text
stringlengths 0
6.44k
|
---|
Alma 1966 −80.5135 25.0110 0.30 Above Normal Tavernier |
Betsy 1965 −80.5148 25.0096 2.35 Mean Low Water Tavernier |
Donna 1960 −80.6353 24.9133 4.11 Upper Matecumbe Key |
Labor Day 1935 −80.7375 24.8516 5.49 Lower Matecumbe |
Unnamed 1929 −80.3885 25.1848 2.68 Mean Sea Level Key Largo |
The recurrence interval projection is by necessity based on a sparse dataset, and caution should |
be used in its interpretation. As projection intervals become longer, it is more likely that the observed |
data are inadequate to robustly represent all possibilities. Furthermore, these projections do not |
incorporate changes from sea level rise or from a changing climate, which can alter the strength and |
frequency of storms. An important aspect of sea level rise is that it significantly shortens the expected |
recurrence intervals of storm surge. For example, under a median sea level rise projection at Key West, |
J. Mar. Sci. Eng. 2017, 5, 31 23 of 26 |
Park et al. [45] find that a one-in-50-year storm surge based on historic data in 2010 can be expected to |
occur once every five years by 2060. |
Figure A2. Storm surge recurrence intervals from the SurgeDat database and return period predictor |
for a 25-mile radius centered on 25.2◦ N, 80.7◦ W. |
Table A4. Recurrence interval projection in years from the Florida Bay SurgeDat data. Note that this |
projection does not take into account future sea level rise. |
Interval (Year) Surge (m) Interval (Year) Surge (m) |
10 0.45 56 3.88 |
12 0.82 58 3.95 |
14 1.12 60 4.02 |
16 1.39 62 4.08 |
18 1.62 64 4.15 |
20 1.83 66 4.21 |
22 2.02 68 4.27 |
24 2.19 70 4.33 |
26 2.35 72 4.38 |
28 2.50 74 4.44 |
30 2.64 76 4.49 |
32 2.77 78 4.54 |
34 2.89 80 4.59 |
36 3.00 82 4.64 |
38 3.11 84 4.69 |
40 3.21 86 4.73 |
42 3.31 88 4.78 |
44 3.40 90 4.82 |
46 3.49 92 4.87 |
48 3.57 94 4.91 |
50 3.65 96 4.95 |
52 3.73 98 4.99 |
54 3.81 100 5.03 |
References |
1. Cazenave, A.; Le Cozannet, G. Sea level rise and its coastal impacts. Earth’s Future 2013, 2, 15–34, |
doi:10.1002/2013EF000188. |
2. Light, S.S.; Dineen, J.W. Water control in the Everglades: A historical perspective. In Everglades: The Ecosystem |
and its Restoration; Davis, S.M., Ogden, J.C., Park, W.A., Eds.; St. Lucie Press: Delray Beach, FL, USA, 1994; |
p. 826, ISBN 0963403028. |
J. Mar. Sci. Eng. 2017, 5, 31 24 of 26 |
3. National Research Council (NRC). Progress toward Restoring the Everglades: The Fifth Biennial Review—2014; |
Committee on Independent Scientific Review of Everglades Restoration Progress, Water Science and |
Technology Board, Board on Environmental Studies and Toxicology; Division on Earth and Life Studies; |
National Research Council: Washington, DC, USA, 2014; p. 320, doi:10.17226/18809.2014. Available online: |
http://www.nap.edu/catalog.php?record_id=18809 (accessed on 25 July 2017). |
4. Southeast Florida Regional Climate Change Compact (RCCC). A Region Responds to a Changing Climate |
Southeast Florida Regional Climate Change Compact Counties, Regional Climate Action Plan; October 2012; p. 84. |
Available online: https://southeastfloridaclimatecompact.files.wordpress.com/2014/05/regional-climateaction-plan-final-ada-compliant.pdf (accessed on 25 July 2017). |
5. Southeast Florida Regional Climate Change Compact (RCCC). The Sea Level Rise Task Force; 2013. Available |
online: http://www.miamidade.gov/planning/boards-sea-level-rise.asp (accessed on 25 July 2017). |
6. Holland, P.R.; Brisbourne, A.; Corr, H.F.J.; McGrath, D.; Purdon, K.; Paden, J.; Fricker, H.A.; Paolo, F.S.; |
