.rscale.to_unit()) print "Time :", time print "Energy :", energy print "Virial radius :", coreradius self.stop() if must_do_plot: raw_input('Press enter...') def create_codes( self, gas_code, star_code, gas_to_star_interaction_code, star_to_gas_interaction_code): self.star_code = getattr(self, 'new_star_code_'+star_code)() self.gas_code = getattr(self, 'new_gas_code_'+gas_code)() self.gas_to_star_codes = getattr( self, 'new_gas_to_star_interaction_codes_'+gas_to_star_interaction_code )(self.gas_code) self.star_to_gas_codes = getattr( self, 'new_star_to_gas_interaction_codes_'+star_to_gas_interaction_code )(self.star_code) def create_bridge(self): bridge_code1 = bridge.GravityCodeInField( self.gas_code, self.star_to_gas_codes ) bridge_code2 = bridge.GravityCodeInField( self.star_code, self.gas_to_star_codes ) self.bridge_system = bridge.Bridge( timestep=self.interaction_timestep, use_threading=False ) self.bridge_system.add_code(bridge_code2) self.bridge_system.add_code(bridge_code1) def stop(self): self.star_code.stop() self.gas_code.stop() def new_gas_to_star_interaction_codes_self(self, gas_code): return [gas_code] def new_star_to_gas_interaction_codes_self(self, star_code): return [star_code] def new_gas_to_star_interaction_codes_none(self, gas_code): return [] def new_star_to_gas_interaction_codes_none(self, gas_code): return [] def new_gas_to_star_interaction_codes_octgrav(self, gas_code): def new_octgrav(): result = Octgrav(self.converter) result.parameters.epsilon_squared = self.gas_epsilon ** 2 return result return [bridge.CalculateFieldForCodes(new_octgrav, [gas_code])] def new_gas_to_star_interaction_codes_bhtree(self, gas_code): def new_bhtree(): result = BHTree(self.converter) result.parameters.epsilon_squared = self.star_epsilon ** 2 return result return [bridge.CalculateFieldForCodes(new_bhtree, [gas_code])]\ def new_gas_code_fi(self): result = Fi(self.converter) result.parameters.self_gravity_flag = True result.parameters.use_hydro_flag = True result.parameters.radiation_flag = False result.parameters.periodic_box_size = 500 | units.parsec result.parameters.timestep = 0.125 * self.interaction_timestep # result.parameters.adaptive_smoothing_flag = True # result.parameters.epsilon_squared = self.gas_epsilon ** 2 # result.parameters.eps_is_h_flag = False result.parameters.integrate_entropy_flag = False # result.parameters.self_gravity_flag = False result.gas_particles.add_particles(self.new_gas_cluster()) result.commit_particles() return result def new_star_code_fi(self): result = Fi(self.converter) result.parameters.self_gravity_flag = True result.parameters.use_hydro_flag = False result.parameters.radiation_flag = False result.parameters.periodic_box_size = 500 | units.parsec result.parameters.timestep = 0.125 * self.interaction_timestep result.particles.add_particles(self.new_particles_cluster()) result.commit_particles() return result def new_gas_code_gadget(self): result = Gadget2(self.converter) result.gas_particles.add_particles(self.new_gas_cluster()) result.commit_particles() return result def new_gas_code_field(self): result = GasPlummerModelExternalField( radius=self.rscale, total_mass=self.gas_mass ) return result def new_gas_code_hermite(self): result = Hermite(self.converter) result.parameters.epsilon_squared = self.star_epsilon ** 2 result.particles.add_particles(self.new_particles_cluster_as_gas()) result.commit_particles() return result def new_star_code_hermite(self): result = Hermite(self.converter) result.parameters.epsilon_squared = self.star_epsilon ** 2 result.particles.add_particles(self.new_particles_cluster()) result.commit_particles() return result def new_star_code_phigrape(self): result = PhiGRAPE(self.converter, mode="gpu") result.parameters.initialize_gpu_once = 1 result.parameters.epsilon_squared = self.star_epsilon ** 2 result.particles.add_particles(self.new_particles_cluster()) result.commit_particles() return result def new_star_code_bhtree(self): result = BHTree(self.converter) result.parameters.epsilon_squared = self.star_epsilon ** 2 result.parameters.timestep = 0.125 * self.interaction_timestep result.particles.add_particles(self.new_particles_cluster()) result.commit_particles() return result def new_star_code_octgrav(self): result = Octgrav(self.converter) result.parameters.epsilon_squared = self.star_epsilon ** 2 result.parameters.timestep = 0.125 * self.interaction_timestep result.particles.add_particles(self.new_particles_cluster()) result.commit_particles() return result def new_gas_code_bhtree(self): result = BHTree(self.converter) result.parameters.epsilon_squared = self.gas_epsilon ** 2 result.parameters.timestep = 0.125 * self.interaction_timestep result.particles.add_particles(self.new_particles_cluster_as_gas()) result.commit_particles() return result class AllInOneStarAndGasPlummerCode(AbstractStarAndGasPlummerCode): def __init__(self, nstars=10, ngas=-1, endtime=10, total_mass=1000, gas_fraction=0.9, rscale=1.0, sph_code='fi', star_smoothing_fraction=0.001, gas_smoothing_fraction=0.05, seed=-1, ntimesteps=10, must_do_plot=True, interaction_timestep=0.01, **ignored_options ): AbstractStarAndGasPlummerCode.__init__( self, nstars, ngas, endtime, total_mass, gas_fraction, rscale, star_smoothing_fraction, gas_smoothing_fraction, seed, ntimesteps, must_do_plot ) self.interaction_timestep = self.converter.to_si( interaction_timestep | nbody_system.time) self.create_code(sph_code) sum_energy = self.code.kinetic_energy + \ self.code.potential_energy + self.code.thermal_energy energy = self.converter.to_nbody( sum_energy).value_in(nbody_system.energy) coreradius = self.code.dm_particles.virial_radius().value_in( self.rscale.to_unit()) print "Time:", 0 print "Energy:", energy print "Virial radius:", coreradius self.evolve_model() if must_do_plot: pylab.show() pylab.savefig( "{0}-{1}-{2}.png".format( sph_code, nstars, ngas ) ) time = self.converter.to_nbody( self.code.model_time).value_in(nbody_system.time) sum_energy = self.code.kinetic_energy + \ self.code.potential_energy + self.code.thermal_energy energy = self.converter.to_nbody( sum_energy).value_in(nbody_system.energy) coreradius = self.code.dm_particles.virial_radius().value_in( self.rscale.to_unit()) print "Time:", time print "Energy:", energy print "Virial radius:", coreradius self.stop() if must_do_plot: raw_input('Press enter...') def evolve_model(self): if self.must_do_plot: self.update_plot(time=0 * self.delta_t, code=self.code) for time in self.delta_t * range(1, self.ntimesteps+1): self.code.evolve_model(time) print self.converter.to_nbody(self.code.model_time) if self.must_do_plot: self.update_plot(time=self.code.time, code=self.code) def create_code(self, name): self.code = getattr(self, 'new_sph_code_'+name)() def stop(self): self.code.stop() def new_sph_code_fi(self): result = Fi(self.converter) result.parameters.self_gravity_flag = True result.parameters.use_hydro_flag = True result.parameters.radiation_flag = False result.parameters.periodic_box_size = 500 | units.parsec result.parameters.timestep = 0.125 * self.interaction_timestep # result.parameters.adaptive_smoothing_flag = True # result.parameters.epsilon_squared = self.gas_epsilon ** 2 # result.parameters.eps_is_h_flag = False result.parameters.integrate_entropy_flag = False result.dm_particles.add_particles(self.new_particles_cluster()) result.gas_particles.add_particles(self.new_gas_cluster()) result.commit_particles() return result def new_sph_code_gadget(self): result = Gadget2(self.converter) result.dm_particles.add_particles(self.new_particles_cluster()) result.gas_particles.add_particles(self.new_gas_cluster()) result.commit_particles() return result def new_option_parser(): result = OptionParser() result.add_option( "-n", "--nstar", default=10, dest="nstars", help="number of star particles", type="int" ) result.add_option( "-g", "--ngas", default=-1, dest="ngas", help="number of gas particles (if -1, 10 times the number of stars)", type="int" ) result.add_option( "--gas-code", default="field", dest="gas_code", help="the code modelling the gas ('fi', 'gadget', 'field')", type="string" ) result.add_option( "--star-code", default="hermite", dest="star_code", help="the code modelling the particles ('hermite', 'bhtree', 'octgrav', 'phigrape')", type="string" ) result.add_option( "--sph-code", default="fi", dest="sph_code", help="the code modelling the particles and the gas simultaniously", type="string" ) result.add_option( "--gas-star-code", default="self", dest="gas_to_star_interaction_code", help="the code calculating the gravity field of the gas code for the star code (default is self, gas code will calculate field for star code)", type="string" ) result.add_option( "--star-gas-code", default="self", dest="star_to_gas_interaction_code", help="the code calculating the gravity field of the star code for the gas code (default is self, star code will calculate field for gas code)", type="string" ) result.add_option( "-m", "--total-mass", default=1000.0, dest="total_mass", help="the total mass in solar masses", type="float" ) result.add_option( "--gas-fraction", default=0.9, dest="gas_fraction", help="the gas fraction between 0.0 and 1.0 (default 0.9)", type="float" ) result.add_option( "-r", "--rscale", default=1.0, dest="rscale", help="length scale of the problem in parsec (default 1) ", type="float" ) result.add_option( "--star_smoothing_fraction", default=0.001, dest="star_smoothing_fraction", help="smoothing length of the stars as a fraction of the length scale", type="float" ) result.add_option( "--gas_smoothing_fraction", default=0.05, dest="gas_smoothing_fraction", help="smoothing length of the gas particles as a fraction of the length scale", type="float" ) result.add_option( "-s", "--seed", default=0, dest="seed", help="random number seed (-1, no seed)", type="int" ) result.add_option( "--interaction-timestep", default=0.01, dest="interaction_timestep", help="time between bridge interactions (0.01 nbody time)", type="float" ) result.add_option( "-t", "--end-time", default=1, dest="endtime", help="end time of the simulation (in nbody time, default 1)", type="float" ) result.add_option( "--ntimesteps", default=10, dest="ntimesteps", help="number of times to do reporting", type="int" ) result.add_option( "--noplot", dest="must_do_plot", default=True, help="do not show a plot and end as soon as possible", action="store_false" ) result.add_option( "--allinoone", dest="must_do_bridge", default=True, help="simulate the stars and gas with one sph code", action="store_false" ) return result if __name__ == "__main__": options, arguments = new_option_parser().parse_args() if options.must_do_bridge: options = options.__dict__ BridgeStarAndGasPlummerCode(**options) else: options = options.__dict__ AllInOneStarAndGasPlummerCode(**options) ``` #### File: community/adaptb/interface.py ```python import warnings from amuse.community import * from amuse.community.interface.gd import GravitationalDynamicsInterface, GravitationalDynamics class AdaptbInterface(CodeInterface, GravitationalDynamicsInterface, LiteratureReferencesMixIn, StoppingConditionInterface, CodeWithDataDirectories): """ Adaptb (Accurate Dynamics with Arbitrary Precision by <NAME>) """ include_headers = ['worker_code.h', 'stopcond.h'] def __init__(self, **options): CodeInterface.__init__(self, name_of_the_worker="adaptb_worker", **options) LiteratureReferencesMixIn.__init__(self) CodeWithDataDirectories.__init__(self) warnings.warn("Adaptb is superseded by Brutus") @legacy_function def get_adaptb_output_directory(): function = LegacyFunctionSpecification() function.addParameter('adaptb_output_directory', dtype='string', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_adaptb_output_directory(): function = LegacyFunctionSpecification() function.addParameter('adaptb_output_directory', dtype='string', direction=function.IN) function.result_type = 'int32' return function @legacy_function def new_particle_float64(): function = LegacyFunctionSpecification() function.can_handle_array = True function.addParameter('identity_of_the_particle', dtype='int32', direction=function.OUT) function.addParameter('mass', dtype='float64', direction=function.IN, description = "The mass of the particle") function.addParameter('x', dtype='float64', direction=function.IN, description = "The initial position vector of the particle") function.addParameter('y', dtype='float64', direction=function.IN, description = "The initial position vector of the particle") function.addParameter('z', dtype='float64', direction=function.IN, description = "The initial position vector of the particle") function.addParameter('vx', dtype='float64', direction=function.IN, description = "The initial velocity vector of the particle") function.addParameter('vy', dtype='float64', direction=function.IN, description = "The initial velocity vector of the particle") function.addParameter('vz', dtype='float64', direction=function.IN, description = "The initial velocity vector of the particle") function.addParameter('radius', dtype='float64', direction=function.IN, description = "The radius of the particle", default = 0) function.result_type = 'int32' return function @legacy_function def new_particle_string(): function = LegacyFunctionSpecification() function.can_handle_array = True function.addParameter('identity_of_the_particle', dtype='int32', direction=function.OUT) function.addParameter('mass', dtype='string', direction=function.IN, description = "The mass of the particle") function.addParameter('x', dtype='string', direction=function.IN, description = "The initial position vector of the particle") function.addParameter('y', dtype='string', direction=function.IN, description = "The initial position vector of the particle") function.addParameter('z', dtype='string', direction=function.IN, description = "The initial position vector of the particle") function.addParameter('vx', dtype='string', direction=function.IN, description = "The initial velocity vector of the particle") function.addParameter('vy', dtype='string', direction=function.IN, description = "The initial velocity vector of the particle") function.addParameter('vz', dtype='string', direction=function.IN, description = "The initial velocity vector of the particle") function.addParameter('radius', dtype='string', direction=function.IN, description = "The radius of the particle", default='0') function.result_type = 'int32' return function def new_particle(self, mass, x,y,z, vx,vy,vz, radius = 0): if isinstance(mass, str): return self.new_particle_string(mass, x,y,z, vx,vy,vz, radius = str(radius)) else: return self.new_particle_float64(mass, x,y,z, vx,vy,vz, radius = radius) @legacy_function def get_bs_tolerance_string(): function = LegacyFunctionSpecification() function.addParameter('bs_tolerance', dtype='string', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_bs_tolerance_string(): function = LegacyFunctionSpecification() function.addParameter('bs_tolerance', dtype='string', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_bs_tolerance_float64(): function = LegacyFunctionSpecification() function.addParameter('bs_tolerance', dtype='float64', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_bs_tolerance_float64(): function = LegacyFunctionSpecification() function.addParameter('bs_tolerance', dtype='float64', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_word_length(): function = LegacyFunctionSpecification() function.addParameter('word_length', dtype='int32', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_word_length(): function = LegacyFunctionSpecification() function.addParameter('word_length', dtype='int32', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_dt_print(): function = LegacyFunctionSpecification() function.addParameter('dt_print', dtype='float64', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_dt_print(): function = LegacyFunctionSpecification() function.addParameter('dt_print', dtype='float64', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_max_cpu_time(): function = LegacyFunctionSpecification() function.addParameter('max_cpu_time', dtype='float64', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_max_cpu_time(): function = LegacyFunctionSpecification() function.addParameter('max_cpu_time', dtype='float64', direction=function.IN) function.result_type = 'int32' return function class Adaptb(GravitationalDynamics): def __init__(self, convert_nbody = None, **options): self.stopping_conditions = StoppingConditions(self) legacy_interface = AdaptbInterface(**options) self.legacy_doc = legacy_interface.__doc__ GravitationalDynamics.__init__( self, legacy_interface, convert_nbody, **options ) def initialize_code(self): result = self.overridden().initialize_code() self.parameters.adaptb_output_directory = self.output_directory return result def define_parameters(self, object): GravitationalDynamics.define_parameters(self, object) self.stopping_conditions.define_parameters(object) object.add_method_parameter( "get_bs_tolerance_float64", "set_bs_tolerance_float64", "bs_tolerance", "Error tolerance of the Bulirsch-Stoer integrator", default_value = 1.0e-6 ) object.add_method_parameter( "get_eps2", "set_eps2", "epsilon_squared", "smoothing parameter for gravity calculations, usage is not recommended for Adaptb", default_value = 0.0 | nbody_system.length**2 ) object.add_method_parameter( "get_dt_print", "set_dt_print", "dt_print", "dt_print, regular print interval to show status (% complete) of evolve_model", default_value = 0.1 | nbody_system.time ) object.add_method_parameter( "get_word_length", "set_word_length", "word_length", "The word length, or number of bits, used for the arbitrary precision calculations", default_value = 64 ) object.add_method_parameter( "get_adaptb_output_directory", "set_adaptb_output_directory", "adaptb_output_directory", "Path to the directory where Adaptb stores its output", default_value = "./" ) object.add_method_parameter( "get_max_cpu_time", "set_max_cpu_time", "time_limit_cpu", "The cpu-time limit, the maximum amount of time Adaptb is allowed to run for.", default_value = 3600.0 | units.s ) def define_methods(self, object): GravitationalDynamics.define_methods(self, object) self.stopping_conditions.define_methods(object) object.add_method("get_bs_tolerance_float64", (), (object.NO_UNIT, object.ERROR_CODE,)) object.add_method("set_bs_tolerance_float64", (object.NO_UNIT, ), (object.ERROR_CODE,)) object.add_method("get_eps2", (), (nbody_system.length**2, object.ERROR_CODE,)) object.add_method("set_eps2", (nbody_system.length**2, ), (object.ERROR_CODE,)) object.add_method("get_dt_print", (), (nbody_system.time, object.ERROR_CODE,)) object.add_method("set_dt_print", (nbody_system.time, ), (object.ERROR_CODE,)) object.add_method("get_word_length", (), (object.NO_UNIT, object.ERROR_CODE,)) object.add_method("set_word_length", (object.NO_UNIT, ), (object.ERROR_CODE,)) object.add_method("get_adaptb_output_directory", (), (object.NO_UNIT, object.ERROR_CODE,)) object.add_method("set_adaptb_output_directory", (object.NO_UNIT, ), (object.ERROR_CODE,)) object.add_method("get_max_cpu_time", (), (units.s, object.ERROR_CODE,)) object.add_method("set_max_cpu_time", (units.s, ), (object.ERROR_CODE,)) def define_particle_sets(self, object): GravitationalDynamics.define_particle_sets(self, object) self.stopping_conditions.define_particle_set(object) def define_state(self, object): GravitationalDynamics.define_state(self, object) self.stopping_conditions.define_state(object) ``` #### File: community/interface/stopping_conditions.py ```python from amuse.units import units, generic_unit_system from amuse.units import nbody_system as nbody from amuse.support.exceptions import AmuseException from amuse.rfi.core import legacy_function from amuse.rfi.core import LegacyFunctionSpecification class StoppingConditionInterface(object): @legacy_function def has_stopping_condition(): """ Return 1 if the stopping condition with the given index is supported by the code, 0 otherwise. """ function = LegacyFunctionSpecification() function.can_handle_array = True function.addParameter('type', dtype='int32', direction=function.IN, description = "The type index of the stopping condition") function.addParameter('result', dtype='int32', direction=function.OUT, description = "1 if the stopping condition is supported") function.result_type = 'int32' function.result_doc = """ 0 - OK -1 - ERROR """ return function @legacy_function def enable_stopping_condition(): """ Will enable the stopping if it is supported """ function = LegacyFunctionSpecification() function.can_handle_array = True function.addParameter('type', dtype='int32', direction=function.IN, description = "The type index of the stopping condition") function.result_type = 'int32' function.result_doc = """ 0 - OK -1 - ERROR """ return function @legacy_function def disable_stopping_condition(): """ Will disable the stopping if it is supported """ function = LegacyFunctionSpecification() function.can_handle_array = True function.addParameter('type', dtype='int32', direction=function.IN, description = "The index of the stopping condition") function.result_type = 'int32' function.result_doc = """ 0 - OK -1 - ERROR """ return function @legacy_function def is_stopping_condition_enabled(): """ Return 1 if the stopping condition with the given index is enabled,0 otherwise. """ function = LegacyFunctionSpecification() function.can_handle_array = True function.addParameter('type', dtype='int32', direction=function.IN, description = "The index of the stopping condition") function.addParameter('result', dtype='int32', direction=function.OUT, description = "1 if the stopping condition is enabled") function.result_type = 'int32' function.result_doc = """ 0 - OK -1 - ERROR """ return function @legacy_function def is_stopping_condition_set(): """ Return 1 if the stopping condition with the given index is enabled,0 otherwise. """ function = LegacyFunctionSpecification() function.can_handle_array = True function.addParameter('type', dtype='int32', direction=function.IN, description = "The index of the stopping condition") function.addParameter('result', dtype='int32', direction=function.OUT, description = "1 if the stopping condition is enabled") function.result_type = 'int32' function.result_doc = """ 0 - OK -1 - ERROR """ return function @legacy_function def get_number_of_stopping_conditions_set(): """ Return the number of stopping conditions set, one condition can be set multiple times. Stopping conditions are set when the code determines that the conditions are met. The objects or or information about the condition can be retrieved with the get_stopping_condition_info method. """ function = LegacyFunctionSpecification() function.can_handle_array = True function.addParameter('result', dtype='int32', direction=function.OUT, description = "> 1 if any stopping condition is set") function.result_type = 'int32' function.result_doc = """ 0 - OK -1 - ERROR """ return function @legacy_function def get_stopping_condition_info(): """ Generic function for getting the information connected to a stopping condition. Index can be between 0 and the result of the :method:`get_number_of_stopping_conditions_set` method. """ function = LegacyFunctionSpecification() function.can_handle_array = True function.addParameter('index', dtype='int32', direction=function.IN, description = "Index in the array[0,number_of_stopping_conditions_set>") function.addParameter('type', dtype='int32', direction=function.OUT, description = "Kind of the condition, can be used to retrieve specific information") function.addParameter('number_of_particles', dtype='int32', direction=function.OUT, description = "Number of particles that met this condition") function.result_type = 'int32' function.result_doc = """ 0 - OK -1 - ERROR """ return function @legacy_function def get_stopping_condition_particle_index(): """ For collision detection """ function = LegacyFunctionSpecification() function.can_handle_array = True function.addParameter('index', dtype='int32', direction=function.IN, description = "Index in the array[0,number_of_stopping_conditions_set>") function.addParameter('index_of_the_column', dtype='int32', direction=function.IN, description = "Column index involved in the condition (for pair collisons 0 and 1 are possible)") function.addParameter('index_of_particle', dtype='int32', direction=function.OUT, description = "Set to the identifier of particle[index_of_the_column][index]") function.result_type = 'int32' function.result_doc = """ 0 - OK -1 - ERROR """ return function @legacy_function def set_stopping_condition_timeout_parameter(): """ Set max computer time available (in seconds). """ function = LegacyFunctionSpecification() function.can_handle_array = False function.addParameter('value', dtype='float64', direction=function.IN, description = "Available wallclock time in seconds") function.result_type = 'int32' function.result_doc = """ 0 - OK -1 - Value out of range """ return function @legacy_function def get_stopping_condition_timeout_parameter(): """ Retrieve max computer time available (in seconds). """ function = LegacyFunctionSpecification() function.can_handle_array = False function.addParameter('value', dtype='float64', direction=function.OUT, description = "Current value of avaible wallclock time in seconds") function.result_type = 'int32' function.result_doc = """ 0 - OK -1 - ERROR """ return function @legacy_function def set_stopping_condition_number_of_steps_parameter(): """ Set max inner loop evaluations. """ function = LegacyFunctionSpecification() function.can_handle_array = False function.addParameter('value', dtype='int32', direction=function.IN, description = "Available inner loop evaluations") function.result_type = 'int32' function.result_doc = """ 0 - OK -1 - Value out of range """ return function @legacy_function def get_stopping_condition_number_of_steps_parameter(): """ Retrieve max inner loop evaluations. """ function = LegacyFunctionSpecification() function.can_handle_array = False function.addParameter('value', dtype='int32', direction=function.OUT, description = "Current number of avaible inner loop evaluations") function.result_type = 'int32' function.result_doc = """ 0 - OK -1 - ERROR """ return function @legacy_function def set_stopping_condition_out_of_box_parameter(): """ Set size of box. """ function = LegacyFunctionSpecification() function.can_handle_array = False function.addParameter('value', dtype='float64', direction=function.IN, description = "Size of box") function.result_type = 'int32' function.result_doc = """ 0 - OK -1 - Value out of range """ return function @legacy_function def get_stopping_condition_out_of_box_parameter(): """ Get size of box """ function = LegacyFunctionSpecification() function.can_handle_array = False function.addParameter('value', dtype='float64', direction=function.OUT, description = "Size of box") function.result_type = 'int32' function.result_doc = """ 0 - OK -1 - Value out of range """ return function @legacy_function def set_stopping_condition_minimum_density_parameter(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='float64', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_stopping_condition_minimum_density_parameter(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='float64', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_stopping_condition_maximum_density_parameter(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='float64', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_stopping_condition_maximum_density_parameter(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='float64', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_stopping_condition_minimum_internal_energy_parameter(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='float64', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_stopping_condition_minimum_internal_energy_parameter(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='float64', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_stopping_condition_maximum_internal_energy_parameter(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='float64', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_stopping_condition_maximum_internal_energy_parameter(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='float64', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def get_stopping_condition_out_of_box_use_center_of_mass_parameter(): """ If True use the center of mass to determine the location of the box, if False use (0,0,0) """ function = LegacyFunctionSpecification() function.can_handle_array = False function.addParameter('value', dtype='bool', direction=function.OUT, description = "True if detection should use center of mass") function.result_type = 'int32' function.result_doc = """ 0 - OK -1 - Value out of range """ return function @legacy_function def set_stopping_condition_out_of_box_use_center_of_mass_parameter(): """ If True use the center of mass to determine the location of the box, if False use (0,0,0) """ function = LegacyFunctionSpecification() function.can_handle_array = False function.addParameter('value', dtype='bool', direction=function.IN, description = "True if detection should use center of mass") function.result_type = 'int32' function.result_doc = """ 0 - OK -1 - Value out of range """ return function class StoppingCondition(object): def __init__(self, conditions, type, description): self.conditions = conditions self.type = type self.description = description self.__doc__ = description def enable(self): if self.is_supported(): self.conditions.code.enable_stopping_condition(self.type) else: name = [name for name, value in self.conditions.all_conditions() if value is self][0] raise AmuseException("Can't enable stopping condition '{0}', since '{1}' does not support this condition.".format(name, type(self.conditions.code).__name__)) def disable(self): if self.is_supported(): self.conditions.code.disable_stopping_condition(self.type) else: name = [name for name, value in self.conditions.all_conditions() if value is self][0] raise AmuseException("Can't disable stopping condition '{0}', since '{1}' does not support this condition.".format(name, type(self.conditions.code).__name__)) def is_enabled(self): return self.conditions.code.is_stopping_condition_enabled(self.type) == 1 def is_supported(self): return self.conditions.code.has_stopping_condition(self.type) == 1 def is_set(self): return self.conditions.code.is_stopping_condition_set(self.type) == 1 def get_set_condition_indices(self, index_in_condition): indices = range(self.conditions.code.get_number_of_stopping_conditions_set()) if len(indices) == 0: return [] types, number_of_particles = self.conditions.code.get_stopping_condition_info(indices) result = [] for index, type, number_of_particles_in_condition in zip(indices, types, number_of_particles): if type == self.type and index_in_condition < number_of_particles_in_condition: result.append(index) return result def particles(self, index_in_the_condition=0, particles_set_name="particles"): selected = self.get_set_condition_indices(index_in_the_condition) particles = getattr(self.conditions.code,particles_set_name) if len(selected) == 0: return particles[0:0] else: return particles.get_stopping_condition_particle_index( selected, [index_in_the_condition]*len(selected) ) class StoppingConditions(object): def __init__(self, code): self.code = code self.collision_detection = StoppingCondition( self, 0, "If enabled, the code will stop at the end of the inner loop when two stars connect" ) self.pair_detection = StoppingCondition( self, 1, "If enabled, the code will stop at the end of the inner loop when two stars are bound" ) self.escaper_detection = StoppingCondition( self, 2, "If enabled, the code will stop at the end of the inner loop when a star escapes" ) self.timeout_detection = StoppingCondition( self, 3, "If enabled, the code will stop at the end of the inner loop when the computer time is above a set timeout" ) self.number_of_steps_detection = StoppingCondition( self, 4, "If enabled, the code will stop at the end of the inner loop when the number of evaluations reached the set max number" ) self.out_of_box_detection = StoppingCondition( self, 5, "If enabled, the code will stop if a particle escapes the box of size out_of_box_size" ) self.density_limit_detection = StoppingCondition( self, 6, "If enabled, the code will stop if a gas particle has a density out of the range " "[stopping_condition_minimum_density, stopping_condition_maximum_density]" ) self.internal_energy_limit_detection = StoppingCondition( self, 7, "If enabled, the code will stop if a gas particle has an internal energy out of the range " "[stopping_condition_minimum_internal_energy, stopping_condition_maximum_internal_energy]" ) self.interaction_over_detection = StoppingCondition( self, 8, "If enabled, the code will stop if the interaction between particles is over" ) self.supernova_detection = StoppingCondition( self, 9, "If enabled, the code will stop at the end of the inner loop when two a star goes supernova" ) def all_conditions(self): for name in dir(self): if name.startswith("_"): continue else: value = getattr(self, name) if isinstance(value, StoppingCondition): yield name, value def __str__(self): parts = [] parts.append("Stopping conditions of a '{0}' object\n".format(type(self.code).__name__)) supported = self.supported_conditions() enabled = [name for name, condition in self.all_conditions() if condition.is_enabled()] hit = [name for name, condition in self.all_conditions() if condition.is_set()] parts.append('* supported conditions: ') parts.append(', '.join(supported)) parts.append('\n') parts.append('* enabled conditions: ') if enabled: parts.append(', '.join(enabled)) else: parts.append('none') parts.append('\n') parts.append('* set conditions: ') if hit: parts.append(', '.join(hit)) else: parts.append('none') parts.append('\n') return ''.join(parts) def supported_conditions(self): return [name for name, condition in self.all_conditions() if condition.is_supported()] def define_parameters(self, object): object.add_method_parameter( "get_stopping_condition_timeout_parameter", "set_stopping_condition_timeout_parameter", "stopping_conditions_timeout", "max wallclock time available for the evolve step", default_value = 4.0 | units.s ) object.add_method_parameter( "get_stopping_condition_number_of_steps_parameter", "set_stopping_condition_number_of_steps_parameter", "stopping_conditions_number_of_steps", "max inner loop evals", default_value = 1.0 ) object.add_method_parameter( "get_stopping_condition_out_of_box_parameter", "set_stopping_condition_out_of_box_parameter", "stopping_conditions_out_of_box_size", "size of cube", default_value = 0.0 | nbody.length ) object.add_method_parameter( "get_stopping_condition_minimum_density_parameter", "set_stopping_condition_minimum_density_parameter", "stopping_condition_minimum_density", "minimum density of a gas particle", default_value = -1.0 | generic_unit_system.density ) object.add_method_parameter( "get_stopping_condition_maximum_density_parameter", "set_stopping_condition_maximum_density_parameter", "stopping_condition_maximum_density", "maximum density of a gas particle", default_value = -1.0 | generic_unit_system.density ) object.add_method_parameter( "get_stopping_condition_minimum_internal_energy_parameter", "set_stopping_condition_minimum_internal_energy_parameter", "stopping_condition_minimum_internal_energy", "minimum internal energy of a gas particle", default_value = -1.0 | generic_unit_system.specific_energy ) object.add_method_parameter( "get_stopping_condition_maximum_internal_energy_parameter", "set_stopping_condition_maximum_internal_energy_parameter", "stopping_condition_maximum_internal_energy", "maximum internal energy of a gas particle", default_value = -1.0 | generic_unit_system.specific_energy ) object.add_method_parameter( "get_stopping_condition_out_of_box_use_center_of_mass_parameter", "set_stopping_condition_out_of_box_use_center_of_mass_parameter", "stopping_conditions_out_of_box_use_center_of_mass", "if True use the center of mass to determine the location of the box, if False use (0,0,0), is not used by all codes", default_value = False ) def define_methods(self, object): object.add_method( 'get_stopping_condition_particle_index', ( object.NO_UNIT, object.NO_UNIT, ), ( object.INDEX, object.ERROR_CODE, ) ) object.add_method( 'has_stopping_condition', ( object.NO_UNIT, ), ( object.NO_UNIT, object.ERROR_CODE, ) ) object.add_method( 'is_stopping_condition_enabled', ( object.NO_UNIT, ), ( object.NO_UNIT, object.ERROR_CODE, ) ) object.add_method( 'is_stopping_condition_set', ( object.NO_UNIT, ), ( object.NO_UNIT, object.ERROR_CODE, ) ) object.add_method( 'get_stopping_condition_info', ( object.NO_UNIT, ), ( object.NO_UNIT, object.NO_UNIT, object.ERROR_CODE, ) ) object.add_method( 'get_number_of_stopping_conditions_set', ( ), ( object.NO_UNIT, object.ERROR_CODE, ) ) object.add_method( 'enable_stopping_condition', ( object.NO_UNIT,), ( object.ERROR_CODE ) ) object.add_method( 'disable_stopping_condition', ( object.NO_UNIT,), ( object.ERROR_CODE ) ) object.add_method( "get_stopping_condition_timeout_parameter", (), (units.s, object.ERROR_CODE,) ) object.add_method( "set_stopping_condition_timeout_parameter", (units.s, ), (object.ERROR_CODE,) ) object.add_method( "get_stopping_condition_number_of_steps_parameter", (), (object.NO_UNIT, object.ERROR_CODE,) ) object.add_method( "set_stopping_condition_number_of_steps_parameter", (object.NO_UNIT, ), (object.ERROR_CODE,) ) object.add_method( "get_stopping_condition_out_of_box_parameter", (), (nbody.length, object.ERROR_CODE,) ) object.add_method( "set_stopping_condition_out_of_box_parameter", (nbody.length, ), (object.ERROR_CODE,) ) object.add_method("get_stopping_condition_minimum_density_parameter", (), (generic_unit_system.density, object.ERROR_CODE,)) object.add_method("set_stopping_condition_minimum_density_parameter", (generic_unit_system.density, ), (object.ERROR_CODE,)) object.add_method("get_stopping_condition_maximum_density_parameter", (), (generic_unit_system.density, object.ERROR_CODE,)) object.add_method("set_stopping_condition_maximum_density_parameter", (generic_unit_system.density, ), (object.ERROR_CODE,)) object.add_method("get_stopping_condition_minimum_internal_energy_parameter", (), (generic_unit_system.specific_energy, object.ERROR_CODE,)) object.add_method("set_stopping_condition_minimum_internal_energy_parameter", (generic_unit_system.specific_energy, ), (object.ERROR_CODE,)) object.add_method("get_stopping_condition_maximum_internal_energy_parameter", (), (generic_unit_system.specific_energy, object.ERROR_CODE,)) object.add_method("set_stopping_condition_maximum_internal_energy_parameter", (generic_unit_system.specific_energy, ), (object.ERROR_CODE,)) def define_particle_set(self, object, name_of_the_set = 'particles'): object.add_query(name_of_the_set, 'get_stopping_condition_particle_index') def define_state(self, object): for method_name in [ 'get_stopping_condition_particle_index', 'has_stopping_condition', 'is_stopping_condition_enabled', 'is_stopping_condition_set', 'get_stopping_condition_info', 'get_number_of_stopping_conditions_set', 'enable_stopping_condition', 'disable_stopping_condition']: object.add_method('!UNINITIALIZED!END', method_name) ``` #### File: community/kepler/interface.py ```python from amuse.community import * from amuse.community.interface.common import CommonCodeInterface, CommonCode from amuse.support.options import option from amuse.units import units import os.path class KeplerInterface(CodeInterface, CommonCodeInterface): """ Kepler orbit manipulation functions, imported from Starlab. Initialize an orbit from mass, pos, and vel, or mass, semi-major axis and eccentricity, and allow the user to manipulate the resulting structure. Most Starlab functionality is currently exposed. """ # Interface specification. include_headers = ['interface.h'] __so_module__ = 'kepler_cython' def __init__(self, **options): CodeInterface.__init__(self, name_of_the_worker = "kepler_worker", **options) @legacy_function def initialize_from_dyn(): """ Initialize a new kepler system. """ function = LegacyFunctionSpecification() function.can_handle_array = False function.addParameter('mass', dtype='float64', direction=function.IN, unit = nbody_system.mass) function.addParameter('x', dtype='float64', direction=function.IN, unit = nbody_system.length) function.addParameter('y', dtype='float64', direction=function.IN, unit = nbody_system.length) function.addParameter('z', dtype='float64', direction=function.IN, unit = nbody_system.length) function.addParameter('vx', dtype='float64', direction=function.IN, unit = nbody_system.speed) function.addParameter('vy', dtype='float64', direction=function.IN, unit = nbody_system.speed) function.addParameter('vz', dtype='float64', direction=function.IN, unit = nbody_system.speed) function.addParameter('time', dtype='float64', direction=function.IN, default = 0, unit = nbody_system.time) function.result_type = 'int32' function.result_doc = """ 0 - OK new kepler was created -1 - ERROR kepler could not be created""" return function @legacy_function def initialize_from_elements(): """ Initialize a new kepler system. """ function = LegacyFunctionSpecification() function.can_handle_array = False function.addParameter('mass', dtype='float64', direction=function.IN, unit = nbody_system.mass) function.addParameter('semi', dtype='float64', direction=function.IN, unit = nbody_system.length) function.addParameter('ecc', dtype='float64', direction=function.IN, unit = NO_UNIT) function.addParameter('mean_anomaly', dtype='float64', direction=function.IN, default = 0, unit = NO_UNIT) function.addParameter('time', dtype='float64', direction=function.IN, default = 0, unit = nbody_system.time) function.addParameter('periastron', dtype='float64', direction=function.IN, default = 0, unit = nbody_system.length) function.addParameter('random_orientation', dtype='int32', direction=function.IN, default = 0, unit = NO_UNIT) function.result_type = 'int32' function.result_doc = """ 0 - OK new kepler was created -1 - ERROR kepler could not be created""" return function @legacy_function def transform_to_time(): """ Transform the kepler system to the specified time. """ function = LegacyFunctionSpecification() function.can_handle_array = False function.addParameter('time', dtype='float64', direction=function.IN, unit = nbody_system.time) function.result_type = 'int32' function.result_doc = """ 0 - OK transform to time OK -1 - ERROR could not transform to time""" return function @legacy_function def advance_to_radius(): """ Evolve the kepler system forward in time to the specified radius. """ function = LegacyFunctionSpecification() function.can_handle_array = False function.addParameter('radius', dtype='float64', direction=function.IN, unit = nbody_system.length) function.result_type = 'int32' function.result_doc = """ 0 - OK advance to radius OK -1 - ERROR could not advance to radius""" return function @legacy_function def return_to_radius(): """ Evolve the kepler system backward in time to the specified radius. """ function = LegacyFunctionSpecification() function.can_handle_array = False function.addParameter('radius', dtype='float64', direction=function.IN, unit = nbody_system.length) function.result_type = 'int32' function.result_doc = """ 0 - OK return to radius OK -1 - ERROR could not return to radius""" return function @legacy_function def advance_to_periastron(): """ Evolve the kepler system forward in time to the next periastron. """ function = LegacyFunctionSpecification() function.can_handle_array = False function.result_type = 'int32' function.result_doc = """ 0 - OK advance to periastron OK -1 - ERROR could not advance to periastron""" return function @legacy_function def advance_to_apastron(): """ Evolve the kepler system forward in time to the next apastron. """ function = LegacyFunctionSpecification() function.can_handle_array = False function.result_type = 'int32' function.result_doc = """ 0 - OK advance to apastron OK -1 - ERROR could not advance to apastron""" return function @legacy_function def return_to_periastron(): """ Evolve the kepler system backward in time to the previous periastron. """ function = LegacyFunctionSpecification() function.can_handle_array = False function.result_type = 'int32' function.result_doc = """ 0 - OK return to periastron OK -1 - ERROR could not return to periastron""" return function @legacy_function def return_to_apastron(): """ Evolve the kepler system backward in time to the previous apastron. """ function = LegacyFunctionSpecification() function.can_handle_array = False function.result_type = 'int32' function.result_doc = """ 0 - OK return to apastron OK -1 - ERROR could not return to apastron""" return function @legacy_function def get_total_mass(): """ Return the total mass (remind the user) of the system. """ function = LegacyFunctionSpecification() function.can_handle_array = False function.addParameter('mass', dtype='float64', direction=function.OUT, unit = nbody_system.mass) function.result_type = 'int32' function.result_doc = """ 0 - OK get mass OK -1 - ERROR could not get mass""" return function @legacy_function def get_time(): """ Return the current time of the system. """ function = LegacyFunctionSpecification() function.can_handle_array = False function.addParameter('time', dtype='float64', direction=function.OUT, unit = nbody_system.time) function.result_type = 'int32' function.result_doc = """ 0 - OK get time OK -1 - ERROR could not get time""" return function @legacy_function def get_period(): """ Return the periodof the system. """ function = LegacyFunctionSpecification() function.can_handle_array = False function.addParameter('period', dtype='float64', direction=function.OUT, unit = nbody_system.time) function.result_type = 'int32' function.result_doc = """ 0 - OK get period OK -1 - ERROR could not get period""" return function @legacy_function def get_elements(): """ Return the orbital elements (a,e) of the system. """ function = LegacyFunctionSpecification() function.can_handle_array = False function.addParameter('semi', dtype='float64', direction=function.OUT, unit = nbody_system.length) function.addParameter('ecc', dtype='float64', direction=function.OUT, unit = NO_UNIT) function.result_type = 'int32' function.result_doc = """ 0 - OK get elements OK -1 - ERROR could not get elements""" return function @legacy_function def get_integrals(): """ Return the total energy and angular momentum of the system. """ function = LegacyFunctionSpecification() function.can_handle_array = False function.addParameter('energy', dtype='float64', direction=function.OUT, unit = nbody_system.speed*nbody_system.speed) function.addParameter('angular_momentum', dtype='float64', direction=function.OUT, unit = nbody_system.length*nbody_system.speed) function.result_type = 'int32' function.result_doc = """ 0 - OK get integrals OK -1 - ERROR could not get integrals""" return function @legacy_function def get_separation_vector(): """ Return the current separation vector (x,y,z) of the system. """ function = LegacyFunctionSpecification() function.can_handle_array = False function.addParameter('x', dtype='float64', direction=function.OUT, unit = nbody_system.length) function.addParameter('y', dtype='float64', direction=function.OUT, unit = nbody_system.length) function.addParameter('z', dtype='float64', direction=function.OUT, unit = nbody_system.length) function.result_type = 'int32' function.result_doc = """ 0 - OK get separation vector OK -1 - ERROR could not get separation vector""" return function @legacy_function def get_separation(): """ Return the current separation r of the system. """ function = LegacyFunctionSpecification() function.can_handle_array = False function.addParameter('r', dtype='float64', direction=function.OUT, unit = nbody_system.length) function.result_type = 'int32' function.result_doc = """ 0 - OK get separation OK -1 - ERROR could not get separation""" return function @legacy_function def set_periastron(): """ Set the current periastron of the system (initialization only). """ function = LegacyFunctionSpecification() function.can_handle_array = False function.addParameter('peri', dtype='float64', direction=function.IN, unit = nbody_system.length) function.result_type = 'int32' function.result_doc = """ 0 - OK set periastron OK -1 - ERROR could not set periastron""" return function @legacy_function def get_periastron(): """ Return the current periastron of the system. """ function = LegacyFunctionSpecification() function.can_handle_array = False function.addParameter('peri', dtype='float64', direction=function.OUT, unit = nbody_system.length) function.result_type = 'int32' function.result_doc = """ 0 - OK get periastron OK -1 - ERROR could not get periastron""" return function @legacy_function def get_apastron(): """ Return the current apastron of the system. """ function = LegacyFunctionSpecification() function.can_handle_array = False function.addParameter('apo', dtype='float64', direction=function.OUT, unit = nbody_system.length) function.result_type = 'int32' function.result_doc = """ 0 - OK get apastron OK -1 - ERROR could not get apastron""" return function @legacy_function def get_velocity_vector(): """ Return the current relative velocity vector (x,y,z) of the system. """ function = LegacyFunctionSpecification() function.can_handle_array = False function.addParameter('vx', dtype='float64', direction=function.OUT, unit = nbody_system.speed) function.addParameter('vy', dtype='float64', direction=function.OUT, unit = nbody_system.speed) function.addParameter('vz', dtype='float64', direction=function.OUT, unit = nbody_system.speed) function.result_type = 'int32' function.result_doc = """ 0 - OK get velocity vector OK -1 - ERROR could not get velocity vector""" return function @legacy_function def get_angles(): """ Return the current mean and true anomalies of the system. """ function = LegacyFunctionSpecification() function.can_handle_array = False function.addParameter('true_anomaly', dtype='float64', direction=function.OUT) function.addParameter('mean_anomaly', dtype='float64', direction=function.OUT) function.result_type = 'int32' function.result_doc = """ 0 - OK get angles OK -1 - ERROR could not get angles""" return function @legacy_function def set_longitudinal_unit_vector(): """ Set the longitudinal unit vector of the system. """ function = LegacyFunctionSpecification() function.can_handle_array = False function.addParameter('vx', dtype='float64', direction=function.IN) function.addParameter('vy', dtype='float64', direction=function.IN) function.addParameter('vz', dtype='float64', direction=function.IN) function.result_type = 'int32' function.result_doc = """ 0 - OK set vector OK -1 - ERROR could not set vector""" return function @legacy_function def set_normal_unit_vector(): """ Set the normal unit vector of the system. """ function = LegacyFunctionSpecification() function.can_handle_array = False function.addParameter('vx', dtype='float64', direction=function.IN) function.addParameter('vy', dtype='float64', direction=function.IN) function.addParameter('vz', dtype='float64', direction=function.IN) function.result_type = 'int32' function.result_doc = """ 0 - OK set vector OK -1 - ERROR could not set vector""" return function @legacy_function def get_longitudinal_unit_vector(): """ Return the longitudinal unit vector of the system. """ function = LegacyFunctionSpecification() function.can_handle_array = False function.addParameter('vx', dtype='float64', direction=function.OUT) function.addParameter('vy', dtype='float64', direction=function.OUT) function.addParameter('vz', dtype='float64', direction=function.OUT) function.result_type = 'int32' function.result_doc = """ 0 - OK get vector OK -1 - ERROR could not get vector""" return function @legacy_function def get_transverse_unit_vector(): """ Return the transverse unit vector of the system. """ function = LegacyFunctionSpecification() function.can_handle_array = False function.addParameter('vx', dtype='float64', direction=function.OUT) function.addParameter('vy', dtype='float64', direction=function.OUT) function.addParameter('vz', dtype='float64', direction=function.OUT) function.result_type = 'int32' function.result_doc = """ 0 - OK get vector OK -1 - ERROR could not get vector""" return function @legacy_function def set_transverse_unit_vector(): """ Set the transverse unit vector of the system (tangent on longitudal uv). """ function = LegacyFunctionSpecification() function.can_handle_array = False function.addParameter('vx', dtype='float64', direction=function.IN) function.addParameter('vy', dtype='float64', direction=function.IN) function.addParameter('vz', dtype='float64', direction=function.IN) function.result_type = 'int32' function.result_doc = """ 0 - OK set vector OK -1 - ERROR could not set vector""" return function @legacy_function def get_normal_unit_vector(): """ Return the normal unit vector of the system. """ function = LegacyFunctionSpecification() function.can_handle_array = False function.addParameter('vx', dtype='float64', direction=function.OUT) function.addParameter('vy', dtype='float64', direction=function.OUT) function.addParameter('vz', dtype='float64', direction=function.OUT) function.result_type = 'int32' function.result_doc = """ 0 - OK get vector OK -1 - ERROR could not get vector""" return function @legacy_function def print_all(): """ Print a kepler system. """ function = LegacyFunctionSpecification() function.can_handle_array = False function.result_type = 'int32' function.result_doc = """ 0 - OK kepler was printed -1 - ERROR kepler could not be printed""" return function @legacy_function def set_random(): """ Set the random seed for kepler functions. """ function = LegacyFunctionSpecification() function.can_handle_array = False function.addParameter('seed', dtype='int32', direction=function.IN) function.result_type = 'int32' function.result_doc = """ 0 - OK seed was initialized -1 - ERROR error occurred""" return function @legacy_function def get_random(): """ Return the random seed for kepler functions. """ function = LegacyFunctionSpecification() function.can_handle_array = False function.addParameter('seed', dtype='int32', direction=function.OUT) function.result_type = 'int32' function.result_doc = """ 0 - OK seed was returned -1 - ERROR error occurred""" return function @legacy_function def make_binary_scattering(): """ Return a three-body scattering configuration (much faster than python). """ function = LegacyFunctionSpecification() function.can_handle_array = False function.addParameter('m', dtype='float64', direction=function.IN, unit = nbody_system.mass) function.addParameter('ecc', dtype='float64', direction=function.IN, unit = NO_UNIT) function.addParameter('M', dtype='float64', direction=function.IN, unit = nbody_system.mass) function.addParameter('v_inf', dtype='float64', direction=function.IN, unit = nbody_system.speed) function.addParameter('impact_parameter', dtype='float64', direction=function.IN, unit = nbody_system.length) function.addParameter('gamma', dtype='float64', direction=function.IN, unit = NO_UNIT) function.addParameter('planar', dtype='int32', direction=function.IN, unit = NO_UNIT) function.addParameter('time', dtype='float64', direction=function.OUT, unit = nbody_system.time) function.addParameter('m1', dtype='float64', direction=function.OUT, unit = nbody_system.mass) function.addParameter('m2', dtype='float64', direction=function.OUT, unit = nbody_system.mass) function.addParameter('m3', dtype='float64', direction=function.OUT, unit = nbody_system.mass) function.addParameter('x1', dtype='float64', direction=function.OUT, unit = nbody_system.length) function.addParameter('x2', dtype='float64', direction=function.OUT, unit = nbody_system.length) function.addParameter('x3', dtype='float64', direction=function.OUT, unit = nbody_system.length) function.addParameter('y1', dtype='float64', direction=function.OUT, unit = nbody_system.length) function.addParameter('y2', dtype='float64', direction=function.OUT, unit = nbody_system.length) function.addParameter('y3', dtype='float64', direction=function.OUT, unit = nbody_system.length) function.addParameter('z1', dtype='float64', direction=function.OUT, unit = nbody_system.length) function.addParameter('z2', dtype='float64', direction=function.OUT, unit = nbody_system.length) function.addParameter('z3', dtype='float64', direction=function.OUT, unit = nbody_system.length) function.addParameter('vx1', dtype='float64', direction=function.OUT, unit = nbody_system.speed) function.addParameter('vx2', dtype='float64', direction=function.OUT, unit = nbody_system.speed) function.addParameter('vx3', dtype='float64', direction=function.OUT, unit = nbody_system.speed) function.addParameter('vy1', dtype='float64', direction=function.OUT, unit = nbody_system.speed) function.addParameter('vy2', dtype='float64', direction=function.OUT, unit = nbody_system.speed) function.addParameter('vy3', dtype='float64', direction=function.OUT, unit = nbody_system.speed) function.addParameter('vz1', dtype='float64', direction=function.OUT, unit = nbody_system.speed) function.addParameter('vz2', dtype='float64', direction=function.OUT, unit = nbody_system.speed) function.addParameter('vz3', dtype='float64', direction=function.OUT, unit = nbody_system.speed) function.result_type = 'int32' function.result_doc = """ 0 - OK legal scattering configuration -1 - ERROR problem""" return function class Kepler(CommonCode): __interface__ = KeplerInterface def __init__(self, unit_converter = None, **options): self.unit_converter = unit_converter CommonCode.__init__(self, self.__interface__(**options), **options) def define_converter(self, object): if not self.unit_converter is None: object.set_converter(self.unit_converter.as_converter_from_si_to_generic()) def define_methods(self, object): CommonCode.define_methods(self, object) def initialize_from_particles(self, particles): if not len(particles) == 2: raise Exception('The kepler code can only be initialized from a particle set with 2 particles') total_mass = particles[0].mass + particles[1].mass rel_position = particles[0].position - particles[1].position rel_velocity = particles[0].velocity - particles[1].velocity self.center_of_mass_position = particles.center_of_mass() self.center_of_mass_velocity = particles.center_of_mass_velocity() self.initialize_from_dyn( total_mass, rel_position[0],rel_position[1],rel_position[2], rel_velocity[0],rel_velocity[1],rel_velocity[2] ) self.particles = particles.copy() def define_state(self, object): CommonCode.define_state(self, object) for method_name in [ 'initialize_from_dyn', 'initialize_from_elements', 'transform_to_time', 'advance_to_radius', 'return_to_radius', 'advance_to_periastron', 'advance_to_apastron', 'return_to_periastron', 'return_to_apastron', 'get_total_mass', 'get_time', 'get_period', 'get_elements', 'get_integrals', 'get_separation_vector', 'get_separation', 'set_periastron', 'get_periastron', 'get_apastron', 'get_velocity_vector', 'get_angles', 'set_longitudinal_unit_vector', 'set_normal_unit_vector', 'get_longitudinal_unit_vector', 'get_transverse_unit_vector', 'set_transverse_unit_vector', 'get_normal_unit_vector', 'print_all', 'set_random', 'get_random', 'make_binary_scattering']: object.add_method('!UNINITIALIZED!END', method_name) ``` #### File: community/kepler_orbiters/test_kepler.py ```python import numpy import struct from interface import Kepler from amuse.units import nbody_system from amuse.units import units,constants from amuse.ic.plummer import new_plummer_model from amuse.datamodel import Particle #from matplotlib import pyplot import time from amuse.ext.orbital_elements import orbital_elements_from_binary,new_binary_from_orbital_elements def elements(starmass,x,y,z,vx,vy,vz,G=constants.G): mu=G*starmass r=(x**2+y**2+z**2)**0.5 v2=(vx**2+vy**2+vz**2) e=v2/2-mu/r a=-mu/2/e hx=y*vz-z*vy hy=z*vx-x*vz hz=x*vy-y*vx rdotv=x*vx+y*vy+z*vz ex=v2*x/mu-rdotv*vx/mu-x/r ey=v2*y/mu-rdotv*vy/mu-y/r ez=v2*z/mu-rdotv*vz/mu-z/r h2=(hx**2+hy**2+hz**2) eps=(1-h2/mu/a)**0.5 return a,eps def test_kepler(N=10000, tend=1.| units.yr,method=0): numpy.random.seed(12345) conv=nbody_system.nbody_to_si(2.| units.MSun, 5.|units.AU) comets=new_plummer_model(N,conv) sun=Particle(mass=1.|units.MSun) sun.position=[0,0,0]|units.AU sun.velocity=[0,0,0]|units.kms comets.mass*=0. code=Kepler(conv,redirection="none") code.set_method(method) code.central_particle.add_particle(sun) code.orbiters.add_particles(comets) a0,eps0=elements(sun.mass,code.orbiters.x,code.orbiters.y,code.orbiters.z, code.orbiters.vx,code.orbiters.vy,code.orbiters.vz) # print code.orbiters.x[0] print orbital_elements_from_binary(code.particles[0:2],constants.G) t1=time.time() code.evolve_model(tend) t2=time.time() print orbital_elements_from_binary(code.particles[0:2],constants.G) # print code.orbiters.x[0] a,eps=elements(sun.mass,code.orbiters.x,code.orbiters.y,code.orbiters.z, code.orbiters.vx,code.orbiters.vy,code.orbiters.vz) da=abs((a-a0)/a0) deps=abs(eps-eps0)/eps0 dev=numpy.where(da > 0.00001)[0] print len(dev) print a0[dev].value_in(units.AU) print eps0[dev] # pyplot.plot(a0[dev].value_in(units.AU),eps0[dev],"ro") # pyplot.plot(a[dev].value_in(units.AU),eps[dev],"g+") print "max da,deps:",da.max(), deps.max() print "time:",t2-t1 # pyplot.show() return t2-t1,da.max(),deps.max() def test_kepler_almost_parabolic( tend=1,method=0): code=Kepler(redirection="none") code.set_method(method) mass1=1.| nbody_system.mass mass2=0| nbody_system.mass semimajor_axis=1.|nbody_system.length eccentricity=0.9999999 p=2*numpy.pi*(semimajor_axis**3/nbody_system.G/mass1)**0.5 tend=tend*p print tend parts=new_binary_from_orbital_elements( mass1, mass2, semimajor_axis, eccentricity = eccentricity, true_anomaly = 0.0102121 ) code.central_particle.add_particle(parts[0]) code.orbiters.add_particle(parts[1]) a0,eps0=elements(mass1,code.orbiters.x,code.orbiters.y,code.orbiters.z, code.orbiters.vx,code.orbiters.vy,code.orbiters.vz,G=nbody_system.G) print orbital_elements_from_binary(code.particles[0:2]) t1=time.time() code.evolve_model(tend) t2=time.time() print orbital_elements_from_binary(code.particles[0:2]) print code.orbiters.position a,eps=elements(mass1,code.orbiters.x,code.orbiters.y,code.orbiters.z, code.orbiters.vx,code.orbiters.vy,code.orbiters.vz,G=nbody_system.G) da=abs((a-a0)/a0) deps=abs(eps-eps0)/eps0 print da,deps print "time:",t2-t1 def test_kepler_parabolic( tend=1,method=0, sign=+1): code=Kepler(redirection="none") code.set_method(method) sun=Particle() sun.mass=1. | nbody_system.mass sun.x=0. | nbody_system.length sun.y=0. | nbody_system.length sun.z=0. | nbody_system.length sun.vx=0. | nbody_system.speed sun.vy=0. | nbody_system.speed sun.vz=0. | nbody_system.speed comet=Particle() comet.mass= 0 | nbody_system.mass comet.x=1. | nbody_system.length comet.y=0. | nbody_system.length comet.z=0. | nbody_system.length comet.vx=0. | nbody_system.speed comet.vy=(1.0 + sign * 1.0e-10)*(2*nbody_system.G*sun.mass/comet.x)**0.5 comet.vz=0. | nbody_system.speed tend=tend | nbody_system.time print tend code.central_particle.add_particle(sun) code.orbiters.add_particle(comet) a0,eps0=elements(sun.mass,code.orbiters.x,code.orbiters.y,code.orbiters.z, code.orbiters.vx,code.orbiters.vy,code.orbiters.vz,G=nbody_system.G) print orbital_elements_from_binary(code.particles[0:2]) t1=time.time() code.evolve_model(tend) t2=time.time() print orbital_elements_from_binary(code.particles[0:2]) print code.orbiters.position a,eps=elements(sun.mass,code.orbiters.x,code.orbiters.y,code.orbiters.z, code.orbiters.vx,code.orbiters.vy,code.orbiters.vz,G=nbody_system.G) da=abs((a-a0)/a0) deps=abs(eps-eps0)/eps0 print da,deps print "time:",t2-t1 def crash_test(method=1): code=Kepler(redirection="none") code.set_method(method) smu=1.224744871391589 mu=smu**2 r0=2.787802728537455 rv0=-0.9899959571994231 alpha=0.01380749549277993 smudt=2.809925892593303 v02=(mu*(2/r0-alpha)) vx=rv0 vy=(v02-vx**2)**0.5 sun=Particle() sun.mass=mu | nbody_system.mass sun.x=0. | nbody_system.length sun.y=0. | nbody_system.length sun.z=0. | nbody_system.length sun.vx=0. | nbody_system.speed sun.vy=0. | nbody_system.speed sun.vz=0. | nbody_system.speed comet=Particle() comet.mass= 0 | nbody_system.mass comet.x=r0| nbody_system.length comet.y=0. | nbody_system.length comet.z=0. | nbody_system.length comet.vx=vx | nbody_system.speed comet.vy=vy | nbody_system.speed comet.vz=0. | nbody_system.speed tend=(smudt/smu) | nbody_system.time print tend code.central_particle.add_particle(sun) code.orbiters.add_particle(comet) a0,eps0=elements(sun.mass,code.orbiters.x,code.orbiters.y,code.orbiters.z, code.orbiters.vx,code.orbiters.vy,code.orbiters.vz,G=nbody_system.G) print orbital_elements_from_binary(code.particles[0:2]) t1=time.time() code.evolve_model(tend) t2=time.time() print orbital_elements_from_binary(code.particles[0:2]) print code.orbiters.position a,eps=elements(sun.mass,code.orbiters.x,code.orbiters.y,code.orbiters.z, code.orbiters.vx,code.orbiters.vy,code.orbiters.vz,G=nbody_system.G) da=abs((a-a0)/a0) deps=abs(eps-eps0)/eps0 print da,deps print "time:",t2-t1 def crash_test2(method=1): code=Kepler(redirection="none") code.set_method(method) """ mu=struct.unpack('!d','3ff7ffffffffffff'.decode('hex'))[0] dt=struct.unpack('!d','40025ab746b00001'.decode('hex'))[0] pos1=struct.unpack('!d','bfed36dc82998ed4'.decode('hex'))[0] pos2=struct.unpack('!d','40051297fc6e5256'.decode('hex'))[0] pos3=struct.unpack('!d','0000000000000000'.decode('hex'))[0] vel1=struct.unpack('!d','3fb09d8008ba33b9'.decode('hex'))[0] vel2=struct.unpack('!d','bff06788b551b81d'.decode('hex'))[0] vel3=struct.unpack('!d','0000000000000000'.decode('hex'))[0] """ mu=float.fromhex("0x1.8p+0") dt=float.fromhex("0x1.25ab746bp+1") pos1=float.fromhex("-0x1.d36dc82998ed4p-1") pos2=float.fromhex("0x1.51297fc6e5256p+1") pos3=float.fromhex("0x0p+0") vel1=float.fromhex("0x1.09d8008ba33b9p-4") vel2=float.fromhex("-0x1.06788b551b81ep+0") vel3=float.fromhex("0x0p+0") sun=Particle() sun.mass=mu | nbody_system.mass sun.x=0. | nbody_system.length sun.y=0. | nbody_system.length sun.z=0. | nbody_system.length sun.vx=0. | nbody_system.speed sun.vy=0. | nbody_system.speed sun.vz=0. | nbody_system.speed comet=Particle() comet.mass= 0 | nbody_system.mass comet.x=pos1 | nbody_system.length comet.y=pos2 | nbody_system.length comet.z=pos3 | nbody_system.length comet.vx=vel1 | nbody_system.speed comet.vy=vel2 | nbody_system.speed comet.vz=vel3 | nbody_system.speed tend=dt | nbody_system.time print tend,mu code.central_particle.add_particle(sun) code.orbiters.add_particle(comet) a0,eps0=elements(sun.mass,code.orbiters.x,code.orbiters.y,code.orbiters.z, code.orbiters.vx,code.orbiters.vy,code.orbiters.vz,G=nbody_system.G) print orbital_elements_from_binary(code.particles[0:2]) t1=time.time() code.evolve_model(tend) t2=time.time() print orbital_elements_from_binary(code.particles[0:2]) print code.orbiters.position a,eps=elements(sun.mass,code.orbiters.x,code.orbiters.y,code.orbiters.z, code.orbiters.vx,code.orbiters.vy,code.orbiters.vz,G=nbody_system.G) da=abs((a-a0)/a0) deps=abs(eps-eps0)/eps0 print da,deps print "time:",t2-t1 def test_softening(method=1): code=Kepler(redirection="none") code.set_method(method) dt=float.fromhex("0x1.67b39e372f04dp+4") mu=float.fromhex("0x1.fffffffffffdfp-3") e2=float.fromhex("0x1.0000000000003p+0") pos1=float.fromhex("0x1.1b76542265052p-1") pos2=float.fromhex("0x1.0c4dbda42097cp-6") pos3=float.fromhex("0x1.54fd66cd1e212p-3") vel1=float.fromhex("0x1.d6ef43d58ca7ep-2") vel2=float.fromhex("0x1.7a85379e59794p-2") vel3=float.fromhex("-0x1.5421044d1acffp-1") sun=Particle() sun.mass=mu | nbody_system.mass sun.x=0. | nbody_system.length sun.y=0. | nbody_system.length sun.z=0. | nbody_system.length sun.vx=0. | nbody_system.speed sun.vy=0. | nbody_system.speed sun.vz=0. | nbody_system.speed comet=Particle() comet.mass= 0 | nbody_system.mass comet.x=pos1 | nbody_system.length comet.y=pos2 | nbody_system.length comet.z=pos3 | nbody_system.length comet.vx=vel1 | nbody_system.speed comet.vy=vel2 | nbody_system.speed comet.vz=vel3 | nbody_system.speed tend=dt | nbody_system.time print tend,mu code.central_particle.add_particle(sun) code.orbiters.add_particle(comet) code.parameters.epsilon_squared = e2 | nbody_system.length**2 a0,eps0=elements(sun.mass,code.orbiters.x,code.orbiters.y,code.orbiters.z, code.orbiters.vx,code.orbiters.vy,code.orbiters.vz,G=nbody_system.G) print orbital_elements_from_binary(code.particles[0:2]) t1=time.time() code.evolve_model(tend) t2=time.time() print orbital_elements_from_binary(code.particles[0:2]) print code.orbiters.position a,eps=elements(sun.mass,code.orbiters.x,code.orbiters.y,code.orbiters.z, code.orbiters.vx,code.orbiters.vy,code.orbiters.vz,G=nbody_system.G) da=abs((a-a0)/a0) deps=abs(eps-eps0)/eps0 print da,deps print "time:",t2-t1 def t_linear(tend=1,N=100,method=0): code=Kepler(redirection="none") code.set_method(method) mass=1. | nbody_system.mass x=1. | nbody_system.length vx=0 | nbody_system.speed e=0.5*vx**2-nbody_system.G*mass/x semimajor_axis=-nbody_system.G*mass/2/e p=2*numpy.pi*(semimajor_axis**3/nbody_system.G/mass)**0.5 print semimajor_axis print p tend=tend*p dt=p/N sun=Particle() sun.mass=mass sun.x=0. | nbody_system.length sun.y=0. | nbody_system.length sun.z=0. | nbody_system.length sun.vx=0. | nbody_system.speed sun.vy=0. | nbody_system.speed sun.vz=0. | nbody_system.speed comet=Particle() comet.mass= 0 | nbody_system.mass comet.x=x comet.y=0. | nbody_system.length comet.z=0. | nbody_system.length comet.vx=vx comet.vy=0. | nbody_system.speed comet.vz=0. | nbody_system.speed code.central_particle.add_particle(sun) code.orbiters.add_particle(comet) a0,eps0=elements(sun.mass,code.orbiters.x,code.orbiters.y,code.orbiters.z, code.orbiters.vx,code.orbiters.vy,code.orbiters.vz,G=nbody_system.G) print orbital_elements_from_binary(code.particles[0:2]) #pyplot.ion() #f=pyplot.figure(figsize=(8,6)) #pyplot.show() tnow=0*tend time=[] xs=[] while tnow<tend: tnow+=dt print tnow,int(tnow/dt) code.evolve_model(tnow) #f.clf() time.append(tnow/tend) xs.append(code.orbiters.x[0].number) #pyplot.plot(time,xs,"r+") #pyplot.xlim(-0.1,1.1) #pyplot.ylim(-1.1,3.1) #pyplot.draw() print orbital_elements_from_binary(code.particles[0:2]) print code.orbiters.position a,eps=elements(sun.mass,code.orbiters.x,code.orbiters.y,code.orbiters.z, code.orbiters.vx,code.orbiters.vy,code.orbiters.vz,G=nbody_system.G) da=abs((a-a0)/a0) deps=abs(eps-eps0)/eps0 print da,deps raw_input() if __name__=="__main__": for method in [1,0]: t_linear(N=100,method=method) print print "-"*10 print tend = 1.0 for method in [1,0]: crash_test(method=method) print print "-"*10 print for method in [1,0]: crash_test2(method=method) print print "-"*10 print for method in [1,0]: test_kepler_parabolic(tend=tend,method=method, sign=+1) print print "-"*10 print for method in [1,0]: test_kepler_parabolic(tend=tend,method=method, sign=-1) print print "-"*10 print for method in [1,0]: test_kepler_almost_parabolic(tend=tend,method=method) print print "-"*10 print for method in [1,0]: test_kepler(N=10000,tend=tend | units.yr,method=method) print print "-"*10 print for method in [0,]: test_softening(method=method) print ``` #### File: community/mpiamrvac/interface.py ```python from amuse.community import * from amuse.community.interface.hydro import HydrodynamicsInterface from amuse.support.options import OptionalAttributes, option from amuse.units import generic_unit_system from amuse.community.interface.common import CommonCode import os class MpiAmrVacInterface(CodeInterface, HydrodynamicsInterface, StoppingConditionInterface, CodeWithDataDirectories): use_modules = ['mpiamrvac_interface', 'StoppingConditions'] MODE_NORMAL = 'normal' MODE_3D = '3d' MODE_3D_ACC = '3d-acc' MODE_2D = '2d' MODE_2D_ACC = '2d-acc' MODE_1D = '1d' MODE_1D_ACC = '1d-acc' def __init__(self, mode = MODE_NORMAL, **options): CodeInterface.__init__(self, name_of_the_worker=self.name_of_the_worker(mode), **options) CodeWithDataDirectories.__init__(self) self._mode = mode def name_of_the_worker(self, mode): if mode == self.MODE_NORMAL or mode == self.MODE_3D: return 'mpiamrvac_worker' elif mode == self.MODE_3D_ACC: return 'mpiamrvac_worker_acc' elif mode == self.MODE_2D: return 'mpiamrvac_worker_2d' elif mode == self.MODE_2D_ACC: return 'mpiamrvac_worker_2dacc' elif mode == self.MODE_1D: return 'mpiamrvac_worker_1d' elif mode == self.MODE_1D_ACC: return 'mpiamrvac_worker_1dacc' else: return 'mpiamrvac_worker' # # options # @option(type="string") def default_parameters_filename(self): """ Default parameter file for amrvac, has empty lists for all parameters. """ if self._mode == self.MODE_2D: return os.path.join(self.data_directory, 'amrvac_2d.par') elif self._mode == self.MODE_2D_ACC: return os.path.join(self.data_directory, 'amrvac_2d-acc.par') elif self._mode == self.MODE_1D: return os.path.join(self.data_directory, 'amrvac_1d.par') elif self._mode == self.MODE_1D_ACC: return os.path.join(self.data_directory, 'amrvac_1d-acc.par') elif self._mode == self.MODE_3D_ACC: return os.path.join(self.data_directory, 'amrvac-acc.par') else: return os.path.join(self.data_directory, 'amrvac.par') # # parameters # @legacy_function def set_typeentropy(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_typeentropy(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_typefull1(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_typefull1(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_typepred1(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_typepred1(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_gamma(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='float64', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_gamma(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='float64', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_dt(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='float64', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_dt(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='float64', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_nbufferx1(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='int32', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_nbufferx1(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='int32', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_nbufferx2(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='int32', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_nbufferx2(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='int32', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_nbufferx3(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='int32', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_nbufferx3(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='int32', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_mxnest(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='int32', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_mxnest(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='int32', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_dixb(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='int32', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_dixb(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='int32', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_levmin(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='int32', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_levmin(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='int32', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_levmax(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='int32', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_levmax(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='int32', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_skipfinestep(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_skipfinestep(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_time_advance(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_time_advance(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_courantpar(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='float64', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_courantpar(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='float64', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_dtpar(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='float64', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_dtpar(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='float64', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_dtdiffpar(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='float64', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_dtdiffpar(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='float64', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_t(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='float64', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_t(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='float64', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_tmax(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='float64', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_tmax(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='float64', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_dtmin(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='float64', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_dtmin(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='float64', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_residmin(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='float64', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_residmin(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='float64', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_residmax(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='float64', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_residmax(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='float64', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_residual(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='float64', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_residual(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='float64', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_tfixgrid(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='float64', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_tfixgrid(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='float64', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_tvdlfeps(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='float64', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_tvdlfeps(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='float64', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_mcbeta(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='float64', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_mcbeta(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='float64', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_divbdiff(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='float64', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_divbdiff(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='float64', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_smallp(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='float64', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_smallp(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='float64', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_smallrho(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='float64', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_smallrho(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='float64', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_dmaxvel(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='float64', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_dmaxvel(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='float64', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_tolernr(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='float64', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_tolernr(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='float64', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_absaccnr(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='float64', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_absaccnr(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='float64', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_cfrac(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='float64', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_cfrac(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='float64', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_x1ptms(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='float64', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_x1ptms(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='float64', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_x2ptms(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='float64', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_x2ptms(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='float64', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_x3ptms(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='float64', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_x3ptms(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='float64', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_ptmass(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='float64', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_ptmass(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='float64', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_ratebdflux(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='float64', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_ratebdflux(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='float64', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_normt(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='float64', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_normt(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='float64', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_time_bc(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='float64', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_time_bc(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='float64', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_it(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='int32', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_it(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='int32', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_itmax(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='int32', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_itmax(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='int32', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_itmin(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='int32', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_itmin(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='int32', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_slowsteps(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='int32', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_slowsteps(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='int32', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_typepario(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='int32', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_typepario(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='int32', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_itfixgrid(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='int32', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_itfixgrid(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='int32', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_nwauxio(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='int32', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_nwauxio(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='int32', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_istep(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='int32', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_istep(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='int32', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_nstep(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='int32', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_nstep(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='int32', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_errorestimate(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='int32', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_errorestimate(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='int32', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_nxdiffusehllc(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='int32', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_nxdiffusehllc(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='int32', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_typespherical(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='int32', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_typespherical(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='int32', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_maxitnr(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='int32', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_maxitnr(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='int32', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_nflatgetaux(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='int32', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_nflatgetaux(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='int32', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_level_io(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='int32', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_level_io(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='int32', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_ncool(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='int32', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_ncool(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='int32', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_cmulti(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='int32', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_cmulti(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='int32', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_snapshotini(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='int32', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_snapshotini(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='int32', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_ixtest1(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='int32', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_ixtest1(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='int32', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_ixtest2(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='int32', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_ixtest2(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='int32', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_ixtest3(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='int32', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_ixtest3(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='int32', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_iwtest(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='int32', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_iwtest(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='int32', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_idimtest(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='int32', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_idimtest(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='int32', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_saveigrid(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='int32', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_saveigrid(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='int32', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_typecourant(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_typecourant(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_typeresid(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_typeresid(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_typeadvance(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_typeadvance(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_typelimited(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_typelimited(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_typesourcesplit(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_typesourcesplit(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_typelimiter(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_typelimiter(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_typegradlimiter(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_typegradlimiter(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_typeprolonglimit(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_typeprolonglimit(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_typetvd(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_typetvd(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_typetvdlf(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_typetvdlf(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_typeaverage(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_typeaverage(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_typedimsplit(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_typedimsplit(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_typeaxial(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_typeaxial(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_typepoly(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_typepoly(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_typedivbdiff(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_typedivbdiff(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_typedivbfix(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_typedivbfix(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_typediv(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_typediv(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_typegrad(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_typegrad(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_typeglm(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_typeglm(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_coolcurve(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_coolcurve(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_coolmethod(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_coolmethod(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_typeghostfill(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_typeghostfill(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_typegridfill(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_typegridfill(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_filenameout(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_filenameout(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_filenameini(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_filenameini(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_filenamelog(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_filenamelog(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_fileheadout(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_fileheadout(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_wnames(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_wnames(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_primnames(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_primnames(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_typefilelog(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_typefilelog(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_convert_type(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_convert_type(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_dxfiletype(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_dxfiletype(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_teststr(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_teststr(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='string', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_time_accurate(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_time_accurate(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_addmpibarrier(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_addmpibarrier(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_tmaxexact(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_tmaxexact(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_treset(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_treset(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_itreset(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_itreset(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_firstprocess(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_firstprocess(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_fixprocess(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_fixprocess(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_flathllc(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_flathllc(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_flatcd(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_flatcd(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_flatsh(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_flatsh(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_flatppm(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_flatppm(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_sourcesplit(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_sourcesplit(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_sourceunsplit(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_sourceunsplit(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_useprimitive(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_useprimitive(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_dimsplit(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_dimsplit(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_restrictprimitive(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_restrictprimitive(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_prolongprimitive(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_prolongprimitive(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_coarsenprimitive(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_coarsenprimitive(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_useprimitiverel(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_useprimitiverel(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_amrentropy(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_amrentropy(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_divbfix(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_divbfix(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_divbwave(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_divbwave(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_compactres(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_compactres(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_bnormlf(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_bnormlf(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_strictnr(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_strictnr(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_strictsmall(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_strictsmall(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_strictzero(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_strictzero(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_strictgetaux(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_strictgetaux(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_usecovariant(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_usecovariant(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_nocartesian(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_nocartesian(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_tfix(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_tfix(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_convert(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_convert(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_saveprim(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_saveprim(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def set_uselimiter(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.IN) function.result_type = 'int32' return function @legacy_function def get_uselimiter(): function = LegacyFunctionSpecification() function.addParameter('value', dtype='bool', direction=function.OUT) function.result_type = 'int32' return function # parameters file @legacy_function def set_parameters_filename(): """ Update name of the parameters file """ function = LegacyFunctionSpecification() function.addParameter('path', dtype='string', direction=function.IN, description = "filename of the parameters file" ) function.result_type = 'int32' function.result_doc = """ 0 - OK Current value was set -1 - ERROR File does not exist """ return function @legacy_function def get_parameters_filename(): """ Retrieve name of the parameters file """ function = LegacyFunctionSpecification() function.addParameter('path', dtype='string', direction=function.OUT, description = "filename of the parameters file" ) function.result_type = 'int32' function.result_doc = """ 0 - OK Current value was set -1 - ERROR File does not exist """ return function @legacy_function def get_current_error(): """When a function returns an error, this will retrieve a description (if possible) """ function = LegacyFunctionSpecification() function.addParameter('string', dtype='string', direction=function.OUT, description = "description of the error" ) function.result_type = 'int32' function.result_doc = """ 0 - OK Current value was set -1 - ERROR File does not exist """ return function # # @legacy_function def initialize_grid(): function = LegacyFunctionSpecification() function.result_type = 'int32' return function @legacy_function def refine_grid(): function = LegacyFunctionSpecification() function.addParameter('must_advance', dtype='bool', direction=function.OUT) function.result_type = 'int32' return function @legacy_function def get_mesh_size(): function = LegacyFunctionSpecification() function.can_handle_array = True function.addParameter('nmeshx', dtype='i', direction=function.OUT) function.addParameter('nmeshy', dtype='i', direction=function.OUT) function.addParameter('nmeshz', dtype='i', direction=function.OUT) function.addParameter('index_of_grid', dtype='i', direction=function.IN) function.result_type = 'i' return function @legacy_function def get_position_of_index(): function = LegacyFunctionSpecification() function.must_handle_array = True for x in ['i','j','k']: function.addParameter(x, dtype='i', direction=function.IN) function.addParameter('index_of_grid', dtype='i', direction=function.IN, default = 1) for x in ['x','y','z']: function.addParameter(x, dtype='d', direction=function.OUT) function.addParameter('n', dtype='i', direction=function.LENGTH) function.result_type = 'i' return function @legacy_function def get_index_of_position(): """ Retrieves the i,j and k index of the grid cell containing the given x, y and z position. The cell is looked up in the grid specified by index_of_grid. """ function = LegacyFunctionSpecification() function.must_handle_array = True for x in ['x','y','z']: function.addParameter(x, dtype='d', direction=function.IN) function.addParameter('index_of_grid', dtype='i', direction=function.IN, default = 1) for x in ['i','j','k']: function.addParameter(x, dtype='d', direction=function.OUT) function.addParameter('n', dtype='i', direction=function.LENGTH) function.result_type = 'i' return function @legacy_function def get_level_of_grid(): function = LegacyFunctionSpecification() function.can_handle_array = True function.addParameter('level', dtype='i', direction=function.OUT) function.addParameter('index_of_grid', dtype='i', direction=function.IN) function.result_type = 'i' return function @legacy_function def get_cell_size_of_grid(): function = LegacyFunctionSpecification() function.can_handle_array = True function.addParameter('dx', dtype='d', direction=function.OUT) function.addParameter('dy', dtype='d', direction=function.OUT) function.addParameter('dz', dtype='d', direction=function.OUT) function.addParameter('index_of_grid', dtype='i', direction=function.IN) function.result_type = 'i' return function @legacy_function def setup_mesh(): function = LegacyFunctionSpecification() function.addParameter('nmeshx', dtype='i', direction=function.IN) function.addParameter('nmeshy', dtype='i', direction=function.IN) function.addParameter('nmeshz', dtype='i', direction=function.IN) function.addParameter('xlength', dtype='d', direction=function.IN) function.addParameter('ylength', dtype='d', direction=function.IN) function.addParameter('zlength', dtype='d', direction=function.IN) function.result_type = 'i' return function # # # @legacy_function def set_boundary_in_code(): function = LegacyFunctionSpecification() for x in ["xbound1","xbound2","ybound1","ybound2","zbound1","zbound2"]: function.addParameter(x, dtype='string', direction=function.IN) function.result_type = 'i' return function def set_boundary(self, xbound1, xbound2, ybound1, ybound2, zbound1, zbound2): map_from_amuse_to_mpiamrvac= { "reflective": "symm", "outflow":"limitinflow", "periodic":"periodic", "interface": "special", } return self.set_boundary_in_code( map_from_amuse_to_mpiamrvac.setdefault(xbound1, xbound1), map_from_amuse_to_mpiamrvac.setdefault(xbound2, xbound2), map_from_amuse_to_mpiamrvac.setdefault(ybound1, ybound1), map_from_amuse_to_mpiamrvac.setdefault(ybound2, ybound2), map_from_amuse_to_mpiamrvac.setdefault(zbound1, zbound1), map_from_amuse_to_mpiamrvac.setdefault(zbound2, zbound2) ) # # # @legacy_function def get_time(): function = LegacyFunctionSpecification() function.addParameter('time', dtype='d', direction=function.OUT) function.result_type = 'i' return function # # # @legacy_function def get_acceleration_grid_position_of_index(): function = LegacyFunctionSpecification() function.must_handle_array = True for x in ['i','j','k']: function.addParameter(x, dtype='i', direction=function.IN) #function.addParameter('index_of_grid', dtype='i', direction=function.IN, default = 1) for x in ['x','y','z']: function.addParameter(x, dtype='d', direction=function.OUT) function.addParameter('n', dtype='i', direction=function.LENGTH) function.result_type = 'i' return function @legacy_function def get_acceleration_grid_acceleration(): function = LegacyFunctionSpecification() function.must_handle_array = True for x in ['i','j','k']: function.addParameter(x, dtype='i', direction=function.IN) #function.addParameter('index_of_grid', dtype='i', direction=function.IN, default = 1) for x in ['a1','a2', 'a3']: function.addParameter(x, dtype='d', direction=function.OUT) function.addParameter('n', dtype='i', direction=function.LENGTH) function.result_type = 'i' return function @legacy_function def set_acceleration_grid_acceleration(): function = LegacyFunctionSpecification() function.must_handle_array = True for x in ['i','j','k']: function.addParameter(x, dtype='i', direction=function.IN) #function.addParameter('index_of_grid', dtype='i', direction=function.IN, default = 1) for x in ['a1','a2', 'a3']: function.addParameter(x, dtype='d', direction=function.IN) function.addParameter('n', dtype='i', direction=function.LENGTH) function.result_type = 'i' return function @legacy_function def get_acceleration_grid_size(): function = LegacyFunctionSpecification() function.can_handle_array = True function.addParameter('nmeshx', dtype='i', direction=function.OUT) function.addParameter('nmeshy', dtype='i', direction=function.OUT) function.addParameter('nmeshz', dtype='i', direction=function.OUT) function.result_type = 'i' return function @legacy_function def get_grid_acceleration(): function = LegacyFunctionSpecification() function.must_handle_array = True for x in ['i','j','k']: function.addParameter(x, dtype='i', direction=function.IN) function.addParameter('index_of_grid', dtype='i', direction=function.IN, default = 1) for x in ['ax','ay','az']: function.addParameter(x, dtype='d', direction=function.OUT) function.addParameter('number_of_points', 'i', function.LENGTH) function.result_type = 'i' return function @legacy_function def set_grid_acceleration(): function = LegacyFunctionSpecification() function.must_handle_array = True for x in ['i','j','k']: function.addParameter(x, dtype='i', direction=function.IN) for x in ['ax','ay','az']: function.addParameter(x, dtype='d', direction=function.IN) function.addParameter('index_of_grid', dtype='i', direction=function.IN, default = 1) function.addParameter('number_of_points', 'i', function.LENGTH) function.result_type = 'i' return function @legacy_function def get_hydro_state_at_point(): function = LegacyFunctionSpecification() for x in ['x','y','z']: function.addParameter(x, dtype='d', direction=function.IN) for x in ['vx','vy','vz']: function.addParameter(x, dtype='d', direction=function.IN, default = 0) for x in ['rho','rhovx','rhovy','rhovz','rhoe']: function.addParameter(x, dtype='d', direction=function.OUT) function.addParameter('npoints', dtype='i', direction=function.LENGTH) function.result_type = 'i' function.must_handle_array = True return function class MpiAmrVac(CommonCode): def __init__(self, unit_converter = None, **options): self.unit_converter = unit_converter self.stopping_conditions = StoppingConditions(self) CommonCode.__init__(self, MpiAmrVacInterface(**options), **options) self.set_parameters_filename(self.default_parameters_filename) def define_converter(self, object): if self.unit_converter is None: return object.set_converter(self.unit_converter.as_converter_from_si_to_generic()) def get_index_range_inclusive(self, index_of_grid = 1): nx, ny, nz = self.get_mesh_size(index_of_grid) return (0, nx-1, 0, ny-1, 0, nz-1) def define_properties(self, object): object.add_property('get_time', public_name = "model_time") def define_methods(self, object): object.add_method( 'evolve_model', (generic_unit_system.time,), (object.ERROR_CODE,) ) object.add_method( 'commit_parameters', (), (object.ERROR_CODE,) ) object.add_method( 'get_position_of_index', (object.INDEX, object.INDEX, object.INDEX, object.INDEX), (generic_unit_system.length, generic_unit_system.length, generic_unit_system.length, object.ERROR_CODE,) ) object.add_method( 'get_acceleration_grid_position_of_index', (object.INDEX, object.INDEX, object.INDEX), (generic_unit_system.length, generic_unit_system.length, generic_unit_system.length, object.ERROR_CODE,) ) density = generic_unit_system.density momentum = generic_unit_system.momentum_density energy = generic_unit_system.energy_density acceleration = generic_unit_system.length / generic_unit_system.time ** 2 object.add_method( 'get_acceleration_grid_size', (), (object.NO_UNIT,object.NO_UNIT,object.NO_UNIT, object.ERROR_CODE,) ) object.add_method( 'get_acceleration_grid_acceleration', (object.INDEX, object.INDEX, object.INDEX), (acceleration, acceleration, acceleration, object.ERROR_CODE,) ) object.add_method( 'set_acceleration_grid_acceleration', (object.INDEX, object.INDEX, object.INDEX, acceleration, acceleration, acceleration,), (object.ERROR_CODE,) ) object.add_method( 'set_grid_energy_density', (object.INDEX, object.INDEX, object.INDEX, energy, object.INDEX), (object.ERROR_CODE,) ) object.add_method( 'set_grid_density', (object.INDEX, object.INDEX, object.INDEX, density, object.INDEX), (object.ERROR_CODE,) ) object.add_method( 'set_grid_momentum_density', (object.INDEX, object.INDEX, object.INDEX, momentum, momentum, momentum, object.INDEX), (object.ERROR_CODE,) ) object.add_method( 'get_grid_energy_density', (object.INDEX, object.INDEX, object.INDEX, object.INDEX), ( energy, object.ERROR_CODE,) ) object.add_method( 'get_grid_density', (object.INDEX, object.INDEX, object.INDEX, object.INDEX), (density, object.ERROR_CODE,) ) object.add_method( 'get_grid_momentum_density', (object.INDEX, object.INDEX, object.INDEX, object.INDEX), ( momentum, momentum, momentum, object.ERROR_CODE,) ) object.add_method( 'refine_grid', (), (object.NO_UNIT, object.ERROR_CODE,) ) object.add_method( 'get_level_of_grid', (object.INDEX), (object.NO_UNIT, object.ERROR_CODE,) ) object.add_method( "get_gamma", (), (object.NO_UNIT, object.ERROR_CODE,) ) object.add_method( "set_gamma", (object.NO_UNIT, ), (object.ERROR_CODE,) ) object.add_method( "get_typeentropy", (), (object.NO_UNIT, object.ERROR_CODE,) ) object.add_method( "set_typeentropy", (object.NO_UNIT,), (object.ERROR_CODE,) ) object.add_method( "get_typefull1", (), (object.NO_UNIT, object.ERROR_CODE,) ) object.add_method( "set_typefull1", (object.NO_UNIT,), (object.ERROR_CODE,) ) object.add_method( "get_typepred1", (), (object.NO_UNIT, object.ERROR_CODE,) ) object.add_method( "set_typepred1", (object.NO_UNIT,), (object.ERROR_CODE,) ) object.add_method( "get_typeadvance", (), (object.NO_UNIT, object.ERROR_CODE,) ) object.add_method( "set_typeadvance", (object.NO_UNIT,), (object.ERROR_CODE,) ) object.add_method( "get_courantpar", (), (object.NO_UNIT, object.ERROR_CODE,) ) object.add_method( "set_courantpar", (object.NO_UNIT, ), (object.ERROR_CODE,) ) object.add_method( "get_mxnest", (), (object.NO_UNIT, object.ERROR_CODE,) ) object.add_method( "set_mxnest", (object.NO_UNIT, ), (object.ERROR_CODE,) ) object.add_method( 'get_time', (), (generic_unit_system.time, object.ERROR_CODE,) ) object.add_method( 'setup_mesh', (object.NO_UNIT, object.NO_UNIT, object.NO_UNIT, generic_unit_system.length, generic_unit_system.length, generic_unit_system.length, ), (object.ERROR_CODE,) ) object.add_method( 'set_boundary', (object.NO_UNIT, object.NO_UNIT, object.NO_UNIT, object.NO_UNIT, object.NO_UNIT, object.NO_UNIT,), (object.ERROR_CODE,) ) object.add_method( 'set_grid_acceleration', (object.INDEX, object.INDEX, object.INDEX, acceleration, acceleration, acceleration, object.INDEX), (object.ERROR_CODE,) ) object.add_method( 'get_grid_acceleration', (object.INDEX, object.INDEX, object.INDEX, object.INDEX), (acceleration, acceleration, acceleration, object.ERROR_CODE,) ) object.add_method( 'get_hydro_state_at_point', (generic_unit_system.length, generic_unit_system.length, generic_unit_system.length, generic_unit_system.speed, generic_unit_system.speed, generic_unit_system.speed), (generic_unit_system.density, generic_unit_system.momentum_density, generic_unit_system.momentum_density, generic_unit_system.momentum_density, generic_unit_system.energy_density, object.ERROR_CODE) ) self.stopping_conditions.define_methods(object) def define_parameters(self, object): object.add_method_parameter( "get_gamma", "set_gamma", "gamma", "ratio of specific heats used in equation of state", default_value = 1.6666666666666667 ) object.add_method_parameter( "get_typeentropy", "set_typeentropy", "entropy_type", "type of the entropy", default_value = 'nul' ) object.add_method_parameter( "get_typefull1", "set_typefull1", "spatial_discretization_method", "the spatial discretization method used for the time integration per activated grid leve", default_value = 'tvdmu' ) object.add_method_parameter( "get_typepred1", "set_typepred1", "predictor_step_discretization_method", "the precitor step discretization method (only used when integration procedure is twostep')", default_value = 'tvdmu' ) object.add_method_parameter( "get_typeadvance", "set_typeadvance", "time_integration_procedure", "time integration procedure", default_value = 'twostep' ) object.add_method_parameter( "get_courantpar", "set_courantpar", "courant_number", "CFL number", default_value = 0.7 ) object.add_caching_parameter( "setup_mesh", "nmeshx", "nx", "number of cells in the x direction", 10, ) object.add_caching_parameter( "setup_mesh", "nmeshy", "ny", "number of cells in the y direction", 10, ) object.add_caching_parameter( "setup_mesh", "nmeshz", "nz", "number of cells in the z direction", 10, ) object.add_caching_parameter( "setup_mesh", "xlength", "length_x", "length of model in the x direction", 10 | generic_unit_system.length, ) object.add_caching_parameter( "setup_mesh", "ylength", "length_y", "length of model in the x direction", 10 | generic_unit_system.length, ) object.add_caching_parameter( "setup_mesh", "zlength", "length_z", "length of model in the z direction", 10 | generic_unit_system.length, ) object.add_vector_parameter( "mesh_size", "number of cells in the x, y and z directions", ("nx", "ny", "nz") ) object.add_vector_parameter( "mesh_length", "length of the model in the x, y and z directions", ("length_x", "length_y", "length_z") ) object.add_caching_parameter( "set_boundary", "xbound1", "xbound1", "boundary conditions on first (inner, left) X boundary", "reflective", ) object.add_caching_parameter( "set_boundary", "xbound2", "xbound2", "boundary conditions on second (outer, right) X boundary", "reflective", ) object.add_caching_parameter( "set_boundary", "ybound1", "ybound1", "boundary conditions on first (inner, front) Y boundary", "reflective", ) object.add_caching_parameter( "set_boundary", "ybound2", "ybound2", "boundary conditions on second (outer, back) Y boundary", "reflective", ) object.add_caching_parameter( "set_boundary", "zbound1", "zbound1", "boundary conditions on first (inner, bottom) Z boundary", "reflective", ) object.add_caching_parameter( "set_boundary", "zbound2", "zbound2", "boundary conditions on second (outer, top) Z boundary", "reflective", ) object.add_vector_parameter( "x_boundary_conditions", "boundary conditions for the X directorion", ("xbound1", "xbound2") ) object.add_vector_parameter( "y_boundary_conditions", "boundary conditions for the Y directorion", ("ybound1", "ybound2") ) object.add_vector_parameter( "z_boundary_conditions", "boundary conditions for the Z directorion", ("zbound1", "zbound2") ) object.add_method_parameter( "get_mxnest", "set_mxnest", "maximum_number_of_grid_levels", "the maximum number of grid levels that can be used during the simulation, including the base grid level", default_value = 3 ) object.add_method_parameter( "get_time_accurate", "set_time_accurate", "time_accurate", "if false will evolve to the given time, if true will take accurate steps using courant timesteps", default_value = 3 ) object.add_method_parameter( "get_dtpar", "set_dtpar", "timestep", "if greater than zero will fix the timestep to the given value", default_value = 3 ) self.stopping_conditions.define_parameters(object) def commit_parameters(self): self.parameters.send_cached_parameters_to_code() self.overridden().commit_parameters() def get_acceleration_grid_index_range_inclusive(self): nx, ny, nz = self.get_acceleration_grid_size() return (1, nx, 1, ny, 1, nz) def define_particle_sets(self, object): object.define_grid('acceleration_grid') object.set_grid_range('acceleration_grid', 'get_acceleration_grid_index_range_inclusive') object.add_getter('acceleration_grid', 'get_acceleration_grid_position_of_index', names=('x','y','z')) object.add_getter('acceleration_grid', 'get_acceleration_grid_acceleration', names=('ax','ay','az')) object.add_setter('acceleration_grid', 'set_acceleration_grid_acceleration', names=('ax','ay','az')) def itergrids(self): n = self.get_number_of_grids() for x in range(1,n+1): yield self._create_new_grid(self.specify_grid, index_of_grid = x) def specify_grid(self, definition, index_of_grid = 1): definition.set_grid_range('get_index_range_inclusive') definition.add_getter('get_position_of_index', names=('x','y','z')) definition.add_setter('set_grid_density', names=('rho',)) definition.add_setter('set_grid_momentum_density', names=('rhovx','rhovy','rhovz')) definition.add_setter('set_grid_energy_density', names=('energy',)) definition.add_getter('get_grid_density', names=('rho',)) definition.add_getter('get_grid_momentum_density', names=('rhovx','rhovy','rhovz')) definition.add_getter('get_grid_energy_density', names=('energy',)) definition.add_getter('get_grid_acceleration', names=('ax','ay','az')) definition.add_setter('set_grid_acceleration', names=('ax','ay','az')) definition.define_extra_keywords({'index_of_grid':index_of_grid}) def define_state(self, object): CommonCode.define_state(self, object) #object.add_transition('END', 'INITIALIZED', 'initialize_code', False) object.add_transition('INITIALIZED','EDIT','commit_parameters') object.add_transition('RUN','CHANGE_PARAMETERS_RUN','before_set_parameter', False) object.add_transition('EDIT','CHANGE_PARAMETERS_EDIT','before_set_parameter', False) object.add_transition('CHANGE_PARAMETERS_RUN','RUN','recommit_parameters') object.add_transition('CHANGE_PARAMETERS_EDIT','EDIT','recommit_parameters') object.add_method('CHANGE_PARAMETERS_RUN', 'before_set_parameter') object.add_method('CHANGE_PARAMETERS_EDIT', 'before_set_parameter') object.add_method('CHANGE_PARAMETERS_RUN', 'before_get_parameter') object.add_method('CHANGE_PARAMETERS_EDIT', 'before_get_parameter') object.add_method('RUN', 'before_get_parameter') object.add_method('EDIT', 'before_get_parameter') object.add_transition('EDIT', 'RUN', 'initialize_grid') object.add_method('RUN', 'evolve_model') object.add_method('RUN', 'get_hydro_state_at_point') for state in ['EDIT', 'RUN']: for methodname in [ 'get_grid_density', 'set_grid_density', 'set_grid_energy_density', 'get_grid_energy_density', 'get_grid_momentum_density', 'set_grid_momentum_density', 'get_position_of_index', 'get_index_of_position', 'set_grid_scalar', 'get_grid_scalar', 'get_mesh_size', 'get_acceleration_grid_acceleration', 'set_acceleration_grid_acceleration', 'get_acceleration_grid_size', 'get_mesh_size', 'get_number_of_grids', 'get_level_of_grid', 'refine_grid' ]: object.add_method(state, methodname) self.stopping_conditions.define_state(object) ``` #### File: community/ph4/test_sync.py ```python import math import collections import getopt import numpy import os import random import sys import unittest from time import clock as cputime from time import time as wallclocktime from amuse.community.ph4.interface import ph4 as grav from amuse.units import nbody_system from amuse.units import units from amuse import datamodel from amuse.datamodel import particle_attributes as pa from amuse.rfi.core import is_mpd_running from amuse.ic.plummer import new_plummer_model from amuse.ic.salpeter import new_salpeter_mass_distribution_nbody def print_log(pre, time, gravity, E0 = 0.0 | nbody_system.energy, cpu0 = 0.0, wall0 = 0.0): # Standard log output. cpu = cputime() wall = wallclocktime() N = len(gravity.particles) M = gravity.total_mass U = gravity.potential_energy T = gravity.kinetic_energy Etop = T + U E = Etop if E0 == 0 | nbody_system.energy: E0 = E Rvir = -0.5*M*M/U Q = -T/U com = pa.center_of_mass(gravity.particles) comv = pa.center_of_mass_velocity(gravity.particles) if N >= 100: dcen,rcore,rhocore \ = pa.densitycentre_coreradius_coredens(gravity.particles) cmx,cmy,cmz = dcen lagr,mf = pa.LagrangianRadii(gravity.particles, cm=dcen) # no units! print '' print pre+"time=", time.number print pre+"cpu=", cpu-cpu0 print pre+"wall=", wall-wall0 print pre+"Ntot=", N print pre+"mass=", M.number print pre+"Etot=", E.number print pre+"dE/E=", E/E0 - 1 print pre+"Rvir=", Rvir.number print pre+"Qvir=", Q cmx,cmy,cmz = com print pre+"cmpos[3]= %.8f %.8f %.8f" % (cmx.number, cmy.number, cmz.number) cmx,cmy,cmz = comv print pre+"cmvel[3]= %.8f %.8f %.8f" % (cmx.number, cmy.number, cmz.number) if N >= 100: cmx,cmy,cmz = dcen print pre+"dcpos[3]= %.8f %.8f %.8f" \ % (cmx.number, cmy.number, cmz.number) print pre+"Rcore=", rcore.number print pre+"Mlagr[9]=", for m in mf: print "%.4f" % (m), print '' print pre+"Rlagr[9]=", for r in lagr.number: print "%.8f" % (r), print '' sys.stdout.flush() return E,cpu,wall def run_ph4(infile = None, number_of_stars = 40, end_time = 10 | nbody_system.time, delta_t = 1 | nbody_system.time, n_workers = 1, use_gpu = 1, gpu_worker = 1, gpu_id = -1, accuracy_parameter = 0.1, softening_length = -1 | nbody_system.length, manage_encounters = 1): if infile != None: print "input file =", infile print "end_time =", end_time.number print "delta_t =", delta_t.number print "n_workers =", n_workers print "use_gpu =", use_gpu print "manage_encounters =", manage_encounters print "initializing the gravity module" sys.stdout.flush() # Note that there are actually really three GPU options to test: # # 1. use the GPU code and allow GPU use (default) # 2. use the GPU code but disable GPU use (-g) # 3. use the non-GPU code (-G) #print "1"; sys.stdout.flush() gpu = 0 if gpu_worker == 1: try: gravity = grav(number_of_workers = n_workers, redirection = "none", mode = "gpu") # debugger='valgrind') gpu = 1 except Exception as ex: print \ '*** GPU worker code not found. Reverting to non-GPU code. ***' gpu = 0 if gpu == 0: gravity = grav(number_of_workers = n_workers, redirection = "none") # debugger='valgrind') #print "2"; sys.stdout.flush() gravity.initialize_code() #print "3"; sys.stdout.flush() gravity.parameters.set_defaults() gravity.parameters.gpu_id = gpu_id #----------------------------------------------------------------- #print "4"; sys.stdout.flush() print "making a Plummer model" stars = new_plummer_model(number_of_stars) id = numpy.arange(number_of_stars) stars.id = id+1 print "setting particle masses and radii" stars.mass = (1.0 / number_of_stars) | nbody_system.mass if 0: scaled_mass = new_salpeter_mass_distribution_nbody(number_of_stars) stars.mass = scaled_mass stars.radius = 0.0 | nbody_system.length print "centering stars" stars.move_to_center() if 0: print "scaling stars to virial equilibrium" stars.scale_to_standard(smoothing_length_squared = gravity.parameters.epsilon_squared) time = 0.0 | nbody_system.time sys.stdout.flush() #----------------------------------------------------------------- #print "5"; sys.stdout.flush() if softening_length == -1 | nbody_system.length: eps2 = 0.25*(float(number_of_stars))**(-0.666667) \ | nbody_system.length**2 else: eps2 = softening_length*softening_length #print "6"; sys.stdout.flush() gravity.parameters.timestep_parameter = accuracy_parameter gravity.parameters.epsilon_squared = eps2 gravity.parameters.use_gpu = use_gpu gravity.parameters.manage_encounters = manage_encounters print "adding particles" # print stars sys.stdout.flush() gravity.particles.add_particles(stars) gravity.commit_particles() print '' print "number_of_stars =", number_of_stars sys.stdout.flush() E0,cpu0,wall0 = print_log('', time, gravity) # Channel to copy values from the code to the set in memory. channel = gravity.particles.new_channel_to(stars) stopping_condition = gravity.stopping_conditions.collision_detection stopping_condition.enable() #----------------------------------------------------------------- cpu0 = cputime() t0 = 0. pi = math.pi times = [1., 2., pi, 4*pi/3, 5., 2*pi, 2*pi + pi/100, 2*pi + pi/5, 7., 8., 3*pi, 10.] gravity.parameters.force_sync = 1 # stays set until explicitly unset for t in times: time = t|nbody_system.time print "\nEvolving to time", time sys.stdout.flush() gravity.parameters.block_steps = 0 gravity.parameters.total_steps = 0 gravity.evolve_model(time) dt = t - t0 t0 = t cpu = cputime() dcpu = cpu - cpu0 cpu0 = cpu # Ensure that the stars list is consistent with the internal # data in the module. ls = len(stars) # Update the bookkeeping: synchronize stars with the module data. try: gravity.update_particle_set() gravity.particles.synchronize_to(stars) except: pass # Copy values from the module to the set in memory. channel.copy() # Copy the index (ID) as used in the module to the id field in # memory. The index is not copied by default, as different # codes may have different indices for the same particle and # we don't want to overwrite silently. channel.copy_attribute("index_in_code", "id") if stopping_condition.is_set(): star1 = stopping_condition.particles(0)[0] star2 = stopping_condition.particles(1)[0] print '\nstopping condition set at time', \ gravity.get_time().number,'for:\n' print star1 print '' print star2 print '' raise Exception("no encounter handling") if len(stars) != ls: if 0: print "stars:" for s in stars: print " ", s.id.number, s.mass.number, \ s.x.number, s.y.number, s.z.number else: print "number of stars =", len(stars) sys.stdout.flush() print_log('', time, gravity, E0, cpu0, wall0) print '@@@' print '@@@ t =', time.number, ' dt =', dt print '@@@ sync_time =', gravity.parameters.sync_time.number print '@@@ dcpu/dt =', dcpu/dt nb = gravity.parameters.block_steps ns = gravity.parameters.total_steps print '@@@ d(block_steps) =', nb, ' #/dt =', nb/dt print '@@@ d(total steps) =', ns, ' #/dt =', ns/dt #print stars sys.stdout.flush() #----------------------------------------------------------------- print '' gravity.stop() if __name__ == '__main__': infile = None N = 100 t_end = 5.0 | nbody_system.time delta_t = 1.0 | nbody_system.time n_workers = 1 use_gpu = 1 gpu_worker = 1 gpu_id = -1 accuracy_parameter = 0.1 softening_length = 0.01 | nbody_system.length random_seed = -1 manage_encounters = 1 try: opts, args = getopt.getopt(sys.argv[1:], "a:c:d:e:f:gGi:n:s:t:w:") except getopt.GetoptError, err: print str(err) sys.exit(1) for o, a in opts: if o == "-a": accuracy_parameter = float(a) elif o == "-c": manage_encounters = int(a) elif o == "-d": delta_t = float(a) | nbody_system.time elif o == "-e": softening_length = float(a) | nbody_system.length elif o == "-f": infile = a elif o == "-g": use_gpu = 0 elif o == "-G": use_gpu = 0 gpu_worker = 0 elif o == "-i": gpu_id = int(a) elif o == "-n": N = int(a) elif o == "-s": random_seed = int(a) elif o == "-t": t_end = float(a) | nbody_system.time elif o == "-w": n_workers = int(a) else: print "unexpected argument", o if random_seed <= 0: numpy.random.seed() random_seed = numpy.random.randint(1, pow(2,31)-1) numpy.random.seed(random_seed) print "random seed =", random_seed #os.system('env') assert is_mpd_running() run_ph4(infile, N, t_end, delta_t, n_workers, use_gpu, gpu_worker, gpu_id, accuracy_parameter, softening_length, manage_encounters) ``` #### File: ph4/util/run_ph4.py ```python import collections import getopt import numpy import os import random import sys import pickle import math import unittest from time import clock from amuse.community.ph4.interface import ph4 as grav from amuse.community.smalln.interface import SmallN from amuse.community.kepler.interface import Kepler from amuse.couple import multiples from amuse.units import nbody_system from amuse.units import units from amuse.units import quantities from amuse import datamodel from amuse.datamodel import particle_attributes as pa from amuse.rfi.core import is_mpd_running from amuse.ic.plummer import new_plummer_model from amuse.ic.salpeter import new_salpeter_mass_distribution_nbody from amuse import io from utils import * def handle_callback (time, star1, star2): print '' print ' callback' print ' ', time print ' ', star1 print ' ', star2 print '' return True # NOTE: returning False will skip this encounter def run_ph4(initial_file = None, end_time = 0 | nbody_system.time, input_delta_t = 0.0 | nbody_system.time, input_Delta_t = 1.0 | nbody_system.time, input_timestep_parameter = 0.0, input_softening_length = -1.0 | nbody_system.length, n_workers = 1, use_gpu = 1, gpu_worker = 1, use_multiples = True, save_restart = False, strict_restart = False ): # Read an N-body system from a file and run it to the specified # time using the specified steps. Print log information and # optionally save a restart file after every step. If the # specified time is less than the time in the initial file, don't # take a step, but still print out the log info. (Hence run_ph4 # also functions like Starlab sys_stats.) print "initial_file =", initial_file print "end_time =", end_time.number print "n_workers =", n_workers print "use_gpu =", use_gpu print "use_multiples =", use_multiples print "save_restart =", save_restart print "strict_restart =", strict_restart print "\ninitializing the gravity module" sys.stdout.flush() init_smalln() # Note that there are actually three GPU options: # # 1. use the GPU code and allow GPU use (default) # 2. use the GPU code but disable GPU use (-g) # 3. use the non-GPU code (-G) if gpu_worker == 1: try: gravity = grav(number_of_workers = n_workers, redirection = "none", mode = "gpu") except Exception as ex: gravity = grav(number_of_workers = n_workers, redirection = "none") else: gravity = grav(number_of_workers = n_workers, redirection = "none") gravity.initialize_code() gravity.parameters.set_defaults() kep = Kepler(None, redirection = "none") kep.initialize_code() stars, time, delta_t, E0, cpu0, multiples_code \ = read_state_from_file(initial_file, gravity, kep) # Allow overrides of the restored data (OK for delta_t, NOT # recommended for timestep_parameter or softening_length). Note # that reading the state also commits the particles, and hence # calculates the initial time steps. Probably should reinitialize # if timestep_parameter or softening_length are changed. TODO if input_delta_t.number > 0: if input_delta_t != delta_t: print 'modifying delta_t from stored', delta_t, \ 'to input', input_delta_t delta_t = input_delta_t else: print "using stored delta_t =", delta_t print input_timestep_parameter print gravity.parameters.timestep_parameter if input_timestep_parameter > 0: if input_timestep_parameter != gravity.parameters.timestep_parameter: print 'modifying timestep_parameter from stored', \ gravity.parameters.timestep_parameter, \ 'to input', input_timestep_parameter gravity.parameters.timestep_parameter \ = input_timestep_parameter else: print 'timestep_parameter =', gravity.parameters.timestep_parameter if input_softening_length.number >= 0: if input_softening_length*input_softening_length \ != gravity.parameters.epsilon_squared: print 'modifying softening_length from stored', \ gravity.parameters.epsilon_squared.sqrt(), \ 'to input', input_softening_length gravity.parameters.epsilon_squared \ = softening_length*softening_length else: print 'softening length =', gravity.parameters.epsilon_squared.sqrt() gravity.parameters.use_gpu = use_gpu gravity.parameters.begin_time = time if 0: print '' print gravity.parameters.begin_time print stars.mass #print stars.position for s in stars: print '%.18e %.18e %.18e' % (s.x.number, s.y.number, s.z.number) print stars.velocity channel = gravity.particles.new_channel_to(stars) if use_multiples: stopping_condition = gravity.stopping_conditions.collision_detection stopping_condition.enable() gravity.parameters.force_sync = 1 # end exactly at the specified time pre = "%%% " print_log(pre, time, multiples_code, E0, cpu0) tsave = time + Delta_t save_file = '' while time < end_time: time += delta_t multiples_code.evolve_model(time) #, callback=handle_callback) # Copy values from the module to the set in memory. channel.copy() # Copy the index (ID) as used in the module to the id field in # memory. The index is not copied by default, as different # codes may have different indices for the same particle and # we don't want to overwrite silently. channel.copy_attribute("index_in_code", "id") # Write log information. print_log(pre, time, multiples_code, E0, cpu0) sys.stdout.flush() # Optionally create a restart file. if save_restart and time >= tsave: #save_file = 't='+'{:07.2f}'.format(time.number) # not in Python 2.6 save_file = 't=%07.2f'%time.number write_state_to_file(time, stars, gravity, multiples_code, save_file, delta_t, E0, cpu0) sys.stdout.flush() tsave += Delta_t if strict_restart: break gravity.stop() kep.stop() stop_smalln() return time, save_file def print_help(): print "Options:" print " -d set log output interval [1.0]" print " -h print this help message" print " -i set initial file name [t=0000.0]" print " -m suppress multiples [False]" print " -s save restart files [False]" print " -t set final time [0.0]" if __name__ == '__main__': initial_file = 't=0000.0' t_end = 0.0 | nbody_system.time # default is to print log and exit delta_t = 0.0 | nbody_system.time # log output time scale Delta_t = 1.0 | nbody_system.time # restart output time scale Delta_t_set = False timestep_parameter = -1 softening_length = -1 | nbody_system.length n_workers = 1 use_gpu = 1 gpu_worker = 1 use_multiples = True save_restart = False strict_restart = False try: opts, args = getopt.getopt(sys.argv[1:], "d:D:hi:msSt:") except getopt.GetoptError, err: print str(err) sys.exit(1) for o, a in opts: if o == "-d": delta_t = float(a) | nbody_system.time elif o == "-D": Delta_t = float(a) | nbody_system.time Delta_t_set = True elif o == "-h": print_help() sys.exit(1) elif o == "-i": initial_file = a elif o == "-m": use_multiples = False elif o == "-s": save_restart = True elif o == "-S": strict_restart = True save_restart = True elif o == "-t": t_end = float(a) | nbody_system.time else: print "unexpected argument", o print_help() sys.exit(1) if not save_restart: strict_restart = False if strict_restart: save_restart = True if not Delta_t_set: Delta_t = delta_t # Code implicitly assumes that delta_t and Delta_t are # commensurate. Check that here. if math.fmod(Delta_t.number, delta_t.number) != 0: x = math.floor(Delta_t/delta_t) Delta_t = x*delta_t print 'reset Delta_t to', Delta_t assert is_mpd_running() # In non-strict_mode, OK to let run_ph4 loop over steps. If # strict_restart is True, handle the loop here and force a new # restart at every step -- seems substantially slower, but # should be reproducible. if (not strict_restart): run_ph4(initial_file, t_end, delta_t, Delta_t, timestep_parameter, softening_length, n_workers, use_gpu, gpu_worker, use_multiples, save_restart, strict_restart) else: t = -1.0 | nbody_system.time while t < t_end: t, initial_file = run_ph4(initial_file, t_end, delta_t, Delta_t, timestep_parameter, softening_length, n_workers, use_gpu, gpu_worker, use_multiples, save_restart, strict_restart) delta_t = 0.0 | nbody_system.time timestep_parameter = -1 softening_length = -1 | nbody_system.length print '' ``` #### File: community/sei/test_sei.py ```python from amuse.test.amusetest import TestWithMPI from amuse.units import nbody_system from amuse.units import units import os import sys import numpy import math from amuse.community.sei.interface import SeiInterface from amuse.community.sei.interface import Sei from amuse import datamodel class TestSeiInterface(TestWithMPI): def test0(self): instance = SeiInterface() instance.initialization() instance.set_state(0,1,0,0,0,0,0) for i in range(0,10): instance.evolve(i) print instance.get_state(0) instance.stop() class TestSei(TestWithMPI): def test0(self): convert_nbody = nbody_system.nbody_to_si(1.0 | units.MSun, 1 | units.AU) particle = datamodel.Particles(1) particle.position = [1.0, 0.0, 0.0,]|units.AU particle.velocity = [0.0, 2.0*3.1415926535*1.0/365, 0.0] | units.AUd sei = Sei(convert_nbody) sei.initialization() sei.particles.add_particles(particle) print sei.particles.position.x.value_in(units.AU) for i in range(365): sei.evolve_model(i|units.day) print sei.particles.position.x.value_in(units.AU) ``` #### File: amuse/ext/basicgraph.py ```python class UnionFind(object): """Union-find data structure. Each unionFind instance X maintains a family of disjoint sets of hashable objects, supporting the following two methods: - X[item] returns a name for the set containing the given item. Each set is named by an arbitrarily-chosen one of its members; as long as the set remains unchanged it will keep the same name. If the item is not yet part of a set in X, a new singleton set is created for it. - X.union(item1, item2, ...) merges the sets containing each item into a single larger set. If any item is not yet part of a set in X, it is added to X as one of the members of the merged set. """ def __init__(self): """Create a new empty union-find structure.""" self.weights = {} self.parents = {} def __getitem__(self, object): """Find and return the name of the set containing the object.""" # check for previously unknown object if object not in self.parents: self.parents[object] = object self.weights[object] = 1 return object # find path of objects leading to the root path = [object] root = self.parents[object] while root != path[-1]: path.append(root) root = self.parents[root] # compress the path and return for ancestor in path: self.parents[ancestor] = root return root def __iter__(self): """Iterate through all items ever found or unioned by this structure.""" return iter(self.parents) def union(self, *objects): """Find the sets containing the objects and merge them all.""" roots = [self[x] for x in objects] heaviest = max([(self.weights[r],r) for r in roots], key = lambda x: x[0])[1] for r in roots: if r != heaviest: self.weights[heaviest] += self.weights[r] self.parents[r] = heaviest def sets(self): sets={} for v in self.parents: sets.setdefault(self[v],set()).add(v) return sets.values() class Graph(dict): def add_edge(self, n1, n2, w): if callable(w): w=w(n1,n2) self.setdefault(n1, {}).update({n2: w}) self.setdefault(n2, {}).update({n1: w}) def remove_edge(self, n1, n2): self[n1].pop(n2) self[n2].pop(n1) def add_node(self,n): self.setdefault(n, {}) def all_edges(self): return [(self[u][v],u,v) for u in self for v in self[u]] def MinimumSpanningTree(G): """ Return the minimum spanning tree of an undirected graph G. G should be represented in such a way that G[u][v] gives the length of edge u,v, and G[u][v] should always equal G[v][u]. The tree is returned as a list of edges. """ # Kruskal's algorithm: sort edges by weight, and add them one at a time. # We use Kruskal's algorithm, first because it is very simple to # implement once UnionFind exists, and second, because the only slow # part (the sort) is sped up by being built in to Python. subtrees = UnionFind() tree = [] edges = [(G[u][v],u,v) for u in G for v in G[u]] edges.sort(key=lambda x:x[0]) for W,u,v in edges: if subtrees[u] != subtrees[v]: tree.append((W,u,v)) subtrees.union(u,v) return tree def MinimumSpanningTreeFromEdges(edges): """ Return the minimum spanning tree of an undirected graph G. This version runs directly from an edgelist. An edge is a triple (w,u,v), such that u,v are nodes, w is the length of the edge. The tree is returned as a list of edges. """ # Kruskal's algorithm: sort edges by weight, and add them one at a time. # We use Kruskal's algorithm, first because it is very simple to # implement once UnionFind exists, and second, because the only slow # part (the sort) is sped up by being built in to Python. subtrees = UnionFind() tree = [] edges.sort(key=lambda x:x[0]) for W,u,v in edges: if subtrees[u] != subtrees[v]: tree.append((W,u,v)) subtrees.union(u,v) return tree def ConnectedComponents(G): """ Return the connected components of a graph. G should be represented in such a way that G[u] gives the edges from u in a way that and if v in G[u] than u in G[v]. the connected components are returned as sets of nodes. """ u=UnionFind() for v in G: nset=set(G[v]) nset.add(v) u.union(*nset) return u.sets() def ConnectedComponentsFromEdges(edges): """ Return the connected components of a graph from a list of egdes. the connected components are returned as sets of nodes. note this does not find singletons. """ u=UnionFind() for e in edges: u.union(e[1],e[2]) return u.sets() if __name__=="__main__": graph = Graph() graph.add_edge(0, 1, 1.0) graph.add_edge(1, 2, 1.0) graph.add_edge(2, 0, 1.0) graph.add_edge(3, 4, 1.0) graph.add_edge(4, 5, 1.0) graph.add_edge(5, 3, 1.0) print graph[0] first, second = ConnectedComponents(graph) print first print second print MinimumSpanningTree(graph) ``` #### File: amuse/ext/cosmo.py ```python import numpy from amuse.units import units, generic_unit_system from amuse.units.quantities import to_quantity from amuse.datamodel import Particles from amuse.support.exceptions import AmuseException def findbin(ylist,y): s=1 if ylist[0]>=ylist[-1]: s=-1 if s*y <= s*ylist[0]: return -1 if s*y >= s*ylist[-1]: return len(ylist) up=len(ylist)-1 low=0 while up-low>1: b=(low+up)/2 if s*y < s*ylist[b]: up=b else: low=b return up class Hermitelookup(object): def __init__(self,xlist,ylist,yderiv): self.xlist=xlist self.ylist=ylist self.yderiv=yderiv def interpolatecubic(self,x, b): if b <= 0: return self.ylist[0] if b > len(self.ylist)-1: return self.ylist[-1] dx=self.xlist[b]-self.xlist[b-1] dy=self.ylist[b]-self.ylist[b-1] if dx==0.: return (self.ylist[b-1]+self.ylist[b])/2 y1=self.ylist[b-1] yd2=self.yderiv[b] yd1=self.yderiv[b-1] u=(x-self.xlist[b-1])/(self.xlist[b]-self.xlist[b-1]) return u**3*(-2*dy+dx*(yd1+yd2))+u**2*(3*dy-dx*(2*yd1+yd2))+dx*yd1*u+y1 def evaluate(self,x): return self.interpolatecubic(x,findbin(self.xlist,x)) class Cosmology(object): def __init__(self, # default=fifth year wmap+BAO+SN parameters, hinshaw 2008 omega=1., omegal = 0.726, omegak = 0., omegar = 8.37e-5, # 4.165E-5/(h*h) includes 3 massless neutrino species, T0 = 2.72528 h = 0.705, sigma8 = 0.812, n=1000,amax=1.): self.omega=omega self.omegal=omegal self.omegar=omegar self.omegak=omegak self.hubble0=h*(100 | units.kms/units.Mpc) self.omegam = omega - (omegak + omegar + omegal) self.n=n a=amax*(numpy.array(range(self.n+1))/float(self.n))**2 t=[0.] dtda=[0.] dadt=[0.] for i in range(1,self.n+1): _t=t[-1]+1./6.*( self.invfriedmanint(a[i])+ self.invfriedmanint(a[i-1])+ 4*self.invfriedmanint((a[i]+a[i-1])/2) )*(a[i]-a[i-1]) t.append( _t ) dtda.append(self.invfriedmanint(a[i])) dadt.append(1./dtda[-1]) self.a=a self.t=numpy.array(t) self.dtda=numpy.array(dtda) self.dadt=numpy.array(dadt) self.age_lookup=Hermitelookup(self.a,self.t,self.dtda) self.a_lookup=Hermitelookup(self.t,self.a,self.dadt) def invfriedmanint(self,a): return a/(self.omegam*a+self.omegar+self.omegal*a**4+self.omegak*a**2)**0.5 def hubble(self,a): return self.hubble0*self.dadtau(a)/a def dadtau(self,a): return (self.omegam/a+self.omegar/a**2+self.omegal*a**2+self.omegak)**0.5 def d2adtau2(self,a): return -1./2.*self.omegam/a**2-self.omegar/a**3+self.omegal*a def agefromz(self,z): return self.agefroma(1./(z+1.)) def taufromz(self,z): return self.taufroma(1./(z+1.)) def agefroma(self,a): return (self.age_lookup.evaluate(a)/self.hubble0) def taufroma(self,a): return self.age_lookup.evaluate(a) def afromage(self,age): return self.a_lookup.evaluate(age*self.hubble0) def afromtau(self,tau): return self.a_lookup.evaluate(tau) def convert_comoving_to_physical(original, redshift=0.0, hubble_parameter=1.0, attribute_names=None): """ Converts quantities or particle sets from comoving coordinates to physical coordinates. In comoving coordinates, changes in positions due to the expansion of the universe are corrected for, by dividing by the scale factor 'a': a = 1 / (1 + z). This function will undo this correction for all quantities with units that are (derived from) length units (e.g. position, velocity, energy, but not time or mass). Optionally, a value for the Hubble parameter (value of Hubble constant in units of 100 km/s/Mpc) can be supplied. If so, the units of 'original' are assumed to be based on length/h, mass/h, and time/h, instead of length, mass, and time, respectively. These factors will be divided out in the result """ if isinstance(original, Particles): copy = original.copy() if attribute_names is None: attribute_names = copy.get_attribute_names_defined_in_store() for attribute in attribute_names: setattr(copy, attribute, convert_quantity_from_comoving_to_physical( getattr(copy, attribute), redshift, hubble_parameter)) return copy elif hasattr(original, "unit"): return convert_quantity_from_comoving_to_physical(original, redshift, hubble_parameter) else: raise AmuseException("Can't convert instance of {0} from comoving to physical " "coordinates (only Particles or Quantity supported)".format(original.__class__)) def convert_quantity_from_comoving_to_physical(original, redshift, hubble_parameter=1.0): for (exponent, unit) in to_quantity(original).unit.base: if unit is units.m or unit is generic_unit_system.length: return original * (1 / (1.0 + redshift))**exponent return original if __name__=="__main__": cosmo=Cosmology(amax=2) print cosmo.agefromz(0.).in_(units.Myr) print cosmo.agefroma(1.).in_(units.Gyr) print cosmo.afromage(cosmo.agefroma(1.5)) ``` #### File: amuse/ext/static_potentials.py ```python import numpy from amuse.units import units, constants, quantities from amuse.datamodel import Particle, Particles from amuse.support.exceptions import AmuseException from StringIO import StringIO class Abstract_Potential(object): def get_gravity_at_point(self, eps, x,y,z): """ derive the gravity from the potential """ phi_0 = self.get_potential_at_point(eps, x,y,z) dpos = 0.001*(x**2+y**2+z**2).sqrt() phi_dx = self.get_potential_at_point(0,x+dpos,y,z) - phi_0 phi_dy = self.get_potential_at_point(0,x,y+dpos,z) - phi_0 phi_dz = self.get_potential_at_point(0,x,y, z+dpos) - phi_0 return phi_dx/dpos, phi_dy/dpos, phi_dz/dpos def get_potential_at_point(self, eps, x, y, z): """ Abstract function, to be overwritten by subclass """ pass def flattened_potential(self, x, y, z, a, b, mass): """ Following eq. 2.69a of B&T a=0 gives plummer potential b=0 gives Kuzmin's potential for razor-thin disc """ r_squared = x**2+y**2 return constants.G * mass / (r_squared + (a + (z**2 + b**2).sqrt())**2).sqrt() def power_law_potential(self, r, alpha, r_0, mass_0): """ Following eq. 2.62 of B&T """ rho_0 = mass_0 / (4./3. * numpy.pi * r_0**3) phi_0 = - constants.G * mass_0 / r_0 v_circ_squared = 4 * numpy.pi * constants.G * rho_0 * r_0**alpha / (3 - alpha) if alpha == 2: phi_minus_phi_0 = - v_circ_squared * numpy.log(r/r_0) else: phi_minus_phi_0 = - v_circ_squared * (r_0**(2-alpha) - r**(2-alpha))/(alpha-2) return phi_minus_phi_0 + phi_0 def point_mass_potential(self, r, mass): """ See eq. 2.34 of B&T """ return -constants.G * mass / r def point_mass_gravity(self, r, mass, unit_vector): """ See eq. 2.27a of B&T """ return -constants.G * mass / r**2 * unit_vector class Disc_Bulge_Halo_Potential(Abstract_Potential): def halo_potential(self, x,y,z, Mc, Rc): """ TODO: Find the source for this potential -> McMillan & <NAME> 2000?""" r=(x**2+y**2+z**2).sqrt() rr = (r/Rc) return -constants.G * (Mc/Rc)*(0.5*numpy.log(1 +rr**2) + numpy.arctan(rr)/rr) def get_potential_at_point(self, eps, x, y, z): disk = self.flattened_potential(x,y,z, 0.0|units.kpc, 0.277|units.kpc, 1.12E+10|units.MSun) bulge = self.flattened_potential(x,y,z, 3.7|units.kpc, 0.20|units.kpc, 8.07E+10|units.MSun) halo = self.halo_potential(x,y,z, Mc=5.0E+10|units.MSun, Rc=6.0|units.kpc) return disk + bulge + halo class Galactic_Center_Potential_Kruijssen(Abstract_Potential): """ Following Kruijssen et al 2014, which uses the enclosed mass profile from Launhardt et al 2002. Note that the mass profile only extends to 487.9 parsec from the galactic center, (and only to 487.9 * 0.63 parsec in the z direction). Outside this range, a different potential should be used. """ def __init__(self, q=0.63): self.q = q self.load_table() def load_table(self, rescale=True): table = """ # enclosed mass profile from Launhardt et al 2002, # recreated and provided by Kruijssen 2014 # radius enclosed mass # (parsec) (MSun) 0.0 0.0 0.6261 3298000 0.6945 3429000 0.7751 3636000 0.8756 3855000 0.9712 4088000 1.077 4335000 1.187 4552000 1.293 4826000 1.408 5019000 1.534 5374000 1.671 5754000 1.820 6101000 1.994 6469000 2.198 6995000 2.424 7563000 2.705 8178000 2.964 8842000 3.268 9561000 3.625 1.033E7 3.996 1.128E7 4.406 1.232E7 4.798 1.332E7 5.131 1.413E7 5.487 1.498E7 6.013 1.558E7 6.752 1.635E7 7.489 1.717E7 8.409 1.803E7 9.327 1.894E7 10.28 2.028E7 11.54 2.214E7 13.04 2.441E7 14.91 2.718E7 17.16 3.026E7 19.98 3.402E7 22.99 3.939E7 26.13 4.516E7 29.35 5.229E7 32.35 5.995E7 35.02 6.806E7 38.61 8.036E7 43.09 9.865E7 47.51 1.199E8 51.74 1.429E8 57.75 1.789E8 64.84 2.329E8 71.92 2.973E8 81.25 3.947E8 91.79 5.188E8 99.97 6.246E8 109.5 7.743E8 120.0 9.142E8 133.9 1.068E9 152.2 1.237E9 179.5 1.489E9 206.5 1.741E9 243.4 2.056E9 283.5 2.289E9 332.3 2.573E9 382.3 2.893E9 413.8 3.098E9 456.2 3.449E9 487.9 3.694E9 1e6 3.694E9 """ stream = StringIO(table) radius, enclosed_mass = numpy.loadtxt(stream, unpack=True) if rescale: """ See footnote 18 at the bottom of page 1076 of Kruijssen """ factor = 8.3/8.5 radius *= factor enclosed_mass *= factor**2 self.radius = radius | units.parsec self.enclosed_mass_profile = enclosed_mass | units.MSun def enclosed_mass(self, r): try: index = quantities.searchsorted(self.radius, r) except ValueError: """ This error is usually thrown when r has dimension > 1 """ shape = r.shape r_flat = r.flatten() index = quantities.searchsorted(self.radius, r_flat) index.reshape(shape) mass_below = self.enclosed_mass_profile[index-1] mass_above = self.enclosed_mass_profile[index] radius_below = self.radius[index-1] radius_above = self.radius[index] # Linear interpolation in log space log_m_over_mb = numpy.log(mass_above/mass_below) * numpy.log(r/radius_below) / numpy.log(radius_above/radius_below) enclosed_mass = numpy.nan_to_num(numpy.exp(log_m_over_mb)) * mass_below return enclosed_mass def get_potential_at_point(self, eps, x, y, z): """ Note that this potential is not entirely consistent with get_gravity_at_point (which should be used) because there a second coordinate transformation is used to flatten the "potential". """ r = (x**2 + y**2 + z**2/self.q**2).sqrt() mass = self.enclosed_mass(r) return self.point_mass_potential(r, mass) def get_gravity_at_point(self, eps, x,y,z): """ Overwrites the default to add a second coordinate transformation. """ r = (x**2 + y**2 + z**2/self.q**2).sqrt() mass = self.enclosed_mass(r) unit_vector = []|x.unit for var in (x, y, z): unit_vector.append(var) unit_vector = unit_vector / (x**2 + y**2 + z**2).sqrt() unit_vector[2] *= 1./self.q**2 return self.point_mass_gravity(r, mass, unit_vector) class Position_In_Potential(Abstract_Potential): """ Wrapper around any other potential that has a test particle. Any call to get_potential_at_point will shift the coordinates to put the center on the location of that test particle. The particle is put in a Particles set to allow channels to be used, however, only a single particle is allowed at a time. """ def __init__(self, potential, particle=None): self.potential = potential if particle is None: particle = Particle() particle.position = [0., 0., 0.] | units.parsec particle.velocity = [0., 0., 0.] | units.kms self.particles = Particles() self.particles.add_particle(particle) @property def particle(self): return self.particles[0] @particle.setter def particle(self, particle): self.particles.remove_particles(self.particles) self.particles.add_particle(particle) def get_potential_at_point(self, eps, x, y, z): px, py, pz = self.particle.position return self.potential.get_potential_at_point(eps, x+px, y+py, z+pz) ``` #### File: amuse/ic/plummer.py ```python import numpy import numpy.random from math import pi, sqrt from amuse.units import nbody_system from amuse import datamodel __all__ = ["new_plummer_sphere", "new_plummer_model"] class MakePlummerModel(object): def __init__(self, number_of_particles, convert_nbody = None, radius_cutoff = 22.8042468, mass_cutoff = 0.999, do_scale = False, random_state = None, random = None): self.number_of_particles = number_of_particles self.convert_nbody = convert_nbody self.mass_cutoff = min(mass_cutoff, self.calculate_mass_cuttof_from_radius_cutoff(radius_cutoff)) self.do_scale = do_scale if not random_state == None: print "DO NOT USE RANDOM STATE" self.random_state = None if random is None: self.random = numpy.random else: self.random = random def calculate_mass_cuttof_from_radius_cutoff(self, radius_cutoff): if radius_cutoff > 99999: return 1.0 scale_factor = 16.0 / (3.0 * pi) rfrac = radius_cutoff * scale_factor denominator = pow(1.0 + rfrac ** 2, 1.5) numerator = rfrac ** 3 return numerator/denominator def calculate_radius(self, index): mass_min = (index * self.mass_cutoff) / self.number_of_particles mass_max = ((index+1) * self.mass_cutoff) / self.number_of_particles random_mass_fraction = self.random.uniform(mass_min, mass_max) radius = 1.0 / sqrt( pow (random_mass_fraction, -2.0/3.0) - 1.0) return radius def calculate_radius_uniform_distribution(self): return 1.0 / numpy.sqrt( numpy.power(self.random.uniform(0,self.mass_cutoff,(self.number_of_particles,1)), -2.0/3.0) - 1.0) def new_positions_spherical_coordinates(self): pi2 = pi * 2 radius = self.calculate_radius_uniform_distribution() theta = numpy.arccos(self.random.uniform(-1.0,1.0, (self.number_of_particles,1))) phi = self.random.uniform(0.0,pi2, (self.number_of_particles,1)) return (radius,theta,phi) def new_velocities_spherical_coordinates(self, radius): pi2 = pi * 2 x,y = self.new_xy_for_velocity() velocity = x * sqrt(2.0) * numpy.power( 1.0 + radius*radius, -0.25) theta = numpy.arccos(self.random.uniform(-1.0,1.0, (self.number_of_particles,1))) phi = self.random.uniform(0.0,pi2, (self.number_of_particles,1)) return (velocity,theta,phi) def coordinates_from_spherical(self, radius, theta, phi): x = radius * numpy.sin( theta ) * numpy.cos( phi ) y = radius * numpy.sin( theta ) * numpy.sin( phi ) z = radius * numpy.cos( theta ) return (x,y,z) def new_xy_for_velocity(self): number_of_selected_items = 0 selected_values_for_x = numpy.zeros(0) selected_values_for_y = numpy.zeros(0) while (number_of_selected_items < self.number_of_particles): x = self.random.uniform(0,1.0, (self.number_of_particles-number_of_selected_items)) y = self.random.uniform(0,0.1, (self.number_of_particles-number_of_selected_items)) g = (x**2) * numpy.power(1.0 - x**2, 3.5) compare = y <= g selected_values_for_x = numpy.concatenate((selected_values_for_x, x.compress(compare))) selected_values_for_y= numpy.concatenate((selected_values_for_x, y.compress(compare))) number_of_selected_items = len(selected_values_for_x) return numpy.atleast_2d(selected_values_for_x).transpose(), numpy.atleast_2d(selected_values_for_y).transpose() def new_model(self): m = numpy.zeros((self.number_of_particles,1)) + (1.0 / self.number_of_particles) radius, theta, phi = self.new_positions_spherical_coordinates() position = numpy.hstack(self.coordinates_from_spherical(radius, theta, phi)) radius, theta, phi = self.new_velocities_spherical_coordinates(radius) velocity = numpy.hstack(self.coordinates_from_spherical(radius, theta, phi)) position = position / 1.695 velocity = velocity / sqrt(1 / 1.695) return (m, position, velocity) @property def result(self): masses = numpy.ones(self.number_of_particles) / self.number_of_particles radius, theta, phi = self.new_positions_spherical_coordinates() x,y,z = self.coordinates_from_spherical(radius, theta, phi) radius, theta, phi = self.new_velocities_spherical_coordinates(radius) vx,vy,vz = self.coordinates_from_spherical(radius, theta, phi) result = datamodel.Particles(self.number_of_particles) result.mass = nbody_system.mass.new_quantity(masses) result.x = nbody_system.length.new_quantity(x.reshape(self.number_of_particles)/1.695) result.y = nbody_system.length.new_quantity(y.reshape(self.number_of_particles)/1.695) result.z = nbody_system.length.new_quantity(z.reshape(self.number_of_particles)/1.695) result.vx = nbody_system.speed.new_quantity(vx.reshape(self.number_of_particles) / sqrt(1/1.695)) result.vy = nbody_system.speed.new_quantity(vy.reshape(self.number_of_particles) / sqrt(1/1.695)) result.vz = nbody_system.speed.new_quantity(vz.reshape(self.number_of_particles) / sqrt(1/1.695)) result.radius = 0 | nbody_system.length result.move_to_center() if self.do_scale: result.scale_to_standard() if not self.convert_nbody is None: result = datamodel.ParticlesWithUnitsConverted(result, self.convert_nbody.as_converter_from_si_to_generic()) result = result.copy() return result def new_plummer_model(number_of_particles, *list_arguments, **keyword_arguments): """ Create a plummer sphere with the given number of particles. Returns a set of stars with equal mass and positions and velocities distributed to fit a plummer star distribution model. The model is centered around the origin. Positions and velocities are optionally scaled such that the kinetic and potential energies are 0.25 and -0.5 in nbody-units, respectively. :argument number_of_particles: Number of particles to include in the plummer sphere :argument convert_nbody: When given will convert the resulting set to SI units :argument radius_cutoff: Cutoff value for the radius (defaults to 22.8042468) :argument mass_cutoff: Mass percentage inside radius of 1 :argument do_scale: scale the result to exact nbody units (M=1, K=0.25, U=-0.5) """ uc = MakePlummerModel(number_of_particles, *list_arguments, **keyword_arguments) return uc.result new_plummer_sphere = new_plummer_model ``` #### File: src/amuse/__init__.py ```python import numpy def numpy_fix(): try: numpy.set_printoptions(legacy='1.13') except TypeError: pass numpy_fix() ``` #### File: amuse/rfi/nospawn.py ```python from amuse.rfi import core from amuse.rfi.python_code import CythonImplementation from mpi4py import MPI from amuse.rfi import channel from collections import namedtuple import sys import importlib Code = namedtuple("Code", ['cls', 'number_of_workers', 'args', 'kwargs']) PythonCode = namedtuple("Code", ['cls', 'number_of_workers', 'args', 'kwargs', 'implementation_factory']) def get_number_of_workers_needed(codes): result = 1 for x in codes: result += x.number_of_workers return result def get_color(rank, codes): if rank == 0: return 0 else: index = 1 for color, x in enumerate(codes): if rank >= index and rank < index + x.number_of_workers: return color + 1 index += x.number_of_workers return len(codes) + 1 #left over ranks def get_key(rank, codes): if rank == 0: return 0 else: index = 1 for color, x in enumerate(codes): if rank >= index and rank < index + x.number_of_workers: return rank - index index += x.number_of_workers return rank - (len(codes) + 1) #left over ranks def get_code_class(rank, codes): if rank == 0: return None else: index = 1 for color, x in enumerate(codes): if rank >= index and rank < index + x.number_of_workers: return x.cls index += x.number_of_workers return None def start_all(codes): channel.MpiChannel.ensure_mpi_initialized() number_of_workers_needed = get_number_of_workers_needed(codes) world = MPI.COMM_WORLD rank = world.rank if world.size < number_of_workers_needed: if rank == 0: raise Exception("cannot start all codes, the world size ({0}) is smaller than the number of requested codes ({1}) (which is always 1 + the sum of the all the number_of_worker fields)".format(world.size, number_of_workers_needed)) else: return None color = get_color(world.rank, codes) key = get_key(world.rank, codes) newcomm = world.Split(color, key) localdup = world.Dup() if world.rank == 0: result = [] remote_leader = 1 tag = 1 for x in codes: new_intercomm = newcomm.Create_intercomm(0, localdup, remote_leader, tag) remote_leader += x.number_of_workers tag += 1 instance = x.cls(*x.args, check_mpi = False, must_start_worker = False, **x.kwargs) instance.legacy_interface.channel = channel.MpiChannel('_',None) instance.legacy_interface.channel.intercomm = new_intercomm result.append(instance) world.Barrier() return result else: code_cls = get_code_class(world.rank, codes) if code_cls is None: world.Barrier() return None new_intercomm = newcomm.Create_intercomm(0, localdup, 0, color) x = get_code(world.rank, codes) instance = code_cls(*x.args, check_mpi = False, must_start_worker = False, **x.kwargs) interface = instance.legacy_interface if hasattr(interface, '__so_module__'): package, _ = code_cls.__module__.rsplit('.',1) modulename = package + '.' + interface.__so_module__ module = importlib.import_module(modulename) module.set_comm_world(newcomm) else: module = x.implementation_factory() instance = CythonImplementation(module, interface.__class__) instance.intercomm = new_intercomm instance.must_disconnect = False world.Barrier() instance.start() return None def stop_all(instances): for x in instances: x.stop() def start_empty(): channel.MpiChannel.ensure_mpi_initialized() world = MPI.COMM_WORLD rank = world.rank color = 0 if world.rank == 0 else 1 key = 0 if world.rank == 0 else world.rank -1 newcomm = world.Split(color, key) localdup = world.Dup() if world.rank == 0: result = [] remote_leader = 1 tag = 1 new_intercomm = newcomm.Create_intercomm(0, localdup, remote_leader, tag) instance = core.CodeInterface(check_mpi = False, must_start_worker = False) instance.channel = channel.MpiChannel('_',None) instance.channel.intercomm = new_intercomm instance.world = localdup instance.remote_leader = 1 world.Barrier() return instance else: new_intercomm = newcomm.Create_intercomm(0, localdup, 0, color) instance = CythonImplementation(None, core.CodeInterface) instance.intercomm = new_intercomm instance.world = localdup instance.freeworld = newcomm instance.localworld = newcomm instance.must_disconnect = False world.Barrier() instance.start() print "STOP...", world.rank return None def get_code(rank, codes): if rank == 0: return None else: index = 1 for color, x in enumerate(codes): if rank >= index and rank < index + x.number_of_workers: return x index += x.number_of_workers return None ``` #### File: amuse/support/debian.py ```python from __future__ import print_function import os import shutil import subprocess try: # Python 3 from urllib.request import urlretrieve except ImportError: # Python 2 from urllib import urlretrieve import platform import sys from optparse import OptionParser depends = \ [ 'bash (>= 2.05a-11)', 'build-essential', 'cmake', 'gfortran', 'python2.6 (>=2.6.0)', 'python-numpy (>=1.3.0)', 'python-nose (>=0.11)', 'python-matplotlib (>=0.99)', 'python-setuptools', 'python-docutils', 'python-h5py (>=1.2.1)', 'libhdf5-serial-dev (>=1.6)', 'hdf5-tools', 'libfftw3-3', 'libfftw3-dev', 'libfftw3-doc', 'libopenmpi-dev (>=1.4.1)', 'openmpi-bin', 'libgsl0ldbl', 'libgsl0-dev', ] control = \ """ Package: amuse Version: {0} Section: base Priority: optional Architecture: all Depends: {1} Maintainer: amuseteam <<EMAIL>> Description: Astrophysical Multipurpose Software Environment A software framework for large-scale simulations of dense stellar systems, in which existing codes for dynamics, stellar evolution, and hydrodynamics can be easily coupled. """ postinst = \ """#!/bin/sh -e easy_install mpi4py """ class generate_debian_package(object): def __init__(self, version = 'svn', arch = None): self.version = version if self.version == 'svn': self.version = 'r{0}'.format(self.get_svn_revision()) self.amuse_version = 'amuse-{0}'.format(self.version) self.debianversion = '0ubuntu' if arch is None: self.architecture = 'i386' if platform.architecture()[0] == '32bit' else 'amd64' else: self.architecture = arch self.package_name = 'amuse_{0}-{1}-{2}'.format(self.version, self.debianversion, self.architecture) self.package_path = os.path.abspath(self.package_name) def get_svn_revision(self): stdoutstring, stderrstring = subprocess.Popen( ['svn','info'], stdout=subprocess.PIPE, stderr=subprocess.PIPE ).communicate() lines = stdoutstring.splitlines() revision = '0000' for x in lines: if x.startswith('Revision:'): label, revision = x.split(': ') return revision def run(self): self.setup_deb_builddir() self.makescripts() self.install_in_deb_builddir() self.package() self.cleanup() print("generated debian package: {0}.deb".format(self.package_name)) def makescripts(self): #os.system('python setup.py generate_main --amuse-dir=/usr/share/{0}'.format(amuse_version)) pass def setup_deb_builddir(self): if os.path.exists(self.package_path): shutil.rmtree(self.package_path) os.makedirs(self.package_path) def install_in_deb_builddir(self): debian_path = os.path.join(self.package_path, 'DEBIAN') os.makedirs(debian_path) dependency_string = ', '.join(depends) with open(os.path.join(debian_path, 'control'),'w') as f: f.write(control.format(self.version, dependency_string)) #f = open(os.path.join(debian_path, 'postinst'),'w') #f.write(postinst) #f.close() #os.chmod(os.path.join(debian_path, 'postinst'), 0b11110 if not os.path.exists('build'): os.makedirs('build') mpi4pyfile = 'mpi4py-1.2.2.tar.gz' urlretrieve( 'http://mpi4py.googlecode.com/files/{0}'.format(mpi4pyfile), mpi4pyfile ) shutil.copyfile(mpi4pyfile, os.path.join('build', mpi4pyfile)) subprocess.call( [ 'tar', '-xf', mpi4pyfile ] , cwd=os.path.join('build') ) subprocess.call( [ sys.executable, 'setup.py', 'install', '--prefix=/usr', '--install-layout=deb', '--root={0}'.format(self.package_path), ] , cwd=os.path.join('build','mpi4py-1.2.2') ) subprocess.call( [ sys.executable, 'setup.py', 'install', '--prefix=/usr', '--install-layout=deb', '--root={0}'.format(self.package_path), ] ) #shutil.copytree('src', './{0}/usr/share/{1}/src'.format(package_name, amuse_version)) #shutil.copytree('test', './{0}/usr/share/{1}/test'.format(package_name, amuse_version)) #shutil.copytree('data', './{0}/usr/share/{1}/data'.format(package_name, amuse_version)) #shutil.copytree('lib', './{0}/usr/share/{1}/lib'.format(package_name, amuse_version)) #shutil.copytree('doc', './{0}/usr/share/doc/{1}/doc'.format(package_name, amuse_version)) #self.touch('./{0}/usr/share/{1}/build.py'.format(package_name, amuse_version)) #shutil.copy('amuse.sh', './{0}/usr/bin'.format(package_name)) #shutil.copy('iamuse.sh', './{0}/usr/bin'.format(package_name)) #os.chmod('./{0}/usr/bin/amuse.sh'.format(package_name), 0b111101101) #os.chmod('./{0}/usr/bin/iamuse.sh'.format(package_name), 0b111101101) def package(self): if os.path.exists(self.package_path): print("creating debian package..") subprocess.call( [ 'fakeroot', 'dpkg-deb', '--build', self.package_name ] ) def cleanup(self): #if os.path.exists(self.package_path): # shutil.rmtree(self.package_path) #os.system('python setup.py generate_main') pass def touch(self, filename): if not os.path.exists(filename): open(filename, 'w').close() def main(version = 'svn', arch = None): command = generate_debian_package(version, arch) command.run() def new_option_parser(): result = OptionParser() result.add_option( "-v", "--version", default = 'svn', dest="version", help="version of the debian package to create, defaults to svn based", type="string" ) result.add_option( "-a", "--arch", dest="arch", default = None, help="architecture to build (i386 or amd64)", type="string" ) return result if __name__ == "__main__": options, arguments = new_option_parser().parse_args() main(**options.__dict__) ``` #### File: binbuild/build/linux_set_rpath.py ```python import os import re import os.path import subprocess from optparse import OptionParser def check_output(*popenargs, **kwargs): if 'stdout' in kwargs: raise ValueError('stdout argument not allowed, it will be overridden.') process = subprocess.Popen(stdout=subprocess.PIPE, *popenargs, **kwargs) output, unused_err = process.communicate() retcode = process.poll() if retcode: cmd = kwargs.get("args") if cmd is None: cmd = popenargs[0] raise subprocess.CalledProcessError(retcode, cmd, output=output) return output shared_library_re=re.compile(r'.*\.so.*') def get_so_files(path='.'): for name in os.listdir(path): if not shared_library_re.match(name): continue fullname = os.path.join(path, name) if os.path.islink(fullname): continue yield fullname def get_bin_files(path='.'): for dirname, subdirs, names in os.walk(path): for name in names: fullname = os.path.join(dirname, name) if os.path.islink(fullname): continue outputstring = check_output(['file', fullname]) if not outputstring.find('ELF') >= 0: continue if ( not outputstring.find('shared object') >= 0 and not outputstring.find('executable') >= 0 ): continue yield os.path.normpath(os.path.abspath(fullname)) def get_rpaths(name): arguments = ['patchelf', '--print-rpath', name] outputstring = check_output(arguments) outputstring = outputstring.strip() return [x for x in outputstring.split(':') if len(x) > 0] def add_rpaths(name, rpaths, dryrun = True): existing_paths = get_rpaths(name) parts = list(rpaths) parts.extend(existing_paths) set_rpaths(name, parts, dryrun) def set_rpaths(name, rpaths, dryrun = True): rpath = ':'.join(rpaths) arguments = ['patchelf', '--set-rpath', rpath, name] if dryrun == True: print ' '.join(arguments) else: outputstring = check_output(arguments) print outputstring def main(libpath='../lib', binpath='.', rpath='', dryrun = True): abslibpath = os.path.abspath(libpath) for name in get_bin_files(binpath): must_add_rpath = False if len(rpath) == 0: absbinpath = os.path.abspath(name) relpath = os.path.relpath(abslibpath, os.path.dirname(absbinpath)) print relpath, abslibpath if not relpath or relpath == '.': newrpath = '$ORIGIN' else: newrpath = os.path.join('$ORIGIN',relpath) else: newrpath = rpath print "file:", name if dryrun: currentpaths = get_rpaths(name) if len(currentpaths) > 0: print "CURRENT RPATHS(s):" for x in get_rpaths(name): print " ** ",x if newrpath == '$ORIGIN' and len(get_rpaths(name)) == 0: print " NOT SETTING RPATH FOR: ",name continue #, '$ORIGIN' set_rpaths(name, [newrpath], dryrun) #for x in get_dylib_files(path): # basename = os.path.basename(dylibid) # change_dylib_id(x, os.path.join('@rpath', basename), dryrun) def new_option_parser(): result = OptionParser() result.add_option( "-r", "--rpath", default = '', dest="rpath", help="new path for dynamic libraries, default will create relative path between bin and libdir", type="string" ) result.add_option( "-p", "--path", default = '../lib', dest="libpath", help="path containing the shared libraries", type="string" ) result.add_option( "-b", "--bin-path", default = '.', dest="binpath", help="path to scan for binaries referencing dynamic libraries", type="string" ) result.add_option( "--dry-run", default = False, dest="dryrun", help="if given will show the commands, not execute these", action="store_true" ) return result if __name__ == '__main__': options,argumenst = new_option_parser().parse_args() main(**options.