text
stringlengths
0
6.44k
Alma 1966 −80.5135 25.0110 0.30 Above Normal Tavernier
Betsy 1965 −80.5148 25.0096 2.35 Mean Low Water Tavernier
Donna 1960 −80.6353 24.9133 4.11 Upper Matecumbe Key
Labor Day 1935 −80.7375 24.8516 5.49 Lower Matecumbe
Unnamed 1929 −80.3885 25.1848 2.68 Mean Sea Level Key Largo
The recurrence interval projection is by necessity based on a sparse dataset, and caution should
be used in its interpretation. As projection intervals become longer, it is more likely that the observed
data are inadequate to robustly represent all possibilities. Furthermore, these projections do not
incorporate changes from sea level rise or from a changing climate, which can alter the strength and
frequency of storms. An important aspect of sea level rise is that it significantly shortens the expected
recurrence intervals of storm surge. For example, under a median sea level rise projection at Key West,
J. Mar. Sci. Eng. 2017, 5, 31 23 of 26
Park et al. [45] find that a one-in-50-year storm surge based on historic data in 2010 can be expected to
occur once every five years by 2060.
Figure A2. Storm surge recurrence intervals from the SurgeDat database and return period predictor
for a 25-mile radius centered on 25.2◦ N, 80.7◦ W.
Table A4. Recurrence interval projection in years from the Florida Bay SurgeDat data. Note that this
projection does not take into account future sea level rise.
Interval (Year) Surge (m) Interval (Year) Surge (m)
10 0.45 56 3.88
12 0.82 58 3.95
14 1.12 60 4.02
16 1.39 62 4.08
18 1.62 64 4.15
20 1.83 66 4.21
22 2.02 68 4.27
24 2.19 70 4.33
26 2.35 72 4.38
28 2.50 74 4.44
30 2.64 76 4.49
32 2.77 78 4.54
34 2.89 80 4.59
36 3.00 82 4.64
38 3.11 84 4.69
40 3.21 86 4.73
42 3.31 88 4.78
44 3.40 90 4.82
46 3.49 92 4.87
48 3.57 94 4.91
50 3.65 96 4.95
52 3.73 98 4.99
54 3.81 100 5.03
References
1. Cazenave, A.; Le Cozannet, G. Sea level rise and its coastal impacts. Earth’s Future 2013, 2, 15–34,
doi:10.1002/2013EF000188.
2. Light, S.S.; Dineen, J.W. Water control in the Everglades: A historical perspective. In Everglades: The Ecosystem
and its Restoration; Davis, S.M., Ogden, J.C., Park, W.A., Eds.; St. Lucie Press: Delray Beach, FL, USA, 1994;
p. 826, ISBN 0963403028.
J. Mar. Sci. Eng. 2017, 5, 31 24 of 26
3. National Research Council (NRC). Progress toward Restoring the Everglades: The Fifth Biennial Review—2014;
Committee on Independent Scientific Review of Everglades Restoration Progress, Water Science and
Technology Board, Board on Environmental Studies and Toxicology; Division on Earth and Life Studies;
National Research Council: Washington, DC, USA, 2014; p. 320, doi:10.17226/18809.2014. Available online:
http://www.nap.edu/catalog.php?record_id=18809 (accessed on 25 July 2017).
4. Southeast Florida Regional Climate Change Compact (RCCC). A Region Responds to a Changing Climate
Southeast Florida Regional Climate Change Compact Counties, Regional Climate Action Plan; October 2012; p. 84.
Available online: https://southeastfloridaclimatecompact.files.wordpress.com/2014/05/regional-climateaction-plan-final-ada-compliant.pdf (accessed on 25 July 2017).
5. Southeast Florida Regional Climate Change Compact (RCCC). The Sea Level Rise Task Force; 2013. Available
online: http://www.miamidade.gov/planning/boards-sea-level-rise.asp (accessed on 25 July 2017).
6. Holland, P.R.; Brisbourne, A.; Corr, H.F.J.; McGrath, D.; Purdon, K.; Paden, J.; Fricker, H.A.; Paolo, F.S.;
Fleming, A.H. Oceanic and atmospheric forcing of Larsen C Ice-Shelf thinning. Cryosphere 2015, 9, 1005–1024,
doi:10.5194/tc-9-1005-2015.