Fleming, A.H. Oceanic and atmospheric forcing of Larsen C Ice-Shelf thinning. Cryosphere 2015, 9, 1005–1024, |
doi:10.5194/tc-9-1005-2015. |
7. Wouters, B.; Martin-Español, A.; Helm, V.; Flament, T.; van Wessem, J.M.; Ligtenberg, S.R.M.; |
van den Broeke, M.R.; Bamber, J.L. Dynamic thinning of glaciers on the Southern Antarctic Peninsula. Science |
2015, 348, 899–903, doi:10.1126/science.aaa5727. |
8. The Intergovernmental Panel on Climate Change (IPCC). Climate Change 2013: The Physical Science Basis; |
Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate |
Change; 5th Assessment report; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., |
Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, |
USA, 2013. |
9. Kopp, R.W.; Horton, R.M.; Little, C.M.; Mitrovica, J.X.; Oppenheimer, M.; Rasmussen, D.J.; Strauss, B.H.; |
Tebaldi, C. Probabilistic 21st and 22nd century sea-level projections at a global network of tide gauge sites. |
Earth’s Future 2014, 2, 383–406, doi:10.1111/eft2.2014EF000239. |
10. Park, J.; Sweet, W. Accelerated sea level rise and Florida Current transport. Ocean Sci. 2015, 11, 607–615, |
doi:10.5194/os-11-607-2015. |
11. National Oceanic and Atmospheric Administration (NOAA). Earth Systems Research Laboratory, CO2 Annual |
Mean Growth Rate for Mauna Loa, Hawaii; 2017. Available online: https://www.esrl.noaa.gov/gmd/ccgg/ |
trends/gr.html (accessed on 25 July 2017). |
12. Jones, G.A.; Warner, K.J. The 21st century population-energy-climate nexus. Energy Policy 2016, 93, 206–212, |
doi:10.1016/j.enpol.2016.02.044. |
13. International Energy Agency. Medium-Term Renewable Energy Market Report 2016; Available |
online: https://www.iea.org/newsroom/news/2016/october/medium-term-renewable-energy-marketreport-2016.html (accessed on 25 July 2017). |
14. United Nations REN21. Renewables 2016 Global Status Report (Paris: REN21 Secretariat); ISBN 978-3-9818107-0-7. |
2016. Available online: www.ren21.net/status-of-renewables/global-status-report/ (accessed on |
25 July 2017). |
15. DeConto, R.M.; Pollard, D. Contribution of Antarctica to past and future sea-level rise. Nature 2016, 531, |
591–597, doi: 10.1038/nature17145. |
16. Fennema, R.; James, F.; Bhatt, T.; Mullins, T.; Alarcon, C. EVER Elevation (Version 1): A Multi-Sourced Digital |
Elevation Model for Everglades National Park; National Park Service: Homestead, FL, USA, 2015. |
17. Lentz, E.; Thieler, E.; Plant, N.; Stippa, S.; Horton, R.; Gesch, D. Evaluation of dynamic coastal response to |
sea-level rise modifies inundation likelihood. Nat. Clim. Chang. 2016, 6, 696–700, doi:10.1038/nclimate2957. |
18. Passeri, D.L.; Hagen, S.C.; Medeiros, S.C.; Bilskie, M.V.; Alizad, K.; Wang, D. The dynamic effects of sea level |
rise on low-gradient coastal landscapes: A review. Earth’s Future 2015, 3, 159–181. |
19. United Nations Educational, Scientific, and Cultural Organization (UNESCO). The Practical Salinity Scale 1978 |
and the International Equation of State of Seawater 1980; Unesco Technical Papers in Marine Science 36; 1981. |
Available online: http://unesdoc.unesco.org/images/0004/000461/046148eb.pdf (accessed on 25 July 2017). |
20. Huang, N.E.; Wu, Z. A review on Hilbert-Huang transform: Method and its applications to geophysical |
studies. Rev. Geophys. 2008, 46, RG2006, doi:10.1029/2007RG000228. |
21. Chambers, D.P. Evaluation of empirical mode decomposition for quantifying multi-decadal variations and |
acceleration in sea level records. Nonlin. Process. Geophys. 2015, 22, 157–166, doi:10.5194/npg-22-157-2015. |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.