__dict__) ``` #### File: test/codes_tests/test_athena.py ```python import os import sys import numpy import math from amuse.test.amusetest import TestWithMPI from amuse.community.athena.interface import AthenaInterface, Athena from amuse.units.quantities import VectorQuantity from amuse.units import generic_unit_system from amuse.units import units from amuse.units import generic_unit_converter from amuse import datamodel class TestAthenaInterface(TestWithMPI): def test0(self): instance=self.new_instance(AthenaInterface) instance.initialize_code() instance.stop() def test1(self): instance=self.new_instance(AthenaInterface) instance.initialize_code() instance.par_seti("test", "testname", "%d", 10, "a test parameter") x = instance.par_geti("test", "testname") self.assertEquals(x, 10) instance.stop() def test2(self): instance=self.new_instance(AthenaInterface) instance.initialize_code() instance.par_setd("test", "test2", "%.15e", 1.123, "a test parameter") x = instance.par_getd("test", "test2") self.assertEquals(x, 1.123) instance.stop() def test3(self): instance=self.new_instance(AthenaInterface) instance.initialize_code() instance.set_gamma(1.6666666666666667) instance.set_courant_friedrichs_lewy_number(0.8) instance.setup_mesh(5, 1, 1, 1.0, 0.0, 0.0) instance.set_boundary("periodic","periodic","periodic","periodic","periodic","periodic") x = instance.par_geti("domain1", "Nx1") self.assertEquals(x, 5) error = instance.commit_parameters() self.assertEquals(error, 0) number_of_grids, error = instance.get_number_of_grids() self.assertEquals(error, 0) self.assertEquals(number_of_grids, 1) x,y,z,error = instance.get_position_of_index(0,0,0,1) self.assertEquals(error, 0) self.assertAlmostRelativeEquals(x, 0.1) x,y,z,error = instance.get_position_of_index(1,0,0,1) self.assertEquals(error, 0) self.assertAlmostRelativeEquals(x, 0.3) x,y,z,error = instance.get_position_of_index(2,0,0,1) self.assertEquals(error, 0) self.assertAlmostRelativeEquals(x, 0.5) x,y,z,error = instance.get_position_of_index(3,0,0,1) self.assertEquals(error, 0) self.assertAlmostRelativeEquals(x, 0.7) x,y,z,error = instance.get_position_of_index(4,0,0,1) self.assertEquals(error, 0) self.assertAlmostRelativeEquals(x, 0.9) x,y,z,error = instance.get_position_of_index(5,0,0,1) self.assertEquals(error, 0) self.assertAlmostRelativeEquals(x, 1.1) instance.stop() def test4(self): instance=self.new_instance(AthenaInterface) instance.initialize_code() instance.set_gamma(1.6666666666666667) instance.set_courant_friedrichs_lewy_number(0.8) instance.setup_mesh(10, 20, 40, 1.0, 1.0, 1.0) instance.set_boundary("periodic","periodic","periodic","periodic","periodic","periodic") imin, imax, jmin, jmax, kmin, kmax = instance.get_index_range_inclusive() x,y,z, error= instance.get_position_of_index(2,2,2) self.assertEquals(error, -1) result = instance.commit_parameters() self.assertEquals(result, 0) x,y,z, error= instance.get_position_of_index(0,0,0) self.assertEquals(error, 0) print x,y,z self.assertAlmostRelativeEquals(0.05, x) self.assertAlmostRelativeEquals(0.025, y) self.assertAlmostRelativeEquals(0.0125, z) x,y,z, error= instance.get_position_of_index(10,20,40) self.assertEquals(error, 0) print x,y,z self.assertAlmostRelativeEquals(1.05, x) self.assertAlmostRelativeEquals(1.025, y) self.assertAlmostRelativeEquals(1.0125, z) instance.stop() def test5(self): instance=self.new_instance(AthenaInterface) instance.initialize_code() instance.setup_mesh(5, 5, 5, 1.0, 1.0, 1.0) instance.set_gamma(1.6666666666666667) instance.set_courant_friedrichs_lewy_number(0.4) instance.set_boundary("periodic","periodic","periodic","periodic","periodic","periodic") result = instance.commit_parameters() self.assertEquals(result, 0) time, error = instance.get_time() self.assertEquals(error,0) self.assertEquals(time, 0.0) error = instance.set_grid_state(1,1,1,0.1, 0.2, 0.3, 0.4, 0.5) self.assertEquals(error, 0) rho, rhovx, rhovy, rhovz, energy, error = instance.get_grid_state(1,1,1) self.assertEquals(error, 0) self.assertEquals(rho, 0.1) self.assertEquals(rhovx, 0.2) self.assertEquals(rhovy, 0.3) self.assertEquals(rhovz, 0.4) self.assertEquals(energy, 0.5) rhovx, rhovy, rhovz, error = instance.get_grid_momentum_density(1,1,1) self.assertEquals(error, 0) self.assertEquals(rhovx, 0.2) self.assertEquals(rhovy, 0.3) self.assertEquals(rhovz, 0.4) rho, error = instance.get_grid_density(1,1,1) self.assertEquals(error, 0) self.assertEquals(rho, 0.1) energy, error = instance.get_grid_energy_density(1,1,1) self.assertEquals(error, 0) self.assertEquals(energy, 0.5) rho, rhovx, rhovy, rhovz, energy, error = instance.get_grid_state([1],[1],[1]) self.assertEquals(error[0], 0) self.assertEquals(rho[0], 0.1) error = instance.initialize_grid() self.assertEquals(error, 0) timestep, error = instance.get_timestep() self.assertEquals(error, 0) instance.stop() def test5a(self): instance=self.new_instance(AthenaInterface, mode="mhd") instance.initialize_code() instance.setup_mesh(5, 5, 5, 1.0, 1.0, 1.0) instance.set_gamma(1.6666666666666667) instance.set_courant_friedrichs_lewy_number(0.4) instance.set_boundary("periodic","periodic","periodic","periodic","periodic","periodic") result = instance.commit_parameters() self.assertEquals(result, 0) time, error = instance.get_time() self.assertEquals(error,0) self.assertEquals(time, 0.0) error = instance.set_grid_magnetic_field(1,1,1,0.1, 0.2, 0.3) self.assertEquals(error, 0) B1i, B2i, B3i, error = instance.get_grid_magnetic_field(1,1,1) self.assertEquals(error, 0) self.assertEquals(B1i, 0.1) self.assertEquals(B2i, 0.2) self.assertEquals(B3i, 0.3) instance.stop() def test7(self): results = [] for x in range(1,5): instance=self.new_instance(AthenaInterface, number_of_workers=x) instance.initialize_code() instance.setup_mesh(128,1,1,1.0,0,0) instance.set_gamma(1.6666666666666667) instance.set_courant_friedrichs_lewy_number(0.8) instance.set_boundary("periodic","periodic","periodic","periodic","periodic","periodic") result = instance.commit_parameters() self.assertEquals(result, 0) nghost, error = instance.get_nghost() self.assertEquals(4, nghost) instance.set_grid_state(numpy.arange(0,128), numpy.zeros(128), numpy.zeros(128),0.1, 0.2, 0.3, 0.4, 0.5) error = instance.initialize_grid() self.assertEquals(error, 0) result = instance.get_grid_state(numpy.arange(0,128), numpy.zeros(128), numpy.zeros(128)) results.append(list(result)) instance.stop() for x in range(128): for y in range(6): self.assertEquals(results[1][y][x], results[0][y][x]) self.assertEquals(results[2][y][x], results[0][y][x]) self.assertEquals(results[3][y][x], results[0][y][x]) def test8(self): instance=self.new_instance(AthenaInterface, number_of_workers=1) instance.initialize_code() instance.setup_mesh(128,1,1,1.0,0,0) instance.set_gamma(1.6666666666666667) instance.set_courant_friedrichs_lewy_number(0.8) instance.set_boundary("periodic","periodic","periodic","periodic","periodic","periodic") result = instance.commit_parameters() self.assertEquals(result, 0) instance.fill_grid_linearwave_1d(0, 1e-06, 0.0, 1) error = instance.initialize_grid() self.assertEquals(error, 0) print instance.get_grid_state(numpy.arange(0,128), numpy.zeros(128), numpy.zeros(128)) timestep, error = instance.get_timestep() self.assertEquals(error, 0) self.assertAlmostRelativeEqual(timestep, 0.006249991, 5) rho0, rhovx0, rhovy0, rhovz0, energy0, error0 = instance.get_grid_state(numpy.arange(0,128), numpy.zeros(128), numpy.zeros(128)) instance.evolve_model(5.0) rho, rhovx, rhovy, rhovz, energy, error = instance.get_grid_state(numpy.arange(0,128), numpy.zeros(128), numpy.zeros(128)) error_rho = numpy.sum(numpy.abs(rho - rho0)) error_rhovx = numpy.sum(numpy.abs(rhovx - rhovx0)) error_rhovy = numpy.sum(numpy.abs(rhovy - rhovy0)) error_rhovz = numpy.sum(numpy.abs(rhovz - rhovz0)) error_energy = numpy.sum(numpy.abs(energy - energy0)) self.assertAlmostRelativeEquals(error_rho / 128.0, 1.877334e-09, 6) self.assertAlmostRelativeEquals(error_rhovx / 128.0, 1.877334e-09, 6) self.assertAlmostRelativeEquals(error_energy / 128.0, 2.816001e-09, 6) instance.stop() def test9(self): results = [] for x in range(1,5): instance=self.new_instance(AthenaInterface, number_of_workers=x) instance.initialize_code() instance.setup_mesh(128,1,1,1.0,0,0) instance.set_gamma(1.6666666666666667) instance.set_courant_friedrichs_lewy_number(0.8) instance.set_boundary("periodic","periodic","periodic","periodic","periodic","periodic") result = instance.commit_parameters() self.assertEquals(result, 0) nghost, error = instance.get_nghost() self.assertEquals(4, nghost) instance.fill_grid_linearwave_1d(0, 1e-06, 0.0, 1) error = instance.initialize_grid() self.assertEquals(error, 0) instance.evolve_model(5.0) result = instance.get_grid_state(numpy.arange(0,128), numpy.zeros(128), numpy.zeros(128)) results.append(list(result)) instance.stop() for x in range(128): for y in range(6): self.assertEquals(results[1][y][x], results[0][y][x]) self.assertEquals(results[2][y][x], results[0][y][x]) self.assertEquals(results[3][y][x], results[0][y][x]) def test10(self): instance=self.new_instance(AthenaInterface) instance.initialize_code() instance.set_gamma(1.6666666666666667) instance.set_courant_friedrichs_lewy_number(0.3) instance.setup_mesh(5, 5, 5, 1.0, 1.0, 1.0) instance.set_boundary("periodic","periodic","periodic","periodic","periodic","periodic") instance.commit_parameters() instance.initialize_grid() x,y,z,error = instance.get_position_of_index([0,1,2,3,4],[0,0,0,0,0],[0,0,0,0,0]) for x0, x1 in zip(x, [0.1, 0.3, 0.5, 0.7, 0.9]): self.assertAlmostRelativeEqual(x0, x1) for y0, y1 in zip(y, [0.1, 0.1, 0.1, 0.1, 0.1]): self.assertAlmostRelativeEqual(y0, y1) i,j,k,error = instance.get_index_of_position(0.3, 0.1, 0.1) print i,j,k self.assertAlmostRelativeEqual(i, 1) self.assertAlmostRelativeEqual(j, 0) self.assertAlmostRelativeEqual(k, 0) i,j,k,error = instance.get_index_of_position(0.39, 0.1, 0.1) self.assertAlmostRelativeEqual(i, 1.0) self.assertAlmostRelativeEqual(j, 0) self.assertAlmostRelativeEqual(k, 0) i,j,k,error = instance.get_index_of_position(0.4, 0.1, 0.1) self.assertAlmostRelativeEqual(i, 2.0) self.assertAlmostRelativeEqual(j, 0) self.assertAlmostRelativeEqual(k, 0) x,y,z,error = instance.get_position_of_index(-1,0,0) self.assertEquals(error, 0) self.assertAlmostRelativeEqual(x, -0.1) x,y,z,error = instance.get_position_of_index(5,0,0) self.assertEquals(error, 0) self.assertAlmostRelativeEqual(x, 1.1) instance.stop() def test6(self): instance=self.new_instance(AthenaInterface, number_of_workers = 5) instance.initialize_code() instance.set_gamma(1.6666666666666667) instance.set_courant_friedrichs_lewy_number(0.8) instance.setup_mesh(100, 200, 400, 10.0, 10.0, 10.0) instance.set_boundary("periodic","periodic","periodic","periodic","periodic","periodic") imin, imax, jmin, jmax, kmin, kmax = instance.get_index_range_inclusive() x,y,z, error= instance.get_position_of_index(2,2,2) self.assertEquals(error, -1) result = instance.commit_parameters() self.assertEquals(result, 0) x,y,z, error= instance.get_position_of_index(0,0,0) self.assertEquals(error, 0) print x,y,z self.assertAlmostRelativeEquals(0.05, x) self.assertAlmostRelativeEquals(0.025, y) self.assertAlmostRelativeEquals(0.0125, z) x,y,z, error= instance.get_position_of_index(100,200,400) self.assertEquals(error, 0) print x,y,z self.assertAlmostRelativeEquals(10.05, x) self.assertAlmostRelativeEquals(10.025, y) self.assertAlmostRelativeEquals(10.0125, z) instance.stop() def test11(self): instance=self.new_instance(AthenaInterface) instance.initialize_code() instance.set_gamma(1.6666666666666667) instance.set_courant_friedrichs_lewy_number(0.3) instance.setup_mesh(10, 20, 40, 1.0, 1.0, 1.0) instance.set_boundary("periodic","periodic","periodic","periodic","periodic","periodic") imin, imax, jmin, jmax, kmin, kmax = instance.get_index_range_inclusive() self.assertEquals(imin, 0) self.assertEquals(jmin, 0) self.assertEquals(kmin, 0) self.assertEquals(imax, 9) self.assertEquals(jmax, 19) self.assertEquals(kmax, 39) imin, imax, jmin, jmax, kmin, kmax = instance.get_index_range_for_potential() self.assertEquals(imin, -1) self.assertEquals(jmin, -1) self.assertEquals(kmin, -1) self.assertEquals(imax, 10) self.assertEquals(jmax, 20) self.assertEquals(kmax, 40) instance.stop() def test12(self): instance=self.new_instance(AthenaInterface) instance.initialize_code() instance.set_gamma(1.6666666666666667) instance.set_courant_friedrichs_lewy_number(0.3) instance.setup_mesh(10, 20, 40, 1.0, 1.0, 1.0) instance.set_boundary("periodic","periodic","periodic","periodic","periodic","periodic") instance.commit_parameters() instance.initialize_grid() x,y,z, error= instance.get_position_of_index(-1,-1,-1) self.assertEquals(error, 0) print x,y,z self.assertAlmostRelativeEquals(-0.05, x) self.assertAlmostRelativeEquals(-0.025, y) self.assertAlmostRelativeEquals(-0.0125, z) instance.stop() def test13(self): instance=self.new_instance(AthenaInterface) instance.initialize_code() instance.set_gamma(1.6666666666666667) instance.set_courant_friedrichs_lewy_number(0.3) instance.setup_mesh(2, 2, 2, 1.0, 1.0, 1.0) instance.set_boundary("periodic","periodic","periodic","periodic","periodic","periodic") instance.commit_parameters() instance.initialize_grid() potential_along_one_axis = [-1.0,0.0,1.0,2.0] instance.set_potential( [-1,0,1,2], [0,0,0,0], [0,0,0,0], potential_along_one_axis ) got_potential,error = instance.get_potential( [-1,0,1,2], [0,0,0,0], [0,0,0,0]) print got_potential, error for expected, actual in zip(potential_along_one_axis, got_potential): self.assertEquals(expected, actual) x,y,z,error = instance.get_position_of_index( [-1,0,1,2], [0,0,0,0], [0,0,0,0]) print x,y,z, error for expected, actual in zip([-0.25,0.25,0.75,1.25], x): self.assertEquals(expected, actual) for expected, actual in zip([0.25,0.25,0.25,0.25], y): self.assertEquals(expected, actual) for expected, actual in zip([0.25,0.25,0.25,0.25], z): self.assertEquals(expected, actual) potential, error = instance.get_interpolated_gravitational_potential(0, 0.25, 0.25) print potential, error self.assertEquals(error, 0) self.assertEquals(potential, -0.5) potential, error = instance.get_interpolated_gravitational_potential(0.75, 0.5, 0.25) print potential, error self.assertEquals(error, 0) self.assertEquals(potential, 0.5) potential, error = instance.get_interpolated_gravitational_potential(0.75, 0.25, 0.5) print potential, error self.assertEquals(error, 0) self.assertEquals(potential, 0.5) potential, error = instance.get_interpolated_gravitational_potential(0.75, 0.25, 0.0) print potential, error self.assertEquals(error, 0) self.assertEquals(potential, 0.5) instance.stop() def test14(self): instance=self.new_instance(AthenaInterface, mode="scalar") instance.initialize_code() instance.setup_mesh(5, 5, 5, 1.0, 1.0, 1.0) instance.set_gamma(1.6666666666666667) instance.set_courant_friedrichs_lewy_number(0.4) instance.set_boundary("periodic","periodic","periodic","periodic","periodic","periodic") result = instance.commit_parameters() self.assertEquals(result, 0) error = instance.set_grid_scalar(1,1,1,0.45) self.assertEquals(error, 0) scalar, error = instance.get_grid_scalar(1,1,1) self.assertEquals(error, 0) self.assertEquals(scalar, 0.45) scalar, error = instance.get_grid_scalar(1,1,2) self.assertEquals(error, 0) self.assertEquals(scalar, 0) instance.stop() def test15(self): results = [] for x in range(1,6): instance=self.new_instance(AthenaInterface, number_of_workers=x) instance.initialize_code() instance.setup_mesh(100,1,1,100.0,0,0) instance.set_gamma(1.6666666666666667) instance.set_courant_friedrichs_lewy_number(0.8) instance.set_boundary("periodic","periodic","periodic","periodic","periodic","periodic") result = instance.commit_parameters() for index in range(100): x,y,z,error = instance.get_position_of_index(index,0,0) self.assertEquals(error, 0) self.assertAlmostRelativeEquals(x, index + 0.5) i,j,k,error = instance.get_index_of_position(x,y,z) self.assertEquals(error, 0) self.assertAlmostRelativeEquals(i, index) instance.stop() def test16(self): for x in range(1,6): instance=self.new_instance(AthenaInterface, number_of_workers=x) instance.initialize_code() instance.setup_mesh(10,100,1,100.0,100.0,0) instance.set_gamma(1.6666666666666667) instance.set_courant_friedrichs_lewy_number(0.8) instance.set_boundary("periodic","periodic","periodic","periodic","periodic","periodic") result = instance.commit_parameters() for index in range(100): x,y,z,error = instance.get_position_of_index(0,index,0) self.assertEquals(error, 0) self.assertAlmostRelativeEquals(y, index + 0.5) i,j,k,error = instance.get_index_of_position(x,y,z) self.assertEquals(error, 0) self.assertAlmostRelativeEquals(j, index) instance.stop() def test17(self): results = [] instance=self.new_instance(AthenaInterface) instance.initialize_code() instance.setup_mesh(100,1,1,100.0,0,0) instance.set_gamma(1.6666666666666667) instance.set_courant_friedrichs_lewy_number(0.8) instance.set_boundary("interface","periodic","periodic","periodic","periodic","periodic") instance.commit_parameters() minx, maxx, miny, maxy, minz, maxz, error = instance.get_boundary_index_range_inclusive(1,1) self.assertEquals(error, 0) self.assertEquals(minx, 0) self.assertEquals(maxx, 3) self.assertEquals(miny, 0) self.assertEquals(maxy, 0) self.assertEquals(minz, 0) self.assertEquals(maxz, 0) for i in range(2,7): minx, maxx, miny, maxy, minz, maxz, error = instance.get_boundary_index_range_inclusive(i,1) self.assertEquals(error, 0) self.assertEquals(minx, 0) self.assertEquals(maxx, 0) self.assertEquals(miny, 0) self.assertEquals(maxy, 0) self.assertEquals(minz, 0) self.assertEquals(maxz, 0) def test18(self): results = [] instance=self.new_instance(AthenaInterface) instance.initialize_code() instance.setup_mesh(100,5,6,100.0,0,0) instance.set_gamma(1.6666666666666667) instance.set_courant_friedrichs_lewy_number(0.8) instance.set_boundary("interface","periodic","periodic","periodic","periodic","periodic") instance.commit_parameters() minx, maxx, miny, maxy, minz, maxz, error = instance.get_boundary_index_range_inclusive(1,1) self.assertEquals(error, 0) self.assertEquals(minx, 0) self.assertEquals(maxx, 3) self.assertEquals(miny, 0) self.assertEquals(maxy, 4) self.assertEquals(minz, 0) self.assertEquals(maxz, 5) for i in range(2,7): minx, maxx, miny, maxy, minz, maxz, error = instance.get_boundary_index_range_inclusive(i,1) self.assertEquals(error, 0) self.assertEquals(minx, 0) self.assertEquals(maxx, 0) self.assertEquals(miny, 0) self.assertEquals(maxy, 0) self.assertEquals(minz, 0) self.assertEquals(maxz, 0) def test19(self): results = [] instance=self.new_instance(AthenaInterface) instance.initialize_code() instance.setup_mesh(100,5,6,100.0,0,0) instance.set_gamma(1.6666666666666667) instance.set_courant_friedrichs_lewy_number(0.8) instance.set_boundary("interface","interface","interface","interface","interface","interface") instance.commit_parameters() for i in range(1,7): minx, maxx, miny, maxy, minz, maxz, error = instance.get_boundary_index_range_inclusive(i,1) self.assertEquals(error, 0) self.assertEquals(minx, 0) self.assertEquals(miny, 0) self.assertEquals(minz, 0) if i == 1 or i == 2: self.assertEquals(maxx, 3) self.assertEquals(maxy, 4) self.assertEquals(maxz, 5) elif i == 3 or i == 4: self.assertEquals(maxx, 99+8) self.assertEquals(maxy, 3) self.assertEquals(maxz, 5) elif i == 5 or i == 6: self.assertEquals(maxx, 99+8) self.assertEquals(maxy, 4+8) self.assertEquals(maxz, 3) def test20(self): results = [] instance=self.new_instance(AthenaInterface) instance.initialize_code() instance.setup_mesh(100,1,1,100.0,100.0,100.0) instance.set_gamma(1.6666666666666667) instance.set_courant_friedrichs_lewy_number(0.8) instance.set_boundary("interface","periodic","periodic","periodic","periodic","periodic") instance.commit_parameters() for i in range(4): error = instance.set_boundary_state( i,0,0, # index 1.0 * (i+1), # density 2.0 * (i+1), 3.0 * (i+1), 4.0 * (i+1), # momentum 5.0 * (i+1), # energy 1.0, 1.0 # boundary + grid ) self.assertEquals(error, 0) rho, rhovx, rhovy, rhovz, rhoen, error = instance.get_boundary_state( i, 0, 0, 1.0, 1.0 ) print rho, rhovx, rhovy, rhovz, rhoen, error self.assertEquals(error, 0) self.assertAlmostRelativeEquals(rho, 1.0 * (i+1)) self.assertAlmostRelativeEquals(rhovx, 2.0 * (i+1)) self.assertAlmostRelativeEquals(rhovy, 3.0 * (i+1)) self.assertAlmostRelativeEquals(rhovz, 4.0 * (i+1)) self.assertAlmostRelativeEquals(rhoen, 5.0 * (i+1)) def test21(self): results = [] instance=self.new_instance(AthenaInterface) instance.initialize_code() instance.setup_mesh(100,1,1,100.0,0,0) instance.set_gamma(1.6666666666666667) instance.set_courant_friedrichs_lewy_number(0.8) instance.set_boundary("interface","interface","periodic","periodic","periodic","periodic") instance.commit_parameters() for i in range(4): for j in [1,2]: error = instance.set_boundary_state( i,0,0, # index 1.0 * (i+1), # density 2.0 * (i+1), 3.0 * (i+1), 4.0 * (i+1), # momentum 5.0 * (i+1), # energy j, 1.0 # boundary + grid ) self.assertEquals(error, 0) rho, rhovx, rhovy, rhovz, rhoen, error = instance.get_boundary_state( i, 0, 0, j, 1.0 ) print j self.assertEquals(error, 0) self.assertAlmostRelativeEquals(rho, 1.0 * (i+1)) self.assertAlmostRelativeEquals(rhovx, 2.0 * (i+1)) self.assertAlmostRelativeEquals(rhovy, 3.0 * (i+1)) self.assertAlmostRelativeEquals(rhovz, 4.0 * (i+1)) self.assertAlmostRelativeEquals(rhoen, 5.0 * (i+1)) def test22(self): results = [] instance=self.new_instance(AthenaInterface) instance.initialize_code() instance.setup_mesh(5,6,7,100.0,100.0,100.0) instance.set_gamma(1.6666666666666667) instance.set_courant_friedrichs_lewy_number(0.8) instance.set_boundary("interface","interface","interface","interface","interface","interface") instance.commit_parameters() x1range = (4,6,7) x2range = (5,4,7) x3range = (5,6,4) for xrange, j in zip([x1range, x1range, x2range, x2range, x3range, x3range], [1,2,3,4,5,6]): for i0 in range(xrange[0]): for j0 in range(xrange[1]): for k0 in range(xrange[2]): i = (i0 * (xrange[2] * xrange[1])) + (j0 * xrange[2]) + k0 error = instance.set_boundary_state( i0, j0, k0, # index 1.0 * (i+1), # density 2.0 * (i+1), 3.0 * (i+1), 4.0 * (i+1), # momentum 5.0 * (i+1), # energy j, 1.0 # boundary + grid ) self.assertEquals(error, 0) rho, rhovx, rhovy, rhovz, rhoen, error = instance.get_boundary_state( i0, j0, k0, # index j, 1.0 ) self.assertEquals(error, 0) self.assertAlmostRelativeEquals(rho, 1.0 * (i+1)) self.assertAlmostRelativeEquals(rhovx, 2.0 * (i+1)) self.assertAlmostRelativeEquals(rhovy, 3.0 * (i+1)) self.assertAlmostRelativeEquals(rhovz, 4.0 * (i+1)) self.assertAlmostRelativeEquals(rhoen, 5.0 * (i+1)) def test24(self): results = [] instance=self.new_instance(AthenaInterface) instance.initialize_code() instance.setup_mesh(100,5,1,100.0,0,0) instance.set_gamma(1.6666666666666667) instance.set_courant_friedrichs_lewy_number(0.8) instance.set_boundary("interface","interface","interface","interface","interface","interface") instance.commit_parameters() for i in range(1,7): minx, maxx, miny, maxy, minz, maxz, error = instance.get_boundary_index_range_inclusive(i,1) self.assertEquals(error, 0) self.assertEquals(minx, 0) self.assertEquals(miny, 0) self.assertEquals(minz, 0) if i == 1 or i == 2: self.assertEquals(maxx, 3) self.assertEquals(maxy, 4) self.assertEquals(maxz, 0) elif i == 3 or i == 4: self.assertEquals(maxx, 99+8) self.assertEquals(maxy, 3) self.assertEquals(maxz, 0) elif i == 5 or i == 6: self.assertEquals(maxx, 99+8) self.assertEquals(maxy, 4 +8) self.assertEquals(maxz, 3) def test25(self): results = [] instance=self.new_instance(AthenaInterface) instance.initialize_code() instance.setup_mesh(100,1,1,100.0,0,0) instance.set_gamma(1.6666666666666667) instance.set_courant_friedrichs_lewy_number(0.8) instance.set_boundary("interface","interface","periodic","periodic","periodic","periodic") instance.commit_parameters() dx = 1.0 for i in range(4): x,y,z,error = instance.get_boundary_position_of_index( i,0,0, 1, 1 ) self.assertEquals(error, 0) self.assertAlmostRelativeEquals(x, (0.5 * dx) - ((4 -i)*dx)) self.assertAlmostRelativeEquals(y, 0.0) self.assertAlmostRelativeEquals(z, 0.0) def test26(self): results = [] instance=self.new_instance(AthenaInterface) instance.initialize_code() instance.setup_mesh(100,1,1,100.0,0,0) instance.set_gamma(1.6666666666666667) instance.set_courant_friedrichs_lewy_number(0.8) instance.set_boundary("interface","interface","periodic","periodic","periodic","periodic") instance.commit_parameters() dx = 1.0 for i in range(4): x,y,z,error = instance.get_boundary_position_of_index( i,0,0, 2, 1 ) self.assertEquals(error, 0) self.assertAlmostRelativeEquals(x, 100.0 + (0.5 * dx) + (i * dx)) self.assertAlmostRelativeEquals(y, 0.0) self.assertAlmostRelativeEquals(z, 0.0) def test27(self): results = [] instance=self.new_instance(AthenaInterface) instance.initialize_code() instance.setup_mesh(100,5,1,100.0,100.0,0) instance.set_gamma(1.6666666666666667) instance.set_courant_friedrichs_lewy_number(0.8) instance.set_boundary("interface","interface","interface","interface","periodic","periodic") instance.commit_parameters() dx = 1.0 dy = 100.0 / 5.0 for i in range(4): for j in range(5): x,y,z,error = instance.get_boundary_position_of_index( i, j, 1, 2, 1 ) print y, j, (0.5 * dy) - ((4 - j) * dy) self.assertEquals(error, 0) self.assertAlmostRelativeEquals(x, 100.0 + (0.5 * dx) + (i * dx)) self.assertAlmostRelativeEquals(y, (0.5 * dy) + (j * dy)) self.assertAlmostRelativeEquals(z, 0.0) for i in range(100 + 8): for j in range(4): x,y,z,error = instance.get_boundary_position_of_index( i, j, 1, 3, 1 ) self.assertEquals(error, 0) self.assertAlmostRelativeEquals(x, (0.5 * dx) + ((i-4) * dx)) self.assertAlmostRelativeEquals(y, ((0.5 * dy) - ((4-j) * dy))) self.assertAlmostRelativeEquals(z, 0.0) x,y,z,error = instance.get_boundary_position_of_index( i, j, 1, 4, 1 ) self.assertEquals(error, 0) self.assertAlmostRelativeEquals(x, (0.5 * dx) + ((i-4) * dx)) self.assertAlmostRelativeEquals(y, 100.0 + (0.5 * dy) + (j * dy)) self.assertAlmostRelativeEquals(z, 0.0) def test28(self): results = [] instance=self.new_instance(AthenaInterface) instance.initialize_code() instance.setup_mesh(3, 3, 3, 6,12,18) instance.set_gamma(1.6666666666666667) instance.set_courant_friedrichs_lewy_number(0.8) instance.set_boundary("interface","interface","interface","interface","interface","interface") instance.commit_parameters() dx = 6.0 / 3.0 dy = 12.0 / 3.0 dz = 18.0 / 3.0 for i in range(4): for j in range(3): for k in range(3): x,y,z,error = instance.get_boundary_position_of_index( i, j, k, 2, 1 ) self.assertEquals(error, 0) self.assertAlmostRelativeEquals(x, 6.0 + (0.5 * dx) + (i * dx)) self.assertAlmostRelativeEquals(y, (0.5 * dy) + (j * dy)) self.assertAlmostRelativeEquals(z, (0.5 * dz) + (k * dz)) for i in range(3 + 8): for j in range(4): for k in range(3): x,y,z,error = instance.get_boundary_position_of_index( i, j, k, 3, 1 ) self.assertEquals(error, 0) self.assertAlmostRelativeEquals(x, (0.5 * dx) + ((i-4) * dx)) self.assertAlmostRelativeEquals(y, ((0.5 * dy) - ((4-j) * dy))) self.assertAlmostRelativeEquals(z, (0.5 * dz) + (k * dz)) x,y,z,error = instance.get_boundary_position_of_index( i, j, k, 4, 1 ) self.assertEquals(error, 0) self.assertAlmostRelativeEquals(x, (0.5 * dx) + ((i-4) * dx)) self.assertAlmostRelativeEquals(y, 12.0 + (0.5 * dy) + (j * dy)) self.assertAlmostRelativeEquals(z, (0.5 * dz) + (k * dz)) for i in range(3 + 8): for j in range(3 + 8): for k in range(4): x,y,z,error = instance.get_boundary_position_of_index( i, j, k, 5, 1 ) self.assertEquals(error, 0) self.assertAlmostRelativeEquals(x, (0.5 * dx) + ((i-4) * dx)) self.assertAlmostRelativeEquals(y, (0.5 * dy) + ((j-4) * dy)) self.assertAlmostRelativeEquals(z, ((0.5 * dz) - ((4-k) * dz))) x,y,z,error = instance.get_boundary_position_of_index( i, j, k, 6, 1 ) self.assertEquals(error, 0) self.assertAlmostRelativeEquals(x, (0.5 * dx) + ((i-4) * dx)) self.assertAlmostRelativeEquals(y, (0.5 * dy) + ((j-4) * dy)) self.assertAlmostRelativeEquals(z, 18.0 + (0.5 * dz) + (k * dz)) def test29(self): results = [] instance=self.new_instance(AthenaInterface, number_of_workers = 3) instance.initialize_code() instance.setup_mesh(300,1,1,300.0,0,0) instance.set_gamma(1.6666666666666667) instance.set_courant_friedrichs_lewy_number(0.8) instance.set_boundary("interface","interface","periodic","periodic","periodic","periodic") instance.commit_parameters() for j in [1,2]: print j for i in range(4): error = instance.set_boundary_state( i,0,0, # index 1.0 * (i+1), # density 2.0 * (i+1), 3.0 * (i+1), 4.0 * (i+1), # momentum 5.0 * (i+1), # energy j, 1.0 # boundary + grid ) self.assertEquals(error, 0) rho, rhovx, rhovy, rhovz, rhoen, error = instance.get_boundary_state( i, 0, 0, j, 1.0 ) self.assertEquals(error, 0) self.assertAlmostRelativeEquals(rho, 1.0 * (i+1)) self.assertAlmostRelativeEquals(rhovx, 2.0 * (i+1)) self.assertAlmostRelativeEquals(rhovy, 3.0 * (i+1)) self.assertAlmostRelativeEquals(rhovz, 4.0 * (i+1)) self.assertAlmostRelativeEquals(rhoen, 5.0 * (i+1)) def test30(self): results = [] instance=self.new_instance(AthenaInterface, number_of_workers = 3) instance.initialize_code() instance.setup_mesh(30,10,1,30.0,10.0,0) instance.set_gamma(1.6666666666666667) instance.set_courant_friedrichs_lewy_number(0.8) instance.set_boundary("interface","interface","interface","interface","periodic","periodic") instance.commit_parameters() for boundaryindex in [3,4]: for i0 in range(38): for j0 in range(4): i = (i0 * (4*38)) + j0 error = instance.set_boundary_state( i0,j0,0, # index 1.0 * (i+1), # density 2.0 * (i+1), 3.0 * (i+1), 4.0 * (i+1), # momentum 5.0 * (i+1), # energy boundaryindex, 1 # boundary + grid ) self.assertEquals(error, 0) rho, rhovx, rhovy, rhovz, rhoen, error = instance.get_boundary_state( i0, j0, 0, boundaryindex, 1.0 ) self.assertEquals(error, 0) self.assertAlmostRelativeEquals(rho, 1.0 * (i+1)) self.assertAlmostRelativeEquals(rhovx, 2.0 * (i+1)) self.assertAlmostRelativeEquals(rhovy, 3.0 * (i+1)) self.assertAlmostRelativeEquals(rhovz, 4.0 * (i+1)) self.assertAlmostRelativeEquals(rhoen, 5.0 * (i+1)) def test31(self): results = [] instance=self.new_instance(AthenaInterface, number_of_workers = 3) instance.initialize_code() instance.set_auto_decomposition(0) instance.set_parallel_decomposition(1,3,1) instance.setup_mesh(5,6,1,5.0,6.0,0) instance.set_gamma(1.6666666666666667) instance.set_courant_friedrichs_lewy_number(0.8) instance.set_boundary("interface","interface","interface","interface","periodic","periodic") instance.commit_parameters() for boundaryindex in [1,2]: for i0 in range(4): for j0 in range(6): i = (i0 * (4*6)) + j0 error = instance.set_boundary_state( i0,j0,0, # index 1.0 * (i+1), # density 2.0 * (i+1), 3.0 * (i+1), 4.0 * (i+1), # momentum 5.0 * (i+1), # energy boundaryindex, 1 # boundary + grid ) self.assertEquals(error, 0) rho, rhovx, rhovy, rhovz, rhoen, error = instance.get_boundary_state( i0, j0, 0, boundaryindex, 1.0 ) self.assertEquals(error, 0) self.assertAlmostRelativeEquals(rho, 1.0 * (i+1)) self.assertAlmostRelativeEquals(rhovx, 2.0 * (i+1)) self.assertAlmostRelativeEquals(rhovy, 3.0 * (i+1)) self.assertAlmostRelativeEquals(rhovz, 4.0 * (i+1)) self.assertAlmostRelativeEquals(rhoen, 5.0 * (i+1)) def test32(self): results = [] instance=self.new_instance(AthenaInterface, number_of_workers = 3*3) instance.initialize_code() instance.set_auto_decomposition(0) instance.set_parallel_decomposition(3,3,1) instance.setup_mesh(6,6,1,6.0,6.0,0) instance.set_gamma(1.6666666666666667) instance.set_courant_friedrichs_lewy_number(0.8) instance.set_boundary("interface","interface","interface","interface","periodic","periodic") instance.commit_parameters() for boundaryindex in [1,2]: for i0 in range(4): for j0 in range(6): i = (i0 * (4*6)) + j0 error = instance.set_boundary_state( i0,j0,0, # index 1.0 * (i+1), # density 2.0 * (i+1), 3.0 * (i+1), 4.0 * (i+1), # momentum 5.0 * (i+1), # energy boundaryindex, 1 # boundary + grid ) self.assertEquals(error, 0) rho, rhovx, rhovy, rhovz, rhoen, error = instance.get_boundary_state( i0, j0, 0, boundaryindex, 1.0 ) self.assertEquals(error, 0) self.assertAlmostRelativeEquals(rho, 1.0 * (i+1)) self.assertAlmostRelativeEquals(rhovx, 2.0 * (i+1)) self.assertAlmostRelativeEquals(rhovy, 3.0 * (i+1)) self.assertAlmostRelativeEquals(rhovz, 4.0 * (i+1)) self.assertAlmostRelativeEquals(rhoen, 5.0 * (i+1)) for boundaryindex in [3,4]: for i0 in range(6+8): for j0 in range(4): i = (i0 * (4*(6+8))) + j0 error = instance.set_boundary_state( i0,j0,0, # index 1.0 * (i+1), # density 2.0 * (i+1), 3.0 * (i+1), 4.0 * (i+1), # momentum 5.0 * (i+1), # energy boundaryindex, 1 # boundary + grid ) self.assertEquals(error, 0) rho, rhovx, rhovy, rhovz, rhoen, error = instance.get_boundary_state( i0, j0, 0, boundaryindex, 1.0 ) self.assertEquals(error, 0) self.assertAlmostRelativeEquals(rho, 1.0 * (i+1)) self.assertAlmostRelativeEquals(rhovx, 2.0 * (i+1)) self.assertAlmostRelativeEquals(rhovy, 3.0 * (i+1)) self.assertAlmostRelativeEquals(rhovz, 4.0 * (i+1)) self.assertAlmostRelativeEquals(rhoen, 5.0 * (i+1)) def test33(self): results = [] instance=self.new_instance(AthenaInterface, number_of_workers = 3) instance.initialize_code() instance.set_auto_decomposition(0) instance.set_parallel_decomposition(1,1,3) instance.setup_mesh(5,5,6,5.0,5.0,30.0) instance.set_gamma(1.6666666666666667) instance.set_courant_friedrichs_lewy_number(0.8) instance.set_boundary("interface","interface","interface","interface","periodic","periodic") instance.commit_parameters() for boundaryindex in [1,2]: for i0 in range(4): for j0 in range(5): for z0 in range(6): i = (i0 * (5*6)) + (j0 * 6) + z0 error = instance.set_boundary_state( i0,j0,z0, # index 1.0 * (i+1), # density 2.0 * (i+1), 3.0 * (i+1), 4.0 * (i+1), # momentum 5.0 * (i+1), # energy boundaryindex, 1 # boundary + grid ) self.assertEquals(error, 0) rho, rhovx, rhovy, rhovz, rhoen, error = instance.get_boundary_state( i0, j0, z0, boundaryindex, 1.0 ) self.assertEquals(error, 0) self.assertAlmostRelativeEquals(rho, 1.0 * (i+1)) self.assertAlmostRelativeEquals(rhovx, 2.0 * (i+1)) self.assertAlmostRelativeEquals(rhovy, 3.0 * (i+1)) self.assertAlmostRelativeEquals(rhovz, 4.0 * (i+1)) self.assertAlmostRelativeEquals(rhoen, 5.0 * (i+1)) def test34(self): results = [] instance=self.new_instance(AthenaInterface, number_of_workers = 3) instance.initialize_code() instance.set_auto_decomposition(0) instance.set_parallel_decomposition(3,1,1) instance.setup_mesh(6,5,5,6.0,5.0,5.0) instance.set_gamma(1.6666666666666667) instance.set_courant_friedrichs_lewy_number(0.8) instance.set_boundary("interface","interface","interface","interface","interface","interface") instance.commit_parameters() for boundaryindex in [5,6]: for i0 in range(6+8): for j0 in range(5+8): for z0 in range(4): i = (i0 * (5*4)) + (j0 * 4) + z0 error = instance.set_boundary_state( i0,j0,z0, # index 1.0 * (i+1), # density 2.0 * (i+1), 3.0 * (i+1), 4.0 * (i+1), # momentum 5.0 * (i+1), # energy boundaryindex, 1 # boundary + grid ) self.assertEquals(error, 0) rho, rhovx, rhovy, rhovz, rhoen, error = instance.get_boundary_state( i0, j0, z0, boundaryindex, 1.0 ) self.assertEquals(error, 0) self.assertAlmostRelativeEquals(rho, 1.0 * (i+1)) self.assertAlmostRelativeEquals(rhovx, 2.0 * (i+1)) self.assertAlmostRelativeEquals(rhovy, 3.0 * (i+1)) self.assertAlmostRelativeEquals(rhovz, 4.0 * (i+1)) self.assertAlmostRelativeEquals(rhoen, 5.0 * (i+1)) def test35(self): results = [] instance=self.new_instance(AthenaInterface, number_of_workers = 9) instance.initialize_code() instance.set_auto_decomposition(0) instance.set_parallel_decomposition(3,3,1) instance.setup_mesh(6,6,5,6.0,6.0,5.0) instance.set_gamma(1.6666666666666667) instance.set_courant_friedrichs_lewy_number(0.8) instance.set_boundary("interface","interface","interface","interface","interface","interface") instance.commit_parameters() boundary_indices = [] all_i0 = [] all_j0 = [] all_z0 = [] all_i = [] for boundaryindex in [5,6]: for i0 in range(6+8): for j0 in range(6+8): for z0 in range(4): boundary_indices.append(boundaryindex) all_i0.append(i0) all_j0.append(j0) all_z0.append(z0) i = (i0 * (5*4)) + (j0 * 4) + z0 all_i.append(i) all_i = numpy.asarray(all_i) error = instance.set_boundary_state( all_i0,all_j0,all_z0, # index 1.0 * (all_i+1), # density 2.0 * (all_i+1), 3.0 * (all_i+1), 4.0 * (all_i+1), # momentum 5.0 * (all_i+1), # energy boundary_indices, 1 # boundary + grid ) self.assertEquals(error, 0) rho, rhovx, rhovy, rhovz, rhoen, error = instance.get_boundary_state( all_i0, all_j0, all_z0, boundaryindex, 1.0 ) self.assertEquals(error, 0) self.assertAlmostRelativeEquals(rho, 1.0 * (all_i+1)) self.assertAlmostRelativeEquals(rhovx, 2.0 * (all_i+1)) self.assertAlmostRelativeEquals(rhovy, 3.0 * (all_i+1)) self.assertAlmostRelativeEquals(rhovz, 4.0 * (all_i+1)) self.assertAlmostRelativeEquals(rhoen, 5.0 * (all_i+1)) def test36(self): instance=self.new_instance(AthenaInterface) instance.initialize_code() instance.set_gamma(1.6666666666666667) instance.set_courant_friedrichs_lewy_number(0.3) instance.setup_mesh(4, 3, 2, 1.0, 1.0, 1.0) instance.set_boundary("periodic","periodic","periodic","periodic","periodic","periodic") instance.commit_parameters() instance.initialize_grid() ax_in = [1.,2.,3.,4.] ay_in = [3,4,5,6] az_in = [5,6,7,8] instance.set_grid_acceleration( [0,1,2,3], [0,0,0,0], [0,1,0,1], ax_in, ay_in, az_in, [1,1,1,1], ) ax_out, ay_out, az_out, error = instance.get_grid_acceleration( [0,1,2,3], [0,0,0,0], [0,1,0,1], [1,1,1,1] ) self.assertEquals(error, 0) self.assertAlmostRelativeEquals(ax_in, ax_out) self.assertAlmostRelativeEquals(ay_in, ay_out) self.assertAlmostRelativeEquals(az_in, az_out) instance.stop() def test37(self): instance=self.new_instance(AthenaInterface) instance.initialize_code() instance.setup_mesh(4,1,1, 1.0, 1.0, 1.0) instance.set_gamma(1.6666666666666667) instance.set_courant_friedrichs_lewy_number(0.4) instance.set_boundary("periodic","periodic","periodic","periodic","periodic","periodic") result = instance.commit_parameters() self.assertEquals(result, 0) time, error = instance.get_time() self.assertEquals(error,0) self.assertEquals(time, 0.0) for i in range(4): error = instance.set_grid_state(i,0,0,0.1 * (i+1), 0.2 * (i+1), 0.3 * (i+1), 0.4 * (i+1), 0.5 * (i+1)) self.assertEquals(error, 0) rho, rhovx, rhovy, rhovz, energy, error = instance.get_grid_state(0,0,0) self.assertEquals(error, 0) self.assertEquals(rho, 0.1) rho, rhovx, rhovy, rhovz, energy, error = instance.get_grid_state(-1,0,0) self.assertEquals(error, 0) self.assertEquals(rho, 0.0) self.assertEquals(rhovx, 0.0) self.assertEquals(rhovy, 0.0) self.assertEquals(rhovz, 0.0) self.assertEquals(energy, 0.0) instance.initialize_grid() rho, rhovx, rhovy, rhovz, energy, error = instance.get_grid_state(-1,0,0) self.assertEquals(error, 0) self.assertEquals(rho, 0.4) rho, rhovx, rhovy, rhovz, energy, error = instance.get_grid_state(-2,0,0) self.assertEquals(error, 0) self.assertAlmostRelativeEquals(rho, 0.3) rho, rhovx, rhovy, rhovz, energy, error = instance.get_grid_state(-3,0,0) self.assertEquals(error, 0) self.assertAlmostRelativeEquals(rho, 0.2) rho, rhovx, rhovy, rhovz, energy, error = instance.get_grid_state(-4,0,0) self.assertEquals(error, 0) self.assertAlmostRelativeEquals(rho, 0.1) rho, rhovx, rhovy, rhovz, energy, error = instance.get_grid_state(-5,0,0) self.assertEquals(error, 0) self.assertAlmostRelativeEquals(rho, 0.0) rho, rhovx, rhovy, rhovz, energy, error = instance.get_grid_state(4,0,0) self.assertEquals(error, 0) self.assertEquals(rho, 0.1) rho, rhovx, rhovy, rhovz, energy, error = instance.get_grid_state(5,0,0) self.assertEquals(error, 0) self.assertEquals(rho, 0.2) rho, rhovx, rhovy, rhovz, energy, error = instance.get_grid_state(6,0,0) self.assertEquals(error, 0) self.assertAlmostRelativeEquals(rho, 0.3) rho, rhovx, rhovy, rhovz, energy, error = instance.get_grid_state(7,0,0) self.assertEquals(error, 0) self.assertAlmostRelativeEquals(rho, 0.4) rho, rhovx, rhovy, rhovz, energy, error = instance.get_grid_state(8,0,0) self.assertEquals(error, 0) self.assertEquals(rho, 0.0) instance.stop() def test38(self): instance=self.new_instance(AthenaInterface, number_of_workers = 8) instance.initialize_code() instance.set_auto_decomposition(0) instance.set_parallel_decomposition(2,2,2) instance.setup_mesh(8, 8, 8, 1.0, 1.0, 1.0) instance.set_gamma(1.6666666666666667) instance.set_courant_friedrichs_lewy_number(0.4) instance.set_boundary("periodic","periodic","periodic","periodic","periodic","periodic") result = instance.commit_parameters() self.assertEquals(result, 0) time, error = instance.get_time() self.assertEquals(error,0) self.assertEquals(time, 0.0) for i in range(8): error = instance.set_grid_state(i,0,0,0.1 * (i+1), 0.2 * (i+1), 0.3 * (i+1), 0.4 * (i+1), 0.5 * (i+1)) error = instance.set_grid_state(0,i,0,0.1 * (i+1), 0.2 * (i+1), 0.3 * (i+1), 0.4 * (i+1), 0.5 * (i+1)) error = instance.set_grid_state(0,0,i,0.1 * (i+1), 0.2 * (i+1), 0.3 * (i+1), 0.4 * (i+1), 0.5 * (i+1)) self.assertEquals(error, 0) instance.initialize_grid() for i in range(8): rho, rhovx, rhovy, rhovz, energy, error = instance.get_grid_state(i,0,0) self.assertEquals(error, 0) self.assertAlmostRelativeEquals(rho, (i+1) * 0.1) rho, rhovx, rhovy, rhovz, energy, error = instance.get_grid_state(0,i,0) self.assertEquals(error, 0) self.assertAlmostRelativeEquals(rho, (i+1) * 0.1) rho, rhovx, rhovy, rhovz, energy, error = instance.get_grid_state(0,0,i) self.assertEquals(error, 0) self.assertAlmostRelativeEquals(rho, (i+1) * 0.1) for i in range(4): rho, rhovx, rhovy, rhovz, energy, error = instance.get_grid_state(-(i+1),0,0) self.assertEquals(error, 0) self.assertAlmostRelativeEquals(rho, 0.8 - (i * 0.1)) rho, rhovx, rhovy, rhovz, energy, error = instance.get_grid_state(-5,0,0) self.assertEquals(error, 0) self.assertAlmostRelativeEquals(rho, 0.0) rho, rhovx, rhovy, rhovz, energy, error = instance.get_grid_state(8 + i,0,0) self.assertEquals(error, 0) self.assertAlmostRelativeEquals(rho, (i+1) * 0.1) rho, rhovx, rhovy, rhovz, energy, error = instance.get_grid_state(8 + 4,0,0) self.assertEquals(error, 0) self.assertAlmostRelativeEquals(rho, 0.0) # 2 dimension rho, rhovx, rhovy, rhovz, energy, error = instance.get_grid_state(0, -(i+1),0) self.assertEquals(error, 0) self.assertAlmostRelativeEquals(rho, 0.8 - (i * 0.1)) rho, rhovx, rhovy, rhovz, energy, error = instance.get_grid_state(0,-5, 0) self.assertEquals(error, 0) self.assertAlmostRelativeEquals(rho, 0.0) rho, rhovx, rhovy, rhovz, energy, error = instance.get_grid_state(0,8 + i,0) self.assertEquals(error, 0) self.assertAlmostRelativeEquals(rho, (i+1) * 0.1) rho, rhovx, rhovy, rhovz, energy, error = instance.get_grid_state(0,8+4, 0) self.assertEquals(error, 0) self.assertAlmostRelativeEquals(rho, 0.0) # 3 dimension rho, rhovx, rhovy, rhovz, energy, error = instance.get_grid_state(0, 0, -(i+1)) self.assertEquals(error, 0) self.assertAlmostRelativeEquals(rho, 0.8 - (i * 0.1)) rho, rhovx, rhovy, rhovz, energy, error = instance.get_grid_state(0,-5, 0) self.assertEquals(error, 0) self.assertAlmostRelativeEquals(rho, 0.0) rho, rhovx, rhovy, rhovz, energy, error = instance.get_grid_state(0,0,8 + i) self.assertEquals(error, 0) self.assertAlmostRelativeEquals(rho, (i+1) * 0.1) rho, rhovx, rhovy, rhovz, energy, error = instance.get_grid_state(0,0, 8+4) self.assertEquals(error, 0) self.assertAlmostRelativeEquals(rho, 0.0) instance.stop() class TestAthena(TestWithMPI): def test0(self): instance=self.new_instance(Athena) instance.set_gamma(1.6666666666666667) instance.set_courant_friedrichs_lewy_number(0.3) instance.parameters.nx = 10 instance.parameters.ny = 20 instance.parameters.nz = 40 instance.parameters.length_x = 1 | generic_unit_system.length instance.parameters.length_y = 2 | generic_unit_system.length instance.parameters.length_z = 3 | generic_unit_system.length instance.set_boundary("periodic","periodic","periodic","periodic","periodic","periodic") #print instance.grid[0].y density = generic_unit_system.mass / (generic_unit_system.length ** 3) momentum = generic_unit_system.mass / (generic_unit_system.time * (generic_unit_system.length**2)) energy = generic_unit_system.mass / ((generic_unit_system.time**2) * generic_unit_system.length) firstx = instance.grid[0][0][0].x allx = instance.grid[0].x for j in range(20): for k in range(40): self.assertEquals(allx[j][k], firstx) print instance.grid[0][0].rho self.assertEquals(instance.grid[0][0][0].rho, 0.0 |generic_unit_system.mass / generic_unit_system.length ** 3) potential_grid = datamodel.Grid(12,22,42) potential_grid.potential = 2.0 | generic_unit_system.potential channel = potential_grid.new_channel_to(instance.potential_grid) channel.copy() self.assertEquals(instance.potential_grid[0][0][0].potential, 2.0 | generic_unit_system.potential) self.assertEquals(instance.potential_grid[0][2][20].potential, 2.0 | generic_unit_system.potential) instance.stop() def test1(self): instance=self.new_instance(Athena) instance.set_gamma(1.6666666666666667) instance.set_courant_friedrichs_lewy_number(0.3) instance.parameters.nx = 10 instance.parameters.ny = 20 instance.parameters.nz = 40 instance.parameters.length_x = 1 | generic_unit_system.length instance.parameters.length_y = 2 | generic_unit_system.length instance.parameters.length_z = 3 | generic_unit_system.length instance.parameters.x_boundary_conditions = "periodic","periodic" instance.parameters.y_boundary_conditions = "periodic","periodic" instance.parameters.z_boundary_conditions = "periodic","periodic" result = instance.commit_parameters() firstx = instance.potential_grid[0][0][0].x print firstx self.assertEquals(firstx, -0.05 | generic_unit_system.length) allx = instance.potential_grid[0].x for j in range(20): for k in range(40): self.assertEquals(allx[j][k], firstx) instance.stop() def test2(self): instance=self.new_instance(Athena) instance.set_gamma(1.6666666666666667) instance.set_courant_friedrichs_lewy_number(0.3) instance.setup_mesh(10, 10, 1, 1.0 | generic_unit_system.length, 1.0 | generic_unit_system.length , 0.0 | generic_unit_system.length) instance.parameters.mesh_size = (10,10,1) instance.parameters.length_x = 1.0 | generic_unit_system.length instance.parameters.length_y = 1.0 | generic_unit_system.length instance.parameters.length_z = 0.0 | generic_unit_system.length instance.set_boundary("periodic","periodic","periodic","periodic","periodic","periodic") density = generic_unit_system.mass / (generic_unit_system.length ** 3) momentum = generic_unit_system.mass / (generic_unit_system.time * (generic_unit_system.length**2)) energy = generic_unit_system.mass / ((generic_unit_system.time**2) * generic_unit_system.length) grid = datamodel.Grid(10,10,1) grid.rho = 0.1 | density grid.rhovx = 0.0 | momentum grid.rhovy = 0.0 | momentum grid.rhovz = 0.0 | momentum grid.energy = 0.0 | energy channel = grid.new_channel_to(instance.grid) channel.copy() print instance.grid[1].rho self.assertEquals(instance.grid[1][1][0].rho, 0.1 | density) for x in instance.grid[1].rho.value_in(density).flatten(): self.assertEquals(x, 0.1) instance.evolve_model(1.0 | generic_unit_system.time) for x in instance.grid.rho.value_in(density).flatten(): self.assertEquals(x, 0.1) instance.evolve_model(10.0 | generic_unit_system.time) for x in instance.grid.rho.value_in(density).flatten(): self.assertEquals(x, 0.1) instance.stop() def test3(self): instance=self.new_instance(Athena) instance.set_gamma(1.6666666666666667) instance.set_courant_friedrichs_lewy_number(0.3) instance.parameters.nx = 10 instance.parameters.ny = 10 instance.parameters.nz = 1 instance.parameters.length_x = 1.0 | generic_unit_system.length instance.parameters.length_y = 1.0 | generic_unit_system.length instance.parameters.length_z = 0.0 | generic_unit_system.length instance.set_boundary("periodic","periodic","periodic","periodic","periodic","periodic") instance.set_has_external_gravitational_potential(1) density = generic_unit_system.mass / (generic_unit_system.length ** 3) momentum = generic_unit_system.mass / (generic_unit_system.time * (generic_unit_system.length**2)) energy = generic_unit_system.mass / ((generic_unit_system.time**2) * generic_unit_system.length) grid = datamodel.Grid(10,10,1) grid.rho = 0.1 | density grid.rhovx = 0.0 | momentum grid.rhovy = 0.0 | momentum grid.rhovz = 0.0 | momentum grid.energy = 0.0 | energy self.assertEquals(grid.get_defined_settable_attribute_names(), ['energy', 'rho', 'rhovx', 'rhovy', 'rhovz', ] ) channel = grid.new_channel_to(instance.grid) channel.copy() potential_grid = datamodel.Grid(12,12,1) potential_grid.potential = 0.0 | generic_unit_system.potential channel = potential_grid.new_channel_to(instance.potential_grid) channel.copy() result = instance.initialize_grid() self.assertEquals(instance.grid[1][1][0].rho, 0.1 | density) for x in instance.grid[1].rho.value_in(density).flatten(): self.assertEquals(x, 0.1) instance.evolve_model(1.0 | generic_unit_system.time) for x in instance.grid.rho.value_in(density).flatten(): self.assertEquals(x, 0.1) instance.evolve_model(10.0 | generic_unit_system.time) for x in instance.grid.rho.value_in(density).flatten(): self.assertEquals(x, 0.1) instance.stop() def test4(self): instance=self.new_instance(Athena) instance.set_gamma(1.6666666666666667) instance.set_courant_friedrichs_lewy_number(0.3) instance.parameters.nx = 10 instance.parameters.ny = 10 instance.parameters.nz = 1 instance.parameters.length_x = 1.0 | generic_unit_system.length instance.parameters.length_y = 1.0 | generic_unit_system.length instance.parameters.length_z = 0.0 | generic_unit_system.length instance.set_boundary("outflow","outflow","outflow","outflow","outflow","outflow") instance.set_has_external_gravitational_potential(1) density = generic_unit_system.mass / (generic_unit_system.length ** 3) momentum = generic_unit_system.mass / (generic_unit_system.time * (generic_unit_system.length**2)) energy = generic_unit_system.mass / ((generic_unit_system.time**2) * generic_unit_system.length) grid = datamodel.Grid(10,10,1) grid.rho = 0.1 | density grid.rhovx = 0.0 | momentum grid.rhovy = 0.0 | momentum grid.rhovz = 0.0 | momentum grid.energy = 0.0 | energy channel = grid.new_channel_to(instance.grid) channel.copy() potential_grid = datamodel.Grid(12,12,1) potential_grid.potential = 0.0 | generic_unit_system.potential x = instance.potential_grid.x y = instance.potential_grid.y print 1 for i in range(12): for j in range(12): px = x[i][j][0].value_in(generic_unit_system.length) py = y[i][j][0].value_in(generic_unit_system.length) potential = (math.sin(py * math.pi)+math.sin(px *math.pi)) / 200.0 if px < 0 or px > 1.0: potential = 0.0 if py < 0 or py > 1.0: potential = 0.0 #print potential potential_grid.potential[i][j][0] = -0.001 * generic_unit_system.potential.new_quantity([potential]) #instance.potential_grid[i][j][0].potential = -0.001 * generic_unit_system.potential.new_quantity([potential]) channel = potential_grid.new_channel_to(instance.potential_grid) channel.copy() print 2 result = instance.initialize_grid() self.assertEquals(instance.grid[1][1][0].rho, 0.1 | density) for x in instance.grid[1].rho.value_in(density).flatten(): self.assertAlmostRelativeEquals(x, 0.1) #print instance.potential_grid[...,0].potential instance.evolve_model(1.0 | generic_unit_system.time) #print "--------------------------" #print instance.grid.rho[...,0] z = instance.grid.rho[...,0] #z = instance.potential_grid.potential[...,0] #z = z.value_in(generic_unit_system.potential) z = z.value_in(density) #from matplotlib import pyplot #x = instance.potential_grid[...,50,0].x ##y = instance.potential_grid[...,50,0].y #z = instance.potential_grid[...,50,0].z #pyplot.plot(x.value_in(generic_unit_system.length), instance.potential_grid[...,50,0].potential.value_in(generic_unit_system.potential)) #dx = x[1] - x[0] #x += 1.5 * dx #interpolated = instance.get_interpolated_gravitational_potential(x,y,z) #pyplot.plot(x.value_in(generic_unit_system.length), interpolated.value_in(generic_unit_system.potential)) #img = pyplot.imshow(z) #img.set_interpolation('none') #pyplot.savefig("bla.png") for x in instance.grid.rho.value_in(density).flatten(): self.assertNotEquals(x, 0.1) instance.stop() def test5(self): instance=self.new_instance(Athena) self.assertAlmostRelativeEquals(instance.parameters.isothermal_sound_speed, 0.0 | generic_unit_system.speed) instance.parameters.isothermal_sound_speed = 0.1 | generic_unit_system.speed self.assertAlmostRelativeEquals(instance.parameters.isothermal_sound_speed, 0.1 | generic_unit_system.speed) self.assertAlmostRelativeEquals(instance.parameters.gamma, 1.66666666666666667) instance.parameters.gamma = 0.1 self.assertAlmostRelativeEquals(instance.parameters.gamma, 0.1) self.assertAlmostRelativeEquals(instance.parameters.courant_number, 0.3) instance.parameters.courant_number = 0.1 self.assertAlmostRelativeEquals(instance.parameters.courant_number, 0.1) print instance.parameters instance.stop() def test6(self): instance=self.new_instance(Athena) instance.set_gamma(1.6666666666666667) instance.set_courant_friedrichs_lewy_number(0.3) instance.setup_mesh(10 , 20, 40, 1.0 | generic_unit_system.length, 1.0 | generic_unit_system.length, 1.0 | generic_unit_system.length) instance.set_boundary("periodic","periodic","periodic","periodic","periodic","periodic") density = generic_unit_system.mass / (generic_unit_system.length ** 3) momentum = generic_unit_system.mass / (generic_unit_system.time * (generic_unit_system.length**2)) energy = generic_unit_system.mass / ((generic_unit_system.time**2) * generic_unit_system.length) grid = datamodel.new_regular_grid((10,10,10), [10.0, 10.0, 10.0] | units.m) grid.rho = 0.4 | density grid.rhovx = 0.1 | momentum grid.rhovy = 0.2 | momentum grid.rhovz = 0.3 | momentum grid.energy = 0.5 | energy channel = grid.new_channel_to(instance.grid) channel.copy() self.assertEquals(instance.grid[0][0][0].rho, 0.4 | density) self.assertEquals(instance.grid.rho.number.ndim, 3) self.assertEquals(len(list(instance.itergrids())), 1) instance.stop() def test7(self): instance=self.new_instance(Athena) instance.parameters.isothermal_sound_speed = 0.1 | generic_unit_system.speed instance.parameters.gamma = 0.1 instance.parameters.courant_number = 0.1 instance.parameters.nx = 10 instance.parameters.ny = 20 instance.parameters.nz = 40 instance.parameters.length_x = 10 | generic_unit_system.length instance.parameters.length_y = 20 | generic_unit_system.length instance.parameters.length_z = 30 | generic_unit_system.length print instance.parameters instance.commit_parameters() mini,maxi, minj,maxj, mink,maxk = instance.get_index_range_inclusive() self.assertEquals(mini, 0) self.assertEquals(maxi, 9) self.assertEquals(minj, 0) self.assertEquals(maxj, 19) self.assertEquals(mink, 0) self.assertEquals(maxk, 39) self.assertEquals(instance.parameters.mesh_size, (10,20,40)) print instance.parameters instance.stop() def test8(self): instance=self.new_instance(Athena) instance.parameters.stopping_conditions_number_of_steps = 10 self.assertEquals(instance.parameters.stopping_conditions_number_of_steps, 10) instance.stop() def test8a(self): instance=self.new_instance(Athena) instance.parameters.stopping_conditions_timeout = 10 | units.s self.assertEquals(instance.parameters.stopping_conditions_timeout, 10|units.s) instance.stop() def test9(self): instance=self.new_instance(Athena) instance.parameters.x_boundary_conditions = "periodic","periodic" instance.parameters.y_boundary_conditions = "periodic","periodic" instance.parameters.z_boundary_conditions = "periodic","periodic" self.assertEquals(instance.parameters.xbound1, "periodic") instance.stop() def xtest10(self): instance=self.new_instance(Athena) instance.parameters.gamma = 5/3.0 instance.parameters.courant_number=0.3 n = 100 instance.parameters.nx = n instance.parameters.ny = n instance.parameters.nz = n instance.parameters.length_x = 1 | generic_unit_system.length instance.parameters.length_y = 1 | generic_unit_system.length instance.parameters.length_z = 1 | generic_unit_system.length instance.x_boundary_conditions = ("periodic","periodic") instance.y_boundary_conditions = ("periodic","periodic") instance.z_boundary_conditions = ("periodic","periodic") result = instance.commit_parameters() density = generic_unit_system.mass / (generic_unit_system.length**3) density = generic_unit_system.density momentum = generic_unit_system.speed * generic_unit_system.density energy = generic_unit_system.mass / ((generic_unit_system.time**2) * generic_unit_system.length) grid = datamodel.Grid(n,n,n) grid.rho = 0.0 | generic_unit_system.density grid.rhovx = 0.0 | momentum grid.rhovy = 0.0 | momentum grid.rhovz = 0.0 | momentum grid.energy = 0.0 | energy halfway = n/2 - 1 grid[:halfway].rho = 4.0 | generic_unit_system.density grid[:halfway].energy = (1.0 | energy)/ (instance.parameters.gamma - 1) grid[halfway:].rho = 1.0 | generic_unit_system.density grid[halfway:].energy = (0.1795 | energy)/ (instance.parameters.gamma - 1) channel = grid.new_channel_to(instance.grid) channel.copy() #from amuse import plot #from matplotlib import pyplot #print grid.rho[...,0,0] #plot.plot(instance.grid.x[...,0,0], grid.rho[...,0,0]) #pyplot.savefig("bla1.png") error = instance.initialize_grid() instance.evolve_model(0.12 | generic_unit_system.time) channel = instance.grid.new_channel_to(grid) channel.copy() #print grid.rho[...,0,0] #plot.plot(instance.grid.x[...,0,0], grid.rho[...,0,0]) #pyplot.savefig("bla2.png") instance.stop() def test11(self): instance=self.new_instance(Athena, mode=AthenaInterface.MODE_SELF_GRAVITY) #, redirection = "none") #, debugger="gdb") instance.parameters.gamma = 5/3.0 instance.parameters.courant_number=0.3 density = generic_unit_system.mass / (generic_unit_system.length ** 3) momentum = generic_unit_system.mass / (generic_unit_system.time * (generic_unit_system.length**2)) energy = generic_unit_system.mass / ((generic_unit_system.time**2) * generic_unit_system.length) instance.parameters.four_pi_G = 4 * numpy.pi * (1|(generic_unit_system.length**3) / (generic_unit_system.mass * (generic_unit_system.time**2))) # G = 1, like nbody instance.parameters.gravity_mean_rho = 0.0 | density datamodel.Grid.add_global_vector_attribute("position", ["x","y","z"]) n = 10 instance.parameters.nx = n instance.parameters.ny = n instance.parameters.nz = n instance.parameters.length_x = 4.0 | generic_unit_system.length instance.parameters.length_y = 4.0 | generic_unit_system.length instance.parameters.length_z = 4.0 | generic_unit_system.length instance.x_boundary_conditions = ("periodic","periodic") instance.y_boundary_conditions = ("periodic","periodic") instance.z_boundary_conditions = ("periodic","periodic") result = instance.commit_parameters() grid = datamodel.new_regular_grid((n,n,n), [4.0 , 4.0, 4.0] | generic_unit_system.length) grid.rho = 0.0 | generic_unit_system.density grid.rhovx = 0.0 | momentum grid.rhovy = 0.0 | momentum grid.rhovz = 0.0 | momentum grid.energy = 0.001 | energy scaled_radius = 1.0 / 1.695 | generic_unit_system.length total_mass = 1.0 | generic_unit_system.mass radii = (grid.position - ([2.0, 2.0, 2.0] | generic_unit_system.length)).lengths() rho_sphere = ((0.75 * total_mass / (numpy.pi * (scaled_radius ** 3)))) grid.rho = (rho_sphere * ((1 + (radii ** 2) / (scaled_radius ** 2))**(-5.0/2.0))) internal_energy = (0.25 | generic_unit_system.time ** -2 * generic_unit_system.mass ** -1 * generic_unit_system.length **3) * total_mass / scaled_radius grid.energy = grid.rho * internal_energy/(1+(radii/scaled_radius)**2)**(1.0/2.0) channel = grid.new_channel_to(instance.grid) channel.copy() instance.initialize_grid() instance.evolve_model(0.01 | generic_unit_system.time) G = 1.0 | generic_unit_system.length **3 * generic_unit_system.mass**-1 * generic_unit_system.time**-2 a = instance.grid[5][5].gravitational_potential b = (-1 * G * total_mass / (radii**2+scaled_radius**2).sqrt()) [5][5] for x in a: self.assertTrue(x < 0 | generic_unit_system.potential) a = instance.grid[5][5].gravitational_acceleration_z for index, x in enumerate(a): if index < 5: self.assertTrue(x > 0 | generic_unit_system.acceleration) else: self.assertTrue(x < 0 | generic_unit_system.acceleration) instance.stop() def test12(self): print "Testing Athena grid setters" instance=self.new_instance(Athena) instance.parameters.isothermal_sound_speed = 0.1 | generic_unit_system.speed instance.parameters.gamma = 5/3.0 instance.parameters.courant_number = 0.3 instance.parameters.mesh_size = (2, 2, 2) instance.parameters.mesh_length = [1.0, 1.0, 1.0] | generic_unit_system.length instance.parameters.x_boundary_conditions = ("periodic", "periodic") instance.parameters.y_boundary_conditions = ("periodic", "periodic") instance.parameters.z_boundary_conditions = ("periodic", "periodic") instance.grid.rho = 1.0 | generic_unit_system.density self.assertAlmostEquals(instance.grid.rho, numpy.ones((2,2,2)) | generic_unit_system.density) instance.grid.momentum = numpy.reshape( numpy.arange(0.0, 3.0, 0.125), (2,2,2,3)) | generic_unit_system.momentum_density self.assertAlmostEquals(instance.grid.rhovx, numpy.reshape(numpy.arange(0.000, 3.0, 0.375), (2,2,2)) | generic_unit_system.momentum_density) self.assertAlmostEquals(instance.grid.rhovy, numpy.reshape(numpy.arange(0.125, 3.0, 0.375), (2,2,2)) | generic_unit_system.momentum_density) self.assertAlmostEquals(instance.grid.rhovz, numpy.reshape(numpy.arange(0.250, 3.0, 0.375), (2,2,2)) | generic_unit_system.momentum_density) momentum = instance.grid.momentum rhovx = -momentum.x rhovy = 2 * momentum.z rhovz = -0.5 * momentum.y instance.grid.momentum = VectorQuantity.new_from_scalar_quantities(rhovx,rhovy,rhovz).transpose(axes=(1,2,3,0)) self.assertAlmostEquals(instance.grid.rhovx, numpy.reshape(numpy.arange(0.000, -3.0, -0.375), (2,2,2)) | generic_unit_system.momentum_density) self.assertAlmostEquals(instance.grid.rhovy, numpy.reshape(numpy.arange(0.5, 6.0, 0.75), (2,2,2)) | generic_unit_system.momentum_density) self.assertAlmostEquals(instance.grid.rhovz, numpy.reshape(numpy.arange(-0.0625, -1.5, -0.1875), (2,2,2)) | generic_unit_system.momentum_density) instance.grid[...,0,...].momentum = [12.0, 13.0, 14.0] | generic_unit_system.momentum_density self.assertAlmostEquals(instance.grid[0,...].rhovx, [[12.0, 12.0], [-0.75, -1.125]] | generic_unit_system.momentum_density) self.assertAlmostEquals(instance.grid[0,...].rhovy, [[13.0, 13.0], [2.0, 2.75]] | generic_unit_system.momentum_density) self.assertAlmostEquals(instance.grid[...,0].rhovz, [[14.0, -0.4375], [14.0, -1.1875]] | generic_unit_system.momentum_density) instance.grid.energy = numpy.reshape(numpy.arange(0.0, 1.0, 0.125), (2,2,2)) | generic_unit_system.energy_density self.assertAlmostEquals(instance.grid[...,0,0].energy, [0.0, 0.5] | generic_unit_system.energy_density) self.assertAlmostEquals(instance.grid[0,...,0].energy, [0.0, 0.25] | generic_unit_system.energy_density) self.assertAlmostEquals(instance.grid[0,0,...].energy, [0.0, 0.125] | generic_unit_system.energy_density) instance.initialize_grid() instance.stop() def test13(self): converter = generic_unit_converter.ConvertBetweenGenericAndSiUnits( 1 | units.parsec, 1 | units.Myr, 1 | units.MSun ) instance=self.new_instance(Athena, unit_converter = converter) instance.set_gamma(1.6666666666666667) instance.set_courant_friedrichs_lewy_number(0.3) instance.parameters.mesh_size = (10 , 20, 40) instance.parameters.mesh_length = [1.0, 1.0, 1.0] | units.parsec instance.parameters.x_boundary_conditions = ("periodic", "periodic") instance.parameters.y_boundary_conditions = ("periodic", "periodic") instance.parameters.z_boundary_conditions = ("periodic", "periodic") density = units.MSun / (units.parsec ** 3) momentum = units.MSun / (units.Myr * units.parsec ** 2 ) energy = units.MSun / (units.parsec * units.Myr ** 2) grid = datamodel.new_regular_grid((10,20,40), [1.0, 1.0, 1.0] | units.parsec ) grid.rho = 0.4 | density grid.rhovx = 0.1 | momentum grid.rhovy = 0.2 | momentum grid.rhovz = 0.3 | momentum grid.energy = 0.5 | energy channel = grid.new_channel_to(instance.grid) channel.copy() print instance.grid[0].rho self.assertAlmostRelativeEquals(instance.grid[0].rho, 0.4 | density) self.assertAlmostRelativeEquals(instance.grid[0].rhovx, 0.1 | momentum) self.assertAlmostRelativeEquals(instance.grid[0].rhovy, 0.2 | momentum) self.assertAlmostRelativeEquals(instance.grid[0].rhovz, 0.3 | momentum) self.assertAlmostRelativeEquals(instance.grid[0].energy, 0.5 | energy) self.assertEquals(instance.grid.rho.number.ndim, 3) self.assertEquals(len(list(instance.itergrids())), 1) instance.stop() def test14(self): instance=self.new_instance(Athena) instance.parameters.mesh_size = (10 , 1, 1) instance.parameters.mesh_length = [1.0, 1.0, 1.0] | generic_unit_system.length instance.parameters.x_boundary_conditions = ("interface", "outflow") instance.parameters.stopping_conditions_number_of_steps = 1 grid = datamodel.new_regular_grid((10,1,1), [1.0, 1.0, 1.0] | generic_unit_system.length ) density = generic_unit_system.density momentum = generic_unit_system.speed * generic_unit_system.density energy = generic_unit_system.mass / ((generic_unit_system.time**2) * generic_unit_system.length) grid.rho = 0.01 | density grid.rhovx = 0.1 | momentum grid.rhovy = 0.0 | momentum grid.rhovz = 0.0 | momentum p = 1.0 | (generic_unit_system.mass / (generic_unit_system.length * generic_unit_system.time**2)) grid.energy = p / (instance.parameters.gamma - 1) grid.energy += 0.5 * (grid.rhovx ** 2 + grid.rhovy ** 2 + grid.rhovz ** 2) / grid.rho channel = grid.new_channel_to(instance.grid) channel.copy() instance.stopping_conditions.number_of_steps_detection.enable() #instance.grid.boundaries.left. xbound1 = instance.get_boundary_grid('xbound1') self.assertEquals(xbound1.shape, (4,1,1)) memxbound1 = xbound1.copy() memxbound1.rho = 0.02 | density memxbound1.rhovx = 0.2 | momentum memxbound1.rhovy = 0.0 | momentum memxbound1.rhovz = 0.0 | momentum memxbound1.energy = p / (instance.parameters.gamma - 1) memxbound1.energy += 0.5 * (memxbound1.rhovx ** 2 + memxbound1.rhovy ** 2 + memxbound1.rhovz ** 2) / memxbound1.rho channel = memxbound1.new_channel_to(xbound1) channel.copy() instance.evolve_model(1.0 | generic_unit_system.time) print instance.stopping_conditions.number_of_steps_detection.is_set() rho = instance.grid.rho[...,0,0] self.assertAlmostRelativeEquals(rho[-1], 0.01 | density) self.assertTrue(rho[0] > 0.01 | density) self.assertTrue(instance.grid.rhovx[0,0,0] > 0.1 | momentum) self.assertAlmostRelativeEquals(instance.grid.rhovx[-1,0,0] , 0.1 | momentum) print instance.model_time instance.stopping_conditions.number_of_steps_detection.disable() instance.evolve_model(1.0 | generic_unit_system.time) rho = instance.grid.rho[...,0,0] self.assertAlmostRelativeEquals(rho, 0.02 | density, 8) self.assertAlmostRelativeEquals(instance.grid.rhovx[...,0,0], 0.2 | momentum, 8) print instance.model_time instance.stop() def test15(self): instance=self.new_instance(Athena) instance.initialize_code() instance.stop() def test16(self): instance=self.new_instance(Athena) instance.parameters.mesh_size = (10 , 1, 1) instance.parameters.mesh_length = [1.0, 1.0, 1.0] | generic_unit_system.length instance.parameters.x_boundary_conditions = ("outflow", "interface") instance.parameters.stopping_conditions_number_of_steps = 1 grid = datamodel.new_regular_grid((10,1,1), [1.0, 1.0, 1.0] | generic_unit_system.length ) density = generic_unit_system.density momentum = generic_unit_system.speed * generic_unit_system.density energy = generic_unit_system.mass / ((generic_unit_system.time**2) * generic_unit_system.length) grid.rho = 0.01 | density grid.rhovx = -0.1 | momentum grid.rhovy = 0.0 | momentum grid.rhovz = 0.0 | momentum p = 1.0 | (generic_unit_system.mass / (generic_unit_system.length * generic_unit_system.time**2)) grid.energy = p / (instance.parameters.gamma - 1) grid.energy += 0.5 * (grid.rhovx ** 2 + grid.rhovy ** 2 + grid.rhovz ** 2) / grid.rho channel = grid.new_channel_to(instance.grid) channel.copy() instance.stopping_conditions.number_of_steps_detection.enable() #instance.grid.boundaries.left. xbound = instance.get_boundary_grid('xbound2') self.assertEquals(xbound.shape, (4,1,1)) memxbound = xbound.copy() memxbound.rho = 0.02 | density memxbound.rhovx = -0.2 | momentum memxbound.rhovy = 0.0 | momentum memxbound.rhovz = 0.0 | momentum memxbound.energy = p / (instance.parameters.gamma - 1) memxbound.energy += 0.5 * (memxbound.rhovx ** 2 + memxbound.rhovy ** 2 + memxbound.rhovz ** 2) / memxbound.rho channel = memxbound.new_channel_to(xbound) channel.copy() instance.evolve_model(1.0 | generic_unit_system.time) print instance.stopping_conditions.number_of_steps_detection.is_set() rho = instance.grid.rho[...,0,0] self.assertAlmostRelativeEquals(rho[0], 0.01 | density) self.assertTrue(rho[-1] > 0.01 | density) self.assertTrue(instance.grid.rhovx[-1,0,0] < -0.1 | momentum) self.assertAlmostRelativeEquals(instance.grid.rhovx[0,0,0] , -0.1 | momentum) print instance.model_time instance.stopping_conditions.number_of_steps_detection.disable() instance.evolve_model(1.0 | generic_unit_system.time) rho = instance.grid.rho[...,0,0] self.assertAlmostRelativeEquals(rho, 0.02 | density, 8) self.assertAlmostRelativeEquals(instance.grid.rhovx[...,0,0], -0.2 | momentum, 8) print instance.model_time instance.stop() def test17(self): instance=self.new_instance(Athena, number_of_workers = 2) instance.set_parallel_decomposition(1,2,1) instance.parameters.mesh_size = (10,4,1) instance.parameters.mesh_length = [1.0, 1.0, 1.0] | generic_unit_system.length instance.parameters.x_boundary_conditions = ("interface", "outflow") instance.parameters.y_boundary_conditions = ("periodic", "periodic") instance.parameters.stopping_conditions_number_of_steps = 1 grid = datamodel.new_regular_grid((10,4,1), [1.0, 1.0, 1.0] | generic_unit_system.length ) density = generic_unit_system.density momentum = generic_unit_system.speed * generic_unit_system.density energy = generic_unit_system.mass / ((generic_unit_system.time**2) * generic_unit_system.length) grid.rho = 0.01 | density grid.rhovx = 0.1 | momentum grid.rhovy = 0.0 | momentum grid.rhovz = 0.0 | momentum p = 1.0 | (generic_unit_system.mass / (generic_unit_system.length * generic_unit_system.time**2)) grid.energy = p / (instance.parameters.gamma - 1) grid.energy += 0.5 * (grid.rhovx ** 2 + grid.rhovy ** 2 + grid.rhovz ** 2) / grid.rho channel = grid.new_channel_to(instance.grid) channel.copy() instance.stopping_conditions.number_of_steps_detection.enable() xbound = instance.get_boundary_grid('xbound1') self.assertEquals(xbound.shape, (4,4,1)) memxbound = xbound.copy() memxbound.rho = 0.02 | density memxbound.rhovx = 0.2 | momentum memxbound.rhovy = 0.0 | momentum memxbound.rhovz = 0.0 | momentum memxbound.energy = p / (instance.parameters.gamma - 1) memxbound.energy += 0.5 * (memxbound.rhovx ** 2 + memxbound.rhovy ** 2 + memxbound.rhovz ** 2) / memxbound.rho channel = memxbound.new_channel_to(xbound) channel.copy() instance.evolve_model(1.0 | generic_unit_system.time) print instance.stopping_conditions.number_of_steps_detection.is_set() print instance.grid.rho rho = instance.grid.rho[...,0,0] self.assertAlmostRelativeEquals(rho[-1], 0.01 | density) self.assertTrue(rho[0] > 0.01 | density) self.assertTrue(instance.grid.rhovx[0,0,0] > 0.1 | momentum) self.assertAlmostRelativeEquals(instance.grid.rhovx[-1,0,0] , 0.1 | momentum) print instance.model_time instance.stopping_conditions.number_of_steps_detection.disable() instance.evolve_model(1.0 | generic_unit_system.time) rho = instance.grid.rho[...,0,0] self.assertAlmostRelativeEquals(rho, 0.02 | density, 8) self.assertAlmostRelativeEquals(instance.grid.rhovx[...,0,0], 0.2 | momentum, 8) print instance.model_time instance.stop() def test18(self): instance=self.new_instance(Athena, number_of_workers = 2) instance.set_parallel_decomposition(2,1,1) instance.parameters.mesh_size = (4,10,1) instance.parameters.mesh_length = [1.0, 1.0, 1.0] | generic_unit_system.length instance.parameters.x_boundary_conditions = ("periodic", "periodic") instance.parameters.y_boundary_conditions = ("interface", "outflow") instance.parameters.stopping_conditions_number_of_steps = 1 grid = datamodel.new_regular_grid((4,10,1), [1.0, 1.0, 1.0] | generic_unit_system.length ) density = generic_unit_system.density momentum = generic_unit_system.speed * generic_unit_system.density energy = generic_unit_system.mass / ((generic_unit_system.time**2) * generic_unit_system.length) grid.rho = 0.01 | density grid.rhovx = 0.0 | momentum grid.rhovy = 0.1 | momentum grid.rhovz = 0.0 | momentum p = 1.0 | (generic_unit_system.mass / (generic_unit_system.length * generic_unit_system.time**2)) grid.energy = p / (instance.parameters.gamma - 1) grid.energy += 0.5 * (grid.rhovx ** 2 + grid.rhovy ** 2 + grid.rhovz ** 2) / grid.rho channel = grid.new_channel_to(instance.grid) channel.copy() instance.stopping_conditions.number_of_steps_detection.enable() ybound = instance.get_boundary_grid('ybound1') self.assertEquals(ybound.shape, (4+8,4,1)) memybound = ybound.copy() memybound.rho = 0.02 | density memybound.rhovx = 0.0 | momentum memybound.rhovy = 0.2 | momentum memybound.rhovz = 0.0 | momentum memybound.energy = p / (instance.parameters.gamma - 1) memybound.energy += 0.5 * (memybound.rhovx ** 2 + memybound.rhovy ** 2 + memybound.rhovz ** 2) / memybound.rho channel = memybound.new_channel_to(ybound) channel.copy() instance.evolve_model(1.0 | generic_unit_system.time) print instance.stopping_conditions.number_of_steps_detection.is_set() print instance.grid.rho rho = instance.grid.rho[0,...,0] self.assertAlmostRelativeEquals(rho[-1], 0.01 | density) self.assertTrue(rho[0] > 0.01 | density) self.assertTrue(instance.grid.rhovy[0,0,0] > 0.1 | momentum) self.assertAlmostRelativeEquals(instance.grid.rhovy[0,-1,0] , 0.1 | momentum) print instance.model_time instance.stopping_conditions.number_of_steps_detection.disable() instance.evolve_model(1.0 | generic_unit_system.time) rho = instance.grid.rho[0,...,0] self.assertAlmostRelativeEquals(rho, 0.02 | density, 8) self.assertAlmostRelativeEquals(instance.grid.rhovy[0,...,0], 0.2 | momentum, 8) print instance.model_time instance.stop() def test19(self): instance=self.new_instance(Athena, number_of_workers = 1) instance.set_parallel_decomposition(1,1,1) instance.parameters.mesh_size = (4,5,6) instance.parameters.mesh_length = [1.0, 1.0, 1.0] | generic_unit_system.length instance.parameters.x_boundary_conditions = ("periodic", "periodic") instance.parameters.y_boundary_conditions = ("periodic", "periodic") instance.parameters.z_boundary_conditions = ("interface", "outflow") instance.parameters.stopping_conditions_number_of_steps = 1 grid = datamodel.new_regular_grid((4,5,6), [1.0, 1.0, 1.0] | generic_unit_system.length ) density = generic_unit_system.density momentum = generic_unit_system.speed * generic_unit_system.density energy = generic_unit_system.mass / ((generic_unit_system.time**2) * generic_unit_system.length) grid.rho = 0.01 | density grid.rhovx = 0.0 | momentum grid.rhovy = 0.0 | momentum grid.rhovz = 0.1 | momentum p = 1.0 | (generic_unit_system.mass / (generic_unit_system.length * generic_unit_system.time**2)) grid.energy = p / (instance.parameters.gamma - 1) grid.energy += 0.5 * (grid.rhovx ** 2 + grid.rhovy ** 2 + grid.rhovz ** 2) / grid.rho channel = grid.new_channel_to(instance.grid) channel.copy() instance.stopping_conditions.number_of_steps_detection.enable() zbound = instance.get_boundary_grid('zbound1') self.assertEquals(zbound.shape, (4+8,5+8,4)) memzbound = zbound.copy() memzbound.rho = 0.02 | density memzbound.rhovx = 0.0 | momentum memzbound.rhovy = 0.0 | momentum memzbound.rhovz = 0.2 | momentum memzbound.energy = p / (instance.parameters.gamma - 1) memzbound.energy += 0.5 * (memzbound.rhovx ** 2 + memzbound.rhovy ** 2 + memzbound.rhovz ** 2) / memzbound.rho channel = memzbound.new_channel_to(zbound) channel.copy() instance.evolve_model(1.0 | generic_unit_system.time) rho = instance.grid.rho[0,0,...] self.assertAlmostRelativeEquals(rho[-1], 0.01 | density) self.assertTrue(rho[0] > 0.01 | density) self.assertTrue(instance.grid.rhovz[0,0,0] > 0.1 | momentum) self.assertAlmostRelativeEquals(instance.grid.rhovz[0,0,-1] , 0.1 | momentum) print instance.model_time instance.stopping_conditions.number_of_steps_detection.disable() instance.evolve_model(1.0 | generic_unit_system.time) rho = instance.grid.rho[0,...,0] self.assertAlmostRelativeEquals(rho, 0.02 | density, 8) self.assertAlmostRelativeEquals(instance.grid.rhovz[0,0,...], 0.2 | momentum, 8) print instance.model_time instance.stop() def test20(self): instance=self.new_instance(Athena, number_of_workers = 4) instance.parameters.parallel_decomposition = (2,2,1) instance.parameters.mesh_size = (4,5,6) instance.parameters.mesh_length = [1.0, 1.0, 1.0] | generic_unit_system.length instance.parameters.x_boundary_conditions = ("periodic", "periodic") instance.parameters.y_boundary_conditions = ("periodic", "periodic") instance.parameters.z_boundary_conditions = ("outflow", "interface") instance.parameters.stopping_conditions_number_of_steps = 1 grid = datamodel.new_regular_grid((4,5,6), [1.0, 1.0, 1.0] | generic_unit_system.length ) density = generic_unit_system.density momentum = generic_unit_system.speed * generic_unit_system.density energy = generic_unit_system.mass / ((generic_unit_system.time**2) * generic_unit_system.length) grid.rho = 0.01 | density grid.rhovx = 0.0 | momentum grid.rhovy = 0.0 | momentum grid.rhovz = -0.1 | momentum p = 1.0 | (generic_unit_system.mass / (generic_unit_system.length * generic_unit_system.time**2)) grid.energy = p / (instance.parameters.gamma - 1) grid.energy += 0.5 * (grid.rhovx ** 2 + grid.rhovy ** 2 + grid.rhovz ** 2) / grid.rho channel = grid.new_channel_to(instance.grid) channel.copy() instance.stopping_conditions.number_of_steps_detection.enable() zbound = instance.get_boundary_grid('zbound2') self.assertEquals(zbound.shape, (4+8,5+8,4)) memzbound = zbound.copy() memzbound.rho = 0.02 | density memzbound.rhovx = 0.0 | momentum memzbound.rhovy = 0.0 | momentum memzbound.rhovz = -0.2 | momentum memzbound.energy = p / (instance.parameters.gamma - 1) memzbound.energy += 0.5 * (memzbound.rhovx ** 2 + memzbound.rhovy ** 2 + memzbound.rhovz ** 2) / memzbound.rho channel = memzbound.new_channel_to(zbound) channel.copy() instance.evolve_model(1.0 | generic_unit_system.time) rho = instance.grid.rho[0,0,...] self.assertAlmostRelativeEquals(rho[0], 0.01 | density) self.assertTrue(rho[-1] > 0.01 | density) self.assertTrue(instance.grid.rhovz[0,0,-1] < -0.1 | momentum) self.assertAlmostRelativeEquals(instance.grid.rhovz[0,0,0] , -0.1 | momentum) print instance.model_time instance.stopping_conditions.number_of_steps_detection.disable() instance.evolve_model(1.0 | generic_unit_system.time) rho = instance.grid.rho[0,...,0] self.assertAlmostRelativeEquals(rho, 0.02 | density, 8) self.assertAlmostRelativeEquals(instance.grid.rhovz[0,0,...], -0.2 | momentum, 8) print instance.model_time instance.stop() def test21(self): instance=self.new_instance(Athena) instance.parameters.x_boundary_conditions = ("periodic","periodic") instance.parameters.mesh_length = (20.0, 1, 1) | generic_unit_system.length instance.parameters.mesh_size = (20, 1, 1) for x in instance.itergrids(): inmem = x.copy() inmem.rho = inmem.x/(1| generic_unit_system.length) | generic_unit_system.density inmem.rhovx = 0.0 | generic_unit_system.momentum_density inmem.energy = 1.0 | generic_unit_system.energy_density from_model_to_code = inmem.new_channel_to(x) from_model_to_code.copy() print inmem.rho rho, rhovx, rhovy, rhovx, rhoenergy = instance.get_hydro_state_at_point(0.5| generic_unit_system.length,0.0| generic_unit_system.length,0.0| generic_unit_system.length) self.assertEquals(rho , 0.5 | generic_unit_system.density) for value in numpy.arange(0.5, 19.6, 0.1): rho, rhovx, rhovy, rhovx, rhoenergy = instance.get_hydro_state_at_point( value | generic_unit_system.length, 0.0 | generic_unit_system.length, 0.0 | generic_unit_system.length ) self.assertAlmostRelativeEquals(rho , value | generic_unit_system.density) for value in numpy.arange(0.0, 0.6, 0.1): rho, rhovx, rhovy, rhovx, rhoenergy = instance.get_hydro_state_at_point( value | generic_unit_system.length, 0.0 | generic_unit_system.length, 0.0 | generic_unit_system.length ) self.assertAlmostRelativeEquals(rho , ((0.5 + value) * 0.5 + (0.5-value) * 19.5) | generic_unit_system.density) for value in numpy.arange(0.0, 0.5, 0.1): rho, rhovx, rhovy, rhovx, rhoenergy = instance.get_hydro_state_at_point( value + 19.5| generic_unit_system.length, 0.0 | generic_unit_system.length, 0.0 | generic_unit_system.length ) self.assertAlmostRelativeEquals(rho , (19.5 - (value * 19)) | generic_unit_system.density, 9) # out of range rho, rhovx, rhovy, rhovx, rhoenergy = instance.get_hydro_state_at_point( 20.0| generic_unit_system.length, 0.0 | generic_unit_system.length, 0.0 | generic_unit_system.length ) self.assertAlmostRelativeEquals(rho , 0.0 | generic_unit_system.density, 9) def test22(self): instance=self.new_instance(Athena, number_of_workers=2) instance.parameters.x_boundary_conditions = ("periodic","periodic") instance.parameters.y_boundary_conditions = ("periodic","periodic") instance.parameters.mesh_length = (20.0, 20.0, 1) | generic_unit_system.length instance.parameters.mesh_size = (20, 20, 1) for x in instance.itergrids(): inmem = x.copy() inmem.rho = (inmem.x + ((inmem.y - (0.5| generic_unit_system.length))* 20.0))/(1| generic_unit_system.length) | generic_unit_system.density inmem.rhovx = 0.0 | generic_unit_system.momentum_density inmem.energy = 1.0 | generic_unit_system.energy_density from_model_to_code = inmem.new_channel_to(x) from_model_to_code.copy() print inmem.rho[0], inmem.y[0], inmem.x[0] rho, rhovx, rhovy, rhovx, rhoenergy = instance.get_hydro_state_at_point(0.5| generic_unit_system.length,0.5| generic_unit_system.length,0.0| generic_unit_system.length) self.assertEquals(rho , 0.5 | generic_unit_system.density) for value in numpy.arange(0.5, 19.6, 0.1): rho, rhovx, rhovy, rhovx, rhoenergy = instance.get_hydro_state_at_point( value | generic_unit_system.length, 0.5 | generic_unit_system.length, 0.0 | generic_unit_system.length ) self.assertAlmostRelativeEquals(rho , value | generic_unit_system.density) for x in numpy.arange(8.5, 11.5, 0.25): for y in numpy.arange(0.5, 19.6, 0.25): rho, rhovx, rhovy, rhovx, rhoenergy = instance.get_hydro_state_at_point( x | generic_unit_system.length, y | generic_unit_system.length, 0.0 | generic_unit_system.length ) self.assertAlmostRelativeEquals(rho , x + (20 * (y-0.5)) | generic_unit_system.density) def test23(self): instance=self.new_instance(Athena, number_of_workers=3) instance.parameters.x_boundary_conditions = ("periodic","periodic") instance.parameters.y_boundary_conditions = ("periodic","periodic") instance.parameters.z_boundary_conditions = ("periodic","periodic") instance.parameters.mesh_length = (20.0, 20.0, 20.0) | generic_unit_system.length instance.parameters.mesh_length = (20.0, 20.0, 20.0) | generic_unit_system.length instance.parameters.mesh_size = (20, 20, 20) for x in instance.itergrids(): inmem = x.copy() inmem.rho = ( ( inmem.x + ((inmem.y - (0.5| generic_unit_system.length))* 20.0) + ((inmem.z - (0.5| generic_unit_system.length))* 400.0) ) /(1| generic_unit_system.length) | generic_unit_system.density ) inmem.rhovx = 0.0 | generic_unit_system.momentum_density inmem.energy = 1.0 | generic_unit_system.energy_density from_model_to_code = inmem.new_channel_to(x) from_model_to_code.copy() rho, rhovx, rhovy, rhovx, rhoenergy = instance.get_hydro_state_at_point(0.5| generic_unit_system.length,0.5| generic_unit_system.length,0.5| generic_unit_system.length) self.assertEquals(rho , 0.5 | generic_unit_system.density) for value in numpy.arange(0.5, 19.6, 0.1): rho, rhovx, rhovy, rhovx, rhoenergy = instance.get_hydro_state_at_point( value | generic_unit_system.length, 0.5 | generic_unit_system.length, 0.5 | generic_unit_system.length ) self.assertAlmostRelativeEquals(rho , value | generic_unit_system.density) sample = sample = datamodel.new_regular_grid( (4, 4, 76), (2, 2, 19) | generic_unit_system.length ) sample.x += 9.5 | generic_unit_system.length sample.y += 9.5 | generic_unit_system.length sample.z += 0.5 | generic_unit_system.length x = sample.x.flatten() y = sample.y.flatten() z = sample.z.flatten() rho, rhovx, rhovy, rhovx, rhoenergy = instance.get_hydro_state_at_point( x, y, z ) half = 0.5 | generic_unit_system.length self.assertAlmostRelativeEquals(rho , (x + (20 * (y-half)) + (400 * (z-half)))/(1| generic_unit_system.length) | generic_unit_system.density ) def test24(self): instance=self.new_instance(Athena, number_of_workers=1) instance.parameters.x_boundary_conditions = ("periodic","periodic") instance.parameters.y_boundary_conditions = ("periodic","periodic") instance.parameters.z_boundary_conditions = ("periodic","periodic") instance.parameters.mesh_length = (10.0, 1, 1) | generic_unit_system.length instance.parameters.mesh_size = (20, 1, 1) instance.set_has_external_gravitational_potential(1) instance.commit_parameters() potential_grid = instance.potential_grid factor = (2 | generic_unit_system.length / generic_unit_system.time**2) potential_grid.potential = potential_grid.x * factor x = numpy.arange(0,10.25, 0.1) | generic_unit_system.length y = 0.5 |generic_unit_system.length z = 0.5 |generic_unit_system.length interpolated = instance.get_interpolated_gravitational_potential(x,y,z) self.assertAlmostRelativeEquals(interpolated, x * factor) def test25(self): instance=self.new_instance(Athena, number_of_workers=1) instance.parameters.x_boundary_conditions = ("periodic","periodic") instance.parameters.y_boundary_conditions = ("periodic","periodic") instance.parameters.z_boundary_conditions = ("periodic","periodic") instance.parameters.mesh_length = (5.0, 10.0, 1) | generic_unit_system.length instance.parameters.mesh_size = (20, 20, 1) instance.set_has_external_gravitational_potential(1) instance.commit_parameters() potential_grid = instance.potential_grid factor = (2 | generic_unit_system.length / generic_unit_system.time**2) potential_grid.potential = potential_grid.y * factor print potential_grid.y * factor y = numpy.arange(0,10.25, 0.1) | generic_unit_system.length x = (y * 0) + (2 |generic_unit_system.length) z = 0.5 |generic_unit_system.length interpolated = instance.get_interpolated_gravitational_potential(x,y,z) print y*factor self.assertAlmostRelativeEquals(interpolated, y * factor) def test26(self): n = 4 instance=self.new_instance(Athena) instance.set_gamma(1.6666666666666667) instance.set_courant_friedrichs_lewy_number(0.3) instance.parameters.nx = n instance.parameters.ny = n instance.parameters.nz = n instance.parameters.length_x = n | generic_unit_system.length instance.parameters.length_y = n | generic_unit_system.length instance.parameters.length_z = n | generic_unit_system.length instance.parameters.x_boundary_conditions = ("periodic","periodic") instance.parameters.y_boundary_conditions = ("periodic","periodic") instance.parameters.z_boundary_conditions = ("periodic","periodic") instance.set_has_external_gravitational_potential(1) instance.commit_parameters() density = generic_unit_system.mass / (generic_unit_system.length ** 3) momentum = generic_unit_system.mass / (generic_unit_system.time * (generic_unit_system.length**2)) energy = generic_unit_system.mass / ((generic_unit_system.time**2) * generic_unit_system.length) potential_grid = datamodel.Grid(n + 2, n + 2, n + 2) potential_grid.potential = 0.0 | generic_unit_system.potential x = instance.potential_grid.x y = instance.potential_grid.y z = instance.potential_grid.z potential_grid.potential = (1 | generic_unit_system.potential) * ( (x + y + z) / (1 | generic_unit_system.length)) channel = potential_grid.new_channel_to(instance.potential_grid) channel.copy() result = instance.initialize_grid() print x[...,0,0] print instance.grid.x[...,0,0] print instance.potential_grid.potential[...,0,0] print potential_grid.potential[...,0,0] self.assertAlmostRelativeEquals(potential_grid.potential[...,0,0], instance.potential_grid.potential[...,0,0]) interpolated_inside = instance.get_interpolated_gravitational_potential(x[0,0,0], y[0,0,0], z[0,0,0]) interpolated_outside = instance.get_interpolated_gravitational_potential(x[0,0,0] - (1.0 |generic_unit_system.length), y[0,0,0], z[0,0,0]) print interpolated_inside, interpolated_outside self.assertAlmostRelativeEquals(interpolated_inside, interpolated_outside) interpolated_inside = instance.get_interpolated_gravitational_potential(x[0,0,0], y[0,0,0], z[0,0,0]) interpolated_outside = instance.get_interpolated_gravitational_potential(x[0,0,0] , y[0,0,0] - (2.0 |generic_unit_system.length), z[0,0,0]) print interpolated_inside, interpolated_outside self.assertAlmostRelativeEquals(interpolated_inside, interpolated_outside) interpolated_inside = instance.get_interpolated_gravitational_potential(x[0,0,0], y[0,0,0], z[0,0,0]) interpolated_outside = instance.get_interpolated_gravitational_potential(x[0,0,0] , y[0,0,0], z[0,0,0] - (2.0 |generic_unit_system.length)) print interpolated_inside, interpolated_outside self.assertAlmostRelativeEquals(interpolated_inside, interpolated_outside) interpolated_inside = instance.get_interpolated_gravitational_potential(x[5,0,0], y[0,0,0], z[0,0,0]) interpolated_outside = instance.get_interpolated_gravitational_potential(x[5,0,0] + (2.0 |generic_unit_system.length), y[0,0,0], z[0,0,0]) print interpolated_inside, interpolated_outside self.assertAlmostRelativeEquals(interpolated_inside, interpolated_outside) interpolated_inside = instance.get_interpolated_gravitational_potential(x[5,0,0], y[0,5,0], z[0,0,0]) interpolated_outside = instance.get_interpolated_gravitational_potential(x[5,0,0], y[0,5,0] + (2.0 |generic_unit_system.length), z[0,0,0]) self.assertAlmostRelativeEquals(interpolated_inside, interpolated_outside) interpolated_inside = instance.get_interpolated_gravitational_potential(x[5,0,0], y[0,5,0], z[0,0,5]) interpolated_outside = instance.get_interpolated_gravitational_potential(x[5,0,0], y[0,5,0] , z[0,0,5] + (2.0 |generic_unit_system.length)) self.assertAlmostRelativeEquals(interpolated_inside, interpolated_outside) interpolated_inside = instance.get_interpolated_gravitational_potential(x[0,0,0], y[0,0,0], z[0,0,0]) interpolated_outside = instance.get_interpolated_gravitational_potential(x[0,0,0] - (2.0 |generic_unit_system.length) , y[0,0,0] - (2.0 |generic_unit_system.length), z[0,0,0] - (2.0 |generic_unit_system.length)) print interpolated_inside, interpolated_outside def test27(self): n = 4 instance=self.new_instance(Athena) instance.set_gamma(1.6666666666666667) instance.set_courant_friedrichs_lewy_number(0.3) instance.parameters.nx = n instance.parameters.ny = n instance.parameters.nz = 1 instance.parameters.length_x = n | generic_unit_system.length instance.parameters.length_y = n | generic_unit_system.length instance.parameters.length_z = 0 | generic_unit_system.length instance.parameters.x_boundary_conditions = ("periodic","periodic") instance.parameters.y_boundary_conditions = ("periodic","periodic") instance.parameters.z_boundary_conditions = ("periodic","periodic") instance.set_has_external_gravitational_potential(1) instance.commit_parameters() density = generic_unit_system.mass / (generic_unit_system.length ** 3) momentum = generic_unit_system.mass / (generic_unit_system.time * (generic_unit_system.length**2)) energy = generic_unit_system.mass / ((generic_unit_system.time**2) * generic_unit_system.length) potential_grid = datamodel.Grid(n + 2, n + 2, 1) potential_grid.potential = 0.0 | generic_unit_system.potential x = instance.potential_grid.x y = instance.potential_grid.y z = instance.potential_grid.z potential_grid.potential = (1 | generic_unit_system.potential) * ( (x + y) / (1 | generic_unit_system.length)) channel = potential_grid.new_channel_to(instance.potential_grid) channel.copy() result = instance.initialize_grid() self.assertAlmostRelativeEquals(potential_grid.potential[...,0,0], instance.potential_grid.potential[...,0,0]) interpolated_inside = instance.get_interpolated_gravitational_potential(x[0,0,0], y[0,0,0], z[0,0,0]) interpolated_outside = instance.get_interpolated_gravitational_potential(x[0,0,0] - (1.0 |generic_unit_system.length), y[0,0,0], z[0,0,0]) print interpolated_inside, interpolated_outside self.assertAlmostRelativeEquals(interpolated_inside, interpolated_outside) interpolated_inside = instance.get_interpolated_gravitational_potential(x[0,0,0], y[0,0,0], z[0,0,0]) interpolated_outside = instance.get_interpolated_gravitational_potential(x[0,0,0] , y[0,0,0] - (2.0 |generic_unit_system.length), z[0,0,0]) print interpolated_inside, interpolated_outside self.assertAlmostRelativeEquals(interpolated_inside, interpolated_outside) interpolated_inside = instance.get_interpolated_gravitational_potential(x[5,0,0], y[0,0,0], z[0,0,0]) interpolated_outside = instance.get_interpolated_gravitational_potential(x[5,0,0] + (2.0 |generic_unit_system.length), y[0,0,0], z[0,0,0]) print interpolated_inside, interpolated_outside self.assertAlmostRelativeEquals(interpolated_inside, interpolated_outside) interpolated_inside = instance.get_interpolated_gravitational_potential(x[5,0,0], y[0,5,0], z[0,0,0]) interpolated_outside = instance.get_interpolated_gravitational_potential(x[5,0,0], y[0,5,0] + (2.0 |generic_unit_system.length), z[0,0,0]) self.assertAlmostRelativeEquals(interpolated_inside, interpolated_outside) interpolated_inside = instance.get_interpolated_gravitational_potential(x[0,0,0], y[0,0,0], z[0,0,0]) interpolated_outside = instance.get_interpolated_gravitational_potential(x[0,0,0] - (2.0 |generic_unit_system.length) , y[0,0,0] - (2.0 |generic_unit_system.length), z[0,0,0]) print interpolated_inside, interpolated_outside def test28(self): n = 4 instance=self.new_instance(Athena) instance.set_gamma(1.6666666666666667) instance.set_courant_friedrichs_lewy_number(0.3) instance.parameters.nx = n instance.parameters.ny = n instance.parameters.nz = 1 instance.parameters.length_x = n | generic_unit_system.length instance.parameters.length_y = n | generic_unit_system.length instance.parameters.length_z = 0 | generic_unit_system.length instance.parameters.x_boundary_conditions = ("periodic","periodic") instance.parameters.y_boundary_conditions = ("periodic","periodic") instance.parameters.z_boundary_conditions = ("periodic","periodic") instance.set_has_external_gravitational_potential(1) instance.commit_parameters() density = generic_unit_system.mass / (generic_unit_system.length ** 3) momentum = generic_unit_system.mass / (generic_unit_system.time * (generic_unit_system.length**2)) energy = generic_unit_system.mass / ((generic_unit_system.time**2) * generic_unit_system.length) potential_grid = datamodel.Grid(n + 2, n + 2, 1) potential_grid.potential = 0.0 | generic_unit_system.potential x = instance.potential_grid.x y = instance.potential_grid.y z = instance.potential_grid.z potential_grid.potential = (1 | generic_unit_system.potential) * ( (x + y) / (1 | generic_unit_system.length)) channel = potential_grid.new_channel_to(instance.potential_grid) channel.copy() result = instance.initialize_grid() self.assertAlmostRelativeEquals(potential_grid.potential[...,0,0], instance.potential_grid.potential[...,0,0]) interpolated_inside = instance.get_interpolated_gravitational_potential(x[0,0,0], y[0,0,0], z[0,0,0]) interpolated_outside = instance.get_interpolated_gravitational_potential(x[0,0,0] - (0.5 |generic_unit_system.length), y[0,0,0], z[0,0,0]) self.assertAlmostRelativeEquals(potential_grid.potential[...,0,0], instance.potential_grid.potential[...,0,0]) interpolated_inside = instance.get_interpolated_gravitational_potential(x[5,0,0], y[0,0,0], z[0,0,0]) interpolated_outside = instance.get_interpolated_gravitational_potential(x[5,0,0] + (0.5 |generic_unit_system.length), y[0,0,0], z[0,0,0]) print interpolated_inside, interpolated_outside self.assertAlmostRelativeEquals(interpolated_inside, interpolated_outside) def test29(self): instance=self.new_instance(Athena) instance.parameters.x_boundary_conditions = ("periodic","periodic") instance.parameters.mesh_length = (20.0, 1, 1) | generic_unit_system.length instance.parameters.mesh_size = (20, 1, 1) for x in instance.itergrids(): inmem = x.copy() inmem.rho = inmem.x/(1| generic_unit_system.length) | generic_unit_system.density inmem.rhovx = 0.0 | generic_unit_system.momentum_density inmem.energy = 1.0 | generic_unit_system.energy_density from_model_to_code = inmem.new_channel_to(x) from_model_to_code.copy() print inmem.rho rho, rhovx, rhovy, rhovx, rhoenergy = instance.get_hydro_state_at_point(0.5| generic_unit_system.length,0.0| generic_unit_system.length,0.0| generic_unit_system.length) self.assertEquals(rho , 0.5 | generic_unit_system.density) for value in numpy.arange(0.5, 19.6, 0.1): rho, rhovx, rhovy, rhovx, rhoenergy = instance.get_hydro_state_for_cell( value | generic_unit_system.length, 0.0 | generic_unit_system.length, 0.0 | generic_unit_system.length, 1.0 | generic_unit_system.length, 0.0 | generic_unit_system.length, 0.0 | generic_unit_system.length ) self.assertAlmostRelativeEquals(rho , value | generic_unit_system.density, 9) for value in numpy.arange(0.0, 0.6, 0.1): rho, rhovx, rhovy, rhovx, rhoenergy = instance.get_hydro_state_for_cell( value | generic_unit_system.length, 0.0 | generic_unit_system.length, 0.0 | generic_unit_system.length, 1.0 | generic_unit_system.length, 0.0 | generic_unit_system.length, 0.0 | generic_unit_system.length ) self.assertAlmostRelativeEquals(rho , ((0.5 + value) * 0.5 + (0.5-value) * 19.5) | generic_unit_system.density, 9) for value in numpy.arange(0.0, 0.5, 0.1): rho, rhovx, rhovy, rhovx, rhoenergy = instance.get_hydro_state_for_cell( value + 19.5| generic_unit_system.length, 0.0 | generic_unit_system.length, 0.0 | generic_unit_system.length, 1.0 | generic_unit_system.length, 0.0 | generic_unit_system.length, 0.0 | generic_unit_system.length ) self.assertAlmostRelativeEquals(rho , (19.5 - (value * 19)) | generic_unit_system.density, 9) # out of range rho, rhovx, rhovy, rhovx, rhoenergy = instance.get_hydro_state_for_cell( 21.0| generic_unit_system.length, 0.0 | generic_unit_system.length, 0.0 | generic_unit_system.length, 1.0 | generic_unit_system.length, 0.0 | generic_unit_system.length, 0.0 | generic_unit_system.length ) self.assertAlmostRelativeEquals(rho , 0.0 | generic_unit_system.density, 9) def test29(self): instance=self.new_instance(Athena) instance.parameters.x_boundary_conditions = ("periodic","periodic") instance.parameters.mesh_length = (20.0, 1, 1) | generic_unit_system.length instance.parameters.mesh_size = (20, 1, 1) for x in instance.itergrids(): inmem = x.copy() inmem.rho = inmem.x/(1| generic_unit_system.length) | generic_unit_system.density inmem.rhovx = 0.0 | generic_unit_system.momentum_density inmem.energy = 1.0 | generic_unit_system.energy_density from_model_to_code = inmem.new_channel_to(x) from_model_to_code.copy() print inmem.rho def test30(self): instance=self.new_instance(Athena) instance.parameters.x_boundary_conditions = ("periodic","periodic") instance.parameters.mesh_length = (8, 1, 1) | generic_unit_system.length instance.parameters.mesh_size = (8, 1, 1) for x in instance.itergrids(): inmem = x.copy() inmem.rho = inmem.x/(1| generic_unit_system.length) | generic_unit_system.density inmem.rhovx = 0.0 | generic_unit_system.momentum_density inmem.energy = 1.0 | generic_unit_system.energy_density from_model_to_code = inmem.new_channel_to(x) from_model_to_code.copy() print inmem.rho grid = instance.get_extended_grid() self.assertEquals(grid.shape, (12,1,1)) instance.initialize_grid() self.assertEquals(grid.rho[...,0,0] , [6.5,7.5,0.5,1.5,2.5,3.5,4.5,5.5,6.5,7.5,0.5,1.5] | generic_unit_system.density) ``` #### File: test/codes_tests/test_mocassin.py ```python import os from amuse.test.amusetest import TestWithMPI from amuse.units import units from amuse import datamodel from amuse.community.mocassin.interface import MocassinInterface, Mocassin, mocassin_rydberg_unit import numpy class TestMocassinInterface(TestWithMPI): def test0(self): instance=self.new_instance_of_an_optional_code(MocassinInterface) instance.initialize_code() instance.stop() def test1(self): instance=self.new_instance_of_an_optional_code(MocassinInterface) instance.initialize_code() #instance.redirect_outputs_to("moc-out.txt", "moc-err.txt") instance.setup_mesh(11,11,11, 100,100,100) instance.setup_abundancies() print instance.get_default_input_directory() instance.set_input_directory(instance.get_default_input_directory()) instance.set_constant_hydrogen_density(900.0) instance.commit_parameters() indices_x = list(range(1,12,1)) x,y,z,error = instance.get_position_of_index(indices_x,[1]*len(indices_x), [1]*len(indices_x)) self.assertEquals(error, 0) for index, expected_x in enumerate(list(range(-100, 120, 20))): self.assertAlmostRelativeEqual(x[index], expected_x, 6) self.assertAlmostRelativeEqual(y[index], -100) self.assertAlmostRelativeEqual(z[index], -100) instance.stop() def test2(self): instance=self.new_instance_of_an_optional_code(MocassinInterface) #, debugger = "ddd") instance.initialize_code() instance.set_symmetricXYZ(True) instance.setup_mesh(13,13,13,0.95E+19,0.95E+19,0.95E+19) instance.setup_abundancies() instance.set_input_directory(instance.get_default_input_directory()) instance.set_constant_hydrogen_density(100.0) instance.set_initial_nebular_temperature(6000.0) instance.set_maximum_number_of_monte_carlo_iterations(20) instance.set_minimum_convergence_level(100) instance.set_total_number_of_photons(10000000) instance.set_total_number_of_points_in_frequency_mesh(600) instance.set_high_limit_of_the_frequency_mesh(15) instance.set_low_limit_of_the_frequency_mesh(1.001e-5) instance.set_convergence_limit(0.09) instance.set_number_of_ionisation_stages(6) instance.setup_auto_convergence(0.2, 2.0, 1000000000) instance.commit_parameters() instance.define_stars(0.0, 0.0, 0.0, 20000, 6003.6396) instance.commit_particles() instance.commit_grid() x, error = instance.get_number_of_elements_used() self.assertEquals(0, error) self.assertEquals(x, 7) indices_x = list(range(1,12,1)) is_active,error = instance.get_grid_active(indices_x,[1]*len(indices_x), [1]*len(indices_x), 1) self.assertEquals(0, error) is_active=numpy.array(is_active,dtype=bool) self.assertEquals([True,True,True,True,True,True,True,True,True,True,True] , is_active) indices_x = list(range(5,12,1)) temperatures,error = instance.get_grid_electron_temperature(indices_x,[1]*len(indices_x), [1]*len(indices_x), 1) self.assertEquals(0, error) self.assertEquals([6000.0] * len(indices_x), temperatures) indices_x = list(range(1,5,1)) temperatures,error = instance.get_grid_electron_temperature(indices_x,[1]*len(indices_x), [1]*len(indices_x), 1) self.assertEquals(0, error) self.assertEquals([6000.0] * len(indices_x), temperatures) ni, nj, nk, error = instance.get_max_indices(1) self.assertEquals(0, error) self.assertEquals(ni, 13) self.assertEquals(nj, 13) self.assertEquals(nj, 13) instance.stop() def xtest3(self): instance=self.new_instance_of_an_optional_code(MocassinInterface) #, debugger = "ddd") #instance.redirect_outputs_to("moc3-out.txt", "moc3-err.txt") instance.initialize_code() instance.set_symmetricXYZ(True) instance.setup_mesh(13,13,13,0.95E+19,0.95E+19,0.95E+19) instance.setup_abundancies() #instance.set_abundancies_filename('abunHII20.in') instance.set_input_directory(instance.get_default_input_directory()) instance.set_constant_hydrogen_density(100.0) instance.set_initial_nebular_temperature(6000.0) instance.set_maximum_number_of_monte_carlo_iterations(20) instance.set_minimum_convergence_level(100) instance.set_total_number_of_photons(10000000) instance.set_total_number_of_points_in_frequency_mesh(600) instance.set_high_limit_of_the_frequency_mesh(15.) instance.set_low_limit_of_the_frequency_mesh(1.001e-5) instance.set_convergence_limit(0.09) instance.set_number_of_ionisation_stages(6) instance.setup_auto_convergence(0.8, 2.0, 1000000000) #instance.set_emit_rate_of_photons(1.006e13) instance.commit_parameters() instance.define_stars(0.0, 0.0, 0.0, 20000.0, 6003.6396) instance.commit_particles() instance.commit_grid() x, error = instance.get_number_of_elements_used() self.assertEquals(0, error) self.assertEquals(x, 7) instance.iterate() indices_x = list(range(1,12,1)) temperatures,error = instance.get_grid_electron_temperature(indices_x,[1]*len(indices_x), [1]*len(indices_x), 1) self.assertEquals(0, error) print temperatures instance.stop() def test4(self): instance=self.new_instance_of_an_optional_code(MocassinInterface) instance.initialize_code() instance.setup_mesh(3,3,3,0.95E+19,0.95E+19,0.95E+19) instance.setup_abundancies() instance.set_input_directory(instance.get_default_input_directory()) instance.set_initial_nebular_temperature(6000.0) instance.set_maximum_number_of_monte_carlo_iterations(20) instance.set_minimum_convergence_level(100) instance.set_total_number_of_photons(10000000) instance.set_total_number_of_points_in_frequency_mesh(600) instance.set_high_limit_of_the_frequency_mesh(15) instance.set_low_limit_of_the_frequency_mesh(1.001e-5) instance.set_convergence_limit(0.09) instance.set_number_of_ionisation_stages(6) instance.setup_auto_convergence(0.2, 2.0, 1000000000) instance.commit_parameters() error=instance.define_stars(0.0, 0.0, 0.0, 20000, 6003.6396) self.assertEquals(error, 0) instance.set_grid_hydrogen_density(1,1,1, 100) value,error = instance.get_grid_hydrogen_density(1,1,1) self.assertEquals(error, 0) self.assertEquals(value, 100) is_active,error = instance.get_grid_active(1,1,1) self.assertEquals(error, 0) self.assertFalse(is_active) is_active,error = instance.get_grid_active(1,2,1) self.assertEquals(error, 0) self.assertFalse(is_active) value,error = instance.get_grid_hydrogen_density(1,2,1,1) self.assertEquals(error, 0) self.assertEquals(value, 0) instance.commit_particles() instance.commit_grid() is_active,error = instance.get_grid_active(1,1,1) self.assertEquals(error, 0) self.assertTrue(is_active) value,error = instance.get_grid_hydrogen_density(1,1,1) self.assertEquals(error, 0) self.assertEquals(value, 100) value,error = instance.get_grid_ion_density(1,1,1,1,1) self.assertEquals(error, 0) self.assertAlmostRelativeEquals(value, 1e-5, 6) is_active,error = instance.get_grid_active(1,2,1) self.assertEquals(error, 0) self.assertFalse(is_active) value,error = instance.get_grid_hydrogen_density(1,2,1) self.assertEquals(error, 0) self.assertEquals(value, 0) instance.stop() class TestMocassin(TestWithMPI): def test1(self): instance=self.new_instance_of_an_optional_code(Mocassin) instance.initialize_code() self.assertEquals(0.0 | units.cm**-3, instance.parameters.constant_hydrogen_density) print instance.parameters.abundancies_filename instance.parameters.constant_hydrogen_density = 100.0 | units.cm**-3 self.assertEquals(100.0 | units.cm**-3, instance.parameters.constant_hydrogen_density) self.assertEquals(10000 | units.K, instance.parameters.initial_nebular_temperature) self.assertEquals("", instance.parameters.abundancies_filename) instance.stop() def test2(self): instance=self.new_instance_of_an_optional_code(Mocassin) #, redirection = "none") instance.initialize_code() instance.set_input_directory(instance.get_default_input_directory()) instance.set_symmetricXYZ(True) instance.parameters.nx = 11 instance.parameters.ny = 12 instance.parameters.nz = 13 instance.parameters.length_x = 1 | units.km instance.parameters.length_y = 1 | units.km instance.parameters.length_z = 1 | units.km instance.commit_parameters() self.assertEquals(instance.grid.shape[0], 11) self.assertEquals(instance.grid.shape[1], 12) self.assertEquals(instance.grid.shape[2], 13) instance.stop() def test3(self): instance=self.new_instance_of_an_optional_code(Mocassin) #, debugger = "xterm") instance.initialize_code() instance.set_random_seed(1) instance.set_input_directory(instance.get_default_input_directory()) instance.set_mocassin_output_directory(instance.output_directory + os.sep) instance.set_initial_nebular_temperature(200.0 | units.K) instance.parameters.nx = 7 instance.parameters.ny = 7 instance.parameters.nz = 7 print (0.95E+19 | units.cm).value_in(units.parsec) instance.parameters.length_x = 0.95E+19 | units.cm instance.parameters.length_y = 0.95E+19 | units.cm instance.parameters.length_z = 0.95E+19 | units.cm instance.set_high_limit_of_the_frequency_mesh(15 | mocassin_rydberg_unit) instance.set_low_limit_of_the_frequency_mesh(1.001e-5| mocassin_rydberg_unit) instance.set_maximum_number_of_monte_carlo_iterations(1) instance.set_total_number_of_photons(100) #~ instance.set_constant_hydrogen_density(100 | units.cm**-3) instance.commit_parameters() instance.grid.hydrogen_density = 100 | units.cm**-3 instance.commit_grid() p = datamodel.Particle() p.x = 0 | units.cm p.y = 0 | units.cm p.z = 0 | units.cm p.temperature = 20000 | units.K p.luminosity = 1. | units.LSun instance.particles.add_particle(p) instance.commit_particles() self.assertAlmostRelativeEquals(1e-5, instance.ion_density_grid.density[3][1][2][0][0], 7) self.assertAlmostRelativeEquals(1e-5 , instance.ion_density_grid.density[3][1][3][0][0], 7) instance.step() print instance.grid.electron_density.mean() self.assertAlmostRelativeEquals(0.0, instance.get_percentage_converged()) self.assertGreater(instance.grid.electron_density.mean(), 65. | units.cm**-3) self.assertLess(instance.grid.electron_density.mean(), 95. | units.cm**-3) instance.stop() ``` #### File: test/codes_tests/test_octgrav.py ```python import os import sys import numpy from amuse.community.octgrav.interface import OctgravInterface, Octgrav from amuse.test.amusetest import TestWithMPI from amuse.units import nbody_system from amuse.units import units from amuse import datamodel from amuse.rfi import channel from amuse.ic.plummer import * class TestMPIInterface(TestWithMPI): def test1(self): instance = self.new_instance_of_an_optional_code(OctgravInterface) instance.new_particle(11.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0) retrieved_state = instance.get_state(1) self.assertEquals(11.0, retrieved_state['mass']) self.assertEquals(2.0, retrieved_state['radius']) self.assertEquals(instance.get_number_of_particles()['number_of_particles'], 1) instance.cleanup_code() instance.stop() def test2(self): instance = self.new_instance_of_an_optional_code(OctgravInterface) instance.initialize_code() instance.new_particle( [1,10,100], [3,12,102], [4,13,103], [5,14,104], [6,15,105], [7,16,106], [8,17,107], [2,11,101]) particle1_state = instance.get_state(1) self.assertEquals(1, particle1_state['mass']) particle2_state = instance.get_state(2) self.assertEquals(10, particle2_state['mass']) instance.delete_particle(1) size_result = instance.get_number_of_particles() self.assertEquals(2, size_result['number_of_particles']) new_particle1_state = instance.get_state(1) self.assertEquals(10, new_particle1_state['mass']) new_particle_result = instance.new_particle( 1000, 1002, 1003, 1004, 1005, 1006, 1007, 1001) self.assertEquals(4, new_particle_result['index_of_the_particle'],4) new_particle4_state = instance.get_state(4) self.assertEquals(1000, new_particle4_state['mass']) instance.cleanup_code() instance.stop() def test3(self): instance = self.new_instance_of_an_optional_code(OctgravInterface) instance.initialize_code() instance.set_eps2(0.1**2) instance.commit_parameters() ids = [] for i in range(32): id,errorcode = instance.new_particle(mass = 10.0, radius = 1.0, x = i, y = 0.0, z = 0.0, vx = 0.0, vy = 0.0, vz = 0.0) ids.append(id) self.assertEquals(errorcode, 0) instance.commit_particles() potential, errorcode = instance.get_potential(ids[0]) self.assertEquals(errorcode, 0) excpected_potential = numpy.sum([ -10.0 / numpy.sqrt((x+1.0)**2 + 0.1**2) for x in range(31)]) self.assertAlmostRelativeEquals(potential,excpected_potential , 5) total_potential, errorcode = instance.get_potential_energy() potentials, errorcode = instance.get_potential(ids) self.assertAlmostRelativeEquals(total_potential, numpy.sum(potentials * 10.0) / 2.0) class TestAmuseInterface(TestWithMPI): def new_system_of_sun_and_earth(self): stars = datamodel.Stars(2) sun = stars[0] sun.mass = units.MSun(1.0) sun.position = units.m(numpy.array((0.0,0.0,0.0))) sun.velocity = units.ms(numpy.array((0.0,0.0,0.0))) sun.radius = units.RSun(1.0) earth = stars[1] earth.mass = units.kg(5.9736e24) earth.radius = units.km(6371) earth.position = units.km(numpy.array((149.5e6,0.0,0.0))) earth.velocity = units.ms(numpy.array((0.0,29800,0.0))) return stars def test0(self): convert_nbody = nbody_system.nbody_to_si(1.0 | units.MSun, units.AU) instance = self.new_instance_of_an_optional_code(Octgrav, convert_nbody) instance.initialize_code() self.assertAlmostRelativeEqual(0.01, instance.parameters.epsilon_squared.value_in(units.AU**2), 2)#default instance.parameters.epsilon_squared = 0.05 | units.AU**2 self.assertAlmostRelativeEqual(0.05, instance.parameters.epsilon_squared.value_in(units.AU**2), 6) self.assertAlmostEqual(0.8, instance.parameters.opening_angle, 6)#default instance.parameters.opening_angle = 0.5 self.assertAlmostEqual(0.5, instance.parameters.opening_angle, 6) instance.parameters.timestep = 1.0 |units.s self.assertEqual(1.0|units.s, instance.parameters.timestep) instance.stop() def test1(self): plummer_size = 500 convert_nbody = nbody_system.nbody_to_si(1.0 | units.MSun, 149.5e6 | units.km) stars = new_plummer_model(plummer_size, convert_nbody) stars.radius = range(1, plummer_size+1)|units.km instance = self.new_instance_of_an_optional_code(Octgrav, convert_nbody) instance.particles.add_particles(stars) instance.evolve_model(5 | units.day) energy_total_init = instance.potential_energy + instance.kinetic_energy instance.evolve_model(100 | units.day) energy_total_final = instance.potential_energy + instance.kinetic_energy self.assertAlmostRelativeEqual(energy_total_init, energy_total_final, 2) instance.stop() def test2(self): convert_nbody = nbody_system.nbody_to_si(1.0 | units.MSun, 149.5e6 | units.km) instance = self.new_instance_of_an_optional_code(Octgrav, convert_nbody) instance.initialize_code() instance.parameters.epsilon_squared = 0.0 | units.AU**2 instance.parameters.stopping_conditions_number_of_steps = 1 self.assertEquals(instance.parameters.stopping_conditions_number_of_steps,1) stars = self.new_system_of_sun_and_earth() earth = stars[1] instance.particles.add_particles(stars) instance.stopping_conditions.number_of_steps_detection.enable() instance.evolve_model(365.0 | units.day) self.assertTrue(instance.stopping_conditions.number_of_steps_detection.is_set()) instance.cleanup_code() instance.stop() def test3(self): particles = datamodel.Particles(2) particles.x = [0.0,10.0] | nbody_system.length particles.y = 0 | nbody_system.length particles.z = 0 | nbody_system.length particles.radius = 0.005 | nbody_system.length particles.vx = 0 | nbody_system.speed particles.vy = 0 | nbody_system.speed particles.vz = 0 | nbody_system.speed particles.mass = 1.0 | nbody_system.mass instance = self.new_instance_of_an_optional_code(Octgrav) instance.initialize_code() instance.parameters.stopping_conditions_number_of_steps = 20 self.assertEquals(instance.parameters.stopping_conditions_number_of_steps, 20) instance.parameters.epsilon_squared = (0.01 | nbody_system.length)**2 instance.particles.add_particles(particles) instance.stopping_conditions.number_of_steps_detection.enable() instance.evolve_model(10 | nbody_system.time) self.assertTrue(instance.stopping_conditions.number_of_steps_detection.is_set()) self.assertTrue(instance.model_time < 10 | nbody_system.time) instance.stop() def test4(self): plummer_size = 500 stars = new_plummer_model(plummer_size) stars.radius=0|nbody_system.length instance = self.new_instance_of_an_optional_code(Octgrav) instance.particles.add_particles(stars) instance.synchronize_model() ax,ay,az=instance.get_gravity_at_point(0. | nbody_system.length, 0. | nbody_system.length, 100. | nbody_system.length, 0. | nbody_system.length) self.assertAlmostEqual(ax.number,0., 3) self.assertAlmostRelativeEqual(ay.number,-1./100**2, 3) self.assertAlmostEqual(az.number,0., 3) pot=instance.get_potential_at_point([0.,0.]|nbody_system.length, [0.,100] | nbody_system.length, [100.,0.] | nbody_system.length, [0.,0.] | nbody_system.length) self.assertAlmostRelativeEqual(pot.number,[-1/100.,-1/100.], 3) instance.stop() ``` #### File: test/codes_tests/test_seba.py ```python import numpy from amuse.test.amusetest import TestWithMPI from amuse.community.seba.interface import SeBaInterface, SeBa from amuse.units import units from amuse.units import constants from amuse.datamodel import Particle from amuse.datamodel import Particles class TestSeBaInterface(TestWithMPI): def test1(self): instance = self.new_instance_of_an_optional_code(SeBaInterface) endtime, mass, radius, luminosity, temperature, time_step, stellar_type, error = instance.evolve_star(1, 4600, 0.02) self.assertEquals(error, 0) self.assertTrue( endtime <= 4600.0) self.assertAlmostRelativeEqual(endtime, 4600.0, 4) self.assertAlmostRelativeEqual(mass, 1.0, 6) self.assertAlmostRelativeEqual(radius, 0.9856, 4) self.assertAlmostRelativeEqual(luminosity, 0.9585, 4) self.assertAlmostRelativeEqual(temperature, 5751, 4) self.assertAlmostRelativeEqual(time_step, 1089.3, 4) self.assertEqual(stellar_type, 1) instance.stop() def test2(self): instance = SeBaInterface() #self.new_instance_of_an_optional_code(SeBaInterface) error = instance.initialize_code() self.assertEquals(error, 0) index,error = instance.new_particle(1.) self.assertEquals(error, 0) self.assertEquals(index, 1) mass, error = instance.get_mass(index) self.assertEquals(error, 0) self.assertAlmostRelativeEqual(mass, 1.0, 6) value, error = instance.get_radius(index) self.assertEquals(error, 0) self.assertAlmostRelativeEqual(value, 0.88824945029751212, 6) stellar_type, error = instance.get_stellar_type(index) self.assertEquals(error, 0) self.assertEquals(stellar_type, 1) instance.stop() def test3(self): instance = SeBaInterface() #self.new_instance_of_an_optional_code(SeBaInterface) error = instance.initialize_code() self.assertEquals(error, 0) index,error = instance.new_particle(1.) self.assertEquals(error, 0) self.assertEquals(index, 1) error = instance.evolve_model(4600) self.assertEquals(error, 0) mass, error = instance.get_mass(index) self.assertEquals(error, 0) self.assertAlmostRelativeEqual(mass, 1.0, 6) value, error = instance.get_radius(index) self.assertEquals(error, 0) self.assertAlmostRelativeEqual(value, 0.9856, 4) value, error = instance.get_temperature(index) self.assertEquals(error, 0) self.assertAlmostRelativeEqual(value, 5751, 4) value, error = instance.get_time_step(index) self.assertEquals(error, 0) self.assertAlmostRelativeEqual(value, 1089.3, 4) stellar_type, error = instance.get_stellar_type(index) self.assertEquals(error, 0) self.assertEquals(stellar_type, 1) instance.stop() def test4(self): instance = SeBaInterface() #self.new_instance_of_an_optional_code(SeBaInterface) error = instance.initialize_code() self.assertEquals(error, 0) index,error = instance.new_particle(1.) self.assertEquals(error, 0) self.assertEquals(index, 1) for t in range(46): error = instance.evolve_model((t+1) * 100) self.assertEquals(error, 0) mass, error = instance.get_mass(index) self.assertEquals(error, 0) self.assertAlmostRelativeEqual(mass, 1.0, 6) value, error = instance.get_radius(index) self.assertEquals(error, 0) self.assertAlmostRelativeEqual(value, 0.9856, 4) value, error = instance.get_temperature(index) self.assertEquals(error, 0) self.assertAlmostRelativeEqual(value, 5751, 4) value, error = instance.get_time_step(index) self.assertEquals(error, 0) self.assertAlmostRelativeEqual(value, 1089.3, 4) stellar_type, error = instance.get_stellar_type(index) self.assertEquals(error, 0) self.assertEquals(stellar_type, 1) instance.stop() def test5(self): instance = SeBaInterface() #self.new_instance_of_an_optional_code(SeBaInterface) error = instance.initialize_code() self.assertEquals(error, 0) index,error = instance.new_particle([1., 2., 3.]) self.assertEquals(error, 0) self.assertEquals(index, [1,2,3]) mass, error = instance.get_mass(2) self.assertEquals(error, 0) self.assertAlmostRelativeEqual(mass, 2 , 6) mass, error = instance.get_mass(3) self.assertEquals(error, 0) self.assertAlmostRelativeEqual(mass, 3, 6) error = instance.evolve_model(4600) self.assertEquals(error, 0) mass, error = instance.get_mass(index) print mass self.assertEquals(error, 0) self.assertAlmostRelativeEqual(mass[0], 1.0, 6) self.assertAlmostRelativeEqual(mass[1], 0.62973, 4) self.assertAlmostRelativeEqual(mass[2], 0.75012, 4) instance.stop() def test6(self): instance = SeBaInterface() #self.new_instance_of_an_optional_code(SeBaInterface) error = instance.initialize_code() self.assertEquals(error, 0) index,error = instance.new_particle([1., 2., 3.]) self.assertEquals(error, 0) self.assertEquals(index, [1,2,3]) for t in range(46): error = instance.evolve_model((t+1) * 100) self.assertEquals(error, 0) mass, error = instance.get_mass(index) print mass self.assertEquals(error, 0) self.assertAlmostRelativeEqual(mass, [1.0, 0.62973, 0.75072], 4) instance.stop() def test7(self): instance = SeBaInterface() #self.new_instance_of_an_optional_code(SeBaInterface) error = instance.initialize_code() self.assertEquals(error, 0) index,error = instance.new_particle([1., 2., 3.]) self.assertEquals(error, 0) self.assertEquals(index, [1,2,3]) mass, error = instance.get_mass(2) self.assertEquals(error, 0) self.assertAlmostRelativeEqual(mass, 2 , 6) mass, error = instance.get_mass(3) self.assertEquals(error, 0) self.assertAlmostRelativeEqual(mass, 3, 6) mass, error = instance.get_mass(4) self.assertEquals(error, -1) error = instance.delete_star(2) self.assertEquals(error, 0) mass, error = instance.get_mass(2) self.assertEquals(error, -1) mass, error = instance.get_mass(3) self.assertEquals(error, 0) self.assertAlmostRelativeEqual(mass, 3, 6) index, error = instance.new_particle(4.) self.assertEquals(error, 0) self.assertEquals(index, 4) instance.stop() def test8(self): instance = SeBaInterface() #self.new_instance_of_an_optional_code(SeBaInterface) error = instance.initialize_code() self.assertEquals(error, 0) index,error = instance.new_particle([3.0,1.0,2.0]) self.assertEquals(error, 0) self.assertEquals(index, [1,2,3]) error = instance.delete_star(1) self.assertEquals(error, 0) error = instance.evolve_model(4600); mass, error = instance.get_mass(2) self.assertEquals(error, 0) self.assertAlmostRelativeEqual(mass, 1, 6) error = instance.delete_star(3) self.assertEquals(error, 0) index,error = instance.new_particle([5.0]) self.assertEquals(error, 0) mass, error = instance.get_mass(index) self.assertEquals(error, 0) self.assertAlmostRelativeEqual(mass, 5.0, 6) error = instance.evolve_model(5000); mass, error = instance.get_mass(index) self.assertEquals(error, 0) self.assertAlmostRelativeEqual(mass, 0.99057, 4) error = instance.delete_star(2) self.assertEquals(error, 0) error = instance.delete_star(index) self.assertEquals(error, 0) for i in range(4): mass, error = instance.get_mass(index+1) self.assertEquals(error, -1) index,error = instance.new_particle([5.0]) self.assertEquals(error, 0) error = instance.evolve_model(10000); mass, error = instance.get_mass(index) self.assertEquals(error, 0) self.assertAlmostRelativeEqual(mass, 0.99057, 4) instance.stop() def test9(self): instance = SeBaInterface() #self.new_instance_of_an_optional_code(SeBaInterface) error = instance.initialize_code() self.assertEquals(error, 0) instance.set_metallicity(0.001) index,error = instance.new_particle([3.0,0.3]) self.assertEquals(error, 0) self.assertEquals(index, [1,2]) mu = (3.3 | units.MSun) * constants.G orbital_period = 200.0 | units.day semi_major_axis = (((orbital_period / 2.0 * numpy.pi)**2)*mu)**(1.0/3.0) print semi_major_axis.value_in(units.RSun) eccentricity = 0.5 index,error = instance.new_binary( semi_major_axis.value_in(units.RSun), eccentricity, index[0], index[1] ) self.assertEquals(error, 0) self.assertEquals(index, 3) mass, error = instance.get_mass(index) self.assertEquals(error, 0) self.assertAlmostRelativeEqual(mass, 3.3, 4) mass, error = instance.get_mass(2) self.assertEquals(error, 0) self.assertAlmostRelativeEqual(mass, 0.3, 4) error = instance.evolve_model(300) self.assertEquals(error, 0) mass, error = instance.get_mass(1) self.assertEquals(error, 0) self.assertAlmostRelativeEqual(mass, 2.98777, 4) mass, error = instance.get_mass(2) self.assertEquals(error, 0) self.assertAlmostRelativeEqual(mass, 0.29999, 4) error = instance.evolve_model(400) self.assertEquals(error, 0) mass, error = instance.get_mass(1) self.assertEquals(error, 0) self.assertAlmostRelativeEqual(mass, 0.86679, 4) mass, error = instance.get_mass(2) self.assertEquals(error, 0) self.assertAlmostRelativeEqual(mass, 0.3, 4) error = instance.delete_binary(index) self.assertEquals(error, 0) mass, error = instance.get_mass(index) self.assertEquals(error, -1) # check if singles are still in the mode and evolve value, error = instance.get_age([1,2]) self.assertEquals(error, 0) self.assertAlmostRelativeEqual(value, 400, 4) error = instance.evolve_model(500) self.assertEquals(error, 0) value, error = instance.get_age([1,2]) self.assertEquals(error, 0) self.assertAlmostRelativeEqual(value, 500, 4) class TestSeBa(TestWithMPI): def test1(self): instance = self.new_instance_of_an_optional_code(SeBa) endtime, mass, radius, luminosity, temperature, time_step, stellar_type = instance.evolve_star(1 | units.MSun, 4600 | units.Myr, 0.02) self.assertTrue( endtime <= 4600 | units.Myr) self.assertAlmostRelativeEqual(mass, 1.0 | units.MSun, 4) self.assertAlmostRelativeEqual(radius, 0.9856 | units.RSun, 4) self.assertAlmostRelativeEqual(luminosity, 0.9585 | units.LSun, 4) self.assertAlmostRelativeEqual(temperature, 5751 | units.K, 4) self.assertAlmostRelativeEqual(time_step, 1089.3 | units.Myr, 4) self.assertEqual(stellar_type, 1 | units.stellar_type) def test2(self): instance = self.new_instance_of_an_optional_code(SeBa) p = Particle() p.mass = 5 | units.MSun p.metallicity = 0.02 p = instance.particles.add_particle(p) instance.evolve_model(130 | units.Myr) print p self.assertAlmostRelativeEqual(p.mass, 0.9906 | units.MSun, 4) def test3(self): print "Testing evolution of a close binary system..." instance = self.new_instance_of_an_optional_code(SeBa) instance.commit_parameters() stars = Particles(2) stars[0].mass = 3.0 | units.MSun stars[1].mass = 0.3 | units.MSun mu = (3.3 | units.MSun) * constants.G orbital_period = 200.0 | units.day semi_major_axis = (((orbital_period / (2.0 * numpy.pi))**2)*mu)**(1.0/3.0) instance.particles.add_particles(stars) binaries = Particles(1) binary = binaries[0] binary.semi_major_axis = semi_major_axis binary.eccentricity = 0.5 binary.child1 = stars[0] binary.child2 = stars[1] instance.binaries.add_particles(binaries) from_seba_to_model = instance.particles.new_channel_to(stars) from_seba_to_model.copy() from_seba_to_model_binaries = instance.binaries.new_channel_to(binaries) from_seba_to_model_binaries.copy() previous_type = binary.child1.stellar_type results = [] current_time = 0 | units.Myr while current_time < (480 | units.Myr): instance.update_time_steps() # The next line appears a bit weird, but saves time for this simple test. deltat = max(1.0*instance.binaries[0].time_step, 0.1| units.Myr) current_time = current_time + deltat instance.evolve_model(current_time) from_seba_to_model.copy() from_seba_to_model_binaries.copy() if not binary.child1.stellar_type == previous_type: results.append((binary.age, binary.child1.mass, binary.child1.stellar_type)) previous_type = binary.child1.stellar_type self.assertEqual(len(results), 6) for x in results: print x types = ( "Hertzsprung Gap", "First Giant Branch", "Core Helium Burning", "First Asymptotic Giant Branch", "Giant Branch Naked Helium star", "Carbon/Oxygen White Dwarf", ) for result, expected in zip(results, types): self.assertEquals(str(result[2]), expected) times = ( 377.6369 | units.Myr, 379.8877 | units.Myr, 382.3112 | units.Myr, 473.4804 | units.Myr, 475.4766 | units.Myr, 476.6182 | units.Myr, ) for result, expected in zip(results, times): self.assertAlmostEqual(result[0].value_in(units.Myr), expected.value_in(units.Myr), 0) masses = ( 3.0000 | units.MSun, 3.0000 | units.MSun, 2.9983 | units.MSun, 2.9741 | units.MSun, 0.6710 | units.MSun, 0.6596 | units.MSun, ) for result, expected in zip(results, masses): self.assertAlmostEqual(result[1].value_in(units.MSun), expected.value_in(units.MSun), 2) instance.stop() def test5(self): instance = self.new_instance_of_an_optional_code(SeBa) self.assertAlmostRelativeEquals(instance.parameters.metallicity , 0.02) instance.parameters.metallicity = 0.04 self.assertAlmostRelativeEquals(instance.parameters.metallicity , 0.04) def test6(self): instance = self.new_instance_of_an_optional_code(SeBa) self.assertFalse(instance.parameters.is_logging_of_evolve_enabled) instance.parameters.is_logging_of_evolve_enabled = True self.assertTrue(instance.parameters.is_logging_of_evolve_enabled) def test7(self): instance = self.new_instance_of_an_optional_code(SeBa) instance.commit_parameters() stars = Particles(2) stars[0].mass = 3.0 | units.MSun stars[1].mass = 0.3 | units.MSun mu = (3.3 | units.MSun) * constants.G orbital_period = 200.0 | units.day semi_major_axis = (((orbital_period / (2.0 * numpy.pi))**2)*mu)**(1.0/3.0) instance.particles.add_particles(stars) binaries = Particles(1) binary = binaries[0] binary.semi_major_axis = semi_major_axis binary.eccentricity = 0.5 binary.child1 = stars[0] binary.child2 = stars[1] instance.binaries.add_particles(binaries) self.assertAlmostRelativeEquals(instance.binaries[0].child1.mass, 3.0 | units.MSun, 4) self.assertAlmostRelativeEquals(instance.binaries[0].child2.mass, 0.3 | units.MSun, 4) def xtest7(self): instance = self.new_instance_of_an_optional_code(SeBa) instance.parameters.metallicity = 0.03 p = Particle() p.mass = 99.1605930967 | units.MSun p = instance.particles.add_particle(p) instance.evolve_model(614 | units.Myr) print p.stellar_type self.assertEquals(str(p.stellar_type),'Black Hole') self.assertAlmostRelativeEqual(p.mass, 0.9906 | units.MSun, 4) def test8(self): instance = self.new_instance_of_an_optional_code(SeBa) instance.parameters.supernova_kick_velocity = 0 | units.kms instance.commit_parameters() print "v_kick=", instance.parameters.supernova_kick_velocity stars = Particles(2) stars[0].mass = 10.0 | units.MSun stars[1].mass = 9 | units.MSun semi_major_axis = 10000|units.AU instance.particles.add_particles(stars) binaries = Particles(1) binary = binaries[0] binary.semi_major_axis = semi_major_axis binary.eccentricity = 0 binary.child1 = stars[0] binary.child2 = stars[1] instance.binaries.add_particles(binaries) instance.evolve_model(30|units.Myr) print instance.particles print instance.binaries self.assertAlmostRelativeEquals(instance.binaries[0].eccentricity, 0.7872, 4) def test9(self): instance = self.new_instance_of_an_optional_code(SeBa) stars = Particles(2) stars[0].mass = 10.0 | units.MSun stars[1].mass = 9 | units.MSun instance.particles.add_particles(stars) instance.evolve_model(30|units.Myr) self.assertAlmostRelativeEquals(instance.particles.age, [30,30] |units.Myr) self.assertAlmostRelativeEquals(instance.model_time, 30 | units.Myr) self.assertAlmostRelativeEquals(instance.particles[0].mass, 1.2263 | units.MSun, 4) self.assertAlmostRelativeEquals(instance.particles[1].mass, 8.8682 | units.MSun, 4) stars = Particles(2) stars[0].mass = 10.0 | units.MSun stars[1].mass = 9 | units.MSun instance.particles.add_particles(stars) instance.evolve_model(60|units.Myr) print instance.particles.age print instance.particles.mass self.assertAlmostRelativeEquals(instance.model_time, 60 | units.Myr) self.assertAlmostRelativeEquals(instance.particles.age, [60,60,30,30] |units.Myr) self.assertAlmostRelativeEquals(instance.particles[2].mass, 1.2263 | units.MSun, 4) self.assertAlmostRelativeEquals(instance.particles[3].mass, 8.8682 | units.MSun, 4) def test10(self): """ Test supernova stopping condition """ instance = self.new_instance_of_an_optional_code(SeBa) instance.stopping_conditions.supernova_detection.enable() p = Particle() p.mass = 10 | units.MSun p.metallicity = 0.02 p = instance.particles.add_particle(p) instance.set_supernova_kick_velocity(0.0|units.kms) instance.evolve_model(30 | units.Myr) self.assertEquals(instance.stopping_conditions.supernova_detection.is_set(), True) self.assertEquals(instance.stopping_conditions.supernova_detection.particles(0)[0].key, p.key) self.assertAlmostRelativeEqual(p.age, 27.35866 | units.Myr, 4) self.assertAlmostRelativeEqual(p.mass, 1.22632 | units.MSun, 4) self.assertAlmostRelativeEqual(p.natal_kick_velocity, [0,0,0] | units.kms, 4) def test11(self): """ Test supernova stopping condition in a binary """ instance = self.new_instance_of_an_optional_code(SeBa) instance.stopping_conditions.supernova_detection.enable() stars = Particles(2) stars[0].mass = 10.0 | units.MSun stars[1].mass = 5.0 | units.MSun instance.particles.add_particles(stars) binaries = Particles(1) binary = binaries[0] binary.semi_major_axis = 1.e6|units.RSun binary.eccentricity = 0.1 binary.child1 = stars[0] binary.child2 = stars[1] instance.binaries.add_particles(binaries) instance.evolve_model(30 | units.Myr) self.assertEquals(instance.stopping_conditions.supernova_detection.is_set(), True) self.assertEquals(instance.stopping_conditions.supernova_detection.particles(0)[0].key, instance.binaries[0].child1.key) self.assertEquals(instance.stopping_conditions.supernova_detection.particles(0)[0].key, instance.particles[0].key) print instance.parameters self.assertAlmostRelativeEqual(instance.particles[0].age, 27.35866 | units.Myr, 4) self.assertAlmostRelativeEqual(instance.particles[1].age, 27.35866 | units.Myr, 4) self.assertAlmostRelativeEqual(instance.particles[0].mass, 1.22632 | units.MSun, 4) self.assertAlmostRelativeEqual(instance.particles[1].mass, 5.0 | units.MSun, 4) # self.assertAlmostRelativeEqual(instance.particles[0].natal_kick_velocity, [0,0,0] | units.kms, 4) self.assertAlmostRelativeEqual(instance.binaries[0].child1.age, 27.35866 | units.Myr, 4) self.assertAlmostRelativeEqual(instance.binaries[0].child2.age, 27.35866 | units.Myr, 4) self.assertAlmostRelativeEqual(instance.binaries[0].child1.mass, 1.22632 | units.MSun, 4) self.assertAlmostRelativeEqual(instance.binaries[0].child2.mass, 5.0 | units.MSun, 4) # self.assertAlmostRelativeEqual(instance.binaries[0].child1.natal_kick_velocity, [0,0,0] | units.kms, 4) def test12(self): """ Test supernova stopping condition with multiple stars """ instance = self.new_instance_of_an_optional_code(SeBa) instance.stopping_conditions.supernova_detection.enable() stars = Particles(3) stars[0].mass = 10.0 | units.MSun stars[1].mass = 5.0 | units.MSun stars[2].mass = 0.5 | units.MSun instance.particles.add_particles(stars) instance.evolve_model(30 | units.Myr) self.assertEquals(instance.stopping_conditions.supernova_detection.is_set(), True) self.assertEquals(instance.stopping_conditions.supernova_detection.particles(0)[0].key, instance.particles[0].key) self.assertAlmostRelativeEqual(instance.particles[0].age, 27.35866 | units.Myr, 4) self.assertAlmostRelativeEqual(instance.particles[1].age, 27.35866 | units.Myr, 4) self.assertAlmostRelativeEqual(instance.particles[2].age, 27.35866 | units.Myr, 4) self.assertAlmostRelativeEqual(instance.particles[0].mass, 1.22632 | units.MSun, 4) self.assertAlmostRelativeEqual(instance.particles[1].mass, 5.0 | units.MSun, 4) self.assertAlmostRelativeEqual(instance.particles[2].mass, 0.5 | units.MSun, 4) # self.assertAlmostRelativeEqual(instance.particles[0].natal_kick_velocity, [0,0,0] | units.kms, 4) def test13(self): """ Test supernova stopping condition with multiple stars """ instance = self.new_instance_of_an_optional_code(SeBa) instance.stopping_conditions.supernova_detection.enable() stars = Particles(3) stars[0].mass = 10.0 | units.MSun stars[1].mass = 11.0 | units.MSun stars[2].mass = 0.5 | units.MSun instance.particles.add_particles(stars) instance.evolve_model(30 | units.Myr) self.assertEquals(instance.stopping_conditions.supernova_detection.is_set(), True) self.assertEquals(instance.stopping_conditions.supernova_detection.particles(0)[0].key, instance.particles[1].key) self.assertAlmostRelativeEqual(instance.particles[0].age, 23.08688 | units.Myr, 4) self.assertAlmostRelativeEqual(instance.particles[1].age, 23.08688 | units.Myr, 4) self.assertAlmostRelativeEqual(instance.particles[2].age, 23.08688 | units.Myr, 4) self.assertAlmostRelativeEqual(instance.particles[0].mass, 9.92275 | units.MSun, 4) self.assertAlmostRelativeEqual(instance.particles[1].mass, 1.23645 | units.MSun, 4) self.assertAlmostRelativeEqual(instance.particles[2].mass, 0.5 | units.MSun, 4) # self.assertAlmostRelativeEqual(instance.particles[0].natal_kick_velocity, [0,0,0] | units.kms, 4) instance.evolve_model(30 | units.Myr) self.assertEquals(instance.stopping_conditions.supernova_detection.is_set(), True) self.assertEquals(instance.stopping_conditions.supernova_detection.particles(0)[0].key, instance.particles[0].key) self.assertAlmostRelativeEqual(instance.particles[0].age, 27.35866 | units.Myr, 4) self.assertAlmostRelativeEqual(instance.particles[1].age, 27.35866 | units.Myr, 4) self.assertAlmostRelativeEqual(instance.particles[2].age, 27.35866 | units.Myr, 4) self.assertAlmostRelativeEqual(instance.particles[0].mass, 1.22632 | units.MSun, 4) self.assertAlmostRelativeEqual(instance.particles[1].mass, 1.23645 | units.MSun, 4) self.assertAlmostRelativeEqual(instance.particles[2].mass, 0.5 | units.MSun, 4) # self.assertAlmostRelativeEqual(instance.particles[0].natal_kick_velocity, [0,0,0] | units.kms, 4) def test14(self): """ Test supernova stopping condition with multiple stars of equal mass """ instance = self.new_instance_of_an_optional_code(SeBa) instance.stopping_conditions.supernova_detection.enable() stars = Particles(3) stars[0].mass = 10.0 | units.MSun stars[1].mass = 10.0 | units.MSun stars[2].mass = 0.5 | units.MSun instance.particles.add_particles(stars) instance.evolve_model(30 | units.Myr) self.assertEquals(instance.stopping_conditions.supernova_detection.is_set(), True) self.assertEquals(len(instance.stopping_conditions.supernova_detection.particles(0)), 2) self.assertEquals(instance.stopping_conditions.supernova_detection.particles(0)[0].key, instance.particles[0].key) self.assertEquals(instance.stopping_conditions.supernova_detection.particles(0)[1].key, instance.particles[1].key) self.assertAlmostRelativeEqual(instance.particles[0].age, 27.35866 | units.Myr, 4) self.assertAlmostRelativeEqual(instance.particles[1].age, 27.35866 | units.Myr, 4) self.assertAlmostRelativeEqual(instance.particles[2].age, 27.35866 | units.Myr, 4) self.assertAlmostRelativeEqual(instance.particles[0].mass, 1.22632 | units.MSun, 4) self.assertAlmostRelativeEqual(instance.particles[1].mass, 1.22632 | units.MSun, 4) self.assertAlmostRelativeEqual(instance.particles[2].mass, 0.5 | units.MSun, 4) # self.assertAlmostRelativeEqual(instance.particles[0].natal_kick_velocity, [0,0,0] | units.kms, 4) # self.assertAlmostRelativeEqual(instance.particles[1].natal_kick_velocity, [0,0,0] | units.kms, 4) instance.evolve_model(30 | units.Myr) self.assertEquals(instance.stopping_conditions.supernova_detection.is_set(), False) self.assertAlmostRelativeEqual(instance.particles[0].age, 30. | units.Myr, 4) self.assertAlmostRelativeEqual(instance.particles[1].age, 30. | units.Myr, 4) self.assertAlmostRelativeEqual(instance.particles[2].age, 30. | units.Myr, 4) self.assertAlmostRelativeEqual(instance.particles[0].mass, 1.22632 | units.MSun, 4) self.assertAlmostRelativeEqual(instance.particles[1].mass, 1.22632 | units.MSun, 4) self.assertAlmostRelativeEqual(instance.particles[2].mass, 0.5 | units.MSun, 4) ``` #### File: test/codes_tests/test_twobody.py ```python import numpy from amuse.community.twobody import interface from amuse.test.amusetest import TestWithMPI from amuse.units import units from amuse.units import nbody_system from amuse.units.quantities import zero from amuse.support.exceptions import AmuseException from amuse import datamodel class TwoBodyCodeTests(TestWithMPI): def test_stumpff(self): self.assertAlmostEqual(interface.stumpff_C(0),interface.stumpff_C(0.0001),5) self.assertAlmostEqual(interface.stumpff_C(0),interface.stumpff_C(-0.0001),5) self.assertAlmostEqual(interface.stumpff_S(0),interface.stumpff_S(0.0001),5) self.assertAlmostEqual(interface.stumpff_S(0),interface.stumpff_S(-0.0001),5) class TwoBodyInterfaceTests(TestWithMPI): def test1(self): instance = interface.TwoBodyInterface() res1 = instance.new_particle(mass = 11.0, radius = 2.0, x = 0.0, y = 0.0, z = 0.0, vx = 0.0, vy = 0.0, vz = 0.0) res2 = instance.new_particle(mass = 21.0, radius = 5.0, x = 10.0, y = 0.0, z = 0.0, vx = 10.0, vy = 0.0, vz = 0.0) self.assertEquals(0, res1['index_of_the_particle']) self.assertEquals(1, res2['index_of_the_particle']) retrieved_state1 = instance.get_state(0) retrieved_state2 = instance.get_state(1) self.assertEquals(11.0, retrieved_state1['mass']) self.assertEquals(21.0, retrieved_state2['mass']) self.assertEquals(0.0, retrieved_state1['x']) self.assertEquals(10.0, retrieved_state2['x']) instance.stop() def test2(self): instance = interface.TwoBodyInterface() res1 = instance.new_particle(mass = 10.0, radius = 0.0, x = -1.0, y = 0.0, z = 0.0, vx = 0.0, vy = 10.0, vz = 0.0) res2 = instance.new_particle(mass = 10.0, radius = 0.0, x = 1.0, y = 0.0, z = 0.0, vx = 0.0, vy = -10.0, vz = 0.0) ek=0.5*(10*100+10*100) ep=-(10*10/2) e,err=instance.get_kinetic_energy() self.assertEquals(ek,e) e,err=instance.get_potential_energy() self.assertEquals(ep,e) instance.stop() class TwoBodyTests(TestWithMPI): def test1(self): convert_nbody = nbody_system.nbody_to_si(5.9742e24 | units.kg, 1e6| units.m) instance = interface.TwoBody(convert_nbody) instance.stop() def test2(self): convert_nbody = nbody_system.nbody_to_si(5.9742e24 | units.kg, 1e6| units.m) instance = interface.TwoBody(convert_nbody) p = datamodel.Particle() p.mass = 5.9742e24 | units.kg p.radius = 6.371e6 | units.m p.position = [0.,7.e6,-1.2124e7] | units.m p.velocity = [0.,2.6679e3,4.6210e3] | units.m/units.s instance.particles.add_particle(p) instance.evolve_model(3600.0 | units.s) position = instance.particles[0].position velocity = instance.particles[0].velocity self.assertAlmostEqual(position.x.value_in(units.m),0.,7) self.assertAlmostEqual(position.y.value_in(units.m)/(-3.30647600568e6),1.,7) self.assertAlmostEqual(position.z.value_in(units.m)/7.40831575351e6,1.,7) self.assertAlmostEqual(velocity.x.value_in(units.m / units.s),0.,7) self.assertAlmostEqual(velocity.y.value_in(units.m / units.s)/(-8.29821376206e3),1.,7) self.assertAlmostEqual(velocity.z.value_in(units.m / units.s)/(-0.972888312209e3),1.,7) instance.stop() def test3(self): convert_nbody = nbody_system.nbody_to_si(5.9742e24 | units.kg, 1e6| units.m) instance = interface.TwoBody(convert_nbody) p = datamodel.Particle() p.mass = 5.9742e24 | units.kg p.radius = 7.1e6 | units.m p.position = [0.,7.e6,-1.2124e7] | units.m p.velocity = [0.,2.6679e3,4.6210e3] | units.m/units.s instance.particles.add_particle(p) instance.evolve_model(3600.0 | units.s) dt = convert_nbody.to_si(instance.model_time) self.assertAlmostEqual(dt.value_in(units.s)/2583.44780926,1.,7) position = instance.particles[0].position self.assertAlmostEqual(((position.x**2+position.y**2+position.z**2)/(7.1e6)**2).value_in(units.m**2),1.,7) instance.stop() def test4(self): convert_nbody = nbody_system.nbody_to_si(5.9742e24 | units.kg, 1e6| units.m) instance = interface.TwoBody(convert_nbody) p = datamodel.Particle() p.mass = 5.9742e24 | units.kg p.radius = 7.1e6 | units.m p.position = [0.,7.e6,-1.2124e7] | units.m p.velocity = [0.,2.6679e3,4.6210e3] | units.m/units.s instance.particles.add_particle(p) instance.evolve_model(3600.0 | units.s) dt = convert_nbody.to_si(instance.model_time) self.assertEqual(instance.particles[0].mass,5.9742e24 | units.kg) instance.particles[0].mass=0.8*5.9742e24 | units.kg instance.evolve_model(4000.0 | units.s) self.assertEqual(instance.particles.mass[0],0.8*5.9742e24 | units.kg) instance.stop() def test5(self): #from: Fundamentals of Celestial Mechanics, <NAME> 2nd edition instance = interface.TwoBody() p = datamodel.Particle() p.mass = 1.0 | nbody_system.mass p.radius = 0.001 | nbody_system.length p.position = [1.0, 0.1, -0.1] | nbody_system.length p.velocity = [-0.1, 2.0, -0.2] | nbody_system.speed instance.particles.add_particle(p) instance.evolve_model(1.0|nbody_system.time) self.assertAlmostEqual(instance.particles.x, 0.611238439231|nbody_system.length, 7) self.assertAlmostEqual(instance.particles.y, 1.92873971354574|nbody_system.length, 7) self.assertAlmostEqual(instance.particles.z, -0.2562478900031234|nbody_system.length, 7) instance.stop() def test6(self): #from: Fundamentals of Celestial Mechanics, <NAME> 2nd edition instance = interface.TwoBody() p = datamodel.Particles(2) p.mass = [1, 0.0] | nbody_system.mass p.radius = 0.001 | nbody_system.length p.x = [1.0, 0.0] | nbody_system.length p.y = [0.1, 0.0] | nbody_system.length p.z = [-0.1, 0.0] | nbody_system.length p.vx = [-0.1, 0.0] | nbody_system.speed p.vy = [2.0, 0.0] | nbody_system.speed p.vz = [-0.2, 0.0] | nbody_system.speed instance.particles.add_particles(p) instance.evolve_model(1.0|nbody_system.time) self.assertAlmostEqual(instance.particles.x[0] - instance.particles.x[1], 0.611238439231|nbody_system.length, 7) self.assertAlmostEqual(instance.particles.y[0] - instance.particles.y[1], 1.92873971354574|nbody_system.length, 7) self.assertAlmostEqual(instance.particles.z[0] - instance.particles.z[1], -0.2562478900031234|nbody_system.length, 7) instance.stop() def test7(self): print "Test 7: get_gravity_at_point" instance = interface.TwoBody() p = datamodel.Particles(2) p.mass = 0.5 | nbody_system.mass p.radius = 0 | nbody_system.length p.position = [[1.0, 0, 0], [-1.0, 0, 0]] | nbody_system.length p.velocity = [[0]*3]*2 | nbody_system.speed instance.particles.add_particles(p) zero = [0.0] | nbody_system.length ax, ay, az = instance.get_gravity_at_point(zero, 0.5 | nbody_system.length, zero, zero) self.assertAlmostEqual(ax, 16/9.0 | nbody_system.acceleration) self.assertAlmostEqual(ay, 0 | nbody_system.acceleration) self.assertAlmostEqual(az, 0 | nbody_system.acceleration) zero = [0.0]*4 | nbody_system.length ax, ay, az = instance.get_gravity_at_point(zero, [0, 0.5, 1.5, 2.5] | nbody_system.length, zero, zero) self.assertAlmostEqual(ax, [0, 16/9.0, -2.08, -0.26303854] | nbody_system.acceleration) self.assertAlmostEqual(ay, 0 | nbody_system.acceleration) self.assertAlmostEqual(az, 0 | nbody_system.acceleration) zero = [0.0] | nbody_system.length ax, ay, az = instance.get_gravity_at_point(zero, 1.0 | nbody_system.length, zero, zero) self.assertTrue(numpy.isnan(ax[0].value_in(nbody_system.acceleration))) self.assertTrue(numpy.isnan(ay[0].value_in(nbody_system.acceleration))) self.assertTrue(numpy.isnan(az[0].value_in(nbody_system.acceleration))) zero = [0.0] | nbody_system.length eps = [0.1] | nbody_system.length ax, ay, az = instance.get_gravity_at_point(eps, 1.0 | nbody_system.length, zero, zero) self.assertAlmostEqual(ax, -0.12453271 | nbody_system.acceleration) self.assertAlmostEqual(ay, 0 | nbody_system.acceleration) self.assertAlmostEqual(az, 0 | nbody_system.acceleration) instance.stop() def test8(self): print "Test 8: get_potential_at_point" instance = interface.TwoBody() p = datamodel.Particles(2) p.mass = 0.5 | nbody_system.mass p.radius = 0 | nbody_system.length p.position = [[1.0, 0, 0], [-1.0, 0, 0]] | nbody_system.length p.velocity = [[0]*3]*2 | nbody_system.speed instance.particles.add_particles(p) zero = [0.0] | nbody_system.length phi = instance.get_potential_at_point(zero, 0.5 | nbody_system.length, zero, zero) self.assertAlmostEqual(phi, -4/3.0 | nbody_system.potential) zero = [0.0]*4 | nbody_system.length phi = instance.get_potential_at_point(zero, [0, 0.5, 1.5, 2.5] | nbody_system.length, zero, zero) self.assertAlmostEqual(phi, [-1, -4/3.0, -1.2, -0.47619047] | nbody_system.potential) zero = [0.0] | nbody_system.length phi = instance.get_potential_at_point(zero, 1.0 | nbody_system.length, zero, zero) self.assertTrue(numpy.isinf(phi[0].value_in(nbody_system.potential))) instance.stop() def test9(self): print "Test 9: TwoBody parameters" instance = interface.TwoBody() self.assertEqual(instance.parameters.epsilon_squared, zero) self.assertRaises(AmuseException, setattr, instance.parameters, "epsilon_squared", zero, expected_message = "Could not set value for parameter 'epsilon_squared' of a 'TwoBody' object, " "parameter is read-only") instance.stop() def test10(self): convert_nbody = nbody_system.nbody_to_si(1.0 | units.yr, 1.0 | units.AU) instance = interface.TwoBody(convert_nbody) value = instance.get_begin_time() self.assertEquals(0.0| units.yr, value) self.assertAlmostEquals(0.0 | units.yr, instance.parameters.begin_time, in_units=units.yr) for x in [1.0, 10.0, 100.0]: instance.parameters.begin_time = x | units.yr self.assertAlmostEquals(x | units.yr, instance.parameters.begin_time, in_units=units.yr) instance.stop() def test11(self): instance = interface.TwoBody() p = datamodel.Particles(2) p.mass = [1, 0.0] | nbody_system.mass p.radius = 0.001 | nbody_system.length p.x = [1.0, 0.0] | nbody_system.length p.y = [0.1, 0.0] | nbody_system.length p.z = [-0.1, 0.0] | nbody_system.length p.vx = [-0.1, 0.0] | nbody_system.speed p.vy = [2.0, 0.0] | nbody_system.speed p.vz = [-0.2, 0.0] | nbody_system.speed instance.particles.add_particles(p) instance.evolve_model(0.5|nbody_system.time) particles1 = instance.particles.copy() instance.stop() instance = interface.TwoBody() instance.parameters.begin_time = 0.5 |nbody_system.time instance.particles.add_particles(particles1) instance.evolve_model(1.0|nbody_system.time) self.assertAlmostEqual(instance.particles.x[0] - instance.particles.x[1], 0.611238439231|nbody_system.length, 7) self.assertAlmostEqual(instance.particles.y[0] - instance.particles.y[1], 1.92873971354574|nbody_system.length, 7) self.assertAlmostEqual(instance.particles.z[0] - instance.particles.z[1], -0.2562478900031234|nbody_system.length, 7) instance.stop() ``` #### File: test/core_tests/test_binaryio.py ```python from amuse.test import amusetest from io import BytesIO from collections import namedtuple import os.path import math from amuse import io from amuse.io import gadget from amuse.io import nemobin from amuse.units import nbody_system from amuse.datamodel import Particles class GadgetFileFormatProcessorTests(amusetest.TestCase): header_parts = ( b'\x00\x01\x00\x00 N\x00\x00 \xa1\x07\x00 N\x00', b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00', b'\x00\x00\x00\x00\x00\x00\xf6`Q\xc6#\xcc\x9c>\x8d', b'\xed\xb5\xa0\xf7\xc6\x90>\x00\x00\x00\x00\x00\x00\x00\x00', b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00', b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00', b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00 N\x00\x00 ', b'\xa1\x07\x00 N\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00', b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00', b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00', b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00', b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00', b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00', b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00', b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00', b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00', b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00', b'\x00\x00\x00\x00\x00\x00\x01\x00\x00', ) def test1(self): header = b''.join(self.header_parts) x = gadget.GadgetFileFormatProcessor() file = BytesIO(header) x.load_header(file) print x.header_struct self.assertEquals(x.header_struct.Npart[0], 20000) self.assertEquals(x.header_struct.Npart[1], 500000) self.assertEquals(x.header_struct.Npart[2], 20000) self.assertEquals(x.header_struct.Npart[3], 0) self.assertEquals(x.header_struct.Npart[4], 0) self.assertEquals(x.header_struct.Npart[5], 0) self.assertEquals(x.header_struct.Massarr[0], 0.0) self.assertAlmostRelativeEqual(x.header_struct.Massarr[1], 4.2911501e-07, 8) print x.header_struct.Massarr[2] self.assertAlmostRelativeEqual(x.header_struct.Massarr[2], 2.5000000e-07, 8) self.assertEquals(x.header_struct.FlagSfr, 0) self.assertEquals(x.header_struct.FlagFeedback, 0) self.assertEquals(x.header_struct.FlagAge, 0) self.assertEquals(x.header_struct.HubbleParam, 0) def test2(self): directory_name = os.path.dirname(__file__) filename = os.path.join(directory_name, 'gadget_snapshot') x = gadget.GadgetFileFormatProcessor() file = open(filename,'rb') result = x.load_file(file) file.close() self.assertEquals(len(result[0]), 1000) self.assertEquals(len(result[1]), 10000) def test3(self): directory_name = os.path.dirname(__file__) filename = os.path.join(directory_name, 'gadget_snapshot') x = gadget.GadgetFileFormatProcessor() result = io.read_set_from_file(filename, format='gadget') self.assertEquals(len(result[0]), 1000) self.assertEquals(len(result[1]), 10000) def test4(self): directory_name = os.path.dirname(__file__) filename = os.path.join(directory_name, 'gassphere_littleendian.dat') x = gadget.GadgetFileFormatProcessor() result = io.read_set_from_file(filename, format='gadget') self.assertEquals(len(result[0]), 1472) self.assertEquals(len(result[1]), 0) def test5(self): options = io.get_options_for_format('gadget') found_has_acceleration = False for name, description, defaultval in options: if name == 'has_acceleration': found_has_acceleration = True self.assertTrue(found_has_acceleration) def test6(self): directory_name = os.path.dirname(__file__) filename = os.path.join(directory_name, 'gassphere_littleendian.dat') x = gadget.GadgetFileFormatProcessor() gas, halo, disk, bulge, stars, bndry = io.read_set_from_file(filename, format='gadget') self.assertEquals(len(gas), 1472) self.assertEquals(len(halo), 0) self.assertEquals(gas[0].key,1) self.assertEquals(gas[1].key,2) self.assertEquals(gas[2].key,3) self.assertEquals(gas[1471].key,1472) def test7(self): """test returned ids from gadget file for ticket #245. All the 'uneven' particles have key "1", and identical velocities/positions. This is incorrect upon further inspection, the test file is incorrect """ directory_name = os.path.dirname(__file__) filename = os.path.join(directory_name, 'ticket245.dat') gas, halo, disk, bulge, stars, bndry = io.read_set_from_file(filename, format='gadget') self.assertEquals(len(gas), 0) self.assertEquals(len(halo),1324) self.assertEquals(len(disk), 0) self.assertEquals(len(bulge), 0) self.assertEquals(len(stars), 0) self.assertEquals(len(bndry), 0) self.assertEquals(halo[0].key,544418538) self.assertEquals(halo[1].key,544511335) self.assertEquals(halo[2].key,544511457) self.assertAlmostRelativeEquals(halo[0].velocity[0], -24.785614 | nbody_system.speed, 7) print halo[1].velocity self.assertAlmostRelativeEquals(halo[1].velocity[0], -25.346375 | nbody_system.speed, 7) self.assertAlmostRelativeEquals(halo[2].velocity[0], -25.394440 | nbody_system.speed, 7) def test8(self): """test returned ids from gadget file for ticket #245. added option to not use the ids as a key, should fix the problem for incorrect id's """ directory_name = os.path.dirname(__file__) filename = os.path.join(directory_name, 'ticket245.dat') gas, halo, disk, bulge, stars, bndry = io.read_set_from_file(filename, format='gadget', ids_are_keys = False) self.assertEquals(len(gas), 0) self.assertEquals(len(halo),1324) self.assertEquals(len(disk), 0) self.assertEquals(len(bulge), 0) self.assertEquals(len(stars), 0) self.assertEquals(len(bndry), 0) self.assertEquals(halo[0].id,544418538) self.assertEquals(halo[1].id,544511335) self.assertEquals(halo[2].id,544511457) self.assertAlmostRelativeEquals(halo[0].velocity[0], -24.785614 | nbody_system.speed, 7) self.assertAlmostRelativeEquals(halo[1].velocity[0], -25.346375 | nbody_system.speed, 7) self.assertAlmostRelativeEquals(halo[2].velocity[0], -25.394440 | nbody_system.speed, 7) def test9(self): class FakeList(object): def __init__(self, _len): self._len = _len def __len__(self): return self._len set = (FakeList(20000), FakeList(500000), FakeList(20000), (), (), ()) x = gadget.GadgetFileFormatProcessor(set = set) x.equal_mass_array=(0.0,4.291150104743886e-07, 2.5e-07,0.0,0.0,0.0) |nbody_system.mass file = BytesIO() x.store_header(file) print x.header_struct self.assertEquals(x.header_struct.Npart[0], 20000) self.assertEquals(x.header_struct.Npart[1], 500000) self.assertEquals(x.header_struct.Npart[2], 20000) self.assertEquals(x.header_struct.Npart[3], 0) self.assertEquals(x.header_struct.Npart[4], 0) self.assertEquals(x.header_struct.Npart[5], 0) print repr(file.getvalue()) print repr(b''.join(self.header_parts)) self.assertEquals(repr(file.getvalue()[0:30]), repr(b''.join(self.header_parts)[0:30])) def test10(self): p = Particles(2) p[0].position = [1.0, 2.0, 3.0] | nbody_system.length p[1].position = [4.0, 5.0, 6.0] | nbody_system.length p[0].velocity = [7.0, 8.0, 10.0] | nbody_system.length / nbody_system.time p[1].velocity = [11.0, 12.0, 13.0] | nbody_system.length / nbody_system.time p.u = [3,4] | nbody_system.potential p.rho = [5,6] | nbody_system.density p.mass = [5,6] | nbody_system.mass x = gadget.GadgetFileFormatProcessor(set = p) file = BytesIO() x.store_body(file) input = BytesIO(file.getvalue()) positions = x.read_fortran_block_float_vectors(input) self.assertEquals(positions[0] , [1.0, 2.0, 3.0]) self.assertEquals(positions[1] , [4.0, 5.0, 6.0]) velocities = x.read_fortran_block_float_vectors(input) self.assertEquals(velocities[0] , [7.0, 8.0, 10.0]) self.assertEquals(velocities[1] , [11.0, 12.0, 13.0]) ids = x.read_fortran_block_ulongs(input) self.assertEquals(ids[0], p[0].key) self.assertEquals(ids[1], p[1].key) masses = x.read_fortran_block_floats(input) self.assertEquals(masses[0], 5) self.assertEquals(masses[1], 6) u = x.read_fortran_block_floats(input) self.assertEquals(u[0], 3) self.assertEquals(u[1], 4) def test11(self): directory_name = os.path.dirname(__file__) filename = os.path.join(directory_name, 'gassphere_littleendian.dat') gas, halo, disk, bulge, stars, bndry = io.read_set_from_file(filename, format='gadget') self.assertEquals(len(gas), 1472) self.assertEquals(len(halo), 0) self.assertEquals(gas[0].key,1) self.assertEquals(gas[1].key,2) self.assertEquals(gas[2].key,3) self.assertEquals(gas[1471].key,1472) self.assertAlmostRelativeEquals(gas[0:5].x,[-0.0713372901082, 0.0713372901082, -0.21178227663, -0.0698266476393, 0.0698266476393] | nbody_system.length, 7) self.assertAlmostRelativeEquals(gas[0:5].u, [0.0500000007451, 0.0500000007451, 0.0500000007451, 0.0500000007451, 0.0500000007451] | (nbody_system.length / nbody_system.time)**2, 7 ) outputfilename = 'gadgettest.output' try: io.write_set_to_file((gas, halo, disk, bulge, stars, bndry), outputfilename, format='gadget', ids_are_long = False) gas, halo, disk, bulge, stars, bndry = io.read_set_from_file(outputfilename, format='gadget') self.assertEquals(len(gas), 1472) self.assertEquals(len(halo), 0) self.assertEquals(gas[0].key,1) self.assertEquals(gas[1].key,2) self.assertEquals(gas[2].key,3) self.assertEquals(gas[1471].key,1472) finally: if os.path.exists(outputfilename): os.remove(outputfilename) def test12(self): print "Test return_header for Gadget read_set_from_file" directory_name = os.path.dirname(__file__) filename = os.path.join(directory_name, 'gassphere_littleendian.dat') data = io.read_set_from_file(filename, format='gadget', return_header=False) # (default) self.assertTrue(isinstance(data, tuple)) self.assertEquals(data.__doc__, "GadgetData(gas, halo, disk, bulge, stars, bndry)") data = io.read_set_from_file(filename, format='gadget', return_header=True) self.assertTrue(isinstance(data, tuple)) self.assertEquals(data.__doc__, "GadgetData(gas, halo, disk, bulge, stars, bndry, " "Npart, Massarr, Time, Redshift, FlagSfr, FlagFeedback, Nall, FlagCooling, " "NumFiles, BoxSize, Omega0, OmegaLambda, HubbleParam, FlagAge, FlagMetals, " "NallHW, flag_entr_ics)") self.assertEquals(len(data.gas), 1472) self.assertEquals(len(data.halo), 0) self.assertEquals(data.gas[0].key,1) self.assertEquals(data.gas[1].key,2) self.assertEquals(data.gas[2].key,3) self.assertEquals(data.gas[1471].key,1472) self.assertAlmostRelativeEquals(data.gas[0:5].x,[-0.0713372901082, 0.0713372901082, -0.21178227663, -0.0698266476393, 0.0698266476393] | nbody_system.length, 7) self.assertAlmostRelativeEquals(data.gas[0:5].u, [0.0500000007451, 0.0500000007451, 0.0500000007451, 0.0500000007451, 0.0500000007451] | (nbody_system.length / nbody_system.time)**2, 7 ) self.assertEquals(data.Npart, (1472, 0, 0, 0, 0, 0)) self.assertEquals(data.Time, 0.0) self.assertEquals(data.Redshift, 0.0) def test13(self): print "Test convert_gadget_w_to_velocity and return_header for Gadget read_set_from_file" directory_name = os.path.dirname(__file__) filename = os.path.join(directory_name, 'tiny_lcdm_data_littleendian.dat') data = io.read_set_from_file(filename, format='gadget', return_header=False, convert_gadget_w_to_velocity=False) # (default) self.assertTrue(isinstance(data, tuple)) self.assertEquals(data.__doc__, "GadgetData(gas, halo, disk, bulge, stars, bndry)") self.assertEquals(len(data.gas), 32) self.assertEquals(len(data.halo), 32) self.assertEquals(data.gas[0].key, 1) self.assertEquals(data.halo[0].key, 32**3 + 1) self.assertAlmostRelativeEquals(data.gas[:3].position, [[395.23443604, 395.75210571, 1244.31152344], [310.17266846, 440.21728516, 2817.06396484], [191.95669556, 465.57223511, 4430.20068359]] | nbody_system.length, 7) data_converted = io.read_set_from_file(filename, format='gadget', return_header=True, convert_gadget_w_to_velocity=True) self.assertTrue(isinstance(data_converted, tuple)) self.assertEquals(data_converted.__doc__, "GadgetData(gas, halo, disk, bulge, stars, bndry, " "Npart, Massarr, Time, Redshift, FlagSfr, FlagFeedback, Nall, FlagCooling, " "NumFiles, BoxSize, Omega0, OmegaLambda, HubbleParam, FlagAge, FlagMetals, " "NallHW, flag_entr_ics)") self.assertEquals(len(data_converted.gas), 32) self.assertEquals(len(data_converted.halo), 32) self.assertEquals(data_converted.gas[0].key, 1) self.assertEquals(data_converted.halo[0].key, 32**3 + 1) self.assertEquals(data_converted.Npart, (32, 32, 0, 0, 0, 0)) self.assertEquals(data_converted.Time, 1/11.0) self.assertEquals(data_converted.Redshift, 10.0) self.assertEquals(data.gas.position, data_converted.gas.position) self.assertAlmostRelativeEquals(data.gas.velocity, math.sqrt(data_converted.Time) * data_converted.gas.velocity, 7) class NemoBinaryFileFormatProcessorTests(amusetest.TestCase): def test1(self): directory_name = os.path.dirname(__file__) filename = os.path.join(directory_name, 'plummer128.nemo') file = open(filename, 'rb') nemofile = nemobin.NemoBinaryFile(file) tagcharacter, tagstring, dim, mustswap = nemofile.get_item_header() self.assertEquals(tagcharacter, 'c') self.assertEquals(tagstring, 'Headline') self.assertEquals(len(dim), 1) self.assertEquals(dim[0], 28) file.close() def test2(self): directory_name = os.path.dirname(__file__) filename = os.path.join(directory_name, 'plummer128.nemo') file = open(filename, 'rb') nemofile = nemobin.NemoBinaryFile(file) item = nemofile.read_item() self.assertEquals(item.data, "init_xrandom: seed used 123") file.close() def test3(self): directory_name = os.path.dirname(__file__) filename = os.path.join(directory_name, 'plummer128.nemo') file = open(filename, 'rb') nemofile = nemobin.NemoBinaryFile(file) data = nemofile.read() file.close() self.assertEquals(len(data), 3) tags = list(data.keys()) self.assertEquals(tags[0], 'Headline') self.assertEquals(tags[1], 'History') self.assertEquals(tags[2], 'SnapShot') self.assertEquals(data['History'][0].data, 'mkplummer out=plummer128.nemo nbody=128 seed=123 VERSION=2.8b') self.assertEquals(len(data['SnapShot'][0].data), 2) tags = list(data['SnapShot'][0].data.keys()) self.assertEquals(tags[0], 'Parameters') self.assertEquals(tags[1], 'Particles') def test4(self): directory_name = os.path.dirname(__file__) filename = os.path.join(directory_name, 'plummer128.nemo') file = open(filename, 'rb') x = nemobin.NemoBinaryFileFormatProcessor() set = x.load_file(file).previous_state() file.close() self.assertEquals(len(set), 128) self.assertEquals(set.get_timestamp(), 0.0 | nbody_system.time) self.assertAlmostRelativeEquals(set.kinetic_energy(), 0.230214395174 | nbody_system.energy, 8) self.assertAlmostRelativeEquals(set.potential_energy(G=nbody_system.G), -0.473503040144 | nbody_system.energy, 8) def test5(self): directory_name = os.path.dirname(__file__) filename = os.path.join(directory_name, 'plummer128.nemo') file = open(filename, 'rb') nemofile = nemobin.NemoBinaryFile(file) data = nemofile.read() file.close() outputfile = BytesIO() nemooutputfile = nemobin.NemoBinaryFile(outputfile) nemooutputfile.write(data) string = outputfile.getvalue() outputfile.close() inputfile = BytesIO(string) nemoinputfile = nemobin.NemoBinaryFile(inputfile) tagcharacter, tagstring, dim, mustswap = nemoinputfile.get_item_header() self.assertEquals(tagcharacter, 'c') self.assertEquals(tagstring, 'Headline') self.assertEquals(len(dim), 1) self.assertEquals(dim[0], 28) inputfile.close() def test6(self): inputfile = BytesIO() nemoinputfile = nemobin.NemoBinaryFile(inputfile) data = nemoinputfile.read() self.assertEquals(len(data), 0) def test7(self): directory_name = os.path.dirname(__file__) filename = os.path.join(directory_name, 'plummer128.nemo') file = open(filename, 'rb') nemofile = nemobin.NemoBinaryFile(file) data = nemofile.read() file.close() outputfile = BytesIO() nemooutputfile = nemobin.NemoBinaryFile(outputfile) nemooutputfile.write(data) string = outputfile.getvalue() outputfile.close() file = open(filename, 'rb') original = file.read() file.close() self.assertEquals(len(original), len(string)) self.assertEquals(original, string) def test8(self): directory_name = os.path.dirname(__file__) filename = os.path.join(directory_name, 'plummer128.nemo') file = open(filename, 'rb') x = nemobin.NemoBinaryFileFormatProcessor() set = x.load_file(file) file.close() outputfile = BytesIO() y = nemobin.NemoBinaryFileFormatProcessor() y.set = set y.store_file(outputfile) string = outputfile.getvalue() outputfile.close() inputfile = BytesIO(string) x = nemobin.NemoBinaryFileFormatProcessor() set = x.load_file(inputfile) inputfile.close() self.assertEquals(len(set), 128) self.assertAlmostRelativeEquals(set.kinetic_energy(), 0.230214395174 | nbody_system.energy, 8) self.assertAlmostRelativeEquals(set.potential_energy(G=nbody_system.G), -0.473503040144 | nbody_system.energy, 8) def test9(self): filename = os.path.join(os.path.dirname(__file__), 'plummer128.nemo') particles = io.read_set_from_file(filename, format="nemobin") self.assertEquals(len(particles), 128) self.assertAlmostEquals(particles.total_mass(), 1.0 | nbody_system.mass) self.assertAlmostEquals(particles.center_of_mass(), 0.0 | nbody_system.length) self.assertAlmostEquals(particles.center_of_mass_velocity(), 0.0 | nbody_system.speed) self.assertAlmostEquals(particles.kinetic_energy(), 0.230214395174 | nbody_system.energy) ``` #### File: test/core_tests/test_optparse.py ```python from amuse.test import amusetest import numpy import sys from amuse.support.exceptions import AmuseException from amuse.units.quantities import * from amuse.units import si from amuse.units import units from amuse.units import nbody_system from amuse import datamodel from amuse.units import optparse class TestQuantities(amusetest.TestCase): def test1(self): x = optparse.OptionParser() x.add_option('-m', unit = units.MSun, dest = "mass", type = float) options, args = x.parse_args(['-m', '2.0']) self.assertAlmostRelativeEquals(options.mass, 2.0 | units.MSun) def test2(self): x = optparse.OptionParser() x.add_option('-m', unit = units.MSun, default = 1 | units.MSun, dest = "mass", type = float) options, args = x.parse_args(['bla']) self.assertAlmostRelativeEquals(options.mass, 1.0 | units.MSun) self.assertEquals(args[0], 'bla') def test3(self): x = optparse.OptionParser() x.add_option('-m', unit = units.MSun, default = '1.5', dest = "mass", type = float) options, args = x.parse_args(['bla']) self.assertAlmostRelativeEquals(options.mass, 1.5 | units.MSun) self.assertEquals(args[0], 'bla') def test4(self): x = optparse.OptionParser() x.add_option('-m', unit = units.MSun, help = "(unit: %unit)", default = '1.5', dest = "mass", type = float) helpstr = x.format_help() print helpstr self.assertTrue('(unit: MSun)' in helpstr) x = optparse.OptionParser() x.add_option('-m', unit = nbody_system.mass, help = "(unit: %unit)", default = '1.5', dest = "mass", type = float) helpstr = x.format_help() print helpstr self.assertTrue('(unit: mass)' in helpstr) def test5(self): x = optparse.OptionParser() x.add_option('-m', unit = units.MSun, default = 1.5, dest = "mass", type = float) options, args = x.parse_args(['bla']) self.assertAlmostRelativeEquals(options.mass, 1.5 | units.MSun) self.assertEquals(args[0], 'bla') def test6(self): x = optparse.OptionParser() x.add_option('-m', unit = units.MSun, help = "(default: %default, unit: %unit)", default = '1.5', dest = "mass", type = float) helpstr = x.format_help() print helpstr self.assertTrue('unit: MSun)' in helpstr) self.assertTrue('(default: 1' in helpstr) ``` #### File: test/core_tests/test_particles_properties.py ```python import numpy import time import sys import pickle from amuse.test import amusetest from amuse.units import units from amuse.units import constants from amuse.units import nbody_system from amuse.support.exceptions import AmuseException from amuse.support.interface import InCodeComponentImplementation from amuse import datamodel class TestParticlesProperties(amusetest.TestCase): def test1(self): particles = datamodel.Particles(2) particles.mass = 10 | units.kg self.assertTrue(hasattr(particles, 'collection_attributes')) particles.collection_attributes.timestamp = 1 | units.yr self.assertEquals(particles.collection_attributes.timestamp, 1 | units.yr) particles.collection_attributes.a = 2 self.assertEquals(particles.collection_attributes.a, 2) def test2(self): particles = datamodel.Particles(2) particles.collection_attributes.timestamp = 1 | units.yr self.assertEquals(str(particles.collection_attributes), "timestamp: 1 yr") particles.collection_attributes.a = 2 self.assertEquals(str(particles.collection_attributes), "timestamp: 1 yr\na: 2") def test3(self): particles1 = datamodel.Particles(2) particles1.collection_attributes.timestamp = 1 | units.yr particles1.collection_attributes.a = 2 particles2 = particles1.copy() self.assertEquals(particles2.collection_attributes.timestamp, 1 | units.yr) self.assertEquals(particles2.collection_attributes.a, 2) self.assertEquals(str(particles2.collection_attributes), "timestamp: 1 yr\na: 2") def test4(self): particles1 = datamodel.Particles(2) particles1.collection_attributes.timestamp = 1 | units.yr particles1.collection_attributes.a = 2 pickled_string = pickle.dumps(particles1) particles2 = pickle.loads(pickled_string) self.assertEquals(particles2.collection_attributes.timestamp, 1 | units.yr) self.assertEquals(particles2.collection_attributes.a, 2) ``` #### File: test/core_tests/test_stopping_conditions.py ```python from amuse.test import amusetest from amuse.support.exceptions import AmuseException from amuse.community.interface.stopping_conditions import StoppingConditions from amuse import datamodel from amuse.units import units from amuse.support import interface class TestStoppingCondition(amusetest.TestCase): def test1(self): class AllEnabled(object): def is_stopping_condition_enabled(self, sc_type): return 1 def has_stopping_condition(self, sc_type): return 1 instance = StoppingConditions(AllEnabled()) self.assertTrue(instance.collision_detection.is_supported()) self.assertTrue(instance.collision_detection.is_enabled()) self.assertTrue(instance.escaper_detection.is_supported()) self.assertTrue(instance.escaper_detection.is_enabled()) self.assertTrue(instance.timeout_detection.is_supported()) self.assertTrue(instance.timeout_detection.is_enabled()) def test2(self): class OneEnabled(object): def is_stopping_condition_enabled(self, sc_type): return 1 if sc_type == 0 else 0 def has_stopping_condition(self, sc_type): return 1 if sc_type == 0 else 0 instance = StoppingConditions(OneEnabled()) self.assertTrue(instance.collision_detection.is_supported()) self.assertTrue(instance.collision_detection.is_enabled()) self.assertFalse(instance.escaper_detection.is_supported()) self.assertFalse(instance.escaper_detection.is_enabled()) self.assertFalse(instance.timeout_detection.is_supported()) self.assertFalse(instance.timeout_detection.is_enabled()) def test3(self): class OneSettable(object): is_enabled = 0 def is_stopping_condition_enabled(self, sc_type): print sc_type, self.is_enabled return self.is_enabled if sc_type == 0 else 0 def has_stopping_condition(self, sc_type): return 1 if sc_type == 0 else 0 def enable_stopping_condition(self, sc_type): if sc_type == 0: self.is_enabled = 1 instance = StoppingConditions(OneSettable()) self.assertTrue(instance.collision_detection.is_supported()) self.assertFalse(instance.collision_detection.is_enabled()) instance.collision_detection.enable() self.assertTrue(instance.collision_detection.is_enabled()) def test4(self): class OneSettable(object): is_enabled = 0 def is_stopping_condition_enabled(self, sc_type): print sc_type, self.is_enabled return self.is_enabled if sc_type == 0 else 0 def has_stopping_condition(self, sc_type): return 1 if sc_type == 0 else 0 def enable_stopping_condition(self, sc_type): if sc_type == 0: self.is_enabled = 1 def disable_stopping_condition(self, sc_type): if sc_type == 0: self.is_enabled = 0 instance = StoppingConditions(OneSettable()) self.assertTrue(instance.collision_detection.is_supported()) self.assertFalse(instance.collision_detection.is_enabled()) instance.collision_detection.enable() self.assertTrue(instance.collision_detection.is_enabled()) instance.collision_detection.disable() self.assertFalse(instance.collision_detection.is_enabled()) def test5(self): class OneEnabled(object): def is_stopping_condition_enabled(self, sc_type): return 1 if sc_type == 0 else 0 def has_stopping_condition(self, sc_type): return 1 if sc_type == 0 else 0 instance = StoppingConditions(OneEnabled()) self.assertFalse(instance.escaper_detection.is_supported()) self.assertFalse(instance.escaper_detection.is_enabled()) self.assertRaises(AmuseException, instance.escaper_detection.enable) self.assertRaises(AmuseException, instance.escaper_detection.disable) def test6(self): class Collision(object): def is_stopping_condition_enabled(self, sc_type): return 1 if sc_type == 0 else 0 def has_stopping_condition(self, sc_type): return 1 if sc_type == 0 else 0 def is_stopping_condition_set(self, sc_type): return 1 if sc_type == 0 else 0 def get_number_of_stopping_conditions_set(self): return 1 def get_stopping_condition_info(self, indices): return [0],[1] instance = StoppingConditions(Collision()) instance.code.particles = datamodel.Particles(3) instance.code.particles.mass = (1,2,3) | units.kg instance.code.particles.add_function_attribute( "get_stopping_condition_particle_index", lambda particles, indices, sc_type : particles[indices] ) self.assertTrue(instance.collision_detection.is_set()) particles = instance.collision_detection.particles(0) self.assertEquals(len(particles),1) print particles[0] self.assertAlmostRelativeEqual(particles[0].mass, 1|units.kg) def test7(self): class Collision(object): def is_stopping_condition_enabled(self, sc_type): return 1 if sc_type == 0 else 0 def has_stopping_condition(self, sc_type): return 1 if sc_type == 0 else 0 def is_stopping_condition_set(self, sc_type): return 1 if sc_type == 0 else 0 def get_number_of_stopping_conditions_set(self): return 1 def get_stopping_condition_info(self, indices): return [0],[3] instance = StoppingConditions(Collision()) instance.code.particles = datamodel.Particles(3) instance.code.particles.mass = (1,2,3) | units.kg instance.code.particles.add_function_attribute( "get_stopping_condition_particle_index", lambda particles, indices, sc_type : particles[indices] ) self.assertTrue(instance.collision_detection.is_set()) particles = instance.collision_detection.particles(0) self.assertEquals(len(particles),1) particles = instance.collision_detection.particles(1) self.assertEquals(len(particles),1) particles = instance.collision_detection.particles(2) self.assertEquals(len(particles),1) particles = instance.collision_detection.particles(3) self.assertEquals(len(particles),0) ``` #### File: test/ext_tests/test_galactic_potentials.py ```python from amuse.test import amusetest from amuse.units import units, nbody_system, constants from amuse.ext.galactic_potentials import NFW_profile, MiyamotoNagai_profile, Plummer_profile, \ PowerLawCutoff_profile, MWpotentialBovy2015, scipy_imported import numpy class TestNFWProfile(amusetest.TestCase): def test1(self): """ See the textbook by L.Aguilar, chapter 3: ftp://ftp.crya.unam.mx/pub/luisfr/laguilar/GH05_Aguilar.pdf """ rho0 = 1.e3|units.MSun/units.parsec**3 rs = 6.6|units.kpc nfw_profile = NFW_profile(rho0, rs) m0 = 4.*numpy.pi*rho0*rs**3 phi0 = -4.*numpy.pi*constants.G*rho0*rs**2 ar0 = -phi0/rs # relative mass enclosed at rs: m_at_rs / m0 ~ 0.193147 m_at_rs = nfw_profile.enclosed_mass(rs) self.assertAlmostEqual(m_at_rs/m0, 0.193147, 5) # relative mass enclosed at 5.3054*rs ~ m0 m_eq_one = nfw_profile.enclosed_mass(5.3054*rs,) self.assertAlmostEqual(m_eq_one/m0, 1.0, 5) # relative mass density, rho(rs) ~ rho0/4 rho_rs = nfw_profile.mass_density(rs) self.assertAlmostEqual(rho0/rho_rs, 4.0, 5) # relative gravitational potential at (r/rs)->0 is approaching 1 phi_at_0 = nfw_profile.get_potential_at_point(0.|units.m,0.|units.m,0.|units.m,1.e-10|units.kpc) self.assertAlmostEqual(phi_at_0/phi0, 1.0, 4) # relative force at (r/rs)->0 is approaching -1/2 ar_at_0 = nfw_profile.radial_force(1.e-5|units.kpc) self.assertAlmostEqual(ar_at_0/ar0, -0.5, 4) # relative force at (r/rs)->inf is approaching 0 ar_at_inf = nfw_profile.radial_force(1.e10|units.kpc) self.assertAlmostEqual(ar_at_inf/ar0, 0.0, 5) # relative circular velocity has maximum at r/r_s=2.16258 vc_eq_max = nfw_profile.circular_velocity(2.16258*rs) vc_at_r_lt_max = nfw_profile.circular_velocity(2.16248*rs) vc_at_r_gt_max = nfw_profile.circular_velocity(2.16268*rs) self.assertTrue(vc_at_r_lt_max < vc_eq_max) self.assertTrue(vc_at_r_gt_max < vc_eq_max) class TestPlummerProfile(amusetest.TestCase): def test1(self): mass = 6.e6|units.MSun a = 6.|units.parsec plummer_profile = Plummer_profile(mass,a) rho0 = mass/(4./3.*numpy.pi*a**3) phi0 = -constants.G*mass/a # enclosed mass at R>>a is total mass m_tot = plummer_profile.enclosed_mass(a*1.e5) self.assertAlmostEqual(m_tot/mass, 1.0, 5) # mass density at the center rho_cen = plummer_profile.mass_density(0.|units.m) self.assertAlmostEqual(rho_cen/rho0, 1.0, 5) # potential at r=a is phi0/sqrt(2) phi_at_a = plummer_profile.get_potential_at_point(0.|units.m,0.|units.m,0.|units.m,a) self.assertAlmostEqual(phi_at_a/phi0*numpy.sqrt(2.), 1.0, 5) class TestMiyamotoNagaiProfile(amusetest.TestCase): def test1(self): mass = 6.6e10|units.MSun a = 3.33|units.kpc b = 0.666|units.kpc profile = MiyamotoNagai_profile(mass,a,b) r_force = profile.force_R(0.1*a,0.2*b,1.2*a).in_(units.parsec/units.Myr**2) z_force = profile.force_z(0.1*a,0.2*b,1.2*a).in_(units.parsec/units.Myr**2) potential = profile.get_potential_at_point(0.|units.m,a*0.1,a*5.,b*0.5).in_(units.kpc**2/units.Myr**2) ax,ay,az = profile.get_gravity_at_point(0.|units.m,a*0.1,a*5.,b*0.5) density = profile.mass_density(0.1*a,-0.5*b,1.2*a).in_(units.MSun/units.kpc**3) vc = profile.circular_velocity_at_z0(1.0*a).in_(units.kms) m_r = profile.equivalent_enclosed_mass_in_plane(100.*a).in_(units.MSun) self.assertAlmostEqual(r_force, -0.263920797645|units.parsec/units.Myr**2, 12) self.assertAlmostEqual(z_force, -5.35763387945 |units.parsec/units.Myr**2, 11) self.assertAlmostEqual(potential, -0.017321166943|units.kpc**2/units.Myr**2, 12) self.assertAlmostEqual(ax, -0.0196231550925|units.parsec/units.Myr**2, 12) self.assertAlmostEqual(ay, -0.981157754625|units.parsec/units.Myr**2, 12) self.assertAlmostEqual(az, -0.107380572532 |units.parsec/units.Myr**2, 12) self.assertAlmostEqual(density, 1336672.32264|units.MSun/units.kpc**3, 5) self.assertAlmostEqual(vc, 149.569512197|units.kms, 9) self.assertAlmostEqual(m_r, 65.9857465656|1.e9*units.MSun, 9) def test2(self): mass = 1.984e4|units.MSun a = 0.0|units.parsec b = 6.66|units.parsec nm_profile = MiyamotoNagai_profile(mass,a,b) plummer_profile = Plummer_profile(mass,b) pot_nm = nm_profile.get_potential_at_point(0.|units.m,b*0.1,b*5.,b*0.2) pot_p = plummer_profile.get_potential_at_point(0.|units.m,b*0.1,b*5.,b*0.2) self.assertEqual(pot_nm,pot_p) ax_nm,ay_nm,az_nm = nm_profile.get_gravity_at_point(0.|units.m,b*0.1,b*5.,b*0.1) ax_p,ay_p,az_p = plummer_profile.get_gravity_at_point(0.|units.m,b*0.1,b*5.,b*0.1) print ax_nm.in_(units.parsec/units.Myr**2), ax_p.in_(units.parsec/units.Myr**2) self.assertAlmostEqual(ax_nm.in_(units.parsec/units.Myr**2),ax_p.in_(units.parsec/units.Myr**2), 12) self.assertAlmostEqual(ay_nm.in_(units.parsec/units.Myr**2),ay_p.in_(units.parsec/units.Myr**2), 12) self.assertAlmostEqual(az_nm.in_(units.parsec/units.Myr**2),az_p.in_(units.parsec/units.Myr**2), 12) rho_nm = nm_profile.mass_density(b*0.,b*0.,b*6.6) rho_p = plummer_profile.mass_density(b*6.6) self.assertEqual(rho_nm,rho_p) class TestPowerLawCutoff_profile(amusetest.TestCase): def test1(self): rho0 = 12.|units.MSun/units.parsec**3 r0 = 1.6|units.parsec alpha = 1.6 rc = 0.66|units.kpc power_law = PowerLawCutoff_profile(rho0,r0,alpha,rc) r_force = power_law.radial_force(0.1*r0).in_(units.parsec/units.Myr**2) potential = power_law.get_potential_at_point(0.|units.m,r0*0.1,r0*5.,r0*0.5).in_(units.kpc**2/units.Myr**2) ax,ay,az = power_law.get_gravity_at_point(0.|units.m,r0*0.1,r0*5.,r0*0.5) density = power_law.mass_density(6.6*r0).in_(units.MSun/units.parsec**3) vc = power_law.circular_velocity(r0).in_(units.kms) m_r = power_law.enclosed_mass(100.*r0).in_(units.MSun) self.assertAlmostEqual(r_force, -3.08704194743 |units.parsec/units.Myr**2, 10) self.assertAlmostEqual(potential, -3.8425981846|1.e-5*units.kpc**2/units.Myr**2, 10) self.assertAlmostEqual(ax, -0.00585557189412|units.parsec/units.Myr**2, 10) self.assertAlmostEqual(ay, -0.292778594706|units.parsec/units.Myr**2, 10) self.assertAlmostEqual(az, -0.0292778594706|units.parsec/units.Myr**2, 10) self.assertAlmostEqual(density, 0.585867989506 |units.MSun/units.parsec**3, 10) self.assertAlmostEqual(vc, 1.0891472277|units.kms, 10) self.assertAlmostEqual(m_r, 2.71756907682 |1.e5*units.MSun, 9) def setUp(self): if not scipy_imported: self.skip("scipy not installed") class TestMWpotentialBovy2015(amusetest.TestCase): def test1(self): """ See Table 1 of Bovy 2015, http://adsabs.harvard.edu/abs/2015ApJS..216...29B """ mw = MWpotentialBovy2015() r0 = 8.|units.kpc v0 = 220.|units.kms # total mass density at r=r0,z=0 rho_r0_z0 = mw.mass_density(r0,0.|units.m,0.|units.m) self.assertAlmostEqual(rho_r0_z0, 0.10|units.MSun/units.parsec**3, 2) # halo mass density at r0 rho_halo_at_r0 = mw.halo.mass_density(r0) self.assertAlmostEqual(rho_halo_at_r0, 0.008|units.MSun/units.parsec**3, 3) # mass enclosed in 60kpc mass_in_60 = mw.enclosed_mass(60.|units.kpc) print mass_in_60.in_(units.MSun) self.assertAlmostEqual((mass_in_60/1.e11).in_(units.MSun), 4.08|units.MSun, 2) # normalization factor for bulge fr_r0_v0 = v0**2 / r0 fr_r0_bulge = -mw.bulge.radial_force(r0) self.assertAlmostEqual(fr_r0_bulge/fr_r0_v0, 0.05, 3) # normalization factor for disk fr_r0_disk = -mw.disk.force_R(r0,0.|units.m,0.|units.m) self.assertAlmostEqual(fr_r0_disk/fr_r0_v0, 0.6, 3) # normalization factor for halo fr_r0_halo = -mw.halo.radial_force(r0) print fr_r0_halo/fr_r0_v0 self.assertAlmostEqual(fr_r0_halo/fr_r0_v0, 0.35, 3) def setUp(self): if not scipy_imported: self.skip("scipy not installed") ``` #### File: test/ext_tests/test_grid_to_sph.py ```python import os.path import numpy from amuse.test.amusetest import get_path_to_results, TestWithMPI try: from matplotlib import pyplot HAS_MATPLOTLIB = True from amuse.plot import plot, semilogy, xlabel, ylabel, loglog except ImportError: HAS_MATPLOTLIB = False from amuse.support.exceptions import AmuseException from amuse.ext.grid_to_sph import Grid2SPH, convert_grid_to_SPH from amuse.units import units from amuse.units import generic_unit_system from amuse.units import nbody_system from amuse.units import constants from amuse.units.generic_unit_converter import ConvertBetweenGenericAndSiUnits from amuse.datamodel import Particles from amuse.datamodel import Particle from amuse.datamodel import ParticlesSuperset from amuse.datamodel import Grid def create_grid(*arg): grid=Grid.create(*arg) grid.add_vector_attribute("momentum", ["rhovx","rhovy","rhovz"]) return grid class TestGrid2SPH(TestWithMPI): def setup_simple_grid(self): test_grid = create_grid((4,3,2), [1.0, 1.0, 1.0] | units.m) test_grid.rho = numpy.linspace(1.0, 2.0, num=24).reshape(test_grid.shape) | units.kg/units.m**3 test_grid.rhovx = test_grid.rho * (3.0 | units.m/units.s) test_grid.rhovy = test_grid.rho * (4.0 | units.m/units.s) test_grid.rhovz = test_grid.rho * (0.0 | units.m/units.s) test_grid.energy = test_grid.rho * ((1.0 | (units.m/units.s)**2) + 0.5 * (5.0 | units.m/units.s)**2) return test_grid def test0(self): print "Testing the simple example grid" test_grid = self.setup_simple_grid() self.assertEqual(test_grid.position[ 0][ 0][ 0], [1.0/8.0, 1.0/6.0, 1.0/4.0] | units.m) self.assertEqual(test_grid.position[-1][-1][-1], [7.0/8.0, 5.0/6.0, 3.0/4.0] | units.m) self.assertEqual(test_grid.momentum[ 0][ 0][ 0], [3.0, 4.0, 0.0] | (units.kg/units.m**3) * (units.m/units.s)) self.assertEqual(test_grid.momentum[-1][-1][-1], [6.0, 8.0, 0.0] | (units.kg/units.m**3) * (units.m/units.s)) self.assertEqual(test_grid.energy[ 0][ 0][ 0], 13.5 | (units.J/units.m**3)) self.assertEqual(test_grid.energy[-1][-1][-1], 27.0 | (units.J/units.m**3)) def test1(self): print "Testing the converter" number_of_particles = 10000 test_grid = self.setup_simple_grid() converter = Grid2SPH(test_grid, number_of_particles) self.assertTrue(converter.grid is test_grid) self.assertEqual(converter.shape, (4,3,2)) self.assertEqual(converter.number_of_sph_particles, number_of_particles) self.assertEqual(converter.base_distribution_type, "uniform") converter.setup_lookup_tables() converter.setup_variates() self.assertEqual(converter.cumulative_weight[0], 1.0/(1.5*4*3*2)) self.assertEqual(converter.cumulative_weight[-1], 1.0) self.assertEqual(converter.position_lookup_table[0], [1.0/8.0, 1.0/6.0, 1.0/4.0] | units.m) self.assertEqual(converter.position_lookup_table[-1], [7.0/8.0, 5.0/6.0, 3.0/4.0] | units.m) self.assertEqual(converter.position_lookup_table[9], [3.0/8.0, 3.0/6.0, 3.0/4.0] | units.m) self.assertAlmostEqual(converter.velocity_lookup_table, [3.0, 4.0, 0.0] | units.m/units.s) self.assertAlmostEqual(converter.specific_internal_energy_lookup_table, 1.0 | units.J/units.kg) self.assertEqual(converter.cellsize_unit, units.m) self.assertTrue(converter.cellsize_unit is units.m) self.assertAlmostEqual(converter.cellsize_number, [0.25, 1/3.0, 0.5]) self.assertAlmostEqual(converter.mass, 1.5 | units.kg) # The number of particles in a cell should scale with the amount of mass in the cell: self.assertAlmostRelativeEqual( converter.mass * numpy.histogram(converter.indices, bins=4*3*2)[0] * 1.0/number_of_particles, test_grid.rho.flatten()*test_grid.cellsize().prod(), places = 2 ) def test2(self): print "Testing the user interface" number_of_particles = 10000 test_grid = self.setup_simple_grid() sph_particles = convert_grid_to_SPH(test_grid, number_of_particles) self.assertEqual(len(sph_particles), number_of_particles) self.assertAlmostEqual(sph_particles.mass.sum(), 1.5 | units.kg) self.assertAlmostEqual(sph_particles.velocity, [3.0, 4.0, 0.0] | units.m/units.s) self.assertAlmostEqual(sph_particles.u, 1.0 | (units.m/units.s)**2) # The number of particles in a cell should scale with the amount of mass in the cell: self.assertAlmostRelativeEqual( (1.5 | units.kg)/number_of_particles * numpy.histogramdd( sph_particles.position.value_in(units.m), bins=(4,3,2))[0], test_grid.rho*test_grid.cellsize().prod(), places = 2 ) self.assertAlmostEqual(sph_particles.h_smooth, (50.0/number_of_particles)**(1.0/3) | units.m) def test3(self): print "Testing the user interface, random base_distribution_type" number_of_particles = 10000 test_grid = self.setup_simple_grid() sph_particles = convert_grid_to_SPH(test_grid, number_of_particles, base_distribution_type = "random", seed = 12345) self.assertEqual(len(sph_particles), number_of_particles) self.assertAlmostEqual(sph_particles.mass.sum(), 1.5 | units.kg) self.assertAlmostEqual(sph_particles.velocity, [3.0, 4.0, 0.0] | units.m/units.s) self.assertAlmostEqual(sph_particles.u, 1.0 | (units.m/units.s)**2) # For 'random', the number of particles in a cell should scale only on average # with the amount of mass in the cell: self.assertAlmostRelativeEqual( ((1.5 | units.kg)/number_of_particles * numpy.histogramdd( sph_particles.position.value_in(units.m), bins=(4,3,2))[0]).sum(), (test_grid.rho*test_grid.cellsize().prod()).sum(), places = 2 ) self.assertRaises(AssertionError, self.assertAlmostRelativeEqual, (1.5 | units.kg)/number_of_particles * numpy.histogramdd(sph_particles.position.value_in(units.m), bins=(4,3,2))[0], test_grid.rho*test_grid.cellsize().prod(), places = 2, ) self.assertAlmostEqual(sph_particles.h_smooth, (50.0/number_of_particles)**(1.0/3) | units.m) def test4(self): print "Testing exceptions" number_of_particles = 10000 test_grid = self.setup_simple_grid() self.assertEqual(test_grid[0].number_of_dimensions(), 2) self.assertRaises(AmuseException, convert_grid_to_SPH, test_grid[0], number_of_particles, expected_message = "Grid must be 3D") self.assertRaises(AmuseException, convert_grid_to_SPH, test_grid, number_of_particles, base_distribution_type = "bogus", expected_message = "Unknown base_distribution_type: bogus. Possible " "options are: 'random' or 'uniform'.") ``` #### File: test/reports/plot_speed_report.py ```python import sys import numpy from optparse import OptionParser try: from matplotlib import pyplot HAS_MATPLOTLIB = True except ImportError: HAS_MATPLOTLIB = False def select(row, cols_spec): subspecs = cols_spec.split(',') subspecs = map(str.strip, subspecs) cols = [] for subspec in subspecs: parts = subspec.split('-') if len(parts) == 1: cols.append(int(parts[0])) else: if len(parts[1]) == 0: end = len(row) else: end = int(parts[1]) if end < 0: end = len(row) + end cols.extend(range(int(parts[0]), end)) for index in cols: yield row[index] def plot_speed_report(input_filename = None, output_filename = None, cols = '0-'): with open(input_filename, 'r') as stream: lines = stream.readlines() header = None x = [] data = [] for line in lines: if line.startswith('#'): header_for_next_line = line[1:].split(',') header_for_next_line = list(select(header_for_next_line[2:], cols)) if not header is None: if not header == header_for_next_line: raise Exception("data does not have same header") header = header_for_next_line else: parts = map(str.strip, line.split(',')) if parts[0]== '': continue x.append(int(parts[0])) numbers = map(lambda x : float(x), parts[2:]) data.append(list(select(numbers, cols))) x = numpy.asarray(x) data = numpy.asarray(data) print data.shape figure = pyplot.figure(figsize=(9, 4)) subplot = pyplot.subplot(1,2,1) handles = subplot.plot(x,data) subplot.plot(x,1e-5 * x) subplot.legend( handles, header, loc='center left', bbox_to_anchor=(1.05, 0.5), ncol=1, fancybox=False, shadow=False) pyplot.loglog() if output_filename is None: pyplot.show() else: pyplot.savefig(output_filename) def new_option_parser(): result = OptionParser() result.add_option( "-o", default = None, dest="output_filename", help="save figure to output, by default it will display it", type="string" ) result.add_option( "-i", default = 'report.csv', dest="input_filename", help="name of the file to load the data from", type="string" ) result.add_option( "--cols", default = '0-', dest="cols", help="columns to plot, can by 1,2,3 or 0-3 or 0-5, 6, 3", type="string" ) return result if __name__ == '__main__': options, arguments = new_option_parser().parse_args() plot_speed_report(**options.__dict__) ```