7. Wouters, B.; Martin-Español, A.; Helm, V.; Flament, T.; van Wessem, J.M.; Ligtenberg, S.R.M.;
van den Broeke, M.R.; Bamber, J.L. Dynamic thinning of glaciers on the Southern Antarctic Peninsula. Science
2015, 348, 899–903, doi:10.1126/science.aaa5727.
8. The Intergovernmental Panel on Climate Change (IPCC). Climate Change 2013: The Physical Science Basis;
Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate
Change; 5th Assessment report; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J.,
Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY,
USA, 2013.
9. Kopp, R.W.; Horton, R.M.; Little, C.M.; Mitrovica, J.X.; Oppenheimer, M.; Rasmussen, D.J.; Strauss, B.H.;
Tebaldi, C. Probabilistic 21st and 22nd century sea-level projections at a global network of tide gauge sites.
Earth’s Future 2014, 2, 383–406, doi:10.1111/eft2.2014EF000239.
10. Park, J.; Sweet, W. Accelerated sea level rise and Florida Current transport. Ocean Sci. 2015, 11, 607–615,
doi:10.5194/os-11-607-2015.
11. National Oceanic and Atmospheric Administration (NOAA). Earth Systems Research Laboratory, CO2 Annual
Mean Growth Rate for Mauna Loa, Hawaii; 2017. Available online: https://www.esrl.noaa.gov/gmd/ccgg/
trends/gr.html (accessed on 25 July 2017).
12. Jones, G.A.; Warner, K.J. The 21st century population-energy-climate nexus. Energy Policy 2016, 93, 206–212,
doi:10.1016/j.enpol.2016.02.044.
13. International Energy Agency. Medium-Term Renewable Energy Market Report 2016; Available
online: https://www.iea.org/newsroom/news/2016/october/medium-term-renewable-energy-marketreport-2016.html (accessed on 25 July 2017).
14. United Nations REN21. Renewables 2016 Global Status Report (Paris: REN21 Secretariat); ISBN 978-3-9818107-0-7.
2016. Available online: www.ren21.net/status-of-renewables/global-status-report/ (accessed on
25 July 2017).
15. DeConto, R.M.; Pollard, D. Contribution of Antarctica to past and future sea-level rise. Nature 2016, 531,
591–597, doi: 10.1038/nature17145.
16. Fennema, R.; James, F.; Bhatt, T.; Mullins, T.; Alarcon, C. EVER Elevation (Version 1): A Multi-Sourced Digital
Elevation Model for Everglades National Park; National Park Service: Homestead, FL, USA, 2015.
17. Lentz, E.; Thieler, E.; Plant, N.; Stippa, S.; Horton, R.; Gesch, D. Evaluation of dynamic coastal response to
sea-level rise modifies inundation likelihood. Nat. Clim. Chang. 2016, 6, 696–700, doi:10.1038/nclimate2957.
18. Passeri, D.L.; Hagen, S.C.; Medeiros, S.C.; Bilskie, M.V.; Alizad, K.; Wang, D. The dynamic effects of sea level
rise on low-gradient coastal landscapes: A review. Earth’s Future 2015, 3, 159–181.
19. United Nations Educational, Scientific, and Cultural Organization (UNESCO). The Practical Salinity Scale 1978
and the International Equation of State of Seawater 1980; Unesco Technical Papers in Marine Science 36; 1981.
Available online: http://unesdoc.unesco.org/images/0004/000461/046148eb.pdf (accessed on 25 July 2017).
20. Huang, N.E.; Wu, Z. A review on Hilbert-Huang transform: Method and its applications to geophysical
studies. Rev. Geophys. 2008, 46, RG2006, doi:10.1029/2007RG000228.
21. Chambers, D.P. Evaluation of empirical mode decomposition for quantifying multi-decadal variations and
acceleration in sea level records. Nonlin. Process. Geophys. 2015, 22, 157–166, doi:10.5194/npg-22-157-2015.