{ "source": "joshuawassink/telemanom", "score": 3 }
#### File: telemanom/telemanom/errors.py ```python import numpy as np import pandas as pd import more_itertools as mit import os import logging logger = logging.getLogger('telemanom') class Errors: def __init__(self, channel, config, run_id): """ Batch processing of errors between actual and predicted values for a channel. Args: channel (obj): Channel class object containing train/test data for X,y for a single channel config (obj): Config object containing parameters for processing run_id (str): Datetime referencing set of predictions in use Attributes: config (obj): see Args window_size (int): number of trailing batches to use in error calculation n_windows (int): number of windows in test values for channel i_anom (arr): indices of anomalies in channel test values E_seq (arr of tuples): array of (start, end) indices for each continuous anomaly sequence in test values anom_scores (arr): score indicating relative severity of each anomaly sequence in E_seq e (arr): errors in prediction (predicted - actual) e_s (arr): exponentially-smoothed errors in prediction normalized (arr): prediction errors as a percentage of the range of the channel values """ self.config = config self.window_size = self.config.window_size self.n_windows = int((channel.y_test.shape[0] - (self.config.batch_size * self.window_size)) / self.config.batch_size) self.i_anom = np.array([]) self.E_seq = [] self.anom_scores = [] # raw prediction error self.e = [abs(y_h-y_t[0]) for y_h, y_t in zip(channel.y_hat, channel.y_test)] smoothing_window = int(self.config.batch_size * self.config.window_size * self.config.smoothing_perc) if not len(channel.y_hat) == len(channel.y_test): raise ValueError('len(y_hat) != len(y_test): {}, {}' .format(len(channel.y_hat), len(channel.y_test))) # smoothed prediction error self.e_s = pd.DataFrame(self.e).ewm(span=smoothing_window)\ .mean().values.flatten() # for values at beginning < sequence length, just use avg if not channel.id == 'C-2': # anomaly occurs early in window self.e_s[:self.config.l_s] = \ [np.mean(self.e_s[:self.config.l_s * 2])] * self.config.l_s np.save(os.path.join('data', run_id, 'smoothed_errors', '{}.npy' .format(channel.id)), np.array(self.e_s)) self.normalized = np.mean(self.e / np.ptp(channel.y_test)) logger.info("normalized prediction error: {0:.2f}" .format(self.normalized)) def adjust_window_size(self, channel): """ Decrease the historical error window size (h) if number of test values is limited. Args: channel (obj): Channel class object containing train/test data for X,y for a single channel """ while self.n_windows < 0: self.window_size -= 1 self.n_windows = int((channel.y_test.shape[0] - (self.config.batch_size * self.window_size)) / self.config.batch_size) if self.window_size == 1 and self.n_windows < 0: raise ValueError('Batch_size ({}) larger than y_test (len={}). ' 'Adjust in config.yaml.' .format(self.config.batch_size, channel.y_test.shape[0])) def merge_scores(self): """ If anomalous sequences from subsequent batches are adjacent they will automatically be combined. This combines the scores for these initial adjacent sequences (scores are calculated as each batch is processed) where applicable. """ merged_scores = [] score_end_indices = [] for i, score in enumerate(self.anom_scores): if not score['start_idx']-1 in score_end_indices: merged_scores.append(score['score']) score_end_indices.append(score['end_idx']) def process_batches(self, channel): """ Top-level function for the Error class that loops through batches of values for a channel. Args: channel (obj): Channel class object containing train/test data for X,y for a single channel """ self.adjust_window_size(channel) for i in range(0, self.n_windows+1): prior_idx = i * self.config.batch_size idx = (self.config.window_size * self.config.batch_size) \ + (i * self.config.batch_size) if i == self.n_windows: idx = channel.y_test.shape[0] window = ErrorWindow(channel, self.config, prior_idx, idx, self, i) window.find_epsilon() window.find_epsilon(inverse=True) window.compare_to_epsilon(self) window.compare_to_epsilon(self, inverse=True) if len(window.i_anom) == 0 and len(window.i_anom_inv) == 0: continue window.prune_anoms() window.prune_anoms(inverse=True) if len(window.i_anom) == 0 and len(window.i_anom_inv) == 0: continue window.i_anom = np.sort(np.unique( np.append(window.i_anom, window.i_anom_inv))).astype('int') window.score_anomalies(prior_idx) # update indices to reflect true indices in full set of values self.i_anom = np.append(self.i_anom, window.i_anom + prior_idx) self.anom_scores = self.anom_scores + window.anom_scores if len(self.i_anom) > 0: # group anomalous indices into continuous sequences groups = [list(group) for group in mit.consecutive_groups(self.i_anom)] self.E_seq = [(int(g[0]), int(g[-1])) for g in groups if not g[0] == g[-1]] # additional shift is applied to indices so that they represent the # position in the original data array, obtained from the .npy files, # and not the position on y_test (See PR #27). self.E_seq = [(e_seq[0] + self.config.l_s, e_seq[1] + self.config.l_s) for e_seq in self.E_seq] self.merge_scores() class ErrorWindow: def __init__(self, channel, config, start_idx, end_idx, errors, window_num): """ Data and calculations for a specific window of prediction errors. Includes finding thresholds, pruning, and scoring anomalous sequences for errors and inverted errors (flipped around mean) - significant drops in values can also be anomalous. Args: channel (obj): Channel class object containing train/test data for X,y for a single channel config (obj): Config object containing parameters for processing start_idx (int): Starting index for window within full set of channel test values end_idx (int): Ending index for window within full set of channel test values errors (arr): Errors class object window_num (int): Current window number within channel test values Attributes: i_anom (arr): indices of anomalies in window i_anom_inv (arr): indices of anomalies in window of inverted telemetry values E_seq (arr of tuples): array of (start, end) indices for each continuous anomaly sequence in window E_seq_inv (arr of tuples): array of (start, end) indices for each continuous anomaly sequence in window of inverted telemetry values non_anom_max (float): highest smoothed error value below epsilon non_anom_max_inv (float): highest smoothed error value below epsilon_inv config (obj): see Args anom_scores (arr): score indicating relative severity of each anomaly sequence in E_seq within a window window_num (int): see Args sd_lim (int): default number of standard deviations to use for threshold if no winner or too many anomalous ranges when scoring candidate thresholds sd_threshold (float): number of standard deviations for calculation of best anomaly threshold sd_threshold_inv (float): same as above for inverted channel values e_s (arr): exponentially-smoothed prediction errors in window e_s_inv (arr): inverted e_s sd_e_s (float): standard deviation of e_s mean_e_s (float): mean of e_s epsilon (float): threshold for e_s above which an error is considered anomalous epsilon_inv (float): threshold for inverted e_s above which an error is considered anomalous y_test (arr): Actual telemetry values for window sd_values (float): st dev of y_test perc_high (float): the 95th percentile of y_test values perc_low (float): the 5th percentile of y_test values inter_range (float): the range between perc_high - perc_low num_to_ignore (int): number of values to ignore initially when looking for anomalies """ self.i_anom = np.array([]) self.E_seq = np.array([]) self.non_anom_max = -1000000 self.i_anom_inv = np.array([]) self.E_seq_inv = np.array([]) self.non_anom_max_inv = -1000000 self.config = config self.anom_scores = [] self.window_num = window_num self.sd_lim = 12.0 self.sd_threshold = self.sd_lim self.sd_threshold_inv = self.sd_lim self.e_s = errors.e_s[start_idx:end_idx] self.mean_e_s = np.mean(self.e_s) self.sd_e_s = np.std(self.e_s) self.e_s_inv = np.array([self.mean_e_s + (self.mean_e_s - e) for e in self.e_s]) self.epsilon = self.mean_e_s + self.sd_lim * self.sd_e_s self.epsilon_inv = self.mean_e_s + self.sd_lim * self.sd_e_s self.y_test = channel.y_test[start_idx:end_idx] self.sd_values = np.std(self.y_test) self.perc_high, self.perc_low = np.percentile(self.y_test, [95, 5]) self.inter_range = self.perc_high - self.perc_low # ignore initial error values until enough history for processing self.num_to_ignore = self.config.l_s * 2 # if y_test is small, ignore fewer if len(channel.y_test) < 2500: self.num_to_ignore = self.config.l_s if len(channel.y_test) < 1800: self.num_to_ignore = 0 def find_epsilon(self, inverse=False): """ Find the anomaly threshold that maximizes function representing tradeoff between: a) number of anomalies and anomalous ranges b) the reduction in mean and st dev if anomalous points are removed from errors (see https://arxiv.org/pdf/1802.04431.pdf) Args: inverse (bool): If true, epsilon is calculated for inverted errors """ e_s = self.e_s if not inverse else self.e_s_inv max_score = -10000000 for z in np.arange(2.5, self.sd_lim, 0.5): epsilon = self.mean_e_s + (self.sd_e_s * z) pruned_e_s = e_s[e_s < epsilon] i_anom = np.argwhere(e_s >= epsilon).reshape(-1,) buffer = np.arange(1, self.config.error_buffer) i_anom = np.sort(np.concatenate((i_anom, np.array([i+buffer for i in i_anom]) .flatten(), np.array([i-buffer for i in i_anom]) .flatten()))) i_anom = i_anom[(i_anom < len(e_s)) & (i_anom >= 0)] i_anom = np.sort(np.unique(i_anom)) if len(i_anom) > 0: # group anomalous indices into continuous sequences groups = [list(group) for group in mit.consecutive_groups(i_anom)] E_seq = [(g[0], g[-1]) for g in groups if not g[0] == g[-1]] mean_perc_decrease = (self.mean_e_s - np.mean(pruned_e_s)) \ / self.mean_e_s sd_perc_decrease = (self.sd_e_s - np.std(pruned_e_s)) \ / self.sd_e_s score = (mean_perc_decrease + sd_perc_decrease) \ / (len(E_seq) ** 2 + len(i_anom)) # sanity checks / guardrails if score >= max_score and len(E_seq) <= 5 and \ len(i_anom) < (len(e_s) * 0.5): max_score = score if not inverse: self.sd_threshold = z self.epsilon = self.mean_e_s + z * self.sd_e_s else: self.sd_threshold_inv = z self.epsilon_inv = self.mean_e_s + z * self.sd_e_s def compare_to_epsilon(self, errors_all, inverse=False): """ Compare smoothed error values to epsilon (error threshold) and group consecutive errors together into sequences. Args: errors_all (obj): Errors class object containing list of all previously identified anomalies in test set """ e_s = self.e_s if not inverse else self.e_s_inv epsilon = self.epsilon if not inverse else self.epsilon_inv # Check: scale of errors compared to values too small? if not (self.sd_e_s > (.05 * self.sd_values) or max(self.e_s) > (.05 * self.inter_range)) or not max(self.e_s) > 0.05: return i_anom = np.argwhere((e_s >= epsilon) & (e_s > 0.05 * self.inter_range)).reshape(-1,) if len(i_anom) == 0: return buffer = np.arange(1, self.config.error_buffer+1) i_anom = np.sort(np.concatenate((i_anom, np.array([i + buffer for i in i_anom]) .flatten(), np.array([i - buffer for i in i_anom]) .flatten()))) i_anom = i_anom[(i_anom < len(e_s)) & (i_anom >= 0)] # if it is first window, ignore initial errors (need some history) if self.window_num == 0: i_anom = i_anom[i_anom >= self.num_to_ignore] else: i_anom = i_anom[i_anom >= len(e_s) - self.config.batch_size] i_anom = np.sort(np.unique(i_anom)) # capture max of non-anomalous values below the threshold # (used in filtering process) batch_position = self.window_num * self.config.batch_size window_indices = np.arange(0, len(e_s)) + batch_position adj_i_anom = i_anom + batch_position window_indices = np.setdiff1d(window_indices, np.append(errors_all.i_anom, adj_i_anom)) candidate_indices = np.unique(window_indices - batch_position) non_anom_max = np.max(np.take(e_s, candidate_indices)) # group anomalous indices into continuous sequences groups = [list(group) for group in mit.consecutive_groups(i_anom)] E_seq = [(g[0], g[-1]) for g in groups if not g[0] == g[-1]] if inverse: self.i_anom_inv = i_anom self.E_seq_inv = E_seq self.non_anom_max_inv = non_anom_max else: self.i_anom = i_anom self.E_seq = E_seq self.non_anom_max = non_anom_max def prune_anoms(self, inverse=False): """ Remove anomalies that don't meet minimum separation from the next closest anomaly or error value Args: inverse (bool): If true, epsilon is calculated for inverted errors """ E_seq = self.E_seq if not inverse else self.E_seq_inv e_s = self.e_s if not inverse else self.e_s_inv non_anom_max = self.non_anom_max if not inverse \ else self.non_anom_max_inv if len(E_seq) == 0: return E_seq_max = np.array([max(e_s[e[0]:e[1]+1]) for e in E_seq]) E_seq_max_sorted = np.sort(E_seq_max)[::-1] E_seq_max_sorted = np.append(E_seq_max_sorted, [non_anom_max]) i_to_remove = np.array([]) for i in range(0, len(E_seq_max_sorted)-1): if (E_seq_max_sorted[i] - E_seq_max_sorted[i+1]) \ / E_seq_max_sorted[i] < self.config.p: i_to_remove = np.append(i_to_remove, np.argwhere( E_seq_max == E_seq_max_sorted[i])) else: i_to_remove = np.array([]) i_to_remove[::-1].sort() i_to_remove = [int(i) for i in i_to_remove] if len(i_to_remove) > 0: E_seq = np.delete(E_seq, i_to_remove, axis=0) if len(E_seq) == 0 and inverse: self.i_anom_inv = np.array([]) return elif len(E_seq) == 0 and not inverse: self.i_anom = np.array([]) return indices_to_keep = np.concatenate([range(e_seq[0], e_seq[-1]+1) for e_seq in E_seq]) if not inverse: mask = np.isin(self.i_anom, indices_to_keep) self.i_anom = self.i_anom[mask] else: mask_inv = np.isin(self.i_anom_inv, indices_to_keep) self.i_anom_inv = self.i_anom_inv[mask_inv] def score_anomalies(self, prior_idx): """ Calculate anomaly scores based on max distance from epsilon for each anomalous sequence. Args: prior_idx (int): starting index of window within full set of test values for channel """ groups = [list(group) for group in mit.consecutive_groups(self.i_anom)] for e_seq in groups: score_dict = { "start_idx": e_seq[0] + prior_idx, "end_idx": e_seq[-1] + prior_idx, "score": 0 } score = max([abs(self.e_s[i] - self.epsilon) / (self.mean_e_s + self.sd_e_s) for i in range(e_seq[0], e_seq[-1] + 1)]) inv_score = max([abs(self.e_s_inv[i] - self.epsilon_inv) / (self.mean_e_s + self.sd_e_s) for i in range(e_seq[0], e_seq[-1] + 1)]) # the max score indicates whether anomaly was from regular # or inverted errors score_dict['score'] = max([score, inv_score]) self.anom_scores.append(score_dict) ``` #### File: telemanom/telemanom/preprocessor.py ```python import logging from sklearn.preprocessing import MinMaxScaler, StandardScaler logger = logging.getLogger('telemanom') class Preprocessor: def __init__(self, config, chan_id, train, test): """ Preprocess data in preparation for modeling. Args: config (obj): Config object containing parameters for processing chan_id (str): channel id train (arr): numpy array containing raw train data test (arr): numpy array containing raw test data Attributes: id (str): channel id config (obj): see Args train (arr): train data loaded from .npy file test(arr): test data loaded from .npy file """ self.id = chan_id self.config = config self.train = None self.test = None self.scaler = None if self.config.scale: self.scale() def scale(self): """Min/Max or Standard Scale Remove outliers, etc. """ if self.config.scaler == 'min_max': self.scaler = MinMaxScaler() else: self.scaler = StandardScaler() self.train = self.scaler.fit_transform(self.train) self.test = self.scaler.transform(self.test) ```
{ "source": "Joshua-Weaver1/ECM1400-Continuous-Assessment", "score": 3 }
#### File: Joshua-Weaver1/ECM1400-Continuous-Assessment/user_interface.py ```python import json import logging from flask import Flask from flask import render_template import logging_formatting import test_covid_news_handling as tcnh import covid_data_handler as cdh import covid_news_handling as cnh import test_covid_data_handler as tcdh #Initalise app app = Flask(__name__) #Create Logger for this module logger = logging.getLogger(__name__) #Opening JSON file j = open('config.json') #Returns JSON object as a dictionary data_configuration_json = json.load(j) #Closing file j.close() #Define Global Variables news = cnh.news_API_request(covid_terms = "Covid COVID-19 coronavirus") covid_data_exeter = cdh.covid_API_request() covid_data_england = cdh.covid_API_request(location = data_configuration_json["location"], location_type = data_configuration_json["location_type"]) @app.route('/') def redirect(): """Redirects user to the /index app route""" #Logging logging.info("The redirect function has been called") string = "Please enter the url http://127.0.0.1:5000/index to access the dashboard." return string @app.route('/index') def run_application(): """Main function which is responsible for the events produced by the client""" #Logging logging.info("The run_application function has been called") #Perfom Tests #Covid Data Handler Tests tcdh.test_parse_csv_data() tcdh.test_process_covid_csv_data() tcdh.test_covid_API_request() #Covid News Handling Tests tcnh.test_news_API_request() news_articles = news['articles'] cnh.delete_news_article(news_articles) return render_template('index.html', title = 'Coronavirus Daily Update', image = 'coronavirus1.jpg', news_articles = news['articles'], location = covid_data_exeter['data'][0]['areaName'], local_7day_infections = covid_data_exeter['data'][0]['newCasesByPublishDateRollingSum'], nation_location = covid_data_england['data'][0]['areaName'], national_7day_infections = covid_data_england['data'][0]['newCasesByPublishDateRollingSum'], hospital_cases = "Hospital Cases: " + str(covid_data_england['data'][0]['hospitalCases']), deaths_total = "Total Deaths: " + str(covid_data_england['data'][0]['cumDeaths28DaysByPublishDate'])) if __name__ == '__main__': app.run() ```
{ "source": "joshuaword2alt/ENUNU", "score": 2 }
#### File: ENUNU/synthesis/enunu.py ```python from datetime import datetime from os import chdir, makedirs, startfile from os.path import basename, dirname, exists, join, splitext from sys import argv from tempfile import mkdtemp import colored_traceback.always # pylint: disable=unused-import import utaupy from omegaconf import DictConfig, OmegaConf from utaupy.utils import hts2json, ustobj2songobj try: from hts2wav import hts2wav except ModuleNotFoundError: print('----------------------------------------------------------') print('初回起動ですね。') print('PC環境に合わせてPyTorchを自動インストールします。') print('インストール完了までしばらくお待ちください。') print('----------------------------------------------------------') from install_torch import pip_install_torch pip_install_torch(join('.', 'python-3.8.10-embed-amd64', 'python.exe')) print('----------------------------------------------------------') print('インストール成功しました。歌声合成を始めます。') print('----------------------------------------------------------\n') from hts2wav import hts2wav # pylint: disable=ungrouped-imports def get_project_path(utauplugin: utaupy.utauplugin.UtauPlugin): """ キャッシュパスとプロジェクトパスを取得する。 """ setting = utauplugin.setting # ustのパス path_ust = setting.get('Project') # 音源フォルダ voice_dir = setting['VoiceDir'] # 音声キャッシュのフォルダ(LABとJSONを設置する) cache_dir = setting['CacheDir'] return path_ust, voice_dir, cache_dir def utauplugin2hts(path_plugin_in, path_table, path_full_out, path_mono_out=None, strict_sinsy_style=False): """ USTじゃなくてUTAUプラグイン用に最適化する。 ust2hts.py 中の ust2hts を改変して、 [#PREV] と [#NEXT] に対応させている。 """ # プラグイン用一時ファイルを読み取る plugin = utaupy.utauplugin.load(path_plugin_in) # 変換テーブルを読み取る table = utaupy.table.load(path_table, encoding='utf-8') # 2ノート以上選択されているかチェックする if len(plugin.notes) < 2: raise Exception('ENUNU requires at least 2 notes. / ENUNUを使うときは2ノート以上選択してください。') # 歌詞が無いか空白のノートを休符にする。 for note in plugin.notes: if note.lyric.strip('  ') == '': note.lyric = 'R' # [#PREV] や [#NEXT] が含まれているか判定 prev_exists = plugin.previous_note is not None next_exists = plugin.next_note is not None if prev_exists: plugin.notes.insert(0, plugin.previous_note) if next_exists: plugin.notes.append(plugin.next_note) # Ust → HTSFullLabel song = ustobj2songobj(plugin, table) full_label = utaupy.hts.HTSFullLabel() full_label.song = song full_label.fill_contexts_from_songobj() # [#PREV] と [#NEXT] を消す前の状態での休符周辺のコンテキストを調整する if prev_exists or next_exists: full_label = utaupy.hts.adjust_pau_contexts(full_label, strict=strict_sinsy_style) # [#PREV] のノート(の情報がある行)を削る if prev_exists: target_note = full_label[0].note while full_label[0].note is target_note: del full_label[0] # PREVを消しても前のノート分ずれているので、最初の音素開始時刻が0になるようにする。 # ずれを取得 offset = full_label[0].start # 全音素の開始と終了時刻をずらす for oneline in full_label: oneline.start -= offset oneline.end -= offset # [#NEXT] のノート(の情報がある行)を削る if next_exists: target_note = full_label[-1].note while full_label[-1].note is target_note: del full_label[-1] # ファイル出力 s = '\n'.join(list(map(str, full_label))) with open(path_full_out, mode='w', encoding='utf-8') as f: f.write(s) if path_mono_out is not None: full_label.as_mono().write(path_mono_out) def main_as_plugin(path_plugin: str) -> str: """ UtauPluginオブジェクトから音声ファイルを作る """ print(f'{datetime.now()} : reading setting in ust') # UTAUの一時ファイルに書いてある設定を読み取る plugin = utaupy.utauplugin.load(path_plugin) path_ust, voice_dir, _ = get_project_path(plugin) path_enuconfig = join(voice_dir, 'enuconfig.yaml') if not exists(path_enuconfig): raise Exception( '音源フォルダに enuconfig.yaml が見つかりません。' 'UTAU音源選択でENUNU用モデルを指定してください。' ) # カレントディレクトリを音源フォルダに変更する chdir(voice_dir) # configファイルを読み取る print(f'{datetime.now()} : reading enuconfig') config = DictConfig(OmegaConf.load(path_enuconfig)) # 入出力パスを設定する if path_ust is not None: songname = f"{splitext(basename(path_ust))[0]}__{datetime.now().strftime('%Y%m%d%H%M%S')}" out_dir = join(dirname(path_ust), songname) # USTが未保存の場合 else: print('USTが保存されていないので一時フォルダにWAV出力します。') songname = f"temp__{datetime.now().strftime('%Y%m%d%H%M%S')}" out_dir = mkdtemp(prefix='enunu-') # 出力フォルダがなければつくる makedirs(out_dir, exist_ok=True) # 各種出力ファイルのパスを設定 path_full_score_lab = join(out_dir, f'{songname}_full_score.lab') path_mono_score_lab = join(out_dir, f'{songname}_mono_score.lab') path_json = join(out_dir, f'{songname}_full_score.json') path_wav = join(out_dir, f'{songname}.wav') path_ust_out = join(out_dir, f'{songname}.ust') # フルラベル生成 print(f'{datetime.now()} : converting TMP to LAB') utauplugin2hts( path_plugin, config.table_path, path_full_score_lab, path_mono_out=path_mono_score_lab, strict_sinsy_style=(not config.trained_for_enunu) ) # ファイル処理 # 選択範囲のUSTを出力(musicxml用) print(f'{datetime.now()} : exporting UST') new_ust = plugin.as_ust() for note in new_ust.notes: # 基本情報以外を削除 note.suppin() # 歌詞がないノートを休符にする if note.lyric.strip('  ') == '': note.lyric = 'R' new_ust.write(path_ust_out) print(f'{datetime.now()} : converting LAB to JSON') hts2json(path_full_score_lab, path_json) print(f'{datetime.now()} : converting LAB to WAV') hts2wav(config, path_full_score_lab, path_wav) print(f'{datetime.now()} : generating WAV ({path_wav})') # Windowsの時は音声を再生する。 startfile(path_wav) return path_wav def main(path: str): """ 入力ファイルによって処理を分岐する。 """ # logging.basicConfig(level=logging.INFO) if path.endswith('.tmp'): main_as_plugin(path) else: raise ValueError('Input file must be TMP(plugin).') if __name__ == '__main__': print('_____ξ ・ヮ・)ξ < ENUNU v0.2.5 ________') print(f'argv: {argv}') if len(argv) == 2: path_utauplugin = argv[1] elif len(argv) == 1: path_utauplugin = \ input('Input file path of TMP(plugin)\n>>> ').strip('"') main(path_utauplugin) ```
{ "source": "joshua-wu/easy_word_cloud", "score": 4 }
#### File: easy_word_cloud/easywordcloud/layout_cloud.py ```python import random import os import numpy as np import math import imp try: imp.find_module('PIL') found = True except ImportError: found = False if found: from PIL import Image from PIL import ImageDraw from PIL import ImageFont else: import Image import ImageDraw import ImageFont debug = 0 float_min = 1e-300 from sys import platform as _platform def get_default_font(): """return the default font of different operator system, highly recommend you prepare the fonts youself instead of using this function""" if _platform == "linux" or _platform == "linux2": # linux, sorry, i dont know much FONT_PATH = '/usr/share/fonts/truetype/droid/DroidSansMono.ttf' elif _platform == "darwin": # OS X FONT_PATH = "/Library/Fonts/hei.ttf" elif _platform == "win32": # Windows... FONT_PATH = "c:/windows/fonts/msyh.ttf" return FONT_PATH def draw_word_cloud(words, width=800, height=600, output_file_name=None, font_path=None): """ Generate the word cloud. Parameters ---------- words : array of tuples A tuple contains the word and its weight. The weight must greate than 0. the weight can be any positive num. width : int (default=800) Width of the canvas. height : int (default=600) Height of the canvas. output_file_name: string (default=None) the path to the output figure name. if the output_file_name is not None, a picture with path output_file_name will be saved. if the output_file_name is None. it will Displays an image. On Unix platforms, it will saves the image to a temporary PPM file, and calls the xv utility. On Windows, it will saves the image to a temporary BMP file, and uses the standard BMP display utility to show it. font_path : string Font path to the font that will be used (OTF or TTF). If the font_path is None then will call the get_default_font to get_default_font to get a default font. Notes ----- """ best_score = 0 best_elements = None for font_scale in [0.1, 0.5, 1, 2, 5, 7, 10, 15, 20, 30, 50]: elements, score, fill_rate, show_rate = fit_words( words, width=width, height=height, margin=2, scale=font_scale) if debug >= 1: print('scale:', font_scale, 'score:', score, 'show_rate:', show_rate, 'fille_rate:', fill_rate) if score > best_score: best_elements, best_score = elements, score if score == 0.0: break draw(best_elements, output_file_name, width=width, height=height, scale=1) def random_color_func(word, font_size, position, orientation): return "hsl(%d" % random.randint(0, 255) + ", 80%, 50%)" def select_orintation(font_size, font_path, canvas_size, word, margin, draw, font): """"choice the orintation for each word""" width, height = canvas_size draw.setfont(font) nontransposed_box_size = draw.textsize(word) transposed_font = ImageFont.TransposedFont(font, orientation=Image.ROTATE_90) draw.setfont(transposed_font) transposed_box_size = draw.textsize(word) box_size = None orientation = None if not check_in_bound((width, height), (transposed_box_size[1] + margin, transposed_box_size[0] + margin)): box_size = nontransposed_box_size orientation = None elif not check_in_bound((width, height), (nontransposed_box_size[1] + margin, nontransposed_box_size[0] + margin)): box_size = transposed_box_size orientation = Image.ROTATE_90 if debug >= 1: print('trans:', transposed_box_size, 'nontrans:', nontransposed_box_size, orientation, box_size) # transpose font optionally if box_size is None: box_size, orientation = random.choice([(nontransposed_box_size, None)]*9 + [(transposed_box_size, Image.ROTATE_90)]) return box_size, orientation def fit_words(words, font_path=None, width=80, height=40, margin=2, prefer_horiz=0.90, scale=5, file_name=None): """Generate the positions for words. Parameters ---------- words : array of tuples A tuple contains the word and its frequency. font_path : string Font path to the font that will be used (OTF or TTF). Defaults to DroidSansMono path, but you might not have it. width : int (default=400) Width of the canvas. height : int (default=200) Height of the canvas. margin: int(default=2) prefer_horiz : float (default=0.90) The ratio of times to try horizontal fitting as opposed to vertical. scale : int( default=5) this number is used to scale the font size in case of the font is too small. Notes ----- """ if len(words) <= 0: print("We need at least 1 word to plot a word cloud, got %d." % len(words)) if font_path is None: font_path = get_default_font() if not os.path.exists(font_path): raise ValueError("The font %s does not exist." % font_path) # create image img_grey = Image.new("L", (width, height)) draw = ImageDraw.Draw(img_grey) valid_words, font_sizes, positions, orientations = [], [], [], [] #sort the words by weight sum_weight = sum(weight for word, weight in words) words = [(word, weight * 1.0 / sum_weight) for word, weight in words] # start drawing grey image for word, weight in sorted(words, key=lambda x: x[1], reverse=True): # alternative way to set the font size integral = np.asarray(img_grey) font_size = int((weight * height * scale)) font = ImageFont.truetype(font_path, font_size) box_size, orientation = select_orintation(font_size, font_path, (width, height), word, margin, draw, font) # find possible places using integral image: result = query_integral_image(integral, (box_size[0] + margin, box_size[1] + margin)) if result is None: break if debug >= 1: print('font_size', font_size, word, weight, 'orientation:', orientation, 'pos:', result, 'box_size:', box_size) x, y = np.array(result) + margin // 2 #need to reset the font transposed_font = ImageFont.TransposedFont(font, orientation=orientation) draw.setfont(transposed_font) draw.text((y, x), word, fill="white") # store the information valid_words.append((word, weight)) positions.append((x, y)) orientations.append(orientation) font_sizes.append(font_size) fill_rate = 1.0 * (integral != 0).sum() / (integral.shape[0] * integral.shape[1]) show_rate = len(valid_words) * 1.0 / len(words) score = show_rate * fill_rate if debug >= 3: print(zip(valid_words, font_sizes, positions, orientations)) print('size:', len(valid_words), 'all:', len(words)) if debug >= 1: print('integral sum:', (integral != 0).sum(), 'show_rate:', show_rate, 'fille_rate:', fill_rate, 'score:', score) return zip(valid_words, font_sizes, positions, orientations), score, fill_rate, show_rate def draw(elements, file_name=None, font_path=None, width=80, height=40, scale=1, color_func=random_color_func): if font_path is None: font_path = get_default_font() img = Image.new("RGB", (width, height)) draw = ImageDraw.Draw(img) for (word, weight), font_size, position, orientation in elements: font = ImageFont.truetype(font_path, font_size) transposed_font = ImageFont.TransposedFont(font, orientation=orientation) draw.setfont(transposed_font) color = random_color_func(word, font_size * scale, position, orientation) pos = (position[1], position[0]) draw.text(pos, word, fill=color) if file_name is not None: img.save(file_name) else: img.show() if debug >= 3: a = np.asarray(img) for i in range(a.shape[0]): for j in range(a.shape[1]): print(1 if a[i, j].any() else 0), print('\n'), def collision_detect(integral_image, pos, box_size): height, width = integral_image.shape x, y = pos box_width, box_height = box_size #out of the bound if x + box_height >= height or y + box_width >= width: return True if integral_image[x: x + box_height, y: y + box_width].any(): return True return False def get_spiral_function(size): width, height = size e = width * 1.0 / height return lambda t: (t * 1.0 * math.cos(t), e * t * math.sin(t)) def euclid_distance(pos1, pos2): return math.sqrt((pos1[0]-pos2[0])**2 + (pos1[1]-pos2[1])**2) def check_in_bound(size, pos_current): """check the pos_current in the bound or not """ pos_x, pos_y = pos_current[0], pos_current[1] width, height = size if pos_x >= 0 and pos_x < height and pos_y >= 0 and pos_y < width: return True return False def query_integral_image(integral_image, box_size): #print('sum:', integral_image.sum()) height = integral_image.shape[0] width = integral_image.shape[1] box_width, box_height = box_size #area, i, j spiral = get_spiral_function((width, height)) delta = random.choice([1, -1]) t = 0 #pos_begin_x, pos_begin_y = random.randint(0, height-1), random.randint(0, width-1) pos_begin_x, pos_begin_y = \ int((height - box_height) * random.uniform(0.25, 0.75)), int((width - box_width) * random.uniform(0.25, 0.75)) #print('begin:x:y:', pos_begin_x, pos_begin_y, box_size, (width, height), height - box_height) max_distance = euclid_distance((height, width), (0, 0)) while True: #first geenrate a random point on the horizon pos_x, pos_y = spiral(t) pos_x, pos_y = int(pos_x + pos_begin_x + 0.5), int(pos_y + pos_begin_y + 0.5) t += delta #then move it piral if euclid_distance((pos_x, pos_y), (pos_begin_x, pos_begin_y)) >= max_distance: break if not check_in_bound((width, height), (pos_x, pos_y)): continue if not collision_detect(integral_image, (pos_x, pos_y), box_size): if debug >= 3: for i in range(integral_image.shape[0]): for j in range(integral_image.shape[1]): print(1 if integral_image[i, j] != 0 else 0), print('\n'), return pos_x, pos_y return None ```
{ "source": "joshua-wx/openradartools", "score": 3 }
#### File: openradartools/openradartools/physical.py ```python import os import numpy as np import wradlib as wrl #from wradlab def open_dem(dem_fn='australia_250m_dem.tif', invalid_terrain=-9999): """ Open a DEM file for generating masks. returns variables required for wradlib processing """ rasterfile = wrl.util.get_wradlib_data_file(dem_fn) ds = wrl.io.open_raster(rasterfile) rastervalues, rastercoords, proj = wrl.georef.extract_raster_dataset(ds, nodata=invalid_terrain) return (rastervalues, rastercoords, proj) #from wradlab def beam_blocking(radar, srtm_ffn, bb_ffn=None): """ Apply the wradlib beam blocking library for the target volume. Parameters ---------- radar : Radar Py-ART radar object. srtm_ffn : string Full path to SRTM geotiff file. bb_ffn : string full path to output npz file for CBB field. Use None to skip saving to file. Returns ------- ccb_dict : dict Dictionary containing the cumulative beam blocking (CBB) for every pixel in the radar object. """ # site parameters radar_lat = radar.latitude['data'][0] radar_lon = radar.longitude['data'][0] radar_alt = radar.altitude['data'][0] sitecoords = (radar_lon, radar_lat, radar_alt) nsweeps = radar.nsweeps nrays = int(radar.nrays / nsweeps) nbins = int(radar.ngates) el_list = radar.fixed_angle['data'] range_res = radar.range['meters_between_gates'] try: bw = radar.instrument_parameters['radar_beam_width_h']['data'] except: print('beamwidth info missing form volume, using default of 1deg') bw = 1 # grid arrays r = np.arange(nbins) * range_res beamradius = wrl.util.half_power_radius(r, bw) # read geotiff ds = wrl.io.open_raster(srtm_ffn) rastervalues, rastercoords, proj = wrl.georef.extract_raster_dataset(ds, nodata=-32768) #build coordiantes coord = None for el in el_list: #calculat spherical coordiantes for a sweep sweep_coord = wrl.georef.sweep_centroids(nrays, range_res, nbins, el) if coord is None: coord = sweep_coord else: #append spherical coordiantes for a sweep coord = np.append(coord, sweep_coord, axis=0) #calculate geographical coordinates of spherical space coords = wrl.georef.spherical_to_proj(coord[..., 0], coord[..., 1], coord[..., 2], sitecoords) lon = coords[..., 0] lat = coords[..., 1] alt = coords[..., 2] #polar coodinates for mapping terrain (no altitude) polcoords = coords[..., :2] # Clip the region inside our bounding box rlimits = (lon.min(), lat.min(), lon.max(), lat.max()) ind = wrl.util.find_bbox_indices(rastercoords, rlimits) rastercoords_clip = rastercoords.copy()[ind[1]:ind[3], ind[0]:ind[2], ...] rastervalues_clip = rastervalues.copy()[ind[1]:ind[3], ind[0]:ind[2]] # Map rastervalues to polar grid points polarvalues = wrl.ipol.cart_to_irregular_interp(rastercoords_clip, rastervalues_clip, polcoords, method='nearest') # calculate beam blocking for each bin PBB = wrl.qual.beam_block_frac(polarvalues, alt, beamradius) PBB = np.ma.masked_invalid(PBB) # calculate beam blocking along each ray CBB = wrl.qual.cum_beam_block_frac(PBB) # save to npz file if bb_ffn is not None: np.savez(bb_ffn, CBB=CBB, PBB=PBB) # generate meta cbb_dict = {'data': CBB, 'units': '%', 'long_name': 'cumulative beam blocking percentage', 'description': "cumulative beam blocking implemented by wradlib: https://docs.wradlib.org/en/stable/notebooks/beamblockage/wradlib_beamblock.html", 'comment': "Derived from a 500m hozitonal resolution DEM generated by the Shuttle Radar Topography Mission (SRTM)"} return cbb_dict def build_masks(vol_ffn, dem_info, bw_peaks=3.0, invalid_terrain = -9999, terrain_offset = 2000): #build radar info radar = pyart.aux_io.read_odim_h5(vol_ffn) sitecoords = (radar.longitude['data'][0], radar.latitude['data'][0], radar.altitude['data'][0]) nrays = int(radar.nrays/radar.nsweeps) # number of rays nbins = radar.ngates # number of range bins el_list = radar.fixed_angle['data'] # vertical antenna pointing angle (deg) range_res = radar.range['data'][2] - radar.range['data'][1]# range resolution (meters) #unpack DEM rastervalues, rastercoords, proj = dem_info #build coordiantes coord = None for el in el_list: #calculat spherical coordiantes for a sweep sweep_coord = wrl.georef.sweep_centroids(nrays, range_res, nbins, el) if coord is None: coord = sweep_coord else: #append spherical coordiantes for a sweep coord = np.append(coord, sweep_coord, axis=0) #calculate geographical coordinates of spherical space coords = wrl.georef.spherical_to_proj(coord[..., 0], coord[..., 1], coord[..., 2], sitecoords) lon = coords[..., 0] lat = coords[..., 1] alt = coords[..., 2] #polar coodinates for mapping terrain (no altitude) polcoords = coords[..., :2] # Clip the region inside our bounding box rlimits = (lon.min(), lat.min(), lon.max(), lat.max()) ind = wrl.util.find_bbox_indices(rastercoords, rlimits) rastercoords_clip = rastercoords.copy()[ind[1]:ind[3], ind[0]:ind[2], ...] rastervalues_clip = rastervalues.copy()[ind[1]:ind[3], ind[0]:ind[2]] # Map rastervalues to polar grid points polarvalues = wrl.ipol.cart_to_irregular_interp(rastercoords_clip, rastervalues_clip, polcoords, method='nearest') #calculate sea mask using invalid terrain value sea_mask = polarvalues == invalid_terrain #calculate clutter mask #where beam centre + 3dB beam width is lower than the terrain + terrain_offset r = np.arange(nbins) * range_res beamradius = wrl.util.half_power_radius(r, bw_peaks) beam_bottom = alt - beamradius clutter_mask = beam_bottom <= (polarvalues + terrain_offset) return sea_mask, clutter_mask ```
{ "source": "joshuayap98/py_crawler", "score": 2 }
#### File: joshuayap98/py_crawler/main.py ```python from postscrawl.run_scraper import Scraper def main(): scraper = Scraper() scraper.start_AAPL_posts_crawl() if __name__ == '__main__': main() ``` #### File: postscrawl/postscrawl/pipelines.py ```python import json class PostscrawlPipeline: def process_item(self, item, spider): item = json.dumps(item, sort_keys=True) print(item) return item ```
{ "source": "JoshuaYu-crash/C4EP2-2021", "score": 2 }
#### File: Host/dockerdata/dockerdata.py ```python import docker cli = docker.APIClient(base_url='unix://var/run/docker.sock') def getDockerData(): datalist = cli.containers() retData = [] for i in cli.containers(): i["stats"] = cli.stats(i["Id"], stream=False) retData.append(i) return retData def getDockerStats(containID): return cli.stats(containID, stream=False) if __name__ == '__main__': getDockerData() ``` #### File: C4EP2-2021/Ryu/ip_ban.py ```python from transinfo_server import ban def add_danger_ip(saddr): ban(saddr, banned=True) def add_doubt_ip(saddr): ban(saddr, banned=False) ``` #### File: C4EP2-2021/Ryu/topology.py ```python from flask import Flask, render_template, request, jsonify from pyecharts import options as opts from pyecharts.charts import Graph import json import redis from flask_cors import * r = redis.Redis(host="127.0.0.1", port=6379) app = Flask(__name__) CORS(app, supports_credentials=True) @app.route("/dockermsg", methods=["POST"]) def dockerMsg(): data = request.json host = data["host"] datalist = data["data"] # print(datalist) r.set(host, json.dumps(datalist)) return "ok" @app.route("/getdockermsg", methods=["GET"]) def getDockerMsg(): host = request.args.get("host") docker = request.args.get("dockerdata") dockers = json.loads(r.get(host)) tar = None # print(dockers) for doc in dockers: print(doc["NetworkSettings"]["Networks"]["bridge"]["IPAddress"], docker) if docker == doc["NetworkSettings"]["Networks"]["bridge"]["IPAddress"]: tar = doc break print(tar) return jsonify(tar) def graph_base() -> Graph: nodes = [] links = [] categories = [ {"symbol": "circle", 'name': 'ryu'}, {"symbol": "diamond", 'name': 'host'}, {"symbol": "roundRect", 'name': 'dockerdata'}, ] ryu = opts.GraphNode(name="RYU", symbol_size=40, category=0) # symbol='roundRect' nodes.append(ryu) doc_id = 1 for key in r.keys(): host = opts.GraphNode(name=key, symbol_size=30, category=1) # symbol='diamond' nodes.append(host) ryuHostLink = opts.GraphLink(source="RYU", target=key) links.append(ryuHostLink) dockerlist = json.loads(r.get(key)) for doc in dockerlist: docName = doc["Names"][0] docInfo = str(key, encoding='utf-8') + '/' + doc["NetworkSettings"]["Networks"]["bridge"]["IPAddress"] new_node = opts.GraphNode(name=str(doc_id) + docName, symbol_size=20, category=2, value=docInfo) nodes.append(new_node) hostDocLink = opts.GraphLink(source=key, target=str(doc_id) + docName) links.append(hostDocLink) doc_id += 1 linestyle_opts = opts.LineStyleOpts(is_show=True, width=2, curve=0.1, type_="solid", color="orange", ) g = ( Graph() .add("", nodes, links, repulsion=1000, categories=categories, label_opts=opts.LabelOpts(is_show=True, position="left", color='white'), linestyle_opts=linestyle_opts) .set_global_opts(title_opts=opts.TitleOpts(title="")) ) return g @app.route("/graphchart", methods=["GET"]) def get_bar_chart(): c = graph_base() return c.dump_options_with_quotes() if __name__ == '__main__': app.run(host="127.0.0.1", port=5000, debug=True) ```
{ "source": "JoshuaYu-crash/CCodeAnalyze", "score": 3 }
#### File: CCodeAnalyze/test/test_keyCount.py ```python import unittest from keyCount import * class MyTestCase(unittest.TestCase): def test_readfile(self): filepath = "./test_read.c" ans = "int main() { printf(__STRING__); }" self.assertEqual(readfile(filepath).strip(), ans) def test_findRightIndex(self): str1 = "{{{}}}" str2 = "{{}{}{}}" str3 = "{123321{} {}{{}}123321}" ans1 = 4 ans2 = 2 ans3 = 23 self.assertEqual(findRightIndex(1, len(str1), str1), ans1) self.assertEqual(findRightIndex(1, len(str2), str2), ans2) self.assertEqual(findRightIndex(0, len(str3), str3), ans3) def test_countKeys(self): code = readfile("./test_matchCode.c") self.assertEqual(countKeysByRE(code), 53) def test_countSwitch(self): code = readfile("./test_matchCode.c") self.assertEqual(countSwitch(code), [2, [3, 2]]) def test_matchIf(self): code1 = " if() ;" code2 = " if() {}" code3 = " if() if() ;" ans1 = 6 ans2 = 7 ans3 = 11 self.assertEqual(matchIf(code1), ans1) self.assertEqual(matchIf(code2), ans2) self.assertEqual(matchIf(code3), ans3) def test_matchElseIf(self): code1 = " elseif() ;" code2 = " elseif() {}" code3 = " elseif() if() ;" ans1 = 10 ans2 = 11 ans3 = 15 self.assertEqual(matchElseIf(code1), ans1) self.assertEqual(matchElseIf(code2), ans2) self.assertEqual(matchElseIf(code3), ans3) def test_matchElse(self): code1 = " else {}" code2 = " else ;" ans1 = 7 ans2 = 6 self.assertEqual(matchElse(code1), ans1) self.assertEqual(matchElse(code2), ans2) def test_matchCode(self): code = readfile("./test_matchCode.c") # print(code) # exchange else if to elseif code = re.sub("else\s+if", "elseif", code) # exchange else{ to else { code = re.sub("else{", "else {", code) ie, iei = matchCode(code) self.assertEqual(ie, 4) self.assertEqual(iei, 4) if __name__ == '__main__': unittest.main() ```
{ "source": "JoshuaYu-crash/LearnPyBackend", "score": 2 }
#### File: app/user/code.py ```python import MySQLdb from app.user import user from flask import request, jsonify, current_app from app.model.response import * from app.model.dbmodel import * from app.utils.jwtutils import * import os from app.setting import UPLOAD_PATH from app.utils.codeutils import * import datetime @user.route("/code/run", methods=["POST"]) def userRunCode(): user = User.query.get(getUserId()) codeFile = request.json.get("codefile") if codeFile is None or os.path.exists(os.path.join(UPLOAD_PATH, codeFile)) is None: return jsonify(Error1002()) # codeCommitCount = Code.query.filter( # Code.user_id == user.user_id, # datetime.datetime.now() - Code.dt <= datetime.timedelta(1/24/60) # ).count() # if codeCommitCount > 3: # return jsonify(Error1002()) code = Code(codepath=codeFile, user_id=user.user_id) db.session.add(code) db.session.commit() codeHandler = CodeHandler(codeFile) codeHandler.run() return jsonify(OK( codeid=code.code_id, res=codeHandler.res )) @user.route("/code/commit", methods=["POST"]) def userCommitCode(): user = User.query.get(getUserId()) codeId = request.json.get("codeid") courseId = request.json.get("courseid") problemId = request.json.get("problemid") describe = request.json.get("describe") username = request.json.get("username") avatar = request.json.get("avatar") code = Code.query.get(codeId) course = Course.query.get(courseId) problem = Problem.query.get(problemId) if code is None or (course is None and problem is None) or (course is not None and problem is not None)\ or username is None or avatar is None: return jsonify(Error1002()) if course: code.course_id = course.course_id if problem: code.problem_id = problem.problem_id code.is_commit = True code.describe = describe user.avatar = avatar user.user_name = username db.session.commit() return jsonify(OK(codeid=code.code_id)) @user.route("/code/getcode") def userGetCode(): codeId = request.args.get("codeid") code = Code.query.get(codeId) if code is None: return jsonify(Error1002()) return jsonify(OK( code={ "codeid": code.code_id, "codefile": "http://" + current_app.config['HOST'] + "/file/download/" + code.codepath, "describe": code.describe, "is_commit": code.is_commit, "is_show": code.is_show, "dt": code.dt } )) ```
{ "source": "JoshuaZero/awesome_python_test", "score": 2 }
#### File: awesome_python/library/config.py ```python import os conf_dict = { 'kafka': { 'bootstrap.servers': '172.16.31.10:30091,192.168.3.11:30092,192.168.127.12:30093', 'group.id': 'online_recognition_cg', 'auto.offset.reset': 'earliest', 'security.protocol': 'sasl_plaintext', 'sasl.mechanisms': 'PLAIN', 'sasl.username': 'account1', 'sasl.password': '<PASSWORD>' }, 'baidu_kafka': { 'bootstrap.servers': 'kafka.su.baidubce.com:9091', 'group.id': 'online_recognition_cg', 'auto.offset.reset': 'earliest', 'security.protocol': 'ssl', 'ssl.ca.location': '/work/dependency/kafka-cert/ca.pem', 'ssl.certificate.location': '/work/dependency/kafka-cert/client.pem', 'ssl.key.location': '/work/dependency/kafka-cert/client.key' }, 'influxdb': { 'server': 'bj-influxdb.aibee.cn', 'port': 80, 'user': '', 'password': '', 'db': 'face_data_pipeline' }, } def get(*args): """ 优先从环境变量获取配置 :param args: :return: """ env_name = ('_'.join(args)).upper() val = os.getenv(env_name) if val is None: _conf_dict = conf_dict for idx in range(len(args)): k = args[idx] if type(_conf_dict[k]) is dict: if idx == len(args) - 1: return _conf_dict[k] else: _conf_dict = _conf_dict[k] return _conf_dict[k] return val ``` #### File: awesome_python/library/hdfs_op.py ```python from retrying import retry import src.repository.global_params as global_params from src.library.shell import run_system_command, run_system_command_with_res from src.repository import constant auth_status = False def hdfs_auth(*dargs): def wrap_simple(f): def wrapped_f(*args, **kw): global auth_status if not auth_status: cmd = "hdfscli initkrb5 -k {}/hadoop_configs/keytab/sjyw.keytab sjyw".format(constant.CONFIG_DIR) run_system_command(cmd) auth_status = True return f(*args, **kw) return wrapped_f return wrap_simple(dargs[0]) @hdfs_auth def hdfs_get(remote_file, local_file): cmd = "hdfscli download /{}{} {}".format(global_params.get("hdfs_idc", "bj"), remote_file, local_file) run_system_command(cmd) @hdfs_auth @retry(stop_max_attempt_number=3) def hdfs_put(local_file, remote_file, force=True): # hdfscli upload -f 存在一些问题 full_path = "/{}{}".format(global_params.get("hdfs_idc", "bj"), remote_file) temp_full_path = "{}_backup".format(full_path) temp_remote_file = "{}_backup".format(remote_file) if force and hdfs_file_exist(remote_file): if hdfs_file_exist(temp_remote_file): del_cmd = "hdfscli delete -f {}".format(temp_full_path) run_system_command(del_cmd) rename_cmd = "hdfscli rename {} {}".format(full_path, temp_full_path) run_system_command(rename_cmd) cmd = "hdfscli upload {} {}".format(local_file, full_path) run_system_command(cmd) cmd = "hdfscli setacl 'group:supergroup:rw-' {}".format(full_path) run_system_command(cmd) @hdfs_auth def hdfs_file_exist(file_path): cmd = "hdfscli list /{}{}".format(global_params.get("hdfs_idc", "bj"), file_path) status, _ = run_system_command_with_res(cmd, ignore_err=True) if status != 0: return False return True @hdfs_auth def hdfs_mkdir(dir_path): cmd = "hdfscli mkdir /{}{}".format(global_params.get("hdfs_idc", "bj"), dir_path) run_system_command(cmd) cmd = "hdfscli setacl 'group:supergroup:rw-' /{}{}".format(global_params.get("hdfs_idc", "bj"), dir_path) run_system_command(cmd) @hdfs_auth def hdfs_copy(source_path, dst_path): cmd = "hdfscli copy -f {} {}".format(source_path, dst_path) run_system_command(cmd) @hdfs_auth def hdfs_delete(dst_path): cmd = "hdfscli delete -f /{}{}".format(global_params.get("hdfs_idc", "bj"), dst_path) run_system_command(cmd) ``` #### File: awesome_python/library/multiprocess.py ```python import concurrent import math import threading from concurrent.futures import ThreadPoolExecutor from multiprocessing import Pool, cpu_count, Process import src.repository.global_params as global_params from src.library.logger import logger from src.library.shell import run_system_command_with_res class MultiProcess(object): def __init__(self, work_num: int = 0): if not work_num: work_num = cpu_count() self.work_num = work_num self.pool = Pool(self.work_num) self.params = [] self.func = None self.res = None def add_params(self, params): self.params = params def add_func(self, func): self.func = func def deal(self): logger.info("generate {} worker pool for {}".format(self.work_num, self.func)) self.res = self.pool.starmap_async(self.func, self.params) def wait(self): logger.info("wait process finish") if self.res: self.res.get() if self.pool: self.pool.close() def multiprocess_deal(func, deal_list, work_num: int = 0): if not work_num: work_num = cpu_count() work_num = min(work_num, len(deal_list), 80) logger.info("generate {} worker pool for {}".format(work_num, func)) pool = Pool(work_num) res = pool.starmap(func, deal_list) pool.close() return res def multiprocess_run(func, deal_list, work_num: int = 0): if not work_num: work_num = cpu_count() work_num = min(work_num, 80) logger.info("generate {} worker pool for {}".format(work_num, func)) pool = Pool(work_num) res = pool.map(func, deal_list) pool.close() return res def chunk(data_list: list, chunk_num): item_num = len(data_list) if item_num <= chunk_num: return [data_list] step = int(math.ceil(item_num / chunk_num)) res = [] if step <= 0: return res for i in range(0, item_num, step): res.append(data_list[i:i + step]) return res def multiprocess_exe(func, deal_list, work_num: int = 0): if not work_num: work_num = cpu_count() process_list = [] deal_list = chunk(deal_list, work_num) logger.info("generate {} worker pool for {}".format(work_num, func)) for i in range(work_num): process_list.append(Process(target=func, args=(deal_list[i],))) for process in process_list: process.start() for process in process_list: process.join() def get_process_num() -> int: process_num = global_params.get("process_num", cpu_count()) process_num = int(process_num) return min(process_num, cpu_count()) def get_gpu_num() -> int: gpu_config_num = len(global_params.get("gpu_config", "0 1 2 3 4 5 6 7").split(" ")) gpu_num = gpu_config_num try: _, online_num = run_system_command_with_res("nvidia-smi -L |wc -l") gpu_num = int(online_num) except Exception as ex: logger.error('get nvidia-smi num error: {}'.format(ex)) return min(gpu_config_num, gpu_num) def multithread_run(func, deal_list, work_num: int = 0, max_execute_time=10): if not work_num: work_num = cpu_count() work_num = min(work_num, 200) logger.info("generate {} thread worker pool for {}".format(work_num, func)) res = [] with concurrent.futures.ThreadPoolExecutor(max_workers=work_num) as executor: thread_tasks = {executor.submit(func, *params): params for params in deal_list} for task in concurrent.futures.as_completed(thread_tasks): try: data = task.result(timeout=max_execute_time) res.append(data) except Exception as exc: logger.error('generated an exception: {}'.format(exc)) return res class Thread(threading.Thread): def __init__(self, target, *args): super().__init__() self._target = target self._args = args self._result = None def run(self): self._result = self._target(*self._args) def get_result(self): return self._result ``` #### File: awesome_python/operator/magic_method.py ```python import collections as clst from random import choice Card = clst.namedtuple('Card', ['rank','suit']) class FrenchDeck: ranks = [str(n) for n in range(2,11)] + list('JQKA') suits = "spades diamonds clubs hearts".split() def __init__(self): self._cards = [Card(rank,suit) for suit in self.suits for rank in self.ranks] def __len__(self): return len(self._cards) def __getitem__(self,position): return self._cards[position] suits_values = dict(spades=3, hearts=2, diamonds=1, clubs=0) def spades_high(card): rank_value = FrenchDeck.ranks.index(card.rank) print("rank_value {}".format(rank_value)) print("lenth: {}".format(len(suits_values))) print("current card suit: {}".format(suits_values[card.suit])) return rank_value*len(suits_values) + suits_values[card.suit] if __name__ == "__main__": beer_card = Card('7','diamonds') print(beer_card) fd_op = FrenchDeck() print(len(fd_op)) print(choice(fd_op)) for k in fd_op: print(k) print("-------------------------\n") for f in reversed(fd_op): print(f) print("=======\n") for i in sorted(fd_op, key=spades_high): print(i) ```
{ "source": "joshuisken/domoradio", "score": 4 }
#### File: joshuisken/domoradio/collect_iradio_links.py ```python import json import os import re from html.parser import HTMLParser from urllib.request import urlopen urls = { 'https://www.hendrikjansen.nl/henk/streaming.html': ('NL', [ 'NPO [3R].*', ]), 'https://www.hendrikjansen.nl/henk/streaming1.html': ('BE LU', [ 'Radio [12]$', '.*Klara.*', ]), } class MyHTMLParser(HTMLParser): """ Collect internet radio links (<a> tags) from html """ url = '' data = '' def __init__(self, wanted, stations): super().__init__() # Make a regex that matches if any of our regexes match. self.combined = "(" + ")|(".join(wanted) + ")" self.stations = stations def handle_starttag(self, tag, attrs): # Only parse the 'anchor' tag. if tag == "a": # Check the list of defined attributes. for name, value in attrs: if name == "href": self.url = value def handle_endtag(self, tag): if tag == "a": if 'http' in self.url and re.match(self.combined, self.data): # print("%-30s: %s" % (self.data, self.url)) self.stations[self.data] = self.url def handle_data(self, data): 'Cleanup the name of the radio station' self.data = data.lstrip(' —-+').strip() def collect_stations(urls): """ Parse the html files and slect radio station using a HTML parser """ radio_stations = {} for url, (countries, wanted) in urls.items(): print('== %-10s' % countries, end=': ') radio_stations[countries] = {} response = urlopen(url) text = response.read() with open(os.path.basename(url), 'wb') as f: f.write(text) parser = MyHTMLParser(wanted, radio_stations[countries]) parser.feed(text.decode('utf-8')) print(len(radio_stations[countries])) return radio_stations def main(): radio_stations = collect_stations(urls) with open('radio_stations.json', 'w') as f: print(json.dumps(radio_stations, sort_keys=True, indent=4), file=f) if __name__ == '__main__': main() ```
{ "source": "joshuisken/opentitan", "score": 3 }
#### File: util/reggen/gen_cheader.py ```python import io import logging as log import re import sys import textwrap import warnings def genout(outfile, msg): outfile.write(msg) def as_define(s): s = s.upper() r = '' for i in range(0, len(s)): r += s[i] if s[i].isalnum() else '_' return r def first_line(s): """Returns the first line of a multi-line string""" return s.splitlines()[0] def format_comment(s): """Formats a string to comment wrapped to an 80 character line width Returns wrapped string including newline and // comment characters. """ return '\n'.join( textwrap.wrap( s, width=77, initial_indent='// ', subsequent_indent='// ')) + '\n' def gen_define(name, args, body, existing_defines, indent=' '): r"""Produces a #define string, will split into two lines if a single line has a width greater than 80 characters. Result includes newline. Arguments: name - Name of the #define args - List of arguments for the define, provide an empty list if there are none body - Body of the #define existing_defines - set of already generated define names. Error if `name` is in `existing_defines`. indent - Gives string to prepend on any new lines produced by wrapping (default ' ') Example result: name = 'A_MACRO' args = ['arg1', 'arg2'], body = 'arg1 + arg2 + 10' #define A_MACRO(arg1, arg2) arg1 + arg2 + 10 When the macro is wrapped the break happens after the argument list (or macro name if there is no argument list #define A_MACRO(arg1, arg2) \ arg1 + arg2 + 10 """ if name in existing_defines: log.error("Duplicate #define for " + name) sys.exit(1) if len(args) != 0: define_declare = '#define ' + name + '(' + ', '.join(args) + ')' else: define_declare = '#define ' + name oneline_define = define_declare + ' ' + body existing_defines.add(name) if len(oneline_define) <= 80: return oneline_define + '\n' return define_declare + ' \\\n' + indent + body + '\n' def gen_cdefine_register(outstr, reg, comp, width, rnames, existing_defines): rname = reg['name'] offset = reg['genoffset'] genout(outstr, format_comment(first_line(reg['desc']))) defname = as_define(comp + '_' + rname) genout( outstr, gen_define( defname, ['id'], '(' + as_define(comp) + '##id##_BASE_ADDR + ' + hex(offset) + ')', existing_defines)) genout( outstr, gen_define(defname + '_REG_OFFSET', [], hex(offset), existing_defines)) for field in reg['fields']: fieldlsb = field['bitinfo'][2] fname = field['name'] dname = defname + '_' + as_define(fname) if field['bitinfo'][1] == 1: # single bit genout(outstr, gen_define(dname, [], str(fieldlsb), existing_defines)) else: # multiple bits (unless it is the whole register) if field['bitinfo'][1] != width: mask = field['bitinfo'][0] >> fieldlsb genout( outstr, gen_define(dname + '_MASK', [], hex(mask), existing_defines)) genout( outstr, gen_define(dname + '_OFFSET', [], str(fieldlsb), existing_defines)) if 'enum' in field: for enum in field['enum']: ename = as_define(enum['name']) genout( outstr, gen_define( defname + '_' + as_define(field['name']) + '_' + ename, [], enum['value'], existing_defines)) genout(outstr, '\n') return def gen_cdefine_window(outstr, win, comp, regwidth, rnames, existing_defines): wname = win['name'] offset = win['genoffset'] genout(outstr, format_comment('Memory area: ' + first_line(win['desc']))) defname = as_define(comp + '_' + wname) genout( outstr, gen_define( defname, ['id'], '(' + as_define(comp) + '##id##_BASE_ADDR + ' + hex(offset) + ')', existing_defines)) genout( outstr, gen_define(defname + '_REG_OFFSET', [], hex(offset), existing_defines)) items = int(win['items']) genout( outstr, gen_define(defname + '_SIZE_WORDS', [], str(items), existing_defines)) items = items * (regwidth // 8) genout( outstr, gen_define(defname + '_SIZE_BYTES', [], str(items), existing_defines)) wid = win['genvalidbits'] if (wid != regwidth): mask = (1 << wid) - 1 genout(outstr, gen_define(defname + '_MASK ', [], hex(mask), existing_defines)) def gen_cdefines_module_param(outstr, param, module_name, existing_defines): param_type = param['type'] # Presently there is only one type (int), however if the new types are # added, they potentially need to be handled differently. known_types = ["int"] if param_type not in known_types: warnings.warn( "Cannot generate a module define of type {}".format(param_type)) return genout(outstr, format_comment(first_line(param['desc']))) define_name = as_define(module_name + '_PARAM_' + param['name']) if param_type == "int": define = gen_define(define_name, [], param['default'], existing_defines) genout(outstr, define) genout(outstr, '\n') def gen_cdefines_module_params(outstr, module_data, module_name, register_width, existing_defines): module_params = set() if 'param_list' in module_data: module_params = module_data['param_list'] for param in module_params: gen_cdefines_module_param(outstr, param, module_name, existing_defines) genout(outstr, format_comment(first_line("Register width"))) define_name = as_define(module_name + '_PARAM_REG_WIDTH') define = gen_define(define_name, [], str(register_width), existing_defines) genout(outstr, define) genout(outstr, '\n') def gen_multireg_field_defines(outstr, regname, field, subreg_num, regwidth, existing_defines): field_width = field['bitinfo'][1] fields_per_reg = regwidth // field_width define_name = regname + '_' + as_define(field['name'] + "_FIELD_WIDTH") define = gen_define(define_name, [], str(field_width), existing_defines) genout(outstr, define) define_name = regname + '_' + as_define(field['name'] + "_FIELDS_PER_REG") define = gen_define(define_name, [], str(fields_per_reg), existing_defines) genout(outstr, define) define_name = regname + "_MULTIREG_COUNT" define = gen_define(define_name, [], str(subreg_num), existing_defines) genout(outstr, define) genout(outstr, '\n') def gen_cdefine_multireg(outstr, register, component, regwidth, rnames, existing_defines): multireg = register['multireg'] subregs = multireg['genregs'] comment = multireg['desc'] + " (common parameters)" genout(outstr, format_comment(first_line(comment))) if len(multireg['fields']) == 1: regname = as_define(component + '_' + multireg['name']) gen_multireg_field_defines(outstr, regname, multireg['fields'][0], len(subregs), regwidth, existing_defines) else: log.warn("Non-homogeneous multireg " + multireg['name'] + " skip multireg specific data generation.") for subreg in subregs: gen_cdefine_register(outstr, subreg, component, regwidth, rnames, existing_defines) # Must have called validate, so should have no errors def gen_cdefines(regs, outfile, src_lic, src_copy): component = regs['name'] registers = regs['registers'] rnames = regs['genrnames'] outstr = io.StringIO() # This tracks the defines that have been generated so far, so we # can error if we attempt to duplicate a definition existing_defines = set() if 'regwidth' in regs: regwidth = int(regs['regwidth'], 0) else: regwidth = 32 gen_cdefines_module_params(outstr, regs, component, regwidth, existing_defines) for x in registers: if 'reserved' in x: continue if 'skipto' in x: continue if 'sameaddr' in x: for sareg in x['sameaddr']: gen_cdefine_register(outstr, sareg, component, regwidth, rnames, existing_defines) continue if 'window' in x: gen_cdefine_window(outstr, x['window'], component, regwidth, rnames, existing_defines) continue if 'multireg' in x: gen_cdefine_multireg(outstr, x, component, regwidth, rnames, existing_defines) continue gen_cdefine_register(outstr, x, component, regwidth, rnames, existing_defines) generated = outstr.getvalue() outstr.close() genout(outfile, '// Generated register defines for ' + component + '\n\n') if src_copy != '': genout(outfile, '// Copyright information found in source file:\n') genout(outfile, '// ' + src_copy + '\n\n') if src_lic != None: genout(outfile, '// Licensing information found in source file:\n') for line in src_lic.splitlines(): genout(outfile, '// ' + line + '\n') genout(outfile, '\n') genout(outfile, '#ifndef _' + as_define(component) + '_REG_DEFS_\n') genout(outfile, '#define _' + as_define(component) + '_REG_DEFS_\n\n') genout(outfile, generated) genout(outfile, '#endif // _' + as_define(component) + '_REG_DEFS_\n') genout(outfile, '// End generated register defines for ' + component) return def test_gen_define(): basic_oneline = '#define MACRO_NAME body\n' assert gen_define('MACRO_NAME', [], 'body', set()) == basic_oneline basic_oneline_with_args = '#define MACRO_NAME(arg1, arg2) arg1 + arg2\n' assert (gen_define('MACRO_NAME', ['arg1', 'arg2'], 'arg1 + arg2', set()) == basic_oneline_with_args) long_macro_name = 'A_VERY_VERY_VERY_VERY_VERY_VERY_VERY_VERY_VERY_VERY_VERY_LONG_MACRO_NAME' multiline = ('#define ' + long_macro_name + ' \\\n' + ' a_fairly_long_body + something_else + 10\n') assert (gen_define(long_macro_name, [], 'a_fairly_long_body + something_else + 10', set()) == multiline) multiline_with_args = ('#define ' + long_macro_name + '(arg1, arg2, arg3) \\\n' + ' a_fairly_long_body + arg1 + arg2 + arg3\n') assert (gen_define(long_macro_name, ['arg1', 'arg2', 'arg3'], 'a_fairly_long_body + arg1 + arg2 + arg3', set()) == multiline_with_args) multiline_with_args_big_indent = ( '#define ' + long_macro_name + '(arg1, arg2, arg3) \\\n' + ' a_fairly_long_body + arg1 + arg2 + arg3\n') assert (gen_define(long_macro_name, ['arg1', 'arg2', 'arg3'], 'a_fairly_long_body + arg1 + arg2 + arg3', set(), indent=' ') == multiline_with_args_big_indent) ```
{ "source": "JoshunCox/NasdaqCloudDataService-SDK-Python", "score": 3 }
#### File: ncdsclient/internal/AvroDeserializer.py ```python import io from avro.io import DatumReader, BinaryDecoder import json import logging class AvroDeserializer(): """ Decodes the given schema for the user and returns the decoded data. Wrapper for the AvroDeserializer. Attributes: schema (Schema): the schema loaded from a schema file """ def __init__(self, schema): self.schema = schema self.logger = logging.getLogger(__name__) def decode(self, msg_value, ctx): reader = DatumReader(self.schema) message_bytes = io.BytesIO(msg_value) decoder = BinaryDecoder(message_bytes) try: event_dict = reader.read(decoder) except Exception as e: logging.exception(e) raise e union_schema = True try: # Get the union index to get the schema and schema name schema_message_bytes = io.BytesIO(msg_value) schema_decoder = BinaryDecoder(schema_message_bytes) schema_index = int(schema_decoder.read_long()) schema_name = reader.readers_schema.schemas[schema_index].name except Exception as e: union_schema = False pass for key in event_dict: if type(event_dict[key]) == str: event_dict[key] = event_dict[key].strip() # Initialize schema name in the message based on type of schema if union_schema: event_dict["schema_name"] = schema_name else: event_dict["schema_name"] = reader.readers_schema.name return event_dict ``` #### File: ncdsclient/internal/BasicKafkaConsumer.py ```python from confluent_kafka import DeserializingConsumer from confluent_kafka.error import (KeyDeserializationError, ValueDeserializationError) from confluent_kafka.serialization import (SerializationContext, MessageField) import logging class BasicKafkaConsumer(DeserializingConsumer): """ This is the base class for all Kafka consumers. It expands the confluent-kafka Python `DeserializingConsumer <https://docs.confluent.io/platform/current/clients/confluent-kafka-python/html/index.html#confluent_kafka.DeserializingConsumer>`_ class by adding some utility methods. Attributes: config (dict): stores dict that stores configuration properties for the confluent-kafka Python `DeserializingConsumer <https://docs.confluent.io/platform/current/clients/confluent-kafka-python/html/index.html#confluent_kafka.DeserializingConsumer>`_ key_deserializer (Deserializer): deserializer used for message keys value_deserializer (func): decode function used to deserialize message values """ def __init__(self, config, key_deserializer, value_deserializer): config["key.deserializer"] = key_deserializer config["value.deserializer"] = value_deserializer.decode self.logger = logging.getLogger(__name__) super(BasicKafkaConsumer, self).__init__(config) def ensure_assignment(self): """ Ensures that the consumer is assigned, Returns: a list of TopicPartitions that the consumer has been assigned to :rtype: list(`TopicPartitions <https://docs.confluent.io/platform/current/clients/confluent-kafka-python/html/index.html#pythonclient-topicpartition>`_) """ super(BasicKafkaConsumer, self).poll(0) return super(BasicKafkaConsumer, self).assignment() def consume(self, num_messages=1, timeout=-1): """ Consume up to the number of messages specified with a timeout for each request Args: num_messages (int): The maximum number of messages to wait for. timeout (float): Maximum time to block waiting for message(Seconds). Returns: :py:class:`Message` or None on timeout Raises: KeyDeserializationError: If an error occurs during key deserialization. ValueDeserializationError: If an error occurs during value deserialization. RuntimeError: if the number of messages is less than 1 """ if num_messages < 1: raise RuntimeError( "The maximum number of messages must be greater than or equal to 1.") messages = super(DeserializingConsumer, self).consume( num_messages, timeout) if messages is None: return [] deserialized_messages = [] for message in messages: deserialized_messages.append( self._parse_deserialize_message(message)) return deserialized_messages def _parse_deserialize_message(self, message): """ Internal class method for deserializing and maintaining consistency between poll and consume classes. This function will take in a raw serialized message (from cimpl) and return a deserialized message back. Args: message (cimpl.Message): The serialized message returned from the base consumer class. Returns: :py:class:`Message` on sucessful deserialization Raises: KeyDeserializationError: If an error occurs during key deserialization. ValueDeserializationError: If an error occurs during value deserialization. """ ctx = SerializationContext(message.topic(), MessageField.VALUE) value = message.value() if self._value_deserializer is not None: try: value = self._value_deserializer(value, ctx) except Exception as se: raise ValueDeserializationError( exception=se, kafka_message=message) key = message.key() ctx.field = MessageField.KEY if self._key_deserializer is not None: try: key = self._key_deserializer(key, ctx) except Exception as se: raise KeyDeserializationError( exception=se, kafka_message=message) message.set_key(key) message.set_value(value) return message ``` #### File: internal/utils/SeekToMidnight.py ```python import logging import sys from confluent_kafka import OFFSET_BEGINNING, OFFSET_INVALID from datetime import datetime, date, timedelta, time logger = logging.getLogger(__name__) def seek_to_midnight_at_past_day(kafka_avro_consumer, topic_partition, num_days_ago=0): topic_partition.offset = get_timestamp_at_midnight(num_days_ago) logger.debug( f"Num days ago: {num_days_ago}. Setting partition offset to timestamp: {topic_partition.offset}") try: logger.debug(f"topic partition: {topic_partition}") offsets_for_times = kafka_avro_consumer.offsets_for_times( [topic_partition], timeout=5) except Exception as e: logger.exception(e) sys.exit(0) logger.debug(f"{offsets_for_times[0]}: offsets for times") partition_offset = offsets_for_times[0].offset if offsets_for_times and partition_offset is not OFFSET_INVALID: topic_partition.offset = partition_offset logger.debug(f"Seeking to topic partition: {topic_partition}") logger.debug( f"making sure partition is assigned before seeking: {kafka_avro_consumer.ensure_assignment()}") kafka_avro_consumer.seek(topic_partition) else: topic_partition.offset = OFFSET_BEGINNING logger.debug( f"No available offset. Continuing to seek from OFFSET_BEGINNING: {topic_partition}") kafka_avro_consumer.seek(topic_partition) return kafka_avro_consumer def get_timestamp_at_midnight(num_days_ago=0): past_day = date.today()-timedelta(days=num_days_ago) midnight = datetime.combine(past_day, time.min) return int(midnight.timestamp() * 1000) ``` #### File: src/tests/NCDSSDKPyTest.py ```python from ncdssdk.src.tests.utils.NCDSTestUtil import NCDSTestUtil from ncdssdk import NCDSClient import json import pytest ncds_test_util = NCDSTestUtil() def test_NCDS_client(): ncds_client = NCDSClient(None, None) assert ncds_client is not None def test_list_topics_for_the_client(): ncds_client = NCDSClient(None, None) topics = ncds_client.list_topics_for_client() added_topics = ncds_test_util.get_added_topics() assert topics.sort() == added_topics.sort() def test_get_schema_for_the_topic(): ncds_client = NCDSClient(None, None) topic = "GIDS" schema_from_sdk = ncds_client.get_schema_for_topic(topic) schema_file = "testGIDS.avsc" schema_from_file = ncds_test_util.get_schema_for_topic(schema_file) assert schema_from_sdk == schema_from_file def test_top_messages_with_timestamp(): topic = "MOCK" mock_records = ncds_test_util.get_mock_messages() for mock_record in mock_records: mock_record["schema_name"] = "SeqEtpIpvValue" mock_records_from_kafka = [] timestamp = ncds_test_util.timestamp_to_seek_from ncds_client = NCDSClient(None, None) records = ncds_client.top_messages(topic, timestamp) for record in records: print(record.offset(), record.timestamp()) mock_records_from_kafka.append(record.value()) assert len(mock_records_from_kafka) == 8 assert mock_records[2:] == mock_records_from_kafka def test_insertion(): mock_records = ncds_test_util.get_mock_messages() for mock_record in mock_records: mock_record["schema_name"] = "SeqEtpIpvValue" mock_records_from_kafka = [] topic = "MOCK" ncds_client = NCDSClient(None, None) records = ncds_client.top_messages(topic) for record in records: mock_records_from_kafka.append(record.value()) assert mock_records == mock_records_from_kafka def test_get_sample_message(): mock_records = ncds_test_util.get_mock_messages() mock_msg = mock_records[-1] mock_msg["schema_name"] = "SeqEtpIpvValue" topic = "MOCK" msg_name = "SeqEtpIpvValue" ncds_client = NCDSClient(None, None) record = ncds_client.get_sample_messages(topic, msg_name, False) assert str(mock_msg) == record def test_get_all_sample_messages(): GIDS_records = ncds_test_util.get_GIDS_messages() for i, record in enumerate(GIDS_records): if i < 5: record["schema_name"] = "SeqEquitiesSummary" else: record["schema_name"] = "SeqEtpIpvValue" topic = "GIDS" msg_name = "SeqEtpIpvValue" ncds_client = NCDSClient(None, None) records = ncds_client.get_sample_messages(topic, msg_name, True) print("mock records: ", GIDS_records) print("records from ncdsclient: ", records) assert len(records) == 5 assert GIDS_records[5:] == records def test_get_sample_message_incorrect_topic(): mock_records = ncds_test_util.get_mock_messages() mock_msg = mock_records[0] mock_msg["schema_name"] = "SeqEtpIpvValue" topic = "MUCK" msg_name = "SeqEtpIpvValue" ncds_client = NCDSClient(None, None) with pytest.raises(Exception): ncds_client.get_sample_messages(topic, msg_name, False) def test_get_schema_for_the_incorrect_topic(): ncds_client = NCDSClient(None, None) topic = "MOCK" schema_from_sdk = ncds_client.get_schema_for_topic(topic) schema_file = "testGIDS.avsc" schema_from_file = ncds_test_util.get_schema_for_topic(schema_file) assert schema_from_sdk != schema_from_file # with pytest.raises(Exception): # schema_from_file = ncds_test_util.get_schema_for_topic(schema_file) ```
{ "source": "joshunrau/CognitiveSubtypes", "score": 2 }
#### File: src/models/classify.py ```python import warnings from abc import abstractmethod import numpy as np import pandas as pd from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier from sklearn.linear_model import RidgeClassifier from sklearn.metrics import accuracy_score, balanced_accuracy_score, roc_auc_score from sklearn.neighbors import KNeighborsClassifier from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler from sklearn.svm import SVC from sklearn.utils.validation import check_array, check_is_fitted, NotFittedError from skopt import BayesSearchCV from skopt.space import Categorical, Integer, Real from .base import BaseModel class BaseClassifier(BaseModel): available_metrics = { 'accuracy': accuracy_score, 'balanced_accuracy': balanced_accuracy_score, 'roc_auc': roc_auc_score } prob_metrics = ['roc_auc'] fs_param_grid = {} def __init__(self, score_method: str = 'accuracy') -> None: super().__init__() self._pipeline = Pipeline([ ('scaler', StandardScaler()), ("clf", self.sklearn_estimator()) ]) self._score_method = score_method def __str__(self) -> str: return str(self.sklearn_estimator.__name__) @property @abstractmethod def clf_param_grid(self) -> dict: pass @property def param_grid(self) -> dict: return self.fs_param_grid | self.clf_param_grid @property @abstractmethod def n_iter(self) -> int: pass @property def pipeline(self) -> Pipeline: return self._pipeline @pipeline.setter def pipeline(self, pipeline: Pipeline) -> None: if not isinstance(pipeline, Pipeline): raise TypeError self._pipeline = pipeline def is_fitted(self) -> bool: try: check_is_fitted(self.grid_) except (AttributeError, NotFittedError): return False return True def fit(self, X: np.ndarray, y: np.ndarray, surpress_warnings = True, **kwargs) -> None: super().fit(X, y) if self._score_method not in self.available_metrics.keys(): raise ValueError(f"Scoring must be one of: {self.available_metrics.keys()}") self.grid_ = BayesSearchCV( self.pipeline, self.param_grid, n_jobs=-1, scoring=self._score_method, n_iter=self.n_iter, cv=5, **kwargs) print("Begin fitting best classifier for model: " + str(self)) if surpress_warnings: with warnings.catch_warnings(): warnings.simplefilter("ignore") self.grid_.fit(X, y) else: self.grid_.fit(X, y) self.n_targets_ = len(np.unique(y)) self.best_estimator_ = self.grid_.best_estimator_ self.best_params_ = self.grid_.best_params_ self.best_score_ = self.grid_.best_score_ self.classes_ = self.grid_.classes_ self.n_features_in_ = self.grid_.n_features_in_ print("Done!") print(f"{self._score_method}: {self.best_score_}") def predict(self, X: np.ndarray) -> None: self.check_is_fitted() check_array(X) return self.grid_.predict(X) def get_y_score(self, X: np.ndarray): self.check_is_fitted() check_array(X) if len(self.classes_) != 2: raise ValueError("This method was created for binary classes") try: return self.grid_.predict_proba(X)[:, 1] except AttributeError: return self.grid_.decision_function(X) def score(self, X: np.ndarray, y: np.ndarray): return self.grid_.score(X, y) class BestKNeighborsClassifier(BaseClassifier): sklearn_estimator = KNeighborsClassifier clf_param_grid = { 'clf__n_neighbors': Integer(1, 20), 'clf__weights': Categorical(['uniform', 'distance']), 'clf__metric': Categorical(['euclidean', 'manhattan', 'minkowski']), } n_iter = 25 class BestSVC(BaseClassifier): sklearn_estimator = SVC clf_param_grid = { 'clf__C': Real(1e-2, 1e+3, 'log-uniform'), 'clf__gamma': Real(1e-4, 1e+1, 'log-uniform'), 'clf__degree': Integer(1, 3), 'clf__kernel': Categorical(['linear', 'poly', 'rbf']), 'clf__probability': Categorical([True]) } n_iter = 50 class BestRidgeClassifier(BaseClassifier): sklearn_estimator = RidgeClassifier clf_param_grid = { 'clf__alpha': Real(1e-4, 1e+0, 'log-uniform'), 'clf__class_weight': Categorical(['balanced']) } n_iter = 15 class BestRandomForestClassifier(BaseClassifier): sklearn_estimator = RandomForestClassifier clf_param_grid = { 'clf__n_estimators': Integer(50, 500), 'clf__max_depth': Integer(5, 50), 'clf__max_features': Real(1e-2, 1e+0, 'log-uniform'), 'clf__min_samples_split': Integer(2, 5), 'clf__min_samples_leaf': Integer(1, 5), 'clf__class_weight': Categorical(['balanced']) } n_iter = 40 class BestGradientBoostingClassifier(BaseClassifier): sklearn_estimator = GradientBoostingClassifier clf_param_grid = { "clf__loss": Categorical(["deviance"]), "clf__learning_rate": Real(1e-3, 5e-1, 'log-uniform'), "clf__min_samples_split": Real(0.1, 0.9, 'log-uniform'), "clf__min_samples_leaf": Real(0.1, 0.5, 'log-uniform'), "clf__max_depth": Integer(2, 10), "clf__max_features": Categorical(["log2","sqrt"]), "clf__criterion": Categorical(["friedman_mse", "squared_error"]), "clf__subsample": Real(0.5, 1, 'log-uniform') } n_iter = 50 class ClassifierSearch: def __init__(self): self.classifiers = [] for clf in [BestKNeighborsClassifier, BestRidgeClassifier, BestRandomForestClassifier]: self.classifiers.append(clf(score_method='roc_auc')) self.model_names = ['KNN', 'RDG', 'RFC'] self.roc_auc_scores = None def fit(self, data): self.roc_auc_scores = {"Train": [], "Test": []} for clf in self.classifiers: x_train = data.train.df[data.imaging_feature_names].to_numpy() x_test = data.test.df[data.imaging_feature_names].to_numpy() clf.fit(x_train, data.train.target, surpress_warnings=True, verbose=False) self.roc_auc_scores["Train"].append(clf.best_score_) self.roc_auc_scores["Test"].append(clf.score(x_test, data.test.target)) self.roc_auc_scores = pd.DataFrame(self.roc_auc_scores, index=self.model_names) self.best_classifier = self.classifiers[self.model_names.index(self.roc_auc_scores["Test"].idxmax())] def get_feature_importances(best_random_forest, feature_names): forest = best_random_forest.best_estimator_.named_steps['clf'] if len(feature_names) != len(forest.feature_importances_): raise ValueError forest_importances = {k:v for k, v in zip(feature_names, forest.feature_importances_)} regional_importances = {} for feature in forest_importances: for measure in ['area', 'thickness', 'volume']: if feature.startswith(measure): try: regional_importances[feature.replace(measure, '')][measure] = forest_importances[feature] except KeyError: regional_importances[feature.replace(measure, '')] = {} regional_importances[feature.replace(measure, '')][measure] = forest_importances[feature] regional_importances = pd.DataFrame.from_dict(regional_importances).T regional_importances.index = regional_importances.index.map(lambda x: x.lower().replace("left", "lh_").replace("right", "rh_")) regional_importances = regional_importances.rename(lambda x: x.capitalize(), axis=1) return regional_importances ``` #### File: src/models/cluster.py ```python import numpy as np from sklearn.cluster import KMeans from sklearn.metrics import calinski_harabasz_score, davies_bouldin_score, silhouette_score from .base import BaseModel from ..utils import get_array_counts class BestKMeans(BaseModel): sklearn_estimator = KMeans available_metrics = { "calinski_harabasz": calinski_harabasz_score, "davies_bouldin": davies_bouldin_score, "silhouette": silhouette_score } def __init__(self, k_min: int = 2, k_max: int = 6): super().__init__() self._estimator = self.sklearn_estimator self._k_min = k_min self._k_max = k_max def fit(self, X: np.ndarray, y: None = None) -> None: super().fit(X, y) self.models_ = {} self.scores_ = {} for k in range(self._k_min, self._k_max + 1): model, model_name = self._estimator(n_clusters=k), k y_pred = model.fit_predict(X) self.models_[model_name] = model self.scores_[model_name] = { name: metric(X, y_pred) for name, metric in self.available_metrics.items() } def is_fitted(self) -> bool: if self.models_ is None or self.scores_ is None: return False return True def predict(self, X: np.array, k: int, return_counts: bool = False): super().predict(X) y_pred = self.models_[k].predict(X) if return_counts: return get_array_counts(y_pred) return y_pred ```
{ "source": "joshunrau/qcivet", "score": 3 }
#### File: qcivet/civetqc/app.py ```python import argparse from pathlib import Path from .resources import config class App: name = config['app']['name'] description = config['app']['description'] version = config['app']['version'] def __init__(self) -> None: self.parser = argparse.ArgumentParser( prog = self.name, description = self.description, formatter_class = argparse.ArgumentDefaultsHelpFormatter ) self.parser.add_argument( "-v", "--version", action="version", version=f"%(prog)s {self.version}" ) self.parser.add_argument( "filepath", help="path to csv file outputted by CIVET", type=Path ) self.parser.add_argument( "-o", "--output_dir", default=Path.cwd(), help="directory where results should be outputted", type=Path, metavar='' ) self._args = None @property def args(self): return self._args @args.setter def args(self, value: argparse.Namespace): if not value.filepath.is_file(): raise FileNotFoundError(f"File not found: {value.filepath}") elif not value.output_dir.is_dir(): raise NotADirectoryError(f"Directory not found: {value.output_dir}") def parse_args(self, argv: list): self.args = self.parser.parse_args(argv) ``` #### File: qcivet/civetqc/models.py ```python import pickle import warnings from abc import ABC, abstractmethod from typing import Type import numpy as np import pandas as pd from sklearn.base import BaseEstimator from sklearn.dummy import DummyClassifier from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier from sklearn.linear_model import RidgeClassifier from sklearn.metrics import accuracy_score, balanced_accuracy_score, roc_auc_score, f1_score from sklearn.neighbors import KNeighborsClassifier from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler from sklearn.svm import SVC from sklearn.utils.validation import check_array, check_is_fitted, check_X_y, NotFittedError from skopt import BayesSearchCV from skopt.space import Categorical, Integer, Real class BaseClassifier(ABC): available_metrics = { 'accuracy': accuracy_score, 'balanced_accuracy': balanced_accuracy_score, 'roc_auc': roc_auc_score, 'f1': f1_score } prob_metrics = ['roc_auc'] fs_param_grid = {} def __init__(self, score_method: str = 'accuracy') -> None: self._pipeline = Pipeline([ ('scaler', StandardScaler()), ("clf", self.sklearn_estimator()) ]) self._score_method = score_method def __str__(self) -> str: return str(self.sklearn_estimator.__name__) @property @abstractmethod def clf_param_grid(self) -> dict: pass @property @abstractmethod def n_iter(self) -> int: pass @property @abstractmethod def sklearn_estimator(self) -> Type[BaseEstimator]: pass @property def param_grid(self) -> dict: return self.fs_param_grid | self.clf_param_grid @property def pipeline(self) -> Pipeline: return self._pipeline @pipeline.setter def pipeline(self, pipeline: Pipeline) -> None: if not isinstance(pipeline, Pipeline): raise TypeError self._pipeline = pipeline def check_is_fitted(self) -> None: if not self.is_fitted(): raise NotFittedError("Object must be fitted before method call") def is_fitted(self) -> bool: try: check_is_fitted(self.grid_) except (AttributeError, NotFittedError): return False return True def fit(self, X: np.ndarray, y: np.ndarray, surpress_warnings = True, **kwargs) -> None: if y is None: check_array(X) else: check_X_y(X, y) self.X_ = X self.y_ = y if self._score_method not in self.available_metrics.keys(): raise ValueError(f"Scoring must be one of: {self.available_metrics.keys()}") self.grid_ = BayesSearchCV( self.pipeline, self.param_grid, n_jobs=-1, scoring=self._score_method, n_iter=self.n_iter, cv=5, **kwargs) print("Begin fitting best classifier for model: " + str(self)) if surpress_warnings: with warnings.catch_warnings(): warnings.simplefilter("ignore") self.grid_.fit(X, y) else: self.grid_.fit(X, y) self.n_targets_ = len(np.unique(y)) self.best_estimator_ = self.grid_.best_estimator_ self.best_params_ = self.grid_.best_params_ self.best_score_ = self.grid_.best_score_ self.classes_ = self.grid_.classes_ self.n_features_in_ = self.grid_.n_features_in_ print("Done!") print(f"{self._score_method}: {self.best_score_}") def predict(self, X: np.ndarray) -> None: self.check_is_fitted() check_array(X) return self.grid_.predict(X) def get_y_score(self, X: np.ndarray): self.check_is_fitted() check_array(X) if len(self.classes_) != 2: raise ValueError("This method was created for binary classes") try: return self.grid_.predict_proba(X)[:, 1] except AttributeError: return self.grid_.decision_function(X) def score(self, X: np.ndarray, y: np.ndarray): return self.grid_.score(X, y) def save(self, filepath): with open(filepath, "wb") as file: pickle.dump(self, file) class BestDummyClassifier(BaseClassifier): sklearn_estimator = DummyClassifier clf_param_grid = { 'clf__strategy': Categorical(['most_frequent']) } n_iter = 1 class BestRandomForestClassifier(BaseClassifier): sklearn_estimator = RandomForestClassifier clf_param_grid = { 'clf__n_estimators': Integer(50, 500), 'clf__max_depth': Integer(5, 50), 'clf__max_features': Real(1e-2, 1e+0, 'log-uniform'), 'clf__min_samples_split': Integer(2, 5), 'clf__min_samples_leaf': Integer(1, 5), 'clf__class_weight': Categorical(['balanced']) } n_iter = 40 class BestGradientBoostingClassifier(BaseClassifier): sklearn_estimator = GradientBoostingClassifier clf_param_grid = { "clf__loss": Categorical(["log_loss"]), "clf__learning_rate": Real(1e-3, 5e-1, 'log-uniform'), "clf__min_samples_split": Real(0.1, 0.9, 'log-uniform'), "clf__min_samples_leaf": Real(0.1, 0.5, 'log-uniform'), "clf__max_depth": Integer(2, 10), "clf__max_features": Categorical(["log2","sqrt"]), "clf__criterion": Categorical(["friedman_mse", "squared_error"]), "clf__subsample": Real(0.5, 1, 'log-uniform') } n_iter = 50 class BestRidgeClassifier(BaseClassifier): sklearn_estimator = RidgeClassifier clf_param_grid = { 'clf__alpha': Real(1e-4, 1e+0, 'log-uniform'), 'clf__class_weight': Categorical(['balanced']) } n_iter = 15 class BestKNeighborsClassifier(BaseClassifier): sklearn_estimator = KNeighborsClassifier clf_param_grid = { 'clf__n_neighbors': Integer(1, 20), 'clf__weights': Categorical(['uniform', 'distance']), 'clf__metric': Categorical(['euclidean', 'manhattan', 'minkowski']), } n_iter = 25 class BestSVC(BaseClassifier): sklearn_estimator = SVC clf_param_grid = { 'clf__C': Real(1e-2, 1e+3, 'log-uniform'), 'clf__gamma': Real(1e-4, 1e+1, 'log-uniform'), 'clf__degree': Integer(1, 3), 'clf__kernel': Categorical(['linear', 'poly', 'rbf']), 'clf__probability': Categorical([True]), 'clf__class_weight': Categorical([None, 'balanced']) } n_iter = 50 class ClassifierSearch: def __init__(self, score_method = 'roc_auc'): self._score_method = score_method self.classifiers = { "dummy": BestDummyClassifier, "forest": BestRandomForestClassifier, "gb": BestGradientBoostingClassifier, "ridge": BestRidgeClassifier, "knn": BestKNeighborsClassifier, } for name, clf in self.classifiers.items(): self.classifiers[name] = clf(score_method=score_method) self.scores = None def fit(self, X_train, X_test, y_train, y_test): self.scores = {"Train": {}, "Test": {}} for name, clf in self.classifiers.items(): clf.fit(X_train, y_train, surpress_warnings=True, verbose=False) self.scores["Train"][name] = clf.best_score_ self.scores["Test"][name] = clf.score(X_test, y_test) self.scores = pd.DataFrame(self.scores) self.best_classifier = self.classifiers[self.scores["Train"].idxmax()] ``` #### File: civetqc/resources/__init__.py ```python import os import json from pkg_resources import resource_filename, resource_listdir with open(resource_filename(__name__, "config.json")) as file: config = json.load(file) class ResourceFilepaths: @classmethod @property def saved_models(cls): return cls.load("saved_models", ".pkl") @classmethod @property def simulated_data(cls): """ method from saved models """ return cls.load("simulated_data", ".csv") @staticmethod def load(directory: str, file_extension: str): filepaths = {} for filename in resource_listdir(__name__, directory): if filename.endswith(file_extension): filepath = resource_filename(__name__, "/".join([directory, filename])) if not os.path.isfile(filepath): raise FileNotFoundError(f"File not found: {filepath}") filepaths[filename[:-len(file_extension)]] = filepath if filepaths == {}: raise Exception("Could not find any files!") return filepaths ``` #### File: joshunrau/qcivet/setup.py ```python import os from pathlib import Path from pkg_resources import parse_requirements from setuptools import find_packages, setup BASE_DIR = os.path.abspath(os.path.dirname(__file__)) PACKAGE_DIR = os.path.join(BASE_DIR, "civetqc") def get_long_description(): with open(os.path.join(BASE_DIR, "README.md"), "r") as file: return file.read() def get_install_requires(): with Path('requirements.txt').open() as requirements_txt: return [str(r) for r in parse_requirements(requirements_txt)] setup( name = "civetqc", version = "0.0.4", author="<NAME>", author_email="<EMAIL>", description="civetqc is a command-line utility for automated quality control of CIVET outputs", long_description=get_long_description(), long_description_content_type="text/markdown", url="https://github.com/joshunrau/civetqc", project_urls={ "Bug Tracker": "https://github.com/joshunrau/civetqc/issues", }, classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], packages=find_packages(where="."), python_requires=">=3.9", install_requires = [ 'matplotlib==3.5.2', 'numpy==1.22.4', 'pandas==1.4.2', 'scikit_learn==1.1.1', 'scikit_optimize==0.9.0', 'seaborn==0.11.2', 'setuptools==62.3.2', 'yellowbrick==1.4' ], entry_points={ 'console_scripts': [ 'civetqc=civetqc.main:main' ] }, include_package_data=True, package_data = { "" : [ "resources/*.json", "resources/saved_models/*.pkl", "resources/simulated_data/*.csv", ] } ) ```
{ "source": "JoshVarty/AudioTagging", "score": 2 }
#### File: AudioTagging/fastai_audio/audio_databunch.py ```python import torch import os import numpy as np from fastai.core import ifnone from fastai.vision import channel_view, normalize_funcs, Image from fastai.basics import DataBunch, ItemList, Optional, Collection, Callable, Tensor, Iterator, PathOrStr, DatasetType from utils import open_audio class AudioDataBunch(DataBunch): # Subclass because of bug to give dl_tfms to underlying dataloader @classmethod def create(cls, train_ds, valid_ds, tfms:Optional[Collection[Callable]]=None, # There is a bug in LabelLists because dl_tfms is not given to dataloader **kwargs)->'AudioDataBunch': db = super().create(train_ds=train_ds, valid_ds=valid_ds, dl_tfms=tfms, **kwargs) return db def show_batch(self, rows:int=5, ds_type:DatasetType=DatasetType.Train, **kwargs): dl = self.dl(ds_type) ds = dl.dl.dataset idx = np.random.choice(len(ds), size=rows, replace=False) batch = ds[idx] max_count = min(rows, len(batch)) xs, ys, xs_processed, ys_processed = [], [], [], [] for i in range(max_count): x, x_processed, y, y_processed = batch[i][0], batch[i][0].data, batch[i][1], torch.tensor(batch[i][1].data) xs.append(x) xs_processed.append(x_processed) ys.append(y) ys_processed.append(y_processed) xs_processed = torch.stack(xs_processed, dim=0) ys_processed = torch.stack(ys_processed, dim=0) for tfm in dl.tfms: xs_processed, ys_processed = tfm((xs_processed, ys_processed)) self.train_ds.show_xys(xs, ys, xs_processed=xs_processed.unbind(dim=0), **kwargs) del xs, ys, xs_processed, ys_processed # Inspired by ImageDataBunch def batch_stats(self, funcs:Collection[Callable]=None, ds_type:DatasetType=DatasetType.Train)->Tensor: "Grab a batch of data and call reduction function `func` per channel" funcs = ifnone(funcs, [torch.mean,torch.std]) x = self.one_batch(ds_type=ds_type, denorm=False)[0].cpu() return [func(channel_view(x), 1) for func in funcs] # Inspired by ImageDataBunch def normalize(self, stats:Collection[Tensor]=None, do_x:bool=True, do_y:bool=False)->None: "Add normalize transform using `stats` (defaults to `DataBunch.batch_stats`)" if getattr(self,'norm',False): raise Exception('Can not call normalize twice') if stats is None: self.stats = self.batch_stats() else: self.stats = stats self.norm,self.denorm = normalize_funcs(*self.stats, do_x=do_x, do_y=do_y) self.add_tfm(self.norm) return self # Inspired by https://docs.fast.ai/tutorial.itemlist.html class AudioItemList(ItemList): _bunch = AudioDataBunch # Needed to include normalize def __init__(self, items:Iterator, using_librosa=False, downsampling=None, **kwargs): super().__init__(items=items, **kwargs) self.using_librosa = using_librosa self.copy_new.append('using_librosa') self.downsampling = downsampling self.copy_new.append('downsampling') def get(self, i): fn = super().get(i) return open_audio(fn, using_librosa=self.using_librosa, downsampling=self.downsampling) @classmethod def from_df(cls, df, path, using_librosa=False, folder:PathOrStr=None, downsampling=None, **kwargs): #if folder is not None: path2 = str(path)+folder res = super().from_df(df, path=path, **kwargs) pref = f'{res.path}{os.path.sep}' if folder is not None: pref += f'{folder}{os.path.sep}' res.items = np.char.add(pref, res.items.astype(str)) res.using_librosa=using_librosa res.downsampling = downsampling return res def reconstruct(self, t:Tensor, x:Tensor = None): raise Exception("Not implemented yet") # From torch #return ImagePoints(FlowField(x.size, t), scale=False) def show_xys(self, xs, ys, xs_processed=None, figsize=None, **kwargs): if xs_processed is None: for x, y in zip(xs, ys): x.show(title=str(y), figsize=figsize, **kwargs) else: for x, y, x_processed in zip(xs, ys, xs_processed): x.show(title=str(y), figsize=figsize, **kwargs) for channel in range(x_processed.size(0)): Image(x_processed[channel, :, :].unsqueeze(0)).show(figsize=figsize) ```
{ "source": "JoshVarty/GoogleQALabeling", "score": 2 }
#### File: GoogleQALabeling/src/basic_model.py ```python import os import re import gc import time import spacy import random import pickle import transformers import numpy as np import pandas as pd import torch import torch.nn as nn import torch.nn.functional as F import keras.backend as K import tensorflow_hub as hub from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences from tqdm import tqdm from scipy.stats import spearmanr from torch.optim import lr_scheduler from torch.utils.data import DataLoader, Dataset from sklearn.model_selection import train_test_split, cross_val_score, KFold # added preprocessing from https://www.kaggle.com/wowfattie/3rd-place/data def sigmoid(x): return 1 / (1 + np.exp(-x)) puncts = [',', '.', '"', ':', ')', '(', '-', '!', '?', '|', ';', "'", '$', '&', '/', '[', ']', '>', '%', '=', '#', '*', '+', '\\', '•', '~', '@', '£', '·', '_', '{', '}', '©', '^', '®', '`', '<', '→', '°', '€', '™', '›', '♥', '←', '×', '§', '″', '′', 'Â', '█', '½', 'à', '…', '\n', '\xa0', '\t', '“', '★', '”', '–', '●', 'â', '►', '−', '¢', '²', '¬', '░', '¶', '↑', '±', '¿', '▾', '═', '¦', '║', '―', '¥', '▓', '—', '‹', '─', '\u3000', '\u202f', '▒', ':', '¼', '⊕', '▼', '▪', '†', '■', '’', '▀', '¨', '▄', '♫', '☆', 'é', '¯', '♦', '¤', '▲', 'è', '¸', '¾', 'Ã', '⋅', '‘', '∞', '«', '∙', ')', '↓', '、', '│', '(', '»', ',', '♪', '╩', '╚', '³', '・', '╦', '╣', '╔', '╗', '▬', '❤', 'ï', 'Ø', '¹', '≤', '‡', '√', ] mispell_dict = {"aren't" : "are not", "can't" : "cannot", "couldn't" : "could not", "couldnt" : "could not", "didn't" : "did not", "doesn't" : "does not", "doesnt" : "does not", "don't" : "do not", "hadn't" : "had not", "hasn't" : "has not", "haven't" : "have not", "havent" : "have not", "he'd" : "he would", "he'll" : "he will", "he's" : "he is", "i'd" : "I would", "i'd" : "I had", "i'll" : "I will", "i'm" : "I am", "isn't" : "is not", "it's" : "it is", "it'll":"it will", "i've" : "I have", "let's" : "let us", "mightn't" : "might not", "mustn't" : "must not", "shan't" : "shall not", "she'd" : "she would", "she'll" : "she will", "she's" : "she is", "shouldn't" : "should not", "shouldnt" : "should not", "that's" : "that is", "thats" : "that is", "there's" : "there is", "theres" : "there is", "they'd" : "they would", "they'll" : "they will", "they're" : "they are", "theyre": "they are", "they've" : "they have", "we'd" : "we would", "we're" : "we are", "weren't" : "were not", "we've" : "we have", "what'll" : "what will", "what're" : "what are", "what's" : "what is", "what've" : "what have", "where's" : "where is", "who'd" : "who would", "who'll" : "who will", "who're" : "who are", "who's" : "who is", "who've" : "who have", "won't" : "will not", "wouldn't" : "would not", "you'd" : "you would", "you'll" : "you will", "you're" : "you are", "you've" : "you have", "'re": " are", "wasn't": "was not", "we'll":" will", "didn't": "did not", "tryin'":"trying"} def clean_text(x): x = str(x) for punct in puncts: x = x.replace(punct, f' {punct} ') return x def clean_numbers(x): x = re.sub('[0-9]{5,}', '#####', x) x = re.sub('[0-9]{4}', '####', x) x = re.sub('[0-9]{3}', '###', x) x = re.sub('[0-9]{2}', '##', x) return x def _get_mispell(mispell_dict): mispell_re = re.compile('(%s)' % '|'.join(mispell_dict.keys())) return mispell_dict, mispell_re def replace_typical_misspell(text): mispellings, mispellings_re = _get_mispell(mispell_dict) def replace(match): return mispellings[match.group(0)] return mispellings_re.sub(replace, text) def clean_data(df, columns: list): for col in columns: df[col] = df[col].apply(lambda x: clean_numbers(x)) df[col] = df[col].apply(lambda x: clean_text(x.lower())) df[col] = df[col].apply(lambda x: replace_typical_misspell(x)) return df def get_coefs(word,*arr): return word, np.asarray(arr, dtype='float32') def load_embeddings(path): with open(path,'rb') as f: emb_arr = pickle.load(f) return emb_arr def build_matrix_adv(embedding_path: str = '', embedding_path_spellcheck: str = r'f:\embeddings\wiki-news-300d-1M\wiki-news-300d-1M.vec', word_dict: dict = None, lemma_dict: dict = None, max_features: int = 100000, embed_size: int= 300, ): spell_model = gensim.models.KeyedVectors.load_word2vec_format(embedding_path_spellcheck) words = spell_model.index2word w_rank = {} for i, word in enumerate(words): w_rank[word] = i WORDS = w_rank def P(word): "Probability of `word`." # use inverse of rank as proxy # returns 0 if the word isn't in the dictionary return - WORDS.get(word, 0) def correction(word): "Most probable spelling correction for word." return max(candidates(word), key=P) def candidates(word): "Generate possible spelling corrections for word." return (known([word]) or known(edits1(word)) or [word]) def known(words): "The subset of `words` that appear in the dictionary of WORDS." return set(w for w in words if w in WORDS) def edits1(word): "All edits that are one edit away from `word`." letters = 'abcdefghijklmnopqrstuvwxyz' splits = [(word[:i], word[i:]) for i in range(len(word) + 1)] deletes = [L + R[1:] for L, R in splits if R] transposes = [L + R[1] + R[0] + R[2:] for L, R in splits if len(R) > 1] replaces = [L + c + R[1:] for L, R in splits if R for c in letters] inserts = [L + c + R for L, R in splits for c in letters] return set(deletes + transposes + replaces + inserts) def edits2(word): "All edits that are two edits away from `word`." return (e2 for e1 in edits1(word) for e2 in edits1(e1)) def singlify(word): return "".join([letter for i, letter in enumerate(word) if i == 0 or letter != word[i - 1]]) # embedding_index = dict(get_coefs(*o.strip().split(" ")) for o in open(embedding_path, encoding='utf-8')) # embedding_index = dict(get_coefs(*o.strip().split(" ")) for o in open(embedding_path, encoding='utf-8', errors='ignore')) embedding_index = load_embeddings(embedding_path) nb_words = min(max_features, len(word_dict)) embedding_matrix = np.zeros((nb_words + 1, embed_size)) unknown_words = [] for word, i in word_dict.items(): key = word embedding_vector = embedding_index.get(word) if embedding_vector is not None: embedding_matrix[i] = embedding_vector continue embedding_vector = embedding_index.get(word.lower()) if embedding_vector is not None: embedding_matrix[i] = embedding_vector continue embedding_vector = embedding_index.get(word.upper()) if embedding_vector is not None: embedding_matrix[i] = embedding_vector continue embedding_vector = embedding_index.get(word.capitalize()) if embedding_vector is not None: embedding_matrix[i] = embedding_vector continue word = ps.stem(key) embedding_vector = embedding_index.get(word) if embedding_vector is not None: embedding_matrix[word_dict[key]] = embedding_vector continue word = lc.stem(key) embedding_vector = embedding_index.get(word) if embedding_vector is not None: embedding_matrix[word_dict[key]] = embedding_vector continue word = sb.stem(key) embedding_vector = embedding_index.get(word) if embedding_vector is not None: embedding_matrix[word_dict[key]] = embedding_vector continue word = lemma_dict[key] embedding_vector = embedding_index.get(word) if embedding_vector is not None: embedding_matrix[word_dict[key]] = embedding_vector continue if len(key) > 1: word = correction(key) embedding_vector = embedding_index.get(word) if embedding_vector is not None: embedding_matrix[word_dict[key]] = embedding_vector continue unknown_words.append(key) print(f'{len(unknown_words) * 100 / len(word_dict):.4f}% words are not in embeddings') return embedding_matrix, nb_words, unknown_words def get_word_lemma_dict(full_text: list = None, ): nlp = spacy.load('en_core_web_lg', disable=['parser','ner','tagger']) nlp.vocab.add_flag(lambda s: s.lower() in spacy.lang.en.stop_words.STOP_WORDS, spacy.attrs.IS_STOP) word_dict = {} word_index = 1 lemma_dict = {} docs = nlp.pipe(full_text, n_threads = os.cpu_count()) for doc in docs: for token in doc: if (token.text not in word_dict) and (token.pos_ is not "PUNCT"): word_dict[token.text] = word_index word_index += 1 lemma_dict[token.text] = token.lemma_ return lemma_dict, word_dict def build_matrix(embedding_path: str = '', embedding_path_spellcheck: str = r'f:\embeddings\wiki-news-300d-1M\wiki-news-300d-1M.vec', word_dict: dict = None, max_features: int = 100000, embed_size: int= 300, ): # embedding_index = dict(get_coefs(*o.strip().split(" ")) for o in open(embedding_path, encoding='utf-8')) embedding_index = load_embeddings(embedding_path) nb_words = min(max_features, len(word_dict)) embedding_matrix = np.zeros((nb_words + 1, embed_size)) unknown_words = [] for word, i in word_dict.items(): key = word embedding_vector = embedding_index.get(word) if embedding_vector is not None: embedding_matrix[i] = embedding_vector continue embedding_vector = embedding_index.get(word.lower()) if embedding_vector is not None: embedding_matrix[i] = embedding_vector continue embedding_vector = embedding_index.get(word.upper()) if embedding_vector is not None: embedding_matrix[i] = embedding_vector continue embedding_vector = embedding_index.get(word.capitalize()) if embedding_vector is not None: embedding_matrix[i] = embedding_vector continue unknown_words.append(key) print(f'{len(unknown_words) * 100 / len(word_dict):.4f}% words are not in embeddings') return embedding_matrix, nb_words, unknown_words def seed_everything(seed=1234): random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = True def chunks(l, n): """Yield successive n-sized chunks from l.""" for i in range(0, len(l), n): yield l[i:i + n] def fetch_vectors(string_list, batch_size=64, max_len=512): # inspired by https://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/ DEVICE = torch.device("cuda") tokenizer = transformers.DistilBertTokenizer.from_pretrained("../input/distilbertbaseuncased/") model = transformers.DistilBertModel.from_pretrained("../input/distilbertbaseuncased/") model.to(DEVICE) fin_features = [] for data in chunks(string_list, batch_size): tokenized = [] for x in data: x = " ".join(x.strip().split()[:500]) tok = tokenizer.encode(x, add_special_tokens=True) tokenized.append(tok[:max_len]) padded = np.array([i + [0] * (max_len - len(i)) for i in tokenized]) attention_mask = np.where(padded != 0, 1, 0) input_ids = torch.tensor(padded).to(DEVICE) attention_mask = torch.tensor(attention_mask).to(DEVICE) with torch.no_grad(): last_hidden_states = model(input_ids, attention_mask=attention_mask) features = last_hidden_states[0][:, 0, :].cpu().numpy() fin_features.append(features) fin_features = np.vstack(fin_features) return fin_features def get_embedding_features(train, test, input_columns, only_test=False, batch_size=4): """ https://www.kaggle.com/ragnar123/simple-lgbm-solution-baseline?scriptVersionId=24198335 """ # load universal sentence encoder model to get sentence ambeddings module_url = "../data/universalsentenceencoderlarge4/" embed = hub.load(module_url) # create empty dictionaries to store final results if not only_test: embedding_train = {} embedding_test = {} # iterate over text columns to get senteces embeddings with the previous loaded model for text in input_columns: print(text) if not only_test: train_text = train[text].str.replace('?', '.').str.replace('!', '.').tolist() test_text = test[text].str.replace('?', '.').str.replace('!', '.').tolist() # create empy list to save each batch curr_train_emb = [] curr_test_emb = [] # define a batch to transform senteces to their correspinding embedding (1 X 512 for each sentece) if not only_test: ind = 0 while ind * batch_size < len(train_text): curr_train_emb.append(embed(train_text[ind * batch_size: (ind + 1) * batch_size])['outputs'].numpy()) ind += 1 ind = 0 while ind * batch_size < len(test_text): curr_test_emb.append(embed(test_text[ind * batch_size: (ind + 1) * batch_size])['outputs'].numpy()) ind += 1 # stack arrays to get a 2D array (dataframe) corresponding with all the sentences and dim 512 for columns (sentence encoder output) if not only_test: embedding_train[text + '_embedding'] = np.vstack(curr_train_emb) embedding_test[text + '_embedding'] = np.vstack(curr_test_emb) del embed K.clear_session() gc.collect() if only_test: return embedding_test else: return embedding_train, embedding_test def get_dist_features(embedding_train, embedding_test): # define a square dist lambda function were (x1 - y1) ^ 2 + (x2 - y2) ^ 2 + (x3 - y3) ^ 2 + ... + (xn - yn) ^ 2 # with this we get one vector of dimension 6079 l2_dist = lambda x, y: np.power(x - y, 2).sum(axis=1) # define a cosine dist lambda function were (x1 * y1) ^ 2 + (x2 * y2) + (x3 * y3) + ... + (xn * yn) cos_dist = lambda x, y: (x * y).sum(axis=1) # transpose it because we have 6 vector of dimension 6079, need 6079 x 6 dist_features_train = np.array([ l2_dist(embedding_train['question_title_embedding'], embedding_train['answer_embedding']), l2_dist(embedding_train['question_body_embedding'], embedding_train['answer_embedding']), l2_dist(embedding_train['question_body_embedding'], embedding_train['question_title_embedding']), cos_dist(embedding_train['question_title_embedding'], embedding_train['answer_embedding']), cos_dist(embedding_train['question_body_embedding'], embedding_train['answer_embedding']), cos_dist(embedding_train['question_body_embedding'], embedding_train['question_title_embedding'])]).T # transpose it because we have 6 vector of dimension 6079, need 6079 x 6 dist_features_test = np.array([ l2_dist(embedding_test['question_title_embedding'], embedding_test['answer_embedding']), l2_dist(embedding_test['question_body_embedding'], embedding_test['answer_embedding']), l2_dist(embedding_test['question_body_embedding'], embedding_test['question_title_embedding']), cos_dist(embedding_test['question_title_embedding'], embedding_test['answer_embedding']), cos_dist(embedding_test['question_body_embedding'], embedding_test['answer_embedding']), cos_dist(embedding_test['question_body_embedding'], embedding_test['question_title_embedding'])]).T return dist_features_train, dist_features_test # training the model def train_model(model, train_loader, valid_loader, n_epochs=3, lr=0.001): optimizer = torch.optim.Adam(model.parameters(), lr) patience = 2 scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, 'min', patience=1, factor=0.1) loss_fn = torch.nn.BCEWithLogitsLoss(reduction='mean').cuda() best_score = 0 for epoch in range(n_epochs): start_time = time.time() model.train() avg_loss = 0. for question, answer, title, category, host, use_emb_q, use_emb_a, use_emb_t, dist_feature, y_batch in tqdm( train_loader, disable=True): question = question.long().cuda() answer = answer.long().cuda() title = title.long().cuda() category = category.long().cuda() host = host.long().cuda() use_emb_q = use_emb_q.cuda() use_emb_a = use_emb_a.cuda() use_emb_t = use_emb_t.cuda() dist_feature = dist_feature.cuda() y_batch = y_batch.cuda() y_pred = model(question, answer, title, category, host, use_emb_q, use_emb_a, use_emb_t, dist_feature) loss = loss_fn(y_pred.double(), y_batch) optimizer.zero_grad() loss.backward() optimizer.step() avg_loss += loss.item() / len(train_loader) model.eval() avg_val_loss = 0. preds = [] original = [] for i, ( question, answer, title, category, host, use_emb_q, use_emb_a, use_emb_t, dist_feature, y_batch) in enumerate( valid_loader): question = question.long().cuda() answer = answer.long().cuda() title = title.long().cuda() category = category.long().cuda() host = host.long().cuda() use_emb_q = use_emb_q.cuda() use_emb_a = use_emb_a.cuda() use_emb_t = use_emb_t.cuda() dist_feature = dist_feature.cuda() y_batch = y_batch.cuda() y_pred = model(question, answer, title, category, host, use_emb_q, use_emb_a, use_emb_t, dist_feature).detach() avg_val_loss += loss_fn(y_pred.double(), y_batch).item() / len(valid_loader) preds.append(y_pred.cpu().numpy()) original.append(y_batch.cpu().numpy()) score = 0 for i in range(30): score += np.nan_to_num( spearmanr(np.concatenate(original)[:, i], np.concatenate(preds)[:, i]).correlation / 30) elapsed_time = time.time() - start_time print('Epoch {}/{} \t loss={:.4f} \t val_loss={:.4f} \t spearman={:.2f} \t time={:.2f}s'.format( epoch + 1, n_epochs, avg_loss, avg_val_loss, score, elapsed_time)) scheduler.step(avg_val_loss) valid_score = score if valid_score > best_score: best_score = valid_score p = 0 torch.save(model.state_dict(), 'model.pt') # check if validation loss didn't improve if valid_score <= best_score: p += 1 print(f'{p} epochs of non improving score') if p > patience: print('Stopping training') stop = True break model.load_state_dict(torch.load('model.pt')) return model def make_prediction(test_loader: DataLoader = None, model=None): prediction = np.zeros((len(test_loader.dataset), 30)) model.eval() for i, (question, answer, title, category, host, use_emb_q, use_emb_a, use_emb_t, dist_feature, _) in enumerate( test_loader): start_index = i * test_loader.batch_size end_index = min(start_index + test_loader.batch_size, len(test_loader.dataset)) question = question.long().cuda() answer = answer.long().cuda() title = title.long().cuda() category = category.long().cuda() host = host.long().cuda() use_emb_q = use_emb_q.cuda() use_emb_a = use_emb_a.cuda() use_emb_t = use_emb_t.cuda() dist_feature = dist_feature.cuda() y_pred = model(question, answer, title, category, host, use_emb_q, use_emb_a, use_emb_t, dist_feature).detach() y_pred = torch.sigmoid(y_pred) prediction[start_index:end_index, :] += y_pred.detach().cpu().numpy() return prediction class Attention(nn.Module): def __init__(self, feature_dim, step_dim, bias=True, **kwargs): super(Attention, self).__init__(**kwargs) self.supports_masking = True self.bias = bias self.feature_dim = feature_dim self.step_dim = step_dim self.features_dim = 0 weight = torch.zeros(feature_dim, 1) nn.init.xavier_uniform_(weight) self.weight = nn.Parameter(weight) if bias: self.b = nn.Parameter(torch.zeros(step_dim)) def forward(self, x, mask=None): feature_dim = self.feature_dim step_dim = self.step_dim eij = torch.mm( x.contiguous().view(-1, feature_dim), self.weight ).view(-1, step_dim) if self.bias: eij = eij + self.b eij = torch.tanh(eij) a = torch.exp(eij) if mask is not None: a = a * mask a = a / torch.sum(a, 1, keepdim=True) + 1e-10 weighted_input = x * torch.unsqueeze(a, -1) return torch.sum(weighted_input, 1) class GELU(nn.Module): def forward(self, x): return x * torch.sigmoid(1.702 * x) class SpatialDropout(nn.Dropout2d): def forward(self, x): x = x.unsqueeze(2) # (N, T, 1, K) x = x.permute(0, 3, 2, 1) # (N, K, 1, T) x = super(SpatialDropout, self).forward(x) # (N, K, 1, T), some features are masked x = x.permute(0, 3, 2, 1) # (N, T, 1, K) x = x.squeeze(2) # (N, T, K) return x class Mish(nn.Module): """ Mish - "Mish: A Self Regularized Non-Monotonic Neural Activation Function" https://arxiv.org/abs/1908.08681v1 implemented for PyTorch / FastAI by lessw2020 github: https://github.com/lessw2020/mish """ def __init__(self): super().__init__() def forward(self, x): # inlining this saves 1 second per epoch (V100 GPU) vs having a temp x and then returning x(!) return x * (torch.tanh(F.softplus(x))) class NeuralNet5(nn.Module): def __init__(self, hidden_size: int = 128, max_len: int = 500, max_len_title: int = 30, n_cat: int = 3, cat_emb: int = 6, n_host: int = 55, host_emb: int = 28, additional_embedding_shape: int = 512, embedding_matrix=None): super(NeuralNet5, self).__init__() self.embedding = nn.Embedding(*embedding_matrix.shape) self.embedding.weight = nn.Parameter(torch.tensor(embedding_matrix, dtype=torch.float32)) self.embedding.weight.requires_grad = False self.embedding_dropout = SpatialDropout(0.3) self.category_embedding = nn.Embedding(n_cat, int(cat_emb)) self.host_embedding = nn.Embedding(n_host, int(host_emb)) self.linear_q_add = nn.Linear(300, 128) self.linear_q_add1 = nn.Linear(128, 30) self.bilinear_add = nn.Bilinear(30, 30, 30) self.lstm_q = nn.LSTM(300, hidden_size, bidirectional=True, batch_first=True) self.gru_q = nn.GRU(hidden_size * 2, hidden_size, bidirectional=True, batch_first=True) self.lstm_a = nn.LSTM(300, hidden_size, bidirectional=True, batch_first=True) self.gru_a = nn.GRU(hidden_size * 2, hidden_size, bidirectional=True, batch_first=True) self.lstm_t = nn.LSTM(300, hidden_size, bidirectional=True, batch_first=True) self.gru_t = nn.GRU(hidden_size * 2, hidden_size, bidirectional=True, batch_first=True) self.lstm_attention_q = Attention(hidden_size * 2, max_len) self.gru_attention_q = Attention(hidden_size * 2, max_len) self.lstm_attention_a = Attention(hidden_size * 2, max_len) self.gru_attention_a = Attention(hidden_size * 2, max_len) self.lstm_attention_t = Attention(hidden_size * 2, max_len_title) self.gru_attention_t = Attention(hidden_size * 2, max_len_title) self.linear_q = nn.Linear(1024, 64) self.relu_q = Mish() self.linear_a = nn.Linear(1024, 64) self.relu_a = Mish() self.linear_t = nn.Linear(1024, 64) self.relu_t = Mish() self.linear_q_emb = nn.Linear(additional_embedding_shape, 64) self.relu_q_emb = Mish() self.linear_a_emb = nn.Linear(additional_embedding_shape, 64) self.relu_a_emb = Mish() self.linear_t_emb = nn.Linear(additional_embedding_shape, 64) self.relu_t_emb = Mish() self.linear1 = nn.Sequential(nn.Linear(256 + int(cat_emb) + int(host_emb) + 6, 64), nn.BatchNorm1d(64), nn.ReLU(inplace=True), nn.Dropout(0.5)) self.linear_q_out = nn.Linear(64, 21) self.bilinear = nn.Bilinear(64, 64, 64) self.bilinear_emb = nn.Bilinear(64, 64, 64) self.linear2 = nn.Sequential(nn.Linear(390, 64), nn.BatchNorm1d(64), nn.ReLU(inplace=True), nn.Dropout(0.5)) self.linear_aq_out = nn.Linear(64, 9) def forward(self, question, answer, title, category, host, use_emb_q, use_emb_a, use_emb_t, dist_feature): h_embedding_q = self.embedding(question) h_embedding_q = self.embedding_dropout(h_embedding_q) h_lstm_q, _ = self.lstm_q(h_embedding_q) h_gru_q, _ = self.gru_q(h_lstm_q) h_lstm_atten_q = self.lstm_attention_q(h_lstm_q) h_gru_atten_q = self.gru_attention_q(h_gru_q) avg_pool_q = torch.mean(h_gru_q, 1) max_pool_q, _ = torch.max(h_gru_q, 1) h_embedding_a = self.embedding(answer) h_embedding_a = self.embedding_dropout(h_embedding_a) h_lstm_a, _ = self.lstm_a(h_embedding_a) h_gru_a, _ = self.gru_a(h_lstm_a) h_lstm_atten_a = self.lstm_attention_a(h_lstm_a) h_gru_atten_a = self.gru_attention_a(h_gru_a) avg_pool_a = torch.mean(h_gru_a, 1) max_pool_a, _ = torch.max(h_gru_a, 1) h_embedding_t = self.embedding(title) h_embedding_t = self.embedding_dropout(h_embedding_t) h_lstm_t, _ = self.lstm_t(h_embedding_t) h_gru_t, _ = self.gru_t(h_lstm_t) h_lstm_atten_t = self.lstm_attention_t(h_lstm_t) h_gru_atten_t = self.gru_attention_t(h_gru_t) avg_pool_t = torch.mean(h_gru_t, 1) max_pool_t, _ = torch.max(h_gru_t, 1) category = self.category_embedding(category) host = self.host_embedding(host) add = torch.cat((h_embedding_q, h_embedding_a, h_embedding_t), 1) add = self.linear_q_add(torch.mean(add, 1)) add = self.linear_q_add1(add) q = torch.cat((h_lstm_atten_q, h_gru_atten_q, avg_pool_q, max_pool_q), 1) a = torch.cat((h_lstm_atten_a, h_gru_atten_a, avg_pool_a, max_pool_a), 1) t = torch.cat((h_lstm_atten_t, h_gru_atten_t, avg_pool_t, max_pool_t), 1) q = self.relu_q(self.linear_q(q)) a = self.relu_a(self.linear_a(a)) t = self.relu_t(self.linear_t(t)) q_emb = self.relu_q_emb(self.linear_q_emb(use_emb_q)) a_emb = self.relu_a_emb(self.linear_a_emb(use_emb_a)) t_emb = self.relu_t_emb(self.linear_t_emb(use_emb_t)) hidden_q = self.linear1(torch.cat((q, t, q_emb, t_emb, category, host, dist_feature), 1)) q_result = self.linear_q_out(hidden_q) bil_sim = self.bilinear(q, a) bil_sim_emb = self.bilinear_emb(q_emb, a_emb) hidden_aq = self.linear2(torch.cat((q, a, q_emb, a_emb, bil_sim, bil_sim_emb, dist_feature), 1)) aq_result = self.linear_aq_out(hidden_aq) out = torch.cat([q_result, aq_result], 1) out = self.bilinear_add(out, add) return out class TextDataset(Dataset): def __init__(self, question_data, answer_data, title_data, category_data, host_data, use_embeddings, dist_features, idxs, targets=None): self.question_data = question_data[idxs] self.answer_data = answer_data[idxs] self.title_data = title_data[idxs] self.category_data = category_data[idxs] self.host_data = host_data[idxs] self.use_embeddings_q = use_embeddings['question_body_embedding'][idxs] self.use_embeddings_a = use_embeddings['answer_embedding'][idxs] self.use_embeddings_t = use_embeddings['question_title_embedding'][idxs] self.dist_features = dist_features[idxs] self.targets = targets[idxs] if targets is not None else np.zeros((self.question_data.shape[0], 30)) def __getitem__(self, idx): question = self.question_data[idx] answer = self.answer_data[idx] title = self.title_data[idx] category = self.category_data[idx] host = self.host_data[idx] use_emb_q = self.use_embeddings_q[idx] use_emb_a = self.use_embeddings_a[idx] use_emb_t = self.use_embeddings_t[idx] dist_feature = self.dist_features[idx] target = self.targets[idx] return question, answer, title, category, host, use_emb_q, use_emb_a, use_emb_t, dist_feature, target def __len__(self): return len(self.question_data) def main(): path = '../data' sample_submission = pd.read_csv(f'{path}/sample_submission.csv') test = pd.read_csv(f'{path}/test.csv').fillna(' ') train = pd.read_csv(f'{path}/train.csv').fillna(' ') # TODO, do we really want this? train = clean_data(train, ['answer', 'question_body', 'question_title']) test = clean_data(test, ['answer', 'question_body', 'question_title']) seed_everything() # %%time embedding_test = get_embedding_features(train, test, ['answer', 'question_body', 'question_title'], only_test=True) embedding_train = {} embedding_train['answer_embedding'] = np.load( '../data/qa-labeling-files-for-inference/embedding_train_answer_embedding.npy', allow_pickle=True) embedding_train['question_body_embedding'] = np.load( '../data/qa-labeling-files-for-inference/embedding_train_question_body_embedding.npy', allow_pickle=True) embedding_train['question_title_embedding'] = np.load( '../data/qa-labeling-files-for-inference/embedding_train_question_title_embedding.npy', allow_pickle=True) dist_features_train, dist_features_test = get_dist_features(embedding_train, embedding_test) tokenizer = Tokenizer() full_text = list(train['question_body']) + \ list(train['answer']) + \ list(train['question_title']) + \ list(test['question_body']) + \ list(test['answer']) + \ list(test['question_title']) tokenizer.fit_on_texts(full_text) embed_size = 300 embedding_path = "../data/pickled-crawl300d2m-for-kernel-competitions/crawl-300d-2M.pkl" #lemma_dict, word_dict = get_word_lemma_dict(full_text) embedding_matrix, nb_words, unknown_words = build_matrix(embedding_path, '../data/wikinews300d1mvec/wiki-news-300d-1M.vec', tokenizer.word_index, 100000, embed_size) unique_hosts = list(set(train['host'].unique().tolist() + test['host'].unique().tolist())) host_dict = {i + 1: e for i, e in enumerate(unique_hosts)} host_dict_reverse = {v: k for k, v in host_dict.items()} unique_categories = list(set(train['category'].unique().tolist() + test['category'].unique().tolist())) category_dict = {i + 1: e for i, e in enumerate(unique_categories)} category_dict_reverse = {v: k for k, v in category_dict.items()} max_len = 500 # TODO: Is this appropriate max_len_title = 30 train_question_tokenized = pad_sequences(tokenizer.texts_to_sequences(train['question_body']), maxlen=max_len) train_answer_tokenized = pad_sequences(tokenizer.texts_to_sequences(train['answer']), maxlen=max_len) train_title_tokenized = pad_sequences(tokenizer.texts_to_sequences(train['question_title']), maxlen=max_len_title) test_question_tokenized = pad_sequences(tokenizer.texts_to_sequences(test['question_body']), maxlen=max_len) test_answer_tokenized = pad_sequences(tokenizer.texts_to_sequences(test['answer']), maxlen=max_len) test_title_tokenized = pad_sequences(tokenizer.texts_to_sequences(test['question_title']), maxlen=max_len_title) train_host = train['host'].apply(lambda x: host_dict_reverse[x]).values train_category = train['category'].apply(lambda x: category_dict_reverse[x]).values test_host = test['host'].apply(lambda x: host_dict_reverse[x]).values test_category = test['category'].apply(lambda x: category_dict_reverse[x]).values y = train[sample_submission.columns[1:]].values num_workers = 0 bs = 8 n_cat = len(category_dict) + 1 cat_emb = min(np.ceil((len(category_dict)) / 2), 50) n_host = len(host_dict) + 1 host_emb = min(np.ceil((len(host_dict)) / 2), 50) bs_test = 16 test_loader = DataLoader(TextDataset(test_question_tokenized, test_answer_tokenized, test_title_tokenized, test_category, test_host, embedding_test, dist_features_test, test.index), batch_size=bs_test, shuffle=False, num_workers=num_workers) folds = KFold(n_splits=2, random_state=42) preds = np.zeros((len(test), 30)) for fold_n, (train_index, valid_index) in enumerate(folds.split(train)): print(f'Fold {fold_n + 1} started at {time.ctime()}') train_loader = DataLoader( TextDataset(train_question_tokenized, train_answer_tokenized, train_title_tokenized, train_category, train_host, embedding_train, dist_features_train, train_index, y), batch_size=bs, shuffle=True, num_workers=num_workers, pin_memory=True) valid_loader = DataLoader( TextDataset(train_question_tokenized, train_answer_tokenized, train_title_tokenized, train_category, train_host, embedding_train, dist_features_train, valid_index, y), batch_size=bs, shuffle=False, num_workers=num_workers, pin_memory=True) model = NeuralNet5(embedding_matrix=embedding_matrix, n_cat=n_cat, cat_emb=cat_emb, n_host=n_host, host_emb=host_emb) model.cuda() model = train_model(model, train_loader, valid_loader, n_epochs=3, lr=0.001) prediction = make_prediction(test_loader, model) preds += prediction / folds.n_splits / 2 gc.collect() torch.cuda.empty_cache() print() if __name__ == '__main__': main() ```
{ "source": "JoshVarty/KaggleClouds", "score": 3 }
#### File: KaggleClouds/src/utils.py ```python import cv2 import torch import torch.nn as nn import numpy as np from PIL import Image from tqdm import tqdm from fastai.vision import pil2tensor, ImageSegment, SegmentationLabelList def get_training_image_size(original_size, multiple=32): """ Our inputs to the network must by multiples of 32. We'll find the closest size that both a multiple of 32 and greater than the image size """ new_sizes = [] for dimension_size in original_size: for j in range(20): candidate_size = multiple * j if candidate_size > dimension_size: new_sizes.append(candidate_size) break if len(new_sizes) != len(original_size): raise Exception("Could not find a valid size for the image") return tuple(new_sizes) def multiclass_dice_probs(probs, targets, iou=False, eps=1e-8): """ Dice coefficient metric for multiclass binary target with probs """ n = targets.shape[0] # Batch size of 4 # Flatten logits and targets probs = probs.view(n, -1) targets = targets.view(n, -1).float() # Convert logits to probabilities intersect = (probs * targets).sum(dim=1).float() union = (probs + targets).sum(dim=1).float() if not iou: l = 2. * intersect / union else: l = intersect / (union - intersect + eps) # The Dice coefficient is defined to be 1 when both X and Y are empty. # That said, we'd get a divide-by-zero-exception if union was 0 anyways... l[union == 0.] = 1. return l.mean() pass def multiclass_dice(logits, targets, iou=False, eps=1e-8): """ Dice coefficient metric for multiclass binary target. If iou=True, returns iou metric, classic for segmentation problems. """ n = targets.shape[0] # Batch size of 4 # Flatten logits and targets logits = logits.view(n, -1) targets = targets.view(n, -1).float() # Convert logits to probabilities probs = torch.sigmoid(logits) intersect = (probs * targets).sum(dim=1).float() union = (probs + targets).sum(dim=1).float() if not iou: l = 2. * intersect / union else: l = intersect / (union - intersect + eps) # The Dice coefficient is defined to be 1 when both X and Y are empty. # That said, we'd get a divide-by-zero-exception if union was 0 anyways... l[union == 0.] = 1. return l.mean() def multiclass_dice_threshold(logits, targets, threshold=0.5, iou=False, eps=1e-8): """ Dice coefficient metric for multiclass binary target. If iou=True, returns iou metric, classic for segmentation problems. """ n = targets.shape[0] # Batch size of 4 # Flatten logits and targets logits = logits.view(n, -1) targets = targets.view(n, -1).float() # Convert logits to probabilities probs = torch.sigmoid(logits) preds = probs preds[preds >= threshold] = 1 preds[preds < threshold] = 0 intersect = (preds * targets).sum(dim=1).float() union = (preds + targets).sum(dim=1).float() if not iou: l = 2. * intersect / union else: l = intersect / (union - intersect + eps) # The Dice coefficient is defined to be 1 when both X and Y are empty. # That said, we'd get a divide-by-zero-exception if union was 0 anyways... l[union == 0.] = 1. return l.mean() def override_open_mask(): # Our masks are overlapping so we've represented the masks as 4-channel images # This is convenient for us because we can still store them in standard RGBA images # However we have to make sure we load these images as RGBA in order for them to work def custom_open_mask(filename, div=False, convert_mode='L', after_open=None): x = Image.open(filename).convert('RGBA') if after_open: x = after_open(x) x = pil2tensor(x, np.float32) return ImageSegment(x) def custom_open(self, fn): return custom_open_mask(fn) # Open image with our custom method SegmentationLabelList.open = custom_open def rle_decode(mask_rle: str = '', shape: tuple = (1400, 2100)): """ Decode rle encoded mask. :param mask_rle: run-length as string formatted (start length) :param shape: (height, width) of array to return Returns numpy array, 1 - mask, 0 - background """ s = mask_rle.split() starts, lengths = [np.asarray(x, dtype=int) for x in (s[0:][::2], s[1:][::2])] starts -= 1 ends = starts + lengths img = np.zeros(shape[0] * shape[1], dtype=np.uint8) for lo, hi in zip(starts, ends): img[lo:hi] = 1 return img.reshape(shape, order='F') def mask2rle(img): """ Convert mask to rle. img: numpy array, 1 - mask, 0 - background Returns run length as string formatted """ pixels = img.T.flatten() pixels = np.concatenate([[0], pixels, [0]]) runs = np.where(pixels[1:] != pixels[:-1])[0] + 1 runs[1::2] -= runs[::2] return ' '.join(str(x) for x in runs) def post_process(probability, threshold, min_size): """ Post processing of each predicted mask, components with lesser number of pixels than `min_size` are ignored """ # don't remember where I saw it mask = cv2.threshold(probability, threshold, 1, cv2.THRESH_BINARY)[1] num_component, component = cv2.connectedComponents(mask.astype(np.uint8)) predictions = np.zeros(probability.shape, np.float32) num = 0 for c in range(1, num_component): p = (component == c) if p.sum() > min_size: predictions[p] = 1 num += 1 return predictions, num def convert_mask_to_rle(mask, threshold, min_size): preds, num_preds = post_process(mask, threshold, min_size) rle_mask = mask2rle(preds) return rle_mask def convert_masks_to_rle(test, test_preds, threshold, min_size): unique_test_images = test.iloc[::4, :] print(len(unique_test_images)) for i, row in tqdm(unique_test_images.iterrows()): saved_pred = test_preds[i // 4] fish_rle = convert_mask_to_rle(saved_pred[0], threshold, min_size) flower_rle = convert_mask_to_rle(saved_pred[1], threshold, min_size) gravel_rle = convert_mask_to_rle(saved_pred[2], threshold, min_size) sugar_rle = convert_mask_to_rle(saved_pred[3], threshold, min_size) # Save in dataframe test.loc[test['Image_Label'] == row['im_id'] + "_Fish", 'EncodedPixels'] = fish_rle test.loc[test['Image_Label'] == row['im_id'] + "_Flower", 'EncodedPixels'] = flower_rle test.loc[test['Image_Label'] == row['im_id'] + "_Gravel", 'EncodedPixels'] = gravel_rle test.loc[test['Image_Label'] == row['im_id'] + "_Sugar", 'EncodedPixels'] = sugar_rle return test def create_channel_from_rle(encoded_pixels, shape): new_channel = np.zeros(shape[0] * shape[1], dtype=np.uint8) s = encoded_pixels.split() starts, lengths = [np.asarray(x, dtype=int) for x in (s[0:][::2], s[1:][::2])] starts -= 1 ends = starts + lengths for lo, hi in zip(starts, ends): new_channel[lo:hi] = 1 new_channel = new_channel.reshape(shape, order='F') return new_channel def create_mask_for_image(df, index): fish = df.iloc[index] flower = df.iloc[index + 1] gravel = df.iloc[index + 2] sugar = df.iloc[index + 3] full_path = "data/train_images/" + fish['im_id'] im = Image.open(full_path) shape = im.size # shape = (1400, 2100) fish_channel = np.zeros(shape, dtype=np.uint8) flower_channel = np.zeros(shape, dtype=np.uint8) gravel_channel = np.zeros(shape, dtype=np.uint8) sugar_channel = np.zeros(shape, dtype=np.uint8) if isinstance(fish['EncodedPixels'], str): fish_channel = create_channel_from_rle(fish['EncodedPixels'], shape) if isinstance(flower['EncodedPixels'], str): flower_channel = create_channel_from_rle(flower['EncodedPixels'], shape) if isinstance(gravel['EncodedPixels'], str): gravel_channel = create_channel_from_rle(gravel['EncodedPixels'], shape) if isinstance(sugar['EncodedPixels'], str): sugar_channel = create_channel_from_rle(sugar['EncodedPixels'], shape) # Create fake RGBA image new_image = np.stack([fish_channel, flower_channel, gravel_channel, sugar_channel], axis=-1) return new_image def dice_coef(input, target, threshold=None): smooth = 1.0 input_flatten = input.view(-1) if threshold is not None: input_flatten = (input_flatten > threshold).float() target_flatten = target.view(-1) intersection = (input_flatten * target_flatten).sum() return ( (2. * intersection + smooth) / (input_flatten.sum() + target_flatten.sum() + smooth) ) class DiceLoss(nn.Module): def __init__(self, log=False): super().__init__() self.log = log def forward(self, input, target): dice_coef_value = dice_coef(torch.sigmoid(input), target) if self.log: return -torch.log(dice_coef_value) else: return 1 - dice_coef_value class BCEDiceLoss(nn.Module): def __init__(self, log_dice=False): super().__init__() self.bce_loss = nn.BCEWithLogitsLoss() self.dice_loss = DiceLoss(log=log_dice) def forward(self, input, target): target = target.float() b_loss = self.bce_loss(input, target) d_loss = self.dice_loss(input, target) return b_loss + d_loss ```
{ "source": "JoshVarty/Reacher", "score": 3 }
#### File: JoshVarty/Reacher/model.py ```python import torch import torch.nn as nn import torch.nn.functional as F class FCNetwork(nn.Module): def __init__(self, state_size, action_size, output_gate=None): super(FCNetwork, self).__init__() self.fc1 = nn.Linear(state_size, 256) self.fc2 = nn.Linear(256, 256) self.fc3 = nn.Linear(256, action_size) self.output_gate = output_gate def forward(self, input): x = F.relu(self.fc1(input)) x = F.relu(self.fc2(x)) x = self.fc3(x) if self.output_gate is not None: x = self.output_gate(x) return x class ActorCriticNetwork(nn.Module): def __init__(self, state_size, action_size): super(ActorCriticNetwork, self).__init__() self.actor = FCNetwork(state_size, action_size, F.tanh) self.critic = FCNetwork(state_size, 1) self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") self.std = nn.Parameter(torch.ones(1, action_size)).to(self.device) self.to(self.device) def forward(self, state, action = None): #state = torch.Tensor(state).to(self.device) #Get action a = self.actor(state) distribution = torch.distributions.Normal(a, self.std) if action is None: action = distribution.sample() log_prob = distribution.log_prob(action) log_prob = torch.sum(log_prob, dim=1, keepdim=True) #Get value from critic value = self.critic(state) return action, log_prob, value ```
{ "source": "JoshVarty/Rosalind", "score": 4 }
#### File: JoshVarty/Rosalind/004_Rabbits_and_Recurrence_Relations.py ```python lookup = {} def get_rabbit_pairs(n, k): if n == 0: return 0 elif n == 1: return 1 prev_gen = 0 prev_prev_gen = 0 if (n - 1) in lookup: prev_gen = lookup[n - 1] else: prev_gen = get_rabbit_pairs(n - 1, k) lookup[n - 1] = prev_gen if (n - 2) in lookup: prev_prev_gen = lookup[n - 2] else: prev_prev_gen = get_rabbit_pairs(n - 2, k) lookup[n - 2] = prev_prev_gen return prev_gen + k * prev_prev_gen if __name__ == '__main__': while True: raw_input = input("Enter n and k:\n") n, k = raw_input.split() n = int(n) k = int(k) lookup = {} number_of_pairs = get_rabbit_pairs(n, k) print(number_of_pairs) ``` #### File: JoshVarty/Rosalind/010_Consensus_and_Profile.py ```python import numpy as np lookup = { 'A': 0, 'C': 1, 'G': 2, 'T': 3, } def get_profile_and_consensuse_for_dna_strings(dna_matrix): consensus = ['A' for _ in range(len(dna_matrix[0]))] consensus_max_count = np.zeros((len(dna_matrix[0]),)) profile_matrix = np.zeros((4, len(dna_matrix[0])), dtype=np.int) # Build profile matrix for row in range(len(dna_matrix)): for col in range(len(dna_matrix[row])): base = dna_matrix[row][col] index = lookup[base] profile_matrix[index, col] = profile_matrix[index, col] + 1 if profile_matrix[index, col] > consensus_max_count[col]: consensus_max_count[col] = profile_matrix[index, col] consensus[col] = base return profile_matrix, consensus if __name__ == '__main__': with open('problem_10_data.txt', 'r') as file: dna_matrix = [] current_record = "" for fast_a_record in file: if fast_a_record[0] == '>': dna_matrix.append(current_record) current_record = "" else: current_record = current_record + fast_a_record.strip() dna_matrix.append(current_record) del dna_matrix[0] profile, consensus = get_profile_and_consensuse_for_dna_strings(dna_matrix) print(''.join(consensus)) print("A:", ' '.join(map(str, profile[0]))) print("C:", ' '.join(map(str, profile[1]))) print("G:", ' '.join(map(str, profile[2]))) print("T:", ' '.join(map(str, profile[3]))) ``` #### File: JoshVarty/Rosalind/014_Finding_a_Shared_Motif.py ```python import numpy as np from utils import load_fasta_file_as_lookup from utils import SuffixNode, JoshSuffixTree import sys sys.setrecursionlimit(10**6) def find_longest_common_substring(records): records_list = [v for k,v in records.items()] suffix_tree = JoshSuffixTree(records_list) return lcs(suffix_tree.root) def lcs(node: SuffixNode): if not np.all(node.visited): return "" longest_string = "" for child in node.children: child_string = lcs(child) if len(child_string) > len(longest_string): longest_string = child_string return node.value + longest_string if __name__ == '__main__': fasta_record_lookup = load_fasta_file_as_lookup('problem_10_data.txt') longest_common_substring = find_longest_common_substring(fasta_record_lookup) print(longest_common_substring) ```
{ "source": "JoshVarty/SorghumHeadDetection", "score": 2 }
#### File: SorghumHeadDetection/RetinaNet/inference.py ```python import os import sys import PIL import shutil import pandas as pd import numpy as np from functools import partial from sklearn.model_selection import KFold import torch import fastai from fastai.core import is_tuple from fastai.train import ShowGraph from fastai.vision import Path, open_image, ImageBBox, ObjectItemList, get_transforms, bb_pad_collate, conv_layer from fastai.vision import Learner, create_body, models, conv2d, ifnone, DatasetType, range_of, progress_bar, cnn_learner, Image from fastai.torch_core import to_np from fastai.vision.data import pil2tensor from RetinaNet.object_detection_helper import process_output, nms, rescale_boxes, GeneralEnsemble from RetinaNet.object_detection_helper import create_anchors, get_annotations_from_path from RetinaNet.RetinaNetFocalLoss import FocalLoss from RetinaNet.RetinaNet import RetinaNet from RetinaNet.callbacks import BBLossMetrics, BBMetrics, PascalVOCMetric def tlbr2ltwhcs(boxes, scores): """ Top-Left-Bottom-Right to Left-Top-Width-Height-Class-Score """ new_boxes = [] for box, score in zip(boxes, scores): new_boxes.append([box[1], box[0], box[3] - box[1], box[2] - box[0], 0, score]) return new_boxes #Helper methods for use during inference def get_crop_coordinates(image_height, image_width, verticalCropIndex, horizontalCropIndex, model_input_size): maxVerticalCrops = int(np.ceil(image_height / model_input_size)) maxHorizontalCrops = int(np.ceil(image_width / model_input_size)) lastValidVerticalCrop = image_height - model_input_size lastValidHorizontalCrop = image_width - model_input_size crop_x = (horizontalCropIndex % maxHorizontalCrops) * model_input_size crop_x = min(crop_x, lastValidHorizontalCrop) crop_y = (verticalCropIndex % maxVerticalCrops) * model_input_size crop_y = min(crop_y, lastValidVerticalCrop) return crop_y, crop_x #Overrides fastai's default 'open_image' method to crop based on our crop counter def setupNewCrop(verticalCropIndex, horizontalCropIndex, model_input_size=256): def open_image_with_specific_crop(fn, convert_mode, after_open): """ Opens an image with a specific crop, based on horizontalCropIndex and verticalCropIndex """ x = PIL.Image.open(fn) width, height = x.size crop_y, crop_x = get_crop_coordinates(height, width, verticalCropIndex, horizontalCropIndex, model_input_size) cropped_image = x.crop([crop_x, crop_y, crop_x + model_input_size, crop_y + model_input_size]) # standardize return Image(pil2tensor(cropped_image, np.float32).div_(255)) #Override fastai's open_image() to use our custom open_image_with_specific_crop() fastai.vision.data.open_image = open_image_with_specific_crop def getMaxHeightAndWidth(learn, ds_type=DatasetType.Valid): """ Returns the maximum height and width for a given image dataset """ dl = learn.dl(ds_type) maxHeight = 0 maxWidth = 0 for i in dl.x: height = i.shape[1] width = i.shape[2] if height > maxHeight: maxHeight = height if width > maxWidth: maxWidth = width return maxHeight, maxWidth def get_bounding_box_predictions(learn, dataloader, anchors, original_images, verticalCropIndex, horizontalCropIndex, detect_threshold = 0.5, nms_threshold = 0.1, model_input_size=256): """ Generates bounding box predictions for an entire epoch of a provided Dataloader """ all_imgs = [] all_bboxes = [] all_scores = [] batch_index = 0 for img_batch, target_batch in dataloader: with torch.no_grad(): prediction_batch = learn.model(img_batch) class_pred_batch, bbox_pred_batch = prediction_batch[:2] for index, (img, clas_pred, bbox_pred) in enumerate(zip(img_batch, class_pred_batch, bbox_pred_batch)): original_image = original_images[batch_index + index] all_imgs.append(original_image) #Filter out predictions below detect_thresh bbox_pred, scores, preds = process_output(clas_pred, bbox_pred, anchors, detect_threshold) #If there are no bounding boxes, we're done if len(bbox_pred) <= 0: all_bboxes.append([]) all_scores.append([]) continue #Only keep most likely bounding boxes to_keep = nms(bbox_pred, scores, nms_threshold) if len(to_keep) <= 0: all_bboxes.append([]) all_scores.append([]) continue bbox_pred, preds, scores = bbox_pred[to_keep].cpu(), preds[to_keep].cpu(), scores[to_keep].cpu() #Change back to pixel values height = img.shape[1] width = img.shape[2] t_sz = torch.Tensor([height, width])[None].cpu() bbox_pred = to_np(rescale_boxes(bbox_pred, t_sz)) #Get crop location crop_y, crop_x = get_crop_coordinates(original_image.shape[1], original_image.shape[2], verticalCropIndex, horizontalCropIndex, model_input_size) # change from CTWH to TLRB bbox_pred[:, :2] = bbox_pred[:, :2] - bbox_pred[:, 2:] / 2 #Account for offset due to cropping bbox_pred[:, 0] = bbox_pred[:, 0] + crop_y bbox_pred[:, 2] = bbox_pred[:, 2] + bbox_pred[:, 0] bbox_pred[:, 1] = bbox_pred[:, 1] + crop_x bbox_pred[:, 3] = bbox_pred[:, 3] + bbox_pred[:, 1] all_bboxes.append(bbox_pred) all_scores.append(scores.numpy()) #After completing a batch, we have to keep track the total number of images we've processed batch_index = batch_index + index + 1 return all_imgs, all_bboxes, all_scores def ensembleBoxesFromSlices(all_preds): boxes_by_image = {} for preds in all_preds: all_images, all_boxes, all_scores = preds for i, (boxes, scores) in enumerate(zip(all_boxes, all_scores)): if i not in boxes_by_image: boxes_by_image[i] = [] boxes_by_image[i].append(tlbr2ltwhcs(boxes, scores)) final_preds = [] for image_index, all_boxes in boxes_by_image.items(): ensembled_boxes = GeneralEnsemble(all_boxes) boxes_tlrb = [] for box in ensembled_boxes: #[box_x, box_y, box_w, box_h, class, confidence] # to # [top, left, bottom, right, confidence] boxes_tlrb.append([box[1], box[0], box[1] + box[3], box[0] + box[2], box[5]]) final_preds.append(boxes_tlrb) return final_preds def get_bounding_box_predictions_for_dataset(learn, anchors, ds_type=DatasetType.Valid, model_input_size=256): dl = learn.dl(ds_type) sliced_predictions = [] maxHeight, maxWidth = getMaxHeightAndWidth(learn, ds_type) #Keep track of previous method for opening images old_open_image = fastai.vision.data.open_image try: maxNumberOfVerticalCrops = ((maxHeight - 1) // model_input_size) + 1 maxNumberOfHorizontalCrops = ((maxWidth - 1) // model_input_size) + 1 original_images = list(dl.x) for i in range(maxNumberOfVerticalCrops): for j in range(maxNumberOfHorizontalCrops): #Override fastai's open_image to crop at a specific location in the image setupNewCrop(i, j) #yield get_preds(learn.model, dl, activ=_loss_func2activ(learn.loss_func))[0] predictions = get_bounding_box_predictions(learn, dl, anchors, original_images, i, j) sliced_predictions.append(predictions) predictions = ensembleBoxesFromSlices(sliced_predictions) return predictions finally: #Restore original method for opening images fastai.vision.data.open_image = old_open_image ```
{ "source": "JoshVarty/Tennis", "score": 3 }
#### File: JoshVarty/Tennis/main.py ```python from unityagents import UnityEnvironment import numpy as np from collections import deque import matplotlib.pyplot as plt import torch from agent import Agent env = UnityEnvironment(file_name="Tennis_Linux_NoVis/Tennis.x86_64", worker_id=13) # get the default brain brain_name = env.brain_names[0] brain = env.brains[brain_name] # reset the environment env_info = env.reset(train_mode=True)[brain_name] # number of agents num_agents = len(env_info.agents) print('Number of agents:', num_agents) # size of each action action_size = brain.vector_action_space_size print('Size of each action:', action_size) # examine the state space states = env_info.vector_observations state_size = states.shape[1] print('There are {} agents. Each observes a state with length: {}'.format(states.shape[0], state_size)) print('The state for the first agent looks like:', states[0]) def maddpg(n_episodes=4000, max_t=1000, train_mode=True): all_scores = [] scores_window = deque(maxlen=100) for i_episode in range(1, n_episodes+1): env_info = env.reset(train_mode=train_mode)[brain_name] states = np.reshape(env_info.vector_observations, (1,48)) agent_0.reset() agent_1.reset() scores = np.zeros(num_agents) while True: actions = get_actions(states, add_noise=True) env_info = env.step(actions)[brain_name] next_states = np.reshape(env_info.vector_observations, (1, 48)) rewards = env_info.rewards done = env_info.local_done agent_0.step(states, actions, rewards[0], next_states, done, 0) agent_1.step(states, actions, rewards[1], next_states, done, 1) scores += np.max(rewards) states = next_states if np.any(done): # we're done when the ball hit the ground or goes out of bounds scores_window.append(np.mean(scores)) all_scores.append(np.mean(scores)) break if i_episode % 100 == 0: print('\rEpisode {}\tAverage Score: {:.2f}'.format(i_episode, np.mean(scores_window))) if np.mean(scores_window) >= 0.5: print('\nEnvironment solved in {:d} episodes!\tAverage Score: {:.2f}'.format(i_episode-100, np.mean(scores_window)), flush=True) # Save only the actor because that's all we need to run at test (visualization) time torch.save(agent_0.actor_local.state_dict(), 'checkpoint_actor_0.pth') torch.save(agent_1.actor_local.state_dict(), 'checkpoint_actor_1.pth') break return all_scores def get_actions(states, add_noise=False): action_0 = agent_0.act(states, add_noise) action_1 = agent_1.act(states, add_noise) return np.stack((action_0, action_1), axis=0).flatten() agent_0 = Agent(state_size, action_size) agent_1 = Agent(state_size, action_size) scores = maddpg() fig = plt.figure() ax = fig.add_subplot(111) plt.plot(np.arange(len(scores)), scores) plt.ylabel('Score') plt.xlabel('Episode #') plt.show() ```
{ "source": "joshvernon/payday-leap-year-calculator", "score": 3 }
#### File: joshvernon/payday-leap-year-calculator/api.py ```python from datetime import date import responder import calculator api = responder.API() @api.route("/years") def get_years_collection(req, resp): try: validated_params = validate_params(**req.params) results = calculator.get_payday_leap_years( validated_params['payday'], frequency=validated_params['frequency'], count=validated_params['count'], starting_year=validated_params['year'] ) resp.media = {'paydayLeapYears': results} except ValidationException: resp.media = {'error': 'Invalid parameter value'} resp.status_code = api.status_codes.HTTP_400 @api.route("/years/{year}") def get_year_resource(req, resp, *, year): try: if req.method != 'get': resp.status_code = api.status_codes.HTTP_405 return validated_params = validate_params(startYear=(year,), **req.params) print(validated_params) result = calculator.is_payday_leap_year( validated_params['year'], validated_params['payday'], frequency=validated_params['frequency'] ) resp.media = {'isPaydayLeapYear': result} except ValidationException: resp.media = {'error': 'Invalid parameter value'} resp.status_code = api.status_codes.HTTP_400 def validate_params(**kwargs): try: validated_params = {} if 'payday' in kwargs: validated_params['payday'] = date.fromisoformat(kwargs['payday'][0]) else: validated_params['payday'] = date.today() if 'frequency' in kwargs: validated_params['frequency'] = kwargs['frequency'][0] else: validated_params['frequency'] = 'biweekly' if 'count' in kwargs: validated_params['count'] = int(kwargs['count'][0]) else: validated_params['count'] = 5 if 'startYear' in kwargs: validated_params['year'] = int(kwargs['startYear'][0]) else: validated_params['year'] = date.today().year return validated_params except: raise ValidationException() class ValidationException(Exception): pass if __name__ == '__main__': api.run() ``` #### File: joshvernon/payday-leap-year-calculator/calculator.py ```python from datetime import date def is_payday_leap_year(year, payday, frequency='biweekly'): """Determine if a given year is a payday leap year. Determine if a given year is a payday leap year, based on the given payday on a weekly or biweekly pay calendar (specified by `frequency`). Assumes paychecks are allowed to be disbursed on holidays. Args: year (int): The year we're testing. payday (date): A payday from the specified pay calendar. Does not need to be in the same year as `year`. frequency (str): Pay frequency. Valid values are 'weekly' or 'biweekly'. Default is 'biweekly'. Returns: True if the year is a payday leap year, False if not. """ new_years_day = date(year, 1, 1) jan_2 = date(year, 1, 2) freq_in_days = 7 if frequency == 'weekly' else 14 # Determine if new year's day is a payday. # If new year's day is a payday, then it's always a 27 payday year. if abs((payday - new_years_day).days) % freq_in_days == 0: result = True # Handle leap years - Jan. 2 can also be a payday. elif (year % 4 == 0) and (abs((payday - jan_2).days) % freq_in_days == 0): result = True else: result = False return result def get_payday_leap_years( payday, frequency='biweekly', count=5, starting_year=date.today().year ): """Get the next n payday leap years. Return a list of the next n payday leap years, where n is specified by `count`. Args: payday (date): A payday from the specified pay calendar. frequency (str): Pay frequency. Valid values are 'weekly' or 'biweekly'. Default is 'biweekly'. count (int): The number of payday leap years to return. Default is 5. starting_year (int): The year to start counting from. Returns: A list of ints. """ results = [] # Start counting from the current year. year = starting_year while len(results) < count: if is_payday_leap_year(year, payday, frequency): results.append(year) year += 1 return results if __name__ == '__main__': year = 2018 # January 11, 2018 payday = date(2018, 1, 11) for i in range(51): print("{0} is a payday leap year: {1}".format( year, is_payday_leap_year(year, payday) )) year += 1 ``` #### File: payday-leap-year-calculator/tests/test_calculator.py ```python import unittest from datetime import date from calculator import is_payday_leap_year, get_payday_leap_years class IsPaydayLeapYearTestCase(unittest.TestCase): def test_thursday_2018_is_false(self): payday = date(2018, 1, 11) self.assertFalse(is_payday_leap_year(2018, payday)) def test_thursday_2037_is_true(self): payday = date(2018, 1, 11) self.assertTrue(is_payday_leap_year(2037, payday)) def test_thursday_2037_alternate_week_is_false(self): payday = date(2018, 1, 4) self.assertFalse(is_payday_leap_year(2037, payday)) def test_friday_2038_is_true(self): payday = date(2018, 1, 12) self.assertTrue(is_payday_leap_year(2038, payday)) def test_thursday_2015_weekly_is_true(self): payday = date(2018, 1, 11) self.assertTrue(is_payday_leap_year(2015, payday, 'weekly')) def test_unique_weekly_year(self): payday = date(2018, 1, 11) # 2020 is not a payday leap year for the biweekly frequency. self.assertTrue(is_payday_leap_year(2020, payday, 'weekly')) def test_invalid_year_raises_TypeError(self): payday = (2017, 10, 19) self.assertRaises(TypeError, is_payday_leap_year, 'not_an_int', payday) def test_invalid_payday_raises_TypeError(self): self.assertRaises(TypeError, is_payday_leap_year, 2018, 'not_a_date') def test_invalid_frequency_defaults_to_14(self): payday = date(2018, 1, 11) # Should default to biweekly - 2015 will be valid. self.assertTrue(is_payday_leap_year(2015, payday, 'not_valid')) # Would be True for weekly - checking this doesn't happen. self.assertFalse(is_payday_leap_year(2020, payday, 'not_valid')) class GetPaydayLeapYearsTestCase(unittest.TestCase): def test_7_26_2018_returns_correct_years(self): payday = date(2018, 7, 26) expected = [2026, 2037, 2048, 2060, 2071] results = get_payday_leap_years(payday) self.assertEqual(results, expected) def test_7_26_2018_returns_correct_years_weekly_frequency(self): payday = date(2018, 7, 26) expected = [2020, 2026, 2032, 2037, 2043] results = get_payday_leap_years(payday, frequency='weekly') self.assertEqual(results, expected) def test_non_default_count(self): payday = date(2018, 7, 26) results = get_payday_leap_years(payday, count=10) self.assertEqual(len(results), 10) def test_zero_count_returns_empty_result_set(self): payday = date(2018, 7, 26) results = get_payday_leap_years(payday, count=0) self.assertEqual(len(results), 0) def test_non_default_starting_year(self): payday = date(2018, 7, 26) results = get_payday_leap_years(payday, starting_year=2000) self.assertIn(2004, results) if __name__ == '__main__': unittest.main(verbosity=2) ```
{ "source": "joshvillbrandt/django-quick-start-app", "score": 2 }
#### File: joshvillbrandt/django-quick-start-app/views.py ```python from django.http import Http404, HttpResponseRedirect, HttpResponse from django.shortcuts import get_object_or_404, render from django.core.urlresolvers import reverse from {{ app_name }}.models import * # Create your views here. # For more information on this file, see # https://docs.djangoproject.com/en/{{ docs_version }}/intro/tutorial03/ def index(request): latest_poll_list = Poll.objects.all().order_by('-pub_date')[:5] context = { 'active_nav': '{{ app_name }}', 'latest_poll_list': latest_poll_list } return render(request, '{{ app_name }}/index.html', context) def detail(request, poll_id): try: poll = Poll.objects.get(pk=poll_id) except Poll.DoesNotExist: raise Http404 context = { 'active_nav': '{{ app_name }}', 'poll': poll } return render(request, '{{ app_name }}/detail.html', context) def results(request, poll_id): poll = get_object_or_404(Poll, pk=poll_id) context = { 'active_nav': '{{ app_name }}', 'poll': poll } return render(request, '{{ app_name }}/results.html', context) def vote(request, poll_id): p = get_object_or_404(Poll, pk=poll_id) try: selected_choice = p.choice_set.get(pk=request.POST['choice']) except (KeyError, Choice.DoesNotExist): # Redisplay the poll voting form. return render(request, '{{ app_name }}/detail.html', { 'active_nav': '{{ app_name }}', 'poll': p, 'error_message': "You didn't select a choice.", }) return detail(request, poll_id) else: selected_choice.votes += 1 selected_choice.save() # Always return an HttpResponseRedirect after successfully dealing # with POST data. This prevents data from being posted twice if a # user hits the Back button. return HttpResponseRedirect(reverse('{{ app_name }}:results', args=(p.id,))) ```
{ "source": "joshvillbrandt/PythonTemplate", "score": 2 }
#### File: PythonTemplate/tests/TestModel.py ```python import unittest from PythonTemplate import Model class TestModel(unittest.TestCase): def setUp(self): # TODO pass def test_do_thing(self): # do something Model.doThing() # evaluate something # TODO ```
{ "source": "joshvinson/Bonisagus", "score": 3 }
#### File: Bonisagus/Core/virtue.py ```python SPECIAL = '*' FREE = 0 MINOR = 1 MAJOR = 3 class Virtue(): def __init__(self, virtue_type, magnitude, name, book="", pages=""): self.name = name self.book = book self.pages = pages self.magnitude = magnitude self.virtue_type = virtue_type def to_json(self): return self.__dict__ class Flaw(): def __init__(self, flaw_type, magnitude, name, book="", pages=""): self.name = name self.book = book self.pages = pages self.magnitude = magnitude self.flaw_type = flaw_type def to_json(self): return self.__dict__ ```
{ "source": "JoshVStaden/codex-africanus", "score": 2 }
#### File: calibration/utils/dask.py ```python from africanus.calibration.utils.correct_vis import CORRECT_VIS_DOCS from africanus.calibration.utils.corrupt_vis import CORRUPT_VIS_DOCS from africanus.calibration.utils.residual_vis import RESIDUAL_VIS_DOCS from africanus.calibration.utils.compute_and_corrupt_vis import ( COMPUTE_AND_CORRUPT_VIS_DOCS) from africanus.calibration.utils import correct_vis as np_correct_vis from africanus.calibration.utils import (compute_and_corrupt_vis as np_compute_and_corrupt_vis) from africanus.calibration.utils import corrupt_vis as np_corrupt_vis from africanus.calibration.utils import residual_vis as np_residual_vis from africanus.calibration.utils import check_type from africanus.calibration.utils.utils import DIAG_DIAG, DIAG, FULL from africanus.util.requirements import requires_optional try: from dask.array.core import blockwise except ImportError as e: dask_import_error = e else: dask_import_error = None def _corrupt_vis_wrapper(time_bin_indices, time_bin_counts, antenna1, antenna2, jones, model): return np_corrupt_vis(time_bin_indices, time_bin_counts, antenna1, antenna2, jones[0][0], model[0]) @requires_optional('dask.array', dask_import_error) def corrupt_vis(time_bin_indices, time_bin_counts, antenna1, antenna2, jones, model): mode = check_type(jones, model, vis_type='model') if jones.chunks[1][0] != jones.shape[1]: raise ValueError("Cannot chunk jones over antenna") if jones.chunks[3][0] != jones.shape[3]: raise ValueError("Cannot chunk jones over direction") if model.chunks[2][0] != model.shape[2]: raise ValueError("Cannot chunk model over direction") if mode == DIAG_DIAG: out_shape = ("row", "chan", "corr1") model_shape = ("row", "chan", "dir", "corr1") jones_shape = ("row", "ant", "chan", "dir", "corr1") elif mode == DIAG: out_shape = ("row", "chan", "corr1", "corr2") model_shape = ("row", "chan", "dir", "corr1", "corr2") jones_shape = ("row", "ant", "chan", "dir", "corr1") elif mode == FULL: out_shape = ("row", "chan", "corr1", "corr2") model_shape = ("row", "chan", "dir", "corr1", "corr2") jones_shape = ("row", "ant", "chan", "dir", "corr1", "corr2") else: raise ValueError("Unknown mode argument of %s" % mode) # the new_axes={"corr2": 2} is required because of a dask bug # see https://github.com/dask/dask/issues/5550 return blockwise(_corrupt_vis_wrapper, out_shape, time_bin_indices, ("row",), time_bin_counts, ("row",), antenna1, ("row",), antenna2, ("row",), jones, jones_shape, model, model_shape, adjust_chunks={"row": antenna1.chunks[0]}, new_axes={"corr2": 2}, dtype=model.dtype, align_arrays=False) def _compute_and_corrupt_vis_wrapper(time_bin_indices, time_bin_counts, antenna1, antenna2, jones, model, uvw, freq, lm): return np_compute_and_corrupt_vis(time_bin_indices, time_bin_counts, antenna1, antenna2, jones[0][0], model[0], uvw[0], freq, lm[0][0]) @requires_optional('dask.array', dask_import_error) def compute_and_corrupt_vis(time_bin_indices, time_bin_counts, antenna1, antenna2, jones, model, uvw, freq, lm): if jones.chunks[1][0] != jones.shape[1]: raise ValueError("Cannot chunk jones over antenna") if jones.chunks[3][0] != jones.shape[3]: raise ValueError("Cannot chunk jones over direction") if model.chunks[2][0] != model.shape[2]: raise ValueError("Cannot chunk model over direction") if uvw.chunks[1][0] != uvw.shape[1]: raise ValueError("Cannot chunk uvw over last axis") if lm.chunks[1][0] != lm.shape[1]: raise ValueError("Cannot chunks lm over direction") if lm.chunks[2][0] != lm.shape[2]: raise ValueError("Cannot chunks lm over last axis") mode = check_type(jones, model, vis_type='model') if mode == DIAG_DIAG: out_shape = ("row", "chan", "corr1") model_shape = ("row", "chan", "dir", "corr1") jones_shape = ("row", "ant", "chan", "dir", "corr1") elif mode == DIAG: out_shape = ("row", "chan", "corr1", "corr2") model_shape = ("row", "chan", "dir", "corr1", "corr2") jones_shape = ("row", "ant", "chan", "dir", "corr1") elif mode == FULL: out_shape = ("row", "chan", "corr1", "corr2") model_shape = ("row", "chan", "dir", "corr1", "corr2") jones_shape = ("row", "ant", "chan", "dir", "corr1", "corr2") else: raise ValueError("Unknown mode argument of %s" % mode) # the new_axes={"corr2": 2} is required because of a dask bug # see https://github.com/dask/dask/issues/5550 return blockwise(_compute_and_corrupt_vis_wrapper, out_shape, time_bin_indices, ("row",), time_bin_counts, ("row",), antenna1, ("row",), antenna2, ("row",), jones, jones_shape, model, model_shape, uvw, ("row", "three"), freq, ("chan",), lm, ("row", "dir", "two"), adjust_chunks={"row": antenna1.chunks[0]}, new_axes={"corr2": 2}, dtype=model.dtype, align_arrays=False) def _correct_vis_wrapper(time_bin_indices, time_bin_counts, antenna1, antenna2, jones, vis, flag): return np_correct_vis(time_bin_indices, time_bin_counts, antenna1, antenna2, jones[0][0], vis, flag) @requires_optional('dask.array', dask_import_error) def correct_vis(time_bin_indices, time_bin_counts, antenna1, antenna2, jones, vis, flag): if jones.chunks[1][0] != jones.shape[1]: raise ValueError("Cannot chunk jones over antenna") if jones.chunks[3][0] != jones.shape[3]: raise ValueError("Cannot chunk jones over direction") mode = check_type(jones, vis) if mode == DIAG_DIAG: out_shape = ("row", "chan", "corr1") jones_shape = ("row", "ant", "chan", "dir", "corr1") elif mode == DIAG: out_shape = ("row", "chan", "corr1", "corr2") jones_shape = ("row", "ant", "chan", "dir", "corr1") elif mode == FULL: out_shape = ("row", "chan", "corr1", "corr2") jones_shape = ("row", "ant", "chan", "dir", "corr1", "corr2") else: raise ValueError("Unknown mode argument of %s" % mode) # the new_axes={"corr2": 2} is required because of a dask bug # see https://github.com/dask/dask/issues/5550 return blockwise(_correct_vis_wrapper, out_shape, time_bin_indices, ("row",), time_bin_counts, ("row",), antenna1, ("row",), antenna2, ("row",), jones, jones_shape, vis, out_shape, flag, out_shape, adjust_chunks={"row": antenna1.chunks[0]}, new_axes={"corr2": 2}, dtype=vis.dtype, align_arrays=False) def _residual_vis_wrapper(time_bin_indices, time_bin_counts, antenna1, antenna2, jones, vis, flag, model): return np_residual_vis(time_bin_indices, time_bin_counts, antenna1, antenna2, jones[0][0], vis, flag, model[0]) @requires_optional('dask.array', dask_import_error) def residual_vis(time_bin_indices, time_bin_counts, antenna1, antenna2, jones, vis, flag, model): if jones.chunks[1][0] != jones.shape[1]: raise ValueError("Cannot chunk jones over antenna") if jones.chunks[3][0] != jones.shape[3]: raise ValueError("Cannot chunk jones over direction") if model.chunks[2][0] != model.shape[2]: raise ValueError("Cannot chunk model over direction") mode = check_type(jones, vis) if mode == DIAG_DIAG: out_shape = ("row", "chan", "corr1") model_shape = ("row", "chan", "dir", "corr1") jones_shape = ("row", "ant", "chan", "dir", "corr1") elif mode == DIAG: out_shape = ("row", "chan", "corr1", "corr2") model_shape = ("row", "chan", "dir", "corr1", "corr2") jones_shape = ("row", "ant", "chan", "dir", "corr1") elif mode == FULL: out_shape = ("row", "chan", "corr1", "corr2") model_shape = ("row", "chan", "dir", "corr1", "corr2") jones_shape = ("row", "ant", "chan", "dir", "corr1", "corr2") else: raise ValueError("Unknown mode argument of %s" % mode) # the new_axes={"corr2": 2} is required because of a dask bug # see https://github.com/dask/dask/issues/5550 return blockwise(_residual_vis_wrapper, out_shape, time_bin_indices, ("row",), time_bin_counts, ("row",), antenna1, ("row",), antenna2, ("row",), jones, jones_shape, vis, out_shape, flag, out_shape, model, model_shape, adjust_chunks={"row": antenna1.chunks[0]}, new_axes={"corr2": 2}, dtype=vis.dtype, align_arrays=False) compute_and_corrupt_vis.__doc__ = COMPUTE_AND_CORRUPT_VIS_DOCS.substitute( array_type=":class:`dask.array.Array`") corrupt_vis.__doc__ = CORRUPT_VIS_DOCS.substitute( array_type=":class:`dask.array.Array`") correct_vis.__doc__ = CORRECT_VIS_DOCS.substitute( array_type=":class:`dask.array.Array`") residual_vis.__doc__ = RESIDUAL_VIS_DOCS.substitute( array_type=":class:`dask.array.Array`") ``` #### File: deconv/hogbom/clean.py ```python import logging import numba import numpy as np try: import scipy.signal from scipy import optimize as opt except ImportError as e: opt_import_err = e else: opt_import_err = None from africanus.util.requirements import requires_optional @numba.jit(nopython=True, nogil=True, cache=True) def twod_gaussian(coords, amplitude, xo, yo, sigma_x, sigma_y, theta, offset): x = coords[0] y = coords[1] xo = float(xo) yo = float(yo) a = (np.cos(theta)**2)/(2*sigma_x**2) + (np.sin(theta)**2)/(2*sigma_y**2) b = -(np.sin(2*theta))/(4*sigma_x**2) + (np.sin(2*theta))/(4*sigma_y**2) c = (np.sin(theta)**2)/(2*sigma_x**2) + (np.cos(theta)**2)/(2*sigma_y**2) g = (offset + amplitude * np.exp(- (a*((x-xo)**2) + 2*b*(x-xo)*(y-yo) + c*((y-yo)**2)))) return g.flatten() @requires_optional('scipy', opt_import_err) def fit_2d_gaussian(psf): """ Fit an elliptical Gaussian to the primary lobe of the psf """ # Get the full width at half maximum height of the psf # numba doesn't have argwhere, but it can jit argwhere's # implementation # I = np.stack((psf>=0.5*psf.max()).nonzero()).transpose() loc = np.argwhere(psf >= 0.5*psf.max()) # Create an array with these values at the same indices and zeros otherwise lk, mk = psf.shape psf_fit = np.zeros_like(psf) psf_fit[loc[:, 0], loc[:, 1]] = psf[loc[:, 0], loc[:, 1]] # Create x and y indices x = np.linspace(0, psf.shape[0]-1, psf.shape[0]) y = np.linspace(0, psf.shape[1]-1, psf.shape[1]) x, y = np.meshgrid(x, y) # Set starting point of optimiser initial_guess = (0.5, lk/2, mk/2, 1.75, 1.4, -4.0, 0) # Flatten the data data = psf_fit.ravel() # Fit the function (Gaussian for now) popt, pcov = opt.curve_fit(twod_gaussian, (x, y), data, p0=initial_guess) # Get function with fitted params data_fitted = twod_gaussian((x, y), *popt) # Normalise the psf to have a max value of one data_fitted = data_fitted/data_fitted.max() return data_fitted.reshape(lk, mk) @numba.jit(nopython=True, nogil=True, cache=True) def find_peak(residuals): abs_residuals = residuals min_peak = abs_residuals.min() max_peak = abs_residuals.max() nx, ny = abs_residuals.shape minx, miny = -1, -1 maxx, maxy = -1, -1 peak_intensity = -1 for x in range(nx): for y in range(ny): intensity = abs_residuals[x, y] if intensity == min_peak: minx = x miny = y if intensity == max_peak: maxx = x maxy = y peak_intensity = intensity if minx == -1 or miny == -1: raise ValueError("Minimum peak not found") if maxx == -1 or maxy == -1: raise ValueError("Maximum peak not found") return maxx, maxy, minx, miny, peak_intensity @numba.jit(nopython=True, nogil=True, cache=True) def build_cleanmap(clean, intensity, gamma, p, q): clean[p, q] += intensity*gamma @numba.jit(nopython=True, nogil=True, cache=True) def update_residual(residual, intensity, gamma, p, q, npix, psf): npix = residual.shape[0] # Assuming square image residual -= gamma*intensity*psf[npix - 1 - p:2*npix - 1 - p, npix - 1 - q:2*npix - 1 - q] def hogbom_clean(dirty, psf, gamma=0.1, threshold="default", niter="default"): """ Performs Hogbom Clean on the ``dirty`` image given the ``psf``. Parameters ---------- dirty : np.ndarray float64 dirty image of shape (ny, nx) psf : np.ndarray float64 Point Spread Function of shape (2*ny, 2*nx) gamma (optional) float the gain factor (must be less than one) threshold (optional) : float or str the threshold to clean to niter (optional : integer the maximum number of iterations allowed Returns ------- np.ndarray float64 clean image of shape (ny, nx) np.ndarray float64 residual image of shape (ny, nx) """ # deep copy dirties to first residuals, # want to keep the original dirty maps residuals = dirty.copy() # Check that psf is twice the size of residuals if (psf.shape[0] != 2*residuals.shape[0] or psf.shape[1] != 2*residuals.shape[1]): raise ValueError("Warning psf not right size") # Initialise array to store cleaned image clean = np.zeros_like(residuals) assert clean.shape[0] == clean.shape[1] npix = clean.shape[0] if niter == "default": niter = 3*npix p, q, pmin, qmin, intensity = find_peak(residuals) if threshold == "default": # Imin + 0.001*(intensity - Imin) threshold = 0.2*np.abs(intensity) logging.info("Threshold set at %s", threshold) else: # Imin + 0.001*(intensity - Imin) threshold = threshold*np.abs(intensity) logging.info("Assuming user set threshold at %s", threshold) # CLEAN the image i = 0 while np.abs(intensity) > threshold and i <= niter: logging.info("min %f max %f peak %f threshold %f" % (residuals.min(), residuals.max(), intensity, threshold)) # First we set the build_cleanmap(clean, intensity, gamma, p, q) # Subtract out pixel update_residual(residuals, intensity, gamma, p, q, npix, psf) # Get new indices where residuals is max p, q, _, _, intensity = find_peak(residuals) # Increment counter i += 1 # Warn if niter exceeded if i > niter: logging.warn("Number of iterations exceeded") logging.warn("Minimum residuals = %s", residuals.max()) logging.info("Done cleaning after %d iterations.", i) return clean, residuals @requires_optional("scipy", opt_import_err) def restore(clean, psf, residuals): """ Parameters ---------- clean : np.ndarray float64 clean image of shape (ny, nx) psf : np.ndarray float64 Point Spread Function of shape (2*ny, 2*nx) residuals : np.ndarray float64 residual image of shape (ny, nx) Returns ------- np.ndarray float64 Restored image of shape (ny, nx) np.ndarray float64 Convolved model of shape (ny, nx) """ logging.info("Fitting 2D Gaussian") # get the ideal beam (fit 2D Gaussian to HWFH of psf) clean_beam = fit_2d_gaussian(psf) logging.info("Convolving") # cval=0.0) #Fast using fft iconv_model = scipy.signal.fftconvolve(clean, clean_beam, mode='same') logging.info("Convolving done") # Finally we add the residuals back to the image restored = iconv_model + residuals return (restored, iconv_model) if __name__ == "__main__": pass ``` #### File: dft/examples/predict_from_fits.py ```python import argparse import numpy as np from astropy.io import fits import dask import dask.array as da from dask.diagnostics import ProgressBar from africanus.dft.dask import im_to_vis from daskms import xds_from_ms, xds_from_table, xds_to_table def create_parser(): p = argparse.ArgumentParser() p.add_argument("ms", help="Name of MS") p.add_argument("--fitsmodel", help="Fits file to predict from") p.add_argument("--row_chunks", default=30000, type=int, help="How to chunks up row dimension.") p.add_argument("--ncpu", default=0, type=int, help="Number of threads to use for predict") p.add_argument("--colname", default="MODEL_DATA", help="Name of column to write data to.") p.add_argument('--field', default=0, type=int, help="Field ID to predict to.") return p args = create_parser().parse_args() if args.ncpu: ncpu = args.ncpu from multiprocessing.pool import ThreadPool dask.config.set(pool=ThreadPool(ncpu)) else: import multiprocessing ncpu = multiprocessing.cpu_count() print("Using %i threads" % ncpu) # Get MS frequencies spw_ds = list(xds_from_table("::".join((args.ms, "SPECTRAL_WINDOW")), group_cols="__row__"))[0] # Get frequencies in the measurement set # If these do not match those in the fits # file we need to interpolate ms_freqs = spw_ds.CHAN_FREQ.data[0].compute() nchan = ms_freqs.size # load in the fits file model = fits.getdata(args.fitsmodel) # get header hdr = fits.getheader(args.fitsmodel) # TODO - check that PHASE_DIR in MS matches that in fits # get image coordinates if hdr['CUNIT1'] != "DEG" and hdr['CUNIT1'] != "deg": raise ValueError("Image units must be in degrees") npix_l = hdr['NAXIS1'] refpix_l = hdr['CRPIX1'] delta_l = hdr['CDELT1'] * np.pi/180 # assumes untis are deg l0 = hdr['CRVAL1'] * np.pi/180 l_coord = np.sort(np.arange(1 - refpix_l, 1 + npix_l - refpix_l)*delta_l) if hdr['CUNIT2'] != "DEG" and hdr['CUNIT2'] != "deg": raise ValueError("Image units must be in degrees") npix_m = hdr['NAXIS2'] refpix_m = hdr['CRPIX2'] delta_m = hdr['CDELT2'] * np.pi/180 # assumes untis are deg m0 = hdr['CRVAL2'] * np.pi/180 m_coord = np.arange(1 - refpix_m, 1 + npix_m - refpix_m)*delta_m npix_tot = npix_l * npix_m # get frequencies if hdr["CTYPE4"] == 'FREQ': nband = hdr['NAXIS4'] refpix_nu = hdr['CRPIX4'] delta_nu = hdr['CDELT4'] # assumes units are Hz ref_freq = hdr['CRVAL4'] ncorr = hdr['NAXIS3'] freq_axis = str(4) elif hdr["CTYPE3"] == 'FREQ': nband = hdr['NAXIS3'] refpix_nu = hdr['CRPIX3'] delta_nu = hdr['CDELT3'] # assumes units are Hz ref_freq = hdr['CRVAL3'] ncorr = hdr['NAXIS4'] freq_axis = str(3) else: raise ValueError("Freq axis must be 3rd or 4th") freqs = ref_freq + np.arange(1 - refpix_nu, 1 + nband - refpix_nu) * delta_nu print("Reference frequency is ", ref_freq) # TODO - need to use convert for this if ncorr > 1: raise ValueError("Currently only works on a single correlation") # if frequencies do not match we need to reprojects fits cube if np.any(ms_freqs != freqs): print("Warning - reprojecting fits cube to MS freqs. " "This uses a lot of memory. ") from scipy.interpolate import RegularGridInterpolator # interpolate fits cube fits_interp = RegularGridInterpolator((freqs, l_coord, m_coord), model.squeeze(), bounds_error=False, fill_value=None) # reevaluate at ms freqs vv, ll, mm = np.meshgrid(ms_freqs, l_coord, m_coord, indexing='ij') vlm = np.vstack((vv.flatten(), ll.flatten(), mm.flatten())).T model_cube = fits_interp(vlm).reshape(nchan, npix_l, npix_m) else: model_cube = model # set up coords for DFT ll, mm = np.meshgrid(l_coord, m_coord) lm = np.vstack((ll.flatten(), mm.flatten())).T # get non-zero components of model model_cube = model_cube.reshape(nchan, npix_tot) model_max = np.amax(np.abs(model_cube), axis=0) idx_nz = np.argwhere(model_max > 0.0).squeeze() model_predict = np.transpose(model_cube[:, None, idx_nz], [2, 0, 1]) ncomps = idx_nz.size model_predict = da.from_array(model_predict, chunks=(ncomps, nchan, ncorr)) lm = da.from_array(lm[idx_nz, :], chunks=(ncomps, 2)) ms_freqs = spw_ds.CHAN_FREQ.data xds = xds_from_ms(args.ms, columns=["UVW", args.colname], chunks={"row": args.row_chunks})[0] uvw = xds.UVW.data vis = im_to_vis(model_predict, uvw, lm, ms_freqs) data = getattr(xds, args.colname) if data.shape != vis.shape: print("Assuming only Stokes I passed in") if vis.shape[-1] == 1 and data.shape[-1] == 4: tmp_zero = da.zeros(vis.shape, chunks=(args.row_chunks, nchan, 1)) vis = da.concatenate((vis, tmp_zero, tmp_zero, vis), axis=-1) elif vis.shape[-1] == 1 and data.shape[-1] == 2: vis = da.concatenate((vis, vis), axis=-1) else: raise ValueError("Incompatible corr axes") vis = vis.rechunk((args.row_chunks, nchan, data.shape[-1])) # Assign visibilities to MODEL_DATA array on the dataset xds = xds.assign(**{args.colname: (("row", "chan", "corr"), vis)}) # Create a write to the table write = xds_to_table(xds, args.ms, [args.colname]) # Submit all graph computations in parallel with ProgressBar(): dask.compute(write) ``` #### File: nifty/tests/test_nifty_gridder.py ```python import numpy as np from numpy.testing import assert_array_almost_equal import pickle import pytest from africanus.gridding.nifty.dask import (grid, degrid, dirty, model, grid_config) def rf(*a, **kw): return np.random.random(*a, **kw) def rc(*a, **kw): return rf(*a, **kw) + 1j*rf(*a, **kw) def test_dask_nifty_gridder(): """ Only tests that we can call it and create a dirty image """ dask = pytest.importorskip('dask') da = pytest.importorskip('dask.array') _ = pytest.importorskip('nifty_gridder') row = (16,)*8 chan = (32,) corr = (4,) nx = 1026 ny = 1022 nrow = sum(row) nchan = sum(chan) ncorr = sum(corr) # Random UV data uvw = rf(size=(nrow, 3)).astype(np.float64)*128 vis = rf(size=(nrow, nchan, ncorr)).astype(np.complex128) freq = np.linspace(.856e9, 2*.856e9, nchan) flag = np.zeros(vis.shape, dtype=np.uint8) flag = np.random.randint(0, 2, vis.shape, dtype=np.uint8).astype(np.bool) weight = rf(vis.shape).astype(np.float64) da_vis = da.from_array(vis, chunks=(row, chan, corr)) da_uvw = da.from_array(uvw, chunks=(row, 3)) da_freq = da.from_array(freq, chunks=chan) da_flag = da.from_array(flag, chunks=(row, chan, corr)) da_weight = da.from_array(weight, chunks=(row, chan, corr)) gc = grid_config(nx, ny, 2e-13, 2.0, 2.0) # Standard fan reduction g = grid(da_vis, da_uvw, da_flag, da_weight, da_freq, gc) d1 = dirty(g, gc) grid_shape = (gc.object.Nu(), gc.object.Nv(), ncorr) dirty_shape = (gc.object.Nxdirty(), gc.object.Nydirty(), ncorr) assert g.shape == grid_shape assert d1.shape == dirty_shape == (nx, ny, ncorr) # Stream reduction (single stream) g = grid(da_vis, da_uvw, da_flag, da_weight, da_freq, gc, streams=1) d2 = dirty(g, gc) assert g.shape == grid_shape assert d2.shape == dirty_shape == (nx, ny, ncorr) # Stream reductino (three streams) g = grid(da_vis, da_uvw, da_flag, da_weight, da_freq, gc, streams=3) d3 = dirty(g, gc) assert g.shape == grid_shape assert d3.shape == dirty_shape == (nx, ny, ncorr) # All three techniques produce similar results d1, d2, d3 = dask.compute(d1, d2, d3) assert_array_almost_equal(d1, d2) assert_array_almost_equal(d2, d3) def test_dask_nifty_degridder(): """ Only tests that we can call it and create some visibilities """ da = pytest.importorskip('dask.array') _ = pytest.importorskip('nifty_gridder') row = (16, 16, 16, 16) chan = (32,) corr = (4,) nrow = sum(row) nchan = sum(chan) ncorr = sum(corr) nx = 1026 ny = 1022 gc = grid_config(nx, ny, 2e-13, 2.0, 2.0) # Random UV data uvw = rf(size=(nrow, 3)).astype(np.float64)*128 freq = np.linspace(.856e9, 2*.856e9, nchan) flag = np.zeros((nrow, nchan, ncorr), dtype=np.bool) weight = np.ones((nrow, nchan, ncorr), dtype=np.float64) image = rc(size=(nx, ny, ncorr)).astype(np.complex128) da_uvw = da.from_array(uvw, chunks=(row, 3)) da_freq = da.from_array(freq, chunks=chan) da_flag = da.from_array(flag, chunks=(row, chan, corr)) da_weight = da.from_array(weight, chunks=(row, chan, corr)) da_image = da.from_array(image, chunks=(nx, ny, 1)) da_grid_vis = model(da_image, gc) da_vis = degrid(da_grid_vis, da_uvw, da_flag, da_weight, da_freq, gc) vis = da_vis.compute() assert vis.shape == da_vis.shape def test_pickle_gridder_config(): gc = grid_config(512, 1024, 5e-13, 1.3, 2.0) gc2 = pickle.loads(pickle.dumps(gc)) assert gc is not gc2 assert gc.object.Nxdirty() == gc2.object.Nxdirty() == 512 assert gc.object.Nydirty() == gc2.object.Nydirty() == 1024 assert gc.object.Epsilon() == gc2.object.Epsilon() == 5e-13 assert gc.object.Pixsize_x() == gc2.object.Pixsize_x() == 1.3 assert gc.object.Pixsize_y() == gc2.object.Pixsize_y() == 2.0 ``` #### File: perleypolyhedron/policies/baseline_transform_policies.py ```python from africanus.util.numba import jit, overload from numpy import cos, sin def uvw_norotate(uvw, ra0, dec0, ra, dec, policy_type): pass def uvw_rotate(uvw, ra0, dec0, ra, dec, policy_type): ''' Compute the following 3x3 coordinate transformation matrix: Z_rot(facet_new_rotation) * \\ T(new_phase_centre_ra,new_phase_centre_dec) * \\ transpose(T(old_phase_centre_ra, old_phase_centre_dec)) * \\ transpose(Z_rot(facet_old_rotation)) where: | cRA -sRA 0 | T (RA,D) = | -sDsRA -sDcRA cD | | cDsRA cDcRA sD | This is the similar to the one in <NAME>.; <NAME>.; and <NAME>., Jr. Interferometry and Synthesis in Radio Astronomy, New York: Wiley, ch. 4, but in a lefthanded system. We're not transforming between a coordinate system with w pointing towards the pole and one with w pointing towards the reference centre here, so the last rotation matrix is ignored! This transformation will let the image be tangent to the celestial sphere at the new delay centre ''' d_ra = ra - ra0 c_d_ra = cos(d_ra) s_d_ra = sin(d_ra) c_new_dec = cos(dec) c_old_dec = cos(dec0) s_new_dec = sin(dec) s_old_dec = sin(dec0) mat_11 = c_d_ra mat_12 = s_old_dec * s_d_ra mat_13 = -c_old_dec * s_d_ra mat_21 = -s_new_dec * s_d_ra mat_22 = s_new_dec * s_old_dec * c_d_ra + c_new_dec * c_old_dec mat_23 = -c_old_dec * s_new_dec * c_d_ra + c_new_dec * s_old_dec mat_31 = c_new_dec * s_d_ra mat_32 = -c_new_dec * s_old_dec * c_d_ra + s_new_dec * c_old_dec mat_33 = c_new_dec * c_old_dec * c_d_ra + s_new_dec * s_old_dec uvw[0] = mat_11 * uvw[0] + mat_12 * uvw[1] + mat_13 * uvw[3] uvw[1] = mat_21 * uvw[0] + mat_22 * uvw[1] + mat_23 * uvw[3] uvw[2] = mat_31 * uvw[0] + mat_32 * uvw[1] + mat_33 * uvw[3] @jit(nopython=True, nogil=True, fastmath=True, parallel=False) def uvw_planarwapprox(uvw, ra0, dec0, ra, dec, policy_type): ''' Implements the coordinate uv transform associated with taking a planar approximation to w(n-1) as described in Kogan & Greisen's AIPS Memo 113 This is essentially equivalent to rotating the facet to be tangent to the celestial sphere as Perley suggested to limit error, but it instead takes w into account in a linear approximation to the phase error near the facet centre. This keeps the facets parallel to the original facet plane. Of course this 2D taylor expansion of the first order is only valid over a small field of view, but that true of normal tilted faceting as well. Only a convolution can get rid of the (n-1) factor in the ME. ''' d_ra = ra - ra0 n_dec = dec o_dec = dec0 c_d_ra = cos(d_ra) s_d_ra = sin(d_ra) c_new_dec = cos(n_dec) c_old_dec = cos(o_dec) s_new_dec = sin(n_dec) s_old_dec = sin(o_dec) li0 = c_new_dec * s_d_ra mi0 = s_new_dec * c_old_dec - c_new_dec * s_old_dec * c_d_ra ni0 = s_new_dec * s_old_dec + c_new_dec * c_old_dec * c_d_ra uvw[0] = uvw[0] - uvw[2] * li0 / ni0 uvw[1] = uvw[1] - uvw[2] * mi0 / ni0 def policy(uvw, ra0, dec0, ra, dec, policy_type): pass @overload(policy, inline="always") def policy_impl(uvw, ra0, dec0, ra, dec, policy_type): if policy_type.literal_value == "None": return uvw_norotate elif policy_type.literal_value == "rotate": return uvw_rotate elif policy_type.literal_value == "wlinapprox": return uvw_planarwapprox else: raise ValueError("Invalid baseline transform policy type") ``` #### File: perleypolyhedron/policies/phase_transform_policies.py ```python from africanus.util.numba import overload from numpy import pi, cos, sin, sqrt def phase_norotate(vis, uvw, lambdas, ra0, dec0, ra, dec, policy_type, phasesign=1.0): pass def phase_rotate(vis, uvw, lambdas, ra0, dec0, ra, dec, policy_type, phasesign=1.0): ''' Convert ra,dec to l,m,n based on Synthesis Imaging II, Pg. 388 The phase term (as documented in Perley & Cornwell (1992)) calculation requires the delta l,m,n coordinates. Through simplification l0,m0,n0 = (0,0,1) (assume dec == dec0 and ra == ra0, and the simplification follows) l,m,n is then calculated using the new and original phase centres as per the relation on Pg. 388 lambdas has the same shape as vis ''' d_ra = ra - ra0 d_dec = dec d_decp = dec0 c_d_dec = cos(d_dec) s_d_dec = sin(d_dec) s_d_ra = sin(d_ra) c_d_ra = cos(d_ra) c_d_decp = cos(d_decp) s_d_decp = sin(d_decp) ll = c_d_dec * s_d_ra mm = (s_d_dec * c_d_decp - c_d_dec * s_d_decp * c_d_ra) nn = -(1 - sqrt(1 - ll * ll - mm * mm)) for c in range(lambdas.size): x = phasesign * 2 * pi * (uvw[0] * ll + uvw[1] * mm + uvw[2] * nn) / lambdas[c] vis[c, :] *= cos(x) + 1.0j * sin(x) def policy(vis, uvw, lambdas, ra0, dec0, ra, dec, policy_type, phasesign=1.0): pass @overload(policy, inline="always") def policy_impl(vis, uvw, lambdas, ra0, dec0, ra, dec, policy_type, phasesign=1.0): if policy_type.literal_value == "None" or \ policy_type.literal_value is None: return phase_norotate elif policy_type.literal_value == "phase_rotate": return phase_rotate else: raise ValueError("Invalid baseline transform policy type") ``` #### File: perleypolyhedron/policies/stokes_conversion_policies.py ```python from africanus.util.numba import overload def stokes2corr(vis_in, vis_out, policy_type): pass @overload(stokes2corr, inline="always") def stokes2corrimpl(vis_in, vis_out, policy_type): if policy_type.literal_value == "XXYY_FROM_I": def XXYY_FROM_I(vis_in, vis_out, policy_type): vis_out[0] += vis_in vis_out[1] += vis_in return XXYY_FROM_I elif policy_type.literal_value == "XXXYYXYY_FROM_I": def XXXYYXYY_FROM_I(vis_in, vis_out, policy_type): vis_out[0] += vis_in vis_out[1] += 0 vis_out[2] += 0 vis_out[3] += vis_in return XXXYYXYY_FROM_I elif policy_type.literal_value == "RRLL_FROM_I": def RRLL_FROM_I(vis_in, vis_out, policy_type): vis_out[0] += vis_in vis_out[1] += vis_in return RRLL_FROM_I elif policy_type.literal_value == "RRRLLRLL_FROM_I": def RRRLLRLL_FROM_I(vis_in, vis_out, policy_type): vis_out[0] += vis_in vis_out[1] += 0 vis_out[2] += 0 vis_out[3] += vis_in return RRRLLRLL_FROM_I elif policy_type.literal_value == "XXYY_FROM_Q": def XXYY_FROM_Q(vis_in, vis_out, policy_type): vis_out[0] += vis_in vis_out[1] += -vis_in return XXYY_FROM_Q elif policy_type.literal_value == "XXXYYXYY_FROM_Q": def XXXYYXYY_FROM_Q(vis_in, vis_out, policy_type): vis_out[0] += vis_in vis_out[1] += 0 vis_out[2] += 0 vis_out[3] += -vis_in return XXXYYXYY_FROM_Q elif policy_type.literal_value == "RLLR_FROM_Q": def RLLR_FROM_Q(vis_in, vis_out, policy_type): vis_out[0] += vis_in vis_out[1] += vis_in return RLLR_FROM_Q elif policy_type.literal_value == "RRRLLRLL_FROM_Q": def RRRLLRLL_FROM_Q(vis_in, vis_out, policy_type): vis_out[0] += 0 vis_out[1] += vis_in vis_out[2] += vis_in vis_out[3] += 0 return RRRLLRLL_FROM_Q elif policy_type.literal_value == "XYYX_FROM_U": def XYYX_FROM_U(vis_in, vis_out, policy_type): vis_out[0] += vis_in vis_out[1] += vis_in return XYYX_FROM_U elif policy_type.literal_value == "XXXYYXYY_FROM_U": def XXXYYXYY_FROM_U(vis_in, vis_out, policy_type): vis_out[0] += 0 vis_out[1] += vis_in vis_out[2] += vis_in vis_out[3] += 0 return XXXYYXYY_FROM_U elif policy_type.literal_value == "RLLR_FROM_U": def RLLR_FROM_U(vis_in, vis_out, policy_type): vis_out[0] += 1.0j * vis_in vis_out[1] += -1.0j * vis_in return RLLR_FROM_U elif policy_type.literal_value == "RRRLLRLL_FROM_U": def RRRLLRLL_FROM_U(vis_in, vis_out, policy_type): vis_out[0] += 0.0 vis_out[1] += 1.0j * vis_in vis_out[2] += -1.0j * vis_in vis_out[3] += 0.0 return RRRLLRLL_FROM_U elif policy_type.literal_value == "XYYX_FROM_V": def XYYX_FROM_V(vis_in, vis_out, policy_type): vis_out[0] += 1.0j * vis_in vis_out[1] += -1.0j * vis_in return XYYX_FROM_V elif policy_type.literal_value == "XXXYYXYY_FROM_V": def XXXYYXYY_FROM_V(vis_in, vis_out, policy_type): vis_out[0] += 0.0 vis_out[1] += 1.0j * vis_in vis_out[2] += -1.0j * vis_in vis_out[3] += 0.0 return XXXYYXYY_FROM_V elif policy_type.literal_value == "RRLL_FROM_V": def RRLL_FROM_V(vis_in, vis_out, policy_type): vis_out[0] += vis_in vis_out[1] += -vis_in return RRLL_FROM_V elif policy_type.literal_value == "RRRLLRLL_FROM_V": def RRRLLRLL_FROM_V(vis_in, vis_out, policy_type): vis_out[0] += vis_in vis_out[1] += 0 vis_out[2] += 0 vis_out[3] += -vis_in return RRRLLRLL_FROM_V else: raise ValueError("Invalid stokes conversion") def corr2stokes(vis_in, policy_type): pass @overload(corr2stokes, inline="always") def corr2stokesimpl(vis_in, policy_type): if policy_type.literal_value == "I_FROM_XXYY": return lambda vis_in, policy_type: (vis_in[0] + vis_in[1]) * 0.5 elif policy_type.literal_value == "I_FROM_XXXYYXYY": return lambda vis_in, policy_type: (vis_in[0] + vis_in[3]) * 0.5 elif policy_type.literal_value == "I_FROM_RRLL": return lambda vis_in, policy_type: (vis_in[0] + vis_in[1]) * 0.5 elif policy_type.literal_value == "I_FROM_RRRLLRLL": return lambda vis_in, policy_type: (vis_in[0] + vis_in[3]) * 0.5 elif policy_type.literal_value == "Q_FROM_XXYY": return lambda vis_in, policy_type: (vis_in[0] - vis_in[1]) * 0.5 elif policy_type.literal_value == "Q_FROM_XXXYYXYY": return lambda vis_in, policy_type: (vis_in[0] - vis_in[3]) * 0.5 elif policy_type.literal_value == "Q_FROM_RRRLLRLL": return lambda vis_in, policy_type: (vis_in[1] + vis_in[2]) * 0.5 elif policy_type.literal_value == "U_FROM_XYYX": return lambda vis_in, policy_type: (vis_in[0] + vis_in[1]) * 0.5 elif policy_type.literal_value == "U_FROM_XXXYYXYY": return lambda vis_in, policy_type: (vis_in[1] + vis_in[2]) * 0.5 elif policy_type.literal_value == "U_FROM_RLLR": return lambda vis_in, policy_type: -1.0j * (vis_in[0] - vis_in[1] ) * 0.5 elif policy_type.literal_value == "U_FROM_RRRLLRLL": return lambda vis_in, policy_type: -1.0j * (vis_in[1] - vis_in[2] ) * 0.5 elif policy_type.literal_value == "V_FROM_RRLL": return lambda vis_in, policy_type: (vis_in[0] - vis_in[1]) * 0.5 elif policy_type.literal_value == "V_FROM_RRRLLRLL": return lambda vis_in, policy_type: (vis_in[0] - vis_in[3]) * 0.5 elif policy_type.literal_value == "V_FROM_XYYX": return lambda vis_in, policy_type: -1.0j * (vis_in[0] - vis_in[1] ) * 0.5 elif policy_type.literal_value == "V_FROM_XXXYYXYY": return lambda vis_in, policy_type: -1.0j * (vis_in[1] - vis_in[2] ) * 0.5 else: raise ValueError("Invalid stokes conversion") def ncorr_out(policy_type): pass @overload(ncorr_out, inline="always") def ncorr_outimpl(policy_type): if policy_type.literal_value == "XXYY_FROM_I": return lambda policy_type: 2 elif policy_type.literal_value == "XXXYYXYY_FROM_I": return lambda policy_type: 4 elif policy_type.literal_value == "RRLL_FROM_I": return lambda policy_type: 2 elif policy_type.literal_value == "RRRLLRLL_FROM_I": return lambda policy_type: 4 elif policy_type.literal_value == "XXYY_FROM_Q": return lambda policy_type: 2 elif policy_type.literal_value == "XXXYYXYY_FROM_Q": return lambda policy_type: 4 elif policy_type.literal_value == "RLLR_FROM_Q": return lambda policy_type: 2 elif policy_type.literal_value == "RRRLLRLL_FROM_Q": return lambda policy_type: 4 elif policy_type.literal_value == "XYYX_FROM_U": return lambda policy_type: 2 elif policy_type.literal_value == "XXXYYXYY_FROM_U": return lambda policy_type: 4 elif policy_type.literal_value == "RLLR_FROM_U": return lambda policy_type: 2 elif policy_type.literal_value == "RRRLLRLL_FROM_U": return lambda policy_type: 4 elif policy_type.literal_value == "XYYX_FROM_V": return lambda policy_type: 2 elif policy_type.literal_value == "XXXYYXYY_FROM_V": return lambda policy_type: 4 elif policy_type.literal_value == "RRLL_FROM_V": return lambda policy_type: 2 elif policy_type.literal_value == "RRRLLRLL_FROM_V": return lambda policy_type: 4 else: raise ValueError("Invalid stokes conversion") def ncorr_outpy(policy_type): if policy_type == "XXYY_FROM_I": return lambda: 2 elif policy_type == "XXXYYXYY_FROM_I": return lambda: 4 elif policy_type == "RRLL_FROM_I": return lambda: 2 elif policy_type == "RRRLLRLL_FROM_I": return lambda: 4 elif policy_type == "XXYY_FROM_Q": return lambda: 2 elif policy_type == "XXXYYXYY_FROM_Q": return lambda: 4 elif policy_type == "RLLR_FROM_Q": return lambda: 2 elif policy_type == "RRRLLRLL_FROM_Q": return lambda: 4 elif policy_type == "XYYX_FROM_U": return lambda: 2 elif policy_type == "XXXYYXYY_FROM_U": return lambda: 4 elif policy_type == "RLLR_FROM_U": return lambda: 2 elif policy_type == "RRRLLRLL_FROM_U": return lambda: 4 elif policy_type == "XYYX_FROM_V": return lambda: 2 elif policy_type == "XXXYYXYY_FROM_V": return lambda: 4 elif policy_type == "RRLL_FROM_V": return lambda: 2 elif policy_type == "RRRLLRLL_FROM_V": return lambda: 4 else: raise ValueError("Invalid stokes conversion") ``` #### File: perleypolyhedron/tests/test_daskintrf.py ```python import time import numpy as np import pytest from africanus.gridding.perleypolyhedron import (kernels, gridder, degridder) from africanus.gridding.perleypolyhedron import dask as dwrap from africanus.dft.kernels import im_to_vis from africanus.constants import c as lightspeed class clock: def __init__(self, identifier="untitled"): self._id = identifier self._elapsed = 0.0 self._onenter = 0.0 self._onexit = 0.0 def __enter__(self): self._onenter = time.time() return self def __exit__(self, extype, exval, tb): self._onexit = time.time() self._elapsed = self._onexit - self._onenter @property def elapsed(self): return self._elapsed def __str__(self): res = "{0:s}: Walltime {1:.0f}m{2:.2f}s elapsed".format( self._id, self.elapsed // 60, self.elapsed - (self.elapsed // 60) * 60) return res __repr__ = __str__ def test_gridder_dask(): da = pytest.importorskip("dask.array") with clock("DASK gridding") as tictoc: # construct kernel W = 5 OS = 9 kern = kernels.pack_kernel(kernels.kbsinc(W, oversample=OS), W, OS) nrow = int(1e6) np.random.seed(0) # simulate some ficticious baselines rotated by an hour angle row_chunks = nrow // 10 uvw = np.zeros((nrow, 3), dtype=np.float64) blpos = np.random.uniform(26, 10000, size=(25, 3)) ntime = int(nrow / 25.0) d0 = np.pi / 4.0 for n in range(25): for ih0, h0 in enumerate( np.linspace(np.deg2rad(-20), np.deg2rad(20), ntime)): s = np.sin c = np.cos R = np.array([[s(h0), c(h0), 0], [-s(d0) * c(h0), s(d0) * s(h0), c(d0)], [c(d0) * c(h0), -c(d0) * s(h0), s(d0)]]) uvw[n * ntime + ih0, :] = np.dot(R, blpos[n, :].T) uvw = da.from_array(uvw, chunks=(row_chunks, 3)) pxacrossbeam = 5 nchan = 128 frequency = da.from_array(np.linspace(1.0e9, 1.4e9, nchan), chunks=(nchan, )) wavelength = lightspeed / frequency cell = da.rad2deg( wavelength[0] / (max(da.max(da.absolute(uvw[:, 0])), da.max(da.absolute(uvw[:, 1]))) * pxacrossbeam)) npixfacet = 100 fftpad = 1.1 image_centres = da.from_array(np.array([[0, d0]]), chunks=(1, 2)) chanmap = da.from_array(np.zeros(nchan, dtype=np.int64), chunks=(nchan, )) detaper_facet = kernels.compute_detaper_dft_seperable( int(npixfacet * fftpad), kernels.unpack_kernel(kern, W, OS), W, OS) vis_dft = da.ones(shape=(nrow, nchan, 2), chunks=(row_chunks, nchan, 2), dtype=np.complex64) vis_grid_facet = dwrap.gridder( uvw, vis_dft, wavelength, chanmap, int(npixfacet * fftpad), cell * 3600.0, image_centres, (0, d0), kern, W, OS, "None", "None", "I_FROM_XXYY", "conv_1d_axisymmetric_packed_scatter", do_normalize=True) vis_grid_facet = vis_grid_facet.compute() ftvisfacet = (np.fft.fftshift( np.fft.ifft2(np.fft.ifftshift( vis_grid_facet[0, :, :]))).reshape( (1, int(npixfacet * fftpad), int( npixfacet * fftpad)))).real / detaper_facet * int( npixfacet * fftpad)**2 ftvisfacet = ftvisfacet[:, int(npixfacet * fftpad) // 2 - npixfacet // 2:int(npixfacet * fftpad) // 2 - npixfacet // 2 + npixfacet, int(npixfacet * fftpad) // 2 - npixfacet // 2:int(npixfacet * fftpad) // 2 - npixfacet // 2 + npixfacet] print(tictoc) assert (np.abs(np.max(ftvisfacet[0, :, :]) - 1.0) < 1.0e-6) def test_gridder_nondask(): with clock("Non-DASK gridding") as tictoc: # construct kernel W = 5 OS = 9 kern = kernels.pack_kernel(kernels.kbsinc(W, oversample=OS), W, OS) nrow = int(1e6) np.random.seed(0) # simulate some ficticious baselines rotated by an hour angle uvw = np.zeros((nrow, 3), dtype=np.float64) blpos = np.random.uniform(26, 10000, size=(25, 3)) ntime = int(nrow / 25.0) d0 = np.pi / 4.0 for n in range(25): for ih0, h0 in enumerate( np.linspace(np.deg2rad(-20), np.deg2rad(20), ntime)): s = np.sin c = np.cos R = np.array([[s(h0), c(h0), 0], [-s(d0) * c(h0), s(d0) * s(h0), c(d0)], [c(d0) * c(h0), -c(d0) * s(h0), s(d0)]]) uvw[n * ntime + ih0, :] = np.dot(R, blpos[n, :].T) pxacrossbeam = 5 nchan = 128 frequency = np.linspace(1.0e9, 1.4e9, nchan) wavelength = lightspeed / frequency cell = np.rad2deg( wavelength[0] / (max(np.max(np.absolute(uvw[:, 0])), np.max(np.absolute(uvw[:, 1]))) * pxacrossbeam)) npixfacet = 100 fftpad = 1.1 image_centres = np.array([[0, d0]]) chanmap = np.zeros(nchan, dtype=np.int64) detaper_facet = kernels.compute_detaper_dft_seperable( int(npixfacet * fftpad), kernels.unpack_kernel(kern, W, OS), W, OS) vis_dft = np.ones((nrow, nchan, 2), dtype=np.complex64) vis_grid_facet = gridder.gridder( uvw, vis_dft, wavelength, chanmap, int(npixfacet * fftpad), cell * 3600.0, image_centres[0, :], (0, d0), kern, W, OS, "None", "None", "I_FROM_XXYY", "conv_1d_axisymmetric_packed_scatter", do_normalize=True) ftvisfacet = (np.fft.fftshift( np.fft.ifft2(np.fft.ifftshift( vis_grid_facet[0, :, :]))).reshape( (1, int(npixfacet * fftpad), int( npixfacet * fftpad)))).real / detaper_facet * int( npixfacet * fftpad)**2 ftvisfacet = ftvisfacet[:, int(npixfacet * fftpad) // 2 - npixfacet // 2:int(npixfacet * fftpad) // 2 - npixfacet // 2 + npixfacet, int(npixfacet * fftpad) // 2 - npixfacet // 2:int(npixfacet * fftpad) // 2 - npixfacet // 2 + npixfacet] print(tictoc) assert (np.abs(np.max(ftvisfacet[0, :, :]) - 1.0) < 1.0e-6) def test_degrid_dft_packed_nondask(): # construct kernel W = 5 OS = 3 kern = kernels.pack_kernel(kernels.kbsinc(W, oversample=OS), W, oversample=OS) nrow = int(5e4) uvw = np.column_stack( (5000.0 * np.cos(np.linspace(0, 2 * np.pi, nrow)), 5000.0 * np.sin(np.linspace(0, 2 * np.pi, nrow)), np.zeros(nrow))) pxacrossbeam = 10 nchan = 1024 frequency = np.linspace(1.0e9, 1.4e9, nchan) wavelength = lightspeed / frequency cell = np.rad2deg( wavelength[0] / (2 * max(np.max(np.abs(uvw[:, 0])), np.max(np.abs(uvw[:, 1]))) * pxacrossbeam)) npix = 512 mod = np.zeros((1, npix, npix), dtype=np.complex64) mod[0, npix // 2 - 5, npix // 2 - 5] = 1.0 ftmod = np.fft.ifftshift(np.fft.fft2(np.fft.fftshift( mod[0, :, :]))).reshape((1, npix, npix)) chanmap = np.zeros(nchan, dtype=np.int64) with clock("Non-DASK degridding") as tictoc: degridder.degridder( uvw, ftmod, wavelength, chanmap, cell * 3600.0, (0, np.pi / 4.0), (0, np.pi / 4.0), kern, W, OS, "None", # no faceting "None", # no faceting "XXYY_FROM_I", "conv_1d_axisymmetric_packed_gather") print(tictoc) def test_degrid_dft_packed_dask(): da = pytest.importorskip("dask.array") # construct kernel W = 5 OS = 3 kern = kernels.pack_kernel(kernels.kbsinc(W, oversample=OS), W, oversample=OS) nrow = int(5e4) nrow_chunk = nrow // 32 uvw = np.column_stack( (5000.0 * np.cos(np.linspace(0, 2 * np.pi, nrow)), 5000.0 * np.sin(np.linspace(0, 2 * np.pi, nrow)), np.zeros(nrow))) pxacrossbeam = 10 nchan = 1024 frequency = np.linspace(1.0e9, 1.4e9, nchan) wavelength = lightspeed / frequency cell = np.rad2deg( wavelength[0] / (2 * max(np.max(np.abs(uvw[:, 0])), np.max(np.abs(uvw[:, 1]))) * pxacrossbeam)) npix = 512 mod = np.zeros((1, npix, npix), dtype=np.complex64) mod[0, npix // 2 - 5, npix // 2 - 5] = 1.0 ftmod = np.fft.ifftshift(np.fft.fft2(np.fft.fftshift( mod[0, :, :]))).reshape((1, 1, npix, npix)) chanmap = np.zeros(nchan, dtype=np.int64) with clock("DASK degridding") as tictoc: vis_degrid = dwrap.degridder( da.from_array(uvw, chunks=(nrow_chunk, 3)), da.from_array(ftmod, chunks=(1, 1, npix, npix)), da.from_array(wavelength, chunks=(nchan, )), da.from_array(chanmap, chunks=(nchan, )), cell * 3600.0, da.from_array(np.array([[0, np.pi / 4.0]]), chunks=(1, 2)), (0, np.pi / 4.0), kern, W, OS, "None", # no faceting "None", # no faceting "XXYY_FROM_I", "conv_1d_axisymmetric_packed_gather") vis_degrid = vis_degrid.compute() print(tictoc) def test_degrid_dft_packed_dask_dft_check(): da = pytest.importorskip("dask.array") # construct kernel W = 5 OS = 3 kern = kernels.pack_kernel(kernels.kbsinc(W, oversample=OS), W, oversample=OS) nrow = 100 nrow_chunk = nrow // 8 uvw = np.column_stack( (5000.0 * np.cos(np.linspace(0, 2 * np.pi, nrow)), 5000.0 * np.sin(np.linspace(0, 2 * np.pi, nrow)), np.zeros(nrow))) pxacrossbeam = 10 nchan = 16 frequency = np.linspace(1.0e9, 1.4e9, nchan) wavelength = lightspeed / frequency cell = np.rad2deg( wavelength[0] / (2 * max(np.max(np.abs(uvw[:, 0])), np.max(np.abs(uvw[:, 1]))) * pxacrossbeam)) npix = 512 mod = np.zeros((1, npix, npix), dtype=np.complex64) mod[0, npix // 2 - 5, npix // 2 - 5] = 1.0 ftmod = np.fft.ifftshift(np.fft.fft2(np.fft.fftshift( mod[0, :, :]))).reshape((1, 1, npix, npix)) chanmap = np.zeros(nchan, dtype=np.int64) dec, ra = np.meshgrid( np.arange(-npix // 2, npix // 2) * np.deg2rad(cell), np.arange(-npix // 2, npix // 2) * np.deg2rad(cell)) radec = np.column_stack((ra.flatten(), dec.flatten())) vis_dft = im_to_vis(mod[0, :, :].reshape(1, 1, npix * npix).T.copy(), uvw, radec, frequency) vis_degrid = dwrap.degridder( da.from_array(uvw, chunks=(nrow_chunk, 3)), da.from_array(ftmod, chunks=(1, 1, npix, npix)), da.from_array(wavelength, chunks=(nchan, )), da.from_array(chanmap, chunks=(nchan, )), cell * 3600.0, da.from_array(np.array([[0, np.pi / 4.0]]), chunks=(1, 2)), (0, np.pi / 4.0), kern, W, OS, "None", # no faceting "None", # no faceting "XXYY_FROM_I", "conv_1d_axisymmetric_packed_gather") vis_degrid = vis_degrid.compute() assert np.percentile( np.abs(vis_dft[:, 0, 0].real - vis_degrid[:, 0, 0].real), 99.0) < 0.05 assert np.percentile( np.abs(vis_dft[:, 0, 0].imag - vis_degrid[:, 0, 0].imag), 99.0) < 0.05 ``` #### File: gridding/wgridder/im2residim.py ```python try: from ducc0.wgridder import dirty2ms, ms2dirty except ImportError as e: ducc_import_error = e else: ducc_import_error = None import numpy as np from africanus.util.docs import DocstringTemplate from africanus.util.requirements import requires_optional @requires_optional('ducc0.wgridder', ducc_import_error) def _residual_internal(uvw, freq, image, vis, freq_bin_idx, freq_bin_counts, cell, weights, flag, celly, epsilon, nthreads, do_wstacking, double_accum): # adjust for chunking # need a copy here if using multiple row chunks freq_bin_idx2 = freq_bin_idx - freq_bin_idx.min() nband = freq_bin_idx.size _, nx, ny = image.shape # the extra dimension is required to allow for chunking over row residim = np.zeros((1, nband, nx, ny), dtype=image.dtype) for i in range(nband): ind = slice(freq_bin_idx2[i], freq_bin_idx2[i] + freq_bin_counts[i]) if weights is not None: wgt = weights[:, ind] else: wgt = None if flag is not None: mask = flag[:, ind] else: mask = None tvis = vis[:, ind] residvis = tvis - dirty2ms( uvw=uvw, freq=freq[ind], dirty=image[i], wgt=None, pixsize_x=cell, pixsize_y=celly, nu=0, nv=0, epsilon=epsilon, nthreads=nthreads, mask=mask, do_wstacking=do_wstacking) residim[0, i] = ms2dirty(uvw=uvw, freq=freq[ind], ms=residvis, wgt=wgt, npix_x=nx, npix_y=ny, pixsize_x=cell, pixsize_y=celly, nu=0, nv=0, epsilon=epsilon, nthreads=nthreads, mask=mask, do_wstacking=do_wstacking, double_precision_accumulation=double_accum) return residim # This additional wrapper is required to allow the dask wrappers # to chunk over row @requires_optional('ducc0.wgridder', ducc_import_error) def residual(uvw, freq, image, vis, freq_bin_idx, freq_bin_counts, cell, weights=None, flag=None, celly=None, epsilon=1e-5, nthreads=1, do_wstacking=True, double_accum=False): if celly is None: celly = cell if not nthreads: import multiprocessing nthreads = multiprocessing.cpu_count() residim = _residual_internal(uvw, freq, image, vis, freq_bin_idx, freq_bin_counts, cell, weights, flag, celly, epsilon, nthreads, do_wstacking, double_accum) return residim[0] RESIDUAL_DOCS = DocstringTemplate( r""" Compute residual image given a model and visibilities using ducc degridder i.e. .. math:: I^R = R^\dagger \Sigma^{-1}(V - Rx) where :math:`R` is an implicit degridding operator, :math:`V` denotes visibilities of shape :code:`(row, chan)` and :math:`x` is the image of shape :code:`(band, nx, ny)`. The number of imaging bands :code:`(band)` must be less than or equal to the number of channels :code:`(chan)` at which the data were obtained. The mapping from :code:`(chan)` to :code:`(band)` is described by :code:`freq_bin_idx` and :code:`freq_bin_counts` as described below. Note that, if the gridding and degridding operators both apply the square root of the imaging weights then the visibilities that are passed in should be pre-whitened. In this case the function computes .. math:: I^R = R^\dagger \Sigma^{-\frac{1}{2}}(\tilde{V} - \Sigma^{-\frac{1}{2}}Rx) which is identical to the above expression if :math:`\tilde{V} = \Sigma^{-\frac{1}{2}}V`. Parameters ---------- uvw : $(array_type) uvw coordinates at which visibilities were obtained with shape :code:`(row, 3)`. freq : $(array_type) Observational frequencies of shape :code:`(chan,)`. model : $(array_type) Model image to degrid of shape :code:`(band, nx, ny)`. vis : $(array_type) Visibilities of shape :code:`(row,chan)`. weights : $(array_type) Imaging weights of shape :code:`(row, chan)`. freq_bin_idx : $(array_type) Starting indices of frequency bins for each imaging band of shape :code:`(band,)`. freq_bin_counts : $(array_type) The number of channels in each imaging band of shape :code:`(band,)`. cell : float The cell size of a pixel along the :math:`x` direction in radians. flag: $(array_type), optional Flags of shape :code:`(row,chan)`. Will only process visibilities for which flag!=0 celly : float, optional The cell size of a pixel along the :math:`y` direction in radians. By default same as cell size along :math:`x` direction. nu : int, optional The number of pixels in the padded grid along the :math:`x` direction. Chosen automatically by default. nv : int, optional The number of pixels in the padded grid along the :math:`y` direction. Chosen automatically by default. epsilon : float, optional The precision of the gridder with respect to the direct Fourier transform. By deafult, this is set to :code:`1e-5` for single precision and :code:`1e-7` for double precision. nthreads : int, optional The number of threads to use. Defaults to one. do_wstacking : bool, optional Whether to correct for the w-term or not. Defaults to True double_accum : bool, optional If true ducc will accumulate in double precision regardless of the input type. Returns ------- residual : $(array_type) Residual image corresponding to :code:`model` of shape :code:`(band, nx, ny)`. """) try: residual.__doc__ = RESIDUAL_DOCS.substitute( array_type=":class:`numpy.ndarray`") except AttributeError: pass ``` #### File: wgridder/tests/test_wgridder.py ```python import numpy as np from numpy.testing import assert_allclose, assert_array_almost_equal import pytest from africanus.constants import c as lightspeed pmp = pytest.mark.parametrize def _l2error(a, b): return np.sqrt(np.sum(np.abs(a-b)**2)/np.maximum(np.sum(np.abs(a)**2), np.sum(np.abs(b)**2))) def explicit_gridder(uvw, freq, ms, wgt, nxdirty, nydirty, xpixsize, ypixsize, apply_w): x, y = np.meshgrid(*[-ss/2 + np.arange(ss) for ss in [nxdirty, nydirty]], indexing='ij') x *= xpixsize y *= ypixsize res = np.zeros((nxdirty, nydirty)) eps = x**2+y**2 if apply_w: nm1 = -eps/(np.sqrt(1.-eps)+1.) n = nm1+1 else: nm1 = 0. n = 1. for row in range(ms.shape[0]): for chan in range(ms.shape[1]): phase = (freq[chan]/lightspeed * (x*uvw[row, 0] + y*uvw[row, 1] - uvw[row, 2]*nm1)) if wgt is None: res += (ms[row, chan]*np.exp(2j*np.pi*phase)).real else: res += (ms[row, chan]*wgt[row, chan] * np.exp(2j*np.pi*phase)).real return res/n @pmp("nx", (16,)) @pmp("ny", (18, 64)) @pmp("fov", (5.0,)) @pmp("nrow", (1000,)) @pmp("nchan", (1, 7)) @pmp("nband", (1, 3)) @pmp("precision", ('single', 'double')) @pmp("epsilon", (1e-3, 1e-4)) @pmp("nthreads", (1, 6)) def test_gridder(nx, ny, fov, nrow, nchan, nband, precision, epsilon, nthreads): # run comparison against dft with a frequency mapping imposed if nband > nchan: return from africanus.gridding.wgridder import dirty if precision == 'single': real_type = "f4" complex_type = "c8" else: real_type = "f8" complex_type = "c16" np.random.seed(420) cell = fov*np.pi/180/nx f0 = 1e9 freq = (f0 + np.arange(nchan)*(f0/nchan)) uvw = ((np.random.rand(nrow, 3)-0.5) / (cell*freq[-1]/lightspeed)) vis = (np.random.rand(nrow, nchan)-0.5 + 1j * (np.random.rand(nrow, nchan)-0.5)).astype(complex_type) wgt = np.random.rand(nrow, nchan).astype(real_type) step = nchan//nband if step: freq_bin_idx = np.arange(0, nchan, step) freq_mapping = np.append(freq_bin_idx, nchan) freq_bin_counts = freq_mapping[1::] - freq_mapping[0:-1] else: freq_bin_idx = np.array([0], dtype=np.int16) freq_bin_counts = np.array([1], dtype=np.int16) image = dirty(uvw, freq, vis, freq_bin_idx, freq_bin_counts, nx, ny, cell, weights=wgt, nthreads=nthreads) nband = freq_bin_idx.size ref = np.zeros((nband, nx, ny), dtype=np.float64) for i in range(nband): ind = slice(freq_bin_idx[i], freq_bin_idx[i] + freq_bin_counts[i]) ref[i] = explicit_gridder(uvw, freq[ind], vis[:, ind], wgt[:, ind], nx, ny, cell, cell, True) # l2 error should be within epsilon of zero assert_allclose(_l2error(image, ref), 0, atol=epsilon) @pmp("nx", (30,)) @pmp("ny", (50, 128)) @pmp("fov", (0.5, 2.5)) @pmp("nrow", (333, 5000,)) @pmp("nchan", (1, 4)) @pmp("nband", (1, 2)) @pmp("precision", ('single', 'double')) @pmp("nthreads", (6,)) def test_adjointness(nx, ny, fov, nrow, nchan, nband, precision, nthreads): # instead of explicitly testing the degridder we can just check that # it is consistent with the gridder i.e. # # <R.H y, x> = <y.H, Rx> # # where R.H is the gridder, R is the degridder and x and y are randomly # drawn image and visibilities respectively if nband > nchan: return from africanus.gridding.wgridder import dirty, model if precision == 'single': real_type = np.float32 complex_type = np.complex64 tol = 1e-4 else: real_type = np.float64 complex_type = np.complex128 tol = 1e-12 np.random.seed(420) cell = fov*np.pi/180/nx f0 = 1e9 freq = (f0 + np.arange(nchan)*(f0/nchan)) uvw = ((np.random.rand(nrow, 3)-0.5) / (cell*freq[-1]/lightspeed)) vis = (np.random.rand(nrow, nchan)-0.5 + 1j * (np.random.rand(nrow, nchan)-0.5)).astype(complex_type) wgt = np.random.rand(nrow, nchan).astype(real_type) step = nchan//nband if step: freq_bin_idx = np.arange(0, nchan, step) freq_mapping = np.append(freq_bin_idx, nchan) freq_bin_counts = freq_mapping[1::] - freq_mapping[0:-1] else: freq_bin_idx = np.array([0], dtype=np.int8) freq_bin_counts = np.array([1], dtype=np.int8) nband = freq_bin_idx.size image = dirty(uvw, freq, vis, freq_bin_idx, freq_bin_counts, nx, ny, cell, weights=wgt, nthreads=nthreads) model_im = np.random.randn(nband, nx, ny).astype(real_type) modelvis = model(uvw, freq, model_im, freq_bin_idx, freq_bin_counts, cell, weights=wgt, nthreads=nthreads) # should have relative tolerance close to machine precision assert_allclose(np.vdot(vis, modelvis).real, np.vdot(image, model_im), rtol=tol) @pmp("nx", (20, )) @pmp("ny", (32, 70)) @pmp("fov", (1.5, 3.5)) @pmp("nrow", (222, 777,)) @pmp("nchan", (1, 5)) @pmp("nband", (1, 3)) @pmp("precision", ('single', 'double')) @pmp("nthreads", (3,)) def test_residual(nx, ny, fov, nrow, nchan, nband, precision, nthreads): # Compare the result of im2residim to # VR = V - Rx - computed with im2vis # IR = R.H VR - computed with vis2im from africanus.gridding.wgridder import dirty, model, residual np.random.seed(420) if precision == 'single': real_type = np.float32 complex_type = np.complex64 decimal = 4 else: real_type = np.float64 complex_type = np.complex128 decimal = 12 cell = fov*np.pi/180/nx f0 = 1e9 freq = (f0 + np.arange(nchan)*(f0/nchan)) uvw = ((np.random.rand(nrow, 3)-0.5) / (cell*freq[-1]/lightspeed)) vis = (np.random.rand(nrow, nchan)-0.5 + 1j * (np.random.rand(nrow, nchan)-0.5)).astype(complex_type) wgt = np.random.rand(nrow, nchan).astype(real_type) step = nchan//nband if step: freq_bin_idx = np.arange(0, nchan, step) freq_mapping = np.append(freq_bin_idx, nchan) freq_bin_counts = freq_mapping[1::] - freq_mapping[0:-1] else: freq_bin_idx = np.array([0], dtype=np.int8) freq_bin_counts = np.array([1], dtype=np.int8) nband = freq_bin_idx.size model_im = np.random.randn(nband, nx, ny).astype(real_type) modelvis = model(uvw, freq, model_im, freq_bin_idx, freq_bin_counts, cell, nthreads=nthreads) residualvis = vis - modelvis residim1 = dirty(uvw, freq, residualvis, freq_bin_idx, freq_bin_counts, nx, ny, cell, weights=wgt, nthreads=nthreads) residim2 = residual(uvw, freq, model_im, vis, freq_bin_idx, freq_bin_counts, cell, weights=wgt, nthreads=nthreads) # These are essentially computing the same thing just in a different # order so should be close to machine precision rmax = np.maximum(np.abs(residim1).max(), np.abs(residim2).max()) assert_array_almost_equal( residim1/rmax, residim2/rmax, decimal=decimal) @pmp("nx", (128, )) @pmp("ny", (256,)) @pmp("fov", (0.5,)) @pmp("nrow", (10000000,)) @pmp("nchan", (2,)) @pmp("nband", (2,)) @pmp("precision", ('single',)) @pmp("nthreads", (4,)) def test_hessian(nx, ny, fov, nrow, nchan, nband, precision, nthreads): # Compare the result of dirty computed with Hessian # ID = hessian(x) # to that computed using dirty. from africanus.gridding.wgridder import dirty, hessian np.random.seed(420) if precision == 'single': real_type = np.float32 complex_type = np.complex64 atol = 1e-5 else: real_type = np.float64 complex_type = np.complex128 atol = 1e-5 uvw = 1000*np.random.randn(nrow, 3) uvw[:, 2] = 0 u_max = np.abs(uvw[:, 0]).max() v_max = np.abs(uvw[:, 1]).max() uv_max = np.maximum(u_max, v_max) f0 = 1e9 freq = (f0 + np.arange(nchan)*(f0/nchan)) cell_N = 0.1/(2*uv_max*freq.max()/lightspeed) cell = cell_N/2.0 # super_resolution_factor of 2 vis = np.ones((nrow, nchan), dtype=complex_type) step = nchan//nband if step: freq_bin_idx = np.arange(0, nchan, step) freq_mapping = np.append(freq_bin_idx, nchan) freq_bin_counts = freq_mapping[1::] - freq_mapping[0:-1] else: freq_bin_idx = np.array([0], dtype=np.int8) freq_bin_counts = np.array([1], dtype=np.int8) nband = freq_bin_idx.size model_im = np.zeros((nband, nx, ny), dtype=real_type) model_im[:, nx//2, ny//2] = 1.0 dirty_im1 = dirty(uvw, freq, vis, freq_bin_idx, freq_bin_counts, nx, ny, cell, nthreads=nthreads, do_wstacking=False, double_accum=True) # test accumulation assert_allclose(dirty_im1.max()/nrow, 1.0, rtol=atol) dirty_im2 = hessian(uvw, freq, model_im, freq_bin_idx, freq_bin_counts, cell, nthreads=nthreads, do_wstacking=False, double_accum=True) # rtol not reliable since there will be values close to zero in the # dirty images assert_allclose(dirty_im1/nrow, dirty_im2/nrow, atol=atol, rtol=1e-2) @pmp("nx", (30, 250)) @pmp("ny", (128,)) @pmp("fov", (5.0,)) @pmp("nrow", (3333, 10000)) @pmp("nchan", (1, 8)) @pmp("nband", (1, 2)) @pmp("precision", ('single', 'double')) @pmp("nthreads", (1, 4)) @pmp("nchunks", (1, 3)) def test_dask_dirty(nx, ny, fov, nrow, nchan, nband, precision, nthreads, nchunks): da = pytest.importorskip("dask.array") from africanus.gridding.wgridder import dirty as dirty_np from africanus.gridding.wgridder.dask import dirty np.random.seed(420) if precision == 'single': real_type = np.float32 complex_type = np.complex64 decimal = 4 # sometimes fails at 5 else: real_type = np.float64 complex_type = np.complex128 decimal = 5 cell = fov*np.pi/180/nx f0 = 1e9 freq = (f0 + np.arange(nchan)*(f0/nchan)) uvw = ((np.random.rand(nrow, 3)-0.5) / (cell*freq[-1]/lightspeed)) vis = (np.random.rand(nrow, nchan)-0.5 + 1j * (np.random.rand(nrow, nchan)-0.5)).astype(complex_type) wgt = np.random.rand(nrow, nchan).astype(real_type) step = np.maximum(1, nchan//nband) if step: freq_bin_idx = np.arange(0, nchan, step) freq_mapping = np.append(freq_bin_idx, nchan) freq_bin_counts = freq_mapping[1::] - freq_mapping[0:-1] else: freq_bin_idx = np.array([0], dtype=np.int8) freq_bin_counts = np.array([1], dtype=np.int8) nband = freq_bin_idx.size image = dirty_np(uvw, freq, vis, freq_bin_idx, freq_bin_counts, nx, ny, cell, weights=wgt, nthreads=nthreads) # now get result using dask rows_per_task = int(np.ceil(nrow/nchunks)) row_chunks = (nchunks-1) * (rows_per_task,) row_chunks += (nrow - np.sum(row_chunks),) freq_da = da.from_array(freq, chunks=step) uvw_da = da.from_array(uvw, chunks=(row_chunks, -1)) vis_da = da.from_array(vis, chunks=(row_chunks, step)) wgt_da = da.from_array(wgt, chunks=(row_chunks, step)) freq_bin_idx_da = da.from_array(freq_bin_idx, chunks=1) freq_bin_counts_da = da.from_array(freq_bin_counts, chunks=1) image_da = dirty(uvw_da, freq_da, vis_da, freq_bin_idx_da, freq_bin_counts_da, nx, ny, cell, weights=wgt_da, nthreads=nthreads).compute() # relative error should agree to within epsilon dmax = np.maximum(np.abs(image).max(), np.abs(image_da).max()) assert_array_almost_equal(image/dmax, image_da/dmax, decimal=decimal) @pmp("nx", (30, 250)) @pmp("ny", (128,)) @pmp("fov", (5.0,)) @pmp("nrow", (3333, 10000)) @pmp("nchan", (1, 8)) @pmp("nband", (1, 2)) @pmp("precision", ('single', 'double')) @pmp("nthreads", (1, 4)) @pmp("nchunks", (1, 3)) def test_dask_model(nx, ny, fov, nrow, nchan, nband, precision, nthreads, nchunks): da = pytest.importorskip("dask.array") from africanus.gridding.wgridder import model as model_np from africanus.gridding.wgridder.dask import model np.random.seed(420) if precision == 'single': real_type = np.float32 complex_type = np.complex64 decimal = 4 # sometimes fails at 5 else: real_type = np.float64 complex_type = np.complex128 decimal = 5 cell = fov*np.pi/180/nx f0 = 1e9 freq = (f0 + np.arange(nchan)*(f0/nchan)) uvw = ((np.random.rand(nrow, 3)-0.5) / (cell*freq[-1]/lightspeed)) vis = (np.random.rand(nrow, nchan)-0.5 + 1j * (np.random.rand(nrow, nchan)-0.5)).astype(complex_type) wgt = np.random.rand(nrow, nchan).astype(real_type) step = np.maximum(1, nchan//nband) if step: freq_bin_idx = np.arange(0, nchan, step) freq_mapping = np.append(freq_bin_idx, nchan) freq_bin_counts = freq_mapping[1::] - freq_mapping[0:-1] else: freq_bin_idx = np.array([0], dtype=np.int16) freq_bin_counts = np.array([1], dtype=np.int16) nband = freq_bin_idx.size image = np.random.randn(nband, nx, ny).astype(real_type) vis = model_np(uvw, freq, image, freq_bin_idx, freq_bin_counts, cell, weights=wgt, nthreads=nthreads) # now get result using dask rows_per_task = int(np.ceil(nrow/nchunks)) row_chunks = (nchunks-1) * (rows_per_task,) row_chunks += (nrow - np.sum(row_chunks),) freq_da = da.from_array(freq, chunks=step) uvw_da = da.from_array(uvw, chunks=(row_chunks, -1)) image_da = da.from_array(image, chunks=(1, nx, ny)) wgt_da = da.from_array(wgt, chunks=(row_chunks, step)) freq_bin_idx_da = da.from_array(freq_bin_idx, chunks=1) freq_bin_counts_da = da.from_array(freq_bin_counts, chunks=1) vis_da = model(uvw_da, freq_da, image_da, freq_bin_idx_da, freq_bin_counts_da, cell, weights=wgt_da, nthreads=nthreads).compute() # relative error should agree to within epsilon vmax = np.maximum(np.abs(vis).max(), np.abs(vis_da).max()) assert_array_almost_equal(vis/vmax, vis_da/vmax, decimal=decimal) @pmp("nx", (30, 250)) @pmp("ny", (128,)) @pmp("fov", (5.0,)) @pmp("nrow", (3333, 10000)) @pmp("nchan", (1, 8)) @pmp("nband", (1, 2)) @pmp("precision", ('single', 'double')) @pmp("nthreads", (1, 4)) @pmp("nchunks", (1, 3)) def test_dask_residual(nx, ny, fov, nrow, nchan, nband, precision, nthreads, nchunks): da = pytest.importorskip("dask.array") from africanus.gridding.wgridder import residual as residual_np from africanus.gridding.wgridder.dask import residual np.random.seed(420) if precision == 'single': real_type = np.float32 complex_type = np.complex64 decimal = 4 # sometimes fails at 5 else: real_type = np.float64 complex_type = np.complex128 decimal = 5 cell = fov*np.pi/180/nx f0 = 1e9 freq = (f0 + np.arange(nchan)*(f0/nchan)) uvw = ((np.random.rand(nrow, 3)-0.5) / (cell*freq[-1]/lightspeed)) vis = (np.random.rand(nrow, nchan)-0.5 + 1j * (np.random.rand(nrow, nchan)-0.5)).astype(complex_type) wgt = np.random.rand(nrow, nchan).astype(real_type) step = np.maximum(1, nchan//nband) if step: freq_bin_idx = np.arange(0, nchan, step) freq_mapping = np.append(freq_bin_idx, nchan) freq_bin_counts = freq_mapping[1::] - freq_mapping[0:-1] else: freq_bin_idx = np.array([0], dtype=np.int8) freq_bin_counts = np.array([1], dtype=np.int8) nband = freq_bin_idx.size image = np.random.randn(nband, nx, ny).astype(real_type) residim_np = residual_np(uvw, freq, image, vis, freq_bin_idx, freq_bin_counts, cell, weights=wgt, nthreads=nthreads) rows_per_task = int(np.ceil(nrow/nchunks)) row_chunks = (nchunks-1) * (rows_per_task,) row_chunks += (nrow - np.sum(row_chunks),) freq_da = da.from_array(freq, chunks=step) uvw_da = da.from_array(uvw, chunks=(row_chunks, -1)) image_da = da.from_array(image, chunks=(1, nx, ny)) vis_da = da.from_array(vis, chunks=(row_chunks, step)) wgt_da = da.from_array(wgt, chunks=(row_chunks, step)) freq_bin_idx_da = da.from_array(freq_bin_idx, chunks=1) freq_bin_counts_da = da.from_array(freq_bin_counts, chunks=1) residim_da = residual(uvw_da, freq_da, image_da, vis_da, freq_bin_idx_da, freq_bin_counts_da, cell, weights=wgt_da, nthreads=nthreads).compute() # should agree to within epsilon rmax = np.maximum(np.abs(residim_np).max(), np.abs(residim_da).max()) assert_array_almost_equal( residim_np/rmax, residim_da/rmax, decimal=decimal) @pmp("nx", (64,)) @pmp("ny", (128,)) @pmp("fov", (5.0,)) @pmp("nrow", (3333, 10000)) @pmp("nchan", (4,)) @pmp("nband", (2,)) @pmp("precision", ('single', 'double')) @pmp("nthreads", (1,)) @pmp("nchunks", (1, 3)) def test_dask_hessian(nx, ny, fov, nrow, nchan, nband, precision, nthreads, nchunks): da = pytest.importorskip("dask.array") from africanus.gridding.wgridder import hessian as hessian_np from africanus.gridding.wgridder.dask import hessian np.random.seed(420) if precision == 'single': real_type = np.float32 decimal = 4 # sometimes fails at 5 else: real_type = np.float64 decimal = 5 cell = fov*np.pi/180/nx f0 = 1e9 freq = (f0 + np.arange(nchan)*(f0/nchan)) uvw = ((np.random.rand(nrow, 3)-0.5) / (cell*freq[-1]/lightspeed)) wgt = np.random.rand(nrow, nchan).astype(real_type) step = np.maximum(1, nchan//nband) if step: freq_bin_idx = np.arange(0, nchan, step) freq_mapping = np.append(freq_bin_idx, nchan) freq_bin_counts = freq_mapping[1::] - freq_mapping[0:-1] else: freq_bin_idx = np.array([0], dtype=np.int8) freq_bin_counts = np.array([1], dtype=np.int8) nband = freq_bin_idx.size image = np.random.randn(nband, nx, ny).astype(real_type) convim_np = hessian_np(uvw, freq, image, freq_bin_idx, freq_bin_counts, cell, weights=wgt, nthreads=nthreads) rows_per_task = int(np.ceil(nrow/nchunks)) row_chunks = (nchunks-1) * (rows_per_task,) row_chunks += (nrow - np.sum(row_chunks),) freq_da = da.from_array(freq, chunks=step) uvw_da = da.from_array(uvw, chunks=(row_chunks, -1)) image_da = da.from_array(image, chunks=(1, nx, ny)) wgt_da = da.from_array(wgt, chunks=(row_chunks, step)) freq_bin_idx_da = da.from_array(freq_bin_idx, chunks=1) freq_bin_counts_da = da.from_array(freq_bin_counts, chunks=1) convim_da = hessian(uvw_da, freq_da, image_da, freq_bin_idx_da, freq_bin_counts_da, cell, weights=wgt_da, nthreads=nthreads).compute() # should agree to within epsilon rmax = np.maximum(np.abs(convim_np).max(), np.abs(convim_da).max()) assert_array_almost_equal( convim_np/rmax, convim_da/rmax, decimal=decimal) ``` #### File: africanus/linalg/kronecker_tools.py ```python import numpy as np def kron_N(x): """ Computes N = N_1 x N_2 x ... x N_D i.e. the total number of rows in a kronecker matrix Parameters ---------- x : :class:`numpy.ndarray` An array of arrays holding matrices/vectors [x1, x2, ..., xD] Returns ------- N : int The total number of rows in a kronecker matrix or vector """ D = x.shape[0] dims = np.zeros(D) for i in range(D): dims[i] = x[i].shape[0] return int(np.prod(dims)) def kron_matvec(A, b): """ Computes the matrix vector product of a kronecker matrix in linear time. Assumes A consists of kronecker product of square matrices. Parameters ---------- A : :class:`numpy.ndarray` An array of arrays holding matrices [K0, K1, ...] where :math:`A = K_0 \\otimes K_1 \\otimes \\cdots` b : :class:`numpy.ndarray` The right hand side vector Returns ------- x : :class:`numpy.ndarray` The result of :code:`A.dot(b)` """ D = A.shape[0] N = b.size x = b for d in range(D): Gd = A[d].shape[0] X = np.reshape(x, (Gd, N//Gd)) Z = np.einsum("ab,bc->ac", A[d], X) Z = np.einsum("ab -> ba", Z) x = Z.flatten() return x def kron_tensorvec(A, b): """ Matrix vector product of kronecker matrix A with vector b. A can be made up of an arbitrary kronecker product. Parameters ---------- A : :class:`numpy.ndarray` An array of arrays holding matrices [K0, K1, ...] where :math:`A = K_0 \\otimes K_1 \\otimes \\cdots` b : :class:`numpy.ndarray` The right hand side vector Returns ------- x : :class:`numpy.ndarray` The result of :code:`A.dot(b)` """ D = A.shape[0] # get shape of sub-matrices G = np.zeros(D, dtype=np.int8) M = np.zeros(D, dtype=np.int8) for d in range(D): M[d], G[d] = A[d].shape x = b for d in range(D): Gd = G[d] rem = np.prod(np.delete(G, d)) X = np.reshape(x, (Gd, rem)) Z = np.einsum("ab,bc->ac", A[d], X) Z = np.einsum("ab -> ba", Z) x = Z.flatten() # replace with new dimension G[d] = M[d] return x def kron_matmat(A, B): """ Computes the product between a kronecker matrix A and some RHS matrix B Parameters ---------- A : :class:`numpy.ndarray` An array of arrays holding matrices [K0, K1, ...] where :math:`A = K_0 \\otimes K_1 \\otimes \\cdots` B : :class:`numpy.ndarray` The RHS matrix Returns ------- x : :class:`numpy.ndarray` The result of :code:`A.dot(B)` """ M = B.shape[1] # the product of Np_1 x Np_2 x ... x Np_3 N = kron_N(A) C = np.zeros([N, M]) for i in range(M): C[:, i] = kron_matvec(A, B[:, i]) return C def kron_tensormat(A, B): """ Computes the matrix product between A kronecker matrix A and some RHS matrix B. Does not assume A to consist of a kronecker product of square matrices. Parameters ---------- A : :class:`numpy.ndarray` An array of arrays holding matrices [K0, K1, ...] where :math:`A = K_0 \\otimes K_1 \\otimes \\cdots` B : :class:`numpy.ndarray` The RHS matrix Returns ------- x : :class:`numpy.ndarray` The result of :code:`A.dot(B)` """ M = B.shape[1] # the product of Np_1 x Np_2 x ... x Np_3 N = kron_N(A) C = np.zeros([N, M]) for i in range(M): C[:, i] = kron_tensorvec(A, B[:, i]) return C def kron_cholesky(A): """ Computes the Cholesky decomposition of a kronecker matrix as a kronecker matrix of Cholesky factors. Parameters ---------- A : :class:`numpy.ndarray` An array of arrays holding matrices [K0, K1, ...] where :math:`A = K_0 \\otimes K_1 \\otimes \\cdots` Returns ------- L : :class:`numpy.ndarray` An array of arrays holding matrices [L0, L1, ...] where :math:`L = L_0 \\otimes L_1 \\otimes \\cdots` and each :code:`Li = cholesky(Ki)` """ D = A.shape[0] L = np.zeros_like(A) for i in range(D): try: L[i] = np.linalg.cholesky(A[i]) except Exception: # add jitter L[i] = np.linalg.cholesky(A[i] + 1e-13*np.eye(A[i].shape[0])) return L ``` #### File: linalg/test/test_geometry.py ```python import numpy as np import pytest from africanus.linalg.geometry import ( BoundingConvexHull, BoundingBox, BoundingBoxFactory, ) @pytest.mark.parametrize("debug", [False]) def test_hull_construction(debug): # test case 1 vals = np.array([[50, 60], [20, 40], [-74, 50], [-95, +10], [20, 60]]) bh = BoundingConvexHull(vals) mask = bh.mask assert mask.shape == ( np.max(vals[:, 1]) - np.min(vals[:, 1]) + 1, np.max(vals[:, 0]) - np.min(vals[:, 0]) + 1, ) # integral mask area needs to be close to true area assert np.abs(mask.sum() - bh.area) / bh.area < 0.05 normalized_normals = ( bh.rnormals / np.linalg.norm(bh.rnormals, axis=1)[:, None] ) # test case 2 for e, n in zip(bh.edges, normalized_normals): edge_vec = e[1] - e[0] assert np.all(np.abs(np.dot(edge_vec, n)) < 1.0e-8) # test case 3 valsextract = np.array([[-10, 120], [90, 268], [293, 110], [40, -30]]) bh_extract = BoundingConvexHull(valsextract) sinc_npx = 255 sinc = np.sinc(np.linspace(-7, 7, sinc_npx)) sinc2d = np.outer(sinc, sinc).reshape((1, 1, sinc_npx, sinc_npx)) (extracted_data, extracted_window_extents) = BoundingConvexHull.regional_data( bh_extract, sinc2d, oob_value=np.nan ) assert extracted_window_extents == [-10, 293, -30, 268] sparse_mask = np.array(bh_extract.sparse_mask) sel = np.logical_and( np.logical_and(sparse_mask[:, 1] >= 0, sparse_mask[:, 1] < 255), np.logical_and(sparse_mask[:, 0] >= 0, sparse_mask[:, 0] < 255), ) flat_index = (sparse_mask[sel][:, 0]) * sinc_npx + (sparse_mask[sel][:, 1]) sinc_integral = np.sum(sinc2d.ravel()[flat_index]) assert np.abs(sinc_integral - np.nansum(extracted_data.ravel())) < 1.0e-8 v = np.nanargmax(extracted_data) vx = v % extracted_data.shape[3] vy = v // extracted_data.shape[3] cextracted = ( extracted_window_extents[0] + vx, extracted_window_extents[2] + vy, ) v = np.nanargmax(sinc2d) sincvx = v % sinc_npx sincvy = v // sinc_npx csinc = tuple([sincvx, sincvy]) assert csinc == cextracted # test case 4 vals2 = np.array([[-20, -120], [0, 60], [40, -60]]) vals3 = np.array([[-20, 58], [-40, 80], [20, 100]]) bh2 = BoundingConvexHull(vals2) bh3 = BoundingConvexHull(vals3) assert bh.overlaps_with(bh2) assert not bh.overlaps_with(bh3) assert not bh2.overlaps_with(bh3) # test case 5 assert (-1000, -1000) not in bh assert (30, 0) not in bh assert (0, 0) not in bh assert (-40, 30) in bh # test case 6 bb = BoundingBox(-14, 20, 30, 49) assert bb.centre == [3, 39] assert bb.box_npx == (35, 20) assert bb.mask.shape == bb.box_npx[::-1] assert bb.area == 35 * 20 assert np.sum(bb.mask) == bb.area assert (-15, 35) not in bb assert (0, 35) in bb bb2 = BoundingBoxFactory.AxisAlignedBoundingBox(bb) # enforce odd assert bb2.box_npx == (35, 21) assert bb2.area == 35 * 21 assert (bb.sparse_mask == bb2.sparse_mask).all() assert (-15, 35) not in bb2 assert (0, 35) in bb2 bb3 = BoundingBoxFactory.AxisAlignedBoundingBox( bb, square=True ) # enforce odd assert bb3.box_npx[0] == bb3.box_npx[1] assert bb3.box_npx[0] % 2 == 1 # enforce odd assert bb3.area == bb3.box_npx[0] ** 2 assert (bb.sparse_mask == bb3.sparse_mask).all() assert (-15, 35) not in bb2 assert (0, 35) in bb2 # test case 7 bb4s = BoundingBoxFactory.SplitBox(bb, nsubboxes=3) assert len(bb4s) == 9 xlims = [(np.min(c.corners[:, 0]), np.max(c.corners[:, 0])) for c in bb4s][ 0:3 ] ylims = [(np.min(c.corners[:, 1]), np.max(c.corners[:, 1])) for c in bb4s][ 0::3 ] assert np.all(xlims == np.array([(-14, -3), (-2, 9), (10, 20)])) assert np.all(ylims == np.array([(30, 36), (37, 43), (44, 49)])) assert np.sum([b.area for b in bb4s]) == bb.area for bb4 in bb4s: assert bb4.area == np.sum(bb4.mask) # test case 8 bb5 = BoundingBox(-14, 20, 30, 50) assert bb5.box_npx == (35, 21) bb6 = BoundingBoxFactory.PadBox(bb5, 41, 27) assert bb6.box_npx == (41, 27) assert bb5.centre == bb6.centre assert np.sum(bb5.mask) == np.sum(bb6.mask) bb7s = list(map(lambda x: BoundingBoxFactory.PadBox(x, 17, 11), bb4s)) assert all([b.box_npx == (17, 11) for b in bb7s]) assert np.sum([np.sum(b.mask) for b in bb7s]) == np.sum( [np.sum(b.mask) for b in bb4s] ) # test case 9 facet_regions = list( map( lambda f: BoundingBoxFactory.PadBox(f, 63, 63), BoundingBoxFactory.SplitBox( BoundingBoxFactory.AxisAlignedBoundingBox(bh_extract), nsubboxes=5, ), ) ) facets = list( map( lambda pf: BoundingConvexHull.regional_data( pf, sinc2d, oob_value=np.nan ), facet_regions, ) ) stitched_image, stitched_region = BoundingBox.project_regions( [f[0] for f in facets], facet_regions ) assert ( np.abs(sinc_integral - np.nansum([np.nansum(f[0]) for f in facets])) < 1.0e-8 ) assert np.abs(sinc_integral - np.sum(stitched_image)) < 1.0e-8 v = np.argmax(stitched_image) vx = v % stitched_image.shape[3] vy = v // stitched_image.shape[3] cstitched = ( np.min(stitched_region.corners[:, 0]) + vx, np.min(stitched_region.corners[:, 1]) + vy, ) assert cstitched == csinc # test case 10 olap_box1 = BoundingBox(110, 138, 110, 135) olap_box2 = BoundingBox(115, 150, 109, 150) olap_box3 = BoundingBox(125, 130, 125, 130) BoundingConvexHull.normalize_masks([olap_box1, olap_box2, olap_box3]) ext1 = BoundingConvexHull.regional_data(olap_box1, sinc2d)[0] ext2 = BoundingConvexHull.regional_data(olap_box2, sinc2d)[0] ext3 = BoundingConvexHull.regional_data(olap_box3, sinc2d)[0] olaps_stitched_image, olaps_stitched_region = BoundingBox.project_regions( [ext1, ext2, ext3], [olap_box1, olap_box2, olap_box3] ) v = np.nanargmax(olaps_stitched_image) vx = v % olaps_stitched_image.shape[3] vy = v // olaps_stitched_image.shape[3] cstitched_olap = ( np.min(olaps_stitched_region.corners[:, 0]) + vx, np.min(olaps_stitched_region.corners[:, 1]) + vy, ) assert cstitched_olap == csinc assert np.abs(1.0 - np.nanmax(olaps_stitched_image)) < 1.0e-8 # visual inspection if debug: from matplotlib import pyplot as plt plt.figure(figsize=(7, 2.5)) plt.title("Winding, normals and masking check") for h in [bh, bh2, bh3]: for ei, e in enumerate(h.edges): plt.plot(e[:, 0], e[:, 1], "r--") plt.text(e[0, 0], e[0, 1], str(ei)) plt.plot(bh.edge_midpoints[:, 0], bh.edge_midpoints[:, 1], "ko") for e, n in zip(bh.edge_midpoints, normalized_normals): p0 = e p = e + n * 6 plt.plot([p0[0], p[0]], [p0[1], p[1]], "b--", lw=2) plt.scatter(vals[:, 0], vals[:, 1]) plt.imshow( mask, extent=[ np.min(vals[:, 0]), np.max(vals[:, 0]), np.max(vals[:, 1]), np.min(vals[:, 1]), ], ) plt.grid(True) plt.savefig("/tmp/winding.png") plt.figure(figsize=(7, 2.5)) plt.title("Data extraction check (global)") for h in [bh_extract]: for ei, e in enumerate(h.edges): plt.plot(e[:, 0], e[:, 1], "r--") plt.imshow(sinc2d[0, 0, :, :], extent=[0, sinc_npx, sinc_npx, 0]) plt.grid(True) plt.savefig("/tmp/extract_global.png") plt.figure(figsize=(7, 2.5)) plt.title("Data extraction check (local)") for h in [bh_extract]: for ei, e in enumerate(h.edges): plt.plot(e[:, 0], e[:, 1], "r--") plt.imshow( extracted_data[0, 0, :, :], extent=[ extracted_window_extents[0], extracted_window_extents[1], extracted_window_extents[3], extracted_window_extents[2], ], ) plt.savefig("/tmp/extract_local.png") plt.figure(figsize=(7, 2.5)) plt.title("Faceting check") for h in [bh_extract]: for ei, e in enumerate(h.edges): plt.plot(e[:, 0], e[:, 1], "r--") for f in facet_regions: for ei, e in enumerate(f.edges): plt.plot(e[:, 0], e[:, 1], "co--") plt.imshow( stitched_image[0, 0, :, :], extent=[ np.min(stitched_region.corners[:, 0]), np.max(stitched_region.corners[:, 0]), np.max(stitched_region.corners[:, 1]), np.min(stitched_region.corners[:, 1]), ], ) plt.savefig("/tmp/facet.png") plt.figure(figsize=(7, 2.5)) plt.title("Overlapping faceting check") for f in [olap_box1, olap_box2, olap_box3]: for ei, e in enumerate(f.edges): plt.plot(e[:, 0], e[:, 1], "co--") plt.imshow( olaps_stitched_image[0, 0, :, :], extent=[ np.min(olaps_stitched_region.corners[:, 0]), np.max(olaps_stitched_region.corners[:, 0]), np.max(olaps_stitched_region.corners[:, 1]), np.min(olaps_stitched_region.corners[:, 1]), ], ) plt.xlim( ( np.min(olaps_stitched_region.corners[:, 0]) - 15, np.max(olaps_stitched_region.corners[:, 0]) + 15, ) ) plt.ylim( ( np.min(olaps_stitched_region.corners[:, 1]) - 15, np.max(olaps_stitched_region.corners[:, 1]) + 15, ) ) plt.savefig("/tmp/overlap_facet.png") if __name__ == "__main__": test_hull_construction() ``` #### File: model/coherency/conversion.py ```python from collections import OrderedDict, deque from pprint import pformat from textwrap import fill import numpy as np from africanus.util.casa_types import (STOKES_TYPES, STOKES_ID_MAP) from africanus.util.docs import DocstringTemplate stokes_conv = { 'RR': {('I', 'V'): lambda i, v: i + v + 0j}, 'RL': {('Q', 'U'): lambda q, u: q + u*1j}, 'LR': {('Q', 'U'): lambda q, u: q - u*1j}, 'LL': {('I', 'V'): lambda i, v: i - v + 0j}, 'XX': {('I', 'Q'): lambda i, q: i + q + 0j}, 'XY': {('U', 'V'): lambda u, v: u + v*1j}, 'YX': {('U', 'V'): lambda u, v: u - v*1j}, 'YY': {('I', 'Q'): lambda i, q: i - q + 0j}, 'I': {('XX', 'YY'): lambda xx, yy: (xx + yy).real / 2, ('RR', 'LL'): lambda rr, ll: (rr + ll).real / 2}, 'Q': {('XX', 'YY'): lambda xx, yy: (xx - yy).real / 2, ('RL', 'LR'): lambda rl, lr: (rl + lr).real / 2}, 'U': {('XY', 'YX'): lambda xy, yx: (xy + yx).real / 2, ('RL', 'LR'): lambda rl, lr: (rl - lr).imag / 2}, 'V': {('XY', 'YX'): lambda xy, yx: (xy - yx).imag / 2, ('RR', 'LL'): lambda rr, ll: (rr - ll).real / 2}, } class DimensionMismatch(Exception): pass class MissingConversionInputs(Exception): pass def _element_indices_and_shape(data): if not isinstance(data, (tuple, list)): data = [data] # Shape of the data shape = [] # Each stack element is (list, index, depth) queue = deque([(data, (), 0)]) result = OrderedDict() while len(queue) > 0: current, current_idx, depth = queue.popleft() # First do shape inference if len(shape) <= depth: shape.append(len(current)) elif shape[depth] != len(current): raise DimensionMismatch("Dimension mismatch %d != %d at depth %d" % (shape[depth], len(current), depth)) # Handle each sequence element for i, e in enumerate(current): # Found a list, recurse if isinstance(e, (tuple, list)): queue.append((e, current_idx + (i, ), depth + 1)) # String elif isinstance(e, str): if e in result: raise ValueError("'%s' defined multiple times" % e) result[e] = current_idx + (i, ) # We have a CASA integer Stokes ID, convert to string elif np.issubdtype(type(e), np.integer): try: e = STOKES_ID_MAP[e] except KeyError: raise ValueError("Invalid id '%d'. " "Valid id's '%s'" % (e, pformat(STOKES_ID_MAP))) if e in result: raise ValueError("'%s' defined multiple times" % e) result[e] = current_idx + (i, ) else: raise TypeError("Invalid type '%s' for element '%s'" % (type(e), e)) return result, tuple(shape) def convert_setup(input, input_schema, output_schema): input_indices, input_shape = _element_indices_and_shape(input_schema) output_indices, output_shape = _element_indices_and_shape(output_schema) if input.shape[-len(input_shape):] != input_shape: raise ValueError("Last dimension of input doesn't match input schema") mapping = [] dummy = input.dtype.type(0) # Figure out how to produce an output from available inputs for okey, out_idx in output_indices.items(): try: deps = stokes_conv[okey] except KeyError: raise ValueError("Unknown output '%s'. Known types '%s'" % (deps, STOKES_TYPES)) found_conv = False # Find a mapping for which we have inputs for (c1, c2), fn in deps.items(): # Get indices for both correlations try: c1_idx = (Ellipsis,) + input_indices[c1] except KeyError: continue try: c2_idx = (Ellipsis,) + input_indices[c2] except KeyError: continue found_conv = True out_idx = (Ellipsis,) + out_idx # Figure out the data type for this output dtype = fn(dummy, dummy).dtype mapping.append((c1_idx, c2_idx, out_idx, fn, dtype)) break # We must find a conversion if not found_conv: raise MissingConversionInputs("None of the supplied inputs '%s' " "can produce output '%s'. It can be " "produced by the following " "combinations '%s'." % ( input_schema, okey, deps.keys())) out_dtype = np.result_type(*[dt for _, _, _, _, dt in mapping]) return mapping, input_shape, output_shape, out_dtype def convert_impl(input, mapping, in_shape, out_shape, dtype): # Make the output array out_shape = input.shape[:-len(in_shape)] + out_shape output = np.empty(out_shape, dtype=dtype) for c1_idx, c2_idx, out_idx, fn, _ in mapping: output[out_idx] = fn(input[c1_idx], input[c2_idx]) return output def convert(input, input_schema, output_schema): """ See STOKES_DOCS below """ # Do the conversion mapping, in_shape, out_shape, dtype = convert_setup(input, input_schema, output_schema) return convert_impl(input, mapping, in_shape, out_shape, dtype) CONVERT_DOCS = """ This function converts forward and backward from stokes ``I,Q,U,V`` to both linear ``XX,XY,YX,YY`` and circular ``RR, RL, LR, LL`` correlations. For example, we can convert from stokes parameters to linear correlations: .. code-block:: python stokes.shape == (10, 4, 4) corrs = convert(stokes, ["I", "Q", "U", "V"], [['XX', 'XY'], ['YX', 'YY']) assert corrs.shape == (10, 4, 2, 2) Or circular correlations to stokes: .. code-block:: python vis.shape == (10, 4, 2, 2) stokes = convert(vis, [['RR', 'RL'], ['LR', 'LL']], ['I', 'Q', 'U', 'V']) assert stokes.shape == (10, 4, 4) ``input`` can ``output`` can be arbitrarily nested or ordered lists, but the appropriate inputs must be present to produce the requested outputs. The elements of ``input`` and ``output`` may be strings or integers representing stokes parameters or correlations. See the Notes for a full list. Notes ----- Only stokes parameters, linear and circular correlations are currently handled, but the full list of id's and strings as defined in the `CASA documentation <https://casacore.github.io/casacore/classcasacore_1_1Stokes.html>`_ is: .. code-block:: python {stokes_type_map} Parameters ---------- input : $(array_type) Complex or floating point input data of shape :code:`(dim_1, ..., dim_n, icorr_1, ..., icorr_m)` input_schema : list of str or int A schema describing the :code:`icorr_1, ..., icorr_m` dimension of ``input``. Must have the same shape as the last dimensions of ``input``. output_schema : list of str or int A schema describing the :code:`ocorr_1, ..., ocorr_n` dimension of the return value. Returns ------- result : $(array_type) Result of shape :code:`(dim_1, ..., dim_n, ocorr_1, ..., ocorr_m)` The type may be floating point or promoted to complex depending on the combinations in ``output``. """ # Fill in the STOKES TYPES _map_str = ", ".join(["%s: %d" % (t, i) for i, t in enumerate(STOKES_TYPES)]) _map_str = "{{ " + _map_str + " }}" # Indent must match docstrings _map_str = fill(_map_str, initial_indent='', subsequent_indent=' '*8) CONVERT_DOCS = DocstringTemplate(CONVERT_DOCS.format(stokes_type_map=_map_str)) del _map_str try: convert.__doc__ = CONVERT_DOCS.substitute( array_type=":class:`numpy.ndarray`") except AttributeError: pass ``` #### File: model/shape/gaussian_shape.py ```python import numpy as np from africanus.util.docs import DocstringTemplate from africanus.util.numba import generated_jit from africanus.constants import c as lightspeed @generated_jit(nopython=True, nogil=True, cache=True) def gaussian(uvw, frequency, shape_params): # https://en.wikipedia.org/wiki/Full_width_at_half_maximum fwhm = 2.0 * np.sqrt(2.0 * np.log(2.0)) fwhminv = 1.0 / fwhm gauss_scale = fwhminv * np.sqrt(2.0) * np.pi / lightspeed dtype = np.result_type(*(np.dtype(a.dtype.name) for a in (uvw, frequency, shape_params))) def impl(uvw, frequency, shape_params): nsrc = shape_params.shape[0] nrow = uvw.shape[0] nchan = frequency.shape[0] shape = np.empty((nsrc, nrow, nchan), dtype=dtype) scaled_freq = np.empty_like(frequency) # Scale each frequency for f in range(frequency.shape[0]): scaled_freq[f] = frequency[f] * gauss_scale for s in range(shape_params.shape[0]): emaj, emin, angle = shape_params[s] # Convert to l-projection, m-projection, ratio el = emaj * np.sin(angle) em = emaj * np.cos(angle) er = emin / (1.0 if emaj == 0.0 else emaj) for r in range(uvw.shape[0]): u, v, w = uvw[r] u1 = (u*em - v*el)*er v1 = u*el + v*em for f in range(scaled_freq.shape[0]): fu1 = u1*scaled_freq[f] fv1 = v1*scaled_freq[f] shape[s, r, f] = np.exp(-(fu1*fu1 + fv1*fv1)) return shape return impl GAUSSIAN_DOCS = DocstringTemplate(r""" Computes the Gaussian Shape Function. .. math:: & \lambda^\prime = 2 \lambda \pi \\ & r = \frac{e_{min}}{e_{maj}} \\ & u_{1} = (u \, e_{maj} \, cos(\alpha) - v \, e_{maj} \, sin(\alpha)) r \lambda^\prime \\ & v_{1} = (u \, e_{maj} \, sin(\alpha) - v \, e_{maj} \, cos(\alpha)) \lambda^\prime \\ & \textrm{shape} = e^{(-u_{1}^2 - v_{1}^2)} where: - :math:`u` and :math:`v` are the UV coordinates and :math:`\lambda` the frequency. - :math:`e_{maj}` and :math:`e_{min}` are the major and minor axes and :math:`\alpha` the position angle. Parameters ---------- uvw : $(array_type) UVW coordinates of shape :code:`(row, 3)` frequency : $(array_type) frequencies of shape :code:`(chan,)` shape_param : $(array_type) Gaussian Shape Parameters of shape :code:`(source, 3)` where the second dimension contains the `(emajor, eminor, angle)` parameters describing the shape of the Gaussian Returns ------- gauss_shape : $(array_type) Shape parameters of shape :code:`(source, row, chan)` """) try: gaussian.__doc__ = GAUSSIAN_DOCS.substitute( array_type=":class:`numpy.ndarray`") except KeyError: pass ``` #### File: model/shape/shapelets.py ```python import numba import numpy as np from africanus.constants import c as lightspeed from africanus.constants import minus_two_pi_over_c square_root_of_pi = 1.77245385091 @numba.jit(nogil=True, nopython=True, cache=True) def hermite(n, x): if n == 0: return 1 elif n == 1: return 2 * x else: return 2 * x * hermite(n - 1, x) - 2 * (n - 1) * hermite(n - 2, x) @numba.jit(numba.uint64(numba.int32), nogil=True, nopython=True, cache=True) def factorial(n): if n <= 1: return 1 ans = 1 for i in range(1, n): ans = ans * i return ans * n @numba.jit(nogil=True, nopython=True, cache=True) def basis_function(n, xx, beta, fourier=False, delta_x=-1): if fourier: x = 2 * np.pi * xx scale = 1.0 / beta else: x = xx scale = beta basis_component = 1.0 / np.sqrt( 2.0 ** n * np.sqrt(np.pi) * factorial(n) * scale ) exponential_component = hermite(n, x / scale) * np.exp( -(x ** 2) / (2.0 * scale ** 2) ) if fourier: return ( 1.0j ** n * basis_component * exponential_component * np.sqrt(2 * np.pi) / delta_x ) else: return basis_component * exponential_component @numba.jit(nogil=True, nopython=True, cache=True) def phase_steer_and_w_correct(uvw, lm_source_center, frequency): l0, m0 = lm_source_center n0 = np.sqrt(1.0 - l0 ** 2 - m0 ** 2) u, v, w = uvw real_phase = ( minus_two_pi_over_c * frequency * (u * l0 + v * m0 + w * (n0 - 1)) ) return np.exp(1.0j * real_phase) @numba.jit(nogil=True, nopython=True, cache=True) def shapelet(coords, frequency, coeffs, beta, delta_lm, dtype=np.complex128): """ shapelet: outputs visibilities corresponding to that of a shapelet Inputs: coords: coordinates in (u,v) space with shape (nrow, 3) frequency: frequency values with shape (nchan,) coeffs: shapelet coefficients with shape, where coeffs[3, 4] = coeffs_l[3] * coeffs_m[4] (nsrc, nmax1, nmax2) beta: characteristic shapelet size with shape (nsrc, 2) delta_l: pixel size in l dim delta_m: pixel size in m dim lm: source center coordinates of shape (nsource, 2) Returns: out_shapelets: Shapelet with shape (nrow, nchan, nsrc) """ nrow = coords.shape[0] nsrc = coeffs.shape[0] nchan = frequency.shape[0] out_shapelets = np.empty((nrow, nchan, nsrc), dtype=np.complex128) delta_l, delta_m = delta_lm for row in range(nrow): u, v, _ = coords[row, :] for chan in range(nchan): fu = u * 2 * np.pi * frequency[chan] / lightspeed fv = v * 2 * np.pi * frequency[chan] / lightspeed for src in range(nsrc): nmax1, nmax2 = coeffs[src, :, :].shape beta_u, beta_v = beta[src, :] if beta_u == 0 or beta_v == 0: out_shapelets[row, chan, src] = 1 continue tmp_shapelet = 0 + 0j for n1 in range(nmax1): for n2 in range(nmax2): tmp_shapelet += ( 0 if coeffs[src][n1, n2] == 0 else coeffs[src][n1, n2] * basis_function( n1, fu, beta_u, True, delta_x=delta_l ) * basis_function( n2, fv, beta_v, True, delta_x=delta_m ) ) out_shapelets[row, chan, src] = tmp_shapelet return out_shapelets @numba.jit(nogil=True, nopython=True, cache=True) def shapelet_with_w_term( coords, frequency, coeffs, beta, delta_lm, lm, dtype=np.complex128 ): """ shapelet: outputs visibilities corresponding to that of a shapelet Inputs: coords: coordinates in (u,v) space with shape (nrow, 3) frequency: frequency values with shape (nchan,) coeffs: shapelet coefficients with shape, where coeffs[3, 4] = coeffs_l[3] * coeffs_m[4] (nsrc, nmax1, nmax2) beta: characteristic shapelet size with shape (nsrc, 2) delta_l: pixel size in l dim delta_m: pixel size in m dim lm: source center coordinates of shape (nsource, 2) Returns: out_shapelets: Shapelet with shape (nrow, nchan, nsrc) """ nrow = coords.shape[0] nsrc = coeffs.shape[0] nchan = frequency.shape[0] out_shapelets = np.empty((nrow, nchan, nsrc), dtype=np.complex128) delta_l, delta_m = delta_lm for row in range(nrow): u, v, w = coords[row, :] for chan in range(nchan): fu = u * 2 * np.pi * frequency[chan] / lightspeed fv = v * 2 * np.pi * frequency[chan] / lightspeed for src in range(nsrc): nmax1, nmax2 = coeffs[src, :, :].shape beta_u, beta_v = beta[src, :] l, m = lm[src, :] if beta_u == 0 or beta_v == 0: out_shapelets[row, chan, src] = 1 continue tmp_shapelet = 0 + 0j for n1 in range(nmax1): for n2 in range(nmax2): tmp_shapelet += ( 0 if coeffs[src][n1, n2] == 0 else coeffs[src][n1, n2] * basis_function( n1, fu, beta_u, True, delta_x=delta_l ) * basis_function( n2, fv, beta_v, True, delta_x=delta_m ) ) w_term = phase_steer_and_w_correct( (u, v, w), (l, m), frequency[chan] ) out_shapelets[row, chan, src] = tmp_shapelet * w_term return out_shapelets # @numba.jit(nogil=True, nopython=True, cache=True) def shapelet_1d(u, coeffs, fourier, delta_x=1, beta=1.0): """ The one dimensional shapelet. Default is to return the dimensionless version. Parameters ---------- u : :class:`numpy.ndarray` Array of coordinates at which to evaluate the shapelet of shape (nrow) coeffs : :class:`numpy.ndarray` Array of shapelet coefficients of shape (ncoeff) fourier : bool Whether to evaluate the shapelet in Fourier space or in signal space beta : float, optional The scale parameter for the shapelet. If fourier is true the scale is 1/beta Returns ------- out : :class:`numpy.ndarray` The shapelet evaluated at u of shape (nrow) """ nrow = u.size if fourier: if delta_x is None: raise ValueError( "You have to pass in a value for delta_x in Fourier mode" ) out = np.zeros(nrow, dtype=np.complex128) else: out = np.zeros(nrow, dtype=np.float64) for row, ui in enumerate(u): for n, c in enumerate(coeffs): out[row] += c * basis_function( n, ui, beta, fourier=fourier, delta_x=delta_x ) return out # @numba.jit(nogil=True, nopython=True, cache=True) def shapelet_2d(u, v, coeffs_l, fourier, delta_x=None, delta_y=None, beta=1.0): nrow_u = u.size nrow_v = v.size if fourier: if delta_x is None or delta_y is None: raise ValueError( "You have to pass in a value for delta_x and delta_y\ in Fourier mode" ) out = np.zeros((nrow_u, nrow_v), dtype=np.complex128) else: out = np.zeros((nrow_u, nrow_v), dtype=np.float64) for i, ui in enumerate(u): for j, vj in enumerate(v): for n1 in range(coeffs_l.shape[0]): for n2 in range(coeffs_l.shape[1]): c = coeffs_l[n1, n2] out[i, j] += ( c * basis_function( n1, ui, beta, fourier=fourier, delta_x=delta_x ) * basis_function( n2, vj, beta, fourier=fourier, delta_x=delta_y ) ) return out ``` #### File: spi/examples/simple_spi_fitter.py ```python import argparse import dask import dask.array as da import numpy as np from astropy.io import fits import warnings from africanus.model.spi.dask import fit_spi_components iFs = np.fft.ifftshift Fs = np.fft.fftshift # we want to fall back to numpy if pypocketfft is not installed # so set up functions to have the same call signatures try: from pypocketfft import r2c, c2r def fft(x, ax, ncpu): return r2c(x, axes=ax, forward=True, nthreads=ncpu, inorm=0) def ifft(y, ax, ncpu, lastsize): return c2r(y, axes=ax, forward=False, lastsize=lastsize, nthreads=args.ncpu, inorm=2) except BaseException: warnings.warn("No pypocketfft installation found. " "FFT's will be performed in serial. " "Install pypocketfft from " "https://gitlab.mpcdf.mpg.de/mtr/pypocketfft " "for optimal performance.", ImportWarning) from numpy.fft import rfftn, irfftn # additional arguments will have no effect def fft(x, ax, ncpu): return rfftn(x, axes=ax) def ifft(y, ax, ncpu, lastsize): return irfftn(y, axes=ax) def Gaussian2D(xin, yin, GaussPar=(1., 1., 0.)): S0, S1, PA = GaussPar PA = 90 + PA SMaj = np.max([S0, S1]) SMin = np.min([S0, S1]) A = np.array([[1. / SMaj ** 2, 0], [0, 1. / SMin ** 2]]) c, s, t = np.cos, np.sin, PA R = np.array([[c(t), -s(t)], [s(t), c(t)]]) A = np.dot(np.dot(R.T, A), R) sOut = xin.shape # only compute the result where necessary extent = (5 * SMaj)**2 xflat = xin.squeeze() yflat = yin.squeeze() ind = np.argwhere(xflat**2 + yflat**2 <= extent).squeeze() idx = ind[:, 0] idy = ind[:, 1] x = np.array([xflat[idx, idy].ravel(), yflat[idx, idy].ravel()]) R = np.einsum('nb,bc,cn->n', x.T, A, x) # need to adjust for the fact that GaussPar corresponds to FWHM fwhm_conv = 2*np.sqrt(2*np.log(2)) tmp = np.exp(-fwhm_conv*R) gausskern = np.zeros_like(xflat, dtype=np.float64) gausskern[idx, idy] = tmp return np.ascontiguousarray(gausskern.reshape(sOut), dtype=np.float64) def convolve_model(model, gausskern, args): print("Doing FFT's") # get padding _, npix_l, npix_m = model.shape pfrac = args.padding_frac/2.0 npad_l = int(pfrac*npix_l) npad_m = int(pfrac*npix_m) # get fast FFT sizes try: from scipy.fftpack import next_fast_len nfft = next_fast_len(npix_l + 2*npad_l) npad_ll = (nfft - npix_l)//2 npad_lr = nfft - npix_l - npad_ll nfft = next_fast_len(npix_m + 2*npad_m) npad_ml = (nfft - npix_m)//2 npad_mr = nfft - npix_m - npad_ml padding = ((0, 0), (npad_ll, npad_lr), (npad_ml, npad_mr)) unpad_l = slice(npad_ll, -npad_lr) unpad_m = slice(npad_ml, -npad_mr) except BaseException: warnings.warn("Could not determine fast fft size. " "Install scipy for optimal performance.", ImportWarning) padding = ((0, 0), (npad_l, npad_l), (npad_m, npad_m)) unpad_l = slice(npad_l, -npad_l) unpad_m = slice(npad_m, -npad_m) ax = (1, 2) # axes over which to perform fft lastsize = npix_m + np.sum(padding[-1]) # get FT of convolution kernel gausskernhat = fft(iFs(np.pad(gausskern[None], padding, mode='constant'), axes=ax), ax, args.ncpu) # Convolve model with Gaussian kernel convmodel = fft(iFs(np.pad(model, padding, mode='constant'), axes=ax), ax, args.ncpu) convmodel *= gausskernhat return Fs(ifft(convmodel, ax, args.ncpu, lastsize), axes=ax)[:, unpad_l, unpad_m] def interpolate_beam(xx, yy, maskindices, freqs, args): print("Interpolating beam") l_source = xx[maskindices[:, 0], maskindices[:, 1]] m_source = yy[maskindices[:, 0], maskindices[:, 1]] lm_source = np.vstack((l_source.ravel(), m_source.ravel())).T ntime = 1 nant = 1 nband = freqs.size parangles = np.zeros((ntime, nant,), dtype=np.float64) ant_scale = np.ones((nant, nband, 2), dtype=np.float64) point_errs = np.zeros((ntime, nant, nband, 2), dtype=np.float64) if args.beammodel == "eidos": raise NotImplementedError("eidos is coming!!!") else: print("Loading fits beam patterns from %s" % args.beammodel) from glob import glob paths = glob(args.beammodel + '_**_**.fits') beam_hdr = None for path in paths: if 'xx' in path or 'XX' in path or 'rr' in path or 'RR' in path: if 're' in path: corr1_re = fits.getdata(path) if beam_hdr is None: beam_hdr = fits.getheader(path) elif 'im' in path: corr1_im = fits.getdata(path) else: raise NotImplementedError("Only re/im patterns supported") elif 'yy' in path or 'YY' in path or 'll' in path or 'LL' in path: if 're' in path: corr2_re = fits.getdata(path) elif 'im' in path: corr2_im = fits.getdata(path) else: raise NotImplementedError("Only re/im patterns supported") # get Stokes I amplitude beam_amp = (corr1_re**2 + corr1_im**2 + corr2_re**2 + corr2_im**2)/2.0 # get cube in correct shape for interpolation code beam_amp = np.ascontiguousarray(np.transpose(beam_amp, (1, 2, 0)) [:, :, :, None, None]) # get cube info if beam_hdr['CUNIT1'] != "DEG" and beam_hdr['CUNIT1'] != "deg": raise ValueError("Beam image units must be in degrees") npix_l = beam_hdr['NAXIS1'] refpix_l = beam_hdr['CRPIX1'] delta_l = beam_hdr['CDELT1'] l_min = (1 - refpix_l)*delta_l l_max = (1 + npix_l - refpix_l)*delta_l if beam_hdr['CUNIT2'] != "DEG" and beam_hdr['CUNIT2'] != "deg": raise ValueError("Beam image units must be in degrees") npix_m = beam_hdr['NAXIS2'] refpix_m = beam_hdr['CRPIX2'] delta_m = beam_hdr['CDELT2'] m_min = (1 - refpix_m)*delta_m m_max = (1 + npix_m - refpix_m)*delta_m if (l_min > l_source.min() or m_min > m_source.min() or l_max < l_source.max() or m_max < m_source.max()): raise ValueError("The supplied beam is not large enough") beam_extents = np.array([[l_min, l_max], [m_min, m_max]]) # get frequencies if beam_hdr["CTYPE3"] != 'FREQ': raise ValueError( "Cubes are assumed to be in format [nchan, nx, ny]") nchan = beam_hdr['NAXIS3'] refpix = beam_hdr['CRPIX3'] delta = beam_hdr['CDELT3'] # assumes units are Hz freq0 = beam_hdr['CRVAL3'] bfreqs = freq0 + np.arange(1 - refpix, 1 + nchan - refpix) * delta if bfreqs[0] > freqs[0] or bfreqs[-1] < freqs[-1]: warnings.warn("The supplied beam does not have sufficient " "bandwidth. Beam frequencies:") with np.printoptions(precision=2): print(bfreqs) # LB - dask probably not necessary for small problem from africanus.rime.fast_beam_cubes import beam_cube_dde beam_source = beam_cube_dde(beam_amp, beam_extents, bfreqs, lm_source, parangles, point_errs, ant_scale, freqs).squeeze() return beam_source def create_parser(): p = argparse.ArgumentParser(description='Simple spectral index fitting' 'tool.', formatter_class=argparse.RawTextHelpFormatter) p.add_argument("--fitsmodel", type=str, required=True) p.add_argument("--fitsresidual", type=str) p.add_argument('--outfile', type=str, help="Path to output directory. \n" "Placed next to input model if outfile not provided.") p.add_argument('--beampars', default=None, nargs='+', type=float, help="Beam parameters matching FWHM of restoring beam " "specified as emaj emin pa. \n" "By default these are taken from the fits header " "of the residual image.") p.add_argument('--threshold', default=5, type=float, help="Multiple of the rms in the residual to threshold " "on. \n" "Only components above threshold*rms will be fit.") p.add_argument('--maxDR', default=100, type=float, help="Maximum dynamic range used to determine the " "threshold above which components need to be fit. \n" "Only used if residual is not passed in.") p.add_argument('--ncpu', default=0, type=int, help="Number of threads to use. \n" "Default of zero means use all threads") p.add_argument('--beammodel', default=None, type=str, help="Fits beam model to use. \n" "It is assumed that the pattern is path_to_beam/" "name_corr_re/im.fits. \n" "Provide only the path up to name " "e.g. /home/user/beams/meerkat_lband. \n" "Patterns mathing corr are determined " "automatically. \n" "Only real and imaginary beam models currently " "supported.") p.add_argument('--output', default='aiIbc', type=str, help="Outputs to write. Letter correspond to: \n" "a - alpha map \n" "i - I0 map \n" "I - reconstructed cube form alpha and I0 \n" "b - interpolated beam \n" "c - restoring beam used for convolution \n" "Default is to write all of them") p.add_argument("--padding_frac", default=0.2, type=float, help="Padding factor for FFT's.") return p def main(args): ref_hdr = fits.getheader(args.fitsresidual) if args.beampars is None: print("Attempting to take beampars from residual fits header") emaj = ref_hdr['BMAJ1'] emin = ref_hdr['BMIN1'] pa = ref_hdr['BPA1'] beampars = (emaj, emin, pa) else: beampars = tuple(args.beampars) # emaj, emin, pa = args.beampars print("Using emaj = %3.2e, emin = %3.2e, PA = %3.2e" % beampars) # load images model = np.ascontiguousarray(fits.getdata(args.fitsmodel).squeeze(), dtype=np.float64) mhdr = fits.getheader(args.fitsmodel) if mhdr['CUNIT1'] != "DEG" and mhdr['CUNIT1'] != "deg": raise ValueError("Image units must be in degrees") npix_l = mhdr['NAXIS1'] refpix_l = mhdr['CRPIX1'] delta_l = mhdr['CDELT1'] l_coord = np.arange(1 - refpix_l, 1 + npix_l - refpix_l)*delta_l if mhdr['CUNIT2'] != "DEG" and mhdr['CUNIT2'] != "deg": raise ValueError("Image units must be in degrees") npix_m = mhdr['NAXIS2'] refpix_m = mhdr['CRPIX2'] delta_m = mhdr['CDELT2'] m_coord = np.arange(1 - refpix_m, 1 + npix_m - refpix_m)*delta_m print("Image shape = ", (npix_l, npix_m)) # get frequencies if mhdr["CTYPE4"] == 'FREQ': freq_axis = 4 nband = mhdr['NAXIS4'] refpix_nu = mhdr['CRPIX4'] delta_nu = mhdr['CDELT4'] # assumes units are Hz ref_freq = mhdr['CRVAL4'] ncorr = mhdr['NAXIS3'] elif mhdr["CTYPE3"] == 'FREQ': freq_axis = 3 nband = mhdr['NAXIS3'] refpix_nu = mhdr['CRPIX3'] delta_nu = mhdr['CDELT3'] # assumes units are Hz ref_freq = mhdr['CRVAL3'] ncorr = mhdr['NAXIS4'] else: raise ValueError("Freq axis must be 3rd or 4th") if ncorr > 1: raise ValueError("Only Stokes I cubes supported") freqs = ref_freq + np.arange(1 - refpix_nu, 1 + nband - refpix_nu) * delta_nu print("Cube frequencies:") with np.printoptions(precision=2): print(freqs) print("Reference frequency is %3.2e Hz " % ref_freq) # get the Gaussian convolution kernel xx, yy = np.meshgrid(l_coord, m_coord) gausskern = Gaussian2D(xx, yy, beampars) # Convolve model with Gaussian restroring beam at lowest frequency model = convolve_model(model, gausskern, args) # set threshold if args.fitsresidual is not None: resid = fits.getdata(args.fitsresidual).squeeze().astype(np.float64) rms = np.std(resid) rms_cube = np.std(resid.reshape(nband, npix_l*npix_m), axis=1).ravel() threshold = args.threshold * rms print("Setting cutoff threshold as %i times the rms " "of the residual" % args.threshold) del resid else: print("No residual provided. Setting threshold i.t.o dynamic range. " "Max dynamic range is %i" % args.maxDR) threshold = model.max()/args.maxDR if args.channelweights is None: rms_cube = None print("Threshold set to %f Jy." % threshold) # get pixels above threshold minimage = np.amin(model, axis=0) maskindices = np.argwhere(minimage > threshold) if not maskindices.size: raise ValueError("No components found above threshold. " "Try lowering your threshold." "Max of convolved model is %3.2e" % model.max()) fitcube = model[:, maskindices[:, 0], maskindices[:, 1]].T print(xx.shape, yy.shape, maskindices.shape) # get primary beam at source locations if args.beammodel is not None: beam_source = interpolate_beam(xx, yy, maskindices, freqs, args) # correct cube fitcube /= beam_source # set weights for fit if rms_cube is not None: print("Using RMS in each imaging band to determine weights.") weights = np.where(rms_cube > 0, 1.0/rms_cube**2, 0.0) # normalise weights /= weights.max() else: print("No residual provided. Using equal weights.") weights = np.ones(nband, dtype=np.float64) ncomps, _ = fitcube.shape fitcube = da.from_array(fitcube.astype(np.float64), chunks=(ncomps//args.ncpu, nband)) weights = da.from_array(weights.astype(np.float64), chunks=(nband)) freqsdask = da.from_array(freqs.astype(np.float64), chunks=(nband)) print("Fitting %i components" % ncomps) alpha, _, Iref, _ = fit_spi_components(fitcube, weights, freqsdask, np.float64(ref_freq)).compute() print("Done. Writing output.") alphamap = np.zeros([npix_l, npix_m]) i0map = np.zeros([npix_l, npix_m]) alphamap[maskindices[:, 0], maskindices[:, 1]] = alpha i0map[maskindices[:, 0], maskindices[:, 1]] = Iref # save next to model if no outfile is provided if args.outfile is None: # find last / tmp = args.fitsmodel[::-1] idx = tmp.find('/') if idx != -1: outfile = args.fitsmodel[0:-idx] else: outfile = 'image-' else: outfile = args.outfile hdu = fits.PrimaryHDU(header=mhdr) if 'I' in args.output: # get the reconstructed cube Irec_cube = i0map[None, :, :] * \ (freqs[:, None, None]/ref_freq)**alphamap[None, :, :] # save it if freq_axis == 3: hdu.data = Irec_cube[None, :, :, :] elif freq_axis == 4: hdu.data = Irec_cube[:, None, :, :] name = outfile + 'Irec_cube.fits' hdu.writeto(name, overwrite=True) print("Wrote reconstructed cube to %s" % name) if args.beammodel is not None and 'b' in args.output: beam_map = np.zeros((nband, npix_l, npix_m)) beam_map[:, maskindices[:, 0], maskindices[:, 1]] = beam_source.T if freq_axis == 3: hdu.data = beam_map[None, :, :, :] elif freq_axis == 4: hdu.data = beam_map[:, None, :, :] name = outfile + 'interpolated_beam_cube.fits' hdu.writeto(name, overwrite=True) print("Wrote interpolated beam cube to %s" % name) hdr_keys = ['SIMPLE', 'BITPIX', 'NAXIS', 'NAXIS1', 'NAXIS2', 'NAXIS3', 'NAXIS4', 'BUNIT', 'BMAJ', 'BMIN', 'BPA', 'EQUINOX', 'BTYPE', 'TELESCOP', 'OBSERVER', 'OBJECT', 'ORIGIN', 'CTYPE1', 'CTYPE2', 'CTYPE3', 'CTYPE4', 'CRPIX1', 'CRPIX2', 'CRPIX3', 'CRPIX4', 'CRVAL1', 'CRVAL2', 'CRVAL3', 'CRVAL4', 'CDELT1', 'CDELT2', 'CDELT3', 'CDELT4', 'CUNIT1', 'CUNIT2', 'CUNIT3', 'CUNIT4', 'SPECSYS', 'DATE-OBS'] new_hdr = {} for key in hdr_keys: new_hdr[key] = ref_hdr[key] if freq_axis == 3: new_hdr["NAXIS3"] = 1 new_hdr["CRVAL3"] = ref_freq elif freq_axis == 4: new_hdr["NAXIS4"] = 1 new_hdr["CRVAL4"] = ref_freq new_hdr = fits.Header(new_hdr) # save alpha map if 'a' in args.output: hdu = fits.PrimaryHDU(header=new_hdr) hdu.data = alphamap name = outfile + 'alpha.fits' hdu.writeto(name, overwrite=True) print("Wrote alpha map to %s" % name) # save I0 map if 'i' in args.output: hdu = fits.PrimaryHDU(header=new_hdr) hdu.data = i0map name = outfile + 'I0.fits' hdu.writeto(name, overwrite=True) print("Wrote I0 map to %s" % name) # save clean beam for consistency check if 'c' in args.output: hdu = fits.PrimaryHDU(header=new_hdr) hdu.data = gausskern name = outfile + 'clean-beam.fits' hdu.writeto(name, overwrite=True) print("Wrote clean beam to %s" % name) print("All done here") if __name__ == "__main__": args = create_parser().parse_args() if args.ncpu: from multiprocessing.pool import ThreadPool dask.config.set(pool=ThreadPool(args.ncpu)) else: import multiprocessing args.ncpu = multiprocessing.cpu_count() print("Using %i threads" % args.ncpu) main(args) ``` #### File: model/wsclean/spec_model.py ```python from numba import types import numpy as np from africanus.util.numba import generated_jit from africanus.util.docs import DocstringTemplate def ordinary_spectral_model(I, coeffs, log_poly, freq, ref_freq): # noqa: E741 """ Numpy ordinary polynomial implementation """ coeffs_idx = np.arange(1, coeffs.shape[1] + 1) # (source, chan, coeffs-comp) term = (freq[None, :, None] / ref_freq[:, None, None]) - 1.0 term = term**coeffs_idx[None, None, :] term = coeffs[:, None, :]*term return I[:, None] + term.sum(axis=2) def log_spectral_model(I, coeffs, log_poly, freq, ref_freq): # noqa: E741 """ Numpy logarithmic polynomial implementation """ # No negative flux I = np.where(log_poly == False, 1.0, I) # noqa: E741, E712 coeffs_idx = np.arange(1, coeffs.shape[1] + 1) # (source, chan, coeffs-comp) term = np.log(freq[None, :, None] / ref_freq[:, None, None]) term = term**coeffs_idx[None, None, :] term = coeffs[:, None, :]*term return np.exp(np.log(I)[:, None] + term.sum(axis=2)) @generated_jit(nopython=True, nogil=True, cache=True) def _check_log_poly_shape(coeffs, log_poly): if isinstance(log_poly, types.npytypes.Array): def impl(coeffs, log_poly): if coeffs.shape[0] != log_poly.shape[0]: raise ValueError("coeffs.shape[0] != log_poly.shape[0]") elif isinstance(log_poly, types.scalars.Boolean): def impl(coeffs, log_poly): pass else: raise ValueError("log_poly must be ndarray or bool") return impl @generated_jit(nopython=True, nogil=True, cache=True) def _log_polynomial(log_poly, s): if isinstance(log_poly, types.npytypes.Array): def impl(log_poly, s): return log_poly[s] elif isinstance(log_poly, types.scalars.Boolean): def impl(log_poly, s): return log_poly else: raise ValueError("log_poly must be ndarray or bool") return impl @generated_jit(nopython=True, nogil=True, cache=True) def spectra(I, coeffs, log_poly, ref_freq, frequency): # noqa: E741 arg_dtypes = tuple(np.dtype(a.dtype.name) for a in (I, coeffs, ref_freq, frequency)) dtype = np.result_type(*arg_dtypes) def impl(I, coeffs, log_poly, ref_freq, frequency): # noqa: E741 if not (I.shape[0] == coeffs.shape[0] == ref_freq.shape[0]): raise ValueError("first dimensions of I, coeffs " "and ref_freq don't match.") _check_log_poly_shape(coeffs, log_poly) nsrc = I.shape[0] nchan = frequency.shape[0] ncoeffs = coeffs.shape[1] spectral_model = np.empty((nsrc, nchan), dtype=dtype) for s in range(nsrc): rf = ref_freq[s] if _log_polynomial(log_poly, s): for f in range(frequency.shape[0]): nu = frequency[f] flux = I[s] if flux <= 0.0: raise ValueError("Log polynomial flux must be > 0") # Initialise with base polynomial value spectral_model[s, f] = np.log(flux) for c in range(ncoeffs): term = coeffs[s, c] if term <= 0.0: raise ValueError("log polynomial coefficient " "must be > 0") term *= np.log(nu/rf)**(c + 1) spectral_model[s, f] += term spectral_model[s, f] = np.exp(spectral_model[s, f]) else: for f in range(frequency.shape[0]): nu = frequency[f] # Initialise with base polynomial value spectral_model[s, f] = I[s] for c in range(ncoeffs): term = coeffs[s, c] term *= ((nu/rf) - 1.0)**(c + 1) spectral_model[s, f] += term return spectral_model return impl SPECTRA_DOCS = DocstringTemplate(r""" Produces a spectral model from a polynomial expansion of a wsclean file model. Depending on how `log_poly` is set ordinary or logarithmic polynomials are used to produce the expansion: .. math:: & flux(\lambda) = I_{0} + \sum\limits_{c=0} \textrm{coeffs}(c) ({\lambda/\lambda_{ref}} - 1)^{c+1} \\ & flux(\lambda) = \exp \left( \log I_{0} + \sum\limits_{c=0} \textrm{coeffs}(c) \log({\lambda/\lambda_{ref}})^{c+1} \right) \\ See the `WSClean Component List <https://sourceforge.net/p/wsclean/wiki/ComponentList/>`_ for further details. Parameters ---------- I : $(array_type) flux density in Janskys at the reference frequency of shape :code:`(source,)` coeffs : $(array_type) Polynomial coefficients for each source of shape :code:`(source, comp)` log_poly : $(array_type) or bool boolean array of shape :code:`(source, )` indicating whether logarithmic (True) or ordinary (False) polynomials should be used. ref_freq : $(array_type) Source reference frequencies of shape :code:`(source,)` frequency : $(array_type) frequencies of shape :code:`(chan,)` See Also -------- africanus.model.wsclean.load Returns ------- spectral_model : $(array_type) Spectral Model of shape :code:`(source, chan)` """) try: spectra.__doc__ = SPECTRA_DOCS.substitute( array_type=":class:`numpy.ndarray`") except AttributeError: pass ``` #### File: rime/cuda/beam.py ```python from functools import reduce import logging from operator import mul from pathlib import Path import numpy as np from africanus.rime.fast_beam_cubes import BEAM_CUBE_DOCS from africanus.util.code import format_code, memoize_on_key from africanus.util.cuda import cuda_function, grids from africanus.util.jinja2 import jinja_env from africanus.util.requirements import requires_optional try: import cupy as cp from cupy.core._scalar import get_typename as _get_typename from cupy.cuda.compiler import CompileException except ImportError as e: opt_import_error = e else: opt_import_error = None log = logging.getLogger(__name__) _MAIN_TEMPLATE_PATH = Path("rime", "cuda", "beam.cu.j2") _INTERP_TEMPLATE_PATH = Path("rime", "cuda", "beam_freq_interp.cu.j2") BEAM_NUD_LIMIT = 128 def _freq_interp_key(beam_freq_map, frequencies): return (beam_freq_map.dtype, frequencies.dtype) @memoize_on_key(_freq_interp_key) def _generate_interp_kernel(beam_freq_map, frequencies): render = jinja_env.get_template(str(_INTERP_TEMPLATE_PATH)).render name = "beam_cube_freq_interp" block = (1024, 1, 1) code = render(kernel_name=name, beam_nud_limit=BEAM_NUD_LIMIT, blockdimx=block[0], beam_freq_type=_get_typename(beam_freq_map.dtype), freq_type=_get_typename(frequencies.dtype)) code = code.encode('utf-8') dtype = np.result_type(beam_freq_map, frequencies) return cp.RawKernel(code, name), block, dtype def _main_key_fn(beam, beam_lm_ext, beam_freq_map, lm, parangles, pointing_errors, antenna_scaling, frequencies, dde_dims, ncorr): return (beam.dtype, beam.ndim, beam_lm_ext.dtype, beam_freq_map.dtype, lm.dtype, parangles.dtype, pointing_errors.dtype, antenna_scaling.dtype, frequencies.dtype, dde_dims, ncorr) # Value to use in a bit shift to recover channel from flattened # channel/correlation index _corr_shifter = {4: 2, 2: 1, 1: 0} @memoize_on_key(_main_key_fn) def _generate_main_kernel(beam, beam_lm_ext, beam_freq_map, lm, parangles, pointing_errors, antenna_scaling, frequencies, dde_dims, ncorr): beam_lw, beam_mh, beam_nud = beam.shape[:3] if beam_lw < 2 or beam_mh < 2 or beam_nud < 2: raise ValueError("(beam_lw, beam_mh, beam_nud) < 2 " "to linearly interpolate") # Create template render = jinja_env.get_template(str(_MAIN_TEMPLATE_PATH)).render name = "beam_cube_dde" dtype = beam.dtype if dtype == np.complex64: block = (32, 32, 1) elif dtype == np.complex128: block = (32, 16, 1) else: raise TypeError("Need complex beam cube '%s'" % beam.dtype) try: corr_shift = _corr_shifter[ncorr] except KeyError: raise ValueError("Number of Correlations not in %s" % list(_corr_shifter.keys())) coord_type = np.result_type(beam_lm_ext, lm, parangles, pointing_errors, antenna_scaling, np.float32) assert coord_type in (np.float32, np.float64) code = render(kernel_name=name, blockdimx=block[0], blockdimy=block[1], blockdimz=block[2], corr_shift=corr_shift, ncorr=ncorr, beam_nud_limit=BEAM_NUD_LIMIT, # Beam type and manipulation functions beam_type=_get_typename(beam.real.dtype), beam_dims=beam.ndim, make2_beam_fn=cuda_function('make2', beam.real.dtype), beam_sqrt_fn=cuda_function('sqrt', beam.real.dtype), beam_rsqrt_fn=cuda_function('rsqrt', beam.real.dtype), # Coordinate type and manipulation functions FT=_get_typename(coord_type), floor_fn=cuda_function('floor', coord_type), min_fn=cuda_function('min', coord_type), max_fn=cuda_function('max', coord_type), cos_fn=cuda_function('cos', coord_type), sin_fn=cuda_function('sin', coord_type), lm_ext_type=_get_typename(beam_lm_ext.dtype), beam_freq_type=_get_typename(beam_freq_map.dtype), lm_type=_get_typename(lm.dtype), pa_type=_get_typename(parangles.dtype), pe_type=_get_typename(pointing_errors.dtype), as_type=_get_typename(antenna_scaling.dtype), freq_type=_get_typename(frequencies.dtype), dde_type=_get_typename(beam.real.dtype), dde_dims=dde_dims) code = code.encode('utf-8') # Complex output type return cp.RawKernel(code, name), block, dtype @requires_optional('cupy', opt_import_error) def beam_cube_dde(beam, beam_lm_ext, beam_freq_map, lm, parangles, pointing_errors, antenna_scaling, frequencies): corrs = beam.shape[3:] if beam.shape[2] >= BEAM_NUD_LIMIT: raise ValueError("beam_nud exceeds %d" % BEAM_NUD_LIMIT) nsrc = lm.shape[0] ntime, na = parangles.shape nchan = frequencies.shape[0] ncorr = reduce(mul, corrs, 1) nchancorr = nchan*ncorr oshape = (nsrc, ntime, na, nchan) + corrs if len(corrs) > 1: # Flatten the beam correlation dims fbeam = beam.reshape(beam.shape[:3] + (ncorr,)) else: fbeam = beam # Generate frequency interpolation kernel ikernel, iblock, idt = _generate_interp_kernel(beam_freq_map, frequencies) # Generate main beam cube kernel kernel, block, dtype = _generate_main_kernel(fbeam, beam_lm_ext, beam_freq_map, lm, parangles, pointing_errors, antenna_scaling, frequencies, len(oshape), ncorr) # Call frequency interpolation kernel igrid = grids((nchan, 1, 1), iblock) freq_data = cp.empty((3, nchan), dtype=frequencies.dtype) try: ikernel(igrid, iblock, (frequencies, beam_freq_map, freq_data)) except CompileException: log.exception(format_code(ikernel.code)) raise # Call main beam cube kernel out = cp.empty((nsrc, ntime, na, nchan) + (ncorr,), dtype=beam.dtype) grid = grids((nchancorr, na, ntime), block) try: kernel(grid, block, (fbeam, beam_lm_ext, beam_freq_map, lm, parangles, pointing_errors, antenna_scaling, frequencies, freq_data, nsrc, out)) except CompileException: log.exception(format_code(kernel.code)) raise return out.reshape(oshape) try: beam_cube_dde.__doc__ = BEAM_CUBE_DOCS.substitute( array_type=":class:`cupy.ndarray`") except AttributeError: pass ``` #### File: rime/cuda/predict.py ```python from functools import reduce import logging from operator import mul from os.path import join as pjoin import numpy as np from africanus.rime.predict import (PREDICT_DOCS, predict_checks) from africanus.util.code import format_code, memoize_on_key from africanus.util.cuda import cuda_type, grids from africanus.util.jinja2 import jinja_env from africanus.util.requirements import requires_optional try: import cupy as cp from cupy.cuda.compiler import CompileException except ImportError as e: opt_import_error = e else: opt_import_error = None log = logging.getLogger(__name__) _TEMPLATE_PATH = pjoin("rime", "cuda", "predict.cu.j2") def _key_fn(*args): """ Hash on array datatypes and rank """ return tuple((a.dtype, a.ndim) if isinstance(a, (np.ndarray, cp.ndarray)) else a for a in args) @memoize_on_key(_key_fn) def _generate_kernel(time_index, antenna1, antenna2, dde1_jones, source_coh, dde2_jones, die1_jones, base_vis, die2_jones, corrs, out_ndim): tup = predict_checks(time_index, antenna1, antenna2, dde1_jones, source_coh, dde2_jones, die1_jones, base_vis, die2_jones) (have_ddes1, have_coh, have_ddes2, have_dies1, have_bvis, have_dies2) = tup # Check types if time_index.dtype != np.int32: raise TypeError("time_index.dtype != np.int32 '%s'" % time_index.dtype) if antenna1.dtype != np.int32: raise TypeError("antenna1.dtype != np.int32 '%s'" % antenna1.dtype) if antenna2.dtype != np.int32: raise TypeError("antenna2.dtype != np.int32 '%s'" % antenna2.dtype) # Create template render = jinja_env.get_template(_TEMPLATE_PATH).render name = "predict_vis" # Complex output type out_dtype = np.result_type(dde1_jones, source_coh, dde2_jones, die1_jones, base_vis, die2_jones) ncorrs = reduce(mul, corrs, 1) # corrs x channels, rows blockdimx = 32 blockdimy = 24 if out_dtype == np.complex128 else 32 block = (blockdimx, blockdimy, 1) code = render(kernel_name=name, blockdimx=blockdimx, blockdimy=blockdimy, have_dde1=have_ddes1, dde1_type=cuda_type(dde1_jones) if have_ddes1 else "int", dde1_ndim=dde1_jones.ndim if have_ddes1 else 1, have_dde2=have_ddes2, dde2_type=cuda_type(dde2_jones) if have_ddes2 else "int", dde2_ndim=dde2_jones.ndim if have_ddes2 else 1, have_coh=have_coh, coh_type=cuda_type(source_coh) if have_coh else "int", coh_ndim=source_coh.ndim if have_coh else 1, have_die1=have_dies1, die1_type=cuda_type(die1_jones) if have_dies1 else "int", die1_ndim=die1_jones.ndim if have_dies1 else 1, have_base_vis=have_bvis, base_vis_type=cuda_type(base_vis) if have_bvis else "int", base_vis_ndim=base_vis.ndim if have_bvis else 1, have_die2=have_dies2, die2_type=cuda_type(die2_jones) if have_dies2 else "int", die2_ndim=die2_jones.ndim if have_dies2 else 1, out_type=cuda_type(out_dtype), corrs=ncorrs, out_ndim=out_ndim, warp_size=32).encode('utf-8') return cp.RawKernel(code, name), block, out_dtype @requires_optional("cupy", opt_import_error) def predict_vis(time_index, antenna1, antenna2, dde1_jones=None, source_coh=None, dde2_jones=None, die1_jones=None, base_vis=None, die2_jones=None): """ Cupy implementation of the feed_rotation kernel. """ have_ddes = dde1_jones is not None and dde2_jones is not None have_dies = die1_jones is not None and die2_jones is not None have_coh = source_coh is not None have_bvis = base_vis is not None # Infer the output shape if have_ddes: row = time_index.shape[0] chan = dde1_jones.shape[3] corrs = dde1_jones.shape[4:] elif have_coh: row = time_index.shape[0] chan = source_coh.shape[2] corrs = source_coh.shape[3:] elif have_dies: row = time_index.shape[0] chan = die1_jones.shape[2] corrs = die1_jones.shape[3:] elif have_bvis: row = time_index.shape[0] chan = base_vis.shape[1] corrs = base_vis.shape[2:] else: raise ValueError("Insufficient inputs supplied for determining " "the output shape") ncorrs = len(corrs) # Flatten correlations if ncorrs == 2: flat_corrs = reduce(mul, corrs, 1) if have_ddes: dde_shape = dde1_jones.shape[:-ncorrs] + (flat_corrs,) dde1_jones = dde1_jones.reshape(dde_shape) dde2_jones = dde2_jones.reshape(dde_shape) if have_coh: coh_shape = source_coh.shape[:-ncorrs] + (flat_corrs,) source_coh = source_coh.reshape(coh_shape) if have_dies: die_shape = die1_jones.shape[:-ncorrs] + (flat_corrs,) die1_jones = die1_jones.reshape(die_shape) die2_jones = die2_jones.reshape(die_shape) if have_bvis: bvis_shape = base_vis.shape[:-ncorrs] + (flat_corrs,) base_vis = base_vis.reshape(bvis_shape) elif ncorrs == 1: flat_corrs = corrs[0] else: raise ValueError("Invalid correlation setup %s" % (corrs,)) out_shape = (row, chan) + (flat_corrs,) kernel, block, out_dtype = _generate_kernel(time_index, antenna1, antenna2, dde1_jones, source_coh, dde2_jones, die1_jones, base_vis, die2_jones, corrs, len(out_shape)) grid = grids((chan*flat_corrs, row, 1), block) out = cp.empty(shape=out_shape, dtype=out_dtype) # Normalise the time index # TODO(sjperkins) # Normalise the time index with a device-wide reduction norm_time_index = time_index - time_index.min() args = (norm_time_index, antenna1, antenna2, dde1_jones, source_coh, dde2_jones, die1_jones, base_vis, die2_jones, out) try: kernel(grid, block, tuple(a for a in args if a is not None)) except CompileException: log.exception(format_code(kernel.code)) raise return out.reshape((row, chan) + corrs) try: predict_vis.__doc__ = PREDICT_DOCS.substitute( array_type=":class:`cupy.ndarray`", get_time_index=":code:`cp.unique(time, " "return_inverse=True)[1]`", extra_args="", extra_notes="") except AttributeError: pass ``` #### File: cuda/tests/test_cuda_predict.py ```python import numpy as np import pytest from africanus.rime.predict import predict_vis as np_predict_vis from africanus.rime.cuda.predict import predict_vis from africanus.rime.tests.test_predict import (corr_shape_parametrization, die_presence_parametrization, dde_presence_parametrization, chunk_parametrization, rc) @corr_shape_parametrization @dde_presence_parametrization @die_presence_parametrization @chunk_parametrization def test_cuda_predict_vis(corr_shape, idm, einsum_sig1, einsum_sig2, a1j, blj, a2j, g1j, bvis, g2j, chunks): np.random.seed(40) cp = pytest.importorskip('cupy') s = sum(chunks['source']) t = sum(chunks['time']) a = sum(chunks['antenna']) c = sum(chunks['channels']) r = sum(chunks['rows']) a1_jones = rc((s, t, a, c) + corr_shape) bl_jones = rc((s, r, c) + corr_shape) a2_jones = rc((s, t, a, c) + corr_shape) g1_jones = rc((t, a, c) + corr_shape) base_vis = rc((r, c) + corr_shape) g2_jones = rc((t, a, c) + corr_shape) # Add 10 to the index to test time index normalisation time_idx = np.concatenate([np.full(rows, i+10, dtype=np.int32) for i, rows in enumerate(chunks['rows'])]) ant1 = np.concatenate([np.random.randint(0, a, rows, dtype=np.int32) for rows in chunks['rows']]) ant2 = np.concatenate([np.random.randint(0, a, rows, dtype=np.int32) for rows in chunks['rows']]) assert ant1.size == r model_vis = predict_vis(cp.asarray(time_idx), cp.asarray(ant1), cp.asarray(ant2), cp.asarray(a1_jones) if a1j else None, cp.asarray(bl_jones) if blj else None, cp.asarray(a2_jones) if a2j else None, cp.asarray(g1_jones) if g1j else None, cp.asarray(base_vis) if bvis else None, cp.asarray(g2_jones) if g2j else None) np_model_vis = np_predict_vis(time_idx, ant1, ant2, a1_jones if a1j else None, bl_jones if blj else None, a2_jones if a2j else None, g1_jones if g1j else None, base_vis if bvis else None, g2_jones if g2j else None) np.testing.assert_array_almost_equal(cp.asnumpy(model_vis), np_model_vis) ``` #### File: rime/examples/predict.py ```python import argparse from collections import namedtuple from functools import lru_cache from operator import getitem import weakref import numpy as np try: from astropy.io import fits import dask import dask.array as da from dask.diagnostics import ProgressBar import Tigger from daskms import xds_from_ms, xds_from_table, xds_to_table except ImportError as e: opt_import_error = e else: opt_import_error = None from africanus.util.beams import beam_filenames, beam_grids from africanus.coordinates.dask import radec_to_lm from africanus.rime.dask import (phase_delay, predict_vis, parallactic_angles, beam_cube_dde, feed_rotation) from africanus.model.coherency.dask import convert from africanus.model.spectral.dask import spectral_model from africanus.model.shape.dask import gaussian as gaussian_shape from africanus.util.requirements import requires_optional _einsum_corr_indices = 'ijkl' def _brightness_schema(corrs, index): if corrs == 4: return "sf" + _einsum_corr_indices[index:index + 2], index + 1 else: return "sfi", index def _phase_delay_schema(corrs, index): return "srf", index def _spi_schema(corrs, index): return "s", index def _gauss_shape_schema(corrs, index): return "srf", index def _bl_jones_output_schema(corrs, index): if corrs == 4: return "->srfi" + _einsum_corr_indices[index] else: return "->srfi" _rime_term_map = { 'brightness': _brightness_schema, 'phase_delay': _phase_delay_schema, 'spi': _spi_schema, 'gauss_shape': _gauss_shape_schema, } def corr_schema(pol): """ Parameters ---------- pol : Dataset Returns ------- corr_schema : list of list correlation schema from the POLARIZATION table, `[[9, 10], [11, 12]]` for example """ # Select the single row out corrs = pol.NUM_CORR.data[0] corr_types = pol.CORR_TYPE.data[0] if corrs == 4: return [[corr_types[0], corr_types[1]], [corr_types[2], corr_types[3]]] # (2, 2) shape elif corrs == 2: return [corr_types[0], corr_types[1]] # (2, ) shape elif corrs == 1: return [corr_types[0]] # (1, ) shape else: raise ValueError("corrs %d not in (1, 2, 4)" % corrs) def baseline_jones_multiply(corrs, *args): names = args[::2] arrays = args[1::2] input_einsum_schemas = [] corr_index = 0 for name, array in zip(names, arrays): try: # Obtain function for prescribing the input einsum schema schema_fn = _rime_term_map[name] except KeyError: raise ValueError("Unknown RIME term '%s'" % name) else: # Extract it and the next corr index einsum_schema, corr_index = schema_fn(corrs, corr_index) input_einsum_schemas.append(einsum_schema) if not len(einsum_schema) == array.ndim: raise ValueError("%s len(%s) == %d != %s.ndim" % (name, einsum_schema, len(einsum_schema), array.shape)) output_schema = _bl_jones_output_schema(corrs, corr_index) schema = ",".join(input_einsum_schemas) + output_schema return da.einsum(schema, *arrays) def create_parser(): p = argparse.ArgumentParser() p.add_argument("ms") p.add_argument("-sm", "--sky-model", default="sky-model.txt") p.add_argument("-rc", "--row-chunks", type=int, default=10000) p.add_argument("-mc", "--model-chunks", type=int, default=10) p.add_argument("-b", "--beam", default=None) p.add_argument("-l", "--l-axis", default="L") p.add_argument("-m", "--m-axis", default="M") p.add_argument("-iuvw", "--invert-uvw", action="store_true", help="Invert UVW coordinates. Useful if we want " "compare our visibilities against MeqTrees") return p @lru_cache(maxsize=16) def load_beams(beam_file_schema, corr_types, l_axis, m_axis): class FITSFile(object): """ Exists so that fits file is closed when last ref is gc'd """ def __init__(self, filename): self.hdul = hdul = fits.open(filename) assert len(hdul) == 1 self.__del_ref = weakref.ref(self, lambda r: hdul.close()) # Open files and get headers beam_files = [] headers = [] for corr, (re, im) in beam_filenames(beam_file_schema, corr_types).items(): re_f = FITSFile(re) im_f = FITSFile(im) beam_files.append((corr, (re_f, im_f))) headers.append((corr, (re_f.hdul[0].header, im_f.hdul[0].header))) # All FITS headers should agree (apart from DATE) flat_headers = [] for corr, (re_header, im_header) in headers: if "DATE" in re_header: del re_header["DATE"] if "DATE" in im_header: del im_header["DATE"] flat_headers.append(re_header) flat_headers.append(im_header) if not all(flat_headers[0] == h for h in flat_headers[1:]): raise ValueError("BEAM FITS Header Files differ") # Map FITS header type to NumPy type BITPIX_MAP = {8: np.dtype('uint8').type, 16: np.dtype('int16').type, 32: np.dtype('int32').type, -32: np.dtype('float32').type, -64: np.dtype('float64').type} header = flat_headers[0] bitpix = header['BITPIX'] try: dtype = BITPIX_MAP[bitpix] except KeyError: raise ValueError("No mapping from BITPIX %s to a numpy type" % bitpix) else: dtype = np.result_type(dtype, np.complex64) if not header['NAXIS'] == 3: raise ValueError("FITS must have exactly three axes. " "L or X, M or Y and FREQ. NAXIS != 3") (l_ax, l_grid), (m_ax, m_grid), (nu_ax, nu_grid) = beam_grids(header, l_axis, m_axis) # Shape of each correlation shape = (l_grid.shape[0], m_grid.shape[0], nu_grid.shape[0]) # Axis tranpose, FITS is FORTRAN ordered ax = (nu_ax - 1, m_ax - 1, l_ax - 1) def _load_correlation(re, im, ax): # Read real and imaginary for each correlation return (re.hdul[0].data.transpose(ax) + im.hdul[0].data.transpose(ax)*1j) # Create delayed loads of the beam beam_loader = dask.delayed(_load_correlation) beam_corrs = [beam_loader(re, im, ax) for c, (corr, (re, im)) in enumerate(beam_files)] beam_corrs = [da.from_delayed(bc, shape=shape, dtype=dtype) for bc in beam_corrs] # Stack correlations and rechunk to one great big block beam = da.stack(beam_corrs, axis=3) beam = beam.rechunk(shape + (len(corr_types),)) # Dask arrays for the beam extents and beam frequency grid beam_lm_ext = np.array([[l_grid[0], l_grid[-1]], [m_grid[0], m_grid[-1]]]) beam_lm_ext = da.from_array(beam_lm_ext, chunks=beam_lm_ext.shape) beam_freq_grid = da.from_array(nu_grid, chunks=nu_grid.shape) return beam, beam_lm_ext, beam_freq_grid def parse_sky_model(filename, chunks): """ Parses a Tigger sky model Parameters ---------- filename : str Sky Model filename chunks : tuple of ints or int Source chunking strategy Returns ------- source_data : dict Dictionary of source data, :code:`{'point': (...), 'gauss': (...) }` """ sky_model = Tigger.load(filename, verbose=False) _empty_spectrum = object() point_radec = [] point_stokes = [] point_spi = [] point_ref_freq = [] gauss_radec = [] gauss_stokes = [] gauss_spi = [] gauss_ref_freq = [] gauss_shape = [] for source in sky_model.sources: ra = source.pos.ra dec = source.pos.dec typecode = source.typecode.lower() I = source.flux.I # noqa Q = source.flux.Q U = source.flux.U V = source.flux.V spectrum = (getattr(source, "spectrum", _empty_spectrum) or _empty_spectrum) try: # Extract reference frequency ref_freq = spectrum.freq0 except AttributeError: ref_freq = sky_model.freq0 try: # Extract SPI for I. # Zero Q, U and V to get 1 on the exponential spi = [[spectrum.spi]*4] except AttributeError: # Default I SPI to -0.7 spi = [[0, 0, 0, 0]] if typecode == "gau": emaj = source.shape.ex emin = source.shape.ey pa = source.shape.pa gauss_radec.append([ra, dec]) gauss_stokes.append([I, Q, U, V]) gauss_spi.append(spi) gauss_ref_freq.append(ref_freq) gauss_shape.append([emaj, emin, pa]) elif typecode == "pnt": point_radec.append([ra, dec]) point_stokes.append([I, Q, U, V]) point_spi.append(spi) point_ref_freq.append(ref_freq) else: raise ValueError("Unknown source morphology %s" % typecode) Point = namedtuple("Point", ["radec", "stokes", "spi", "ref_freq"]) Gauss = namedtuple("Gauss", ["radec", "stokes", "spi", "ref_freq", "shape"]) source_data = {} if len(point_radec) > 0: source_data['point'] = Point( da.from_array(point_radec, chunks=(chunks, -1)), da.from_array(point_stokes, chunks=(chunks, -1)), da.from_array(point_spi, chunks=(chunks, 1, -1)), da.from_array(point_ref_freq, chunks=chunks)) if len(gauss_radec) > 0: source_data['gauss'] = Gauss( da.from_array(gauss_radec, chunks=(chunks, -1)), da.from_array(gauss_stokes, chunks=(chunks, -1)), da.from_array(gauss_spi, chunks=(chunks, 1, -1)), da.from_array(gauss_ref_freq, chunks=chunks), da.from_array(gauss_shape, chunks=(chunks, -1))) return source_data def support_tables(args): """ Parameters ---------- args : object Script argument objects Returns ------- table_map : dict of Dataset {name: dataset} """ n = {k: '::'.join((args.ms, k)) for k in ("ANTENNA", "DATA_DESCRIPTION", "FIELD", "SPECTRAL_WINDOW", "POLARIZATION")} # All rows at once lazy_tables = {"ANTENNA": xds_from_table(n["ANTENNA"])} compute_tables = { # Fixed shape rows "DATA_DESCRIPTION": xds_from_table(n["DATA_DESCRIPTION"]), # Variably shaped, need a dataset per row "FIELD": xds_from_table(n["FIELD"], group_cols="__row__"), "SPECTRAL_WINDOW": xds_from_table(n["SPECTRAL_WINDOW"], group_cols="__row__"), "POLARIZATION": xds_from_table(n["POLARIZATION"], group_cols="__row__"), } lazy_tables.update(dask.compute(compute_tables)[0]) return lazy_tables def _zero_pes(parangles, frequency, dtype_): """ Create zeroed pointing errors """ ntime, na = parangles.shape nchan = frequency.shape[0] return np.zeros((ntime, na, nchan, 2), dtype=dtype_) def _unity_ant_scales(parangles, frequency, dtype_): """ Create zeroed antenna scalings """ _, na = parangles[0].shape nchan = frequency.shape[0] return np.ones((na, nchan, 2), dtype=dtype_) def dde_factory(args, ms, ant, field, pol, lm, utime, frequency): if args.beam is None: return None # Beam is requested corr_type = tuple(pol.CORR_TYPE.data[0]) if not len(corr_type) == 4: raise ValueError("Need four correlations for DDEs") parangles = parallactic_angles(utime, ant.POSITION.data, field.PHASE_DIR.data[0][0]) corr_type_set = set(corr_type) if corr_type_set.issubset(set([9, 10, 11, 12])): pol_type = 'linear' elif corr_type_set.issubset(set([5, 6, 7, 8])): pol_type = 'circular' else: raise ValueError("Cannot determine polarisation type " "from correlations %s. Constructing " "a feed rotation matrix will not be " "possible." % (corr_type,)) # Construct feed rotation feed_rot = feed_rotation(parangles, pol_type) dtype = np.result_type(parangles, frequency) # Create zeroed pointing errors zpe = da.blockwise(_zero_pes, ("time", "ant", "chan", "comp"), parangles, ("time", "ant"), frequency, ("chan",), dtype, None, new_axes={"comp": 2}, dtype=dtype) # Created zeroed antenna scaling factors zas = da.blockwise(_unity_ant_scales, ("ant", "chan", "comp"), parangles, ("time", "ant"), frequency, ("chan",), dtype, None, new_axes={"comp": 2}, dtype=dtype) # Load the beam information beam, lm_ext, freq_map = load_beams(args.beam, corr_type, args.l_axis, args.m_axis) # Introduce the correlation axis beam = beam.reshape(beam.shape[:3] + (2, 2)) beam_dde = beam_cube_dde(beam, lm_ext, freq_map, lm, parangles, zpe, zas, frequency) # Multiply the beam by the feed rotation to form the DDE term return da.einsum("stafij,tajk->stafik", beam_dde, feed_rot) def vis_factory(args, source_type, sky_model, ms, ant, field, spw, pol): try: source = sky_model[source_type] except KeyError: raise ValueError("Source type '%s' unsupported" % source_type) # Select single dataset rows corrs = pol.NUM_CORR.data[0] frequency = spw.CHAN_FREQ.data[0] phase_dir = field.PHASE_DIR.data[0][0] # row, poly lm = radec_to_lm(source.radec, phase_dir) uvw = -ms.UVW.data if args.invert_uvw else ms.UVW.data # (source, row, frequency) phase = phase_delay(lm, uvw, frequency) # (source, spi, corrs) # Apply spectral mode to stokes parameters stokes = spectral_model(source.stokes, source.spi, source.ref_freq, frequency, base=0) brightness = convert(stokes, ["I", "Q", "U", "V"], corr_schema(pol)) bl_jones_args = ["phase_delay", phase] # Add any visibility amplitude terms if source_type == "gauss": bl_jones_args.append("gauss_shape") bl_jones_args.append(gaussian_shape(uvw, frequency, source.shape)) bl_jones_args.extend(["brightness", brightness]) # Unique times and time index for each row chunk # The index is not global meta = np.empty((0,), dtype=tuple) utime_inv = ms.TIME.data.map_blocks(np.unique, return_inverse=True, meta=meta, dtype=tuple) # Need unique times for parallactic angles nan_chunks = (tuple(np.nan for _ in utime_inv.chunks[0]),) utime = utime_inv.map_blocks(getitem, 0, chunks=nan_chunks, dtype=ms.TIME.dtype) time_idx = utime_inv.map_blocks(getitem, 1, dtype=np.int32) jones = baseline_jones_multiply(corrs, *bl_jones_args) dde = dde_factory(args, ms, ant, field, pol, lm, utime, frequency) return predict_vis(time_idx, ms.ANTENNA1.data, ms.ANTENNA2.data, dde, jones, dde, None, None, None) @requires_optional("dask.array", "Tigger", "daskms", opt_import_error) def predict(args): # Convert source data into dask arrays sky_model = parse_sky_model(args.sky_model, args.model_chunks) # Get the support tables tables = support_tables(args) ant_ds = tables["ANTENNA"] field_ds = tables["FIELD"] ddid_ds = tables["DATA_DESCRIPTION"] spw_ds = tables["SPECTRAL_WINDOW"] pol_ds = tables["POLARIZATION"] # List of write operations writes = [] # Construct a graph for each DATA_DESC_ID for xds in xds_from_ms(args.ms, columns=["UVW", "ANTENNA1", "ANTENNA2", "TIME"], group_cols=["FIELD_ID", "DATA_DESC_ID"], chunks={"row": args.row_chunks}): # Perform subtable joins ant = ant_ds[0] field = field_ds[xds.attrs['FIELD_ID']] ddid = ddid_ds[xds.attrs['DATA_DESC_ID']] spw = spw_ds[ddid.SPECTRAL_WINDOW_ID.data[0]] pol = pol_ds[ddid.POLARIZATION_ID.data[0]] # Select single dataset row out corrs = pol.NUM_CORR.data[0] # Generate visibility expressions for each source type source_vis = [vis_factory(args, stype, sky_model, xds, ant, field, spw, pol) for stype in sky_model.keys()] # Sum visibilities together vis = sum(source_vis) # Reshape (2, 2) correlation to shape (4,) if corrs == 4: vis = vis.reshape(vis.shape[:2] + (4,)) # Assign visibilities to MODEL_DATA array on the dataset xds = xds.assign(MODEL_DATA=(("row", "chan", "corr"), vis)) # Create a write to the table write = xds_to_table(xds, args.ms, ['MODEL_DATA']) # Add to the list of writes writes.append(write) # Submit all graph computations in parallel with ProgressBar(): dask.compute(writes) if __name__ == "__main__": args = create_parser().parse_args() predict(args) ``` #### File: africanus/rime/parangles_astropy.py ```python from africanus.util.requirements import requires_optional try: from astropy.coordinates import (EarthLocation, SkyCoord, AltAz, CIRS) from astropy.time import Time from astropy import units except ImportError as e: astropy_import_error = e have_astropy_parangles = False else: astropy_import_error = None have_astropy_parangles = True @requires_optional('astropy', astropy_import_error) def astropy_parallactic_angles(times, antenna_positions, field_centre): """ Computes parallactic angles per timestep for the given reference antenna position and field centre. """ ap = antenna_positions fc = field_centre # Convert from MJD second to MJD times = Time(times / 86400.00, format='mjd', scale='utc') ap = EarthLocation.from_geocentric( ap[:, 0], ap[:, 1], ap[:, 2], unit='m') fc = SkyCoord(ra=fc[0], dec=fc[1], unit=units.rad, frame='fk5') pole = SkyCoord(ra=0, dec=90, unit=units.deg, frame='fk5') cirs_frame = CIRS(obstime=times) pole_cirs = pole.transform_to(cirs_frame) fc_cirs = fc.transform_to(cirs_frame) altaz_frame = AltAz(location=ap[None, :], obstime=times[:, None]) pole_altaz = pole_cirs[:, None].transform_to(altaz_frame) fc_altaz = fc_cirs[:, None].transform_to(altaz_frame) return fc_altaz.position_angle(pole_altaz) ``` #### File: rime/tests/test_rime.py ```python import numpy as np import pytest def rf(*a, **kw): return np.random.random(*a, **kw) def rc(*a, **kw): return rf(*a, **kw) + 1j*rf(*a, **kw) @pytest.mark.parametrize("convention, sign", [ ('fourier', 1), ('casa', -1) ]) def test_phase_delay(convention, sign): from africanus.rime import phase_delay uvw = np.random.random(size=(100, 3)) lm = np.random.random(size=(10, 2)) frequency = np.linspace(.856e9, .856e9*2, 64, endpoint=True) from africanus.constants import minus_two_pi_over_c # Test complex phase at a particular index in the output uvw_i, lm_i, freq_i = 2, 3, 5 u, v, w = [1, 2, 3] l, m = [0.1, 0.2] freq = 0.856e9 # Set up values in the input uvw[uvw_i] = [u, v, w] lm[lm_i] = [l, m] frequency[freq_i] = freq # Compute complex phase complex_phase = phase_delay(lm, uvw, frequency, convention=convention) # Test singular value vs a point in the output n = np.sqrt(1.0 - l**2 - m**2) - 1.0 phase = sign*minus_two_pi_over_c*(u*l + v*m + w*n)*freq assert np.all(np.exp(1j*phase) == complex_phase[lm_i, uvw_i, freq_i]) def test_feed_rotation(): import numpy as np from africanus.rime import feed_rotation parangles = np.random.random((10, 5)) pa_sin = np.sin(parangles) pa_cos = np.cos(parangles) fr = feed_rotation(parangles, feed_type='linear') np_expr = np.stack([pa_cos, pa_sin, -pa_sin, pa_cos], axis=2) assert np.allclose(fr, np_expr.reshape(10, 5, 2, 2)) fr = feed_rotation(parangles, feed_type='circular') zeros = np.zeros_like(pa_sin) np_expr = np.stack([pa_cos - 1j*pa_sin, zeros, zeros, pa_cos + 1j*pa_sin], axis=2) assert np.allclose(fr, np_expr.reshape(10, 5, 2, 2)) @pytest.mark.parametrize("convention, sign", [ ('fourier', 1), ('casa', -1) ]) def test_dask_phase_delay(convention, sign): da = pytest.importorskip('dask.array') from africanus.rime import phase_delay as np_phase_delay from africanus.rime.dask import phase_delay as dask_phase_delay # So that 1 > 1 - l**2 - m**2 >= 0 lm = np.random.random(size=(10, 2))*0.01 uvw = np.random.random(size=(100, 3)) frequency = np.linspace(.856e9, .856e9*2, 64, endpoint=True) dask_lm = da.from_array(lm, chunks=(5, 2)) dask_uvw = da.from_array(uvw, chunks=(25, 3)) dask_frequency = da.from_array(frequency, chunks=16) dask_phase = dask_phase_delay(dask_lm, dask_uvw, dask_frequency, convention=convention) np_phase = np_phase_delay(lm, uvw, frequency, convention=convention) # Should agree completely assert np.all(np_phase == dask_phase.compute()) def test_dask_feed_rotation(): da = pytest.importorskip('dask.array') import numpy as np from africanus.rime import feed_rotation as np_feed_rotation from africanus.rime.dask import feed_rotation parangles = np.random.random((10, 5)) dask_parangles = da.from_array(parangles, chunks=(5, (2, 3))) np_fr = np_feed_rotation(parangles, feed_type='linear') assert np.all(np_fr == feed_rotation(dask_parangles, feed_type='linear')) np_fr = np_feed_rotation(parangles, feed_type='circular') assert np.all(np_fr == feed_rotation(dask_parangles, feed_type='circular')) ``` #### File: africanus/util/cuda.py ```python import numpy as np _array_types = [np.ndarray] try: import dask.array as da except ImportError: pass else: _array_types.append(da.Array) try: import cupy as cp except ImportError: pass else: _array_types.append(cp.ndarray) _array_types = tuple(_array_types) cuda_fns = { np.dtype(np.float32): { 'abs': 'fabsf', 'cos': 'cosf', 'floor': 'floorf', 'make2': 'make_float2', 'max': 'fmaxf', 'min': 'fminf', 'rsqrt': 'rsqrtf', 'sqrt': 'sqrtf', 'sin': 'sinf', 'sincos': 'sincosf', 'sincospi': 'sincospif', }, np.dtype(np.float64): { 'abs': 'fabs', 'cos': 'cos', 'floor': 'floor', 'make2': 'make_double2', 'max': 'fmax', 'min': 'fmin', 'rsqrt': 'rsqrt', 'sin': 'sin', 'sincos': 'sincos', 'sincospi': 'sincospi', 'sqrt': 'sqrt', }, } numpy_to_cuda_type_map = { np.dtype('int8'): "char", np.dtype('uint8'): "unsigned char", np.dtype('int16'): "short", np.dtype('uint16'): "unsigned short", np.dtype('int32'): "int", np.dtype('uint32'): "unsigned int", np.dtype('float32'): "float", np.dtype('float64'): "double", np.dtype('complex64'): "float2", np.dtype('complex128'): "double2" } # Also map the types numpy_to_cuda_type_map.update({k.type: v for k, v in numpy_to_cuda_type_map.items()}) def grids(dims, blocks): """ Determine the grid size, given space dimensions sizes and blocks Parameters ---------- dims : tuple of ints `(x, y, z)` tuple Returns ------- tuple `(x, y, z)` grid size tuple """ if not len(dims) == 3: raise ValueError("dims must be an (x, y, z) tuple. " "CUDA dimension ordering is inverted compared " "to NumPy") if not len(blocks) == 3: raise ValueError("blocks must be an (x, y, z) tuple. " "CUDA dimension ordering is inverted compared " "to NumPy") return tuple((d + b - 1) // b for d, b in zip(dims, blocks)) def cuda_function(function_name, dtype): try: type_map = cuda_fns[dtype] except KeyError: raise ValueError("No registered functions for type %s" % dtype) try: return type_map[function_name] except KeyError: raise ValueError("Unknown CUDA function %s" % function_name) def cuda_type(dtype): if isinstance(dtype, _array_types): dtype = dtype.dtype try: return numpy_to_cuda_type_map[dtype] except KeyError: raise ValueError("No registered map for type %s" % dtype) ``` #### File: africanus/util/docs.py ```python import os import re from string import Template _on_rtd = bool(os.environ.get("READTHEDOCS")) def on_rtd(): return _on_rtd def mod_docs(docstring, replacements): for search, replace in replacements: docstring = docstring.replace(search, replace) return docstring def doc_tuple_to_str(doc_tuple, replacements=None): fields = getattr(doc_tuple, "_fields", None) if fields is not None: fields = (getattr(doc_tuple, f) for f in doc_tuple._fields) elif isinstance(doc_tuple, dict): fields = doc_tuple.values() if replacements is not None: fields = (mod_docs(f, replacements) for f in fields) return ''.join(fields) class DefaultOut(object): def __init__(self, arg): self.arg = arg def __repr__(self): return self.arg __str__ = __repr__ class DocstringTemplate(Template): """ Overrides the ${identifer} braced pattern in the string Template with a $(identifier) braced pattern """ pattern = r""" %(delim)s(?: (?P<escaped>%(delim)s) | # Escape sequence of two delimiters (?P<named>%(id)s) | # delimiter and a Python identifier \((?P<braced>%(id)s)\) | # delimiter and a braced identifier (?P<invalid>) # Other ill-formed delimiter exprs ) """ % {'delim': re.escape(Template.delimiter), 'id': Template.idpattern} ``` #### File: africanus/util/nvcc.py ```python import ast import contextlib import logging import os import re import shutil import subprocess import sys import tempfile from os.path import join as pjoin from pkg_resources import resource_filename import distutils from distutils import errors from distutils import msvccompiler from distutils import unixccompiler from africanus.util.code import format_code from africanus.util.requirements import requires_optional try: import cupy as cp except ImportError as e: cupy_import_error = e else: cupy_import_error = None log = logging.getLogger(__name__) def get_path(key): return os.environ.get(key, '').split(os.pathsep) def search_on_path(filenames): for p in get_path('PATH'): for filename in filenames: full = os.path.join(p, filename) if os.path.exists(full): return os.path.abspath(full) return None PLATFORM_DARWIN = sys.platform.startswith('darwin') PLATFORM_LINUX = sys.platform.startswith('linux') PLATFORM_WIN32 = sys.platform.startswith('win32') minimum_cuda_version = 8000 minimum_cudnn_version = 5000 maximum_cudnn_version = 7999 _cuda_path = 'NOT_INITIALIZED' _compiler_base_options = None _cuda_info = None @contextlib.contextmanager def _tempdir(): temp_dir = tempfile.mkdtemp() try: yield temp_dir finally: shutil.rmtree(temp_dir, ignore_errors=True) def get_cuda_path(): global _cuda_path # Use a magic word to represent the cache not filled because None is a # valid return value. if _cuda_path != 'NOT_INITIALIZED': return _cuda_path nvcc_path = search_on_path(('nvcc', 'nvcc.exe')) cuda_path_default = None if nvcc_path is None: log.warn('nvcc not in path. Please set path to nvcc.') else: cuda_path_default = os.path.normpath( os.path.join(os.path.dirname(nvcc_path), '..')) cuda_path = os.environ.get('CUDA_PATH', '') # Nvidia default on Windows if len(cuda_path) > 0 and cuda_path != cuda_path_default: log.warn('nvcc path != CUDA_PATH') log.warn('nvcc path: %s' % cuda_path_default) log.warn('CUDA_PATH: %s' % cuda_path) if os.path.exists(cuda_path): _cuda_path = cuda_path elif cuda_path_default is not None: _cuda_path = cuda_path_default elif os.path.exists('/usr/local/cuda'): _cuda_path = '/usr/local/cuda' else: _cuda_path = None return _cuda_path def get_nvcc_path(): nvcc = os.environ.get('NVCC', None) if nvcc: return distutils.split_quoted(nvcc) cuda_path = get_cuda_path() if cuda_path is None: return None if PLATFORM_WIN32: nvcc_bin = 'bin/nvcc.exe' else: nvcc_bin = 'bin/nvcc' nvcc_path = os.path.join(cuda_path, nvcc_bin) if os.path.exists(nvcc_path): return [nvcc_path] else: return None def get_compiler_setting(): cuda_path = get_cuda_path() include_dirs = [] library_dirs = [] define_macros = [] if cuda_path: include_dirs.append(os.path.join(cuda_path, 'include')) if PLATFORM_WIN32: library_dirs.append(os.path.join(cuda_path, 'bin')) library_dirs.append(os.path.join(cuda_path, 'lib', 'x64')) else: library_dirs.append(os.path.join(cuda_path, 'lib64')) library_dirs.append(os.path.join(cuda_path, 'lib')) if PLATFORM_DARWIN: library_dirs.append('/usr/local/cuda/lib') if PLATFORM_WIN32: nvtoolsext_path = os.environ.get('NVTOOLSEXT_PATH', '') if os.path.exists(nvtoolsext_path): include_dirs.append(os.path.join(nvtoolsext_path, 'include')) library_dirs.append(os.path.join(nvtoolsext_path, 'lib', 'x64')) else: define_macros.append(('CUPY_NO_NVTX', '1')) return { 'include_dirs': include_dirs, 'library_dirs': library_dirs, 'define_macros': define_macros, 'language': 'c++', } def _match_output_lines(output_lines, regexs): # Matches regular expressions `regexs` against `output_lines` and finds the # consecutive matching lines from `output_lines`. # `None` is returned if no match is found. if len(output_lines) < len(regexs): return None matches = [None] * len(regexs) for i in range(len(output_lines) - len(regexs)): for j in range(len(regexs)): m = re.match(regexs[j], output_lines[i + j]) if not m: break matches[j] = m else: # Match found return matches # No match return None def get_compiler_base_options(): """Returns base options for nvcc compiler. """ global _compiler_base_options if _compiler_base_options is None: _compiler_base_options = _get_compiler_base_options() return _compiler_base_options def _get_compiler_base_options(): # Try compiling a dummy code. # If the compilation fails, try to parse the output of compilation # and try to compose base options according to it. nvcc_path = get_nvcc_path() with _tempdir() as temp_dir: test_cu_path = os.path.join(temp_dir, 'test.cu') test_out_path = os.path.join(temp_dir, 'test.out') with open(test_cu_path, 'w') as f: f.write('int main() { return 0; }') proc = subprocess.Popen( nvcc_path + ['-o', test_out_path, test_cu_path], stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdoutdata, stderrdata = proc.communicate() stderrlines = stderrdata.split(b'\n') if proc.returncode != 0: # No supported host compiler matches = _match_output_lines( stderrlines, [ b'^ERROR: No supported gcc/g\\+\\+ host compiler found, ' b'but .* is available.$', b'^ *Use \'nvcc (.*)\' to use that instead.$', ]) if matches is not None: base_opts = matches[1].group(1) base_opts = base_opts.decode('utf8').split(' ') return base_opts # Unknown error raise RuntimeError( 'Encountered unknown error while testing nvcc:\n' + stderrdata.decode('utf8')) return [] def _get_cuda_info(): nvcc_path = get_nvcc_path() code = ''' #include <cuda.h> #include <stdio.h> int main(int argc, char* argv[]) { int nDevices; cudaGetDeviceCount(&nDevices); printf("{\\n"); printf("'cuda_version': %d,\\n", CUDA_VERSION); printf("'devices': [\\n"); for(int d=0; d < nDevices; ++d) { cudaDeviceProp props; cudaGetDeviceProperties(&props, d); printf("{\\n"); printf("'name' :'%s',\\n", props.name); printf("'major' : %d,\\n", props.major); printf("'minor' : %d,\\n", props.minor); printf("'total_global_mem' : %u,\\n", props.totalGlobalMem); printf("'warp_size' : %u,\\n", props.warpSize); printf("'max_threads_per_block' : %u,\\n", props.maxThreadsPerBlock); printf("'max_thread_size' : (%u,%u,%u),\\n", props.maxThreadsDim[0], props.maxThreadsDim[1], props.maxThreadsDim[2]); printf("'max_grid_size' : (%u,%u,%u),\\n", props.maxGridSize[0], props.maxGridSize[1], props.maxGridSize[2]); printf("'device_overlap' : %s,\\n", props.deviceOverlap ? "True" : "False"); printf("'async_engines' : %u,\\n", props.asyncEngineCount); printf("'multiprocessors' : %u,\\n", props.multiProcessorCount); printf("},\\n"); } printf("]\\n"); printf("}\\n"); return 0; } ''' # noqa with _tempdir() as temp_dir: test_cu_path = os.path.join(temp_dir, 'test.cu') test_out_path = os.path.join(temp_dir, 'test.out') with open(test_cu_path, 'w') as f: f.write(code) proc = subprocess.Popen( nvcc_path + ['-o', test_out_path, test_cu_path], stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdoutdata, stderrdata = proc.communicate() if proc.returncode != 0: raise RuntimeError("Cannot determine " "compute architecture {0}" .format(stderrdata)) try: out = subprocess.check_output(test_out_path) except Exception as e: msg = 'Cannot execute a stub file.\nOriginal error: {0}'.format(e) raise Exception(msg) return ast.literal_eval(out) def get_cuda_info(): global _cuda_info if _cuda_info is None: _cuda_info = _get_cuda_info() return _cuda_info def _format_cuda_version(version): return str(version) def get_cuda_version(formatted=False): """Return CUDA Toolkit version cached in check_cuda_version().""" _cuda_version = get_cuda_info()['cuda_version'] if _cuda_version < minimum_cuda_version: raise ValueError('CUDA version is too old: %d' 'CUDA v7.0 or newer is required' % _cuda_version) return str(_cuda_version) if formatted else _cuda_version def get_gencode_options(): return ["--generate-code=arch=compute_{a},code=sm_{a}".format( a=dev['major']*10 + dev['minor']) for dev in get_cuda_info()['devices']] class _UnixCCompiler(unixccompiler.UnixCCompiler): src_extensions = list(unixccompiler.UnixCCompiler.src_extensions) src_extensions.append('.cu') def _compile(self, obj, src, ext, cc_args, extra_postargs, pp_opts): # For sources other than CUDA C ones, just call the super class method. if os.path.splitext(src)[1] != '.cu': return unixccompiler.UnixCCompiler._compile( self, obj, src, ext, cc_args, extra_postargs, pp_opts) # For CUDA C source files, compile them with NVCC. _compiler_so = self.compiler_so try: nvcc_path = get_nvcc_path() base_opts = get_compiler_base_options() self.set_executable('compiler_so', nvcc_path) cuda_version = get_cuda_version() # noqa: triggers cuda inspection postargs = get_gencode_options() + [ '-O2', '--compiler-options="-fPIC"'] postargs += extra_postargs # print('NVCC options:', postargs) return unixccompiler.UnixCCompiler._compile( self, obj, src, ext, base_opts + cc_args, postargs, pp_opts) finally: self.compiler_so = _compiler_so class _MSVCCompiler(msvccompiler.MSVCCompiler): _cu_extensions = ['.cu'] src_extensions = list(unixccompiler.UnixCCompiler.src_extensions) src_extensions.extend(_cu_extensions) def _compile_cu(self, sources, output_dir=None, macros=None, include_dirs=None, debug=0, extra_preargs=None, extra_postargs=None, depends=None): # Compile CUDA C files, mainly derived from UnixCCompiler._compile(). macros, objects, extra_postargs, pp_opts, _build = \ self._setup_compile(output_dir, macros, include_dirs, sources, depends, extra_postargs) compiler_so = get_nvcc_path() cc_args = self._get_cc_args(pp_opts, debug, extra_preargs) cuda_version = get_cuda_version() # noqa: triggers cuda inspection postargs = get_gencode_options() + ['-O2'] postargs += ['-Xcompiler', '/MD'] postargs += extra_postargs # print('NVCC options:', postargs) for obj in objects: try: src, ext = _build[obj] except KeyError: continue try: self.spawn(compiler_so + cc_args + [src, '-o', obj] + postargs) except errors.DistutilsExecError as e: raise errors.CompileError(str(e)) return objects def compile(self, sources, **kwargs): # Split CUDA C sources and others. cu_sources = [] other_sources = [] for source in sources: if os.path.splitext(source)[1] == '.cu': cu_sources.append(source) else: other_sources.append(source) # Compile source files other than CUDA C ones. other_objects = msvccompiler.MSVCCompiler.compile( self, other_sources, **kwargs) # Compile CUDA C sources. cu_objects = self._compile_cu(cu_sources, **kwargs) # Return compiled object filenames. return other_objects + cu_objects _compiler = None def get_compiler(): global _compiler if _compiler is None: if not PLATFORM_WIN32: _compiler = _UnixCCompiler() else: _compiler = _MSVCCompiler() return _compiler @contextlib.contextmanager def stdchannel_redirected(stdchannel, dest_filename): """ A context manager to temporarily redirect stdout or stderr e.g.: with stdchannel_redirected(sys.stderr, os.devnull): if compiler.has_function('clock_gettime', libraries=['rt']): libraries.append('rt') """ try: oldstdchannel = os.dup(stdchannel.fileno()) dest_file = open(dest_filename, 'w') os.dup2(dest_file.fileno(), stdchannel.fileno()) yield finally: if oldstdchannel is not None: os.dup2(oldstdchannel, stdchannel.fileno()) if dest_file is not None: dest_file.close() @requires_optional("cupy", cupy_import_error) def compile_using_nvcc(source, options=None, arch=None, filename='kern.cu'): options = options or [] if arch is None: cuda_info = get_cuda_info() arch = min([dev['major']*10 + dev['minor'] for dev in cuda_info['devices']]) cc = get_compiler() settings = get_compiler_setting() arch = "--generate-code=arch=compute_{a},code=sm_{a}".format(a=arch) options += ['-cubin'] cupy_path = resource_filename("cupy", pjoin("core", "include")) settings['include_dirs'].append(cupy_path) with _tempdir() as tmpdir: tmpfile = pjoin(tmpdir, filename) with open(tmpfile, "w") as f: f.write(source) try: stderr_file = pjoin(tmpdir, "stderr.txt") with stdchannel_redirected(sys.stderr, stderr_file): objects = cc.compile([tmpfile], include_dirs=settings['include_dirs'], macros=settings['define_macros'], extra_postargs=options) except errors.CompileError as e: with open(stderr_file, "r") as f: errs = f.read() lines = ["The following source code", format_code(source), "", "created the following compilation errors", "", errs.strip(), str(e).strip()] ex = errors.CompileError("\n".join(lines)) raise (ex, None, sys.exc_info()[2]) assert len(objects) == 1 mod = cp.cuda.function.Module() mod.load_file(objects[0]) return mod ``` #### File: africanus/util/requirements.py ```python import importlib from decorator import decorate from africanus.util.docs import on_rtd from africanus.util.testing import in_pytest, force_missing_pkg_exception def _missing_packages(fn, packages, import_errors): if len(import_errors) > 0: import_err_str = "\n".join((str(e) for e in import_errors)) return ("%s requires installation of " "the following packages: %s.\n" "%s" % (fn, packages, import_err_str)) else: return ("%s requires installation of the following packages: %s. " % (fn, tuple(packages))) class MissingPackageException(Exception): pass def requires_optional(*requirements): """ Decorator returning either the original function, or a dummy function raising a :class:`MissingPackageException` when called, depending on whether the supplied ``requirements`` are present. If packages are missing and called within a test, the dummy function will call :func:`pytest.skip`. Used in the following way: .. code-block:: python try: from scipy import interpolate except ImportError as e: # https://stackoverflow.com/a/29268974/1611416, pep 3110 and 344 scipy_import_error = e else: scipy_import_error = None @requires_optional('scipy', scipy_import_error) def function(*args, **kwargs): return interpolate(...) Parameters ---------- requirements : iterable of string, None or ImportError Sequence of package names required by the decorated function. ImportError exceptions (or None, indicating their absence) may also be supplied and will be immediately re-raised within the decorator. This is useful for tracking down problems in user import logic. Returns ------- callable Either the original function if all ``requirements`` are available or a dummy function that throws a :class:`MissingPackageException` or skips a pytest. """ # Return a bare wrapper if we're on readthedocs if on_rtd(): def _function_decorator(fn): def _wrapper(*args, **kwargs): pass return decorate(fn, _wrapper) return _function_decorator have_requirements = True missing_requirements = [] honour_pytest_marker = True actual_imports = [] import_errors = [] # Try imports for requirement in requirements: # Ignore if requirement is None: continue # Reraise any supplied ImportErrors elif isinstance(requirement, ImportError): import_errors.append(requirement) # An actual package, try to import it elif isinstance(requirement, str): try: importlib.import_module(requirement) except ImportError: missing_requirements.append(requirement) have_requirements = False else: actual_imports.append(requirement) # We should force exceptions, even if we're in a pytest test case elif requirement == force_missing_pkg_exception: honour_pytest_marker = False # Just wrong else: raise TypeError("requirements must be " "None, strings or ImportErrors. " "Received %s" % requirement) # Requested requirement import succeeded, but there were user # import errors that we now re-raise if have_requirements and len(import_errors) > 0: raise ImportError("Successfully imported %s " "but the following user-supplied " "ImportErrors ocurred: \n%s" % (actual_imports, '\n'.join((str(e) for e in import_errors)))) def _function_decorator(fn): # We have requirements, return the original function if have_requirements: return fn # We don't have requirements, produce a failing wrapper def _wrapper(*args, **kwargs): """ Empty docstring """ # We're running test cases if honour_pytest_marker and in_pytest(): try: import pytest except ImportError as e: raise ImportError("Marked as in a pytest " "test case, but pytest cannot " "be imported! %s" % str(e)) else: msg = _missing_packages( fn.__name__, missing_requirements, import_errors) pytest.skip(msg) # Raise the exception else: msg = _missing_packages( fn.__name__, missing_requirements, import_errors) raise MissingPackageException(msg) return decorate(fn, _wrapper) return _function_decorator ```
{ "source": "JoshW-7/AdventOfCode", "score": 3 }
#### File: 2019/Day 2/part1.py ```python class CPU: def __init__(self): self.running = True self.position = 0 with open("input.txt") as file: self.bytecode = [int(num) for num in file.readline().split(",")] def fix(self): self.bytecode[1] = 12 self.bytecode[2] = 2 def run(self): while self.running: self.decode() def decode(self): opcode = self.bytecode[self.position] if opcode == 99: self.running = False elif opcode == 1: location_1 = self.bytecode[self.position+1] location_2 = self.bytecode[self.position+2] location_3 = self.bytecode[self.position+3] self.bytecode[location_3] = self.bytecode[location_1] + self.bytecode[location_2] elif opcode == 2: location_1 = self.bytecode[self.position+1] location_2 = self.bytecode[self.position+2] location_3 = self.bytecode[self.position+3] self.bytecode[location_3] = self.bytecode[location_1] * self.bytecode[location_2] self.position += 4 cpu = CPU() cpu.fix() cpu.run() print(cpu.bytecode[0]) ``` #### File: 2019/Day 2/part2.py ```python class CPU: def __init__(self): self.reset() def reset(self): self.running = True self.position = 0 with open("input.txt") as file: self.bytecode = [int(num) for num in file.readline().split(",")] def set_noun(self, value): self.bytecode[1] = value def set_verb(self, value): self.bytecode[2] = value def get_result(self): while self.running: self.decode() return self.bytecode[0] def decode(self): opcode = self.bytecode[self.position] if opcode == 99: self.running = False elif opcode == 1: location_1 = self.bytecode[self.position+1] location_2 = self.bytecode[self.position+2] location_3 = self.bytecode[self.position+3] self.bytecode[location_3] = self.bytecode[location_1] + self.bytecode[location_2] elif opcode == 2: location_1 = self.bytecode[self.position+1] location_2 = self.bytecode[self.position+2] location_3 = self.bytecode[self.position+3] self.bytecode[location_3] = self.bytecode[location_1] * self.bytecode[location_2] self.position += 4 cpu = CPU() result = 0 done = False while not done: for i in range(0, 100): if done: break for j in range(0, 100): cpu.reset() cpu.set_noun(i) cpu.set_verb(j) result = cpu.get_result() if result == 19690720: done = True break print(100 * cpu.bytecode[1] + cpu.bytecode[2]) ``` #### File: 2019/Day 3/part1.py ```python def relative_coordinates(move): return { "L": (-1*int(move[1:]), 0), "R": (int(move[1:]), 0), "U": (0, -1*int(move[1:])), "D": (0, int(move[1:])), }.get(move[0]) def create_wire(wire, name): global coordinates global crossings position = [0, 0] for move in wire: movement = relative_coordinates(move) if movement[0]: for x in range(1, abs(movement[0])+1): if movement[0] < 0: x *= -1 current_value = coordinates.get((position[0]+x, position[1])) if current_value not in [None, name]: crossings.append((position[0]+x, position[1])) coordinates[(position[0]+x, position[1])] = name elif movement[1]: for y in range(1, abs(movement[1])+1): if movement[1] < 0: y *= -1 current_value = coordinates.get((position[0], position[1]+y)) if current_value not in [None, name]: crossings.append((position[0], position[1]+y)) coordinates[(position[0], position[1]+y)] = name position[0] += movement[0] position[1] += movement[1] def manhattan_distance(coordinate): return abs(coordinate[0]) + abs(coordinate[1]) with open("input.txt") as file: wires = [] for line in file.readlines(): wires.append(line.split(",")) coordinates = {} crossings = [] create_wire(wires[0], "w1") create_wire(wires[1], "w2") print(min([manhattan_distance(coordinate) for coordinate in crossings])) ``` #### File: 2020/Day 18/part1.py ```python import re with open("input.txt") as file: lines = file.read().split("\n") def evaluate(statement): while not statement.isdigit(): if m := re.match(r"[0-9]* [+\-*] [0-9]*", statement): s = m.group(0) result = eval(s) statement = statement[0:statement.find(s)] + str(result) + statement[statement.find(s) + len(s):] return statement #lines = ["((2 + 4 * 9) * (6 + 9 * 8 + 6) + 6) + 2 + 4 * 2"] results = [] for line in lines: # Remove parentheses while True: if ps := re.findall(r"\(([^)()]*)\)", line): for p in ps: new_str = evaluate(p) print(line) line = line[0:line.find(p)-1] + new_str + line[1 + line.find(p) + len(p):] print(line) print() else: break #print(line) results.append(int(evaluate(line))) print(sum(results)) ``` #### File: 2020/Day 24/part2.py ```python import re import copy def parse(text): moves = [] while len(text) > 0: if m := re.match(r"([e|w]{1})", text): moves.append(m.group(1)) text = text[m.end():] elif m := re.match(r"([se|sw|ne|nw]{2})", text): moves.append(m.group(1)) text = text[m.end():] return moves def setup(): global tiles for moves in tile_locations: x = 0 y = 0 for move in moves: dx,dy = { "ne": (0, -1), "e": (1, 0), "se": (1, 1), "sw": (-1, 1), "w": (-1, 0), "nw": (-1, -1), }[move] x += dx y += dy if (x, y) not in tiles: tiles[(x, y)] = "white" if tiles[(x, y)] == "white": tiles[(x, y)] = "black" else: tiles[(x, y)] = "white" def get_adjacent(x, y): global tiles relative_coords = [(0, 1), (1, 0), (1, -1), (0, -1), (-1, 0), (-1, 1)] neighbors = [] for relative_coord in relative_coords: neighbors.append((x + relative_coord[0], y + relative_coord[1])) return neighbors def count_black(): global tiles count = 0 for color in tiles.values(): if color == "black": count += 1 return count with open("input.txt") as file: lines = file.read().split("\n") tile_locations = [] for line in lines: tile_locations.append(parse(line)) tiles = {} setup() print(f"Day 0: {count_black()}") for day in range(1, 101): changes = {} new_tiles = [] for (x,y),color in tiles.items(): black_count = 0 for coord in get_adjacent(x, y): if coord not in tiles: new_tiles.append(coord) else: if tiles[coord] == "black": black_count += 1 if color == "white" and black_count == 2: changes[(x, y)] = "black" if color == "black": if black_count == 0 or black_count > 2: changes[(x, y)] = "white" for new_coord in new_tiles: tiles[new_coord] = "white" black_count = 0 for coord in get_adjacent(x, y): if coord in tiles and tiles[coord] == "black": black_count += 1 if black_count == 2: changes[new_coord] = "black" for coord,color in changes.items(): tiles[coord] = color print(f"Day {day}: {count_black()}") ``` #### File: 2020/Day 5/part2.py ```python def get_id(seat_encoding): row_data = seat_encoding[0:7] col_data = seat_encoding[7:] # Get row row = 0 for i,c in enumerate(reversed(row_data)): if c == "B": row |= 1 << i # Get col col = 0 for i,c in enumerate(reversed(col_data)): if c == "R": col |= 1 << i return row * 8 + col with open("input.txt") as file: lines = file.read().split("\n") seats = [] for line in lines: seat = get_id(line) seats.append(seat) minimum = min(seats) for i in range(len(seats)): if i > minimum: if i not in seats: print(i) break ``` #### File: 2020/Day 8/part2.py ```python from copy import deepcopy class CPU: def __init__(self, program=[]): self.pc = 0 self.accumulator = 0 self.program = program self.memory_size = len(self.program) self.used_indexes = set() self.running = True self.valid = False def run(self): while self.running: self.decode() def decode(self): self.used_indexes.add(self.pc) op, args = self.program[self.pc] if func := getattr(self, op): func(args) else: print(f"Unsupported opcode: {op}") if self.pc in self.used_indexes: self.running = False elif self.pc >= self.memory_size: self.valid = True self.running = False def nop(self, args): self.pc += 1 def acc(self, args): self.accumulator += int(args[0]) self.pc += 1 def jmp(self, args): self.pc += int(args[0]) with open("input.txt") as file: lines = file.read().split("\n") program = [] for line in lines: op, *args = line.split(" ") program.append([op, args]) jmp_lines = [i for i,line in enumerate(program) if line[0] == "jmp"] for index in jmp_lines: temp_program = deepcopy(program) temp_program[index][0] = "nop" cpu = CPU(program=temp_program) cpu.run() if cpu.valid: print(cpu.accumulator) nop_lines = [i for i,line in enumerate(program) if line[0] == "nop"] for index in nop_lines: temp_program = deepcopy(program) temp_program[index][0] = "jmp" cpu = CPU(program=temp_program) cpu.run() if cpu.valid: print(cpu.accumulator) ```
{ "source": "joshwalawender/CSU_initializer", "score": 2 }
#### File: CSU_initializer/CSU_initializer_plugin/CSU_initializer.py ```python from ginga import GingaPlugin from ginga.gw import Widgets # import any other modules you want here--it's a python world! import os from datetime import datetime as dt import numpy as np from ginga import GingaPlugin, RGBImage, colors from ginga.gw import Widgets from ginga.misc import ParamSet, Bunch from ginga.util import dp from ginga.gw.GwHelp import FileSelection from astropy.io import fits from astropy.modeling import models, fitting from scipy import ndimage import socket class CSU_initializer(GingaPlugin.LocalPlugin): def __init__(self, fv, fitsimage): """ This method is called when the plugin is loaded for the first time. ``fv`` is a reference to the Ginga (reference viewer) shell and ``fitsimage`` is a reference to the specific ImageViewCanvas object associated with the channel on which the plugin is being invoked. You need to call the superclass initializer and then do any local initialization. """ super(CSU_initializer, self).__init__(fv, fitsimage) # Load plugin preferences prefs = self.fv.get_preferences() self.settings = prefs.createCategory('plugin_CSU_initializer') self.settings.setDefaults(ibar_num=1, mbar_num=1, ebar_num=1, move_to_open=False, bar_dest=0.0, bar_pos=137.0, ) self.settings.load(onError='silent') self.instrument_hosts = ['vm-mosfire', 'nuu', 'vm-mosfirebld'] self.hostname = socket.gethostname().split('.')[0].lower() self.bars_analysis = None self.state_analysis = None self.bars_file = None self.state_file = None self.bars_header = None self.state_header = None self.layertag = 'bars-canvas' self.dc = fv.get_draw_classes() canvas = self.dc.DrawingCanvas() canvas.enable_draw(False) canvas.set_surface(self.fitsimage) self.canvas = canvas self.colornames = colors.get_colors() self.canvas_img = None self.mfilesel = FileSelection(self.fv.w.root.get_widget()) ## Fit relationship between bar position and pixels tick = dt.now() pixels, physical = self.get_data() self.fit_transforms(pixels, physical) tock = dt.now() elapsed = (tock-tick).total_seconds() # print('Completed fit of transforms in {:.3f} s'.format(elapsed)) ## Determine slit angle and bar center to center distance in pixels ## from the transformation and the known longslit positions ## in longslit, bar 02 is at 145.472 ## in longslit, bar 92 is at 129.480 physical = [ [145.472, self.bar_to_slit(2)], [129.480, self.bar_to_slit(92)] ] pixels = self.physical_to_pixel(physical) dx = pixels[1][0] - pixels[0][0] dy = pixels[0][1] - pixels[1][1] self.slit_angle_pix = np.arctan(dx/dy) # print("Slit Angle on CCD = {:.3f} deg".format(self.slit_angle_pix * 180./np.pi)) self.slit_height_pix = dy / (self.bar_to_slit(92) - self.bar_to_slit(2)) # print("Slit Height on CCD = {:.3f} pix".format(self.slit_height_pix)) def build_gui(self, container): """ This method is called when the plugin is invoked. It builds the GUI used by the plugin into the widget layout passed as ``container``. This method may be called many times as the plugin is opened and closed for modal operations. The method may be omitted if there is no GUI for the plugin. This specific example uses the GUI widget set agnostic wrappers to build the GUI, but you can also just as easily use explicit toolkit calls here if you only want to support one widget set. """ top = Widgets.VBox() top.set_border_width(4) # this is a little trick for making plugins that work either in # a vertical or horizontal orientation. It returns a box container, # a scroll widget and an orientation ('vertical', 'horizontal') vbox, sw, orientation = Widgets.get_oriented_box(container) vbox.set_border_width(4) vbox.set_spacing(2) self.msg_font = self.fv.get_font("sansFont", 12) ## ----------------------------------------------------- ## Acquire or Load Image ## ----------------------------------------------------- fr = Widgets.Frame("Image the CSU Mask") vbox.add_widget(fr, stretch=0) btns1 = Widgets.HBox() btns1.set_spacing(1) btn_acq_im = Widgets.Button("Acquire Mask Image") btn_acq_im.add_callback('activated', lambda w: self.acq_mask_image()) btns1.add_widget(btn_acq_im, stretch=0) btns1.add_widget(Widgets.Label(''), stretch=1) vbox.add_widget(btns1, stretch=0) ## ----------------------------------------------------- ## Analyze Image ## ----------------------------------------------------- fr = Widgets.Frame("Analyze CSU Mask Image") vbox.add_widget(fr, stretch=0) btns2 = Widgets.HBox() btns2.set_spacing(3) btn_analyze = Widgets.Button("Analyze Mask Image") btn_analyze.add_callback('activated', lambda w: self.analyze_mask_image()) btns2.add_widget(btn_analyze, stretch=0) btns2.add_widget(Widgets.Label(''), stretch=1) btn_overlay = Widgets.Button("Overlay Analysis Results") btn_overlay.add_callback('activated', lambda w: self.overlay_analysis_results()) btns2.add_widget(btn_overlay, stretch=0) btns2.add_widget(Widgets.Label(''), stretch=1) vbox.add_widget(btns2, stretch=0) ## ----------------------------------------------------- ## Edit Analysis Results ## ----------------------------------------------------- fr = Widgets.Frame("Edit Analysis Results") captions = [ ("Set Bar Number", 'label',\ 'set_ebar_num', 'entry',),\ ("Set Position", 'label',\ 'set_bar_pos', 'entry'),\ ("Edit Bar #", 'label',\ 'ebar_num', 'llabel', 'to', 'label', 'bar_pos', 'llabel', "mm", 'label',\ "Edit Bar", 'button'), ] w, b = Widgets.build_info(captions, orientation=orientation) self.w.update(b) ebar_num = int(self.settings.get('ebar_num', 1)) b.ebar_num.set_text('{:2d}'.format(ebar_num)) b.set_ebar_num.set_text('{:2d}'.format(ebar_num)) b.set_ebar_num.add_callback('activated', self.set_ebar_num_cb) b.set_ebar_num.set_tooltip("Set bar number to move") bar_pos = float(self.settings.get('bar_pos', 0.0)) b.bar_pos.set_text('{:+.1f}'.format(bar_pos)) b.set_bar_pos.set_text('{:+.1f}'.format(bar_pos)) b.set_bar_pos.add_callback('activated', self.set_bar_pos_cb) b.set_bar_pos.set_tooltip("Set distance to move bar") b.edit_bar.add_callback('activated', lambda w: self.edit_bar()) fr.set_widget(w) vbox.add_widget(fr, stretch=0) ## ----------------------------------------------------- ## Bar Overlay ## ----------------------------------------------------- fr = Widgets.Frame("Bar Positions Overlay") vbox.add_widget(fr, stretch=0) btns1 = Widgets.HBox() btns1.set_spacing(1) btn_csu_bar_state = Widgets.Button("From csu_bar_state") btn_csu_bar_state.add_callback('activated', lambda w: self.overlaybars_from_file()) btns1.add_widget(btn_csu_bar_state, stretch=0) btns1.add_widget(Widgets.Label(''), stretch=1) btn_fits_header = Widgets.Button("From FITS Header") btn_fits_header.add_callback('activated', lambda w: self.overlaybars_from_header()) btns1.add_widget(btn_fits_header, stretch=0) btns1.add_widget(Widgets.Label(''), stretch=1) vbox.add_widget(btns1, stretch=0) btns2 = Widgets.HBox() btns2.set_spacing(1) btn_clear = Widgets.Button("Clear Overlays") btn_clear.add_callback('activated', lambda w: self.clear_canvas()) btns2.add_widget(btn_clear, stretch=0) btns2.add_widget(Widgets.Label(''), stretch=1) vbox.add_widget(btns2, stretch=0) ## ----------------------------------------------------- ## Initialize Bar ## ----------------------------------------------------- fr = Widgets.Frame("Individual Bar Initialization") captions = [ ("Set Bar Number", 'label',\ 'set_ibar_num', 'entry',),\ ("Initialize Bar #", 'label',\ 'ibar_num', 'llabel',\ "Initialize Bar", 'button',\ "Open Before Init", 'checkbutton'), ] w, b = Widgets.build_info(captions, orientation=orientation) self.w.update(b) ibar_num = int(self.settings.get('ibar_num', 1)) b.ibar_num.set_text('{:2d}'.format(ibar_num)) b.set_ibar_num.set_text('{:2d}'.format(ibar_num)) b.set_ibar_num.add_callback('activated', self.set_ibar_num_cb) b.set_ibar_num.set_tooltip("Set bar number to initialize") b.open_before_init.set_tooltip("Move bar to open position before initialization") open_before_init = self.settings.get('move_to_open', False) b.open_before_init.set_state(open_before_init) b.open_before_init.add_callback('activated', self.open_before_init_cb) b.initialize_bar.add_callback('activated', lambda w: self.initialize_bar()) fr.set_widget(w) vbox.add_widget(fr, stretch=0) ## ----------------------------------------------------- ## Move Bar ## ----------------------------------------------------- # Frame for instructions and add the text widget with another # blank widget to stretch as needed to fill emp fr = Widgets.Frame("Individual Bar Control") captions = [ ("Set Bar Number", 'label',\ 'set_mbar_num', 'entry',),\ ("Set Destination", 'label',\ 'set_bar_dest', 'entry'),\ ("Move Bar #", 'label',\ 'mbar_num', 'llabel', 'to', 'label', 'bar_dest', 'llabel', "mm", 'label',\ "Move Bar", 'button'), ] w, b = Widgets.build_info(captions, orientation=orientation) self.w.update(b) mbar_num = int(self.settings.get('mbar_num', 1)) b.mbar_num.set_text('{:2d}'.format(mbar_num)) b.set_mbar_num.set_text('{:2d}'.format(mbar_num)) b.set_mbar_num.add_callback('activated', self.set_mbar_num_cb) b.set_mbar_num.set_tooltip("Set bar number to move") bar_dest = float(self.settings.get('bar_dest', 0.0)) b.bar_dest.set_text('{:+.1f}'.format(bar_dest)) b.set_bar_dest.set_text('{:+.1f}'.format(bar_dest)) b.set_bar_dest.add_callback('activated', self.set_bar_dest_cb) b.set_bar_dest.set_tooltip("Set distance to move bar") b.move_bar.add_callback('activated', lambda w: self.move_bar()) fr.set_widget(w) vbox.add_widget(fr, stretch=0) ## ----------------------------------------------------- ## Spacer ## ----------------------------------------------------- # Add a spacer to stretch the rest of the way to the end of the # plugin space spacer = Widgets.Label('') vbox.add_widget(spacer, stretch=1) # scroll bars will allow lots of content to be accessed top.add_widget(sw, stretch=1) ## ----------------------------------------------------- ## Bottom ## ----------------------------------------------------- # A button box that is always visible at the bottom btns_close = Widgets.HBox() btns_close.set_spacing(3) # Add a close button for the convenience of the user btn = Widgets.Button("Close") btn.add_callback('activated', lambda w: self.close()) btns_close.add_widget(btn, stretch=0) btns_close.add_widget(Widgets.Label(''), stretch=1) top.add_widget(btns_close, stretch=0) # Add our GUI to the container container.add_widget(top, stretch=1) # NOTE: if you are building a GUI using a specific widget toolkit # (e.g. Qt) GUI calls, you need to extract the widget or layout # from the non-toolkit specific container wrapper and call on that # to pack your widget, e.g.: #cw = container.get_widget() #cw.addWidget(widget, stretch=1) def close(self): """ Example close method. You can use this method and attach it as a callback to a button that you place in your GUI to close the plugin as a convenience to the user. """ self.fv.stop_local_plugin(self.chname, str(self)) return True def start(self): """ This method is called just after ``build_gui()`` when the plugin is invoked. This method may be called many times as the plugin is opened and closed for modal operations. This method may be omitted in many cases. """ # start ruler drawing operation p_canvas = self.fitsimage.get_canvas() try: obj = p_canvas.get_object_by_tag(self.layertag) except KeyError: # Add ruler layer p_canvas.add(self.canvas, tag=self.layertag) self.resume() def pause(self): """ This method is called when the plugin loses focus. It should take any actions necessary to stop handling user interaction events that were initiated in ``start()`` or ``resume()``. This method may be called many times as the plugin is focused or defocused. It may be omitted if there is no user event handling to disable. """ pass def resume(self): """ This method is called when the plugin gets focus. It should take any actions necessary to start handling user interaction events for the operations that it does. This method may be called many times as the plugin is focused or defocused. The method may be omitted if there is no user event handling to enable. """ pass def stop(self): """ This method is called when the plugin is stopped. It should perform any special clean up necessary to terminate the operation. The GUI will be destroyed by the plugin manager so there is no need for the stop method to do that. This method may be called many times as the plugin is opened and closed for modal operations, and may be omitted if there is no special cleanup required when stopping. """ pass def redo(self): """ This method is called when the plugin is active and a new image is loaded into the associated channel. It can optionally redo the current operation on the new image. This method may be called many times as new images are loaded while the plugin is active. This method may be omitted. """ pass def __str__(self): """ This method should be provided and should return the lower case name of the plugin. """ return 'CSU Initializer Plugin' ## ------------------------------------------------------------------ ## Coordinate Transformation Utilities ## ------------------------------------------------------------------ def slit_to_bars(self, slit): '''Given a slit number (1-46), return the two bar numbers associated with that slit. ''' return (slit*2-1, slit*2) def bar_to_slit(self, bar): '''Given a bar number, retun the slit associated with that bar. ''' return int((bar+1)/2) def pad(self, x): '''Pad array for affine transformation. ''' return np.hstack([x, np.ones((x.shape[0], 1))]) def unpad(self, x): '''Unpad array for affine transformation. ''' return x[:,:-1] def fit_transforms(self, pixels, physical): '''Given a set of pixel coordinates (X, Y) and a set of physical coordinates (mm, slit), fit the affine transformations (forward and backward) to convert between the two coordinate systems. ''' assert pixels.shape[1] == 2 assert physical.shape[1] == 2 assert pixels.shape[0] == physical.shape[0] # Pad the data with ones, so that our transformation can do translations too n = pixels.shape[0] pad = lambda x: np.hstack([x, np.ones((x.shape[0], 1))]) unpad = lambda x: x[:,:-1] X = pad(pixels) Y = pad(physical) # Solve the least squares problem X * A = Y # to find our transformation matrix A A, res, rank, s = np.linalg.lstsq(X, Y) Ainv, res, rank, s = np.linalg.lstsq(Y, X) A[np.abs(A) < 1e-10] = 0 Ainv[np.abs(A) < 1e-10] = 0 self.Apixel_to_physical = A self.Aphysical_to_pixel = Ainv def pixel_to_physical(self, x): '''Using the affine transformation determined by `fit_transforms`, convert a set of pixel coordinates (X, Y) to physical coordinates (mm, slit). ''' x = np.array(x) result = self.unpad(np.dot(self.pad(x), self.Apixel_to_physical)) return result def physical_to_pixel(self, x): '''Using the affine transformation determined by `fit_transforms`, convert a set of physical coordinates (mm, slit) to pixel coordinates (X, Y). ''' x = np.array(x) result = self.unpad(np.dot(self.pad(x), self.Aphysical_to_pixel)) return result ## ------------------------------------------------------------------ ## Analyze Image to Determine Bar Positions ## ------------------------------------------------------------------ def analyze_mask_image(self, filtersize=7): '''Loop over all slits in the image and using the affine transformation determined by `fit_transforms`, select the Y pixel range over which this slit should be found. Take a median filtered version of that image and determine the X direction gradient (derivative). Then collapse it in the Y direction to form a 1D profile. Using the `find_bar_edges` method, determine the X pixel positions of each bar forming the slit. Convert those X pixel position to physical coordinates using the `pixel_to_physical` method and then call the `compare_to_csu_bar_state` method to determine the bar state. ''' ## Get image try: channel = self.fv.get_channel(self.chname) image = channel.get_current_image() data = image._get_data() except: print('Failed to load image data') return # median X pixels only (preserve Y structure) medimage = ndimage.median_filter(data, size=(1, filtersize)) self.bars_analysis = {} self.state_analysis = {} for slit in range(1,47): b1, b2 = self.slit_to_bars(slit) ## Determine y pixel range y1 = int(np.ceil((self.physical_to_pixel(np.array([(4.0, slit+0.5)])))[0][1])) y2 = int(np.floor((self.physical_to_pixel(np.array([(270.4, slit-0.5)])))[0][1])) gradx = np.gradient(medimage[y1:y2,:], axis=1) horizontal_profile = np.sum(gradx, axis=0) x1, x2 = self.find_bar_edges(horizontal_profile) if x1 is None: self.bars_analysis[b1] = None self.state_analysis[b1] = 'UNKNOWN' else: mm1 = (self.pixel_to_physical(np.array([(x1, (y1+y2)/2.)])))[0][0] self.bars_analysis[b1] = mm1 self.state_analysis[b1] = 'ANALYZED' if x2 is None: self.bars_analysis[b2] = None self.state_analysis[b2] = 'UNKNOWN' else: mm2 = (self.pixel_to_physical(np.array([(x2, (y1+y2)/2.)])))[0][0] self.bars_analysis[b2] = mm2 self.state_analysis[b2] = 'ANALYZED' self.compare_to_csu_bar_state() def find_bar_edges(self, horizontal_profile): '''Given a 1D profile, dertermime the X position of each bar that forms a single slit. The slit edges are found by fitting one positive and one negative gaussian function to the profile. ''' fitter = fitting.LevMarLSQFitter() amp1_est = horizontal_profile[horizontal_profile == min(horizontal_profile)] mean1_est = np.argmin(horizontal_profile) amp2_est = horizontal_profile[horizontal_profile == max(horizontal_profile)] mean2_est = np.argmax(horizontal_profile) g_init1 = models.Gaussian1D(amplitude=amp1_est, mean=mean1_est, stddev=2.) g_init1.amplitude.max = 0 g_init2 = models.Gaussian1D(amplitude=amp2_est, mean=mean2_est, stddev=2.) g_init2.amplitude.min = 0 model = g_init1 + g_init2 fit = fitter(model, range(0,horizontal_profile.shape[0]), horizontal_profile) # Check Validity of Fit if abs(fit.stddev_0.value) < 3 and abs(fit.stddev_1.value) < 3\ and fit.amplitude_0.value < -1 and fit.amplitude_1.value > 1\ and fit.mean_0.value > fit.mean_1.value: x1 = fit.mean_0.value x2 = fit.mean_1.value else: x1 = None x2 = None return (x1, x2) def compare_to_csu_bar_state(self, tol=0.3): if self.bars_analysis is None: return # Read csu_bar_state file if self.hostname in self.instrument_hosts: self.read_csu_bar_state('') else: print('Not running on permitted host. Loading dummy file.') file = os.path.expanduser('~/MOSFIRE_Test_Data/csu_bar_state') self.read_csu_bar_state(file) # Set state for bars for b in range(1,93): # Set state_analysis to be same as state_file if not OK if self.state_file[b] != 'OK': self.state_analysis[b] = self.state_file[b] # otherwise check if analysis matches csu_bar_state position else: self.check_safe(b) def check_safe(self, b, tol=0.3): try: diff = self.bars_analysis[b] - self.bars_file[b] if abs(diff) < tol: self.state_analysis[b] = 'OK' else: if b % 2 == 0: if diff > tol: self.state_analysis[b] = 'DANGEROUS' else: self.state_analysis[b] = 'DISCREPANT' elif b % 2 == 1: if diff < -tol: self.state_analysis[b] = 'DANGEROUS' else: self.state_analysis[b] = 'DISCREPANT' except: self.state_analysis[b] = 'UNKNOWN' ## ------------------------------------------------------------------ ## Read Bar Positions and Overlay ## ------------------------------------------------------------------ def read_csu_bar_state(self, filename): with open(filename, 'r') as FO: lines = FO.readlines() self.bars_file = {} self.state_file = {} state_trans = {0: 'OK', 1: 'SETUP', 2: 'MOVING', -3: 'ERROR'} for line in lines: barno, pos, statestr = line.strip('\n').split(',') self.bars_file[int(barno)] = float(pos) self.state_file[int(barno)] = state_trans[int(statestr)] def read_bars_from_header(self, header): self.bars_header = {} self.state_header = {} for i in range(1,93): self.bars_header[i] = float(header['B{:02d}POS'.format(i)]) self.state_header[i] = 'FROM_FITS' def overlaybars(self, bars, state=None, alpha=0.8): colormap = {'OK': 'green', 'ERROR': 'red', 'DANGEROUS': 'red', 'DISCREPANT': 'yellow', 'UNKNOWN': 'orange', 'FROM_FITS': 'seagreen'} draw_height = 0.45 for j in range(1, 47): b1, b2 = self.slit_to_bars(j) physical1 = [ [-2.0, j-draw_height], [-2.0, j+draw_height], [bars[b1], j+draw_height], [bars[b1], j-draw_height] ] physical1 = np.array(physical1) pixels1 = self.physical_to_pixel(physical1) pixels1[2][0] += draw_height * self.slit_height_pix * np.sin(self.slit_angle_pix) pixels1[3][0] -= draw_height * self.slit_height_pix * np.sin(self.slit_angle_pix) physical2 = [ [270.4+4.0, j-draw_height], [270.4+4.0, j+draw_height], [bars[b2], j+draw_height], [bars[b2], j-draw_height] ] physical2 = np.array(physical2) pixels2 = self.physical_to_pixel(physical2) pixels2[2][0] += draw_height * self.slit_height_pix * np.sin(self.slit_angle_pix) pixels2[3][0] -= draw_height * self.slit_height_pix * np.sin(self.slit_angle_pix) b1color = colormap.get(state[b1], 'gray') b2color = colormap.get(state[b2], 'gray') self.canvas.add(self.dc.Polygon(pixels1, color=b1color, alpha=alpha)) self.canvas.add(self.dc.Polygon(pixels2, color=b2color, alpha=alpha)) x1, y1 = self.physical_to_pixel([[7.0, j+0.3]])[0] self.canvas.add(self.dc.Text(x1, y1, '{:d}'.format(b1), fontsize=10, color=b1color)) x2, y2 = self.physical_to_pixel([[270.4-0.0, j+0.3]])[0] self.canvas.add(self.dc.Text(x2, y2, '{:d}'.format(b2), fontsize=10, color=b2color)) def overlay_analysis_results(self): if self.bars_analysis is None: return self.overlaybars(self.bars_analysis, state=self.state_analysis) def overlaybars_from_file(self): if self.hostname in self.instrument_hosts: self.read_csu_bar_state() else: print('Not running on permitted host. Loading dummy file.') file = os.path.expanduser('~/MOSFIRE_Test_Data/csu_bar_state') self.read_csu_bar_state(file) self.overlaybars(self.bars_file, state=self.state_file) def overlaybars_from_header(self): ## Get header try: channel = self.fv.get_channel(self.chname) image = channel.get_current_image() header = image.get_header() except: print('Failed to load header from image') else: self.read_bars_from_header(header) self.overlaybars(self.bars_header, state=self.state_header) def clear_canvas(self): self.canvas.delete_all_objects() ## ------------------------------------------------------------------ ## Bar Control ## ------------------------------------------------------------------ def move_bar_to_open(self, b): try: state = self.state_analysis[b] except: state = '' if state is 'UNKNOWN': print('Cannot move to open from unknown position. No action taken.') return if b % 2 == 0: destination = 270.400 elif b % 2 == 1: destination = 4.0 print('Moving bar #{:02d} to {:+.2f} mm'.format(b, destination)) cmd = 'csuMoveBar {:02d} {:.1f}'.format(b, destination) print(cmd) if self.hostname in self.instrument_hosts: pass else: print('Not running on permitted host. No action taken.') def move_bar(self): bar = self.settings.get('mbar_num') destination = self.settings.get('bar_dest') print('Moving bar #{:02d} to {:+.2f} mm'.format(bar, destination)) cmd = 'csuMoveBar {:02d} {:.1f}'.format(bar, destination) print(cmd) if self.hostname in self.instrument_hosts: pass else: print('Not running on permitted host. No action taken.') def initialize_bar(self): bar = self.settings.get('ibar_num') if self.settings.get('move_to_open'): self.move_bar_to_open(bar) print('Initializing bar #{:02d}'.format(bar)) cmd = 'm csuinitbar={:02d}'.format(bar) print(cmd) if self.hostname in self.instrument_hosts: pass else: print('Not running on permitted host. No action taken.') ## ------------------------------------------------------------------ ## Button Callbacks ## ------------------------------------------------------------------ def acq_mask_image(self): if self.hostname in self.instrument_hosts: pass else: print('Not running on permitted host. No action taken.') def set_ebar_num_cb(self, w): ebar_num = int(w.get_text()) self.settings.set(ebar_num=ebar_num) self.w.ebar_num.set_text('{:2d}'.format(ebar_num)) def set_bar_pos_cb(self, w): bar_pos = float(w.get_text()) self.settings.set(bar_pos=bar_pos) self.w.bar_pos.set_text('{:+.1f}'.format(bar_pos)) def edit_bar(self): bar = self.settings.get('ebar_num') destination = self.settings.get('bar_pos') self.bars_analysis[bar] = destination self.state_analysis[bar] = 'DISCREPANT' self.clear_canvas() self.overlay_analysis_results() def set_ibar_num_cb(self, w): ibar_num = int(w.get_text()) self.settings.set(ibar_num=ibar_num) self.w.ibar_num.set_text('{:2d}'.format(ibar_num)) def set_mbar_num_cb(self, w): mbar_num = int(w.get_text()) self.settings.set(mbar_num=mbar_num) self.w.mbar_num.set_text('{:2d}'.format(mbar_num)) def set_bar_dest_cb(self, w): bar_dest = float(w.get_text()) self.settings.set(bar_dest=bar_dest) self.w.bar_dest.set_text('{:+.1f}'.format(bar_dest)) def open_before_init_cb(self, widget, tf): self.settings.set(move_to_open=tf) ## ------------------------------------------------------------------ ## Data to Fit Affine Transformation ## ------------------------------------------------------------------ def get_data(self): pixels = np.array([ (1026.6847023205248, 31.815757489924671), (1031.1293065907989, 31.815757489924671), (1100.0527926274958, 76.568051304306408), (1104.4723170387663, 76.568051304306408), (869.79921202733158, 119.71402079180322), (874.17468615739256, 119.71402079180322), (790.04504261037619, 163.97941699869187), (794.38269316256697, 163.97941699869187), (844.76764696920873, 208.45498973235158), (849.06840834451555, 208.45498973235158), (918.16119587182891, 253.46863795483193), (922.57167115281891, 253.46863795483193), (667.1708458173706, 296.83477802171569), (671.58750566149126, 296.83477802171569), (1210.6743343816352, 342.85304935109269), (1215.1047501727178, 342.85304935109269), (1037.1504738673596, 386.56200191364559), (1041.5376839155629, 386.56200191364559), (1380.9733624348846, 431.75478066748974), (1385.3923546613969, 431.75478066748974), (1392.3137244788115, 476.40898670973735), (1396.5838727543558, 476.40898670973735), (701.99737614209846, 518.12290417047029), (706.31972548163674, 518.12290417047029), (775.43118955263321, 562.76481942553085), (779.76336695630744, 562.76481942553085), (695.39446696825667, 606.9386852721824), (699.68592870194686, 606.9386852721824), (1225.8966927438423, 652.79237015375304), (1230.2681865131638, 652.79237015375304), (1299.3047613957535, 697.52305237026349), (1303.6542557465727, 697.52305237026349), (953.60567493512144, 740.39597570556316), (957.91890612112604, 740.39597570556316), (1027.0080928255736, 784.70486151318767), (1031.3650789520013, 784.70486151318767), (1241.625753053888, 830.10892664282756), (1245.9181149708163, 830.10892664282756), (1266.796600696397, 874.17188807394371), (1271.1082253968038, 874.17188807394371), (1404.8881828516335, 919.85774261912377), (1409.9449171925908, 919.85774261912377), (1325.0207484270156, 963.32163630950686), (1329.3681702175545, 963.32163630950686), (1185.9570564396361, 1007.0164717446025), (1190.2368155733498, 1007.0164717446025), (1306.6628878384579, 1051.9073888851103), (1310.9679069215179, 1051.9073888851103), (1151.3860791138529, 1095.4860726831637), (1155.7367238283309, 1095.4860726831637), (1224.7162502034391, 1140.436681012593), (1229.0598756552718, 1140.436681012593), (904.70409145100268, 1183.267412335555), (908.99297982589781, 1183.267412335555), (978.00762214758913, 1227.9731804278615), (982.41054057239705, 1227.9731804278615), (869.65543493075677, 1271.3564678397893), (873.95299108698168, 1271.3564678397893), (942.99396243198464, 1316.2391922602001), (947.36667894787513, 1316.2391922602001), (1256.7806430753744, 1361.195495916817), (1261.0847133245632, 1361.195495916817), (1330.1305637595844, 1406.3795550431571), (1334.3960288420271, 1406.3795550431571), (1060.9423305503171, 1449.3586376395574), (1065.3182032594575, 1449.3586376395574), (1108.6465868246237, 1493.9756362677167), (1112.9382994207679, 1493.9756362677167), (662.84522896384874, 1536.9734554153649), (667.12956877347722, 1536.9734554153649), (712.5287834914659, 1581.2712766110319), (716.80585127180609, 1581.2712766110319), (956.48762939159371, 1626.1728182002655), (960.9581522740466, 1626.1728182002655), (723.23974640617337, 1670.0165354200499), (727.67208274341931, 1670.0165354200499), (1172.3594885486252, 1715.8650599984883), (1176.8341929555718, 1715.8650599984883), (1015.7329598422145, 1759.5446833817025), (1020.1920698607528, 1759.5446833817025), (935.82358262678224, 1803.5644982617907), (940.3126440130676, 1803.5644982617907), (989.98752991018682, 1847.9507718487364), (994.40511955530712, 1847.9507718487364), (1278.2218422583971, 1892.8072028048214), (1282.7070969966558, 1892.8072028048214), (1351.5377751257745, 1938.5923374638328), (1355.9221844080257, 1938.5923374638328), (1171.5812780061251, 1981.4914424153424), (1176.0817255338613, 1981.4914424153424), ]) physical = np.array([ (139.917, self.bar_to_slit(92)), (139.41, self.bar_to_slit(91)), (130.322, self.bar_to_slit(90)), (129.815, self.bar_to_slit(89)), (160.334, self.bar_to_slit(88)), (159.827, self.bar_to_slit(87)), (170.738, self.bar_to_slit(86)), (170.231, self.bar_to_slit(85)), (163.579, self.bar_to_slit(84)), (163.072, self.bar_to_slit(83)), (153.983, self.bar_to_slit(82)), (153.476, self.bar_to_slit(81)), (186.718, self.bar_to_slit(80)), (186.211, self.bar_to_slit(79)), (115.773, self.bar_to_slit(78)), (115.266, self.bar_to_slit(77)), (138.413, self.bar_to_slit(76)), (137.906, self.bar_to_slit(75)), (93.508, self.bar_to_slit(74)), (93.001, self.bar_to_slit(73)), (92.021, self.bar_to_slit(72)), (91.514, self.bar_to_slit(71)), (182.097, self.bar_to_slit(70)), (181.59, self.bar_to_slit(69)), (172.502, self.bar_to_slit(68)), (171.995, self.bar_to_slit(67)), (182.905, self.bar_to_slit(66)), (182.398, self.bar_to_slit(65)), (113.665, self.bar_to_slit(64)), (113.158, self.bar_to_slit(63)), (104.069, self.bar_to_slit(62)), (103.562, self.bar_to_slit(61)), (149.161, self.bar_to_slit(60)), (148.654, self.bar_to_slit(59)), (139.566, self.bar_to_slit(58)), (139.059, self.bar_to_slit(57)), (111.528, self.bar_to_slit(56)), (111.021, self.bar_to_slit(55)), (108.22, self.bar_to_slit(54)), (107.713, self.bar_to_slit(53)), (90.189, self.bar_to_slit(52)), (89.681, self.bar_to_slit(51)), (100.593, self.bar_to_slit(50)), (100.086, self.bar_to_slit(49)), (118.731, self.bar_to_slit(48)), (118.223, self.bar_to_slit(47)), (102.94, self.bar_to_slit(46)), (102.432, self.bar_to_slit(45)), (123.212, self.bar_to_slit(44)), (122.704, self.bar_to_slit(43)), (113.615, self.bar_to_slit(42)), (113.108, self.bar_to_slit(41)), (155.354, self.bar_to_slit(40)), (154.847, self.bar_to_slit(39)), (145.759, self.bar_to_slit(38)), (145.251, self.bar_to_slit(37)), (159.887, self.bar_to_slit(36)), (159.38, self.bar_to_slit(35)), (150.292, self.bar_to_slit(34)), (149.785, self.bar_to_slit(33)), (109.338, self.bar_to_slit(32)), (108.83, self.bar_to_slit(31)), (99.742, self.bar_to_slit(30)), (99.235, self.bar_to_slit(29)), (134.842, self.bar_to_slit(28)), (134.335, self.bar_to_slit(27)), (128.616, self.bar_to_slit(26)), (128.109, self.bar_to_slit(25)), (186.778, self.bar_to_slit(24)), (186.271, self.bar_to_slit(23)), (180.272, self.bar_to_slit(22)), (179.765, self.bar_to_slit(21)), (148.417, self.bar_to_slit(20)), (147.91, self.bar_to_slit(19)), (178.822, self.bar_to_slit(18)), (178.314, self.bar_to_slit(17)), (120.197, self.bar_to_slit(16)), (119.689, self.bar_to_slit(15)), (140.601, self.bar_to_slit(14)), (140.094, self.bar_to_slit(13)), (151.005, self.bar_to_slit(12)), (150.498, self.bar_to_slit(11)), (143.947, self.bar_to_slit(10)), (143.44, self.bar_to_slit(9)), (106.313, self.bar_to_slit(8)), (105.806, self.bar_to_slit(7)), (96.717, self.bar_to_slit(6)), (96.21, self.bar_to_slit(5)), (120.202, self.bar_to_slit(4)), (119.695, self.bar_to_slit(3)), ]) return pixels, physical ```
{ "source": "joshwalawender/IQMon", "score": 2 }
#### File: iqmon/pipelines/ingest.py ```python from keckdrpframework.pipelines.base_pipeline import BasePipeline from keckdrpframework.models.processing_context import ProcessingContext # MODIFY THIS IMPORT to reflect the name of the module created in the primitives directory from iqmon.primitives.file_handling import (ReadFITS, PopulateAdditionalMetaData, CopyFile, DeleteOriginal) from iqmon.primitives.database import RecordFile class IngestPipeline(BasePipeline): """ This pipeline ingests files from their raw location on disk and rewrites them to the destination directory with a checksum. It then (if spcified) deletes the original file. Finally, some basic image information and statistics are recorded to the mongo database. This is meant to be a very quick sequence which moves the file and records the file's existence to the database. """ event_table = { "next_file": ("ReadFITS", "reading_file", "populate_metadata"), "populate_metadata": ("PopulateAdditionalMetaData", "populating_metadata", "copy_file"), "copy_file": ("CopyFile", "copying_file", "delete_original"), "delete_original": ("DeleteOriginal", "deleting_original", "record_file"), "record_file": ("RecordFile", "recording", None), } def __init__(self, context: ProcessingContext): BasePipeline.__init__(self, context) ``` #### File: iqmon/primitives/image_reduction.py ```python from pathlib import Path from datetime import datetime, timedelta import numpy as np from astropy import units as u from astropy import stats from astropy.time import Time from astropy.nddata import CCDData import ccdproc from keckdrpframework.primitives.base_primitive import BasePrimitive from .utils import pre_condition, post_condition, find_master ##----------------------------------------------------------------------------- ## Primitive: SubtractBias ##----------------------------------------------------------------------------- class SubtractBias(BasePrimitive): """ """ def __init__(self, action, context): BasePrimitive.__init__(self, action, context) self.log = context.pipeline_logger self.cfg = self.context.config.instrument master_dir = self.cfg['Calibrations'].get('DirectoryForMasters', None) self.master_bias_file = find_master(master_dir, 'Bias', action.args.meta) def _pre_condition(self): """Check for conditions necessary to run this process""" checks = [pre_condition(self, 'Skip image is not set', not self.action.args.skip), pre_condition(self, 'master bias is available', self.master_bias_file is not None), pre_condition(self, 'Image type is not BIAS', self.action.args.imtype != 'BIAS'), ] return np.all(checks) def _post_condition(self): """ Check for conditions necessary to verify that the process ran correctly. """ checks = [] return np.all(checks) def _perform(self): """ Returns an Argument() with the parameters that depend on this operation. """ self.log.info(f"Running {self.__class__.__name__} action") self.log.info(f" Found master bias file: {self.master_bias_file.name}") master_bias_ccddata = CCDData.read(self.master_bias_file, unit="adu") self.log.info(f" Subtracting bias") self.action.args.ccddata = ccdproc.subtract_bias(self.action.args.ccddata, master_bias_ccddata) return self.action.args ##----------------------------------------------------------------------------- ## Primitive: SubtractDark ##----------------------------------------------------------------------------- class SubtractDark(BasePrimitive): """ """ def __init__(self, action, context): BasePrimitive.__init__(self, action, context) self.log = context.pipeline_logger self.cfg = self.context.config.instrument master_dir = self.cfg['Calibrations'].get('DirectoryForMasters', None) self.master_dark_file = find_master(master_dir, 'Dark', action.args.meta) def _pre_condition(self): """Check for conditions necessary to run this process""" checks = [pre_condition(self, 'Skip image is not set', not self.action.args.skip), pre_condition(self, 'master dark is available', self.master_dark_file is not None), pre_condition(self, 'Image type is not DARK', self.action.args.imtype != 'DARK'), ] return np.all(checks) def _post_condition(self): """ Check for conditions necessary to verify that the process ran correctly. """ checks = [] return np.all(checks) def _perform(self): """ Returns an Argument() with the parameters that depend on this operation. """ self.log.info(f"Running {self.__class__.__name__} action") self.log.info(f" Found master dark file: {self.master_dark_file.name}") master_dark_ccddata = CCDData.read(self.master_dark_file, unit="adu") self.log.info(f" Subtracting dark") self.action.args.ccddata = ccdproc.subtract_bias(self.action.args.ccddata, master_dark_ccddata) return self.action.args ##----------------------------------------------------------------------------- ## Primitive: GainCorrect ##----------------------------------------------------------------------------- class GainCorrect(BasePrimitive): """ """ def __init__(self, action, context): BasePrimitive.__init__(self, action, context) self.log = context.pipeline_logger self.cfg = self.context.config.instrument def _pre_condition(self): """Check for conditions necessary to run this process""" checks = [pre_condition(self, 'Skip image is not set', not self.action.args.skip), ] return np.all(checks) def _post_condition(self): """ Check for conditions necessary to verify that the process ran correctly. """ checks = [] return np.all(checks) def _perform(self): """ Returns an Argument() with the parameters that depend on this operation. """ self.log.info(f"Running {self.__class__.__name__} action") gain = self.action.args.meta.get('GAIN', None) if gain is not None: self.log.debug(f' Using gain = {gain}') if gain is None: gain = self.cfg['Telescope'].getfloat('gain', None) self.log.debug(f' Got gain from config: {gain}') self.log.debug(' Gain correcting data') self.action.args.ccddata = ccdproc.gain_correct(self.action.args.ccddata, gain, gain_unit=u.electron/u.adu) return self.action.args ##----------------------------------------------------------------------------- ## Primitive: CreateDeviation ##----------------------------------------------------------------------------- class CreateDeviation(BasePrimitive): """ """ def __init__(self, action, context): BasePrimitive.__init__(self, action, context) self.log = context.pipeline_logger self.cfg = self.context.config.instrument def _pre_condition(self): """Check for conditions necessary to run this process""" checks = [pre_condition(self, 'Skip image is not set', not self.action.args.skip), ] return np.all(checks) def _post_condition(self): """ Check for conditions necessary to verify that the process ran correctly. """ checks = [] return np.all(checks) def _perform(self): """ Returns an Argument() with the parameters that depend on this operation. """ self.log.info(f"Running {self.__class__.__name__} action") read_noise = self.action.args.meta.get('read_noise', None) if read_noise is not None: self.log.debug(f' Using read_noise = {read_noise}') if read_noise is None: read_noise = self.cfg['Telescope'].getfloat('read_noise', None) self.log.debug(f' Got read_noise from config: {read_noise}') self.action.args.ccddata = ccdproc.create_deviation(self.action.args.ccddata, readnoise=read_noise*u.electron) return self.action.args ##----------------------------------------------------------------------------- ## Primitive: MakeMasterCalFrame ##----------------------------------------------------------------------------- class MakeMasterCalFrame(BasePrimitive): """ """ def __init__(self, action, context): BasePrimitive.__init__(self, action, context) self.log = context.pipeline_logger self.cfg = self.context.config.instrument self.context = context date_string = self.action.args.meta['UT date string'] # if not hasattr(self.context, 'date_string'): # self.context[date_string] = {} # if self.action.args.imtype not in self.context[date_string].keys(): # self.context[date_string][self.action.args.imtype] = [] def _pre_condition(self): """Check for conditions necessary to run this process""" imtype = self.action.args.imtype date_string = self.action.args.meta['UT date string'] checks = [pre_condition(self, 'Skip image is not set', not self.action.args.skip), pre_condition(self, 'Image type is cal', imtype in ['BIAS', 'DARK']), # pre_condition(self, 'Connected to mongo', # self.mongo_iqmon is not None), pre_condition(self, f'do_{imtype}_subtraction is True', self.cfg['Calibrations'].getboolean(f'do_{imtype}_subtraction', True) is True), ] return np.all(checks) def _post_condition(self): """ Check for conditions necessary to verify that the process ran correctly. """ checks = [] return np.all(checks) def _perform(self): """ Returns an Argument() with the parameters that depend on this operation. """ self.log.info(f"Running {self.__class__.__name__} action") imtype = self.action.args.imtype date_string = self.action.args.meta['UT date string'] self.context[date_string][self.action.args.imtype].append(self.action.args.ccddata) n_cals = len(self.context[date_string][imtype]) self.log.info(f"Found {n_cals} {imtype} files for {date_string}") if n_cals >= self.cfg['Calibrations'].getint(f"min_{imtype}_frames"): self.log.info(f"Stacking {n_cals} {imtype} files") combined = ccdproc.combine(self.context[date_string][imtype], method='average', sigma_clip=True, sigma_clip_low_thresh=5, sigma_clip_high_thresh=5, sigma_clip_func=np.ma.median, sigma_clip_dev_func=stats.mad_std, ) self.log.info(f" Combined.") combined_bias.meta['combined'] = True combined_bias.meta['ncomb'] = n_cals combined_filename = f'Master{imtype}_{date_string}.fits' combined_filepath = Path(self.cfg['Calibrations'].get('directory_for_masters')) combined_file = combined_filepath.joinpath(combined_filename) if combined_file.exists() is True: self.log.debug(f" Deleting existing: {combined_file}") combined_file.unlink() self.log.info(f" Saving: {combined_file}") combined.write(combined_file) return self.action.args ``` #### File: iqmon/primitives/__init__.py ```python ##----------------------------------------------------------------------------- ## Primitive: Template ##----------------------------------------------------------------------------- # class Template(BasePrimitive): # """ # """ # def __init__(self, action, context): # BasePrimitive.__init__(self, action, context) # self.log = context.pipeline_logger # self.cfg = self.context.config.instrument # # def _pre_condition(self): # """Check for conditions necessary to run this process""" # checks = [] # return np.all(checks) # # def _post_condition(self): # """ # Check for conditions necessary to verify that the process ran # correctly. # """ # checks = [] # return np.all(checks) # # def _perform(self): # """ # Returns an Argument() with the parameters that depend on this # operation. # """ # self.log.info(f"Running {self.__class__.__name__} action") # # return self.action.args ``` #### File: iqmon/primitives/photometry.py ```python from pathlib import Path from datetime import datetime, timedelta import numpy as np from astropy import units as u from astropy import stats from astropy.time import Time from astropy.table import Table, Column import photutils import sep from keckdrpframework.primitives.base_primitive import BasePrimitive from .utils import pre_condition, post_condition, mode ##----------------------------------------------------------------------------- ## Primitive: MakeSourceMask ##----------------------------------------------------------------------------- class MakeSourceMask(BasePrimitive): """ """ def __init__(self, action, context): BasePrimitive.__init__(self, action, context) self.log = context.pipeline_logger self.cfg = self.context.config.instrument def _pre_condition(self): """Check for conditions necessary to run this process""" checks = [pre_condition(self, 'Skip image is not set', not self.action.args.skip), pre_condition(self, 'Extraction requested', self.cfg['Extract'].getboolean('do_extraction', True) is True), pre_condition(self, 'Image type is OBJECT', self.action.args.imtype == 'OBJECT'), ] return np.all(checks) def _post_condition(self): """ Check for conditions necessary to verify that the process ran correctly. """ checks = [] return np.all(checks) def _perform(self): """ Returns an Argument() with the parameters that depend on this operation. """ self.log.info(f"Running {self.__class__.__name__} action") snr = self.cfg['Extract'].getfloat('source_mask_snr', 5) self.log.debug(f" Using snr = {snr}") npixels = self.cfg['Extract'].getfloat('source_mask_npixels', 5) self.log.debug(f" Using npixels = {npixels}") source_mask = photutils.make_source_mask(self.action.args.ccddata, snr, npixels) self.action.args.source_mask = source_mask return self.action.args ##----------------------------------------------------------------------------- ## Primitive: CreateBackground ##----------------------------------------------------------------------------- class CreateBackground(BasePrimitive): """ """ def __init__(self, action, context): BasePrimitive.__init__(self, action, context) self.log = context.pipeline_logger self.cfg = self.context.config.instrument def _pre_condition(self): """Check for conditions necessary to run this process""" checks = [pre_condition(self, 'Skip image is not set', not self.action.args.skip), pre_condition(self, 'Extraction requested', self.cfg['Extract'].getboolean('do_extraction', True) is True), pre_condition(self, 'Image type is OBJECT', self.action.args.imtype == 'OBJECT'), ] return np.all(checks) def _post_condition(self): """ Check for conditions necessary to verify that the process ran correctly. """ checks = [] return np.all(checks) def _perform(self): """ Returns an Argument() with the parameters that depend on this operation. """ self.log.info(f"Running {self.__class__.__name__} action") box_size = self.cfg['Extract'].getint('background_box_size', 128) self.log.debug(f" Using box size = {box_size} pixels") bkg = photutils.Background2D(self.action.args.ccddata, box_size=box_size, mask=self.action.args.source_mask, sigma_clip=stats.SigmaClip()) self.action.args.background = bkg return self.action.args ##----------------------------------------------------------------------------- ## Primitive: ExtractStars ##----------------------------------------------------------------------------- class ExtractStars(BasePrimitive): """ """ def __init__(self, action, context): BasePrimitive.__init__(self, action, context) self.log = context.pipeline_logger self.cfg = self.context.config.instrument def _pre_condition(self): """Check for conditions necessary to run this process""" checks = [pre_condition(self, 'Skip image is not set', not self.action.args.skip), pre_condition(self, 'Background has been generated', self.action.args.background is not None), pre_condition(self, 'Extraction requested', self.cfg['Extract'].getboolean('do_extraction', True) is True), pre_condition(self, 'Image type is OBJECT', self.action.args.imtype == 'OBJECT'), ] return np.all(checks) def _post_condition(self): """ Check for conditions necessary to verify that the process ran correctly. """ checks = [] return np.all(checks) def _perform(self): """ Returns an Argument() with the parameters that depend on this operation. """ self.log.info(f"Running {self.__class__.__name__} action") exptime = self.action.args.meta.get('exptime') pixel_scale = self.cfg['Telescope'].getfloat('pixel_scale', 1) thresh = self.cfg['Extract'].getint('extract_threshold', 9) minarea = self.cfg['Extract'].getint('extract_minarea', 7) mina = self.cfg['Extract'].getfloat('fwhm_mina', 1) minb = self.cfg['Extract'].getfloat('fwhm_minb', 1) faint_limit_pct = self.cfg['Extract'].getfloat('faint_limit_percentile', 0) bright_limit_pct = self.cfg['Extract'].getfloat('bright_limit_percentile', 100) radius_limit = self.cfg['Extract'].getfloat('radius_limit_pix', 4000) bsub = self.action.args.ccddata.data - self.action.args.background.background seperr = self.action.args.ccddata.uncertainty.array sepmask = self.action.args.ccddata.mask # Define quick utility function def run_sep(bsub, seperr, sepmask, thresh, minarea): try: objects = sep.extract(bsub, err=seperr, mask=sepmask, thresh=float(thresh), minarea=minarea) return objects except Exception as e: if str(e)[:27] == 'internal pixel buffer full:': return None else: raise SEPError(str(e)) objects = None while objects is None: try: self.log.info(f'Invoking SEP with threshold: {thresh}') objects = run_sep(bsub, seperr, sepmask, thresh, minarea) thresh += 9 except SEPError as e: self.log.error('Source extractor failed:') self.log.error(e) return self.action.args t = Table(objects) t['flux'] /= exptime # Add radius (of star from center of image) to table ny, nx = bsub.shape r = np.sqrt((t['x']-nx/2.)**2 + (t['y']-ny/2.)**2) t.add_column(Column(data=r.data, name='r', dtype=np.float)) # Add FWHM to table coef = 2*np.sqrt(2*np.log(2)) fwhm = np.sqrt((coef*t['a'])**2 + (coef*t['b'])**2) t.add_column(Column(data=fwhm.data, name='FWHM', dtype=np.float)) # Add ellipticities to table ellipticities = t['a']/t['b'] t.add_column(Column(data=ellipticities.data, name='ellipticity', dtype=np.float)) # Filter out stars based on bright and faint limits faint_limit = np.percentile(t['flux'], faint_limit_pct) bright_limit = np.percentile(t['flux'], bright_limit_pct) self.log.info(f' Faintest {faint_limit_pct:.1f}% flux {faint_limit:f}') self.log.info(f' Brightest {bright_limit_pct:.1f}% flux {bright_limit:f}') filtered = (t['a'] < mina) | (t['b'] < minb) | (t['flag'] > 0) | (t['flux'] > bright_limit) | (t['flux'] < faint_limit) | (t['r'] > radius_limit) self.log.debug(f' Removing {np.sum(filtered):d}/{len(filtered):d}'\ f' extractions from FWHM calculation') self.log.debug(f" {np.sum( (t['a'] < mina) )} removed for fwhm_mina limit") self.log.debug(f" {np.sum( (t['b'] < minb) )} removed for fwhm_minb limit") self.log.debug(f" {np.sum( (t['flag'] > 0) )} removed for source extractor flags") self.log.debug(f" {np.sum( (t['flux'] < faint_limit) )} removed for faint limit") self.log.debug(f" {np.sum( (t['flux'] > bright_limit) )} removed for bright limit") self.action.args.meta['n_objects'] = len(t[~filtered]) self.log.info(f' Found {self.action.args.meta.get("n_objects"):d} stars') self.action.args.objects = t[~filtered] self.action.args.objects.sort('flux') self.action.args.objects.reverse() if self.action.args.meta.get("n_objects") == 0: self.log.warning('No stars found') return self.action.args else: FWHM_pix = np.median(t['FWHM'][~filtered]) FWHM_mode_bin = pixel_scale*0.25 FWHM_pix_mode = mode(t['FWHM'][~filtered]/FWHM_mode_bin)*FWHM_mode_bin self.log.info(f' Median FWHM = {FWHM_pix:.1f} pix ({FWHM_pix*pixel_scale:.2f} arcsec)') self.log.info(f' Mode FWHM = {FWHM_pix_mode:.1f} pix ({FWHM_pix_mode*pixel_scale:.2f} arcsec)') ellipticity = np.median(t['ellipticity'][~filtered]) ellipticity_mode_bin = 0.05 ellipticity_mode = mode(t['ellipticity'][~filtered]/ellipticity_mode_bin)*ellipticity_mode_bin self.log.info(f' Median ellipticity = {ellipticity:.2f}') self.log.info(f' Mode ellipticity = {ellipticity_mode:.2f}') self.action.args.meta['fwhm'] = FWHM_pix_mode self.action.args.meta['ellipticity'] = ellipticity_mode ## Do photutils photometry measurement positions = [(det['x'], det['y']) for det in self.action.args.objects] ap_radius = self.cfg['Photometry'].getfloat('aperture_radius', 2)*FWHM_pix star_apertures = photutils.CircularAperture(positions, ap_radius) sky_apertures = photutils.CircularAnnulus(positions, r_in=int(np.ceil(1.5*ap_radius)), r_out=int(np.ceil(2.0*ap_radius))) phot_table = photutils.aperture_photometry( self.action.args.ccddata, [star_apertures, sky_apertures]) phot_table['sky'] = phot_table['aperture_sum_1'] / sky_apertures.area() med_sky = np.median(phot_table['sky']) self.log.info(f' Median Sky = {med_sky.value:.0f} e-/pix') self.action.args.meta['sky_background'] = med_sky.value self.action.args.objects.add_column(phot_table['sky']) bkg_sum = phot_table['aperture_sum_1'] / sky_apertures.area() * star_apertures.area() final_sum = (phot_table['aperture_sum_0'] - bkg_sum) final_uncert = (bkg_sum + final_sum)**0.5 * u.electron**0.5 phot_table['apflux'] = final_sum/exptime self.action.args.objects.add_column(phot_table['apflux']) phot_table['apuncert'] = final_uncert/exptime self.action.args.objects.add_column(phot_table['apuncert']) phot_table['snr'] = final_sum/final_uncert self.action.args.objects.add_column(phot_table['snr']) where_bad = (final_sum <= 0) self.log.info(f' {np.sum(where_bad)} stars rejected for flux < 0') self.action.args.objects = self.action.args.objects[~where_bad] self.action.args.meta['n_fluxes'] = len(self.action.args.objects) self.log.info(f' Fluxes for {self.action.args.meta["n_fluxes"]:d} stars') return self.action.args ##----------------------------------------------------------------------------- ## Primitive: GetCalibrationStars ##----------------------------------------------------------------------------- class GetCalibrationStars(BasePrimitive): """ """ def __init__(self, action, context): BasePrimitive.__init__(self, action, context) self.log = context.pipeline_logger self.cfg = self.context.config.instrument def _pre_condition(self): """Check for conditions necessary to run this process""" checks = [] return np.all(checks) def _post_condition(self): """ Check for conditions necessary to verify that the process ran correctly. """ checks = [] return np.all(checks) def _perform(self): """ Returns an Argument() with the parameters that depend on this operation. """ self.log.info(f"Running {self.__class__.__name__} action") return self.action.args ##----------------------------------------------------------------------------- ## Primitive: AssociateCalibratorStars ##----------------------------------------------------------------------------- class AssociateCalibratorStars(BasePrimitive): """ """ def __init__(self, action, context): BasePrimitive.__init__(self, action, context) self.log = context.pipeline_logger self.cfg = self.context.config.instrument def _pre_condition(self): """Check for conditions necessary to run this process""" checks = [] return np.all(checks) def _post_condition(self): """ Check for conditions necessary to verify that the process ran correctly. """ checks = [] return np.all(checks) def _perform(self): """ Returns an Argument() with the parameters that depend on this operation. """ self.log.info(f"Running {self.__class__.__name__} action") return self.action.args ``` #### File: iqmon/webpage/__init__.py ```python from pathlib import Path import logging import pymongo from datetime import datetime, timedelta from time import sleep from astroplan import Observer from astropy import coordinates as c from astropy.time import Time ##------------------------------------------------------------------------- ## Create logger object ##------------------------------------------------------------------------- log = logging.getLogger('FlaskLogger') log.setLevel(logging.DEBUG) LogFormat = logging.Formatter('%(asctime)s %(levelname)8s: %(message)s') ## Set up console output ## Set up file output LogFileName = '/usr/local/var/log/flask.log' LogFileHandler = logging.FileHandler(LogFileName) LogFileHandler.setLevel(logging.DEBUG) LogFileHandler.setFormatter(LogFormat) log.addHandler(LogFileHandler) ##------------------------------------------------------------------------- ## Function: mongo_query ##------------------------------------------------------------------------- def mongo_query(collection, query_dict, cfg, distinct=False, count=False, last=False, sort=[('date', pymongo.ASCENDING)]): log.debug(f'Connecting to mongo db, collection {collection}') mongo_host = cfg['mongo'].get('host') mongo_port = cfg['mongo'].getint('port') mongo_db = cfg['mongo'].get('db') mongoclient = pymongo.MongoClient(mongo_host, mongo_port) mongo_iqmon = mongoclient[mongo_db][collection] if distinct is True: query_result = list(mongo_iqmon.distinct(query_dict)) elif count is True: query_result = mongo_iqmon.find(query_dict).count() elif last is True: query_result = list(mongo_iqmon.find(query_dict, sort=[('date', pymongo.DESCENDING)]).limit(1)) else: query_result = list(mongo_iqmon.find(query_dict, sort=sort)) mongoclient.close() return query_result ##------------------------------------------------------------------------- ## Function: get_twilights ##------------------------------------------------------------------------- def get_twilights(start, end, webcfg, nsample=256): """ Determine sunrise and sunset times """ location = c.EarthLocation( lat=webcfg['site'].getfloat('site_lat'), lon=webcfg['site'].getfloat('site_lon'), height=webcfg['site'].getfloat('site_elevation'), ) obs = Observer(location=location, name=webcfg['site'].get('name', '')) sunset = obs.sun_set_time(Time(start), which='next').datetime sunrise = obs.sun_rise_time(Time(start), which='next').datetime # Calculate and order twilights and set plotting alpha for each twilights = [(start, 'start', 0.0), (sunset, 'sunset', 0.0), (obs.twilight_evening_civil(Time(start), which='next').datetime, 'ec', 0.1), (obs.twilight_evening_nautical(Time(start), which='next').datetime, 'en', 0.2), (obs.twilight_evening_astronomical(Time(start), which='next').datetime, 'ea', 0.3), (obs.twilight_morning_astronomical(Time(start), which='next').datetime, 'ma', 0.5), (obs.twilight_morning_nautical(Time(start), which='next').datetime, 'mn', 0.3), (obs.twilight_morning_civil(Time(start), which='next').datetime, 'mc', 0.2), (sunrise, 'sunrise', 0.1), ] twilights.sort(key=lambda x: x[0]) final = {'sunset': 0.1, 'ec': 0.2, 'en': 0.3, 'ea': 0.5, 'ma': 0.3, 'mn': 0.2, 'mc': 0.1, 'sunrise': 0.0} twilights.append((end, 'end', final[twilights[-1][1]])) return twilights ##------------------------------------------------------------------------- ## Function: overplot_twilights ##------------------------------------------------------------------------- def overplot_twilights(plot_list, plot_end, webcfg, plot_ndays=1, log=None): for days in range(1,plot_ndays+1): if log is not None: log.info(f'Getting twilights for {days} days ago') twilights = get_twilights(plot_end-timedelta(days=days), plot_end-timedelta(days=days-1), webcfg) for plot_info in plot_list: for j in range(len(twilights)-1): name, plot, top, bottom = plot_info plot.quad(top=[top], bottom=[bottom], left=[twilights[j][0]], right=[twilights[j+1][0]], color="blue", alpha=twilights[j+1][2]) if log is not None: log.info(f' Added twilights for {days} days ago') return ```
{ "source": "joshwalawender/KeckStarList", "score": 2 }
#### File: KeckStarList/mainland-observing/mainlandobs_stats.py ```python import sys import os from datetime import datetime as dt import pymysql import pymysql.cursors import numpy as np from astropy.table import Table, Column, vstack import matplotlib as mpl mpl.rcParams['font.size'] = 24 import matplotlib.pyplot as plt def main(): colormap = plt.cm.gist_ncar semesters = {2005.5: ('2005-08-01', '2006-01-31'), 2006.0: ('2006-02-01', '2006-07-31'), 2006.5: ('2006-08-01', '2007-01-31'), 2007.0: ('2007-02-01', '2007-07-31'), 2007.5: ('2007-08-01', '2008-01-31'), 2008.0: ('2008-02-01', '2008-07-31'), 2008.5: ('2008-08-01', '2009-01-31'), 2009.0: ('2009-02-01', '2009-07-31'), 2009.5: ('2009-08-01', '2010-01-31'), 2010.0: ('2010-02-01', '2010-07-31'), 2010.5: ('2010-08-01', '2011-01-31'), 2011.0: ('2011-02-01', '2011-07-31'), 2011.5: ('2011-08-01', '2012-01-31'), 2012.0: ('2012-02-01', '2012-07-31'), 2012.5: ('2012-08-01', '2013-01-31'), 2013.0: ('2013-02-01', '2013-07-31'), 2013.5: ('2013-08-01', '2014-01-31'), 2014.0: ('2014-02-01', '2014-07-31'), 2014.5: ('2014-08-01', '2015-01-31'), 2015.0: ('2015-02-01', '2015-07-31'), 2015.5: ('2015-08-01', '2016-01-31'), 2016.0: ('2016-02-01', '2016-07-31'), 2016.5: ('2016-08-01', '2017-01-31'), 2017.0: ('2017-02-01', '2017-07-31'), 2017.5: ('2017-08-01', '2018-01-31'), 2018.0: ('2018-02-01', '2018-07-31'), 2018.5: ('2018-08-01', '2019-01-31'), } # table_file = 'MainlandObserving.csv' # if not os.path.exists(table_file): print('Querying SQL Database') # Connect to the database connection = pymysql.connect(host='mysqlserver', user='sched', password='<PASSWORD>', db='schedules', cursorclass=pymysql.cursors.DictCursor) names = ['Status', 'Telescope', 'ReqNo', 'AllocInst', 'Site', 'Instrument', 'Portion', 'FromDate', 'Mode', 'NumNights', 'Principal'] dtypes = ['a20', 'a8', 'i8', 'a20', 'a20', 'a20', 'a20', 'a20', 'a20', 'i4', 'a40'] try: tab = None for semester in sorted(semesters.keys()): fields = "ReqNo,FromDate,NumNights,Portion,Telescope,Instrument,AllocInst,Site,Mode,Principal,Status" table = "mainlandObs" date1, date2 = semesters[semester] conditions = ["FromDate between '{}' and '{}'".format(date1, date2), "status = 'approved'"] condition = "where {}".format(" and ".join(conditions)) sql = "select {} from {} {}".format(fields, table, condition) with connection.cursor() as cursor: cursor.execute(sql) result = cursor.fetchall() print('{}: found {:d} mainland requests'.format(semester, len(result))) if len(result) > 0: new = Table(result, names=names, dtype=dtypes) sem = Column([semester]*len(new), name='Semester', dtype='f4') new.add_column(sem) if not tab: tab = new else: tab = vstack([tab, new]) finally: connection.close() # tab.write(table_file) # else: # print('Reading Local File') # tab = Table.read(table_file) ## Do not use 2017A semester requests # tab.remove_rows(tab['Semester'] == 2017.0) ## Weight count = {'Full Night': 1, 'Full': 1, 'First Half': 0.5, 'Second Half': 0.5, 'Other': 0, 'K1': 1, 'K2': 1, 'K1+K2': 2, 'None': 0} weight = [ count[x['Telescope']] * count[x['Portion']] * float(x['NumNights']) for x in tab ] unscaledweight = [ count[x['Telescope']] * float(x['NumNights']) for x in tab ] tab.add_column(Column(weight, name='Weight')) tab.add_column(Column(unscaledweight, name='Unscaled Weight')) # print(tab[tab['Site'] == 'ANU']) ## ------------------------------------------------------------------------ ## Number of Sites Over Time ## ------------------------------------------------------------------------ tab.sort('FromDate') sitestab = Table(names=('Site', 'Eavesdrop', 'Mainland Only'), dtype=('a20', 'a10', 'a10')) for i,entry in enumerate(tab): sites = entry['Site'].split(' ') for site in sites: if site not in sitestab['Site'].data.astype(str) and site != 'Other': if entry['Mode'] == 'Mainland Only': sitestab.add_row((site, '-', entry['FromDate'])) elif entry['Mode'] == 'Eavesdrop': sitestab.add_row((site, entry['FromDate'], '-')) elif entry['Mode'] in ['Eavesdrop', 'Mainland Only']: if sitestab[np.where(sitestab['Site'].data.astype(str) == site)][entry['Mode']] == b'-': sitestab[entry['Mode']][np.where(sitestab['Site'].data.astype(str) == site)] = entry['FromDate'] print('First use date by site and mode:') print(sitestab) print('') ## ------------------------------------------------------------------------ ## Mainland Only and Eavesdrop Use by Semester ## ------------------------------------------------------------------------ stab = Table(names=('Semester', 'Eavesdrop Nights', 'Mainland Only Nights'), dtype=('f4', 'f4', 'f4')) bysemester = tab.group_by('Semester') mode = {} for i,val in enumerate(bysemester.groups): thissemester = bysemester.groups[i] mainlandonly = thissemester[thissemester['Mode'] == 'Mainland Only'] mainlandonly_sum = sum(mainlandonly['Weight']) eavesdrop = thissemester[thissemester['Mode'] == 'Eavesdrop'] eavesdrop_sum = sum(eavesdrop['Weight']) stab.add_row((thissemester[0]['Semester'], eavesdrop_sum, mainlandonly_sum)) plt.figure(figsize=(16,9), dpi=300) ax1 = plt.gca() plt.bar(stab['Semester'], stab['Mainland Only Nights'], width=0.4, color='b', alpha=0.9, label='Mainland Only') plt.bar(stab['Semester'], stab['Mainland Only Nights']+stab['Eavesdrop Nights'], width=0.4, color='b', alpha=0.3, label='Eavesdrop') plt.ylim(0,300) plt.xticks(np.arange(2006, 2034), ["{:02d}".format(x-2000) for x in np.arange(2006, 2034)]) plt.xlim(2006, 2018.5) plt.grid(axis='x') plt.xlabel('Semester') plt.ylabel('Nights') plt.legend(loc='best') ax2 = ax1.twinx() plt.ylabel('Fraction of Total Nights') plt.ylim(0,300./365.*2./2.) plt.grid(axis='y') plt.savefig('use_by_semester.png', dpi=300, bbox_inches='tight', pad_inches=0.1) ## ------------------------------------------------------------------------ ## Use by Site ## ------------------------------------------------------------------------ # sitecounts = {} # for i,entry in enumerate(tab): # sites = entry['Site'].split(' ') # weight = entry['Weight'] # for site in sites: # if site not in sitecounts.keys(): # sitecounts[site] = weight # else: # sitecounts[site] += weight # # sitelist = sorted(sitecounts.keys()) # countlist = [sitecounts[site] for site in sitelist] # labels = ['{}: {:.0f}%'.format(site, sitecounts[site]/sum(countlist)*100.) # for site in sitelist] # colors = colormap(np.arange(len(countlist))/len(countlist)) # # UCcounts = [sitecounts[site] for site in ['UCB', 'UCD', 'UCI', 'UCLA', 'UCR', 'UCSB', 'UCSC', 'UCSD']] # UCpct = sum(UCcounts) / sum(countlist)*100. # print('UC System Use = {:.1f} ({:.1f} %)'.format(sum(UCcounts), UCpct)) # # # plt.figure(figsize=(12,9), dpi=300) # ax = plt.gca() # ax.set_aspect('equal') # patches, plt_labels = plt.pie(countlist, labels=labels, colors=colors, startangle=90) # plt_labels[3].get_position() # plt_labels[3].get_rotation() # plt_labels[3]._y += 0.02 # plt_labels[3]._x += 0.02 # plt_labels[4].get_position() # plt_labels[4].get_rotation() # plt_labels[4]._y -= 0.04 # plt_labels[4]._x += 0.10 # plt_labels[5].get_position() # plt_labels[5].get_rotation() # plt_labels[5]._y -= 0.09 # plt_labels[5]._x += 0.09 # plt_labels[13].get_position() # plt_labels[13].get_rotation() # plt_labels[13]._y -= 0.03 # plt.title('Use by Site') # plt.savefig('use_by_site.png', dpi=300, bbox_inches='tight', pad_inches=0.1) ## ------------------------------------------------------------------------ ## Use by Instrument ## ------------------------------------------------------------------------ # instruments = {'NIRSPAO': 0., 'NIRSPEC': 0., 'DEIMOS': 0., 'ESI': 0., 'NIRC2': 0., # 'LRIS': 0., 'MOSFIRE': 0., 'HIRES': 0., 'OSIRIS': 0., # 'Other': 0.} # # for i,entry in enumerate(tab): # instlist = entry['Instrument'].split(',') # weight = entry['Weight'] # for inst in instlist: # if inst in instruments.keys(): # instruments[inst] += weight # else: # instruments['Other'] += weight # # instlist = ['NIRSPAO', 'NIRSPEC', 'DEIMOS', 'ESI', 'NIRC2', # 'LRIS', 'MOSFIRE', 'HIRES', 'OSIRIS', 'Other'] # countlist = [instruments[inst] for inst in instlist] # labels = ['{}: {:.0f}%'.format(inst, instruments[inst]/sum(countlist)*100.) # for inst in instlist] # colors = colormap(np.arange(len(countlist))/len(countlist)) # # plt.figure(figsize=(12,9), dpi=300) # ax = plt.gca() # ax.set_aspect('equal') # patches, plt_labels = plt.pie(countlist, labels=labels, colors=colors) # plt_labels[3].get_position() # plt_labels[3].get_rotation() # plt_labels[3]._x += 0.11 # plt_labels[9].get_position() # plt_labels[9].get_rotation() # plt_labels[9]._y -= 0.03 # plt.title('Use by Instrument') # plt.savefig('use_by_instrument.png', dpi=300, bbox_inches='tight', pad_inches=0.1) # # K1counts = [instruments[inst] for inst in ['LRIS', 'MOSFIRE', 'HIRES', 'OSIRIS']] # K2counts = [instruments[inst] for inst in ['NIRSPAO', 'NIRSPEC', 'DEIMOS', 'ESI', 'NIRC2']] # K1total = sum(K1counts) # K2total = sum(K2counts) # K1pct = K1total / sum(countlist)*100. # K2pct = K2total / sum(countlist)*100. # print('Total K1 nights = {:.1f} ({:.1f} %)'.format(K1total, K1pct)) # print('Total K2 nights = {:.1f} ({:.1f} %)'.format(K2total, K2pct)) if __name__ == '__main__': main() ``` #### File: KeckStarList/SlitAlign/slitAlign.py ```python import sys import os import argparse import logging from matplotlib import pyplot as plt from scipy import ndimage import numpy as np from astropy.io import fits from astropy import units as u from astropy.modeling import models, fitting, Fittable2DModel, Parameter from astropy.table import Table from ccdproc import CCDData, combine, Combiner, flat_correct, trim_image, median_filter ##------------------------------------------------------------------------- ## Create logger object ##------------------------------------------------------------------------- log = logging.getLogger('MyLogger') log.setLevel(logging.DEBUG) ## Set up console output LogConsoleHandler = logging.StreamHandler() LogConsoleHandler.setLevel(logging.DEBUG) LogFormat = logging.Formatter('%(asctime)s %(levelname)8s: %(message)s', datefmt='%Y-%m-%d %H:%M:%S') LogConsoleHandler.setFormatter(LogFormat) log.addHandler(LogConsoleHandler) ## Set up file output # LogFileName = None # LogFileHandler = logging.FileHandler(LogFileName) # LogFileHandler.setLevel(logging.DEBUG) # LogFileHandler.setFormatter(LogFormat) # log.addHandler(LogFileHandler) ##------------------------------------------------------------------------- ## mosfireAlignmentBox ##------------------------------------------------------------------------- class mosfireAlignmentBox(Fittable2DModel): amplitude = Parameter(default=1) x_0 = Parameter(default=0) y_0 = Parameter(default=0) x_width = Parameter(default=1) y_width = Parameter(default=1) @staticmethod def evaluate(x, y, amplitude, x_0, y_0, x_width, y_width): '''MOSFIRE Alignment Box. Typical widths are 22.5 pix horizontally and 36.0 pix vertically. Angle of slit relative to pixels is 3.78 degrees. ''' slit_angle = -3.7 # in degrees x0_of_y = x_0 + (y-y_0)*np.sin(slit_angle*np.pi/180) x_range = np.logical_and(x >= x0_of_y - x_width / 2., x <= x0_of_y + x_width / 2.) y_range = np.logical_and(y >= y_0 - y_width / 2., y <= y_0 + y_width / 2.) result = np.select([np.logical_and(x_range, y_range)], [amplitude], 0) if isinstance(amplitude, u.Quantity): return Quantity(result, unit=amplitude.unit, copy=False) else: return result @property def input_units(self): if self.x_0.unit is None: return None else: return {'x': self.x_0.unit, 'y': self.y_0.unit} def _parameter_units_for_data_units(self, inputs_unit, outputs_unit): return OrderedDict([('x_0', inputs_unit['x']), ('y_0', inputs_unit['y']), ('x_width', inputs_unit['x']), ('y_width', inputs_unit['y']), ('amplitude', outputs_unit['z'])]) ##------------------------------------------------------------------------- ## Transformations (copied from CSU initializer code) ##------------------------------------------------------------------------- def pad(x): '''Pad array for affine transformation. ''' return np.hstack([x, np.ones((x.shape[0], 1))]) def unpad(x): '''Unpad array for affine transformation. ''' return x[:,:-1] def slit_to_bars(slit): '''Given a slit number (1-46), return the two bar numbers associated with that slit. ''' return (slit*2-1, slit*2) def bar_to_slit(bar): '''Given a bar number, retun the slit associated with that bar. ''' return int((bar+1)/2) def pixel_to_physical(x): '''Using the affine transformation determined by `fit_transforms`, convert a set of pixel coordinates (X, Y) to physical coordinates (mm, slit). ''' Apixel_to_physical = [[ -1.30490576e-01, 8.06611058e-05, 0.00000000e+00], [ -4.19125389e-04, -2.25757176e-02, 0.00000000e+00], [ 2.73934450e+02, 4.66399772e+01, 1.00000000e+00]] x = np.array(x) result = unpad(np.dot(pad(x), Apixel_to_physical)) return result def physical_to_pixel(x): '''Using the affine transformation determined by `fit_transforms`, convert a set of physical coordinates (mm, slit) to pixel coordinates (X, Y). ''' Aphysical_to_pixel = [[ -7.66328913e+00, -2.73804045e-02, 0.00000000e+00], [ 1.42268848e-01, -4.42948641e+01, 0.00000000e+00], [ 2.09260502e+03, 2.07341206e+03, 1.00000000e+00]] x = np.array(x) result = unpad(np.dot(pad(x), Aphysical_to_pixel)) return result def fit_transforms(pixels, targets): '''Given a set of pixel coordinates (X, Y) and a set of target coordinates (X, Y), fit the affine transformations (forward and backward) to convert between the two coordinate systems. ''' if type(pixels) == list: pixels = np.array(pixels) if type(targets) == list: targets = np.array(targets) assert pixels.shape[1] == 2 assert targets.shape[1] == 2 assert pixels.shape[0] == targets.shape[0] # Pad the data with ones, so that our transformation can do translations too n = pixels.shape[0] pad = lambda x: np.hstack([x, np.ones((x.shape[0], 1))]) unpad = lambda x: x[:,:-1] X = pad(pixels) Y = pad(targets) # Solve the least squares problem X * A = Y # to find our transformation matrix A A, res, rank, s = np.linalg.lstsq(X, Y, rcond=None) A[np.abs(A) < 1e-10] = 0 # Check Scale thetas = np.array([np.arcsin(A[0,1])*180/np.pi, np.arcsin(A[1,0])*-180/np.pi]) thetadiff = np.abs(thetas[0] - thetas[1]) Sx = A[0,0]/np.cos(np.mean(thetas)*np.pi/180) Sy = A[1,1]/np.cos(np.mean(thetas)*np.pi/180) print(f"Scale Factor: {Sx:.4f}, {Sy:.4f}") off_X = -A[2,0] off_Y = -A[2,1] off_R = -np.mean(thetas) err_R = thetadiff/2 return (off_X, off_Y, off_R, err_R, A) ##------------------------------------------------------------------------- ## Fit CSU Edges (copied from CSU initializer code) ##------------------------------------------------------------------------- def fit_CSU_edges(profile): fitter = fitting.LevMarLSQFitter() amp1_est = profile[profile == min(profile)][0] mean1_est = np.argmin(profile) amp2_est = profile[profile == max(profile)][0] mean2_est = np.argmax(profile) g_init1 = models.Gaussian1D(amplitude=amp1_est, mean=mean1_est, stddev=2.) g_init1.amplitude.max = 0 g_init1.amplitude.min = amp1_est*0.9 g_init1.stddev.max = 3 g_init2 = models.Gaussian1D(amplitude=amp2_est, mean=mean2_est, stddev=2.) g_init2.amplitude.min = 0 g_init2.amplitude.min = amp2_est*0.9 g_init2.stddev.max = 3 model = g_init1 + g_init2 fit = fitter(model, range(0,profile.shape[0]), profile) # Check Validity of Fit if abs(fit.stddev_0.value) <= 3 and abs(fit.stddev_1.value) <= 3\ and fit.amplitude_0.value < -1 and fit.amplitude_1.value > 1\ and fit.mean_0.value > fit.mean_1.value: x = [fit.mean_0.value, fit.mean_1.value] x1 = int(np.floor(min(x)-1)) x2 = int(np.ceil(max(x)+1)) else: x1 = None x2 = None return x1, x2 ##------------------------------------------------------------------------- ## Create Master Flat ##------------------------------------------------------------------------- def create_master_flat(filepath='../../../KeckData/MOSFIRE_FCS/', flatfiles = ['m180130_0320.fits', 'm180130_0321.fits', 'm180130_0322.fits', 'm180130_0323.fits', 'm180130_0324.fits',], darkfile = 'm180130_0001.fits', ): dark = CCDData.read(os.path.join(filepath, darkfile), unit='adu') flats = [] for i,file in enumerate(flatfiles): flat = CCDData.read(os.path.join(filepath, file), unit='adu') flat = flat.subtract(dark) flats.append(flat) flat_combiner = Combiner(flats) flat_combiner.sigma_clipping() scaling_func = lambda arr: 1/np.ma.average(arr) flat_combiner.scaling = scaling_func masterflat = flat_combiner.median_combine() masterflat.write('masterflat.fits', overwrite=True) ##------------------------------------------------------------------------- ## Reduce Image ##------------------------------------------------------------------------- def reduce_image(imagefile, dark=None, flat=None): im = CCDData.read(imagefile, unit='adu') if dark is not None: dark = CCDData.read(dark, unit='adu') im = im.subtract(dark) if flat is not None: # masterflat = CCDData.read(flat, unit='adu') hdul = fits.open(flat) masterflat = CCDData(data=hdul[0].data, uncertainty=None, meta=hdul[0].header, unit='adu') im = flat_correct(im, masterflat) return im # im = fits.open(imagefile) # if dark is not None: # masterdark = fits.open(dark) # im[0].data -= masterdark[0].data # if flat is not None: # masterflat = fits.open(flat) # norm = np.nanmedian(masterflat[0].data) # im[0].data /= (masterflat[0].data / norm) # return im ##------------------------------------------------------------------------- ## fit_alignment_box ##------------------------------------------------------------------------- def fit_alignment_box(region, box_size=30, verbose=False, seeing=None, medfilt=False): pixelscale = u.pixel_scale(0.1798*u.arcsec/u.pixel) if medfilt is True: region = median_filter(region, size=(3,3)) # Estimate center of alignment box threshold_pct = 80 window = region.data > np.percentile(region.data, threshold_pct) alignment_box_position = ndimage.measurements.center_of_mass(window) offset_val = np.median(region.data[~window]) offset = models.Const2D(offset_val) # Determine fluctuations in sky sky_amplitude = np.median(region.data[window]) sky_fluctuations = np.std(region.data[window]) # Detect box edges gradx = np.gradient(region.data, axis=1) horizontal_profile = np.sum(gradx, axis=0) h_edges = fit_CSU_edges(horizontal_profile) grady = np.gradient(region.data, axis=0) vertical_profile = np.sum(grady, axis=1) v_edges = fit_CSU_edges(vertical_profile) # Estimate stellar position maxr = np.max(region.data) starloc = (np.where(region == maxr)[0][0], np.where(region == maxr)[1][0]) # Build model of sky, star, & box boxamplitude = 1 box = mosfireAlignmentBox(boxamplitude, alignment_box_position[1], alignment_box_position[0],\ abs(h_edges[0]-h_edges[1]), abs(v_edges[0]-v_edges[1])) box.amplitude.fixed = True box.x_width.min = 10 box.y_width.min = 10 sky = models.Const2D(sky_amplitude) sky.amplitude.min = 0 star_amplitude = maxr - sky_amplitude star_sigma = star_amplitude / sky_fluctuations if star_sigma < 5: if verbose: print(f'No star detected. sigma={star_sigma:.1f}') return [None]*4 else: if verbose: print(f'Detected peak pixel {star_sigma:.1f} sigma above sky.') star = models.Gaussian2D(amplitude=star_amplitude, x_mean=starloc[1], y_mean=starloc[0], x_stddev=2, y_stddev=2) # print(h_edges) # print(v_edges) # star.y_mean.min = v_edges[0] # star.y_mean.max = v_edges[1] # star.x_mean.min = h_edges[0] # star.x_mean.max = h_edges[1] star.amplitude.min = 5*sky_fluctuations star.x_stddev.min = 1 # FWHM = 2.355*stddev = 0.42 arcsec FWHM star.x_stddev.max = 4 # FWHM = 2.355*stddev = 1.47 arcsec FWHM star.y_stddev.min = 1 star.y_stddev.max = 4 if seeing is not None and seeing > 0: sigma = (seeing / 2.355 * u.arcsec).to(u.pixel, equivalencies=pixelscale) star.x_stddev.min = max(2, sigma.value-1) star.y_stddev.min = max(2, sigma.value-1) star.x_stddev.max = min(sigma.value+1, 4) star.y_stddev.max = min(sigma.value+1, 4) # print(f"Using seeing value {seeing} arcsec. sigma limits {star.x_stddev.min}, {star.x_stddev.max} pix") model = box*(sky + star) + offset # modelim = np.zeros((61,61)) # fitim = np.zeros((61,61)) # for i in range(0,60): # for j in range(0,60): # modelim[j,i] = model(i,j) # fitim[j,i] = model(i,j) # residuals = region.data-fitim # residualsum = np.sum(residuals) # import pdb ; pdb.set_trace() fitter = fitting.LevMarLSQFitter() y, x = np.mgrid[:2*box_size+1, :2*box_size+1] fit = fitter(model, x, y, region.data) FWHMx = 2*(2*np.log(2))**0.5*fit.x_stddev_2.value * u.pix FWHMy = 2*(2*np.log(2))**0.5*fit.y_stddev_2.value * u.pix FWHM = (FWHMx**2 + FWHMy**2)**0.5/2**0.5 FWHMarcsec = FWHM.to(u.arcsec, equivalencies=pixelscale) sky_amplitude = fit.amplitude_1.value star_flux = 2*np.pi*fit.amplitude_2.value*fit.x_stddev_2.value*fit.y_stddev_2.value star_amplitude = fit.amplitude_2.value boxpos_x = fit.x_0_0.value boxpos_y = fit.y_0_0.value star_x = fit.x_mean_2.value star_y = fit.y_mean_2.value if verbose: print(f" Box X Center = {boxpos_x:.0f}") if verbose: print(f" Box Y Center = {boxpos_y:.0f}") if verbose: print(f" Sky Brightness = {fit.amplitude_1.value:.0f} ADU") if verbose: print(f" Stellar FWHM = {FWHMarcsec:.2f}") if verbose: print(f" Stellar Xpos = {star_x:.0f}") if verbose: print(f" Stellar Xpos = {star_y:.0f}") if verbose: print(f" Stellar Amplitude = {star_amplitude:.0f} ADU") if verbose: print(f" Stellar Flux (fit) = {star_flux:.0f} ADU") result = {'Star X': star_x, 'Star Y': star_y, 'Star Amplitude': star_amplitude, 'Sky Amplitude': sky_amplitude, 'FWHM pix': FWHM.value, 'FWHM arcsec': FWHMarcsec, 'Box X': boxpos_x, 'Box Y': boxpos_y, # 'Residuals': residuals, } return result def analyze_image(imagefile, dark=None, flat=None, box_size=30, medfilt=False, plot=False, seeing=0, pixelscale=0.1798, verbose=False): im = reduce_image(imagefile, dark=dark, flat=flat) hdul = fits.open(imagefile) # Get info about alignment box positions alignment_box_table = Table(hdul[4].data) if plot == True: plt.figure(figsize=(16,6)) pixels = [] targets = [] for i,box in enumerate(alignment_box_table): result = None slitno = int(box['Slit_Number']) bar_nos = slit_to_bars(slitno) bar_pos = [hdul[0].header.get(f'B{b:02d}POS') for b in bar_nos] box_pos = np.mean(bar_pos) box_pix = physical_to_pixel([[box_pos, slitno]])[0] boxat = [int(box_pix[0]), int(box_pix[1])] fits_section = f'[{boxat[0]-box_size:d}:{boxat[0]+box_size:d}, '\ f'{boxat[1]-box_size:d}:{boxat[1]+box_size:d}]' region = trim_image(im, fits_section=fits_section) targ_pos = float(box['Target_to_center_of_slit_distance'])/pixelscale if plot == True: plt.subplot(1,len(alignment_box_table),i+1, aspect='equal') plt.title(f"Alignment Box {i+1}\n{fits_section}") plt.imshow(region.data, origin='lower', vmin=np.percentile(region.data, 85)*0.95, vmax=region.data.max()*1.02) # try: result = fit_alignment_box(region, box_size=box_size, verbose=False, seeing=seeing, medfilt=medfilt) star_pix = np.array([result['Star X']+boxat[0]-box_size, result['Star Y']+boxat[1]-box_size]) fitted_box_pix = np.array([result['Box X']+boxat[0]-box_size, result['Box Y']+boxat[1]-box_size]) slitang = 0.22*np.pi/180 targ_pix_im = (result['Box X']-np.sin(slitang)*targ_pos, result['Box Y']+np.cos(slitang)*targ_pos) targ_pix = np.array([targ_pix_im[0]+boxat[0]-box_size, targ_pix_im[1]+boxat[1]-box_size]) pixels.append(list(star_pix)) targets.append(list(targ_pix)) pix_err = targ_pix - star_pix pos_err = pix_err*pixelscale if plot == True: cxy = (result['Star X'], result['Star Y']) c = plt.Circle(cxy, result['FWHM pix'], linewidth=2, ec='g', fc='none', alpha=0.3) ax = plt.gca() ax.add_artist(c) plt.plot(result['Star X'], result['Star Y'], 'g.') # plt.plot(result['Box X'], result['Box Y'], 'y+', alpha=0.5, ms=10) plt.plot(targ_pix_im[0], targ_pix_im[1], 'rx', alpha=0.5) if verbose: print(f"Alignment Box {i+1} results:") print(f" Sky Amplitude: {result['Sky Amplitude']:.0f} ADU") print(f" Star Amplitude: {result['Star Amplitude']:.0f} ADU") print(f" Star FWHM: {result['FWHM arcsec']:.2f}") print(f" Star Position: {star_pix[0]:.1f}, {star_pix[1]:.1f}") print(f" Target Position: {targ_pix[0]:.1f}, {targ_pix[1]:.1f}") print(f" Position Error: {pos_err[0]:+.2f}, {pos_err[1]:+.2f} arcsec") # except: # print(f'Alignment Box {i+1} failed: {result}') if plot == True: plt.xticks([], []) plt.yticks([], []) # Calculate Transformation off_Xpix, off_Ypix, off_R, err_R, A = fit_transforms(pixels, targets) off_X = off_Xpix * pixelscale off_Y = off_Ypix * pixelscale th_XY = 0.10 th_R = 0.030 send_X = off_X if abs(off_X) > th_XY else 0 send_Y = off_Y if abs(off_Y) > th_XY else 0 send_R = off_R if abs(off_R) > th_R else 0 print() print(f" Calculated Err Send (Threshold)") print(f"Offset X = {off_X:+.2f} {send_X:+.2f} arcsec ({th_XY:.2f})") print(f"Offset Y = {off_Y:+.2f} {send_Y:+.2f} arcsec ({th_XY:.2f})") print(f"Rotation = {off_R:+.3f} {err_R:.3f} {send_R:+.3f} deg ({th_R:.3f})") if plot == True: plt.show() if __name__ == '__main__': ##------------------------------------------------------------------------- ## Parse Command Line Arguments ##------------------------------------------------------------------------- ## create a parser object for understanding command-line arguments p = argparse.ArgumentParser(description=''' ''') ## add flags p.add_argument("-v", "--verbose", dest="verbose", default=False, action="store_true", help="Be verbose! (default = False)") p.add_argument("-m", "--medfilt", dest="medfilt", default=False, action="store_true", help="Median filter images?") p.add_argument("-p", "--plot", dest="plot", default=False, action="store_true", help="Generate plots?") ## add options p.add_argument("-d", "--dark", dest="dark", type=str, help="Dark file to use.") p.add_argument("-f", "--flat", dest="flat", type=str, help="Master flat file to use.") p.add_argument("-s", "--seeing", dest="seeing", type=float, default=0, help="Seeing in arcsec.") ## add arguments p.add_argument('image', type=str, help="Image file to analyze") # p.add_argument('allothers', nargs='*', # help="All other arguments") args = p.parse_args() if args.dark is not None: args.dark = os.path.expanduser(args.dark) if args.flat is not None: args.flat = os.path.expanduser(args.flat) args.image = os.path.expanduser(args.image) analyze_image(args.image, dark=args.dark, flat=args.flat, box_size=30, medfilt=args.medfilt, plot=args.plot, seeing=args.seeing) ```
{ "source": "joshwalawender/KeckUtilities", "score": 2 }
#### File: KeckUtilities/telescopeSchedule/site_use.py ```python import sys from pathlib import Path import numpy as np from astropy.table import Table, Column, vstack from datetime import datetime, timedelta from telescopeSchedule import get_telsched from matplotlib import pyplot as plt site_list = sorted(['ANU', 'CIT', 'UCB', 'UCD', 'UCLA', 'UCSD', 'UCI', 'UCR', 'Yale', 'USRA', 'NU', 'HQ', 'IfA', 'Stanford', 'Swinburne', 'UCSB', 'UCSC']) site_list.append('Other') group_list = ['UC', 'CIT', 'IfA+US', 'Australia', 'HQ', 'Other'] group_members = {'UC': ['UCB', 'UCD', 'UCLA', 'UCSD', 'UCI', 'UCR', 'UCSB', 'UCSC', 'USCS'], 'IfA+US': ['Yale', 'USRA', 'NU', 'IfA', 'Stanford', 'Northwestern'], 'Australia': ['ANU', 'Swinburne', 'Swin'], 'CIT': ['CIT'], 'Other': ['Other'], 'HQ': ['HQ']} ##------------------------------------------------------------------------- ## Main Program ##------------------------------------------------------------------------- def get_site_table_single_query(from_date=None, ndays=5): if ndays > 100: ndays = 100 sched = get_telsched(from_date=from_date, ndays=ndays, telnr=None) # site_list.append('Group: UC') # site_list.append('Group: US') # site_list.append('Group: Australia') # site_list.append('Group: CIT') # site_list.append('Group: Other') # site_list.append('Group: HQ') t = Table(names=['Date'] + site_list, dtype=['a10'] + [int]*len(site_list)) for prog in sched: if prog['Date'] not in list(t['Date']): # print(f"Adding {prog['Date']}") row = {'Date': prog['Date']} for site in site_list: row[site] = 0 t.add_row(row) tonights_sites = prog['Location'].split(',') # print(prog['ProjCode'], tonights_sites) t.add_index('Date') rowid = t.loc_indices[prog['Date']] for entry in tonights_sites: if entry in site_list: t[rowid][entry] += 1 elif entry == 'Swin': t[rowid]['Swinburne'] += 1 elif entry == 'Northwestern': t[rowid]['NU'] += 1 elif entry == 'USCS': t[rowid]['UCSC'] += 1 elif entry == '': pass else: print(f'Unmatched entry: "{entry}"') return t def get_site_table(from_date=None, ndays=5): t = get_site_table_single_query(from_date=from_date, ndays=ndays) last_date = datetime.strptime(t['Date'][-1], '%Y-%m-%d') while len(t) < ndays: need_more_days = ndays - len(t) print(f"At {last_date.strftime('%Y-%m-%d')}, Need {need_more_days} more days") new_t = get_site_table_single_query( from_date=last_date.strftime('%Y-%m-%d'), ndays=need_more_days) t = vstack([t, new_t]) last_date = datetime.strptime(t['Date'][-1], '%Y-%m-%d') return t def analyze_site_table(t): # Prepare table with sites grouped by partner g = Table(names=['Date'] + group_list, dtype=['a10'] + [int]*len(group_list)) # Add Observer Count Column observer_count = [] for row in t: c = 0 for col in row.colnames: if type(row[col]) == np.int64 and row[col] > 0: c += row[col] observer_count.append(c) grow = [row['Date']] grow.extend([0]*len(group_list)) g.add_row(grow) for col in row.colnames: if type(row[col]) == np.int64 and row[col] > 0: for group in group_list: if col in group_members[group]: g[-1][group] += row[col] gc = 0 for group in group_list: if g[-1][group] > 0: gc += g[-1][group] if c != gc: print(c, gc) t.add_column(Column(data=observer_count, name='Observer Count')) g.add_column(Column(data=observer_count, name='Observer Count')) for group in group_list: frac = g[group]/g['Observer Count'] g.add_column(Column(data=frac, name=f'{group} fraction')) # Bin groups data b = Table(names=['Date'] + group_list + ['Observer Count'], dtype=['a10'] + [int]*(len(group_list)+1)) binsize = 29 nbinnedrows = int(np.floor(len(g)/binsize)) for i in np.arange(0, nbinnedrows, 1): grows = g[i*binsize:(i+1)*binsize] brow = [grows[0]['Date']] brow.extend([0]*(len(group_list)+1)) for j,group in enumerate(group_list): brow[j+1] = np.sum(grows[group]) brow[-1] = np.sum(grows['Observer Count']) b.add_row(brow) for group in group_list: frac = b[group]/b['Observer Count'] b.add_column(Column(data=frac, name=f'{group} fraction')) return t, g, b def plot_grouped_site_use(g): dates = [datetime.strptime(d, '%Y-%m-%d') for d in g['Date']] plt.figure(figsize=(16,8)) plt.title('Site Use Over Time') colors = ['b', 'y', 'k', 'k', 'r', 'g'] alphas = [0.4, 0.4, 0.4, 0.2, 0.2, 0.4] previous_fracs = np.zeros(len(g)) for i,group in enumerate(group_list): plt.fill_between(dates, previous_fracs, previous_fracs+g[f'{group} fraction'], facecolor=colors[i], alpha=alphas[i], step='post', label=group) previous_fracs += g[f'{group} fraction'] plt.grid() plt.ylim(0, 1.0) plt.ylabel('Fraction of Observers') plt.legend(loc='upper right') cax = plt.gca().twinx() cax.plot_date(dates, g['Observer Count'], 'k-', label='N Observers', drawstyle='steps-post') cax.set_ylabel('Number of Observers') cax.set_ylim(100, 350) margin_frac = 0.15 margin_days = (max(dates) - min(dates)).days*margin_frac plt.xlim(dates[0], dates[-1]+timedelta(days=margin_days)) plt.legend(loc='center right') plt.savefig('Site_Use_Over_Time.png', bbox_inches='tight') # plt.show() if __name__ == '__main__': from_date = '2018-02-01' file = Path(f'site_use_from_{from_date}.csv') ndays = (datetime.now() - datetime.strptime(from_date, '%Y-%m-%d')).days if file.exists() is False: print('Querying database') t = get_site_table(from_date=from_date, ndays=ndays) t.write(file, format='ascii.csv') else: print('Reading file on disk') t = Table.read(file) t, g, b = analyze_site_table(t) plot_grouped_site_use(b) ```
{ "source": "joshwalawender/PypeIt", "score": 2 }
#### File: doc/scripts/build_specobj_rst.py ```python import os import time import numpy from pkg_resources import resource_filename from pypeit.par.parset import ParSet from pypeit import specobj from IPython import embed def link_string(p): return '`{0} Keywords`_'.format(type(p).__name__) #----------------------------------------------------------------------------- if __name__ == '__main__': t = time.perf_counter() # Read the baseline file that is not changed and must be edited by # the person building the documentation as necessary. pypeit_root = os.path.dirname(resource_filename('pypeit', '')) input_base = os.path.join(pypeit_root, 'doc', 'scripts', 'base_specobj_rst.txt') with open(input_base, 'r') as f: lines = [ l.replace('\n','') for l in f.readlines() ] lines += [''] # Start to append the automatically generated documentation lines += ['Current SpecObj Data Model'] lines += ['++++++++++++++++++++++++++'] lines += [''] data_model = specobj.data_model keys = list(data_model.keys()) keys.sort() data_table = numpy.empty((len(data_model)+1, 4), dtype=object) data_table[0,:] = ['Key', 'Obj Type', 'Array Type', 'Description'] for i,k in enumerate(keys): # Key data_table[i+1,0] = ParSet._data_string(k, use_repr=False, verbatum=True) # Object Type if isinstance(data_model[k]['otype'], (list,tuple)): data_table[i+1,1] = ', '.join([t.__name__ for t in data_model[k]['otype']]) else: data_table[i+1,1] = data_model[k]['otype'].__name__ # Array type if 'atype' in data_model[k].keys(): data_table[i+1,2] = data_model[k]['atype'].__name__ else: data_table[i+1,2] = ' ' # Description data_table[i+1,3] = ParSet._data_string(data_model[k]['desc']) lines += [ParSet._data_table_string(data_table, delimeter='rst')] # Finish output_rst = os.path.join(pypeit_root, 'doc', 'specobj.rst') with open(output_rst, 'w') as f: f.write('\n'.join(lines)) print('Wrote: {}'.format(output_rst)) print('Elapsed time: {0} seconds'.format(time.perf_counter() - t)) ``` #### File: PypeIt/pypeit/biasframe.py ```python import numpy as np import os from IPython import embed from pypeit import msgs from pypeit import masterframe from pypeit.par import pypeitpar from pypeit.images import calibrationimage from pypeit.images import pypeitimage class BiasFrame(calibrationimage.CalibrationImage, masterframe.MasterFrame): """ Class to generate/load the Bias image or instructions on how to deal with the bias. This class is primarily designed to generate a Bias frame for bias subtraction. It also contains I/O methods for the Master frames of PypeIt. The build_master() method will return a simple command (str) if that is the specified parameter (`par['useframe']`). Args: spectrograph (:class:`pypeit.spectrographs.spectrograph.Spectrograph`): Spectrograph used to take the data. files (:obj:`list`, optional): List of filenames to process. det (:obj:`int`, optional): The 1-indexed detector number to process. par (:class:`pypeit.par.pypeitpar.FrameGroupPar`, optional): The parameters used to process the frames. If None, set to:: pypeitpar.FrameGroupPar('bias') master_key (:obj:`str`, optional): The string identifier for the instrument configuration. See :class:`pypeit.masterframe.MasterFrame`. master_dir (:obj:`str`, optional): Path to master frames reuse_masters (:obj:`bool`, optional): Load from disk if possible """ # Frame type is a class attribute frametype = 'bias' master_type = 'Bias' @classmethod def from_master_file(cls, master_file, par=None): """ Instantiate from a master file Args: master_file (str): par (:class:`pypeit.par.pypeitpar.FrameGroupPar`, optional): Returns: biasframe.BiasFrame: The PypeItImage is loaded into self.pypeitImage """ # Spectrograph spectrograph, extras = masterframe.items_from_master_file(master_file) head0 = extras[0] # Master info master_dir = head0['MSTRDIR'] master_key = head0['MSTRKEY'] # Instantiate slf = cls(spectrograph, par=par, master_dir=master_dir, master_key=master_key, reuse_masters=True) slf.pypeitImage = slf.load(ifile=master_file) # Return return slf # Keep order same as processimages (or else!) def __init__(self, spectrograph, files=None, det=1, par=None, master_key=None, master_dir=None, reuse_masters=False): # Parameters self.par = pypeitpar.FrameGroupPar(self.frametype) if par is None else par # Start us up calibrationimage.CalibrationImage.__init__(self, spectrograph, det, self.par['process'], files=files) # MasterFrames: Specifically pass the ProcessImages-constructed # spectrograph even though it really only needs the string name masterframe.MasterFrame.__init__(self, self.master_type, master_dir=master_dir, master_key=master_key, reuse_masters=reuse_masters) # Processing steps self.process_steps = [] if self.par['process']['overscan'].lower() != 'none': self.process_steps.append('subtract_overscan') self.process_steps += ['trim'] self.process_steps += ['orient'] def build_image(self, overwrite=False, trim=True): """ Grab the bias files (as needed) and then process the input bias frames with :func:`pypeit.processimages.ProcessImages.process`. Args: overwrite: (:obj: `bool`, optional): Regenerate the combined image trim (:obj:`bool`, optional): If True, trim the image Returns: `numpy.ndarray`_: Combined, processed image. """ # Nothing? if self.par['useframe'].lower() == 'none': msgs.info("Bias image subtraction not activated.") return None if self.nfiles == 0: msgs.info("No bias frames provided. No bias image will be generated or used") return None # Build self.pypeItImage = super(BiasFrame, self).build_image(ignore_saturation=True) self.pypeitImage.ivar = None # Zero this out as it non-sensical # Return return self.pypeItImage def save(self, outfile=None, overwrite=True): """ Save the bias master data. Args: outfile (:obj:`str`, optional): Name for the output file. Defaults to :attr:`file_path`. overwrite (:obj:`bool`, optional): Overwrite any existing file. """ # Some checks if self.pypeitImage is None: msgs.warn('No MasterBias to save!') return if not self.pypeitImage.validate(): msgs.warn('MasterBias is not a proper image.') return # Proceed _outfile = self.master_file_path if outfile is None else outfile # Check if it exists if os.path.exists(_outfile) and not overwrite: msgs.warn('Master file exists: {0}'.format(_outfile) + msgs.newline() + 'Set overwrite=True to overwrite it.') return # Save hdr = self.build_master_header(steps=self.process_steps, raw_files=self.file_list) self.pypeitImage.write(_outfile, hdr=hdr, iext='BIAS') msgs.info('Master frame written to {0}'.format(_outfile)) #super(BiasFrame, self).save(self.pypeitImage, 'BIAS', outfile=outfile, overwrite=overwrite, # raw_files=self.file_list, steps=self.process_steps) def load(self, ifile=None): """ Load the bias frame according to how par['useframe'] is set. Args: ifile (:obj:`str`, optional): Name of the master frame file. Defaults to :attr:`file_path`. Returns: Returns either the `numpy.ndarray`_ with the bias image or None if no bias is to be subtracted. """ # How are we treating biases? # 1) No bias subtraction if self.par['useframe'].lower() == 'none': msgs.info("Will not perform bias/dark subtraction") return None # 2) Use overscan if self.par['useframe'] == 'overscan': msgs.error("useframe=overscan was Deprecated. Remove it from your pypeit file") # 3) User wants bias subtractions if self.par['useframe'] in ['bias', 'dark']: # Check on whether to reuse and whether the file exists master_file = self.chk_load_master(ifile) if master_file is None: return else: # Load self.pypeitImage = pypeitimage.PypeItImage.from_file(master_file) return self.pypeitImage #return super(BiasFrame, self).load('BIAS', ifile=ifile, is_pypeitImage=True) ``` #### File: pypeit/core/coadd2d.py ```python import os import copy from IPython import embed import numpy as np import scipy from matplotlib import pyplot as plt from astropy.io import fits from pypeit import msgs from pypeit import utils from pypeit import ginga from pypeit import specobjs from pypeit.masterframe import MasterFrame from pypeit.waveimage import WaveImage from pypeit.wavetilts import WaveTilts from pypeit import specobjs from pypeit import edgetrace from pypeit import reduce from pypeit.core import extract from pypeit.core import load, coadd1d, pixels from pypeit.core import parse from pypeit.core import combine from pypeit.images import scienceimage from pypeit.spectrographs import util from pypeit import calibrations #def reference_trace_stack(slitid, stack_dict, offsets=None, objid=None): # """ # Utility function for determining the reference trace about which 2d coadds are performed. # There are two modes of operation to determine the reference trace for the 2d coadd of a given slit/order: # # 1) offsets: we stack about the center of the slit for the slit in question with the input offsets added # 2) ojbid: we stack about the trace ofa reference object for this slit given for each exposure by the input objid # # Either offsets or objid must be provided, but the code will raise an exception if both are provided. # # Args: # slitid (int): # The slit or order that we are currently considering # stack_dict (dict): # Dictionary containing all the images and keys required for perfomring 2d coadds. # offsets (list or np.ndarray): # An array of offsets with the same dimensionality as the nexp, the numer of images being coadded. # objid: (list or np.ndarray): # An array of objids with the same dimensionality as the nexp, the number of images being coadded. # # Returns: # ref_trace_stack # # ref_trace_stack (np.ndarray): # An array with shape (nspec, nexp) containing the reference trace for each of the nexp exposures. # # """ # # if offsets is not None and objid is not None: # msgs.errror('You can only input offsets or an objid, but not both') # nexp = len(offsets) if offsets is not None else len(objid) # if offsets is not None: # tslits_dict_list = stack_dict['tslits_dict_list'] # nspec, nslits = tslits_dict_list[0]['slit_left'].shape # ref_trace_stack = np.zeros((nspec, nexp)) # for iexp, tslits_dict in enumerate(tslits_dict_list): # ref_trace_stack[:, iexp] = (tslits_dict[:, slitid]['slit_left'] + tslits_dict[:, slitid]['slit_righ'])/2.0 + offsets[iexp] # elif objid is not None: # specobjs_list = stack_dict['specobjs_list'] # nspec = specobjs_list[0][0].TRACE_SPAT.shape[0] # # Grab the traces, flux, wavelength and noise for this slit and objid. # ref_trace_stack = np.zeros((nspec, nexp), dtype=float) # for iexp, sobjs in enumerate(specobjs_list): # # TODO Should be as in optimal_weights # ithis = (sobjs.SLITID == slitid) & (sobjs.OBJID == objid[iexp]) # ref_trace_stack[:, iexp] = sobjs[ithis].TRACE_SPAT # else: # msgs.error('You must input either offsets or an objid to determine the stack of reference traces') # # return ref_trace_stack #def optimal_weights(specobjs_list, slitid, objid, sn_smooth_npix, const_weights=False): # """ # Determine optimal weights for 2d coadds. This script grabs the information from SpecObjs list for the # object with specified slitid and objid and passes to coadd.sn_weights to determine the optimal weights for # each exposure. # # Args: # specobjs_list (list): # list of SpecObjs objects contaning the objects that were extracted from each frame that will contribute # to the coadd. # slitid (int): # The slitid that has the brightest object whose S/N will be used to determine the weight for each frame. # objid (int): # The objid index of the brightest object whose S/N will be used to determine the weight for each frame. # sn_smooth_npix (float): # Number of pixels used for determining smoothly varying S/N ratio weights. # const_weights (bool): # Use constant weights for coadding the exposures. Default=False # # Returns: # rms_sn, weights # # rms_sn : ndarray, shape = (len(specobjs_list),) # Root mean square S/N value for each input spectra # weights : ndarray, shape (len(specobjs_list),) # Weights to be applied to the spectra. These are signal-to-noise squared weights. # """ # # nexp = len(specobjs_list) # nspec = specobjs_list[0][0].TRACE_SPAT.shape[0] # # Grab the traces, flux, wavelength and noise for this slit and objid. # flux_stack = np.zeros((nspec, nexp), dtype=float) # ivar_stack = np.zeros((nspec, nexp), dtype=float) # wave_stack = np.zeros((nspec, nexp), dtype=float) # mask_stack = np.zeros((nspec, nexp), dtype=bool) # # for iexp, sobjs in enumerate(specobjs_list): # embed() # try: # ithis = (sobjs.SLITID == slitid) & (sobjs.OBJID == objid[iexp]) # except AttributeError: # ithis = (sobjs.ECH_ORDERINDX == slitid) & (sobjs.ECH_OBJID == objid[iexp]) # try: # flux_stack[:,iexp] = sobjs[ithis][0].OPT_COUNTS # except: # embed(header='104') # ivar_stack[:,iexp] = sobjs[ithis][0].OPT_COUNTS_IVAR # wave_stack[:,iexp] = sobjs[ithis][0].OPT_WAVE # mask_stack[:,iexp] = sobjs[ithis][0].OPT_MASK # # # TODO For now just use the zero as the reference for the wavelengths? Perhaps we should be rebinning the data though? # rms_sn, weights = coadd1d.sn_weights(wave_stack, flux_stack, ivar_stack, mask_stack, sn_smooth_npix, # const_weights=const_weights) # return rms_sn, weights.T def det_error_msg(exten, sdet): # Print out error message if extension is not found msgs.error("Extension {:s} for requested detector {:s} was not found.\n".format(exten) + " Maybe you chose the wrong detector to coadd? " "Set with --det= or check file contents with pypeit_show_2dspec Science/spec2d_XXX --list".format(sdet)) def get_wave_ind(wave_grid, wave_min, wave_max): """ Utility routine used by coadd2d to determine the starting and ending indices of a wavelength grid. Args: wave_grid: float ndarray Wavelength grid. wave_min: float Minimum wavelength covered by the data in question. wave_max: float Maximum wavelength covered by the data in question. Returns: tuple: Returns (ind_lower, ind_upper), Integer lower and upper indices into the array wave_grid that cover the interval (wave_min, wave_max) """ diff = wave_grid - wave_min diff[diff > 0] = np.inf if not np.any(diff < 0): ind_lower = 0 msgs.warn('Your wave grid does not extend blue enough. Taking bluest point') else: ind_lower = np.argmin(np.abs(diff)) diff = wave_max - wave_grid diff[diff > 0] = np.inf if not np.any(diff < 0): ind_upper = wave_grid.size-1 msgs.warn('Your wave grid does not extend red enough. Taking reddest point') else: ind_upper = np.argmin(np.abs(diff)) return ind_lower, ind_upper def get_wave_bins(thismask_stack, waveimg_stack, wave_grid): # Determine the wavelength grid that we will use for the current slit/order # TODO This cut on waveimg_stack should not be necessary wavemask = thismask_stack & (waveimg_stack > 1.0) wave_lower = waveimg_stack[wavemask].min() wave_upper = waveimg_stack[wavemask].max() ind_lower, ind_upper = get_wave_ind(wave_grid, wave_lower, wave_upper) wave_bins = wave_grid[ind_lower:ind_upper + 1] return wave_bins def get_spat_bins(thismask_stack, trace_stack): nimgs, nspec, nspat = thismask_stack.shape # Create the slit_cen_stack and determine the minimum and maximum # spatial offsets that we need to cover to determine the spatial # bins spat_img = np.outer(np.ones(nspec), np.arange(nspat)) dspat_stack = np.zeros_like(thismask_stack,dtype=float) spat_min = np.inf spat_max = -np.inf for img in range(nimgs): # center of the slit replicated spatially slit_cen_img = np.outer(trace_stack[:, img], np.ones(nspat)) dspat_iexp = (spat_img - slit_cen_img) dspat_stack[img, :, :] = dspat_iexp thismask_now = thismask_stack[img, :, :] spat_min = np.fmin(spat_min, dspat_iexp[thismask_now].min()) spat_max = np.fmax(spat_max, dspat_iexp[thismask_now].max()) spat_min_int = int(np.floor(spat_min)) spat_max_int = int(np.ceil(spat_max)) dspat_bins = np.arange(spat_min_int, spat_max_int + 1, 1,dtype=float) return dspat_bins, dspat_stack def compute_coadd2d(ref_trace_stack, sciimg_stack, sciivar_stack, skymodel_stack, inmask_stack, tilts_stack, thismask_stack, waveimg_stack, wave_grid, weights='uniform'): """ Construct a 2d co-add of a stack of PypeIt spec2d reduction outputs. Slits are 'rectified' onto a spatial and spectral grid, which encompasses the spectral and spatial coverage of the image stacks. The rectification uses nearest grid point interpolation to avoid covariant errors. Dithering is supported as all images are centered relative to a set of reference traces in trace_stack. Args: trace_stack (`numpy.ndarray`_): Stack of reference traces about which the images are rectified and coadded. If the images were not dithered then this reference trace can simply be the center of the slit:: slitcen = (slit_left + slit_righ)/2 If the images were dithered, then this object can either be the slitcen appropriately shifted with the dither pattern, or it could be the trace of the object of interest in each exposure determined by running PypeIt on the individual images. Shape is (nimgs, nspec). sciimg_stack (`numpy.ndarray`_): Stack of science images. Shape is (nimgs, nspec, nspat). sciivar_stack (`numpy.ndarray`_): Stack of inverse variance images. Shape is (nimgs, nspec, nspat). skymodel_stack (`numpy.ndarray`_): Stack of the model sky. Shape is (nimgs, nspec, nspat). inmask_stack (`numpy.ndarray`_): Boolean array with the input masks for each image; `True` values are *good*, `False` values are *bad*. Shape is (nimgs, nspec, nspat). tilts_stack (`numpy.ndarray`_): Stack of the wavelength tilts traces. Shape is (nimgs, nspec, nspat). waveimg_stack (`numpy.ndarray`_): Stack of the wavelength images. Shape is (nimgs, nspec, nspat). thismask_stack (`numpy.ndarray`_): Boolean array with the masks indicating which pixels are on the slit in question. `True` values are on the slit; `False` values are off the slit. Shape is (nimgs, nspec, nspat). weights (`numpy.ndarray`_, optional): The weights used when combining the rectified images (see :func:`weighted_combine`). If no weights are provided, uniform weighting is used. Weights are broadast to the correct size of the image stacks (see :func:`broadcast_weights`), as necessary. Shape must be (nimgs,), (nimgs, nspec), or (nimgs, nspec, nspat). loglam_grid (`numpy.ndarray`_, optional): Wavelength grid in log10(wave) onto which the image stacks will be rectified. The code will automatically choose the subset of this grid encompassing the wavelength coverage of the image stacks provided (see :func:`waveimg_stack`). Either `loglam_grid` or `wave_grid` must be provided. wave_grid (`numpy.ndarray`_, optional): Same as `loglam_grid` but in angstroms instead of log(angstroms). (TODO: Check units...) Returns: tuple: Returns the following (TODO: This needs to be updated): - sciimg: float ndarray shape = (nspec_coadd, nspat_coadd): Rectified and coadded science image - sciivar: float ndarray shape = (nspec_coadd, nspat_coadd): Rectified and coadded inverse variance image with correct error propagation - imgminsky: float ndarray shape = (nspec_coadd, nspat_coadd): Rectified and coadded sky subtracted image - outmask: bool ndarray shape = (nspec_coadd, nspat_coadd): Output mask for rectified and coadded images. True = Good, False=Bad. - nused: int ndarray shape = (nspec_coadd, nspat_coadd): Image of integers indicating the number of images from the image stack that contributed to each pixel - tilts: float ndarray shape = (nspec_coadd, nspat_coadd): The averaged tilts image corresponding to the rectified and coadded data. - waveimg: float ndarray shape = (nspec_coadd, nspat_coadd): The averaged wavelength image corresponding to the rectified and coadded data. - dspat: float ndarray shape = (nspec_coadd, nspat_coadd): The average spatial offsets in pixels from the reference trace trace_stack corresponding to the rectified and coadded data. - thismask: bool ndarray shape = (nspec_coadd, nspat_coadd): Output mask for rectified and coadded images. True = Good, False=Bad. This image is trivial, and is simply an image of True values the same shape as the rectified and coadded data. - tslits_dict: dict: tslits_dict dictionary containing the information about the slits boundaries. The slit boundaries are trivial and are simply vertical traces at 0 and nspat_coadd-1. """ nimgs, nspec, nspat = sciimg_stack.shape if 'uniform' in weights: msgs.info('No weights were provided. Using uniform weights.') weights = np.ones(nimgs)/float(nimgs) weights_stack = combine.broadcast_weights(weights, sciimg_stack.shape) # Determine the wavelength grid that we will use for the current slit/order wave_bins = get_wave_bins(thismask_stack, waveimg_stack, wave_grid) dspat_bins, dspat_stack = get_spat_bins(thismask_stack, ref_trace_stack) sci_list = [weights_stack, sciimg_stack, sciimg_stack - skymodel_stack, tilts_stack, waveimg_stack, dspat_stack] var_list = [utils.calc_ivar(sciivar_stack)] sci_list_rebin, var_list_rebin, norm_rebin_stack, nsmp_rebin_stack \ = rebin2d(wave_bins, dspat_bins, waveimg_stack, dspat_stack, thismask_stack, inmask_stack, sci_list, var_list) # Now compute the final stack with sigma clipping sigrej = 3.0 maxiters = 10 # sci_list_rebin[0] = rebinned weights image stack # sci_list_rebin[1:] = stacks of images that we want to weighted combine # sci_list_rebin[2] = rebinned sciimg-sky_model images that we used for the sigma clipping sci_list_out, var_list_out, outmask, nused \ = combine.weighted_combine(sci_list_rebin[0], sci_list_rebin[1:], var_list_rebin, norm_rebin_stack != 0, sigma_clip=True, sigma_clip_stack=sci_list_rebin[2], sigrej=sigrej, maxiters=maxiters) sciimg, imgminsky, tilts, waveimg, dspat = sci_list_out sciivar = utils.calc_ivar(var_list_out[0]) # Compute the midpoints vectors, and lower/upper bins of the rectified image wave_mid = ((wave_bins + np.roll(wave_bins,1))/2.0)[1:] wave_min = wave_bins[:-1] wave_max = wave_bins[1:] dspat_mid = ((dspat_bins + np.roll(dspat_bins,1))/2.0)[1:] # Interpolate the dspat images wherever the coadds are masked # because a given pixel was not sampled. This is done because the # dspat image is not allowed to have holes if it is going to work # with local_skysub_extract nspec_coadd, nspat_coadd = imgminsky.shape spat_img_coadd, spec_img_coadd = np.meshgrid(np.arange(nspat_coadd), np.arange(nspec_coadd)) if np.any(np.invert(outmask)): points_good = np.stack((spec_img_coadd[outmask], spat_img_coadd[outmask]), axis=1) points_bad = np.stack((spec_img_coadd[np.invert(outmask)], spat_img_coadd[np.invert(outmask)]), axis=1) values_dspat = dspat[outmask] dspat_bad = scipy.interpolate.griddata(points_good, values_dspat, points_bad, method='cubic') dspat[np.invert(outmask)] = dspat_bad # Points outside the convex hull of the data are set to nan. We # identify those and simply assume them values from the # dspat_img_fake, which is what dspat would be on a regular # perfectly rectified image grid. nanpix = np.isnan(dspat) if np.any(nanpix): dspat_img_fake = spat_img_coadd + dspat_mid[0] dspat[nanpix] = dspat_img_fake[nanpix] return dict(wave_bins=wave_bins, dspat_bins=dspat_bins, wave_mid=wave_mid, wave_min=wave_min, wave_max=wave_max, dspat_mid=dspat_mid, sciimg=sciimg, sciivar=sciivar, imgminsky=imgminsky, outmask=outmask, nused=nused, tilts=tilts, waveimg=waveimg, dspat=dspat, nspec=imgminsky.shape[0], nspat=imgminsky.shape[1]) def rebin2d(spec_bins, spat_bins, waveimg_stack, spatimg_stack, thismask_stack, inmask_stack, sci_list, var_list): """ Rebin a set of images and propagate variance onto a new spectral and spatial grid. This routine effectively "recitifies" images using np.histogram2d which is extremely fast and effectiveluy performs nearest grid point interpolation. Args: spec_bins: float ndarray, shape = (nspec_rebin) Spectral bins to rebin to. spat_bins: float ndarray, shape = (nspat_rebin) Spatial bins to rebin to. waveimg_stack: float ndarray, shape = (nimgs, nspec, nspat) Stack of nimgs wavelength images with shape = (nspec, nspat) each spatimg_stack: float ndarray, shape = (nimgs, nspec, nspat) Stack of nimgs spatial position images with shape = (nspec, nspat) each thismask_stack: bool ndarray, shape = (nimgs, nspec, nspat) Stack of nimgs images with shape = (nspec, nspat) indicating the locatons on the pixels on an image that are on the slit in question. inmask_stack: bool ndarray, shape = (nimgs, nspec, nspat) Stack of nimgs images with shape = (nspec, nspat) indicating which pixels on an image are masked. True = Good, False = Bad sci_list: list List of float ndarray images (each being an image stack with shape (nimgs, nspec, nspat)) which are to be rebinned onto the new spec_bins, spat_bins var_list: list List of float ndarray variance images (each being an image stack with shape (nimgs, nspec, nspat)) which are to be rebbinned with proper erorr propagation Returns: tuple: Returns the following: - sci_list_out: list: The list of ndarray rebinned images with new shape (nimgs, nspec_rebin, nspat_rebin) - var_list_out: list: The list of ndarray rebinned variance images with correct error propagation with shape (nimgs, nspec_rebin, nspat_rebin) - norm_rebin_stack: int ndarray, shape (nimgs, nspec_rebin, nspat_rebin): An image stack indicating the integer occupation number of a given pixel. In other words, this number would be zero for empty bins, one for bins that were populated by a single pixel, etc. This image takes the input inmask_stack into account. The output mask for each image can be formed via outmask_rebin_satck = (norm_rebin_stack > 0) - nsmp_rebin_stack: int ndarray, shape (nimgs, nspec_rebin, nspat_rebin): An image stack indicating the integer occupation number of a given pixel taking only the thismask_stack into account, but taking the inmask_stack into account. This image is mainly constructed for bookeeping purposes, as it represents the number of times each pixel in the rebin image was populated taking only the "geometry" of the rebinning into account (i.e. the thismask_stack), but not the masking (inmask_stack). """ shape = combine.img_list_error_check(sci_list, var_list) nimgs = shape[0] # allocate the output mages nspec_rebin = spec_bins.size - 1 nspat_rebin = spat_bins.size - 1 shape_out = (nimgs, nspec_rebin, nspat_rebin) nsmp_rebin_stack = np.zeros(shape_out) norm_rebin_stack = np.zeros(shape_out) sci_list_out = [] for ii in range(len(sci_list)): sci_list_out.append(np.zeros(shape_out)) var_list_out = [] for jj in range(len(var_list)): var_list_out.append(np.zeros(shape_out)) for img in range(nimgs): # This fist image is purely for bookeeping purposes to determine the number of times each pixel # could have been sampled thismask = thismask_stack[img, :, :] spec_rebin_this = waveimg_stack[img, :, :][thismask] spat_rebin_this = spatimg_stack[img, :, :][thismask] nsmp_rebin_stack[img, :, :], spec_edges, spat_edges = np.histogram2d(spec_rebin_this, spat_rebin_this, bins=[spec_bins, spat_bins], density=False) finmask = thismask & inmask_stack[img,:,:] spec_rebin = waveimg_stack[img, :, :][finmask] spat_rebin = spatimg_stack[img, :, :][finmask] norm_img, spec_edges, spat_edges = np.histogram2d(spec_rebin, spat_rebin, bins=[spec_bins, spat_bins], density=False) norm_rebin_stack[img, :, :] = norm_img # Rebin the science images for indx, sci in enumerate(sci_list): weigh_sci, spec_edges, spat_edges = np.histogram2d(spec_rebin, spat_rebin, bins=[spec_bins, spat_bins], density=False, weights=sci[img,:,:][finmask]) sci_list_out[indx][img, :, :] = (norm_img > 0.0) * weigh_sci/(norm_img + (norm_img == 0.0)) # Rebin the variance images, note the norm_img**2 factor for correct error propagation for indx, var in enumerate(var_list): weigh_var, spec_edges, spat_edges = np.histogram2d(spec_rebin, spat_rebin, bins=[spec_bins, spat_bins], density=False, weights=var[img, :, :][finmask]) var_list_out[indx][img, :, :] = (norm_img > 0.0)*weigh_var/(norm_img + (norm_img == 0.0))**2 return sci_list_out, var_list_out, norm_rebin_stack.astype(int), nsmp_rebin_stack.astype(int) # TODO Break up into separate methods? class Coadd2d(object): """ Main routine to run the extraction for 2d coadds. Algorithm steps are as follows: - Fill this in. This performs 2d coadd specific tasks, and then also performs some of the tasks analogous to the pypeit.extract_one method. Docs coming soon.... Args: stack_dict: master_dir: det (int): samp_fact: float sampling factor to make the wavelength grid finer or coarser. samp_fact > 1.0 oversamples (finer), samp_fact < 1.0 undersamples (coarser) ir_redux: par: show: show_peaks: """ def __init__(self, spec2d_files, spectrograph, det=1, offsets=None, weights='auto', sn_smooth_npix=None, par=None, ir_redux=False, show=False, show_peaks=False, debug_offsets=False, debug=False, **kwargs_wave): """ TODO: These args should be in the previous doc string. Args: spec2d_files: det: offsets (ndarray): default=None Spatial offsets to be applied to each image before coadding. For the default mode of None, images are registered automatically using the trace of the brightest object. weights (str, list or ndarray): Mode for the weights used to coadd images. Options are 'auto' (default), 'uniform', or list/array of weights with shape = (nexp,) can be input and will be applied to the image. Note 'auto' is not allowed if offsets are input, and if set this will cause an exception. sn_smooth_npix: ir_redux: par: std: show: show_peaks: debug: **kwargs_wave: """ ## Use Cases: # 1) offsets is None -- auto compute offsets from brightest object, so then default to auto_weights=True # 2) offsets not None, weights = None (uniform weighting) or weights is not None (input weights) # 3) offsets not None, auto_weights=True (Do not support) if offsets is not None and 'auto' in weights: msgs.error("Automatic weights cannot be computed for input offsets. " "Set weights='uniform' or input an array of weights with shape (nexp,)") self.spec2d_files = spec2d_files self.spectrograph = spectrograph self.det = det self.offsets = offsets self.weights = weights self.ir_redux = ir_redux self.show = show self.show_peaks = show_peaks self.debug_offsets = debug_offsets self.debug = debug self.stack_dict = None self.psuedo_dict = None self.objid_bri = None self.slitid_bri = None self.snr_bar_bri = None # Load the stack_dict self.stack_dict = self.load_coadd2d_stacks(self.spec2d_files) self.pypeline = self.spectrograph.pypeline self.par = self.spectrograph.default_pypeit_par() if par is None else par # Check that there are the same number of slits on every exposure nslits_list = [] for tslits_dict in self.stack_dict['tslits_dict_list']: nspec, nslits_now = tslits_dict['slit_left'].shape nslits_list.append(nslits_now) if not len(set(nslits_list))==1: msgs.error('Not all of your exposures have the same number of slits. Check your inputs') self.nslits = nslits_list[0] self.nexp = len(self.stack_dict['specobjs_list']) self.nspec = nspec self.binning = np.array([self.stack_dict['tslits_dict_list'][0]['binspectral'], self.stack_dict['tslits_dict_list'][0]['binspatial']]) # If smoothing is not input, smooth by 10% of the spectral dimension self.sn_smooth_npix = sn_smooth_npix if sn_smooth_npix is not None else 0.1*self.nspec def optimal_weights(self, slitorderid, objid, const_weights=False): """ Determine optimal weights for 2d coadds. This script grabs the information from SpecObjs list for the object with specified slitid and objid and passes to coadd.sn_weights to determine the optimal weights for each exposure. Args: slitorderid (int): The slit or order id that has the brightest object whose S/N will be used to determine the weight for each frame. objid (np.ndarray): Array of object indices with shape = (nexp,) of the brightest object whose S/N will be used to determine the weight for each frame. const_weights (bool): Use constant weights for coadding the exposures. Default=False Returns: rms_sn : ndarray, shape = (len(specobjs_list),) Root mean square S/N value for each input spectra weights : ndarray, shape (len(specobjs_list),) Weights to be applied to the spectra. These are signal-to-noise squared weights. """ nexp = len(self.stack_dict['specobjs_list']) nspec = self.stack_dict['specobjs_list'][0][0].TRACE_SPAT.shape[0] # Grab the traces, flux, wavelength and noise for this slit and objid. flux_stack = np.zeros((nspec, nexp), dtype=float) ivar_stack = np.zeros((nspec, nexp), dtype=float) wave_stack = np.zeros((nspec, nexp), dtype=float) mask_stack = np.zeros((nspec, nexp), dtype=bool) for iexp, sobjs in enumerate(self.stack_dict['specobjs_list']): ithis = sobjs.slitorder_objid_indices(slitorderid, objid[iexp]) flux_stack[:, iexp] = sobjs[ithis].OPT_COUNTS ivar_stack[:, iexp] = sobjs[ithis].OPT_COUNTS_IVAR wave_stack[:, iexp] = sobjs[ithis].OPT_WAVE mask_stack[:, iexp] = sobjs[ithis].OPT_MASK # TODO For now just use the zero as the reference for the wavelengths? Perhaps we should be rebinning the data though? rms_sn, weights = coadd1d.sn_weights(wave_stack, flux_stack, ivar_stack, mask_stack, self.sn_smooth_npix, const_weights=const_weights) return rms_sn, weights.T def coadd(self, only_slits=None): only_slits = [only_slits] if (only_slits is not None and isinstance(only_slits, (int, np.int, np.int64, np.int32))) else only_slits good_slits = np.arange(self.nslits) if only_slits is None else only_slits coadd_list = [] for islit in good_slits: msgs.info('Performing 2d coadd for slit: {:d}/{:d}'.format(islit, self.nslits - 1)) ref_trace_stack = self.reference_trace_stack(islit, offsets=self.offsets, objid=self.objid_bri) thismask_stack = self.stack_dict['slitmask_stack'] == islit # TODO Can we get rid of this one line simply making the weights returned by parse_weights an # (nslit, nexp) array? # This one line deals with the different weighting strategies between MultiSlit echelle. Otherwise, we # would need to copy this method twice in the subclasses if 'auto_echelle' in self.use_weights: rms_sn, weights = self.optimal_weights(islit, self.objid_bri) else: weights = self.use_weights # Perform the 2d coadd coadd_dict = compute_coadd2d(ref_trace_stack, self.stack_dict['sciimg_stack'], self.stack_dict['sciivar_stack'], self.stack_dict['skymodel_stack'], self.stack_dict['mask_stack'] == 0, self.stack_dict['tilts_stack'], thismask_stack, self.stack_dict['waveimg_stack'], self.wave_grid, weights=weights) coadd_list.append(coadd_dict) return coadd_list def create_psuedo_image(self, coadd_list): """ THIS UNDOCUMENTED CODE PROBABLY SHOULD GENERATE AND RETURN STANDARD PYPEIT OBJCTS INSTEAD OF SOME UNDEFINED DICT""" nspec_vec = np.zeros(self.nslits,dtype=int) nspat_vec = np.zeros(self.nslits,dtype=int) for islit, cdict in enumerate(coadd_list): nspec_vec[islit]=cdict['nspec'] nspat_vec[islit]=cdict['nspat'] # Determine the size of the psuedo image nspat_pad = 10 nspec_psuedo = nspec_vec.max() nspat_psuedo = np.sum(nspat_vec) + (self.nslits + 1)*nspat_pad spec_vec_psuedo = np.arange(nspec_psuedo) shape_psuedo = (nspec_psuedo, nspat_psuedo) imgminsky_psuedo = np.zeros(shape_psuedo) sciivar_psuedo = np.zeros(shape_psuedo) waveimg_psuedo = np.zeros(shape_psuedo) tilts_psuedo = np.zeros(shape_psuedo) spat_img_psuedo = np.zeros(shape_psuedo) nused_psuedo = np.zeros(shape_psuedo, dtype=int) inmask_psuedo = np.zeros(shape_psuedo, dtype=bool) wave_mid = np.zeros((nspec_psuedo, self.nslits)) wave_mask = np.zeros((nspec_psuedo, self.nslits),dtype=bool) wave_min = np.zeros((nspec_psuedo, self.nslits)) wave_max = np.zeros((nspec_psuedo, self.nslits)) dspat_mid = np.zeros((nspat_psuedo, self.nslits)) spat_left = nspat_pad slit_left = np.zeros((nspec_psuedo, self.nslits)) slit_righ = np.zeros((nspec_psuedo, self.nslits)) spec_min1 = np.zeros(self.nslits) spec_max1 = np.zeros(self.nslits) nspec_grid = self.wave_grid_mid.size for islit, coadd_dict in enumerate(coadd_list): spat_righ = spat_left + nspat_vec[islit] ispec = slice(0,nspec_vec[islit]) ispat = slice(spat_left,spat_righ) imgminsky_psuedo[ispec, ispat] = coadd_dict['imgminsky'] sciivar_psuedo[ispec, ispat] = coadd_dict['sciivar'] waveimg_psuedo[ispec, ispat] = coadd_dict['waveimg'] tilts_psuedo[ispec, ispat] = coadd_dict['tilts'] # spat_img_psuedo is the sub-pixel image position on the rebinned psuedo image inmask_psuedo[ispec, ispat] = coadd_dict['outmask'] image_temp = (coadd_dict['dspat'] - coadd_dict['dspat_mid'][0] + spat_left)*coadd_dict['outmask'] spat_img_psuedo[ispec, ispat] = image_temp nused_psuedo[ispec, ispat] = coadd_dict['nused'] wave_min[ispec, islit] = coadd_dict['wave_min'] wave_max[ispec, islit] = coadd_dict['wave_max'] wave_mid[ispec, islit] = coadd_dict['wave_mid'] wave_mask[ispec, islit] = True # Fill in the rest of the wave_mid with the corresponding points in the wave_grid #wave_this = wave_mid[wave_mask[:,islit], islit] #ind_upper = np.argmin(np.abs(self.wave_grid_mid - wave_this.max())) + 1 #if nspec_vec[islit] != nspec_psuedo: # wave_mid[nspec_vec[islit]:, islit] = self.wave_grid_mid[ind_upper:ind_upper + (nspec_psuedo-nspec_vec[islit])] dspat_mid[ispat, islit] = coadd_dict['dspat_mid'] slit_left[:,islit] = np.full(nspec_psuedo, spat_left) slit_righ[:,islit] = np.full(nspec_psuedo, spat_righ) spec_max1[islit] = nspec_vec[islit]-1 spat_left = spat_righ + nspat_pad slitcen = (slit_left + slit_righ)/2.0 tslits_dict_psuedo = dict(slit_left=slit_left, slit_righ=slit_righ, slitcen=slitcen, nspec=nspec_psuedo, nspat=nspat_psuedo, pad=0, nslits = self.nslits, binspectral=1, binspatial=1, spectrograph=self.spectrograph.spectrograph, spec_min=spec_min1, spec_max=spec_max1, maskslits=np.zeros(slit_left.shape[1], dtype=np.bool)) slitmask_psuedo = pixels.tslits2mask(tslits_dict_psuedo) # This is a kludge to deal with cases where bad wavelengths result in large regions where the slit is poorly sampled, # which wreaks havoc on the local sky-subtraction min_slit_frac = 0.70 spec_min = np.zeros(self.nslits) spec_max = np.zeros(self.nslits) for islit in range(self.nslits): slit_width = np.sum(inmask_psuedo*(slitmask_psuedo == islit),axis=1) slit_width_img = np.outer(slit_width, np.ones(nspat_psuedo)) med_slit_width = np.median(slit_width_img[slitmask_psuedo == islit]) nspec_eff = np.sum(slit_width > min_slit_frac*med_slit_width) nsmooth = int(np.fmax(np.ceil(nspec_eff*0.02),10)) slit_width_sm = scipy.ndimage.filters.median_filter(slit_width, size=nsmooth, mode='reflect') igood = (slit_width_sm > min_slit_frac*med_slit_width) spec_min[islit] = spec_vec_psuedo[igood].min() spec_max[islit] = spec_vec_psuedo[igood].max() bad_pix = (slit_width_img < min_slit_frac*med_slit_width) & (slitmask_psuedo == islit) inmask_psuedo[bad_pix] = False # Update with tslits_dict_psuedo tslits_dict_psuedo['spec_min'] = spec_min tslits_dict_psuedo['spec_max'] = spec_max psuedo_dict = dict(nspec=nspec_psuedo, nspat=nspat_psuedo, imgminsky=imgminsky_psuedo, sciivar=sciivar_psuedo, inmask=inmask_psuedo, tilts=tilts_psuedo, waveimg=waveimg_psuedo, spat_img = spat_img_psuedo, tslits_dict=tslits_dict_psuedo, wave_mask=wave_mask, wave_mid=wave_mid, wave_min=wave_min, wave_max=wave_max) return psuedo_dict def reduce(self, psuedo_dict, show=None, show_peaks=None): show = self.show if show is None else show show_peaks = self.show_peaks if show_peaks is None else show_peaks # Generate a ScienceImage sciImage = scienceimage.ScienceImage(self.spectrograph, self.det, self.par['scienceframe']['process'], psuedo_dict['imgminsky'], psuedo_dict['sciivar'], np.zeros_like(psuedo_dict['inmask']), # Dummy bpm rn2img=np.zeros_like(psuedo_dict['inmask']), # Dummy rn2img crmask=np.invert(psuedo_dict['inmask'])) slitmask_psuedo = pixels.tslits2mask(psuedo_dict['tslits_dict']) sciImage.build_mask(slitmask=slitmask_psuedo) # Make changes to parset specific to 2d coadds parcopy = copy.deepcopy(self.par) parcopy['scienceimage']['findobj']['trace_npoly'] = 3 # Low order traces since we are rectified #parcopy['scienceimage']['find_extrap_npoly'] = 1 # Use low order for trace extrapolation # Instantiate Calibrations class caliBrate = calibrations.MultiSlitCalibrations(None, parcopy['calibrations'], self.spectrograph) caliBrate.tslits_dict = psuedo_dict['tslits_dict'] caliBrate.tilts_dict = dict(tilts=psuedo_dict['tilts']) caliBrate.mswave = psuedo_dict['waveimg'] # # redux = reduce.instantiate_me(sciImage, self.spectrograph, psuedo_dict['tslits_dict'], parcopy, psuedo_dict['tilts'], redux=reduce.instantiate_me(sciImage, self.spectrograph, parcopy, caliBrate, ir_redux=self.ir_redux, objtype='science_coadd2d', det=self.det, binning=self.binning, show=show) if show: redux.show('image', image=psuedo_dict['imgminsky']*(sciImage.mask == 0), chname = 'imgminsky', slits=True, clear=True) # Object finding sobjs_obj, nobj, skymask_init = redux.find_objects(sciImage.image, show_peaks=show_peaks) # Local sky-subtraction global_sky_psuedo = np.zeros_like(psuedo_dict['imgminsky']) # No global sky for co-adds since we go straight to local skymodel_psuedo, objmodel_psuedo, ivarmodel_psuedo, outmask_psuedo, sobjs = redux.local_skysub_extract( caliBrate.mswave, global_sky_psuedo, sobjs_obj, spat_pix=psuedo_dict['spat_img'], model_noise=False, show_profile=show, show=show) if self.ir_redux: sobjs.purge_neg() # Add the information about the fixed wavelength grid to the sobjs for spec in sobjs: idx = spec.slit_orderindx # Fill spec.BOX_WAVE_GRID_MASK, spec.OPT_WAVE_GRID_MASK = [psuedo_dict['wave_mask'][:,idx]]*2 spec.BOX_WAVE_GRID, spec.OPT_WAVE_GRID = [psuedo_dict['wave_mid'][:,idx]]*2 spec.BOX_WAVE_GRID_MIN, spec.OPT_WAVE_GRID_MIN = [psuedo_dict['wave_min'][:,idx]]*2 spec.BOX_WAVE_GRID_MAX, spec.OPT_WAVE_GRID_MAX = [psuedo_dict['wave_max'][:,idx]]*2 # Add the rest to the psuedo_dict psuedo_dict['skymodel'] = skymodel_psuedo psuedo_dict['objmodel'] = objmodel_psuedo psuedo_dict['ivarmodel'] = ivarmodel_psuedo psuedo_dict['outmask'] = outmask_psuedo psuedo_dict['sobjs'] = sobjs self.psuedo_dict=psuedo_dict return psuedo_dict['imgminsky'], psuedo_dict['sciivar'], skymodel_psuedo, objmodel_psuedo, ivarmodel_psuedo, outmask_psuedo, sobjs def save_masters(self, master_dir): # Write out the psuedo master files to disk master_key_dict = self.stack_dict['master_key_dict'] # TODO: These saving operations are a temporary kludge waveImage = WaveImage(None, None, None, self.spectrograph, # spectrograph is needed for header None, None, master_key=master_key_dict['arc'], master_dir=master_dir) waveImage.save(image=self.psuedo_dict['waveimg']) edges = edgetrace.EdgeTraceSet.from_tslits_dict(self.psuedo_dict['tslits_dict'], master_key_dict['trace'], master_dir) edges.save() def snr_report(self, snr_bar, slitid=None): # Print out a report on the SNR msg_string = msgs.newline() + '-------------------------------------' msg_string += msgs.newline() + ' Summary for highest S/N object' if slitid is not None: msg_string += msgs.newline() + ' found on slitid = {:d} '.format(slitid) msg_string += msgs.newline() + '-------------------------------------' msg_string += msgs.newline() + ' exp# S/N' for iexp, snr in enumerate(snr_bar): msg_string += msgs.newline() + ' {:d} {:5.2f}'.format(iexp, snr) msg_string += msgs.newline() + '-------------------------------------' msgs.info(msg_string) def get_good_slits(self, only_slits): only_slits = [only_slits] if (only_slits is not None and isinstance(only_slits, (int, np.int, np.int64, np.int32))) else only_slits good_slits = np.arange(self.nslits) if only_slits is None else only_slits return good_slits def offset_slit_cen(self, slitid, offsets): nexp = len(offsets) tslits_dict_list = self.stack_dict['tslits_dict_list'] nspec, nslits = tslits_dict_list[0]['slit_left'].shape ref_trace_stack = np.zeros((nspec, nexp)) for iexp, tslits_dict in enumerate(tslits_dict_list): ref_trace_stack[:, iexp] = (tslits_dict['slit_left'][:, slitid] + tslits_dict['slit_righ'][:, slitid])/2.0 - offsets[iexp] return ref_trace_stack def get_wave_grid(self, **kwargs_wave): """ Routine to create a wavelength grid for 2d coadds using all of the wavelengths of the extracted objects. Calls coadd1d.get_wave_grid. Args: **kwargs_wave (dict): Optional argumments for coadd1d.get_wve_grid function Returns: tuple: Returns the following: - wave_grid (np.ndarray): New wavelength grid, not masked - wave_grid_mid (np.ndarray): New wavelength grid evaluated at the centers of the wavelength bins, that is this grid is simply offset from wave_grid by dsamp/2.0, in either linear space or log10 depending on whether linear or (log10 or velocity) was requested. For iref or concatenate the linear wavelength sampling will be calculated. - dsamp (float): The pixel sampling for wavelength grid created. """ nobjs_tot = np.array([len(spec) for spec in self.stack_dict['specobjs_list']]).sum() waves = np.zeros((self.nspec, nobjs_tot)) masks = np.zeros_like(waves, dtype=bool) indx = 0 for spec_this in self.stack_dict['specobjs_list']: for spec in spec_this: waves[:, indx] = spec.OPT_WAVE masks[:, indx] = spec.OPT_MASK indx += 1 wave_grid, wave_grid_mid, dsamp = coadd1d.get_wave_grid(waves, masks=masks, **kwargs_wave) return wave_grid, wave_grid_mid, dsamp def load_coadd2d_stacks(self, spec2d_files): """ Routine to read in required images for 2d coadds given a list of spec2d files. Args: spec2d_files: list List of spec2d filenames det: int detector in question Returns: dict: Dictionary containing all the images and keys required for perfomring 2d coadds. """ # Get the detector string sdet = parse.get_dnum(self.det, prefix=False) # Get the master dir redux_path = os.getcwd() # Grab the files head2d_list = [] tracefiles = [] waveimgfiles = [] tiltfiles = [] spec1d_files = [] for f in spec2d_files: head = fits.getheader(f) if os.path.exists(head['PYPMFDIR']): master_path = head['PYPMFDIR'] else: master_dir = os.path.basename(head['PYPMFDIR']) master_path = os.path.join(os.path.split(os.path.split(f)[0])[0], master_dir) trace_key = '{0}_{1:02d}'.format(head['TRACMKEY'], self.det) wave_key = '{0}_{1:02d}'.format(head['ARCMKEY'], self.det) head2d_list.append(head) spec1d_files.append(f.replace('spec2d', 'spec1d')) tracefiles.append(os.path.join(master_path, '{0}.gz'.format(MasterFrame.construct_file_name('Edges', trace_key)))) # MasterFrame.construct_file_name('Trace', trace_key))) waveimgfiles.append(os.path.join(master_path, MasterFrame.construct_file_name('Wave', wave_key))) tiltfiles.append(os.path.join(master_path, MasterFrame.construct_file_name('Tilts', wave_key))) nfiles = len(spec2d_files) specobjs_list = [] head1d_list = [] tslits_dict_list = [] # TODO Sort this out with the correct detector extensions etc. # Read in the image stacks waveimgfile, tiltfile, tracefile = None, None, None for ifile in range(nfiles): # Load up the calibs, if needed if waveimgfiles[ifile] != waveimgfile: waveimg = WaveImage.from_master_file(waveimgfiles[ifile]).image if tiltfile != tiltfiles[ifile]: tilts = WaveTilts.from_master_file(tiltfiles[ifile]).tilts_dict # Save waveimgfile = waveimgfiles[ifile] tiltfile = tiltfiles[ifile] # hdu = fits.open(spec2d_files[ifile]) # One detector, sky sub for now names = [hdu[i].name for i in range(len(hdu))] # science image try: exten = names.index('DET{:s}-PROCESSED'.format(sdet)) except: # Backwards compatability det_error_msg(exten, sdet) sciimg = hdu[exten].data # skymodel try: exten = names.index('DET{:s}-SKY'.format(sdet)) except: # Backwards compatability det_error_msg(exten, sdet) skymodel = hdu[exten].data # Inverse variance model try: exten = names.index('DET{:s}-IVARMODEL'.format(sdet)) except ValueError: # Backwards compatability det_error_msg(exten, sdet) sciivar = hdu[exten].data # Mask try: exten = names.index('DET{:s}-MASK'.format(sdet)) except ValueError: # Backwards compatability det_error_msg(exten, sdet) mask = hdu[exten].data if ifile == 0: # the two shapes accomodate the possibility that waveimg and tilts are binned differently shape_wave = (nfiles, waveimg.shape[0], waveimg.shape[1]) shape_sci = (nfiles, sciimg.shape[0], sciimg.shape[1]) waveimg_stack = np.zeros(shape_wave, dtype=float) tilts_stack = np.zeros(shape_wave, dtype=float) sciimg_stack = np.zeros(shape_sci, dtype=float) skymodel_stack = np.zeros(shape_sci, dtype=float) sciivar_stack = np.zeros(shape_sci, dtype=float) mask_stack = np.zeros(shape_sci, dtype=float) slitmask_stack = np.zeros(shape_sci, dtype=float) # Slit Traces and slitmask if tracefile != tracefiles[ifile]: tslits_dict \ = edgetrace.EdgeTraceSet.from_file(tracefiles[ifile]).convert_to_tslits_dict() tracefile = tracefiles[ifile] # tslits_dict_list.append(tslits_dict) slitmask = pixels.tslits2mask(tslits_dict) slitmask_stack[ifile, :, :] = slitmask waveimg_stack[ifile, :, :] = waveimg tilts_stack[ifile, :, :] = tilts['tilts'] sciimg_stack[ifile, :, :] = sciimg sciivar_stack[ifile, :, :] = sciivar mask_stack[ifile, :, :] = mask skymodel_stack[ifile, :, :] = skymodel # Specobjs if os.path.isfile(spec1d_files[ifile]): sobjs = specobjs.SpecObjs.from_fitsfile(spec1d_files[ifile]) head1d_list.append(sobjs.header) this_det = sobjs.DET == self.det specobjs_list.append(sobjs[this_det]) # slitmask_stack = np.einsum('i,jk->ijk', np.ones(nfiles), slitmask) # Fill the master key dict head2d = head2d_list[0] master_key_dict = {} master_key_dict['frame'] = head2d['FRAMMKEY'] + '_{:02d}'.format(self.det) master_key_dict['bpm'] = head2d['BPMMKEY'] + '_{:02d}'.format(self.det) master_key_dict['bias'] = head2d['BIASMKEY'] + '_{:02d}'.format(self.det) master_key_dict['arc'] = head2d['ARCMKEY'] + '_{:02d}'.format(self.det) master_key_dict['trace'] = head2d['TRACMKEY'] + '_{:02d}'.format(self.det) master_key_dict['flat'] = head2d['FLATMKEY'] + '_{:02d}'.format(self.det) # TODO In the future get this stuff from the headers once data model finalized spectrograph = util.load_spectrograph(tslits_dict['spectrograph']) stack_dict = dict(specobjs_list=specobjs_list, tslits_dict_list=tslits_dict_list, slitmask_stack=slitmask_stack, sciimg_stack=sciimg_stack, sciivar_stack=sciivar_stack, skymodel_stack=skymodel_stack, mask_stack=mask_stack, tilts_stack=tilts_stack, waveimg_stack=waveimg_stack, head1d_list=head1d_list, head2d_list=head2d_list, redux_path=redux_path, master_key_dict=master_key_dict, spectrograph=spectrograph.spectrograph, pypeline=spectrograph.pypeline) return stack_dict # Multislit can coadd with: # 1) input offsets or if offsets is None, it will find the brightest trace and compute them # 2) specified weights, or if weights is None and auto_weights=True, it will compute weights using the brightest object # Echelle can either stack with: # 1) input offsets or if offsets is None, it will find the objid of brightest trace and stack all orders relative to the trace of this object. # 2) specified weights, or if weights is None and auto_weights=True, # it will use wavelength dependent weights determined from the spectrum of the brightest objects objid on each order class MultiSlitCoadd2d(Coadd2d): """ Child of Coadd2d for Multislit and Longslit reductions # Multislit can coadd with: # 1) input offsets or if offsets is None, it will find the brightest trace and compute them # 2) specified weights, or if weights is None and auto_weights=True, it will compute weights using the brightest object """ def __init__(self, spec2d_files, spectrograph, det=1, offsets=None, weights='auto', sn_smooth_npix=None, ir_redux=False, par=None, show=False, show_peaks=False, debug_offsets=False, debug=False, **kwargs_wave): super(MultiSlitCoadd2d, self).__init__(spec2d_files, spectrograph, det=det, offsets=offsets, weights=weights, sn_smooth_npix=sn_smooth_npix, ir_redux=ir_redux, par=par, show=show, show_peaks=show_peaks, debug_offsets=debug_offsets, debug=debug, **kwargs_wave) ## Use Cases: # 1) offsets is None -- auto compute offsets from brightest object, so then default to auto_weights=True # 2) offsets not None, weights = None (uniform weighting) or weights is not None (input weights) # 3) offsets not None, auto_weights=True (Do not support) # Default wave_method for Multislit is linear kwargs_wave['wave_method'] = 'linear' if 'wave_method' not in kwargs_wave else kwargs_wave['wave_method'] self.wave_grid, self.wave_grid_mid, self.dsamp = self.get_wave_grid(**kwargs_wave) if offsets is None: self.objid_bri, self.slitid_bri, self.snr_bar_bri, self.offsets = self.compute_offsets() self.use_weights = self.parse_weights(weights) def parse_weights(self, weights): if 'auto' in weights: rms_sn, use_weights = self.optimal_weights(self.slitid_bri, self.objid_bri, const_weights=True) return use_weights elif 'uniform' in weights: return 'uniform' elif isinstance(weights, (list, np.ndarray)): if len(weights) != self.nexp: msgs.error('If weights are input it must be a list/array with same number of elements as exposures') return weights else: msgs.error('Unrecognized format for weights') # TODO When we run multislit, we actually compute the rebinned images twice. Once here to compute the offsets # and another time to weighted_combine the images in compute2d. This could be sped up def compute_offsets(self): objid_bri, slitid_bri, snr_bar_bri = self.get_brightest_obj(self.stack_dict['specobjs_list'], self.nslits) msgs.info('Determining offsets using brightest object on slit: {:d} with avg SNR={:5.2f}'.format(slitid_bri,np.mean(snr_bar_bri))) thismask_stack = self.stack_dict['slitmask_stack'] == slitid_bri trace_stack_bri = np.zeros((self.nspec, self.nexp)) # TODO Need to think abbout whether we have multiple tslits_dict for each exposure or a single one for iexp in range(self.nexp): trace_stack_bri[:,iexp] = (self.stack_dict['tslits_dict_list'][iexp]['slit_left'][:,slitid_bri] + self.stack_dict['tslits_dict_list'][iexp]['slit_righ'][:,slitid_bri])/2.0 # Determine the wavelength grid that we will use for the current slit/order wave_bins = get_wave_bins(thismask_stack, self.stack_dict['waveimg_stack'], self.wave_grid) dspat_bins, dspat_stack = get_spat_bins(thismask_stack, trace_stack_bri) sci_list = [self.stack_dict['sciimg_stack'] - self.stack_dict['skymodel_stack']] var_list = [] msgs.info('Rebinning Images') sci_list_rebin, var_list_rebin, norm_rebin_stack, nsmp_rebin_stack = rebin2d( wave_bins, dspat_bins, self.stack_dict['waveimg_stack'], dspat_stack, thismask_stack, (self.stack_dict['mask_stack'] == 0), sci_list, var_list) thismask = np.ones_like(sci_list_rebin[0][0,:,:],dtype=bool) nspec_psuedo, nspat_psuedo = thismask.shape slit_left = np.full(nspec_psuedo, 0.0) slit_righ = np.full(nspec_psuedo, nspat_psuedo) inmask = norm_rebin_stack > 0 traces_rect = np.zeros((nspec_psuedo, self.nexp)) sobjs = specobjs.SpecObjs() #specobj_dict = {'setup': 'unknown', 'slitid': 999, 'orderindx': 999, 'det': self.det, 'objtype': 'unknown', # 'pypeline': 'MultiSLit' + '_coadd_2d'} for iexp in range(self.nexp): sobjs_exp, _ = extract.objfind(sci_list_rebin[0][iexp,:,:], thismask, slit_left, slit_righ, inmask=inmask[iexp,:,:], ir_redux=self.ir_redux, fwhm=self.par['scienceimage']['findobj']['find_fwhm'], trim_edg=self.par['scienceimage']['findobj']['find_trim_edge'], npoly_cont=self.par['scienceimage']['findobj']['find_npoly_cont'], maxdev=self.par['scienceimage']['findobj']['find_maxdev'], ncoeff=3, sig_thresh=self.par['scienceimage']['findobj']['sig_thresh'], nperslit=1, show_trace=self.debug_offsets, show_peaks=self.debug_offsets) sobjs.add_sobj(sobjs_exp) traces_rect[:, iexp] = sobjs_exp.TRACE_SPAT # Now deterimine the offsets. Arbitrarily set the zeroth trace to the reference med_traces_rect = np.median(traces_rect,axis=0) offsets = med_traces_rect[0] - med_traces_rect # Print out a report on the offsets msg_string = msgs.newline() + '---------------------------------------------' msg_string += msgs.newline() + ' Summary of offsets for highest S/N object ' msg_string += msgs.newline() + ' found on slitid = {:d} '.format(slitid_bri) msg_string += msgs.newline() + '---------------------------------------------' msg_string += msgs.newline() + ' exp# offset ' for iexp, off in enumerate(offsets): msg_string += msgs.newline() + ' {:d} {:5.2f}'.format(iexp, off) msg_string += msgs.newline() + '-----------------------------------------------' msgs.info(msg_string) if self.debug_offsets: for iexp in range(self.nexp): plt.plot(traces_rect[:, iexp], linestyle='--', label='original trace') plt.plot(traces_rect[:, iexp] + offsets[iexp], label='shifted traces') plt.legend() plt.show() return objid_bri, slitid_bri, snr_bar_bri, offsets def get_brightest_obj(self, specobjs_list, nslits): """ Utility routine to find the brightest object in each exposure given a specobjs_list for MultiSlit reductions. Args: specobjs_list: list List of SpecObjs objects. echelle: bool, default=True, optional Returns: tuple: Returns the following: - objid: ndarray, int, shape (len(specobjs_list),): Array of object ids representing the brightest object in each exposure - slitid (int): Slit that highest S/N ratio object is on (only for pypeline=MultiSlit) - snr_bar: ndarray, float, shape (len(list),): Average S/N over all the orders for this object """ nexp = len(specobjs_list) nspec = specobjs_list[0][0].TRACE_SPAT.shape[0] slit_snr_max = np.full((nslits, nexp), -np.inf) objid_max = np.zeros((nslits, nexp), dtype=int) # Loop over each exposure, slit, find the brighest object on that slit for every exposure for iexp, sobjs in enumerate(specobjs_list): for islit in range(nslits): ithis = sobjs.SLITID == islit nobj_slit = np.sum(ithis) if np.any(ithis): objid_this = sobjs[ithis].OBJID flux = np.zeros((nspec, nobj_slit)) ivar = np.zeros((nspec, nobj_slit)) wave = np.zeros((nspec, nobj_slit)) mask = np.zeros((nspec, nobj_slit), dtype=bool) for iobj, spec in enumerate(sobjs[ithis]): flux[:, iobj] = spec.OPT_COUNTS ivar[:, iobj] = spec.OPT_COUNTS_IVAR wave[:, iobj] = spec.OPT_WAVE mask[:, iobj] = spec.OPT_MASK rms_sn, weights = coadd1d.sn_weights(wave, flux, ivar, mask, None, const_weights=True) imax = np.argmax(rms_sn) slit_snr_max[islit, iexp] = rms_sn[imax] objid_max[islit, iexp] = objid_this[imax] # Find the highest snr object among all the slits slit_snr = np.mean(slit_snr_max, axis=1) slitid = slit_snr.argmax() snr_bar_mean = slit_snr[slitid] snr_bar = slit_snr_max[slitid, :] objid = objid_max[slitid, :] if (snr_bar_mean == -np.inf): msgs.error('You do not appear to have a unique reference object that was traced as the highest S/N ' 'ratio on the same slit of every exposure') self.snr_report(snr_bar, slitid=slitid) return objid, slitid, snr_bar # TODO add an option here to actually use the reference trace for cases where they are on the same slit and it is # single slit??? def reference_trace_stack(self, slitid, offsets=None, objid=None): return self.offset_slit_cen(slitid, offsets) class EchelleCoadd2d(Coadd2d): """ Child of Coadd2d for Multislit and Longslit reductions # Echelle can either stack with: # 1) input offsets or if offsets is None, it will find the objid of brightest trace and stack all orders relative to the trace of this object. # 2) specified weights, or if weights is None and auto_weights=True, # it will use wavelength dependent weights determined from the spectrum of the brightest objects objid on each order """ def __init__(self, spec2d_files, spectrograph, det=1, offsets=None, weights='auto', sn_smooth_npix=None, ir_redux=False, par=None, show=False, show_peaks=False, debug_offsets=False, debug=False, **kwargs_wave): super(EchelleCoadd2d, self).__init__(spec2d_files, spectrograph, det=det, offsets=offsets, weights=weights, sn_smooth_npix=sn_smooth_npix, ir_redux=ir_redux, par=par, show=show, show_peaks=show_peaks, debug_offsets=debug_offsets, debug=debug, **kwargs_wave) # Default wave_method for Echelle is log10 kwargs_wave['wave_method'] = 'log10' if 'wave_method' not in kwargs_wave else kwargs_wave['wave_method'] self.wave_grid, self.wave_grid_mid, self.dsamp = self.get_wave_grid(**kwargs_wave) self.objid_bri = None self.slitid_bri = None self.snr_bar_bri = None if offsets is None: self.objid_bri, self.slitid_bri, self.snr_bar_bri = self.get_brightest_obj(self.stack_dict['specobjs_list'], self.nslits) self.use_weights = self.parse_weights(weights) def parse_weights(self, weights): if 'auto' in weights: return 'auto_echelle' elif 'uniform' in weights: return 'uniform' elif isinstance(weights, (list, np.ndarray)): if len(weights) != self.nexp: msgs.error('If weights are input it must be a list/array with same number of elements as exposures') return weights else: msgs.error('Unrecognized format for weights') def get_brightest_obj(self, specobjs_list, nslits): """ Utility routine to find the brightest object in each exposure given a specobjs_list for Echelle reductions. Args: specobjs_list: list List of SpecObjs objects. echelle: bool, default=True, optional Returns: tuple: Returns the following: - objid: ndarray, int, shape (len(specobjs_list),): Array of object ids representing the brightest object in each exposure - snr_bar: ndarray, float, shape (len(list),): Average S/N over all the orders for this object """ nexp = len(specobjs_list) objid = np.zeros(nexp, dtype=int) snr_bar = np.zeros(nexp) # norders = specobjs_list[0].ech_orderindx.max() + 1 for iexp, sobjs in enumerate(specobjs_list): uni_objid = np.unique(sobjs.ECH_OBJID) nobjs = len(uni_objid) order_snr = np.zeros((nslits, nobjs)) for iord in range(nslits): for iobj in range(nobjs): ind = (sobjs.ECH_ORDERINDX == iord) & (sobjs.ECH_OBJID == uni_objid[iobj]) flux = sobjs[ind][0].OPT_COUNTS ivar = sobjs[ind][0].OPT_COUNTS_IVAR wave = sobjs[ind][0].OPT_WAVE mask = sobjs[ind][0].OPT_MASK rms_sn, weights = coadd1d.sn_weights(wave, flux, ivar, mask, self.sn_smooth_npix, const_weights=True) order_snr[iord, iobj] = rms_sn # Compute the average SNR and find the brightest object snr_bar_vec = np.mean(order_snr, axis=0) objid[iexp] = uni_objid[snr_bar_vec.argmax()] snr_bar[iexp] = snr_bar_vec[snr_bar_vec.argmax()] self.snr_report(snr_bar) return objid, None, snr_bar def reference_trace_stack(self, slitid, offsets=None, objid=None): """ Utility function for determining the reference trace about which 2d coadds are performed. There are two modes of operation to determine the reference trace for the 2d coadd of a given slit/order: 1) offsets: we stack about the center of the slit for the slit in question with the input offsets added 2) ojbid: we stack about the trace ofa reference object for this slit given for each exposure by the input objid Either offsets or objid must be provided, but the code will raise an exception if both are provided. Args: slitid (int): The slit or order that we are currently considering stack_dict (dict): Dictionary containing all the images and keys required for perfomring 2d coadds. offsets (list or np.ndarray): An array of offsets with the same dimensionality as the nexp, the numer of images being coadded. objid: (list or np.ndarray): An array of objids with the same dimensionality as the nexp, the number of images being coadded. Returns: ref_trace_stack ref_trace_stack (np.ndarray): An array with shape (nspec, nexp) containing the reference trace for each of the nexp exposures. """ if offsets is not None and objid is not None: msgs.errror('You can only input offsets or an objid, but not both') nexp = len(offsets) if offsets is not None else len(objid) if offsets is not None: return self.offset_slit_cen(slitid, offsets) elif objid is not None: specobjs_list = self.stack_dict['specobjs_list'] nspec = specobjs_list[0][0].TRACE_SPAT.shape[0] # Grab the traces, flux, wavelength and noise for this slit and objid. ref_trace_stack = np.zeros((nspec, nexp), dtype=float) for iexp, sobjs in enumerate(specobjs_list): ithis = (sobjs.ECH_ORDERINDX == slitid) & (sobjs.ECH_OBJID == objid[iexp]) ref_trace_stack[:, iexp] = sobjs[ithis].TRACE_SPAT return ref_trace_stack else: msgs.error('You must input either offsets or an objid to determine the stack of reference traces') return None def instantiate_me(spec2d_files, spectrograph, **kwargs): """ Instantiate the CoAdd2d subclass appropriate for the provided spectrograph. The class must be subclassed from Reduce. See :class:`Reduce` for the description of the valid keyword arguments. Args: spectrograph (:class:`pypeit.spectrographs.spectrograph.Spectrograph`): The instrument used to collect the data to be reduced. tslits_dict: dict dictionary containing slit/order boundary information tilts (np.ndarray): Returns: :class:`PypeIt`: One of the classes with :class:`PypeIt` as its base. """ indx = [ c.__name__ == (spectrograph.pypeline + 'Coadd2d') for c in Coadd2d.__subclasses__() ] if not np.any(indx): msgs.error('Pipeline {0} is not defined!'.format(spectrograph.pypeline)) return Coadd2d.__subclasses__()[np.where(indx)[0][0]](spec2d_files, spectrograph, **kwargs) # TODO: Can we get rid of all the commented lines below? # Determine brightest object either if offsets were not input, or if automatic weight determiniation is desired # if offsets is None or auto_weights is True: # self.objid_bri, self.slitid_bri, self.snr_bar_bri = get_brightest_obj(self.stack_dict['specobjs_list'], self.nslits) # else: # self.objid_bri, self.slitid_bri, self.snr_bar_bri = None, None, None # Echelle can either stack with: # 1) input offsets or if offsets is None, it will find the objid of brightest trace and stack all orders relative to the trace of this object. # 2) specified weights, or if weights is None and auto_weights=True, # it will use wavelength dependent weights determined from the spectrum of the brightest objects objid on each order # if offsets is None: # If echelle and offsets is None get the brightest object and stack about that # # if 'MultiSlit' in pypeline: # msgs.info('Determining offsets using brightest object on slit: {:d} with avg SNR={:5.2f}'.format( # slitid_bri, np.mean(snr_bar_bri))) # thismask_stack = self.stack_dict['slitmask_stack'] == slitid_bri # trace_stack_bri = np.zeros((nspec, nexp)) # # TODO Need to think abbout whether we have multiple tslits_dict for each exposure or a single one # for iexp in range(nexp): # trace_stack_bri[:, iexp] = (stack_dict['tslits_dict']['slit_left'][:, slitid_bri] + # stack_dict['tslits_dict']['slit_righ'][:, slitid_bri]) / 2.0 # # Determine the wavelength grid that we will use for the current slit/order # wave_bins = get_wave_bins(thismask_stack, stack_dict['waveimg_stack'], wave_grid) # dspat_bins, dspat_stack = get_spat_bins(thismask_stack, trace_stack_bri) # # sci_list = [stack_dict['sciimg_stack'] - stack_dict['skymodel_stack'], stack_dict['waveimg_stack'], dspat_stack] # var_list = [utils.calc_ivar(stack_dict['sciivar_stack'])] # # sci_list_rebin, var_list_rebin, norm_rebin_stack, nsmp_rebin_stack = rebin2d( # wave_bins, dspat_bins, stack_dict['waveimg_stack'], dspat_stack, thismask_stack, # (stack_dict['mask_stack'] == 0), sci_list, var_list) # thismask = np.ones_like(sci_list_rebin[0][0, :, :], dtype=bool) # nspec_psuedo, nspat_psuedo = thismask.shape # slit_left = np.full(nspec_psuedo, 0.0) # slit_righ = np.full(nspec_psuedo, nspat_psuedo) # inmask = norm_rebin_stack > 0 # traces_rect = np.zeros((nspec_psuedo, nexp)) # sobjs = specobjs.SpecObjs() # specobj_dict = {'setup': 'unknown', 'slitid': 999, 'orderindx': 999, 'det': det, 'objtype': 'unknown', # 'pypeline': pypeline + '_coadd_2d'} # for iexp in range(nexp): # sobjs_exp, _ = extract.objfind(sci_list_rebin[0][iexp, :, :], thismask, slit_left, slit_righ, # inmask=inmask[iexp, :, :], fwhm=3.0, maxdev=2.0, ncoeff=3, sig_thresh=10.0, # nperslit=1, # debug_all=debug, specobj_dict=specobj_dict) # sobjs.add_sobj(sobjs_exp) # traces_rect[:, iexp] = sobjs_exp.trace_spat # # Now deterimine the offsets. Arbitrarily set the zeroth trace to the reference # med_traces_rect = np.median(traces_rect, axis=0) # offsets = med_traces_rect[0] - med_traces_rect # if debug: # for iexp in range(nexp): # plt.plot(traces_rect[:, iexp], linestyle='--', label='original trace') # plt.plot(traces_rect[:, iexp] + offsets[iexp], label='shifted traces') # plt.legend() # plt.show() # rms_sn, weights = optimal_weights(stack_dict['specobjs_list'], slitid_bri, objid_bri, # sn_smooth_npix, const_weights=True) # # TODO compute the variance in the registration of the traces and write that out? # # coadd_list = [] # for islit in range(self.nslits): # msgs.info('Performing 2d coadd for slit: {:d}/{:d}'.format(islit, self.nslits - 1)) # ref_trace_stack = reference_trace_stack(islit, self.stack_dict, offsets=offsets, objid=None) # # Determine the wavelength dependent optimal weights and grab the reference trace # if 'Echelle' in self.pypeline: # rms_sn, weights = optimal_weights(self.stack_dict['specobjs_list'], islit, objid_bri, sn_smooth_npix) # # thismask_stack = self.stack_dict['slitmask_stack'] == islit # # Perform the 2d coadd # coadd_dict = conmpute_coadd2d(ref_trace_stack, self.stack_dict['sciimg_stack'], self.stack_dict['sciivar_stack'], # self.stack_dict['skymodel_stack'], self.stack_dict['mask_stack'] == 0, # self.stack_dict['tilts_stack'], thismask_stack, self.stack_dict['waveimg_stack'], # self.wave_grid, weights=weights) # coadd_list.append(coadd_dict) # # nspec_vec = np.zeros(self.nslits, dtype=int) # nspat_vec = np.zeros(self.nslits, dtype=int) # for islit, cdict in enumerate(coadd_list): # nspec_vec[islit] = cdict['nspec'] # nspat_vec[islit] = cdict['nspat'] # # # Determine the size of the psuedo image # nspat_pad = 10 # nspec_psuedo = nspec_vec.max() # nspat_psuedo = np.sum(nspat_vec) + (nslits + 1) * nspat_pad # spec_vec_psuedo = np.arange(nspec_psuedo) # shape_psuedo = (nspec_psuedo, nspat_psuedo) # imgminsky_psuedo = np.zeros(shape_psuedo) # sciivar_psuedo = np.zeros(shape_psuedo) # waveimg_psuedo = np.zeros(shape_psuedo) # tilts_psuedo = np.zeros(shape_psuedo) # spat_img_psuedo = np.zeros(shape_psuedo) # nused_psuedo = np.zeros(shape_psuedo, dtype=int) # inmask_psuedo = np.zeros(shape_psuedo, dtype=bool) # wave_mid = np.zeros((nspec_psuedo, nslits)) # wave_mask = np.zeros((nspec_psuedo, nslits), dtype=bool) # wave_min = np.zeros((nspec_psuedo, nslits)) # wave_max = np.zeros((nspec_psuedo, nslits)) # dspat_mid = np.zeros((nspat_psuedo, nslits)) # # spat_left = nspat_pad # slit_left = np.zeros((nspec_psuedo, nslits)) # slit_righ = np.zeros((nspec_psuedo, nslits)) # spec_min1 = np.zeros(nslits) # spec_max1 = np.zeros(nslits) # # for islit, coadd_dict in enumerate(coadd_list): # spat_righ = spat_left + nspat_vec[islit] # ispec = slice(0, nspec_vec[islit]) # ispat = slice(spat_left, spat_righ) # imgminsky_psuedo[ispec, ispat] = coadd_dict['imgminsky'] # sciivar_psuedo[ispec, ispat] = coadd_dict['sciivar'] # waveimg_psuedo[ispec, ispat] = coadd_dict['waveimg'] # tilts_psuedo[ispec, ispat] = coadd_dict['tilts'] # # spat_psuedo is the sub-pixel image position on the rebinned psuedo image # inmask_psuedo[ispec, ispat] = coadd_dict['outmask'] # image_temp = (coadd_dict['dspat'] - coadd_dict['dspat_mid'][0] + spat_left) * coadd_dict['outmask'] # spat_img_psuedo[ispec, ispat] = image_temp # nused_psuedo[ispec, ispat] = coadd_dict['nused'] # wave_min[ispec, islit] = coadd_dict['wave_min'] # wave_max[ispec, islit] = coadd_dict['wave_max'] # wave_mid[ispec, islit] = coadd_dict['wave_mid'] # wave_mask[ispec, islit] = True # # Fill in the rest of the wave_mid with the corresponding points in the wave_grid # wave_this = wave_mid[wave_mask[:, islit], islit] # ind_upper = np.argmin(np.abs(wave_grid_mid - np.max(wave_this.max()))) + 1 # if nspec_vec[islit] != nspec_psuedo: # wave_mid[nspec_vec[islit]:, islit] = wave_grid_mid[ind_upper:ind_upper + (nspec_psuedo - nspec_vec[islit])] # # dspat_mid[ispat, islit] = coadd_dict['dspat_mid'] # slit_left[:, islit] = np.full(nspec_psuedo, spat_left) # slit_righ[:, islit] = np.full(nspec_psuedo, spat_righ) # spec_max1[islit] = nspec_vec[islit] - 1 # spat_left = spat_righ + nspat_pad # # slitcen = (slit_left + slit_righ) / 2.0 # tslits_dict_psuedo = dict(slit_left=slit_left, slit_righ=slit_righ, slitcen=slitcen, # nspec=nspec_psuedo, nspat=nspat_psuedo, pad=0, # nslits=self.nslits, binspectral=1, binspatial=1, spectrograph=spectrograph.spectrograph, # spec_min=spec_min1, spec_max=spec_max1, # maskslits=np.zeros(slit_left.shape[1], dtype=np.bool)) # # slitmask_psuedo = pixels.tslits2mask(tslits_dict_psuedo) # # This is a kludge to deal with cases where bad wavelengths result in large regions where the slit is poorly sampled, # # which wreaks havoc on the local sky-subtraction # min_slit_frac = 0.70 # spec_min = np.zeros(self.nslits) # spec_max = np.zeros(self.nslits) # for islit in range(self.nslits): # slit_width = np.sum(inmask_psuedo * (slitmask_psuedo == islit), axis=1) # slit_width_img = np.outer(slit_width, np.ones(nspat_psuedo)) # med_slit_width = np.median(slit_width_img[slitmask_psuedo == islit]) # nspec_eff = np.sum(slit_width > min_slit_frac * med_slit_width) # nsmooth = int(np.fmax(np.ceil(nspec_eff * 0.02), 10)) # slit_width_sm = scipy.ndimage.filters.median_filter(slit_width, size=nsmooth, mode='reflect') # igood = (slit_width_sm > min_slit_frac * med_slit_width) # spec_min[islit] = spec_vec_psuedo[igood].min() # spec_max[islit] = spec_vec_psuedo[igood].max() # bad_pix = (slit_width_img < min_slit_frac * med_slit_width) & (slitmask_psuedo == islit) # inmask_psuedo[bad_pix] = False # # # Update with tslits_dict_psuedo # tslits_dict_psuedo['spec_min'] = spec_min # tslits_dict_psuedo['spec_max'] = spec_max # slitmask_psuedo = pixels.tslits2mask(tslits_dict_psuedo) # # # Make a fake bitmask from the outmask. We are kludging the crmask to be the outmask_psuedo here, and setting the bpm to # # be good everywhere # # mask = processimages.ProcessImages.build_mask(imgminsky_psuedo, sciivar_psuedo, np.invert(inmask_psuedo), # # np.zeros_like(inmask_psuedo), slitmask=slitmask_psuedo) # # # Generate a ScienceImage # sciImage = scienceimage.ScienceImage.from_images(self.spectrograph, det, # self.par['scienceframe']['process'], # np.zeros_like(inmask_psuedo), # Dummy bpm # imgminsky_psuedo, sciivar_psuedo, # np.zeros_like(inmask_psuedo), # Dummy rn2img # crmask=np.invert(inmask_psuedo)) # sciImage.build_mask(slitmask=slitmask_psuedo) # # redux = reduce.instantiate_me(sciImage, self.spectrograph, tslits_dict_psuedo, par, tilts_psuedo, ir_redux=ir_redux, # objtype='science', binning=self.binning) # # if show: # redux.show('image', image=imgminsky_psuedo * (sciImage.mask == 0), chname='imgminsky', slits=True, clear=True) # # Object finding # sobjs_obj, nobj, skymask_init = redux.find_objects(sciImage.image, ir_redux=ir_redux, show_peaks=show_peaks, show=show) # # Local sky-subtraction # global_sky_psuedo = np.zeros_like(imgminsky_psuedo) # No global sky for co-adds since we go straight to local # skymodel_psuedo, objmodel_psuedo, ivarmodel_psuedo, outmask_psuedo, sobjs = \ # redux.local_skysub_extract(waveimg_psuedo, global_sky_psuedo, sobjs_obj, spat_pix=spat_psuedo, # model_noise=False, show_profile=show, show=show) # # if ir_redux: # sobjs.purge_neg() # # # Add the information about the fixed wavelength grid to the sobjs # for spec in sobjs: # spec.boxcar['WAVE_GRID_MASK'] = wave_mask[:, spec.slitid] # spec.boxcar['WAVE_GRID'] = wave_mid[:, spec.slitid] # spec.boxcar['WAVE_GRID_MIN'] = wave_min[:, spec.slitid] # spec.boxcar['WAVE_GRID_MAX'] = wave_max[:, spec.slitid] # # spec.optimal['WAVE_GRID_MASK'] = wave_mask[:, spec.slitid] # spec.optimal['WAVE_GRID'] = wave_mid[:, spec.slitid] # spec.optimal['WAVE_GRID_MIN'] = wave_min[:, spec.slitid] # spec.optimal['WAVE_GRID_MAX'] = wave_max[:, spec.slitid] # # # TODO Implement flexure and heliocentric corrections on the single exposure 1d reductions and apply them to the # # waveimage. Change the data model to accomodate a wavelength model for each image. # # Using the same implementation as in core/pypeit # # # Write out the psuedo master files to disk # master_key_dict = self.stack_dict['master_key_dict'] # # # TODO: These saving operations are a temporary kludge # waveImage = WaveImage(None, None, None, None, None, None, master_key=master_key_dict['arc'], # master_dir=master_dir) # waveImage.save(image=waveimg_psuedo) # # traceSlits = TraceSlits(None, None, master_key=master_key_dict['trace'], master_dir=master_dir) # traceSlits.save(tslits_dict=tslits_dict_psuedo) # return imgminsky_psuedo, sciivar_psuedo, skymodel_psuedo, objmodel_psuedo, ivarmodel_psuedo, outmask_psuedo, sobjs # # # # def get_brightest_obj(specobjs_list, nslits, pypeline): # """ # Utility routine to find the brightest object in each exposure given a specobjs_list. This currently only works # for echelle. # # Parameters: # specobjs_list: list # List of SpecObjs objects. # Optional Parameters: # echelle: bool, default=True # # Returns: # (objid, slitid, snr_bar), tuple # # objid: ndarray, int, shape (len(specobjs_list),) # Array of object ids representing the brightest object in each exposure # slitid (int): # Slit that highest S/N ratio object is on (only for pypeline=MultiSlit) # snr_bar: ndarray, float, shape (len(list),) # Average S/N over all the orders for this object # # """ # nexp = len(specobjs_list) # nspec = specobjs_list[0][0].shape[0] # if 'Echelle' in pypeline: # objid = np.zeros(nexp, dtype=int) # snr_bar = np.zeros(nexp) # #norders = specobjs_list[0].ech_orderindx.max() + 1 # for iexp, sobjs in enumerate(specobjs_list): # uni_objid = np.unique(sobjs.ech_objid) # nobjs = len(uni_objid) # order_snr = np.zeros((nslits, nobjs)) # for iord in range(nslits): # for iobj in range(nobjs): # ind = (sobjs.ech_orderindx == iord) & (sobjs.ech_objid == uni_objid[iobj]) # flux = sobjs[ind][0].optimal['COUNTS'] # ivar = sobjs[ind][0].optimal['COUNTS_IVAR'] # wave = sobjs[ind][0].optimal['WAVE'] # mask = sobjs[ind][0].optimal['MASK'] # rms_sn, weights = coadd1d.sn_weights(wave, flux, ivar, mask, const_weights=True) # order_snr[iord, iobj] = rms_sn # # # Compute the average SNR and find the brightest object # snr_bar_vec = np.mean(order_snr, axis=0) # objid[iexp] = uni_objid[snr_bar_vec.argmax()] # snr_bar[iexp] = snr_bar_vec[snr_bar_vec.argmax()] # slitid = None # else: # slit_snr_max = np.full((nslits, nexp), -np.inf) # objid_max = np.zeros((nslits, nexp),dtype=int) # # Loop over each exposure, slit, find the brighest object on that slit for every exposure # for iexp, sobjs in enumerate(specobjs_list): # for islit in range(nslits): # ithis = sobjs.slitid == islit # nobj_slit = np.sum(ithis) # if np.any(ithis): # objid_this = sobjs[ithis].objid # flux = np.zeros((nspec, nobj_slit)) # ivar = np.zeros((nspec, nobj_slit)) # wave = np.zeros((nspec, nobj_slit)) # mask = np.zeros((nspec, nobj_slit), dtype=bool) # for iobj, spec in enumerate(sobjs[ithis]): # flux[:, iobj] = spec.optimal['COUNTS'] # ivar[:,iobj] = spec.optimal['COUNTS_IVAR'] # wave[:,iobj] = spec.optimal['WAVE'] # mask[:,iobj] = spec.optimal['MASK'] # rms_sn, weights = coadd1d.sn_weights(wave, flux, ivar, mask, None, const_weights=True) # imax = np.argmax(rms_sn) # slit_snr_max[islit, iexp] = rms_sn[imax] # objid_max[islit, iexp] = objid_this[imax] # # Find the highest snr object among all the slits # slit_snr = np.mean(slit_snr_max, axis=1) # slitid = slit_snr.argmax() # snr_bar_mean = slit_snr[slitid] # snr_bar = slit_snr_max[slitid, :] # objid = objid_max[slitid, :] # if (snr_bar_mean == -np.inf): # msgs.error('You do not appear to have a unique reference object that was traced as the highest S/N ' # 'ratio on the same slit of every exposure') # # # Print out a report on the SNR # msg_string = msgs.newline() + '-------------------------------------' # msg_string += msgs.newline() + ' Summary for highest S/N object' # if 'MultiSlit' in pypeline: # msg_string += msgs.newline() + ' found on slitid = {:d} '.format(slitid) # # msg_string += msgs.newline() + '-------------------------------------' # msg_string += msgs.newline() + ' exp# S/N' # for iexp, snr in enumerate(snr_bar): # msg_string += msgs.newline() + ' {:d} {:5.2f}'.format(iexp, snr) # # msg_string += msgs.newline() + '-------------------------------------' # msgs.info(msg_string) # # return objid, slitid, snr_bar ``` #### File: pypeit/core/framematch.py ```python import os import re from collections import OrderedDict import numpy as np from pypeit import msgs from pypeit.bitmask import BitMask class FrameTypeBitMask(BitMask): """ Define a bitmask to set the frame types. Frame types can be arc, bias, dark, pinhole, pixelflat, science, standard, or trace. """ def __init__(self): # TODO: This needs to be an OrderedDict for now to ensure that # the bits assigned to each key is always the same. As of python # 3.7, normal dict types are guaranteed to preserve insertion # order as part of its data model. When/if we require python # 3.7, we can remove this (and other) OrderedDict usage in favor # of just a normal dict. frame_types = OrderedDict([ ('arc', 'Arc lamp observation used for wavelength calibration'), ('bias', 'Bias readout for detector bias subtraction'), ('dark', 'Shuttered exposure to measure dark current'), ('pinhole', 'Pinhole observation used for tracing slit centers'), ('pixelflat', 'Flat-field exposure used for pixel-to-pixel response'), ('science', 'On-sky observation of a primary target'), ('standard', 'On-sky observation of a flux calibrator'), ('trace', 'High-count exposure used to trace slit positions'), ('tilt', 'Exposure used to trace the tilt in the wavelength solution') ]) super(FrameTypeBitMask, self).__init__(list(frame_types.keys()), descr=list(frame_types.values())) def type_names(self, type_bits, join=True): """ Use the type bits to get the type names for each frame. .. todo:: - This should probably be a general function in :class:`pypeit.bitmask.BitMask` Args: type_bits (int, list, numpy.ndarray): The bit mask for each frame. bitmask (:class:`pypeit.bitmask.BitMask`, optional): The bit mask used to pull out the bit names. Uses :class:`FrameTypeBitMask` by default. join (:obj:`bool`, optional): Instead of providing a list of type names for items with multiple bits tripped, joint the list into a single, comma-separated string. Returns: list: List of the frame types for each frame. Each frame can have multiple types, meaning the 2nd axis is not necessarily the same length for all frames. """ _type_bits = np.atleast_1d(type_bits) out = [] for b in _type_bits: n = self.flagged_bits(b) if len(n) == 0: n = ['None'] out += [','.join(n)] if join else [n] return out[0] if isinstance(type_bits, np.integer) else out def check_frame_exptime(exptime, exprng): """ Check that the exposure time is within the provided range. Args: exptime (numpy.ndarray): Exposure times to check; allowed to be None. exprng (array-like): An array with the minimum and maximum exposure. The limits are *exclusive* and a limit of None means there is no limit. Returns: numpy.ndarray: A boolean array that is True for all times within the provided range. The value is False for any exposure time that is None or outside the provided range. Raises: ValueError: Raised if the length of `exprng` is not 2. """ # Instantiate with all true indx = exptime != None if exprng is None: # No range specified return indx if len(exprng) != 2: # Range not correctly input raise ValueError('exprng must have two elements.') if exprng[0] is not None: indx[indx] &= (exptime[indx] > exprng[0]) if exprng[1] is not None: indx[indx] &= (exptime[indx] < exprng[1]) return indx # TODO: May want to keep this in case we ever try to bring it back.... #def group_AB_frames(file_list, targets, coords, max_nod_sep=2): # """ # Group files into a ABBA or AB sequences. # # Args: # file_list (:obj:`list`): # A list of file names. # targets (:obj:`dict`): # A dictionary that matches each file to a unique target name. # The target name can be one of the files in the file list. # coords (:class:`astropy.coordinates.SkyCoord`): # The coordinates of all the exposures. Number of coordinates # should match the number of files. # max_nod_sep (:obj:`int`, optional): # The maximum separation (arcsec) between the 1st and 4th # frame sky coordinates in the ABBA sequence that is allowed # when identifying the sequence. Note that the default (2 # arcsec) is arbitrary. # # Returns: # list: # A list that matches the length of the input list of files. # Each file in an AB or ABBA sequence is identified with it's # pair in the sequence. # """ # # AB_frame = [''] * len(file_list) # # for key, value in targets.items(): # files = file_list[value] # # # Check here that there are more than 1 files and that the # # number of files is even # if len(files) == 1: # msgs.warn('Cannot perform ABBA reduction on targets with 1 file') # elif len(files) % 2 != 0: # msgs.warn('Expected an even number of files associated with target ' + key) # # # TODO: Check for increasing time? Files are read in numerical # # sequential order -- should be in order of increasing time # # anyway.. # # # Assume that the files are initially in ABBA order and proceed # ABBA_coords = coords[value] # # # Break files into ABBA groups (includes remainder if there are only 2 files) # file_groups = [files[i:i+4] for i in range(0,len(files),4)] # ABBA_groups = [ABBA_coords[i:i + 4] for i in range(0, len(ABBA_coords), 4)] # value_groups = [value[i:i + 4] for i in range(0, len(ABBA_coords), 4)] # # for group in range(len(ABBA_groups)): # if len(ABBA_groups[group]) == 2: # # Warn user that if there are any groups of only 2 # # files, assuming they are in order of A and B # msgs.info('Assuming these two frames are A and B frame:' # + msgs.newline() + file_groups[group][0] # + msgs.newline() + file_groups[group][1]) # elif len(ABBA_groups[group]) == 4: # # Check that frames 1, 4 of an ABBA sequence are at the # # same nod position (A) based on their RA, DEC # AA_sep = ABBA_coords[0].separation(ABBA_coords[-1]).arcsec # BB_sep = ABBA_coords[1].separation(ABBA_coords[2]).arcsec # if AA_sep > max_nod_sep or BB_sep > max_nod_sep: # if AA_sep > max_nod_sep: # msgs.warn('Separation between 1st and 4th frame in presumed ABBA sequence ' # 'have a large separation ({0}).'.format(AA_sep)) # if BB_sep > max_nod_sep: # msgs.warn('Separation between 2nd and 3rd frame in presumed ABBA sequence ' # 'have a large separation ({0}).'.format(BB_sep)) # msgs.warn('Check ABBA identification for target {0} group {1}:'.format( # target, group) + msgs.newline() + 'A:' + file_groups[group][0] # + msgs.newline() + 'B:' + file_groups[group][1] # + msgs.newline() + 'B:' + file_groups[group][2] # + msgs.newline() + 'A:' + file_groups[group][3]) # else: # msgs.error('BUG: This should never be reached.') # # # Flip group from ABBA to BABA, or AB to BA # AB_idx_flip = np.copy(value_groups[group]) # AB_idx_flip[::2], AB_idx_flip[1::2] \ # = value_groups[group][1::2], value_groups[group][::2] # # # Associate each file in the group with its AB pair # for i,j in enumerate(value_groups[group]): # AB_frame[j] = file_list[AB_idx_flip[i]] # # return AB_frame ``` #### File: pypeit/images/combineimage.py ```python import inspect import os import numpy as np from pypeit import msgs from pypeit.core import combine from pypeit.par import pypeitpar from pypeit import utils from pypeit.images import pypeitimage from pypeit.images import processrawimage from pypeit.images import rawimage from pypeit.images import maskimage from IPython import embed class CombineImage(object): """ Class to generate an image from one or more files (and other pieces). The core processing steps are handled by ProcessRawImage This object is mainly for combining multiple images Args: spectrograph (:class:`pypeit.spectrographs.spectrograph.Spectrograph`): Spectrograph used to take the data. det (:obj:`int`, optional): The 1-indexed detector number to process. par (:class:`pypeit.par.pypeitpar.ProcessImagesPar`): Parameters that dictate the processing of the images. See :class:`pypeit.par.pypeitpar.ProcessImagesPar` for the defaults. """ def __init__(self, spectrograph, det, par, files): # Required parameters self.spectrograph = spectrograph self.det = det if not isinstance(par, pypeitpar.ProcessImagesPar): msgs.error('Provided ParSet for must be type ProcessImagesPar.') self.par = par # This musts be named this way as it is frequently a child self.files = files if self.nfiles == 0: msgs.error('Combineimage requires a list of files to instantiate') def process_one(self, filename, process_steps, bias, pixel_flat=None, illum_flat=None, bpm=None): """ Process a single image Args: filename (str): File to process process_steps (list): List of processing steps bias (np.ndarray or None): Bias image pixel_flat (np.ndarray, optional): Flat image illum_flat (np.ndarray, optional): Illumination image bpm (np.ndarray, optional): Bad pixel mask Returns: :class:`pypeit.images.pypeitimage.PypeItImage`: """ # Load raw image rawImage = rawimage.RawImage(filename, self.spectrograph, self.det) # Process processrawImage = processrawimage.ProcessRawImage(rawImage, self.par, bpm=bpm) processedImage = processrawImage.process(process_steps, bias=bias, pixel_flat=pixel_flat, illum_flat=illum_flat) # Return return processedImage def run(self, process_steps, bias, pixel_flat=None, illum_flat=None, ignore_saturation=False, sigma_clip=True, bpm=None, sigrej=None, maxiters=5): """ Generate a PypeItImage from a list of images Mainly a wrapper to coadd2d.weighted_combine() This may also generate the ivar, crmask, rn2img and mask Args: process_steps (list): bias (np.ndarray or None): Bias image or instruction pixel_flat (np.ndarray, optional): Flat image illum_flat (np.ndarray, optional): Illumination image sigma_clip (bool, optional): Perform sigma clipping sigrej (int or float, optional): Rejection threshold for sigma clipping. Code defaults to determining this automatically based on the number of images provided. maxiters (int, optional): Number of iterations for the clipping bpm (np.ndarray, optional): Bad pixel mask. Held in ImageMask ignore_saturation (bool, optional): If True, turn off the saturation flag in the individual images before stacking This avoids having such values set to 0 which for certain images (e.g. flat calibrations) can have unintended consequences. Returns: :class:`pypeit.images.pypeitimage.PypeItImage`: """ # Loop on the files nimages = len(self.files) for kk, ifile in enumerate(self.files): # Process a single image pypeitImage = self.process_one(ifile, process_steps, bias, pixel_flat=pixel_flat, illum_flat=illum_flat, bpm=bpm) # Are we all done? if len(self.files) == 1: return pypeitImage elif kk == 0: # Get ready shape = (nimages, pypeitImage.bpm.shape[0], pypeitImage.bpm.shape[1]) img_stack = np.zeros(shape) ivar_stack= np.zeros(shape) rn2img_stack = np.zeros(shape) crmask_stack = np.zeros(shape, dtype=bool) # Mask bitmask = maskimage.ImageBitMask() mask_stack = np.zeros(shape, bitmask.minimum_dtype(asuint=True)) # Process img_stack[kk,:,:] = pypeitImage.image # Construct raw variance image and turn into inverse variance if pypeitImage.ivar is not None: ivar_stack[kk, :, :] = pypeitImage.ivar else: ivar_stack[kk, :, :] = 1. # Mask cosmic rays if pypeitImage.crmask is not None: crmask_stack[kk, :, :] = pypeitImage.crmask # Read noise squared image if pypeitImage.rn2img is not None: rn2img_stack[kk, :, :] = pypeitImage.rn2img # Final mask for this image # TODO This seems kludgy to me. Why not just pass ignore_saturation to process_one and ignore the saturation # when the mask is actually built, rather than untoggling the bit here if ignore_saturation: # Important for calibrations as we don't want replacement by 0 indx = pypeitImage.bitmask.flagged(pypeitImage.mask, flag=['SATURATION']) pypeitImage.mask[indx] = pypeitImage.bitmask.turn_off(pypeitImage.mask[indx], 'SATURATION') mask_stack[kk, :, :] = pypeitImage.mask # Coadd them weights = np.ones(nimages)/float(nimages) img_list = [img_stack] var_stack = utils.inverse(ivar_stack) var_list = [var_stack, rn2img_stack] img_list_out, var_list_out, outmask, nused = combine.weighted_combine( weights, img_list, var_list, (mask_stack == 0), sigma_clip=sigma_clip, sigma_clip_stack=img_stack, sigrej=sigrej, maxiters=maxiters) # Build the last one final_pypeitImage = pypeitimage.PypeItImage(img_list_out[0], ivar=utils.inverse(var_list_out[0]), bpm=pypeitImage.bpm, rn2img=var_list_out[1], crmask=np.invert(outmask), binning=pypeitImage.binning) nonlinear_counts = self.spectrograph.nonlinear_counts(self.det, apply_gain='apply_gain' in process_steps) final_pypeitImage.build_mask(final_pypeitImage.image, final_pypeitImage.ivar, saturation=nonlinear_counts, #self.spectrograph.detector[self.det-1]['saturation'], mincounts=self.spectrograph.detector[self.det-1]['mincounts']) # Return return final_pypeitImage @property def nfiles(self): """ Number of files in the files attribute Returns: int """ return len(self.files) if isinstance(self.files, (np.ndarray, list)) else 0 ``` #### File: pypeit/images/scienceimage.py ```python import inspect import os import numpy as np from pypeit import msgs from pypeit.core import procimg from pypeit.par import pypeitpar from pypeit import utils from pypeit.images import pypeitimage from pypeit.images import combineimage from IPython import embed class ScienceImage(pypeitimage.PypeItImage): """ Class to generate and hold a science image Child of PypeItImage Args: spectrograph (:class:`pypeit.spectrographs.spectrograph.Spectrograph`): Spectrograph used to take the data. det (:obj:`int`): The 1-indexed detector number to process. par (:class:`pypeit.par.pypeitpar.ProcessImagesPar`): Parameters that dictate the processing of the images. See :class:`pypeit.par.pypeitpar.ProcessImagesPar` for the defaults. image (np.ndarray): ivar (np.ndarray): bpm (np.ndarray): Bad pixel mask. Held in ImageMask rn2img (np.ndarray, optional): crmask (np.ndarray, optional): mask (np.ndarray, optional): files (list, optional): List of filenames that went into the loaded image """ frametype = 'science' def __init__(self, spectrograph, det, par, image, ivar, bpm, rn2img=None, crmask=None, mask=None, files=[]): # Init me pypeitimage.PypeItImage.__init__(self, image, ivar=ivar, rn2img=rn2img, bpm=bpm, crmask=crmask, mask=mask) # Required attribs self.spectrograph = spectrograph if not isinstance(par, pypeitpar.ProcessImagesPar): msgs.error('Provided ParSet for must be type ProcessImagesPar.') self.par = par self.det = det # Not required self.files = files def build_crmask(self, subtract_img=None): """ Call to ImageMask.build_crmask which will generate the cosmic ray mask Args: subtract_img (np.ndarray, optional): Image to be subtracted off of self.image prior to CR evaluation Returns: np.ndarray: Boolean array of self.crmask """ return super(ScienceImage, self).build_crmask(self.spectrograph, self.det, self.par, self.image, utils.inverse(self.ivar), subtract_img=subtract_img).copy() def build_mask(self, saturation=1e10, mincounts=-1e10, slitmask=None): """ Call to ImageMask.build_mask() This generates the full Image mask Args: saturation (float, optional): mincounts (float, optional): slitmask (np.ndarray, optional): Returns: np.ndarray: The full mask, held in self.mask """ super(ScienceImage, self).build_mask(self.image, self.ivar, saturation=saturation, mincounts=mincounts, slitmask=slitmask) return self.mask.copy() def update_mask_cr(self, subtract_img=None): """ Updates the CR mask values in self.mask through a call to ImageMask.build_crmask which generates a new CR mask and then a call to ImageMask.update_mask_cr() which updates self.mask Args: subtract_img (np.ndarray, optional): If provided, this is subtracted from self.image prior to CR masking """ # Generate the CR mask (and save in self.crmask) super(ScienceImage, self).build_crmask(self.spectrograph, self.det, self.par, self.image, utils.inverse(self.ivar), subtract_img=subtract_img).copy() # Now update the mask super(ScienceImage, self).update_mask_cr(self.crmask) def __sub__(self, other): """ Subtract a ScienceImage object from another Extras (e.g. ivar, masks) are included if they are present Args: other (ScienceImage): Returns: ScienceImage: """ if not isinstance(other, ScienceImage): msgs.error("Misuse of the subtract method") # Images newimg = self.image - other.image # Mask time outmask_comb = (self.mask == 0) & (other.mask == 0) # Variance if self.ivar is not None: new_ivar = utils.inverse(utils.inverse(self.ivar) + utils.inverse(other.ivar)) new_ivar[np.invert(outmask_comb)] = 0 else: new_ivar = None # RN2 if self.rn2img is not None: new_rn2 = self.rn2img + other.rn2img else: new_rn2 = None # Files new_files = self.files + other.files # Instantiate new_sciImg = ScienceImage(self.spectrograph, self.det, self.par, newimg, new_ivar, self.bpm, rn2img=new_rn2, files=new_files) #TODO: KW properly handle adding the bits crmask_diff = new_sciImg.build_crmask() # crmask_eff assumes evertything masked in the outmask_comb is a CR in the individual images new_sciImg.crmask = crmask_diff | np.invert(outmask_comb) # Note that the following uses the saturation and mincounts held in # self.spectrograph.detector[self.det-1] new_sciImg.build_mask() return new_sciImg def __repr__(self): repr = '<{:s}: files={}'.format(self.__class__.__name__, self.files) # Image rdict = {} for attr in ['image', 'ivar', 'rn2img', 'crmask', 'mask']: if getattr(self, attr) is not None: rdict[attr] = True else: rdict[attr] = False repr += ' images={}'.format(rdict) repr = repr + '>' return repr def build_from_file_list(spectrograph, det, par, bpm, file_list, bias, pixel_flat, illum_flat=None, sigma_clip=False, sigrej=None, maxiters=5): """ Build a ScienceImage from a file list using a default set of process steps This will also generate the ivar, crmask, rn2img and mask Args: spectrograph (:class:`pypeit.spectrographs.spectrograph.Spectrograph`): Spectrograph used to take the data. det (:obj:`int`): The 1-indexed detector number to process. par (:class:`pypeit.par.pypeitpar.ProcessImagesPar`): Parameters that dictate the processing of the images. See :class:`pypeit.par.pypeitpar.ProcessImagesPar` for the defaults. bpm (np.ndarray): Bad pixel mask. Held in ImageMask file_list (list): List of files bias (np.ndarray or None): Bias image pixel_flat (np.ndarray): Flat image illum_flat (np.ndarray, optional): Illumination image sigrej (int or float, optional): Rejection threshold for sigma clipping. Code defaults to determining this automatically based on the numberr of images provided. maxiters (int, optional): Returns: ScienceImage: """ # Process steps process_steps = procimg.init_process_steps(bias, par) process_steps += ['trim', 'apply_gain', 'orient'] if (pixel_flat is not None) or (illum_flat is not None): process_steps += ['flatten'] process_steps += ['extras'] if par['cr_reject']: process_steps += ['crmask'] combineImage = combineimage.CombineImage(spectrograph, det, par, file_list) pypeitImage = combineImage.run(process_steps, bias, bpm=bpm, pixel_flat=pixel_flat, illum_flat=illum_flat, sigma_clip=sigma_clip, sigrej=sigrej, maxiters=maxiters) # Instantiate slf = ScienceImage(spectrograph, det, par, pypeitImage.image, pypeitImage.ivar, pypeitImage.bpm, rn2img=pypeitImage.rn2img, crmask=pypeitImage.crmask, mask=pypeitImage.mask, files=file_list) # Return return slf ``` #### File: pypeit/scripts/object_finding.py ```python import os import argparse import numpy as np from astropy.table import Table from astropy.io import fits from pypeit.core.gui import object_find as gui_object_find from pypeit import msgs from pypeit.core.parse import get_dnum from pypeit.traceslits import TraceSlits from pypeit import edgetrace from pypeit.masterframe import MasterFrame from pypeit.core import trace_slits def parser(options=None): parser = argparse.ArgumentParser(description='Display sky subtracted, spec2d image in the' 'interactive object finding GUI. Run above' 'the Science/ folder', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('file', type = str, default=None, help='PYPEIT spec2d file') parser.add_argument("--list", default=False, help="List the extensions only?", action="store_true") parser.add_argument('--det', default=1, type=int, help="Detector") parser.add_argument("--old", default=False, action="store_true", help="Used old slit tracing") return parser.parse_args() if options is None else parser.parse_args(options) def parse_traces(hdulist_1d, det_nm): """Extract the relevant trace information """ traces = dict(traces=[], fwhm=[]) pkflux = [] for hdu in hdulist_1d: if det_nm in hdu.name: tbl = Table(hdu.data) trace = tbl['TRACE'] fwhm = tbl['FWHM'] obj_id = hdu.name.split('-')[0] traces['traces'].append(trace.copy()) traces['fwhm'].append(np.median(fwhm)) pkflux.append(np.median(tbl['BOX_COUNTS'])) traces['pkflux'] = np.array(pkflux) return traces def main(args): # List only? hdu = fits.open(args.file) head0 = hdu[0].header if args.list: hdu.info() return # Init sdet = get_dnum(args.det, prefix=False) # One detector, sky sub for now names = [hdu[i].name for i in range(len(hdu))] try: exten = names.index('DET{:s}-PROCESSED'.format(sdet)) except: # Backwards compatability msgs.error('Requested detector {:s} was not processed.\n' 'Maybe you chose the wrong one to view?\n' 'Set with --det= or check file contents with --list'.format(sdet)) sciimg = hdu[exten].data try: exten = names.index('DET{:s}-SKY'.format(sdet)) except: # Backwards compatability msgs.error('Requested detector {:s} has no sky model.\n' 'Maybe you chose the wrong one to view?\n' 'Set with --det= or check file contents with --list'.format(sdet)) skymodel = hdu[exten].data try: exten = names.index('DET{:s}-MASK'.format(sdet)) except ValueError: # Backwards compatability msgs.error('Requested detector {:s} has no bit mask.\n' 'Maybe you chose the wrong one to view?\n' 'Set with --det= or check file contents with --list'.format(sdet)) mask = hdu[exten].data frame = (sciimg - skymodel) * (mask == 0) mdir = head0['PYPMFDIR'] if not os.path.exists(mdir): mdir_base = os.path.join(os.getcwd(), os.path.basename(mdir)) msgs.warn('Master file dir: {0} does not exist. Using {1}'.format(mdir, mdir_base)) mdir = mdir_base trace_key = '{0}_{1:02d}'.format(head0['TRACMKEY'], args.det) trc_file = os.path.join(mdir, MasterFrame.construct_file_name('Trace', trace_key)) # TODO -- Remove this once the move to Edges is complete if args.old: tslits_dict = TraceSlits.load_from_file(trc_file)[0] else: trc_file = trc_file.replace('Trace', 'Edges')+'.gz' tslits_dict = edgetrace.EdgeTraceSet.from_file(trc_file).convert_to_tslits_dict() shape = (tslits_dict['nspec'], tslits_dict['nspat']) slit_ids = [trace_slits.get_slitid(shape, tslits_dict['slit_left'], tslits_dict['slit_righ'], ii)[0] for ii in range(tslits_dict['slit_left'].shape[1])] # Object traces spec1d_file = args.file.replace('spec2d', 'spec1d') det_nm = 'DET{:s}'.format(sdet) if os.path.isfile(spec1d_file): hdulist_1d = fits.open(spec1d_file) else: hdulist_1d = [] msgs.warn('Could not find spec1d file: {:s}'.format(spec1d_file) + msgs.newline() + ' No objects were extracted.') tslits_dict['objtrc'] = parse_traces(hdulist_1d, det_nm) # TODO :: Need to include standard star trace in the spec2d files std_trace = None # Extract some trace models fwhm = 2 # Start with some default value # Brightest object on slit trace_model_obj = None trace_model_dict = dict() if len(tslits_dict['objtrc']['pkflux']) > 0: smash_peakflux = tslits_dict['objtrc']['pkflux'] ibri = smash_peakflux.argmax() trace_model_obj = tslits_dict['objtrc']['traces'][ibri] fwhm = tslits_dict['objtrc']['fwhm'][ibri] trace_model_dict['object'] = dict(trace_model=trace_model_obj, fwhm=fwhm) # Standard star trace trace_model_dict['std'] = dict(trace_model=std_trace, fwhm=fwhm) # Trace of the slit edge trace_model_dict['slit'] = dict(trace_model=tslits_dict['slit_left'].copy(), fwhm=fwhm) tslits_dict['trace_model'] = trace_model_dict # Finally, initialise the GUI gui_object_find.initialise(args.det, frame, tslits_dict, None, printout=True, slit_ids=slit_ids) ``` #### File: pypeit/scripts/ql_keck_nires.py ```python import argparse from pypeit import msgs import warnings def parser(options=None): parser = argparse.ArgumentParser(description='Script to run PypeIt on a pair of NIRES files (A-B)') parser.add_argument('full_rawpath', type=str, help='Full path to the raw files') parser.add_argument('fileA', type=str, help='A frame') parser.add_argument('fileB', type=str, help='B frame') parser.add_argument('-b', '--box_radius', type=float, help='Set the radius for the boxcar extraction') if options is None: pargs = parser.parse_args() else: pargs = parser.parse_args(options) return pargs def main(pargs): import os import sys import numpy as np from IPython import embed from pypeit import pypeit from pypeit import pypeitsetup from pypeit.core import framematch # Setup data_files = [os.path.join(pargs.full_rawpath, pargs.fileA), os.path.join(pargs.full_rawpath,pargs.fileB)] ps = pypeitsetup.PypeItSetup(data_files, path='./', spectrograph_name='keck_nires') ps.build_fitstbl() # TODO -- Get the type_bits from 'science' bm = framematch.FrameTypeBitMask() file_bits = np.zeros(2, dtype=bm.minimum_dtype()) file_bits[0] = bm.turn_on(file_bits[0], ['arc', 'science', 'tilt']) file_bits[1] = bm.turn_on(file_bits[0], ['arc', 'science', 'tilt']) ps.fitstbl.set_frame_types(file_bits) ps.fitstbl.set_combination_groups() # Extras ps.fitstbl['setup'] = 'A' # A-B ps.fitstbl['bkg_id'] = [2,1] # Calibrations master_dir = os.getenv('NIRES_MASTERS') if master_dir is None: msgs.error("You need to set an Environmental variable NIRES_MASTERS that points at the Master Calibs") # Config the run cfg_lines = ['[rdx]'] cfg_lines += [' spectrograph = {0}'.format('keck_nires')] cfg_lines += [' redux_path = {0}'.format(os.path.join(os.getcwd(),'keck_nires_A'))] cfg_lines += ['[calibrations]'] cfg_lines += [' caldir = {0}'.format(master_dir)] cfg_lines += [' [[scienceframe]]'] cfg_lines += [' [[process]]'] cfg_lines += [' cr_reject = False'] cfg_lines += ['[scienceimage]'] cfg_lines += [' [[extraction]]'] cfg_lines += [' skip_optimal = True'] if pargs.box_radius is not None: # Boxcar radius cfg_lines += [' boxcar_radius = {0}'.format(pargs.box_radius)] cfg_lines += [' [[findobj]]'] cfg_lines += [' skip_second_find = True'] # Write ofiles = ps.fitstbl.write_pypeit('', configs=['A'], write_bkg_pairs=True, cfg_lines=cfg_lines) if len(ofiles) > 1: msgs.error("Bad things happened..") # Instantiate the main pipeline reduction object pypeIt = pypeit.PypeIt(ofiles[0], verbosity=2, reuse_masters=True, overwrite=True, logname='nires_proc_AB.log', show=False) # Run pypeIt.reduce_all() msgs.info('Data reduction complete') # QA HTML msgs.info('Generating QA HTML') pypeIt.build_qa() return 0 ``` #### File: pypeit/spectrographs/keck_deimos.py ```python import glob import re import os import numpy as np import warnings from scipy import interpolate from astropy.io import fits from pypeit import msgs from pypeit import telescopes from pypeit.core import parse from pypeit.core import framematch from pypeit.par import pypeitpar from pypeit.spectrographs import spectrograph from pypeit.utils import index_of_x_eq_y from pypeit.spectrographs.slitmask import SlitMask from pypeit.spectrographs.opticalmodel import ReflectionGrating, OpticalModel, DetectorMap from IPython import embed class KeckDEIMOSSpectrograph(spectrograph.Spectrograph): """ Child to handle Keck/DEIMOS specific code """ def __init__(self): # Get it started super(KeckDEIMOSSpectrograph, self).__init__() self.spectrograph = 'keck_deimos' self.telescope = telescopes.KeckTelescopePar() self.camera = 'DEIMOS' self.detector = [ # Detector 1 pypeitpar.DetectorPar( dataext = 1, specaxis = 0, specflip = False, xgap = 0., ygap = 0., ysize = 1., platescale = 0.1185, darkcurr = 4.19, saturation = 65535., nonlinear = 0.95, # Changed by JFH from 0.86 to 0.95 numamplifiers = 1, gain = 1.226, ronoise = 2.570, datasec = '', # These are provided by read_deimos oscansec = '', suffix = '_01' ), # Detector 2 pypeitpar.DetectorPar( dataext = 2, specaxis = 0, specflip = False, xgap = 0., ygap = 0., ysize = 1., platescale = 0.1185, darkcurr = 3.46, saturation = 65535., nonlinear = 0.95, numamplifiers = 1, gain = 1.188, ronoise = 2.491, datasec = '', # These are provided by read_deimos oscansec = '', suffix = '_02' ), # Detector 3 pypeitpar.DetectorPar( dataext = 3, specaxis = 0, specflip = False, xgap = 0., ygap = 0., ysize = 1., platescale = 0.1185, darkcurr = 4.03, saturation = 65535., nonlinear = 0.95, # Changed by JFH from 0.86 to 0.95 numamplifiers = 1, gain = 1.248, ronoise = 2.618, datasec = '', # These are provided by read_deimos oscansec = '', suffix = '_03' ), # Detector 4 pypeitpar.DetectorPar( dataext = 4, specaxis = 0, specflip = False, xgap = 0., ygap = 0., ysize = 1., platescale = 0.1185, darkcurr = 3.80, saturation = 65535., nonlinear = 0.95, # Changed by JFH from 0.86 to 0.95 numamplifiers = 1, gain = 1.220, ronoise = 2.557, datasec = '', # These are provided by read_deimos oscansec = '', suffix = '_04' ), # Detector 5 pypeitpar.DetectorPar( dataext = 5, specaxis = 0, specflip = False, xgap = 0., ygap = 0., ysize = 1., platescale = 0.1185, darkcurr = 4.71, saturation = 65535., nonlinear = 0.95, # Changed by JFH from 0.86 to 0.95 numamplifiers = 1, gain = 1.184, ronoise = 2.482, datasec = '', # These are provided by read_deimos oscansec = '', suffix = '_05' ), # Detector 6 pypeitpar.DetectorPar( dataext = 6, specaxis = 0, specflip = False, xgap = 0., ygap = 0., ysize = 1., platescale = 0.1185, darkcurr = 4.28, saturation = 65535., nonlinear = 0.95, # Changed by JFH from 0.86 to 0.95 numamplifiers = 1, gain = 1.177, ronoise = 2.469, datasec = '', # These are provided by read_deimos oscansec = '', suffix = '_06' ), # Detector 7 pypeitpar.DetectorPar( dataext = 7, specaxis = 0, specflip = False, xgap = 0., ygap = 0., ysize = 1., platescale = 0.1185, darkcurr = 3.33, saturation = 65535., nonlinear = 0.95, # Changed by JFH from 0.86 to 0.95 numamplifiers = 1, gain = 1.201, ronoise = 2.518, datasec = '', # These are provided by read_deimos oscansec = '', suffix = '_07'), # Detector 8 pypeitpar.DetectorPar( dataext = 8, specaxis = 0, specflip = False, xgap = 0., ygap = 0., ysize = 1., platescale = 0.1185, darkcurr = 3.69, saturation = 65535., nonlinear = 0.95, # Changed by JFH from 0.86 to 0.95 numamplifiers = 1, gain = 1.230, ronoise = 2.580, datasec = '', # These are provided by read_deimos oscansec = '', suffix = '_08' )] self.numhead = 9 # Uses default timeunit # Uses default primary_hdrext # self.sky_file ? # Don't instantiate these until they're needed self.grating = None self.optical_model = None self.detector_map = None # TODO: I think all of the default_pypeit_par methods should be # static. nonlinear_counts shouldn't need to be a parameter because # it's held by the spectrograph class, right? def default_pypeit_par(self): """ Set default parameters for Keck DEIMOS reductions. """ par = pypeitpar.PypeItPar() par['rdx']['spectrograph'] = 'keck_deimos' par['flexure']['method'] = 'boxcar' # Set wave tilts order par['calibrations']['slitedges']['edge_thresh'] = 50. par['calibrations']['slitedges']['fit_order'] = 3 par['calibrations']['slitedges']['minimum_slit_gap'] = 0.25 par['calibrations']['slitedges']['minimum_slit_length'] = 4. par['calibrations']['slitedges']['sync_clip'] = False # 1D wavelength solution par['calibrations']['wavelengths']['lamps'] = ['ArI','NeI','KrI','XeI'] par['calibrations']['wavelengths']['nonlinear_counts'] \ = self.detector[0]['nonlinear'] * self.detector[0]['saturation'] par['calibrations']['wavelengths']['n_first'] = 3 par['calibrations']['wavelengths']['match_toler'] = 2.5 # Alter the method used to combine pixel flats par['calibrations']['pixelflatframe']['process']['combine'] = 'median' par['calibrations']['pixelflatframe']['process']['sig_lohi'] = [10.,10.] # Set the default exposure time ranges for the frame typing par['calibrations']['biasframe']['exprng'] = [None, 2] par['calibrations']['darkframe']['exprng'] = [999999, None] # No dark frames par['calibrations']['pinholeframe']['exprng'] = [999999, None] # No pinhole frames par['calibrations']['pixelflatframe']['exprng'] = [None, 30] par['calibrations']['traceframe']['exprng'] = [None, 30] par['scienceframe']['exprng'] = [30, None] # LACosmics parameters par['scienceframe']['process']['sigclip'] = 4.0 par['scienceframe']['process']['objlim'] = 1.5 return par def config_specific_par(self, scifile, inp_par=None): """ Modify the PypeIt parameters to hard-wired values used for specific instrument configurations. .. todo:: Document the changes made! Args: scifile (str): File to use when determining the configuration and how to adjust the input parameters. inp_par (:class:`pypeit.par.parset.ParSet`, optional): Parameter set used for the full run of PypeIt. If None, use :func:`default_pypeit_par`. Returns: :class:`pypeit.par.parset.ParSet`: The PypeIt paramter set adjusted for configuration specific parameter values. """ par = self.default_pypeit_par() if inp_par is None else inp_par headarr = self.get_headarr(scifile) # Turn PCA off for long slits # TODO: I'm a bit worried that this won't catch all # long-slits... if ('Long' in self.get_meta_value(headarr, 'decker')) or ( 'LVMslit' in self.get_meta_value(headarr, 'decker')): par['calibrations']['slitedges']['sync_predict'] = 'nearest' # Templates if self.get_meta_value(headarr, 'dispname') == '600ZD': par['calibrations']['wavelengths']['method'] = 'full_template' par['calibrations']['wavelengths']['reid_arxiv'] = 'keck_deimos_600.fits' par['calibrations']['wavelengths']['lamps'] += ['CdI', 'ZnI', 'HgI'] elif self.get_meta_value(headarr, 'dispname') == '830G': par['calibrations']['wavelengths']['method'] = 'full_template' par['calibrations']['wavelengths']['reid_arxiv'] = 'keck_deimos_830G.fits' elif self.get_meta_value(headarr, 'dispname') == '1200G': par['calibrations']['wavelengths']['method'] = 'full_template' par['calibrations']['wavelengths']['reid_arxiv'] = 'keck_deimos_1200G.fits' # FWHM binning = parse.parse_binning(self.get_meta_value(headarr, 'binning')) par['calibrations']['wavelengths']['fwhm'] = 6.0 / binning[1] # Return return par def init_meta(self): """ Generate the meta data dict Note that the children can add to this Returns: self.meta: dict (generated in place) """ meta = {} # Required (core) meta['ra'] = dict(ext=0, card='RA') meta['dec'] = dict(ext=0, card='DEC') meta['target'] = dict(ext=0, card='TARGNAME') meta['decker'] = dict(ext=0, card='SLMSKNAM') meta['binning'] = dict(card=None, compound=True) meta['mjd'] = dict(ext=0, card='MJD-OBS') meta['exptime'] = dict(ext=0, card='ELAPTIME') meta['airmass'] = dict(ext=0, card='AIRMASS') meta['dispname'] = dict(ext=0, card='GRATENAM') # Extras for config and frametyping meta['hatch'] = dict(ext=0, card='HATCHPOS') meta['dispangle'] = dict(card=None, compound=True, rtol=1e-5) # Image type meta['idname'] = dict(ext=0, card='OBSTYPE') # Lamps meta['lampstat01'] = dict(ext=0, card='LAMPS') # Ingest self.meta = meta def compound_meta(self, headarr, meta_key): """ Args: headarr: list meta_key: str Returns: value """ if meta_key == 'binning': binspatial, binspec = parse.parse_binning(headarr[0]['BINNING']) binning = parse.binning2string(binspec, binspatial) return binning elif meta_key == 'dispangle': if headarr[0]['GRATEPOS'] == 3: return headarr[0]['G3TLTWAV'] elif headarr[0]['GRATEPOS'] == 4: return headarr[0]['G4TLTWAV'] else: msgs.warn('This is probably a problem. Non-standard DEIMOS GRATEPOS={0}.'.format(headarr[0]['GRATEPOS'])) else: msgs.error("Not ready for this compound meta") def configuration_keys(self): """ Return the metadata keys that defines a unique instrument configuration. This list is used by :class:`pypeit.metadata.PypeItMetaData` to identify the unique configurations among the list of frames read for a given reduction. Returns: list: List of keywords of data pulled from meta """ return ['dispname', 'decker', 'binning', 'dispangle'] def check_frame_type(self, ftype, fitstbl, exprng=None): """ Check for frames of the provided type. """ good_exp = framematch.check_frame_exptime(fitstbl['exptime'], exprng) if ftype == 'science': #return good_exp & (fitstbl['lampstat01'] == 'Off') & (fitstbl['hatch'] == 'open') return good_exp & (fitstbl['lampstat01'] == 'Off') & (fitstbl['hatch'] == 'open') if ftype == 'bias': return good_exp & (fitstbl['lampstat01'] == 'Off') & (fitstbl['hatch'] == 'closed') if ftype in ['pixelflat', 'trace']: # Flats and trace frames are typed together return good_exp & (fitstbl['idname'] == 'IntFlat') & (fitstbl['hatch'] == 'closed') if ftype in ['pinhole', 'dark']: # Don't type pinhole or dark frames return np.zeros(len(fitstbl), dtype=bool) if ftype in ['arc', 'tilt']: return good_exp & (fitstbl['idname'] == 'Line') & (fitstbl['hatch'] == 'closed') msgs.warn('Cannot determine if frames are of type {0}.'.format(ftype)) return np.zeros(len(fitstbl), dtype=bool) # TODO: We should aim to get rid of this... def idname(self, ftype): """ Return the `idname` for the selected frame type for this instrument. Args: ftype (str): File type, which should be one of the keys in :class:`pypeit.core.framematch.FrameTypeBitMask`. Returns: str: The value of `idname` that should be available in the `PypeItMetaData` instance that identifies frames of this type. """ # TODO: Fill in the rest of these. name = { 'arc': 'Line', 'tilt': None, 'bias': None, 'dark': None, 'pinhole': None, 'pixelflat': 'IntFlat', 'science': 'Object', 'standard': None, 'trace': 'IntFlat' } return name[ftype] def get_rawimage(self, raw_file, det): """ Read a raw DEIMOS data frame (one or more detectors). Data are unpacked from the multi-extension HDU. Function is based :func:`pypeit.spectrographs.keck_lris.read_lris`, which was based on the IDL procedure ``readmhdufits.pro``. Parameters ---------- raw_file : str Filename Returns ------- array : ndarray Combined image hdu: HDUList sections : tuple List of datasec, oscansec sections """ # Check for file; allow for extra .gz, etc. suffix fil = glob.glob(raw_file + '*') if len(fil) != 1: msgs.error('Found {0} files matching {1}'.format(len(fil), raw_file + '*')) # Read try: msgs.info("Reading DEIMOS file: {:s}".format(fil[0])) except AttributeError: print("Reading DEIMOS file: {:s}".format(fil[0])) hdu = fits.open(fil[0]) head0 = hdu[0].header # Get post, pre-pix values postpix = head0['POSTPIX'] detlsize = head0['DETLSIZE'] x0, x_npix, y0, y_npix = np.array(parse.load_sections(detlsize)).flatten() # Create final image if det is None: image = np.zeros((x_npix, y_npix + 4 * postpix)) rawdatasec_img = np.zeros_like(image, dtype=int) oscansec_img = np.zeros_like(image, dtype=int) # get the x and y binning factors... binning = head0['BINNING'] if binning != '1,1': msgs.error("This binning for DEIMOS might not work. But it might..") # DEIMOS detectors nchip = 8 if det is None: chips = range(nchip) else: chips = [det - 1] # Indexing starts at 0 here # Loop for tt in chips: data, oscan = deimos_read_1chip(hdu, tt + 1) # One detector?? if det is not None: image = np.zeros((data.shape[0], data.shape[1] + oscan.shape[1])) rawdatasec_img = np.zeros_like(image, dtype=int) oscansec_img = np.zeros_like(image, dtype=int) # Indexing x1, x2, y1, y2, o_x1, o_x2, o_y1, o_y2 = indexing(tt, postpix, det=det) # Fill image[y1:y2, x1:x2] = data rawdatasec_img[y1:y2, x1:x2] = 1 # Amp image[o_y1:o_y2, o_x1:o_x2] = oscan oscansec_img[o_y1:o_y2, o_x1:o_x2] = 1 # Amp # Return exptime = hdu[self.meta['exptime']['ext']].header[self.meta['exptime']['card']] return image, hdu, exptime, rawdatasec_img, oscansec_img #return image, hdu, (dsec, osec) ''' def load_raw_frame(self, raw_file, det=None): """ Wrapper to the raw image reader for DEIMOS Args: raw_file: str, filename det: int, REQUIRED Desired detector **null_kwargs: Captured and never used Returns: raw_img: ndarray Raw image; likely unsigned int head0: Header """ raw_img, hdu, _ = read_deimos(raw_file, det=det) return raw_img, hdu ''' ''' def get_image_section(self, inp=None, det=1, section='datasec'): """ Return a string representation of a slice defining a section of the detector image. Overwrites base class function Args: inp (:obj:`str`, `astropy.io.fits.Header`_, optional): String providing the file name to read, or the relevant header object. Default is None, meaning that the detector attribute must provide the image section itself, not the header keyword. det (:obj:`int`, optional): 1-indexed detector number. section (:obj:`str`, optional): The section to return. Should be either 'datasec' or 'oscansec', according to the :class:`pypeitpar.DetectorPar` keywords. Returns: tuple: Returns three objects: (1) A list of string representations for the image sections, one string per amplifier. The sections are *always* returned in PypeIt order: spectral then spatial. (2) Boolean indicating if the slices are one indexed. (3) Boolean indicating if the slices should include the last pixel. The latter two are always returned as True following the FITS convention. """ # Read the file if inp is None: msgs.error('Must provide Keck DEIMOS file or hdulist to get image section.') # Read em shape, datasec, oscansec, _ = deimos_image_sections(inp, det) if section == 'datasec': return datasec, False, False elif section == 'oscansec': return oscansec, False, False else: raise ValueError('Unrecognized keyword: {0}'.format(section)) def get_raw_image_shape(self, hdulist, det=None, **null_kwargs): """ Overrides :class:`Spectrograph.get_image_shape` for LRIS images. Must always provide a file. """ # Do it self._check_detector() shape, datasec, oscansec, _ = deimos_image_sections(hdulist, det) self.naxis = shape return self.naxis ''' def bpm(self, filename, det, shape=None): """ Override parent bpm function with BPM specific to DEIMOS. .. todo:: Allow for binning changes. Parameters ---------- det : int, REQUIRED **null_kwargs: Captured and never used Returns ------- bpix : ndarray 0 = ok; 1 = Mask """ bpm_img = self.empty_bpm(filename, det, shape=shape) if det == 1: bpm_img[:,1052:1054] = 1 elif det == 2: bpm_img[:,0:4] = 1 bpm_img[:,376:381] = 1 bpm_img[:,489] = 1 bpm_img[:,1333:1335] = 1 bpm_img[:,2047] = 1 elif det == 3: bpm_img[:,0:4] = 1 bpm_img[:,221] = 1 bpm_img[:,260] = 1 bpm_img[:,366] = 1 bpm_img[:,816:819] = 1 bpm_img[:,851] = 1 bpm_img[:,940] = 1 bpm_img[:,1167] = 1 bpm_img[:,1280] = 1 bpm_img[:,1301:1303] = 1 bpm_img[:,1744:1747] = 1 bpm_img[:,-4:] = 1 elif det == 4: bpm_img[:,0:4] = 1 bpm_img[:,47] = 1 bpm_img[:,744] = 1 bpm_img[:,790:792] = 1 bpm_img[:,997:999] = 1 elif det == 5: bpm_img[:,25:27] = 1 bpm_img[:,128:130] = 1 bpm_img[:,1535:1539] = 1 elif det == 7: bpm_img[:,426:428] = 1 bpm_img[:,676] = 1 bpm_img[:,1176:1178] = 1 elif det == 8: bpm_img[:,440] = 1 bpm_img[:,509:513] = 1 bpm_img[:,806] = 1 bpm_img[:,931:934] = 1 return bpm_img def get_slitmask(self, filename): """ Parse the slitmask data from a DEIMOS file into a :class:`pypeit.spectrographs.slitmask.SlitMask` object. Args: filename (:obj:`str`): Name of the file to read. """ # Open the file hdu = fits.open(filename) # Build the object data # - Find the index of the object IDs in the slit-object # mapping that match the object catalog mapid = hdu['SlitObjMap'].data['ObjectID'] catid = hdu['ObjectCat'].data['ObjectID'] indx = index_of_x_eq_y(mapid, catid) # - Pull out the slit ID, object ID, and object coordinates objects = np.array([hdu['SlitObjMap'].data['dSlitId'][indx].astype(float), catid.astype(float), hdu['ObjectCat'].data['RA_OBJ'], hdu['ObjectCat'].data['DEC_OBJ']]).T # - Only keep the objects that are in the slit-object mapping objects = objects[mapid[indx] == catid] # Match the slit IDs in DesiSlits to those in BluSlits indx = index_of_x_eq_y(hdu['DesiSlits'].data['dSlitId'], hdu['BluSlits'].data['dSlitId'], strict=True) # Instantiate the slit mask object and return it self.slitmask = SlitMask(np.array([hdu['BluSlits'].data['slitX1'], hdu['BluSlits'].data['slitY1'], hdu['BluSlits'].data['slitX2'], hdu['BluSlits'].data['slitY2'], hdu['BluSlits'].data['slitX3'], hdu['BluSlits'].data['slitY3'], hdu['BluSlits'].data['slitX4'], hdu['BluSlits'].data['slitY4']]).T.reshape(-1,4,2), slitid=hdu['BluSlits'].data['dSlitId'], align=hdu['DesiSlits'].data['slitTyp'][indx] == 'A', science=hdu['DesiSlits'].data['slitTyp'][indx] == 'P', onsky=np.array([hdu['DesiSlits'].data['slitRA'][indx], hdu['DesiSlits'].data['slitDec'][indx], hdu['DesiSlits'].data['slitLen'][indx], hdu['DesiSlits'].data['slitWid'][indx], hdu['DesiSlits'].data['slitLPA'][indx]]).T, objects=objects) return self.slitmask def get_grating(self, filename): """ Taken from xidl/DEEP2/spec2d/pro/deimos_omodel.pro and xidl/DEEP2/spec2d/pro/deimos_grating.pro """ hdu = fits.open(filename) # Grating slider slider = hdu[0].header['GRATEPOS'] # TODO: Add test for slider # Central wavelength, grating angle, and tilt position if slider == 3: central_wave = hdu[0].header['G3TLTWAV'] # Not used #angle = (hdu[0].header['G3TLTRAW'] + 29094)/2500 tilt = hdu[0].header['G3TLTVAL'] elif slider in [2,4]: # Slider is 2 or 4 central_wave = hdu[0].header['G4TLTWAV'] # Not used #angle = (hdu[0].header['G4TLTRAW'] + 40934)/2500 tilt = hdu[0].header['G4TLTVAL'] else: raise ValueError('Slider has unknown value: {0}'.format(slider)) # Ruling name = hdu[0].header['GRATENAM'] if 'Mirror' in name: ruling = 0 else: # Remove all non-numeric characters from the name and # convert to a floating point number ruling = float(re.sub('[^0-9]', '', name)) # Adjust if abs(ruling-1200) < 0.5: ruling = 1200.06 elif abs(ruling-831) < 2: ruling = 831.90 # Get the orientation of the grating roll, yaw, tilt = KeckDEIMOSSpectrograph._grating_orientation(slider, ruling, tilt) self.grating = None if ruling == 0 else ReflectionGrating(ruling, tilt, roll, yaw, central_wave=central_wave) return self.grating def get_detector_map(self): if self.detector_map is None: self.detector_map = DEIMOSDetectorMap() return self.detector_map @staticmethod def _grating_orientation(slider, ruling, tilt): """ Return the roll, yaw, and tilt of the grating. Numbers are hardwired. From xidl/DEEP2/spec2d/pro/omodel_params.pro """ if slider == 2 and int(ruling) == 0: # Mirror in place of the grating return 0., 0., -19.423 if slider == 2: raise ValueError('Ruling should be 0 if slider in position 2.') # Use the calibrated coefficients _ruling = int(ruling) if int(ruling) in [600, 831, 900, 1200] else 'other' orientation_coeffs = {3: { 600: [ 0.145, -0.008, 5.6e-4, -0.182], 831: [ 0.143, 0.000, 5.6e-4, -0.182], 900: [ 0.141, 0.000, 5.6e-4, -0.134], 1200: [ 0.145, 0.055, 5.6e-4, -0.181], 'other': [ 0.145, 0.000, 5.6e-4, -0.182] }, 4: { 600: [-0.065, 0.063, 6.9e-4, -0.298], 831: [-0.034, 0.060, 6.9e-4, -0.196], 900: [-0.064, 0.083, 6.9e-4, -0.277], 1200: [-0.052, 0.122, 6.9e-4, -0.294], 'other': [-0.050, 0.080, 6.9e-4, -0.250] } } # Return calbirated roll, yaw, and tilt return orientation_coeffs[slider][_ruling][0], \ orientation_coeffs[slider][_ruling][1], \ tilt*(1-orientation_coeffs[slider][_ruling][2]) \ + orientation_coeffs[slider][_ruling][3] def mask_to_pixel_coordinates(self, x=None, y=None, wave=None, order=1, filename=None, corners=False): r""" Convert the mask coordinates in mm to pixel coordinates on the DEIMOS detector. If not already instantiated, the :attr:`slitmask`, :attr:`grating`, :attr:`optical_model`, and :attr:`detector_map` attributes are instantiated. If these are not instantiated, a file must be provided. If no arguments are provided, the function expects these attributes to be set and will output the pixel coordinates for the centers of the slits in the :attr:`slitmask` at the central wavelength of the :attr:`grating`. Method generally expected to be executed in one of two modes: - Use the `filename` to read the slit mask and determine the detector positions at the central wavelength. - Specifically map the provided x, y, and wave values to the detector. If arrays are provided for both `x`, `y`, and `wave`, the returned objects have the shape :math:`N_\lambda\times S_x`, where :math:`S_x` is the shape of the x and y arrays. Args: x (array-like, optional): The x coordinates in the slit mask in mm. Default is to use the center of the slits in the :attr:`slitmask`. y (array-like, optional): The y coordinates in the slit mask in mm. Default is to use the center of the slits in the :attr:`slitmask`. wave (array-like, optional): The wavelengths in angstroms for the propagated coordinates. Default is to use the central wavelength of the :attr:`grating`. order (:obj:`int`, optional): The grating order. Default is 1. filename (:obj:`str`, optional): The filename to use to (re)instantiate the :attr:`slitmask` and :attr:`grating`. Default is to use previously instantiated attributes. corners (:obj:`bool`, optional): Instead of using the centers of the slits in the :attr:`slitmask`, return the detector pixel coordinates for the corners of all slits. Returns: numpy.ndarray: Returns 5 arrays: (1-2) the x and y coordinates in the image plane in mm, (3) the detector (1-indexed) where the slit should land at the provided wavelength(s), and (4-5) the pixel coordinates (1-indexed) in the relevant detector. Raises: ValueError: Raised if the user provides one but not both of the x and y coordinates, if no coordinates are provided or available within the :attr:`slitmask`, or if the :attr:`grating` hasn't been defined and not file is provided. """ # Cannot provide just one of x or y if x is None and y is not None or x is not None and y is None: raise ValueError('Must provide both x and y or neither to use slit mask.') # Use the file to update the slitmask (if no x coordinates are # provided) and the grating if filename is not None: if x is None and y is None: # Reset the slit mask self.get_slitmask(filename) # Reset the grating self.get_grating(filename) # Check that any coordinates are available if x is None and y is None and self.slitmask is None: raise ValueError('No coordinates; Provide them directly or instantiate slit mask.') # Make sure the coordinates are numpy arrays _x = None if x is None else np.atleast_1d(x) _y = None if y is None else np.atleast_1d(y) if _x is None: # Use all the slit centers or corners _x = self.slitmask.corners[...,0].ravel() if corners else self.slitmask.center[:,0] _y = self.slitmask.corners[...,1].ravel() if corners else self.slitmask.center[:,1] # Check that the grating is defined if self.grating is None: raise ValueError('Must define a grating first; provide a file or use get_grating()') # Instantiate the optical model or reset it grating if self.optical_model is None: self.optical_model = DEIMOSOpticalModel(self.grating) else: self.optical_model.reset_grating(self.grating) # Instantiate the detector map, if necessary self.get_detector_map() # Compute the detector image plane coordinates (mm) x_img, y_img = self.optical_model.mask_to_imaging_coordinates(_x, _y, wave=wave, order=order) # Reshape if computing the corner positions if corners: x_img = x_img.reshape(self.slitmask.corners.shape[:2]) y_img = y_img.reshape(self.slitmask.corners.shape[:2]) # Use the detector map to convert to the detector coordinates return (x_img, y_img) + self.detector_map.ccd_coordinates(x_img, y_img) class DEIMOSOpticalModel(OpticalModel): # TODO: Are focal_r_surface (!R_IMSURF) and focal_r_curvature # (!R_CURV) supposed to be the same? If so, consolodate these into # a single number. def __init__(self, grating): super(DEIMOSOpticalModel, self).__init__( 20018.4, # Pupil distance in mm (!PPLDIST, !D_1) 2133.6, # Radius of the image surface in mm (!R_IMSURF) 2124.71, # Focal-plane radius of curvature in mm (!R_CURV) 2120.9, # Mask radius of curvature in mm (!M_RCURV) np.radians(6.), # Mask tilt angle in radians (!M_ANGLE) 128.803, # Mask y zero point in mm (!ZPT_YM) 3.378, # Mask z zero-point in mm (!MASK_HT0) 2197.1, # Collimator distance in mm (sys.COL_DST) 4394.2, # Collimator radius of curvature in mm (!R_COLL) -0.75, # Collimator curvature constant (!K_COLL) np.radians(0.002), # Collimator tilt error in radians (sys.COL_ERR) 0.0, # Collimator tilt phi angle in radians (sys.COL_PHI) grating, # DEIMOS grating object np.radians(2.752), # Camera angle in radians (sys.CAM_ANG) np.pi/2, # Camera tilt phi angle in radians (sys.CAM_PHI) 382.0, # Camera focal length in mm (sys.CAM_FOC) DEIMOSCameraDistortion(), # Object used to apply/remove camera distortions np.radians(0.021), # ICS rotation in radians (sys.MOS_ROT) [-0.234, -3.822]) # Camera optical axis center in mm (sys.X_OPT,sys.Y_OPT) # Include tent mirror self.tent_theta = np.radians(71.5-0.5) # Tent mirror theta angle (sys.TNT_ANG) self.tent_phi = np.radians(90.+0.081) # Tent mirror phi angle (sys.TNT_PHI) #TENT MIRROR: this mirror is OK to leave in del-theta,phi self.tent_reflection \ = OpticalModel.get_reflection_transform(self.tent_theta, self.tent_phi) def reset_grating(self, grating): self.grating = grating def mask_coo_to_grating_input_vectors(self, x, y): """ Propagate rays from the mask plane to the grating. Taken from xidl/DEEP2/spec2d/pro/model/pre_grating.pro Need to override parent class to add tent mirror reflection. """ r = super(DEIMOSOpticalModel, self).mask_coo_to_grating_input_vectors(x, y) # Reflect off the tent mirror and return return OpticalModel.reflect(r, self.tent_reflection) class DEIMOSCameraDistortion: """Class to remove or apply DEIMOS camera distortion.""" def __init__(self): self.c0 = 1. self.c2 = 0.0457563 self.c4 = -0.3088123 self.c6 = -14.917 x = np.linspace(-0.6, 0.6, 1000) y = self.remove_distortion(x) self.interpolator = interpolate.interp1d(y, x) def remove_distortion(self, x): x2 = np.square(x) return x / (self.c0 + x2 * (self.c2 + x2 * (self.c4 + x2 * self.c6))) def apply_distortion(self, y): indx = (y > self.interpolator.x[0]) & (y < self.interpolator.x[-1]) if not np.all(indx): warnings.warn('Some input angles outside of valid distortion interval!') x = np.zeros_like(y) x[indx] = self.interpolator(y[indx]) return x class DEIMOSDetectorMap(DetectorMap): """ A map of the center coordinates and rotation of each CCD in DEIMOS. !! PIXEL COORDINATES ARE 1-INDEXED !! """ def __init__(self): # Number of chips self.nccd = 8 # Number of pixels for each chip in each dimension self.npix = np.array([2048, 4096]) # The size of the CCD pixels in mm self.pixel_size = 0.015 # Nominal gap between each CCD in each dimension in mm self.ccd_gap = np.array([1, 0.1]) # Width of the CCD edge in each dimension in mm self.ccd_edge = np.array([0.154, 0.070]) # Effective size of each chip in each dimension in pixels self.ccd_size = self.npix + (2*self.ccd_edge + self.ccd_gap)/self.pixel_size # Center coordinates origin = np.array([[-1.5,-0.5], [-0.5,-0.5], [ 0.5,-0.5], [ 1.5,-0.5], [-1.5, 0.5], [-0.5, 0.5], [ 0.5, 0.5], [ 1.5, 0.5]]) offset = np.array([[-20.05, 14.12], [-12.64, 7.25], [0.00, 0.00], [-1.34, -19.92], [-19.02, 16.46], [ -9.65, 8.95], [1.88, 1.02], [ 4.81, -24.01]]) self.ccd_center = origin * self.ccd_size[None,:] + offset # Construct the rotation matrix self.rotation = np.radians([-0.082, 0.030, 0.0, -0.1206, 0.136, -0.06, -0.019, -0.082]) cosa = np.cos(self.rotation) sina = np.sin(self.rotation) self.rot_matrix = np.array([cosa, -sina, sina, cosa]).T.reshape(self.nccd,2,2) # ccd_geom.pro has offsets by sys.CN_XERR, but these are all 0. ''' def deimos_image_sections(inp, det): """ Parse the image for the raw image shape and data sections Args: inp (str or `astropy.io.fits.HDUList`_ object): det (int): Returns: tuple: shape, dsec, osec, ext_items ext_items is a large tuple of bits and pieces for other methods ext_items = hdu, chips, postpix, image """ # Check for file; allow for extra .gz, etc. suffix if isinstance(inp, str): fil = glob.glob(inp + '*') if len(fil) != 1: msgs.error('Found {0} files matching {1}'.format(len(fil), inp + '*')) # Read try: msgs.info("Reading DEIMOS file: {:s}".format(fil[0])) except AttributeError: print("Reading DEIMOS file: {:s}".format(fil[0])) # Open hdu = fits.open(fil[0]) else: hdu = inp head0 = hdu[0].header # Get post, pre-pix values precol = head0['PRECOL'] postpix = head0['POSTPIX'] preline = head0['PRELINE'] postline = head0['POSTLINE'] detlsize = head0['DETLSIZE'] x0, x_npix, y0, y_npix = np.array(parse.load_sections(detlsize)).flatten() # Setup for datasec, oscansec dsec = [] osec = [] # get the x and y binning factors... binning = head0['BINNING'] if binning != '1,1': msgs.error("This binning for DEIMOS might not work. But it might..") xbin, ybin = [int(ibin) for ibin in binning.split(',')] # DEIMOS detectors nchip = 8 if det is None: chips = range(nchip) else: chips = [det-1] # Indexing starts at 0 here for tt in chips: x1, x2, y1, y2, o_x1, o_x2, o_y1, o_y2 = indexing(tt, postpix, det=det) # Sections idsec = '[{:d}:{:d},{:d}:{:d}]'.format(y1, y2, x1, x2) iosec = '[{:d}:{:d},{:d}:{:d}]'.format(o_y1, o_y2, o_x1, o_x2) dsec.append(idsec) osec.append(iosec) # Create final image (if the full image is requested) if det is None: image = np.zeros((x_npix,y_npix+4*postpix)) shape = image.shape else: image = None head = hdu[chips[0]+1].header shape = (head['NAXIS2'], head['NAXIS1']-precol) # We don't load up the precol # Pack up a few items for use elsewhere ext_items = hdu, chips, postpix, image # Return return shape, dsec, osec, ext_items def read_deimos(raw_file, det=None): """ Read a raw DEIMOS data frame (one or more detectors) Packed in a multi-extension HDU Based on pypeit.arlris.read_lris... Based on readmhdufits.pro Parameters ---------- raw_file : str Filename Returns ------- array : ndarray Combined image hdu: HDUList sections : tuple List of datasec, oscansec sections """ # Parse the header shape, dsec, osec, ext_items = deimos_image_sections(raw_file, det) # Unpack hdu, chips, postpix, image = ext_items # Loop for tt in chips: data, oscan = deimos_read_1chip(hdu, tt+1) #if n_elements(nobias) eq 0 then nobias = 0 # One detector?? if det is not None: image = np.zeros((data.shape[0],data.shape[1]+oscan.shape[1])) # Indexing x1, x2, y1, y2, o_x1, o_x2, o_y1, o_y2 = indexing(tt, postpix, det=det) # Fill image[y1:y2, x1:x2] = data image[o_y1:o_y2, o_x1:o_x2] = oscan # Return return image, hdu, (dsec,osec) ''' def indexing(itt, postpix, det=None): """ Some annoying book-keeping for instrument placement. Parameters ---------- itt : int postpix : int det : int, optional Returns ------- """ # Deal with single chip if det is not None: tt = 0 else: tt = itt ii = 2048 jj = 4096 # y indices if tt < 4: y1, y2 = 0, jj else: y1, y2 = jj, 2*jj o_y1, o_y2 = y1, y2 # x x1, x2 = (tt%4)*ii, (tt%4 + 1)*ii if det is None: o_x1 = 4*ii + (tt%4)*postpix else: o_x1 = ii + (tt%4)*postpix o_x2 = o_x1 + postpix # Return return x1, x2, y1, y2, o_x1, o_x2, o_y1, o_y2 def deimos_read_1chip(hdu,chipno): """ Read one of the DEIMOS detectors Args: hdu (astropy.io.fits.HDUList): chipno (int): Returns: np.ndarray, np.ndarray: data, oscan """ # Extract datasec from header datsec = hdu[chipno].header['DATASEC'] detsec = hdu[chipno].header['DETSEC'] postpix = hdu[0].header['POSTPIX'] precol = hdu[0].header['PRECOL'] x1_dat, x2_dat, y1_dat, y2_dat = np.array(parse.load_sections(datsec)).flatten() x1_det, x2_det, y1_det, y2_det = np.array(parse.load_sections(detsec)).flatten() # This rotates the image to be increasing wavelength to the top #data = np.rot90((hdu[chipno].data).T, k=2) #nx=data.shape[0] #ny=data.shape[1] # Science data fullimage = hdu[chipno].data data = fullimage[x1_dat:x2_dat,y1_dat:y2_dat] # Overscan oscan = fullimage[:,y2_dat:] # Flip as needed if x1_det > x2_det: data = np.flipud(data) oscan = np.flipud(oscan) if y1_det > y2_det: data = np.fliplr(data) oscan = np.fliplr(oscan) # Return return data, oscan ``` #### File: pypeit/spectrographs/keck_hires.py ```python import glob import re import os import numpy as np from scipy import interpolate from astropy.io import fits from pypeit import msgs from pypeit import telescopes from pypeit.core import parse from pypeit.core import framematch from pypeit.par import pypeitpar from pypeit.spectrographs import spectrograph from pypeit.spectrographs.slitmask import SlitMask from pypeit.spectrographs.opticalmodel import ReflectionGrating, OpticalModel, DetectorMap from pypeit import debugger class KECKHIRESSpectrograph(spectrograph.Spectrograph): """ Child to handle KECK/HIRES specific code """ def __init__(self): # Get it started super(KECKHIRESSpectrograph, self).__init__() self.spectrograph = 'keck_hires_base' self.telescope = telescopes.KeckTelescopePar() @property def pypeline(self): return 'Echelle' @staticmethod def default_pypeit_par(): """ Set default parameters for KECK HIRES reductions. """ par = pypeitpar.PypeItPar() # Correct for flexure using the default approach par['flexure'] = pypeitpar.FlexurePar() return par def init_meta(self): """ Generate the meta data dict Note that the children can add to this """ self.meta = {} # Required (core) self.meta['ra'] = dict(ext=0, card='RA') self.meta['dec'] = dict(ext=0, card='DEC') self.meta['target'] = dict(ext=0, card='OBJECT') self.meta['decker'] = dict(ext=0, card='DECKNAME') self.meta['binning'] = dict(ext=0, card='BINNING') self.meta['mjd'] = dict(ext=0, card='MJD') self.meta['exptime'] = dict(ext=0, card='EXPTIME') self.meta['airmass'] = dict(ext=0, card='AIRMASS') self.meta['dispname'] = dict(ext=0, card='ECHNAME') # Extras for config and frametyping # self.meta['echangl'] = dict(ext=0, card='ECHANGL') # self.meta['xdangl'] = dict(ext=0, card='XDANGL') def check_frame_type(self, ftype, fitstbl, exprng=None): """ Check for frames of the provided type. """ good_exp = framematch.check_frame_exptime(fitstbl['exptime'], exprng) # TODO: Allow for 'sky' frame type, for now include sky in # 'science' category if ftype == 'science': return good_exp & (fitstbl['idname'] == 'Object') if ftype == 'standard': return good_exp & ((fitstbl['idname'] == 'Std') | (fitstbl['idname'] == 'Object')) if ftype == 'bias': return good_exp & (fitstbl['idname'] == 'Bias') if ftype == 'dark': return good_exp & (fitstbl['idname'] == 'Dark') if ftype in ['pixelflat', 'trace']: # Flats and trace frames are typed together return good_exp & ((fitstbl['idname'] == 'Flat') | (fitstbl['idname'] == 'IntFlat')) if ftype in ['arc', 'tilt']: return good_exp & (fitstbl['idname'] == 'Line') msgs.warn('Cannot determine if frames are of type {0}.'.format(ftype)) return np.zeros(len(fitstbl), dtype=bool) def load_raw_img_head(self, raw_file, det=None, **null_kwargs): """ Wrapper to the raw image reader for HIRES Args: raw_file (:obj:`str`): filename det (:obj:`int`, optional): Desired detector. Despite default value, cannot be ``None`` (todo: set a sensible default). **null_kwargs: Captured and never used Returns: tuple: Raw image and header """ raw_img, head0, _ = read_hires(raw_file, det=det) return raw_img, head0 def get_image_section(self, inp=None, det=1, section='datasec'): """ Return a string representation of a slice defining a section of the detector image. Overwrites base class function to use :func:`read_hires` to get the image sections. .. todo :: - It is really ineffiecient. Can we parse :func:`read_hires` into something that can give you the image section directly? This is done separately for the data section and the overscan section in case one is defined as a header keyword and the other is defined directly. Args: inp (:obj:`str`, `astropy.io.fits.Header`_, optional): String providing the file name to read, or the relevant header object. Default is None, meaning that the detector attribute must provide the image section itself, not the header keyword. det (:obj:`int`, optional): 1-indexed detector number. section (:obj:`str`, optional): The section to return. Should be either 'datasec' or 'oscansec', according to the :class:`pypeitpar.DetectorPar` keywords. Returns: tuple: Returns three objects: (1) A list of string representations for the image sections, one string per amplifier. The sections are *always* returned in PypeIt order: spectral then spatial. (2) Boolean indicating if the slices are one indexed. (3) Boolean indicating if the slices should include the last pixel. The latter two are always returned as True following the FITS convention. """ # Read the file if inp is None: msgs.error('Must provide Keck HIRES file to get image section.') elif not os.path.isfile(inp): msgs.error('File {0} does not exist!'.format(inp)) temp, head0, secs = read_hires(inp, det) if section == 'datasec': return secs[0], False, False elif section == 'oscansec': return secs[1], False, False else: raise ValueError('Unrecognized keyword: {0}'.format(section)) # # def get_datasec_img(self, filename, det=1, force=True): # """ # Create an image identifying the amplifier used to read each pixel. # # Args: # filename (str): # Name of the file from which to read the image size. # det (:obj:`int`, optional): # Detector number (1-indexed) # force (:obj:`bool`, optional): # Force the image to be remade # # Returns: # `numpy.ndarray`: Integer array identifying the amplifier # used to read each pixel. # """ # if self.datasec_img is None or force: # # Check the detector is defined # self._check_detector() # # Get the image shape # raw_naxis = self.get_raw_image_shape(filename, det=det) # # # Binning is not required because read_hires accounts for it # # binning = self.get_meta_value(filename, 'binning') # # data_sections, one_indexed, include_end, transpose \ # = self.get_image_section(filename, det, section='datasec') # # # Initialize the image (0 means no amplifier) # self.datasec_img = np.zeros(raw_naxis, dtype=int) # for i in range(self.detector[det-1]['numamplifiers']): # # Convert the data section from a string to a slice # datasec = parse.sec2slice(data_sections[i], one_indexed=one_indexed, # include_end=include_end, require_dim=2, # transpose=transpose) #, binning=binning) # # Assign the amplifier # self.datasec_img[datasec] = i+1 # return self.datasec_img class KECKHIRESRSpectrograph(KECKHIRESSpectrograph): """ Child to handle KECK/HIRES-R specific code """ def __init__(self): # Get it started super(KECKHIRESRSpectrograph, self).__init__() self.spectrograph = 'keck_hires_red' self.camera = 'HIRES_R' self.detector = [ # Detector 1 B pypeitpar.DetectorPar(dataext = 1, specaxis = 0, # Device is fussed with by the image reader xgap = 0., ygap = 0., ysize = 1., platescale = 0.191, darkcurr = 0.0, saturation = 65535., nonlinear = 0.86, numamplifiers = 1, gain = 0.78, # high gain, low gain 1.9 ronoise = 2.8, suffix = '_01' ), # Detector 2 pypeitpar.DetectorPar(dataext = 2, specaxis = 0, xgap = 0., ygap = 0., ysize = 1., platescale = 0.191, darkcurr = 0.0, saturation = 65535., nonlinear = 0.86, numamplifiers = 1, gain = 0.86, # high gain, low gain 2.2 ronoise = 3.1, suffix = '_02' ), # Detector 3 pypeitpar.DetectorPar(dataext = 3, specaxis = 0, xgap = 0., ygap = 0., ysize = 1., platescale = 0.191, darkcurr = 0.0, saturation = 65535., nonlinear = 0.86, numamplifiers = 1, gain = 0.84, # high gain, low gain 2.2 ronoise = 3.1, suffix = '_03' ), ] self.numhead = 4 def default_pypeit_par(self): """ Set default parameters for HIRES RED reductions. """ par = KECKHIRESSpectrograph.default_pypeit_par() par['rdx']['spectrograph'] = 'keck_hires_red' # Adjustments to slit and tilts for NIR par['calibrations']['slitedges']['edge_thresh'] = 600. par['calibrations']['slitedges']['fit_order'] = 5 par['calibrations']['slitedges']['max_shift_adj'] = 0.5 par['calibrations']['slitedges']['left_right_pca'] = True par['calibrations']['tilts']['tracethresh'] = 20 # Bias par['calibrations']['biasframe']['useframe'] = 'bias' # 1D wavelength solution par['calibrations']['wavelengths']['lamps'] = ['ThAr'] par['calibrations']['wavelengths']['nonlinear_counts'] = self.detector[0]['nonlinear'] * self.detector[0]['saturation'] par['calibrations']['wavelengths']['rms_threshold'] = 0.25 par['calibrations']['wavelengths']['sigdetect'] = 5.0 # Reidentification parameters #par['calibrations']['wavelengths']['method'] = 'reidentify' #par['calibrations']['wavelengths']['reid_arxiv'] = 'vlt_xshooter_nir.json' par['calibrations']['wavelengths']['ech_fix_format'] = True # Echelle parameters par['calibrations']['wavelengths']['echelle'] = True par['calibrations']['wavelengths']['ech_nspec_coeff'] = 4 par['calibrations']['wavelengths']['ech_norder_coeff'] = 4 par['calibrations']['wavelengths']['ech_sigrej'] = 3.0 # Always correct for flexure, starting with default parameters par['flexure'] = pypeitpar.FlexurePar() par['scienceframe']['process']['sigclip'] = 20.0 par['scienceframe']['process']['satpix'] ='nothing' par['calibrations']['standardframe']['exprng'] = [None, 600] par['scienceframe']['exprng'] = [600, None] return par # def check_headers(self, headers): # """ # Check headers match expectations for an KECK/HIRES-R exposure. # # See also # :func:`pypeit.spectrographs.spectrograph.Spectrograph.check_headers`. # # Args: # headers (list): # A list of headers read from a fits file # """ # expected_values = { '0.INSTRUME': 'HIRES: High Resolution Echelle Spectrometer', # '0.XDISPERS': 'RED'} # super(KECKHIRESRSpectrograph, self).check_headers(headers, # expected_values=expected_values) # # def header_keys(self): # hdr_keys = super(KECKHIRESRSpectrograph, self).header_keys() # hdr_keys[0]['decker'] = 'DECKNAME' # return hdr_keys def init_meta(self): super(KECKHIRESRSpectrograph, self).init_meta() self.meta['decker'] = dict(ext=0, card='DECKNAME') def bpm(self, shape=None, filename=None, det=None, **null_kwargs): """ Override parent bpm function with BPM specific to X-ShooterNIR. .. todo:: Allow for binning changes. Parameters ---------- det : int, REQUIRED **null_kwargs: Captured and never used Returns ------- bpix : ndarray 0 = ok; 1 = Mask """ self.empty_bpm(shape=shape, filename=filename, det=det) return self.bpm_img def indexing(itt, postpix, det=None,xbin=None,ybin=None): """ Some annoying book-keeping for instrument placement. Parameters ---------- itt : int postpix : int det : int, optional Returns ------- """ # Deal with single chip if det is not None: tt = 0 else: tt = itt ii = int(np.round(2048/xbin)) jj = int(np.round(4096/ybin)) # y indices y1, y2 = 0, jj o_y1, o_y2 = y1, y2 # x x1, x2 = (tt%4)*ii, (tt%4 + 1)*ii if det is None: o_x1 = 4*ii + (tt%4)*postpix else: o_x1 = ii + (tt%4)*postpix o_x2 = o_x1 + postpix # Return return x1, x2, y1, y2, o_x1, o_x2, o_y1, o_y2 def hires_read_1chip(hdu,chipno): """ Read one of the HIRES detectors Parameters ---------- hdu : HDUList chipno : int Returns ------- data : ndarray oscan : ndarray """ # Extract datasec from header datsec = hdu[chipno].header['DATASEC'] detsec = hdu[chipno].header['DETSEC'] postpix = hdu[0].header['POSTPIX'] precol = hdu[0].header['PRECOL'] x1_dat, x2_dat, y1_dat, y2_dat = np.array(parse.load_sections(datsec)).flatten() x1_det, x2_det, y1_det, y2_det = np.array(parse.load_sections(detsec)).flatten() # This rotates the image to be increasing wavelength to the top #data = np.rot90((hdu[chipno].data).T, k=2) #nx=data.shape[0] #ny=data.shape[1] # Science data fullimage = hdu[chipno].data data = fullimage[x1_dat:x2_dat,y1_dat:y2_dat] # Overscan oscan = fullimage[:,y2_dat:] # Flip as needed if x1_det > x2_det: data = np.flipud(data) oscan = np.flipud(oscan) if y1_det > y2_det: data = np.fliplr(data) oscan = np.fliplr(oscan) # Return return data, oscan def read_hires(raw_file, det=None): """ Read a raw HIRES data frame (one or more detectors). Data are unpacked from the multi-extension HDU. Function is based :func:`pypeit.spectrographs.keck_lris.read_lris`, which was based on the IDL procedure ``readmhdufits.pro``. Parameters ---------- raw_file : str Filename Returns ------- array : ndarray Combined image header : FITS header sections : tuple List of datasec, oscansec sections """ # Check for file; allow for extra .gz, etc. suffix fil = glob.glob(raw_file + '*') if len(fil) != 1: msgs.error('Found {0} files matching {1}'.format(len(fil), raw_file + '*')) # Read try: msgs.info("Reading HIRES file: {:s}".format(fil[0])) except AttributeError: print("Reading HIRES file: {:s}".format(fil[0])) hdu = fits.open(fil[0]) head0 = hdu[0].header # Get post, pre-pix values precol = head0['PRECOL'] postpix = head0['POSTPIX'] preline = head0['PRELINE'] postline = head0['POSTLINE'] detlsize = head0['DETLSIZE'] x0, x_npix, y0, y_npix = np.array(parse.load_sections(detlsize)).flatten() # Create final image if det is None: image = np.zeros((x_npix,y_npix+4*postpix)) # Setup for datasec, oscansec dsec = [] osec = [] # get the x and y binning factors... binning = head0['BINNING'] if binning != '3,1': msgs.warn("This binning for HIRES might not work. But it might..") xbin, ybin = [int(ibin) for ibin in binning.split(',')] # HIRES detectors nchip = 3 if det is None: chips = range(nchip) else: chips = [det-1] # Indexing starts at 0 here # Loop for tt in chips: data, oscan = hires_read_1chip(hdu, tt+1) # One detector?? if det is not None: image = np.zeros((data.shape[0],data.shape[1]+oscan.shape[1])) # Indexing x1, x2, y1, y2, o_x1, o_x2, o_y1, o_y2 = indexing(tt, postpix, det=det,xbin=xbin,ybin=ybin) # Fill image[y1:y2, x1:x2] = data image[o_y1:o_y2, o_x1:o_x2] = oscan # Sections idsec = '[{:d}:{:d},{:d}:{:d}]'.format(y1, y2, x1, x2) iosec = '[{:d}:{:d},{:d}:{:d}]'.format(o_y1, o_y2, o_x1, o_x2) dsec.append(idsec) osec.append(iosec) # Return return image, head0, (dsec,osec) ``` #### File: pypeit/spectrographs/wht_isis.py ```python import numpy as np from astropy.io import fits from pkg_resources import resource_filename from pypeit import msgs from pypeit import telescopes from pypeit.core import framematch from pypeit.par import pypeitpar from pypeit.spectrographs import spectrograph from pypeit.core import parse from pypeit import debugger #class WhtIsisSpectrograph(spectrograph.Spectrograph): # """ # Child to handle Shane/Kast specific code # """ # # def __init__(self): # super(WhtIsisSpectrograph, self).__init__() # self.spectrograph = 'wht_isis_base' # self.telescope = telescopes.WHTTelescopePar() # # def metadata_keys(self): # return super(KeckLRISSpectrograph, self).metadata_keys() \ # + ['binning', 'dichroic', 'dispangle'] class WHTISISBlueSpectrograph(spectrograph.Spectrograph): """ Child to handle WHT/ISIS blue specific code """ def __init__(self): # Get it started super(WHTISISBlueSpectrograph, self).__init__() self.spectrograph = 'wht_isis_blue' self.telescope = telescopes.WHTTelescopePar() self.camera = 'ISISb' self.detector = [ # Detector 1 pypeitpar.DetectorPar( dataext = 1, specaxis = 0, specflip = False, xgap = 0., ygap = 0., ysize = 1., platescale = 0.225, darkcurr = 0.0, saturation = 65535., nonlinear = 0.76, numamplifiers = 1, gain = 1.2, ronoise = 5.0, datasec = '[:,2:4030]', oscansec = None, suffix = '_blue' )] self.numhead = 2 # Uses default timeunit # Uses default primary_hdrext # self.sky_file = ? def default_pypeit_par(self): """ Set default parameters for Keck LRISb reductions. """ par = pypeitpar.PypeItPar() par['rdx']['spectrograph'] = 'wht_isis_blue' # Ignore PCA par['calibrations']['slitedges']['sync_predict'] = 'nearest' # Turn off the overscan for ftype in par['calibrations'].keys(): try: par['calibrations'][ftype]['process']['overscan'] = 'none' except (TypeError, KeyError): pass par['scienceframe']['process']['overscan'] = 'none' # Set pixel flat combination method par['calibrations']['pixelflatframe']['process']['combine'] = 'median' par['calibrations']['pixelflatframe']['process']['sig_lohi'] = [10.,10.] # Change the wavelength calibration method par['calibrations']['wavelengths']['method'] = 'full_template' par['calibrations']['wavelengths']['lamps'] = ['NeI', 'ArI', 'ArII', 'CuI'] par['calibrations']['wavelengths']['nonlinear_counts'] = self.detector[0]['nonlinear'] * self.detector[0]['saturation'] par['calibrations']['wavelengths']['n_first'] = 3 par['calibrations']['wavelengths']['n_final'] = 5 par['calibrations']['wavelengths']['sigdetect'] = 10.0 par['calibrations']['wavelengths']['wv_cen'] = 4859.0 par['calibrations']['wavelengths']['disp'] = 0.2 # Do not flux calibrate par['fluxcalib'] = None # Always correct for flexure, starting with default parameters par['flexure'] = pypeitpar.FlexurePar() # Set the default exposure time ranges for the frame typing par['calibrations']['biasframe']['exprng'] = [None, 1] par['calibrations']['darkframe']['exprng'] = [999999, None] # No dark frames par['calibrations']['pinholeframe']['exprng'] = [999999, None] # No pinhole frames par['calibrations']['arcframe']['exprng'] = [None, 120] par['calibrations']['standardframe']['exprng'] = [None, 120] par['scienceframe']['exprng'] = [90, None] return par def config_specific_par(self, scifile, inp_par=None): """ Modify the PypeIt parameters to hard-wired values used for specific instrument configurations. .. todo:: Document the changes made! Args: scifile (str): File to use when determining the configuration and how to adjust the input parameters. inp_par (:class:`pypeit.par.parset.ParSet`, optional): Parameter set used for the full run of PypeIt. If None, use :func:`default_pypeit_par`. Returns: :class:`pypeit.par.parset.ParSet`: The PypeIt paramter set adjusted for configuration specific parameter values. """ par = self.default_pypeit_par() if inp_par is None else inp_par # Wavelength calibrations if self.get_meta_value(scifile, 'dispname') == 'R1200B': par['calibrations']['wavelengths']['reid_arxiv'] = 'wht_isis_blue_1200_4800.fits' # Return return par def init_meta(self): """ Generate the meta data dict Note that the children can add to this Returns: self.meta: dict (generated in place) """ meta = {} # Required (core) meta['ra'] = dict(ext=0, card='RA') meta['dec'] = dict(ext=0, card='DEC') meta['target'] = dict(ext=0, card='OBJECT') meta['decker'] = dict(card=None, compound=True) meta['binning'] = dict(card=None, compound=True) meta['mjd'] = dict(ext=0, card='MJD-OBS') meta['exptime'] = dict(ext=0, card='EXPTIME') meta['airmass'] = dict(ext=0, card='AIRMASS') meta['decker'] = dict(ext=0, card='ISISLITU') # Extras for config and frametyping meta['dispname'] = dict(ext=0, card='ISIGRAT') meta['dichroic'] = dict(ext=0, card='ISIDICHR') meta['dispangle'] = dict(ext=0, card='CENWAVE', rtol=1e-3) meta['slitwid'] = dict(ext=0, card='ISISLITW') meta['idname'] = dict(ext=0, card='IMAGETYP') # Lamps meta['lampstat01'] = dict(ext=0, card='CAGLAMPS') # Ingest self.meta = meta def compound_meta(self, headarr, meta_key): if meta_key == 'binning': binspatial = headarr[0]['CCDXBIN'] binspec = headarr[0]['CCDYBIN'] return parse.binning2string(binspec, binspatial) else: msgs.error("Not ready for this compound meta") def configuration_keys(self): """ Return the metadata keys that defines a unique instrument configuration. This list is used by :class:`pypeit.metadata.PypeItMetaData` to identify the unique configurations among the list of frames read for a given reduction. Returns: list: List of keywords of data pulled from meta """ return ['dispname', 'decker', 'binning', 'dispangle', 'dichroic'] def pypeit_file_keys(self): pypeit_keys = super(WHTISISBlueSpectrograph, self).pypeit_file_keys() pypeit_keys += ['slitwid'] return pypeit_keys def check_frame_type(self, ftype, fitstbl, exprng=None): """ Check for frames of the provided type. """ good_exp = framematch.check_frame_exptime(fitstbl['exptime'], exprng) if ftype in ['science', 'standard']: return good_exp & (fitstbl['lampstat01'] == 'Off') & (fitstbl['idname'] == 'object') if ftype == 'bias': return good_exp & (fitstbl['idname'] == 'zero') if ftype in ['pixelflat', 'trace']: return good_exp & (fitstbl['lampstat01'] == 'W') & (fitstbl['idname'] == 'flat') if ftype in ['pinhole', 'dark']: # Don't type pinhole or dark frames return np.zeros(len(fitstbl), dtype=bool) if ftype in ['arc', 'tilt']: return good_exp & (fitstbl['lampstat01'] == 'CuNe+CuAr') & (fitstbl['idname'] == 'arc') msgs.warn('Cannot determine if frames are of type {0}.'.format(ftype)) return np.zeros(len(fitstbl), dtype=bool) def bpm(self, filename=None, det=None, shape=None, msbias=None, **null_kwargs): """ Generate a BPM Parameters ---------- shape : tuple, REQUIRED filename : str, REQUIRED for binning det : int, REQUIRED **null_kwargs: Captured and never used Returns ------- badpix : ndarray """ # Get the empty bpm: force is always True #import pdb #pdb.set_trace() self.bpm_img = self.empty_bpm(filename, det=det, shape=shape) # Only defined for det=2 if msbias is not None: msgs.info("Generating a BPM for det={0:d} on ISISb".format(det)) medval = np.median(msbias.image) madval = 1.4826 * np.median(np.abs(medval - msbias.image)) ww = np.where(np.abs(msbias.image-medval) > 10.0*madval) self.bpm_img[ww] = 1 return self.bpm_img ``` #### File: pypeit/tests/test_flux.py ```python import os import sys import numpy as np import pytest #try: # tsterror = FileExistsError #except NameError: # FileExistsError = OSError from astropy import units from pypeit.core import flux_calib from pypeit.core import load from pypeit.spectrographs.util import load_spectrograph from pypeit import specobjs from pypeit.tests.tstutils import dummy_fitstbl #from xastropy.xutils import afits as xafits #from xastropy.xutils import xdebug as xdb def data_path(filename): data_dir = os.path.join(os.path.dirname(__file__), 'files') return os.path.join(data_dir, filename) # JFH This test is defunct #def test_bspline_fit(): # # Testing the bspline works ok (really testing bkspace) # fit_dict = linetools.utils.loadjson(data_path('flux_data.json')) # wave = np.array(fit_dict['wave']) # magfunc = np.array(fit_dict['magf']) # logivar = np.array(fit_dict['logiv']) # bspline_par = dict(bkspace=fit_dict['bkspec']) # mask, tck = utils.robust_polyfit(wave, magfunc, 3, function='bspline', # weights=np.sqrt(logivar), bspline_par=bspline_par) def test_gen_sensfunc(): kastr = load_spectrograph('shane_kast_red') # Load a random spectrum for the sensitivity function sfile = data_path('spec1d_r153-J0025-0312_KASTr_2015Jan23T025323.850.fits') sobjs = specobjs.SpecObjs.from_fitsfile(sfile) # telescope = telescopes.ShaneTelescopePar() fitstbl = dummy_fitstbl() RA = '05:06:36.6' DEC = '52:52:01.0' # Get the sensitivity function sens_dict = flux_calib.generate_sensfunc(sobjs[0].BOX_WAVE, sobjs[0].BOX_COUNTS, sobjs[0].BOX_COUNTS_IVAR, fitstbl['airmass'][4], fitstbl['exptime'][4], kastr.telescope['longitude'], kastr.telescope['latitude'], ra=RA, dec=DEC) # Test assert isinstance(sens_dict, dict) assert isinstance(sens_dict['wave_min'], units.Quantity) def test_find_standard(): # G191b2b std_ra = '05:06:30.6' std_dec = '52:49:51.0' # Grab std_dict = flux_calib.find_standard_file(std_ra, std_dec) # Test assert std_dict['name'] == 'G191B2B' # assert std_dict['cal_file'] == 'data/standards/calspec/g191b2b_mod_005.fits' assert std_dict['cal_file'] == 'data/standards/calspec/g191b2b_stisnic_002.fits' assert std_dict['std_source'] == 'calspec' # Fail to find # near G191b2b std_ra = '05:06:36.6' std_dec = '52:22:01.0' std_dict = flux_calib.find_standard_file(std_ra, std_dec) assert std_dict is None def test_load_extinction(): # Load extinct = flux_calib.load_extinction_data(121.6428, 37.3413889) np.testing.assert_allclose(extinct['wave'][0], 3200.) assert extinct['wave'].unit == units.AA np.testing.assert_allclose(extinct['mag_ext'][0], 1.084) # Fail extinct = flux_calib.load_extinction_data(0., 37.3413889) assert extinct is None def test_extinction_correction(): # Load extinct = flux_calib.load_extinction_data(121.6428, 37.3413889) # Correction wave = np.arange(3000.,10000.)*units.AA AM=1.5 flux_corr = flux_calib.extinction_correction(wave, AM, extinct) # Test np.testing.assert_allclose(flux_corr[0], 4.47095192) ``` #### File: pypeit/tests/test_pca.py ```python import os import numpy as np import pytest from astropy.io import fits from pypeit.tracepca import TracePCA @pytest.fixture def vec_coo(): nvec = 50 return np.linspace(0,1,nvec) @pytest.fixture def bogus_vectors(vec_coo): # Generate some bogus vectors nspec = 1000 spec_coo = np.linspace(0,1,nspec) coeff0 = 0.1*np.square(vec_coo) + vec_coo + 10 coeff1 = 2*vec_coo - 3 base_vector = 3*spec_coo + np.power(spec_coo,3) return coeff0[None,:] + coeff1[None,:]*base_vector[:,None] def test_build(vec_coo, bogus_vectors): pca = TracePCA(trace_cen=bogus_vectors, npca=2, coo=vec_coo) pca.build_interpolator([1,2]) assert pca.npca == 2, 'Incorrect number of components' assert pca.nspec == bogus_vectors.shape[0], 'Incorrect number of pixels' assert np.array_equal(vec_coo, pca.trace_coo), 'Coordinates do not match' # TODO: More checks? def test_prediction(vec_coo, bogus_vectors): pca = TracePCA(trace_cen=bogus_vectors, npca=2, coo=vec_coo) pca.build_interpolator([1,2]) pred = pca.predict(0.5) assert pred.size == bogus_vectors.shape[0], 'Bad prediction' # TODO: More checks? def test_write(vec_coo, bogus_vectors): pca = TracePCA(trace_cen=bogus_vectors, npca=2, coo=vec_coo) pca.build_interpolator([1,2]) ofile = 'junkpca.fits' fits.HDUList([fits.PrimaryHDU(), pca.to_hdu()]).writeto(ofile) os.remove(ofile) def test_read(vec_coo, bogus_vectors): pca = TracePCA(trace_cen=bogus_vectors, npca=2, coo=vec_coo) pca.build_interpolator([1,2]) ofile = 'junkpca.fits' fits.HDUList([fits.PrimaryHDU(), pca.to_hdu()]).writeto(ofile) readpca = TracePCA.from_file(ofile) assert np.array_equal(pca.trace_coo, readpca.trace_coo), 'Bad read' assert np.array_equal(pca.pca_mean, readpca.pca_mean), 'Bad read' assert np.array_equal(pca.pca_coeffs, readpca.pca_coeffs), 'Bad read' assert np.array_equal(pca.pca_components, readpca.pca_components), 'Bad read' assert np.array_equal(pca.pca_bpm, readpca.pca_bpm), 'Bad read' assert pca.npca == readpca.npca, 'Bad read' assert pca.nspec == readpca.nspec, 'Bad read' for i in range(pca.npca): assert np.array_equal(pca.fit_coeff[i], readpca.fit_coeff[i]), 'Bad read' os.remove(ofile) ``` #### File: pypeit/tests/test_pydl.py ```python import numpy as np from pypeit.core.pydl import bspline import pytest try: tsterror = FileExistsError except NameError: FileExistsError = OSError def test_bsplinetodict(): """ Test for writing a bspline onto a dict (and also reading it out). """ x = np.random.rand(500) # Create bspline init_bspline = bspline(x, bkspace=0.01*(np.max(x)-np.min(x))) # Write bspline to bspline_dict bspline_dict = init_bspline.to_dict() # Create bspline from bspline_dict bspline_fromdict = bspline(None, from_dict=bspline_dict) assert np.max(np.array(bspline_dict['breakpoints'])-bspline_fromdict.breakpoints) == 0. ``` #### File: pypeit/tests/test_traceimage.py ```python import os import pytest import glob import numpy as np from pypeit import traceimage from pypeit.tests.tstutils import dev_suite_required from pypeit.spectrographs.util import load_spectrograph def data_path(filename): data_dir = os.path.join(os.path.dirname(__file__), 'files') return os.path.join(data_dir, filename) @pytest.fixture @dev_suite_required def deimos_flat_files(): return [os.path.join(os.getenv('PYPEIT_DEV'), 'RAW_DATA', 'Keck_DEIMOS', '830G_L_8400', ifile) for ifile in ['d0914_0014.fits.gz', 'd0914_0015.fits.gz']] @dev_suite_required def test_instantiate(deimos_flat_files): # Empty traceImage = traceimage.TraceImage('keck_deimos',[]) @dev_suite_required def test_process(deimos_flat_files): keck_deimos = load_spectrograph('keck_deimos') # Instantiate traceImage = traceimage.TraceImage(keck_deimos, deimos_flat_files) # Run assert traceImage.nfiles == 2 traceImage.build_image() assert isinstance(traceImage.pypeitImage.image, np.ndarray) for key in ['subtract_overscan', 'apply_gain']: assert key in traceImage.process_steps ``` #### File: pypeit/tests/test_waveimage.py ```python import os import pytest import glob import numpy as np from pypeit.tests.tstutils import load_kast_blue_masters, cooked_required from pypeit import waveimage from pypeit.spectrographs.util import load_spectrograph def data_path(filename): data_dir = os.path.join(os.path.dirname(__file__), 'files') return os.path.join(data_dir, filename) @cooked_required def test_build_me(): # Masters spectrograph = load_spectrograph('shane_kast_blue') edges, tilts_dict, wv_calib = load_kast_blue_masters(edges=True, tilts=True, wvcalib=True) tslits_dict = edges.convert_to_tslits_dict() # Instantiate master_key = 'A_01_aa' master_dir = os.path.join(os.getenv('PYPEIT_DEV'), 'Cooked', 'Shane_Kast_blue') nslits = tslits_dict['nslits'] maskslits = np.zeros(nslits, dtype=bool) det = 1 wvImg = waveimage.WaveImage(tslits_dict, tilts_dict['tilts'], wv_calib, spectrograph, det, maskslits, master_key=master_key, master_dir=master_dir, reuse_masters=True) # Build wave = wvImg.build_wave() assert int(np.max(wave)) > 5510 ```
{ "source": "joshwalawender/RemoteObserving", "score": 2 }
#### File: joshwalawender/RemoteObserving/test_tigervnc.py ```python import pytest from pathlib import Path import logging import subprocess import re from keck_vnc_launcher import create_logger, KeckVncLauncher, create_parser # create kvl object create_logger() kvl = KeckVncLauncher() kvl.log = logging.getLogger('KRO') kvl.log_system_info() kvl.args = create_parser() kvl.get_config() kvl.check_config() def we_using_tigervnc(): vncviewercmd = kvl.config.get('vncviewer', 'vncviewer') cmd = [vncviewercmd, '--help'] kvl.log.info(f'Checking VNC viewer: {" ".join(cmd)}') result = subprocess.run(cmd, capture_output=True) output = result.stdout.decode() + '\n' + result.stderr.decode() if re.search(r'TigerVNC', output): kvl.log.info(f'We are using TigerVNC') return True else: kvl.log.info(f'We are NOT using TigerVNC') return False def test_tigervnc_config_file_exists(): if we_using_tigervnc() is True: tigervnc_config_file = Path('~/.vnc/default.tigervnc').expanduser() if tigervnc_config_file.exists() is False: kvl.log.error(f'Could not find {tigervnc_config_file}') assert tigervnc_config_file.exists() def test_tigervnc_config_RemoteResize(): if we_using_tigervnc() is True: tigervnc_config_file = Path('~/.vnc/default.tigervnc').expanduser() with open(tigervnc_config_file) as FO: tiger_config = FO.read() RRsearch = re.search(r'RemoteResize=(\d)', tiger_config) if RRsearch is None: kvl.log.error('Could not find RemoteResize setting') assert RRsearch is not None else: remote_resize_value = int(RRsearch.group(1)) kvl.log.info(f'Found RemoteResize set to {remote_resize_value}') if remote_resize_value !=0: kvl.log.error('RemoteResize must be set to 0') assert remote_resize_value == 0 ```
{ "source": "joshwalawender/SIDRE", "score": 3 }
#### File: SIDRE/SIDRE/sort.py ```python import os import re import ccdproc as ccd import astropy.units as u from astropy import table from .config import get_config def get_ImageFileCollection(filepath): ''' Given a directory path with FITS files in it, use the header keywords (hard coded in this function) to categorize each file as one of: Science: A science exposure Bias: A bias frame Dark: A dark frame Flat: A flat field frame (twilight or dome) Rejected: A file that has been rejection for any reason. Uncategorized: A file which was not categorized as one of the above. A column called "CATEGORY" is added to the `ImageFileCollection.summary` table and populated with a string of the above category. This method can be replaced to customize the code to any particular header or metadata convention. ''' assert os.path.exists(os.path.abspath(filepath)) temperature_deadband = get_config().get('TemperatureDeadband', 1.0) keywords = ['EXPTIME', 'SET-TEMP', 'CCD-TEMP', 'XBINNING', 'YBINNING', 'IMAGETYP', 'OBJECT', 'DATE-OBS'] ifc = ccd.ImageFileCollection(filepath, keywords=keywords) ifc.summary.add_column(table.Column(data=['']*len(ifc.summary), name='CATEGORY', dtype='a12')) for i,entry in enumerate(ifc.summary): tempdiff = float(entry['SET-TEMP']) - float(entry['CCD-TEMP']) if abs(tempdiff) > temperature_deadband: ifc.summary[i]['CATEGORY'] = b'Rejected' elif re.search('Light Frame', entry['IMAGETYP'], flags=re.IGNORECASE): ifc.summary[i]['CATEGORY'] = b'Science' elif re.search('Bias Frame', entry['IMAGETYP'], flags=re.IGNORECASE): ifc.summary[i]['CATEGORY'] = b'Bias' elif re.search('Dark Frame', entry['IMAGETYP'], flags=re.IGNORECASE): ifc.summary[i]['CATEGORY'] = b'Dark' elif re.search('Flat', entry['IMAGETYP'], flags=re.IGNORECASE): ifc.summary[i]['CATEGORY'] = b'Flat' else: ifc.summary[i]['CATEGORY'] = b'Uncategorized' return ifc def get_image_table(filepath, type): ifc = get_ImageFileCollection(filepath) bytype = ifc.summary.group_by('CATEGORY') typelist = bytype.groups[bytype.groups.keys['CATEGORY'] == type] return typelist ```
{ "source": "joshwalawender/SuPrimeCam", "score": 2 }
#### File: SuPrimeCam/SuPrimeCam/process.py ```python from pathlib import Path import logging import numpy as np from astropy import units as u from astropy.io import fits from astropy.nddata import CCDData from astropy.table import Table import ccdproc from ccdproc.utils.slices import slice_from_string ##------------------------------------------------------------------------- ## Create logger object ##------------------------------------------------------------------------- log = logging.getLogger('MyLogger') log.setLevel(logging.DEBUG) ## Set up console output LogConsoleHandler = logging.StreamHandler() LogConsoleHandler.setLevel(logging.DEBUG) LogFormat = logging.Formatter('%(asctime)s %(levelname)8s: %(message)s', datefmt='%Y-%m-%d %H:%M:%S') LogConsoleHandler.setFormatter(LogFormat) log.addHandler(LogConsoleHandler) ## Set up file output # LogFileName = None # LogFileHandler = logging.FileHandler(LogFileName) # LogFileHandler.setLevel(logging.DEBUG) # LogFileHandler.setFormatter(LogFormat) # log.addHandler(LogFileHandler) ##------------------------------------------------------------------------- ## Exceptions ##------------------------------------------------------------------------- class MEFDataError(Exception): """Base class for exceptions in this module.""" pass class IncompatiblePixelData(MEFDataError): """Raise when trying to operate on multiple MEFData objects which have incompatible pixeldata. """ def __init__(self, message): super().__init__(f"MEFData objects have incompatible pixeldata. {message}") class IncorrectNumberOfExtensions(MEFDataError): """Raise when verify method fails for a specific instrument. """ def __init__(self, datatype, expected, kd): msg = f"Incorrect number of {datatype} entries. Expected {expected} for {type(kd)}" print(msg) super().__init__(msg) ##------------------------------------------------------------------------- ## MEFData Classes ##------------------------------------------------------------------------- class MEFData(object): """Our data model. Attributes: pixeldata -- a list of CCDData objects containing pixel values. tabledata -- a list of astropy.table.Table objects headers -- a list of astropy.io.fits.Header objects """ def __init__(self, *args, **kwargs): self.pixeldata = [] self.tabledata = [] self.headers = [] self.MEFhdul = None def verify(self): """Method to check the data against expectations. For the MEFData class this simply passes and does nothing, but subclasses for specific instruments can populate this with appropriate tests. """ pass def add(self, kd2): """Method to add another MEFData object to this one and return the result. This uses the CCDData object's add method and simply loops over all elements of the pixeldata list. """ if len(self.pixeldata) != len(kd2.pixeldata): raise IncompatiblePixelData for i,pd in enumerate(self.pixeldata): self.pixeldata[i] = pd.add(kd2.pixeldata[i]) def subtract(self, kd2): """Method to subtract another MEFData object to this one and return the result. This uses the CCDData object's subtract method and simply loops over all elements of the pixeldata list. """ if len(self.pixeldata) != len(kd2.pixeldata): raise IncompatiblePixelData for i,pd in enumerate(self.pixeldata): self.pixeldata[i] = pd.subtract(kd2.pixeldata[i]) def multiply(self, kd2): """Method to multiply another MEFData object by this one and return the result. This uses the CCDData object's multiply method and simply loops over all elements of the pixeldata list. """ if len(self.pixeldata) != len(kd2.pixeldata): raise IncompatiblePixelData for i,pd in enumerate(self.pixeldata): self.pixeldata[i] = pd.multiply(kd2.pixeldata[i]) def get(self, kw): """Method to loop over all headers and get the specified keyword value. Returns the first result it finds and doe not check for duplicate instances of the keyword in subsequent headers. """ for hdr in self.headers: val = hdr.get(kw, None) if val is not None: return val def create_deviation(self, readnoise=10): for i,pd in enumerate(self.pixeldata): gain = pd.header.get('GAIN') self.pixeldata[i] = ccdproc.create_deviation( pd, gain=gain * u.electron/u.adu, readnoise=readnoise * u.electron) def gain_correct(self): for i,pd in enumerate(self.pixeldata): gain = pd.header.get('GAIN') self.pixeldata[i] = ccdproc.gain_correct(pd, gain*u.electron/u.adu) def la_cosmic(self, sigclip=5): for i,pd in enumerate(self.pixeldata): self.pixeldata[i] = ccdproc.cosmicray_lacosmic(pd, sigclip=sigclip) def bias_subtract(self, master_bias): for i,pd in enumerate(self.pixeldata): self.pixeldata[i] = ccdproc.subtract_bias(pd, master_bias.pixeldata[i]) def flat_correct(self, master_flat): for i,pd in enumerate(self.pixeldata): self.pixeldata[i] = ccdproc.flat_correct(pd, master_flat.pixeldata[i]) def assemble(self): MEFhdul = [fits.PrimaryHDU(data=None, header=self.headers[0])] for chip in range(0,10): ext0 = chip*4 x0s = [] x1s = [] y0s = [] y1s = [] for ext in range(chip*4, (chip+1)*4): hdr = self.headers[ext+1] assert hdr.get('DET-ID') == chip detsec = slice_from_string(hdr.get('DETSEC'), fits_convention=True) datasec = slice_from_string(hdr.get('DATASEC'), fits_convention=True) ccdsec = slice_from_string(hdr.get('CCDSEC'), fits_convention=True) # print(hdr.get('CCDNAME')) # print(ext, detsec) # print(ext, datasec) # print(ext, ccdsec) x0s.append(detsec[1].start) x1s.append(detsec[1].stop) y0s.append(detsec[0].start) y1s.append(detsec[0].stop) chip_xrange = [min(x0s), max(x1s)] chip_yrange = [min(y0s), max(y1s)] chip_size = [max(x1s)-min(x0s), max(y1s)-min(y0s)] chip_x0s = [x-min(x0s) for x in x0s] chip_x1s = [x-min(x0s) for x in x1s] # print(f"chip xrange: {chip_xrange}") chip_data = np.zeros((chip_size[1]+1, chip_size[0]+1)) for i,ext in enumerate(range(chip*4, (chip+1)*4)): chip_data[:,chip_x0s[i]:chip_x1s[i]+1] = self.pixeldata[ext].data chip_hdu = fits.ImageHDU(chip_data, self.headers[ext0+1]) chip_hdu.header.set('DETSEC', f'[{chip_xrange[0]+1}:{chip_xrange[1]+1},'\ f'{chip_yrange[0]+1}:{chip_yrange[1]+1}]') chip_hdu.header.set('DATASEC', f'[1:{chip_size[0]+1},1:{chip_size[1]+1}]') chip_hdu.header.set('CCDSEC', f'[1:{chip_size[0]+1},1:{chip_size[1]+1}]') chip_hdu.header.set('BUNIT', str(self.pixeldata[0].unit)) MEFhdul.append(chip_hdu) self.MEFhdul = fits.HDUList(MEFhdul) return MEFhdul def to_hdul(self): assert len(self.pixeldata) == 10 MEFhdul = [fits.PrimaryHDU(data=None, header=self.headers[0])] for i,pd in enumerate(self.pixeldata): hdu = pd.to_hdu()[0] hdu = fits.ImageHDU(data=hdu.data, header=hdu.header) MEFhdul.append(hdu) self.MEFhdul = fits.HDUList(MEFhdul) def write(self, file): '''Assemble in to chips and write as 10 extension MEF. ''' if self.MEFhdul is None: if len(self.pixeldata) == 10: self.to_hdul() elif len(self.pixeldata) == 40: self.assemble() self.MEFhdul.writeto(file) ##------------------------------------------------------------------------- ## Get HDU Type ##------------------------------------------------------------------------- def get_hdu_type(hdu): """Function to examine a FITS HDU object and determine its type. Returns one of the following strings: 'header' -- This is a PrimaryHDU or ImageHDU with no pixel data. 'pixeldata' -- This is a PrimaryHDU or ImageHDU containing pixel data. 'uncertainty' -- This is a pixeldata HDU which is associated with the uncertainty data written by either CCDData or MEFData. 'mask' -- This is a pixeldata HDU which is associated with the mask data written by either CCDData or MEFData. 'tabledata' -- This is a TableHDU type HDU. """ if type(hdu) in [fits.PrimaryHDU, fits.ImageHDU] and hdu.data is None: # This is a header only HDU return 'header' elif type(hdu) in [fits.PrimaryHDU, fits.ImageHDU] and hdu.data is not None: # This is a pixel data HDU extname = hdu.header.get('EXTNAME', '').strip() if extname == 'MASK': # This is a mask HDU return 'mask' elif extname == 'UNCERT': # This is an uncertainty HDU return 'uncertainty' else: # This must be pixel data return 'pixeldata' elif type(hdu) == fits.TableHDU: # This is table data return 'tabledata' ##------------------------------------------------------------------------- ## MEFData Reader ##------------------------------------------------------------------------- def read_hdul(hdul, defaultunit='adu', datatype=MEFData): # Loop though HDUs and read them in as pixel data or table data md = datatype() while len(hdul) > 0: # print('Extracting HDU') hdu = hdul.pop(0) md.headers.append(hdu.header) hdu_type = get_hdu_type(hdu) # print(f' Got HDU type = {hdu_type}') if hdu_type == 'header': pass elif hdu_type == 'tabledata': md.tabledata.append(Table(hdu.data)) elif hdu_type == 'pixeldata': # Check the next HDU mask = None uncertainty = None if len(hdul) > 0: next_type = get_hdu_type(hdul[0]) if next_type == 'mask': mask = hdul[0].data elif next_type == 'uncertainty': uncertainty = hdul[0].data if len(hdul) > 1: next_type2 = get_hdu_type(hdul[1]) if next_type2 == 'mask': mask = hdul[1].data elif next_type2 == 'uncertainty': uncertainty = hdul[1].data # Sanitize "ADU per coadd" BUNIT value if hdu.header.get('BUNIT') == "ADU per coadd": hdu.header.set('BUNIT', 'adu') # Populate the CCDData object c = CCDData(hdu.data, mask=mask, uncertainty=uncertainty, meta=hdu.header, unit=(hdu.header.get('BUNIT', defaultunit)).lower(), ) md.pixeldata.append(c) # print(f'Read in {len(md.headers)} headers, ' # f'{len(md.pixeldata)} sets of pixel data, ' # f'and {len(md.tabledata)} tables') md.verify() return md def fits_MEFdata_reader(file, defaultunit='adu', datatype=MEFData): """A reader for MEFData objects. Currently this is a separate function, but should probably be registered as a reader similar to fits_ccddata_reader. Arguments: file -- The filename (or pathlib.Path) of the FITS file to open. Keyword arguments: defaultunit -- If the BUNIT keyword is unable to be located or parsed, the reader will assume this unit. Defaults to "adu". datatype -- The output datatype. Defaults to MEFData, but could be a subclass such as MOSFIREData. The main effect of this is that it runs the appropriate verify method on the data. """ try: hdul = fits.open(file, 'readonly') except FileNotFoundError as e: print(e.msg) raise e except OSError as e: print(e.msg) raise e md = read_hdul(hdul, defaultunit=defaultunit, datatype=datatype) return md ##------------------------------------------------------------------------- ## Main Program ##------------------------------------------------------------------------- def process(MEFpath): # filters = ['i', 'Ha', 'SII'] filters = ['i', 'SII'] filternames = {'i': 'W-S-I+', 'Ha': 'N-A-L656', 'SII': 'N-A-L671'} MEFpath = Path(MEFpath).expanduser() # Create table of files tablefile = MEFpath.parent.joinpath('files.txt') if tablefile.exists() is True: print(f"Reading {tablefile}") t = Table.read(tablefile, format='ascii.csv') else: t = Table(names=('file', 'imtype', 'filter', 'object'), dtype=('a200', 'a12', 'a12', 'a50') ) for file in MEFpath.glob('MEF*.fits'): MEF = fits_MEFdata_reader(file) t.add_row((file, MEF.get('DATA-TYP'), MEF.get('FILTER01'), MEF.get('OBJECT'))) t.write(tablefile, format='ascii.csv') ##------------------------------------------------------------------------- ## Build Master Bias ##------------------------------------------------------------------------- master_bias_file = MEFpath.parent.joinpath('MasterBias.fits') if master_bias_file.exists(): print(f"Reading Master Bias: {master_bias_file}") master_bias = fits_MEFdata_reader(master_bias_file) else: biases = t[t['imtype'] == 'BIAS'] print(f'Processing {len(biases)} BIAS files') bias_MEFs = [] for i,file in enumerate(biases['file']): file = Path(file).expanduser() print(f' Reading {i+1:3d}/{len(biases):3d}: {file}') MEF = fits_MEFdata_reader(file) print(f' Creating deviation') MEF.create_deviation() print(f' Gain correcting') MEF.gain_correct() print(f' Assembling Chips') MEF = read_hdul(MEF.assemble()) bias_MEFs.append(MEF) print(f"Building master bias") master_bias = bias_MEFs[0] for i,pd in enumerate(master_bias.pixeldata): pds = [bias.pixeldata[i] for bias in bias_MEFs] master_bias.pixeldata[i] = ccdproc.combine(pds, method='average', clip_extrema=True, nlow=1, nhigh=1) print(f"Writing: {master_bias_file}") master_bias.write(master_bias_file) master_bias = fits_MEFdata_reader(master_bias_file) ##------------------------------------------------------------------------- ## Build Master DOMEFLAT (i filter) ##------------------------------------------------------------------------- master_flats = {} for filt in filters: master_flat_file = MEFpath.parent.joinpath(f'DomeFlat_{filt}.fits') if master_flat_file.exists(): print(f"Reading Master Flat: {master_flat_file}") master_flats[filt] = fits_MEFdata_reader(master_flat_file) else: domeflats = t[(t['imtype'] == 'DOMEFLAT')\ & (t['filter'] == filternames[filt])] print(f'Found {len(domeflats)} DOMEFLAT files in the {filt} filter') domeflat_MEFs = [] for i,file in enumerate(domeflats['file']): file = Path(file).expanduser() print(f' Reading {i+1:3d}/{len(domeflats):3d}: {file.name}') MEF = fits_MEFdata_reader(file) print(f' Creating deviation') MEF.create_deviation() print(f' Gain correcting') MEF.gain_correct() print(f' Assembling Chips') MEF = read_hdul(MEF.assemble()) print(f' Bias subtracting') MEF.bias_subtract(master_bias) domeflat_MEFs.append(MEF) print(f"Generating Master Flat for {filt} Filter") master_flat = domeflat_MEFs[0] for i,pd in enumerate(master_flat.pixeldata): pds = [im.pixeldata[i] for im in domeflat_MEFs] master_flat.pixeldata[i] = ccdproc.combine(pds, method='average', sigma_clip=True, sigma_clip_low_thresh=5, sigma_clip_high_thresh=5, scale=np.median) master_flats[filt] = master_flat print(f"Writing: {master_flat_file}") master_flat.write(master_flat_file) ##------------------------------------------------------------------------- ## Process Science Frames (i filter) ##------------------------------------------------------------------------- outdir = MEFpath.parent.joinpath('MEF10') for filt in filters: images = t[(t['imtype'] == 'OBJECT')\ & (t['filter'] == filternames[filt])] print(f'Processing {len(images)} OBJECT files in the {filt} filter') image_MEFs = [] for i,file in enumerate(images['file']): file = Path(file).expanduser() print(f' Reading {i+1:3d}/{len(images):3d}: {file.name}') MEF = fits_MEFdata_reader(file) print(f' Creating deviation') MEF.create_deviation() print(f' Gain correcting') MEF.gain_correct() # print(f' Cosmic ray cleaning') # MEF.la_cosmic() print(f' Assembling Chips') MEF = read_hdul(MEF.assemble()) print(f' Bias subtracting') MEF.bias_subtract(master_bias) print(f' Flat fielding') MEF.flat_correct(master_flats[filt]) outfile = outdir.joinpath(file.name) print(f' Writing: {outfile}') MEF.write(outfile) if __name__ == '__main__': # MEFpath = Path('/Volumes/ScienceData/SuPrimeCam/SuPrimeCam_S17A-UH16A/Processed/MEF') MEFpath = Path('~/Sync/ScienceData/SuPrimeCam/MEF').expanduser() process(MEFpath) ```
{ "source": "Josh-Walker-GM/pdf-marking-collator", "score": 3 }
#### File: Josh-Walker-GM/pdf-marking-collator/bulk_collator.py ```python from openpyxl import Workbook from openpyxl.styles import Font from openpyxl.utils import get_column_letter from openpyxl.chart import BarChart, Reference from openpyxl import load_workbook from openpyxl.styles import PatternFill, Font import os import subprocess import argparse import logging def get_arguments(): parser = argparse.ArgumentParser() parser.add_argument("directories", nargs='+', help="list of directories to collate together") parser.add_argument("--generate-individual-spreadsheet", type=bool, default=False, action=argparse.BooleanOptionalAction, help="generate marks spreadsheet for individual collations") parser.add_argument("--use-individual-spreadsheet", type=bool, default=False, action=argparse.BooleanOptionalAction, help="use marks spreadsheet to override pdf marks for individual collations") parser.add_argument("--generate-combined-spreadsheet", type=bool, default=False, action=argparse.BooleanOptionalAction, help="generate spreadsheet of all collated marks") parser.add_argument("--use-combined-spreadsheet", type=bool, default=False, action=argparse.BooleanOptionalAction, help="use combined spreadsheet to override marks from collated pdfs") return parser.parse_args() def generate_combined_spreadsheet(args): directories: list[str] = args.directories combined_wb = Workbook() combined_ws = combined_wb.active row_offset = 2 column_offset = 2 directory_index = 0 for directory in directories: individual_wb = load_workbook(os.path.join(directory, "extracted_marks.xlsx")) individual_ws = individual_wb.active marker_count = 0 while True: if individual_ws.cell(2, marker_count + 3).value is None: break marker_count += 1 question_count = 0 while True: if individual_ws.cell(question_count + 4, 2).value is None: break question_count += 1 combined_ws.cell(row_offset, column_offset).value = directory for row in range(question_count + 2): for column in range(marker_count + 1): combined_ws.cell(row_offset + row + 1, column_offset + column).value = individual_ws.cell(row + 2, column + 2).value combined_ws.cell(row_offset + question_count + 4, column_offset).value = "Total" for column in range(marker_count): combined_ws.cell(row_offset + question_count + 4, column_offset + column + 1).value = "=SUM({}{}:{}{})".format(get_column_letter(column_offset + column + 1), row_offset + 3, get_column_letter(column_offset + column + 1), row_offset + 2 + question_count) combined_ws.cell(row_offset + question_count + 4, column_offset + marker_count + 2).value = "=SUM({}{}:{}{})".format(get_column_letter(column_offset + marker_count + 2), row_offset + 3, get_column_letter(column_offset + marker_count + 2), row_offset + 2 + question_count) combined_ws.cell(row_offset + 2, column_offset + marker_count + 2).value = "Average" for row in range(question_count): combined_ws.cell(row_offset + row + 3, column_offset + marker_count + 2).value = "=AVERAGE({}{}:{}{})".format(get_column_letter(column_offset + 1), row_offset + row + 3, get_column_letter(column_offset + marker_count), row_offset + row + 3) # create bar chart for marking data visualisation chart = BarChart() chart.type = "col" chart.style = 10 chart.y_axis.title = "Mark Given" chart.x_axis.title = "Question ID" data = Reference(combined_ws, min_col=column_offset+1, min_row=row_offset+2, max_row=row_offset+question_count+2, max_col=column_offset+marker_count) cats = Reference(combined_ws, min_col=column_offset, min_row=row_offset+3, max_row=row_offset+question_count+2) chart.add_data(data, titles_from_data=True) chart.set_categories(cats) chart.height = 0.55 * (question_count + 5) chart.width = 3 * (question_count) combined_ws.add_chart(chart, "{}{}".format(get_column_letter(column_offset + marker_count + 4), row_offset)) for column in range(column_offset, column_offset + marker_count + 3): combined_ws.cell(row_offset + question_count + 6, column).fill = PatternFill(fill_type="solid", start_color="00000000") combined_ws.row_dimensions[row_offset + question_count + 6].height = 7.5 directory_index += 1 row_offset += question_count + 8 font_standard = Font(name="Calibri", size=11, bold=False, italic=False, vertAlign=None, underline="none", strike=False, color="FF000000") font_bold = Font(name="Calibri", size=11, bold=True, italic=False, vertAlign=None, underline="none", strike=False, color="FF000000") for row in range(row_offset): combined_ws.row_dimensions[row].font = font_standard row_offset = 2 column_offset = 2 for directory in directories: combined_ws.cell(row_offset, column_offset).font = font_bold row_offset += question_count + 8 save_directory = os.path.abspath(os.path.join(directories[0], os.pardir)) combined_wb.save(filename=os.path.join(save_directory, "combined_extracted_marks.xlsx")) def use_combined_spreadsheet(args): directories: list[str] = args.directories save_directory = os.path.abspath(os.path.join(directories[0], os.pardir)) combined_wb = load_workbook(os.path.join(save_directory, "combined_extracted_marks.xlsx")) combined_ws = combined_wb.active row_offset = 2 column_offset = 2 directory_index = 0 for directory in directories: individual_wb = load_workbook(os.path.join(directory, "extracted_marks.xlsx")) individual_ws = individual_wb.active marker_count = 0 while True: if combined_ws.cell(row_offset + 2, column_offset + marker_count + 1).value is None: break marker_count += 1 question_count = 0 while True: if combined_ws.cell(row_offset + question_count + 3, column_offset).value is None: break question_count += 1 for row in range(question_count): for col in range(marker_count): individual_ws.cell(4 + row, 3 + col).value = combined_ws.cell(row + 3 + row_offset, col + column_offset + 1).value individual_wb.save(filename=os.path.join(directory, "extracted_marks.xlsx")) directory_index += 1 row_offset += question_count + 8 def main(): # set logging format logging.basicConfig(format='%(asctime)s: %(message)s', datefmt='%d-%b-%y %H:%M:%S', level=logging.INFO) # extract agruments using argparse standard lib args = get_arguments() # validate against usage of override with and generate spreadsheet features together if args.generate_combined_spreadsheet and args.use_combined_spreadsheet: logging.error("Cannot use overriding spreadsheet and generate spreadsheet features at the same time!") exit(-1) # validate against usage of override with and generate individual spreadsheet flags together if args.generate_individual_spreadsheet and args.use_individual_spreadsheet: logging.error("Cannot use both use and generate individual spreadsheet flags together!") exit(-1) directories: list[str] = args.directories # validate all collation directories are unique if len(directories) != len(set(directories)): logging.error("Collation directory list cannot contain duplicates!") exit(-1) # validate all collation directories exist for directory in directories: if not os.path.exists(os.path.join(os.getcwd(), directory)): logging.error("Collation directory \"{}\" does not exist!".format(os.path.join(os.getcwd(), directory))) exit(-1) if args.use_combined_spreadsheet: logging.info("Using combined spreadsheet to override pdf marks.") save_directory = os.path.abspath(os.path.join(directories[0], os.pardir)) if not os.path.exists(os.path.join(save_directory, "combined_extracted_marks.xlsx")): logging.error("Combined marks spreadsheet does not exist in \"{}\"!".format(save_directory)) exit(-1) # validate individual projects have extracted marks spreadsheets for directory in directories: if not os.path.exists(os.path.join(directory, "extracted_marks.xlsx")): logging.error("Extracted marks spreadsheet does not exist for \"{}\"!".format(directory)) exit(-1) use_combined_spreadsheet(args) # Dev note: Calling of commands formed from user input is dangerous - should check/sanitise this... for directory in directories: logging.info("Collating {}.".format(directory)) command_string = "python collator.py {} {}.pdf".format(directory, os.path.basename(os.path.normpath(directory))) if args.generate_individual_spreadsheet or args.generate_combined_spreadsheet: command_string = "{} {}".format(command_string, "--generate-spreadsheet") if args.use_individual_spreadsheet or args.use_combined_spreadsheet: command_string = "{} {}".format(command_string, "--use-spreadsheet") return_code = subprocess.call(command_string, shell=True) if return_code != 0: logging.error("Collation of \"{}\" failed!".format(directory)) exit(-1) if args.generate_combined_spreadsheet: logging.info("Generating combined spreadsheet.") # validate individual projects have extracted marks spreadsheets for directory in directories: if not os.path.exists(os.path.join(directory, "extracted_marks.xlsx")): logging.error("Extracted marks spreadsheet does not exist for \"{}\"!".format(directory)) exit(-1) generate_combined_spreadsheet(args) if __name__ == "__main__": main() ```
{ "source": "joshwapohlmann/home-assistant", "score": 2 }
#### File: components/plex/sensor.py ```python from datetime import timedelta import logging import plexapi.exceptions import requests.exceptions from homeassistant.helpers.entity import Entity from homeassistant.util import Throttle from .const import DOMAIN as PLEX_DOMAIN, SERVERS DEFAULT_NAME = "Plex" _LOGGER = logging.getLogger(__name__) MIN_TIME_BETWEEN_UPDATES = timedelta(minutes=1) def setup_platform(hass, config, add_entities, discovery_info=None): """Set up the Plex sensor.""" if discovery_info is None: return plexserver = list(hass.data[PLEX_DOMAIN][SERVERS].values())[0] add_entities([PlexSensor(plexserver)], True) class PlexSensor(Entity): """Representation of a Plex now playing sensor.""" def __init__(self, plex_server): """Initialize the sensor.""" self._name = DEFAULT_NAME self._state = None self._now_playing = [] self._server = plex_server self._unique_id = f"sensor-{plex_server.machine_identifier}" @property def name(self): """Return the name of the sensor.""" return self._name @property def unique_id(self): """Return the id of this plex client.""" return self._unique_id @property def state(self): """Return the state of the sensor.""" return self._state @property def unit_of_measurement(self): """Return the unit this state is expressed in.""" return "Watching" @property def device_state_attributes(self): """Return the state attributes.""" return {content[0]: content[1] for content in self._now_playing} @Throttle(MIN_TIME_BETWEEN_UPDATES) def update(self): """Update method for Plex sensor.""" try: sessions = self._server.sessions() except plexapi.exceptions.BadRequest: _LOGGER.error( "Error listing current Plex sessions on %s", self._server.friendly_name ) return except requests.exceptions.RequestException as ex: _LOGGER.warning( "Temporary error connecting to %s (%s)", self._server.friendly_name, ex ) return now_playing = [] for sess in sessions: user = sess.usernames[0] device = sess.players[0].title now_playing_user = f"{user} - {device}" now_playing_title = "" if sess.TYPE == "episode": # example: # "Supernatural (2005) - S01 · E13 - Route 666" season_title = sess.grandparentTitle if sess.show().year is not None: season_title += " ({0})".format(sess.show().year) season_episode = "S{0}".format(sess.parentIndex) if sess.index is not None: season_episode += f" · E{sess.index}" episode_title = sess.title now_playing_title = "{0} - {1} - {2}".format( season_title, season_episode, episode_title ) elif sess.TYPE == "track": # example: # "Billy Talent - Afraid of Heights - Afraid of Heights" track_artist = sess.grandparentTitle track_album = sess.parentTitle track_title = sess.title now_playing_title = "{0} - {1} - {2}".format( track_artist, track_album, track_title ) else: # example: # "picture_of_last_summer_camp (2015)" # "The Incredible Hulk (2008)" now_playing_title = sess.title if sess.year is not None: now_playing_title += f" ({sess.year})" now_playing.append((now_playing_user, now_playing_title)) self._state = len(sessions) self._now_playing = now_playing ```
{ "source": "JoshWarby/LWM", "score": 3 }
#### File: JoshWarby/LWM/LWM.py ```python import tkinter as tk import tkinter.scrolledtext as tkst import tkinter.ttk as ttk import datetime import sqlite3 import re from passlib.hash import sha256_crypt # Regular expressions used in validating. dateregex="""(^(((0[1-9]|1[0-9]|2[0-8])[\/](0[1-9]|1[012]))|((29|30|31)[\/](0[13578]|1[02]))|((29|30)[\/](0[4,6,9]|11)))[\/](19|[2-9][0-9])\d\d$)|(^29[\/]02[\/](19|[2-9][0-9])(00|0408||12|16|20|24|28|32|36|40|44|48|52|56|60|64|68|72|76|80|84|88|92|96)$)""" emailregex="""[^@]+@[^@]+\.[^@]+""" # Creating database and tables. conn = sqlite3.connect("data\LWDB.db") cursor = conn.cursor() cursor.execute("""CREATE TABLE IF NOT EXISTS Events ( EventID INTEGER PRIMARY KEY ASC AUTOINCREMENT, Name VARCHAR, Date VARCHAR, VenueID INTEGER REFERENCES Venues ( VenueID ), TrainerID INTEGER REFERENCES Trainers ( TrainerID ), TrainerPaid REAL ); """) cursor.execute("""CREATE TABLE IF NOT EXISTS Trainers ( TrainerID INTEGER PRIMARY KEY ASC AUTOINCREMENT, FName VARCHAR, LName VARCHAR, ContactNo VARCHAR, ContactEmail VARCHAR, TotalPaid REAL, TotalEvents INT ); """) cursor.execute("""CREATE TABLE IF NOT EXISTS Venues ( VenueID INTEGER PRIMARY KEY ASC AUTOINCREMENT, Name VARCHAR, Capacity INTEGER, ContactNo VARCHAR ); """) cursor.execute("""CREATE TABLE IF NOT EXISTS EventTasks ( TasksID INTEGER PRIMARY KEY ASC AUTOINCREMENT REFERENCES Events ( EventID ), DeligateListSent BOOLEAN, PaperWorkRecorded BOOLEAN, CertificatesSent BOOLEAN, ClientInvoiced BOOLEAN, PayReceived BOOLEAN ); """) conn.commit() #Tkinter Necessities class Application(tk.Frame): def __init__(self, master): self.master = master tk.Frame.__init__(self, self.master) # Main function foir displaying data into all tables. def DisplayData(): # HOME PAGE OVERVIEW for row in EventTable.get_children(): EventTable.delete(row) cursor.execute( "SELECT EventID, Name,Date,VenueID,TrainerID FROM Events") EventPulledData = cursor.fetchall() for row in EventPulledData: EventTable.insert( "", 0, text="Row", values=(row[0], row[1], row[2], row[3], row[4])) for row in TrainerTable.get_children(): TrainerTable.delete(row) cursor.execute( "SELECT TrainerID, FName,ContactNo,ContactEmail FROM Trainers") TrainerPulledData = cursor.fetchall() for row in TrainerPulledData: TrainerTable.insert( "", 0, text="Row", values=(row[0], row[1], row[2], row[3])) for row in VenueTable.get_children(): VenueTable.delete(row) cursor.execute( "SELECT VenueID, Name, ContactNo FROM Venues") VenuePulledData = cursor.fetchall() for row in VenuePulledData: VenueTable.insert( "", 0, text="Row", values=(row[0], row[1], row[2])) # CountDowns for row in TimeTable.get_children(): TimeTable.delete(row) cursor.execute( "SELECT EventID,Date FROM Events") IDandDate = cursor.fetchall() lizt = [] for i in IDandDate: maths = str(datetime.datetime.strptime( i[1], '%d/%m/%Y').date() - datetime.datetime.now().date())[:-9] lizt += [(str(i[0]), maths)] for row in lizt: TimeTable.insert( "", 0, text="Row", values=(row[0], row[1])) # MAIN PAGES for row in TaskBigTable.get_children(): TaskBigTable.delete(row) cursor.execute( "SELECT TasksID,DeligateListSent,PaperWorkRecorded,CertificatesSent,ClientInvoiced,PayReceived FROM EventTasks") TasksPulledData = cursor.fetchall() TaskList=list(map(list, TasksPulledData)) lookup = {0: "Incomplete", 1: "Complete"} for i, j in enumerate(TaskList): for k, l in enumerate(j): if k == 0: continue TaskList[i][k] = lookup[TaskList[i][k]] for row in TaskList: TaskBigTable.insert( "", 0, text="Row", values=(row[0], row[1], row[2], row[3], row[4], row[5])) for row in TrainerBigTable.get_children(): TrainerBigTable.delete(row) cursor.execute( "SELECT TrainerID, FName,LName,ContactNo,ContactEmail,TotalPaid,TotalEvents FROM Trainers") TrainerPulledData = cursor.fetchall() for row in TrainerPulledData: TrainerBigTable.insert("", 0, text="Row", values=( row[0], row[1], row[2], row[3], row[4], row[5], row[6])) for row in VenueBigTable.get_children(): VenueBigTable.delete(row) cursor.execute( "SELECT VenueID, Name, Capacity, ContactNo FROM Venues") VenuePulledData = cursor.fetchall() for row in VenuePulledData: VenueBigTable.insert( "", 0, text="Row", values=(row[0], row[1], row[2], row[3])) # Main function for inserting data into the database. def InsertData(whichlist): #DML = "delete from sqlite_sequence where name='Events';" #cursor.execute(DML) #conn.commit() #DML = "delete from sqlite_sequence where name='EventTasks';" #cursor.execute(DML) #conn.commit() for i in TrainerIDEntry_H.get() + VenueIDEntry_H.get(): if i not in "0123456789": PopupMessage("ID Wrong Format") return if DateEntry.get() != "": if not re.match(dateregex, DateEntry.get()): PopupMessage("Date Wrong Format") return if ContactEEntry.get() != "": if not re.match(emailregex, ContactEEntry.get()): PopupMessage("Email Wrong Format") return if TrainerPaidEntry.get() != "": try: float(TrainerPaidEntry.get()) except: PopupMessage("Paid Wrong Format") return zero = 0 dics = {"EventEntryList": [NameEntry, DateEntry, VenueIDEntry_H, TrainerIDEntry_H, TrainerPaidEntry], "TrainerEntryList": [FNameEntry, LNameEntry, ContactNoEntry, ContactEEntry, PaidEntry, zero], "TaskEntryList": [DelVar, PapVar, CertVar, InvVar, PayVar], "VenueEntryList": [VNameEntry, CapacityEntry, ContactVEntry]} if whichlist == "EventEntryList": Table = "Events" DML = "INSERT INTO EventTasks VALUES (NULL,0,0,0,0,0);" cursor.execute(DML) conn.commit() if whichlist == "TrainerEntryList": Table = "Trainers" if whichlist == "VenueEntryList": Table = "Venues" DML = "INSERT INTO %s VALUES (NULL" % Table for i in dics[whichlist]: if i in(NameEntry, FNameEntry, LNameEntry, ContactNoEntry, ContactEEntry, VNameEntry, ContactVEntry, DateEntry): x = '"' + str(i.get()) + '"' else: try: x = str(i.get()) except: x = str(0) DML += "," + x DML += ");" cursor.execute(DML) conn.commit() if whichlist == "EventEntryList": DML = "UPDATE Trainers SET TotalPaid = TotalPaid + {} WHERE TrainerID = {}".format( TrainerPaidEntry.get(), TrainerIDEntry_H.get()) cursor.execute(DML) conn.commit() DML = "UPDATE Trainers SET TotalEvents = TotalEvents + 1 WHERE TrainerID = {}".format( TrainerIDEntry_H.get()) cursor.execute(DML) conn.commit() DisplayData() # Function for updating tix box values within the database. def TickBoxUpdate(ID,Del,Pap,Cert,Inv,Pay): if ID != "": try: int(ID) except: PopupMessage("TaskID Wrong Format") return DML = "UPDATE EventTasks SET DeligateListSent ="+str(Del)+", PaperWorkRecorded = "+str(Pap)+", CertificatesSent = "+str(Cert)+",ClientInvoiced = "+str(Inv)+", PayReceived = "+str(Pay)+" WHERE TasksID = "+str(ID) cursor.execute(DML) conn.commit() DisplayData() # Function for editing the event table. def EditEventTable(ID,Name,Date,VenID,TrainID,TrainPaid): if ID != "": try: int(ID) except: PopupMessage("EventID Wrong Format") return DML = "UPDATE Events SET Name = {}, Date = {}, VenueID = {},TrainerID = {},TrainerPaid = {} WHERE EventID = {}".format(('"'+Name+'"'),('"'+Date+'"'),('"'+VenID+'"'),('"'+TrainID+'"'),('"'+TrainPaid+'"'),('"'+ID+'"'),) cursor.execute(DML) conn.commit() DisplayData() # Function for editing the venue table. def EditVenueTable(ID,Name,Cap,Contact): print(ID) if ID != "": try: int(ID) except: PopupMessage("TaskID Wrong Format") return DML = "UPDATE Venues SET Name = {}, Capacity = {}, ContactNo = {} WHERE VenueID = {}".format(('"'+Name+'"'),('"'+Cap+'"'),('"'+Contact+'"'),('"'+ID+'"')) cursor.execute(DML) conn.commit() DisplayData() # Function for editing the trainer table. def EditTrainerTable(ID,FName,LName,ContactE,ContactNo,Paid): print(ID) if ID != "": try: int(ID) except: PopupMessage("TrainerID Wrong Format") return DML = "UPDATE Trainers SET FName = {}, LName = {}, ContactNo = {}, ContactEmail = {} , TotalPaid = {} WHERE TrainerID = {}".format(('"'+FName+'"'),('"'+LName+'"'),('"'+ContactE+'"'),('"'+ContactNo+'"'),('"'+Paid+'"'),('"'+ID+'"')) cursor.execute(DML) conn.commit() DisplayData() # Deletes any data from database. def DeleteField(Table,ID): if Table == "Events": tableID = "EventID" if Table == "Trainers": tableID = "TrainerID" if Table == "Venues": tableID = "VenueID" DML = "DELETE FROM {} WHERE {} = {}".format(Table,tableID,ID) cursor.execute(DML) conn.commit() if Table == "Events": Table = "EventTasks" tableID = "TasksID" DML = "DELETE FROM {} WHERE {} = {}".format(Table,tableID,ID) cursor.execute(DML) conn.commit() DisplayData() # "Forwards" pressing enter to checking password. def passcheckenter(): passcheck(PE1) # Used to switch between "Pages" def switchto(frame): frame.tkraise() # Used to create popup messsages, used for errors. def PopupMessage(message): PopupMessage = tk.Tk() PopupMessage.wm_title("ERROR!") PopupMessage.configure(background="Yellow4") label = tk.Label( PopupMessage, bg="Yellow4", text=message, font=("Verdana", 12)) label.pack(side="top", fill="x", pady=10) button1 = ttk.Button( PopupMessage, text="Okay", command=lambda: PopupMessage.destroy()) button1.pack(padx=20, pady=10, side="bottom", fill="x") PopupMessage.resizable(width=False, height=False) PopupMessage.mainloop() # Checks password against encryped password. def passcheck(PE1): #if sha256_crypt.verify( PE1.get(), "$5$rounds=535000$A13jp7js0fJDN97x$fZ9gRkQoRKtreWl/WGa2Bc.eYXYf3aKcnydcll445fB"): if sha256_crypt.verify( PE1.get(), "$5$rounds=535000$AXcB5Fs8zYN5taGo$hwzOItn575Ar4H18YKG0ITdS1fbe8EbWxMoNOFqAcl4"): switchto(HomeFrame) TopFrame.grid(row=0, column=0, sticky='news') else: PopupMessage("Password Incorrect") # Colours topbarcolour = "white" textboxcolour = "#00ACC1" regbgcolour = "#0277BD" loginbgcolour = "#424242" # Create Frames TopFrame = tk.Frame(self, bg=topbarcolour) LoginFrame = tk.Frame( self, width=875, height=600, bg=loginbgcolour, padx=320, pady=250) HomeFrame = tk.Frame( self, width=875, height=600, bg=regbgcolour, padx=20, pady=10) TasksFrame = tk.Frame( self, width=875, height=600, bg=regbgcolour, padx=20, pady=10) TrainerFrame = tk.Frame( self, width=875, height=600, bg=regbgcolour, padx=20, pady=10) VenueFrame = tk.Frame( self, width=875, height=600, bg=regbgcolour, padx=20, pady=10) # Top Frame Buttons ttk.Button(TopFrame, text="Home", command=lambda: switchto(HomeFrame) ).grid(row=0, column=0, sticky='w') ttk.Button(TopFrame, text="Tasks", command=lambda: switchto(TasksFrame) ).grid(row=0, column=1, sticky='w') ttk.Button(TopFrame, text="Trainers", command=lambda: switchto(TrainerFrame) ).grid(row=0, column=2, sticky='w') ttk.Button(TopFrame, text="Venues", command=lambda: switchto(VenueFrame) ).grid(row=0, column=3, sticky='w') # Login Frame PL1 = tk.Label(LoginFrame, text="Password :") PL1.grid(row=1, column=0, sticky="w") PE1 = tk.Entry(LoginFrame, bd=2, show="*") PE1.focus_set() PE1.bind('<Return>', lambda event: passcheck(PE1)) PE1.grid(row=1, column=1,) PassButton1 = ttk.Button( LoginFrame, text="Submit", width=10, command=lambda: passcheck(PE1)) PassButton1.grid(row=3, column=1, sticky="s") # Home Page photo = tk.PhotoImage(file="data\logo.png") w = tk.Label(HomeFrame, image=photo, bg=regbgcolour) w.photo = photo w.place(x=250, y=0) EventTable = ttk.Treeview(HomeFrame) EventTable['show'] = 'headings' EventTable["columns"]=("E ID","Name","Date","V ID","T ID") EventTable.column("E ID", width=30) EventTable.column("Name", width=60) EventTable.column("Date", width=60) EventTable.column("V ID", width=30) EventTable.column("T ID", width=30) EventTable.heading("E ID", text="ID") EventTable.heading("Name", text="Name") EventTable.heading("Date", text="Date") EventTable.heading("V ID", text="V ID") EventTable.heading("T ID", text="T ID") EventTable.place(x=10, y=110) TrainerTable = ttk.Treeview(HomeFrame) TrainerTable['show'] = 'headings' TrainerTable["columns"]=("T ID","First Name","Mob No",) TrainerTable.column("T ID", width=30) TrainerTable.column("<NAME>", width=120) TrainerTable.column("Mob No", width=120) TrainerTable.heading("T ID", text="ID") TrainerTable.heading("First Name", text="First Name") TrainerTable.heading("Mob No", text="Mob No") TrainerTable.place(x=250, y=110) VenueTable = ttk.Treeview(HomeFrame) VenueTable['show'] = 'headings' VenueTable["columns"]=("V ID","Name","Mob No",) VenueTable.column("V ID", width=30) VenueTable.column("Name", width=120) VenueTable.column("Mob No", width=120) VenueTable.heading("V ID", text="V ID") VenueTable.heading("Name", text="Name") VenueTable.heading("Mob No", text="Mob No") VenueTable.place(x=550, y=110) TimeTable = ttk.Treeview(HomeFrame, height=8) TimeTable['show'] = 'headings' TimeTable["columns"]=("Event ID","Time Until",) TimeTable.column("Event ID", width=100) TimeTable.column("Time Until", width=150) TimeTable.heading("Event ID", text="Event ID") TimeTable.heading("Time Until", text="Time Until") TimeTable.place(x=275, y=400) VenueL1 = tk.Label(HomeFrame, text="Venue :", bg=regbgcolour) VenueL1.place(x=660, y=90) TrainerL1 = tk.Label(HomeFrame, text="Trainer :", bg=regbgcolour) TrainerL1.place(x=370, y=90) EventL1 = tk.Label(HomeFrame, text="Event :", bg=regbgcolour) EventL1.place(x=100, y=90) EventIDLabel = tk.Label( HomeFrame, text="Event ID (Edits Only)", bg=regbgcolour) NameLabel = tk.Label(HomeFrame, text="Event Name", bg=regbgcolour) DateLabel = tk.Label(HomeFrame, text="Date (DD/MM/YYYY)", bg=regbgcolour) VenueIDLabel = tk.Label(HomeFrame, text="VenueID", bg=regbgcolour) TrainerIDLabel = tk.Label(HomeFrame, text="TrainerID", bg=regbgcolour) TrainerPaidLabel = tk.Label( HomeFrame, text="Trainer Paid (£)", bg=regbgcolour) EventIDEntry = tk.Entry(HomeFrame, bd=2, bg=textboxcolour) NameEntry = tk.Entry(HomeFrame, bd=2, bg=textboxcolour) DateEntry = tk.Entry(HomeFrame, bd=2, bg=textboxcolour) VenueIDEntry_H = tk.Entry(HomeFrame, bd=2, bg=textboxcolour) TrainerIDEntry_H = tk.Entry(HomeFrame, bd=2, bg=textboxcolour) TrainerPaidEntry = tk.Entry(HomeFrame, bd=2, bg=textboxcolour) EventIDEntry.place(x=0, y=370) NameEntry.place(x=140, y=370) DateEntry.place(x=280, y=370) VenueIDEntry_H .place(x=420, y=370) TrainerIDEntry_H.place(x=560, y=370) TrainerPaidEntry.place(x=700, y=370) EventIDLabel.place(x=0, y=340) NameLabel.place(x=140, y=340) DateLabel.place(x=280, y=340) VenueIDLabel.place(x=420, y=340) TrainerIDLabel.place(x=560, y=340) TrainerPaidLabel.place(x=700, y=340) EventSubmitButton = ttk.Button(HomeFrame, text="Submit New Event", command=lambda: InsertData( "EventEntryList") ) EventSubmitButton.place(x=0, y=400) DeleteLabel = tk.Label(HomeFrame, text="Delete Event", bg=regbgcolour) DeleteEventEntry = tk.Entry(HomeFrame, bd=2, bg=textboxcolour) DeleteEventButon = ttk.Button(HomeFrame, text="Delete Event", command=lambda: DeleteField("Events", DeleteEventEntry.get())) DeleteLabel.place(x=0, y=450) DeleteEventEntry.place(x=0, y=480) DeleteEventButon.place(x=140, y=480) EditEventButon = ttk.Button(HomeFrame, text="Edit", command=lambda: EditEventTable(EventIDEntry.get(), NameEntry.get(), DateEntry.get(), VenueIDEntry_H.get(), TrainerIDEntry_H.get(), TrainerPaidEntry.get())) EditEventButon.place(x=120, y=400) # Trainer Page TrainerPageLabel = tk.Label( TrainerFrame, text="Trainers", bg=regbgcolour, font=("Helvetica", 30)) TrainerPageLabel.place(x=300, y=0) TrainerIDLabel = tk.Label( TrainerFrame, text="Trainer ID (Edits Only)", bg=regbgcolour) FNameLabel = tk.Label(TrainerFrame, text="<NAME>", bg=regbgcolour) LNameLabel = tk.Label(TrainerFrame, text="<NAME>", bg=regbgcolour) ContactNoIDLabel = tk.Label( TrainerFrame, text="Contact No", bg=regbgcolour) ContactEIDLabel = tk.Label( TrainerFrame, text="Contact Email", bg=regbgcolour) Paid = tk.Label( TrainerFrame, text="Trainer Total Paid (£)", bg=regbgcolour) TrainerIDEntry = tk.Entry(TrainerFrame, bd=2, bg=textboxcolour) FNameEntry = tk.Entry(TrainerFrame, bd=2, bg=textboxcolour) LNameEntry = tk.Entry(TrainerFrame, bd=2, bg=textboxcolour) ContactNoEntry = tk.Entry(TrainerFrame, bd=2, bg=textboxcolour) ContactEEntry = tk.Entry(TrainerFrame, bd=2, bg=textboxcolour) PaidEntry = tk.Entry(TrainerFrame, bd=2, bg=textboxcolour) TrainerIDEntry.place(x=0, y=370) FNameEntry.place(x=140, y=370) LNameEntry.place(x=280, y=370) ContactNoEntry.place(x=420, y=370) ContactEEntry.place(x=560, y=370) PaidEntry.place(x=700, y=370) TrainerIDLabel.place(x=0, y=340) FNameLabel.place(x=140, y=340) LNameLabel.place(x=280, y=340) ContactNoIDLabel.place(x=420, y=340) ContactEIDLabel.place(x=560, y=340) Paid.place(x=700, y=340) TrainerSubmitButton = ttk.Button(TrainerFrame, text="Submit New Trainer", command=lambda: InsertData( "TrainerEntryList") ) TrainerSubmitButton.place(x=0, y=400) DeleteLabelTrainer = tk.Label( TrainerFrame, text="Delete Trainer", bg=regbgcolour) DeleteTrainerEntry = tk.Entry(TrainerFrame, bd=2, bg=textboxcolour) DeleteTrainerButon = ttk.Button( TrainerFrame, text = "Delete Trainer", command=lambda: DeleteField("Trainers",DeleteTrainerEntry.get())) DeleteLabelTrainer.place(x=0, y=450) DeleteTrainerEntry.place(x=0, y=480) DeleteTrainerButon.place(x=140, y=480) TrainerBigTable = ttk.Treeview(TrainerFrame) TrainerBigTable['show'] = 'headings' TrainerBigTable["columns"]=("T ID","FName","LName","Contact No","Contact Email","TotalPaid","TotalEvents") TrainerBigTable.column("T ID", width=60) TrainerBigTable.heading("T ID", text="T ID") TrainerBigTable.column("FName", width=120) TrainerBigTable.heading("FName", text="FName") TrainerBigTable.column("LName", width=120) TrainerBigTable.heading("LName", text="LName") TrainerBigTable.column("Contact No", width=120) TrainerBigTable.heading("Contact No", text="Contact No") TrainerBigTable.column("Contact Email", width=120) TrainerBigTable.heading("Contact Email", text="Contact Email") TrainerBigTable.column("TotalPaid", width=120) TrainerBigTable.heading("TotalPaid", text="TotalPaid") TrainerBigTable.column("TotalEvents", width=120) TrainerBigTable.heading("TotalEvents", text="TotalEvents") TrainerBigTable.place(x=0, y=50) TrainerEventButon = ttk.Button(TrainerFrame, text="Edit", command=lambda: EditTrainerTable(TrainerIDEntry.get(),FNameEntry.get(),LNameEntry.get(),ContactNoEntry.get(),ContactEEntry.get(),PaidEntry.get())) TrainerEventButon.place(x=120, y=400) #Tasks Page TasksPageLabel = tk.Label( TasksFrame, text="Tasks", bg=regbgcolour, font=("Helvetica", 30)) TasksPageLabel.place(x=300, y=0) DelVar = tk.IntVar() PapVar = tk.IntVar() CertVar = tk.IntVar() InvVar = tk.IntVar() PayVar = tk.IntVar() TaskIDEntry = tk.Entry(TasksFrame, bd=2, bg=textboxcolour) DelCheck = tk.Checkbutton(TasksFrame, text="Deligate List", variable=DelVar, onvalue=1, offvalue=0, height=5, width=20, bg=regbgcolour, activebackground=textboxcolour) PapCheck = tk.Checkbutton(TasksFrame, text="Paper Work", variable=PapVar, onvalue=1, offvalue=0, height=5, width=20, bg=regbgcolour, activebackground=textboxcolour) CertCheck = tk.Checkbutton(TasksFrame, text="Certificates", variable=CertVar, onvalue=1, offvalue=0, height=5, width=20, bg=regbgcolour, activebackground=textboxcolour) InvCheck = tk.Checkbutton(TasksFrame, text="Invoice", variable=InvVar, onvalue=1, offvalue=0, height=5, width=20, bg=regbgcolour, activebackground=textboxcolour) PayCheck = tk.Checkbutton(TasksFrame, text="Payed", variable=PayVar, onvalue=1, offvalue=0, height=5, width=20, bg=regbgcolour, activebackground=textboxcolour) TaskIDLabel = tk.Label(TasksFrame, text="Event ID", bg=regbgcolour) TaskIDLabel.place(x=0, y=375) TaskIDEntry.place(x=0, y=400) DelCheck.place(x=140, y=370) PapCheck.place(x=280, y=370) CertCheck.place(x=420, y=370) InvCheck.place(x=560, y=370) PayCheck .place(x=700, y=370) TaskSubmitButton = ttk.Button(TasksFrame, text="Update Task", command=lambda: TickBoxUpdate(TaskIDEntry.get(),DelVar.get(), PapVar.get(), CertVar.get(), InvVar.get(), PayVar.get()) ) TaskSubmitButton.place(x=0, y=450) TaskBigTable = ttk.Treeview(TasksFrame) TaskBigTable['show'] = 'headings' TaskBigTable["columns"]=("E ID","Deligate List","Paper Work","Certificates","Invoiced","Payed") TaskBigTable.column("E ID", width=60) TaskBigTable.heading("E ID", text="E ID") TaskBigTable.column("Deligate List", width=120) TaskBigTable.heading("Deligate List", text="Deligate List") TaskBigTable.column("Paper Work", width=120) TaskBigTable.heading("Paper Work", text="Paper Work") TaskBigTable.column("Certificates", width=120) TaskBigTable.heading("Certificates", text="Certificates Sent") TaskBigTable.column("Invoiced", width=120) TaskBigTable.heading("Invoiced", text="Invoiced") TaskBigTable.column("Payed", width=120) TaskBigTable.heading("Payed", text="Payed") TaskBigTable.place(x=75, y=50) #Venue Page VenuePageLabel = tk.Label( VenueFrame, text="Venue", bg=regbgcolour, font=("Helvetica", 30)) VenuePageLabel.place(x=300, y=0) VenueIDLabel = tk.Label( VenueFrame, text="Venue ID (Edits Only)", bg=regbgcolour) VNameLabel = tk.Label(VenueFrame, text="Venue Name", bg=regbgcolour) CapacityLabel = tk.Label(VenueFrame, text="Capacity", bg=regbgcolour) VContactNoIDLabel = tk.Label( VenueFrame, text="Contact No", bg=regbgcolour) VenueIDEntry = tk.Entry(VenueFrame, bd=2, bg=textboxcolour) VNameEntry = tk.Entry(VenueFrame, bd=2, bg=textboxcolour) CapacityEntry = tk.Entry(VenueFrame, bd=2, bg=textboxcolour) ContactVEntry = tk.Entry(VenueFrame, bd=2, bg=textboxcolour) VenueIDEntry.place(x=0, y=370) VNameEntry.place(x=140, y=370) CapacityEntry.place(x=280, y=370) ContactVEntry.place(x=420, y=370) VenueIDLabel.place(x=0, y=340) VNameLabel.place(x=140, y=340) CapacityLabel.place(x=280, y=340) VContactNoIDLabel.place(x=420, y=340) VenueSubmitButton = ttk.Button(VenueFrame, text="Submit New Venue", command=lambda: InsertData( "VenueEntryList") ) VenueSubmitButton.place(x=0, y=400) DeleteLabelVenue = tk.Label( VenueFrame, text="Delete Venue", bg=regbgcolour) DeleteVenueEntry = tk.Entry(VenueFrame, bd=2, bg=textboxcolour) DeleteVenueButon = ttk.Button(VenueFrame, text="Delete Venue", command=lambda: DeleteField("Venues", DeleteVenueEntry.get())) DeleteLabelVenue.place(x=0, y=450) DeleteVenueEntry.place(x=0, y=480) DeleteVenueButon.place(x=140, y=480) VenueBigTable = ttk.Treeview(VenueFrame) VenueBigTable['show'] = 'headings' VenueBigTable["columns"] = ("V ID", "Name", "Capacity", "ContactNo") VenueBigTable.column("V ID", width=60) VenueBigTable.heading("V ID", text="V ID") VenueBigTable.column("Name", width=120) VenueBigTable.heading("Name", text="Name") VenueBigTable.column("Capacity", width=120) VenueBigTable.heading("Capacity", text="Capacity") VenueBigTable.column("ContactNo", width=120) VenueBigTable.heading("ContactNo", text="ContactNo") VenueBigTable.place(x=175, y=50) VenueEventButon = ttk.Button(VenueFrame, text="Edit", command=lambda: EditVenueTable(VenueIDEntry.get(), VNameEntry.get(), CapacityEntry.get(), ContactVEntry.get())) VenueEventButon.place(x=120, y=400) #Setup LoginFrame.grid(row=1, column=0, sticky='news') HomeFrame.grid(row=1, column=0, sticky='news') TasksFrame.grid(row=1, column=0, sticky='news') TrainerFrame.grid(row=1, column=0, sticky='news') VenueFrame.grid(row=1, column=0, sticky='news') self.grid() switchto(LoginFrame) DisplayData() #Tkinter Necessities root = tk.Tk() root.title("LW Manager") root.iconbitmap('data\LWicon.ico') root.resizable(width=False, height=False) Application(root).mainloop() root.destroy ```
{ "source": "joshwarecom/joshwarecom.github.com", "score": 2 }
#### File: security/goatc/goatc.py ```python import util, pprint, commands #initialize main python module debugmsg = util.print_err die = util.die util.set_default_verbosity(1) hashlib_seed = 'goATC' api_client = None #error codes and messages; use only 0 or positive integers. err_success = [0,"Success"] err_unexplained_failure = [1,"Unexplained failure."] err_bad_status_code = [2,"Bad status code returned"] err_invalid_command = [3,"Invalid command."] #index of commands supported by this script supported_commands = [ ["ACCOUNT_NAME", "Simply lookup and print the account name for the supplied switchKey."], ["ACCOUNT_CONTRACTS", "List the contracts associated with the supplied switchKey."], ["ACCOUNT_GROUPS", "List the configurations associated with the supplied switchKey."], ["ACCOUNT_PROPERTIES", "List the configurations associated with the supplied switchKey, contract, and group."], ["PROPERTY_HOSTNAMES", "Download list of hostnames."], ["PROPERTY_XML", "Download configuration metadata as XML."], ["PROPERTY_JSON", "Download configuration metadata as JSON."], ["PROPERTY_RULES_JSON", "Download configuration version metadata as JSON."], ["GET_TEST_CATALOG_TEMPLATE", "Download the ATC test catalog template"], ["EXECUTE_PROPERTY_ATC_SCRIPTS", "Download the list of ATC test scripts saved to the comments of given property version and execute them. For the experimental GUI version, supplly the --ui argument. To supply test script from a local file, supply --localFile /path/to/file."], ["LIST_GOATC_TEST_SUITES", "Download the list of ATC test suites that were automatically generated by this script."], ["REMOVE_GOATC_TEST_SUITES", "Remove the ATC test suites that were automatically generated by this script."], ["SHOW_GOATC_UI", "Show experimental GUI for parameterizing this script."] ] current_command_index = -1 def initialize_arguments(): #add builtin library arguments args = util.ApiArguments(__doc__, autoparse=False) #generate help text for supported commands cmd_list = "" for pair in supported_commands: if (cmd_list != ""): cmd_list = cmd_list + ", " cmd_list = cmd_list + pair[0] args.required_args.add_argument("--cmd", required=False, help="supported commands: " + cmd_list, action="store", dest="command", default="SHOW_GOATC_UI") #parse arguments args.parse_args() #make sure command entered is valid valid_command = 0 global current_command_index for pair in supported_commands: current_command_index = current_command_index + 1 if args.args.command.lower() == pair[0].lower(): valid_command = 1 break if (valid_command == 0): die(err_invalid_command[0],args.args.command + " is not a valid command. Valid commands are: " + cmd_list) return args if __name__ == "__main__": try: util.set_input_args(initialize_arguments()) if (util.get_input_args().args.explain): print("Explanation for the " + supported_commands[current_command_index][0] + " command: \n\n" + supported_commands[current_command_index][1]) else: util.set_api_client(util.ApiClient(switchkey=util.get_input_args().switchkey, edgerc=util.get_input_args().edgerc, section=util.get_input_args().section)) arg_fname = "addargs_" + supported_commands[current_command_index][0]; if (hasattr(commands, arg_fname)): f = getattr(commands, arg_fname) f() util.get_input_args().parse_args() fname = "docmd_" + supported_commands[current_command_index][0]; f = getattr(commands, fname) f() finally: util.cleanup() ``` #### File: security/goatc/gui.py ```python import util, wx, time, threading, pprint, os, urllib from util import get_api_client, get_input_args, print_err, pprint_err from subprocess import Popen, PIPE goatc_buttons = [] property_dialog = None listbox_groupid = None label_groupid = None label_populatedgroupid = None listbox_populatedgroupid_locked = False listbox_propertyid = None label_populatedpropertyid = None listbox_populatedpropertyid_locked = False class SelectPropertyDialog(wx.Dialog): def go(self, flag): if (flag == False): self.Close() else: wx.MessageBox("Wait for the current operation to complete before continuing.") def __init__(self): wx.Dialog.__init__(self, None, title="Select Other Property",style=(~wx.CLOSE_BOX)) self.SetSize(size=(400,400)) other_hidden_label = wx.StaticText(self, label="", pos=(0, 0)) other_hidden_label.Hide() groupbtn = wx.Button(self, label="Get Group IDs", pos=(275,10)) groupbtn.Bind(wx.EVT_BUTTON, populate_group_id_nonblocking) global txtctrl_switchkey label_currentkey = wx.StaticText(self, label="Current Switch Key: " + txtctrl_switchkey.GetValue(), pos=(10, 10)) global label_populatedgroupid label_populatedgroupid = wx.StaticText(self, label="", pos=(10, 16)) global listbox_populatedgroupid_locked label_getproperties = wx.StaticText(self, label="Property ID List:", pos=(10, 185)) global label_populatedpropertyid label_populatedpropertyid = wx.StaticText(self, label="...", pos=(10, 190)) global listbox_populatedpropertyid_locked propertybtn = wx.Button(self, label="Get Property IDs", pos=(265,185)) global listbox_propertyid listbox_propertyid = wx.ListBox(self, pos=(10, 205), size=(375,150)) propertybtn.Bind(wx.EVT_BUTTON, populate_property_id_nonblocking) gobtn = wx.Button(self, label="Go!", pos=(300,355)) gobtn.Bind(wx.EVT_BUTTON, lambda event: self.go(listbox_populatedgroupid_locked)) global property_dialog property_dialog = self global listbox_groupid listbox_groupid = wx.ListBox(self, pos=(10, 31), size=(375,150)) window.Bind(wx.EVT_TIMER, lambda evt, temp=other_hidden_label: update_continuously(evt, temp)) def select_other_property(e): global txtctrl_switchkey if (txtctrl_switchkey.GetValue() == ""): wx.MessageBox("You must enter a switch key to select a property.") else: dlg = SelectPropertyDialog() dlg.ShowModal() window.Unbind(wx.EVT_TIMER) dlg.Destroy() return False def reset_form(e): global button_test_pragmas button_test_pragmas.SetValue(False) for button in goatc_buttons: button.reset() class GoatcButton(wx.Button): toggled = False default_label = "" default_prefix = "" def reset(self): self.SetLabel(self.default_label) self.toggled = False self.SetOwnForegroundColour(wx.BLACK) def toggle_binary_test_condition(self,e): if (self.toggled): self.reset() else: self.SetLabel(self.default_prefix) self.SetOwnForegroundColour(wx.GREEN) self.toggled = True def toggle_integral_test_condition(self,e): if (self.toggled): self.toggled = False self.SetLabel(self.default_label) self.SetOwnForegroundColour(wx.BLACK) else: dialog = wx.TextEntryDialog(self, "Enter integer value", "Test Condition", "", wx.OK | wx.CANCEL) if dialog.ShowModal() == wx.ID_OK: try: number = int(dialog.GetValue()) self.SetOwnForegroundColour(wx.GREEN) self.toggled = True self.SetLabel(self.default_prefix+"=" + dialog.GetValue()) except: wx.MessageBox("Invalid value, only integers allowed.", "Error") dialog.Destroy() def toggle_int_comma_string_condition(self,e): if (self.toggled): self.toggled = False self.SetLabel(self.default_label) self.SetOwnForegroundColour(wx.BLACK) else: dialog = wx.TextEntryDialog(self, "Enter INT,STRING (an integer, followed by a comma, and then thext)", "Test Condition", "", wx.OK | wx.CANCEL) if dialog.ShowModal() == wx.ID_OK: try: str = dialog.GetValue() contents = str.split(",") number = int(contents[0]) text = contents[1] self.SetOwnForegroundColour(wx.GREEN) self.toggled = True self.SetLabel(self.default_prefix+"=" + contents[0] + "," + text) except: wx.MessageBox("Invalid value, only integers allowed.", "Error") dialog.Destroy() def toggle_integral_y_or_n_condition(self,e): if (self.toggled): self.toggled = False self.SetLabel(self.default_label) self.SetOwnForegroundColour(wx.BLACK) else: dialog = wx.TextEntryDialog(self, "Enter Y or N", "Test Condition", "", wx.OK | wx.CANCEL) if dialog.ShowModal() == wx.ID_OK: txt = (dialog.GetValue()).upper() if (txt == "Y" or txt == "N"): self.SetOwnForegroundColour(wx.GREEN) self.toggled = True self.SetLabel(self.default_prefix+"=" + txt) else: wx.MessageBox("Invalid value, only Y or N allowed.", "Error") dialog.Destroy() def toggle_string_condition(self,e): if (self.toggled): self.toggled = False self.SetLabel(self.default_label) self.SetOwnForegroundColour(wx.BLACK) else: dialog = wx.TextEntryDialog(self, "Enter text string", "Test Condition", "", wx.OK | wx.CANCEL) if dialog.ShowModal() == wx.ID_OK: txt = dialog.GetValue() self.SetOwnForegroundColour(wx.GREEN) self.toggled = True self.SetLabel(self.default_prefix+"=" + txt) dialog.Destroy() def __init__(self, panel, label, pos, size, default_bind = True): super().__init__(panel, label=label, pos=pos, size=size) self.default_label = self.GetLabel() self.default_prefix = self.default_label.split("=")[0] self.SetOwnForegroundColour(wx.BLACK) goatc_buttons.append(self) if (default_bind == True): self.Bind(wx.EVT_BUTTON, lambda event: self.toggle_binary_test_condition(event)) elif (default_bind == "Integer"): self.Bind(wx.EVT_BUTTON, lambda event: self.toggle_integral_test_condition(event)) elif (default_bind == "Integer,String"): self.Bind(wx.EVT_BUTTON, lambda event: self.toggle_int_comma_string_condition(event)) elif (default_bind == "YorN"): self.Bind(wx.EVT_BUTTON, lambda event: self.toggle_integral_y_or_n_condition(event)) elif (default_bind == "String"): self.Bind(wx.EVT_BUTTON, lambda event: self.toggle_string_condition(event)) snoring_threads = {} window = None hidden_label = None label_populatedaccountname = None label_populatedaccountname_locked = False txtctrl_switchkey = None txtctrl_contractid = None combo_contractid = None label_populatedcontractid = None combo_populatedcontractid_locked = False txtctrl_groupid = None label_groupid = None label_populatedgroupid = None combo_populatedgroupid_locked = False button_test_pragmas = None def update_continuously(evt, l): if (l != None): p = l.GetPosition() p.x = p.x + 1 p.y = p.y + 1 if (p.y > 10): p.x = 0 p.y = 0 l.SetPosition((p.x,p.y)) return None; def snore_continuously(l): l.SetLabel("") while l in snoring_threads: try: x = l.GetLabel() x = "." + x if (x == "..........."): x = "" l.SetLabel(x) time.sleep(.5) except: time.sleep(.5) def populate_property_id_nonblocking(arg=None): global listbox_groupid global listbox_propertyid listbox_propertyid.Hide() listbox_propertyid.Show() if (listbox_groupid.GetSelection() == wx.NOT_FOUND): wx.MessageBox("You must select a group id first.") return None t = threading.Thread(target=populate_property_id) t.start() def populate_property_id(): global property_dialog global listbox_propertyid global listbox_populatedpropertyid_locked global label_populatedpropertyid str = (listbox_groupid.GetString(listbox_groupid.GetSelection())) strlist = str.split("\t") if (len(strlist) < 3): wx.MessageBox("ERROR! Invalid selection.") return None selectgroup = None contractlist = [] count = 0 for ctr in strlist: count = count + 1 if (count == 1): selectgroup = ctr if (count >= 3): contractlist.append(ctr) pprint.pprint(contractlist) if (listbox_populatedpropertyid_locked == True): return False listbox_populatedpropertyid_locked = True listbox_propertyid.Disable() t = None if (label_populatedpropertyid in snoring_threads): snoring_threads.pop(label_populatedpropertyid) t.join() t = threading.Thread(target=snore_continuously, args=[label_populatedpropertyid]) snoring_threads[label_populatedpropertyid] = t t.start() file_path = os.path.realpath('goatc.py') full_output = "\n" for ctr in contractlist: cmd = file_path + " --cmd ACCOUNT_PROPERTIES --switchKey " + txtctrl_switchkey.GetValue() + " --groupId " + selectgroup + " --contractId " + ctr p = Popen(cmd, stdout=PIPE, stderr=PIPE, shell=True) stdout, stderr = p.communicate() full_output = full_output + stdout.decode("utf-8") + "\n" snoring_threads.pop(label_populatedpropertyid) t.join() listbox_propertyid.Hide() listbox_propertyid.Show() count = 0 try: if (stderr.decode("utf-8") != ""): label_populatedpropertyid.SetLabel("") listbox_propertyid.Clear() listbox_propertyid.Disable() wx.MessageBox(stderr.decode("utf-8"),"An Error Occurred"); else: listbox_propertyid.Clear() groups = full_output.split("\n") for group in groups: if (group != ""): count = count + 1 listbox_propertyid.Append((group.replace("|","\t"))) listbox_propertyid.Enable() finally: listbox_populatedpropertyid_locked = False label_populatedpropertyid.SetLabel("") return True def populate_group_id_nonblocking(arg=None): global listbox_groupid listbox_groupid.Hide() listbox_groupid.Show() t = threading.Thread(target=populate_group_id) t.start() def populate_group_id(): global property_dialog global listbox_groupid global listbox_populatedgroupid_locked if (listbox_populatedgroupid_locked == True): return False listbox_populatedgroupid_locked = True listbox_groupid.Disable() t = None if (label_populatedgroupid in snoring_threads): snoring_threads.pop(label_populatedgroupid) t.join() t = threading.Thread(target=snore_continuously, args=[label_populatedgroupid]) snoring_threads[label_populatedgroupid] = t t.start() file_path = os.path.realpath('goatc.py') cmd = file_path + " --cmd ACCOUNT_GROUPS --switchKey " + txtctrl_switchkey.GetValue(); p = Popen(cmd, stdout=PIPE, stderr=PIPE, shell=True) stdout, stderr = p.communicate() snoring_threads.pop(label_populatedgroupid) t.join() listbox_groupid.Hide() listbox_groupid.Show() count = 0 try: if (stderr.decode("utf-8") != ""): label_populatedgroupid.SetLabel("") listbox_groupid.Clear() listbox_groupid.Disable() wx.MessageBox(stderr.decode("utf-8"),"An Error Occurred"); else: listbox_groupid.Clear() groups = stdout.decode("utf-8").split("\n") for group in groups: if (group != ""): count = count + 1 listbox_groupid.Append(urllib.parse.unquote(group.replace("|","\t"))) listbox_groupid.Enable() finally: listbox_populatedgroupid_locked = False label_populatedgroupid.SetLabel("") return True def populate_contract_id_nonblocking(arg=None): global txtctrl_contractid global combo_contractid txtctrl_contractid.Hide() txtctrl_contractid.Show() combo_contractid.Hide() combo_contractid.Show() t = threading.Thread(target=populate_contract_id) t.start() def populate_contract_id(): global window global combo_contractid global combo_populatedcontractid_locked if (combo_populatedcontractid_locked == True): return False combo_populatedcontractid_locked = True combo_contractid.Disable() t = None if (label_populatedcontractid in snoring_threads): snoring_threads.pop(label_populatedcontractid) t.join() t = threading.Thread(target=snore_continuously, args=[label_populatedcontractid]) snoring_threads[label_populatedcontractid] = t t.start() file_path = os.path.realpath('goatc.py') cmd = file_path + " --cmd ACCOUNT_CONTRACTS --switchKey " + txtctrl_switchkey.GetValue(); p = Popen(cmd, stdout=PIPE, stderr=PIPE, shell=True) stdout, stderr = p.communicate() snoring_threads.pop(label_populatedcontractid) t.join() combo_contractid.Hide() combo_contractid.Show() try: if (stderr.decode("utf-8") != ""): label_populatedcontractid.SetLabel("") combo_contractid.Clear() combo_contractid.Disable() wx.MessageBox(stderr.decode("utf-8"),"An Error Occurred"); else: combo_contractid.Clear() combo_contractid.Disable() contracts = stdout.decode("utf-8").split("\n") for contract in contracts: if (contract != ""): combo_contractid.Append(contract) combo_contractid.Enable() try: combo_contractid.SetSelection(0) finally: label_populatedcontractid.SetLabel("") finally: combo_populatedcontractid_locked = False return True def populate_account_name_nonblocking(arg=None): global txtctrl_switchkey txtctrl_switchkey.Hide() txtctrl_switchkey.Show() t = threading.Thread(target=populate_account_name) t.start() def populate_account_name(): global window global label_populatedaccountname global label_populatedaccountname_locked if (label_populatedaccountname_locked == True): return False label_populatedaccountname_locked = True t = None if (label_populatedaccountname in snoring_threads): snoring_threads.pop(label_populatedaccountname) t.join() t = threading.Thread(target=snore_continuously, args=[label_populatedaccountname]) snoring_threads[label_populatedaccountname] = t t.start() file_path = os.path.realpath('goatc.py') cmd = file_path + " --cmd ACCOUNT_NAME --switchKey " + txtctrl_switchkey.GetValue(); p = Popen(cmd, stdout=PIPE, stderr=PIPE, shell=True) stdout, stderr = p.communicate() snoring_threads.pop(label_populatedaccountname) t.join() if (stderr.decode("utf-8") != ""): label_populatedaccountname.SetLabel("") wx.MessageBox(stderr.decode("utf-8"),"An Error Occurred"); else: label_populatedaccountname.SetLabel(stdout.decode("utf-8")) label_populatedaccountname_locked = False return True def showme(): contractId = get_input_args().args.contractid if (contractId == None): contractId = "" groupId = get_input_args().args.groupid if (groupId == None): groupId = "" propertyId = get_input_args().args.propertyid if (propertyId == None): propertyId = "" versionId = get_input_args().args.versionid if (versionId == None): versionId = "" app = wx.App() global window window = wx.Frame(None, title="GOATC UI", size=(650, 475), pos=(50,50)) panel = wx.Panel(window) global hidden_label hidden_label = wx.StaticText(panel, label="", pos=(0, 0)) hidden_label.Hide() window.timer = wx.Timer(window) window.timer.Start(100) #window.Bind(wx.EVT_TIMER, lambda evt, temp = hidden_label: update_continuously(evt, temp)) #button_accountname = wx.Button(panel, label="Account Name ", pos=(125, 10), size=(105,20), style=wx.BU_LEFT) #button_accountname.Bind(wx.EVT_BUTTON, populate_account_name_nonblocking) global txtctrl_switchkey current_key = get_api_client().current_switchkey if current_key == None: current_key = "" txtctrl_switchkey = wx.TextCtrl(panel, value=current_key, pos=(10, 30)) label_switchkey = wx.StaticText(panel, label="Switch Key", pos=(10, 10)) #global label_populatedaccountname #label_populatedaccountname = wx.StaticText(panel, label="* click [Account Name]", pos=(125, 30)) label_contractid = wx.StaticText(panel, label="Contract Id", pos=(10, 60)) #button_contractid = wx.Button(panel, label="Contract Id List ", pos=(125, 60), size=(130,20), style=wx.BU_LEFT) #button_contractid.Bind(wx.EVT_BUTTON, populate_contract_id_nonblocking) global txtctrl_contractid txtctrl_contractid = wx.TextCtrl(panel, value=contractId, pos=(10, 80)) #global combo_contractid #combo_contractid = wx.ComboBox(panel, 1, style=wx.CB_DROPDOWN | wx.CB_READONLY, size=(125,25), pos=(125,79)) #combo_contractid.Append("* click [Contract Id List]") #combo_contractid.SetSelection(0) #combo_contractid.Disable() #global label_populatedcontractid #label_populatedcontractid = wx.StaticText(panel, label="", pos=(125, 92)) global label_groupid label_groupid = wx.StaticText(panel, label="Group Id", pos=(10, 110)) global txtctrl_groupid txtctrl_groupid = wx.TextCtrl(panel, value=groupId, pos=(10, 130)) #button_groupid = wx.Button(panel, label="Group Id List ", pos=(125, 110), size=(130,20), style=wx.BU_LEFT) #button_groupid.Bind(wx.EVT_BUTTON, populate_group_id_nonblocking) #global combo_groupid #combo_groupid = wx.ComboBox(panel, 1, style=wx.CB_DROPDOWN | wx.CB_READONLY, size=(125,25), pos=(125,129)) #combo_groupid.Append("* click [Group Id List]") #combo_groupid.SetSelection(0) #combo_groupid.Disable() #global label_populatedgroupid #label_populatedgroupid = wx.StaticText(panel, label="", pos=(125, 142)) label_propertyid = wx.StaticText(panel, label="Property Id", pos=(10, 160)) txtctrl_propertyid = wx.TextCtrl(panel, value=propertyId, pos=(10, 180)) label_propertyid = wx.StaticText(panel, label="Version Id", pos=(10, 210)) txtctrl_propertyid = wx.TextCtrl(panel, value=versionId, pos=(10, 230)) button_propertyselector = wx.Button(panel, label="Select Other\nProperty", pos=(10, 260), size=(105,40)) button_propertyselector.SetFont(wx.Font(10, wx.FONTFAMILY_DEFAULT, wx.FONTSTYLE_NORMAL, wx.FONTWEIGHT_NORMAL)) button_propertyselector.Bind(wx.EVT_BUTTON, select_other_property) button_propertyselector = wx.Button(panel, label="Use This\nProperty", pos=(10, 300), size=(105,40)) button_propertyselector.SetFont(wx.Font(10, wx.FONTFAMILY_DEFAULT, wx.FONTSTYLE_NORMAL, wx.FONTWEIGHT_NORMAL)) button_accountinfo = wx.Button(panel, label="Show Helpful\nInformation", pos=(10, 340), size=(105,40)) button_accountinfo.SetFont(wx.Font(10, wx.FONTFAMILY_DEFAULT, wx.FONTSTYLE_NORMAL, wx.FONTWEIGHT_NORMAL)) label_cfgfile = wx.StaticText(panel, label="Configuration file:", pos=(130, 10)) label_cfgfilevalue = wx.StaticText(panel, label="[click Use This Property]", pos=(240, 10)) label_vars = wx.StaticText(panel, label="Vars:", pos=(130, 264+10)) list_vars = wx.ListBox(panel, 1, style=wx.LB_MULTIPLE, size=(225,60), pos=(130,280+10)) button_equalsvar = wx.Button(panel, label="Equals", pos=(165, 21+10), size=(48,500)) button_equalsvar = wx.Button(panel, label="Equals", pos=(165, 21+10), size=(48,500)) button_equalsvar.SetFont(wx.Font(10, wx.FONTFAMILY_DEFAULT, wx.FONTSTYLE_NORMAL, wx.FONTWEIGHT_NORMAL)) button_novar = wx.Button(panel, label="NoVAR", pos=(213, 21+10), size=(48,500)) button_novar.SetFont(wx.Font(10, wx.FONTFAMILY_DEFAULT, wx.FONTSTYLE_NORMAL, wx.FONTWEIGHT_NORMAL)) button_noval = wx.Button(panel, label="NoVAL", pos=(261, 21+10), size=(48,500)) button_noval.SetFont(wx.Font(10, wx.FONTFAMILY_DEFAULT, wx.FONTSTYLE_NORMAL, wx.FONTWEIGHT_NORMAL)) button_delvar = wx.Button(panel, label="D", pos=(308, 21+10), size=(25,500)) button_delvar.SetFont(wx.Font(10, wx.FONTFAMILY_DEFAULT, wx.FONTSTYLE_NORMAL, wx.FONTWEIGHT_NORMAL)) button_clrvar = wx.Button(panel, label="C", pos=(332, 21+10), size=(23,500)) button_clrvar.SetFont(wx.Font(10, wx.FONTFAMILY_DEFAULT, wx.FONTSTYLE_NORMAL, wx.FONTWEIGHT_NORMAL)) label_rsphdrs = wx.StaticText(panel, label="Rsp hdrs:", pos=(360, 264+10)) list_rsphdrs = wx.ListBox(panel, 1, style=wx.LB_MULTIPLE, size=(230,60), pos=(360,280+10)) button_addrsphdr = wx.Button(panel, label="Add", pos=(420, 21+10), size=(40,500)) button_addrsphdr.SetFont(wx.Font(10, wx.FONTFAMILY_DEFAULT, wx.FONTSTYLE_NORMAL, wx.FONTWEIGHT_NORMAL)) button_missrsphdr = wx.Button(panel, label="Miss", pos=(460, 21+10), size=(40,500)) button_missrsphdr.SetFont(wx.Font(10, wx.FONTFAMILY_DEFAULT, wx.FONTSTYLE_NORMAL, wx.FONTWEIGHT_NORMAL)) button_delrsphdr = wx.Button(panel, label="Del", pos=(500, 21+10), size=(40,500)) button_delrsphdr.SetFont(wx.Font(10, wx.FONTFAMILY_DEFAULT, wx.FONTSTYLE_NORMAL, wx.FONTWEIGHT_NORMAL)) button_clearrsphdr = wx.Button(panel, label="Clear", pos=(540, 21+10), size=(50,500)) button_clearrsphdr.SetFont(wx.Font(10, wx.FONTFAMILY_DEFAULT, wx.FONTSTYLE_NORMAL, wx.FONTWEIGHT_NORMAL)) label_hostnames = wx.StaticText(panel, label="Hostnames:", pos=(130, 32)) label_populatedhostnames = wx.StaticText(panel, label="...", pos=(130, 37)) list_hostnames = wx.ListBox(panel, 1, style=wx.LB_MULTIPLE, size=(225,75), pos=(130,53)) button_hostnames = wx.Button(panel, label="Unselect All", pos=(210, 21), size=(145,40)) button_hostnames.SetFont(wx.Font(10, wx.FONTFAMILY_DEFAULT, wx.FONTSTYLE_NORMAL, wx.FONTWEIGHT_NORMAL)) label_hostnames = wx.StaticText(panel, label="Req hdrs:", pos=(360, 32)) #label_populatedheaders = wx.StaticText(panel, label="...", pos=(360, 37)) list_headers = wx.ListBox(panel, 1, style=wx.LB_MULTIPLE, size=(230,75), pos=(360,53)) button_addheader = wx.Button(panel, label="Add", pos=(420, 21), size=(40,40)) button_addheader.SetFont(wx.Font(10, wx.FONTFAMILY_DEFAULT, wx.FONTSTYLE_NORMAL, wx.FONTWEIGHT_NORMAL)) button_modheader = wx.Button(panel, label="Mod", pos=(460, 21), size=(40,40)) button_modheader.SetFont(wx.Font(10, wx.FONTFAMILY_DEFAULT, wx.FONTSTYLE_NORMAL, wx.FONTWEIGHT_NORMAL)) button_delheader = wx.Button(panel, label="Del", pos=(500, 21), size=(40,40)) button_delheader.SetFont(wx.Font(10, wx.FONTFAMILY_DEFAULT, wx.FONTSTYLE_NORMAL, wx.FONTWEIGHT_NORMAL)) button_clearheader = wx.Button(panel, label="Clear", pos=(540, 21), size=(50,40)) button_clearheader.SetFont(wx.Font(10, wx.FONTFAMILY_DEFAULT, wx.FONTSTYLE_NORMAL, wx.FONTWEIGHT_NORMAL)) button_test_status = GoatcButton(panel, label="STATUS=___", pos=(130, 120), size=(80, 40), default_bind="Integer") button_test_status.SetFont(wx.Font(10, wx.FONTFAMILY_DEFAULT, wx.FONTSTYLE_NORMAL, wx.FONTWEIGHT_NORMAL)) button_test_cpcode = GoatcButton(panel, label="CPCODE=__________", pos=(210, 120), size=(120, 40), default_bind="Integer") button_test_cpcode.SetFont(wx.Font(10, wx.FONTFAMILY_DEFAULT, wx.FONTSTYLE_NORMAL, wx.FONTWEIGHT_NORMAL)) button_test_sureroute = GoatcButton(panel, label="SUREROUTE", pos=(330, 120), size=(80, 40)) button_test_sureroute.SetFont(wx.Font(10, wx.FONTFAMILY_DEFAULT, wx.FONTSTYLE_NORMAL, wx.FONTWEIGHT_NORMAL)) button_test_sureroute = GoatcButton(panel, label="PREFETCH", pos=(410, 120), size=(80, 40)) button_test_sureroute.SetFont(wx.Font(10, wx.FONTFAMILY_DEFAULT, wx.FONTSTYLE_NORMAL, wx.FONTWEIGHT_NORMAL)) button_test_gzip = GoatcButton(panel, label="GZIP", pos=(490, 120), size=(40, 40)) button_test_gzip.SetFont(wx.Font(10, wx.FONTFAMILY_DEFAULT, wx.FONTSTYLE_NORMAL, wx.FONTWEIGHT_NORMAL)) button_test_nostore = GoatcButton(panel, label="NOSTOR", pos=(530, 120), size=(60, 40)) button_test_nostore.SetFont(wx.Font(10, wx.FONTFAMILY_DEFAULT, wx.FONTSTYLE_NORMAL, wx.FONTWEIGHT_NORMAL)) button_test_redirect = GoatcButton(panel, label="REDIRECT=___,_________________________________________________________", pos=(130, 142), size=(360, 40),default_bind="Integer,String") button_test_redirect.SetFont(wx.Font(10, wx.FONTFAMILY_DEFAULT, wx.FONTSTYLE_NORMAL, wx.FONTWEIGHT_NORMAL)) button_test_cache = GoatcButton(panel, label="CACHE=__,______", pos=(490, 142), size=(100, 40),default_bind="Integer,String") button_test_cache.SetFont(wx.Font(10, wx.FONTFAMILY_DEFAULT, wx.FONTSTYLE_NORMAL, wx.FONTWEIGHT_NORMAL)) button_test_bypass = GoatcButton(panel, label="BYPASS", pos=(130, 164), size=(60, 40)) button_test_bypass.SetFont(wx.Font(10, wx.FONTFAMILY_DEFAULT, wx.FONTSTYLE_NORMAL, wx.FONTWEIGHT_NORMAL)) button_test_exclude = GoatcButton(panel, label="EXCLUDEPARAMS", pos=(190, 164), size=(100, 40)) button_test_exclude.SetFont(wx.Font(10, wx.FONTFAMILY_DEFAULT, wx.FONTSTYLE_NORMAL, wx.FONTWEIGHT_NORMAL)) button_test_logrefer = GoatcButton(panel, label="LOGREFER=_", pos=(290, 164), size=(80, 40),default_bind="YorN") button_test_logrefer.SetFont(wx.Font(10, wx.FONTFAMILY_DEFAULT, wx.FONTSTYLE_NORMAL, wx.FONTWEIGHT_NORMAL)) button_test_loghost = GoatcButton(panel, label="LOGHOST=_", pos=(370, 164), size=(75, 40),default_bind="YorN") button_test_loghost.SetFont(wx.Font(10, wx.FONTFAMILY_DEFAULT, wx.FONTSTYLE_NORMAL, wx.FONTWEIGHT_NORMAL)) button_test_loglang = GoatcButton(panel, label="LOGLANG=_", pos=(445, 164), size=(75, 40),default_bind="YorN") button_test_loglang.SetFont(wx.Font(10, wx.FONTFAMILY_DEFAULT, wx.FONTSTYLE_NORMAL, wx.FONTWEIGHT_NORMAL)) button_test_keycontains = GoatcButton(panel, label="KEYCONTAINS=_________________________________________________________", pos=(130, 186), size=(360, 40),default_bind="String") button_test_keycontains.SetFont(wx.Font(10, wx.FONTFAMILY_DEFAULT, wx.FONTSTYLE_NORMAL, wx.FONTWEIGHT_NORMAL)) button_test_logcook = GoatcButton(panel, label="LOGCUSTOM=_", pos=(490, 164), size=(100, 83),default_bind="YorN") button_test_logcook.SetFont(wx.Font(10, wx.FONTFAMILY_DEFAULT, wx.FONTSTYLE_NORMAL, wx.FONTWEIGHT_NORMAL)) button_test_logcook = GoatcButton(panel, label="LOGCOOKIES=_", pos=(490, 208), size=(100, 40),default_bind="YorN") button_test_logcook.SetFont(wx.Font(10, wx.FONTFAMILY_DEFAULT, wx.FONTSTYLE_NORMAL, wx.FONTWEIGHT_NORMAL)) button_test_keyomits = GoatcButton(panel, label="KEYOMITS=_________________________________________________________", pos=(130, 208), size=(360, 40),default_bind="String") button_test_keyomits.SetFont(wx.Font(10, wx.FONTFAMILY_DEFAULT, wx.FONTSTYLE_NORMAL, wx.FONTWEIGHT_NORMAL)) button_test_hardcode = GoatcButton(panel, label="HARDCODE=_________________________________________________________", pos=(130, 230), size=(360, 40),default_bind="String") button_test_hardcode.SetFont(wx.Font(10, wx.FONTFAMILY_DEFAULT, wx.FONTSTYLE_NORMAL, wx.FONTWEIGHT_NORMAL)) button_test_secpolicy = GoatcButton(panel, label="SECPOL=________", pos=(490, 208), size=(100, 40),default_bind="String") button_test_secpolicy.SetFont(wx.Font(10, wx.FONTFAMILY_DEFAULT, wx.FONTSTYLE_NORMAL, wx.FONTWEIGHT_NORMAL)) button_test_notd = GoatcButton(panel, label="NOTD", pos=(490, 230), size=(100, 40)) button_test_notd.SetFont(wx.Font(10, wx.FONTFAMILY_DEFAULT, wx.FONTSTYLE_NORMAL, wx.FONTWEIGHT_NORMAL)) voffset = 25 label_paths = wx.StaticText(panel, label="Request path (not including hostname):", pos=(130, 355)) txtctrl_path = wx.TextCtrl(panel, value="/", pos=(375, 353), size=(215,22)) button_addtest = wx.Button(panel, label="Update Test Script List", pos=(130, 380+voffset), size=(170, 40)) button_addtest.SetFont(wx.Font(10, wx.FONTFAMILY_DEFAULT, wx.FONTSTYLE_NORMAL, wx.FONTWEIGHT_NORMAL)) button_cleartest = wx.Button(panel, label="Reset Form", pos=(300, 380+voffset), size=(100, 40)) button_cleartest.SetFont(wx.Font(10, wx.FONTFAMILY_DEFAULT, wx.FONTSTYLE_NORMAL, wx.FONTWEIGHT_NORMAL)) button_cleartest.Bind(wx.EVT_BUTTON, reset_form) button_savetest = wx.Button(panel, label="Save", pos=(400, 380+voffset), size=(40, 40)) button_savetest.SetFont(wx.Font(10, wx.FONTFAMILY_DEFAULT, wx.FONTSTYLE_NORMAL, wx.FONTWEIGHT_NORMAL)) button_copytest = wx.Button(panel, label="Copy", pos=(440, 380+voffset), size=(40, 40)) button_copytest.SetFont(wx.Font(10, wx.FONTFAMILY_DEFAULT, wx.FONTSTYLE_NORMAL, wx.FONTWEIGHT_NORMAL)) button_runtest = wx.Button(panel, label="Load", pos=(480, 380+voffset), size=(40, 40)) button_runtest.SetFont(wx.Font(10, wx.FONTFAMILY_DEFAULT, wx.FONTSTYLE_NORMAL, wx.FONTWEIGHT_NORMAL)) button_goatc = wx.Button(panel, label="GO ATC!", pos=(520, 380+voffset), size=(70, 40)) button_goatc.SetFont(wx.Font(10, wx.FONTFAMILY_DEFAULT, wx.FONTSTYLE_NORMAL, wx.FONTWEIGHT_NORMAL)) combo_templates = wx.ComboBox(panel, 1, style=wx.CB_DROPDOWN | wx.CB_READONLY, size=(325,25), pos=(130,358+voffset)) button_templates = wx.Button(panel, label="Apply Template Instead", pos=(460, 350+voffset), size=(130, 40)) button_templates.SetFont(wx.Font(10, wx.FONTFAMILY_DEFAULT, wx.FONTSTYLE_NORMAL, wx.FONTWEIGHT_NORMAL)) global button_test_pragmas button_test_pragmas = wx.CheckBox(panel, label="PRAGMAS", pos=(522, 164), size=(95, 40)) button_test_pragmas.SetFont(wx.Font(10, wx.FONTFAMILY_DEFAULT, wx.FONTSTYLE_NORMAL, wx.FONTWEIGHT_NORMAL)) window.Show(True) app.MainLoop() while len(snoring_threads) > 0: try: for t in snoring_threads: th = snoring_threads.pop(t) th.join() except: print_err("Cleaning up threads...\n") util.die(0, "UI window closed. Exiting gracefully.") ``` #### File: security/goatc/testme.py ```python import util, pprint #initialize main python module debugmsg = util.print_err die = util.die util.set_default_verbosity(1) hashlib_seed = 'illuminATC' #error codes and messages; use only 0 or positive integers. err_success = [0,"Success"] err_unexplained_failure = [1,"Unexplained failure."] err_bad_status_code = [2,"Bad status code returned"] def initialize_arguments(): #add builtin library arguments args = util.ApiArguments(__doc__, autoparse=False) #add any additional required arguments here before parsing #example: #args.required_args.add_argument("--REQUIRED", required=True, help="REQUIRED ARGUMENT", action="store", dest="REQUIRED") #add any additional optional arguments here before parsing #example: #args.parser.add_argument("--OPTIONAL", required=False, help="OPTIONAL", action="store", dest="OPTIONAL") args.parse_args() return args def getAccountName(client): parameters = {'accountSwitchKey': client.current_switchkey} json_data = client.httpCaller.getJSONResult('/papi/v1/groups', parameters) if ("accountName" in json_data and client.get_last_response_code() == 200): return json_data["accountName"] return None if __name__ == "__main__": try: arguments = initialize_arguments() client = util.ApiClient(switchkey=arguments.switchkey, edgerc=arguments.edgerc, section=arguments.section) name = getAccountName(client) if (name == None): print("Could not retrieve account name.\nStatus code: ") print(client.get_last_response_code()) print("\nJSON response body:") pprint.pprint(client.get_last_endpoint_result().json()); else: print(name) finally: util.cleanup() ```
{ "source": "joshwatson/debugger", "score": 2 }
#### File: debugger/dockwidgets/MemoryWidget.py ```python from PySide2 import QtCore from PySide2.QtCore import Qt, QAbstractItemModel, QModelIndex, QSize from PySide2.QtGui import QPalette, QFontMetricsF from PySide2.QtWidgets import QApplication, QHBoxLayout, QVBoxLayout, QWidget, QTableView, QItemDelegate, QStyle, QHeaderView, QAbstractItemView import binaryninja import binaryninjaui from binaryninja import BinaryView from binaryninjaui import DockContextHandler, UIActionHandler, LinearView, ViewFrame from . import widget from .. import binjaplug class DebugMemoryWidget(QWidget, DockContextHandler): def __init__(self, parent, name, data): if not type(data) == binaryninja.binaryview.BinaryView: raise Exception('expected widget data to be a BinaryView') self.bv = data memory_view = binjaplug.get_state(data).memory_view QWidget.__init__(self, parent) DockContextHandler.__init__(self, self, name) self.editor = LinearView(memory_view, ViewFrame.viewFrameForWidget(self)) self.actionHandler = UIActionHandler() self.actionHandler.setupActionHandler(self) layout = QVBoxLayout() layout.setContentsMargins(0, 0, 0, 0) layout.setSpacing(0) layout.addWidget(self.editor) self.setLayout(layout) def notifyOffsetChanged(self, offset): pass def notifyMemoryChanged(self): adapter = binjaplug.get_state(self.bv).adapter # Refresh the editor if adapter is None: self.editor.navigate(0) return self.editor.navigate(adapter.reg_read('rsp')) def shouldBeVisible(self, view_frame): if view_frame is None: return False else: return True ``` #### File: joshwatson/debugger/lldb.py ```python import os import re import shutil import socket import subprocess from . import rsp from . import gdblike from . import DebugAdapter macos_signal_to_name = { 1: 'SIGHUP', 2: 'SIGINT', 3: 'SIGQUIT', 4: 'SIGILL', 5: 'SIGTRAP', 6: 'SIGABRT', 7: 'SIGEMT', 8: 'SIGFPE', 9: 'SIGKILL', 10: 'SIGBUS', 11: 'SIGSEGV', 12: 'SIGSYS', 13: 'SIGPIPE', 14: 'SIGALRM', 15: 'SIGTERM', 16: 'SIGURG', 17: 'SIGSTOP', 18: 'SIGTSTP', 19: 'SIGCONT', 20: 'SIGCHLD', 21: 'SIGTTIN', 22: 'SIGTTOU', 23: 'SIGIO', 24: 'SIGXCPU', 25: 'SIGXFSZ', 26: 'SIGVTALRM', 27: 'SIGPROF', 28: 'SIGWINCH', 29: 'SIGINFO', 30: 'SIGUSR1', 31: 'SIGUSR2' } macos_signal_to_debugadapter_reason = { 1: DebugAdapter.STOP_REASON.SIGNAL_HUP, 2: DebugAdapter.STOP_REASON.SIGNAL_INT, 3: DebugAdapter.STOP_REASON.SIGNAL_QUIT, 4: DebugAdapter.STOP_REASON.SIGNAL_ILL, 5: DebugAdapter.STOP_REASON.SIGNAL_TRAP, 6: DebugAdapter.STOP_REASON.SIGNAL_ABRT, 7: DebugAdapter.STOP_REASON.SIGNAL_EMT, 8: DebugAdapter.STOP_REASON.SIGNAL_FPE, 9: DebugAdapter.STOP_REASON.SIGNAL_KILL, 10: DebugAdapter.STOP_REASON.SIGNAL_BUS, 11: DebugAdapter.STOP_REASON.SIGNAL_SEGV, 12: DebugAdapter.STOP_REASON.SIGNAL_SYS, 13: DebugAdapter.STOP_REASON.SIGNAL_PIPE, 14: DebugAdapter.STOP_REASON.SIGNAL_ALRM, 15: DebugAdapter.STOP_REASON.SIGNAL_TERM, 16: DebugAdapter.STOP_REASON.SIGNAL_URG, 17: DebugAdapter.STOP_REASON.SIGNAL_STOP, 18: DebugAdapter.STOP_REASON.SIGNAL_TSTP, 19: DebugAdapter.STOP_REASON.SIGNAL_CONT, 20: DebugAdapter.STOP_REASON.SIGNAL_CHLD, 21: DebugAdapter.STOP_REASON.SIGNAL_TTIN, 22: DebugAdapter.STOP_REASON.SIGNAL_TTOU, 23: DebugAdapter.STOP_REASON.SIGNAL_IO, 24: DebugAdapter.STOP_REASON.SIGNAL_XCPU, 25: DebugAdapter.STOP_REASON.SIGNAL_XFSZ, 26: DebugAdapter.STOP_REASON.SIGNAL_VTALRM, 27: DebugAdapter.STOP_REASON.SIGNAL_PROF, 28: DebugAdapter.STOP_REASON.SIGNAL_WINCH, 29: DebugAdapter.STOP_REASON.SIGNAL_INFO, 30: DebugAdapter.STOP_REASON.SIGNAL_USR1, 31: DebugAdapter.STOP_REASON.SIGNAL_USR2, } class DebugAdapterLLDB(gdblike.DebugAdapterGdbLike): def __init__(self, **kwargs): gdblike.DebugAdapterGdbLike.__init__(self, **kwargs) self.os_sig_to_reason = macos_signal_to_debugadapter_reason # register state self.reg_info = {} # address -> True self.breakpoints = {} # thread state self.thread_idx_selected = None #-------------------------------------------------------------------------- # API #-------------------------------------------------------------------------- # session start/stop def exec(self, path, args): # resolve path to debugserver path_debugserver = shutil.which('debugserver') if not path_debugserver: path_debugserver = '/Library/Developer/CommandLineTools/Library/' + \ 'PrivateFrameworks/LLDB.framework/Versions/A/Resources/debugserver' if not os.path.exists(path_debugserver): raise Exception('cannot locate debugserver') # get available port port = gdblike.get_available_port() if port == None: raise Exception('no available ports') # invoke debugserver dbg_args = [path_debugserver, 'localhost:%d'%port, path, '--'] dbg_args.extend(args) #print('args are: ', ' '.join(dbg_args)) try: subprocess.Popen(dbg_args, stdin=None, stdout=None, stderr=None, preexec_fn=gdblike.preexec) except Exception: raise Exception('invoking debugserver (used path: %s)' % path_debugserver) # connect to it self.sock = gdblike.connect('localhost', port) # learn initial registers self.reg_info_load() # threads def thread_list(self): reply = rsp.tx_rx(self.sock, 'qfThreadInfo', 'ack_then_reply') if not reply.startswith('m'): raise DebugAdapter.GeneralError("retrieving thread list from server after qfThreadInfo packet") tids = reply[1:].split(',') tids = list(map(lambda x: int(x,16), tids)) return tids def thread_selected(self): reply = rsp.tx_rx(self.sock, '?', 'ack_then_reply') context = rsp.packet_T_to_dict(reply) if not 'thread' in context: raise DebugAdapter.GeneralError("setting thread on server after '?' packet") return context.get('thread') def thread_select(self, tid): if not tid in self.thread_list(): raise DebugAdapter.GeneralError("tid 0x%X is not in threads list" % tid) # changing threads? new regs self.reg_cache = {} # set thread for step and continue operations payload = 'Hc%x' % tid reply = rsp.tx_rx(self.sock, payload, 'ack_then_ok') # set thread for other operations payload = 'Hg%x' % tid reply = rsp.tx_rx(self.sock, payload, 'ack_then_ok') # breakpoints #def breakpoint_set(self, addr): #def breakpoint_clear(self, addr): #def breakpoint_list(self): # register #def reg_read(self, name): #def reg_write(self, name, value): #def reg_list(self): #def reg_bits(self, name): # mem #def mem_read(self, address, length): #def mem_write(self, address, data): def mem_modules(self): module2addr = {} reply = rsp.tx_rx(self.sock, 'jGetLoadedDynamicLibrariesInfos:{"fetch_all_solibs":true}') for (addr, path) in re.findall(r'"load_address":(\d+).*?"pathname":"([^"]+)"', reply): addr = int(addr, 10) module2addr[path] = addr return module2addr # break #def break_into(self): #def break_reason(self): # execution control, all return: # returns (STOP_REASON.XXX, <extra_info>) def go(self): self.reg_cache = {} return self.go_generic('c', self.handler_async_pkt) def step_into(self): self.reg_cache = {} return self.go_generic('vCont;s', self.handler_async_pkt) def step_over(self): # gdb, lldb just doesn't have this, you must synthesize it yourself self.reg_cache = {} raise NotImplementedError('step over') # asynchronously called when inside a "go" to inform us of stdout (and # possibly other stuff) def handler_async_pkt(self, pkt): if pkt.startswith('O'): msg = pkt[1:] data = ''.join([chr(int(msg[2*x:2*x+2], 16)) for x in range(int(len(msg)/2))]) if self.cb_stdout is not None: self.cb_stdout(data) else: print(data, end='') else: print('handler_async_pkt() got unknown packet: %s' % repr(pkt)) ``` #### File: joshwatson/debugger/rsp.py ```python import re import socket # custom exceptions class RspDisconnected(Exception): pass class RspAckMissing(Exception): pass class RspExpectedStartOfPacket(Exception): pass class RspGeneralError(Exception): pass def send_raw(sock, data): sock.send(data.encode('utf-8')) def send_packet_data(sock, data): # packet is exactly "$<data>#<checksum>" checksum = sum(map(ord, data)) packet = '$' + data + '#' + ("%02x" % (checksum % 256)) send_raw(sock, packet) def recv_packet_data(sock): hexes = b'abcdefABCDEF0123456789' # consume ack's tmp = b'+' while tmp == b'+': tmp = sock.recv(1) if tmp == b'': raise RspDisconnected('disconnection while receiving packet') # start packet pkt = tmp if pkt != b'$': raise RspExpectedStartOfPacket('got instead: %s' % str(pkt)) # consume until '#' and checksum bytes while not (len(pkt)>=3 and pkt[-3] == ord('#') and pkt[-2] in hexes and pkt[-1] in hexes): tmp = sock.recv(1) if tmp == b'': raise RspDisconnected('disconnection while receiving packet') pkt = pkt + tmp # acknowledge send_raw(sock, '+') return pkt[1:-3].decode('utf-8') def consume_ack(sock): resp = sock.recv(1) if resp == b'': raise RspDisconnected('disconnection while waiting for ack') if resp != b'+': raise RspAckMissing('got instead: %s' % str(resp)) return b'+' #def is_connected(sock): # print('testing RSP connection') # result = None # try: # sock.setblocking(0) # resp = sock.recv(1, socket.MSG_PEEK) # sock.setblocking(1) # result = (resp != '') # except Exception: # result = False # # print('RSP connection status: %s' % str(result)) def tx_rx(sock, data, expect='ack_then_reply', handler_async_pkt=None): send_packet_data(sock, data) reply = None if expect == 'nothing': reply = '' elif expect == 'ack_then_reply': consume_ack(sock) reply = recv_packet_data(sock) elif expect == 'mixed_output_ack_then_reply': ack_received = False while 1: peek1 = sock.recv(1, socket.MSG_PEEK) if peek1 == b'+': if ack_received: raise RspGeneralError('received two acks, somethings wrong') sock.recv(1) ack_received = True continue if peek1 != b'$': raise RspExpectedStartOfPacket('got: %s' % sock.recv(16)) reply = recv_packet_data(sock) if reply[0] == 'O': if handler_async_pkt: handler_async_pkt(reply) else: # return first non-output packet break if not ack_received: raise RspGeneralError('expected ack, none received') result = reply elif expect == 'ack_then_ok': consume_ack(sock) reply = recv_packet_data(sock) if reply != 'OK': raise RspGeneralError('expected OK, got: %s' % reply) elif expect == 'ack_then_empty': consume_ack(sock) reply = recv_packet_data(sock) if reply != '': raise RspGeneralError('expected empty, got: %s' % reply) else: print('dunno how to expect %s' % expect) if '*' in reply: reply = un_rle(reply) return reply def send_ack(sock): packet = '+' sock.send(packet) print(packet.decode('utf-8'), '->') #-------------------------------------------------------------------------- # GDB RSP FUNCTIONS (HIGHER LEVEL) #-------------------------------------------------------------------------- def register_scan(sock): result = [None]*256 for i in range(256): reply = tx_rx(sock, 'qRegisterInfo%02X' % i, 'ack_then_reply') if not reply.startswith('name:'): break info = {} for key_vals in reply.split(';'): if not key_vals: continue if not ':' in key_vals: raise RspGeneralError('expected \':\' in qRegisterInfo reply: %s' % key_vals) (key, val) = key_vals.split(':') info[key] = val #print('reg %d is %s' % (i, name)) result[i] = info return result def un_rle(data): if not '*' in data: return data skip = 0 result = '' for (i,char) in enumerate(data): if skip: skip = False elif char == '*': repeat = ord(data[i+1])-29 result = result + result[-1]*repeat skip = True else: result += char return result def packet_T_to_dict(data, lookup_reg={}): # map the info to a context dictionary context = {} context['signal'] = int(data[1:3], 16) for key_vals in data[3:].split(';'): if not key_vals: continue if not ':' in key_vals: raise RspGeneralError('expected \':\' in packet T reply: %s' % key_vals) (key, val) = key_vals.split(':') val = un_rle(val) if key == 'thread': tid = None if val.startswith('p'): if not '.' in val: raise RspGeneralError('expected \'.\' in thread value of packet T reply: %s' % reply) (core_id, thread_id) = val[1:].split('.') # TODO: deal with cores context['thread'] = int(thread_id, 16) else: context['thread'] = int(val, 16) elif re.match(r'^[0-9a-fA-F]+$', key): rid = int(key, 16) reg_name = lookup_reg.get(rid, 'r%d' % rid) val = int(''.join(reversed([val[i:i+2] for i in range(0,len(val),2)])), 16) context[reg_name] = val else: # 'metype', 'mecount', 'medata', 'memory', etc. context[key] = val return context ```
{ "source": "joshwatson/emilator", "score": 2 }
#### File: joshwatson/emilator/emilator.py ```python import struct import errors import llilvisitor import memory from binaryninja import (LLIL_GET_TEMP_REG_INDEX, LLIL_REG_IS_TEMP, Architecture, BinaryView, Endianness, ILRegister, ImplicitRegisterExtend, LowLevelILFunction, SegmentFlag) fmt = {1: 'B', 2: 'H', 4: 'L', 8: 'Q'} def sign_extend(value, bits): sign_bit = 1 << (bits - 1) return (value & (sign_bit - 1)) - (value & sign_bit) class Emilator(llilvisitor.LLILVisitor): def __init__(self, function, view=None): super(Emilator, self).__init__() if not isinstance(function, LowLevelILFunction): raise TypeError('function must be a LowLevelILFunction') self._function = function if view is None: view = BinaryView() self._view = view self._regs = {} self._flags = {} self._memory = memory.Memory(function.arch.address_size) for segment in view.segments: self._memory.map( segment.start, segment.length, segment.flags, view.read(segment.start, segment.length) ) self._function_hooks = {} self.instr_index = 0 @property def function(self): return self._function @property def mapped_memory(self): return list(self._memory) @property def registers(self): return dict(self._regs) @property def function_hooks(self): return dict(self._function_hooks) @property def instr_hooks(self): return dict(self._hooks) def map_memory(self, start=None, length=0x1000, flags=SegmentFlag.SegmentReadable | SegmentFlag.SegmentWritable, data=None): return self._memory.map(start, length, flags, data) def unmap_memory(self, base, size): raise errors.UnimplementedError('Unmapping memory not implemented') def register_function_hook(self, function, hook): self._function_hooks[function] = hook def register_instruction_hook(self, operand, hook): # These hooks will be fallen back on if LLIL_UNIMPLEMENTED # is encountered pass def unregister_function_hook(self, function, hook): pass def unregister_instruction_hook(self, operand, hook): pass def set_register_value(self, register, value): # If it's a temp register, just set the value no matter what. # Maybe this will be an issue eventually, maybe not. if (isinstance(register, (int, long)) and LLIL_REG_IS_TEMP(register)): self._regs[register] = value return value if isinstance(register, ILRegister): if not LLIL_REG_IS_TEMP(register.index): register = register.name else: self._regs[register.index] = value return value arch = self._function.arch reg_info = arch.regs[register] # normalize value to be unsigned if value < 0: value = value + (1 << reg_info.size * 8) if register == reg_info.full_width_reg: self._regs[register] = value return value full_width_reg_info = arch.regs[reg_info.full_width_reg] full_width_reg_value = self._regs.get(full_width_reg_info.full_width_reg) if (full_width_reg_value is None and (reg_info.extend == ImplicitRegisterExtend.NoExtend or reg_info.offset != 0)): raise errors.UndefinedError( 'Register {} not defined'.format( reg_info.full_width_reg ) ) if reg_info.extend == ImplicitRegisterExtend.ZeroExtendToFullWidth: full_width_reg_value = value elif reg_info.extend == ImplicitRegisterExtend.SignExtendToFullWidth: full_width_reg_value = ( (value ^ ((1 << reg_info.size * 8) - 1)) - ((1 << reg_info.size * 8) - 1) + (1 << full_width_reg_info.size * 8) ) elif reg_info.extend == ImplicitRegisterExtend.NoExtend: # mask off the value that will be replaced mask = (1 << reg_info.size * 8) - 1 full_mask = (1 << full_width_reg_info.size * 8) - 1 reg_bits = mask << (reg_info.offset * 8) full_width_reg_value &= full_mask ^ reg_bits full_width_reg_value |= value << reg_info.offset * 8 self._regs[full_width_reg_info.full_width_reg] = full_width_reg_value return full_width_reg_value def get_register_value(self, register): if (isinstance(register, int) and LLIL_REG_IS_TEMP(register)): reg_value = self._regs.get(register) if reg_value is None: raise errors.UndefinedError( 'Register {} not defined'.format( LLIL_GET_TEMP_REG_INDEX(register) ) ) return reg_value if isinstance(register, ILRegister): if not LLIL_REG_IS_TEMP(register.index): register = register.name else: reg_value = self._regs.get(register.index) if reg_value is None: raise errors.UndefinedError( 'Register {} not defined'.format( LLIL_GET_TEMP_REG_INDEX(register) ) ) return reg_value reg_info = self._function.arch.regs[register] full_reg_value = self._regs.get(reg_info.full_width_reg) if full_reg_value is None: raise errors.UndefinedError( 'Register {} not defined'.format( register ) ) mask = (1 << reg_info.size * 8) - 1 if register == reg_info.full_width_reg: return full_reg_value & mask mask = (1 << reg_info.size * 8) - 1 reg_bits = mask << (reg_info.offset * 8) reg_value = (full_reg_value & reg_bits) >> (reg_info.offset * 8) return reg_value def set_flag_value(self, flag, value): self._flags[flag] = value return value def get_flag_value(self, flag): # Assume that any previously unset flag is False value = self._flags.get(flag, False) return value def read_memory(self, addr, length): if length not in fmt: raise ValueError('read length must be in (1,2,4,8)') # XXX: Handle sizes > 8 bytes pack_fmt = ( # XXX: Endianness string bug '<' if self._function.arch.endianness == Endianness.LittleEndian else '' ) + fmt[length] if addr not in self._memory: raise errors.MemoryAccessError( 'Address {:x} is not valid.'.format(addr) ) try: return struct.unpack( pack_fmt, self._memory.read(addr, length) )[0] except: raise errors.MemoryAccessError( 'Could not read memory at {:x}'.format(addr) ) def write_memory(self, addr, data, length=None): # XXX: This is terribly implemented if addr not in self._memory: raise errors.MemoryAccessError( 'Address {:x} is not valid.'.format(addr) ) if isinstance(data, (int, long)): if length not in (1, 2, 4, 8): raise KeyError('length is not 1, 2, 4, or 8.') # XXX: Handle sizes > 8 bytes pack_fmt = ( # XXX: Endianness string bug '<' if self._function.arch.endianness == Endianness.LittleEndian else '' ) + fmt[length] data = struct.pack(pack_fmt, data) self._memory.write(addr, data) return True def execute_instruction(self): # Execute the current IL instruction instruction = self._function[self.instr_index] # increment to next instruction (can be changed by instruction) self.instr_index += 1 self.visit(instruction) def run(self): while True: try: yield self.execute_instruction() except IndexError: if self.instr_index >= len(self.function): raise StopIteration() else: raise def _find_available_segment(self, size=0x1000, align=1): new_segment = None current_address = 0 max_address = (1 << (self._function.arch.address_size * 8)) - 1 align_mask = (1 << (self._function.arch.address_size * 8)) - align while current_address < (max_address - size): segment = self._view.get_segment_at(current_address) if segment is not None: current_address = (segment.end + align) & align_mask continue segment_end = current_address + size - 1 if self._view.get_segment_at(segment_end) is None: new_segment = current_address break return new_segment def visit_LLIL_SET_REG(self, expr): value = self.visit(expr.src) self.set_register_value(expr.dest, value) return True def visit_LLIL_CONST(self, expr): return expr.constant def visit_LLIL_CONST_PTR(self, expr): return expr.constant def visit_LLIL_REG(self, expr): value = self.get_register_value(expr.src) return value def visit_LLIL_LOAD(self, expr): addr = self.visit(expr.src) return self.read_memory(addr, expr.size) def visit_LLIL_STORE(self, expr): addr = self.visit(expr.dest) value = self.visit(expr.src) self.write_memory(addr, value, expr.size) return True def visit_LLIL_PUSH(self, expr): sp = self.function.arch.stack_pointer value = self.visit(expr.src) sp_value = self.get_register_value(sp) self.write_memory(sp_value, value, expr.size) sp_value -= expr.size return self.set_register_value(sp, sp_value) def visit_LLIL_POP(self, expr): sp = self.function.arch.stack_pointer sp_value = self.get_register_value(sp) sp_value += expr.size value = self.read_memory(sp_value, expr.size) self.set_register_value(sp, sp_value) return value def visit_LLIL_GOTO(self, expr): self.instr_index = expr.dest return self.instr_index def visit_LLIL_IF(self, expr): condition = self.visit(expr.condition) if condition: self.instr_index = expr.true else: self.instr_index = expr.false return condition def visit_LLIL_CMP_NE(self, expr): left = self.visit(expr.left) right = self.visit(expr.right) return left != right def visit_LLIL_CMP_E(self, expr): left = self.visit(expr.left) right = self.visit(expr.right) return left == right def visit_LLIL_CMP_SLT(self, expr): left = self.visit(expr.left) right = self.visit(expr.right) if (left & (1 << ((expr.size * 8) - 1))): left = left - (1 << (expr.size * 8)) if (right & (1 << ((expr.size * 8) - 1))): right = right - (1 << (expr.size * 8)) return left < right def visit_LLIL_CMP_UGT(self, expr): left = self.visit(expr.left) right = self.visit(expr.right) return left > right def visit_LLIL_ADD(self, expr): left = self.visit(expr.left) right = self.visit(expr.right) mask = (1 << expr.size * 8) - 1 return (left + right) & mask def visit_LLIL_AND(self, expr): left = self.visit(expr.left) right = self.visit(expr.right) return left & right def visit_LLIL_OR(self, expr): left = self.visit(expr.left) right = self.visit(expr.right) return left | right def visit_LLIL_SUB(self, expr): left = self.visit(expr.left) right = self.visit(expr.right) return left - right def visit_LLIL_SET_FLAG(self, expr): flag = expr.dest.index value = self.visit(expr.src) return self.set_flag_value(flag, value) def visit_LLIL_FLAG(self, expr): flag = expr.src.index return self.get_flag_value(flag) def visit_LLIL_RET(self, expr): # we'll stop for now, but this will need to retrieve the return # address and jump to it. raise StopIteration def visit_LLIL_CALL(self, expr): target = self.visit(expr.dest) if target in self._function_hooks: self._function_hooks[target](self) return True target_function = self._view.get_function_at(target) if not target_function: self._view.create_user_function(target) self._view.update_analysis_and_wait() target_function = self._view.get_function_at(target) self._function = target_function.low_level_il self.instr_index = 0 return True def visit_LLIL_SX(self, expr): orig_value = self.visit(expr.src) sign_bit = 1 << ((expr.size * 8) - 1) extend_value = (orig_value & (sign_bit - 1)) - (orig_value & sign_bit) return extend_value def visit_LLIL_ZX(self, expr): return self.visit(expr.src) def visit_LLIL_XOR(self, expr): left = self.visit(expr.left) right = self.visit(expr.right) return left ^ right def visit_LLIL_LSL(self, expr): mask = (1 << expr.size * 8) - 1 left = self.visit(expr.left) right = self.visit(expr.right) return (left << right) & mask def visit_LLIL_LSR(self, expr): left = self.visit(expr.left) right = self.visit(expr.right) return left >> right if __name__ == '__main__': il = LowLevelILFunction(Architecture['x86_64']) emi = Emilator(il) emi.set_register_value('rbx', -1) emi.set_register_value('rsp', 0x1000) print '[+] Mapping memory at 0x1000 (size: 0x1000)...' emi.map_memory(0x1000, flags=SegmentFlag.SegmentReadable) print '[+] Initial Register State:' for r, v in emi.registers.iteritems(): print '\t{}:\t{:x}'.format(r, v) il.append(il.push(8, il.const(8, 0xbadf00d))) il.append(il.push(8, il.const(8, 0x1000))) il.append(il.set_reg(8, 'rax', il.pop(8))) il.append(il.set_reg(8, 'rbx', il.load(8, il.reg(8, 'rax')))) print '[+] Instructions:' for i in range(len(emi.function)): print '\t'+repr(il[i]) print '[+] Executing instructions...' for i in emi.run(): print '\tInstruction completed.' print '[+] Final Register State:' for r, v in emi.registers.iteritems(): print '\t{}:\t{:x}'.format(r, v) ```
{ "source": "joshwatson/f-ing-around-with-binaryninja", "score": 2 }
#### File: decompiler/decompiler/debug.py ```python from __future__ import annotations from typing import Dict, List from binaryninja import (BinaryView, BranchType, FlowGraph, FlowGraphNode, FlowGraphReport, ReportCollection, show_graph_report, BasicBlockEdge, MediumLevelILBasicBlock, Settings) from . import mlil_ast from .nodes import MediumLevelILAstNode def generate_graph( view: BinaryView, region: MediumLevelILAstNode, collection: ReportCollection = None, title: str = '' ): if not Settings().get_bool('linearmlil.debug'): return graph = FlowGraph() def add_children(node: MediumLevelILAstNode) -> FlowGraphNode: node_node = FlowGraphNode(graph) graph.append(node_node) node_line = node.type if node.type == 'block': node_line += f': {node.block}' if node.type == 'break': node_line += f': {node.start}' elif node.type in ('seq', 'case'): node_line += f': {node.start}' for child in node.nodes: child_node = add_children(child) node_node.add_outgoing_edge( BranchType.UnconditionalBranch, child_node ) elif node.type == 'cond': node_line += f': {node.condition}' child = add_children(node[True]) node_node.add_outgoing_edge( BranchType.TrueBranch, child ) if node[False] is not None: child = add_children(node[False]) node_node.add_outgoing_edge( BranchType.FalseBranch, child ) elif node.type == 'switch': for child in node.cases: child_node = add_children(child) node_node.add_outgoing_edge( BranchType.UnconditionalBranch, child_node ) elif node.type == 'loop': node_line += f': {node.loop_type} {node.condition}' child_node = add_children(node.body) node_node.add_outgoing_edge( BranchType.UnconditionalBranch, child_node ) node_node.lines = [node_line] return node_node # iterate over regions and create nodes for them # in the AST add_children(region) if collection is not None: if not title: title = f' {region.type}: {region.start}' report = FlowGraphReport(title, graph, view) collection.append(report) else: show_graph_report('Current AST', graph) def graph_slice( view: BinaryView, ns: MediumLevelILBasicBlock, ne: MediumLevelILBasicBlock, slice: List[List[BasicBlockEdge]], collection: ReportCollection, title: str = '', ): if not Settings().get_bool('linearmlil.debug'): return graph = FlowGraph() ns_node = FlowGraphNode(graph) ns_node.lines = [f'Start: {ns.start}'] ne_node = FlowGraphNode(graph) ne_node.lines = [f'End: {ne.start}'] nodes = {ns.start: ns_node, ne.start: ne_node} graph.append(ns_node) graph.append(ne_node) for path in slice: for edge in path: source = edge.source if source.start in nodes: source_node = nodes[source.start] else: source_node = FlowGraphNode(graph) source_node.lines = [f'Block: {source.start}'] nodes[source.start] = source_node graph.append(source_node) target = edge.target if target.start in nodes: target_node = nodes[target.start] else: target_node = FlowGraphNode(graph) target_node.lines = [f'Block: {target.start}'] nodes[target.start] = target_node graph.append(target_node) if next( ( e for e in source_node.outgoing_edges if e.target == target_node ), None ): continue source_node.add_outgoing_edge( edge.type, target_node ) if collection is not None: if not title: title = f'Slice: {ns}->{ne}' report = FlowGraphReport(title, graph, view) collection.append(report) else: show_graph_report('Graph Slice', graph) ``` #### File: decompiler/decompiler/mlil_ast.py ```python from __future__ import annotations from functools import cmp_to_key, reduce from itertools import product, repeat from typing import List from z3 import And, BoolVal, Not, Or, Tactic, is_false, is_true, simplify from binaryninja import ( BranchType, InstructionTextTokenType, MediumLevelILBasicBlock, MediumLevelILFunction, MediumLevelILInstruction, MediumLevelILOperation, PossibleValueSet, RegisterValueType, ReportCollection, Settings, log_debug, log_info, log_warn, show_report_collection, ) from .condition_visitor import ConditionVisitor from .debug import generate_graph, graph_slice from .nodes import ( MediumLevelILAstBasicBlockNode, MediumLevelILAstBreakNode, MediumLevelILAstCaseNode, MediumLevelILAstCondNode, MediumLevelILAstElseNode, MediumLevelILAstLoopNode, MediumLevelILAstNode, MediumLevelILAstSeqNode, MediumLevelILAstSwitchNode, ) def region_sort(nodes): log_debug("region_sort") log_debug(f"initial: {nodes}") sorted_region = {} sorted_region_reverse = {} for i in range(len(nodes)): for j in range(i, len(nodes)): if i == j: sorted_region[i] = sorted_region.get(i, list()) sorted_region_reverse[i] = sorted_region_reverse.get(i, list()) continue if nodes[i] < nodes[j]: if nodes[j] > nodes[i]: sorted_region[i] = sorted_region.get(i, list()) sorted_region[i].append(j) sorted_region_reverse[j] = sorted_region_reverse.get( j, list() ) sorted_region_reverse[j].append(i) else: if nodes[i] > nodes[j]: sorted_region[j] = sorted_region.get(j, list()) sorted_region[j].append(i) sorted_region_reverse[i] = sorted_region_reverse.get( i, list() ) sorted_region_reverse[i].append(j) log_debug(f"sorted_region: {sorted_region}") log_debug(f"sorted_region_reverse: {sorted_region_reverse}") new_order = [] added = set() sentinel = 0 # { 0: [4], 1: [0, 2, 3, 4], 2: [0, 4], 3: [0, 2, 4], 4: [] } while any(j not in added for j in range(len(nodes))): for i in range(len(nodes)): if i in added: continue if not sorted_region_reverse[i] or all( x in added for x in sorted_region_reverse[i] ): added.add(i) new_order.append(nodes[i]) log_debug(f"current: {new_order}") log_debug(f"{any(j not in added for j in range(len(nodes)))}") sentinel += 1 if sentinel > 20: break log_debug(f"new_order: {new_order}") return new_order class MediumLevelILAst(object): def __init__(self, function: MediumLevelILFunction): self._function = function self.view = function.source_function.view self._nodes = {} self._root = MediumLevelILAstBasicBlockNode( self, function.basic_blocks[0] ) self._regions = {} self._reaching_conditions = {} self._reaching_constraints = {} self.report_collection = None self.view.session_data["CurrentAST"] = self def __getitem__(self, bb) -> MediumLevelILAstNode: return self._nodes[bb] def __setitem__(self, bb, node) -> None: self._nodes[bb] = node def pop(self, bb) -> MediumLevelILAstNode: self._nodes.pop(bb) def __contains__(self, bb) -> bool: return bb in self._nodes @property def function(self) -> MediumLevelILFunction: return self._function @property def root(self) -> MediumLevelILAstNode: return self._root @root.setter def root(self, new_root: MediumLevelILAstNode): if not isinstance(new_root, MediumLevelILAstNode): raise TypeError( "new_root must be a MediumLevelILAstNode, got " f"{type(new_root)}" ) self._root = new_root @property def cycles(self) -> set: return set(self._cycles) @property def regions(self): return sorted( self._regions.items(), key=cmp_to_key( lambda i, j: 1 if self.reaching_conditions.get((i[0].start, j[0].start)) is None else -1 ), ) @property def nodes(self): return dict(self._nodes) def case_sort(self, cases: List[MediumLevelILAstCaseNode]): log_debug("case_sort") log_debug(f"initial: {cases}\n\n") fallsthrough = {} sorted_cases = sorted(cases) log_debug(f"sorted_cases: {sorted_cases}\n\n") for i in range(len(sorted_cases)): for j in range(i, len(sorted_cases)): if self.reaching_conditions.get( (sorted_cases[i].start, sorted_cases[j].start) ): log_debug( f"i->j {self.reaching_conditions[(sorted_cases[i].start,sorted_cases[j].start)]}" ) fallsthrough[i] = fallsthrough.get(i, list()) fallsthrough[i].append(j) elif self.reaching_conditions.get( (sorted_cases[j].start, sorted_cases[i].start) ): log_debug( f"j->i {self.reaching_conditions[(sorted_cases[j].start,sorted_cases[i].start)]}" ) fallsthrough[j] = fallsthrough.get(j, list()) fallsthrough[j].append(i) new_sorted = [] for case in sorted_cases: if case is None: continue if case in fallsthrough: others = fallsthrough[case] log_debug(f"fallsthrough[{case}]: {others}") # Collect cases and replace them with None # Don't collect if it's already None, because # that means we already got it. sub_list = ( [sorted_cases[case]] if sorted_cases[case] is not None else [] ) + [sorted_cases[o] for o in others if o is not None] map(lambda i: sorted_cases.insert(i, None), [case] + [others]) new_sorted += sub_list else: new_sorted.append(case) log_debug(f"{new_sorted}") return new_sorted def any_node_dominated( self, sub_region: MediumLevelILAstNode, block: MediumLevelILBasicBlock, bb: MediumLevelILBasicBlock, ): log_debug(f"any_node_dominated: {bb} {block} {sub_region}") to_visit = [] def add_to_visit(_node: MediumLevelILAstNode): nonlocal to_visit if _node.type in ("seq", "case"): to_visit += _node.nodes elif _node.type == "switch": to_visit += _node.cases else: log_debug(f"add {_node.type} to add_to_visit") add_to_visit(sub_region) while to_visit: node = to_visit.pop() add_to_visit(node) if node.type != "case": continue log_debug(f"checking {node.block}") reaching_conditions = self.reaching_conditions.get( (bb.start, node.start) ) if reaching_conditions is None: continue for rc in reaching_conditions: targets = [e.target for e in rc] if block not in targets: return True return False def order_basic_blocks(self): log_debug("order_basic_blocks") visited = set() ordering = [] def order(bb: MediumLevelILBasicBlock): visited.add(bb) for o in bb.outgoing_edges: if not o.back_edge and o.target not in visited: order(o.target) ordering.append(bb) order(self._function.basic_blocks[0]) log_debug(f"ordering: {ordering}") return ordering def calculate_reaching_conditions(self): # TODO: add temporary node such that no_return nodes # think that they drop into the next region outgoing_edges = { bb.start: bb.outgoing_edges for bb in self._function.basic_blocks } reaching_conditions = {} visited_nodes = set() # recursive method to create an iterator of the edges in # the CFG as a DFS def dfs_next_edge(bb, target): log_debug(f"--dfs_next_edge({bb})--") for o in outgoing_edges[bb]: # log_info(f"yielding {o}") yield o if not o.back_edge: if o.target.start == target: continue for t in dfs_next_edge(o.target.start, target): yield t for ns, ne in product(self.order_basic_blocks(), repeat=2): if ns == ne: continue # log_info(f"({ns}, {ne})") dfs_stack = [] visited_edges = set() visited_nodes = set() for e in dfs_next_edge(ns.start, ne.start): # log_info(f" {e.type!r} {e.source} -> {e.target}") nt = e.target if e.back_edge: visited_edges.add((e.source.start, e.target.start)) if (e.source.start, e.target.start) in visited_edges: # log_info(f" edge in visited_edges") pass elif (e.source.start, e.target.start) not in visited_edges and nt.start not in visited_nodes: # log_info(f" adding edge to edges") visited_edges.add((e.source.start, e.target.start)) visited_nodes.add(nt.start) dfs_stack = dfs_stack + [e] if nt == ne and dfs_stack: # log_info(f"{nt} == {ne}") # log_info(" adding finished slice") reaching_conditions[ (ns.start, ne.start) ] = reaching_conditions.get((ns.start, ne.start), list()) reaching_conditions[(ns.start, ne.start)].append(dfs_stack) elif (nt.start, ne.start) in reaching_conditions and e not in dfs_stack: # log_info(" hit simple path, adding finished slice") reaching_conditions[(ns.start, ne.start)] = reaching_conditions.get( (ns.start, ne.start), list() ) reaching_conditions[(ns.start, ne.start)].append(dfs_stack) visited_edges.add((e.source.start, e.target.start)) if dfs_stack: # log_info(f" {dfs_stack}") pass while len(dfs_stack) and all( descendant.target.start in visited_nodes or descendant.source == ne or descendant.back_edge for descendant in outgoing_edges.get(dfs_stack[-1].target, []) ): # log_info(f" popping {dfs_stack[-1]}") dfs_stack = dfs_stack[:-1] visited_nodes.remove(ne.start) if ne.start in visited_nodes else None if (ns.start, ne.start) in reaching_conditions: graph_slice( self.view, ns, ne, reaching_conditions[(ns.start, ne.start)], self.report_collection, ) # log_info(f"finished slices: {reaching_conditions[(ns.start, ne.start)]}") # log_info("-----------") self._reaching_conditions = reaching_conditions # this is a modified version of Algorithm 1 in "no more gotos" @property def reaching_conditions(self): return dict(self._reaching_conditions) @property def reaching_constraints(self): return dict(self._reaching_constraints) def generate(self): self.report_collection = ReportCollection() # step 1: identify cycles self._cycles = { e.target for bb in self.function.basic_blocks for e in bb.outgoing_edges if e.back_edge } # step 2a: generate the reaching conditions # TODO: Change this to only happen on demand, because there # are probably a lot of combinations that are never actually # checked. The results should be cached, and paths that do # not exist should be represented as `None` so that it knows # not to try to generate it again. self.calculate_reaching_conditions() # step 2b: generate the z3 constraints of these conditions # TODO: Change this to only happen on demand, because there # are probably some constraints that never actually need # to be converted to z3 constraints. Cache the results. self.generate_reaching_constraints() # step 3: find all the regions self._regions = self._find_regions() generate_graph( self.view, self.regions[0][1], self.report_collection, "After Step 3", ) # step 4: merge if/else statements self._merge_if_else() generate_graph( self.view, self.regions[0][1], self.report_collection, "After Step 4", ) # step 5: remove conditions from nodes that don't need them self._fold_conditions() generate_graph( self.view, self.regions[0][1], self.report_collection, "After Step 5", ) # step 6: refine loops self._refine_loops() generate_graph( self.view, self.regions[0][1], self.report_collection, "After Step 6", ) if not Settings().get_bool("linearmlil.debug"): return show_report_collection("AST Generation", self.report_collection) log_debug("finished with AST") def _find_regions(self): basic_blocks = self._function.basic_blocks regions = self._regions bb_queue = region_sort( list(MediumLevelILAstBasicBlockNode(self, b) for b in basic_blocks) ) log_debug(f"{bb_queue}") while bb_queue: bb = bb_queue.pop().block if bb not in self._cycles: new_region = self._create_acyclic_region(bb, regions, bb_queue) else: new_region = self._create_cyclic_region(bb, regions, bb_queue) if new_region is None: continue if self.report_collection is not None: generate_graph(self.view, new_region, self.report_collection) log_debug(f"adding {new_region} to regions") regions[bb] = new_region if len(regions) > 1: log_debug(f"Regions is larger than it should be: {regions}") sorted_regions = region_sort( [MediumLevelILAstBasicBlockNode(self, r) for r in regions] ) root_nodes = [] for sr in sorted_regions: root_nodes.append(regions[sr.block]) del regions[sr.block] root_region = MediumLevelILAstSeqNode(self, root_nodes) regions[root_region.block] = root_region return regions def _create_acyclic_region( self, bb: MediumLevelILBasicBlock, regions: dict, bb_queue: list ): if next((e for e in bb.outgoing_edges if e.back_edge), None): # a back edge node isn't going to be the root of a region return current_node = None cases = {} log_debug( f"{'='*40}\ncreating acyclic region for {bb.start}\n{'='*40}" ) if bb[-1].operation == MediumLevelILOperation.MLIL_JUMP_TO: switch = bb[-1].dest.possible_values.mapping for case, block in switch.items(): log_debug(f"case {case}: {block:x}") il_block = next( b for b in self._function.basic_blocks if b.source_block.start == block ) cases[il_block] = cases.get(il_block, list()) cases[il_block].append(case) # TODO: figure out fall through cases switch_condition = self._find_switch_condition( bb[-1].dest, switch.keys() ) current_node = MediumLevelILAstSwitchNode( self, switch_condition, bb[-1] ) else: current_node = MediumLevelILAstSeqNode(self) # bb must be the head of an acyclic region (for the moment) possible_region = { MediumLevelILAstBasicBlockNode(self, pr) for pr in self._function.basic_blocks if (bb.start, pr.start) in self.reaching_conditions } nodes = [MediumLevelILAstBasicBlockNode(self, bb)] regions_in_this_region = { r for r in possible_region if r.block in self._regions } log_debug(f"regions_in_this_region: {regions_in_this_region}") possible_region = possible_region - regions_in_this_region log_debug(f"possible_region: {possible_region}") for r in regions_in_this_region: r_has_multiple_incoming = len(r.block.incoming_edges) > 1 log_debug( f"{r} r_has_multiple_constraints: " f"{r_has_multiple_incoming}" ) log_debug( f"{r} {bb} in r.block.dominators: " f"{bb in r.block.dominators}" ) sub_region = regions[r.block] if ( r.block in cases or not r_has_multiple_incoming ) or bb in r.block.dominators: if self.create_new_node_from_region( bb, r.block, sub_region, current_node, cases, nodes ): del regions[r.block] self.remove_sub_region_nodes(sub_region, possible_region) for r in possible_region: log_debug(f"Adding {r} to {bb.start}'s region") nodes.append(r) if r.block in bb_queue: bb_queue.remove(r.block) if current_node.type == "switch": current_node._cases = self.case_sort(current_node._cases) for case in current_node._cases: # if there are no reaching conditions, then # this doesn't fall through. Insert a break node. if all( self.reaching_conditions.get((case.start, other.start)) is None for other in current_node._cases ): case.append( MediumLevelILAstBreakNode( self, case.nodes[-1].start, case.nodes[-1].address ) ) nodes.append(current_node) current_node = MediumLevelILAstSeqNode(self, nodes) current_node._nodes = sorted(nodes) if current_node.type == "seq": current_node.flatten_sequence() new_region = current_node log_debug(f"Returning {new_region}") return new_region # TODO: Figure out why this breaks on bomb.bndb Phase 2 def _create_cyclic_region( self, bb: MediumLevelILBasicBlock, regions: dict, bb_queue: list ) -> MediumLevelILAstNode: log_debug(f"_create_cyclic_region({bb}, regions, bb_queue)") log_debug(f"{'='*40}\ncreating cyclic region for {bb.start}\n{'='*40}") # Section C.1 in whitepaper: Initial Loop Nodes and Successors latching_nodes = {e.source for e in bb.incoming_edges if e.back_edge} loop_slice = { n for l in latching_nodes if bb != l for s in self.reaching_conditions[(bb.start, l.start)] for n in s } loop_nodes = set() loop_nodes.add(bb) for e in loop_slice: loop_nodes.add(e.target) loop_nodes.add(e.source) log_debug(f'original loop_nodes: {loop_nodes}') successor_nodes = { e.target for n in loop_nodes for e in n.outgoing_edges if e.target not in loop_nodes } log_debug(f"original successor_nodes: {successor_nodes}") # Section C.2 in whitepaper: Successor Refinement and Loop # Membership while len(successor_nodes) > 1: new = set() old = set() for successor in sorted( list(successor_nodes), key=lambda i: i.start ): # add a successor to the loop if both hold true: # a) the successor is dominated by the start of the # loop # b) the successor's immediate predecessors are all in # the loop. if bb in successor.dominators and all( incoming.source in loop_nodes for incoming in successor.incoming_edges ): loop_nodes.add(successor) old.add(successor) new = new & {e.target for e in successor.outgoing_edges} if old: successor_nodes = successor_nodes - old if new: successor_nodes = set(*successor_nodes, *new) else: break log_debug(f"final successor_nodes: {successor_nodes}") log_debug(f"loop_nodes: {loop_nodes}") loop_node = MediumLevelILAstLoopNode( self, MediumLevelILAstSeqNode( self, [MediumLevelILAstBasicBlockNode(self, bb)] ), ) loop_nodes = [ MediumLevelILAstBasicBlockNode(self, block) for block in loop_nodes ] sorted_loop_nodes = region_sort(loop_nodes) loop_nodes = list(sorted_loop_nodes) log_debug(f"Sorted loop_nodes: {loop_nodes}") # remove any regions that are in the loop nodes nodes = [] while sorted_loop_nodes: r = sorted_loop_nodes.pop(0) log_debug(f"Iterating on {r.block}") if r.block in regions: log_debug(f"Found {r.block} in regions") sub_region = regions[r.block] else: log_debug(f"{r.block} not in regions, creating Seq Node") sub_region = MediumLevelILAstSeqNode( self, [MediumLevelILAstBasicBlockNode(self, r.block)] ) log_debug(f"Creating node for {r.block}") if self.create_new_node_from_region( bb, r.block, sub_region, loop_node, None, nodes ): if r.block in regions: log_debug(f"Removing region for {r.block}") del regions[r.block] log_debug(f"Removing {sub_region} from loop_nodes") self.remove_sub_region_nodes(sub_region, sorted_loop_nodes) for n in loop_nodes: log_debug(f"Removing {n} from bb_queue") if n.block in bb_queue: bb_queue.remove(n.block) log_debug("Adding break nodes for successors") successor_cond = None successor_node = None for successor in successor_nodes: log_debug(f"successor: {successor}") reaching_constraint = self._reaching_constraints.get( (bb.start, successor.start) ) break_node = MediumLevelILAstCondNode( self, reaching_constraint, successor[0], MediumLevelILAstSeqNode( self, [ MediumLevelILAstBreakNode( self, successor.start, successor.source_block.start ) ], ), ) nodes.append(break_node) # if successor in self._regions: # successor_node = self._regions[successor] # del self._regions[successor] # else: # successor_node = MediumLevelILAstSeqNode( # self, # [MediumLevelILAstBasicBlockNode(self, successor)], # ) # convert the successor nodes to a chain of # condition nodes for each successor if len(successor_nodes) > 1: successor_cond = MediumLevelILAstCondNode( self, self.reaching_constraints.get((bb.start, successor.start)), successor.source_block[0], successor_node, successor_cond, ) if successor_cond is not None: successor_node = successor_cond # TODO: Is this right? self._regions[successor_cond.block] = successor_node body = MediumLevelILAstSeqNode(self, nodes) loop_node._body = body if successor_node is not None: region_nodes = [loop_node, successor_node] new_region = MediumLevelILAstSeqNode(self, region_nodes) else: new_region = loop_node return new_region def create_new_node_from_region( self, bb: MediumLevelILBasicBlock, block: MediumLevelILBasicBlock, sub_region: MediumLevelILAstNode, current_node: MediumLevelILAstNode, cases: dict, nodes: list ): log_debug( f"create_new_node_from_region({bb}, {block}, {sub_region}, {current_node})" ) reaching_constraint = self._reaching_constraints.get((bb.start, block.start)) if is_true(reaching_constraint): reaching_constraint = None if reaching_constraint is not None and self.any_node_dominated( sub_region, block, bb ): reaching_constraint = None if reaching_constraint is not None: if sub_region.type == "loop": sub_region = MediumLevelILAstSeqNode(self, [sub_region]) # This is now a condition node if a reaching constraint exists log_debug( f" Creating new CondNode with {sub_region} {reaching_constraint}\n\n" ) new_node = MediumLevelILAstCondNode( self, reaching_constraint, block.incoming_edges[0].source[-1], sub_region, ) else: new_node = sub_region if new_node is not None: if current_node.type != "switch": nodes.append(new_node) else: if block in cases: if current_node.block not in new_node.block.dominators: case = ["default"] else: case = cases[block] current_node.append( MediumLevelILAstCaseNode(self, case, [new_node]) ) else: return False return True def remove_sub_region_nodes(self, sub_region, possible_region): if sub_region.type == "seq": to_remove = sub_region.nodes elif sub_region.type == "loop": to_remove = sub_region.body.nodes else: raise TypeError( "I don't know why I got a " f"{type(sub_region)} for a sub_region" ) while to_remove: sub = to_remove.pop() if sub.type in ("seq", "case"): to_remove += sub.nodes elif sub.type == "loop": to_remove += sub.body.nodes elif sub.type == "cond": to_remove.append(sub[True]) elif sub.type == "block": if sub in possible_region: log_debug(f"removing {sub} from possible_region") possible_region.remove(sub) elif sub.type == "switch": to_remove += sub.cases else: log_debug(f"got {sub} while iterating over to_remove") def _find_switch_condition(self, dest, cases): def check_ranges(ranges, cases): for r in ranges: for i in range(r.start, r.end, r.step): if i not in cases: return False return True if dest.operation == MediumLevelILOperation.MLIL_VAR: dest = self._function.get_ssa_var_definition(dest.ssa_form.src).src to_visit = dest.operands result = None while to_visit: current_operand = to_visit.pop() if not isinstance(current_operand, MediumLevelILInstruction): continue to_visit += current_operand.operands pv = current_operand.possible_values if not isinstance(pv, PossibleValueSet): continue if pv.type == RegisterValueType.LookupTableValue: if ( current_operand.operation == MediumLevelILOperation.MLIL_VAR ): to_visit.append( self._function.get_ssa_var_definition( current_operand.ssa_form.src ) ) continue if pv.type not in ( RegisterValueType.UnsignedRangeValue, RegisterValueType.SignedRangeValue, RegisterValueType.InSetOfValues, ): continue if pv.type != RegisterValueType.InSetOfValues: if not check_ranges(pv.ranges, cases): continue else: result = current_operand break # If it's InSetOfValues, check to make sure # all of the values are in pv.values if all(v in cases for v in pv.values) and len(cases) == len( pv.values ): result = current_operand break else: continue return ConditionVisitor(self.view).simplify(result) def _merge_if_else(self): log_debug("_merge_if_else") nodes_to_remove = True while nodes_to_remove: root = self.regions[0][1] if root.type == "loop": nodes_to_remove = self.find_if_else_for_node( root, root.body.nodes ) else: nodes_to_remove = self.find_if_else_for_node(root, root.nodes) for n in nodes_to_remove: root._nodes.remove(n) if n in root._nodes else None nodes_to_check = root.nodes if root.type == "seq" else root.body.nodes nodes_to_remove = [] while nodes_to_check: if not nodes_to_remove: node = nodes_to_check.pop() if node is None: continue nodes_to_remove = [] if node.type == "seq": nodes_to_remove = self.find_if_else_for_node(node, node.nodes) _nodes = node._nodes elif node.type == "loop": nodes_to_remove = self.find_if_else_for_node( node.body, node.body.nodes ) _nodes = node.body._nodes for n in nodes_to_remove: _nodes.remove(n) if n in _nodes else None if node.type == "seq": nodes_to_check += node.nodes elif node.type == "loop": nodes_to_check += node.body.nodes elif node.type == "cond": nodes_to_check.append(node[True]) if node[True] else None nodes_to_check.append(node[False]) if node[False] else None def find_if_else_for_node(self, parent: MediumLevelILAstNode, nodes: list): log_debug(f"find_if_else_for_node") nodes_to_check = list(nodes) nodes_to_remove = [] while nodes_to_check: ni = nodes_to_check.pop() if ni.type != "cond": continue log_debug(f"checking {ni}") for nj in nodes_to_check: if nj.type != "cond": continue if ni == nj: continue log_debug(f"checking against {nj}") if self.try_make_simple_if_else( ni, nj, nodes_to_check, nodes_to_remove ): break if self.try_make_complex_if_else( parent, ni, nj, nodes_to_check, nodes_to_remove ): break generate_graph(self.view, ni, self.report_collection) return nodes_to_remove def try_make_simple_if_else( self, node1, node2, nodes_to_check, nodes_to_remove ): log_debug("try_make_simple_if_else") cond1 = node1.condition cond2 = node2.condition if is_true(simplify(cond1 == Not(cond2))): log_debug(f"found a simple if/else match") if cond1.decl().name() == "not": node2[False] = node1[True] nodes_to_check.remove(node2) nodes_to_remove.append(node1) else: node1[False] = node2[True] nodes_to_remove.append(node2) return True return False def try_make_complex_if_else( self, parent, node1, node2, nodes_to_check, nodes_to_remove ): log_debug("try_make_complex_if_else") is_complex_if_else = self.find_c_and_R( node1.condition, node2.condition ) if not is_complex_if_else: return False else: c, R = is_complex_if_else # if we get here, we have a complex if/else new_if_else_node = MediumLevelILAstCondNode( self, c, node1._condition_il, node1[True], node2[True] ) log_debug(f"R is currently {R}") new_seq_node = MediumLevelILAstSeqNode(self, [new_if_else_node]) if is_true(R): new_cond_node = new_if_else_node else: new_cond_node = MediumLevelILAstCondNode( self, R, node1._condition_il, new_seq_node ) log_debug(f"new_cond_node: {new_cond_node}") if node1 in parent.nodes: node1_idx = parent.nodes.index(node1) parent._nodes[node1_idx] = new_cond_node nodes_to_remove.append(node2) nodes_to_check.remove(node2) else: log_debug(f"{node1} not in parent.nodes") def find_c_and_R(self, cond1, cond2): log_debug(f"{cond1} vs {cond2}") if is_false(cond1) or is_false(cond2): return False if cond1.decl().name() != "and": cond1 = And(cond1, BoolVal(True)) if cond2.decl().name() != "and": cond2 = And(cond2, BoolVal(True)) to_visit = [(cond1, BoolVal(True))] while to_visit: current_cond, right_side = to_visit.pop() log_debug(f"current: {current_cond} right: {right_side}") # If the top level operation is not an And, we don't need # to go any further. if current_cond.decl().name() != "and": log_debug(f"current_cond is {current_cond}") return False if current_cond.num_args() < 2: log_debug(f"current_cond is {current_cond}") return False # try 0 and R first c = current_cond.arg(0) R = And( *Tactic("ctx-solver-simplify")( And(current_cond.arg(1), right_side) )[0] ) if R.num_args() == 0: R = BoolVal(True) log_debug(f"c: {c} R: {R} cond2: {cond2}") if not Tactic("ctx-solver-simplify")(And(Not(c), R) == cond2)[0]: log_debug( f"Found complex if/else (0-1)! {R} and {c} | {cond2}" ) return c, R # try again, but the other way c = current_cond.arg(1) R = And( *Tactic("ctx-solver-simplify")( And(current_cond.arg(0), right_side) )[0] ) if R.num_args() == 0: R = BoolVal(True) log_debug(f"c: {c} R: {R} cond2: {cond2}") if not Tactic("ctx-solver-simplify")(And(Not(c), R) == cond2)[0]: log_debug( f"Found complex if/else (1-0)! {R} and {c} | {cond2}" ) return c, R to_visit = [ (current_cond.arg(0), current_cond.arg(1)), (current_cond.arg(1), current_cond.arg(0)), ] return False def _fold_conditions(self): root = self.regions[0][1] if root.type == "seq": nodes = root.nodes elif root.type == "loop": nodes = root.body.nodes for i, node in enumerate(nodes): if node.type != "cond" or node[False] is not None: continue deps = node[True].block[0].branch_dependence log_debug(f"Branch Dep for {node[True].block}: {deps}") if ( next( ( b for b in nodes if b.start in deps and b.type != "loop" and b != node ), None, ) is None ): log_debug("This block doesn't need its condition!") nodes[i] = MediumLevelILAstSeqNode(self, node[True]._nodes) if root.type == "seq": root._nodes = nodes elif root.type == "loop": root.body._nodes = nodes def generate_reaching_constraints(self): visitor = ConditionVisitor(self.view) for ( (start, end), reaching_condition, ) in self.reaching_conditions.items(): or_exprs = [] for condition in reaching_condition: and_exprs = [] for edge in condition: if edge.type == BranchType.UnconditionalBranch: continue if edge.type == BranchType.TrueBranch: condition = edge.source[-1].condition if ( condition.operation == MediumLevelILOperation.MLIL_VAR ): condition = self.function.get_ssa_var_definition( edge.source[-1].ssa_form.condition.src ).src and_exprs.append(visitor.simplify(condition)) elif edge.type == BranchType.FalseBranch: condition = edge.source[-1].condition if ( condition.operation == MediumLevelILOperation.MLIL_VAR ): condition = self.function.get_ssa_var_definition( edge.source[-1].ssa_form.condition.src ).src and_exprs += Tactic("ctx-solver-simplify")( Not(visitor.simplify(condition)) )[0] if and_exprs != []: or_exprs.append(And(*and_exprs)) if or_exprs: or_exprs = Tactic("ctx-solver-simplify")(Or(*or_exprs))[0] reaching_constraint = ( And(*or_exprs) if len(or_exprs) > 1 else or_exprs[0] if len(or_exprs) else BoolVal(True) ) self._reaching_constraints[(start, end)] = reaching_constraint def _refine_loops(self): log_debug("_refine_loops") to_visit = [r for r in self._regions.values()] visited = set() while to_visit: node = to_visit.pop() if node.type == "block": continue if node in visited: log_debug(f"wtf, why have I visited {node} already") break if node.type == "seq": to_visit += [n for n in node.nodes if n is not None] elif node.type == "cond": to_visit += node[True].nodes if node[True] else [] to_visit += node[False].nodes if node[False] else [] if node.type == "loop": log_debug(f"{node}") generate_graph( self.view, node, self.report_collection, f" {node.start} before refining", ) while_condition = self._check_while(node) if while_condition is not None: self._convert_to_while_loop(node, while_condition) dowhile_condition = self._check_do_while(node) if dowhile_condition is not None: self._convert_to_do_while_loop(node, dowhile_condition) generate_graph( self.view, node, self.report_collection, f" {node.start} after refining", ) to_visit += [n for n in node.body.nodes if n is not None] def _check_while(self, loop_node: MediumLevelILAstLoopNode): log_debug("_check_while") if loop_node.loop_type != "endless": log_debug(loop_node.loop_type) return None if loop_node.body.nodes[0].type != "cond": log_debug(f"{loop_node.body.nodes[0].type}") return None log_debug(f"{loop_node.body.nodes[0][True].nodes}") if loop_node.body.nodes[0][True].nodes[0].type == "break": log_debug(f"The loop body is {loop_node.body.nodes}") return loop_node.body.nodes[0].condition log_debug(f"{loop_node.body.nodes[0][True].nodes}") return None def _convert_to_while_loop( self, node: MediumLevelILAstLoopNode, while_condition ): log_debug(f"{node} is a while loop") node.loop_type = "while" node.condition = reduce( And, Tactic("ctx-solver-simplify")(Not(while_condition))[0] ) break_cond = node.body.nodes[0] if break_cond[False] is not None: node.body._nodes[0] = break_cond[False] # Flatten condition nodes that have the same condition # as the loop condition for idx, child in enumerate(node.body.nodes): if ( isinstance(child, MediumLevelILAstCondNode) and is_true(simplify(child.condition == node.condition)) and child[False] is None ): node.body._nodes[idx] = child[True] def _check_do_while(self, loop_node: MediumLevelILAstLoopNode) -> bool: log_debug("_check_do_while") log_debug(f"{loop_node.body.nodes}") if loop_node.loop_type != "endless": log_debug(loop_node.loop_type) return None if loop_node.body.nodes[-1].type != "cond": log_debug(f"final node is: {loop_node.body.nodes[-1].type}") return None log_debug( f"final cond true node: {loop_node.body.nodes[-1][True].nodes}" ) if loop_node.body.nodes[-1][True].nodes[0].type == "break": return loop_node.body.nodes[-1].condition return None def _convert_to_do_while_loop( self, node: MediumLevelILAstLoopNode, dowhile_condition ): log_debug(f"{node} is a do while loop") node.loop_type = "dowhile" node.condition = reduce( And, Tactic("ctx-solver-simplify")(Not(dowhile_condition))[0] ) break_cond = node.body.nodes[-1] if break_cond[False] is not None: node.body._nodes[-1] = break_cond[False] else: node.body._nodes.pop() # Flatten condition nodes that have the same condition # as the loop condition for idx, child in enumerate(node.body.nodes): if ( isinstance(child, MediumLevelILAstCondNode) and is_true(simplify(child.condition == node.condition)) and child[False] is None ): node.body._nodes[idx] = child[True] log_debug(f"Checking {child} for break condition") if isinstance(child, MediumLevelILAstCondNode) and is_false( simplify(And(child.condition, node.condition)) ): break_instr = child[True].nodes[-1].block[-1] child[True]._nodes.append( MediumLevelILAstBreakNode( self, break_instr.instr_index, break_instr.address ) ) new_loop_condition = self._split_break_condition( node.condition, child.condition ) if new_loop_condition is not None: log_debug(f"new_loop_condition is {new_loop_condition}") node.condition = new_loop_condition def _split_break_condition(self, loop_condition, break_condition): log_debug(f"{loop_condition} vs {break_condition}") if loop_condition.decl().name() != "and": loop_condition = And(loop_condition, BoolVal(True)) to_visit = [(loop_condition, BoolVal(True))] while to_visit: current_cond, right_side = to_visit.pop() log_debug(f"current: {current_cond} right: {right_side}") # If the top level operation is not an And, we don't need # to go any further. if current_cond.decl().name() != "and": log_debug(f"current_cond is {current_cond}") return None if current_cond.num_args() < 2: log_debug(f"current_cond is {current_cond}") return None # try 0 and R first c = current_cond.arg(0) R = And( *Tactic("ctx-solver-simplify")( And(current_cond.arg(1), right_side) )[0] ) if R.num_args() == 0: R = BoolVal(True) log_debug(f"c: {c} R: {R} break_condition: {break_condition}") if not Tactic("ctx-solver-simplify")(c == Not(break_condition))[0]: log_debug( f"Found break condition (0-1)! " f"{R} and {c} | {break_condition}" ) return simplify(R) # try again, but the other way c = current_cond.arg(1) R = And( *Tactic("ctx-solver-simplify")( And(current_cond.arg(0), right_side) )[0] ) if R.num_args() == 0: R = BoolVal(True) log_debug(f"c: {c} R: {R} break_condition: {break_condition}") if not Tactic("ctx-solver-simplify")(c == Not(break_condition))[0]: log_debug( f"Found break condition (1-0)! " f"{R} and {c} | {break_condition}" ) return simplify(R) to_visit = [ (current_cond.arg(0), current_cond.arg(1)), (current_cond.arg(1), current_cond.arg(0)), ] return None def __str__(self): output = "" for il in self.root.block: if il.instr_index != self.root.block.end - 1: output += f"{il}\n" to_visit = [ (node, 0) for header, node in sorted( self._regions.items(), key=lambda i: i[0].start, reverse=True ) ] prev_indent = 0 while to_visit: node, indent = to_visit.pop() if indent < prev_indent: output += "\n" if isinstance(node, MediumLevelILAstSeqNode): if isinstance(node, MediumLevelILAstElseNode): output += f'{" "*indent}else:\n' indent += 4 for il in node.header: if ( il.instr_index == node.header.end - 1 ) and il.operation not in ( MediumLevelILOperation.MLIL_RET, MediumLevelILOperation.MLIL_RET_HINT, ): continue tokens = "" for t in il.tokens: if ( t.type != InstructionTextTokenType.PossibleAddressToken ): tokens += t.text elif self.view.get_symbols(t.value, 1): tokens += self.view.get_symbols(t.value, 1)[0].name elif self.view.get_function_at(t.value): tokens += self.view.get_function_at(t.value).name else: tokens += t.text output += f'{" "*indent}{tokens}\n' to_visit += zip(reversed(node.children), repeat(indent)) elif isinstance(node, MediumLevelILAstCondNode): output += f'{" "*indent}if ({node.condition}) then:\n' to_visit.append((node[False], indent)) to_visit.append((node[True], indent + 4)) elif isinstance(node, MediumLevelILAstSwitchNode): output += f'{" "*indent}switch({node.switch}):\n' to_visit += zip( reversed(sorted(node.cases.items(), key=lambda i: i[0])), repeat(indent + 4), ) elif isinstance(node, tuple): output += f'{" "*indent}case {node[0]}:\n' to_visit += [(node[1], indent + 4)] prev_indent = indent return output ``` #### File: decompiler/decompiler/token_visitor.py ```python from itertools import chain from binaryninja import (InstructionTextToken, InstructionTextTokenType, MediumLevelILOperation, SymbolType, TypeClass, Variable, log) from .bnilvisitor import BNILVisitor class TokenVisitor(BNILVisitor): def visit(self, expr): value = super().visit(expr) if value is None: return expr.tokens else: return value def visit_MLIL_STORE(self, expr): tokens = ArrayTokenVisitor().visit(expr.dest) if not isinstance(tokens, list): dest_tokens = self.visit(expr.dest) # Add the '*' tokens = [ InstructionTextToken(InstructionTextTokenType.TextToken, "*") ] if len(dest_tokens) == 1: tokens.extend(dest_tokens) else: tokens.extend( [ InstructionTextToken( InstructionTextTokenType.TextToken, "(" ), *dest_tokens, InstructionTextToken( InstructionTextTokenType.TextToken, ")" ), ] ) src_tokens = self.visit(expr.src) tokens.extend( [ InstructionTextToken( InstructionTextTokenType.TextToken, " = " ), *src_tokens, ] ) return tokens def visit_MLIL_LOAD(self, expr): src_tokens = ArrayTokenVisitor().visit(expr.src) if isinstance(src_tokens, list): return src_tokens src_tokens = self.visit(expr.src) tokens = [ InstructionTextToken(InstructionTextTokenType.TextToken, "*") ] if len(src_tokens) == 1: tokens.extend(src_tokens) else: tokens.extend( [ InstructionTextToken( InstructionTextTokenType.TextToken, "(" ), *src_tokens, InstructionTextToken( InstructionTextTokenType.TextToken, ")" ), ] ) return tokens def visit_MLIL_SET_VAR(self, expr): src_tokens = self.visit(expr.src) return [ InstructionTextToken( InstructionTextTokenType.LocalVariableToken, expr.dest.name, expr.dest.identifier ), InstructionTextToken( InstructionTextTokenType.TextToken, ' = ' ), *src_tokens ] def visit_MLIL_SET_VAR_FIELD(self, expr): src_tokens = self.visit(expr.src) dest = expr.dest offset = expr.offset size = expr.size if dest.type.width == size and offset == 0: return [ InstructionTextToken( InstructionTextTokenType.LocalVariableToken, expr.dest.name, expr.dest.identifier ), InstructionTextToken( InstructionTextTokenType.TextToken, ' = ' ), *src_tokens ] def visit_MLIL_VAR_FIELD(self, expr): src = expr.src offset = expr.offset size = expr.size if src.type.width == size and offset == 0: return [ InstructionTextToken( InstructionTextTokenType.LocalVariableToken, expr.src.name, expr.src.identifier ) ] def visit_MLIL_CALL(self, expr): log.log_debug(f'visit_MLIL_CALL: {expr}') output = [ InstructionTextToken( InstructionTextTokenType.LocalVariableToken, v.name, v.identifier ) for v in expr.output ] dest = self.visit(expr.dest) params = [self.visit(p) for p in expr.params] for p in params[:-1]: p.append( InstructionTextToken( InstructionTextTokenType.TextToken, ', ' ) ) log.log_debug(f'output: {output}') log.log_debug(f'dest: {dest}') log.log_debug(f'params: {list(chain(*params))}') return [ *output, InstructionTextToken( InstructionTextTokenType.TextToken, ' = ' if output else '' ), *dest, InstructionTextToken( InstructionTextTokenType.TextToken, '(' ), *chain(*params), InstructionTextToken( InstructionTextTokenType.TextToken, ')' ) ] def visit_MLIL_MUL(self, expr): left = self.visit(expr.left) right = self.visit(expr.right) return [ *left, InstructionTextToken( InstructionTextTokenType.TextToken, ' * ' ), *right ] def visit_MLIL_ZX(self, expr): return self.visit(expr.src) def visit_MLIL_CONST_PTR(self, expr): log.log_debug(f'MLIL_CONST_PTR: {expr.constant:x}') view = expr.function.source_function.view symbol = view.get_symbol_at(expr.constant) string = view.get_string_at(expr.constant) if string is not None: return [ InstructionTextToken( InstructionTextTokenType.StringToken, repr(string.value), string.start ) ] elif symbol is not None: NormalSymbols = (SymbolType.FunctionSymbol, SymbolType.DataSymbol) ImportSymbols = ( SymbolType.ImportedFunctionSymbol, SymbolType.ImportedDataSymbol ) return [ InstructionTextToken( ( InstructionTextTokenType.CodeSymbolToken if symbol.type in NormalSymbols else InstructionTextTokenType.ImportToken if symbol.type in ImportSymbols else InstructionTextTokenType.PossibleAddressToken ), symbol.short_name, expr.constant, size=expr.size, address=expr.address ) ] visit_MLIL_CONST = visit_MLIL_CONST_PTR visit_MLIL_IMPORT = visit_MLIL_CONST_PTR class ArrayTokenVisitor(BNILVisitor): def visit_MLIL_CONST(self, expr): return expr.constant visit_MLIL_CONST_PTR = visit_MLIL_CONST def visit_MLIL_VAR(self, expr): return expr.src def visit_MLIL_VAR_FIELD(self, expr): # TODO this is not going to work potentially return expr.src def visit_MLIL_LSL(self, expr): return self.visit(expr.left), self.visit(expr.right) def visit_MLIL_ADDRESS_OF(self, expr): return expr.src def visit_MLIL_ADD(self, expr): left = self.visit(expr.left) right = self.visit(expr.right) if ( not isinstance(left, Variable) or ( left.type.type_class != TypeClass.ArrayTypeClass and left.type.type_class != TypeClass.PointerTypeClass and expr.left.operation != MediumLevelILOperation.MLIL_ADDRESS_OF ) ): return if isinstance(right, int): element_width = left.type.element_type.width index = element_width // right elif isinstance(right, tuple): index_shift = right[1] index = right[0] return [ InstructionTextToken( InstructionTextTokenType.LocalVariableToken, left.name, left.identifier ), InstructionTextToken( InstructionTextTokenType.TextToken, '[' ), InstructionTextToken( InstructionTextTokenType.LocalVariableToken, index.name, index.identifier ) if isinstance(index, Variable) else InstructionTextToken( InstructionTextTokenType.IntegerToken, str(index), index ), InstructionTextToken( InstructionTextTokenType.TextToken, ']' ) ] ``` #### File: emulator/emulatorui/buttons.py ```python import time from binaryninja import (AddressField, BackgroundTaskThread, ChoiceField, HighlightStandardColor, Settings, execute_on_main_thread_and_wait, get_form_input, log) from binaryninjaui import FileContext, LinearView, UIContext, ViewFrame from emulator.errors import (UnimplementedOperationError, UninitializedRegisterError) from PySide2.QtCore import SIGNAL, QObject from PySide2.QtGui import QFont, QFontMetrics from PySide2.QtWidgets import QHBoxLayout, QPushButton, QWidget from .hooks import add_hook, remove_hook from .memory import EmulatorMemoryModel, rewrite_segments from .stack import EmulatorStackModel from .registers import RegisterEmulatorModel class EmulatorRunTaskThread(BackgroundTaskThread): def __init__(self, widget, emulator, il): self.widget = widget self.emulator = emulator self.starting_il = il super().__init__() def run(self): il = self.starting_il view = self.emulator.view self.emulator.set_next_instr_index(il.function, il.instr_index) self.widget.running = True while self.widget.running: if (il.function, il.instr_index) in self.emulator.breakpoints: il.function.source_function.set_user_instr_highlight( il.address, HighlightStandardColor.NoHighlightColor ) view.navigate(view.file.view, il.address) break if self.widget.execute_one_instruction(self.emulator, il): il = self.emulator.current_function[ self.emulator.current_instr_index ] else: break print('Complete') class EmulatorButton(QPushButton): def __init__(self, view, label, callback): super().__init__(label) self.callback = callback self.view = view font_name = Settings().get_string('ui.font.name') font_size = Settings().get_integer('ui.font.size') button_font = QFont(font_name, font_size) fm = QFontMetrics(button_font) self.setFont(button_font) self.setFixedWidth(fm.horizontalAdvance(label) + 10) QObject.connect(self, SIGNAL('clicked()'), self.callback) class EmulatorButtonsWidget(QWidget): def __init__(self, parent, view): super().__init__(parent) self.view = view self.view.session_data['emulator.buttons.widget'] = self self.running = False self.reset_button = EmulatorButton(view, '♻️', self.reset) self.reset_button.setToolTip('Reset emulator') self.run_button = EmulatorButton(view, '▶️', self.run) self.run_button.setToolTip('Run emulator') self.run_to_button = EmulatorButton(view, '⏭', self.run_to) self.run_to_button.setToolTip('Run to set location') self.set_stop_button = EmulatorButton(view, '⏹', self.set_stop) self.set_stop_button.setToolTip('Set stop location on address') self.pause_button = EmulatorButton(view, '⏸', self.pause) self.pause_button.setToolTip('Pause emulator') self.step_button = EmulatorButton(view, '⏯', self.step) self.step_button.setToolTip('Step one disassembly instruction') self.map_memory_button = EmulatorButton(view, '🗺', self.map_memory) self.map_memory_button.setToolTip('Map virtual memory') self.unmap_memory_button = EmulatorButton(view, '🚮', self.unmap_memory) self.unmap_memory_button.setToolTip('Unmap virtual memory') self.view_memory_button = EmulatorButton(view, '📈', self.view_memory) self.view_memory_button.setToolTip('Open memory view') self.add_hook_button = EmulatorButton(view, '🎣', self.add_hook) self.add_hook_button.setToolTip('Add instruction hook') self.remove_hook_button = EmulatorButton(view, '🐟', self.remove_hook) self.remove_hook_button.setToolTip('Remove instruction hook') self.button_layout = QHBoxLayout(self) self.button_layout.addWidget(self.reset_button) self.button_layout.addWidget(self.run_button) self.button_layout.addWidget(self.pause_button) self.button_layout.addWidget(self.run_to_button) self.button_layout.addWidget(self.set_stop_button) self.button_layout.addWidget(self.step_button) self.button_layout.addWidget(self.map_memory_button) self.button_layout.addWidget(self.unmap_memory_button) self.button_layout.addWidget(self.view_memory_button) self.button_layout.addWidget(self.add_hook_button) self.button_layout.addWidget(self.remove_hook_button) def get_context(self): ctx = self.parent().view_frame.actionContext() if ctx.lowLevelILFunction is not None: function = ctx.lowLevelILFunction if ctx.instrIndex == 0xffffffffffffffff: il = function[0] else: il = function[ctx.instrIndex] elif ctx.mediumLevelILFunction is not None: if ctx.instrIndex == 0xffffffffffffffff: il = ctx.mediumLevelILFunction[0].llil.non_ssa_form else: il = ctx.mediumLevelILFunction[ ctx.instrIndex ].llil.non_ssa_form elif ctx.function is not None: function = ctx.function il = function.get_low_level_il_at(ctx.address) return il def run(self): emulator = self.view.session_data['emulator'] il = self.get_context() task = EmulatorRunTaskThread(self, emulator, il) task.start() def pause(self): self.running = False def run_to(self): pass def set_stop(self): il = self.get_context() emulator = self.view.session_data['emulator'] emulator.breakpoints.add((il.function, il.instr_index)) il.function.source_function.set_auto_instr_highlight( il.address, HighlightStandardColor.RedHighlightColor ) def reset(self): self.running = False emulator = self.view.session_data['emulator'] if (emulator.current_function is not None and emulator.current_instr_index is not None): current_il = emulator.current_function[ emulator.current_instr_index ] emulator.current_function.source_function.set_auto_instr_highlight( current_il.address, HighlightStandardColor.NoHighlightColor ) self.view.session_data["emulator.memory.view"] = rewrite_segments( self.view ) model = EmulatorMemoryModel(self.view) self.view.session_data["emulator.memory.model"] = model self.view.session_data["emulator.memory.widget"].setModel(model) model = EmulatorStackModel(self.view) self.view.session_data['emulator.stack.widget'].setModel(model) model = RegisterEmulatorModel(self.view) self.view.session_data['emulator.registers.widget'].setModel(model) self.view.session_data['emulator.registers.widget'].update() def step(self): ctx = self.parent().view_frame.actionContext() emulator = self.parent().emulator if ctx.lowLevelILFunction is not None: function = ctx.lowLevelILFunction if ctx.instrIndex == 0xffffffffffffffff: il = function[0] else: il = function[ctx.instrIndex] elif ctx.mediumLevelILFunction is not None: if ctx.instrIndex == 0xffffffffffffffff: il = ctx.mediumLevelILFunction[0].llil.non_ssa_form else: il = ctx.mediumLevelILFunction[ ctx.instrIndex ].llil.non_ssa_form elif ctx.function is not None: function = ctx.function il = function.get_low_level_il_at(ctx.address) emulator.set_next_instr_index( il.function, il.instr_index ) il_start = il.instr_index exits = il.function.source_function.get_low_level_il_exits_at( il.address ) il_exit = max( exits ) if exits else il_start next_il = il while (il.function == emulator.current_function and il_start <= emulator.current_instr_index <= il_exit): if not self.execute_one_instruction(emulator, next_il): break if emulator.current_instr_index < len(emulator.current_function): next_il = emulator.current_function[ emulator.current_instr_index ] else: emulator.view.navigate(emulator.view.file.view, next_il.address) def execute_one_instruction(self, emulator, il): try: emulator.execute(il) except UninitializedRegisterError as e: print(f'UninitializedRegisterError: {e.reg}') return False except UnimplementedOperationError as e: print(f'UnimplementedOperationError: {e.op!r}') return False return True def map_memory(self): start = AddressField('Start (hex):') length = AddressField('Length (hex):') flags = ChoiceField( 'Flags', [ '---', '--x', '-w-', '-wx', 'r--', 'r-x', 'rw-', 'rwx' ] ) get_form_input([start, length, flags], 'Map Memory') self.parent().emulator.map_memory( start.result, length.result, flags.result ) def unmap_memory(self): start = AddressField('Start (hex):') length = AddressField('Length (hex):') get_form_input([start, length], 'Unmap Memory') self.parent().emulator.unmap_memory(start.result, length.result) def view_memory(self): memory_view = self.parent().view.session_data['emulator.memory.view'] ctx = UIContext.activeContext() linear_view = LinearView(memory_view, None) memory_view.register_notification(linear_view) ctx.createTabForWidget('Emulator Memory', linear_view) def add_hook(self): emulator = self.parent().view.session_data['emulator'] ctx = UIContext.activeContext() content = ctx.contentActionHandler() action_context = content.actionContext() llil = action_context.lowLevelILFunction instr_index = action_context.instrIndex if None in (llil, instr_index) or instr_index == 0xffffffffffffffff: log.log_alert('LLIL Function/Instruction not selected!') return add_hook(emulator, llil[instr_index]) def remove_hook(self): emulator = self.parent().view.session_data['emulator'] ctx = UIContext.activeContext() content = ctx.contentActionHandler() action_context = content.actionContext() llil = action_context.lowLevelILFunction instr_index = action_context.instrIndex if None in (llil, instr_index) or instr_index == 0xffffffffffffffff: log.log_alert('LLIL Function/Instruction not selected!') return remove_hook(emulator, llil[instr_index]) ``` #### File: emulator/emulatorui/__init__.py ```python from binaryninja import ( BinaryView, LowLevelILFunction, LowLevelILInstruction, PluginCommand, ) from binaryninjaui import DockHandler, LinearView from . import hooks from . import emulatorui from . import memory from .memory import EmulatorMemoryModel, rewrite_segments from .stack import EmulatorStackModel emulatorui.addDockWidget() memory.addDockWidget() def load_emulator(view, il): emulator = view.session_data.get("emulator") if emulator is None: return dock_handler = DockHandler.getActiveDockHandler() if dock_handler is None: return view.session_data["emulator.memory.view"] = rewrite_segments(view) model = EmulatorMemoryModel(view) view.session_data["emulator.memory.model"] = model view.session_data["emulator.memory.widget"].setModel(model) model = EmulatorStackModel(view) view.session_data['emulator.stack.widget'].setModel(model) memory_dock_widget = view.session_data['emulator.memory.dockWidget'] memory_dock_widget.linear_view = LinearView( view.session_data['emulator.memory.view'], None ) memory_dock_widget.layout.addWidget(memory_dock_widget.linear_view) dock_handler.setVisible("BNIL Emulator", True) def add_hook(view: BinaryView, instruction: LowLevelILInstruction) -> None: emulator = view.session_data.get("emulator") if emulator is None: return hooks.add_hook(emulator, instruction) def add_function_hook(view: BinaryView, function: LowLevelILFunction) -> None: emulator = view.session_data.get("emulator") if emulator is None: return hooks.add_function_hook(emulator, function) def remove_hook(view: BinaryView, instruction: LowLevelILInstruction) -> None: emulator = view.session_data.get("emulator") if emulator is None: return hooks.remove_hook(emulator, instruction) def remove_function_hook( view: BinaryView, function: LowLevelILFunction ) -> None: emulator = view.session_data.get("emulator") if emulator is None: return hooks.remove_function_hook(emulator, function) PluginCommand.register_for_low_level_il_function( "Emulator\\Load", "Load Emulator", load_emulator ) PluginCommand.register_for_low_level_il_instruction( "Emulator\\Add Hook", "Add an emulator hook for this LLIL instruction", add_hook, ) PluginCommand.register_for_low_level_il_function( "Emulator\\Add Function Hook", "Add an emulator hook for this LLIL function", add_function_hook, ) PluginCommand.register_for_low_level_il_instruction( "Emulator\\Remove Hook", "Remove an emulator hook for this LLIL instruction", remove_hook, ) PluginCommand.register_for_low_level_il_function( "Emulator\\Remove Function Hook", "Remove an emulator hook for this LLIL function", remove_function_hook, ) def map_memory(view, start, length, flags): emulator = view.session_data.get("emulator") if emulator is None: return emulator.map_memory(start, length, flags) ``` #### File: emulator/tests/test_binja.py ```python from binaryninja import (BinaryView, LowLevelILFunction, PluginCommand, SegmentFlag) from emulator import Executor def setup_stack(view: BinaryView, function: LowLevelILFunction) -> None: emulator = view.session_data['emulator'] memory_view = view.session_data['emulator.memory.view'] map_start = 0x1000 map_len = 0x10000 while True: while memory_view.get_segment_at(map_start) is not None: map_start += 0x1000 if any( s.start > map_start and s.start < map_start + map_len for s in memory_view.segments ): map_start += 0x1000 continue emulator.map_memory( map_start, map_len, SegmentFlag.SegmentReadable | SegmentFlag.SegmentWritable ) break sp = map_start + map_len - view.address_size emulator.write_register(view.arch.stack_pointer, sp) PluginCommand.register_for_low_level_il_function( 'Emulator\\Setup stack', 'Setup Emulator Stack', setup_stack, lambda v, f: v.session_data.get('emulator') is not None ) ``` #### File: f-ing-around-with-binaryninja/function_types/test_function_types.py ```python from binaryninja import Function, BinaryView, PluginCommand, MediumLevelILOperation, log, Type, FunctionParameter def fix_printfs(view: BinaryView): printf = view.get_symbols_by_name('_printf') if not printf: printf = view.get_symbols_by_name('printf') if not printf: return for sym in printf: function = view.get_function_at(sym.address) if not function: continue xrefs = view.get_code_refs(function.start) for xref in xrefs: caller: Function = xref.function call_mlil = caller.get_low_level_il_at(xref.address).mlil print(call_mlil) if call_mlil is None: continue fmt_operand = call_mlil.params[0] if fmt_operand.operation == MediumLevelILOperation.MLIL_VAR: log.log_warn(f"Potential format string bug: {fmt_operand.address:x}") continue elif fmt_operand.operation in (MediumLevelILOperation.MLIL_CONST_PTR, MediumLevelILOperation.MLIL_CONST): fmt_address = fmt_operand.constant fmt = view.get_ascii_string_at(fmt_address, 2) if fmt is None: continue fmt_value = fmt.value else: continue specifiers = fmt_value.split('%') param_types = [] for specifier in specifiers[1:]: if not specifier: continue if specifier.startswith('d'): param_types.append(Type.int(4, sign=True)) elif specifier.startswith('s'): param_types.append(Type.pointer(view.arch, Type.char())) elif specifier.startswith('p'): param_types.append(Type.pointer(view.arch, Type.void())) else: log.log_warn(f'Unknown format specifier: {specifier}; skipping') param_types.append(Type.pointer(view.arch, Type.void())) param_idx = 1 params = [FunctionParameter(Type.pointer(view.arch, Type.char()), 'fmt')] for param in param_types: params.append(FunctionParameter(param, f'arg{param_idx}')) param_idx += 1 caller.set_call_type_adjustment(xref.address, Type.function(Type.int(4), params)) PluginCommand.register( 'Fix up printf signatures', 'Fix up printf signatures so that the variadic arguments are correctly typed', fix_printfs ) ``` #### File: unlock/unlock/unlockvisitor.py ```python import operator as op import time from functools import partial from queue import Queue from threading import Event from math import floor from binaryninja import ( AnalysisCompletionEvent, Architecture, ArchitectureHook, BackgroundTaskThread, BasicBlock, BinaryDataNotification, BinaryReader, BinaryView, BranchType, Function, FunctionAnalysisSkipOverride, ILBranchDependence, InstructionBranch, InstructionInfo, LowLevelILBasicBlock, LowLevelILExpr, LowLevelILFunction, LowLevelILOperation, LowLevelILInstruction, MediumLevelILBasicBlock, MediumLevelILFunction, MediumLevelILInstruction, MediumLevelILOperation, PluginCommand, RegisterValueType, SectionSemantics, SSAVariable, Variable, VariableSourceType, enum, ) from binaryninja import _binaryninjacore as core from binaryninja import log_debug, log_info, log_warn, worker_enqueue from .analysis.analyze_exception_handler import ( analyze_exception_handler_set_var, analyze_exception_handler_store, ) from .analysis.analyze_folding import analyze_constant_folding, analyze_goto_folding from .analysis.analyze_indirect_jump import analyze_indirect_jump, analyze_possible_call from .analysis.analyze_return import analyze_return from .analysis.analyze_unconditional_jump import analyze_unconditional_jump from .bnilvisitor import BNILVisitor from .logging import log_debug from .state import SEHState from .exceptionvisitor import ExceptionVisitor class TargetQueue(Queue): def put(self, item, block=True, timeout=None): log_debug(f"putting {item:x} in target queue") super(TargetQueue, self).put(item, block, timeout) class UnlockVisitor(BNILVisitor, BackgroundTaskThread): def __init__(self, function: Function, start: int): BNILVisitor.__init__(self) BackgroundTaskThread.__init__(self, f"Deobfuscating {start:x}", True) self._start: int = start self.function: Function = function self.view: BinaryView = function.view self.address_size = self.view.arch.address_size self.target_queue = TargetQueue() self.exception_visitors = { f.start: ExceptionVisitor(self) for f in self.view.functions } self.seen = {} self.prev_phase = 1 self.num_phases = 3 self.phase = 1 self.target_queue.put(start) def run(self): self.run_time = time.time() while self.phase: self.start_time = time.time() while not self.target_queue.empty(): self.addr = None while not self.target_queue.empty(): self.addr = self.target_queue.get() if self.addr is not None: # Attempt to navigate to the location; if we # can't, then it's not a valid instruction # currently # valid = self.view.navigate(self.view.file.view, self.addr) log_debug(f"checking validity of {self.addr:x}") valid = ( self.view.get_functions_containing(self.addr) is not None ) if not valid: log_debug(f"{self.addr:x} is not valid") self.addr = None continue else: break else: log_debug("target queue has been exhausted") break log_debug(f"run for {self.addr:x} started") # Get a new copy of our Function object, since reanalyzing might # make dataflow stale log_debug(f"Getting new function for {self.addr:x}") self.function = next( f for f in self.view.get_functions_containing(self.addr) ) self.fs = Variable( self.function, VariableSourceType.RegisterVariableSourceType, 0, self.function.arch.get_reg_index("fs"), "fs", ) il = self.function.get_low_level_il_at(self.addr).mapped_medium_level_il mmlil = il.function self.progress = f"[Phase {self.phase}] {self.addr:x} in function {self.function.start:x} ({il.instr_index}/{len(list(mmlil.instructions))})" while True: log_debug( f"[{self.function.start:08x} analyzing {il.instr_index}[{il.address:08x}]: {il}" ) # self.function.analysis_skipped = True self.view.begin_undo_actions() self.seen[il.address] = self.seen.get(il.address, 0) + 1 process_result = self.visit(il) self.view.commit_undo_actions() # self.function.analysis_skipped = False # If it's True or False, then we've finished # processing this path and want to continue # processing other paths. If it's an integer, # then that's the next IL instruction index we # should analyze. If it's None, then just continue # on to the next instruction. if isinstance(process_result, bool): break elif isinstance(process_result, int): next_il = process_result else: next_il = il.instr_index + 1 try: il = mmlil[next_il] except: break log_debug(f"analysis for {il.address:x} finished") # If process_result is True or False, then something # was modified and we should update. if process_result is not None: log_debug("waiting for analysis to finish") self.view.update_analysis_and_wait() log_debug("analysis complete") # If an analysis forces a phase change, note it if self.phase != self.prev_phase: self.end_time = time.time() log_info( f"Phase changed from {self.prev_phase} to {self.phase}; Time elapsed: {self.end_time - self.start_time}" ) self.prev_phase = self.phase self.start_time = time.time() log_debug("target queue is empty") self.end_time = time.time() log_info( f"Phase {self.phase} complete; Time elapsed: {self.end_time - self.start_time}" ) # Iterate the phase. If it hits 0, it will stop self.prev_phase = self.phase self.phase = (self.phase + 1) % (self.num_phases + 1) for func in self.view.functions: self.target_queue.put(func.start) print(f"Analysis complete; Time elapsed: {time.time() - self.run_time}") visit_MLIL_RET = analyze_return visit_MLIL_RET_HINT = analyze_return def visit_MLIL_JUMP(self, expr): result = self.visit(expr.dest.llil) if result is True: return result return self.analyze_indirect_jump(expr) def visit_MLIL_JUMP_TO(self, expr): if self.analyze_possible_call(expr): return True return self.visit(expr.dest.llil) visit_MLIL_GOTO = analyze_goto_folding def visit_MLIL_STORE(self, expr): return self.exception_visitors[self.function.start].visit(expr) def visit_MLIL_SET_VAR(self, expr): if self.phase == 1: return self.exception_visitors[self.function.start].visit(expr) elif self.phase > 1: if expr.src.operation == MediumLevelILOperation.MLIL_VAR and expr.dest == expr.src.src: self.convert_to_nop(expr.address) return self.queue_prev_block(expr) llil_instr = expr.llil if llil_instr.operation == LowLevelILOperation.LLIL_SET_REG_SSA: if not expr.function.llil.get_ssa_reg_uses(llil_instr.dest): if ( llil_instr.non_ssa_form.operation == LowLevelILOperation.LLIL_SET_REG ): if ( llil_instr.non_ssa_form.src.operation != LowLevelILOperation.LLIL_POP ): self.convert_to_nop(expr.address) return self.queue_prev_block(expr) elif expr.src.operation == MediumLevelILOperation.MLIL_VAR: pop_var = expr.src.ssa_form.src push_var_def = expr.ssa_form.function.get_ssa_var_definition(pop_var) if expr.function.get_ssa_var_uses(push_var_def.dest) == [ expr ]: self.convert_to_nop(expr.address) self.convert_to_nop(push_var_def.address) return self.queue_prev_block(expr) return self.visit(expr.src) def visit_LLIL_REG_SSA(self, expr): log_debug("visit_LLIL_REG_SSA") if expr.value.type in ( RegisterValueType.ConstantPointerValue, RegisterValueType.ConstantValue, ): return self.analyze_constant_folding(expr) def visit_MLIL_SET_VAR_FIELD(self, expr): if self.phase > 1: llil_instr = expr.llil if llil_instr.operation == LowLevelILOperation.LLIL_SET_REG_SSA_PARTIAL: if not expr.function.llil.get_ssa_reg_uses(llil_instr.full_reg): if ( llil_instr.non_ssa_form.operation == LowLevelILOperation.LLIL_SET_REG ): if ( llil_instr.non_ssa_form.src.operation != LowLevelILOperation.LLIL_POP ): self.convert_to_nop(expr.address) return self.queue_prev_block(expr) return self.visit(expr.src) def visit_MLIL_IF(self, expr): log_debug("visit_MLIL_IF") # is this a stosb or something similar? If so, # find the largest exit index and start there. exits = self.function.get_low_level_il_exits_at(expr.address) if len(exits) > 1: return max(exits) + 1 return self.analyze_unconditional_jump(expr) def visit_MLIL_UNDEF(self, expr): log_debug("visit_MLIL_UNDEF") # Nothing to do down this path; just get something # else from the target queue. return False def visit_LLIL_LOAD_SSA(self, expr): return self.visit(expr.src) def visit_LLIL_ADD(self, expr): log_debug("visit_LLIL_ADD") add_value = expr.value if add_value.type in ( RegisterValueType.ConstantPointerValue, RegisterValueType.ConstantValue, ): log_debug(f"add value is {add_value.value:x}") return self.analyze_constant_folding(expr.left) else: log_debug(f"add value is not constant ptr") return def visit_LLIL_SUB(self, expr): log_debug("visit_LLIL_SUB") sub_value = expr.value if sub_value.type in ( RegisterValueType.ConstantPointerValue, RegisterValueType.ConstantValue, ): log_debug(f"sub value is {sub_value.value:x}") return self.analyze_constant_folding(expr.left) else: log_debug(f"sub value is not constant ptr") return def visit_MLIL_SUB(self, expr): log_debug("visit_MLIL_SUB") # This is a top level MLIL_SUB, which means it's probably a cmp instruction if expr.function[expr.instr_index].operation == MediumLevelILOperation.MLIL_SUB: self.convert_to_nop(expr.address) return self.queue_prev_block(expr) if expr.left.value.type in ( RegisterValueType.UndeterminedValue, RegisterValueType.EntryValue, ): # Make sure we're not accidentally NOPing a push/pop # due to the stack being in a bad state due to a weird # loop if ( expr.left.operation != MediumLevelILOperation.MLIL_VAR and expr.left.src.index != self.view.arch.get_reg_index("esp") ): self.convert_to_nop(expr.address) return self.queue_prev_block(expr) sub_value = expr.value if sub_value.type in ( RegisterValueType.ConstantPointerValue, RegisterValueType.ConstantValue, ): log_debug(f"sub value is {sub_value.value:x}") return self.analyze_constant_folding(expr.left) else: log_debug("sub value is not a constant ptr") return def visit_MLIL_ADD(self, expr): log_debug("visit_MLIL_ADD") if expr.left.value.type in ( RegisterValueType.UndeterminedValue, RegisterValueType.EntryValue, ): self.convert_to_nop(expr.address) return self.queue_prev_block(expr) add_value = expr.value if add_value.type in ( RegisterValueType.ConstantPointerValue, RegisterValueType.ConstantValue, ): log_debug(f"add value is {add_value.value:x}") return self.analyze_constant_folding(expr.left) else: log_debug("add value is not a constant ptr") return def visit_MLIL_CONST(self, expr): log_debug("visit_MLIL_CONST") if expr.llil.operation != LowLevelILOperation.LLIL_CONST: return self.visit(expr.llil) def visit_MLIL_XOR(self, expr): log_debug("visit_MLIL_XOR") # If it's something like `ecx ^ const` and ecx isn't a known # value, then just erase it. It's not needed at all. if expr.left.value.type in ( RegisterValueType.UndeterminedValue, RegisterValueType.EntryValue, ): self.convert_to_nop(expr.address) return self.queue_prev_block(expr) visit_MLIL_AND = visit_MLIL_XOR def visit_MLIL_OR(self, expr): log_debug("visit_MLIL_OR") # If it's something like `ecx | 0` then we can NOP it # and nothing of value is lost if expr.right.value.type in ( RegisterValueType.ConstantPointerValue, RegisterValueType.ConstantValue ) and expr.right.value.value == 0: self.convert_to_nop(expr.address) return self.queue_prev_block(expr) def visit_MLIL_TAILCALL(self, expr): log_debug("visit_MLIL_TAIL_CALL") return self.visit(expr.dest.llil) visit_MLIL_TAILCALL_UNTYPED = visit_MLIL_TAILCALL analyze_unconditional_jump = analyze_unconditional_jump analyze_indirect_jump = analyze_indirect_jump analyze_goto_folding = analyze_goto_folding analyze_constant_folding = analyze_constant_folding analyze_possible_call = analyze_possible_call def convert_to_nop(self, address): log_debug(f"Nopping {address:x}") self.view.convert_to_nop(address) def queue_prev_block(self, expr): log_debug("queue_prev_block") if isinstance(expr, MediumLevelILInstruction): ILBasicBlock = MediumLevelILBasicBlock elif isinstance(expr, LowLevelILInstruction): ILBasicBlock = LowLevelILBasicBlock else: return current_bb: ILBasicBlock = next( bb for bb in expr.function.basic_blocks if bb.start <= expr.instr_index < bb.end ) log_debug(f"current_bb has {len(current_bb.incoming_edges)} incoming edges") if len(current_bb.incoming_edges) != 1: log_debug("Incoming Edges was not 1, just continuing") self.target_queue.put(expr.address) return True prev_bb = current_bb.incoming_edges[0].source while prev_bb[0].operation in ( LowLevelILOperation.LLIL_JUMP_TO, MediumLevelILOperation.MLIL_JUMP_TO, MediumLevelILOperation.MLIL_GOTO, LowLevelILOperation.LLIL_GOTO, ): if len(prev_bb.incoming_edges) != 1: log_debug("Incoming edges was not 1, stopping here") break log_debug(f"{prev_bb.incoming_edges}") if prev_bb not in prev_bb.incoming_edges[0].source.dominators: prev_bb = prev_bb.incoming_edges[0].source else: break self.target_queue.put(prev_bb.il_function[prev_bb.start].address) return True ```
{ "source": "joshwatson/reverse_engineers_toolkit", "score": 2 }
#### File: reverse_engineers_toolkit/functions/callgraph.py ```python from binaryninja import FlowGraph, BinaryDataNotification from binaryninja.binaryview import BinaryView from binaryninja.enums import BranchType, InstructionTextTokenType, SymbolType from binaryninja.flowgraph import FlowGraphNode from binaryninja.function import DisassemblyTextLine, Function, InstructionTextToken from binaryninjaui import FlowGraphWidget, ViewType class CallGraph(FlowGraph): def __init__(self, function: Function): FlowGraph.__init__(self) self.function = function self.view = function.view def populate_nodes(self): func = self.function view = self.view nodes = {f: FlowGraphNode(self) for f in view.functions} for function, node in nodes.items(): if function.symbol.type == SymbolType.ImportedFunctionSymbol: token_type = InstructionTextTokenType.ImportToken else: token_type = InstructionTextTokenType.CodeSymbolToken node.lines = [ DisassemblyTextLine( [InstructionTextToken(token_type, function.name, function.start)], function.start, ) ] self.append(node) for function in view.functions: node = nodes[function] for callee in set(function.callees): callee_node = nodes[callee] node.add_outgoing_edge(BranchType.IndirectBranch, callee_node) def update(self): return CallGraph(self.function) class CallGraphWidget(FlowGraphWidget, BinaryDataNotification): def __init__(self, parent, view: BinaryView): self.view = view if view.entry_function: self.graph = CallGraph(view.entry_function) elif view.functions: self.graph = CallGraph(view.functions[0]) else: self.graph = None FlowGraphWidget.__init__(self, parent, view, self.graph) BinaryDataNotification.__init__(self) view.register_notification(self) def navigate(self, address): self.showAddress(address, True) return True def navigateToFunction(self, function, address): self.showAddress(address, True) return True def function_added(self, view, func): self.graph = self.graph.update() self.setGraph(self.graph) def function_removed(self, view, func): self.graph = self.graph.update() self.setGraph(self.graph) def function_updated(self, view, func): self.graph = self.graph.update() self.setGraph(self.graph) class CallGraphViewType(ViewType): def __init__(self): ViewType.__init__(self, "Call Graph", "Call Graph View") def getPriority(self, data, filename): if data.functions: return 1 return 0 def create(self, data, view_frame): return CallGraphWidget(view_frame, data) ```
{ "source": "joshwcomeau/knausj_talon", "score": 3 }
#### File: knausj_talon/code/switcher.py ```python from talon import app, Module, Context, actions, ui,imgui from talon.voice import Capture import re import time import os # Construct at startup a list of overides for application names (similar to how homophone list is managed) # ie for a given talon recognition word set `one note`, recognized this in these switcher functions as `ONENOTE` # the list is a comma seperated `<Recognized Words>, <Overide>` #TODO: Consider put list csv's (homophones.csv, app_name_overrides.csv) files together in a seperate directory,`knausj_talon/lists` cwd = os.path.dirname(os.path.realpath(__file__)) overrides_file = os.path.join(cwd, "app_names", f"app_name_overrides.{app.platform}.csv") overrides ={} with open(overrides_file, "r") as f: for line in f: line = line.rstrip() line = line.split(",") overrides[line[0].lower()] = line[1].strip() print(f'knausj_talon.switcher------------ app name overrides:{overrides}') app_cache = {} mod = Module() mod.list('running', desc='all running applications') mod.list('launch', desc='all launchable applications') @mod.capture def running_applications(m) -> str: "Returns a single application name" @mod.capture def launch_applications(m) -> Capture: "Returns a single application name" ctx = Context() @ctx.capture(rule='{self.running}') def running_applications(m): return m.running @ctx.capture(rule='{self.launch}') def launch_applications(m): return m.launch def split_camel(word): return re.findall(r'[0-9A-Z]*[a-z]+(?=[A-Z]|$)', word) def get_words(name): words = re.findall(r'[0-9A-Za-z]+', name) out = [] for word in words: out += split_camel(word) return out @mod.action_class class Actions: def switcher_focus(name: str): """Focus a new application by name""" for app in ui.apps(): # print(f"--------- app.name:{app.name} app.bundler:{app.bundle}") if name in app.name and not app.background: app.focus() break def switcher_launch(path: str): """Launch a new application by path""" ui.launch(path=path) def switcher_list_running(): """Lists all running applications""" gui.show() def switcher_hide_running(): """Hides list of running applications""" gui.hide() @imgui.open(software=False) def gui(gui: imgui.GUI): gui.text("Names of running applications") gui.line() for line in ctx.lists['self.running']: gui.text(line) def update_lists(): running = {} launch = {} for cur_app in ui.apps(background=False): name = cur_app.name if name.endswith('.exe'): name = name.rsplit('.', 1)[0] words = get_words(name) for word in words: if word and not word in running: running[word.lower()] = cur_app.name running[name.lower()] = cur_app.name for override in overrides: running[override] = overrides[override] if app.platform == "mac": for base in '/Applications', '/Applications/Utilities': for name in os.listdir(base): path = os.path.join(base, name) name = name.rsplit('.', 1)[0].lower() launch[name] = path words = name.split(' ') for word in words: if word and word not in launch: if len(name) > 6 and len(word) < 3: continue launch[word] = path lists = { 'self.running': running, 'self.launch': launch, } #batch update lists ctx.lists.update(lists) def ui_event(event, arg): if event in ('app_activate', 'app_launch', 'app_close', 'win_open', 'win_close'): # print(f'------------------ event:{event} arg:{arg}') update_lists() ui.register('', ui_event) update_lists() ```
{ "source": "joshwearssocks/midnite_conext_monitor", "score": 2 }
#### File: joshwearssocks/midnite_conext_monitor/main.py ```python from modbus_control import ModbusControl from conext_regmap import Conext, BinaryState from midnite_classic_regmap import MidniteClassic from system_manager import SystemManager, DeviceInfo, DATA_FIELDS from influxdb import InfluxDBClient import dataclasses import signal import time from typing import Dict, Union, Callable, Optional from enum import Enum, auto import logging CLASSIC_MODBUS_ADDR = 1 CLASSIC_IP = '192.168.1.10' CLASSIC_PORT = 502 CLASSIC_NAME = 'Midnite Classic' CONEXT_MODBUS_ADDR = 10 CONEXT_GW_IP = '192.168.2.227' CONEXT_GW_PORT = 503 CONEXT_NAME = 'Conext XW6848' INFLUXDB_IP = '192.168.1.2' INFLUXDB_PORT = 8086 INFLUXDB_DB = 'energy' logging.basicConfig(level=logging.INFO) classic = ModbusControl(CLASSIC_MODBUS_ADDR, CLASSIC_IP, CLASSIC_PORT) conext = ModbusControl(CONEXT_MODBUS_ADDR, CONEXT_GW_IP, CONEXT_GW_PORT) influx_client = InfluxDBClient(host=INFLUXDB_IP, port=INFLUXDB_PORT, database=INFLUXDB_DB) class SystemState(Enum): Waiting_For_Charge = auto() Invert = auto() Invert_Sell = auto() Unknown = auto() class InverterStateMachine: system_state = SystemState.Unknown state_change_time = time.time() def __init__(self, influx_client: Optional[InfluxDBClient]) -> None: self.influx_client = influx_client self.logger = logging.getLogger(self.__class__.__name__) def update_state(self, state: SystemState) -> None: """Writes system state to influxdb.""" self.logger.info(f"Changing system state to {state._name_}") self.system_state = state self.state_change_time = time.time() if self.influx_client: json_body = [ { "measurement": "System", "fields": { "state": self.system_state._name_ } } ] self.influx_client.write_points(json_body) def detect_initial_state(self, grid_support: str, maximum_sell_amps: float) -> SystemState: """Tries to determine what the current system state is.""" if grid_support == 'Disable': return SystemState.Waiting_For_Charge elif maximum_sell_amps == 0: return SystemState.Invert elif maximum_sell_amps > 0: return SystemState.Invert_Sell return SystemState.Unknown def control_inverter(self, data_dict: Dict[str,DATA_FIELDS]) -> None: """Adjusts inverter settings to optimize solar and battery consumption. This may be better suited for home automation software such as HomeAssistant, but control of such critical components seems logical to keep in a more standalone script. """ # Only run if both devices are available if data_dict[CLASSIC_NAME] is None or data_dict[CONEXT_NAME] is None: return # Recall some key parameters soc = data_dict[CLASSIC_NAME]['battery_soc'] watts = data_dict[CLASSIC_NAME]['watts'] maximum_sell_amps = data_dict[CONEXT_NAME]['maximum_sell_amps'] grid_support = data_dict[CONEXT_NAME]['grid_support'] grid_support_voltage = data_dict[CONEXT_NAME]['grid_support_voltage'] v_batt = data_dict[CLASSIC_NAME]['v_batt'] inverter_status = data_dict[CONEXT_NAME]['inverter_status'] combo_charge_stage = data_dict[CLASSIC_NAME]['combo_charge_stage'] # If state is unknown, figure out what the active state is if self.system_state == SystemState.Unknown: self.system_state = self.detect_initial_state(grid_support, maximum_sell_amps) self.logger.info(f"Initial state appears to be {self.system_state._name_}") # Manage state transitions try: # Start selling if it's sunny and it has been 5 minutes since the last state transition if self.system_state == SystemState.Invert and v_batt > 56 and (time.time() - self.state_change_time > 60): conext.connect() conext.set_register(Conext.grid_support_voltage, 55.6) conext.set_register(Conext.maximum_sell_amps, 21) self.update_state(SystemState.Invert_Sell) # Stop selling if we don't have excess power elif self.system_state == SystemState.Invert_Sell and (watts < 1000 or inverter_status == 'AC_Pass_Through'): conext.connect() conext.set_register(Conext.grid_support_voltage, 47) conext.set_register(Conext.maximum_sell_amps, 0) self.update_state(SystemState.Invert) # Stop inverting if battery SOC is too low elif grid_support == 'Enable' and soc < 60: conext.connect() conext.set_register(Conext.grid_support, BinaryState.Disable) self.update_state(SystemState.Waiting_For_Charge) # Start inverting again if the charge controller is in absorb state elif grid_support == 'Disable' and combo_charge_stage == 'Absorb': conext.connect() conext.set_register(Conext.grid_support, BinaryState.Enable) conext.set_register(Conext.grid_support_voltage, 47) conext.set_register(Conext.maximum_sell_amps, 0) self.update_state(SystemState.Invert) # Never fail except (ValueError, ConnectionError) as e: print(f"Failed to perform state transition: {e}") finally: conext.disconnect() if __name__ == '__main__': devices = [ DeviceInfo(name=CLASSIC_NAME, control=classic, regmap=MidniteClassic), DeviceInfo(name=CONEXT_NAME, control=conext, regmap=Conext) ] manager = SystemManager(devices, influx_client) state_machine = InverterStateMachine(influx_client) manager.add_callback(state_machine.control_inverter) # Start a timer with a 10 second period for monitoring the system manager.start() # Idle forever while True: time.sleep(1) ```
{ "source": "joshwearssocks/rplidar_area_scanner", "score": 2 }
#### File: joshwearssocks/rplidar_area_scanner/file_pc_viewer.py ```python import numpy as np import argparse import math import pathlib import dataclasses import pyqtgraph as pg import pyqtgraph.opengl as gl from pyqtgraph import functions as fn from pyqtgraph.Qt import QtCore, QtWidgets from typing import List REPORTED_TICKS_PER_REV = 20390 @dataclasses.dataclass class ScanParams: ticks_per_rev: int = 20400 up_pitch: float = 90.65 z_tilt: float = 0.54 #0.48 forward_offset: float = 14.5 sideways_offset: float = -1.0 end_point_trim: int = 20 class PointCloudParser: def __init__(self, txt_path: pathlib.Path): self.txt_path = txt_path # Parse the file into lists self.pitches: List[float] = [] self.distances: List[float] = [] self.qualities: List[int] = [] self.ticks: List[int] = [] self.read_txt_file(self.txt_path) self.points = np.zeros((len(self.pitches),3)) self.normals = np.zeros((len(self.pitches),3)) self.colors = np.zeros((len(self.pitches),4)) self.prev_ticks = 0 self.tick_rollovers = 0 self.params = ScanParams() self.parse_all_points() def read_txt_file(self, txt_path: pathlib.Path): with open(txt_path, 'r') as txt_file: lines = txt_file.readlines() for line in lines: pitch_str, dist_str, quality_str, ticks_str = line.split(',') self.pitches.append(float(pitch_str)) self.distances.append(float(dist_str)) self.qualities.append(int(quality_str)) self.ticks.append(int(ticks_str)) def parse_point(self, pitch, dist, ticks): """Convert a line to a 3D cartesian point. __ ( --)- <-- FORWARD_OFFSET |----------------| """ if dist == 0: return None pitch_corr = math.radians(pitch) + math.radians(self.params.up_pitch) if abs(dist * math.sin(pitch_corr)) < 30: return None if ticks < self.prev_ticks: self.tick_rollovers += 1 self.prev_ticks = ticks total_ticks = REPORTED_TICKS_PER_REV * self.tick_rollovers + ticks theta_pre_tilt = math.radians(360 * (total_ticks % self.params.ticks_per_rev) / self.params.ticks_per_rev) phi_pre_tilt = pitch_corr dtheta = math.atan(math.sin(math.radians(self.params.z_tilt))*math.cos(phi_pre_tilt) / math.sin(phi_pre_tilt)) theta = theta_pre_tilt + dtheta #phi = math.atan(math.sin(phi_pre_tilt)/(math.cos(math.radians(self.params.z_tilt))*math.cos(phi_pre_tilt)*math.cos(dtheta))) phi = phi_pre_tilt z = dist * math.cos(phi) x = (dist * math.sin(phi) + self.params.forward_offset) * math.cos(theta) + (math.sin(theta) * self.params.sideways_offset) y = (dist * math.sin(phi) + self.params.forward_offset) * math.sin(theta) - (math.cos(theta) * self.params.sideways_offset) hemisphere = 0 if total_ticks % self.params.ticks_per_rev > self.params.ticks_per_rev / 2: hemisphere = 1 nz = -1 * math.cos(phi) nx = -1 * math.sin(phi) * math.cos(theta) ny = -1 * math.sin(phi) * math.sin(theta) return ((x, y, z), (nx, ny, nz), hemisphere) def parse_all_points(self): self.prev_ticks = 0 self.tick_rollovers = 0 for i in range(len(self.pitches)): # Filter out the first and last 20 points if i < self.params.end_point_trim or len(self.pitches) - i < self.params.end_point_trim: self.points[i,:] = (0,0,0) self.normals[i,:] = (0,0,0) self.colors[i,:] = (0,0,0,0) continue tup = self.parse_point(self.pitches[i], self.distances[i], self.ticks[i]) if not tup: continue self.points[i,:] = tup[0] self.normals[i,:] = tup[1] col = int(150 * i / len(self.pitches)) + 100 self.colors[i,:] = ((355-col)/256, (tup[2]*255)/256, col/256, 0.8) def write_ply_file(self) -> None: with open(f"{self.txt_path.stem}.ply", 'w') as f: f.write('ply\n') f.write('format ascii 1.0\n') f.write(f'element vertex {len(self.pitches)}\n') f.write('property float x\n') f.write('property float y\n') f.write('property float z\n') f.write('property float nx\n') f.write('property float ny\n') f.write('property float nz\n') f.write('property uchar red\n') f.write('property uchar green\n') f.write('property uchar blue\n') f.write('end_header\n') for i in range(len(self.pitches)): f.write(f'{self.points[i,0]:.3f} {self.points[i,1]:.3f} {self.points[i,2]:.3f} ' f'{self.normals[i,0]:.3f} {self.normals[i,1]:.3f} {self.normals[i,2]:.3f} ' f'{self.colors[i,0]:.3f} {self.colors[i,1]:.3f} {self.colors[i,2]:.3f}') class ScanVisualizer(QtWidgets.QWidget): def __init__(self, pcp: PointCloudParser): super().__init__() """ ticks_per_rev: int = 20400 up_pitch: float = 90.65 z_tilt: float = 0.48 forward_offset: float = 14 """ self.gl = gl.GLViewWidget() self.pcp = pcp self.spin_ticks_per_rev = QtWidgets.QSpinBox() self.spin_ticks_per_rev.setMaximum(30000) self.spin_ticks_per_rev.setValue(self.pcp.params.ticks_per_rev) self.spin_up_pitch = QtWidgets.QDoubleSpinBox() self.spin_up_pitch.setValue(self.pcp.params.up_pitch) self.spin_up_pitch.setSingleStep(0.05) self.spin_z_tilt = QtWidgets.QDoubleSpinBox() self.spin_z_tilt.setValue(self.pcp.params.z_tilt) self.spin_z_tilt.setSingleStep(0.02) self.spin_forward_offset = QtWidgets.QDoubleSpinBox() self.spin_forward_offset.setSingleStep(0.1) self.spin_forward_offset.setValue(self.pcp.params.forward_offset) self.spin_sideways_offset = QtWidgets.QDoubleSpinBox() self.spin_sideways_offset.setMinimum(-10.) self.spin_sideways_offset.setSingleStep(0.1) self.spin_sideways_offset.setValue(self.pcp.params.sideways_offset) self.spin_end_point_trim = QtWidgets.QSpinBox() self.spin_end_point_trim.setMaximum(100) self.spin_end_point_trim.setValue(self.pcp.params.end_point_trim) self.form_layout = QtWidgets.QFormLayout() self.form_layout.addRow(("Ticks per Rev"), self.spin_ticks_per_rev) self.form_layout.addRow(("Up Pitch"), self.spin_up_pitch) self.form_layout.addRow(("Z Tilt"), self.spin_z_tilt) self.form_layout.addRow(("Forward Offset"), self.spin_forward_offset) self.form_layout.addRow(("Sideways Offset"), self.spin_sideways_offset) self.form_layout.addRow(("Endpoint Trim"), self.spin_end_point_trim) self.button_open = QtWidgets.QPushButton("Open") self.button_export = QtWidgets.QPushButton("Export") self.sidebar_layout = QtWidgets.QVBoxLayout() self.sidebar_layout.addLayout(self.form_layout) self.sidebar_layout.addWidget(self.button_open) self.sidebar_layout.addWidget(self.button_export) self.layout = QtWidgets.QHBoxLayout(self) self.layout.addWidget(self.gl, 5) self.layout.addLayout(self.sidebar_layout, 1) self.spin_ticks_per_rev.valueChanged.connect(self.update) self.spin_up_pitch.valueChanged.connect(self.update) self.spin_z_tilt.valueChanged.connect(self.update) self.spin_forward_offset.valueChanged.connect(self.update) self.spin_sideways_offset.valueChanged.connect(self.update) self.spin_end_point_trim.valueChanged.connect(self.update) self.button_open.released.connect(self.open) self.button_export.released.connect(self.save) self.scatter = gl.GLScatterPlotItem(pos=self.pcp.points, color=self.pcp.colors, size=0.01, pxMode=False) self.gl.addItem(self.scatter) @QtCore.Slot() def update(self): self.pcp.params.ticks_per_rev = self.spin_ticks_per_rev.value() self.pcp.params.up_pitch = self.spin_up_pitch.value() self.pcp.params.z_tilt = self.spin_z_tilt.value() self.pcp.params.forward_offset = self.spin_forward_offset.value() self.pcp.params.sideways_offset = self.spin_sideways_offset.value() self.pcp.params.end_point_trim = self.spin_end_point_trim.value() self.pcp.parse_all_points() self.scatter.setData(pos=self.pcp.points, color=self.pcp.colors) @QtCore.Slot() def open(self): dlg = QtWidgets.QFileDialog() dlg.setNameFilter("Text files (*.txt)") dlg.setFileMode(QtWidgets.QFileDialog.ExistingFile) if dlg.exec(): file_name = dlg.selectedFiles()[0] self.pcp.__init__(file_name) self.update() @QtCore.Slot() def save(self): self.pcp.write_ply_file() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('text_file', type=str, help="Text file containing point strings") p = parser.parse_args() pcp = PointCloudParser(pathlib.Path(p.text_file)) app = pg.mkQApp("3D Scanner Parameter Visualizer") widget = ScanVisualizer(pcp) widget.resize(800, 600) widget.show() pg.exec() ```
{ "source": "joshweir/bert-extractive-summarizer", "score": 3 }
#### File: bert-extractive-summarizer/summarizer/model_processors.py ```python from summarizer.BertParent import BertParent from typing import List from summarizer.ClusterFeatures import ClusterFeatures from abc import abstractmethod import neuralcoref from spacy.lang.en import English import json class ModelProcessor(object): def __init__(self, model='bert-large-uncased', hidden: int = -2, reduce_option: str = 'mean', greedyness: float = 0.45): self.model = BertParent(model) self.hidden = hidden self.reduce_option = reduce_option self.nlp = English() self.nlp.add_pipe(self.nlp.create_pipe('sentencizer')) neuralcoref.add_to_pipe(self.nlp, greedyness=greedyness) def process_content_sentences(self, body: str, min_length=40, max_length=600) -> List[str]: doc = self.nlp(body)._.coref_resolved doc = self.nlp(doc) return [ c.string.strip() for c in doc.sents if len(c.string.strip()) > min_length and len(c.string.strip()) < max_length ] @abstractmethod def run_clusters(self, content: List[str], ratio=0.2, algorithm='kmeans', use_first: bool = True) -> List[str]: raise NotImplementedError("Must Implement run_clusters") def calculate_ratio_from_num_sentences(self, total_sentences: int, num_sentences: int) -> float: if total_sentences <= 0: return 1.0 if total_sentences > num_sentences * 2: num_sentences = num_sentences - 1 ratio = num_sentences / total_sentences if ratio > 1: ratio = 1.0 return ratio def run(self, body: str, result_format: str = 'text', num_sentences: int = 0, ratio: float = 0.2, min_length: int = 40, max_length: int = 600, use_first: bool = True, algorithm='kmeans') -> str: sentences = self.process_content_sentences(body, min_length, max_length) if sentences: if num_sentences > 0: ratio = self.calculate_ratio_from_num_sentences( len(sentences), num_sentences) sentences = self.run_clusters(sentences, ratio, algorithm, use_first) if result_format == 'array': return json.dumps(sentences) return ' '.join(sentences) def __call__(self, body: str, result_format: str = 'text', num_sentences: int = 0, ratio: float = 0.2, min_length: int = 40, max_length: int = 600, use_first: bool = True, algorithm='kmeans') -> str: return self.run(body, result_format, num_sentences, ratio, min_length, max_length) class SingleModel(ModelProcessor): """ Deprecated for naming sake. """ def __init__(self, model='bert-large-uncased', hidden: int = -2, reduce_option: str = 'mean', greedyness: float = 0.45): super(SingleModel, self).__init__(model, hidden, reduce_option, greedyness) def run_clusters(self, content: List[str], ratio=0.2, algorithm='kmeans', use_first: bool = True) -> List[str]: hidden = self.model(content, self.hidden, self.reduce_option) hidden_args = ClusterFeatures(hidden, algorithm).cluster(ratio) if use_first: if hidden_args[0] != 0: hidden_args.insert(0, 0) return [content[j] for j in hidden_args] class Summarizer(SingleModel): def __init__(self, model='bert-large-uncased', hidden: int = -2, reduce_option: str = 'mean', greedyness: float = 0.45): super(Summarizer, self).__init__(model, hidden, reduce_option, greedyness) ```
{ "source": "joshweir/fx-economic-data-scraper", "score": 4 }
#### File: fx-economic-data-scraper/fxdatascraper/utils.py ```python import logging log = logging.getLogger(__name__) def feet_to_meters(feet): """Convert feet to meters.""" try: value = float(feet) except ValueError: log.error("Unable to convert to float: %s", feet) else: return (0.3048 * value * 10000.0 + 0.5) / 10000.0 ```
{ "source": "joshweir/sense2vec-rest", "score": 3 }
#### File: joshweir/sense2vec-rest/s2v_synonyms.py ```python import re import os from functools import cmp_to_key MAX_CACHED_KEYS=15 class S2vSynonyms: # allow_non_cached_keys when set to True will pass the list of keys in the call through to s2v.most_similar # disregarding most_similar cache. s2v most_similar cache is single key based, multiple keys will be ignored # except for the last key in the list. # allow_non_cached_keys when set to False will pass through single key list entries to most_similar, # multiple keys will be first joined and asserted as existing before passing to most_similar # # allow_non_cached_keys defaults to False and will currently throw exception if set to True because: # * s2v 1.0.2 most_similar will use cache when available, but will always use the cache and if multiple keys # are sent to most_similar it will just use the last key to collect most_similar entries # * even if i fix this above (by first checking if the key is in cache and process accordingly (in s2v.most_similar)), # the most_similar cosine similarity is very slow, would need to run on a gpu def __init__(self, s2v_util, s2v_key_variations, s2v_key_commonizer, allow_non_cached_keys=False): self.s2v_util = s2v_util self.s2v_key_variations = s2v_key_variations self.s2v_key_commonizer = s2v_key_commonizer self.allow_non_cached_keys = allow_non_cached_keys if self.allow_non_cached_keys: raise ValueError('allow_non_cached_keys cannot currently be truthy, see comment in S2vSynonyms class for more info') def call(self, d, req_args={}): return self.most_similar_wrapper( self.commonize_input(d), req_args, ) def commonize_input(self, d): d_list = None if isinstance(d, str): d_list = [d] elif isinstance(d, list): d_list = d elif isinstance(d, dict): d_list = [d['phrase']] if isinstance(d['phrase'], str) else d['phrase'] else: raise ValueError("dont recognize type of input: {0} {1}".format(type(d), d)) d_common_input = self.s2v_key_commonizer.call(d_list) is_proper = d['is_proper'] if 'is_proper' in d else self.s2v_util.phrase_is_proper(list(map(lambda x: self.s2v_util.s2v.split_key(x['wordsense'])[0], d_common_input))) return { 'phrase': d_common_input, 'is_proper': is_proper } def most_similar_wrapper(self, d, req_args): result = [] k_len = len(d['phrase']) d_keys = list(map(lambda x: x['wordsense'], d['phrase'])) n_results = req_args.get('n') and int(req_args.get('n')) or 10 attempt_phrase_join_for_compound_phrases = req_args.get('attempt-phrase-join-for-compound-phrases') d_variations = self.s2v_key_variations.call( d['phrase'], must_only_phrase_join_for_compound_phrases = attempt_phrase_join_for_compound_phrases, flag_joined_phrase_variations = True, phrase_is_proper = d['is_proper'], limit = 25, ) current_priority = 1 current_priority_group = [] for d_variation in d_variations: priority = d_variation['priority'] if priority != current_priority: result, reached_limit = self.merge_current_priority_group_with_result( current_priority_group, result, n_results, req_args, d_keys, ) current_priority_group = [] if reached_limit: break current_priority = priority d_variation_keys = list(map(lambda x: x['wordsense'], d_variation['key'])) d_variation_keys_words = self.s2v_util.words_only(d_variation['key']) if os.getenv('S2V_VERBOSE'): print() print('k', d_variation_keys, ':') print() if len(d_variation_keys) <= 1 or self.allow_non_cached_keys: for r in self.s2v_util.s2v.most_similar(d_variation_keys, n=min([MAX_CACHED_KEYS, max([n_results * 2, 10])])): value, score = r if os.getenv('S2V_VERBOSE'): print(value, score) word, sense = self.s2v_util.s2v.split_key(value) if self.matches_required_properness(word, d['is_proper']): current_priority_group = self.merge_synonym_result_with_list(current_priority_group, word, sense, score) result, reached_limit = self.merge_current_priority_group_with_result( current_priority_group, result, n_results, req_args, d_keys, ) return result def merge_synonym_result_with_list(self, result, word, sense, score): new_result = [] score = round(float(score), 3) found = False for r in result: if r['word'] == word: found = True if score > r['score']: new_result.append({ 'word': word, 'sense': sense, 'score': score, }) else: new_result.append(r) else: new_result.append(r) if not found: new_result.append({ 'word': word, 'sense': sense, 'score': score, }) return new_result def merge_current_priority_group_with_result( self, current_priority_group, result, n_results, req_args, d_keys, ): current_priority_group = self.reduce_results_based_on_req_args(current_priority_group, d_keys, req_args) current_priority_group.sort(key=cmp_to_key(self.sort_by_score)) result_len = len(result) count_remaining = n_results - result_len if count_remaining > 0: result += current_priority_group[:count_remaining] reached_limit = True if count_remaining <= 0 or len(current_priority_group) >= count_remaining else False return (result, reached_limit) def sort_by_score(self, a, b): if b['score'] > a['score']: return 1 else: return -1 def reduce_results_based_on_req_args(self, results, d, req_args): if req_args.get('reduce-multicase'): results = self.filter_reduce_multicase(results, d) # if req_args.get('reduce-multi-wordform'): # results = self.filter_reduce_multi_wordform(results, d) if req_args.get('match-input-sense'): results = self.filter_match_input_sense(results, d) if req_args.get('reduce-compound-nouns'): results = self.filter_reduce_compound_nouns(results, d) if req_args.get('min-word-len'): results = self.filter_min_word_len(results, int(req_args.get('min-word-len'))) if req_args.get('min-score'): results = self.filter_min_score(results, float(req_args.get('min-score'))) return results # remove synonyms that match input sense first word or last word # like input: foo then remove synonyms like: foo_bar or baz_foo def filter_reduce_compound_nouns(self, data, d): result = [] input_list = list(map(self.s2v_util.s2v.split_key, [d] if isinstance(d, str) else d)) if len(input_list) > 1 or not self.s2v_util.is_single_word(input_list[0][0]): return data input_value = input_list[0][0] for item in data: value_word = item.get('word') value_sense = item.get('sense') compound_prefix_pattern = r".\s" + re.escape(input_value) + r"$" compound_suffix_pattern = r"^" + re.escape(input_value) + r"\s." if not re.search( compound_prefix_pattern, value_word, re.IGNORECASE, ) and not re.search( compound_suffix_pattern, value_word, re.IGNORECASE, ): result.append(item) return result def filter_reduce_multicase(self, data, d): seen, result = set(), [] input_list = [d] if isinstance(d, str) else d input_lower = [self.s2v_util.s2v.split_key(d)[0].lower()] if isinstance(d, str) else list(map(lambda x: self.s2v_util.s2v.split_key(x)[0].lower(), d)) for item in data: value_lower = item.get('word').lower() if value_lower not in seen and value_lower not in input_lower: seen.add(value_lower) result.append(item) return result def filter_match_input_sense(self, results, d): input_list = [d] if isinstance(d, str) else d if len(input_list) == 1: term, sense = self.s2v_util.s2v.split_key(input_list[0]) generic_sense = self.s2v_util.get_generic_sense(sense) if generic_sense == 'unknown': return results return list(filter(self.sense_matches_result(generic_sense), results)) # only if all input term senses map to the same sense # filter on this sense, otherwise return all results distinct_input_senses = self.s2v_util.uniq(map(self.extract_sense_from_s2v_tuple, d)) if len(distinct_input_senses) > 1: return results generic_sense = self.s2v_util.get_generic_sense(distinct_input_senses[0]) if generic_sense == 'unknown': return results return list(filter(self.sense_matches_result(generic_sense), results)) def filter_min_score(self, results, min_score): return list(filter(lambda x: x['score'] >= min_score, results)) def filter_min_word_len(self, results, min_word_len): return list(filter(lambda x: len(x['word']) >= min_word_len, results)) def sense_matches_result(self, input_sense): def h(r): return input_sense == self.s2v_util.get_generic_sense(self.extract_sense_from_result(r)) return h def extract_sense_from_s2v_tuple(self, d): return self.s2v_util.s2v.split_key(d)[1] def extract_sense_from_result(self, d): return d.get('sense') def matches_required_properness(self, phrase, is_proper): if is_proper is None: return True phrase_properness = self.s2v_util.phrase_is_proper([phrase]) return phrase_properness == is_proper # def filter_reduce_multi_wordform(self, data, d): # seen, result = set(), [] # input_list = list( # map(s2v.split_key, [d] if isinstance(d, str) else d)) # input_list_reduced_to_lemma = list( # map(lambda x: [get_lemma(x[0], x[1]), x[1]], input_list)) # for item in data: # value = item.get('value') # value_word, value_sense = s2v.split_key(value) # value_word_lemma = get_lemma(value_word, value_sense) # value_word_lemma_sense_joined = join_word_and_sense(value_word_lemma, value_sense) # if value_word_lemma_sense_joined not in seen and [ # value_word_lemma, value_sense # ] not in input_list_reduced_to_lemma: # seen.add(value_word_lemma_sense_joined) # result.append(item) # return result if __name__ == '__main__': from sense2vec import Sense2Vec from s2v_util import S2vUtil from s2v_senses import S2vSenses from s2v_key_case_and_sense_variations import S2vKeyCaseAndSenseVariations from s2v_key_commonizer import S2vKeyCommonizer S2V_MODAL_PATH = os.getenv('S2V_MODEL_PATH') print("loading model from disk..", S2V_MODAL_PATH) s2v = Sense2Vec().from_disk(S2V_MODAL_PATH) print("model loaded.") s2v_util = S2vUtil(s2v) s2v_senses = S2vSenses(s2v_util) s2v_key_variations = S2vKeyCaseAndSenseVariations(s2v_util, s2v_senses) s2v_key_commonizer = S2vKeyCommonizer() syn_service = S2vSynonyms(s2v_util, s2v_key_variations, s2v_key_commonizer) req_args = { 'attempt-phrase-join-for-compound-phrases': 1, 'min-score': 0.5, 'n': 10, 'match-input-sense': 1, 'reduce-multicase': 1, 'reduce-compound-nouns': 1, 'min-word-len': 2, } k = { 'phrase': ["war|NOUN"], 'is_proper': None } result = syn_service.call(k, req_args) print(result) print() k = { 'phrase': ["war|NOUN"], 'is_proper': True } result = syn_service.call(k, req_args) print(result) print() k = ["black|NOUN"] result = syn_service.call(k, req_args) print(result) print() k = { 'phrase': ["New_York|LOC"], 'is_proper': True } result = syn_service.call(k, req_args) print(result) print() k = ["big|ADJ", "apple|NOUN"] result = syn_service.call(k, req_args) print('should return no results because input phrase is not proper') print(result) print() ```
{ "source": "joshwestbury/weather-app", "score": 3 }
#### File: joshwestbury/weather-app/models.py ```python import datetime import os import peewee from playhouse.db_url import connect from playhouse.postgres_ext import JSONField DB = connect( os.environ.get('DATABASE_URL', 'postgres://localhost:5432/weather')) class BaseModel(peewee.Model): class Meta: database = DB class Weather(BaseModel): city = peewee.CharField(max_length=60) weather_data = JSONField() created = peewee.DateTimeField(default=datetime.datetime.utcnow) def __str__(self): return self.city ```
{ "source": "joshwfoster/RadioAxionSearch", "score": 2 }
#### File: RadioAxionSearch/python/load.py ```python import sys, os, h5py, corner import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt from scipy import stats, signal, ndimage, interpolate import astropy from astropy.io import fits ################################################################### ### Get the Expected Flux Density from a Calibration Source ### ################################################################### def get_expected(freq, source): ''' Calculate the frequency-dependent expected flux density for a calibration source :param freq: the radio frequency [GHz] :param source: the name of the calibration source ['3C286' or '3C48'] :returns: the expected flux density [Jy] ''' params_3C286 = np.array([1.2481, -0.4507, -0.1798, 0.0357]) params_3C48 = np.array([1.3253, -0.7553, -0.1914, 0.0498]) if source == '3C48': a0 = params_3C48[0] a1 = params_3C48[1] a2 = params_3C48[2] a3 = params_3C48[3] elif source == '3C286': a0 = params_3C286[0] a1 = params_3C286[1] a2 = params_3C286[2] a3 = params_3C286[3] else: print 'Invalid Source' return None return 10**(a0 + a1*np.log10(freq) + a2 * np.log10(freq)**2 + a3 * np.log10(freq)**3) ########################################################################## ### Load the Data From the Data Dictionary and Make the Data Stack ### ########################################################################## def get_stack(data_dir, data_tag): data_stack = np.zeros((4, 0)) freqs = np.zeros((0)) xx_sig_accepted = np.zeros((0)) xx_sig_on = np.zeros((0)) xx_sig_off = np.zeros((0)) xx_ref_accepted = np.zeros((0)) xx_ref_on = np.zeros((0)) xx_ref_off = np.zeros((0)) yy_sig_accepted = np.zeros((0)) yy_sig_on = np.zeros((0)) yy_sig_off = np.zeros((0)) yy_ref_accepted = np.zeros((0)) yy_ref_on = np.zeros((0)) yy_ref_off = np.zeros((0)) for filename in os.listdir(data_dir): if data_tag in filename: print filename data = np.load(data_dir + filename)['arr_0'].item() XX = data['XX_Out'] YY = data['YY_Out'] xx_tcal = data['XX_TCal'] yy_tcal = data['YY_TCal'] freqs = np.append(freqs, data['freqs']) xx_sig_accepted = np.append(xx_sig_accepted, XX[0]) xx_sig_on = np.append(xx_sig_on, XX[1]) xx_sig_off = np.append(xx_sig_off, XX[2]) xx_ref_accepted = np.append(xx_ref_accepted, XX[3]) xx_ref_on = np.append(xx_ref_on, XX[4]) xx_ref_off = np.append(xx_ref_off, XX[5]) yy_sig_accepted = np.append(yy_sig_accepted, YY[0]) yy_sig_on = np.append(yy_sig_on, YY[1]) yy_sig_off = np.append(yy_sig_off, YY[2]) yy_ref_accepted = np.append(yy_ref_accepted, YY[3]) yy_ref_on = np.append(yy_ref_on, YY[4]) yy_ref_off = np.append(yy_ref_off, YY[5]) sort_order = np.argsort(freqs) freqs = freqs[sort_order] xx_sig_accepted = xx_sig_accepted[sort_order] xx_ref_accepted = xx_ref_accepted[sort_order] yy_sig_accepted = yy_sig_accepted[sort_order] yy_ref_accepted = yy_ref_accepted[sort_order] xx_sig_on = xx_sig_on[sort_order] xx_sig_off = xx_sig_off[sort_order] xx_sig = (xx_sig_on + xx_sig_off) /2. xx_ref_on = xx_ref_on[sort_order] xx_ref_off = xx_ref_off[sort_order] xx_ref = (xx_ref_on + xx_ref_off) / 2. yy_sig_on = yy_sig_on[sort_order] yy_sig_off = yy_sig_off[sort_order] yy_sig = (yy_sig_on + yy_sig_off) /2. yy_ref_on = yy_ref_on[sort_order] yy_ref_off = yy_ref_off[sort_order] yy_ref = (yy_ref_on + yy_ref_off) /2. xx_ref_tsys = xx_tcal * ( xx_ref_off / (xx_ref_on - xx_ref_off) + .5) yy_ref_tsys = yy_tcal * ( yy_ref_off / (yy_ref_on - yy_ref_off) + .5) ref_tsys = (xx_ref_tsys + yy_ref_tsys) / 2 xx_sig_tsys = xx_tcal * ( xx_sig_off / (xx_sig_on - xx_sig_off) + .5) yy_sig_tsys = yy_tcal * ( yy_sig_off / (yy_sig_on - yy_sig_off) + .5) sig_tsys = (xx_sig_tsys + yy_sig_tsys) / 2 xx_ta = (xx_sig - xx_ref) / xx_ref * ndimage.median_filter(xx_ref_tsys, size = 31) yy_ta = (yy_sig - yy_ref) / yy_ref * ndimage.median_filter(yy_ref_tsys, size = 31) ta = (xx_ta + yy_ta) / 2 total_temp = ref_tsys + sig_tsys + ta sig = (xx_sig + yy_sig)/2 ref = (xx_ref + yy_ref)/2 data_stack = np.vstack((freqs, ta, sig, ref, xx_sig_accepted, xx_ref_accepted, yy_sig_accepted, yy_ref_accepted)) return data_stack ################################################## ### Load the Data at Specified Downbinning ### ################################################## def downsample_stack(stack, downsample, shift = 0): freqs = stack[0][shift:] ta = stack[1][shift:] sig = stack[2][shift:] ref = stack[3][shift:] xx_sig_accepted = stack[4][shift:] xx_ref_accepted = stack[5][shift:] yy_sig_accepted = stack[6][shift:] yy_ref_accepted = stack[7][shift:] sig_accepted = (xx_sig_accepted + yy_sig_accepted) / 2 ref_accepted = (xx_ref_accepted + yy_ref_accepted) / 2 max_index = len(freqs) / downsample * downsample num_intervals = len(freqs) / downsample out = np.zeros((6, num_intervals)) for i, item in enumerate([freqs, ta, sig, ref, sig_accepted, ref_accepted]): item = np.mean(item[:max_index].reshape(num_intervals, downsample), axis = 1) out[i] = np.copy(item) return out def load(data_dir, data_tag, downsample = 1, do_shift = False): if do_shift: return downsample_stack(get_stack(data_dir, data_tag), downsample, shift = downsample / 2) else: return downsample_stack(get_stack(data_dir, data_tag), downsample) ```
{ "source": "JoshWidrick/RPi_LED", "score": 3 }
#### File: RPi_LED/web/panel.py ```python from flask import Flask, request, render_template, redirect, flash import requests, json import sys app = Flask(__name__) app.config['SECRET_KEY'] = 'secr3t' STATUS_KEY = ['mode', '<KEY> 'sb', 'brightness', 'power', 'speed', 'wait_time', 'percentage', 'spercentage'] CONTROLLER_KEY = ['name', 'ip', 'port'] def import_controllers(): retval = {} for i in get_controllers(): retval[i[0]] = [i[1], i[2]] return retval def get_controllers(): with open("./file/controllers.txt", "r") as f: try: if f is None: return [] return [l.strip().split(',') for l in f.readlines()] except: return 'failed' def add_controller(name, ip, port): with open("./file/controllers.txt", "a") as f: try: f.write(f'{name},{ip},{port}\n') print(f'{name},{ip},{port}') return 'Success' except Exception as e: return 'Failed' + str(e) def import_status(resp_status): listx = resp_status.split(',') retval = {'list': listx} count = 0 for item in listx: retval[STATUS_KEY[count]] = item count = count + 1 return retval def get_controller_status(ip, port): resp = requests.get(f'http://{ip}:{port}/status') resp = resp.json() return import_status(resp['status']) def get_all_controller_status(controllers): retval = {} for i in controllers: ip = i[1] port = i[2] retval[i[0]] = get_controller_status(ip, port) return retval @app.route('/panel', methods=['GET', 'POST']) def panel(): # controllers = get_controllers() controllers = import_controllers() return redirect(f'/panel/{list(controllers.keys())[0]}') # cstatuses = get_all_controller_status(controllers) # return render_template('panel.html', controller=controllers[list(controllers.keys())[0]], controllers=list(controllers.keys())) @app.route('/panel/<controller>', methods=['GET', 'POST']) def panel_c(controller): controllers = import_controllers() print(controllers) x = controllers[controller] print(x) status = get_controller_status(x[0], x[1]) # controllers = get_controllers() return render_template('panel.html', controller=controller, controllers=list(controllers.keys()), status=status) @app.route('/add', methods=['GET', 'POST']) def add(): if request.method == 'POST': retval = add_controller(request.form['name'], request.form['ip_address'], request.form['port']) flash(retval) return redirect('/panel') return render_template('add.html') @app.route('/power/<toggle>/<controller>') def power(toggle, controller): print(toggle) return redirect(f'/panel/{controller}') sys.stdout.write('starting flask app. \n') if __name__ == '__main__': app.run(host='0.0.0.0', port=420, debug=False) ```
{ "source": "josh/wikidatabots", "score": 3 }
#### File: josh/wikidatabots/P4985.py ```python import logging from tqdm import tqdm import tmdb from page import blocked_qids from sparql import sparql def main(): """ Find Wikidata items that are missing a TMDb person ID (P4985) but have a IMDb ID (P345). Attempt to look up the person by IMDb ID via the TMDb API. If there's a match, create a new statement. Outputs QuickStatements CSV commands. """ query = """ SELECT DISTINCT ?item ?imdb ?random WHERE { ?item wdt:P345 ?imdb. VALUES ?classes { wd:Q5 wd:Q16334295 wd:Q95074 wd:Q14514600 wd:Q431289 wd:Q59755569 } # ?item (wdt:P31/(wdt:P279*)) ?classes. ?item wdt:P31 ?classes. OPTIONAL { ?item wdt:P4985 ?tmdb. } FILTER(!(BOUND(?tmdb))) BIND(MD5(CONCAT(STR(?item), STR(RAND()))) AS ?random) } ORDER BY ?random LIMIT 5000 """ results = sparql(query) print("qid,P4985") for result in tqdm(results): if result["item"] in blocked_qids(): logging.debug("{} is blocked".format(result["item"])) continue person = tmdb.find(id=result["imdb"], source="imdb_id", type="person") if not person: continue print('{},"""{}"""'.format(result["item"], person["id"])) if __name__ == "__main__": logging.basicConfig(level=logging.INFO) main() ``` #### File: josh/wikidatabots/P6398.py ```python import logging from tqdm import tqdm import appletv from page import blocked_qids, page_qids from sparql import fetch_statements, sample_items, type_constraints def main(): """ Find Wikidata items that are missing a iTunes movie ID (P6398) but have a Apple TV movie ID (P9586). Outputs QuickStatements CSV commands. """ qids = page_qids("User:Josh404Bot/Preliminarily matched/P6398") qids |= sample_items("P9586", limit=1000) allowed_classes = type_constraints("P6398") results = fetch_statements(qids, ["P31", "P6398", "P9586"]) print("qid,P6398") for qid in tqdm(results): item = results[qid] if qid in blocked_qids(): logging.debug("{} is blocked".format(qid)) continue if not item.get("P31") or item.get("P6398"): continue instance_of = set([v for (_, v) in item["P31"]]) if instance_of.isdisjoint(allowed_classes): continue for (statement, value) in item.get("P9586", []): movie = appletv.movie(value) if movie and movie["itunes_id"]: print('{},"""{}"""'.format(qid, movie["itunes_id"])) if __name__ == "__main__": logging.basicConfig(level=logging.INFO) main() ``` #### File: josh/wikidatabots/P9586.py ```python import html import itertools import json import re import requests from bs4 import BeautifulSoup from tqdm import tqdm import appletv from page import page_statements from sparql import sparql from utils import shuffled def parseurl(url): m = re.match( r"https://tv.apple.com/us/(movie)/([^/]+/)?(umc.cmc.[0-9a-z]+)", url, ) if m: return (m.group(1), m.group(3)) return ("unknown", None) def fetch_movie(url): r = requests.get(url, headers=appletv.request_headers) r.raise_for_status() soup = BeautifulSoup(r.text, "html.parser") ld = find_ld(soup) if not ld: return None title = html.unescape(ld["name"]) try: year = int(ld.get("datePublished", "")[0:4]) except ValueError: return None directors = set() for director in ld.get("director", []): directors.add(html.unescape(director["name"])) if not directors: return None return (title, year, directors) def find_ld(soup): for script in soup.find_all("script", {"type": "application/ld+json"}): ld = json.loads(script.string) if ld["@type"] == "Movie": return ld return None def wikidata_search(title, year, directors): query = "SELECT DISTINCT ?item ?appletv WHERE {\n" query += """ SERVICE wikibase:mwapi { bd:serviceParam wikibase:endpoint "www.wikidata.org"; wikibase:api "EntitySearch"; mwapi:search "<<TITLE>>"; mwapi:language "en". ?item wikibase:apiOutputItem mwapi:item. } OPTIONAL { ?item rdfs:label ?titleLabel. } OPTIONAL { ?item skos:altLabel ?titleAltLabel. } FILTER(((LCASE(STR(?titleLabel))) = LCASE("<<TITLE>>")) || ((LCASE(STR(?titleAltLabel))) = LCASE("<<TITLE>>"))) """.replace( "<<TITLE>>", title.replace('"', '\\"') ) years = [year, year - 1] query += """ ?item wdt:P577 ?date. """ query += ( "FILTER(" + " || ".join(["((xsd:integer(YEAR(?date))) = {} )".format(y) for y in years]) + ")" ) query += """ ?item wdt:P57 ?director. ?director rdfs:label ?directorLabel. """ query += ( "FILTER(" + " || ".join( [ '(STR(?directorLabel)) = "{}"'.format(d.replace('"', '\\"')) for d in directors ] ) + ")" ) query += """ VALUES ?classes { wd:Q11424 wd:Q506240 } ?item (wdt:P31/(wdt:P279*)) ?classes. OPTIONAL { ?item wdt:P9586 ?appletv } """ query += "\n} LIMIT 2" results = sparql(query) if len(results) == 1: return results[0] return None def matched_appletv_ids(): query = "SELECT DISTINCT ?appletv WHERE { ?statement ps:P9586 ?appletv. }" ids = set() for result in sparql(query): ids.add(result["appletv"]) return ids def main(): limit = 500 skip_ids = matched_appletv_ids() page_title = "User:Josh404Bot/Preliminarily matched/P9586" def candiate_urls(): for (item, property, id) in page_statements(page_title): if property != "P9586": continue if not id or id in skip_ids: continue url = "https://tv.apple.com/us/movie/{}".format(id) yield (url, id) for url in shuffled(appletv.fetch_new_sitemap_urls())[0:250]: (type, id) = parseurl(url) if type != "movie": continue if not id or id in skip_ids: continue yield (url, id) for index_url in shuffled(appletv.fetch_sitemap_index_urls())[0:250]: for url in shuffled(appletv.fetch_sitemap_index(index_url)): (type, id) = parseurl(url) if type != "movie": continue if not id or id in skip_ids: continue yield (url, id) print("qid,P9586") for (url, id) in tqdm(itertools.islice(candiate_urls(), limit), total=limit): info = fetch_movie(url) if not info: continue result = wikidata_search(*info) if result and not result["appletv"]: print('{},"""{}"""'.format(result["item"], id)) if __name__ == "__main__": import logging logging.basicConfig(level=logging.INFO) main() ``` #### File: josh/wikidatabots/pwb.py ```python import os import tempfile import pywikibot def login(username, password): """ Log into Wikidata. Writes an authenticated pywikibot.lwp to the current working directory. """ password_file = tempfile.NamedTemporaryFile(mode="w", delete=False) password_file.write('("{}", "{}")'.format(username, password)) password_file.close() pywikibot.config.usernames["wikidata"]["wikidata"] = username pywikibot.config.password_file = password_file.name site = pywikibot.Site("wikidata", "wikidata") site.login() os.unlink(password_file.name) if __name__ == "__main__": import argparse parser = argparse.ArgumentParser(description="Pywikibot wrapper script") parser.add_argument("--username", action="store") parser.add_argument("--password", action="store") parser.add_argument("cmd", action="store") args = parser.parse_args() if args.cmd == "login": login( args.username or os.environ["WIKIDATA_USERNAME"], args.password or os.environ["WIKIDATA_PASSWORD"], ) else: parser.print_usage() ``` #### File: josh/wikidatabots/redirect_P345.py ```python import logging import pywikibot from tqdm import tqdm import imdb from sparql import sample_items REASON_FOR_DEPRECATION = "P2241" REDIRECT = "Q45403344" def main(): pywikibot.config.usernames["wikidata"]["wikidata"] = "Josh404" site = pywikibot.Site("wikidata", "wikidata") repo = site.data_repository() qids = sample_items("P345", limit=10) redirect_page = pywikibot.ItemPage(repo, REDIRECT) for qid in tqdm(qids): item = pywikibot.ItemPage(repo, qid) if item.isRedirectPage(): logging.debug("{} is a redirect".format(item)) continue for claim in item.claims.get("P345", []): id = claim.target if claim.rank == "deprecated": continue if not imdb.is_valid_id(id): logging.debug("{} is invalid format".format(id)) continue new_id = imdb.canonical_id(id) if not new_id: logging.debug("{} not found".format(id)) continue if id is not new_id: claim.setRank("deprecated") qualifier = pywikibot.Claim(repo, REASON_FOR_DEPRECATION) qualifier.isQualifier = True qualifier.setTarget(redirect_page) claim.qualifiers[REASON_FOR_DEPRECATION] = [qualifier] if claim_exists(item, "P345", new_id): item.editEntity({"claims": [claim.toJSON()]}) else: new_claim = pywikibot.Claim(repo, "P345") new_claim.setTarget(new_id) item.editEntity({"claims": [new_claim.toJSON(), claim.toJSON()]}) def claim_exists(page, property, value): for claim in page.claims[property]: if claim.target == value: return True return False if __name__ == "__main__": main() ``` #### File: josh/wikidatabots/sparql.py ```python import json import logging import math import os import platform import backoff import requests url = "https://query.wikidata.org/sparql" session = requests.Session() session.headers.update({"Accept": "application/sparql-results+json"}) USER_AGENT = [] if "WIKIDATA_USERNAME" in os.environ: USER_AGENT.append( "{username}/1.0 (User:{username})".format( username=os.environ["WIKIDATA_USERNAME"] ) ) else: logging.warn("WARN: WIKIDATA_USERNAME unset") USER_AGENT.append("requests/" + requests.__version__) USER_AGENT.append("Python/" + platform.python_version()) session.headers.update({"User-Agent": " ".join(USER_AGENT)}) class TimeoutException(Exception): pass @backoff.on_exception(backoff.expo, TimeoutException, max_tries=14) @backoff.on_exception(backoff.expo, json.decoder.JSONDecodeError, max_tries=3) def sparql(query): """ Execute SPARQL query on Wikidata. Returns simplified results array. """ r = session.post(url, data={"query": query}) if r.status_code == 500 and "java.util.concurrent.TimeoutException" in r.text: raise TimeoutException(query) r.raise_for_status() data = r.json() vars = data["head"]["vars"] bindings = data["results"]["bindings"] logging.info( "sparql: {} results in {} ms".format( len(bindings), math.floor(r.elapsed.total_seconds() * 1000) ) ) def results(): for binding in bindings: yield {var: format_value(binding.get(var)) for var in vars} def format_value(obj): if obj is None: return None elif obj["type"] == "literal": return obj["value"] elif obj["type"] == "uri": if obj["value"].startswith("http://www.wikidata.org/prop/"): return obj["value"].replace("http://www.wikidata.org/prop/", "") elif obj["value"] == "http://wikiba.se/ontology#DeprecatedRank": return "deprecated" elif obj["value"] == "http://wikiba.se/ontology#NormalRank": return "normal" elif obj["value"] == "http://wikiba.se/ontology#PreferredRank": return "preferred" elif obj["value"].startswith("http://www.wikidata.org/entity/"): label = obj["value"].replace("http://www.wikidata.org/entity/", "") if label.startswith("statement/"): return "$".join(label.replace("statement/", "").split("-", 1)) else: return label else: return obj["value"] else: return obj return list(results()) def fetch_statements(qids, properties): query = "SELECT ?statement ?item ?property ?value WHERE { " query += values_query(qids) query += """ OPTIONAL { ?item ?property ?statement. ?statement ?ps ?value. ?statement wikibase:rank ?rank. FILTER(?rank != wikibase:DeprecatedRank) } """ query += "FILTER(" + " || ".join(["(?ps = ps:" + p + ")" for p in properties]) + ")" query += "}" items = {} for result in sparql(query): statement = result["statement"] qid = result["item"] prop = result["property"] value = result["value"] item = items[qid] = items.get(qid, {}) properties = item[prop] = item.get(prop, []) properties.append((statement, value)) return items def type_constraints(property): query = """ SELECT DISTINCT ?subclass WHERE { """ query += " wd:" + property + " p:P2302 ?constraint." query += """ ?constraint ps:P2302 wd:Q21503250. ?constraint pq:P2308 ?class. ?subclass wdt:P279* ?class. } """ return set([r["subclass"] for r in sparql(query)]) def sample_items(property, limit, type=None): if type is None: items = set() items |= sample_items(property, type="created", limit=math.floor(limit / 3)) items |= sample_items(property, type="updated", limit=math.floor(limit / 3)) items |= sample_items(property, type="random", limit=limit - len(items)) return items elif type == "random": query = """ SELECT ?item WHERE { SERVICE bd:sample { ?item wdt:?property []. bd:serviceParam bd:sample.limit ?limit ; bd:sample.sampleType "RANDOM". } } """ elif type == "created": query = """ SELECT ?item { SERVICE wikibase:mwapi { bd:serviceParam wikibase:endpoint "www.wikidata.org"; wikibase:api "Generator" ; wikibase:limit "once" ; mwapi:generator "search"; mwapi:gsrsearch "haswbstatement:?property" ; mwapi:gsrsort "create_timestamp_desc" ; mwapi:gsrlimit "?limit". ?item wikibase:apiOutputItem mwapi:title. } } """ elif type == "updated": query = """ SELECT ?item { SERVICE wikibase:mwapi { bd:serviceParam wikibase:endpoint "www.wikidata.org"; wikibase:api "Generator" ; wikibase:limit "once" ; mwapi:generator "search"; mwapi:gsrsearch "haswbstatement:?property" ; mwapi:gsrsort "last_edit_desc" ; mwapi:gsrlimit "?limit". ?item wikibase:apiOutputItem mwapi:title. } } """ else: assert False, "unknown type" query = query.replace("?property", property) query = query.replace("?limit", str(limit)) items = set() for result in sparql(query): assert result["item"] items.add(result["item"]) return items def values_query(qids, binding="item"): values = " ".join("wd:{}".format(qid) for qid in qids) return "VALUES ?" + binding + " { " + values + " }" if __name__ == "__main__": import json import sys logging.basicConfig(level=logging.INFO) query = sys.stdin.readlines() result = sparql(query) json.dump(result, sys.stdout, indent=2) ``` #### File: josh/wikidatabots/test_itunes.py ```python import itunes def test_batch_lookup_one(): results = itunes.batch_lookup([285494571]) (id, result) = list(results)[0] assert id == 285494571 assert result assert result["trackName"] == "<NAME>" def test_batch_lookup_miss(): results = itunes.batch_lookup([200000]) (id, result) = list(results)[0] assert id == 200000 assert not result ``` #### File: josh/wikidatabots/tmdb.py ```python import os import backoff import requests TMDB_API_KEY = os.environ.get("TMDB_API_KEY") class UnauthorizedException(Exception): pass @backoff.on_exception(backoff.expo, requests.exceptions.ConnectionError, max_tries=3) def api_request(path, params={}, version=3, api_key=TMDB_API_KEY): url = "https://api.themoviedb.org/{}{}".format(str(version), path) post_params = {} if api_key: post_params["api_key"] = api_key post_params.update(params) r = requests.get(url, params=post_params) if r.headers["Content-Type"].startswith("application/json"): data = r.json() if r.status_code == 401: raise UnauthorizedException(data["status_message"]) return data else: r.raise_for_status() return {} object_types = set(["movie", "tv", "person"]) def object(id, type, append=[], api_key=TMDB_API_KEY): assert type in object_types params = {} if append: params["append_to_response"] = ",".join(append) resp = api_request( "/{}/{}".format(type, id), params=params, api_key=api_key, ) if resp.get("success") is False: return None return resp find_sources = set( [ "imdb_id", "freebase_mid", "freebase_id", "tvdb_id", "tvrage_id", "facebook_id", "twitter_id", "instagram_id", ] ) find_types = set(["movie", "person", "tv", "tv_episode", "tv_season"]) def find(id, source, type, api_key=TMDB_API_KEY): assert source in find_sources assert type in find_types resp = api_request( "/find/{}".format(id), params={"external_source": source}, api_key=api_key, ) results = resp.get("{}_results".format(type)) if len(results) == 1: return results[0] else: return None ``` #### File: josh/wikidatabots/utils.py ```python import random def batches(iterable, size): batch = [] for element in iterable: batch.append(element) if len(batch) == size: yield batch batch = [] if batch: yield batch def shuffled(seq): lst = list(seq) random.shuffle(lst) return lst def uniq(*lists): seen = [] for lst in lists: for el in lst: if el not in seen: yield el seen.append(el) ``` #### File: josh/wikidatabots/wikitext.py ```python def link(title, url): return "[{url} {title}]".format(url=url, title=title) def item(qid): return "{{Q|" + qid.replace("Q", "") + "}}" def statement(statement): statement = statement.replace("$", "-") qid, guid = statement.split("-", 1) return ( item(qid) + " " + link( guid, "http://www.wikidata.org/entity/statement/{}".format(statement), ) ) ```
{ "source": "josh-wilde/rl-compare", "score": 3 }
#### File: josh-wilde/rl-compare/EpisodicNStepSarsa.py ```python import click import gym import numpy as np from math import log, ceil, exp from tiles3 import IHT from QFunctions import LinearTilingQApproximator # python EpisodicNStepSarsa.py --episodes 1 --alpha 0.03 --init_epsilon 0.1 --eps_decay_factor 0.0 --n 1 --gamma 0.9 --tile_resolution 8 --n_tilings 8 --d 3 --render @click.command() @click.option('--episodes', default=10) @click.option('--alpha', default=0.1) @click.option('--init_epsilon', default=0.1) @click.option('--eps_decay_factor', default=0.1) # epsilon_t = init_epsilon*exp(-eps_decay_factor*t) so decay = 0 is constant @click.option('--n', default=1) @click.option('--gamma', default=0.5) # reward discounting factor @click.option('--tile_resolution', default=8) # number of tiles in each dimension of feature space @click.option('--n_tilings', default=8) # number of overlapping tilings @click.option('--d', default=3) # either 2 if (position,velocity) and 3 if (position,velocity,acceleration) @click.option('--render/--no-render', default=True) def main(episodes, alpha, init_epsilon, eps_decay_factor, n, gamma, tile_resolution, n_tilings, d, render): # Instantiate the environment env = gym.make('MountainCar-v0') n_actions = 3 # Action space is 0,1,2 for mountain car # Initialize the hash table to store the tiling n_tiles = tile_resolution ** d * n_tilings * n_actions iht = IHT(2**(1+ceil(log(n_tiles, 2)))) # should be double the hash table size that we need # Initialize the Q function q_hat = LinearTilingQApproximator(iht, n_tilings, tile_resolution) # Initialize arrays to store actions, states and rewards # n-step SARSA means storing current info AND info for n more steps A = np.zeros(n+1, dtype=int) S = np.zeros((n+1,d)) # each row is either [position, velocity] or [position, velocity, acceleration] R = np.zeros(n+1) # Loop over episodes for episode in range(episodes): # Initial observation # For MountainCar, always starts with 0 velocity and append 0 acceleration observation = list(env.reset()) if d == 2: S[0] = observation else: S[0] = observation + [0] # epsilon-greedy action based on initial state if np.random.uniform() <= init_epsilon: A[0] = env.action_space.sample() else: A[0] = np.argmax([q_hat(S[0], a) for a in range(n_actions)]) # Set termination time to infinity to start # Initialize time counter t = 0 T = np.inf # render if render: env.render() ### Print initial state print('t = {:d}'.format(t)) print('S[t] = ' + np.array2string(S[0], precision=2)) print('A[0] = {:d}'.format(A[0])) # Loop over time periods within an episode while True: # If we haven't terminated, then take an action # Store the next state and reward if t < T: observation, reward, done, info = env.step(A[t % (n+1)]) if render: env.render() R[(t+1) % (n+1)] = reward if d == 2: S[(t+1) % (n+1)] = list(observation) else: S[(t+1) % (n+1)] = list(observation) + [observation[1] - S[t % (n+1), 1]] if done: T = t + 1 else: epsilon = init_epsilon*exp(-eps_decay_factor*t) if np.random.uniform() <= epsilon: A[(t+1) % (n+1)] = env.action_space.sample() else: A[(t+1) % (n+1)] = np.argmax([q_hat(S[(t+1) % (n+1)], a) for a in range(n_actions)]) ### Print state for t + 1 print('After taking A[{:d}], the info for t+1 = {:d} is:'.format(t, t+1)) print('t + 1 = {:d}'.format(t+1)) print('S[t+1] = ' + np.array2string(S[(t+1) % (n+1)], precision=2)) print('R[t+1] = {:f}'.format(R[(t+1) % (n+1)])) print('A[t+1] chosen based on S[t+1] and R[t+1].') print('A[t+1] = {:d}'.format(A[(t+1) % (n+1)])) # Set the period for which we are updating the weights # E.g. if n = 1, then can start updating at t = 0 because we have stored S_1 and R_1 tau = t - n + 1 # If we are ready to update the first state, then go ahead if tau >= 0: # discounted n-step return G = sum([gamma**(i-tau-1)*R[(i % (n+1))] for i in range(tau+1, min(tau+n, T) + 1)]) # if you haven't terminated within n steps, then add the estimated return to go if tau + n < T: G = G + gamma**n * q_hat(S[(tau+n) % (n+1)], A[(tau+n) % (n+1)]) # Adjust the weights based on gradient of the error # The update function takes the state and the action to find the active tiles # Then updates each tile by alpha * error q_hat.update(S[tau % (n+1)], A[tau % (n+1)], alpha, G - q_hat(S[tau % (n+1)], A[tau % (n+1)])) if tau == T - 1: print('Exiting at tau = {:d}'.format(tau)) break t += 1 if __name__ == '__main__': main() ``` #### File: josh-wilde/rl-compare/test-env.py ```python import gym import click from RandomAgent import RandomAgent @click.command() @click.option('--env_name', default='MountainCar-v0') @click.option('--episodes', default=1) @click.option('--max_t', default=100) @click.option('--render/--no-render', default=True) def main(env_name, episodes, max_t, render): # Instantiate the environment env = gym.make(env_name) # Instantiate agent random_mountain_agent = RandomAgent(env.action_space) # Loop through the episodes for episode in range(episodes): # Reset to obtain initial observation observation = env.reset() # Run the episode for t in range(max_t): if render: env.render() print(observation) # Agents act here based on current observation action = random_mountain_agent.act(observation) observation, reward, done, info = env.step(action) # step based on action if done: print('Episode finished after {} time steps'.format(t+1)) break env.close() if __name__ == '__main__': main() ```
{ "source": "JoshWilde/test-python-action", "score": 3 }
#### File: JoshWilde/test-python-action/Paper_Vectors.py ```python import numpy as np import glob import sklearn import pdfminer import pdfplumber import PyPDF2 import nltk from nltk import word_tokenize from nltk import download from nltk.corpus import stopwords from pdfminer.high_level import extract_text from sklearn.feature_extraction.text import TfidfVectorizer from nltk.stem import WordNetLemmatizer from nltk.probability import FreqDist from sklearn.metrics.pairwise import cosine_similarity nltk.download('stopwords') nltk.download('punkt') nltk.download('wordnet') nltk.download('omw-1.4') import spacy import os os.system(f"echo '🎉 All imports OK'") paper_path = os.environ['PAPER_PATH'] os.system(f"echo '📄 PDF file located here: {paper_path}'") os.system('python -m spacy download en_core_web_lg') model = spacy.load('en_core_web_lg') paper_path = 'paper.pdf' #POI_PDF = [extract_text(paper_path)] # Extracts text from the PDF file def Get_Lemma_Words(POI_PDF): ''' Parameters ---------- POI_PDF : list A list containing a single string which is the contents of the paper Returns ---------- words : array_like An array where each element is a processed word from the text ''' text = str(POI_PDF) text2 = text.split() # splits the text into words words_no_punc = [] # defines an empty list for w in text2: # For each word in the text if w.isalpha(): # If the word is an alphanumberic value words_no_punc.append(w.lower()) # appends a lowercase version of the word to the no punctionation list from nltk.corpus import stopwords # Import stop words stopwords = stopwords.words('english') # Defines english stop words clean_words = [] # define clean word list for w in words_no_punc: # for each word in no punctionation list if w not in stopwords: # if the word is not a stopword clean_words.append(w) # if the word is not a stopword it is appended to the clean word list clean_words_arr = '' # Defines an empty string for i in range(len(clean_words)): # For each word in clean words clean_words_arr = clean_words_arr + ' ' + str(clean_words[i]) # Appends the clean words to a string string_for_lemmatizing = clean_words_arr lemmatizer = WordNetLemmatizer() words_2 = word_tokenize(string_for_lemmatizing) lemmatized_words = [lemmatizer.lemmatize(word) for word in words_2] lemmatized_words_arr = '' # Defines an empty string for i in range(len(lemmatized_words)): # For each word iin lemmanised words lemmatized_words_arr = lemmatized_words_arr + ' ' + str(lemmatized_words[i]) # Appends the lemmanised words to a string words = word_tokenize(lemmatized_words_arr) # Tokenises each word in the text return words def Get_Top_Words_tf(Paper_interest, num_top20=20): ''' Parameters ---------- Paper_interest : string File path to the location of the PDF df : A num_top20 : Int Number of most frequent words that are used for calculating the vector of the paper Returns ---------- top20_tf : array_like Array of the most frequent words from the paper in order ''' POI_PDF = [extract_text(Paper_interest)] # Extracts text from the PDF file #print('Extracted text') #text = str(POI_PDF) words = Get_Lemma_Words(POI_PDF) # Lemmanises words from the extracted text #print('Get Lemma Words') top20_tf = -2 # If there are no lemmanised words, this function will output this value #print('Top20 TF') if len(words) > 0: # If there are lemmanised words fdist = FreqDist(words) # Calculates the frequency for each lemmanised word in the text #print('Freq Dist') X = np.array(fdist.most_common()) # Sorts the words in order of frequency #print('X') top20_tf = X[:num_top20,0] # Saves the top N words as a list #print('Top20 TF') return top20_tf #top20_tf = Get_Top_Words_tf(paper_path) #words = Get_Lemma_Words(POI_PDF) # Lemmanises words from the extracted text #top20_tf = -2 # If there are no lemmanised words, this function will output this value #if len(words) > 0: # If there are lemmanised words # fdist = FreqDist(words) # Calculates the frequency for each lemmanised word in the text # X = np.array(fdist.most_common()) # Sorts the words in order of frequency # top20_tf = X[:num_top20,0] # Saves the top N words as a list #print(top20_tf) def Generate_Paper_Vector(Paper_interest, model, num_top20=20): ''' Parameters ---------- Paper_interest : string File path to the location of the PDF model : A df : Dictionary A get_word_fun : function A num_top20 : int A Returns ---------- pap_vector : array_like An array of shape (300) representing where the given paper lies in the model vector space. doc_top20 : string A string containing the 20 words that were ''' #average_vector = np.zeros((300)) # Creates an array for 300 zeros #print('Starting Top Words TF') top20_tf = Get_Top_Words_tf(Paper_interest) # Gets the top N Words #print(top20_tf) #print(top20_tf) doc_top20= '' # Creates empty string if top20_tf != -2: # If the paper has lemmanised words for i in top20_tf: # For each word in the top N doc_top20 = doc_top20 + i +' ' # Appends each top N word to list pap_vector = model(doc_top20).vector # generates a vector for the paper #average_vector = average_vector + pap_vector return pap_vector, doc_top20 # Generate TF Vectors Paper def Paper_vectors_TF(paper_list, model,num_top20=20): ''' Parameters ---------- paper_list : array_like Array of file paths to PDF files gen_pap_vec : function A function to generate the vectors for paper that we are trying to find a reviewer for Returns ---------- Paper_Dict : Dictionary All the keys should be the DOI numbers for each paper taken from the file name. The items are vectors of shape (300) which is the vector for where this paper lies in the model vector space. Paper_20_Dict : Dictionary All the keys should be the DOI numbers for each paper taken from the file name. The items are the top 20 words from the paper that have been used to generate the vector representation. ''' Paper_Dict = {} # Defines an empty dictionary Paper_20_Dict = {} # Defines an empty dictionary #for k in range(len(paper_list)): # For each paper #print(paper_list[k]+ ' - ' +str(k)) #print('Starting Generate Paper Vectors') paper_vector, doc_top20 = Generate_Paper_Vector(paper_list, model) # Generates paper vector and shows the top N words #print(paper_vector) # print(doc_top20) Paper_Dict[paper_list] = paper_vector # Adds this vector to the dictionary Paper_20_Dict[paper_list] = doc_top20 # Adds the top N words to the dictionary # print(Paper_Dict) #print(Paper_20_Dict) return Paper_Dict, Paper_20_Dict # Paper Cosine def Paper_cosine(author_keys, author_vectors, paper_vec, N=5, printer=True): ''' Parameters ---------- author_keys : Dictionary Keys A author_vectors : Dictionary A paper_vec : array-like A N : int Number of reviewers suggested printer : Boolean A Returns ---------- cos_sim_dict : dictionary A ''' cos_sim_list = [] # Creates an empty list for i in range(len(author_keys)): # For each author key idx = list(author_keys)[i] # Creates an index author_vec = author_vectors[idx] # Loads the vector for the given author key #print('paper vec') #print(np.array([paper_vec])) #print('author vec') #print(np.array([author_vec])) cos_sim = cosine_similarity(np.array([paper_vec]), np.array([author_vec]))[0,0] # Calculates the cosine similarity # of the paper and the author of the index cos_sim_list.append(cos_sim) # appends cosine similarity to a list of all cosine similarities for each author for # this one paper cos_sim_list = np.array(cos_sim_list) # Converts list to numpy array cos_sim_dict = {} # Creates an empty dictionary sorted_idx = np.argsort(cos_sim_list)[-N:] # Sorts list and selects the top N highest scoring authors for i in range(N): # for each of the top N authors idx = sorted_idx[-i-1] # Creates an index doi = list(author_vectors)[idx] #Finds the author key for the high scoring cosine similarties if printer == True: print(doi + ' - ' + str(cos_sim_list[idx])[:6]) # Prints author key & cosine similarity for that author to the given paper cos_sim_dict[doi] = cos_sim_list[idx] # Adds the author key & cosine similarity to a dictionary #return cos_sim_dict #paper_vector, doc_top20 = Generate_Paper_Vector(paper_path , model) #print(paper_vector) #print(doc_top20) #paper_path = ['paper.pdf', 'paper.pdf', 'paper.pdf'] #print('Starting Paper Vectors TF') Paper_Dict, Paper_20_Dict = Paper_vectors_TF(paper_path, model) author_Dict = np.load('Author_Dict_generated.npy', allow_pickle=True).item() author_keys = author_Dict.keys() author_vectors = author_Dict paper_vec = Paper_Dict[list(Paper_Dict)[0]] print('Suggested Reviewers') Paper_cosine(author_keys, author_vectors, paper_vec) #print('SUCCESS!!!') ``` #### File: JoshWilde/test-python-action/test.py ```python import numpy as np import glob import spacy import re import os os.system(f"echo '🎉 All imports OK'") glow = os.environ['GLOB_FOLDERS'] print(glow) print('/n') pdfs = os.environ['GLOB_PDFS'] print(pdfs) pdfs = pdfs.split(' ') def Make_Folder_dict(pdfs): Master_dict = {} for i in range(len(pdfs)): print(pdfs[i]) J = re.search('/', pdfs[i]) K = re.search('/',pdfs[i][J.end():]) Folder_name = pdfs[i][J.end():J.end()+K.start()] pdf_name = pdfs[i]#[J.end()+K.end():] if Folder_name not in Master_dict: Master_dict[Folder_name] = [pdf_name] else: Master_dict[Folder_name].append(pdf_name) return Master_dict def Author_vectors_TF(folder_names, num_top20=20): Author_Dict = {} # Defines an empty dictionary for i in range(len(list(folder_names))): # For each author paper_list = folder_names[list(folder_names)[i]] #average_vector = Reviewer_Paper_Vector(paper_list, model, num_top20) # Generates the average vector for all the papers in this folder #Author_Dict[folder_names[k][directory_offset:]] = average_vector # Adds this average vector to the dictionary #return Author_Dict print('success minor!') Master_dict = Make_Folder_dict(pdfs) Author_vectors_TF(Master_dict) #fold_loc = 'https://github.com/JoshWilde/test-python-action/tree/main/Author_Folders/ctb' #print(fold_loc) #folds = glob.glob(fold_loc) #print(folds) #folds = glob.glob(fold_loc+'/*') #print(folds) #paper_path = os.environ['FOLDER_PATH'] #print(paper_path) #glo = os.environ[glob.glob(paper_path+'/*')] #print(glo) #paper_path = os.environ['PAPER_PATH'] #os.system(f"echo '📄 PDF file located here: {paper_path}'") #os.system('python -m spacy download en_core_web_lg') #model = en_core_web_lg.load() #model = spacy.load('en_core_web_lg') print('SUCCESS!') #!python -m spacy download en_core_web_lg #model = spacy.load('en_core_web_lg') ```
{ "source": "JoshWilkins2013/PriceBot", "score": 3 }
#### File: PriceBot/pricebot/Analyzer.py ```python import os import glob import numpy as np import pandas as pd from matplotlib import pyplot as plt from sklearn.model_selection import GridSearchCV from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LinearRegression from sklearn.pipeline import make_pipeline class Analyzer(object): def __init__(self, file_path=".\\Data\\", file_name=None, file_type="Automobile", last_update=None): self.file_path = file_path self.file_name = file_name self.file_type = file_type self.last_update = last_update if file_name: if file_type == 'Automobile': self.car = self.file_name[:self.file_name.find('_')] self.data = pd.read_csv(self.file_path + self.file_name) self._clean_results() else: self.data = None def _clean_results(self): """ Clean up some of the columns to be consistent """ if self.file_type == "Automobile": cols = ["Year", "Mileage", "Price"] self.data.Mileage.replace([',', 'mi.', 'nan', ' '], '', regex=True, inplace=True) # Fix mileage column self.data.Price.replace([',', '\$'], '', regex=True, inplace=True) # Always fix price column (, and $ removed) self.data[cols] = self.data[cols].apply(pd.to_numeric, errors='coerce') # Coerces errors into NaN values self.data.drop(self.data[self.data.Year < 2000].index, inplace=True) # Remove cars made before 2000 self.data.drop(self.data[self.data.Price > 30000].index, inplace=True) # Remove cars over $30,000 self.data.drop(self.data[(self.data.Mileage < 1000) | (self.data.Mileage > 300000)].index, inplace=True) # Remove cars with over 300,000 miles self.data['Age'] = 2018 - self.data['Year'] # Change years to Age elif self.file_type == "Apartment": self.data.Area.replace(['ft2'], '', regex=True, inplace=True) # Remove ft2 from square footage column self.data.Price.replace([',', '\$'], '', regex=True, inplace=True) # Always fix price column (, and $ removed) else: self.data['Street'], self.data['City'], self.data['State'] = self.data['Address'].str.split(',', 2).str del self.data.Address self.data.drop(self.data[self.data.Price > 1000000].index, inplace=True) # Remove houses worth more than $1 million self.data.replace('^\s*$', np.nan, regex=True, inplace=True) # Replace all empty values with np.NaN self.data = self.data.dropna(axis=1, how='all') # Remove Null Columns self.data = self.data.apply(pd.to_numeric, errors='ignore') # Coerces errors into NaN values def merge_results(self, car): self.car = car data_files = glob.glob(self.file_path + self.car + '*.csv') item_data = pd.DataFrame() for data_file in data_files: df = pd.read_csv(data_file) item_data = item_data.append(df) self.file_name = self.car + "_Merged.csv" item_data.to_csv(self.file_path + self.file_name, index=False) self.data = item_data self._clean_results() def plot_results(self): fig = plt.figure(figsize=(13, 6)) if self.file_type == "Automobile": cols = ['Mileage', 'Price', 'Age', 'Link'] plt.xlabel('Mileage') plt.title('Mileage vs Cost (Age in Color)') elif self.file_type == 'Apartment': cols = ['Area', 'Price', 'Link'] plt.xlabel('Square Feet') plt.title('SqFt vs Cost (Number of Bedrooms in Color)') else: return new_df = self.data[cols] new_df = new_df.dropna(axis=0, how='any') # Remove rows with missing values for col in cols[:-1]: new_df[col] = new_df[col].astype(int) s = plt.scatter(x=new_df[cols[0]], y=new_df[cols[1]]) s.set_urls(new_df['Link'].values) plt.grid(which='both') plt.ylabel('Cost') plt.show() fig.canvas.print_figure('MergedData.svg') def get_best_cars(self, filter_by='Mileage', n_iter=4, last_update=None, filtered_data=None, plot_show=False): for i in range(n_iter): # Remove things above Age line of best fit coeffs = self.best_fit(col=filter_by) p = np.poly1d(coeffs) plt.clf() plt.scatter(x=self.data[filter_by], y=self.data['Price'], cmap='plasma_r') self.data = self.data[self.data['Price'] < p(self.data[filter_by])] # Remove points above average price trendline plt.plot(self.data[filter_by], p(self.data[filter_by]), 'ro') # Average price trendline by age/mileage if filtered_data is not None: plt.scatter(x=filtered_data[filter_by], y=filtered_data['Price'], cmap='plasma_r') plt.xlabel('filter_by') plt.ylabel('Price') if plot_show: plt.show() plt.close() fig = plt.figure(figsize=(13, 6)) s = plt.scatter(self.data[filter_by], y=self.data['Price'], color='blue') s.set_urls(self.data['Link'].values) # Color cars that meet filter green if filtered_data is not None: filtered_merged = pd.merge(filtered_data, self.data, how='inner') # Not sure why I have to do this s = plt.scatter(x=filtered_merged[filter_by], y=filtered_merged['Price'], color='green') s.set_urls(filtered_merged['Link'].values) # Color cars that are new red if self.last_update is not None: self.data['Date'] = pd.to_datetime(self.data['Date'], format='%Y-%m-%d %H:%M') recent_data = self.data[self.data['Date'] > self.last_update] recent_merged = pd.merge(recent_data, self.data, how='inner') # Not sure why I have to do this s = plt.scatter(x=recent_merged[filter_by], y=recent_merged['Price'], color='red') s.set_urls(recent_merged['Link'].values) if plot_show: plt.show() if not os.path.exists(".\\Best" + filter_by): os.makedirs(".\\Best" + filter_by) fig.canvas.print_figure(".\\Best" + filter_by + "\\" + self.file_name[:-4] + '.svg') def best_fit(self, col='Age', verbose=False): param_grid = {'polynomialfeatures__degree': np.arange(2, 3, 1), 'linearregression__fit_intercept': [True, False], 'linearregression__normalize': [True, False]} plt.subplot(1, 2, 1) if col == 'Age': group = self.data.groupby(self.data['Age'])[['Price']].mean().reset_index()['Age'].values mean_costs = self.data.groupby(self.data['Age'])[['Price']].mean().reset_index()['Price'].values median_costs = self.data.groupby(self.data['Age'])[['Price']].median().reset_index()['Price'].values metric = ((mean_costs + median_costs)/2) X_test = np.linspace(group[0], group[-1], len(group)+2)[:, None] X = group.reshape(len(group), 1) y = metric plt.xlim(xmin=0, xmax=18) else: temp_df = self.data[[col, "Price"]].dropna(axis=0, how='any') # Remove rows with missing values X = temp_df[col].values.reshape(len(temp_df), 1) y = temp_df["Price"].values X_test = np.linspace(min(temp_df[col]), max(temp_df[col]), 1000)[:, None] plt.xlim(xmin=0, xmax=250000) grid = GridSearchCV(make_pipeline(PolynomialFeatures(2), LinearRegression()), param_grid) grid.fit(X, y) model = grid.best_estimator_ if verbose: plt.scatter(X.ravel(), y) y_test = model.fit(X, y).predict(X_test) plt.plot(X_test.ravel(), y_test, label=self.car) plt.ylim(ymin=0, ymax=25000) plt.title(col + ' vs Cost') plt.grid(which='both') plt.legend() # Plot its derivative too - Shows depreciation rate better plt.subplot(1, 2, 2) best_order = grid.best_params_["polynomialfeatures__degree"] coeffs = np.polyfit(X.ravel(), y, best_order) p = np.poly1d(np.negative(coeffs)) if col == 'Mileage': p *= 10000 # Convert derivative to $ per 10,000 miles instead of $ per mile plt.xlim(xmin=0, xmax=300000) else: plt.xlim(xmin=0, xmax=18) p2 = np.polyder(p) plt.plot(X_test.ravel(), p2(X_test.ravel()), label=self.car) plt.ylim(ymin=0, ymax=3000) plt.title(col + ' vs Cost') plt.grid(which='both') plt.legend() # Add predicted value of data to csv file p = np.poly1d(coeffs) p2 = np.polyder(p) if col == 'Age': self.data['Price Diff Age'] = self.data['Age'] - p(self.data['Age']) self.data['Depreciate Age'] = p2(self.data['Age']) if col == 'Mileage': self.data['Price Diff Mileage'] = self.data['Mileage'] - p(self.data['Mileage']) self.data['Depreciate Mileage'] = p2(self.data['Mileage'])*10000 return coeffs ``` #### File: pricebot/Pages/Craigslist.py ```python import pandas as pd from ..Item import * from ..Browser import Browser from datetime import datetime as dt from craigslist import CraigslistForSale from craigslist import CraigslistHousing class Craigslist(object): def __init__(self, site="Boston"): self.site = site self.bro = None self.last_update = None def get_car_results(self, make=None, model=None, zip_code='01923', radius=50, overwrite=False): if not make: make = raw_input("Make: ").capitalize() if not model: model = raw_input("Model: ").capitalize() if not zip_code: zip_code = raw_input("Zip: ") if not radius: radius = raw_input("Radius: ") cl = CraigslistForSale(site=self.site.lower(), category='cta', filters={'zip_code': zip_code, 'search_distance': radius, 'query': make + ' ' + model, 'make': make, 'model': model, 'min_price': 500}) ads = cl.get_results(sort_by='newest') fname = make + model + '_' + self.site + 'Craigslist.csv' # If data file already exists, only update it with new data (by grabbing latest date) if os.path.isfile(".\\Data\\" + fname): df = pd.read_csv(".\\Data\\" + fname, usecols=['Date']) df['Date'] = pd.to_datetime(df['Date']) self.last_update = str(max(df['Date'])) print("Grabbing data after " + self.last_update) self.bro = Browser("https://" + self.site + ".craigslist.org/") ads_info = [] for ad in ads: print len(ads_info) # Some indication of progress ad_info = {} ad_info['Title'] = ad['name'] ad_info['Link'] = ad['url'] ad_info['Price'] = ad['price'][1:] ad_info['Date'] = ad['datetime'] ad_info['Year'] = get_year(ad_info['Title']) # Get year from title text self.bro.driver.get(ad_info['Link']) # Go to page link if self.last_update: if dt.strptime(ad_info['Date'], "%Y-%m-%d %H:%M") <= dt.strptime(self.last_update, "%Y-%m-%d %H:%M:%S"): break # If we already have the data, dont grab it again - stop the process, since its sorted by date attrs = self.bro.driver.find_elements_by_xpath("//p[@class='attrgroup']//span") attr_texts = [attr.text for attr in attrs] attrs_to_keep = ["condition", "odometer", "color", "transmission", "type"] for attr in attr_texts: key = next((attr.split(':')[0].strip() for x in attr.split(':')[0].strip().split() if x in attrs_to_keep), '') if key: try: value = next((attr.split(':')[1].strip() for x in attr.split(':')[0].strip().split() if x in attrs_to_keep), '') if key == "odometer": # ToDo: Probably a better spot to put this key = "Mileage" ad_info[key] = value except: pass ads_info.append(ad_info) self.bro.driver.close() # Save data to csv file if len(ads_info) > 0: if os.path.isfile(".\\Data\\" + fname) and not overwrite: temp_df = pd.read_csv(".\\Data\\" + fname) temp_df = temp_df.append(ads_info) write_to_csv(temp_df, fname) else: write_to_csv(ads_info, fname) return self.last_update def get_apt_results(self, zip_code='01923', radius=20, max_price=1600, sub_category=None, overwrite=False): cl = CraigslistHousing(site=self.site.lower(), category=sub_category + '/aap', filters={'zip_code': zip_code, 'search_distance': radius, 'min_price': 500, 'max_price': max_price}) results = cl.get_results() # If data file already exists, only update it with new data (by grabbing latest date) fname = 'Apartments_' + self.site + 'Craigslist.csv' if not overwrite and os.path.isfile(".\\Data\\" + fname): with open(".\\Data\\" + fname) as f: self.last_update = f.readlines()[1].split(',')[2] print("Grabbing data after " + self.last_update) ads_info = [] for result in results: print len(ads_info) # Some indication of progress ad_info = {} def get_attr(ad, attr): try: return ad[attr] except: return '' ad_info['Title'] = get_attr(result, 'name') ad_info['Area'] = get_attr(result, 'area') ad_info['Bedrooms'] = get_attr(result, 'bedrooms') ad_info['Link'] = get_attr(result, 'url') ad_info['Price'] = get_attr(result, 'price') ad_info['Location'] = get_attr(result, 'geotag') ad_info['Date'] = get_attr(result, 'datetime') if self.last_update: if dt.strptime(ad_info['Date'], "%Y-%m-%d %H:%M") <= dt.strptime(self.last_update, "%Y-%m-%d %H:%M:%S"): break # If we already have the data, dont grab it again - stop the process, since its sorted by date ads_info.append(ad_info) # Save data to csv file if len(ads_info) > 0: if os.path.isfile(".\\Data\\" + fname) and not overwrite: temp_df = pd.read_csv(".\\Data\\" + fname) temp_df = temp_df.append(ads_info) write_to_csv(temp_df, fname) else: write_to_csv(ads_info, fname) ```
{ "source": "joshwilsonnc/youtube-shuffle", "score": 2 }
#### File: joshwilsonnc/youtube-shuffle/api.py ```python import datetime import json import os import cherrypy import googleapiclient.discovery import googleapiclient.errors import requests client = None def isPlaylistItemAVideo(item): return item['snippet']['resourceId']['kind'] == 'youtube#video' def mapPlaylistItem(item): return { 'id': item['snippet']['resourceId']['videoId'], 'title': item['snippet']['title'], 'channel': item['snippet']['channelTitle'], 'position': item['snippet']['position'] } def extractPlaylistInformation(response): if len(response['items']) > 0: return { 'title': response['items'][0]['snippet']['title'], 'channel': response['items'][0]['snippet']['channelTitle'], } return {} def memoizeWeekly(f): memo = {} def helper(x=None): if x not in memo or memo[x]['time'] + datetime.timedelta(weeks=1) < datetime.datetime.now(): memoized = { 'item': f(x), 'time': datetime.datetime.now() } memo[x] = memoized return memo[x]['item'] return helper def get_youtube_client(): api_service_name = "youtube" api_version = "v3" api_key = os.environ.get('YOUTUBE_API_KEY', None) if not api_key: print("'YOUTUBE_API_KEY' environment variable is required but not set") return None return googleapiclient.discovery.build( api_service_name, api_version, developerKey=api_key) @memoizeWeekly def get_playlist_information(playlistId): part = 'id,snippet' youtube = get_youtube_client() request = youtube.playlists().list( part=part, id=playlistId, maxResults='50') response = request.execute() if response: return extractPlaylistInformation(response) return {} @memoizeWeekly def get_playlist_items(playlistId): part = 'id,snippet' youtube = get_youtube_client() request = youtube.playlistItems().list( part=part, playlistId=playlistId, maxResults='50') response = request.execute() items = [] if response and 'items' in response: items.extend(response['items']) while response and 'nextPageToken' in response: request = youtube.playlistItems().list(part=part, playlistId=playlistId, maxResults='50', pageToken=response['nextPageToken']) response = request.execute() if response and 'items' in response: items.extend(response['items']) return [mapPlaylistItem(item) for item in items if isPlaylistItemAVideo(item)] class StaticWebsiteService(object): pass class YoutubePlaylistService(object): @cherrypy.expose def items(self, playlistId): return json.dumps(get_playlist_items(playlistId)) @cherrypy.expose def info(self, playlistId): return json.dumps(get_playlist_information(playlistId)) if __name__ == '__main__': project_root = os.environ.get('YOUTUBE_SHUFFLE_ROOT', None) if not project_root: print("'YOUTUBE_SHUFFLE_ROOT' environment variable is required but not set") exit client = get_youtube_client() if not client: print('Failed to initialize Google API client.') exit log_dir = os.environ.get('YOUTUBE_SHUFFLE_LOG_DIR', '.') cherrypy.config.update({ 'log.screen': False, 'log.access_file': os.path.join(log_dir, 'access.log'), 'log.error_file': os.path.join(log_dir, 'error.log'), 'tools.staticdir.root': project_root }) cherrypy.server.socket_host = '0.0.0.0' cherrypy.tree.mount(StaticWebsiteService(), '/', 'config/static.cfg') cherrypy.quickstart(YoutubePlaylistService(), '/api') cherrypy.engine.start() cherrypy.engine.block() ```
{ "source": "joshwkearney/lofreq", "score": 3 }
#### File: tools/lofreq_star/multiple_testing.py ```python __author__ = "<NAME>, <NAME>, <NAME>" __email__ = "<EMAIL>" #__copyright__ = "" __license__ = "BSD" from itertools import groupby class AbstractCorrection(object): def __init__(self, pvals, a=.05, n=None): self.pvals = self.corrected_pvals = list(pvals) # number of multiple tests if n: assert n>len(pvals) self.n = n else: self.n = len(self.pvals) # type-1 error cutoff for each test self.a = a self.set_correction() def set_correction(self): # the purpose of multiple correction is to lower the alpha # instead of the canonical value (like .05) pass class Bonferroni(AbstractCorrection): """http://en.wikipedia.org/wiki/Bonferroni_correction >>> ["%.4f" % v for v in Bonferroni([0.01, 0.01, 0.03, 0.05, 0.005], a=0.05).corrected_pvals] ['0.0500', '0.0500', '0.1500', '0.2500', '0.0250'] """ def set_correction(self): self.corrected_pvals = [pv * self.n for pv in self.corrected_pvals] class Sidak(AbstractCorrection): """http://en.wikipedia.org/wiki/Bonferroni_correction >>> ["%.8f" % v for v in Sidak([0.01, 0.01, 0.03, 0.05, 0.005], a=0.05).corrected_pvals] ['0.04898974', '0.04898974', '0.14696923', '0.24494871', '0.02449487'] """ def set_correction(self): if self.n != 0: correction = self.a * 1. / (1 - (1 - self.a) ** (1. / self.n)) else: correction = 1 self.corrected_pvals = [pv * correction for pv in self.corrected_pvals] class HolmBonferroni(AbstractCorrection): """http://en.wikipedia.org/wiki/Holm-Bonferroni_method given a list of pvals, perform the Holm-Bonferroni correction and return the indexes from original list that are significant. (cant use p-value as that may be repeated.) >>> ["%.4f" % v for v in HolmBonferroni([0.01, 0.01, 0.03, 0.05, 0.005], a=0.05).corrected_pvals] ['0.0400', '0.0400', '0.0600', '0.0500', '0.0250'] """ def set_correction(self): if len(self.pvals): for (i, c) in self.generate_significant(): self.corrected_pvals[i] *= c def generate_significant(self): pvals = self.pvals pvals_idxs = zip(pvals, range(len(pvals))) pvals_idxs = sorted(pvals_idxs) #lp = len(self.pvals) lp = self.n for pval, idxs in groupby(pvals_idxs, lambda x: x[0]): idxs = list(idxs) for p, i in idxs: if p * 1. / lp < self.a: yield (i, lp) lp -= len(idxs) # also in the original file, but removed here: #class FDR #def calc_qval if __name__ == '__main__': import doctest doctest.testmod() ``` #### File: tools/scripts/lofreq2_add_fake_gt.py ```python import sys import os import argparse import logging import csv import gzip #--- third-party imports # #/ #--- project specific imports # # / __author__ = "<NAME>" __email__ = "<EMAIL>" __copyright__ = "2016 Genome Institute of Singapore" __license__ = "The MIT License" # global logger # LOG = logging.getLogger("") logging.basicConfig(level=logging.WARN, format='%(levelname)s [%(asctime)s]: %(message)s') FORMAT_HEADER = '##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">' def cmdline_parser(): """ creates an OptionParser instance """ parser = argparse.ArgumentParser(description=__doc__) parser.add_argument("--verbose", action="store_true", dest="verbose", help="be verbose") parser.add_argument("--debug", action="store_true", dest="debug", help="enable debugging") parser.add_argument("-i", "--vcf-in", dest="vcf_in", required=True, help="Input vcf file listing somatic variants" " (gzip supported; - for stdin).") default = "-" parser.add_argument("-o", "--vcf-out", dest="vcf_out", default=default, help="Output vcf file (gzip supported; - for stdout;" " default: %s)." % default) parser.add_argument("-s", "--samples", required=True, nargs='+', help="Sample name/s") return parser def add_fake_gt(vcf_in, vcf_out, sample_names): """Add fake genotype to header and variants""" assert len(set(sample_names)) == len(sample_names), ("Duplicate sample names found") # set up vcf_reader # if vcf_in == '-': fh_in = sys.stdin else: assert os.path.exists(vcf_in) if vcf_in[-3:] == ".gz": fh_in = gzip.open(vcf_in, 'rt') else: fh_in = open(vcf_in, 'rt') vcf_reader = csv.reader(fh_in, delimiter='\t') # set up vcf_writer/fh_out # if vcf_out == '-': fh_out = sys.stdout else: assert not os.path.exists(vcf_out) if vcf_out[-3:] == ".gz": fh_out = gzip.open(vcf_out, 'wb') else: fh_out = open(vcf_out, 'wb') vcf_writer = csv.writer(fh_out, delimiter='\t', quotechar='', quoting=csv.QUOTE_NONE, lineterminator=os.linesep) has_our_format_in_header = False for row in vcf_reader: # modify row if needed and finally print if row[0].startswith('##'): if row[0].startswith('##FORMAT'): if row[0] == FORMAT_HEADER: has_our_format_in_header = True else: LOG.fatal("Incompatible, pre-existing format definition found. Exiting") raise ValueError(row) # don't touch header elif row[0].startswith('#CHROM'): # insert genotype format line if not has_our_format_in_header: extrarow = ['##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">'] vcf_writer.writerow(extrarow) if not "FORMAT" in row: row.append("FORMAT") for name in sample_names: row.append(name) else: # add format and sample columns assert len(row) >= 8, ( "variant incomplete or FORMAT column already exists") # Add GT column if not present if len(row) > 8: assert row[8] == 'GT' else: row.append("GT") # Add fake GT for _ in sample_names: row.append(".") vcf_writer.writerow(row) if fh_in != sys.stdin: fh_in.close() if fh_out != sys.stdout: fh_out.close() def main(): """main function """ parser = cmdline_parser() args = parser.parse_args() if args.verbose: LOG.setLevel(logging.INFO) if args.debug: LOG.setLevel(logging.DEBUG) for (in_file, descr) in [#(args.bam, "BAM"), (args.vcf_in, "VCF input")]: if not in_file: parser.error("%s file argument missing." % descr) sys.exit(1) if not os.path.exists(in_file) and in_file != "-": LOG.fatal("file '%s' does not exist.\n", in_file) sys.exit(1) for (out_file, descr) in [(args.vcf_out, "VCF output")]: if not out_file: parser.error("%s output file argument missing." % descr) sys.exit(1) if os.path.exists(out_file) and out_file != "-": LOG.fatal("Cowardly refusing to overwrite existing" " output file '%s'.\n", out_file) sys.exit(1) add_fake_gt(args.vcf_in, args.vcf_out, args.samples) if __name__ == "__main__": main() LOG.info("Successful program exit") ``` #### File: tools/scripts/lofreq2_add_sample.py ```python __author__ = "<NAME>" __email__ = "<EMAIL>" __copyright__ = "2014 Genome Institute of Singapore" __license__ = "The MIT License" # --- standard library imports # import sys import os import argparse import logging from collections import OrderedDict, namedtuple import csv import gzip #--- third-party imports # import pysam assert [int(x) for x in pysam.__version__.split('.')] >= [0, 8, 2] #--- project specific imports # # / # global logger # LOG = logging.getLogger("") logging.basicConfig(level=logging.WARN, format='%(levelname)s [%(asctime)s]: %(message)s') Variant = namedtuple('Variant', ['CHROM', 'POS', 'ID', 'REF', 'ALT', 'QUAL', 'FILTER', 'INFO']) # all fields except POS (int) are strings and values are preserved as-is Format = namedtuple('Format', ['id', 'num', 'type', 'descr']) def median(data): """compute median of provided list""" if not len(data): return None # http://stackoverflow.com/questions/10482339/how-to-find-median/10482422#10482422 answer by user3100512 return sorted(data)[len(data)//2] def cmdline_parser(): """ creates an OptionParser instance """ parser = argparse.ArgumentParser(description=__doc__) parser.add_argument("--verbose", action="store_true", dest="verbose", help="be verbose") parser.add_argument("--debug", action="store_true", dest="debug", help="enable debugging") parser.add_argument("-i", "--vcf-in", dest="vcf_in", required=True, help="Input vcf file listing somatic variants" " (gzip supported; - for stdin).") default = "-" parser.add_argument("-o", "--vcf-out", dest="vcf_out", default=default, help="Output vcf file (gzip supported; - for stdout;" " default: %s)." % default) parser.add_argument("-b", "--bam", dest="bams", nargs="*", required=True, help="BAM files, e.g. normal and tumor bam") return parser def fmt_to_line(fmt): """convert format class to vcf line""" return "##FORMAT=<ID=%s,Number=%s,Type=%s,Description=\"%s\">" % ( fmt.id, fmt.num, fmt.type, fmt.descr) def gen_formats(): """Must be in sync with gen_plp_data """ formats = OrderedDict() for (fid, num_str, type_str, descr) in [ ('DP', '1', 'Integer', 'Read depth at this position for this sample'),# standard ('NR', '1', 'Integer', 'Number of reference bases'), ('NA', '1', 'Integer', 'Number of alternate bases'), ('OR', '1', 'Integer', 'Number of orphan reads supporting reference bases'), ('OA', '1', 'Integer', 'Number of orphan reads supporting alternate bases'), ('BR', '3', 'Integer', 'Minimum, median and maximum base-qualities for reference bases'), ('BA', '3', 'Integer', 'Minimum, median and maximum base-qualities for alternate bases'), ('MR', '3', 'Integer', 'Minimum, median and maximum mapping-qualities for reference bases'), ('MA', '3', 'Integer', 'Minimum, median and maximum mapping-qualities for alternate bases')]: formats[fid] = Format(id=fid, num=num_str, type=type_str, descr=descr) return formats def gen_plp_data(sam_fh, var): """generate data must be in sync with gen_formats() """ for plp_col in sam_fh.pileup(var.CHROM, var.POS-1, var.POS): # pileup() extracts all reads overlapping that region. # only look at the one of interest if plp_col.pos != var.POS-1: continue cov = plp_col.n bqs = {'ref': [], 'alt': []} mqs = {'ref': [], 'alt': []} num_orphans = {'ref': 0, 'alt': 0} for plp_read in plp_col.pileups: aln_read = plp_read.alignment # most minimal filtering if aln_read.is_unmapped or aln_read.is_secondary or \ aln_read.is_qcfail or aln_read.is_duplicate: continue if aln_read.is_paired and aln_read.mate_is_unmapped: assert not aln_read.is_unmapped is_orphan = True else: is_orphan = False base = aln_read.seq[plp_read.query_position] mq = aln_read.mapq bq = ord(aln_read.qual[plp_read.query_position])-33 if base == var.REF: k = 'ref' elif base == var.ALT[0]: k = 'alt' else: continue bqs[k].append(bq) mqs[k].append(mq) if is_orphan: num_orphans[k] += 1 (min_bqs, median_bqs, max_bqs) = ( {'ref': -1, 'alt': -1}, {'ref': -1, 'alt': -1}, {'ref': -1, 'alt': -1}) (min_mqs, median_mqs, max_mqs) = ( {'ref': -1, 'alt': -1}, {'ref': -1, 'alt': -1}, {'ref': -1, 'alt': -1}) for k in ['ref', 'alt']: if len(bqs[k]): (min_bqs[k], median_bqs[k], max_bqs[k]) = ( min(bqs[k]), median(bqs[k]), max(bqs[k])) if len(mqs[k]): (min_mqs[k], median_mqs[k], max_mqs[k]) = ( min(mqs[k]), median(mqs[k]), max(mqs[k])) sample_data = OrderedDict() for (fmt_key, val) in [ ('DP', "%d" % cov), ('NR', "%d" % len(bqs['ref'])), ('NA', "%d" % len(bqs['alt'])), ('OR', "%d" % num_orphans['ref']), ('OA', "%d" % num_orphans['alt']), ('BR', "%d,%d,%d" % (min_bqs['ref'], median_bqs['ref'], max_bqs['ref'])), ('BA', "%d,%d,%d" % (min_bqs['alt'], median_bqs['alt'], max_bqs['alt'])), ('MR', "%d,%d,%d" % (min_mqs['ref'], median_mqs['ref'], max_mqs['ref'])), ('MA', "%d,%d,%d" % (min_mqs['alt'], median_mqs['alt'], max_mqs['alt']))]: sample_data[fmt_key] = val return sample_data def add_plp_to_vcf(vcf_in, vcf_out, bam_files): """process each var in vcf_in and add plp info from sam_fh, writing to vcf_out. is no way to edit/add format fields in current versions of pyvcf (as of 2014-06-30). see discussion here https://github.com/jamescasbon/PyVCF/issues/82 for patches and workarounds. chose to use csv module instead for simplicity """ assert all([os.path.exists(b) for b in bam_files]) # set up vcf_reader # if vcf_in == '-': fh_in = sys.stdin else: assert os.path.exists(vcf_in) if vcf_in[-3:] == ".gz": fh_in = gzip.open(vcf_in, 'rb') else: fh_in = open(vcf_in, 'rb') vcf_reader = csv.reader(fh_in, delimiter='\t') # set up vcf_writer/fh_out # if vcf_out == '-': fh_out = sys.stdout else: assert not os.path.exists(vcf_out) if vcf_out[-3:] == ".gz": fh_out = gzip.open(vcf_out, 'wb') else: fh_out = open(vcf_out, 'wb') vcf_writer = csv.writer(fh_out, delimiter='\t', quotechar='', quoting=csv.QUOTE_NONE, lineterminator=os.linesep) formats = gen_formats() for row in vcf_reader: if row[0].startswith('#'): if row[0] == "#CHROM": assert len(row) == 8, ( "variant incomplete or FORMAT column already exists") # before writing header, add our format description. for fmt in formats.values(): vcf_writer.writerow([fmt_to_line(fmt)]) row.append("FORMAT") for bam in bam_files: row.append(os.path.basename(bam)) vcf_writer.writerow(row) else: assert len(row) == 8, ( "variant incomplete or FORMAT column already exists") var = Variant._make([row[0], int(row[1]), row[2], row[3], row[4], row[5], row[6], row[7]]) # no support for indels if 'INDEL' in var.INFO.split(';') or len(var.REF) > 1 or len(var.ALT) > 1: LOG.warn("Skipping unsupported variant) %s:%d:%s" % ( var.CHROM, var.POS, var.REF)) continue row.append(':'.join(formats.keys())) for bam in bam_files: assert os.path.exists(bam) sam_fh = pysam.AlignmentFile(bam) sample_data = gen_plp_data(sam_fh, var) assert sample_data.keys() == formats.keys(), ( "sample keys (%s) != format keys (%s)" % (sample_data.keys(), formats.keys())) row.append(':'.join(sample_data.values())) vcf_writer.writerow(row) if fh_in != sys.stdin: fh_in.close() if fh_out != sys.stdout: fh_out.close() def main(): """main function """ parser = cmdline_parser() args = parser.parse_args() if args.verbose: LOG.setLevel(logging.INFO) if args.debug: LOG.setLevel(logging.DEBUG) for (in_file, descr) in [#(args.bam, "BAM"), (args.vcf_in, "VCF input")]: if not in_file: parser.error("%s file argument missing." % descr) sys.exit(1) if not os.path.exists(in_file) and in_file != "-": LOG.fatal("file '%s' does not exist.\n" % in_file) sys.exit(1) for (out_file, descr) in [(args.vcf_out, "VCF output")]: if not out_file: parser.error("%s output file argument missing." % descr) sys.exit(1) if os.path.exists(out_file) and out_file != "-": LOG.fatal("Cowardly refusing to overwrite existing" " output file '%s'.\n" % out_file) sys.exit(1) add_plp_to_vcf(args.vcf_in, args.vcf_out, args.bams) if __name__ == "__main__": main() LOG.info("Successful program exit") ```
{ "source": "Joshwlks/RL-SLT", "score": 3 }
#### File: env/reward/bleu.py ```python from __future__ import division import numpy as np import math import fractions from nltk.util import ngrams from collections import Counter from fractions import Fraction def sentence_bleu(references, hypothesis, weights=(0.25, 0.25, 0.25, 0.25), smoothing_function=None): """ :param references: reference sentences :type references: list(list(str)) :param hypothesis: a hypothesis sentence :type hypothesis: list(str) :param weights: weights for unigrams, bigrams, trigrams and so on :type weights: list(float) :return: The sentence-level BLEU score. :rtype: float """ return corpus_bleu([references], [hypothesis], weights, smoothing_function) def corpus_bleu(list_of_references, hypotheses, weights=(0.25, 0.25, 0.25, 0.25), smoothing_function=None): """ :param references: a corpus of lists of reference sentences, w.r.t. hypotheses :type references: list(list(list(str))) :param hypotheses: a list of hypothesis sentences :type hypotheses: list(list(str)) :param weights: weights for unigrams, bigrams, trigrams and so on :type weights: list(float) :return: The corpus-level BLEU score. :rtype: float """ # Before proceeding to compute BLEU, perform sanity checks. p_numerators = Counter() # Key = ngram order, and value = no. of ngram matches. p_denominators = Counter() # Key = ngram order, and value = no. of ngram in ref. hyp_lengths, ref_lengths = 0, 0 assert len(list_of_references) == len(hypotheses), "The numer of hypotheses and their reference(s) should be the same" # Iterate through each hypothesis and their corresponding references. for references, hypothesis in zip(list_of_references, hypotheses): # For each order of ngram, calculate the numerator and # denominator for the corpus-level modified precision. for i, _ in enumerate(weights, start=1): p_i = modified_precision(references, hypothesis, i) p_numerators[i] += p_i.numerator p_denominators[i] += p_i.denominator # Calculate the hypothesis length and the closest reference length. # Adds them to the corpus-level hypothesis and reference counts. hyp_len = len(hypothesis) hyp_lengths += hyp_len ref_lengths += closest_ref_length(references, hyp_len) # Calculate corpus-level brevity penalty. bp = brevity_penalty(ref_lengths, hyp_lengths) # Collects the various precision values for the different ngram orders. p_n = [Fraction(p_numerators[i], p_denominators[i], _normalize=False) for i, _ in enumerate(weights, start=1)] # Returns 0 if there's no matching n-grams # We only need to check for p_numerators[1] == 0, since if there's # no unigrams, there won't be any higher order ngrams. if p_numerators[1] == 0: return 0, 0 # Smoothen the modified precision. # Note: smooth_precision() converts values into float. if not smoothing_function: smoothing_function = SmoothingFunction().method0 p_n = smoothing_function(p_n, references=references, hypothesis=hypothesis, hyp_len=hyp_len) # Calculates the overall modified precision for all ngrams. # By sum of the product of the weights and the respective *p_n* s = (w * math.log(p_i) for w, p_i in zip(weights, p_n) if p_i.numerator != 0) # return bp * math.exp(math.fsum(s)) bleu = math.exp(math.fsum(s)) bleup = bleu * bp return bleu, bleup def modified_precision(references, hypothesis, n): """ :param references: A list of reference translations. :type references: list(list(str)) :param hypothesis: A hypothesis translation. :type hypothesis: list(str) :param n: The ngram order. :type n: int :return: BLEU's modified precision for the nth order ngram. :rtype: Fraction """ # Extracts all ngrams in hypothesis. counts = Counter(ngrams(hypothesis, n)) # Extract a union of references' counts. ## max_counts = reduce(or_, [Counter(ngrams(ref, n)) for ref in references]) max_counts = {} for reference in references: reference_counts = Counter(ngrams(reference, n)) for ngram in counts: max_counts[ngram] = max(max_counts.get(ngram, 0), reference_counts[ngram]) # Assigns the intersection between hypothesis and references' counts. clipped_counts = {ngram: min(count, max_counts[ngram]) for ngram, count in counts.items()} numerator = sum(clipped_counts.values()) # Ensures that denominator is minimum 1 to avoid ZeroDivisionError. # Usually this happens when the ngram order is > len(reference). denominator = max(1, sum(counts.values())) return Fraction(numerator, denominator, _normalize=False) def closest_ref_length(references, hyp_len): ''' This function finds the reference length that is closest in length to the hypothesis. The closest reference length is referred to as *r* variable from the brevity penalty formula in Papineni et. al. (2002) :param references: A list of reference translations. :type references: list(list(str)) :param hypothesis: The length of the hypothesis. :type hypothesis: int :return: The length of the reference that's closest to the hypothesis. :rtype: int ''' ref_lens = (len(reference) for reference in references) closest_ref_len = min(ref_lens, key=lambda ref_len: (abs(ref_len - hyp_len), ref_len)) return closest_ref_len def brevity_penalty(closest_ref_len, hyp_len): """ :param hyp_len: The length of the hypothesis for a single sentence OR the sum of all the hypotheses' lengths for a corpus :type hyp_len: int :param closest_ref_len: The length of the closest reference for a single hypothesis OR the sum of all the closest references for every hypotheses. :type closest_reference_len: int :return: BLEU's brevity penalty. :rtype: float """ if hyp_len > closest_ref_len: return 1 # If hypothesis is empty, brevity penalty = 0 should result in BLEU = 0.0 elif hyp_len == 0: return 0 else: return math.exp(1 - closest_ref_len / hyp_len) class SmoothingFunction: """ This is an implementation of the smoothing techniques for segment-level BLEU scores that was presented in <NAME> and <NAME> (2014) A Systematic Comparison of Smoothing Techniques for Sentence-Level BLEU. In WMT14. http://acl2014.org/acl2014/W14-33/pdf/W14-3346.pdf """ def __init__(self, epsilon=0.1, alpha=5, k=5): """ :param epsilon: the epsilon value use in method 1 :type epsilon: float :param alpha: the alpha value use in method 6 :type alpha: int :param k: the k value use in method 4 :type k: int """ self.epsilon = epsilon self.alpha = alpha self.k = k def method0(self, p_n, *args, **kwargs): """ No smoothing. """ return p_n def method5(self, p_n, references, hypothesis, hyp_len): """ Smoothing method 5: The matched counts for similar values of n should be similar. To a calculate the n-gram matched count, it averages the n−1, n and n+1 gram matched counts. """ m = {} # Requires an precision value for an addition ngram order. p_n_plus1 = p_n + [modified_precision(references, hypothesis, 5)] m[-1] = p_n[0] + 1 for i, p_i in enumerate(p_n): p_n[i] = (m[i - 1] + p_i + p_n_plus1[i + 1]) / 3 m[i] = p_n[i] return p_n ### for the reward function ### def BLEUwithForget(beta=None, discount=1., return_quality=False, **_k): # init words = _k['words'].split() # end-of-sentence is treated as a word ref = _k['reference'] q0 = numpy.zeros((_k['steps'],)) # check 0, 1 maps = [(it, a) for it, a in enumerate(_k['act']) if a < 2] kmap = len(maps) lb = numpy.zeros((kmap,)) ts = numpy.zeros((kmap,)) q = numpy.zeros((kmap,)) if not beta: beta = kmap beta = 1. / float(beta) chencherry = SmoothingFunction() # compute BLEU for each Yt Y = [] bleus = [] truebleus = [] if len(words) == 0: bleus = [0] truebleus = [0] for t in xrange(len(words)): if len(Y) > 0: _temp = Y[-1] + ' ' + words[t] _temp = _temp.replace('@@ ', '') Y = Y[:-1] + _temp.split() else: Y = [words[t]] bb = sentence_bleu(ref, Y, smoothing_function=chencherry.method5) bleus.append(bb[1]) # try true BLEU truebleus.append(bb[1]) # print 'Latency BLEU', lbn bleus = [0] + bleus # use TRUE BLEU bleus = numpy.array(bleus) temp = bleus[1:] - bleus[:-1] tpos = 0 for pos, (it, a) in enumerate(maps): if (a == 1) and (tpos < len(words)): q[pos] = temp[tpos] q0[it] = q[pos] tpos += 1 # add the whole sentence balance on it q0[-1] = truebleus[-1] # the last BLEU we use the real BLEU score. return q0 if __name__ == "__main__": hyps="S'il vous plaît, rendez-vous à l'aise." hyps=hyps.split() refs=[hyps] print(f"hyps: {refs}") print(f"The BLEU score for the sentence: {sentence_bleu(refs,hyps, smoothing_function=SmoothingFunction().method0)}") ```
{ "source": "JoshWorld/FastCampus-Python-Django", "score": 4 }
#### File: codefights/0518/task_0518.py ```python def incrementalBackups(lastBackupTime, changes): if changes == []: return [] sorted_list = sorted(changes, key=lambda data:data[1]) result_list = [] for data in sorted_list: if lastBackupTime < data[0]: if data[1] not in result_list: result_list.append(data[1]) return result_list ``` #### File: FastCampus-Python-Django/Week-2/06_lambda_study.py ```python (lambda x,y: x + y)(2, 3) (lambda x, y: x ** y)(2, 3) # [1, 2, 3] => [1, 4, 9] # map(func, seq) def square(x): return x ** 2 a = list(map(square, [1, 2, 3])) # 위에꺼 좀 더 리팩토링 해보자 # 람다로 바꿔보자 list(map(lambda x: x ** 2, [1, 2, 3])) # 1 + 2 => 3 # 2 + 3 => 5 # 4 + 3 => 7 list(map(lambda x,y:x + y, [1, 2, 3], [2, 3, 4])) list(map(lambda x,y:x + y, (1, 2, 3), (2, 3, 4))) # 짧은거 기준까지 더함 # 2 + 2 = 4 # 3 + 3 = 6 # 4 + 4 = 8 list(map(lambda x,y:x + y, [2, 3, 4, 5], [2, 3, 4])) # filter # filter(func, seq) # 조건을 줄때 number_list = list(range(1, 101)) # 짝수 구하기 list(filter(lambda x: x % 2 == 0, number_list)) list(filter(lambda x: x > 5, number_list)) # Reduce # 줄이는 아이 # 하나만 남기는 아이 # Python3 => functools로 분리 import필요 # 배열의 요소들의 합 # 연산과정 ''' 10 + 20 = 30 30 + 30 = 60 60 + 40 = 100 ''' import functools functools.reduce(lambda x,y: x + y, [10, 20, 30, 40]) # 리스트중에 가장 큰 값 찾기 # [참일때의 값] if [조건문] else [거짓일때의 값] # 최대값은 x와y를 비교하면 10>20이 false기 때문에 20이 남는다. functools.reduce(lambda x,y: x if x>y else y, [10, 20, 30, 40]) # 최소값은 x와y를 비교하면 10<20이 true이기 때문에 10이 남는다. functools.reduce(lambda x,y: x if x<y else y, [10, 20, 30, 40]) # 숫자인 애들만 제곱해서 새로운 리스트 만들기 # lambda에서 조건없이 연산을 해야 한다. => map # lambda에서 조건으로 값을 걸러낸다. => filter # lambda에서 하나의 값만 얻어내야 한다. => reduce awesome_list = [1, 2, "안수찬", {}, 4, 5] list(map( lambda x: x ** 2, filter( lambda x: isinstance(x, int), awesome_list ) )) # 1~100까지 합 구하기 functools.reduce( lambda x,y: x + y, [i for i in range(1, 101)] ) functools.reduce( lambda x,y: x + y, list(range(1, 101)) ) # 1~100까지 짝수 합 functools.reduce( lambda x, y: x+y, filter( lambda x: x%2 == 0, list(range(1, 101)) ) ) # FizzBuzz # 3의배수 이면 Fizz # 5의배수 이면 Buzz # 15의배수 이면 FizzBuzz # 3, 6, 9, 12, 15 # 5, 10, 15, 20, 25 # 15, 30, 45, 60 # 3으로도 나눠지고 5로도 나눠지면 15의 배수 ''' list( filter( lambda x: x%3 == 0 or x%5 == 0, ) ) ''' # List Comprehension # 3의 배수 [i for i in range(1, 101) if i % 3 == 0] # 1~100까지 숫자 중에서 짝수인 애들의 제곱 리스트 [i ** 2 for i in range(1, 101) if i % 2 ==0] # palindrome # 기러기 => 기러기 # 소주만병만주소 => 소주만병만주소 # 정의부터 해놓고 보자 # 정의 => 문자열을 받아서, 뒤집었을때 같으면 True, 틀리면 False word = "기러기" len(word) # 가장 기초적인 방법 def reverse(word): reversed_word = "" for i in range(len(word)): reversed_word += word[len(word)-1-i] return reversed_word # python slice # [start:end:step] "기러기는기러기다"[::-1] def is_palindrome(word): return word == word[::-1] is_palindrome("소주만병만주소") # 한줄이다 lambda를 이용해보자!! (lambda x: x == x[::-1])("가나") ```
{ "source": "JoshWorld/RT-OCF", "score": 2 }
#### File: tools/internal/common.py ```python class Result: def __init__(self, exitcode=0, message='', data={}): self.exitcode = exitcode self.message = message self.data = data ``` #### File: tools/internal/linter.py ```python import os import subprocess from internal.config import RT_OCF_ROOT_TOOLS_INTERNAL from internal.common import Result from internal.utils import execute_return_output from internal.utils import print_fail, print_green TIZEN_LINT_TOOL = os.path.join( RT_OCF_ROOT_TOOLS_INTERNAL, 'checkpatch_tizen.pl') class Linter: def __init__(self): pass def execute(self, file_list, show_warning): warning_count = {'error': 0, 'warning': 0} for filepath in file_list: if not filepath.endswith('.c') and not filepath.endswith('.h'): continue each_result = self.execute_lint(filepath, show_warning) warning_count['error'] += each_result['error'] warning_count['warning'] += each_result['warning'] report = 'error: {}, warning: {}'.format( warning_count['error'], warning_count['warning']) exitcode = 0 if warning_count['error'] > 0: exitcode = 1 print_fail('Catch you!!! You did not take code style seriously.') return Result(message=report, exitcode=exitcode) def execute_lint(self, fullpath, show_warning): cmd = '{} {} 2> /dev/null'.format(TIZEN_LINT_TOOL, fullpath) lint_result = {'error': 0, 'warning': 0} print_green('$ ' + fullpath) result = execute_return_output(cmd, is_print_cmd=False) for line in result.data.split('\n'): if 'ERROR: ' in line: print(line.rstrip()) if show_warning and 'WARNING: ' in line: print(line.rstrip()) if line.startswith('total: '): splited = line.split(' ') lint_result['error'] = int(splited[1]) lint_result['warning'] = int(splited[3]) if lint_result['error'] is not 0 or lint_result['warning'] is not 0: print('{}, {}'.format(line.rstrip(), fullpath)) return lint_result ``` #### File: tools/internal/peak_calculator.py ```python import os import glob import re from internal.utils import execute from internal.utils import execute_return_output from internal.common import Result class Peak: def __init__(self): self.total = 0 self.useful_heap = 0 self.extra_heap = 0 self.stacks = 0 def __str__(self): output = 'total:{}, '.format(self.total) output += 'useful_heap:{}, '.format(self.useful_heap) output += 'extra_heap:{}, '.format(self.extra_heap) output += 'stacks:{}'.format(self.stacks) return output def __repr__(self): return self.__str__() def __lt__(self, other): return self.total < other.total def __gt__(self, other): return other.__lt__(self) def __eq__(self, other): return self.total == other.total def __ne__(self, other): return not self.__eq__(other) class PeakCalculator: def __init__(self): pass def calculate(self, data): return self.parse_massif(data) def parse_massif(self, massif_data): target_snapshot = self.find_peak_memory_snap_no(massif_data) return self.find_memory_info_by_snap_no(massif_data, target_snapshot) def find_peak_memory_snap_no(self, massif_data): peak_re = re.compile('(?P<snap_no>\d+) \(peak\)') result = peak_re.findall(massif_data) if len(result) is 0: return None return result[0] def find_memory_info_by_snap_no(self, massif_data, snap_no): memory_info_re = r"^\s+{}\s+([0-9,]+)\s+(?P<total>[0-9,]+)\s+(?P<useful_heap>[0-9,]+)\s+(?P<extra_heap>[0-9,]+)\s+(?P<stacks>[0-9,]+)".format(snap_no) compiled_re = re.compile(memory_info_re, re.MULTILINE) m = compiled_re.search(massif_data) if m is None: return None dic = m.groupdict() peak = Peak() peak.total = int(dic['total'].replace(',', '')) peak.useful_heap = int(dic['useful_heap'].replace(',', '')) peak.extra_heap = int(dic['extra_heap'].replace(',', '')) peak.stacks = int(dic['stacks'].replace(',', '')) return peak ``` #### File: tools/internal/tizenrt_testresult_collector.py ```python import glob import serial import sys from internal.common import Result import time WIFI_SSID = 'ZEROROOT' WIFI_PASSWORD = '<PASSWORD>' class TestResultCollector: def __init__(self, usb_device=None): if usb_device is None: usb_device = self.get_usb_tty_number() self.serial = self.create_serial(usb_device) def get_usb_tty_number(self): ttyUSBs = glob.glob('/sys/class/tty/ttyUSB*') if len(ttyUSBs) == 0: print('TizenRT is not connected') exit(1) return '/dev/{}'.format(ttyUSBs[0].split('/')[-1]) def create_serial(self, usb_device): return serial.Serial(usb_device, 115200, timeout=70) def collect(self, options=''): time.sleep(2) self.write_connecting_wifi_command() command = 'iot_rt_unittest ' + options + '\n' self.serial.write(command) return self.read_serial_output() def write_connecting_wifi_command(self): self.serial.write('wifi startsta\n') time.sleep(2) self.serial.write('wifi join {} {} wpa2_aes\n'.format(WIFI_SSID, WIFI_PASSWORD)) time.sleep(2) self.serial.write('ifconfig wl1 dhcp\n') time.sleep(2) def read_serial_output(self): while True: line = self.serial.readline() if line == '': print('Timeout') return Result(exitcode=1, message='timeout: Core Dump may occur') sys.stdout.write(line) if self.is_test_result(line): return Result( exitcode=self.get_test_exitcode(line), message=line) if self.is_core_dump(line): return Result(exitcode=1, message=line) def get_test_exitcode(self, line): arr = line.split(' ') if arr[2] == '0': return 0 return 1 def is_test_result(self, line): return 'Tests' in line and 'Failure' in line and 'Ignored' in line def is_core_dump(self, line): return '(core dumped)' in line def test_get_usb_tty_number(): assert '/dev/ttyUSB1' == TestResultCollector().get_usb_tty_number() def test_create_serial(): assert None != TestResultCollector().create_serial('/dev/ttyUSB1') def test_is_core_dump(): assert True == TestResultCollector().is_core_dump('Aborted (core dumped)') ``` #### File: RT-OCF/tools/memory.py ```python import subprocess import os import sys from internal.common import Result from internal.utils import write_result from internal.utils import execute from internal.utils import execute_return_output from internal.linux_adapter import LinuxAdapter from internal.leak_calculator import LeakCalculator from internal.peak_calculator import PeakCalculator from internal.peak_calculator import Peak from internal.RT_OCF_error import RT_OCFError from internal.config import RT_OCF_FUNCTIONAL_TEST from internal.config import CI_LINUX_LEAK_FILE_NAME from internal.config import CI_LINUX_PEAK_FILE_NAME import glob FUNCTIONAL_TESTS = glob.glob(os.path.join(RT_OCF_FUNCTIONAL_TEST, 'test_*.py')) PEAK_FAIL_MESSAGE = "Calculating memory peak is Failed T^T" LEAK_FAIL_MESSAGE = "Calculating memory leak is Failed T^T" def run(args): adapter = LinuxAdapter() if not args.skip_build: adapter.distclean() adapter.build() result = Result() leak_message = LEAK_FAIL_MESSAGE peak_message = PEAK_FAIL_MESSAGE try: leak_dic = {} peak_dic = {} for binary in FUNCTIONAL_TESTS: filename = os.path.basename(binary) execute('rm -rf massif.out.*') execute_output = execute_return_output('python {}'.format(binary)) leak_dic[filename] = LeakCalculator().calculate(execute_output.data) massif_output = execute_return_output('ms_print massif.out.*') peak_dic[filename] = PeakCalculator().calculate(massif_output.data) leak_total = 0 peak_max = Peak() for filename in leak_dic: print('#############################################################') print('-- {} --'.format(filename)) print(' Memory leak') print(' {} bytes'.format(leak_dic[filename])) print(' Memory peak') print(' {}'.format(str(peak_dic[filename]))) print('#############################################################') leak_total += leak_dic[filename] if peak_dic[filename] > peak_max: peak_max = peak_dic[filename] leak_message = 'Memory Leak: {} bytes'.format(str(leak_total)) peak_message = 'Memory Peak: {}'.format(str(peak_max)) except RT_OCFError as e: peak_message = PEAK_FAIL_MESSAGE leak_message = LEAK_FAIL_MESSAGE result = Result(exitcode=e.exitcode, message=e.message) finally: if args.is_ci: write_result(CI_LINUX_LEAK_FILE_NAME, leak_message) write_result(CI_LINUX_PEAK_FILE_NAME, peak_message) print("Result::") print(leak_message) print(peak_message) exit(result.exitcode) def run_peak(is_ci): try: result = PeakCalculator().calculate(FUNCTIONAL_TESTS) except RT_OCFError as e: result = Result(exitcode=e.exitcode, message=e.message) finally: if args.is_ci: write_result(CI_LINUX_PEAK_FILE_NAME, result.message) return result if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument( '--skip-build', dest="skip_build", required=False, action='store_true', help="True, if you want to skip build") parser.add_argument( "--ci", dest="is_ci", required=False, action='store_true', help="True, if it is ci build.") args = parser.parse_args() run(args) ``` #### File: tools/test/test_memory_script.py ```python import os from subprocess import call from tools.internal.config import RT_OCF_ROOT from tools.internal.config import RT_OCF_ROOT_TOOLS from tools.internal.config import CI_LINUX_LEAK_FILE_NAME from tools.internal.config import CI_LINUX_PEAK_FILE_NAME from tools.test.common import make_fail_file from tools.test.common import remove_fail_file class TestMemoryScript: def setup_method(self, method): call('rm -rf ci_*.txt', shell=True) def teardown_method(self, method): call('rm -rf ci_*.txt', shell=True) def test_memory_leak(self): command = '{}/memory.py leak'.format(RT_OCF_ROOT_TOOLS) call(command, shell=True) assert not os.path.isfile(CI_LINUX_LEAK_FILE_NAME) def test_memory_leak_ci(self): command = '{}/memory.py leak --ci'.format(RT_OCF_ROOT_TOOLS) call(command, shell=True) assert os.path.isfile(CI_LINUX_LEAK_FILE_NAME) def test_memory_peak(self): command = '{}/memory.py peak'.format(RT_OCF_ROOT_TOOLS) call(command, shell=True) assert not os.path.isfile(CI_LINUX_PEAK_FILE_NAME) def test_memory_peak_ci(self): command = '{}/memory.py peak --ci'.format(RT_OCF_ROOT_TOOLS) call(command, shell=True) assert os.path.isfile(CI_LINUX_PEAK_FILE_NAME) ```
{ "source": "JoshWorld/WhaleShark_IIoT", "score": 2 }
#### File: JoshWorld/WhaleShark_IIoT/mongo_manager.py ```python from pymongo import MongoClient, ReturnDocument import yaml import logging import sys logging.basicConfig(format='%(asctime)s %(levelname)-8s %(message)s', stream=sys.stdout, level=logging.DEBUG, datefmt='%Y-%m-%d %H:%M:%S') class MongoMgr: def __init__(self): with open('config/config_server_develop.yaml', 'r') as file: config_obj = yaml.load(file, Loader=yaml.FullLoader) self.mongo_host = config_obj['iiot_server']['mongodb']['ip_address'] self.mongo_port = config_obj['iiot_server']['mongodb']['port'] self.id = config_obj['iiot_server']['mongodb']['id'] self.pwd = config_obj['iiot_server']['mongodb']['pwd'] self.db = config_obj['iiot_server']['mongodb']['db'] self.mongo_client = MongoClient(self.mongo_host, username = self.id, password = <PASSWORD>, authSource = self.db, authMechanism = 'SCRAM-SHA-1') def mongo_conn(self): return self.mongo_client def collections(self, database): return self.mongo_client[database].collection_names() def documents(self, database, collection): documents_list = self.mongo_client[database].get_collection(collection).find({}) return documents_list def document_bykey(self, database, collection, doc_key): return self.mongo_client[database].get_collection(collection).find_one(doc_key) def document_upsert(self, database, collection, doc_key, pub_time, status={'SENT':''}): document = self.mongo_client[database].get_collection(collection).find_one({'DAY':doc_key}) if document is None: """ Daily append """ self.mongo_client[database].get_collection(collection).insert_one({'DAY':doc_key,"LOG":{pub_time:status}}) else: """ Secondary append """ if pub_time in document['LOG'].keys():#수신 확인시 doc_id = document['_id'] if 'SENT' in document['LOG'][pub_time]: document['LOG'][pub_time]['SENT']='RECEIVED' self.mongo_client[database].get_collection(collection).find_one_and_update({'_id': doc_id}, {'$set': document}) else: logging.error('KEY:'+ pub_time + ' NO SENT') else: doc_id = document['_id'] document['LOG'][pub_time]={'SENT':''} self.mongo_client[database].get_collection(collection).find_one_and_update({'_id': doc_id}, {'$set': document}) ```
{ "source": "Josh-WOW/RexBot", "score": 3 }
#### File: RexBot/commands/ping.py ```python import discord from discord.ext import commands import datetime import time from random import choice, randint class ping:#This is like the section of each command, when you see the help menu for the bot you will understand def __init__(self, bot):#This is the define so in this case its "self.bot", you can also add loop and extras to this self.bot = bot @commands.command(pass_context=True)#This is a command base async def ping(self, ctx): t1 = time.perf_counter() await self.bot.send_typing(ctx.message.channel) t2 = time.perf_counter() ping = str(round((t2-t1)*1000)) author = ctx.message.author.mention response = await self.bot.say("**{}, this took me {}ms to send**".format(author, ping)) issue = ctx.message time.sleep(10) await self.bot.delete_message(response) time.sleep(0.5) await self.bot.delete_message(issue) def setup(bot): n = ping(bot) bot.add_cog(n)#This is bot setup, every new command file you make must have this ``` #### File: Josh-WOW/RexBot/rexbot.py ```python import discord from discord.ext import commands import sys, traceback from os import listdir from os.path import isfile, join def get_prefix(bot, message): prefixes = ['$'] return commands.when_mentioned_or(*prefixes)(bot, message) cmd_dir = "commands" bot = commands.Bot(command_prefix=get_prefix, description='R3dfox') if __name__ == "__main__": for extension in [f.replace('.py', '') for f in listdir(cmd_dir) if isfile(join(cmd_dir, f))]: try: bot.load_extension(cmd_dir + "." + extension) except Exception as e: print(f'Failed to load file {extension}.') traceback.print_exc() @bot.event async def on_ready(): print("Starting up") print(f'Started!') bot.run('paste token here', bot=True, reconnect=True) ```
{ "source": "joshxinjie/clean-code-ml", "score": 3 }
#### File: src/tests/test_workshop_metrics.py ```python import unittest from sklearn.metrics import precision_score, recall_score from src.train import prepare_data_and_train_model class TestModelMetrics(unittest.TestCase): def test_model_precision_is_above_threshold(self): model, X_test, Y_test = prepare_data_and_train_model() Y_pred = model.predict(X_test) precision = precision_score(Y_test, Y_pred) self.assertGreaterEqual(precision, 0.6) def test_model_recall_is_above_threshold(self): model, X_test, Y_test = prepare_data_and_train_model() Y_pred = model.predict(X_test) precision = recall_score(Y_test, Y_pred) self.assertGreaterEqual(precision, 0.6) if __name__ == '__main__': unittest.main() ``` #### File: src/tests/test_workshop.py ```python import unittest import numpy as np import pandas as pd from pandas.testing import assert_frame_equal from src.workshop import add, multiply_by_10, impute_nans, add_is_alone_column # add 1 + 1 class TestProcessing(unittest.TestCase): def test_add_1_and_1_should_return_2(self): self.assertEqual(add(1,1),2) def test_multiply_by_10_should_return_a_df_with_values_multiplied_by_10(self): # arange df = pd.DataFrame({ 'age': [1,2,3], 'name': ['Bob', 'Alice', 'John'] }) expected_df = pd.DataFrame({ 'age': [10, 20, 30], 'name': ['Bob', 'Alice', 'John'] }) assert_frame_equal(multiply_by_10(df),expected_df) def test_impute_nan_should_replace_nan_values_with_median_values(self): df = pd.DataFrame({ 'age': [1,np.nan,3], 'income': [100, 300, np.nan], 'name': ['Bob', 'Alice', np.nan] }) expected_df = pd.DataFrame({ 'age': [1, 2, 3], 'income': [100, 300, 200], 'name': ['Bob', 'Alice', np.nan] }) assert_frame_equal(impute_nans(df, columns=['age', 'income']),expected_df, check_dtype=False) def test_is_alone_should_create_an_isalone_column_with_value_1_if_familysize_is_1(self): df = pd.DataFrame({ 'FamilySize': [1,5,3], 'name': ['Bob', 'Alice', 'John'] }) expected_df = pd.DataFrame({ 'FamilySize': [1,5,3], 'name': ['Bob', 'Alice', 'John'], 'IsAlone': [1,0,0] }) assert_frame_equal(add_is_alone_column(df),expected_df) if __name__ == '__main__': unittest.main() #python -m src.tests.test_workshop ```
{ "source": "josh-yang92/BitlyConverter", "score": 3 }
#### File: BitlyConverter/BitlyAffiliateConverter/authFunction.py ```python import os def getKeys(keyDir): file = open(os.path.join(keyDir, 'keys.txt'), 'r') fields = file.read() fields = fields.split('\n') keys = {} for items in fields: elements = items.split('=') keys[elements[0].strip()] = elements[1].strip() return keys ``` #### File: BitlyConverter/BitlyAffiliateConverter/MainDisplayClass.py ```python import tkinter as tk from .CustomDialogClass import CustomDialog from .RequestingFunctions import getItemName from .RequestingFunctions import getShortLink class Run: def __init__(self, root, keys): self.root = root self.keys = keys self.affLink = None self.longLink = None # combine the shortened link and the product name, display it in a window def showDialog(self, shortenedURL, itemName): inputText = itemName + ': ' + shortenedURL CustomDialog(self.root, title="Link", text=inputText) # combine the affiliate link to the site url, get the item names and display it all def convert(self): combinedLink = self.affLink.get('1.0', tk.END).strip() + '/' + self.longLink.get('1.0', tk.END).strip() itemName = getItemName(self.longLink.get('1.0', tk.END).strip()) self.showDialog(getShortLink(self.keys['APIUser'], self.keys['APIKey'], combinedLink), itemName) def runApp(self): canvas1 = tk.Canvas(self.root, width=300, height=150) canvas1.grid() tk.Label(self.root, text='Affiliate Link').grid(row=0) tk.Label(self.root, text='Long URL').grid(row=1) self.affLink = tk.Text(self.root, width=100, height=5) self.longLink = tk.Text(self.root, width=100, height=5) self.affLink.insert("end", self.keys['AffLink']) self.affLink.grid(row=0, column=1) self.longLink.grid(row=1, column=1) button1 = tk.Button(text='Convert!', command=self.convert, bg='brown', fg='white').grid(row=3) canvas1.create_window(150, 150, window=button1) self.root.mainloop() ```
{ "source": "joshy/dcm", "score": 3 }
#### File: dcm/dcm/diff.py ```python from copy import deepcopy from hashlib import sha256 from typing import Optional, List from pydicom import Dataset, DataElement from pydicom.tag import BaseTag def _shorten_bytes(val: bytes) -> bytes: if len(val) > 16: return b"*%d bytes, hash = %s*" % (len(val), sha256(val).hexdigest().encode()) return val class DataDiff(object): default_elem_fmt = "{elem.tag} {elem.name: <35} {elem.VR}: {value}" def __init__( self, tag: BaseTag, l_elem: Optional[DataElement], r_elem: Optional[DataElement], elem_fmt: str = default_elem_fmt, ): self.tag = tag self.l_elem = deepcopy(l_elem) self.r_elem = deepcopy(r_elem) self.elem_fmt = elem_fmt def _format_elem(self, elem: DataElement) -> str: value = elem.value if isinstance(value, bytes): value = _shorten_bytes(value) return self.elem_fmt.format(elem=elem, value=value) def __str__(self) -> str: res = [] if self.l_elem is not None: res.append("< %s" % self._format_elem(self.l_elem)) if self.r_elem is not None: res.append("> %s" % self._format_elem(self.r_elem)) return "\n".join(res) def diff_data_sets(left: Dataset, right: Dataset) -> List[DataDiff]: """Get list of all differences between `left` and `right` data sets""" l_elems = iter(left) r_elems = iter(right) l_elem = r_elem = None l_done = r_done = False diffs = [] while True: if l_elem is None and not l_done: try: l_elem = next(l_elems) except StopIteration: l_done = True l_elem = None if r_elem is None and not r_done: try: r_elem = next(r_elems) except StopIteration: r_done = True r_elem = None if l_elem is None and r_elem is None: break if l_elem is None: assert r_elem is not None diffs.append(DataDiff(r_elem.tag, l_elem, r_elem)) r_elem = None elif r_elem is None: assert l_elem is not None diffs.append(DataDiff(l_elem.tag, l_elem, r_elem)) l_elem = None elif l_elem.tag < r_elem.tag: diffs.append(DataDiff(l_elem.tag, l_elem, None)) l_elem = None elif r_elem.tag < l_elem.tag: diffs.append(DataDiff(r_elem.tag, None, r_elem)) r_elem = None else: if l_elem.value != r_elem.value or l_elem.VR != r_elem.VR: diffs.append(DataDiff(l_elem.tag, l_elem, r_elem)) l_elem = r_elem = None return diffs ``` #### File: dcm/dcm/route.py ```python from __future__ import annotations import asyncio, logging from copy import copy, deepcopy from datetime import datetime from dataclasses import dataclass, field from typing import ( Optional, Tuple, Callable, Dict, List, Union, Iterable, AsyncIterator, AsyncContextManager, Any, cast, ) from contextlib import asynccontextmanager import janus from pydicom import Dataset from .lazyset import LazySet, FrozenLazySet from .query import ( QueryLevel, QueryResult, DataNode, InconsistentDataError, get_uid, minimal_copy, ) from .filt import Filter, DataTransform, get_transform, Selector from .report import ( CountableReport, MultiListReport, MultiDictReport, MultiKeyedError, ProgressHookBase, ) from .util import DuplicateDataError, TomlConfigurable from .net import DicomOpReport, IncomingDataError, IncomingErrorType from .store import DataBucket, DataRepo, TransferMethod, LocalWriteReport log = logging.getLogger(__name__) class NoValidTransferMethodError(Exception): """Error raised when we are unable to select a valid transfer method""" def __init__( self, src_dest_pair: Optional[ Tuple[DataBucket[Any, Any], DataBucket[Any, Any]] ] = None, ): self.src_dest_pair = src_dest_pair def __str__(self) -> str: if self.src_dest_pair is None: return "No valid transfer method for one or more routes" else: return f"No valid transfer method between {self.src_dest_pair[0]} and {self.src_dest_pair[1]}" # TODO: Have been working under the assumption the filter would be applied # before resolving dynamic routes, but it is more likely and common # that we would want to route on the original data, since we may have # a rather broad filter (i.e. anonymization) that screws up the elements # used for routing. # # Any logic that would go into a pre-filter could just be placed in the # dynamic routing function. We might just need to duplicate that logic # into a filter if we also want to persist the changes which is an okay # trade-off compared to the complexity of allowing both pre/post filters # # We do lose the ability to specify which elements might be # modified, how they might be modified, and what their dependencies are. # Do we implicitly disallow uninvertible shenanigans in the dynamic routing # function? @dataclass(frozen=True) class Route: """Abstract base class for all Routes The main functionality of routes is to map datasets to destinations. Routes can have a filter associated with them, which take a dataset as input and return one as output. The dataset can be modified and None can be returned to reject the dataset. """ filt: Optional[Filter] = None """Streaming data filter for editing and rejecting data sets""" def get_dests( self, data_set: Dataset ) -> Optional[Tuple[DataBucket[Any, Any], ...]]: """Return the destintations for the `data set` Must be implemented by all subclasses.""" raise NotImplementedError def get_filtered(self, data_set: Dataset) -> Optional[Dataset]: if self.filt is None: return data_set return self.filt(data_set) @dataclass(frozen=True) class _StaticBase: dests: Tuple[DataBucket[Any, Any], ...] """Static tuple of destinations""" methods: Tuple[TransferMethod, ...] = (TransferMethod.PROXY,) """The transfer methods to use, in order of preference This will automatically be paired down to the methods supported by all the dests (or just allow PROXY if we have a filter). If no valid transfer methods are given a `NoValidTransferMethodError` will be raised. """ @dataclass(frozen=True) class StaticRoute(Route, _StaticBase, TomlConfigurable["StaticRoute"]): """Static route that sends all (unfiltered) data to same dests""" def __post_init__(self) -> None: if self.filt is not None: if TransferMethod.PROXY not in self.methods: raise NoValidTransferMethodError() avail_methods = [TransferMethod.PROXY] else: avail_methods = [] for meth in self.methods: if all(meth in d._supported_methods for d in self.dests): avail_methods.append(meth) if len(avail_methods) == 0: raise NoValidTransferMethodError() object.__setattr__(self, "dests", tuple(self.dests)) object.__setattr__(self, "methods", tuple(avail_methods)) @classmethod def from_toml_dict(cls, toml_dict: Dict[str, Any]) -> StaticRoute: kwargs = deepcopy(toml_dict) methods = kwargs.get("methods") if methods is not None: kwargs["methods"] = tuple(TransferMethod[m.upper()] for m in methods) return cls(**kwargs) def get_dests(self, data_set: Dataset) -> Tuple[DataBucket[Any, Any], ...]: return self.dests def get_method(self, src: DataBucket[Any, Any]) -> TransferMethod: for method in self.methods: if method in src._supported_methods: return method raise NoValidTransferMethodError() def __str__(self) -> str: return "Static: %s" % ",".join(str(d) for d in self.dests) @dataclass(frozen=True) class _DynamicBase: lookup: Callable[[Dataset], Optional[Tuple[DataBucket[Any, Any], ...]]] """Callable takes a dataset and returns destinations""" route_level: QueryLevel = QueryLevel.STUDY """The level in the DICOM hierarchy we are making routing decisions at""" required_elems: FrozenLazySet[str] = field(default_factory=FrozenLazySet) """DICOM elements that we require to make a routing decision""" dest_methods: Optional[ Dict[Optional[DataBucket[Any, Any]], Tuple[TransferMethod, ...]] ] = None """Specify transfer methods for (some) dests Use `None` as the key to specify the default transfer methods for all dests not explicitly listed. Only respected when pre-routing is used. Dynamic routing can only proxy. """ @dataclass(frozen=True) class DynamicRoute(Route, _DynamicBase): """Dynamic route which determines destinations based on the data. Routing decisions are made before applying the filter to the data. """ def __post_init__(self) -> None: if self.dest_methods is not None: avail_meths: Dict[ Optional[DataBucket[Any, Any]], Tuple[TransferMethod, ...] ] = {} for dest, methods in self.dest_methods.items(): if self.filt is not None: if TransferMethod.PROXY not in methods: raise NoValidTransferMethodError() avail_meths[dest] = (TransferMethod.PROXY,) elif dest is None: avail_meths[dest] = methods else: meths = tuple(m for m in methods if m in dest._supported_methods) if len(meths) == 0: raise NoValidTransferMethodError() avail_meths[dest] = meths object.__setattr__(self, "dest_methods", avail_meths) if self.route_level not in QueryLevel: raise ValueError("Invalid route_level: %s" % self.route_level) if not isinstance(self.required_elems, FrozenLazySet): object.__setattr__( self, "required_elems", FrozenLazySet(self.required_elems) ) def get_dests( self, data_set: Dataset ) -> Optional[Tuple[DataBucket[Any, Any], ...]]: dests = self.lookup(data_set) if dests is None: return None return tuple(dests) def get_static_routes(self, data_set: Dataset) -> Optional[Tuple[StaticRoute, ...]]: """Resolve this dynamic route into one or more static routes""" dests = self.lookup(data_set) if dests is None: return dests dests = tuple(dests) if self.dest_methods is not None: meths_dests_map: Dict[ Tuple[TransferMethod, ...], List[DataBucket[Any, Any]] ] = {} default_methods = self.dest_methods.get(None) if default_methods is None: default_methods = (TransferMethod.PROXY,) for dest in dests: d_methods = self.dest_methods.get(dest) if d_methods is None: d_methods = default_methods if d_methods not in meths_dests_map: meths_dests_map[d_methods] = [] meths_dests_map[d_methods].append(dest) return tuple( StaticRoute(tuple(sub_dests), filt=deepcopy(self.filt), methods=meths) for meths, sub_dests in meths_dests_map.items() ) else: return (StaticRoute(dests, filt=deepcopy(self.filt)),) def __str__(self) -> str: return "Dynamic on: %s" % self.required_elems @dataclass(frozen=True) class SelectorDestMap(TomlConfigurable["SelectorDestMap"]): """Allow construction of dynamic routes from static config""" routing_map: Tuple[Tuple[Selector, Tuple[DataBucket[Any, Any], ...]], ...] """One or more tuples of (selector, dests) pairs""" default_dests: Optional[Tuple[DataBucket[Any, Any], ...]] = None """The default destinations to use when no selectors match""" exclude: Optional[Tuple[Selector, ...]] = None """Exclude data at routing step (versus `filt` which is applied to each image)""" stop_on_first: bool = True """Just return dests associated with first selector that matches""" route_level: QueryLevel = QueryLevel.STUDY """The level in the DICOM hierarchy we are making routing decisions at""" dest_methods: Optional[ Dict[Optional[DataBucket[Any, Any]], Tuple[TransferMethod, ...]] ] = None """Specify transfer methods for (some) dests Use `None` as the key to specify the default transfer methods for all dests not explicitly listed. Only respected when pre-routing is used. Dynamic routing can only proxy. """ required_elems: FrozenLazySet[str] = field( default_factory=FrozenLazySet, init=False ) """DICOM elements that we require to make a routing decision""" filt: Optional[Filter] = None """Steaming data filter for editing and rejecting data sets""" def __post_init__(self) -> None: req_elems: LazySet[str] = LazySet() for sel, _ in self.routing_map: req_elems |= sel.get_read_elems() if self.exclude: for sel in self.exclude: req_elems |= sel.get_read_elems() object.__setattr__(self, "required_elems", FrozenLazySet(req_elems)) @classmethod def from_toml_dict(cls, toml_dict: Dict[str, Any]) -> SelectorDestMap: kwargs = deepcopy(toml_dict) route_level = kwargs.get("route_level") if route_level is not None: kwargs["route_level"] = QueryLevel[route_level.upper()] return cls(**kwargs) def get_dynamic_route(self) -> DynamicRoute: """Return equivalent DynamicRoute object""" def lookup_func(ds: Dataset) -> Optional[Tuple[DataBucket[Any, Any], ...]]: res: List[DataBucket[Any, Any]] = [] if self.exclude: if any(sel.test_ds(ds) for sel in self.exclude): return None for sel, dests in self.routing_map: if sel.test_ds(ds): if self.stop_on_first: return dests else: res += dests if not res: return self.default_dests return tuple(res) return DynamicRoute( lookup_func, route_level=self.route_level, required_elems=self.required_elems, dest_methods=self.dest_methods, filt=self.filt, ) class ProxyTransferError(Exception): def __init__( self, store_errors: Optional[MultiKeyedError] = None, inconsistent: Optional[Dict[StaticRoute, List[Tuple[Dataset, Dataset]]]] = None, duplicate: Optional[Dict[StaticRoute, List[Tuple[Dataset, Dataset]]]] = None, incoming_error: Optional[IncomingDataError] = None, ): self.store_errors = store_errors self.inconsistent = inconsistent self.duplicate = duplicate self.incoming_error = incoming_error def __str__(self) -> str: res = ["ProxyTransferError:"] if self.inconsistent is not None: res.append("%d inconsistent data sets" % len(self.inconsistent)) if self.duplicate is not None: res.append("%d duplicate data sets" % len(self.duplicate)) if self.store_errors is not None: for err in self.store_errors.errors: res.append(str(err)) if self.incoming_error is not None: res.append(str(self.incoming_error)) return "\n\t".join(res) # TODO: Some annoying overlap with IncomingDataReport here, but not clear we # can do much about it since we need a RetrieveReport when the src is # remote, and we need the `sent` dict here to track data transforms. # # Can we make sure the same (minimized) data set is used in all report # structures? Does that alleviate all concerns about duplication? # TODO: Update keep_errors handling here. I guess the `add` method should # return a bool like with the IncomingDataReports? Also, this means that # we might end up sending erroneous data, which can't be caputred in the # DataTransforms under `sent` here. I guess this is okay and mimics what # happens in a RetrieveReport # class ProxyReport(CountableReport): """Abstract base class for reports on proxy transfers""" def __init__( self, description: Optional[str] = None, meta_data: Optional[Dict[str, Any]] = None, depth: int = 0, prog_hook: Optional[ProgressHookBase[Any]] = None, n_expected: Optional[int] = None, keep_errors: Union[bool, Tuple[IncomingErrorType, ...]] = False, ): self.keep_errors = keep_errors # type: ignore self.sent: Dict[StaticRoute, DataTransform] = {} self.inconsistent: Dict[StaticRoute, List[Tuple[Dataset, Dataset]]] = {} self.duplicate: Dict[StaticRoute, List[Tuple[Dataset, Dataset]]] = {} self._n_success = 0 super().__init__(description, meta_data, depth, prog_hook, n_expected) @property def keep_errors(self) -> Tuple[IncomingErrorType, ...]: """Whether or not we are forwarding inconsistent/duplicate data""" return self._keep_errors @keep_errors.setter def keep_errors(self, val: Union[bool, Tuple[IncomingErrorType, ...]]) -> None: if val == True: self._keep_errors = tuple(IncomingErrorType) elif val == False: self._keep_errors = tuple() else: val = cast(Tuple[IncomingErrorType, ...], val) self._keep_errors = val @property def n_success(self) -> int: return self._n_success @property def n_errors(self) -> int: n_errors = 0 if not self.keep_errors: n_errors += self.n_inconsistent + self.n_duplicate return n_errors @property def n_warnings(self) -> int: n_warn = 0 if self.keep_errors: n_warn += self.n_inconsistent + self.n_duplicate return n_warn @property def n_sent(self) -> int: """Number of times datasets were sent out""" res = sum(len(trans.new) * len(sr.dests) for sr, trans in self.sent.items()) if self.keep_errors: res += sum(len(x) * len(sr.dests) for sr, x in self.inconsistent.items()) res += sum(len(x) * len(sr.dests) for sr, x in self.duplicate.items()) return res @property def n_inconsistent(self) -> int: return sum(len(x) for _, x in self.inconsistent.items()) @property def n_duplicate(self) -> int: return sum(len(x) for _, x in self.duplicate.items()) @property def n_reported(self) -> int: """Number store results that have been reported so far""" raise NotImplementedError @property def all_reported(self) -> bool: """True if all sent data sets have a reported result""" assert self.n_reported <= self.n_sent return self.n_sent == self.n_reported def add(self, route: StaticRoute, old_ds: Dataset, new_ds: Dataset) -> bool: """Add the route with pre/post filtering dataset to the report""" self.count_input() if route not in self.sent: self.sent[route] = get_transform(QueryResult(QueryLevel.IMAGE), route.filt) try: self.sent[route].add(old_ds, new_ds) except InconsistentDataError: if route not in self.inconsistent: self.inconsistent[route] = [] self.inconsistent[route].append((old_ds, new_ds)) return IncomingErrorType.INCONSISTENT in self._keep_errors except DuplicateDataError: if route not in self.duplicate: self.duplicate[route] = [] self.duplicate[route].append((old_ds, new_ds)) return IncomingErrorType.DUPLICATE in self._keep_errors else: self._n_success += 1 return True def log_issues(self) -> None: """Produce log messages for any warning/error statuses""" n_inconsist = self.n_inconsistent if n_inconsist: if self.keep_errors: log.warning("Sent %d inconsistent data sets" % n_inconsist) else: log.error("Skipped %d inconsistent data sets" % n_inconsist) n_duplicate = self.n_duplicate if n_duplicate: if self.keep_errors: log.warning("Sent %d duplicate data sets" % n_duplicate) else: log.error("Skipped %d duplicate data sets" % n_duplicate) def check_errors(self) -> None: """Raise an exception if any errors have occured so far""" if self.n_errors: inconsist = None if self.inconsistent: inconsist = self.inconsistent dupes = None if self.duplicate: dupes = self.duplicate raise ProxyTransferError(inconsistent=inconsist, duplicate=dupes) def clear(self) -> None: self.sent.clear() self.inconsistent.clear() self.duplicate.clear() StoreReportType = Union[DicomOpReport, LocalWriteReport] class DynamicTransferReport(ProxyReport): """Track what data is being routed where and any store results""" def __init__( self, description: Optional[str] = None, meta_data: Optional[Dict[str, Any]] = None, depth: int = 0, prog_hook: Optional[ProgressHookBase[Any]] = None, n_expected: Optional[int] = None, keep_errors: Union[bool, Tuple[IncomingErrorType, ...]] = False, ): self.store_reports: MultiDictReport[ DataBucket[Any, Any], MultiListReport[StoreReportType] ] = MultiDictReport(prog_hook=prog_hook) super().__init__( description, meta_data, depth, prog_hook, n_expected, keep_errors ) @property def n_success(self) -> int: return super().n_success + self.store_reports.n_success @property def n_errors(self) -> int: return super().n_errors + self.store_reports.n_errors @property def n_warnings(self) -> int: return super().n_warnings + self.store_reports.n_warnings @property def n_reported(self) -> int: return self.store_reports.n_input def add_store_report( self, dest: DataBucket[Any, Any], store_report: StoreReportType ) -> None: """Add a DicomOpReport to keep track of""" if dest not in self.store_reports: self.store_reports[dest] = MultiListReport(prog_hook=self._prog_hook) self.store_reports[dest].append(store_report) def log_issues(self) -> None: """Produce log messages for any warning/error statuses""" super().log_issues() self.store_reports.log_issues() def check_errors(self) -> None: """Raise an exception if any errors have occured so far""" if self.n_errors: err = None try: super().check_errors() except ProxyTransferError as e: err = e else: err = ProxyTransferError() try: self.store_reports.check_errors() except MultiKeyedError as e: err.store_errors = e raise err def clear(self) -> None: """Clear current info about data sets we have results for""" # TODO: If n_sent != n_reported here we will go out of sync. I guess # this would need to be managed at a higher level if it is # needed. Not clear if it makes sense to do anything about it # here. super().clear() self.store_reports.clear() @dataclass class _CacheEntry: """Entry in a SendAssociationCache""" ctx_mgr: AsyncContextManager["janus._AsyncQueueProxy[Dataset]"] send_q: "janus._AsyncQueueProxy[Dataset]" op_report: DicomOpReport last_use: datetime # TODO: Make generic association caching in `net` module supporting # query/move/send. Could then use that everywhere, and use it to # manage max association limits on any node. class SendAssociationCache: def __init__(self, timeout: float = 30.0): """Keeps cache of recent associations""" self._timeout = timeout self._cache: Dict[DataBucket[Any, Any], _CacheEntry] = {} @property def next_timeout(self) -> float: """Number of seconds until the next cache entry will timeout""" next_timeout = self._timeout now = datetime.now() for cache_entry in self._cache.values(): td = now - cache_entry.last_use timeout = max(self._timeout - td.total_seconds(), 0) if timeout < next_timeout: next_timeout = timeout return next_timeout async def send( self, ds: Dataset, dest: DataBucket[Any, Any] ) -> Optional[DicomOpReport]: """Send a data set to dests, utilizing the cache of active associations""" res = None cache_entry = self._cache.get(dest, None) if cache_entry is None: op_report = dest.get_empty_send_report() res = op_report ctx_mgr = dest.send(op_report) send_q = await ctx_mgr.__aenter__() cache_entry = _CacheEntry(ctx_mgr, send_q, op_report, datetime.now()) self._cache[dest] = cache_entry else: cache_entry.last_use = datetime.now() send_q = cache_entry.send_q await send_q.put(ds) return res async def update_cache(self) -> Dict[DataBucket[Any, Any], DicomOpReport]: """Close associations that haven't been used in a while Returns reports for all closed associations. """ curr_time = datetime.now() reports = {} for dest, cache_entry in self._cache.items(): age = curr_time - cache_entry.last_use if age.total_seconds() > self._timeout: await cache_entry.ctx_mgr.__aexit__(None, None, None) reports[dest] = cache_entry.op_report for dest in reports: del self._cache[dest] return reports async def empty_cache(self) -> Dict[DataBucket[Any, Any], DicomOpReport]: """Close all associations Returns dict of dest/op_report for all closed associations. """ reports = {} for dest, cache_entry in self._cache.items(): await cache_entry.ctx_mgr.__aexit__(None, None, None) reports[dest] = cache_entry.op_report self._cache.clear() return reports class InsufficientElemsError(Exception): """We don't have the required DICOM elements for the operation""" class Router: """Work with multiple dynamic/static routes""" def __init__(self, routes: Iterable[Route], assoc_cache_time: int = 20): self._routes = tuple(routes) self._assoc_cache_time = assoc_cache_time self._static: List[StaticRoute] = [] self._dynamic: List[DynamicRoute] = [] self._route_level = QueryLevel.PATIENT req_elems: LazySet[str] = LazySet() self._all_proxy = True for route in routes: if isinstance(route, DynamicRoute): self._dynamic.append(route) req_elems |= route.required_elems self._route_level = max(self._route_level, route.route_level) if route.dest_methods is not None: for methods in route.dest_methods.values(): if TransferMethod.PROXY not in methods: self._all_proxy = False elif isinstance(route, StaticRoute): self._static.append(route) if TransferMethod.PROXY not in route.methods: self._all_proxy = False else: raise ValueError("Unrecognized route type") self._required_elems = FrozenLazySet(req_elems) if len(self._dynamic) == 0: self._route_level = QueryLevel.STUDY elif not self.can_pre_route and not self.can_dyn_route: raise NoValidTransferMethodError() @property def required_elems(self) -> FrozenLazySet[str]: """All required DICOM elements for making routing decisions""" return self._required_elems @property def has_dynamic_routes(self) -> bool: return len(self._dynamic) != 0 @property def can_pre_route(self) -> bool: return self._route_level != QueryLevel.IMAGE @property def can_dyn_route(self) -> bool: return self._all_proxy def get_filter_dest_map( self, ds: Dataset ) -> Dict[Optional[Filter], Tuple[DataBucket[Any, Any], ...]]: """Get dict mapping filters to lists of destinations""" selected: Dict[Optional[Filter], List[DataBucket[Any, Any]]] = {} for route in self._routes: dests = route.get_dests(ds) if not dests: continue filt = route.filt if filt not in selected: selected[filt] = list(dests) else: selected[filt] += dests return {k: tuple(v) for k, v in selected.items()} async def pre_route( self, src: DataRepo[Any, Any, Any, Any], query: Optional[Dataset] = None, query_res: QueryResult = None, ) -> Dict[Tuple[StaticRoute, ...], QueryResult]: """Pre-calculate any dynamic routing for data on `src` If DICOM elements needed for routing decisions can't be queried for, we will retrieve an example data set for that study. Parameters ---------- src The data source query A query that defines the data to route query_res A QueryResult that defines the data to route Returns ------- result : dict Maps tuples of StaticRoute objects to QueryResults defining all of the data that should be sent to those routes. """ route_level = self._route_level if route_level == QueryLevel.IMAGE: raise ValueError("Can't pre-route at IMAGE level") # Try to get required DICOM elements by doing a query if needed query, query_res = await self._fill_qr(src, query, query_res) # Nothing to do... if len(self._dynamic) == 0: return {tuple(self._static): query_res} log.info("Trying to resolve dynamic routes with queries") # Iteratively try to extract example data sets with all the elements # needed for routing from our QueryResult, while also performing higher # level-of-detail queries as needed. In the end the missing_qr will # specify a single image for each chunk of data we don't have an # example data set for example_data: Dict[str, Dataset] = {} missing_qr = query_res while True: new_missing_qr = QueryResult(level=missing_qr.level) for pth, sub_uids in missing_qr.walk(): if pth.level < route_level: continue if pth.level != missing_qr.level: # We only want to visit one sub-element # TODO: Allow user defined sorting here? del sub_uids[1:] continue lvl_uid = pth.uids[-1] ds = deepcopy(missing_qr[lvl_uid]) for k in self.required_elems: if k not in ds: new_missing_qr.add(ds) break else: route_uid = pth.uids[route_level] assert route_uid not in example_data example_data[route_uid] = ds missing_qr = new_missing_qr if len(missing_qr) == 0 or missing_qr.level == QueryLevel.IMAGE: break missing_qr = await src.query( QueryLevel(missing_qr.level + 1), query, missing_qr ) # For any studies where we don't have example data, fetch some if len(missing_qr) != 0: log.info("Fetching example data to resolve dynamic routes") async for ds in src.retrieve(missing_qr): route_uid = get_uid(route_level, ds) assert route_uid not in example_data example_data[route_uid] = ds assert len(example_data) == query_res.get_count(route_level) # Resolve all dynamic routes into data specific static routes res: Dict[Tuple[StaticRoute, ...], QueryResult] = {} for route_uid, ds in example_data.items(): sub_routes = copy(self._static) for route in self._dynamic: static_routes = route.get_static_routes(ds) if static_routes: sub_routes.extend(static_routes) if sub_routes: sub_routes_tup = tuple(sub_routes) if sub_routes_tup not in res: res[sub_routes_tup] = QueryResult(query_res.level) sub_qr = query_res.sub_query(DataNode(route_level, route_uid)) res[sub_routes_tup] |= sub_qr else: log.info("Skipping chunk at routing stage: %s", route_uid) # TODO: Track this in report log.info("All dynamic routes have been resolved") return res @asynccontextmanager async def route( self, keep_errors: Union[bool, Tuple[IncomingErrorType, ...]] = False, report: Optional[DynamicTransferReport] = None, ) -> AsyncIterator["asyncio.Queue[Dataset]"]: """Produces queue where datasets can be put for dynamic routing Parameters ---------- keep_errors Set to true to send all data, even if it is inconsistent/duplicate report Pass a DynamicTransferReport in to be filled out on the fly Provides insight into what data is being routed where """ if not self.can_dyn_route: raise NoValidTransferMethodError() data_q: "asyncio.Queue[Optional[Dataset]]" = asyncio.Queue() route_task = asyncio.create_task(self._route(data_q, keep_errors, report)) try: yield data_q # type: ignore finally: if not route_task.done(): await data_q.put(None) await route_task async def _route( self, data_q: "asyncio.Queue[Optional[Dataset]]", keep_errors: Union[bool, Tuple[IncomingErrorType, ...]], report: Optional[DynamicTransferReport], ) -> None: if report is None: extern_report = False report = DynamicTransferReport() else: extern_report = True report.keep_errors = keep_errors # type: ignore assoc_cache = SendAssociationCache(self._assoc_cache_time) try: n_pushed = 0 while True: try: ds = await asyncio.wait_for( data_q.get(), min(assoc_cache.next_timeout, 5.0) ) except asyncio.TimeoutError: await assoc_cache.update_cache() continue # TODO: Do we want this? Or should we just use task canceling? # What happens if a user pushes None accidentally? Just # use a different sentinel value? if ds is None: break filter_dest_map = self.get_filter_dest_map(ds) n_filt = len([f for f in filter_dest_map if f is not None]) # Only make copy of the data set if needed if n_filt > 1: orig_ds = deepcopy(ds) else: orig_ds = ds min_old_ds = minimal_copy(ds) for filt, dests in filter_dest_map.items(): static_route = StaticRoute(dests, filt=filt) # Update report if filt is not None: filt_ds = filt(orig_ds) if filt_ds is not None: min_new_ds = minimal_copy(filt_ds) else: filt_ds = orig_ds min_new_ds = min_old_ds if filt_ds is None: continue if not report.add(static_route, min_old_ds, min_new_ds): continue # Initiate the transfers coros = [assoc_cache.send(filt_ds, dest) for dest in dests] log.debug("Router forwarding data set to %d dests" % len(dests)) op_reports = await asyncio.gather(*coros) for op_report, dest in zip(op_reports, dests): if op_report is not None: report.add_store_report(dest, op_report) n_pushed += 1 # Periodically check to avoid association timeouts under high # traffic if n_pushed % 100 == 0: await assoc_cache.update_cache() finally: await assoc_cache.empty_cache() report.done = True if not extern_report: report.log_issues() report.check_errors() async def _fill_qr( self, src: DataRepo[Any, Any, Any, Any], query: Optional[Dataset], query_res: Optional[QueryResult], ) -> Tuple[Dataset, QueryResult]: """Perform a query against the src if needed""" if query is None: query = Dataset() req_elems = self.required_elems if query_res is None: level = self._route_level else: level = query_res.level if level < self._route_level: level = self._route_level elif not req_elems: # Nothing we need to query for return (query, query_res) elif req_elems.is_enumerable(): if query_res.prov.queried_elems is not None and all( e in query_res.prov.queried_elems for e in req_elems ): # All required elems were already queried for return (query, query_res) # Check if all required elems already exist # TODO: Iterating every data set seems wasteful... needs_query = False for ds in query_res: for elem in req_elems: if elem not in ds: log.debug("Router needs to query due to missing elements") needs_query = True break if not needs_query: return (query, query_res) if req_elems.is_enumerable(): for e in req_elems: setattr(query, e, "") log.info("The Router is perfoming an intial query against the source: %s", src) return (query, await src.query(level, query, query_res)) ``` #### File: dcm/dcm/sync.py ```python from __future__ import annotations import logging, itertools, textwrap from copy import deepcopy from dataclasses import dataclass, field import asyncio from types import TracebackType from typing import ( Optional, Tuple, Dict, List, Union, Iterable, Any, Set, Type, Callable, TypeVar, Iterator, AsyncIterator, cast, Generic, ) from typing_extensions import Protocol from contextlib import AsyncExitStack, asynccontextmanager from pydicom import Dataset from .query import ( QueryLevel, QueryResult, DataNode, get_all_uids, minimal_copy, uid_elems, ) from .store import ( TransferMethod, DataChunk, DataBucket, OobCapable, DataRepo, LocalIncomingReport, ) from .filt import get_transform, Filter from .route import ( Route, StaticRoute, Router, ProxyTransferError, ProxyReport, StoreReportType, DynamicTransferReport, NoValidTransferMethodError, ) from .diff import diff_data_sets, DataDiff from .net import ( IncomingDataReport, IncomingDataError, IncomingErrorType, DicomOpReport, RetrieveReport, ) from .report import ( BaseReport, MultiAttrReport, MultiListReport, MultiDictReport, MultiKeyedError, ProgressHookBase, ) from .util import dict_to_ds log = logging.getLogger(__name__) class StaticStoreReport(MultiDictReport[DataBucket[Any, Any], StoreReportType]): """Transfer report that only captures storage""" IncomingReportType = Union[IncomingDataReport, RetrieveReport, LocalIncomingReport] class StaticProxyTransferReport(ProxyReport): """Static proxy transfer report""" def __init__( self, description: Optional[str] = None, meta_data: Optional[Dict[str, Any]] = None, depth: int = 0, n_expected: Optional[int] = None, prog_hook: Optional[ProgressHookBase[Any]] = None, keep_errors: Union[bool, Tuple[IncomingErrorType, ...]] = False, ): self.store_reports: StaticStoreReport = StaticStoreReport(prog_hook=prog_hook) super().__init__( description, meta_data, depth, prog_hook, n_expected, keep_errors ) @property def n_success(self) -> int: return super().n_success + self.store_reports.n_success @property def n_errors(self) -> int: return super().n_errors + self.store_reports.n_errors @property def n_warnings(self) -> int: return super().n_warnings + self.store_reports.n_warnings @property def n_reported(self) -> int: return self.store_reports.n_input def add_store_report( self, dest: DataBucket[Any, Any], store_report: StoreReportType ) -> None: """Add a DicomOpReport or LocalWriteReport to keep track of""" assert dest not in self.store_reports if self.n_expected is not None and store_report.n_expected is None: store_report.n_expected = self.n_expected self.store_reports[dest] = store_report def log_issues(self) -> None: """Produce log messages for any warning/error statuses""" super().log_issues() self.store_reports.log_issues() def check_errors(self) -> None: """Raise an exception if any errors have occured so far""" if self.n_errors: err = None try: super().check_errors() except ProxyTransferError as e: err = e else: err = ProxyTransferError() try: self.store_reports.check_errors() except MultiKeyedError as e: err.store_errors = e raise err def clear(self) -> None: super().clear() self.store_reports.clear() def _set_depth(self, val: int) -> None: if val != self._depth: self._depth = val self.store_reports.depth = val + 1 class StaticOobTransferReport(MultiDictReport[TransferMethod, StaticStoreReport]): """Transfer report for out-of-band transfers""" class StaticTransferError(Exception): def __init__( self, proxy_error: Optional[ProxyTransferError] = None, oob_error: Optional[MultiKeyedError] = None, ): self.proxy_error = proxy_error self.oob_error = oob_error def __str__(self) -> str: res = ["StaticTransferError:"] if self.proxy_error is not None: res.append("\tProxy Error: %s" % str(self.proxy_error)) if self.oob_error is not None: res.append("\tOut-of-band Error: %s" % str(self.oob_error)) return "\n".join(res) class StaticTransferReport(MultiAttrReport): """Capture all possible info about a single StaticTranfer""" def __init__( self, description: Optional[str] = None, meta_data: Optional[Dict[str, Any]] = None, depth: int = 0, prog_hook: Optional[ProgressHookBase[Any]] = None, incoming_report: Optional[IncomingReportType] = None, ): self._incoming_report = None self._proxy_report: Optional[StaticProxyTransferReport] = None self._oob_report: Optional[StaticOobTransferReport] = None self._report_attrs = ["incoming_report", "_proxy_report", "_oob_report"] super().__init__(description, meta_data, depth, prog_hook) if incoming_report is not None: self.incoming_report = incoming_report @property def incoming_report(self) -> Optional[IncomingReportType]: return self._incoming_report @incoming_report.setter def incoming_report(self, val: IncomingReportType) -> None: if self._incoming_report is not None: raise ValueError("The incoming report was already set") self._incoming_report = val self._incoming_report.depth = self._depth + 1 self._incoming_report.prog_hook = self._prog_hook @property def proxy_report(self) -> StaticProxyTransferReport: if self._proxy_report is None: self._proxy_report = StaticProxyTransferReport( depth=self._depth + 1, prog_hook=self._prog_hook ) if ( self._proxy_report.n_expected is None and self._incoming_report is not None and self._incoming_report.n_expected is not None ): self._proxy_report.n_expected = self._incoming_report.n_expected return self._proxy_report @property def oob_report(self) -> StaticOobTransferReport: if self._oob_report is None: self._oob_report = StaticOobTransferReport( depth=self._depth + 1, prog_hook=self._prog_hook ) if ( self._oob_report.n_expected is None and self._incoming_report is not None and self._incoming_report.n_expected is not None ): self._oob_report.n_expected = self._incoming_report.n_expected return self._oob_report def check_errors(self) -> None: """Raise an exception if any errors have occured so far""" if self.has_errors: err = StaticTransferError() if self.proxy_report is not None: try: self.proxy_report.check_errors() except ProxyTransferError as e: err.proxy_error = e if self.oob_report is not None: try: self.oob_report.check_errors() except MultiKeyedError as e: err.oob_error = e raise err T_report = TypeVar( "T_report", bound=Union[DynamicTransferReport, StaticTransferReport], covariant=True ) @dataclass class Transfer(Generic[T_report]): chunk: DataChunk report: T_report @dataclass class DynamicTransfer(Transfer["DynamicTransferReport"]): chunk: DataChunk report: DynamicTransferReport = field(default_factory=DynamicTransferReport) @dataclass class StaticTransfer(Transfer["StaticTransferReport"]): chunk: DataChunk report: StaticTransferReport = field(default_factory=StaticTransferReport) method_routes_map: Dict[TransferMethod, Tuple[StaticRoute, ...]] = field( default_factory=dict ) def __post_init__(self) -> None: if TransferMethod.PROXY in self.method_routes_map: self.report.incoming_report = self.chunk.report @property def proxy_filter_dest_map( self, ) -> Dict[Optional[Filter], Tuple[DataBucket[Any, Any], ...]]: """Get dict mapping filters to destinations for proxy transfers""" filter_dest_map: Dict[Optional[Filter], Set[DataBucket[Any, Any]]] = {} routes = self.method_routes_map.get(TransferMethod.PROXY, tuple()) for route in routes: filt = route.filt if filt not in filter_dest_map: filter_dest_map[filt] = set(d for d in route.dests) else: filter_dest_map[filt].update(route.dests) return {k: tuple(v) for k, v in filter_dest_map.items()} def get_dests(self, method: TransferMethod) -> Tuple[DataBucket[Any, Any], ...]: res = set() for route in self.method_routes_map.get(method, []): for dest in route.dests: res.add(dest) return tuple(res) DiffFiltType = Callable[[DataDiff], Optional[DataDiff]] def make_basic_validator( diff_filters: Optional[Iterable[DiffFiltType]] = None, ) -> Callable[[Dataset, Dataset], None]: """Create validator that logs a warning on any differing elements List of filter functions can be supplied to modify/delete the diffs """ def basic_validator(src_ds: Dataset, dest_ds: Dataset) -> None: diffs = diff_data_sets(src_ds, dest_ds) if diff_filters is not None: warn_diffs = [] d: Optional[DataDiff] for d in diffs: for filt in diff_filters: assert d is not None d = filt(d) if d is None: break else: assert d is not None warn_diffs.append(d) else: warn_diffs = diffs if len(warn_diffs) != 0: msg = [ "Found differeing elements for ds %s:" % "/".join(get_all_uids(src_ds)) ] for d in warn_diffs: msg.append(textwrap.indent(str(d), "\t")) log.warn("\n".join(msg)) return basic_validator T = TypeVar("T") async def _sync_iter_to_async(sync_gen: Iterator[T]) -> AsyncIterator[T]: for result in sync_gen: yield result TransferReportTypes = Union[ DynamicTransferReport, StaticTransferReport, ] DestType = Union[DataBucket, Route] SourceMissingQueryReportType = MultiListReport[MultiListReport[DicomOpReport]] DestMissingQueryReportType = MultiDictReport[ DataRepo[Any, Any, Any, Any], SourceMissingQueryReportType ] class RepoRequiredError(Exception): """Operation requires a DataRepo but a DataBucket was provided""" class SyncQueriesReport(MultiAttrReport): """Report for queries being performed during sync""" def __init__( self, description: Optional[str] = None, meta_data: Optional[Dict[str, Any]] = None, depth: int = 0, prog_hook: Optional[ProgressHookBase[Any]] = None, ): self._init_src_qr_report: Optional[MultiListReport[DicomOpReport]] = None self._missing_src_qr_reports: Optional[ MultiListReport[SourceMissingQueryReportType] ] = None self._missing_dest_qr_reports: Optional[ MultiListReport[DestMissingQueryReportType] ] = None self._report_attrs = [ "_init_src_qr_report", "_missing_src_qr_reports", "_missing_dest_qr_reports", ] super().__init__(description, meta_data, depth, prog_hook) @property def init_src_qr_report(self) -> MultiListReport[DicomOpReport]: if self._init_src_qr_report is None: self._init_src_qr_report = MultiListReport( "init-src-qr", depth=self._depth + 1, prog_hook=self._prog_hook ) return self._init_src_qr_report @property def missing_src_qr_reports(self) -> MultiListReport[SourceMissingQueryReportType]: if self._missing_src_qr_reports is None: self._missing_src_qr_reports = MultiListReport( "missing-src-qrs", depth=self._depth + 1, prog_hook=self._prog_hook ) return self._missing_src_qr_reports @property def missing_dest_qr_reports(self) -> MultiListReport[DestMissingQueryReportType]: if self._missing_dest_qr_reports is None: self._missing_dest_qr_reports = MultiListReport( "missing-dest-qrs", depth=self._depth + 1, prog_hook=self._prog_hook ) return self._missing_dest_qr_reports class SyncReport(MultiAttrReport): """Top level report from a sync operation""" def __init__( self, description: Optional[str] = None, meta_data: Optional[Dict[str, Any]] = None, depth: int = 0, prog_hook: Optional[ProgressHookBase[Any]] = None, ): self._queries_report: Optional[SyncQueriesReport] = None self.trans_reports: MultiListReport[TransferReportTypes] = MultiListReport( "transfers", depth=depth + 1, prog_hook=prog_hook ) self._report_attrs = ["_queries_report", "trans_reports"] super().__init__(description, meta_data, depth, prog_hook) @property def queries_report(self) -> SyncQueriesReport: if self._queries_report is None: self._queries_report = SyncQueriesReport( "sync-queries", depth=self._depth + 1, prog_hook=self._prog_hook ) return self._queries_report # TODO: Does it make more sense to allow a query to be passed in here instead # having the base_query in the NetRepo? We only have once source here, # and the base_query functionality could be confusing, so I lean towards # yes. # # How would the query/query_res interact though? Seems like the query_res # should override the query instead of the query refining the query_res? # This would be different than every other part of our API that takes # both though... # TODO: If we end up needing to do the query ourselves, we should include any # req_elems from any DynamicRoutes so we don't have to do those queries # again in pre-route. One question is how does pre-route know that we # already tried to query for elements that the remote doesn't provide? class SyncManager: """Can generate and execute transfers needed to sync `src` and `dests` Data will only be retrieved locally from `src` at most once and then forwarded to all destinations that need it. Data that already exists on the destinations will be skipped, unless `force_all` is set to True. Parameters ---------- src The source of data we are transferring dests One or more destinations for the data trust_level Assume data matches if sub-component counts match at this level Setting this to a level higher than IMAGE can speed up things significantly at the cost of accuracy. Has no effect if `force_all` is set to True. force_all Don't skip data that already exists on the destinations keep_errors Whether or not we try to sync erroneous data report Allows live introspection of the sync process, detailed results """ def __init__( self, src: DataBucket[Any, Any], dests: List[DestType], trust_level: QueryLevel = QueryLevel.IMAGE, force_all: bool = False, keep_errors: Union[bool, Tuple[IncomingErrorType, ...]] = False, validators: Optional[Iterable[Callable[[Dataset, Dataset], None]]] = None, report: Optional[SyncReport] = None, ): self._src = src self._trust_level = trust_level self._force_all = force_all self._keep_errors: Tuple[IncomingErrorType, ...] if keep_errors == False: self._keep_errors = tuple() elif keep_errors == True: self._keep_errors = tuple(IncomingErrorType) else: keep_errors = cast(Tuple[IncomingErrorType, ...], keep_errors) self._keep_errors = keep_errors self._validators = validators if report is None: self._extern_report = False self.report = SyncReport() else: self._extern_report = True self.report = report self.report._meta_data["source"] = self._src self.report._meta_data["dests"] = dests self.report._meta_data["trust_level"] = self._trust_level.name self.report._meta_data["force_all"] = self._force_all self.report._meta_data["keep_errors"] = self._keep_errors # Make sure all dests are Route objects self._routes = [] plain_dests: List[DataBucket[Any, Any]] = [] for dest in dests: if isinstance(dest, Route): self._routes.append(dest) else: plain_dests.append(dest) if plain_dests: self._routes.append(StaticRoute(tuple(plain_dests))) if len(self._routes) == 0: raise ValueError("At least one dest must be specified") self._has_filt = any(r.filt is not None for r in self._routes) # Precompute TransferMethod to routes map for static routes self._static_meth_routes = self._get_meth_routes( r for r in self._routes if isinstance(r, StaticRoute) ) # Create an internal Router object self._router = Router(self._routes) # If we need to do dynamic routing due to a naive data source, make # sure it is possible if ( not isinstance(self._src, DataRepo) and self._router.has_dynamic_routes and not self._router.can_dyn_route ): raise NoValidTransferMethodError() async def gen_transfers( self, query_res: QueryResult = None, ) -> AsyncIterator[Transfer[Any]]: """Generate the needed transfers Parameters ---------- query_res Only transfer data that matches this QueryResult """ if self.report.done: raise ValueError("The SyncManager has been closed") if not isinstance(self._src, DataRepo) and query_res is not None: raise RepoRequiredError("Can't pass in query_res with naive " "data source") # If any routes have filters, we need to tell the chunks to keep # inconsistent/duplicate data so the filters have a chance to fix it _chunk_keep_errors = set(self._keep_errors) if self._has_filt: _chunk_keep_errors.add(IncomingErrorType.INCONSISTENT) _chunk_keep_errors.add(IncomingErrorType.DUPLICATE) chunk_keep_errors = tuple(_chunk_keep_errors) n_trans = 0 res: Transfer[Any] if not isinstance(self._src, DataRepo) or not self._router.can_pre_route: log.info(f"Processing all data from data source: {self._src}") if self._src.n_chunks is not None: self.report.trans_reports.n_expected = self._src.n_chunks async for chunk in self._src.gen_chunks(): chunk.keep_errors = chunk_keep_errors if self._router.has_dynamic_routes: chunk.report.prog_hook = self.report._prog_hook res = DynamicTransfer(chunk) else: res = StaticTransfer( chunk, method_routes_map=self._static_meth_routes.copy() ) self.report.trans_reports.append(res.report) n_trans += 1 yield res else: # We have a smart data repo and can precompute any dynamic routing # and try to avoid transferring data that already exists log.info(f"Processing select data from source: {self._src}") src_qr_reports = self.report.queries_report.missing_src_qr_reports dest_qr_reports = self.report.queries_report.missing_dest_qr_reports expected_sub_qrs = None qr_gen: AsyncIterator[QueryResult] if query_res is not None: gen_level = min(query_res.level, QueryLevel.STUDY) qr_gen = _sync_iter_to_async(query_res.level_sub_queries(gen_level)) expected_sub_qrs = query_res.get_count(gen_level) else: q = dict_to_ds({elem: "*" for elem in self._router.required_elems}) qr_report = self.report.queries_report.init_src_qr_report qr_gen = self._src.queries(QueryLevel.STUDY, q, report=qr_report) n_sub_qr = 0 avg_trans_per_qr = None async for sub_qr in qr_gen: log.info( "Processing %d out of %s sub-qr: %s", n_sub_qr, str(expected_sub_qrs), sub_qr.to_line(), ) if expected_sub_qrs is None and qr_report.done: expected_sub_qrs = qr_report.n_input if expected_sub_qrs is not None: if avg_trans_per_qr is not None: self.report.trans_reports.n_expected = int( round(expected_sub_qrs * avg_trans_per_qr) ) if src_qr_reports.n_expected is None: src_qr_reports.n_expected = expected_sub_qrs # dest_qr_reports.n_expected = expected_sub_qrs # Resolve any dynamic routes, so all routes are static. Produce dict mapping # these static routes to QueryResults specifying the data to send sr_qr_map = await self._router.pre_route(self._src, query_res=sub_qr) pre_count = n_trans for static_routes, qr in sr_qr_map.items(): if self._force_all: missing_info = {tuple(static_routes): [qr]} else: missing_info = await self._get_missing(static_routes, qr) if len(missing_info) == 0: log.info("No transfers necessary for this sub-qr") else: log.info("Producing transfers for this sub-qr") for sub_routes, missing_qrs in missing_info.items(): meth_routes = self._get_meth_routes(sub_routes) for missing_qr in missing_qrs: async for chunk in self._src.gen_query_chunks(missing_qr): chunk.keep_errors = chunk_keep_errors if len(meth_routes) == 0: # TODO: Remove this branch? log.error("No meth_routes!") assert False # import pdb ; pdb.set_trace() res = StaticTransfer( chunk, method_routes_map=meth_routes.copy() ) self.report.trans_reports.append(res.report) n_trans += 1 yield res if avg_trans_per_qr is None: if n_trans != 0: avg_trans_per_qr = n_trans / (n_sub_qr + 1) else: avg_trans_per_qr = max( 0.1, ((avg_trans_per_qr * n_sub_qr) + (n_trans - pre_count)) / (n_sub_qr + 1), ) n_sub_qr += 1 src_qr_reports.done = True dest_qr_reports.done = True self.report.queries_report.done = True log.info(f"Generated {n_trans} transfers") async def exec_transfer(self, transfer: Transfer[Any]) -> None: """Execute the given transfer""" if self.report.done: raise ValueError("The SyncManager has been closed") if isinstance(transfer, DynamicTransfer): log.info("Executing dynamic transfer: %s", transfer) await self._do_dynamic_transfer(transfer) elif isinstance(transfer, StaticTransfer): log.info("Executing static transfer: %s", transfer) await self._do_static_transfer(transfer) else: raise TypeError("Not a valid Transfer sub-class: %s" % transfer) async def sync(self, query_res: QueryResult = None) -> None: """Generate and exec all transfers for `query_res`""" async for trans in self.gen_transfers(query_res): await self.exec_transfer(trans) # For now the below three methods don't actually need to be async, but we # implement them as such so we can leverage it in the future without API # breakage. async def close(self) -> None: if not self._extern_report: self.report.log_issues() self.report.check_errors() self.report.trans_reports.done = True self.report.done = True async def __aenter__(self) -> SyncManager: return self async def __aexit__( self, exctype: Optional[Type[BaseException]], excinst: Optional[BaseException], exctb: Optional[TracebackType], ) -> None: await self.close() def _get_meth_routes( self, routes: Iterable[StaticRoute] ) -> Dict[TransferMethod, Tuple[StaticRoute, ...]]: method_routes_map: Dict[TransferMethod, List[StaticRoute]] = {} for route in routes: method = route.get_method(self._src) if method not in method_routes_map: method_routes_map[method] = [] method_routes_map[method].append(route) return {k: tuple(v) for k, v in method_routes_map.items()} async def _get_missing( self, static_routes: Tuple[StaticRoute, ...], query_res: QueryResult ) -> Dict[Tuple[StaticRoute, ...], List[QueryResult]]: """Determine what data is missing for the `static_routes` Each route might produce naive (i.e. `DataBucket`) or smart (i.e. DataRepo) destinations, but we can't do much in the naive case except assume that all of the data is missing. Parameters ---------- static_routes : list of StaticRoute Determines one or more destinations for the data query_res : QueryResult Subset of data we want to check the existance of on destinations Returns ------- missing_info : dict Maps tuples of routes to list of QueryResults that specify the data missing from that set of destinations. """ assert isinstance(self._src, DataRepo) log.debug("Finding missing data for src %s" % self._src) src_qr = query_res # Pair up dests with filters and split into two groups, those we can # check for missing data and those we can not dest_filt_tuples: List[Tuple[DataBucket[Any, Any], Optional[Filter]]] = [] checkable: List[Tuple[DataRepo[Any, Any, Any, Any], Optional[Filter]]] = [] non_checkable = [] df_trans_map = {} for route in static_routes: filt = route.filt can_invert_uids = True if filt is not None: invertible_uids = filt.invertible_uids can_invert_uids = all( uid in invertible_uids for uid in uid_elems.values() ) for dest in route.dests: df_tuple = (dest, filt) dest_filt_tuples.append(df_tuple) df_trans_map[df_tuple] = get_transform(src_qr, filt) if isinstance(dest, DataRepo) and can_invert_uids: df_tuple = cast( Tuple[DataRepo[Any, Any, Any, Any], Optional[Filter]], df_tuple ) checkable.append(df_tuple) else: non_checkable.append(df_tuple) # Can't check any dests to see what is missing, so nothing to do if len(checkable) == 0: return {tuple(static_routes): [query_res]} # Build multi reports for capturing queries expected = QueryLevel.IMAGE - src_qr.level + 1 src_queries_report: MultiListReport[ MultiListReport[DicomOpReport] ] = MultiListReport("missing-src-qr", n_expected=expected) self.report.queries_report.missing_src_qr_reports.append(src_queries_report) dest_queries_report: MultiDictReport[ DataRepo[Any, Any, Any, Any], MultiListReport[MultiListReport[DicomOpReport]], ] = MultiDictReport("missing-dests-qr") self.report.queries_report.missing_dest_qr_reports.append(dest_queries_report) # We group data going to same sets of destinations res: Dict[ Tuple[Tuple[DataRepo[Any, Any, Any, Any], Optional[Filter]], ...], List[QueryResult], ] = {} for n_dest in reversed(range(1, len(checkable) + 1)): for df_set in itertools.combinations(checkable, n_dest): if df_set not in res: res[tuple(df_set)] = [] # Check for missing data at each query level, starting from coarsest # (i.e. entire missing patients, then studies, etc.) curr_matching = {df: df_trans_map[df].new for df in checkable} curr_src_qr = src_qr for curr_level in range(src_qr.level, QueryLevel.IMAGE + 1): curr_level = QueryLevel(curr_level) if len(curr_src_qr) == 0: src_queries_report.n_expected = src_queries_report.n_input # for dest, dreports in dest_queries_report.items(): # dreports.n_expected = dreports.n_input break log.debug("Checking for missing data at level %s" % curr_level) # Compute what is missing for each dest and matching for any dest # at this level missing = {} full_matching: Optional[QueryResult] = None for df in checkable: dest, filt = df log.debug("Checking for missing data on dest: %s", dest) assert isinstance(dest, DataRepo) if curr_level > curr_src_qr.level: # We need more details for the source QueryResult log.debug("Querying src in _get_missing more details") src_report: MultiListReport[DicomOpReport] = MultiListReport() src_queries_report.append(src_report) src_qr_task = asyncio.create_task( self._src.query( level=curr_level, query_res=curr_src_qr, report=src_report ) ) if dest not in dest_queries_report: dest_reports: MultiListReport[ MultiListReport[DicomOpReport] ] = MultiListReport("missing-dest-qr") dest_queries_report[dest] = dest_reports else: dest_reports = dest_queries_report[dest] dest_report: MultiListReport[DicomOpReport] = MultiListReport() dest_reports.append(dest_report) dest_qr = await dest.query( level=curr_level, query_res=curr_matching[df], report=dest_report ) if curr_level > curr_src_qr.level: curr_src_qr = await src_qr_task df_trans_map = { df: get_transform(curr_src_qr & qr_trans.old, df[1]) for df, qr_trans in df_trans_map.items() } curr_qr_trans = df_trans_map[df] missing[df] = curr_qr_trans.old.sub( curr_qr_trans.reverse(dest_qr).qr, ignore_subcounts=True ) matching = curr_qr_trans.new & dest_qr if curr_level == self._trust_level: done_uids = [] for uid in matching.uids(): node = DataNode(curr_level, uid) if curr_qr_trans.new.sub_query( node, curr_level ) == dest_qr.sub_query(node): done_uids.append(uid) for uid in done_uids: del matching[uid] curr_matching[df] = matching old_matching = curr_qr_trans.reverse(matching).qr df_trans_map[df] = get_transform(old_matching, filt) if full_matching is None: full_matching = old_matching else: full_matching |= old_matching log.debug( "missing = %s \n matching = %s", missing[df], curr_matching[df] ) log.debug("full matching = %s", full_matching) # Reduce the source qr to only data that matches on at least one dest if full_matching is not None: log.debug("remaing pre-update = %s", curr_src_qr) curr_src_qr = curr_src_qr & full_matching log.debug("remaining post-update = %s", curr_src_qr) # Update the results with the missing data for this level for df_set, qr_list in res.items(): # Build set of all missing data across destinations set_missing = None for df in df_set: if set_missing is None: set_missing = deepcopy(missing[df]) else: set_missing = set_missing & missing[df] assert set_missing is not None if len(set_missing) > 0: for df in df_set: missing[df] -= set_missing if len(qr_list) > 0 and qr_list[-1].level == set_missing.level: qr_list[-1] |= set_missing else: qr_list.append(set_missing) # Mark our reports as done src_queries_report.done = True for _, dreport in dest_queries_report.items(): dreport.done = True dest_queries_report.done = True # Convert back to routes and return result sr_res = {} for df_set, qr_list in res.items(): if len(qr_list) == 0: continue filt_dest_map: Dict[Optional[Filter], List[DataBucket[Any, Any]]] = {} for dest, filt in df_set: if filt not in filt_dest_map: filt_dest_map[filt] = [] filt_dest_map[filt].append(dest) routes = [] for filt, dests in filt_dest_map.items(): routes.append(StaticRoute(tuple(dests), filt=filt)) sr_res[tuple(routes)] = qr_list return sr_res async def _do_dynamic_transfer(self, transfer: DynamicTransfer) -> None: # TODO: We could keep this context manager open until the # TransferExecutor.close method is called, and thus avoid some # overhead from opening/closing associations, but this makes the # reporting quite tricky, and each transfer should be relatively # slow compared to the overhead of setting up and tearing down # associations. async with self._router.route(report=transfer.report) as routing_q: async for ds in transfer.chunk.gen_data(): await routing_q.put(ds) async def _do_static_proxy_transfer( self, transfer: StaticTransfer, report: StaticProxyTransferReport ) -> None: filter_dest_map = transfer.proxy_filter_dest_map n_filt = len(filter_dest_map) if None in filter_dest_map: n_filt -= 1 dests = transfer.get_dests(TransferMethod.PROXY) async with AsyncExitStack() as stack: d_q_map = {} log.info("Starting up senders...") for dest in dests: store_rep = dest.get_empty_send_report() store_rep.n_expected = transfer.chunk.n_expected report.add_store_report(dest, store_rep) d_q_map[dest] = await stack.enter_async_context( dest.send(report=store_rep) ) log.info("All send queues are initialized, starting incoming data stream") async for ds in transfer.chunk.gen_data(): if n_filt: orig_ds = deepcopy(ds) else: orig_ds = ds min_orig_ds = minimal_copy(orig_ds) for filt, sub_dests in filter_dest_map.items(): static_route = StaticRoute(sub_dests, filt=filt) sub_queues = [d_q_map[d] for d in sub_dests] if filt is not None: filt_ds = filt(orig_ds) if filt_ds is not None: min_filt_ds = minimal_copy(filt_ds) else: filt_ds = orig_ds min_filt_ds = min_orig_ds if filt_ds is None: continue if not report.add(static_route, min_orig_ds, min_filt_ds): continue if filt_ds is not None: log.debug("Pushing data set onto send queues") for q in sub_queues: await q.put(filt_ds) log.debug("Data was added to all send queues") log.info("Finished generating / queueing all data from chunk") log.info("Shutdown all senders") report.done = True async def _do_static_transfer(self, transfer: StaticTransfer) -> None: # TODO: Can't automatically overlap the proxy and out-of-band transfers # since they both may require associations with the same src. # Would need to know the available resources, and those needed # by each transfer, including a way for a transfer to reserve # resources for future use # # Our current API also doesn't allow the user to do this manually... oob_report = None for method, routes in transfer.method_routes_map.items(): if method == TransferMethod.PROXY: proxy_report = transfer.report.proxy_report proxy_report.keep_errors = self._keep_errors log.info("Doing proxy transfer") await self._do_static_proxy_transfer(transfer, proxy_report) else: if oob_report is None: oob_report = transfer.report.oob_report oob_report[method] = StaticStoreReport() for dest in transfer.get_dests(method): oob_dest = cast(OobCapable[Any, Any], dest) log.info("Doing out-of-band transfer to: %s", dest) oob_report[method][dest] = oob_dest.get_empty_oob_report() oob_report[method][dest].n_expected = transfer.chunk.n_expected oob_report[method][dest].description = f"{method} to {dest}" await oob_dest.oob_transfer( method, transfer.chunk, report=oob_report[method][dest] ) oob_report[method].done = True if oob_report is not None: oob_report.done = True transfer.report.done = True async def sync_data( sources: List[DataBucket[Any, Any]], dests: List[DestType], query: Optional[Union[Dataset, List[Dataset]]] = None, query_res: Optional[List[Optional[QueryResult]]] = None, query_reports: Optional[List[Optional[MultiListReport[DicomOpReport]]]] = None, sm_kwargs: Optional[List[Dict[str, Any]]] = None, dry_run: bool = False, ) -> List[SyncReport]: """Sync data from one or more sources to one or more destinations The `query` paramater can be a single item that applies to all sources or a list of items (one for each source). The data from each source if forwarded to all destinations (unless those dests filter it). Parameters ---------- sources The sources we are syncing data from dests The destinations we are syncing data to query A query (or list w/ one per source) to limit the data being sent query_res A list of query results (one per source) to limit the data being sent sm_kwargs The keyword arguments used to create each SyncManager dry_run Set to true to just print the transfers that would get executed """ if query is not None or query_res is not None: if not all(isinstance(src, DataRepo) for src in sources): raise ValueError("Not all sources support queries") n_srcs = len(sources) if query_res is not None: if len(query_res) != n_srcs: raise ValueError("The query_res list is not the right size") else: query_res = [None] * n_srcs if sm_kwargs is not None: if len(sm_kwargs) != n_srcs: raise ValueError("The sm_kwargs list is not the right size") else: sm_kwargs = [{} for _ in range(n_srcs)] if query is not None: if query_reports is not None: if len(query_reports) != n_srcs: raise ValueError("The query_reports list is not the right size") else: query_reports = [None] * n_srcs if isinstance(query, Dataset): query = [query] * n_srcs elif len(query) != n_srcs: raise ValueError("The query list is not the right size") qr_tasks = [] for src, q, qr, qr_report in zip(sources, query, query_res, query_reports): assert isinstance(src, DataRepo) qr_tasks.append(src.query(query=q, query_res=qr, report=qr_report)) log.info("Performing initial queries against sources") query_res = await asyncio.gather(*qr_tasks, return_exceptions=True) keep_qrs = [] for src_idx, qr in enumerate(query_res): if isinstance(qr, Exception): log.warning( "Skipping sync on source '%s' due to error during initial query: %s", sources[src_idx], qr, ) del sources[src_idx] del sm_kwargs[src_idx] continue keep_qrs.append(qr) query_res = keep_qrs sync_mgrs = [ SyncManager(src, dests, **kwargs) for src, kwargs in zip(sources, sm_kwargs) ] if dry_run: log.info("Starting dry-run") async with AsyncExitStack() as estack: sync_tasks: List[asyncio.Task[None]] = [] for sm, qr in zip(sync_mgrs, query_res): if qr is not None: log.info("Processing qr: %s", qr.to_line()) else: log.info("Processing qr: None") await estack.enter_async_context(sm) async for transfer in sm.gen_transfers(qr): if isinstance(transfer, StaticTransfer): dests_comps = [] for meth, routes in transfer.method_routes_map.items(): for route in routes: dests_comps.append(f"({meth.name}) {route}") dests_str = " / ".join(dests_comps) else: dests_str = "DYNAMIC" # TODO: Something better here? # Mark transfer reports done to avoid warning when sync report # is marked done transfer.report.done = True print("%s > %s" % (transfer.chunk, dests_str)) log.info("Completed dry-run") else: log.info("Starting sync") async with AsyncExitStack() as estack: sync_tasks = [] for sm, qr in zip(sync_mgrs, query_res): await estack.enter_async_context(sm) sync_tasks.append(asyncio.create_task(sm.sync(qr))) await asyncio.gather(*sync_tasks) log.info("Completed sync") return [sm.report for sm in sync_mgrs] ``` #### File: dcm/tests/test_sync.py ```python import asyncio from pathlib import Path from copy import deepcopy import pytest from pytest import fixture, mark from ..query import QueryResult, QueryLevel from ..net import LocalEntity from ..route import StaticRoute, DynamicRoute, Router from ..sync import SyncManager from ..store import TransferMethod from ..store.net_repo import NetRepo from ..store.local_dir import LocalDir from ..util import json_serializer from .conftest import ( has_dcmtk, DCMTK_VERSION, dcmtk_priv_sop_retr_xfail, dcmtk_priv_sop_send_xfail, ) priv_sop_marks = [dcmtk_priv_sop_retr_xfail, dcmtk_priv_sop_send_xfail] def make_lookup(dest1, dest2): def lookup_func(ds): if ds.PatientID == "TestPat1": return [dest1] else: return [dest2] return lookup_func repo_to_repo_subsets = [ pytest.param([None] * 3, marks=priv_sop_marks), ["all"] * 3, ["PATIENT-0"] * 3, ["PATIENT-0/STUDY-1"] * 3, pytest.param(["PATIENT-0/STUDY-0"] * 3, marks=priv_sop_marks), pytest.param(["PATIENT-0/STUDY-0/SERIES-0"] * 3, marks=priv_sop_marks), pytest.param(["PATIENT-0/STUDY-0/SERIES-0/IMAGE-0"] * 3, marks=priv_sop_marks), pytest.param(["PATIENT-1"] * 3, marks=priv_sop_marks), ] bucket_to_repo_subsets = [ pytest.param([None] * 3, marks=dcmtk_priv_sop_send_xfail), pytest.param(["all"] * 3, marks=dcmtk_priv_sop_send_xfail), pytest.param(["PATIENT-0"] * 3, marks=dcmtk_priv_sop_send_xfail), pytest.param(["PATIENT-0/STUDY-1"] * 3, marks=dcmtk_priv_sop_send_xfail), pytest.param(["PATIENT-0/STUDY-0"] * 3, marks=dcmtk_priv_sop_send_xfail), pytest.param(["PATIENT-0/STUDY-0/SERIES-0"] * 3, marks=dcmtk_priv_sop_send_xfail), pytest.param( ["PATIENT-0/STUDY-0/SERIES-0/IMAGE-0"] * 3, marks=dcmtk_priv_sop_send_xfail ), pytest.param(["PATIENT-1"] * 3, marks=dcmtk_priv_sop_send_xfail), ] @mark.parametrize( "subset_specs", [ [None] * 3, ["all"] * 3, ["PATIENT-0"] * 3, ["PATIENT-0/STUDY-0"] * 3, ["PATIENT-0/STUDY-0/SERIES-0"] * 3, ["PATIENT-0/STUDY-0/SERIES-0/IMAGE-0"] * 3, ["PATIENT-1"] * 3, ], ) @mark.asyncio @has_dcmtk async def test_gen_transfers(make_local_node, make_dcmtk_net_repo, subset_specs): local_node = make_local_node() src_repo, full_qr, _ = make_dcmtk_net_repo(local_node, subset="all") dest1_repo, dest1_init_qr, _ = make_dcmtk_net_repo( local_node, subset=subset_specs[0] ) dest2_repo, dest2_init_qr, _ = make_dcmtk_net_repo( local_node, subset=subset_specs[1] ) dest3_repo, dest3_init_qr, _ = make_dcmtk_net_repo( local_node, subset=subset_specs[2] ) static_route = StaticRoute([dest1_repo]) dyn_lookup = make_lookup(dest2_repo, dest3_repo) dyn_route = DynamicRoute(dyn_lookup, required_elems=["PatientID"]) dests = [static_route, dyn_route] # Build QRs of what we expect to be transfered to each dest expect_qrs = { dest1_repo: full_qr - dest1_init_qr, dest2_repo: QueryResult(QueryLevel.IMAGE), dest3_repo: QueryResult(QueryLevel.IMAGE), } for ds in full_qr: dyn_dests = dyn_lookup(ds) for dest in dyn_dests: expect_qrs[dest].add(ds) trans_qrs = {} async with SyncManager(src_repo, dests) as sm: async for transfer in sm.gen_transfers(): trans_level = transfer.chunk.qr.level for route in transfer.method_routes_map[TransferMethod.PROXY]: for dest in route.dests: print(f"\n{dest} :\n{transfer.chunk.qr.to_tree()}") if dest not in trans_qrs: trans_qrs[dest] = {} if trans_level not in trans_qrs[dest]: trans_qrs[dest][trans_level] = deepcopy(transfer.chunk.qr) else: for ds in transfer.chunk.qr: # Check this data is expected assert ds in expect_qrs[dest] # Check for duplicate transfers for lvl_qr in trans_qrs[dest].values(): assert ds not in lvl_qr trans_qrs[dest][trans_level].add(ds) @mark.parametrize("subset_specs", repo_to_repo_subsets) @mark.asyncio @has_dcmtk async def test_repo_sync_single_static( make_local_node, make_dcmtk_net_repo, subset_specs ): local_node = make_local_node() src_repo, full_qr, _ = make_dcmtk_net_repo(local_node, subset="all") dest1_repo, _, dest1_dir = make_dcmtk_net_repo(local_node, subset=subset_specs[0]) static_route = StaticRoute([dest1_repo]) dests = [static_route] async with SyncManager(src_repo, dests) as sm: async for transfer in sm.gen_transfers(): for route in transfer.method_routes_map[TransferMethod.PROXY]: for dest in route.dests: print(f"{dest} : {json_serializer.dumps(transfer.chunk.qr)}") await sm.exec_transfer(transfer) print(sm.report) dest1_dir = Path(dest1_dir) found_files = [x for x in dest1_dir.glob("**/*.dcm")] print(found_files) assert len(found_files) == len(full_qr) @mark.parametrize("subset_specs", repo_to_repo_subsets) @mark.asyncio @has_dcmtk async def test_repo_sync_multi(make_local_node, make_dcmtk_net_repo, subset_specs): local_node = make_local_node() src_repo, full_qr, _ = make_dcmtk_net_repo(local_node, subset="all") dest1_repo, _, dest1_dir = make_dcmtk_net_repo(local_node, subset=subset_specs[0]) dest2_repo, _, _ = make_dcmtk_net_repo(local_node, subset=subset_specs[1]) dest3_repo, _, _ = make_dcmtk_net_repo(local_node, subset=subset_specs[2]) static_route = StaticRoute([dest1_repo]) dyn_route = DynamicRoute( make_lookup(dest2_repo, dest3_repo), required_elems=["PatientID"] ) dests = [static_route, dyn_route] async with SyncManager(src_repo, dests) as sm: async for transfer in sm.gen_transfers(): for route in transfer.method_routes_map[TransferMethod.PROXY]: for dest in route.dests: print(f"{dest} : {transfer.chunk.qr}") await sm.exec_transfer(transfer) print(sm.report) dest1_dir = Path(dest1_dir) found_files = [x for x in dest1_dir.glob("**/*.dcm")] print(found_files) assert len(found_files) == len(full_qr) # TODO: Check that dynamic routing worked correctly @mark.parametrize("subset_specs", bucket_to_repo_subsets) @mark.asyncio @has_dcmtk async def test_bucket_sync( make_local_dir, make_local_node, make_dcmtk_net_repo, subset_specs ): src_bucket, init_qr, _ = make_local_dir("all", max_chunk=2) local_node = make_local_node() dest1_repo, _, dest1_dir = make_dcmtk_net_repo(local_node, subset=subset_specs[0]) dest2_repo, _, _ = make_dcmtk_net_repo(local_node, subset=subset_specs[1]) dest3_repo, _, _ = make_dcmtk_net_repo(local_node, subset=subset_specs[2]) static_route = StaticRoute([dest1_repo]) dyn_route = DynamicRoute( make_lookup(dest2_repo, dest3_repo), required_elems=["PatientID"] ) dests = [static_route, dyn_route] async with SyncManager(src_bucket, dests) as sm: async for transfer in sm.gen_transfers(): await sm.exec_transfer(transfer) dest1_dir = Path(dest1_dir) found_files = [x for x in dest1_dir.glob("**/*.dcm")] print(found_files) assert len(found_files) == len(init_qr) ```
{ "source": "joshyjoseph/react-docker-swagger-demo", "score": 3 }
#### File: flask_app/flask_api/main.py ```python import json from flask import Flask, request, Response from flask_cors import CORS from model import db, TeamModel import random from flask_swagger_ui import get_swaggerui_blueprint app = Flask(__name__) cors = CORS(app) app.config['CORS_HEADERS'] = 'Content-Type' SWAGGER_URL = '/doc' API_URL = '/static/swagger.json' SWAGGERUI_BLUEPRINT = get_swaggerui_blueprint( SWAGGER_URL, API_URL, config={ 'app_name': "DemoApp" } ) app.register_blueprint(SWAGGERUI_BLUEPRINT, url_prefix=SWAGGER_URL) app.config['SQLALCHEMY_DATABASE_URI'] = 'postgresql://demo_user:abcd1234@db:5432/demo_db' db.init_app(app) with app.app_context(): db.create_all() db.session.commit() print("created the db") @app.route('/add', methods=['POST']) def add_team(): if request.method == 'POST': team_name = request.json.get('teamName') team_role = request.json.get('teamRole') new_record = TeamModel(teamName=team_name, teamRole=team_role) print('new_record', new_record) db.session.add(new_record) db.session.commit() return Response(json.dumps({"status": "success"}), status=200, mimetype="application/json") else: return Response(json.dumps({"status": "failed : unsupported method type"}), status=405, mimetype="application/json") @app.route('/fetch/', methods=['GET']) def fetch_all_info(): records = db.session.query(TeamModel).order_by(TeamModel.teamName).all() res = [] for record in records: res.append(dict( rowId=record.rowId, teamName=record.teamName, teamRole=record.teamRole )) resp = Response(json.dumps(res), status=200, mimetype="application/json") return resp @app.route('/fetch/<string:teamName>/', methods=['GET']) def get_team_info(teamName): records = TeamModel.query.filter_by(teamName=teamName) res = [] for record in records: res.append(dict( rowId=record.rowId, teamName=record.teamName, teamRole=record.teamRole )) return Response(json.dumps(res), status=200, mimetype="application/json") @app.route("/", methods=['GET']) def main(): return {"status": "success"} if __name__ == "__main__": app.run(debug=True, host='0.0.0.0', port=5678) ``` #### File: flask_app/flask_api/model.py ```python from flask_sqlalchemy import SQLAlchemy db = SQLAlchemy() class TeamModel(db.Model): rowId = db.Column(db.Integer, primary_key=True) teamName = db.Column(db.String) teamRole = db.Column(db.String) def __repr__(self) -> str: return "{}:{}:{}".format(self.rowId, self.teamName, self.teamRole) ```
{ "source": "joshyka/fedn", "score": 2 }
#### File: sdk/cli/run_cmd.py ```python import click from .main import main import requests @click.option('--daemon', is_flag=True, help=( "Specify to run in daemon mode." ) ) @main.group('run') @click.pass_context def run_cmd(ctx, daemon): if daemon: print('{} NYI should run as daemon...'.format(__file__)) @run_cmd.command('client') @click.option('-c', '--config', required=False, default='project.yaml') @click.option('-n', '--name', required=False, default=None) @click.pass_context def client_cmd(ctx, config, name): project = ctx.obj['PROJECT'] from fedn.member.client import Client client = Client(project) client.run() @run_cmd.command('fedavg') @click.pass_context @click.option('-c', '--config', required=False, default='project.yaml') @click.option('-r', '--rounds', required=False, default=1) @click.option('-a', '--active', required=False, default=2) @click.option('-t', '--timeout', required=False, default=120) @click.option('-s', '--seedmodel', required=True) def fedavg_cmd(ctx, rounds, active, timeout, seedmodel, config): import fedn.combiner.fedavg as fedavg # TODO override by input parameters config = {'round_timeout': timeout, 'seedmodel': seedmodel, 'rounds': rounds, 'active_clients': active} project = ctx.obj['PROJECT'] # combiner = fedavg.Orchestrator(config=config) from fedn.combiner.helpers import get_combiner from fedn.combiner.server import FednServer server = FednServer(project, get_combiner) server.run(config) @run_cmd.command('reducer') @click.pass_context def reducer_cmd(ctx, ): from fedn.reducer.reducer import Reducer project = ctx.obj['PROJECT'] reducer = Reducer(project) reducer.run() ``` #### File: fedn/combiner/server.py ```python from concurrent import futures import grpc import time import uuid import queue import threading import fedn.proto.alliance_pb2 as alliance import fedn.proto.alliance_pb2_grpc as rpc from datetime import datetime, timedelta from scaleout.repository.helpers import get_repository from fedn.utils.mongo import connect_to_mongodb from fedn.combiner.role import Role #################################################################################################################### # class PredictionServer: # #TODO add a flask api and run in separate thread. # pass def whoami(client, instance): client.name = instance.id client.role = role_to_proto_role(instance.role) return client def role_to_proto_role(role): if role == Role.COMBINER: return alliance.COMBINER if role == Role.WORKER: return alliance.WORKER if role == Role.REDUCER: return alliance.REDUCER if role == Role.OTHER: return alliance.OTHER class CombinerClient: def __init__(self, address, port, id, role): self.id = id self.role = role channel = grpc.insecure_channel(address + ":" + str(port)) self.connection = rpc.ConnectorStub(channel) self.orchestrator = rpc.CombinerStub(channel) print("ORCHESTRATOR Client: {} connected to {}:{}".format(self.id, address, port)) threading.Thread(target=self.__listen_to_model_update_stream, daemon=True).start() threading.Thread(target=self.__listen_to_model_validation_stream, daemon=True).start() def __listen_to_model_update_stream(self): """ Subscribe to the model update request stream. """ r = alliance.ClientAvailableMessage() whoami(r.sender, self) for request in self.orchestrator.ModelUpdateStream(r): # A client sent a model update to be handled by the combiner if request.client.name != "reducer": print("ORCHESTRATOR: received model from client! {}".format(request.client), flush=True) self.receive_model_candidate(request.model_update_id) print("Recieved model update.", flush=True) def __listen_to_model_validation_stream(self): """ Subscribe to the model update request stream. """ r = alliance.ClientAvailableMessage() whoami(r.sender, self) for validation in self.orchestrator.ModelValidationStream(r): # A client sent a model update to be handled by the combiner self.receive_validation(validation) print("Recieved model validation.", flush=True) def request_model_update(self, model_id, clients=[]): """ Ask members in from_clients list to update the current global model. """ print("ORCHESTRATOR: Sending to clients {}".format(clients), flush=True) request = alliance.ModelUpdateRequest() whoami(request.sender, self) request.model_id = model_id request.correlation_id = str(uuid.uuid4()) request.timestamp = str(datetime.now()) if len(clients) == 0: # Broadcast request to all active member clients request.receiver.name = "" request.receiver.role = alliance.WORKER response = self.orchestrator.SendModelUpdateRequest(request) else: # Send to all specified clients for client in clients: request.receiver.name = client.name request.receiver.role = alliance.WORKER self.orchestrator.SendModelUpdateRequest(request) print("Requesting model update from clients {}".format(clients), flush=True) def request_model_validation(self, model_id, from_clients=[]): """ Send a request for members in from_client to validate the model <model_id>. The default is to broadcast the request to all active members. """ request = alliance.ModelValidationRequest() whoami(request.sender, self) request.model_id = model_id request.correlation_id = str(uuid.uuid4()) request.timestamp = str(datetime.now()) if len(from_clients) == 0: request.receiver.name = "" # Broadcast request to all active member clients request.receiver.role = alliance.WORKER self.orchestrator.SendModelValidationRequest(request) else: # Send to specified clients for client in from_clients: request.receiver.name = client.name request.receiver.role = alliance.WORKER self.orchestrator.SendModelValidationRequest(request) print("ORCHESTRATOR: Sent validation request for model {}".format(model_id), flush=True) def _list_clients(self, channel): request = alliance.ListClientsRequest() whoami(request.sender, self) request.channel = channel clients = self.connection.ListActiveClients(request) return clients.client def get_active_trainers(self): trainers = self._list_clients(alliance.Channel.MODEL_UPDATE_REQUESTS) return trainers def get_active_validators(self): validators = self._list_clients(alliance.Channel.MODEL_VALIDATION_REQUESTS) return validators def nr_active_trainers(self): return len(self.get_active_trainers()) def nr_active_validators(self): return len(self.get_active_validators()) #################################################################################################################### #################################################################################################################### class FednServer(rpc.CombinerServicer, rpc.ReducerServicer, rpc.ConnectorServicer): """ Communication relayer. """ def __init__(self, project, get_orchestrator): self.clients = {} self.project = project self.role = Role.COMBINER self.id = "combiner" address = "localhost" port = 12808 try: unpack = project.config['Alliance'] address = unpack['controller_host'] port = unpack['controller_port'] # self.client = unpack['Member']['name'] except KeyError as e: print("ORCHESTRATOR: could not get all values from config file {}".format(e)) try: unpack = self.project.config['Alliance'] address = unpack['controller_host'] port = unpack['controller_port'] self.repository = get_repository(config=unpack['Repository']) self.bucket_name = unpack["Repository"]["minio_bucket"] except KeyError as e: print("ORCHESETRATOR: could not get all values from config file {}".format(e), flush=True) # get the appropriate combiner class and instantiate with a pointer to the alliance server instance and repository # self.net = OrchestratorClient(address, port, self.id) # threading.Thread(target=self.__listen_to_model_update_stream, daemon=True).start() # threading.Thread(target=self.__listen_to_model_validation_stream, daemon=True).start() self.server = grpc.server(futures.ThreadPoolExecutor(max_workers=100)) # TODO refactor services into separate services rpc.add_CombinerServicer_to_server(self, self.server) rpc.add_ConnectorServicer_to_server(self, self.server) rpc.add_ReducerServicer_to_server(self, self.server) self.server.add_insecure_port('[::]:' + str(port)) self.orchestrator = get_orchestrator(project)(address, port, self.id, self.role, self.repository) self.server.start() # def __get_clients(self): # return self.clients def __join_client(self, client): if not client.name in self.clients.keys(): self.clients[client.name] = {"lastseen": datetime.now()} print("New client connected:{}".format(client), flush=True) def _subscribe_client_to_queue(self, client, queue_name): self.__join_client(client) if not queue_name in self.clients[client.name].keys(): self.clients[client.name][queue_name] = queue.Queue() def __get_queue(self, client, queue_name): try: return self.clients[client.name][queue_name] except KeyError: raise def __get_status_queue(self, client): return self.__get_queue(client, alliance.Channel.STATUS) def _send_request(self, request, queue_name): self.__route_request_to_client(request, request.receiver, queue_name) def _broadcast_request(self, request, queue_name): """ Publish a request to all subscribed members. """ active_clients = self._list_active_clients() for client in active_clients: self.clients[client.name][queue_name].put(request) def __route_request_to_client(self, request, client, queue_name): try: q = self.__get_queue(client, queue_name) q.put(request) except: print("Failed to route request to client: {} {}", request.receiver, queue_name) raise def _send_status(self, status): for name, client in self.clients.items(): try: q = client[alliance.Channel.STATUS] status.timestamp = str(datetime.now()) q.put(status) except KeyError: pass def __register_heartbeat(self, client): """ Adds a client entry in the clients dict if first time connecting. Updates heartbeat timestamp. """ self.__join_client(client) self.clients[client.name]["lastseen"] = datetime.now() def AllianceStatusStream(self, response, context): """ A server stream RPC endpoint that emits status messages. """ status = alliance.Status(status="Client {} connecting to AllianceStatusStream.".format(response.sender)) status.log_level = alliance.Status.INFO status.sender.name = self.id status.sender.role = role_to_proto_role(self.role) self._subscribe_client_to_queue(response.sender, alliance.Channel.STATUS) q = self.__get_queue(response.sender, alliance.Channel.STATUS) self._send_status(status) while True: yield q.get() def SendStatus(self, status: alliance.Status, context): # Register a heartbeat (if the clients sends a message it is online) # self.__register_heartbeat(status.client) # Add the status message to all subscribers of the status channel self._send_status(status) response = alliance.Response() response.response = "Status received." return response def _list_subscribed_clients(self, queue_name): subscribed_clients = [] for name, client in self.clients.items(): if queue_name in client.keys(): subscribed_clients.append(name) return subscribed_clients def _list_active_clients(self, channel): active_clients = [] for client in self._list_subscribed_clients(channel): # This can break with different timezones. now = datetime.now() then = self.clients[client]["lastseen"] # TODO: move the heartbeat timeout to config. if (now - then) < timedelta(seconds=30): active_clients.append(client) return active_clients def ListActiveClients(self, request: alliance.ListClientsRequest, context): """ RPC endpoint that returns a ClientList containing the names of all active clients. An active client has sent a status message / responded to a heartbeat request in the last 10 seconds. """ clients = alliance.ClientList() active_clients = self._list_active_clients(request.channel) for client in active_clients: clients.client.append(alliance.Client(name=client, role=alliance.WORKER)) return clients def SendHeartbeat(self, heartbeat: alliance.Heartbeat, context): """ RPC that lets clients send a hearbeat, notifying the server that the client is available. """ self.__register_heartbeat(heartbeat.sender) response = alliance.Response() response.sender.name = heartbeat.sender.name response.sender.role = heartbeat.sender.role response.response = "Heartbeat received" return response ## Combiner Service def ModelUpdateStream(self, update, context): client = update.sender status = alliance.Status(status="Client {} connecting to ModelUpdateStream.".format(client.name)) status.log_level = alliance.Status.INFO status.sender.name = self.id status.sender.role = role_to_proto_role(self.role) self._subscribe_client_to_queue(client, alliance.Channel.MODEL_UPDATES) q = self.__get_queue(client, alliance.Channel.MODEL_UPDATES) self._send_status(status) while True: yield q.get() def ModelUpdateRequestStream(self, response, context): """ A server stream RPC endpoint. Messages from client stream. """ client = response.sender metadata = context.invocation_metadata() if metadata: print("\n\n\nGOT METADATA: {}\n\n\n".format(metadata), flush=True) status = alliance.Status(status="Client {} connecting to ModelUpdateRequestStream.".format(client.name)) status.log_level = alliance.Status.INFO whoami(status.sender, self) # print("Client {} connecting to ModelUpdateRequestStream.".format(client)) self._subscribe_client_to_queue(client, alliance.Channel.MODEL_UPDATE_REQUESTS) q = self.__get_queue(client, alliance.Channel.MODEL_UPDATE_REQUESTS) self._send_status(status) while True: yield q.get() def ModelValidationStream(self, update, context): client = update.sender status = alliance.Status(status="Client {} connecting to ModelValidationStream.".format(client.name)) status.log_level = alliance.Status.INFO status.sender.name = self.id status.sender.role = role_to_proto_role(self.role) # print("Client {} connecting to ModelUpdateStream.".format(client)) self._subscribe_client_to_queue(client, alliance.Channel.MODEL_VALIDATIONS) q = self.__get_queue(client, alliance.Channel.MODEL_VALIDATIONS) self._send_status(status) while True: yield q.get() def ModelValidationRequestStream(self, response, context): """ A server stream RPC endpoint. Messages from client stream. """ client = response.sender status = alliance.Status(status="Client {} connecting to ModelValidationRequestStream.".format(client.name)) status.log_level = alliance.Status.INFO status.sender.name = self.id status.sender.role = role_to_proto_role(self.role) # whoami(status.sender, self) self._subscribe_client_to_queue(client, alliance.Channel.MODEL_VALIDATION_REQUESTS) q = self.__get_queue(client, alliance.Channel.MODEL_VALIDATION_REQUESTS) self._send_status(status) while True: yield q.get() def SendModelUpdateRequest(self, request, context): """ Send a model update request. """ self._send_request(request, alliance.Channel.MODEL_UPDATE_REQUESTS) response = alliance.Response() response.response = "CONTROLLER RECEIVED ModelUpdateRequest from client {}".format(request.sender.name) return response # TODO Fill later def SendModelUpdate(self, request, context): """ Send a model update response. """ # self._send_request(request,alliance.Channel.MODEL_UPDATES) self.orchestrator.receive_model_candidate(request.model_update_id) print("ORCHESTRATOR: Received model update", flush=True) response = alliance.Response() response.response = "RECEIVED ModelUpdate {} from client {}".format(response, response.sender.name) return response # TODO Fill later def SendModelValidationRequest(self, request, context): """ Send a model update request. """ self._send_request(request, alliance.Channel.MODEL_VALIDATION_REQUESTS) response = alliance.Response() response.response = "CONTROLLER RECEIVED ModelValidationRequest from client {}".format(request.sender.name) return response # TODO Fill later def SendModelValidation(self, request, context): """ Send a model update response. """ # self._send_request(request,alliance.Channel.MODEL_VALIDATIONS) self.orchestrator.receive_validation(request) print("ORCHESTRATOR received validation ", flush=True) response = alliance.Response() response.response = "RECEIVED ModelValidation {} from client {}".format(response, response.sender.name) return response # TODO Fill later ## Reducer Service def GetGlobalModel(self, request, context): print("got globalmodel request, sending response! ", flush=True) response = alliance.GetGlobalModelResponse() whoami(response.sender, self) response.receiver.name = "reducer" response.receiver.role = role_to_proto_role(Role.REDUCER) response.model_id = self.orchestrator.get_model_id() return response #################################################################################################################### def run(self, config): print("ORCHESTRATOR:starting combiner", flush=True) self.orchestrator.run(config) ``` #### File: fedn/member/client.py ```python import threading import json import tempfile from datetime import datetime import os # TODO Remove from this level. Abstract to unified non implementation specific client. from fedn.utils.dispatcher import Dispatcher import fedn.proto.alliance_pb2 as alliance import fedn.proto.alliance_pb2_grpc as rpc import grpc from scaleout.repository.helpers import get_repository class Client: def __init__(self, project): self.project = project try: unpack = self.project.config['Alliance'] address = unpack['controller_host'] port = unpack['controller_port'] self.name = unpack['Member']['name'] except KeyError as e: print("could not get all values from config file {}".format(e)) try: self.name = os.environ['CLIENT_NAME'] except KeyError: pass self.repository = get_repository(config=unpack['Repository']) self.bucket_name = unpack["Repository"]["minio_bucket"] channel = grpc.insecure_channel(address + ":" + str(port)) self.connection = rpc.ConnectorStub(channel) self.orchestrator = rpc.CombinerStub(channel) print("Client: {} connected to {}:{}".format(self.name, address, port)) self.dispatcher = Dispatcher(self.project) self.lock = threading.Lock() threading.Thread(target=self._send_heartbeat, daemon=True).start() threading.Thread(target=self.__listen_to_model_update_request_stream, daemon=True).start() threading.Thread(target=self.__listen_to_model_validation_request_stream, daemon=True).start() def __listen_to_model_update_request_stream(self): """ Subscribe to the model update request stream. """ r = alliance.ClientAvailableMessage() r.sender.name = self.name r.sender.role = alliance.WORKER metadata = [('client', r.sender.name)] for request in self.orchestrator.ModelUpdateRequestStream(r, metadata=metadata): if request.sender.role == alliance.COMBINER: # Process training request global_model_id = request.model_id # TODO: Error handling self.send_status("Received model update request.", log_level=alliance.Status.AUDIT, type=alliance.StatusType.MODEL_UPDATE_REQUEST, request=request) model_id = self.__process_training_request(global_model_id) if model_id != None: # Notify the requesting client that a model update is available update = alliance.ModelUpdate() update.sender.name = self.name update.sender.role = alliance.WORKER update.receiver.name = request.sender.name update.receiver.role = request.sender.role update.model_id = request.model_id update.model_update_id = model_id update.timestamp = str(datetime.now()) update.correlation_id = request.correlation_id response = self.orchestrator.SendModelUpdate(update) self.send_status("Model update completed.", log_level=alliance.Status.AUDIT, type=alliance.StatusType.MODEL_UPDATE, request=update) else: self.send_status("Client {} failed to complete model update.", log_level=alliance.Status.WARNING, request=request) def __listen_to_model_validation_request_stream(self): """ Subscribe to the model update request stream. """ r = alliance.ClientAvailableMessage() r.sender.name = self.name r.sender.role = alliance.WORKER for request in self.orchestrator.ModelValidationRequestStream(r): # Process training request model_id = request.model_id # TODO: Error handling self.send_status("Recieved model validation request.", log_level=alliance.Status.AUDIT, type=alliance.StatusType.MODEL_VALIDATION_REQUEST, request=request) metrics = self.__process_validation_request(model_id) if metrics != None: # Send validation validation = alliance.ModelValidation() validation.sender.name = self.name validation.sender.role = alliance.WORKER validation.receiver.name = request.sender.name validation.receiver.role = request.sender.role validation.model_id = model_id validation.data = json.dumps(metrics) self.str = str(datetime.now()) validation.timestamp = self.str validation.correlation_id = request.correlation_id response = self.orchestrator.SendModelValidation(validation) self.send_status("Model validation completed.", log_level=alliance.Status.AUDIT, type=alliance.StatusType.MODEL_VALIDATION, request=validation) else: self.send_status("Client {} failed to complete model validation.".format(self.client), log_level=alliance.Status.WARNING, request=request) def __process_training_request(self, model_id): self.send_status("\t Processing training request for model_id {}".format(model_id)) try: model = self.repository.get_model(model_id) fid, infile_name = tempfile.mkstemp(suffix='.h5') fod, outfile_name = tempfile.mkstemp(suffix='.h5') with open(infile_name, "wb") as fh: fh.write(model) self.dispatcher.run_cmd("train {} {}".format(infile_name, outfile_name)) model_id = self.repository.set_model(outfile_name, is_file=True) os.unlink(infile_name) os.unlink(outfile_name) except Exception as e: print("ERROR could not process training request due to error: {}".format(e)) model_id = None return model_id def __process_validation_request(self, model_id): self.send_status("Processing validation request for model_id {}".format(model_id)) try: model = self.repository.get_model(model_id) fid, infile_name = tempfile.mkstemp(suffix='.h5') fod, outfile_name = tempfile.mkstemp(suffix='.h5') with open(infile_name, "wb") as fh: fh.write(model) self.dispatcher.run_cmd("validate {} {}".format(infile_name, outfile_name)) with open(outfile_name, "r") as fh: validation = json.loads(fh.read()) os.unlink(infile_name) os.unlink(outfile_name) return validation except Exception as e: print("Validation failed with exception {}".format(e), flush=True) return None def send_status(self, msg, log_level=alliance.Status.INFO, type=None, request=None): from google.protobuf.json_format import MessageToJson status = alliance.Status() status.sender.name = self.name status.sender.role = alliance.WORKER status.log_level = log_level status.status = str(msg) if type is not None: status.type = type if request is not None: status.data = MessageToJson(request) response = self.connection.SendStatus(status) def _send_heartbeat(self, update_frequency=2.0): while True: heartbeat = alliance.Heartbeat(sender=alliance.Client(name=self.name, role=alliance.WORKER)) self.connection.SendHeartbeat(heartbeat) # self.send_status("HEARTBEAT from {}".format(self.client),log_level=alliance.Status.INFO) import time time.sleep(update_frequency) def run(self): import time try: while True: time.sleep(1) print("CLIENT running.", flush=True) except KeyboardInterrupt: print("ok exiting..") ``` #### File: data_center/client/validate.py ```python from __future__ import print_function import json import sys import keras import tensorflow as tf import pickle tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR) from read_data import read_data import tensorflow.keras.models as krm def validate(model,data): print("-- RUNNING Validation --") # The data, split between train and test sets (x_test, y_test) = read_data(data) predictions = model.predict(x_test) mse_obj = tf.keras.metrics.MeanAbsoluteError() mse_obj.update_state(predictions, y_test) mse_val = mse_obj.result().numpy() print("-- validation COMPLETED --") results = {"mae" : str(mse_val)} return results if __name__ == '__main__': # Read the model model = krm.load_model(sys.argv[1]) validation = validate(model,'../data/test.csv') with open(sys.argv[2],"w") as fh: fh.write(json.dumps(validation)) ``` #### File: josh/client/train.py ```python from __future__ import print_function import sys import tensorflow as tf import tensorflow.keras as keras import tensorflow.keras.models as krm from random import sample import numpy import pickle tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR) from read_data import read_data def train(model,data,sample_fraction): print("-- RUNNING TRAINING --") batch_size = 32 epochs = 1 # The data, split between train and test sets (x_train, y_train, classes) = read_data(data,sample_fraction=sample_fraction) """ num = 3 # Number of Clients ran_order = sample(range(0, x_train.shape[0]), x_train.shape[0]) local_size=int(x_train.shape[0]/num) partitionedX=[] partitionedY=[] for i in range(0,num): partitionedX.append(x_train[ran_order[i*local_size:(i+1)*local_size]]) partitionedY.append(y_train[ran_order[i*local_size:(i+1)*local_size]]) X = numpy.array(partitionedX) Y = numpy.array(partitionedY) """ model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1) print("-- TRAINING COMPLETED --") return model if __name__ == '__main__': print("#####################################################################################################################") print("#####################################################################################################################") print("#####################################################################################################################") print("#####################################################################################################################") print("#####################################################################################################################") model = krm.load_model(sys.argv[1]) model = train(model,'../data/train.csv',sample_fraction=0.1) model.save(sys.argv[2]) ```
{ "source": "joshysnow/objectstore", "score": 2 }
#### File: objectstore/objectstore/observer.py ```python class Observer: """ Objects that are interested in a subject should inherit from this class. """ def notify(self, sender: object): pass ```
{ "source": "JoshYuJump/bali", "score": 2 }
#### File: bali/db/comparators.py ```python from collections import defaultdict from sqlalchemy import case from sqlalchemy.ext.hybrid import Comparator from sqlalchemy.util.langhelpers import dictlike_iteritems class CaseComparator(Comparator): def __init__(self, whens, expression): super().__init__(expression) self.whens, self.reversed_whens = dictlike_iteritems(whens), defaultdict(list) for k, v in self.whens: self.reversed_whens[v].append(k) def __clause_element__(self): return case(self.whens, self.expression) def __eq__(self, other): return super().__clause_element__().in_(self.reversed_whens[other]) ``` #### File: bali/utils/timezone.py ```python import calendar import os from datetime import datetime, date, timedelta from typing import Union import pytz TzInfoType = Union[type(pytz.utc), pytz.tzinfo.DstTzInfo] StrTzInfoType = Union[TzInfoType, str] DEFAULT_TZ_INFO = "Asia/Jakarta" NotAwareDescription = "expects an aware datetime" def get_current_timezone() -> TzInfoType: tz_info = os.environ.get("TZ", DEFAULT_TZ_INFO) return pytz.timezone(tz_info) def get_current_timezone_name() -> str: return get_current_timezone().tzname(None) def now() -> datetime: return datetime.now(pytz.utc) def is_aware(value: datetime) -> bool: return value.utcoffset() is not None def is_naive(value: datetime) -> bool: return value.utcoffset() is None def make_aware( value: datetime, *, timezone: StrTzInfoType = None, is_dst: bool = False, ) -> datetime: assert is_naive(value), "expects a naive datetime" if timezone is None: timezone = get_current_timezone() elif isinstance(timezone, str): timezone = pytz.timezone(timezone) else: pass return timezone.localize(value, is_dst=is_dst) def make_naive( value: datetime, *, timezone: StrTzInfoType = None, ) -> datetime: assert is_aware(value), NotAwareDescription if timezone is None: timezone = get_current_timezone() elif isinstance(timezone, str): timezone = pytz.timezone(timezone) else: pass return value.astimezone(timezone).replace(tzinfo=None) def localtime(value: datetime = None, timezone: StrTzInfoType = None) -> datetime: value, timezone = value or now(), timezone or get_current_timezone() if isinstance(timezone, str): timezone = pytz.timezone(timezone) assert is_aware(value), NotAwareDescription return value.astimezone(timezone) def localdate(value: datetime = None, timezone: StrTzInfoType = None) -> date: return localtime(value, timezone).date() def start_of( granularity: str, value: datetime = None, *, timezone: StrTzInfoType = None, ) -> datetime: value = localtime(value, timezone) if granularity == "year": value = value.replace(month=1, day=1) elif granularity == "month": value = value.replace(day=1) elif granularity == "week": value = value - timedelta(days=calendar.weekday(value.year, value.month, value.day)) elif granularity == "day": pass else: raise ValueError("Granularity must be year, month, week or day") return value.replace(hour=0, minute=0, second=0, microsecond=0) ```